code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
def __lowerCamelCase ( lowerCamelCase__ = 4_000_000 ): """simple docstring""" lowercase__ : Any = [] lowercase__ , lowercase__ : List[Any] = 0, 1 while b <= n: if b % 2 == 0: even_fibs.append(lowerCamelCase__ ) lowercase__ , lowercase__ : Optional[Any] = b, a + b return sum(lowerCamelCase__ ) if __name__ == "__main__": print(f'''{solution() = }''')
130
import json import os import unittest from transformers import BatchEncoding, LEDTokenizer, LEDTokenizerFast from transformers.models.led.tokenization_led import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, require_torch from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class snake_case__(_UpperCamelCase , unittest.TestCase ): """simple docstring""" lowercase_ = LEDTokenizer lowercase_ = LEDTokenizerFast lowercase_ = True def snake_case ( self : str ): super().setUp() lowercase__ : Tuple = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "<unk>", ] lowercase__ : Any = dict(zip(SCREAMING_SNAKE_CASE , range(len(SCREAMING_SNAKE_CASE ) ) ) ) lowercase__ : str = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] lowercase__ : List[str] = {"unk_token": "<unk>"} lowercase__ : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) lowercase__ : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(SCREAMING_SNAKE_CASE ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(SCREAMING_SNAKE_CASE ) ) def snake_case ( self : Union[str, Any] , **SCREAMING_SNAKE_CASE : int ): kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE ) def snake_case ( self : Optional[int] , **SCREAMING_SNAKE_CASE : Tuple ): kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE ) def snake_case ( self : str , SCREAMING_SNAKE_CASE : Optional[int] ): return "lower newer", "lower newer" @cached_property def snake_case ( self : List[str] ): return LEDTokenizer.from_pretrained("allenai/led-base-16384" ) @cached_property def snake_case ( self : Union[str, Any] ): return LEDTokenizerFast.from_pretrained("allenai/led-base-16384" ) @require_torch def snake_case ( self : str ): lowercase__ : List[str] = ["A long paragraph for summarization.", "Another paragraph for summarization."] lowercase__ : List[str] = [0, 250, 251, 17_818, 13, 39_186, 1_938, 4, 2] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowercase__ : str = tokenizer(SCREAMING_SNAKE_CASE , max_length=len(SCREAMING_SNAKE_CASE ) , padding=SCREAMING_SNAKE_CASE , return_tensors="pt" ) self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) lowercase__ : Optional[Any] = batch.input_ids.tolist()[0] self.assertListEqual(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) @require_torch def snake_case ( self : Optional[int] ): lowercase__ : int = ["A long paragraph for summarization.", "Another paragraph for summarization."] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowercase__ : Any = tokenizer(SCREAMING_SNAKE_CASE , padding=SCREAMING_SNAKE_CASE , return_tensors="pt" ) self.assertIn("input_ids" , SCREAMING_SNAKE_CASE ) self.assertIn("attention_mask" , SCREAMING_SNAKE_CASE ) self.assertNotIn("labels" , SCREAMING_SNAKE_CASE ) self.assertNotIn("decoder_attention_mask" , SCREAMING_SNAKE_CASE ) @require_torch def snake_case ( self : List[str] ): lowercase__ : List[str] = [ "Summary of the text.", "Another summary.", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowercase__ : Any = tokenizer(text_target=SCREAMING_SNAKE_CASE , max_length=32 , padding="max_length" , return_tensors="pt" ) self.assertEqual(32 , targets["input_ids"].shape[1] ) @require_torch def snake_case ( self : Optional[int] ): for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowercase__ : Tuple = tokenizer( ["I am a small frog" * 1_024, "I am a small frog"] , padding=SCREAMING_SNAKE_CASE , truncation=SCREAMING_SNAKE_CASE , return_tensors="pt" ) self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) self.assertEqual(batch.input_ids.shape , (2, 5_122) ) @require_torch def snake_case ( self : Tuple ): lowercase__ : int = ["A long paragraph for summarization."] lowercase__ : Union[str, Any] = [ "Summary of the text.", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowercase__ : Tuple = tokenizer(SCREAMING_SNAKE_CASE , return_tensors="pt" ) lowercase__ : List[str] = tokenizer(text_target=SCREAMING_SNAKE_CASE , return_tensors="pt" ) lowercase__ : Union[str, Any] = inputs["input_ids"] lowercase__ : List[str] = targets["input_ids"] self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() ) self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() ) @require_torch def snake_case ( self : Dict ): for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowercase__ : Optional[int] = ["Summary of the text.", "Another summary."] lowercase__ : List[Any] = [[0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, -1, -1]] lowercase__ : Union[str, Any] = tokenizer(SCREAMING_SNAKE_CASE , padding=SCREAMING_SNAKE_CASE ) lowercase__ : List[str] = [[0] * len(SCREAMING_SNAKE_CASE ) for x in encoded_output["input_ids"]] lowercase__ : Optional[int] = tokenizer.pad(SCREAMING_SNAKE_CASE ) self.assertSequenceEqual(outputs["global_attention_mask"] , SCREAMING_SNAKE_CASE ) def snake_case ( self : List[str] ): pass def snake_case ( self : str ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): lowercase__ : Tuple = self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) lowercase__ : List[str] = self.tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) lowercase__ : Optional[Any] = "A, <mask> AllenNLP sentence." lowercase__ : Any = tokenizer_r.encode_plus(SCREAMING_SNAKE_CASE , add_special_tokens=SCREAMING_SNAKE_CASE , return_token_type_ids=SCREAMING_SNAKE_CASE ) lowercase__ : Optional[Any] = tokenizer_p.encode_plus(SCREAMING_SNAKE_CASE , add_special_tokens=SCREAMING_SNAKE_CASE , return_token_type_ids=SCREAMING_SNAKE_CASE ) self.assertEqual(sum(tokens_r["token_type_ids"] ) , sum(tokens_p["token_type_ids"] ) ) self.assertEqual( sum(tokens_r["attention_mask"] ) / len(tokens_r["attention_mask"] ) , sum(tokens_p["attention_mask"] ) / len(tokens_p["attention_mask"] ) , ) lowercase__ : Optional[Any] = tokenizer_r.convert_ids_to_tokens(tokens_r["input_ids"] ) lowercase__ : str = tokenizer_p.convert_ids_to_tokens(tokens_p["input_ids"] ) self.assertSequenceEqual(tokens_p["input_ids"] , [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] ) self.assertSequenceEqual(tokens_r["input_ids"] , [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] ) self.assertSequenceEqual( SCREAMING_SNAKE_CASE , ["<s>", "A", ",", "<mask>", "ĠAllen", "N", "LP", "Ġsentence", ".", "</s>"] ) self.assertSequenceEqual( SCREAMING_SNAKE_CASE , ["<s>", "A", ",", "<mask>", "ĠAllen", "N", "LP", "Ġsentence", ".", "</s>"] )
130
1
from typing import Dict, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import flip_channel_order, resize, to_channel_dimension_format, to_pil_image from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_pytesseract_available, is_vision_available, logging, requires_backends if is_vision_available(): import PIL # soft dependency if is_pytesseract_available(): import pytesseract _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) def snake_case ( snake_case__ :List[Any] , snake_case__ :List[Any] , snake_case__ :Union[str, Any]) -> Union[str, Any]: return [ int(1_000 * (box[0] / width)), int(1_000 * (box[1] / height)), int(1_000 * (box[2] / width)), int(1_000 * (box[3] / height)), ] def snake_case ( snake_case__ :np.ndarray , snake_case__ :Optional[str] , snake_case__ :Optional[str] = None) -> Dict: _A = tesseract_config if tesseract_config is not None else """""" # apply OCR _A = to_pil_image(snake_case__) _A , _A = pil_image.size _A = pytesseract.image_to_data(snake_case__ , lang=snake_case__ , output_type="""dict""" , config=snake_case__) _A , _A , _A , _A , _A = data["""text"""], data["""left"""], data["""top"""], data["""width"""], data["""height"""] # filter empty words and corresponding coordinates _A = [idx for idx, word in enumerate(snake_case__) if not word.strip()] _A = [word for idx, word in enumerate(snake_case__) if idx not in irrelevant_indices] _A = [coord for idx, coord in enumerate(snake_case__) if idx not in irrelevant_indices] _A = [coord for idx, coord in enumerate(snake_case__) if idx not in irrelevant_indices] _A = [coord for idx, coord in enumerate(snake_case__) if idx not in irrelevant_indices] _A = [coord for idx, coord in enumerate(snake_case__) if idx not in irrelevant_indices] # turn coordinates into (left, top, left+width, top+height) format _A = [] for x, y, w, h in zip(snake_case__ , snake_case__ , snake_case__ , snake_case__): _A = [x, y, x + w, y + h] actual_boxes.append(snake_case__) # finally, normalize the bounding boxes _A = [] for box in actual_boxes: normalized_boxes.append(normalize_box(snake_case__ , snake_case__ , snake_case__)) assert len(snake_case__) == len(snake_case__), "Not as many words as there are bounding boxes" return words, normalized_boxes class a ( __lowerCAmelCase ): """simple docstring""" lowerCamelCase :int = ['''pixel_values'''] def __init__( self , lowerCAmelCase_ = True , lowerCAmelCase_ = None , lowerCAmelCase_ = PILImageResampling.BILINEAR , lowerCAmelCase_ = True , lowerCAmelCase_ = None , lowerCAmelCase_ = "" , **lowerCAmelCase_ , ) -> None: super().__init__(**lowerCAmelCase_ ) _A = size if size is not None else {"""height""": 2_24, """width""": 2_24} _A = get_size_dict(lowerCAmelCase_ ) _A = do_resize _A = size _A = resample _A = apply_ocr _A = ocr_lang _A = tesseract_config def UpperCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = PILImageResampling.BILINEAR , lowerCAmelCase_ = None , **lowerCAmelCase_ , ) -> np.ndarray: _A = get_size_dict(lowerCAmelCase_ ) if "height" not in size or "width" not in size: raise ValueError(F'''The size dictionary must contain the keys \'height\' and \'width\'. Got {size.keys()}''' ) _A = (size["""height"""], size["""width"""]) return resize(lowerCAmelCase_ , size=lowerCAmelCase_ , resample=lowerCAmelCase_ , data_format=lowerCAmelCase_ , **lowerCAmelCase_ ) def UpperCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = ChannelDimension.FIRST , **lowerCAmelCase_ , ) -> PIL.Image.Image: _A = do_resize if do_resize is not None else self.do_resize _A = size if size is not None else self.size _A = get_size_dict(lowerCAmelCase_ ) _A = resample if resample is not None else self.resample _A = apply_ocr if apply_ocr is not None else self.apply_ocr _A = ocr_lang if ocr_lang is not None else self.ocr_lang _A = tesseract_config if tesseract_config is not None else self.tesseract_config _A = make_list_of_images(lowerCAmelCase_ ) if not valid_images(lowerCAmelCase_ ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) # All transformations expect numpy arrays. _A = [to_numpy_array(lowerCAmelCase_ ) for image in images] if apply_ocr: requires_backends(self , """pytesseract""" ) _A = [] _A = [] for image in images: _A , _A = apply_tesseract(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) words_batch.append(lowerCAmelCase_ ) boxes_batch.append(lowerCAmelCase_ ) if do_resize: _A = [self.resize(image=lowerCAmelCase_ , size=lowerCAmelCase_ , resample=lowerCAmelCase_ ) for image in images] # flip color channels from RGB to BGR (as Detectron2 requires this) _A = [flip_channel_order(lowerCAmelCase_ ) for image in images] _A = [to_channel_dimension_format(lowerCAmelCase_ , lowerCAmelCase_ ) for image in images] _A = BatchFeature(data={"""pixel_values""": images} , tensor_type=lowerCAmelCase_ ) if apply_ocr: _A = words_batch _A = boxes_batch return data
81
import os from glob import glob import imageio import torch import torchvision import wandb from img_processing import custom_to_pil, loop_post_process, preprocess, preprocess_vqgan from loaders import load_vqgan from PIL import Image from torch import nn from transformers import CLIPModel, CLIPTokenizerFast from utils import get_device, get_timestamp, show_pil class a : """simple docstring""" def __init__( self , lowerCAmelCase_ = "cpu" , lowerCAmelCase_ = "openai/clip-vit-large-patch14" ) -> None: _A = device _A = CLIPTokenizerFast.from_pretrained(lowerCAmelCase_ ) _A = [0.4814_5466, 0.457_8275, 0.4082_1073] _A = [0.2686_2954, 0.2613_0258, 0.2757_7711] _A = torchvision.transforms.Normalize(self.image_mean , self.image_std ) _A = torchvision.transforms.Resize(2_24 ) _A = torchvision.transforms.CenterCrop(2_24 ) def UpperCAmelCase ( self , lowerCAmelCase_ ) -> Tuple: _A = self.resize(lowerCAmelCase_ ) _A = self.center_crop(lowerCAmelCase_ ) _A = self.normalize(lowerCAmelCase_ ) return images def __call__( self , lowerCAmelCase_=None , lowerCAmelCase_=None , **lowerCAmelCase_ ) -> Tuple: _A = self.tokenizer(text=lowerCAmelCase_ , **lowerCAmelCase_ ) _A = self.preprocess_img(lowerCAmelCase_ ) _A = {key: value.to(self.device ) for (key, value) in encoding.items()} return encoding class a ( nn.Module ): """simple docstring""" def __init__( self , lowerCAmelCase_=10 , lowerCAmelCase_=0.01 , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_=False , lowerCAmelCase_=True , lowerCAmelCase_="image" , lowerCAmelCase_=True , lowerCAmelCase_=False , lowerCAmelCase_=False , lowerCAmelCase_=False , ) -> None: super().__init__() _A = None _A = device if device else get_device() if vqgan: _A = vqgan else: _A = load_vqgan(self.device , conf_path=lowerCAmelCase_ , ckpt_path=lowerCAmelCase_ ) self.vqgan.eval() if clip: _A = clip else: _A = CLIPModel.from_pretrained("""openai/clip-vit-base-patch32""" ) self.clip.to(self.device ) _A = ProcessorGradientFlow(device=self.device ) _A = iterations _A = lr _A = log _A = make_grid _A = return_val _A = quantize _A = self.vqgan.decoder.z_shape def UpperCAmelCase ( self , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_=5 , lowerCAmelCase_=True ) -> Any: _A = [] if output_path is None: _A = """./animation.gif""" if input_path is None: _A = self.save_path _A = sorted(glob(input_path + """/*""" ) ) if not len(lowerCAmelCase_ ): raise ValueError( """No images found in save path, aborting (did you pass save_intermediate=True to the generate""" """ function?)""" ) if len(lowerCAmelCase_ ) == 1: print("""Only one image found in save path, (did you pass save_intermediate=True to the generate function?)""" ) _A = total_duration / len(lowerCAmelCase_ ) _A = [frame_duration] * len(lowerCAmelCase_ ) if extend_frames: _A = 1.5 _A = 3 for file_name in paths: if file_name.endswith(""".png""" ): images.append(imageio.imread(lowerCAmelCase_ ) ) imageio.mimsave(lowerCAmelCase_ , lowerCAmelCase_ , duration=lowerCAmelCase_ ) print(F'''gif saved to {output_path}''' ) def UpperCAmelCase ( self , lowerCAmelCase_=None , lowerCAmelCase_=None ) -> str: if not (path or img): raise ValueError("""Input either path or tensor""" ) if img is not None: raise NotImplementedError _A = preprocess(Image.open(lowerCAmelCase_ ) , target_image_size=2_56 ).to(self.device ) _A = preprocess_vqgan(lowerCAmelCase_ ) _A , *_A = self.vqgan.encode(lowerCAmelCase_ ) return z def UpperCAmelCase ( self , lowerCAmelCase_ ) -> List[Any]: _A = self.latent.detach().requires_grad_() _A = base_latent + transform_vector if self.quantize: _A , *_A = self.vqgan.quantize(lowerCAmelCase_ ) else: _A = trans_latent return self.vqgan.decode(lowerCAmelCase_ ) def UpperCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=None ) -> Union[str, Any]: _A = self.clip_preprocessor(text=lowerCAmelCase_ , images=lowerCAmelCase_ , return_tensors="""pt""" , padding=lowerCAmelCase_ ) _A = self.clip(**lowerCAmelCase_ ) _A = clip_outputs.logits_per_image if weights is not None: _A = similarity_logits * weights return similarity_logits.sum() def UpperCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> Union[str, Any]: _A = self._get_clip_similarity(pos_prompts["""prompts"""] , lowerCAmelCase_ , weights=(1 / pos_prompts["""weights"""]) ) if neg_prompts: _A = self._get_clip_similarity(neg_prompts["""prompts"""] , lowerCAmelCase_ , weights=neg_prompts["""weights"""] ) else: _A = torch.tensor([1] , device=self.device ) _A = -torch.log(lowerCAmelCase_ ) + torch.log(lowerCAmelCase_ ) return loss def UpperCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> int: _A = torch.randn_like(self.latent , requires_grad=lowerCAmelCase_ , device=self.device ) _A = torch.optim.Adam([vector] , lr=self.lr ) for i in range(self.iterations ): optim.zero_grad() _A = self._add_vector(lowerCAmelCase_ ) _A = loop_post_process(lowerCAmelCase_ ) _A = self._get_CLIP_loss(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) print("""CLIP loss""" , lowerCAmelCase_ ) if self.log: wandb.log({"""CLIP Loss""": clip_loss} ) clip_loss.backward(retain_graph=lowerCAmelCase_ ) optim.step() if self.return_val == "image": yield custom_to_pil(transformed_img[0] ) else: yield vector def UpperCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> List[str]: wandb.init(reinit=lowerCAmelCase_ , project="""face-editor""" ) wandb.config.update({"""Positive Prompts""": positive_prompts} ) wandb.config.update({"""Negative Prompts""": negative_prompts} ) wandb.config.update({"""lr""": self.lr, """iterations""": self.iterations} ) if image_path: _A = Image.open(lowerCAmelCase_ ) _A = image.resize((2_56, 2_56) ) wandb.log("""Original Image""" , wandb.Image(lowerCAmelCase_ ) ) def UpperCAmelCase ( self , lowerCAmelCase_ ) -> int: if not prompts: return [] _A = [] _A = [] if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): _A = [prompt.strip() for prompt in prompts.split("""|""" )] for prompt in prompts: if isinstance(lowerCAmelCase_ , (tuple, list) ): _A = prompt[0] _A = float(prompt[1] ) elif ":" in prompt: _A , _A = prompt.split(""":""" ) _A = float(lowerCAmelCase_ ) else: _A = prompt _A = 1.0 processed_prompts.append(lowerCAmelCase_ ) weights.append(lowerCAmelCase_ ) return { "prompts": processed_prompts, "weights": torch.tensor(lowerCAmelCase_ , device=self.device ), } def UpperCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_=True , lowerCAmelCase_=False , lowerCAmelCase_=True , lowerCAmelCase_=True , lowerCAmelCase_=None , ) -> str: if image_path: _A = self._get_latent(lowerCAmelCase_ ) else: _A = torch.randn(self.latent_dim , device=self.device ) if self.log: self._init_logging(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) assert pos_prompts, "You must provide at least one positive prompt." _A = self.process_prompts(lowerCAmelCase_ ) _A = self.process_prompts(lowerCAmelCase_ ) if save_final and save_path is None: _A = os.path.join("""./outputs/""" , """_""".join(pos_prompts["""prompts"""] ) ) if not os.path.exists(lowerCAmelCase_ ): os.makedirs(lowerCAmelCase_ ) else: _A = save_path + """_""" + get_timestamp() os.makedirs(lowerCAmelCase_ ) _A = save_path _A = self.vqgan.decode(self.latent )[0] if show_intermediate: print("""Original Image""" ) show_pil(custom_to_pil(lowerCAmelCase_ ) ) _A = loop_post_process(lowerCAmelCase_ ) for iter, transformed_img in enumerate(self._optimize_CLIP(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) ): if show_intermediate: show_pil(lowerCAmelCase_ ) if save_intermediate: transformed_img.save(os.path.join(self.save_path , F'''iter_{iter:03d}.png''' ) ) if self.log: wandb.log({"""Image""": wandb.Image(lowerCAmelCase_ )} ) if show_final: show_pil(lowerCAmelCase_ ) if save_final: transformed_img.save(os.path.join(self.save_path , F'''iter_{iter:03d}_final.png''' ) )
81
1
'''simple docstring''' import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class _a ( __a ): __a : int = ["""image_processor""", """tokenizer"""] __a : Union[str, Any] = """ChineseCLIPImageProcessor""" __a : List[Any] = ("""BertTokenizer""", """BertTokenizerFast""") def __init__( self : Dict , lowercase : Union[str, Any]=None , lowercase : Dict=None , **lowercase : Optional[Any] ): '''simple docstring''' UpperCAmelCase = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , lowercase , ) UpperCAmelCase = kwargs.pop('''feature_extractor''' ) UpperCAmelCase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(lowercase , lowercase ) UpperCAmelCase = self.image_processor def __call__( self : Tuple , lowercase : Optional[Any]=None , lowercase : Union[str, Any]=None , lowercase : int=None , **lowercase : Dict ): '''simple docstring''' if text is None and images is None: raise ValueError('''You have to specify either text or images. Both cannot be none.''' ) if text is not None: UpperCAmelCase = self.tokenizer(lowercase , return_tensors=lowercase , **lowercase ) if images is not None: UpperCAmelCase = self.image_processor(lowercase , return_tensors=lowercase , **lowercase ) if text is not None and images is not None: UpperCAmelCase = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**lowercase ) , tensor_type=lowercase ) def A ( self : int , *lowercase : Tuple , **lowercase : List[str] ): '''simple docstring''' return self.tokenizer.batch_decode(*lowercase , **lowercase ) def A ( self : Optional[Any] , *lowercase : int , **lowercase : Optional[int] ): '''simple docstring''' return self.tokenizer.decode(*lowercase , **lowercase ) @property def A ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase = self.tokenizer.model_input_names UpperCAmelCase = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def A ( self : List[Any] ): '''simple docstring''' warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , lowercase , ) return self.image_processor_class
34
from typing import Any, Dict, List, Optional, Tuple, Union import torch from torch import nn from torch.utils.data import DistributedSampler, RandomSampler from transformers import PreTrainedModel, Trainer, logging from transformers.integrations import is_fairscale_available from transformers.models.fsmt.configuration_fsmt import FSMTConfig from transformers.optimization import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.trainer_pt_utils import get_tpu_sampler from transformers.training_args import ParallelMode from transformers.utils import is_torch_tpu_available if is_fairscale_available(): from fairscale.optim import OSS A__ : Tuple = logging.get_logger(__name__) A__ : int = { 'linear': get_linear_schedule_with_warmup, 'cosine': get_cosine_schedule_with_warmup, 'cosine_w_restarts': get_cosine_with_hard_restarts_schedule_with_warmup, 'polynomial': get_polynomial_decay_schedule_with_warmup, 'constant': get_constant_schedule, 'constant_w_warmup': get_constant_schedule_with_warmup, } class _UpperCAmelCase ( A__ ): """simple docstring""" def __init__( self : Optional[int], lowerCamelCase : int=None, lowerCamelCase : int=None, *lowerCamelCase : List[Any], **lowerCamelCase : Any ): '''simple docstring''' super().__init__(*lowerCamelCase, **lowerCamelCase ) if config is None: assert isinstance(self.model, lowerCamelCase ), ( "If no `config` is passed the model to be trained has to be of type `PreTrainedModel`, but is" F""" {self.model.__class__}""" ) lowercase__ = self.model.config else: lowercase__ = config lowercase__ = data_args lowercase__ = self.config.tgt_vocab_size if isinstance(self.config, lowerCamelCase ) else self.config.vocab_size if self.args.label_smoothing != 0 or (self.data_args is not None and self.data_args.ignore_pad_token_for_loss): assert self.config.pad_token_id is not None, ( "Make sure that `config.pad_token_id` is correcly defined when ignoring `pad_token` for loss" " calculation or doing label smoothing." ) if self.config.pad_token_id is None and self.config.eos_token_id is not None: logger.warning( F"""The `config.pad_token_id` is `None`. Using `config.eos_token_id` = {self.config.eos_token_id} for""" ''' padding..''' ) if self.args.label_smoothing == 0: lowercase__ = torch.nn.CrossEntropyLoss(ignore_index=self.config.pad_token_id ) else: # dynamically import label_smoothed_nll_loss from utils import label_smoothed_nll_loss lowercase__ = label_smoothed_nll_loss def lowercase__ ( self : List[Any], lowerCamelCase : int ): '''simple docstring''' if self.optimizer is None: lowercase__ = ['''bias''', '''LayerNorm.weight'''] lowercase__ = [ { '''params''': [p for n, p in self.model.named_parameters() if not any(nd in n for nd in no_decay )], '''weight_decay''': self.args.weight_decay, }, { '''params''': [p for n, p in self.model.named_parameters() if any(nd in n for nd in no_decay )], '''weight_decay''': 0.0, }, ] lowercase__ = Adafactor if self.args.adafactor else AdamW if self.args.adafactor: lowercase__ = Adafactor lowercase__ = {'''scale_parameter''': False, '''relative_step''': False} else: lowercase__ = AdamW lowercase__ = { '''betas''': (self.args.adam_betaa, self.args.adam_betaa), '''eps''': self.args.adam_epsilon, } lowercase__ = self.args.learning_rate if self.sharded_ddp: lowercase__ = OSS( params=lowerCamelCase, optim=lowerCamelCase, **lowerCamelCase, ) else: lowercase__ = optimizer_cls(lowerCamelCase, **lowerCamelCase ) if self.lr_scheduler is None: lowercase__ = self._get_lr_scheduler(lowerCamelCase ) else: # ignoring --lr_scheduler logger.warning('''scheduler is passed to `Seq2SeqTrainer`, `--lr_scheduler` arg is ignored.''' ) def lowercase__ ( self : List[str], lowerCamelCase : Optional[int] ): '''simple docstring''' lowercase__ = arg_to_scheduler[self.args.lr_scheduler] if self.args.lr_scheduler == "constant": lowercase__ = schedule_func(self.optimizer ) elif self.args.lr_scheduler == "constant_w_warmup": lowercase__ = schedule_func(self.optimizer, num_warmup_steps=self.args.warmup_steps ) else: lowercase__ = schedule_func( self.optimizer, num_warmup_steps=self.args.warmup_steps, num_training_steps=lowerCamelCase ) return scheduler def lowercase__ ( self : List[Any] ): '''simple docstring''' if isinstance(self.train_dataset, torch.utils.data.IterableDataset ): return None elif is_torch_tpu_available(): return get_tpu_sampler(self.train_dataset ) else: if self.args.sortish_sampler: self.train_dataset.make_sortish_sampler( self.args.per_device_train_batch_size, distributed=(self.args.parallel_mode == ParallelMode.DISTRIBUTED), ) return ( RandomSampler(self.train_dataset ) if self.args.local_rank == -1 else DistributedSampler(self.train_dataset ) ) def lowercase__ ( self : Any, lowerCamelCase : List[Any], lowerCamelCase : str, lowerCamelCase : Union[str, Any] ): '''simple docstring''' if self.args.label_smoothing == 0: if self.data_args is not None and self.data_args.ignore_pad_token_for_loss: # force training to ignore pad token lowercase__ = model(**lowerCamelCase, use_cache=lowerCamelCase )[0] lowercase__ = self.loss_fn(logits.view(-1, logits.shape[-1] ), labels.view(-1 ) ) else: # compute usual loss via models lowercase__ , lowercase__ = model(**lowerCamelCase, labels=lowerCamelCase, use_cache=lowerCamelCase )[:2] else: # compute label smoothed loss lowercase__ = model(**lowerCamelCase, use_cache=lowerCamelCase )[0] lowercase__ = torch.nn.functional.log_softmax(lowerCamelCase, dim=-1 ) lowercase__ , lowercase__ = self.loss_fn(lowerCamelCase, lowerCamelCase, self.args.label_smoothing, ignore_index=self.config.pad_token_id ) return loss, logits def lowercase__ ( self : List[str], lowerCamelCase : Optional[Any], lowerCamelCase : Tuple ): '''simple docstring''' lowercase__ = inputs.pop('''labels''' ) lowercase__ , lowercase__ = self._compute_loss(lowerCamelCase, lowerCamelCase, lowerCamelCase ) return loss def lowercase__ ( self : str, lowerCamelCase : nn.Module, lowerCamelCase : Dict[str, Union[torch.Tensor, Any]], lowerCamelCase : bool, lowerCamelCase : Optional[List[str]] = None, ): '''simple docstring''' lowercase__ = self._prepare_inputs(lowerCamelCase ) lowercase__ = { '''max_length''': self.data_args.val_max_target_length if self.data_args is not None else self.config.max_length, '''num_beams''': self.data_args.eval_beams if self.data_args is not None else self.config.num_beams, } if self.args.predict_with_generate and not self.args.prediction_loss_only: lowercase__ = self.model.generate( inputs['''input_ids'''], attention_mask=inputs['''attention_mask'''], **lowerCamelCase, ) # in case the batch is shorter than max length, the output should be padded if generated_tokens.shape[-1] < gen_kwargs["max_length"]: lowercase__ = self._pad_tensors_to_max_len(lowerCamelCase, gen_kwargs['''max_length'''] ) lowercase__ = inputs.pop('''labels''' ) with torch.no_grad(): # compute loss on predict data lowercase__ , lowercase__ = self._compute_loss(lowerCamelCase, lowerCamelCase, lowerCamelCase ) lowercase__ = loss.mean().detach() if self.args.prediction_loss_only: return (loss, None, None) lowercase__ = generated_tokens if self.args.predict_with_generate else logits if labels.shape[-1] < gen_kwargs["max_length"]: lowercase__ = self._pad_tensors_to_max_len(lowerCamelCase, gen_kwargs['''max_length'''] ) return (loss, logits, labels) def lowercase__ ( self : List[Any], lowerCamelCase : str, lowerCamelCase : Any ): '''simple docstring''' # If PAD token is not defined at least EOS token has to be defined lowercase__ = self.config.pad_token_id if self.config.pad_token_id is not None else self.config.eos_token_id if pad_token_id is None: raise ValueError( '''Make sure that either `config.pad_token_id` or `config.eos_token_id` is defined if tensor has to be''' F""" padded to `max_length`={max_length}""" ) lowercase__ = pad_token_id * torch.ones( (tensor.shape[0], max_length), dtype=tensor.dtype, device=tensor.device ) lowercase__ = tensor return padded_tensor
207
0
import copy import random from transformers import CLIPTokenizer class _lowercase ( lowerCAmelCase ): """simple docstring""" def __init__(self , *lowerCamelCase_ , **lowerCamelCase_ ): """simple docstring""" super().__init__(*lowerCamelCase_ , **lowerCamelCase_ ) a = {} def UpperCamelCase_ (self , lowerCamelCase_ , *lowerCamelCase_ , **lowerCamelCase_ ): """simple docstring""" a = super().add_tokens(lowerCamelCase_ , *lowerCamelCase_ , **lowerCamelCase_ ) if num_added_tokens == 0: raise ValueError( F'''The tokenizer already contains the token {placeholder_token}. Please pass a different''' " `placeholder_token` that is not already in the tokenizer." ) def UpperCamelCase_ (self , lowerCamelCase_ , *lowerCamelCase_ , lowerCamelCase_=1 , **lowerCamelCase_ ): """simple docstring""" a = [] if num_vec_per_token == 1: self.try_adding_tokens(lowerCamelCase_ , *lowerCamelCase_ , **lowerCamelCase_ ) output.append(lowerCamelCase_ ) else: a = [] for i in range(lowerCamelCase_ ): a = placeholder_token + F'''_{i}''' self.try_adding_tokens(lowerCamelCase_ , *lowerCamelCase_ , **lowerCamelCase_ ) output.append(lowerCamelCase_ ) # handle cases where there is a new placeholder token that contains the current placeholder token but is larger for token in self.token_map: if token in placeholder_token: raise ValueError( F'''The tokenizer already has placeholder token {token} that can get confused with''' F''' {placeholder_token}keep placeholder tokens independent''' ) a = output def UpperCamelCase_ (self , lowerCamelCase_ , lowerCamelCase_=False , lowerCamelCase_=1.0 ): """simple docstring""" if isinstance(lowerCamelCase_ , lowerCamelCase_ ): a = [] for i in range(len(lowerCamelCase_ ) ): output.append(self.replace_placeholder_tokens_in_text(text[i] , vector_shuffle=lowerCamelCase_ ) ) return output for placeholder_token in self.token_map: if placeholder_token in text: a = self.token_map[placeholder_token] a = tokens[: 1 + int(len(lowerCamelCase_ ) * prop_tokens_to_load )] if vector_shuffle: a = copy.copy(lowerCamelCase_ ) random.shuffle(lowerCamelCase_ ) a = text.replace(lowerCamelCase_ , " ".join(lowerCamelCase_ ) ) return text def __call__(self , lowerCamelCase_ , *lowerCamelCase_ , lowerCamelCase_=False , lowerCamelCase_=1.0 , **lowerCamelCase_ ): """simple docstring""" return super().__call__( self.replace_placeholder_tokens_in_text( lowerCamelCase_ , vector_shuffle=lowerCamelCase_ , prop_tokens_to_load=lowerCamelCase_ ) , *lowerCamelCase_ , **lowerCamelCase_ , ) def UpperCamelCase_ (self , lowerCamelCase_ , *lowerCamelCase_ , lowerCamelCase_=False , lowerCamelCase_=1.0 , **lowerCamelCase_ ): """simple docstring""" return super().encode( self.replace_placeholder_tokens_in_text( lowerCamelCase_ , vector_shuffle=lowerCamelCase_ , prop_tokens_to_load=lowerCamelCase_ ) , *lowerCamelCase_ , **lowerCamelCase_ , )
352
import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class _lowercase ( lowerCAmelCase ): """simple docstring""" __A = ["image_processor", "tokenizer"] __A = "ViTImageProcessor" __A = ("CLIPTokenizer", "CLIPTokenizerFast") def __init__(self , lowerCamelCase_=None , lowerCamelCase_=None , **lowerCamelCase_ ): """simple docstring""" a = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , lowerCamelCase_ , ) a = kwargs.pop("feature_extractor" ) a = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(lowerCamelCase_ , lowerCamelCase_ ) def __call__(self , lowerCamelCase_=None , lowerCamelCase_=None , lowerCamelCase_=None , lowerCamelCase_=None , **lowerCamelCase_ ): """simple docstring""" if text is None and visual_prompt is None and images is None: raise ValueError("You have to specify either text, visual prompt or images." ) if text is not None and visual_prompt is not None: raise ValueError("You have to specify exactly one type of prompt. Either text or visual prompt." ) if text is not None: a = self.tokenizer(lowerCamelCase_ , return_tensors=lowerCamelCase_ , **lowerCamelCase_ ) if visual_prompt is not None: a = self.image_processor(lowerCamelCase_ , return_tensors=lowerCamelCase_ , **lowerCamelCase_ ) if images is not None: a = self.image_processor(lowerCamelCase_ , return_tensors=lowerCamelCase_ , **lowerCamelCase_ ) if visual_prompt is not None and images is not None: a = { "pixel_values": image_features.pixel_values, "conditional_pixel_values": prompt_features.pixel_values, } return encoding elif text is not None and images is not None: a = image_features.pixel_values return encoding elif text is not None: return encoding elif visual_prompt is not None: a = { "conditional_pixel_values": prompt_features.pixel_values, } return encoding else: return BatchEncoding(data=dict(**lowerCamelCase_ ) , tensor_type=lowerCamelCase_ ) def UpperCamelCase_ (self , *lowerCamelCase_ , **lowerCamelCase_ ): """simple docstring""" return self.tokenizer.batch_decode(*lowerCamelCase_ , **lowerCamelCase_ ) def UpperCamelCase_ (self , *lowerCamelCase_ , **lowerCamelCase_ ): """simple docstring""" return self.tokenizer.decode(*lowerCamelCase_ , **lowerCamelCase_ ) @property def UpperCamelCase_ (self ): """simple docstring""" warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , lowerCamelCase_ , ) return self.image_processor_class @property def UpperCamelCase_ (self ): """simple docstring""" warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , lowerCamelCase_ , ) return self.image_processor
71
0
import json import os import unittest from transformers.models.ctrl.tokenization_ctrl import VOCAB_FILES_NAMES, CTRLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class _UpperCAmelCase ( A__ ,unittest.TestCase ): """simple docstring""" lowercase__ = CTRLTokenizer lowercase__ = False lowercase__ = False def lowercase__ ( self : Union[str, Any] ): '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt lowercase__ = ['''adapt''', '''re@@''', '''a@@''', '''apt''', '''c@@''', '''t''', '''<unk>'''] lowercase__ = dict(zip(lowerCamelCase, range(len(lowerCamelCase ) ) ) ) lowercase__ = ['''#version: 0.2''', '''a p''', '''ap t</w>''', '''r e''', '''a d''', '''ad apt</w>''', ''''''] lowercase__ = {'''unk_token''': '''<unk>'''} lowercase__ = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['''vocab_file'''] ) lowercase__ = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file, '''w''', encoding='''utf-8''' ) as fp: fp.write(json.dumps(lowerCamelCase ) + '''\n''' ) with open(self.merges_file, '''w''', encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(lowerCamelCase ) ) def lowercase__ ( self : Union[str, Any], **lowerCamelCase : Dict ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return CTRLTokenizer.from_pretrained(self.tmpdirname, **lowerCamelCase ) def lowercase__ ( self : Dict, lowerCamelCase : Optional[int] ): '''simple docstring''' lowercase__ = '''adapt react readapt apt''' lowercase__ = '''adapt react readapt apt''' return input_text, output_text def lowercase__ ( self : Tuple ): '''simple docstring''' lowercase__ = CTRLTokenizer(self.vocab_file, self.merges_file, **self.special_tokens_map ) lowercase__ = '''adapt react readapt apt''' lowercase__ = '''adapt re@@ a@@ c@@ t re@@ adapt apt'''.split() lowercase__ = tokenizer.tokenize(lowerCamelCase ) self.assertListEqual(lowerCamelCase, lowerCamelCase ) lowercase__ = tokens + [tokenizer.unk_token] lowercase__ = [0, 1, 2, 4, 5, 1, 0, 3, 6] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCamelCase ), lowerCamelCase )
207
from typing import Any, Dict, List, Optional, Tuple, Union import torch from torch import nn from torch.utils.data import DistributedSampler, RandomSampler from transformers import PreTrainedModel, Trainer, logging from transformers.integrations import is_fairscale_available from transformers.models.fsmt.configuration_fsmt import FSMTConfig from transformers.optimization import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.trainer_pt_utils import get_tpu_sampler from transformers.training_args import ParallelMode from transformers.utils import is_torch_tpu_available if is_fairscale_available(): from fairscale.optim import OSS A__ : Tuple = logging.get_logger(__name__) A__ : int = { 'linear': get_linear_schedule_with_warmup, 'cosine': get_cosine_schedule_with_warmup, 'cosine_w_restarts': get_cosine_with_hard_restarts_schedule_with_warmup, 'polynomial': get_polynomial_decay_schedule_with_warmup, 'constant': get_constant_schedule, 'constant_w_warmup': get_constant_schedule_with_warmup, } class _UpperCAmelCase ( A__ ): """simple docstring""" def __init__( self : Optional[int], lowerCamelCase : int=None, lowerCamelCase : int=None, *lowerCamelCase : List[Any], **lowerCamelCase : Any ): '''simple docstring''' super().__init__(*lowerCamelCase, **lowerCamelCase ) if config is None: assert isinstance(self.model, lowerCamelCase ), ( "If no `config` is passed the model to be trained has to be of type `PreTrainedModel`, but is" F""" {self.model.__class__}""" ) lowercase__ = self.model.config else: lowercase__ = config lowercase__ = data_args lowercase__ = self.config.tgt_vocab_size if isinstance(self.config, lowerCamelCase ) else self.config.vocab_size if self.args.label_smoothing != 0 or (self.data_args is not None and self.data_args.ignore_pad_token_for_loss): assert self.config.pad_token_id is not None, ( "Make sure that `config.pad_token_id` is correcly defined when ignoring `pad_token` for loss" " calculation or doing label smoothing." ) if self.config.pad_token_id is None and self.config.eos_token_id is not None: logger.warning( F"""The `config.pad_token_id` is `None`. Using `config.eos_token_id` = {self.config.eos_token_id} for""" ''' padding..''' ) if self.args.label_smoothing == 0: lowercase__ = torch.nn.CrossEntropyLoss(ignore_index=self.config.pad_token_id ) else: # dynamically import label_smoothed_nll_loss from utils import label_smoothed_nll_loss lowercase__ = label_smoothed_nll_loss def lowercase__ ( self : List[Any], lowerCamelCase : int ): '''simple docstring''' if self.optimizer is None: lowercase__ = ['''bias''', '''LayerNorm.weight'''] lowercase__ = [ { '''params''': [p for n, p in self.model.named_parameters() if not any(nd in n for nd in no_decay )], '''weight_decay''': self.args.weight_decay, }, { '''params''': [p for n, p in self.model.named_parameters() if any(nd in n for nd in no_decay )], '''weight_decay''': 0.0, }, ] lowercase__ = Adafactor if self.args.adafactor else AdamW if self.args.adafactor: lowercase__ = Adafactor lowercase__ = {'''scale_parameter''': False, '''relative_step''': False} else: lowercase__ = AdamW lowercase__ = { '''betas''': (self.args.adam_betaa, self.args.adam_betaa), '''eps''': self.args.adam_epsilon, } lowercase__ = self.args.learning_rate if self.sharded_ddp: lowercase__ = OSS( params=lowerCamelCase, optim=lowerCamelCase, **lowerCamelCase, ) else: lowercase__ = optimizer_cls(lowerCamelCase, **lowerCamelCase ) if self.lr_scheduler is None: lowercase__ = self._get_lr_scheduler(lowerCamelCase ) else: # ignoring --lr_scheduler logger.warning('''scheduler is passed to `Seq2SeqTrainer`, `--lr_scheduler` arg is ignored.''' ) def lowercase__ ( self : List[str], lowerCamelCase : Optional[int] ): '''simple docstring''' lowercase__ = arg_to_scheduler[self.args.lr_scheduler] if self.args.lr_scheduler == "constant": lowercase__ = schedule_func(self.optimizer ) elif self.args.lr_scheduler == "constant_w_warmup": lowercase__ = schedule_func(self.optimizer, num_warmup_steps=self.args.warmup_steps ) else: lowercase__ = schedule_func( self.optimizer, num_warmup_steps=self.args.warmup_steps, num_training_steps=lowerCamelCase ) return scheduler def lowercase__ ( self : List[Any] ): '''simple docstring''' if isinstance(self.train_dataset, torch.utils.data.IterableDataset ): return None elif is_torch_tpu_available(): return get_tpu_sampler(self.train_dataset ) else: if self.args.sortish_sampler: self.train_dataset.make_sortish_sampler( self.args.per_device_train_batch_size, distributed=(self.args.parallel_mode == ParallelMode.DISTRIBUTED), ) return ( RandomSampler(self.train_dataset ) if self.args.local_rank == -1 else DistributedSampler(self.train_dataset ) ) def lowercase__ ( self : Any, lowerCamelCase : List[Any], lowerCamelCase : str, lowerCamelCase : Union[str, Any] ): '''simple docstring''' if self.args.label_smoothing == 0: if self.data_args is not None and self.data_args.ignore_pad_token_for_loss: # force training to ignore pad token lowercase__ = model(**lowerCamelCase, use_cache=lowerCamelCase )[0] lowercase__ = self.loss_fn(logits.view(-1, logits.shape[-1] ), labels.view(-1 ) ) else: # compute usual loss via models lowercase__ , lowercase__ = model(**lowerCamelCase, labels=lowerCamelCase, use_cache=lowerCamelCase )[:2] else: # compute label smoothed loss lowercase__ = model(**lowerCamelCase, use_cache=lowerCamelCase )[0] lowercase__ = torch.nn.functional.log_softmax(lowerCamelCase, dim=-1 ) lowercase__ , lowercase__ = self.loss_fn(lowerCamelCase, lowerCamelCase, self.args.label_smoothing, ignore_index=self.config.pad_token_id ) return loss, logits def lowercase__ ( self : List[str], lowerCamelCase : Optional[Any], lowerCamelCase : Tuple ): '''simple docstring''' lowercase__ = inputs.pop('''labels''' ) lowercase__ , lowercase__ = self._compute_loss(lowerCamelCase, lowerCamelCase, lowerCamelCase ) return loss def lowercase__ ( self : str, lowerCamelCase : nn.Module, lowerCamelCase : Dict[str, Union[torch.Tensor, Any]], lowerCamelCase : bool, lowerCamelCase : Optional[List[str]] = None, ): '''simple docstring''' lowercase__ = self._prepare_inputs(lowerCamelCase ) lowercase__ = { '''max_length''': self.data_args.val_max_target_length if self.data_args is not None else self.config.max_length, '''num_beams''': self.data_args.eval_beams if self.data_args is not None else self.config.num_beams, } if self.args.predict_with_generate and not self.args.prediction_loss_only: lowercase__ = self.model.generate( inputs['''input_ids'''], attention_mask=inputs['''attention_mask'''], **lowerCamelCase, ) # in case the batch is shorter than max length, the output should be padded if generated_tokens.shape[-1] < gen_kwargs["max_length"]: lowercase__ = self._pad_tensors_to_max_len(lowerCamelCase, gen_kwargs['''max_length'''] ) lowercase__ = inputs.pop('''labels''' ) with torch.no_grad(): # compute loss on predict data lowercase__ , lowercase__ = self._compute_loss(lowerCamelCase, lowerCamelCase, lowerCamelCase ) lowercase__ = loss.mean().detach() if self.args.prediction_loss_only: return (loss, None, None) lowercase__ = generated_tokens if self.args.predict_with_generate else logits if labels.shape[-1] < gen_kwargs["max_length"]: lowercase__ = self._pad_tensors_to_max_len(lowerCamelCase, gen_kwargs['''max_length'''] ) return (loss, logits, labels) def lowercase__ ( self : List[Any], lowerCamelCase : str, lowerCamelCase : Any ): '''simple docstring''' # If PAD token is not defined at least EOS token has to be defined lowercase__ = self.config.pad_token_id if self.config.pad_token_id is not None else self.config.eos_token_id if pad_token_id is None: raise ValueError( '''Make sure that either `config.pad_token_id` or `config.eos_token_id` is defined if tensor has to be''' F""" padded to `max_length`={max_length}""" ) lowercase__ = pad_token_id * torch.ones( (tensor.shape[0], max_length), dtype=tensor.dtype, device=tensor.device ) lowercase__ = tensor return padded_tensor
207
1
"""simple docstring""" import json import os import tempfile import datasets from utils import generate_example_dataset, get_duration _snake_case = 5_0000 _snake_case = 5000 _snake_case , _snake_case = os.path.split(__file__) _snake_case = os.path.join(RESULTS_BASEPATH, 'results', RESULTS_FILENAME.replace('.py', '.json')) @get_duration def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' for i in range(UpperCamelCase__ ): _a : Any = dataset[i] @get_duration def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' for i in range(0 , len(UpperCamelCase__ ) , UpperCamelCase__ ): _a : Any = dataset[i : i + batch_size] @get_duration def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' with dataset.formatted_as(type=UpperCamelCase__ ): for i in range(UpperCamelCase__ ): _a : List[Any] = dataset[i] @get_duration def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' with dataset.formatted_as(type=UpperCamelCase__ ): for i in range(0 , UpperCamelCase__ , UpperCamelCase__ ): _a : List[str] = dataset[i : i + batch_size] def lowerCAmelCase__ ( ): '''simple docstring''' _a : Optional[Any] = {"""num examples""": SPEED_TEST_N_EXAMPLES} _a : List[str] = [ (read, {"""length""": SMALL_TEST}), (read, {"""length""": SPEED_TEST_N_EXAMPLES}), (read_batch, {"""length""": SPEED_TEST_N_EXAMPLES, """batch_size""": 1_0}), (read_batch, {"""length""": SPEED_TEST_N_EXAMPLES, """batch_size""": 1_0_0}), (read_batch, {"""length""": SPEED_TEST_N_EXAMPLES, """batch_size""": 1_0_0_0}), (read_formatted, {"""type""": """numpy""", """length""": SMALL_TEST}), (read_formatted, {"""type""": """pandas""", """length""": SMALL_TEST}), (read_formatted, {"""type""": """torch""", """length""": SMALL_TEST}), (read_formatted, {"""type""": """tensorflow""", """length""": SMALL_TEST}), (read_formatted_batch, {"""type""": """numpy""", """length""": SMALL_TEST, """batch_size""": 1_0}), (read_formatted_batch, {"""type""": """numpy""", """length""": SMALL_TEST, """batch_size""": 1_0_0_0}), ] _a : Optional[Any] = [ (read, {"""length""": SMALL_TEST}), (read, {"""length""": SPEED_TEST_N_EXAMPLES}), (read_batch, {"""length""": SPEED_TEST_N_EXAMPLES, """batch_size""": 1_0}), (read_batch, {"""length""": SPEED_TEST_N_EXAMPLES, """batch_size""": 1_0_0}), (read_batch, {"""length""": SPEED_TEST_N_EXAMPLES, """batch_size""": 1_0_0_0}), (read_formatted, {"""type""": """numpy""", """length""": SMALL_TEST}), (read_formatted_batch, {"""type""": """numpy""", """length""": SMALL_TEST, """batch_size""": 1_0}), (read_formatted_batch, {"""type""": """numpy""", """length""": SMALL_TEST, """batch_size""": 1_0_0_0}), ] with tempfile.TemporaryDirectory() as tmp_dir: print("""generating dataset""" ) _a : str = datasets.Features( {"""list""": datasets.Sequence(datasets.Value("""float32""" ) ), """numbers""": datasets.Value("""float32""" )} ) _a : int = generate_example_dataset( os.path.join(UpperCamelCase__ , """dataset.arrow""" ) , UpperCamelCase__ , num_examples=UpperCamelCase__ , seq_shapes={"""list""": (1_0_0,)} , ) print("""first set of iterations""" ) for func, kwargs in functions: print(func.__name__ , str(UpperCamelCase__ ) ) _a : Tuple = func(UpperCamelCase__ , **UpperCamelCase__ ) print("""shuffling dataset""" ) _a : str = dataset.shuffle() print("""Second set of iterations (after shuffling""" ) for func, kwargs in functions_shuffled: print("""shuffled """ , func.__name__ , str(UpperCamelCase__ ) ) _a : str = func( UpperCamelCase__ , **UpperCamelCase__ ) with open(UpperCamelCase__ , """wb""" ) as f: f.write(json.dumps(UpperCamelCase__ ).encode("""utf-8""" ) ) if __name__ == "__main__": # useful to run the profiler benchmark_iterating()
365
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) _snake_case = { 'configuration_vision_encoder_decoder': ['VisionEncoderDecoderConfig', 'VisionEncoderDecoderOnnxConfig'] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = ['VisionEncoderDecoderModel'] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = ['TFVisionEncoderDecoderModel'] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = ['FlaxVisionEncoderDecoderModel'] if TYPE_CHECKING: from .configuration_vision_encoder_decoder import VisionEncoderDecoderConfig, VisionEncoderDecoderOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vision_encoder_decoder import VisionEncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vision_encoder_decoder import TFVisionEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vision_encoder_decoder import FlaxVisionEncoderDecoderModel else: import sys _snake_case = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
324
0
import re def lowerCamelCase__ ( A__ : str ): '''simple docstring''' __lowerCamelCase = re.compile(R"""^(\+91[\-\s]?)?[0]?(91)?[789]\d{9}$""" ) if match := re.search(A__ , A__ ): return match.string == phone return False if __name__ == "__main__": print(indian_phone_validator('+918827897895'))
12
import random import unittest import torch from diffusers import IFInpaintingPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class lowercase ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , unittest.TestCase ): __lowercase : int = IFInpaintingPipeline __lowercase : str = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"width", "height"} __lowercase : Optional[int] = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS __lowercase : Optional[int] = PipelineTesterMixin.required_optional_params - {"latents"} def __UpperCamelCase ( self ) -> List[str]: """simple docstring""" return self._get_dummy_components() def __UpperCamelCase ( self , A_ , A_=0 ) -> List[Any]: """simple docstring""" if str(A_ ).startswith('mps' ): UpperCamelCase = torch.manual_seed(A_ ) else: UpperCamelCase = torch.Generator(device=A_ ).manual_seed(A_ ) UpperCamelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(A_ ) ).to(A_ ) UpperCamelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(A_ ) ).to(A_ ) UpperCamelCase = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'mask_image': mask_image, 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def __UpperCamelCase ( self ) -> str: """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) def __UpperCamelCase ( self ) -> str: """simple docstring""" self._test_save_load_optional_components() @unittest.skipIf(torch_device != 'cuda' , reason='float16 requires CUDA' ) def __UpperCamelCase ( self ) -> str: """simple docstring""" # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1e-1 ) def __UpperCamelCase ( self ) -> Optional[Any]: """simple docstring""" self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def __UpperCamelCase ( self ) -> Dict: """simple docstring""" self._test_save_load_local() def __UpperCamelCase ( self ) -> Dict: """simple docstring""" self._test_inference_batch_single_identical( expected_max_diff=1e-2 , )
222
0
import argparse import os import re __snake_case ='src/transformers' # Pattern that looks at the indentation in a line. __snake_case =re.compile(R'^(\s*)\S') # Pattern that matches `"key":" and puts `key` in group 0. __snake_case =re.compile(R'^\s*\"([^\"]+)\":') # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. __snake_case =re.compile(R'^\s*_import_structure\[\"([^\"]+)\"\]') # Pattern that matches `"key",` and puts `key` in group 0. __snake_case =re.compile(R'^\s*\"([^\"]+)\",\s*$') # Pattern that matches any `[stuff]` and puts `stuff` in group 0. __snake_case =re.compile(R'\[([^\]]+)\]') def lowerCAmelCase__ ( lowerCamelCase_ : Optional[Any]): '''simple docstring''' lowerCAmelCase__ : int = _re_indent.search(lowerCAmelCase__) return "" if search is None else search.groups()[0] def lowerCAmelCase__ ( lowerCamelCase_ : Optional[Any] ,lowerCamelCase_ : Any="" ,lowerCamelCase_ : Tuple=None ,lowerCamelCase_ : Union[str, Any]=None): '''simple docstring''' lowerCAmelCase__ : Tuple = 0 lowerCAmelCase__ : Optional[Any] = code.split('''\n''') if start_prompt is not None: while not lines[index].startswith(lowerCAmelCase__): index += 1 lowerCAmelCase__ : Union[str, Any] = ['''\n'''.join(lines[:index])] else: lowerCAmelCase__ : Tuple = [] # We split into blocks until we get to the `end_prompt` (or the end of the block). lowerCAmelCase__ : Tuple = [lines[index]] index += 1 while index < len(lowerCAmelCase__) and (end_prompt is None or not lines[index].startswith(lowerCAmelCase__)): if len(lines[index]) > 0 and get_indent(lines[index]) == indent_level: if len(lowerCAmelCase__) > 0 and get_indent(current_block[-1]).startswith(indent_level + ''' '''): current_block.append(lines[index]) blocks.append('''\n'''.join(lowerCAmelCase__)) if index < len(lowerCAmelCase__) - 1: lowerCAmelCase__ : str = [lines[index + 1]] index += 1 else: lowerCAmelCase__ : Optional[Any] = [] else: blocks.append('''\n'''.join(lowerCAmelCase__)) lowerCAmelCase__ : Union[str, Any] = [lines[index]] else: current_block.append(lines[index]) index += 1 # Adds current block if it's nonempty. if len(lowerCAmelCase__) > 0: blocks.append('''\n'''.join(lowerCAmelCase__)) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(lowerCAmelCase__): blocks.append('''\n'''.join(lines[index:])) return blocks def lowerCAmelCase__ ( lowerCamelCase_ : str): '''simple docstring''' def _inner(lowerCamelCase_ : List[str]): return key(lowerCAmelCase__).lower().replace('''_''' ,'''''') return _inner def lowerCAmelCase__ ( lowerCamelCase_ : Tuple ,lowerCamelCase_ : str=None): '''simple docstring''' def noop(lowerCamelCase_ : int): return x if key is None: lowerCAmelCase__ : Union[str, Any] = noop # Constants are all uppercase, they go first. lowerCAmelCase__ : int = [obj for obj in objects if key(lowerCAmelCase__).isupper()] # Classes are not all uppercase but start with a capital, they go second. lowerCAmelCase__ : str = [obj for obj in objects if key(lowerCAmelCase__)[0].isupper() and not key(lowerCAmelCase__).isupper()] # Functions begin with a lowercase, they go last. lowerCAmelCase__ : Optional[int] = [obj for obj in objects if not key(lowerCAmelCase__)[0].isupper()] lowerCAmelCase__ : str = ignore_underscore(lowerCAmelCase__) return sorted(lowerCAmelCase__ ,key=lowerCAmelCase__) + sorted(lowerCAmelCase__ ,key=lowerCAmelCase__) + sorted(lowerCAmelCase__ ,key=lowerCAmelCase__) def lowerCAmelCase__ ( lowerCamelCase_ : List[str]): '''simple docstring''' def _replace(lowerCamelCase_ : Union[str, Any]): lowerCAmelCase__ : int = match.groups()[0] if "," not in imports: return f"""[{imports}]""" lowerCAmelCase__ : Optional[Any] = [part.strip().replace('''"''' ,'''''') for part in imports.split(''',''')] # We will have a final empty element if the line finished with a comma. if len(keys[-1]) == 0: lowerCAmelCase__ : int = keys[:-1] return "[" + ", ".join([f"""\"{k}\"""" for k in sort_objects(lowerCAmelCase__)]) + "]" lowerCAmelCase__ : Optional[int] = import_statement.split('''\n''') if len(lowerCAmelCase__) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. lowerCAmelCase__ : List[str] = 2 if lines[1].strip() == '''[''' else 1 lowerCAmelCase__ : List[Any] = [(i, _re_strip_line.search(lowerCAmelCase__).groups()[0]) for i, line in enumerate(lines[idx:-idx])] lowerCAmelCase__ : int = sort_objects(lowerCAmelCase__ ,key=lambda lowerCamelCase_: x[1]) lowerCAmelCase__ : int = [lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:]) elif len(lowerCAmelCase__) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1]) is not None: lowerCAmelCase__ : int = _re_bracket_content.sub(_replace ,lines[1]) else: lowerCAmelCase__ : Optional[int] = [part.strip().replace('''"''' ,'''''') for part in lines[1].split(''',''')] # We will have a final empty element if the line finished with a comma. if len(keys[-1]) == 0: lowerCAmelCase__ : Union[str, Any] = keys[:-1] lowerCAmelCase__ : List[Any] = get_indent(lines[1]) + ''', '''.join([f"""\"{k}\"""" for k in sort_objects(lowerCAmelCase__)]) return "\n".join(lowerCAmelCase__) else: # Finally we have to deal with imports fitting on one line lowerCAmelCase__ : Union[str, Any] = _re_bracket_content.sub(_replace ,lowerCAmelCase__) return import_statement def lowerCAmelCase__ ( lowerCamelCase_ : Any ,lowerCamelCase_ : Tuple=True): '''simple docstring''' with open(lowerCAmelCase__ ,encoding='''utf-8''') as f: lowerCAmelCase__ : Any = f.read() if "_import_structure" not in code: return # Blocks of indent level 0 lowerCAmelCase__ : int = split_code_in_indented_blocks( lowerCAmelCase__ ,start_prompt='''_import_structure = {''' ,end_prompt='''if TYPE_CHECKING:''') # We ignore block 0 (everything untils start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 ,len(lowerCAmelCase__) - 1): # Check if the block contains some `_import_structure`s thingy to sort. lowerCAmelCase__ : Optional[Any] = main_blocks[block_idx] lowerCAmelCase__ : int = block.split('''\n''') # Get to the start of the imports. lowerCAmelCase__ : str = 0 while line_idx < len(lowerCAmelCase__) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: lowerCAmelCase__ : Tuple = len(lowerCAmelCase__) else: line_idx += 1 if line_idx >= len(lowerCAmelCase__): continue # Ignore beginning and last line: they don't contain anything. lowerCAmelCase__ : Dict = '''\n'''.join(block_lines[line_idx:-1]) lowerCAmelCase__ : Optional[Any] = get_indent(block_lines[1]) # Slit the internal block into blocks of indent level 1. lowerCAmelCase__ : Tuple = split_code_in_indented_blocks(lowerCAmelCase__ ,indent_level=lowerCAmelCase__) # We have two categories of import key: list or _import_structure[key].append/extend lowerCAmelCase__ : Optional[int] = _re_direct_key if '''_import_structure = {''' in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. lowerCAmelCase__ : Union[str, Any] = [(pattern.search(lowerCAmelCase__).groups()[0] if pattern.search(lowerCAmelCase__) is not None else None) for b in internal_blocks] # We only sort the lines with a key. lowerCAmelCase__ : Optional[Any] = [(i, key) for i, key in enumerate(lowerCAmelCase__) if key is not None] lowerCAmelCase__ : Tuple = [x[0] for x in sorted(lowerCAmelCase__ ,key=lambda lowerCamelCase_: x[1])] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. lowerCAmelCase__ : List[Any] = 0 lowerCAmelCase__ : Optional[int] = [] for i in range(len(lowerCAmelCase__)): if keys[i] is None: reorderded_blocks.append(internal_blocks[i]) else: lowerCAmelCase__ : Union[str, Any] = sort_objects_in_import(internal_blocks[sorted_indices[count]]) reorderded_blocks.append(lowerCAmelCase__) count += 1 # And we put our main block back together with its first and last line. lowerCAmelCase__ : List[Any] = '''\n'''.join(block_lines[:line_idx] + reorderded_blocks + [block_lines[-1]]) if code != "\n".join(lowerCAmelCase__): if check_only: return True else: print(f"""Overwriting {file}.""") with open(lowerCAmelCase__ ,'''w''' ,encoding='''utf-8''') as f: f.write('''\n'''.join(lowerCAmelCase__)) def lowerCAmelCase__ ( lowerCamelCase_ : Optional[int]=True): '''simple docstring''' lowerCAmelCase__ : List[str] = [] for root, _, files in os.walk(lowerCAmelCase__): if "__init__.py" in files: lowerCAmelCase__ : Union[str, Any] = sort_imports(os.path.join(lowerCAmelCase__ ,'''__init__.py''') ,check_only=lowerCAmelCase__) if result: lowerCAmelCase__ : List[str] = [os.path.join(lowerCAmelCase__ ,'''__init__.py''')] if len(lowerCAmelCase__) > 0: raise ValueError(f"""Would overwrite {len(lowerCAmelCase__)} files, run `make style`.""") if __name__ == "__main__": __snake_case =argparse.ArgumentParser() parser.add_argument('--check_only', action='store_true', help='Whether to only check or fix style.') __snake_case =parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
361
import fire from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AutoTokenizer from utils import SeqaSeqDataset, pickle_save def lowerCAmelCase__ ( lowerCamelCase_ : Dict ,lowerCamelCase_ : Optional[int] ,lowerCamelCase_ : List[Any]=1024 ,lowerCamelCase_ : int=1024 ,lowerCamelCase_ : Dict=False ,**lowerCamelCase_ : Tuple): '''simple docstring''' lowerCAmelCase__ : Optional[int] = AutoTokenizer.from_pretrained(lowerCamelCase_) lowerCAmelCase__ : Optional[Any] = SeqaSeqDataset(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,type_path='''train''' ,**lowerCamelCase_) lowerCAmelCase__ : int = tok.pad_token_id def get_lens(lowerCamelCase_ : Tuple): lowerCAmelCase__ : Tuple = tqdm( DataLoader(lowerCamelCase_ ,batch_size=512 ,num_workers=8 ,shuffle=lowerCamelCase_ ,collate_fn=ds.collate_fn) ,desc=str(ds.len_file) ,) lowerCAmelCase__ : Tuple = [] for batch in dl: lowerCAmelCase__ : Dict = batch['''input_ids'''].ne(lowerCamelCase_).sum(1).tolist() lowerCAmelCase__ : Dict = batch['''labels'''].ne(lowerCamelCase_).sum(1).tolist() if consider_target: for src, tgt in zip(lowerCamelCase_ ,lowerCamelCase_): max_lens.append(max(lowerCamelCase_ ,lowerCamelCase_)) else: max_lens.extend(lowerCamelCase_) return max_lens lowerCAmelCase__ : str = get_lens(lowerCamelCase_) lowerCAmelCase__ : Tuple = SeqaSeqDataset(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,type_path='''val''' ,**lowerCamelCase_) lowerCAmelCase__ : Optional[int] = get_lens(lowerCamelCase_) pickle_save(lowerCamelCase_ ,train_ds.len_file) pickle_save(lowerCamelCase_ ,val_ds.len_file) if __name__ == "__main__": fire.Fire(save_len_file)
94
0
"""simple docstring""" import numpy as np def UpperCamelCase_ ( lowerCAmelCase__ : np.array ) -> np.array: """simple docstring""" return (2 / (1 + np.exp(-2 * vector ))) - 1 if __name__ == "__main__": import doctest doctest.testmod()
224
"""simple docstring""" import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST, OpenAIGPTConfig, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification, OpenAIGPTLMHeadModel, OpenAIGPTModel, ) class A_ : """simple docstring""" def __init__( self :str , lowerCamelCase_ :int , lowerCamelCase_ :List[str]=13 , lowerCamelCase_ :List[Any]=7 , lowerCamelCase_ :str=True , lowerCamelCase_ :int=True , lowerCamelCase_ :List[str]=True , lowerCamelCase_ :Any=99 , lowerCamelCase_ :Optional[int]=32 , lowerCamelCase_ :Dict=5 , lowerCamelCase_ :Any=4 , lowerCamelCase_ :Tuple=37 , lowerCamelCase_ :Union[str, Any]="gelu" , lowerCamelCase_ :Dict=0.1 , lowerCamelCase_ :Any=0.1 , lowerCamelCase_ :List[str]=512 , lowerCamelCase_ :int=16 , lowerCamelCase_ :List[str]=2 , lowerCamelCase_ :List[str]=0.02 , lowerCamelCase_ :List[Any]=3 , lowerCamelCase_ :Dict=4 , lowerCamelCase_ :Optional[Any]=None , ): """simple docstring""" lowerCamelCase__ : Any =parent lowerCamelCase__ : Union[str, Any] =batch_size lowerCamelCase__ : Dict =seq_length lowerCamelCase__ : List[str] =is_training lowerCamelCase__ : List[Any] =use_token_type_ids lowerCamelCase__ : Union[str, Any] =use_labels lowerCamelCase__ : Optional[Any] =vocab_size lowerCamelCase__ : List[Any] =hidden_size lowerCamelCase__ : Optional[int] =num_hidden_layers lowerCamelCase__ : Tuple =num_attention_heads lowerCamelCase__ : Optional[Any] =intermediate_size lowerCamelCase__ : Optional[int] =hidden_act lowerCamelCase__ : List[Any] =hidden_dropout_prob lowerCamelCase__ : str =attention_probs_dropout_prob lowerCamelCase__ : Tuple =max_position_embeddings lowerCamelCase__ : Union[str, Any] =type_vocab_size lowerCamelCase__ : Dict =type_sequence_label_size lowerCamelCase__ : str =initializer_range lowerCamelCase__ : Any =num_labels lowerCamelCase__ : int =num_choices lowerCamelCase__ : List[str] =scope lowerCamelCase__ : List[str] =self.vocab_size - 1 def UpperCAmelCase__ ( self :Any ): """simple docstring""" lowerCamelCase__ : str =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase__ : Union[str, Any] =None if self.use_token_type_ids: lowerCamelCase__ : Optional[int] =ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCamelCase__ : Any =None lowerCamelCase__ : Any =None lowerCamelCase__ : str =None if self.use_labels: lowerCamelCase__ : int =ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase__ : List[Any] =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCamelCase__ : Any =ids_tensor([self.batch_size] , self.num_choices ) lowerCamelCase__ : int =OpenAIGPTConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , ) lowerCamelCase__ : List[str] =ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, head_mask, token_type_ids, sequence_labels, token_labels, choice_labels, ) def UpperCAmelCase__ ( self :List[str] , lowerCamelCase_ :List[Any] , lowerCamelCase_ :List[str] , lowerCamelCase_ :List[str] , lowerCamelCase_ :Optional[int] , *lowerCamelCase_ :Any ): """simple docstring""" lowerCamelCase__ : Any =OpenAIGPTModel(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : int =model(lowerCamelCase_ , token_type_ids=lowerCamelCase_ , head_mask=lowerCamelCase_ ) lowerCamelCase__ : Optional[int] =model(lowerCamelCase_ , token_type_ids=lowerCamelCase_ ) lowerCamelCase__ : Union[str, Any] =model(lowerCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase__ ( self :List[str] , lowerCamelCase_ :str , lowerCamelCase_ :Any , lowerCamelCase_ :Dict , lowerCamelCase_ :List[str] , *lowerCamelCase_ :List[Any] ): """simple docstring""" lowerCamelCase__ : int =OpenAIGPTLMHeadModel(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : int =model(lowerCamelCase_ , token_type_ids=lowerCamelCase_ , labels=lowerCamelCase_ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCAmelCase__ ( self :Tuple , lowerCamelCase_ :List[str] , lowerCamelCase_ :Union[str, Any] , lowerCamelCase_ :List[str] , lowerCamelCase_ :str , *lowerCamelCase_ :Dict ): """simple docstring""" lowerCamelCase__ : Tuple =OpenAIGPTDoubleHeadsModel(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : Optional[Any] =model(lowerCamelCase_ , token_type_ids=lowerCamelCase_ , labels=lowerCamelCase_ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCAmelCase__ ( self :List[Any] , lowerCamelCase_ :int , lowerCamelCase_ :Optional[Any] , lowerCamelCase_ :Optional[int] , lowerCamelCase_ :str , *lowerCamelCase_ :List[Any] ): """simple docstring""" lowerCamelCase__ : List[str] =self.num_labels lowerCamelCase__ : Tuple =OpenAIGPTForSequenceClassification(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : Optional[int] =ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase__ : List[str] =model(lowerCamelCase_ , token_type_ids=lowerCamelCase_ , labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCAmelCase__ ( self :List[str] ): """simple docstring""" lowerCamelCase__ : str =self.prepare_config_and_inputs() ( ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ) : Dict =config_and_inputs lowerCamelCase__ : Tuple ={ 'input_ids': input_ids, 'token_type_ids': token_type_ids, 'head_mask': head_mask, } return config, inputs_dict @require_torch class A_ ( A__ , A__ , A__ , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ = ( (OpenAIGPTModel, OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification) if is_torch_available() else () ) SCREAMING_SNAKE_CASE_ = ( (OpenAIGPTLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly SCREAMING_SNAKE_CASE_ = ( { """feature-extraction""": OpenAIGPTModel, """text-classification""": OpenAIGPTForSequenceClassification, """text-generation""": OpenAIGPTLMHeadModel, """zero-shot""": OpenAIGPTForSequenceClassification, } if is_torch_available() else {} ) def UpperCAmelCase__ ( self :int , lowerCamelCase_ :Optional[int] , lowerCamelCase_ :List[Any] , lowerCamelCase_ :List[Any] , lowerCamelCase_ :List[Any] , lowerCamelCase_ :List[str] ): """simple docstring""" if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `OpenAIGPTConfig` was never used in pipeline tests, either because of a missing checkpoint or because a # tiny config could not be created. return True return False def UpperCAmelCase__ ( self :Dict , lowerCamelCase_ :Tuple , lowerCamelCase_ :Optional[Any] , lowerCamelCase_ :List[Any]=False ): """simple docstring""" lowerCamelCase__ : str =super()._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ , return_labels=lowerCamelCase_ ) if return_labels: if model_class.__name__ == "OpenAIGPTDoubleHeadsModel": lowerCamelCase__ : Dict =torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices, self.model_tester.seq_length) , dtype=torch.long , device=lowerCamelCase_ , ) lowerCamelCase__ : Union[str, Any] =inputs_dict['labels'] lowerCamelCase__ : Tuple =inputs_dict['labels'] lowerCamelCase__ : int =torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices) , dtype=torch.long , device=lowerCamelCase_ , ) lowerCamelCase__ : Optional[Any] =torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowerCamelCase_ ) return inputs_dict def UpperCAmelCase__ ( self :str ): """simple docstring""" lowerCamelCase__ : List[str] =OpenAIGPTModelTester(self ) lowerCamelCase__ : Union[str, Any] =ConfigTester(self , config_class=lowerCamelCase_ , n_embd=37 ) def UpperCAmelCase__ ( self :int ): """simple docstring""" self.config_tester.run_common_tests() def UpperCAmelCase__ ( self :Union[str, Any] ): """simple docstring""" lowerCamelCase__ : Union[str, Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_model(*lowerCamelCase_ ) def UpperCAmelCase__ ( self :Union[str, Any] ): """simple docstring""" lowerCamelCase__ : List[Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*lowerCamelCase_ ) def UpperCAmelCase__ ( self :Union[str, Any] ): """simple docstring""" lowerCamelCase__ : int =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_double_lm_head_model(*lowerCamelCase_ ) def UpperCAmelCase__ ( self :str ): """simple docstring""" lowerCamelCase__ : str =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_for_sequence_classification(*lowerCamelCase_ ) @slow def UpperCAmelCase__ ( self :List[str] ): """simple docstring""" for model_name in OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase__ : Optional[Any] =OpenAIGPTModel.from_pretrained(lowerCamelCase_ ) self.assertIsNotNone(lowerCamelCase_ ) @require_torch class A_ ( unittest.TestCase ): """simple docstring""" @slow def UpperCAmelCase__ ( self :Optional[Any] ): """simple docstring""" lowerCamelCase__ : Optional[Any] =OpenAIGPTLMHeadModel.from_pretrained('openai-gpt' ) model.to(lowerCamelCase_ ) lowerCamelCase__ : List[str] =torch.tensor([[481, 4_735, 544]] , dtype=torch.long , device=lowerCamelCase_ ) # the president is lowerCamelCase__ : List[Any] =[ 481, 4_735, 544, 246, 963, 870, 762, 239, 244, 40_477, 244, 249, 719, 881, 487, 544, 240, 244, 603, 481, ] # the president is a very good man. " \n " i\'m sure he is, " said the lowerCamelCase__ : Tuple =model.generate(lowerCamelCase_ , do_sample=lowerCamelCase_ ) self.assertListEqual(output_ids[0].tolist() , lowerCamelCase_ )
126
0
'''simple docstring''' from pathlib import Path import fire def _SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase , UpperCamelCase ): """simple docstring""" lowerCAmelCase__ : int = Path(UpperCamelCase ) lowerCAmelCase__ : int = Path(UpperCamelCase ) dest_dir.mkdir(exist_ok=UpperCamelCase ) for path in src_dir.iterdir(): lowerCAmelCase__ : Dict = [x.rstrip() for x in list(path.open().readlines() )][:n] lowerCAmelCase__ : Optional[int] = dest_dir.joinpath(path.name ) print(UpperCamelCase ) dest_path.open("""w""" ).write("""\n""".join(UpperCamelCase ) ) if __name__ == "__main__": fire.Fire(minify)
184
'''simple docstring''' import copy from dataclasses import dataclass from pathlib import Path from typing import Dict, Optional, Union @dataclass class lowerCAmelCase_: '''simple docstring''' __lowercase : Optional[Union[str, Path]] = None __lowercase : bool = False __lowercase : bool = False __lowercase : bool = False __lowercase : Optional[Dict] = None __lowercase : Optional[str] = None __lowercase : bool = False __lowercase : bool = False __lowercase : bool = False __lowercase : bool = True __lowercase : Optional[int] = None __lowercase : int = 1 __lowercase : Optional[Union[str, bool]] = None __lowercase : bool = False __lowercase : Optional[Dict] = None __lowercase : Optional[str] = None def UpperCAmelCase_ ( self ) -> "DownloadConfig": return self.__class__(**{k: copy.deepcopy(__UpperCAmelCase ) for k, v in self.__dict__.items()} )
184
1
import os def a_ ( ) -> Optional[Any]: """simple docstring""" snake_case__ = os.path.join(os.path.dirname(_A ) , 'num.txt' ) with open(_A ) as file_hand: return str(sum(int(_A ) for line in file_hand ) )[:10] if __name__ == "__main__": print(solution())
307
from math import sqrt import numpy as np from sympy import symbols # Coefficient # Speed of light (m/s) __UpperCamelCase : int = 299792458 # Symbols __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase : Optional[int] = symbols("""ct x y z""") def a_ ( _A ) -> float: """simple docstring""" if velocity > c: raise ValueError('Speed must not exceed light speed 299,792,458 [m/s]!' ) elif velocity < 1: # Usually the speed should be much higher than 1 (c order of magnitude) raise ValueError('Speed must be greater than or equal to 1!' ) return velocity / c def a_ ( _A ) -> float: """simple docstring""" return 1 / sqrt(1 - beta(_A ) ** 2 ) def a_ ( _A ) -> np.ndarray: """simple docstring""" return np.array( [ [gamma(_A ), -gamma(_A ) * beta(_A ), 0, 0], [-gamma(_A ) * beta(_A ), gamma(_A ), 0, 0], [0, 0, 1, 0], [0, 0, 0, 1], ] ) def a_ ( _A , _A = None ) -> np.ndarray: """simple docstring""" # Ensure event is not empty if event is None: snake_case__ = np.array([ct, x, y, z] ) # Symbolic four vector else: event[0] *= c # x0 is ct (speed of light * time) return transformation_matrix(_A ) @ event if __name__ == "__main__": import doctest doctest.testmod() # Example of symbolic vector: __UpperCamelCase : List[Any] = transform(29979245) print("""Example of four vector: """) print(f'''ct\' = {four_vector[0]}''') print(f'''x\' = {four_vector[1]}''') print(f'''y\' = {four_vector[2]}''') print(f'''z\' = {four_vector[3]}''') # Substitute symbols with numerical values __UpperCamelCase : List[Any] = {ct: c, x: 1, y: 1, z: 1} __UpperCamelCase : Tuple = [four_vector[i].subs(sub_dict) for i in range(4)] print(f'''\n{numerical_vector}''')
307
1
import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bart import BartTokenizer __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} # See all BART models at https://huggingface.co/models?filter=bart __UpperCAmelCase = { '''vocab_file''': { '''facebook/bart-base''': '''https://huggingface.co/facebook/bart-base/resolve/main/vocab.json''', '''facebook/bart-large''': '''https://huggingface.co/facebook/bart-large/resolve/main/vocab.json''', '''facebook/bart-large-mnli''': '''https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json''', '''facebook/bart-large-cnn''': '''https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json''', '''facebook/bart-large-xsum''': '''https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json''', '''yjernite/bart_eli5''': '''https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json''', }, '''merges_file''': { '''facebook/bart-base''': '''https://huggingface.co/facebook/bart-base/resolve/main/merges.txt''', '''facebook/bart-large''': '''https://huggingface.co/facebook/bart-large/resolve/main/merges.txt''', '''facebook/bart-large-mnli''': '''https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt''', '''facebook/bart-large-cnn''': '''https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt''', '''facebook/bart-large-xsum''': '''https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt''', '''yjernite/bart_eli5''': '''https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt''', }, '''tokenizer_file''': { '''facebook/bart-base''': '''https://huggingface.co/facebook/bart-base/resolve/main/tokenizer.json''', '''facebook/bart-large''': '''https://huggingface.co/facebook/bart-large/resolve/main/tokenizer.json''', '''facebook/bart-large-mnli''': '''https://huggingface.co/facebook/bart-large-mnli/resolve/main/tokenizer.json''', '''facebook/bart-large-cnn''': '''https://huggingface.co/facebook/bart-large-cnn/resolve/main/tokenizer.json''', '''facebook/bart-large-xsum''': '''https://huggingface.co/facebook/bart-large-xsum/resolve/main/tokenizer.json''', '''yjernite/bart_eli5''': '''https://huggingface.co/yjernite/bart_eli5/resolve/main/tokenizer.json''', }, } __UpperCAmelCase = { '''facebook/bart-base''': 1_024, '''facebook/bart-large''': 1_024, '''facebook/bart-large-mnli''': 1_024, '''facebook/bart-large-cnn''': 1_024, '''facebook/bart-large-xsum''': 1_024, '''yjernite/bart_eli5''': 1_024, } class lowerCAmelCase_ ( a__ ): UpperCAmelCase__ : Any = VOCAB_FILES_NAMES UpperCAmelCase__ : List[Any] = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__ : Optional[int] = ["input_ids", "attention_mask"] UpperCAmelCase__ : Dict = BartTokenizer def __init__( self, SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_="replace", SCREAMING_SNAKE_CASE_="<s>", SCREAMING_SNAKE_CASE_="</s>", SCREAMING_SNAKE_CASE_="</s>", SCREAMING_SNAKE_CASE_="<s>", SCREAMING_SNAKE_CASE_="<unk>", SCREAMING_SNAKE_CASE_="<pad>", SCREAMING_SNAKE_CASE_="<mask>", SCREAMING_SNAKE_CASE_=False, SCREAMING_SNAKE_CASE_=True, **SCREAMING_SNAKE_CASE_, ) -> Optional[Any]: super().__init__( SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, tokenizer_file=SCREAMING_SNAKE_CASE_, errors=SCREAMING_SNAKE_CASE_, bos_token=SCREAMING_SNAKE_CASE_, eos_token=SCREAMING_SNAKE_CASE_, sep_token=SCREAMING_SNAKE_CASE_, cls_token=SCREAMING_SNAKE_CASE_, unk_token=SCREAMING_SNAKE_CASE_, pad_token=SCREAMING_SNAKE_CASE_, mask_token=SCREAMING_SNAKE_CASE_, add_prefix_space=SCREAMING_SNAKE_CASE_, trim_offsets=SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_, ) UpperCamelCase : Optional[Any] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space', SCREAMING_SNAKE_CASE_ ) != add_prefix_space: UpperCamelCase : Optional[int] = getattr(SCREAMING_SNAKE_CASE_, pre_tok_state.pop('type' ) ) UpperCamelCase : Dict = add_prefix_space UpperCamelCase : str = pre_tok_class(**SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[int] = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` UpperCamelCase : Optional[Any] = 'post_processor' UpperCamelCase : Any = getattr(self.backend_tokenizer, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) if tokenizer_component_instance: UpperCamelCase : Dict = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: UpperCamelCase : Tuple = tuple(state['sep'] ) if "cls" in state: UpperCamelCase : str = tuple(state['cls'] ) UpperCamelCase : Optional[int] = False if state.get('add_prefix_space', SCREAMING_SNAKE_CASE_ ) != add_prefix_space: UpperCamelCase : Union[str, Any] = add_prefix_space UpperCamelCase : Optional[int] = True if state.get('trim_offsets', SCREAMING_SNAKE_CASE_ ) != trim_offsets: UpperCamelCase : Union[str, Any] = trim_offsets UpperCamelCase : Union[str, Any] = True if changes_to_apply: UpperCamelCase : int = getattr(SCREAMING_SNAKE_CASE_, state.pop('type' ) ) UpperCamelCase : Any = component_class(**SCREAMING_SNAKE_CASE_ ) setattr(self.backend_tokenizer, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) @property def snake_case_ ( self ) -> str: if self._mask_token is None: if self.verbose: logger.error('Using mask_token, but it is not set yet.' ) return None return str(self._mask_token ) @mask_token.setter def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> List[str]: UpperCamelCase : str = AddedToken(SCREAMING_SNAKE_CASE_, lstrip=SCREAMING_SNAKE_CASE_, rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) else value UpperCamelCase : Any = value def snake_case_ ( self, *SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) -> BatchEncoding: UpperCamelCase : Optional[int] = kwargs.get('is_split_into_words', SCREAMING_SNAKE_CASE_ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ 'to use it with pretokenized inputs.' ) return super()._batch_encode_plus(*SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self, *SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) -> BatchEncoding: UpperCamelCase : List[str] = kwargs.get('is_split_into_words', SCREAMING_SNAKE_CASE_ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ 'to use it with pretokenized inputs.' ) return super()._encode_plus(*SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = None ) -> Tuple[str]: UpperCamelCase : List[Any] = self._tokenizer.model.save(SCREAMING_SNAKE_CASE_, name=SCREAMING_SNAKE_CASE_ ) return tuple(SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_=None ) -> List[str]: UpperCamelCase : int = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = None ) -> List[int]: UpperCamelCase : List[Any] = [self.sep_token_id] UpperCamelCase : List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
103
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { '''facebook/data2vec-text-base''': '''https://huggingface.co/data2vec/resolve/main/config.json''', } class lowerCAmelCase_ ( a__ ): UpperCAmelCase__ : int = "data2vec-text" def __init__( self, SCREAMING_SNAKE_CASE_=3_0522, SCREAMING_SNAKE_CASE_=768, SCREAMING_SNAKE_CASE_=12, SCREAMING_SNAKE_CASE_=12, SCREAMING_SNAKE_CASE_=3072, SCREAMING_SNAKE_CASE_="gelu", SCREAMING_SNAKE_CASE_=0.1, SCREAMING_SNAKE_CASE_=0.1, SCREAMING_SNAKE_CASE_=512, SCREAMING_SNAKE_CASE_=2, SCREAMING_SNAKE_CASE_=0.02, SCREAMING_SNAKE_CASE_=1e-12, SCREAMING_SNAKE_CASE_=1, SCREAMING_SNAKE_CASE_=0, SCREAMING_SNAKE_CASE_=2, SCREAMING_SNAKE_CASE_="absolute", SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=None, **SCREAMING_SNAKE_CASE_, ) -> Optional[int]: super().__init__(pad_token_id=SCREAMING_SNAKE_CASE_, bos_token_id=SCREAMING_SNAKE_CASE_, eos_token_id=SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[int] = vocab_size UpperCamelCase : Tuple = hidden_size UpperCamelCase : int = num_hidden_layers UpperCamelCase : Dict = num_attention_heads UpperCamelCase : str = hidden_act UpperCamelCase : List[str] = intermediate_size UpperCamelCase : Optional[int] = hidden_dropout_prob UpperCamelCase : Dict = attention_probs_dropout_prob UpperCamelCase : int = max_position_embeddings UpperCamelCase : List[str] = type_vocab_size UpperCamelCase : List[Any] = initializer_range UpperCamelCase : List[str] = layer_norm_eps UpperCamelCase : List[str] = position_embedding_type UpperCamelCase : Any = use_cache UpperCamelCase : Any = classifier_dropout class lowerCAmelCase_ ( a__ ): @property def snake_case_ ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": UpperCamelCase : List[Any] = {0: 'batch', 1: 'choice', 2: 'sequence'} else: UpperCamelCase : int = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
103
1
from ...configuration_utils import PretrainedConfig from ...utils import logging _SCREAMING_SNAKE_CASE : str = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : Optional[Any] = { "google/fnet-base": "https://huggingface.co/google/fnet-base/resolve/main/config.json", "google/fnet-large": "https://huggingface.co/google/fnet-large/resolve/main/config.json" # See all FNet models at https://huggingface.co/models?filter=fnet } class A__ ( snake_case__ ): """simple docstring""" __magic_name__ = 'fnet' def __init__( self , __snake_case=3_2_0_0_0 , __snake_case=7_6_8 , __snake_case=1_2 , __snake_case=3_0_7_2 , __snake_case="gelu_new" , __snake_case=0.1 , __snake_case=5_1_2 , __snake_case=4 , __snake_case=0.02 , __snake_case=1E-12 , __snake_case=False , __snake_case=5_1_2 , __snake_case=3 , __snake_case=1 , __snake_case=2 , **__snake_case , ): super().__init__(pad_token_id=__snake_case , bos_token_id=__snake_case , eos_token_id=__snake_case , **__snake_case ) snake_case = vocab_size snake_case = max_position_embeddings snake_case = hidden_size snake_case = num_hidden_layers snake_case = intermediate_size snake_case = hidden_act snake_case = hidden_dropout_prob snake_case = initializer_range snake_case = type_vocab_size snake_case = layer_norm_eps snake_case = use_tpu_fourier_optimizations snake_case = tpu_short_seq_length
127
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _SCREAMING_SNAKE_CASE : List[Any] = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : Optional[Any] = { "google/mobilenet_v2_1.4_224": "https://huggingface.co/google/mobilenet_v2_1.4_224/resolve/main/config.json", "google/mobilenet_v2_1.0_224": "https://huggingface.co/google/mobilenet_v2_1.0_224/resolve/main/config.json", "google/mobilenet_v2_0.75_160": "https://huggingface.co/google/mobilenet_v2_0.75_160/resolve/main/config.json", "google/mobilenet_v2_0.35_96": "https://huggingface.co/google/mobilenet_v2_0.35_96/resolve/main/config.json", # See all MobileNetV2 models at https://huggingface.co/models?filter=mobilenet_v2 } class A__ ( snake_case__ ): """simple docstring""" __magic_name__ = 'mobilenet_v2' def __init__( self , __snake_case=3 , __snake_case=2_2_4 , __snake_case=1.0 , __snake_case=8 , __snake_case=8 , __snake_case=6 , __snake_case=3_2 , __snake_case=True , __snake_case=True , __snake_case="relu6" , __snake_case=True , __snake_case=0.8 , __snake_case=0.02 , __snake_case=0.001 , __snake_case=2_5_5 , **__snake_case , ): super().__init__(**__snake_case ) if depth_multiplier <= 0: raise ValueError('''depth_multiplier must be greater than zero.''' ) snake_case = num_channels snake_case = image_size snake_case = depth_multiplier snake_case = depth_divisible_by snake_case = min_depth snake_case = expand_ratio snake_case = output_stride snake_case = first_layer_is_expansion snake_case = finegrained_output snake_case = hidden_act snake_case = tf_padding snake_case = classifier_dropout_prob snake_case = initializer_range snake_case = layer_norm_eps snake_case = semantic_loss_ignore_index class A__ ( snake_case__ ): """simple docstring""" __magic_name__ = version.parse('1.11' ) @property def a_ ( self ): return OrderedDict([('''pixel_values''', {0: '''batch'''})] ) @property def a_ ( self ): if self.task == "image-classification": return OrderedDict([('''logits''', {0: '''batch'''})] ) else: return OrderedDict([('''last_hidden_state''', {0: '''batch'''}), ('''pooler_output''', {0: '''batch'''})] ) @property def a_ ( self ): return 1E-4
127
1
"""simple docstring""" import os from argparse import ArgumentParser from typing import List import torch.utils.data from datasets import Dataset, IterableDataset from datasets.distributed import split_dataset_by_node UpperCAmelCase = 4 UpperCAmelCase = 3 class UpperCAmelCase_ ( _lowercase): pass def lowercase ( a__ : List[str] ) -> Union[str, Any]: for shard in shards: for i in range(a__ ): yield {"i": i, "shard": shard} def lowercase ( ) -> Union[str, Any]: _UpperCamelCase = int(os.environ['''RANK'''] ) _UpperCamelCase = int(os.environ['''WORLD_SIZE'''] ) _UpperCamelCase = ArgumentParser() parser.add_argument('''--streaming''' , type=a__ ) parser.add_argument('''--local_rank''' , type=a__ ) parser.add_argument('''--num_workers''' , type=a__ , default=0 ) _UpperCamelCase = parser.parse_args() _UpperCamelCase = args.streaming _UpperCamelCase = args.num_workers _UpperCamelCase = {'''shards''': [F'''shard_{shard_idx}''' for shard_idx in range(a__ )]} _UpperCamelCase = IterableDataset.from_generator(a__ , gen_kwargs=a__ ) if not streaming: _UpperCamelCase = Dataset.from_list(list(a__ ) ) _UpperCamelCase = split_dataset_by_node(a__ , rank=a__ , world_size=a__ ) _UpperCamelCase = torch.utils.data.DataLoader(a__ , num_workers=a__ ) _UpperCamelCase = NUM_SHARDS * NUM_ITEMS_PER_SHARD _UpperCamelCase = full_size // world_size expected_local_size += int(rank < (full_size % world_size) ) _UpperCamelCase = sum(1 for _ in dataloader ) if local_size != expected_local_size: raise FailedTestError(F'''local_size {local_size} != expected_local_size {expected_local_size}''' ) if __name__ == "__main__": main()
54
"""simple docstring""" import unittest from transformers import PegasusConfig, PegasusTokenizer, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html UpperCAmelCase = """platform""" import jax import jax.numpy as jnp import numpy as np from transformers import FlaxPegasusForConditionalGeneration, FlaxPegasusModel @require_flax class UpperCAmelCase_ : snake_case__ = PegasusConfig snake_case__ = {} snake_case__ = '''gelu''' def __init__( self : Any , __UpperCamelCase : int , __UpperCamelCase : List[str]=13 , __UpperCamelCase : List[Any]=7 , __UpperCamelCase : Optional[int]=True , __UpperCamelCase : int=False , __UpperCamelCase : Optional[Any]=99 , __UpperCamelCase : int=32 , __UpperCamelCase : List[str]=5 , __UpperCamelCase : Tuple=4 , __UpperCamelCase : Optional[Any]=37 , __UpperCamelCase : Optional[int]=0.1 , __UpperCamelCase : Optional[Any]=0.1 , __UpperCamelCase : List[str]=20 , __UpperCamelCase : Union[str, Any]=2 , __UpperCamelCase : Optional[int]=1 , __UpperCamelCase : Dict=0 , ) -> str: _UpperCamelCase = parent _UpperCamelCase = batch_size _UpperCamelCase = seq_length _UpperCamelCase = is_training _UpperCamelCase = use_labels _UpperCamelCase = vocab_size _UpperCamelCase = hidden_size _UpperCamelCase = num_hidden_layers _UpperCamelCase = num_attention_heads _UpperCamelCase = intermediate_size _UpperCamelCase = hidden_dropout_prob _UpperCamelCase = attention_probs_dropout_prob _UpperCamelCase = max_position_embeddings _UpperCamelCase = eos_token_id _UpperCamelCase = pad_token_id _UpperCamelCase = bos_token_id def _UpperCamelCase ( self : Tuple ) -> List[str]: _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ).clip(3 , self.vocab_size ) _UpperCamelCase = np.expand_dims(np.array([self.eos_token_id] * self.batch_size ) , 1 ) _UpperCamelCase = np.concatenate([input_ids, eos_tensor] , axis=1 ) _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCamelCase = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) _UpperCamelCase = prepare_pegasus_inputs_dict(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) return config, inputs_dict def _UpperCamelCase ( self : Dict , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Any , __UpperCamelCase : Optional[int] ) -> str: _UpperCamelCase = 20 _UpperCamelCase = model_class_name(__UpperCamelCase ) _UpperCamelCase = model.encode(inputs_dict['''input_ids'''] ) _UpperCamelCase , _UpperCamelCase = ( inputs_dict['''decoder_input_ids'''], inputs_dict['''decoder_attention_mask'''], ) _UpperCamelCase = model.init_cache(decoder_input_ids.shape[0] , __UpperCamelCase , __UpperCamelCase ) _UpperCamelCase = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype='''i4''' ) _UpperCamelCase = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) _UpperCamelCase = model.decode( decoder_input_ids[:, :-1] , __UpperCamelCase , decoder_attention_mask=__UpperCamelCase , past_key_values=__UpperCamelCase , decoder_position_ids=__UpperCamelCase , ) _UpperCamelCase = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='''i4''' ) _UpperCamelCase = model.decode( decoder_input_ids[:, -1:] , __UpperCamelCase , decoder_attention_mask=__UpperCamelCase , past_key_values=outputs_cache.past_key_values , decoder_position_ids=__UpperCamelCase , ) _UpperCamelCase = model.decode(__UpperCamelCase , __UpperCamelCase ) _UpperCamelCase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=F'''Max diff is {diff}''' ) def _UpperCamelCase ( self : Tuple , __UpperCamelCase : List[Any] , __UpperCamelCase : List[Any] , __UpperCamelCase : Optional[int] ) -> List[str]: _UpperCamelCase = 20 _UpperCamelCase = model_class_name(__UpperCamelCase ) _UpperCamelCase = model.encode(inputs_dict['''input_ids'''] ) _UpperCamelCase , _UpperCamelCase = ( inputs_dict['''decoder_input_ids'''], inputs_dict['''decoder_attention_mask'''], ) _UpperCamelCase = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] , axis=-1 , ) _UpperCamelCase = model.init_cache(decoder_input_ids.shape[0] , __UpperCamelCase , __UpperCamelCase ) _UpperCamelCase = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) _UpperCamelCase = model.decode( decoder_input_ids[:, :-1] , __UpperCamelCase , decoder_attention_mask=__UpperCamelCase , past_key_values=__UpperCamelCase , decoder_position_ids=__UpperCamelCase , ) _UpperCamelCase = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='''i4''' ) _UpperCamelCase = model.decode( decoder_input_ids[:, -1:] , __UpperCamelCase , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=__UpperCamelCase , decoder_position_ids=__UpperCamelCase , ) _UpperCamelCase = model.decode(__UpperCamelCase , __UpperCamelCase , decoder_attention_mask=__UpperCamelCase ) _UpperCamelCase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=F'''Max diff is {diff}''' ) def lowercase ( a__ : Dict , a__ : str , a__ : str , a__ : Optional[int]=None , a__ : str=None , ) -> List[str]: if attention_mask is None: _UpperCamelCase = np.not_equal(a__ , config.pad_token_id ).astype(np.inta ) if decoder_attention_mask is None: _UpperCamelCase = np.concatenate( [ np.ones(decoder_input_ids[:, :1].shape , dtype=np.inta ), np.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ).astype(np.inta ), ] , axis=-1 , ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, } @require_flax class UpperCAmelCase_ ( _lowercase , unittest.TestCase): snake_case__ = ( ( FlaxPegasusForConditionalGeneration, FlaxPegasusModel, ) if is_flax_available() else () ) snake_case__ = (FlaxPegasusForConditionalGeneration,) if is_flax_available() else () snake_case__ = True snake_case__ = False snake_case__ = False snake_case__ = False def _UpperCamelCase ( self : Tuple ) -> List[Any]: _UpperCamelCase = FlaxPegasusModelTester(self ) _UpperCamelCase = ConfigTester(self , config_class=__UpperCamelCase ) def _UpperCamelCase ( self : Any ) -> Tuple: self.config_tester.run_common_tests() def _UpperCamelCase ( self : Any ) -> Dict: _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) def _UpperCamelCase ( self : Union[str, Any] ) -> str: _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) def _UpperCamelCase ( self : Dict ) -> str: _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): _UpperCamelCase = self._prepare_for_class(__UpperCamelCase , __UpperCamelCase ) _UpperCamelCase = model_class(__UpperCamelCase ) @jax.jit def encode_jitted(__UpperCamelCase : Dict , __UpperCamelCase : str=None , **__UpperCamelCase : Dict ): return model.encode(input_ids=__UpperCamelCase , attention_mask=__UpperCamelCase ) with self.subTest('''JIT Enabled''' ): _UpperCamelCase = encode_jitted(**__UpperCamelCase ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): _UpperCamelCase = encode_jitted(**__UpperCamelCase ).to_tuple() self.assertEqual(len(__UpperCamelCase ) , len(__UpperCamelCase ) ) for jitted_output, output in zip(__UpperCamelCase , __UpperCamelCase ): self.assertEqual(jitted_output.shape , output.shape ) def _UpperCamelCase ( self : Optional[Any] ) -> Dict: _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): _UpperCamelCase = model_class(__UpperCamelCase ) _UpperCamelCase = model.encode(inputs_dict['''input_ids'''] , inputs_dict['''attention_mask'''] ) _UpperCamelCase = { '''decoder_input_ids''': inputs_dict['''decoder_input_ids'''], '''decoder_attention_mask''': inputs_dict['''decoder_attention_mask'''], '''encoder_outputs''': encoder_outputs, } @jax.jit def decode_jitted(__UpperCamelCase : List[str] , __UpperCamelCase : int , __UpperCamelCase : Optional[int] ): return model.decode( decoder_input_ids=__UpperCamelCase , decoder_attention_mask=__UpperCamelCase , encoder_outputs=__UpperCamelCase , ) with self.subTest('''JIT Enabled''' ): _UpperCamelCase = decode_jitted(**__UpperCamelCase ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): _UpperCamelCase = decode_jitted(**__UpperCamelCase ).to_tuple() self.assertEqual(len(__UpperCamelCase ) , len(__UpperCamelCase ) ) for jitted_output, output in zip(__UpperCamelCase , __UpperCamelCase ): self.assertEqual(jitted_output.shape , output.shape ) @slow def _UpperCamelCase ( self : Union[str, Any] ) -> Dict: for model_class_name in self.all_model_classes: _UpperCamelCase = model_class_name.from_pretrained('''google/pegasus-large''' , from_pt=__UpperCamelCase ) _UpperCamelCase = np.ones((1, 1) ) _UpperCamelCase = model(__UpperCamelCase ) self.assertIsNotNone(__UpperCamelCase ) @slow def _UpperCamelCase ( self : str ) -> Any: _UpperCamelCase = FlaxPegasusForConditionalGeneration.from_pretrained('''google/pegasus-xsum''' ) _UpperCamelCase = PegasusTokenizer.from_pretrained('''google/pegasus-xsum''' ) _UpperCamelCase = [ ''' PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.''', ''' The London trio are up for best UK act and best album, as well as getting two nominations in the best song category."We got told like this morning \'Oh I think you\'re nominated\'", said Dappy."And I was like \'Oh yeah, which one?\' And now we\'ve got nominated for four awards. I mean, wow!"Bandmate Fazer added: "We thought it\'s best of us to come down and mingle with everyone and say hello to the cameras. And now we find we\'ve got four nominations."The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn\'t be too disappointed if they didn\'t win this time around."At the end of the day we\'re grateful to be where we are in our careers."If it don\'t happen then it don\'t happen - live to fight another day and keep on making albums and hits for the fans."Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers\' All These Things That I\'ve Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year\'s Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border."We just done Edinburgh the other day," said Dappy."We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!" ''', ] _UpperCamelCase = [ '''California\'s largest electricity provider has turned off power to hundreds of thousands of customers.''', '''Pop group N-Dubz have revealed they were surprised to get four nominations for this year\'s Mobo Awards.''', ] _UpperCamelCase = tokenizer(__UpperCamelCase , return_tensors='''np''' , truncation=__UpperCamelCase , max_length=512 , padding=__UpperCamelCase ) _UpperCamelCase = model.generate(**__UpperCamelCase , num_beams=2 ).sequences _UpperCamelCase = tokenizer.batch_decode(__UpperCamelCase , skip_special_tokens=__UpperCamelCase ) assert tgt_text == decoded
54
1
import logging import os from dataclasses import dataclass from enum import Enum from typing import List, Optional, Union from filelock import FileLock from transformers import PreTrainedTokenizer, is_tf_available, is_torch_available _SCREAMING_SNAKE_CASE = logging.getLogger(__name__) @dataclass class SCREAMING_SNAKE_CASE_ : __magic_name__: str __magic_name__: List[str] __magic_name__: Optional[List[str]] @dataclass class SCREAMING_SNAKE_CASE_ : __magic_name__: List[int] __magic_name__: List[int] __magic_name__: Optional[List[int]] = None __magic_name__: Optional[List[int]] = None class SCREAMING_SNAKE_CASE_ ( __lowercase ): __magic_name__: Union[str, Any] = "train" __magic_name__: Dict = "dev" __magic_name__: List[Any] = "test" class SCREAMING_SNAKE_CASE_ : @staticmethod def UpperCAmelCase_ ( _A : int , _A : Union[str, Any] ) -> List[InputExample]: """simple docstring""" raise NotImplementedError @staticmethod def UpperCAmelCase_ ( _A : List[str] ) -> List[str]: """simple docstring""" raise NotImplementedError @staticmethod def UpperCAmelCase_ ( _A : Tuple , _A : str , _A : int , _A : List[str] , _A : Any=False , _A : List[str]="[CLS]" , _A : List[Any]=1 , _A : Dict="[SEP]" , _A : List[Any]=False , _A : Optional[int]=False , _A : Tuple=0 , _A : Any=0 , _A : Optional[Any]=-100 , _A : str=0 , _A : Optional[Any]=True , ) -> List[InputFeatures]: """simple docstring""" snake_case_ : Union[str, Any] = {label: i for i, label in enumerate(_a )} snake_case_ : Optional[Any] = [] for ex_index, example in enumerate(_a ): if ex_index % 10000 == 0: logger.info('Writing example %d of %d' , _a , len(_a ) ) snake_case_ : List[str] = [] snake_case_ : int = [] for word, label in zip(example.words , example.labels ): snake_case_ : List[Any] = tokenizer.tokenize(_a ) # bert-base-multilingual-cased sometimes output "nothing ([]) when calling tokenize with just a space. if len(_a ) > 0: tokens.extend(_a ) # Use the real label id for the first token of the word, and padding ids for the remaining tokens label_ids.extend([label_map[label]] + [pad_token_label_id] * (len(_a ) - 1) ) # Account for [CLS] and [SEP] with "- 2" and with "- 3" for RoBERTa. snake_case_ : Optional[int] = tokenizer.num_special_tokens_to_add() if len(_a ) > max_seq_length - special_tokens_count: snake_case_ : str = tokens[: (max_seq_length - special_tokens_count)] snake_case_ : int = label_ids[: (max_seq_length - special_tokens_count)] # The convention in BERT is: # (a) For sequence pairs: # tokens: [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP] # type_ids: 0 0 0 0 0 0 0 0 1 1 1 1 1 1 # (b) For single sequences: # tokens: [CLS] the dog is hairy . [SEP] # type_ids: 0 0 0 0 0 0 0 # # Where "type_ids" are used to indicate whether this is the first # sequence or the second sequence. The embedding vectors for `type=0` and # `type=1` were learned during pre-training and are added to the wordpiece # embedding vector (and position vector). This is not *strictly* necessary # since the [SEP] token unambiguously separates the sequences, but it makes # it easier for the model to learn the concept of sequences. # # For classification tasks, the first vector (corresponding to [CLS]) is # used as the "sentence vector". Note that this only makes sense because # the entire model is fine-tuned. tokens += [sep_token] label_ids += [pad_token_label_id] if sep_token_extra: # roberta uses an extra separator b/w pairs of sentences tokens += [sep_token] label_ids += [pad_token_label_id] snake_case_ : List[str] = [sequence_a_segment_id] * len(_a ) if cls_token_at_end: tokens += [cls_token] label_ids += [pad_token_label_id] segment_ids += [cls_token_segment_id] else: snake_case_ : int = [cls_token] + tokens snake_case_ : Optional[int] = [pad_token_label_id] + label_ids snake_case_ : Dict = [cls_token_segment_id] + segment_ids snake_case_ : List[Any] = tokenizer.convert_tokens_to_ids(_a ) # The mask has 1 for real tokens and 0 for padding tokens. Only real # tokens are attended to. snake_case_ : Optional[int] = [1 if mask_padding_with_zero else 0] * len(_a ) # Zero-pad up to the sequence length. snake_case_ : List[str] = max_seq_length - len(_a ) if pad_on_left: snake_case_ : Union[str, Any] = ([pad_token] * padding_length) + input_ids snake_case_ : Dict = ([0 if mask_padding_with_zero else 1] * padding_length) + input_mask snake_case_ : int = ([pad_token_segment_id] * padding_length) + segment_ids snake_case_ : Optional[int] = ([pad_token_label_id] * padding_length) + label_ids else: input_ids += [pad_token] * padding_length input_mask += [0 if mask_padding_with_zero else 1] * padding_length segment_ids += [pad_token_segment_id] * padding_length label_ids += [pad_token_label_id] * padding_length assert len(_a ) == max_seq_length assert len(_a ) == max_seq_length assert len(_a ) == max_seq_length assert len(_a ) == max_seq_length if ex_index < 5: logger.info('*** Example ***' ) logger.info('guid: %s' , example.guid ) logger.info('tokens: %s' , ' '.join([str(_a ) for x in tokens] ) ) logger.info('input_ids: %s' , ' '.join([str(_a ) for x in input_ids] ) ) logger.info('input_mask: %s' , ' '.join([str(_a ) for x in input_mask] ) ) logger.info('segment_ids: %s' , ' '.join([str(_a ) for x in segment_ids] ) ) logger.info('label_ids: %s' , ' '.join([str(_a ) for x in label_ids] ) ) if "token_type_ids" not in tokenizer.model_input_names: snake_case_ : Dict = None features.append( InputFeatures( input_ids=_a , attention_mask=_a , token_type_ids=_a , label_ids=_a ) ) return features if is_torch_available(): import torch from torch import nn from torch.utils.data import Dataset class SCREAMING_SNAKE_CASE_ ( __lowercase ): __magic_name__: List[InputFeatures] __magic_name__: int = nn.CrossEntropyLoss().ignore_index def __init__( self : Tuple , _A : Dict , _A : Optional[Any] , _A : List[str] , _A : Optional[Any] , _A : List[Any] , _A : Any = None , _A : List[str]=False , _A : Any = Split.train , ) -> Tuple: """simple docstring""" snake_case_ : List[Any] = os.path.join( _a , 'cached_{}_{}_{}'.format(mode.value , tokenizer.__class__.__name__ , str(_a ) ) , ) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. snake_case_ : List[Any] = cached_features_file + '''.lock''' with FileLock(_a ): if os.path.exists(_a ) and not overwrite_cache: logger.info(F"""Loading features from cached file {cached_features_file}""" ) snake_case_ : Optional[Any] = torch.load(_a ) else: logger.info(F"""Creating features from dataset file at {data_dir}""" ) snake_case_ : List[Any] = token_classification_task.read_examples_from_file(_a , _a ) # TODO clean up all this to leverage built-in features of tokenizers snake_case_ : List[Any] = token_classification_task.convert_examples_to_features( _a , _a , _a , _a , cls_token_at_end=bool(model_type in ['xlnet'] ) , cls_token=tokenizer.cls_token , cls_token_segment_id=2 if model_type in ['xlnet'] else 0 , sep_token=tokenizer.sep_token , sep_token_extra=_a , pad_on_left=bool(tokenizer.padding_side == 'left' ) , pad_token=tokenizer.pad_token_id , pad_token_segment_id=tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , ) logger.info(F"""Saving features into cached file {cached_features_file}""" ) torch.save(self.features , _a ) def __len__( self : Dict ) -> Optional[int]: """simple docstring""" return len(self.features ) def __getitem__( self : Any , _A : Optional[int] ) -> InputFeatures: """simple docstring""" return self.features[i] if is_tf_available(): import tensorflow as tf class SCREAMING_SNAKE_CASE_ : __magic_name__: List[InputFeatures] __magic_name__: int = -100 def __init__( self : Dict , _A : List[str] , _A : Dict , _A : Optional[int] , _A : Union[str, Any] , _A : Optional[Any] , _A : str = None , _A : Any=False , _A : Any = Split.train , ) -> Dict: """simple docstring""" snake_case_ : str = token_classification_task.read_examples_from_file(_a , _a ) # TODO clean up all this to leverage built-in features of tokenizers snake_case_ : Optional[int] = token_classification_task.convert_examples_to_features( _a , _a , _a , _a , cls_token_at_end=bool(model_type in ['xlnet'] ) , cls_token=tokenizer.cls_token , cls_token_segment_id=2 if model_type in ['xlnet'] else 0 , sep_token=tokenizer.sep_token , sep_token_extra=_a , pad_on_left=bool(tokenizer.padding_side == 'left' ) , pad_token=tokenizer.pad_token_id , pad_token_segment_id=tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , ) def gen(): for ex in self.features: if ex.token_type_ids is None: yield ( {"input_ids": ex.input_ids, "attention_mask": ex.attention_mask}, ex.label_ids, ) else: yield ( { "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label_ids, ) if "token_type_ids" not in tokenizer.model_input_names: snake_case_ : Union[str, Any] = tf.data.Dataset.from_generator( _a , ({'input_ids': tf.intaa, 'attention_mask': tf.intaa}, tf.intaa) , ( {'input_ids': tf.TensorShape([None] ), 'attention_mask': tf.TensorShape([None] )}, tf.TensorShape([None] ), ) , ) else: snake_case_ : Union[str, Any] = tf.data.Dataset.from_generator( _a , ({'input_ids': tf.intaa, 'attention_mask': tf.intaa, 'token_type_ids': tf.intaa}, tf.intaa) , ( { 'input_ids': tf.TensorShape([None] ), 'attention_mask': tf.TensorShape([None] ), 'token_type_ids': tf.TensorShape([None] ), }, tf.TensorShape([None] ), ) , ) def UpperCAmelCase_ ( self : Optional[Any] ) -> str: """simple docstring""" snake_case_ : Dict = self.dataset.apply(tf.data.experimental.assert_cardinality(len(self.features ) ) ) return self.dataset def __len__( self : List[Any] ) -> str: """simple docstring""" return len(self.features ) def __getitem__( self : List[Any] , _A : str ) -> InputFeatures: """simple docstring""" return self.features[i]
327
import unittest from transformers import EsmConfig, is_torch_available from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers.models.esm.modeling_esmfold import EsmForProteinFolding class UpperCAmelCase_ : """simple docstring""" def __init__( self , _a , _a=1_3 , _a=7 , _a=False , _a=True , _a=False , _a=False , _a=1_9 , _a=3_2 , _a=5 , _a=4 , _a=3_7 , _a="gelu" , _a=0.1 , _a=0.1 , _a=5_1_2 , _a=1_6 , _a=2 , _a=0.02 , _a=3 , _a=4 , _a=None , ) -> Union[str, Any]: _a : Optional[Any] = parent _a : Union[str, Any] = batch_size _a : List[Any] = seq_length _a : Dict = is_training _a : int = use_input_mask _a : str = use_token_type_ids _a : Any = use_labels _a : List[Any] = vocab_size _a : Any = hidden_size _a : int = num_hidden_layers _a : str = num_attention_heads _a : Dict = intermediate_size _a : List[str] = hidden_act _a : Optional[Any] = hidden_dropout_prob _a : Optional[Any] = attention_probs_dropout_prob _a : int = max_position_embeddings _a : Tuple = type_vocab_size _a : str = type_sequence_label_size _a : Any = initializer_range _a : Union[str, Any] = num_labels _a : Dict = num_choices _a : Union[str, Any] = scope def __lowercase ( self ) -> List[Any]: _a : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _a : Dict = None if self.use_input_mask: _a : int = random_attention_mask([self.batch_size, self.seq_length] ) _a : List[Any] = None _a : Tuple = None _a : Any = None if self.use_labels: _a : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _a : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _a : List[Any] = ids_tensor([self.batch_size] , self.num_choices ) _a : str = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def __lowercase ( self ) -> str: _a : Optional[int] = EsmConfig( vocab_size=3_3 , hidden_size=self.hidden_size , pad_token_id=1 , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , is_folding_model=_a , esmfold_config={'''trunk''': {'''num_blocks''': 2}, '''fp16_esm''': False} , ) return config def __lowercase ( self , _a , _a , _a , _a , _a , _a ) -> str: _a : Union[str, Any] = EsmForProteinFolding(config=_a ).float() model.to(_a ) model.eval() _a : str = model(_a , attention_mask=_a ) _a : Union[str, Any] = model(_a ) _a : Optional[int] = model(_a ) self.parent.assertEqual(result.positions.shape , (8, self.batch_size, self.seq_length, 1_4, 3) ) self.parent.assertEqual(result.angles.shape , (8, self.batch_size, self.seq_length, 7, 2) ) def __lowercase ( self ) -> str: _a : List[str] = self.prepare_config_and_inputs() ( ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ) : Optional[Any] = config_and_inputs _a : List[Any] = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class UpperCAmelCase_ ( __lowercase , __lowercase , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : Any = False UpperCAmelCase__ : Any = (EsmForProteinFolding,) if is_torch_available() else () UpperCAmelCase__ : Union[str, Any] = () UpperCAmelCase__ : int = {} if is_torch_available() else {} UpperCAmelCase__ : Optional[int] = False def __lowercase ( self ) -> List[Any]: _a : Optional[int] = EsmFoldModelTester(self ) _a : Dict = ConfigTester(self , config_class=_a , hidden_size=3_7 ) def __lowercase ( self ) -> List[str]: self.config_tester.run_common_tests() def __lowercase ( self ) -> str: _a : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_a ) @unittest.skip('''Does not support attention outputs''' ) def __lowercase ( self ) -> int: pass @unittest.skip def __lowercase ( self ) -> List[str]: pass @unittest.skip('''Esm does not support embedding resizing''' ) def __lowercase ( self ) -> int: pass @unittest.skip('''Esm does not support embedding resizing''' ) def __lowercase ( self ) -> Optional[Any]: pass @unittest.skip('''ESMFold does not support passing input embeds!''' ) def __lowercase ( self ) -> int: pass @unittest.skip('''ESMFold does not support head pruning.''' ) def __lowercase ( self ) -> str: pass @unittest.skip('''ESMFold does not support head pruning.''' ) def __lowercase ( self ) -> Optional[Any]: pass @unittest.skip('''ESMFold does not support head pruning.''' ) def __lowercase ( self ) -> Optional[Any]: pass @unittest.skip('''ESMFold does not support head pruning.''' ) def __lowercase ( self ) -> Any: pass @unittest.skip('''ESMFold does not support head pruning.''' ) def __lowercase ( self ) -> Tuple: pass @unittest.skip('''ESMFold does not output hidden states in the normal way.''' ) def __lowercase ( self ) -> Tuple: pass @unittest.skip('''ESMfold does not output hidden states in the normal way.''' ) def __lowercase ( self ) -> Tuple: pass @unittest.skip('''ESMFold only has one output format.''' ) def __lowercase ( self ) -> Tuple: pass @unittest.skip('''This test doesn\'t work for ESMFold and doesn\'t test core functionality''' ) def __lowercase ( self ) -> Dict: pass @unittest.skip('''ESMFold does not support input chunking.''' ) def __lowercase ( self ) -> Tuple: pass @unittest.skip('''ESMFold doesn\'t respect you and it certainly doesn\'t respect your initialization arguments.''' ) def __lowercase ( self ) -> Optional[Any]: pass @unittest.skip('''ESMFold doesn\'t support torchscript compilation.''' ) def __lowercase ( self ) -> List[str]: pass @unittest.skip('''ESMFold doesn\'t support torchscript compilation.''' ) def __lowercase ( self ) -> List[str]: pass @unittest.skip('''ESMFold doesn\'t support torchscript compilation.''' ) def __lowercase ( self ) -> List[Any]: pass @unittest.skip('''ESMFold doesn\'t support data parallel.''' ) def __lowercase ( self ) -> Union[str, Any]: pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def __lowercase ( self ) -> Optional[Any]: pass @require_torch class UpperCAmelCase_ ( __lowercase ): """simple docstring""" @slow def __lowercase ( self ) -> Optional[int]: _a : Dict = EsmForProteinFolding.from_pretrained('''facebook/esmfold_v1''' ).float() model.eval() _a : Tuple = torch.tensor([[0, 6, 4, 1_3, 5, 4, 1_6, 1_2, 1_1, 7, 2]] ) _a : Optional[Any] = model(_a )['''positions'''] _a : Union[str, Any] = torch.tensor([2.5828, 0.7993, -10.9334] , dtype=torch.floataa ) self.assertTrue(torch.allclose(position_outputs[0, 0, 0, 0] , _a , atol=1e-4 ) )
235
0
from ...configuration_utils import PretrainedConfig from ...utils import logging __A = logging.get_logger(__name__) __A = { 'facebook/timesformer': 'https://huggingface.co/facebook/timesformer/resolve/main/config.json', } class SCREAMING_SNAKE_CASE ( A_ ): """simple docstring""" A_ = "timesformer" def __init__( self: Tuple , __A: Any=2_24 , __A: str=16 , __A: Tuple=3 , __A: List[str]=8 , __A: Union[str, Any]=7_68 , __A: Dict=12 , __A: List[Any]=12 , __A: Optional[int]=30_72 , __A: str="gelu" , __A: Union[str, Any]=0.0 , __A: Dict=0.0 , __A: str=0.02 , __A: Any=1e-6 , __A: Any=True , __A: Tuple="divided_space_time" , __A: Optional[Any]=0 , **__A: List[Any] , ) -> Optional[Any]: super().__init__(**_lowerCamelCase ) _A = image_size _A = patch_size _A = num_channels _A = num_frames _A = hidden_size _A = num_hidden_layers _A = num_attention_heads _A = intermediate_size _A = hidden_act _A = hidden_dropout_prob _A = attention_probs_dropout_prob _A = initializer_range _A = layer_norm_eps _A = qkv_bias _A = attention_type _A = drop_path_rate
368
import unittest import numpy as np import torch from diffusers import ScoreSdeVePipeline, ScoreSdeVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" @property def __A ( self: Dict ) -> Union[str, Any]: torch.manual_seed(0 ) _A = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('''DownBlock2D''', '''AttnDownBlock2D''') , up_block_types=('''AttnUpBlock2D''', '''UpBlock2D''') , ) return model def __A ( self: Any ) -> Union[str, Any]: _A = self.dummy_uncond_unet _A = ScoreSdeVeScheduler() _A = ScoreSdeVePipeline(unet=__A , scheduler=__A ) sde_ve.to(__A ) sde_ve.set_progress_bar_config(disable=__A ) _A = torch.manual_seed(0 ) _A = sde_ve(num_inference_steps=2 , output_type='''numpy''' , generator=__A ).images _A = torch.manual_seed(0 ) _A = sde_ve(num_inference_steps=2 , output_type='''numpy''' , generator=__A , return_dict=__A )[ 0 ] _A = image[0, -3:, -3:, -1] _A = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) _A = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" def __A ( self: Dict ) -> Any: _A = '''google/ncsnpp-church-256''' _A = UNetaDModel.from_pretrained(__A ) _A = ScoreSdeVeScheduler.from_pretrained(__A ) _A = ScoreSdeVePipeline(unet=__A , scheduler=__A ) sde_ve.to(__A ) sde_ve.set_progress_bar_config(disable=__A ) _A = torch.manual_seed(0 ) _A = sde_ve(num_inference_steps=10 , output_type='''numpy''' , generator=__A ).images _A = image[0, -3:, -3:, -1] assert image.shape == (1, 2_56, 2_56, 3) _A = np.array([0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
75
0
"""simple docstring""" import os import unittest from transformers.models.transfo_xl.tokenization_transfo_xl import VOCAB_FILES_NAMES, TransfoXLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class UpperCAmelCase_ ( snake_case , unittest.TestCase ): UpperCamelCase =TransfoXLTokenizer UpperCamelCase =False UpperCamelCase =False def _lowerCamelCase ( self ) -> Union[str, Any]: super().setUp() __lowercase : Dict = [ '<unk>', '[CLS]', '[SEP]', 'want', 'unwanted', 'wa', 'un', 'running', ',', 'low', 'l', ] __lowercase : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def _lowerCamelCase ( self , **UpperCamelCase_ ) -> List[str]: __lowercase : Dict = True return TransfoXLTokenizer.from_pretrained(self.tmpdirname , **UpperCamelCase_ ) def _lowerCamelCase ( self , UpperCamelCase_ ) -> Union[str, Any]: __lowercase : int = '<unk> UNwanted , running' __lowercase : Any = '<unk> unwanted, running' return input_text, output_text def _lowerCamelCase ( self ) -> Optional[int]: __lowercase : Tuple = TransfoXLTokenizer(vocab_file=self.vocab_file , lower_case=UpperCamelCase_ ) __lowercase : List[str] = tokenizer.tokenize('''<unk> UNwanted , running''' ) self.assertListEqual(UpperCamelCase_ , ['''<unk>''', '''unwanted''', ''',''', '''running'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCamelCase_ ) , [0, 4, 8, 7] ) def _lowerCamelCase ( self ) -> Tuple: __lowercase : List[Any] = TransfoXLTokenizer(lower_case=UpperCamelCase_ ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo ! how \n Are yoU ? ''' ) , ['''hello''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) def _lowerCamelCase ( self ) -> str: __lowercase : Any = TransfoXLTokenizer(lower_case=UpperCamelCase_ ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo ! how \n Are yoU ? ''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def _lowerCamelCase ( self ) -> List[Any]: __lowercase : Union[str, Any] = TransfoXLTokenizer(lower_case=UpperCamelCase_ ) __lowercase : int = 'Hello (bracket) and side-scrolled [and] Henry\'s $5,000 with 3.34 m. What\'s up!?' __lowercase : List[Any] = [ 'Hello', '(', 'bracket', ')', 'and', 'side', '@-@', 'scrolled', '[', 'and', ']', 'Henry', '\'s', '$', '5', '@,@', '000', 'with', '3', '@.@', '34', 'm', '.', 'What', '\'s', 'up', '!', '?', ] self.assertListEqual(tokenizer.tokenize(UpperCamelCase_ ) , UpperCamelCase_ ) self.assertEqual(tokenizer.convert_tokens_to_string(UpperCamelCase_ ) , UpperCamelCase_ ) def _lowerCamelCase ( self ) -> Union[str, Any]: __lowercase : int = self.get_tokenizer() __lowercase : Optional[Any] = len(UpperCamelCase_ ) tokenizer.add_tokens(['''new1''', '''new2'''] ) tokenizer.move_added_token('''new1''' , 1 ) # Check that moved token is not copied (duplicate) self.assertEqual(len(UpperCamelCase_ ) , original_len + 2 ) # Check that token is moved to specified id self.assertEqual(tokenizer.encode('''new1''' ) , [1] ) self.assertEqual(tokenizer.decode([1] ) , '''new1''' )
249
from __future__ import annotations lowerCamelCase__ = list[list[int]] # assigning initial values to the grid lowerCamelCase__ = [ [3, 0, 6, 5, 0, 8, 4, 0, 0], [5, 2, 0, 0, 0, 0, 0, 0, 0], [0, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] # a grid with no solution lowerCamelCase__ = [ [5, 0, 6, 5, 0, 8, 4, 0, 3], [5, 2, 0, 0, 0, 0, 0, 0, 2], [1, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> bool: for i in range(9 ): if grid[row][i] == n or grid[i][column] == n: return False for i in range(3 ): for j in range(3 ): if grid[(row - row % 3) + i][(column - column % 3) + j] == n: return False return True def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ) -> tuple[int, int] | None: for i in range(9 ): for j in range(9 ): if grid[i][j] == 0: return i, j return None def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ) -> Matrix | None: if location := find_empty_location(SCREAMING_SNAKE_CASE_ ): lowerCAmelCase__ , lowerCAmelCase__ : Any = location else: # If the location is ``None``, then the grid is solved. return grid for digit in range(1 , 10 ): if is_safe(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): lowerCAmelCase__ : Optional[Any] = digit if sudoku(SCREAMING_SNAKE_CASE_ ) is not None: return grid lowerCAmelCase__ : List[Any] = 0 return None def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ) -> None: for row in grid: for cell in row: print(SCREAMING_SNAKE_CASE_ , end=' ' ) print() if __name__ == "__main__": # make a copy of grid so that you can compare with the unmodified grid for example_grid in (initial_grid, no_solution): print("""\nExample grid:\n""" + """=""" * 20) print_solution(example_grid) print("""\nExample grid solution:""") lowerCamelCase__ = sudoku(example_grid) if solution is not None: print_solution(solution) else: print("""Cannot find a solution.""")
212
0
import re import jax.numpy as jnp from flax.traverse_util import flatten_dict, unflatten_dict from jax.random import PRNGKey from ..utils import logging SCREAMING_SNAKE_CASE : Optional[Any] = logging.get_logger(__name__) def UpperCamelCase_( lowerCamelCase_ ) -> Tuple: _lowercase : str = R'\w+[.]\d+' _lowercase : Optional[int] = re.findall(lowerCamelCase_ , lowerCamelCase_ ) for pat in pats: _lowercase : Optional[Any] = key.replace(lowerCamelCase_ , '_'.join(pat.split('.' ) ) ) return key def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> List[str]: _lowercase : Any = pt_tuple_key[:-1] + ('scale',) if ( any('norm' in str_ for str_ in pt_tuple_key ) and (pt_tuple_key[-1] == "bias") and (pt_tuple_key[:-1] + ("bias",) not in random_flax_state_dict) and (pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict) ): _lowercase : int = pt_tuple_key[:-1] + ('scale',) return renamed_pt_tuple_key, pt_tensor elif pt_tuple_key[-1] in ["weight", "gamma"] and pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict: _lowercase : Any = pt_tuple_key[:-1] + ('scale',) return renamed_pt_tuple_key, pt_tensor # embedding if pt_tuple_key[-1] == "weight" and pt_tuple_key[:-1] + ("embedding",) in random_flax_state_dict: _lowercase : Union[str, Any] = pt_tuple_key[:-1] + ('embedding',) return renamed_pt_tuple_key, pt_tensor # conv layer _lowercase : Union[str, Any] = pt_tuple_key[:-1] + ('kernel',) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4: _lowercase : List[str] = pt_tensor.transpose(2 , 3 , 1 , 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer _lowercase : List[str] = pt_tuple_key[:-1] + ('kernel',) if pt_tuple_key[-1] == "weight": _lowercase : Tuple = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight _lowercase : str = pt_tuple_key[:-1] + ('weight',) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias _lowercase : List[str] = pt_tuple_key[:-1] + ('bias',) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_=42 ) -> Optional[Any]: # Step 1: Convert pytorch tensor to numpy _lowercase : Tuple = {k: v.numpy() for k, v in pt_state_dict.items()} # Step 2: Since the model is stateless, get random Flax params _lowercase : Optional[Any] = flax_model.init_weights(PRNGKey(lowerCamelCase_ ) ) _lowercase : List[Any] = flatten_dict(lowerCamelCase_ ) _lowercase : int = {} # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): _lowercase : str = rename_key(lowerCamelCase_ ) _lowercase : Union[str, Any] = tuple(renamed_pt_key.split('.' ) ) # Correctly rename weight parameters _lowercase : Optional[Any] = rename_key_and_reshape_tensor(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( F'''PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape ''' F'''{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.''' ) # also add unexpected weight so that warning is thrown _lowercase : Dict = jnp.asarray(lowerCamelCase_ ) return unflatten_dict(lowerCamelCase_ )
352
import argparse import json import os import numpy as np import PIL import requests import tensorflow.keras.applications.efficientnet as efficientnet import torch from huggingface_hub import hf_hub_download from PIL import Image from tensorflow.keras.preprocessing import image from transformers import ( EfficientNetConfig, EfficientNetForImageClassification, EfficientNetImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() SCREAMING_SNAKE_CASE : Any = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : Optional[Any] = { "b0": efficientnet.EfficientNetBa, "b1": efficientnet.EfficientNetBa, "b2": efficientnet.EfficientNetBa, "b3": efficientnet.EfficientNetBa, "b4": efficientnet.EfficientNetBa, "b5": efficientnet.EfficientNetBa, "b6": efficientnet.EfficientNetBa, "b7": efficientnet.EfficientNetBa, } SCREAMING_SNAKE_CASE : Tuple = { "b0": { "hidden_dim": 1280, "width_coef": 1.0, "depth_coef": 1.0, "image_size": 224, "dropout_rate": 0.2, "dw_padding": [], }, "b1": { "hidden_dim": 1280, "width_coef": 1.0, "depth_coef": 1.1, "image_size": 240, "dropout_rate": 0.2, "dw_padding": [16], }, "b2": { "hidden_dim": 1408, "width_coef": 1.1, "depth_coef": 1.2, "image_size": 260, "dropout_rate": 0.3, "dw_padding": [5, 8, 16], }, "b3": { "hidden_dim": 1536, "width_coef": 1.2, "depth_coef": 1.4, "image_size": 300, "dropout_rate": 0.3, "dw_padding": [5, 18], }, "b4": { "hidden_dim": 1792, "width_coef": 1.4, "depth_coef": 1.8, "image_size": 380, "dropout_rate": 0.4, "dw_padding": [6], }, "b5": { "hidden_dim": 2048, "width_coef": 1.6, "depth_coef": 2.2, "image_size": 456, "dropout_rate": 0.4, "dw_padding": [13, 27], }, "b6": { "hidden_dim": 2304, "width_coef": 1.8, "depth_coef": 2.6, "image_size": 528, "dropout_rate": 0.5, "dw_padding": [31], }, "b7": { "hidden_dim": 2560, "width_coef": 2.0, "depth_coef": 3.1, "image_size": 600, "dropout_rate": 0.5, "dw_padding": [18], }, } def UpperCamelCase_( lowerCamelCase_ ) -> List[str]: _lowercase : Union[str, Any] = EfficientNetConfig() _lowercase : Any = CONFIG_MAP[model_name]['hidden_dim'] _lowercase : Any = CONFIG_MAP[model_name]['width_coef'] _lowercase : Optional[int] = CONFIG_MAP[model_name]['depth_coef'] _lowercase : List[Any] = CONFIG_MAP[model_name]['image_size'] _lowercase : Tuple = CONFIG_MAP[model_name]['dropout_rate'] _lowercase : Dict = CONFIG_MAP[model_name]['dw_padding'] _lowercase : str = 'huggingface/label-files' _lowercase : Optional[Any] = 'imagenet-1k-id2label.json' _lowercase : List[Any] = 1000 _lowercase : str = json.load(open(hf_hub_download(lowerCamelCase_ , lowerCamelCase_ , repo_type='dataset' ) , 'r' ) ) _lowercase : Optional[int] = {int(lowerCamelCase_ ): v for k, v in idalabel.items()} _lowercase : int = idalabel _lowercase : Optional[Any] = {v: k for k, v in idalabel.items()} return config def UpperCamelCase_( ) -> List[Any]: _lowercase : Union[str, Any] = 'http://images.cocodataset.org/val2017/000000039769.jpg' _lowercase : Tuple = Image.open(requests.get(lowerCamelCase_ , stream=lowerCamelCase_ ).raw ) return im def UpperCamelCase_( lowerCamelCase_ ) -> Dict: _lowercase : Tuple = CONFIG_MAP[model_name]['image_size'] _lowercase : List[str] = EfficientNetImageProcessor( size={'height': size, 'width': size} , image_mean=[0.4_85, 0.4_56, 0.4_06] , image_std=[0.47_85_39_44, 0.4_73_28_64, 0.47_43_41_63] , do_center_crop=lowerCamelCase_ , ) return preprocessor def UpperCamelCase_( lowerCamelCase_ ) -> Union[str, Any]: _lowercase : Tuple = [v.split('_' )[0].split('block' )[1] for v in original_param_names if v.startswith('block' )] _lowercase : Tuple = sorted(set(lowerCamelCase_ ) ) _lowercase : List[Any] = len(lowerCamelCase_ ) _lowercase : List[str] = {b: str(lowerCamelCase_ ) for b, i in zip(lowerCamelCase_ , range(lowerCamelCase_ ) )} _lowercase : Optional[int] = [] rename_keys.append(('stem_conv/kernel:0', 'embeddings.convolution.weight') ) rename_keys.append(('stem_bn/gamma:0', 'embeddings.batchnorm.weight') ) rename_keys.append(('stem_bn/beta:0', 'embeddings.batchnorm.bias') ) rename_keys.append(('stem_bn/moving_mean:0', 'embeddings.batchnorm.running_mean') ) rename_keys.append(('stem_bn/moving_variance:0', 'embeddings.batchnorm.running_var') ) for b in block_names: _lowercase : Union[str, Any] = block_name_mapping[b] rename_keys.append((F'''block{b}_expand_conv/kernel:0''', F'''encoder.blocks.{hf_b}.expansion.expand_conv.weight''') ) rename_keys.append((F'''block{b}_expand_bn/gamma:0''', F'''encoder.blocks.{hf_b}.expansion.expand_bn.weight''') ) rename_keys.append((F'''block{b}_expand_bn/beta:0''', F'''encoder.blocks.{hf_b}.expansion.expand_bn.bias''') ) rename_keys.append( (F'''block{b}_expand_bn/moving_mean:0''', F'''encoder.blocks.{hf_b}.expansion.expand_bn.running_mean''') ) rename_keys.append( (F'''block{b}_expand_bn/moving_variance:0''', F'''encoder.blocks.{hf_b}.expansion.expand_bn.running_var''') ) rename_keys.append( (F'''block{b}_dwconv/depthwise_kernel:0''', F'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_conv.weight''') ) rename_keys.append((F'''block{b}_bn/gamma:0''', F'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.weight''') ) rename_keys.append((F'''block{b}_bn/beta:0''', F'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.bias''') ) rename_keys.append( (F'''block{b}_bn/moving_mean:0''', F'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_mean''') ) rename_keys.append( (F'''block{b}_bn/moving_variance:0''', F'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_var''') ) rename_keys.append((F'''block{b}_se_reduce/kernel:0''', F'''encoder.blocks.{hf_b}.squeeze_excite.reduce.weight''') ) rename_keys.append((F'''block{b}_se_reduce/bias:0''', F'''encoder.blocks.{hf_b}.squeeze_excite.reduce.bias''') ) rename_keys.append((F'''block{b}_se_expand/kernel:0''', F'''encoder.blocks.{hf_b}.squeeze_excite.expand.weight''') ) rename_keys.append((F'''block{b}_se_expand/bias:0''', F'''encoder.blocks.{hf_b}.squeeze_excite.expand.bias''') ) rename_keys.append( (F'''block{b}_project_conv/kernel:0''', F'''encoder.blocks.{hf_b}.projection.project_conv.weight''') ) rename_keys.append((F'''block{b}_project_bn/gamma:0''', F'''encoder.blocks.{hf_b}.projection.project_bn.weight''') ) rename_keys.append((F'''block{b}_project_bn/beta:0''', F'''encoder.blocks.{hf_b}.projection.project_bn.bias''') ) rename_keys.append( (F'''block{b}_project_bn/moving_mean:0''', F'''encoder.blocks.{hf_b}.projection.project_bn.running_mean''') ) rename_keys.append( (F'''block{b}_project_bn/moving_variance:0''', F'''encoder.blocks.{hf_b}.projection.project_bn.running_var''') ) rename_keys.append(('top_conv/kernel:0', 'encoder.top_conv.weight') ) rename_keys.append(('top_bn/gamma:0', 'encoder.top_bn.weight') ) rename_keys.append(('top_bn/beta:0', 'encoder.top_bn.bias') ) rename_keys.append(('top_bn/moving_mean:0', 'encoder.top_bn.running_mean') ) rename_keys.append(('top_bn/moving_variance:0', 'encoder.top_bn.running_var') ) _lowercase : Optional[Any] = {} for item in rename_keys: if item[0] in original_param_names: _lowercase : str = 'efficientnet.' + item[1] _lowercase : Optional[Any] = 'classifier.weight' _lowercase : List[str] = 'classifier.bias' return key_mapping def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> Optional[Any]: for key, value in tf_params.items(): if "normalization" in key: continue _lowercase : Any = key_mapping[key] if "_conv" in key and "kernel" in key: _lowercase : Optional[Any] = torch.from_numpy(lowerCamelCase_ ).permute(3 , 2 , 0 , 1 ) elif "depthwise_kernel" in key: _lowercase : Dict = torch.from_numpy(lowerCamelCase_ ).permute(2 , 3 , 0 , 1 ) elif "kernel" in key: _lowercase : Tuple = torch.from_numpy(np.transpose(lowerCamelCase_ ) ) else: _lowercase : List[str] = torch.from_numpy(lowerCamelCase_ ) # Replace HF parameters with original TF model parameters assert hf_params[hf_key].shape == new_hf_value.shape hf_params[hf_key].copy_(lowerCamelCase_ ) @torch.no_grad() def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> int: _lowercase : Any = model_classes[model_name]( include_top=lowerCamelCase_ , weights='imagenet' , input_tensor=lowerCamelCase_ , input_shape=lowerCamelCase_ , pooling=lowerCamelCase_ , classes=1000 , classifier_activation='softmax' , ) _lowercase : int = original_model.trainable_variables _lowercase : Dict = original_model.non_trainable_variables _lowercase : Optional[Any] = {param.name: param.numpy() for param in tf_params} for param in tf_non_train_params: _lowercase : int = param.numpy() _lowercase : int = list(tf_params.keys() ) # Load HuggingFace model _lowercase : int = get_efficientnet_config(lowerCamelCase_ ) _lowercase : List[str] = EfficientNetForImageClassification(lowerCamelCase_ ).eval() _lowercase : str = hf_model.state_dict() # Create src-to-dst parameter name mapping dictionary print('Converting parameters...' ) _lowercase : Optional[int] = rename_keys(lowerCamelCase_ ) replace_params(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) # Initialize preprocessor and preprocess input image _lowercase : Optional[Any] = convert_image_processor(lowerCamelCase_ ) _lowercase : Optional[Any] = preprocessor(images=prepare_img() , return_tensors='pt' ) # HF model inference hf_model.eval() with torch.no_grad(): _lowercase : Any = hf_model(**lowerCamelCase_ ) _lowercase : Optional[int] = outputs.logits.detach().numpy() # Original model inference _lowercase : List[Any] = False _lowercase : List[Any] = CONFIG_MAP[model_name]['image_size'] _lowercase : int = prepare_img().resize((image_size, image_size) , resample=PIL.Image.NEAREST ) _lowercase : Optional[Any] = image.img_to_array(lowerCamelCase_ ) _lowercase : Any = np.expand_dims(lowerCamelCase_ , axis=0 ) _lowercase : Optional[int] = original_model.predict(lowerCamelCase_ ) # Check whether original and HF model outputs match -> np.allclose assert np.allclose(lowerCamelCase_ , lowerCamelCase_ , atol=1e-3 ), "The predicted logits are not the same." print('Model outputs match!' ) if save_model: # Create folder to save model if not os.path.isdir(lowerCamelCase_ ): os.mkdir(lowerCamelCase_ ) # Save converted model and image processor hf_model.save_pretrained(lowerCamelCase_ ) preprocessor.save_pretrained(lowerCamelCase_ ) if push_to_hub: # Push model and image processor to hub print(F'''Pushing converted {model_name} to the hub...''' ) _lowercase : str = F'''efficientnet-{model_name}''' preprocessor.push_to_hub(lowerCamelCase_ ) hf_model.push_to_hub(lowerCamelCase_ ) if __name__ == "__main__": SCREAMING_SNAKE_CASE : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="b0", type=str, help="Version name of the EfficientNet model you want to convert, select from [b0, b1, b2, b3, b4, b5, b6, b7].", ) parser.add_argument( "--pytorch_dump_folder_path", default="hf_model", type=str, help="Path to the output PyTorch model directory.", ) parser.add_argument("--save_model", action="store_true", help="Save model to local") parser.add_argument("--push_to_hub", action="store_true", help="Push model and image processor to the hub") SCREAMING_SNAKE_CASE : str = parser.parse_args() convert_efficientnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.save_model, args.push_to_hub)
84
0
from .data_collator import ( DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForSeqaSeq, DataCollatorForSOP, DataCollatorForTokenClassification, DataCollatorForWholeWordMask, DataCollatorWithPadding, DefaultDataCollator, default_data_collator, ) from .metrics import glue_compute_metrics, xnli_compute_metrics from .processors import ( DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor, SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels, squad_convert_examples_to_features, xnli_output_modes, xnli_processors, xnli_tasks_num_labels, )
30
"""simple docstring""" import argparse import os import jax as jnp import numpy as onp import torch import torch.nn as nn from music_spectrogram_diffusion import inference from tax import checkpoints from diffusers import DDPMScheduler, OnnxRuntimeModel, SpectrogramDiffusionPipeline from diffusers.pipelines.spectrogram_diffusion import SpectrogramContEncoder, SpectrogramNotesEncoder, TaFilmDecoder UpperCAmelCase = """base_with_context""" def lowercase ( a__ : Optional[Any] , a__ : Optional[int] ) -> int: _UpperCamelCase = nn.Parameter(torch.FloatTensor(weights['''token_embedder''']['''embedding'''] ) ) _UpperCamelCase = nn.Parameter( torch.FloatTensor(weights['''Embed_0''']['''embedding'''] ) , requires_grad=a__ ) for lyr_num, lyr in enumerate(model.encoders ): _UpperCamelCase = weights[F'''layers_{lyr_num}'''] _UpperCamelCase = nn.Parameter( torch.FloatTensor(ly_weight['''pre_attention_layer_norm''']['''scale'''] ) ) _UpperCamelCase = ly_weight['''attention'''] _UpperCamelCase = nn.Parameter(torch.FloatTensor(attention_weights['''query''']['''kernel'''].T ) ) _UpperCamelCase = nn.Parameter(torch.FloatTensor(attention_weights['''key''']['''kernel'''].T ) ) _UpperCamelCase = nn.Parameter(torch.FloatTensor(attention_weights['''value''']['''kernel'''].T ) ) _UpperCamelCase = nn.Parameter(torch.FloatTensor(attention_weights['''out''']['''kernel'''].T ) ) _UpperCamelCase = nn.Parameter(torch.FloatTensor(ly_weight['''pre_mlp_layer_norm''']['''scale'''] ) ) _UpperCamelCase = nn.Parameter(torch.FloatTensor(ly_weight['''mlp''']['''wi_0''']['''kernel'''].T ) ) _UpperCamelCase = nn.Parameter(torch.FloatTensor(ly_weight['''mlp''']['''wi_1''']['''kernel'''].T ) ) _UpperCamelCase = nn.Parameter(torch.FloatTensor(ly_weight['''mlp''']['''wo''']['''kernel'''].T ) ) _UpperCamelCase = nn.Parameter(torch.FloatTensor(weights['''encoder_norm''']['''scale'''] ) ) return model def lowercase ( a__ : List[Any] , a__ : Dict ) -> Optional[Any]: _UpperCamelCase = nn.Parameter(torch.FloatTensor(weights['''input_proj''']['''kernel'''].T ) ) _UpperCamelCase = nn.Parameter( torch.FloatTensor(weights['''Embed_0''']['''embedding'''] ) , requires_grad=a__ ) for lyr_num, lyr in enumerate(model.encoders ): _UpperCamelCase = weights[F'''layers_{lyr_num}'''] _UpperCamelCase = ly_weight['''attention'''] _UpperCamelCase = nn.Parameter(torch.FloatTensor(attention_weights['''query''']['''kernel'''].T ) ) _UpperCamelCase = nn.Parameter(torch.FloatTensor(attention_weights['''key''']['''kernel'''].T ) ) _UpperCamelCase = nn.Parameter(torch.FloatTensor(attention_weights['''value''']['''kernel'''].T ) ) _UpperCamelCase = nn.Parameter(torch.FloatTensor(attention_weights['''out''']['''kernel'''].T ) ) _UpperCamelCase = nn.Parameter( torch.FloatTensor(ly_weight['''pre_attention_layer_norm''']['''scale'''] ) ) _UpperCamelCase = nn.Parameter(torch.FloatTensor(ly_weight['''mlp''']['''wi_0''']['''kernel'''].T ) ) _UpperCamelCase = nn.Parameter(torch.FloatTensor(ly_weight['''mlp''']['''wi_1''']['''kernel'''].T ) ) _UpperCamelCase = nn.Parameter(torch.FloatTensor(ly_weight['''mlp''']['''wo''']['''kernel'''].T ) ) _UpperCamelCase = nn.Parameter(torch.FloatTensor(ly_weight['''pre_mlp_layer_norm''']['''scale'''] ) ) _UpperCamelCase = nn.Parameter(torch.FloatTensor(weights['''encoder_norm''']['''scale'''] ) ) return model def lowercase ( a__ : List[Any] , a__ : Union[str, Any] ) -> str: _UpperCamelCase = nn.Parameter(torch.FloatTensor(weights['''time_emb_dense0''']['''kernel'''].T ) ) _UpperCamelCase = nn.Parameter(torch.FloatTensor(weights['''time_emb_dense1''']['''kernel'''].T ) ) _UpperCamelCase = nn.Parameter( torch.FloatTensor(weights['''Embed_0''']['''embedding'''] ) , requires_grad=a__ ) _UpperCamelCase = nn.Parameter( torch.FloatTensor(weights['''continuous_inputs_projection''']['''kernel'''].T ) ) for lyr_num, lyr in enumerate(model.decoders ): _UpperCamelCase = weights[F'''layers_{lyr_num}'''] _UpperCamelCase = nn.Parameter( torch.FloatTensor(ly_weight['''pre_self_attention_layer_norm''']['''scale'''] ) ) _UpperCamelCase = nn.Parameter( torch.FloatTensor(ly_weight['''FiLMLayer_0''']['''DenseGeneral_0''']['''kernel'''].T ) ) _UpperCamelCase = ly_weight['''self_attention'''] _UpperCamelCase = nn.Parameter(torch.FloatTensor(attention_weights['''query''']['''kernel'''].T ) ) _UpperCamelCase = nn.Parameter(torch.FloatTensor(attention_weights['''key''']['''kernel'''].T ) ) _UpperCamelCase = nn.Parameter(torch.FloatTensor(attention_weights['''value''']['''kernel'''].T ) ) _UpperCamelCase = nn.Parameter(torch.FloatTensor(attention_weights['''out''']['''kernel'''].T ) ) _UpperCamelCase = ly_weight['''MultiHeadDotProductAttention_0'''] _UpperCamelCase = nn.Parameter(torch.FloatTensor(attention_weights['''query''']['''kernel'''].T ) ) _UpperCamelCase = nn.Parameter(torch.FloatTensor(attention_weights['''key''']['''kernel'''].T ) ) _UpperCamelCase = nn.Parameter(torch.FloatTensor(attention_weights['''value''']['''kernel'''].T ) ) _UpperCamelCase = nn.Parameter(torch.FloatTensor(attention_weights['''out''']['''kernel'''].T ) ) _UpperCamelCase = nn.Parameter( torch.FloatTensor(ly_weight['''pre_cross_attention_layer_norm''']['''scale'''] ) ) _UpperCamelCase = nn.Parameter(torch.FloatTensor(ly_weight['''pre_mlp_layer_norm''']['''scale'''] ) ) _UpperCamelCase = nn.Parameter( torch.FloatTensor(ly_weight['''FiLMLayer_1''']['''DenseGeneral_0''']['''kernel'''].T ) ) _UpperCamelCase = nn.Parameter(torch.FloatTensor(ly_weight['''mlp''']['''wi_0''']['''kernel'''].T ) ) _UpperCamelCase = nn.Parameter(torch.FloatTensor(ly_weight['''mlp''']['''wi_1''']['''kernel'''].T ) ) _UpperCamelCase = nn.Parameter(torch.FloatTensor(ly_weight['''mlp''']['''wo''']['''kernel'''].T ) ) _UpperCamelCase = nn.Parameter(torch.FloatTensor(weights['''decoder_norm''']['''scale'''] ) ) _UpperCamelCase = nn.Parameter(torch.FloatTensor(weights['''spec_out_dense''']['''kernel'''].T ) ) return model def lowercase ( a__ : Union[str, Any] ) -> int: _UpperCamelCase = checkpoints.load_tax_checkpoint(args.checkpoint_path ) _UpperCamelCase = jnp.tree_util.tree_map(onp.array , a__ ) _UpperCamelCase = [ '''from __gin__ import dynamic_registration''', '''from music_spectrogram_diffusion.models.diffusion import diffusion_utils''', '''diffusion_utils.ClassifierFreeGuidanceConfig.eval_condition_weight = 2.0''', '''diffusion_utils.DiffusionConfig.classifier_free_guidance = @diffusion_utils.ClassifierFreeGuidanceConfig()''', ] _UpperCamelCase = os.path.join(args.checkpoint_path , '''..''' , '''config.gin''' ) _UpperCamelCase = inference.parse_training_gin_file(a__ , a__ ) _UpperCamelCase = inference.InferenceModel(args.checkpoint_path , a__ ) _UpperCamelCase = DDPMScheduler(beta_schedule='''squaredcos_cap_v2''' , variance_type='''fixed_large''' ) _UpperCamelCase = SpectrogramNotesEncoder( max_length=synth_model.sequence_length['''inputs'''] , vocab_size=synth_model.model.module.config.vocab_size , d_model=synth_model.model.module.config.emb_dim , dropout_rate=synth_model.model.module.config.dropout_rate , num_layers=synth_model.model.module.config.num_encoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , feed_forward_proj='''gated-gelu''' , ) _UpperCamelCase = SpectrogramContEncoder( input_dims=synth_model.audio_codec.n_dims , targets_context_length=synth_model.sequence_length['''targets_context'''] , d_model=synth_model.model.module.config.emb_dim , dropout_rate=synth_model.model.module.config.dropout_rate , num_layers=synth_model.model.module.config.num_encoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , feed_forward_proj='''gated-gelu''' , ) _UpperCamelCase = TaFilmDecoder( input_dims=synth_model.audio_codec.n_dims , targets_length=synth_model.sequence_length['''targets_context'''] , max_decoder_noise_time=synth_model.model.module.config.max_decoder_noise_time , d_model=synth_model.model.module.config.emb_dim , num_layers=synth_model.model.module.config.num_decoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , dropout_rate=synth_model.model.module.config.dropout_rate , ) _UpperCamelCase = load_notes_encoder(ta_checkpoint['''target''']['''token_encoder'''] , a__ ) _UpperCamelCase = load_continuous_encoder(ta_checkpoint['''target''']['''continuous_encoder'''] , a__ ) _UpperCamelCase = load_decoder(ta_checkpoint['''target''']['''decoder'''] , a__ ) _UpperCamelCase = OnnxRuntimeModel.from_pretrained('''kashif/soundstream_mel_decoder''' ) _UpperCamelCase = SpectrogramDiffusionPipeline( notes_encoder=a__ , continuous_encoder=a__ , decoder=a__ , scheduler=a__ , melgan=a__ , ) if args.save: pipe.save_pretrained(args.output_path ) if __name__ == "__main__": UpperCAmelCase = argparse.ArgumentParser() parser.add_argument("""--output_path""", default=None, type=str, required=True, help="""Path to the converted model.""") parser.add_argument( """--save""", default=True, type=bool, required=False, help="""Whether to save the converted model or not.""" ) parser.add_argument( """--checkpoint_path""", default=F'''{MODEL}/checkpoint_500000''', type=str, required=False, help="""Path to the original jax model checkpoint.""", ) UpperCAmelCase = parser.parse_args() main(args)
256
0
from __future__ import annotations from typing import TypedDict class a_ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE : str __SCREAMING_SNAKE_CASE : int def UpperCAmelCase_( a__ ): """simple docstring""" if not isinstance(a__ , a__ ): raise TypeError('''The parameter s type must be str.''' ) return [s[i:] + s[:i] for i in range(len(a__ ) )] def UpperCAmelCase_( a__ ): """simple docstring""" if not isinstance(a__ , a__ ): raise TypeError('''The parameter s type must be str.''' ) if not s: raise ValueError('''The parameter s must not be empty.''' ) SCREAMING_SNAKE_CASE : List[Any] = all_rotations(a__ ) rotations.sort() # sort the list of rotations in alphabetically order # make a string composed of the last char of each rotation SCREAMING_SNAKE_CASE : BWTTransformDict = { "bwt_string": "".join([word[-1] for word in rotations] ), "idx_original_string": rotations.index(a__ ), } return response def UpperCAmelCase_( a__ , a__ ): """simple docstring""" if not isinstance(a__ , a__ ): raise TypeError('''The parameter bwt_string type must be str.''' ) if not bwt_string: raise ValueError('''The parameter bwt_string must not be empty.''' ) try: SCREAMING_SNAKE_CASE : List[Any] = int(a__ ) except ValueError: raise TypeError( '''The parameter idx_original_string type must be int or passive''' ''' of cast to int.''' ) if idx_original_string < 0: raise ValueError('''The parameter idx_original_string must not be lower than 0.''' ) if idx_original_string >= len(a__ ): raise ValueError( '''The parameter idx_original_string must be lower than''' ''' len(bwt_string).''' ) SCREAMING_SNAKE_CASE : Optional[int] = [''''''] * len(a__ ) for _ in range(len(a__ ) ): for i in range(len(a__ ) ): SCREAMING_SNAKE_CASE : Any = bwt_string[i] + ordered_rotations[i] ordered_rotations.sort() return ordered_rotations[idx_original_string] if __name__ == "__main__": a__ : Optional[int] = '''Provide a string that I will generate its BWT transform: ''' a__ : Dict = input(entry_msg).strip() a__ : Optional[Any] = bwt_transform(s) print( F"Burrows Wheeler transform for string '{s}' results " F"in '{result['bwt_string']}'" ) a__ : Union[str, Any] = reverse_bwt(result['''bwt_string'''], result['''idx_original_string''']) print( F"Reversing Burrows Wheeler transform for entry '{result['bwt_string']}' " F"we get original string '{original_string}'" )
19
import json import os from typing import Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging a__ : str = logging.get_logger(__name__) a__ : Optional[Any] = {'''vocab_file''': '''vocab.json'''} a__ : str = { '''vocab_file''': { '''mgp-str''': '''https://huggingface.co/alibaba-damo/mgp-str-base/blob/main/vocab.json''', } } a__ : Tuple = {'''mgp-str''': 27} class a_ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[int] = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE : Dict = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self , _lowerCamelCase , _lowerCamelCase="[GO]" , _lowerCamelCase="[GO]" , _lowerCamelCase="[s]" , _lowerCamelCase="[GO]" , **_lowerCamelCase ) ->Dict: super().__init__( unk_token=_lowerCamelCase , bos_token=_lowerCamelCase , eos_token=_lowerCamelCase , pad_token=_lowerCamelCase , **_lowerCamelCase , ) with open(_lowerCamelCase , encoding='''utf-8''' ) as vocab_handle: SCREAMING_SNAKE_CASE : List[Any] = json.load(_lowerCamelCase ) SCREAMING_SNAKE_CASE : int = {v: k for k, v in self.vocab.items()} @property def __lowerCAmelCase ( self ) ->List[Any]: return len(self.vocab ) def __lowerCAmelCase ( self ) ->Union[str, Any]: return dict(self.vocab , **self.added_tokens_encoder ) def __lowerCAmelCase ( self , _lowerCamelCase ) ->int: SCREAMING_SNAKE_CASE : Union[str, Any] = [] for s in text: char_tokens.extend(_lowerCamelCase ) return char_tokens def __lowerCAmelCase ( self , _lowerCamelCase ) ->Dict: return self.vocab.get(_lowerCamelCase , self.vocab.get(self.unk_token ) ) def __lowerCAmelCase ( self , _lowerCamelCase ) ->int: return self.decoder.get(_lowerCamelCase ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None ) ->Tuple[str]: if not os.path.isdir(_lowerCamelCase ): logger.error('''Vocabulary path ({}) should be a directory'''.format(_lowerCamelCase ) ) return SCREAMING_SNAKE_CASE : str = os.path.join( _lowerCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) with open(_lowerCamelCase , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.vocab , indent=2 , sort_keys=_lowerCamelCase , ensure_ascii=_lowerCamelCase ) + '''\n''' ) return (vocab_file,)
19
1
def _A ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : int ): UpperCamelCase :list[list[str]] = [[] for _ in range(SCREAMING_SNAKE_CASE__ )] UpperCamelCase :int = key - 1 if key <= 0: raise ValueError('''Height of grid can\'t be 0 or negative''' ) if key == 1 or len(SCREAMING_SNAKE_CASE__ ) <= key: return input_string for position, character in enumerate(SCREAMING_SNAKE_CASE__ ): UpperCamelCase :Tuple = position % (lowest * 2) # puts it in bounds UpperCamelCase :Any = min(SCREAMING_SNAKE_CASE__ , lowest * 2 - num ) # creates zigzag pattern temp_grid[num].append(SCREAMING_SNAKE_CASE__ ) UpperCamelCase :Union[str, Any] = [''''''.join(SCREAMING_SNAKE_CASE__ ) for row in temp_grid] UpperCamelCase :Optional[Any] = ''''''.join(SCREAMING_SNAKE_CASE__ ) return output_string def _A ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : int ): UpperCamelCase :Any = [] UpperCamelCase :Union[str, Any] = key - 1 if key <= 0: raise ValueError('''Height of grid can\'t be 0 or negative''' ) if key == 1: return input_string UpperCamelCase :list[list[str]] = [[] for _ in range(SCREAMING_SNAKE_CASE__ )] # generates template for position in range(len(SCREAMING_SNAKE_CASE__ ) ): UpperCamelCase :Optional[int] = position % (lowest * 2) # puts it in bounds UpperCamelCase :Tuple = min(SCREAMING_SNAKE_CASE__ , lowest * 2 - num ) # creates zigzag pattern temp_grid[num].append('''*''' ) UpperCamelCase :List[Any] = 0 for row in temp_grid: # fills in the characters UpperCamelCase :Dict = input_string[counter : counter + len(SCREAMING_SNAKE_CASE__ )] grid.append(list(SCREAMING_SNAKE_CASE__ ) ) counter += len(SCREAMING_SNAKE_CASE__ ) UpperCamelCase :Optional[int] = '''''' # reads as zigzag for position in range(len(SCREAMING_SNAKE_CASE__ ) ): UpperCamelCase :Union[str, Any] = position % (lowest * 2) # puts it in bounds UpperCamelCase :Union[str, Any] = min(SCREAMING_SNAKE_CASE__ , lowest * 2 - num ) # creates zigzag pattern output_string += grid[num][0] grid[num].pop(0 ) return output_string def _A ( SCREAMING_SNAKE_CASE__ : str ): UpperCamelCase :Dict = {} for key_guess in range(1 , len(SCREAMING_SNAKE_CASE__ ) ): # tries every key UpperCamelCase :int = decrypt(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return results if __name__ == "__main__": import doctest doctest.testmod()
259
def _A ( SCREAMING_SNAKE_CASE__ : list[int] , SCREAMING_SNAKE_CASE__ : list[int] ): UpperCamelCase :Tuple = len(SCREAMING_SNAKE_CASE__ ) print('''The following activities are selected:''' ) # The first activity is always selected UpperCamelCase :Dict = 0 print(SCREAMING_SNAKE_CASE__ , end=''',''' ) # Consider rest of the activities for j in range(SCREAMING_SNAKE_CASE__ ): # If this activity has start time greater than # or equal to the finish time of previously # selected activity, then select it if start[j] >= finish[i]: print(SCREAMING_SNAKE_CASE__ , end=''',''' ) UpperCamelCase :List[str] = j if __name__ == "__main__": import doctest doctest.testmod() __snake_case = [1, 3, 0, 5, 8, 5] __snake_case = [2, 4, 6, 7, 9, 9] print_max_activities(start, finish)
259
1
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.whisper import WhisperForConditionalGeneration, WhisperProcessor from .base import PipelineTool class lowerCAmelCase ( __UpperCamelCase ): UpperCAmelCase__ = """openai/whisper-base""" UpperCAmelCase__ = ( """This is a tool that transcribes an audio into text. It takes an input named `audio` and returns the """ """transcribed text.""" ) UpperCAmelCase__ = """transcriber""" UpperCAmelCase__ = WhisperProcessor UpperCAmelCase__ = WhisperForConditionalGeneration UpperCAmelCase__ = ["""audio"""] UpperCAmelCase__ = ["""text"""] def A_ ( self : Tuple , UpperCAmelCase : Optional[int] ) -> Tuple: return self.pre_processor(UpperCAmelCase , return_tensors='pt' ).input_features def A_ ( self : List[Any] , UpperCAmelCase : Union[str, Any] ) -> Tuple: return self.model.generate(inputs=UpperCAmelCase ) def A_ ( self : Optional[Any] , UpperCAmelCase : Optional[int] ) -> Optional[int]: return self.pre_processor.batch_decode(UpperCAmelCase , skip_special_tokens=UpperCAmelCase )[0]
369
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available, ) _UpperCAmelCase : Tuple = { """configuration_perceiver""": ["""PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """PerceiverConfig""", """PerceiverOnnxConfig"""], """tokenization_perceiver""": ["""PerceiverTokenizer"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : Optional[Any] = ["""PerceiverFeatureExtractor"""] _UpperCAmelCase : Dict = ["""PerceiverImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : List[str] = [ """PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST""", """PerceiverForImageClassificationConvProcessing""", """PerceiverForImageClassificationFourier""", """PerceiverForImageClassificationLearned""", """PerceiverForMaskedLM""", """PerceiverForMultimodalAutoencoding""", """PerceiverForOpticalFlow""", """PerceiverForSequenceClassification""", """PerceiverLayer""", """PerceiverModel""", """PerceiverPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_perceiver import PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP, PerceiverConfig, PerceiverOnnxConfig from .tokenization_perceiver import PerceiverTokenizer try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_perceiver import PerceiverFeatureExtractor from .image_processing_perceiver import PerceiverImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_perceiver import ( PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST, PerceiverForImageClassificationConvProcessing, PerceiverForImageClassificationFourier, PerceiverForImageClassificationLearned, PerceiverForMaskedLM, PerceiverForMultimodalAutoencoding, PerceiverForOpticalFlow, PerceiverForSequenceClassification, PerceiverLayer, PerceiverModel, PerceiverPreTrainedModel, ) else: import sys _UpperCAmelCase : Any = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
45
0
import ast import os import re import shutil import tempfile import unittest from unittest import mock import torch from accelerate.test_utils.examples import compare_against_test from accelerate.test_utils.testing import TempDirTestCase, require_trackers, run_command, slow from accelerate.utils import write_basic_config # DataLoaders built from `test_samples/MRPC` for quick testing # Should mock `{script_name}.get_dataloaders` via: # @mock.patch("{script_name}.get_dataloaders", mocked_dataloaders) _A = [ 'cross_validation.py', 'gradient_accumulation.py', 'local_sgd.py', 'multi_process_metrics.py', 'memory.py', 'automatic_gradient_accumulation.py', 'fsdp_with_peak_mem_tracking.py', 'deepspeed_with_config_support.py', 'megatron_lm_gpt_pretraining.py', ] class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" def _a ( self , A_ , A_ , A_ = None , A_ = None ) -> Optional[Any]: __UpperCamelCase =None __UpperCamelCase =os.path.abspath(os.path.join('examples' , 'by_feature' ) ) __UpperCamelCase =os.path.abspath('examples' ) for item in os.listdir(A_ ): if item not in EXCLUDE_EXAMPLES: __UpperCamelCase =os.path.join(A_ , A_ ) if os.path.isfile(A_ ) and ".py" in item_path: with self.subTest( tested_script=A_ , feature_script=A_ , tested_section='main()' if parser_only else 'training_function()' , ): __UpperCamelCase =compare_against_test( os.path.join(A_ , A_ ) , A_ , A_ , A_ ) __UpperCamelCase ='\n'.join(A_ ) if special_strings is not None: for string in special_strings: __UpperCamelCase =diff.replace(A_ , '' ) self.assertEqual(A_ , '' ) def _a ( self ) -> Dict: self.one_complete_example('complete_nlp_example.py' , A_ ) self.one_complete_example('complete_nlp_example.py' , A_ ) def _a ( self ) -> Dict: __UpperCamelCase =os.path.abspath(os.path.join('examples' , 'cv_example.py' ) ) __UpperCamelCase =[ ' ' * 16 + '{\n\n', ' ' * 20 + '"accuracy": eval_metric["accuracy"],\n\n', ' ' * 20 + '"f1": eval_metric["f1"],\n\n', ' ' * 20 + '"train_loss": total_loss.item() / len(train_dataloader),\n\n', ' ' * 20 + '"epoch": epoch,\n\n', ' ' * 16 + '},\n\n', ' ' * 16 + 'step=epoch,\n', ' ' * 12, ' ' * 8 + 'for step, batch in enumerate(active_dataloader):\n', ] self.one_complete_example('complete_cv_example.py' , A_ , A_ , A_ ) self.one_complete_example('complete_cv_example.py' , A_ , A_ , A_ ) @mock.patch.dict(os.environ , {"TESTING_MOCKED_DATALOADERS": "1"} ) class UpperCAmelCase__ ( A_ ): """simple docstring""" UpperCAmelCase__ : Tuple = False @classmethod def _a ( cls ) -> Union[str, Any]: super().setUpClass() __UpperCamelCase =tempfile.mkdtemp() __UpperCamelCase =os.path.join(cls._tmpdir , 'default_config.yml' ) write_basic_config(save_location=cls.configPath ) __UpperCamelCase =['accelerate', 'launch', '--config_file', cls.configPath] @classmethod def _a ( cls ) -> Union[str, Any]: super().tearDownClass() shutil.rmtree(cls._tmpdir ) def _a ( self ) -> List[Any]: __UpperCamelCase =f'\n examples/by_feature/checkpointing.py\n --checkpointing_steps epoch\n --output_dir {self.tmpdir}\n '.split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , 'epoch_0' ) ) ) def _a ( self ) -> Union[str, Any]: __UpperCamelCase =f'\n examples/by_feature/checkpointing.py\n --checkpointing_steps 1\n --output_dir {self.tmpdir}\n '.split() __UpperCamelCase =run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , 'step_2' ) ) ) def _a ( self ) -> Tuple: __UpperCamelCase =f'\n examples/by_feature/checkpointing.py\n --resume_from_checkpoint {os.path.join(self.tmpdir , "epoch_0" )}\n '.split() __UpperCamelCase =run_command(self._launch_args + testargs , return_stdout=A_ ) self.assertNotIn('epoch 0:' , A_ ) self.assertIn('epoch 1:' , A_ ) def _a ( self ) -> int: __UpperCamelCase =f'\n examples/by_feature/checkpointing.py\n --resume_from_checkpoint {os.path.join(self.tmpdir , "step_2" )}\n '.split() __UpperCamelCase =run_command(self._launch_args + testargs , return_stdout=A_ ) if torch.cuda.is_available(): __UpperCamelCase =torch.cuda.device_count() else: __UpperCamelCase =1 if num_processes > 1: self.assertNotIn('epoch 0:' , A_ ) self.assertIn('epoch 1:' , A_ ) else: self.assertIn('epoch 0:' , A_ ) self.assertIn('epoch 1:' , A_ ) @slow def _a ( self ) -> Optional[Any]: __UpperCamelCase ='\n examples/by_feature/cross_validation.py\n --num_folds 2\n '.split() with mock.patch.dict(os.environ , {'TESTING_MOCKED_DATALOADERS': '0'} ): __UpperCamelCase =run_command(self._launch_args + testargs , return_stdout=A_ ) __UpperCamelCase =re.findall('({.+})' , A_ ) __UpperCamelCase =[r for r in results if 'accuracy' in r][-1] __UpperCamelCase =ast.literal_eval(A_ ) self.assertGreaterEqual(results['accuracy'] , 0.75 ) def _a ( self ) -> str: __UpperCamelCase =['examples/by_feature/multi_process_metrics.py'] run_command(self._launch_args + testargs ) @require_trackers @mock.patch.dict(os.environ , {'WANDB_MODE': 'offline'} ) def _a ( self ) -> List[str]: with tempfile.TemporaryDirectory() as tmpdir: __UpperCamelCase =f'\n examples/by_feature/tracking.py\n --with_tracking\n --project_dir {tmpdir}\n '.split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(A_ , 'tracking' ) ) ) def _a ( self ) -> Optional[int]: __UpperCamelCase =['examples/by_feature/gradient_accumulation.py'] run_command(self._launch_args + testargs ) def _a ( self ) -> List[Any]: __UpperCamelCase =['examples/by_feature/local_sgd.py'] run_command(self._launch_args + testargs )
62
import argparse from collections import OrderedDict from pathlib import Path import torch from transformers import ( VisualBertConfig, VisualBertForMultipleChoice, VisualBertForPreTraining, VisualBertForQuestionAnswering, VisualBertForVisualReasoning, ) from transformers.utils import logging logging.set_verbosity_info() _lowerCamelCase =logging.get_logger(__name__) _lowerCamelCase =[ ("bert.bert", "visual_bert"), ("bert.cls", "cls"), ("bert.classifier", "cls"), ("token_type_embeddings_visual", "visual_token_type_embeddings"), ("position_embeddings_visual", "visual_position_embeddings"), ("projection", "visual_projection"), ] _lowerCamelCase =[ "nlvr2_coco_pre_trained.th", "nlvr2_fine_tuned.th", "nlvr2_pre_trained.th", "vcr_coco_pre_train.th", "vcr_fine_tune.th", "vcr_pre_train.th", "vqa_coco_pre_trained.th", "vqa_fine_tuned.th", "vqa_pre_trained.th", ] def snake_case__ ( lowerCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE =torch.load(lowerCAmelCase_, map_location='cpu' ) return sd def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_=rename_keys_prefix ): """simple docstring""" SCREAMING_SNAKE_CASE =OrderedDict() SCREAMING_SNAKE_CASE =torch.arange(config.max_position_embeddings ).expand((1, -1) ) # detector_d = OrderedDict() for key in d: if "detector" in key: # detector_d[key.replace('detector.','')] = d[key] continue SCREAMING_SNAKE_CASE =key for name_pair in rename_keys_prefix: SCREAMING_SNAKE_CASE =new_key.replace(name_pair[0], name_pair[1] ) SCREAMING_SNAKE_CASE =d[key] if key == "bert.cls.predictions.decoder.weight": # Old bert code didn't have `decoder.bias`, but was added separately SCREAMING_SNAKE_CASE =new_d['cls.predictions.bias'] return new_d @torch.no_grad() def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" assert ( checkpoint_path.split('/' )[-1] in ACCEPTABLE_CHECKPOINTS ), F'The checkpoint provided must be in {ACCEPTABLE_CHECKPOINTS}.' # Get Config if "pre" in checkpoint_path: SCREAMING_SNAKE_CASE ='pretraining' if "vcr" in checkpoint_path: SCREAMING_SNAKE_CASE ={'visual_embedding_dim': 512} elif "vqa_advanced" in checkpoint_path: SCREAMING_SNAKE_CASE ={'visual_embedding_dim': 2048} elif "vqa" in checkpoint_path: SCREAMING_SNAKE_CASE ={'visual_embedding_dim': 2048} elif "nlvr" in checkpoint_path: SCREAMING_SNAKE_CASE ={'visual_embedding_dim': 1024} else: raise NotImplementedError(F'No implementation found for `{checkpoint_path}`.' ) else: if "vcr" in checkpoint_path: SCREAMING_SNAKE_CASE ={'visual_embedding_dim': 512} SCREAMING_SNAKE_CASE ='multichoice' elif "vqa_advanced" in checkpoint_path: SCREAMING_SNAKE_CASE ={'visual_embedding_dim': 2048} SCREAMING_SNAKE_CASE ='vqa_advanced' elif "vqa" in checkpoint_path: SCREAMING_SNAKE_CASE ={'visual_embedding_dim': 2048, 'num_labels': 3129} SCREAMING_SNAKE_CASE ='vqa' elif "nlvr" in checkpoint_path: SCREAMING_SNAKE_CASE ={ 'visual_embedding_dim': 1024, 'num_labels': 2, } SCREAMING_SNAKE_CASE ='nlvr' SCREAMING_SNAKE_CASE =VisualBertConfig(**lowerCAmelCase_ ) # Load State Dict SCREAMING_SNAKE_CASE =load_state_dict(lowerCAmelCase_ ) SCREAMING_SNAKE_CASE =get_new_dict(lowerCAmelCase_, lowerCAmelCase_ ) if model_type == "pretraining": SCREAMING_SNAKE_CASE =VisualBertForPreTraining(lowerCAmelCase_ ) elif model_type == "vqa": SCREAMING_SNAKE_CASE =VisualBertForQuestionAnswering(lowerCAmelCase_ ) elif model_type == "nlvr": SCREAMING_SNAKE_CASE =VisualBertForVisualReasoning(lowerCAmelCase_ ) elif model_type == "multichoice": SCREAMING_SNAKE_CASE =VisualBertForMultipleChoice(lowerCAmelCase_ ) model.load_state_dict(lowerCAmelCase_ ) # Save Checkpoints Path(lowerCAmelCase_ ).mkdir(exist_ok=lowerCAmelCase_ ) model.save_pretrained(lowerCAmelCase_ ) if __name__ == "__main__": _lowerCamelCase =argparse.ArgumentParser() # Required parameters parser.add_argument("orig_checkpoint_path", type=str, help="A path to .th on local filesystem.") parser.add_argument("pytorch_dump_folder_path", type=str, help="Path to the output PyTorch model.") _lowerCamelCase =parser.parse_args() convert_visual_bert_checkpoint(args.orig_checkpoint_path, args.pytorch_dump_folder_path)
334
0
'''simple docstring''' from __future__ import annotations import math def _A ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): """simple docstring""" if depth < 0: raise ValueError('Depth cannot be less than 0' ) if not scores: raise ValueError('Scores cannot be empty' ) if depth == height: return scores[node_index] return ( max( minimax(depth + 1 , node_index * 2 , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) , minimax(depth + 1 , node_index * 2 + 1 , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) , ) if is_max else min( minimax(depth + 1 , node_index * 2 , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) , minimax(depth + 1 , node_index * 2 + 1 , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) , ) ) def _A ( ): """simple docstring""" __lowercase =[90, 23, 6, 33, 21, 65, 123, 34_423] __lowercase =math.log(len(_lowerCAmelCase ) , 2 ) print(f"""Optimal value : {minimax(0 , 0 , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )}""" ) if __name__ == "__main__": import doctest doctest.testmod() main()
366
'''simple docstring''' from __future__ import annotations import requests def _A ( _lowerCAmelCase ): """simple docstring""" __lowercase =f"""https://hacker-news.firebaseio.com/v0/item/{story_id}.json?print=pretty""" return requests.get(_lowerCAmelCase ).json() def _A ( _lowerCAmelCase = 10 ): """simple docstring""" __lowercase ='https://hacker-news.firebaseio.com/v0/topstories.json?print=pretty' __lowercase =requests.get(_lowerCAmelCase ).json()[:max_stories] return [get_hackernews_story(_lowerCAmelCase ) for story_id in story_ids] def _A ( _lowerCAmelCase = 10 ): """simple docstring""" __lowercase =hackernews_top_stories(_lowerCAmelCase ) return "\n".join('* [{title}]({url})'.format(**_lowerCAmelCase ) for story in stories ) if __name__ == "__main__": print(hackernews_top_stories_as_markdown())
48
0
"""simple docstring""" from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCAmelCase : Dict = { 'configuration_informer': [ 'INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'InformerConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : str = [ 'INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'InformerForPrediction', 'InformerModel', 'InformerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_informer import INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, InformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_informer import ( INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, InformerForPrediction, InformerModel, InformerPreTrainedModel, ) else: import sys UpperCAmelCase : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
115
"""simple docstring""" from ..utils import DummyObject, requires_backends class lowerCamelCase__ ( metaclass=A ): """simple docstring""" __a = ["""note_seq"""] def __init__( self : List[Any] , *UpperCamelCase : List[Any] , **UpperCamelCase : Tuple ): '''simple docstring''' requires_backends(self , ["""note_seq"""] ) @classmethod def lowerCamelCase__ ( cls : Union[str, Any] , *UpperCamelCase : Union[str, Any] , **UpperCamelCase : str ): '''simple docstring''' requires_backends(cls , ["""note_seq"""] ) @classmethod def lowerCamelCase__ ( cls : List[str] , *UpperCamelCase : Optional[Any] , **UpperCamelCase : Union[str, Any] ): '''simple docstring''' requires_backends(cls , ["""note_seq"""] )
115
1
from __future__ import annotations import inspect import unittest import numpy as np from transformers import DeiTConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, ) from transformers.models.deit.modeling_tf_deit import TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DeiTImageProcessor class a__ : def __init__( self , _A , _A=1_3 , _A=3_0 , _A=2 , _A=3 , _A=True , _A=True , _A=3_2 , _A=2 , _A=4 , _A=3_7 , _A="gelu" , _A=0.1 , _A=0.1 , _A=1_0 , _A=0.02 , _A=3 , _A=None , _A=2 , ): """simple docstring""" __lowerCAmelCase = parent __lowerCAmelCase = batch_size __lowerCAmelCase = image_size __lowerCAmelCase = patch_size __lowerCAmelCase = num_channels __lowerCAmelCase = is_training __lowerCAmelCase = use_labels __lowerCAmelCase = hidden_size __lowerCAmelCase = num_hidden_layers __lowerCAmelCase = num_attention_heads __lowerCAmelCase = intermediate_size __lowerCAmelCase = hidden_act __lowerCAmelCase = hidden_dropout_prob __lowerCAmelCase = attention_probs_dropout_prob __lowerCAmelCase = type_sequence_label_size __lowerCAmelCase = initializer_range __lowerCAmelCase = scope __lowerCAmelCase = encoder_stride # in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens) __lowerCAmelCase = (image_size // patch_size) ** 2 __lowerCAmelCase = num_patches + 2 def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowerCAmelCase = None if self.use_labels: __lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowerCAmelCase = self.get_config() return config, pixel_values, labels def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" return DeiTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_A , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def __SCREAMING_SNAKE_CASE( self , _A , _A , _A ): """simple docstring""" __lowerCAmelCase = TFDeiTModel(config=_A ) __lowerCAmelCase = model(_A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __SCREAMING_SNAKE_CASE( self , _A , _A , _A ): """simple docstring""" __lowerCAmelCase = TFDeiTForMaskedImageModeling(config=_A ) __lowerCAmelCase = model(_A ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images __lowerCAmelCase = 1 __lowerCAmelCase = TFDeiTForMaskedImageModeling(_A ) __lowerCAmelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __lowerCAmelCase = model(_A ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def __SCREAMING_SNAKE_CASE( self , _A , _A , _A ): """simple docstring""" __lowerCAmelCase = self.type_sequence_label_size __lowerCAmelCase = TFDeiTForImageClassification(_A ) __lowerCAmelCase = model(_A , labels=_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images __lowerCAmelCase = 1 __lowerCAmelCase = TFDeiTForImageClassification(_A ) __lowerCAmelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __lowerCAmelCase = model(_A , labels=_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = self.prepare_config_and_inputs() __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = config_and_inputs __lowerCAmelCase = {"pixel_values": pixel_values} return config, inputs_dict @require_tf class a__ ( snake_case__ , snake_case__ , unittest.TestCase ): _a : Optional[Any] = ( ( TFDeiTModel, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, ) if is_tf_available() else () ) _a : Optional[Any] = ( { """feature-extraction""": TFDeiTModel, """image-classification""": (TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher), } if is_tf_available() else {} ) _a : str = False _a : str = False _a : List[str] = False _a : Optional[int] = False def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = TFDeiTModelTester(self ) __lowerCAmelCase = ConfigTester(self , config_class=_A , has_text_modality=_A , hidden_size=3_7 ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="DeiT does not use inputs_embeds" ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" pass def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase = model_class(_A ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) __lowerCAmelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_A , tf.keras.layers.Dense ) ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase = model_class(_A ) __lowerCAmelCase = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCAmelCase = [*signature.parameters.keys()] __lowerCAmelCase = ["pixel_values"] self.assertListEqual(arg_names[:1] , _A ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*_A ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_A ) def __SCREAMING_SNAKE_CASE( self , _A , _A , _A=False ): """simple docstring""" __lowerCAmelCase = super()._prepare_for_class(_A , _A , return_labels=_A ) if return_labels: if "labels" in inputs_dict and "labels" not in inspect.signature(model_class.call ).parameters: del inputs_dict["labels"] return inputs_dict @slow def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" for model_name in TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCAmelCase = TFDeiTModel.from_pretrained(_A ) self.assertIsNotNone(_A ) def _a ( ): __lowerCAmelCase = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_tf @require_vision class a__ ( unittest.TestCase ): @cached_property def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" return ( DeiTImageProcessor.from_pretrained("facebook/deit-base-distilled-patch16-224" ) if is_vision_available() else None ) @slow def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = TFDeiTForImageClassificationWithTeacher.from_pretrained("facebook/deit-base-distilled-patch16-224" ) __lowerCAmelCase = self.default_image_processor __lowerCAmelCase = prepare_img() __lowerCAmelCase = image_processor(images=_A , return_tensors="tf" ) # forward pass __lowerCAmelCase = model(**_A ) # verify the logits __lowerCAmelCase = tf.TensorShape((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , _A ) __lowerCAmelCase = tf.constant([-1.02_66, 0.19_12, -1.28_61] ) self.assertTrue(np.allclose(outputs.logits[0, :3] , _A , atol=1E-4 ) )
102
import enum import shutil import sys UpperCamelCase__ , UpperCamelCase__ = shutil.get_terminal_size() UpperCamelCase__ = {"""UP""": """A""", """DOWN""": """B""", """RIGHT""": """C""", """LEFT""": """D"""} class a__ ( enum.Enum ): _a : Any = 0 _a : Dict = 1 def _a ( SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : Dict="" ): sys.stdout.write(str(SCREAMING_SNAKE_CASE_ ) + end ) sys.stdout.flush() def _a ( SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : str="" ): forceWrite(F"""\u001b[{color}m{content}\u001b[0m""" , SCREAMING_SNAKE_CASE_ ) def _a ( ): forceWrite("\r" ) def _a ( SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : str ): forceWrite(F"""\033[{num_lines}{CURSOR_TO_CHAR[direction.upper()]}""" ) def _a ( ): forceWrite(" " * TERMINAL_WIDTH ) reset_cursor() def _a ( ): reset_cursor() forceWrite("-" * TERMINAL_WIDTH )
102
1
"""simple docstring""" def a__ ( SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : float ): '''simple docstring''' if mass < 0: raise ValueError("The mass of a body cannot be negative" ) return 0.5 * mass * abs(SCREAMING_SNAKE_CASE ) * abs(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
108
import argparse import hashlib # hashlib is only used inside the Test class import struct class A__ : def __init__( self : Dict , a : str ): '''simple docstring''' lowerCAmelCase__ : Optional[int] = data lowerCAmelCase__ : List[Any] = [0X67_452_301, 0Xef_cda_b89, 0X98_bad_cfe, 0X10_325_476, 0Xc3_d2e_1f0] @staticmethod def _lowerCamelCase ( a : int , a : List[str] ): '''simple docstring''' return ((n << b) | (n >> (32 - b))) & 0Xff_fff_fff def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' lowerCAmelCase__ : Any = b'\x80' + b'\x00' * (63 - (len(self.data ) + 8) % 64) lowerCAmelCase__ : List[str] = self.data + padding + struct.pack('>Q' , 8 * len(self.data ) ) return padded_data def _lowerCamelCase ( self : Tuple ): '''simple docstring''' return [ self.padded_data[i : i + 64] for i in range(0 , len(self.padded_data ) , 64 ) ] def _lowerCamelCase ( self : Tuple , a : List[Any] ): '''simple docstring''' lowerCAmelCase__ : List[Any] = list(struct.unpack('>16L' , a ) ) + [0] * 64 for i in range(16 , 80 ): lowerCAmelCase__ : int = self.rotate((w[i - 3] ^ w[i - 8] ^ w[i - 14] ^ w[i - 16]) , 1 ) return w def _lowerCamelCase ( self : Dict ): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = self.padding() lowerCAmelCase__ : List[Any] = self.split_blocks() for block in self.blocks: lowerCAmelCase__ : str = self.expand_block(a ) lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : str = self.h for i in range(0 , 80 ): if 0 <= i < 20: lowerCAmelCase__ : Tuple = (b & c) | ((~b) & d) lowerCAmelCase__ : int = 0X5a_827_999 elif 20 <= i < 40: lowerCAmelCase__ : List[str] = b ^ c ^ d lowerCAmelCase__ : Any = 0X6e_d9e_ba1 elif 40 <= i < 60: lowerCAmelCase__ : Tuple = (b & c) | (b & d) | (c & d) lowerCAmelCase__ : Tuple = 0X8f_1bb_cdc elif 60 <= i < 80: lowerCAmelCase__ : List[Any] = b ^ c ^ d lowerCAmelCase__ : int = 0Xca_62c_1d6 lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : Dict = ( self.rotate(a , 5 ) + f + e + k + expanded_block[i] & 0Xff_fff_fff, a, self.rotate(a , 30 ), c, d, ) lowerCAmelCase__ : Optional[Any] = ( self.h[0] + a & 0Xff_fff_fff, self.h[1] + b & 0Xff_fff_fff, self.h[2] + c & 0Xff_fff_fff, self.h[3] + d & 0Xff_fff_fff, self.h[4] + e & 0Xff_fff_fff, ) return ("{:08x}" * 5).format(*self.h ) def lowerCAmelCase__ ( ) -> Tuple: lowerCAmelCase__ : Optional[int] = b'Test String' assert SHAaHash(SCREAMING_SNAKE_CASE_ ).final_hash() == hashlib.shaa(SCREAMING_SNAKE_CASE_ ).hexdigest() # noqa: S324 def lowerCAmelCase__ ( ) -> Any: lowerCAmelCase__ : str = argparse.ArgumentParser(description='Process some strings or files' ) parser.add_argument( '--string' , dest='input_string' , default='Hello World!! Welcome to Cryptography' , help='Hash the string' , ) parser.add_argument('--file' , dest='input_file' , help='Hash contents of a file' ) lowerCAmelCase__ : Dict = parser.parse_args() lowerCAmelCase__ : Tuple = args.input_string # In any case hash input should be a bytestring if args.input_file: with open(args.input_file , 'rb' ) as f: lowerCAmelCase__ : List[Any] = f.read() else: lowerCAmelCase__ : Tuple = bytes(SCREAMING_SNAKE_CASE_ , 'utf-8' ) print(SHAaHash(SCREAMING_SNAKE_CASE_ ).final_hash() ) if __name__ == "__main__": main() import doctest doctest.testmod()
212
0
import os from typing import Dict, List, Tuple, TypeVar, Union __A : List[Any] = TypeVar('T') __A : Dict = Union[List[T], Tuple[T, ...]] __A : str = Union[T, List[T], Dict[str, T]] __A : Optional[Any] = Union[str, bytes, os.PathLike]
369
import argparse import logging import os import datasets import tensorflow as tf from transformers import AutoTokenizer __A : List[str] = logging.getLogger(__name__) def __UpperCamelCase ( ) ->int: """simple docstring""" lowerCamelCase_ =argparse.ArgumentParser( description="""Prepare TFRecord shards from pre-tokenized samples of the wikitext dataset.""" ) parser.add_argument( """--dataset_name""" , type=_A , default="""wikitext""" , help="""Name of the training. Explore datasets at: hf.co/datasets.""" , ) parser.add_argument( """--dataset_config""" , type=_A , default="""wikitext-103-raw-v1""" , help="""Configuration name of the dataset.""" ) parser.add_argument( """--tokenizer_name_or_path""" , type=_A , default="""sayakpaul/unigram-tokenizer-wikitext""" , help="""Tokenizer identifier. Can be a local filepath or a Hub identifier.""" , ) parser.add_argument( """--shard_size""" , type=_A , default=1000 , help="""Number of entries to go in a single shard.""" , ) parser.add_argument("""--split""" , type=_A , default="""train""" , choices=["""train""", """test""", """validation"""] ) parser.add_argument( """--limit""" , default=_A , type=_A , help="""Limit the number of shards (used for debugging).""" , ) parser.add_argument( """--max_length""" , type=_A , default=512 , help="""Maximum sequence length. For training on TPUs, it helps to have a maximum""" """ sequence length that is a multiple of 8.""" , ) parser.add_argument( """--output_dir""" , default="""tf-tpu""" , type=_A , help="""Output directory where the TFRecord shards will be saved. If the""" """ path is appended with `gs://` ('gs://tf-tpu', for example) then the TFRecord""" """ shards will be directly saved to a Google Cloud Storage bucket.""" , ) lowerCamelCase_ =parser.parse_args() return args def __UpperCamelCase ( _A : Dict ) ->Optional[int]: """simple docstring""" def fn(_A : List[Any] ): return tokenizer(examples["""text"""] ) return fn def __UpperCamelCase ( _A : Dict ) ->Dict: """simple docstring""" lowerCamelCase_ =[] for i in range(len(tokenized_data["""input_ids"""] ) ): lowerCamelCase_ ={ """input_ids""": tf.train.Feature(intaa_list=tf.train.IntaaList(value=tokenized_data["""input_ids"""][i] ) ), """attention_mask""": tf.train.Feature( intaa_list=tf.train.IntaaList(value=tokenized_data["""attention_mask"""][i] ) ), } lowerCamelCase_ =tf.train.Features(feature=_A ) lowerCamelCase_ =tf.train.Example(features=_A ) lowerCamelCase_ =example.SerializeToString() records.append(_A ) return records def __UpperCamelCase ( _A : Any ) ->Dict: """simple docstring""" lowerCamelCase_ =datasets.load_dataset(args.dataset_name , args.dataset_config , split=args.split ) if args.limit is not None: lowerCamelCase_ =min(len(_A ) , args.limit ) lowerCamelCase_ =dataset.select(range(_A ) ) print(f'Limiting the dataset to {args.limit} entries.' ) lowerCamelCase_ =AutoTokenizer.from_pretrained(args.tokenizer_name_or_path ) # Handle output directory creation. # For serializing into a Google Cloud Storage Bucket, one needs to first # create a bucket. if "gs" not in args.output_dir: if not os.path.exists(args.output_dir ): os.makedirs(args.output_dir ) lowerCamelCase_ =os.path.join(args.output_dir , args.split ) if not os.path.exists(_A ): os.makedirs(_A ) else: lowerCamelCase_ =os.path.join(args.output_dir , args.split ) # Tokenize the whole dataset at once. lowerCamelCase_ =tokenize_function(_A ) lowerCamelCase_ =dataset.map(_A , batched=_A , num_proc=4 , remove_columns=["""text"""] ) # We need to concatenate all our texts together, and then split the result # into chunks of a fixed size, which we will call block_size. To do this, we # will use the map method again, with the option batched=True. When we use batched=True, # the function we pass to map() will be passed multiple inputs at once, allowing us # to group them into more or fewer examples than we had in the input. # This allows us to create our new fixed-length samples. The advantage of this # method is that we don't lose a whole lot of content from the dataset compared to the # case where we simply tokenize with a pre-defined max_length. def group_texts(_A : Any ): # Concatenate all texts. lowerCamelCase_ ={k: sum(examples[k] , [] ) for k in examples.keys()} lowerCamelCase_ =len(concatenated_examples[list(examples.keys() )[0]] ) # We drop the small remainder, though you could add padding instead if the model supports it # In this, as in all things, we advise you to follow your heart 🫀 lowerCamelCase_ =(total_length // args.max_length) * args.max_length # Split by chunks of max_len. lowerCamelCase_ ={ k: [t[i : i + args.max_length] for i in range(0 , _A , args.max_length )] for k, t in concatenated_examples.items() } return result lowerCamelCase_ =dataset_tokenized.map(_A , batched=_A , batch_size=1000 , num_proc=4 ) lowerCamelCase_ =0 lowerCamelCase_ =0 for shard in range(0 , len(_A ) , args.shard_size ): lowerCamelCase_ =grouped_dataset[shard : shard + args.shard_size] lowerCamelCase_ =len(dataset_snapshot["""input_ids"""] ) lowerCamelCase_ =os.path.join(_A , f'dataset-{shard_count}-{records_containing}.tfrecord' ) lowerCamelCase_ =get_serialized_examples(_A ) with tf.io.TFRecordWriter(_A ) as out_file: for i in range(len(_A ) ): lowerCamelCase_ =serialized_examples[i] out_file.write(_A ) print("""Wrote file {} containing {} records""".format(_A , _A ) ) shard_count += 1 total_records += records_containing with open(f'split-{args.split}-records-count.txt' , """w""" ) as f: print(f'Total {args.split} records: {total_records}' , file=_A ) if __name__ == "__main__": __A : Dict = parse_args() main(args)
49
0
from ..utils import DummyObject, requires_backends class _a (metaclass=__magic_name__ ): '''simple docstring''' UpperCAmelCase__: Tuple = ['''torch''', '''torchsde'''] def __init__( self , *A__ , **A__ ): requires_backends(self , ["""torch""", """torchsde"""] ) @classmethod def __A ( cls , *A__ , **A__ ): requires_backends(cls , ["""torch""", """torchsde"""] ) @classmethod def __A ( cls , *A__ , **A__ ): requires_backends(cls , ["""torch""", """torchsde"""] )
192
import argparse from collections import defaultdict import yaml A_ : List[str] = 'docs/source/en/_toctree.yml' def UpperCamelCase (lowercase_: Optional[int] ) -> List[str]: A__ : Dict = defaultdict(lowercase_ ) A__ : Optional[int] = [] A__ : Union[str, Any] = [] for doc in doc_list: if "local" in doc: counts[doc["local"]] += 1 if doc["title"].lower() == "overview": overview_doc.append({"""local""": doc["""local"""], """title""": doc["""title"""]} ) else: new_doc_list.append(lowercase_ ) A__ : Optional[int] = new_doc_list A__ : Optional[int] = [key for key, value in counts.items() if value > 1] A__ : Optional[Any] = [] for duplicate_key in duplicates: A__ : List[Any] = list({doc["""title"""] for doc in doc_list if doc["""local"""] == duplicate_key} ) if len(lowercase_ ) > 1: raise ValueError( f"""{duplicate_key} is present several times in the documentation table of content at """ """`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the """ """others.""" ) # Only add this once new_doc.append({"""local""": duplicate_key, """title""": titles[0]} ) # Add none duplicate-keys new_doc.extend([doc for doc in doc_list if """local""" not in counts or counts[doc["""local"""]] == 1] ) A__ : Dict = sorted(lowercase_ , key=lambda lowercase_ : s["title"].lower() ) # "overview" gets special treatment and is always first if len(lowercase_ ) > 1: raise ValueError("""{doc_list} has two 'overview' docs which is not allowed.""" ) overview_doc.extend(lowercase_ ) # Sort return overview_doc def UpperCamelCase (lowercase_: Tuple=False ) -> List[Any]: with open(lowercase_ , encoding="""utf-8""" ) as f: A__ : Dict = yaml.safe_load(f.read() ) # Get to the API doc A__ : List[Any] = 0 while content[api_idx]["title"] != "API": api_idx += 1 A__ : Union[str, Any] = content[api_idx]["""sections"""] # Then to the model doc A__ : Dict = 0 while api_doc[scheduler_idx]["title"] != "Schedulers": scheduler_idx += 1 A__ : List[Any] = api_doc[scheduler_idx]["""sections"""] A__ : Union[str, Any] = clean_doc_toc(lowercase_ ) A__ : Optional[int] = False if new_scheduler_doc != scheduler_doc: A__ : List[Any] = True if overwrite: A__ : Optional[int] = new_scheduler_doc if diff: if overwrite: A__ : Tuple = api_doc with open(lowercase_ , """w""" , encoding="""utf-8""" ) as f: f.write(yaml.dump(lowercase_ , allow_unicode=lowercase_ ) ) else: raise ValueError( """The model doc part of the table of content is not properly sorted, run `make style` to fix this.""" ) def UpperCamelCase (lowercase_: Dict=False ) -> Optional[Any]: with open(lowercase_ , encoding="""utf-8""" ) as f: A__ : int = yaml.safe_load(f.read() ) # Get to the API doc A__ : Optional[Any] = 0 while content[api_idx]["title"] != "API": api_idx += 1 A__ : List[str] = content[api_idx]["""sections"""] # Then to the model doc A__ : List[Any] = 0 while api_doc[pipeline_idx]["title"] != "Pipelines": pipeline_idx += 1 A__ : Dict = False A__ : Tuple = api_doc[pipeline_idx]["""sections"""] A__ : Tuple = [] # sort sub pipeline docs for pipeline_doc in pipeline_docs: if "section" in pipeline_doc: A__ : List[Any] = pipeline_doc["""section"""] A__ : Dict = clean_doc_toc(lowercase_ ) if overwrite: A__ : Optional[Any] = new_sub_pipeline_doc new_pipeline_docs.append(lowercase_ ) # sort overall pipeline doc A__ : Optional[int] = clean_doc_toc(lowercase_ ) if new_pipeline_docs != pipeline_docs: A__ : int = True if overwrite: A__ : List[Any] = new_pipeline_docs if diff: if overwrite: A__ : Union[str, Any] = api_doc with open(lowercase_ , """w""" , encoding="""utf-8""" ) as f: f.write(yaml.dump(lowercase_ , allow_unicode=lowercase_ ) ) else: raise ValueError( """The model doc part of the table of content is not properly sorted, run `make style` to fix this.""" ) if __name__ == "__main__": A_ : str = argparse.ArgumentParser() parser.add_argument('--fix_and_overwrite', action='store_true', help='Whether to fix inconsistencies.') A_ : str = parser.parse_args() check_scheduler_doc(args.fix_and_overwrite) check_pipeline_doc(args.fix_and_overwrite)
192
1
"""simple docstring""" import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging snake_case_ = logging.get_logger(__name__) snake_case_ = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt"""} # See all BART models at https://huggingface.co/models?filter=bart snake_case_ = { """vocab_file""": { """facebook/bart-base""": """https://huggingface.co/facebook/bart-base/resolve/main/vocab.json""", """facebook/bart-large""": """https://huggingface.co/facebook/bart-large/resolve/main/vocab.json""", """facebook/bart-large-mnli""": """https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json""", """facebook/bart-large-cnn""": """https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json""", """facebook/bart-large-xsum""": """https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json""", """yjernite/bart_eli5""": """https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json""", }, """merges_file""": { """facebook/bart-base""": """https://huggingface.co/facebook/bart-base/resolve/main/merges.txt""", """facebook/bart-large""": """https://huggingface.co/facebook/bart-large/resolve/main/merges.txt""", """facebook/bart-large-mnli""": """https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt""", """facebook/bart-large-cnn""": """https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt""", """facebook/bart-large-xsum""": """https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt""", """yjernite/bart_eli5""": """https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt""", }, } snake_case_ = { """facebook/bart-base""": 1024, """facebook/bart-large""": 1024, """facebook/bart-large-mnli""": 1024, """facebook/bart-large-cnn""": 1024, """facebook/bart-large-xsum""": 1024, """yjernite/bart_eli5""": 1024, } @lru_cache() def _lowerCAmelCase ( ): UpperCAmelCase = ( list(range(ord('!' ) , ord('~' ) + 1 ) ) + list(range(ord('¡' ) , ord('¬' ) + 1 ) ) + list(range(ord('®' ) , ord('ÿ' ) + 1 ) ) ) UpperCAmelCase = bs[:] UpperCAmelCase = 0 for b in range(2**8 ): if b not in bs: bs.append(lowercase_ ) cs.append(2**8 + n ) n += 1 UpperCAmelCase = [chr(lowercase_ ) for n in cs] return dict(zip(lowercase_ , lowercase_ ) ) def _lowerCAmelCase ( lowercase_ ): UpperCAmelCase = set() UpperCAmelCase = word[0] for char in word[1:]: pairs.add((prev_char, char) ) UpperCAmelCase = char return pairs class A_ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" __UpperCamelCase = VOCAB_FILES_NAMES __UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase = ["""input_ids""", """attention_mask"""] def __init__( self :str , lowercase_ :List[Any] , lowercase_ :Optional[int] , lowercase_ :Dict="replace" , lowercase_ :int="<s>" , lowercase_ :int="</s>" , lowercase_ :str="</s>" , lowercase_ :Any="<s>" , lowercase_ :str="<unk>" , lowercase_ :Optional[int]="<pad>" , lowercase_ :Dict="<mask>" , lowercase_ :Union[str, Any]=False , **lowercase_ :Optional[int] , ) -> List[Any]: UpperCAmelCase = AddedToken(lowercase_ , lstrip=lowercase_ , rstrip=lowercase_ ) if isinstance(lowercase_ , lowercase_ ) else bos_token UpperCAmelCase = AddedToken(lowercase_ , lstrip=lowercase_ , rstrip=lowercase_ ) if isinstance(lowercase_ , lowercase_ ) else eos_token UpperCAmelCase = AddedToken(lowercase_ , lstrip=lowercase_ , rstrip=lowercase_ ) if isinstance(lowercase_ , lowercase_ ) else sep_token UpperCAmelCase = AddedToken(lowercase_ , lstrip=lowercase_ , rstrip=lowercase_ ) if isinstance(lowercase_ , lowercase_ ) else cls_token UpperCAmelCase = AddedToken(lowercase_ , lstrip=lowercase_ , rstrip=lowercase_ ) if isinstance(lowercase_ , lowercase_ ) else unk_token UpperCAmelCase = AddedToken(lowercase_ , lstrip=lowercase_ , rstrip=lowercase_ ) if isinstance(lowercase_ , lowercase_ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it UpperCAmelCase = AddedToken(lowercase_ , lstrip=lowercase_ , rstrip=lowercase_ ) if isinstance(lowercase_ , lowercase_ ) else mask_token super().__init__( errors=lowercase_ , bos_token=lowercase_ , eos_token=lowercase_ , unk_token=lowercase_ , sep_token=lowercase_ , cls_token=lowercase_ , pad_token=lowercase_ , mask_token=lowercase_ , add_prefix_space=lowercase_ , **lowercase_ , ) with open(lowercase_ , encoding='utf-8' ) as vocab_handle: UpperCAmelCase = json.load(lowercase_ ) UpperCAmelCase = {v: k for k, v in self.encoder.items()} UpperCAmelCase = errors # how to handle errors in decoding UpperCAmelCase = bytes_to_unicode() UpperCAmelCase = {v: k for k, v in self.byte_encoder.items()} with open(lowercase_ , encoding='utf-8' ) as merges_handle: UpperCAmelCase = merges_handle.read().split('\n' )[1:-1] UpperCAmelCase = [tuple(merge.split() ) for merge in bpe_merges] UpperCAmelCase = dict(zip(lowercase_ , range(len(lowercase_ ) ) ) ) UpperCAmelCase = {} UpperCAmelCase = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions UpperCAmelCase = re.compile(R'\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+' ) @property def UpperCAmelCase__ ( self :Any ) -> List[str]: return len(self.encoder ) def UpperCAmelCase__ ( self :str ) -> Tuple: return dict(self.encoder , **self.added_tokens_encoder ) def UpperCAmelCase__ ( self :Union[str, Any] , lowercase_ :Dict ) -> List[str]: if token in self.cache: return self.cache[token] UpperCAmelCase = tuple(lowercase_ ) UpperCAmelCase = get_pairs(lowercase_ ) if not pairs: return token while True: UpperCAmelCase = min(lowercase_ , key=lambda lowercase_ : self.bpe_ranks.get(lowercase_ , float('inf' ) ) ) if bigram not in self.bpe_ranks: break UpperCAmelCase , UpperCAmelCase = bigram UpperCAmelCase = [] UpperCAmelCase = 0 while i < len(lowercase_ ): try: UpperCAmelCase = word.index(lowercase_ , lowercase_ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) UpperCAmelCase = j if word[i] == first and i < len(lowercase_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 UpperCAmelCase = tuple(lowercase_ ) UpperCAmelCase = new_word if len(lowercase_ ) == 1: break else: UpperCAmelCase = get_pairs(lowercase_ ) UpperCAmelCase = ' '.join(lowercase_ ) UpperCAmelCase = word return word def UpperCAmelCase__ ( self :Optional[Any] , lowercase_ :List[Any] ) -> Tuple: UpperCAmelCase = [] for token in re.findall(self.pat , lowercase_ ): UpperCAmelCase = ''.join( self.byte_encoder[b] for b in token.encode('utf-8' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(lowercase_ ).split(' ' ) ) return bpe_tokens def UpperCAmelCase__ ( self :Tuple , lowercase_ :Dict ) -> Dict: return self.encoder.get(lowercase_ , self.encoder.get(self.unk_token ) ) def UpperCAmelCase__ ( self :str , lowercase_ :str ) -> Any: return self.decoder.get(lowercase_ ) def UpperCAmelCase__ ( self :Any , lowercase_ :Any ) -> Union[str, Any]: UpperCAmelCase = ''.join(lowercase_ ) UpperCAmelCase = bytearray([self.byte_decoder[c] for c in text] ).decode('utf-8' , errors=self.errors ) return text def UpperCAmelCase__ ( self :List[Any] , lowercase_ :str , lowercase_ :Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(lowercase_ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return UpperCAmelCase = os.path.join( lowercase_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) UpperCAmelCase = os.path.join( lowercase_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] ) with open(lowercase_ , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowercase_ , ensure_ascii=lowercase_ ) + '\n' ) UpperCAmelCase = 0 with open(lowercase_ , 'w' , encoding='utf-8' ) as writer: writer.write('#version: 0.2\n' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowercase_ : kv[1] ): if index != token_index: logger.warning( f"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" ' Please check that the tokenizer is not corrupted!' ) UpperCAmelCase = token_index writer.write(' '.join(lowercase_ ) + '\n' ) index += 1 return vocab_file, merge_file def UpperCAmelCase__ ( self :Union[str, Any] , lowercase_ :List[int] , lowercase_ :Optional[List[int]] = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] UpperCAmelCase = [self.cls_token_id] UpperCAmelCase = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def UpperCAmelCase__ ( self :Optional[Any] , lowercase_ :List[int] , lowercase_ :Optional[List[int]] = None , lowercase_ :bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowercase_ , token_ids_a=lowercase_ , already_has_special_tokens=lowercase_ ) if token_ids_a is None: return [1] + ([0] * len(lowercase_ )) + [1] return [1] + ([0] * len(lowercase_ )) + [1, 1] + ([0] * len(lowercase_ )) + [1] def UpperCAmelCase__ ( self :Optional[int] , lowercase_ :List[int] , lowercase_ :Optional[List[int]] = None ) -> List[int]: UpperCAmelCase = [self.sep_token_id] UpperCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def UpperCAmelCase__ ( self :Any , lowercase_ :List[str] , lowercase_ :Optional[Any]=False , **lowercase_ :List[Any] ) -> Any: UpperCAmelCase = kwargs.pop('add_prefix_space' , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(lowercase_ ) > 0 and not text[0].isspace()): UpperCAmelCase = ' ' + text return (text, kwargs)
181
"""simple docstring""" import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class A_ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" __UpperCamelCase = (UniPCMultistepScheduler,) __UpperCamelCase = (("""num_inference_steps""", 25),) def UpperCAmelCase__ ( self :Any , **lowercase_ :Optional[Any] ) -> Dict: UpperCAmelCase = { 'num_train_timesteps': 10_00, 'beta_start': 0.0001, 'beta_end': 0.02, 'beta_schedule': 'linear', 'solver_order': 2, 'solver_type': 'bh2', } config.update(**lowercase_ ) return config def UpperCAmelCase__ ( self :Optional[Any] , lowercase_ :Optional[int]=0 , **lowercase_ :Optional[Any] ) -> List[str]: UpperCAmelCase = dict(self.forward_default_kwargs ) UpperCAmelCase = kwargs.pop('num_inference_steps' , lowercase_ ) UpperCAmelCase = self.dummy_sample UpperCAmelCase = 0.1 * sample UpperCAmelCase = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: UpperCAmelCase = self.get_scheduler_config(**lowercase_ ) UpperCAmelCase = scheduler_class(**lowercase_ ) scheduler.set_timesteps(lowercase_ ) # copy over dummy past residuals UpperCAmelCase = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowercase_ ) UpperCAmelCase = scheduler_class.from_pretrained(lowercase_ ) new_scheduler.set_timesteps(lowercase_ ) # copy over dummy past residuals UpperCAmelCase = dummy_past_residuals[: new_scheduler.config.solver_order] UpperCAmelCase , UpperCAmelCase = sample, sample for t in range(lowercase_ , time_step + scheduler.config.solver_order + 1 ): UpperCAmelCase = scheduler.step(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample UpperCAmelCase = new_scheduler.step(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def UpperCAmelCase__ ( self :List[Any] , lowercase_ :Dict=0 , **lowercase_ :Optional[int] ) -> List[str]: UpperCAmelCase = dict(self.forward_default_kwargs ) UpperCAmelCase = kwargs.pop('num_inference_steps' , lowercase_ ) UpperCAmelCase = self.dummy_sample UpperCAmelCase = 0.1 * sample UpperCAmelCase = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: UpperCAmelCase = self.get_scheduler_config() UpperCAmelCase = scheduler_class(**lowercase_ ) scheduler.set_timesteps(lowercase_ ) # copy over dummy past residuals (must be after setting timesteps) UpperCAmelCase = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowercase_ ) UpperCAmelCase = scheduler_class.from_pretrained(lowercase_ ) # copy over dummy past residuals new_scheduler.set_timesteps(lowercase_ ) # copy over dummy past residual (must be after setting timesteps) UpperCAmelCase = dummy_past_residuals[: new_scheduler.config.solver_order] UpperCAmelCase = scheduler.step(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample UpperCAmelCase = new_scheduler.step(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def UpperCAmelCase__ ( self :List[Any] , lowercase_ :Optional[int]=None , **lowercase_ :str ) -> Dict: if scheduler is None: UpperCAmelCase = self.scheduler_classes[0] UpperCAmelCase = self.get_scheduler_config(**lowercase_ ) UpperCAmelCase = scheduler_class(**lowercase_ ) UpperCAmelCase = self.scheduler_classes[0] UpperCAmelCase = self.get_scheduler_config(**lowercase_ ) UpperCAmelCase = scheduler_class(**lowercase_ ) UpperCAmelCase = 10 UpperCAmelCase = self.dummy_model() UpperCAmelCase = self.dummy_sample_deter scheduler.set_timesteps(lowercase_ ) for i, t in enumerate(scheduler.timesteps ): UpperCAmelCase = model(lowercase_ , lowercase_ ) UpperCAmelCase = scheduler.step(lowercase_ , lowercase_ , lowercase_ ).prev_sample return sample def UpperCAmelCase__ ( self :Union[str, Any] ) -> Tuple: UpperCAmelCase = dict(self.forward_default_kwargs ) UpperCAmelCase = kwargs.pop('num_inference_steps' , lowercase_ ) for scheduler_class in self.scheduler_classes: UpperCAmelCase = self.get_scheduler_config() UpperCAmelCase = scheduler_class(**lowercase_ ) UpperCAmelCase = self.dummy_sample UpperCAmelCase = 0.1 * sample if num_inference_steps is not None and hasattr(lowercase_ , 'set_timesteps' ): scheduler.set_timesteps(lowercase_ ) elif num_inference_steps is not None and not hasattr(lowercase_ , 'set_timesteps' ): UpperCAmelCase = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) UpperCAmelCase = [residual + 0.2, residual + 0.15, residual + 0.10] UpperCAmelCase = dummy_past_residuals[: scheduler.config.solver_order] UpperCAmelCase = scheduler.timesteps[5] UpperCAmelCase = scheduler.timesteps[6] UpperCAmelCase = scheduler.step(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample UpperCAmelCase = scheduler.step(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def UpperCAmelCase__ ( self :Optional[int] ) -> Optional[Any]: # make sure that iterating over schedulers with same config names gives same results # for defaults UpperCAmelCase = UniPCMultistepScheduler(**self.get_scheduler_config() ) UpperCAmelCase = self.full_loop(scheduler=lowercase_ ) UpperCAmelCase = torch.mean(torch.abs(lowercase_ ) ) assert abs(result_mean.item() - 0.2464 ) < 1E-3 UpperCAmelCase = DPMSolverSinglestepScheduler.from_config(scheduler.config ) UpperCAmelCase = DEISMultistepScheduler.from_config(scheduler.config ) UpperCAmelCase = DPMSolverMultistepScheduler.from_config(scheduler.config ) UpperCAmelCase = UniPCMultistepScheduler.from_config(scheduler.config ) UpperCAmelCase = self.full_loop(scheduler=lowercase_ ) UpperCAmelCase = torch.mean(torch.abs(lowercase_ ) ) assert abs(result_mean.item() - 0.2464 ) < 1E-3 def UpperCAmelCase__ ( self :Optional[int] ) -> List[str]: for timesteps in [25, 50, 1_00, 9_99, 10_00]: self.check_over_configs(num_train_timesteps=lowercase_ ) def UpperCAmelCase__ ( self :int ) -> str: self.check_over_configs(thresholding=lowercase_ ) for order in [1, 2, 3]: for solver_type in ["bh1", "bh2"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=lowercase_ , prediction_type=lowercase_ , sample_max_value=lowercase_ , solver_order=lowercase_ , solver_type=lowercase_ , ) def UpperCAmelCase__ ( self :Any ) -> str: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowercase_ ) def UpperCAmelCase__ ( self :str ) -> Optional[Any]: for solver_type in ["bh1", "bh2"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=lowercase_ , solver_type=lowercase_ , prediction_type=lowercase_ , ) UpperCAmelCase = self.full_loop( solver_order=lowercase_ , solver_type=lowercase_ , prediction_type=lowercase_ , ) assert not torch.isnan(lowercase_ ).any(), "Samples have nan numbers" def UpperCAmelCase__ ( self :Dict ) -> List[Any]: self.check_over_configs(lower_order_final=lowercase_ ) self.check_over_configs(lower_order_final=lowercase_ ) def UpperCAmelCase__ ( self :Any ) -> List[Any]: for num_inference_steps in [1, 2, 3, 5, 10, 50, 1_00, 9_99, 10_00]: self.check_over_forward(num_inference_steps=lowercase_ , time_step=0 ) def UpperCAmelCase__ ( self :int ) -> Union[str, Any]: UpperCAmelCase = self.full_loop() UpperCAmelCase = torch.mean(torch.abs(lowercase_ ) ) assert abs(result_mean.item() - 0.2464 ) < 1E-3 def UpperCAmelCase__ ( self :Optional[int] ) -> str: UpperCAmelCase = self.full_loop(prediction_type='v_prediction' ) UpperCAmelCase = torch.mean(torch.abs(lowercase_ ) ) assert abs(result_mean.item() - 0.1014 ) < 1E-3 def UpperCAmelCase__ ( self :Tuple ) -> Tuple: UpperCAmelCase = self.scheduler_classes[0] UpperCAmelCase = self.get_scheduler_config(thresholding=lowercase_ , dynamic_thresholding_ratio=0 ) UpperCAmelCase = scheduler_class(**lowercase_ ) UpperCAmelCase = 10 UpperCAmelCase = self.dummy_model() UpperCAmelCase = self.dummy_sample_deter.half() scheduler.set_timesteps(lowercase_ ) for i, t in enumerate(scheduler.timesteps ): UpperCAmelCase = model(lowercase_ , lowercase_ ) UpperCAmelCase = scheduler.step(lowercase_ , lowercase_ , lowercase_ ).prev_sample assert sample.dtype == torch.floataa def UpperCAmelCase__ ( self :List[Any] , **lowercase_ :Optional[Any] ) -> Dict: for scheduler_class in self.scheduler_classes: UpperCAmelCase = self.get_scheduler_config(**lowercase_ ) UpperCAmelCase = scheduler_class(**lowercase_ ) scheduler.set_timesteps(scheduler.config.num_train_timesteps ) assert len(scheduler.timesteps.unique() ) == scheduler.num_inference_steps
181
1
"""simple docstring""" import json import os import unittest from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES, XLMTokenizer from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class lowerCamelCase__ ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): a__ : str = XLMTokenizer a__ : Optional[Any] = False def lowerCamelCase_ ( self ): """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt snake_case : Optional[Any] = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "w</w>", "r</w>", "t</w>", "lo", "low", "er</w>", "low</w>", "lowest</w>", "newer</w>", "wider</w>", "<unk>", ] snake_case : Any = dict(zip(_SCREAMING_SNAKE_CASE , range(len(_SCREAMING_SNAKE_CASE ) ) ) ) snake_case : int = ["l o 123", "lo w 1456", "e r</w> 1789", ""] snake_case : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) snake_case : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" ) as fp: fp.write(json.dumps(_SCREAMING_SNAKE_CASE ) ) with open(self.merges_file , "w" ) as fp: fp.write("\n".join(_SCREAMING_SNAKE_CASE ) ) def lowerCamelCase_ ( self , SCREAMING_SNAKE_CASE ): """simple docstring""" snake_case : str = "lower newer" snake_case : List[Any] = "lower newer" return input_text, output_text def lowerCamelCase_ ( self ): """simple docstring""" snake_case : Any = XLMTokenizer(self.vocab_file , self.merges_file ) snake_case : Dict = "lower" snake_case : List[Any] = ["low", "er</w>"] snake_case : Union[str, Any] = tokenizer.tokenize(_SCREAMING_SNAKE_CASE ) self.assertListEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) snake_case : int = tokens + ["<unk>"] snake_case : Tuple = [14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) @slow def lowerCamelCase_ ( self ): """simple docstring""" snake_case : List[str] = XLMTokenizer.from_pretrained("xlm-mlm-en-2048" ) snake_case : int = tokenizer.encode("sequence builders" , add_special_tokens=_SCREAMING_SNAKE_CASE ) snake_case : List[str] = tokenizer.encode("multi-sequence build" , add_special_tokens=_SCREAMING_SNAKE_CASE ) snake_case : Optional[Any] = tokenizer.build_inputs_with_special_tokens(_SCREAMING_SNAKE_CASE ) snake_case : List[Any] = tokenizer.build_inputs_with_special_tokens(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) assert encoded_sentence == [0] + text + [1] assert encoded_pair == [0] + text + [1] + text_a + [1]
148
"""simple docstring""" def _lowercase ( ) -> int: return 1 def _lowercase ( __snake_case ) -> int: return 0 if x < 0 else two_pence(x - 2 ) + one_pence() def _lowercase ( __snake_case ) -> int: return 0 if x < 0 else five_pence(x - 5 ) + two_pence(__snake_case ) def _lowercase ( __snake_case ) -> int: return 0 if x < 0 else ten_pence(x - 10 ) + five_pence(__snake_case ) def _lowercase ( __snake_case ) -> int: return 0 if x < 0 else twenty_pence(x - 20 ) + ten_pence(__snake_case ) def _lowercase ( __snake_case ) -> int: return 0 if x < 0 else fifty_pence(x - 50 ) + twenty_pence(__snake_case ) def _lowercase ( __snake_case ) -> int: return 0 if x < 0 else one_pound(x - 100 ) + fifty_pence(__snake_case ) def _lowercase ( __snake_case ) -> int: return 0 if x < 0 else two_pound(x - 200 ) + one_pound(__snake_case ) def _lowercase ( __snake_case = 200 ) -> int: return two_pound(__snake_case ) if __name__ == "__main__": print(solution(int(input().strip())))
269
0
'''simple docstring''' import math import os import sys def UpperCamelCase ( a ) -> str: '''simple docstring''' __magic_name__ = '''''' try: with open(a , '''rb''' ) as binary_file: __magic_name__ = binary_file.read() for dat in data: __magic_name__ = F'''{dat:08b}''' result += curr_byte return result except OSError: print('''File not accessible''' ) sys.exit() def UpperCamelCase ( a , a , a , a ) -> None: '''simple docstring''' lexicon.pop(a ) __magic_name__ = last_match_id if math.loga(a ).is_integer(): for curr_key in lexicon: __magic_name__ = '''0''' + lexicon[curr_key] __magic_name__ = bin(a )[2:] def UpperCamelCase ( a ) -> str: '''simple docstring''' __magic_name__ = {'''0''': '''0''', '''1''': '''1'''} __magic_name__ , __magic_name__ = '''''', '''''' __magic_name__ = len(a ) for i in range(len(a ) ): curr_string += data_bits[i] if curr_string not in lexicon: continue __magic_name__ = lexicon[curr_string] result += last_match_id add_key_to_lexicon(a , a , a , a ) index += 1 __magic_name__ = '''''' while curr_string != "" and curr_string not in lexicon: curr_string += "0" if curr_string != "": __magic_name__ = lexicon[curr_string] result += last_match_id return result def UpperCamelCase ( a , a ) -> str: '''simple docstring''' __magic_name__ = os.path.getsize(a ) __magic_name__ = bin(a )[2:] __magic_name__ = len(a ) return "0" * (length_length - 1) + file_length_binary + compressed def UpperCamelCase ( a , a ) -> None: '''simple docstring''' __magic_name__ = 8 try: with open(a , '''wb''' ) as opened_file: __magic_name__ = [ to_write[i : i + byte_length] for i in range(0 , len(a ) , a ) ] if len(result_byte_array[-1] ) % byte_length == 0: result_byte_array.append('''10000000''' ) else: result_byte_array[-1] += "1" + "0" * ( byte_length - len(result_byte_array[-1] ) - 1 ) for elem in result_byte_array: opened_file.write(int(a , 2 ).to_bytes(1 , byteorder='''big''' ) ) except OSError: print('''File not accessible''' ) sys.exit() def UpperCamelCase ( a , a ) -> None: '''simple docstring''' __magic_name__ = read_file_binary(a ) __magic_name__ = compress_data(a ) __magic_name__ = add_file_length(a , a ) write_file_binary(a , a ) if __name__ == "__main__": compress(sys.argv[1], sys.argv[2])
98
'''simple docstring''' from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxSeqaSeqConfigWithPast from ...utils import logging if TYPE_CHECKING: from ...feature_extraction_utils import FeatureExtractionMixin from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = { "openai/whisper-base": "https://huggingface.co/openai/whisper-base/resolve/main/config.json", } # fmt: off _lowerCAmelCase = [ 1, 2, 7, 8, 9, 10, 14, 25, 26, 27, 28, 29, 31, 58, 59, 60, 61, 62, 63, 90, 91, 92, 93, 357, 366, 438, 532, 685, 705, 796, 930, 1058, 1220, 1267, 1279, 1303, 1343, 1377, 1391, 1635, 1782, 1875, 2162, 2361, 2488, 3467, 4008, 4211, 4600, 4808, 5299, 5855, 6329, 7203, 9609, 9959, 10563, 10786, 11420, 11709, 11907, 13163, 13697, 13700, 14808, 15306, 16410, 16791, 17992, 19203, 19510, 20724, 22305, 22935, 27007, 30109, 30420, 33409, 34949, 40283, 40493, 40549, 47282, 49146, 50257, 50359, 50360, 50361 ] _lowerCAmelCase = [ 1, 2, 7, 8, 9, 10, 14, 25, 26, 27, 28, 29, 31, 58, 59, 60, 61, 62, 63, 90, 91, 92, 93, 359, 503, 522, 542, 873, 893, 902, 918, 922, 931, 1350, 1853, 1982, 2460, 2627, 3246, 3253, 3268, 3536, 3846, 3961, 4183, 4667, 6585, 6647, 7273, 9061, 9383, 10428, 10929, 11938, 12033, 12331, 12562, 13793, 14157, 14635, 15265, 15618, 16553, 16604, 18362, 18956, 20075, 21675, 22520, 26130, 26161, 26435, 28279, 29464, 31650, 32302, 32470, 36865, 42863, 47425, 49870, 50254, 50258, 50360, 50361, 50362 ] class _SCREAMING_SNAKE_CASE ( __a ): __SCREAMING_SNAKE_CASE :str = """whisper""" __SCREAMING_SNAKE_CASE :str = ["""past_key_values"""] __SCREAMING_SNAKE_CASE :Tuple = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self : Dict , a__ : Optional[int]=5_1865 , a__ : str=80 , a__ : List[str]=6 , a__ : List[str]=4 , a__ : List[Any]=6 , a__ : Union[str, Any]=4 , a__ : Tuple=1536 , a__ : Optional[int]=1536 , a__ : List[str]=0.0 , a__ : Union[str, Any]=0.0 , a__ : Union[str, Any]=5_0257 , a__ : Dict=True , a__ : Optional[Any]=True , a__ : Union[str, Any]="gelu" , a__ : Tuple=256 , a__ : Dict=0.0 , a__ : str=0.0 , a__ : Optional[Any]=0.0 , a__ : int=0.02 , a__ : Any=False , a__ : List[Any]=1500 , a__ : Optional[int]=448 , a__ : Dict=5_0256 , a__ : str=5_0256 , a__ : Tuple=5_0256 , a__ : List[str]=None , a__ : List[Any]=[220, 5_0256] , a__ : Any=False , a__ : Dict=256 , a__ : Optional[Any]=False , a__ : str=0.05 , a__ : List[Any]=10 , a__ : List[Any]=2 , a__ : Optional[int]=0.0 , a__ : List[Any]=10 , a__ : Union[str, Any]=0 , a__ : int=7 , **a__ : Any , ): __magic_name__ = vocab_size __magic_name__ = num_mel_bins __magic_name__ = d_model __magic_name__ = encoder_layers __magic_name__ = encoder_attention_heads __magic_name__ = decoder_layers __magic_name__ = decoder_attention_heads __magic_name__ = decoder_ffn_dim __magic_name__ = encoder_ffn_dim __magic_name__ = dropout __magic_name__ = attention_dropout __magic_name__ = activation_dropout __magic_name__ = activation_function __magic_name__ = init_std __magic_name__ = encoder_layerdrop __magic_name__ = decoder_layerdrop __magic_name__ = use_cache __magic_name__ = encoder_layers __magic_name__ = scale_embedding # scale factor will be sqrt(d_model) if True __magic_name__ = max_source_positions __magic_name__ = max_target_positions # Audio Classification-specific parameters. Feel free to ignore for other classes. __magic_name__ = classifier_proj_size __magic_name__ = use_weighted_layer_sum # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __magic_name__ = apply_spec_augment __magic_name__ = mask_time_prob __magic_name__ = mask_time_length __magic_name__ = mask_time_min_masks __magic_name__ = mask_feature_prob __magic_name__ = mask_feature_length __magic_name__ = mask_feature_min_masks __magic_name__ = median_filter_width super().__init__( pad_token_id=a__ , bos_token_id=a__ , eos_token_id=a__ , is_encoder_decoder=a__ , decoder_start_token_id=a__ , suppress_tokens=a__ , begin_suppress_tokens=a__ , **a__ , ) class _SCREAMING_SNAKE_CASE ( __a ): @property def snake_case__ ( self : List[str] ): __magic_name__ = OrderedDict( [ ('''input_features''', {0: '''batch''', 1: '''feature_size''', 2: '''encoder_sequence'''}), ] ) if self.use_past: __magic_name__ = {0: '''batch'''} else: __magic_name__ = {0: '''batch''', 1: '''decoder_sequence'''} if self.use_past: self.fill_with_past_key_values_(a__ , direction='''inputs''' ) return common_inputs def snake_case__ ( self : Optional[int] , a__ : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] , a__ : int = -1 , a__ : int = -1 , a__ : bool = False , a__ : Optional["TensorType"] = None , a__ : int = 2_2050 , a__ : float = 5.0 , a__ : int = 220 , ): __magic_name__ = OrderedDict() __magic_name__ = OnnxConfig.generate_dummy_inputs( self , preprocessor=preprocessor.feature_extractor , batch_size=a__ , framework=a__ , sampling_rate=a__ , time_duration=a__ , frequency=a__ , ) __magic_name__ = encoder_inputs['''input_features'''].shape[2] __magic_name__ = encoder_sequence_length // 2 if self.use_past else seq_length __magic_name__ = super().generate_dummy_inputs( preprocessor.tokenizer , a__ , a__ , a__ , a__ ) __magic_name__ = encoder_inputs.pop('''input_features''' ) __magic_name__ = decoder_inputs.pop('''decoder_input_ids''' ) if "past_key_values" in decoder_inputs: __magic_name__ = decoder_inputs.pop('''past_key_values''' ) return dummy_inputs @property def snake_case__ ( self : Dict ): return 1E-3
98
1
from __future__ import annotations import math def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ ): lowerCamelCase_ = u for i in range(1 , lowerCamelCase__ ): lowerCamelCase_ = temp * (u - i) return temp def lowerCamelCase_ ( ): lowerCamelCase_ = int(input("enter the numbers of values: " ) ) lowerCamelCase_ = [] for _ in range(lowerCamelCase__ ): y.append([] ) for i in range(lowerCamelCase__ ): for j in range(lowerCamelCase__ ): y[i].append(lowerCamelCase__ ) lowerCamelCase_ = 0 print("enter the values of parameters in a list: " ) lowerCamelCase_ = list(map(lowerCamelCase__ , input().split() ) ) print("enter the values of corresponding parameters: " ) for i in range(lowerCamelCase__ ): lowerCamelCase_ = float(input() ) lowerCamelCase_ = int(input("enter the value to interpolate: " ) ) lowerCamelCase_ = (value - x[0]) / (x[1] - x[0]) # for calculating forward difference table for i in range(1 , lowerCamelCase__ ): for j in range(n - i ): lowerCamelCase_ = y[j + 1][i - 1] - y[j][i - 1] lowerCamelCase_ = y[0][0] for i in range(1 , lowerCamelCase__ ): summ += (ucal(lowerCamelCase__ , lowerCamelCase__ ) * y[0][i]) / math.factorial(lowerCamelCase__ ) print(F'the value at {value} is {summ}' ) if __name__ == "__main__": main()
19
import math def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ ): if 0 not in (x, y): # We use the relation x^y = y*log10(x), where 10 is the base. return y * math.logaa(lowerCamelCase__ ) else: if x == 0: # 0 raised to any number is 0 return 0 elif y == 0: return 1 # any number raised to 0 is 1 raise AssertionError("This should never happen" ) if __name__ == "__main__": # Main function # Read two numbers from input and typecast them to int using map function. # Here x is the base and y is the power. __A ='''Enter the base and the power separated by a comma: ''' __A, __A =map(int, input(prompt).split(''',''')) __A, __A =map(int, input(prompt).split(''',''')) # We find the log of each number, using the function res(), which takes two # arguments. __A =res(xa, ya) __A =res(xa, ya) # We check for the largest number if resa > resa: print('''Largest number is''', xa, '''^''', ya) elif resa > resa: print('''Largest number is''', xa, '''^''', ya) else: print('''Both are equal''')
19
1
import gc import random import tempfile import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMInverseScheduler, DDIMScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, StableDiffusionDiffEditPipeline, UNetaDConditionModel, ) from diffusers.utils import load_image, slow from diffusers.utils.testing_utils import enable_full_determinism, floats_tensor, require_torch_gpu, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class _a ( a__ , a__ , unittest.TestCase ): """simple docstring""" _lowerCamelCase : Dict = StableDiffusionDiffEditPipeline _lowerCamelCase : List[Any] = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'height', 'width', 'image'} | {'image_latents'} _lowerCamelCase : int = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS - {'image'} | {'image_latents'} _lowerCamelCase : Union[str, Any] = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess _lowerCamelCase : Union[str, Any] = frozenset([] ) def __A ( self : Any ): torch.manual_seed(0 ) A_ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=UpperCAmelCase , ) A_ = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule="scaled_linear" , clip_sample=UpperCAmelCase , set_alpha_to_one=UpperCAmelCase , ) A_ = DDIMInverseScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule="scaled_linear" , clip_sample=UpperCAmelCase , set_alpha_to_zero=UpperCAmelCase , ) torch.manual_seed(0 ) A_ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) A_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act="gelu" , projection_dim=512 , ) A_ = CLIPTextModel(UpperCAmelCase ) A_ = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) A_ = { "unet": unet, "scheduler": scheduler, "inverse_scheduler": inverse_scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "safety_checker": None, "feature_extractor": None, } return components def __A ( self : Any , UpperCAmelCase : List[str] , UpperCAmelCase : List[Any]=0 ): A_ = floats_tensor((1, 16, 16) , rng=random.Random(UpperCAmelCase ) ).to(UpperCAmelCase ) A_ = floats_tensor((1, 2, 4, 16, 16) , rng=random.Random(UpperCAmelCase ) ).to(UpperCAmelCase ) if str(UpperCAmelCase ).startswith("mps" ): A_ = torch.manual_seed(UpperCAmelCase ) else: A_ = torch.Generator(device=UpperCAmelCase ).manual_seed(UpperCAmelCase ) A_ = { "prompt": "a dog and a newt", "mask_image": mask, "image_latents": latents, "generator": generator, "num_inference_steps": 2, "inpaint_strength": 1.0, "guidance_scale": 6.0, "output_type": "numpy", } return inputs def __A ( self : List[Any] , UpperCAmelCase : Tuple , UpperCAmelCase : Dict=0 ): A_ = floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCAmelCase ) ).to(UpperCAmelCase ) A_ = image.cpu().permute(0 , 2 , 3 , 1 )[0] A_ = Image.fromarray(np.uinta(UpperCAmelCase ) ).convert("RGB" ) if str(UpperCAmelCase ).startswith("mps" ): A_ = torch.manual_seed(UpperCAmelCase ) else: A_ = torch.Generator(device=UpperCAmelCase ).manual_seed(UpperCAmelCase ) A_ = { "image": image, "source_prompt": "a cat and a frog", "target_prompt": "a dog and a newt", "generator": generator, "num_inference_steps": 2, "num_maps_per_mask": 2, "mask_encode_strength": 1.0, "guidance_scale": 6.0, "output_type": "numpy", } return inputs def __A ( self : str , UpperCAmelCase : List[str] , UpperCAmelCase : Any=0 ): A_ = floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCAmelCase ) ).to(UpperCAmelCase ) A_ = image.cpu().permute(0 , 2 , 3 , 1 )[0] A_ = Image.fromarray(np.uinta(UpperCAmelCase ) ).convert("RGB" ) if str(UpperCAmelCase ).startswith("mps" ): A_ = torch.manual_seed(UpperCAmelCase ) else: A_ = torch.Generator(device=UpperCAmelCase ).manual_seed(UpperCAmelCase ) A_ = { "image": image, "prompt": "a cat and a frog", "generator": generator, "num_inference_steps": 2, "inpaint_strength": 1.0, "guidance_scale": 6.0, "decode_latents": True, "output_type": "numpy", } return inputs def __A ( self : List[str] ): if not hasattr(self.pipeline_class , "_optional_components" ): return A_ = self.get_dummy_components() A_ = self.pipeline_class(**UpperCAmelCase ) pipe.to(UpperCAmelCase ) pipe.set_progress_bar_config(disable=UpperCAmelCase ) # set all optional components to None and update pipeline config accordingly for optional_component in pipe._optional_components: setattr(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) pipe.register_modules(**{optional_component: None for optional_component in pipe._optional_components} ) A_ = self.get_dummy_inputs(UpperCAmelCase ) A_ = pipe(**UpperCAmelCase )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(UpperCAmelCase ) A_ = self.pipeline_class.from_pretrained(UpperCAmelCase ) pipe_loaded.to(UpperCAmelCase ) pipe_loaded.set_progress_bar_config(disable=UpperCAmelCase ) for optional_component in pipe._optional_components: self.assertTrue( getattr(UpperCAmelCase , UpperCAmelCase ) is None , f'''`{optional_component}` did not stay set to None after loading.''' , ) A_ = self.get_dummy_inputs(UpperCAmelCase ) A_ = pipe_loaded(**UpperCAmelCase )[0] A_ = np.abs(output - output_loaded ).max() self.assertLess(UpperCAmelCase , 1E-4 ) def __A ( self : List[Any] ): A_ = "cpu" A_ = self.get_dummy_components() A_ = self.pipeline_class(**UpperCAmelCase ) pipe.to(UpperCAmelCase ) pipe.set_progress_bar_config(disable=UpperCAmelCase ) A_ = self.get_dummy_mask_inputs(UpperCAmelCase ) A_ = pipe.generate_mask(**UpperCAmelCase ) A_ = mask[0, -3:, -3:] self.assertEqual(mask.shape , (1, 16, 16) ) A_ = np.array([0] * 9 ) A_ = np.abs(mask_slice.flatten() - expected_slice ).max() self.assertLessEqual(UpperCAmelCase , 1E-3 ) self.assertEqual(mask[0, -3, -4] , 0 ) def __A ( self : Tuple ): A_ = "cpu" A_ = self.get_dummy_components() A_ = self.pipeline_class(**UpperCAmelCase ) pipe.to(UpperCAmelCase ) pipe.set_progress_bar_config(disable=UpperCAmelCase ) A_ = self.get_dummy_inversion_inputs(UpperCAmelCase ) A_ = pipe.invert(**UpperCAmelCase ).images A_ = image[0, -1, -3:, -3:] self.assertEqual(image.shape , (2, 32, 32, 3) ) A_ = np.array( [0.5_150, 0.5_134, 0.5_043, 0.5_376, 0.4_694, 0.51_050, 0.5_015, 0.4_407, 0.4_799] , ) A_ = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(UpperCAmelCase , 1E-3 ) def __A ( self : str ): super().test_inference_batch_single_identical(expected_max_diff=5E-3 ) def __A ( self : Dict ): A_ = "cpu" A_ = self.get_dummy_components() A_ = {"beta_start": 0.00_085, "beta_end": 0.012, "beta_schedule": "scaled_linear"} A_ = DPMSolverMultistepScheduler(**UpperCAmelCase ) A_ = DPMSolverMultistepInverseScheduler(**UpperCAmelCase ) A_ = self.pipeline_class(**UpperCAmelCase ) pipe.to(UpperCAmelCase ) pipe.set_progress_bar_config(disable=UpperCAmelCase ) A_ = self.get_dummy_inversion_inputs(UpperCAmelCase ) A_ = pipe.invert(**UpperCAmelCase ).images A_ = image[0, -1, -3:, -3:] self.assertEqual(image.shape , (2, 32, 32, 3) ) A_ = np.array( [0.5_150, 0.5_134, 0.5_043, 0.5_376, 0.4_694, 0.51_050, 0.5_015, 0.4_407, 0.4_799] , ) A_ = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(UpperCAmelCase , 1E-3 ) @require_torch_gpu @slow class _a ( unittest.TestCase ): """simple docstring""" def __A ( self : Tuple ): super().tearDown() gc.collect() torch.cuda.empty_cache() @classmethod def __A ( cls : Optional[Any] ): A_ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/diffedit/fruit.png" ) A_ = raw_image.convert("RGB" ).resize((768, 768) ) A_ = raw_image def __A ( self : List[str] ): A_ = torch.manual_seed(0 ) A_ = StableDiffusionDiffEditPipeline.from_pretrained( "stabilityai/stable-diffusion-2-1" , safety_checker=UpperCAmelCase , torch_dtype=torch.floataa ) A_ = DDIMScheduler.from_config(pipe.scheduler.config ) A_ = DDIMInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=UpperCAmelCase ) A_ = "a bowl of fruit" A_ = "a bowl of pears" A_ = pipe.generate_mask( image=self.raw_image , source_prompt=UpperCAmelCase , target_prompt=UpperCAmelCase , generator=UpperCAmelCase , ) A_ = pipe.invert( prompt=UpperCAmelCase , image=self.raw_image , inpaint_strength=0.7 , generator=UpperCAmelCase ).latents A_ = pipe( prompt=UpperCAmelCase , mask_image=UpperCAmelCase , image_latents=UpperCAmelCase , generator=UpperCAmelCase , negative_prompt=UpperCAmelCase , inpaint_strength=0.7 , output_type="numpy" , ).images[0] A_ = ( np.array( load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/diffedit/pears.png" ).resize((768, 768) ) ) / 255 ) assert np.abs((expected_image - image).max() ) < 5E-1 def __A ( self : Tuple ): A_ = torch.manual_seed(0 ) A_ = StableDiffusionDiffEditPipeline.from_pretrained( "stabilityai/stable-diffusion-2-1" , safety_checker=UpperCAmelCase , torch_dtype=torch.floataa ) A_ = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) A_ = DPMSolverMultistepInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=UpperCAmelCase ) A_ = "a bowl of fruit" A_ = "a bowl of pears" A_ = pipe.generate_mask( image=self.raw_image , source_prompt=UpperCAmelCase , target_prompt=UpperCAmelCase , generator=UpperCAmelCase , ) A_ = pipe.invert( prompt=UpperCAmelCase , image=self.raw_image , inpaint_strength=0.7 , generator=UpperCAmelCase , num_inference_steps=25 , ).latents A_ = pipe( prompt=UpperCAmelCase , mask_image=UpperCAmelCase , image_latents=UpperCAmelCase , generator=UpperCAmelCase , negative_prompt=UpperCAmelCase , inpaint_strength=0.7 , num_inference_steps=25 , output_type="numpy" , ).images[0] A_ = ( np.array( load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/diffedit/pears.png" ).resize((768, 768) ) ) / 255 ) assert np.abs((expected_image - image).max() ) < 5E-1
370
from math import isqrt, loga def __snake_case ( __UpperCamelCase : int ): """simple docstring""" A_ = [True] * max_number for i in range(2 ,isqrt(max_number - 1 ) + 1 ): if is_prime[i]: for j in range(i**2 ,__UpperCamelCase ,__UpperCamelCase ): A_ = False return [i for i in range(2 ,__UpperCamelCase ) if is_prime[i]] def __snake_case ( __UpperCamelCase : int = 80_0800 ,__UpperCamelCase : int = 80_0800 ): """simple docstring""" A_ = degree * loga(__UpperCamelCase ) A_ = int(__UpperCamelCase ) A_ = calculate_prime_numbers(__UpperCamelCase ) A_ = 0 A_ = 0 A_ = len(__UpperCamelCase ) - 1 while left < right: while ( prime_numbers[right] * loga(prime_numbers[left] ) + prime_numbers[left] * loga(prime_numbers[right] ) > upper_bound ): right -= 1 hybrid_integers_count += right - left left += 1 return hybrid_integers_count if __name__ == "__main__": print(F"{solution() = }")
329
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = {'openai-gpt': 'https://huggingface.co/openai-gpt/resolve/main/config.json'} class a__ ( lowerCamelCase_ ): _SCREAMING_SNAKE_CASE : List[str] = 'openai-gpt' _SCREAMING_SNAKE_CASE : Optional[int] = { 'max_position_embeddings': 'n_positions', 'hidden_size': 'n_embd', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self , _UpperCamelCase=40478 , _UpperCamelCase=512 , _UpperCamelCase=768 , _UpperCamelCase=12 , _UpperCamelCase=12 , _UpperCamelCase="gelu" , _UpperCamelCase=0.1 , _UpperCamelCase=0.1 , _UpperCamelCase=0.1 , _UpperCamelCase=1E-5 , _UpperCamelCase=0.0_2 , _UpperCamelCase="cls_index" , _UpperCamelCase=True , _UpperCamelCase=None , _UpperCamelCase=True , _UpperCamelCase=0.1 , **_UpperCamelCase , ): """simple docstring""" _lowercase : str = vocab_size _lowercase : Union[str, Any] = n_positions _lowercase : int = n_embd _lowercase : List[str] = n_layer _lowercase : List[str] = n_head _lowercase : Tuple = afn _lowercase : Optional[Any] = resid_pdrop _lowercase : Union[str, Any] = embd_pdrop _lowercase : List[str] = attn_pdrop _lowercase : Any = layer_norm_epsilon _lowercase : int = initializer_range _lowercase : List[Any] = summary_type _lowercase : List[str] = summary_use_proj _lowercase : List[Any] = summary_activation _lowercase : List[str] = summary_first_dropout _lowercase : str = summary_proj_to_labels super().__init__(**_UpperCamelCase )
250
'''simple docstring''' from __future__ import annotations def _A ( snake_case ) -> float: _lowercase : Optional[Any] = 0.00 _lowercase : Dict = 0 for resistor in resistors: if resistor <= 0: _lowercase : Union[str, Any] = F'''Resistor at index {index} has a negative or zero value!''' raise ValueError(snake_case ) first_sum += 1 / float(snake_case ) index += 1 return 1 / first_sum def _A ( snake_case ) -> float: _lowercase : Dict = 0.00 _lowercase : List[str] = 0 for resistor in resistors: sum_r += resistor if resistor < 0: _lowercase : Dict = F'''Resistor at index {index} has a negative value!''' raise ValueError(snake_case ) index += 1 return sum_r if __name__ == "__main__": import doctest doctest.testmod()
250
1
"""simple docstring""" from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFXLMRobertaModel @require_tf @require_sentencepiece @require_tokenizers class __a ( unittest.TestCase ): @slow def snake_case_ ( self ): _lowerCamelCase = TFXLMRobertaModel.from_pretrained('jplu/tf-xlm-roberta-base' ) _lowerCamelCase = { 'input_ids': tf.convert_to_tensor([[0, 26_46, 1_02_69, 83, 9_99_42, 2]] , dtype=tf.intaa ), # "My dog is cute" 'attention_mask': tf.convert_to_tensor([[1, 1, 1, 1, 1, 1]] , dtype=tf.intaa ), } _lowerCamelCase = model(a__ )['last_hidden_state'] _lowerCamelCase = tf.TensorShape((1, 6, 7_68) ) self.assertEqual(output.shape , a__ ) # compare the actual values for a slice. _lowerCamelCase = tf.convert_to_tensor( [ [ [0.0681762, 0.10894451, 0.06772504], [-0.06423668, 0.02366615, 0.04329344], [-0.06057295, 0.09974135, -0.00070584], ] ] , dtype=tf.floataa , ) self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-4 ) )
80
"""simple docstring""" def SCREAMING_SNAKE_CASE_ ( snake_case : int )-> list[int]: if num <= 0: raise ValueError('Input must be a positive integer' ) _lowerCamelCase = [True] * (num + 1) _lowerCamelCase = 2 while p * p <= num: if primes[p]: for i in range(p * p , num + 1 , snake_case ): _lowerCamelCase = False p += 1 return [prime for prime in range(2 , num + 1 ) if primes[prime]] if __name__ == "__main__": import doctest doctest.testmod() A_ : Optional[int] =int(input("""Enter a positive integer: """).strip()) print(prime_sieve_eratosthenes(user_num))
80
1
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import GLPNImageProcessor class _A ( unittest.TestCase ): def __init__( self : Tuple , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : int=7 , __SCREAMING_SNAKE_CASE : Optional[int]=3 , __SCREAMING_SNAKE_CASE : Optional[int]=18 , __SCREAMING_SNAKE_CASE : str=30 , __SCREAMING_SNAKE_CASE : List[str]=400 , __SCREAMING_SNAKE_CASE : List[Any]=True , __SCREAMING_SNAKE_CASE : Optional[Any]=32 , __SCREAMING_SNAKE_CASE : Optional[int]=True , ): '''simple docstring''' __a = parent __a = batch_size __a = num_channels __a = image_size __a = min_resolution __a = max_resolution __a = do_resize __a = size_divisor __a = do_rescale def _lowerCamelCase ( self : Dict): '''simple docstring''' return { "do_resize": self.do_resize, "size_divisor": self.size_divisor, "do_rescale": self.do_rescale, } @require_torch @require_vision class _A ( __UpperCAmelCase ,unittest.TestCase ): UpperCamelCase__ : Tuple = GLPNImageProcessor if is_vision_available() else None def _lowerCamelCase ( self : str): '''simple docstring''' __a = GLPNImageProcessingTester(self) @property def _lowerCamelCase ( self : Optional[int]): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def _lowerCamelCase ( self : List[str]): '''simple docstring''' __a = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , '''do_resize''')) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , '''size_divisor''')) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , '''resample''')) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , '''do_rescale''')) def _lowerCamelCase ( self : Tuple): '''simple docstring''' pass def _lowerCamelCase ( self : str): '''simple docstring''' __a = self.image_processing_class(**self.image_processor_dict) # create random PIL images __a = prepare_image_inputs(self.image_processor_tester , equal_resolution=__SCREAMING_SNAKE_CASE) for image in image_inputs: self.assertIsInstance(__SCREAMING_SNAKE_CASE , Image.Image) # Test not batched input (GLPNImageProcessor doesn't support batching) __a = image_processing(image_inputs[0] , return_tensors='''pt''').pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0) def _lowerCamelCase ( self : Dict): '''simple docstring''' __a = self.image_processing_class(**self.image_processor_dict) # create random numpy tensors __a = prepare_image_inputs(self.image_processor_tester , equal_resolution=__SCREAMING_SNAKE_CASE , numpify=__SCREAMING_SNAKE_CASE) for image in image_inputs: self.assertIsInstance(__SCREAMING_SNAKE_CASE , np.ndarray) # Test not batched input (GLPNImageProcessor doesn't support batching) __a = image_processing(image_inputs[0] , return_tensors='''pt''').pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0) def _lowerCamelCase ( self : List[str]): '''simple docstring''' __a = self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors __a = prepare_image_inputs(self.image_processor_tester , equal_resolution=__SCREAMING_SNAKE_CASE , torchify=__SCREAMING_SNAKE_CASE) for image in image_inputs: self.assertIsInstance(__SCREAMING_SNAKE_CASE , torch.Tensor) # Test not batched input (GLPNImageProcessor doesn't support batching) __a = image_processing(image_inputs[0] , return_tensors='''pt''').pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0)
49
from __future__ import annotations import random # Maximum size of the population. Bigger could be faster but is more memory expensive. __snake_case :Optional[int] = 200 # Number of elements selected in every generation of evolution. The selection takes # place from best to worst of that generation and must be smaller than N_POPULATION. __snake_case :List[str] = 50 # Probability that an element of a generation can mutate, changing one of its genes. # This will guarantee that all genes will be used during evolution. __snake_case :List[Any] = 0.4 # Just a seed to improve randomness required by the algorithm. random.seed(random.randint(0, 1000)) def __snake_case ( _UpperCAmelCase , _UpperCAmelCase ): __a = len([g for position, g in enumerate(_UpperCAmelCase ) if g == main_target[position]] ) return (item, float(_UpperCAmelCase )) def __snake_case ( _UpperCAmelCase , _UpperCAmelCase ): __a = random.randint(0 , len(_UpperCAmelCase ) - 1 ) __a = parent_a[:random_slice] + parent_a[random_slice:] __a = parent_a[:random_slice] + parent_a[random_slice:] return (child_a, child_a) def __snake_case ( _UpperCAmelCase , _UpperCAmelCase ): __a = list(_UpperCAmelCase ) if random.uniform(0 , 1 ) < MUTATION_PROBABILITY: __a = random.choice(_UpperCAmelCase ) return "".join(_UpperCAmelCase ) def __snake_case ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , ): __a = [] # Generate more children proportionally to the fitness score. __a = int(parent_a[1] * 100 ) + 1 __a = 10 if child_n >= 10 else child_n for _ in range(_UpperCAmelCase ): __a = population_score[random.randint(0 , _UpperCAmelCase )][0] __a , __a = crossover(parent_a[0] , _UpperCAmelCase ) # Append new string to the population list. pop.append(mutate(_UpperCAmelCase , _UpperCAmelCase ) ) pop.append(mutate(_UpperCAmelCase , _UpperCAmelCase ) ) return pop def __snake_case ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = True ): # Verify if N_POPULATION is bigger than N_SELECTED if N_POPULATION < N_SELECTED: __a = f'{N_POPULATION} must be bigger than {N_SELECTED}' raise ValueError(_UpperCAmelCase ) # Verify that the target contains no genes besides the ones inside genes variable. __a = sorted({c for c in target if c not in genes} ) if not_in_genes_list: __a = f'{not_in_genes_list} is not in genes list, evolution cannot converge' raise ValueError(_UpperCAmelCase ) # Generate random starting population. __a = [] for _ in range(_UpperCAmelCase ): population.append(''''''.join([random.choice(_UpperCAmelCase ) for i in range(len(_UpperCAmelCase ) )] ) ) # Just some logs to know what the algorithms is doing. __a , __a = 0, 0 # This loop will end when we find a perfect match for our target. while True: generation += 1 total_population += len(_UpperCAmelCase ) # Random population created. Now it's time to evaluate. # Adding a bit of concurrency can make everything faster, # # import concurrent.futures # population_score: list[tuple[str, float]] = [] # with concurrent.futures.ThreadPoolExecutor( # max_workers=NUM_WORKERS) as executor: # futures = {executor.submit(evaluate, item) for item in population} # concurrent.futures.wait(futures) # population_score = [item.result() for item in futures] # # but with a simple algorithm like this, it will probably be slower. # We just need to call evaluate for every item inside the population. __a = [evaluate(_UpperCAmelCase , _UpperCAmelCase ) for item in population] # Check if there is a matching evolution. __a = sorted(_UpperCAmelCase , key=lambda _UpperCAmelCase : x[1] , reverse=_UpperCAmelCase ) if population_score[0][0] == target: return (generation, total_population, population_score[0][0]) # Print the best result every 10 generation. # Just to know that the algorithm is working. if debug and generation % 10 == 0: print( f'\nGeneration: {generation}' f'\nTotal Population:{total_population}' f'\nBest score: {population_score[0][1]}' f'\nBest string: {population_score[0][0]}' ) # Flush the old population, keeping some of the best evolutions. # Keeping this avoid regression of evolution. __a = population[: int(N_POPULATION / 3 )] population.clear() population.extend(_UpperCAmelCase ) # Normalize population score to be between 0 and 1. __a = [ (item, score / len(_UpperCAmelCase )) for item, score in population_score ] # This is selection for i in range(_UpperCAmelCase ): population.extend(select(population_score[int(_UpperCAmelCase )] , _UpperCAmelCase , _UpperCAmelCase ) ) # Check if the population has already reached the maximum value and if so, # break the cycle. If this check is disabled, the algorithm will take # forever to compute large strings, but will also calculate small strings in # a far fewer generations. if len(_UpperCAmelCase ) > N_POPULATION: break if __name__ == "__main__": __snake_case :Optional[int] = ( '''This is a genetic algorithm to evaluate, combine, evolve, and mutate a string!''' ) __snake_case :List[Any] = list( ''' ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklm''' '''nopqrstuvwxyz.,;!?+-*#@^\'èéòà€ù=)(&%$£/\\''' ) __snake_case ,__snake_case ,__snake_case :Dict = basic(target_str, genes_list) print( f'\nGeneration: {generation}\nTotal Population: {population}\nTarget: {target}' )
49
1
'''simple docstring''' def UpperCamelCase ( a , a ) -> List[Any]: '''simple docstring''' if a < 0 or b < 0: raise ValueError('''the value of both inputs must be positive''' ) __magic_name__ = str(bin(a ) )[2:] # remove the leading "0b" __magic_name__ = str(bin(a ) )[2:] # remove the leading "0b" __magic_name__ = max(len(a ) , len(a ) ) return "0b" + "".join( str(int(char_a == '''1''' and char_b == '''1''' ) ) for char_a, char_b in zip(a_binary.zfill(a ) , b_binary.zfill(a ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
353
'''simple docstring''' import numpy as np import torch from torch.nn import CrossEntropyLoss from transformers import AutoModelForCausalLM, AutoTokenizer import datasets from datasets import logging _lowerCAmelCase = "\\n\n" _lowerCAmelCase = "\nPerplexity (PPL) is one of the most common metrics for evaluating language models.\nIt is defined as the exponentiated average negative log-likelihood of a sequence.\n\nFor more information, see https://huggingface.co/docs/transformers/perplexity\n" _lowerCAmelCase = "\nArgs:\n model_id (str): model used for calculating Perplexity\n NOTE: Perplexity can only be calculated for causal language models.\n This includes models such as gpt2, causal variations of bert,\n causal versions of t5, and more (the full list can be found\n in the AutoModelForCausalLM documentation here:\n https://huggingface.co/docs/transformers/master/en/model_doc/auto#transformers.AutoModelForCausalLM )\n\n input_texts (list of str): input text, each separate text snippet\n is one list entry.\n batch_size (int): the batch size to run texts through the model. Defaults to 16.\n add_start_token (bool): whether to add the start token to the texts,\n so the perplexity can include the probability of the first word. Defaults to True.\n device (str): device to run on, defaults to 'cuda' when available\nReturns:\n perplexity: dictionary containing the perplexity scores for the texts\n in the input list, as well as the mean perplexity. If one of the input texts is\n longer than the max input length of the model, then it is truncated to the\n max length for the perplexity computation.\nExamples:\n Example 1:\n >>> perplexity = datasets.load_metric(\"perplexity\")\n >>> input_texts = [\"lorem ipsum\", \"Happy Birthday!\", \"Bienvenue\"]\n >>> results = perplexity.compute(model_id='gpt2',\n ... add_start_token=False,\n ... input_texts=input_texts) # doctest:+ELLIPSIS\n >>> print(list(results.keys()))\n ['perplexities', 'mean_perplexity']\n >>> print(round(results[\"mean_perplexity\"], 2))\n 78.22\n >>> print(round(results[\"perplexities\"][0], 2))\n 11.11\n\n Example 2:\n >>> perplexity = datasets.load_metric(\"perplexity\")\n >>> input_texts = datasets.load_dataset(\"wikitext\",\n ... \"wikitext-2-raw-v1\",\n ... split=\"test\")[\"text\"][:50] # doctest:+ELLIPSIS\n [...]\n >>> input_texts = [s for s in input_texts if s!='']\n >>> results = perplexity.compute(model_id='gpt2',\n ... input_texts=input_texts) # doctest:+ELLIPSIS\n >>> print(list(results.keys()))\n ['perplexities', 'mean_perplexity']\n >>> print(round(results[\"mean_perplexity\"], 2))\n 60.35\n >>> print(round(results[\"perplexities\"][0], 2))\n 81.12\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class _SCREAMING_SNAKE_CASE ( datasets.Metric ): def snake_case__ ( self : Dict ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''input_texts''': datasets.Value('''string''' ), } ) , reference_urls=['''https://huggingface.co/docs/transformers/perplexity'''] , ) def snake_case__ ( self : Optional[int] , a__ : int , a__ : Dict , a__ : int = 16 , a__ : bool = True , a__ : Any=None ): if device is not None: assert device in ["gpu", "cpu", "cuda"], "device should be either gpu or cpu." if device == "gpu": __magic_name__ = '''cuda''' else: __magic_name__ = '''cuda''' if torch.cuda.is_available() else '''cpu''' __magic_name__ = AutoModelForCausalLM.from_pretrained(a__ ) __magic_name__ = model.to(a__ ) __magic_name__ = AutoTokenizer.from_pretrained(a__ ) # if batch_size > 1 (which generally leads to padding being required), and # if there is not an already assigned pad_token, assign an existing # special token to also be the padding token if tokenizer.pad_token is None and batch_size > 1: __magic_name__ = list(tokenizer.special_tokens_map_extended.values() ) # check that the model already has at least one special token defined assert ( len(a__ ) > 0 ), "If batch_size > 1, model must have at least one special token to use for padding. Please use a different model or set batch_size=1." # assign one of the special tokens to also be the pad token tokenizer.add_special_tokens({'''pad_token''': existing_special_tokens[0]} ) if add_start_token: # leave room for <BOS> token to be added: assert ( tokenizer.bos_token is not None ), "Input model must already have a BOS token if using add_start_token=True. Please use a different model, or set add_start_token=False" __magic_name__ = model.config.max_length - 1 else: __magic_name__ = model.config.max_length __magic_name__ = tokenizer( a__ , add_special_tokens=a__ , padding=a__ , truncation=a__ , max_length=a__ , return_tensors='''pt''' , return_attention_mask=a__ , ).to(a__ ) __magic_name__ = encodings['''input_ids'''] __magic_name__ = encodings['''attention_mask'''] # check that each input is long enough: if add_start_token: assert torch.all(torch.ge(attn_masks.sum(1 ) , 1 ) ), "Each input text must be at least one token long." else: assert torch.all( torch.ge(attn_masks.sum(1 ) , 2 ) ), "When add_start_token=False, each input text must be at least two tokens long. Run with add_start_token=True if inputting strings of only one token, and remove all empty input strings." __magic_name__ = [] __magic_name__ = CrossEntropyLoss(reduction='''none''' ) for start_index in logging.tqdm(range(0 , len(a__ ) , a__ ) ): __magic_name__ = min(start_index + batch_size , len(a__ ) ) __magic_name__ = encoded_texts[start_index:end_index] __magic_name__ = attn_masks[start_index:end_index] if add_start_token: __magic_name__ = torch.tensor([[tokenizer.bos_token_id]] * encoded_batch.size(dim=0 ) ).to(a__ ) __magic_name__ = torch.cat([bos_tokens_tensor, encoded_batch] , dim=1 ) __magic_name__ = torch.cat( [torch.ones(bos_tokens_tensor.size() , dtype=torch.intaa ).to(a__ ), attn_mask] , dim=1 ) __magic_name__ = encoded_batch with torch.no_grad(): __magic_name__ = model(a__ , attention_mask=a__ ).logits __magic_name__ = out_logits[..., :-1, :].contiguous() __magic_name__ = labels[..., 1:].contiguous() __magic_name__ = attn_mask[..., 1:].contiguous() __magic_name__ = torch.expa( (loss_fct(shift_logits.transpose(1 , 2 ) , a__ ) * shift_attention_mask_batch).sum(1 ) / shift_attention_mask_batch.sum(1 ) ) ppls += perplexity_batch.tolist() return {"perplexities": ppls, "mean_perplexity": np.mean(a__ )}
98
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __lowerCamelCase : Optional[Any] = {"""configuration_glpn""": ["""GLPN_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GLPNConfig"""]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : List[str] = ["""GLPNFeatureExtractor"""] __lowerCamelCase : int = ["""GLPNImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Optional[Any] = [ """GLPN_PRETRAINED_MODEL_ARCHIVE_LIST""", """GLPNForDepthEstimation""", """GLPNLayer""", """GLPNModel""", """GLPNPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_glpn import GLPN_PRETRAINED_CONFIG_ARCHIVE_MAP, GLPNConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_glpn import GLPNFeatureExtractor from .image_processing_glpn import GLPNImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_glpn import ( GLPN_PRETRAINED_MODEL_ARCHIVE_LIST, GLPNForDepthEstimation, GLPNLayer, GLPNModel, GLPNPreTrainedModel, ) else: import sys __lowerCamelCase : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
52
def a__ ( __UpperCamelCase = 1_0_0_0 ): SCREAMING_SNAKE_CASE_ = -1 SCREAMING_SNAKE_CASE_ = 0 for a in range(1 , n // 3 ): # Solving the two equations a**2+b**2=c**2 and a+b+c=N eliminating c SCREAMING_SNAKE_CASE_ = (n * n - 2 * a * n) // (2 * n - 2 * a) SCREAMING_SNAKE_CASE_ = n - a - b if c * c == (a * a + b * b): SCREAMING_SNAKE_CASE_ = a * b * c if candidate >= product: SCREAMING_SNAKE_CASE_ = candidate return product if __name__ == "__main__": print(f"{solution() = }")
118
0
"""simple docstring""" import itertools from dataclasses import dataclass from typing import Any, Callable, Dict, List, Optional, Union import pandas as pd import pyarrow as pa import datasets import datasets.config from datasets.features.features import require_storage_cast from datasets.table import table_cast from datasets.utils.py_utils import Literal A_ = datasets.utils.logging.get_logger(__name__) A_ = ['''names''', '''prefix'''] A_ = ['''warn_bad_lines''', '''error_bad_lines''', '''mangle_dupe_cols'''] A_ = ['''encoding_errors''', '''on_bad_lines'''] A_ = ['''date_format'''] @dataclass class __SCREAMING_SNAKE_CASE ( datasets.BuilderConfig ): snake_case_ = "," snake_case_ = None snake_case_ = "infer" snake_case_ = None snake_case_ = None snake_case_ = None snake_case_ = None snake_case_ = None snake_case_ = True snake_case_ = None snake_case_ = None snake_case_ = None snake_case_ = None snake_case_ = False snake_case_ = None snake_case_ = None snake_case_ = None snake_case_ = True snake_case_ = True snake_case_ = False snake_case_ = True snake_case_ = None snake_case_ = "." snake_case_ = None snake_case_ = '"' snake_case_ = 0 snake_case_ = None snake_case_ = None snake_case_ = None snake_case_ = None snake_case_ = True snake_case_ = True snake_case_ = 0 snake_case_ = True snake_case_ = False snake_case_ = None snake_case_ = 10000 snake_case_ = None snake_case_ = "strict" snake_case_ = "error" snake_case_ = None def _UpperCamelCase ( self : Union[str, Any] ): '''simple docstring''' if self.delimiter is not None: A__ : Tuple = self.delimiter if self.column_names is not None: A__ : str = self.column_names @property def _UpperCamelCase ( self : Tuple ): '''simple docstring''' A__ : Optional[Any] = { """sep""": self.sep, """header""": self.header, """names""": self.names, """index_col""": self.index_col, """usecols""": self.usecols, """prefix""": self.prefix, """mangle_dupe_cols""": self.mangle_dupe_cols, """engine""": self.engine, """converters""": self.converters, """true_values""": self.true_values, """false_values""": self.false_values, """skipinitialspace""": self.skipinitialspace, """skiprows""": self.skiprows, """nrows""": self.nrows, """na_values""": self.na_values, """keep_default_na""": self.keep_default_na, """na_filter""": self.na_filter, """verbose""": self.verbose, """skip_blank_lines""": self.skip_blank_lines, """thousands""": self.thousands, """decimal""": self.decimal, """lineterminator""": self.lineterminator, """quotechar""": self.quotechar, """quoting""": self.quoting, """escapechar""": self.escapechar, """comment""": self.comment, """encoding""": self.encoding, """dialect""": self.dialect, """error_bad_lines""": self.error_bad_lines, """warn_bad_lines""": self.warn_bad_lines, """skipfooter""": self.skipfooter, """doublequote""": self.doublequote, """memory_map""": self.memory_map, """float_precision""": self.float_precision, """chunksize""": self.chunksize, """encoding_errors""": self.encoding_errors, """on_bad_lines""": self.on_bad_lines, """date_format""": self.date_format, } # some kwargs must not be passed if they don't have a default value # some others are deprecated and we can also not pass them if they are the default value for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS: if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig() , snake_case ): del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 2.0 new arguments if not (datasets.config.PANDAS_VERSION.major >= 2): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 1.3 new arguments if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] return pd_read_csv_kwargs class __SCREAMING_SNAKE_CASE ( datasets.ArrowBasedBuilder ): snake_case_ = CsvConfig def _UpperCamelCase ( self : Any ): '''simple docstring''' return datasets.DatasetInfo(features=self.config.features ) def _UpperCamelCase ( self : Optional[Any] , snake_case : Dict ): '''simple docstring''' if not self.config.data_files: raise ValueError(F'At least one data file must be specified, but got data_files={self.config.data_files}' ) A__ : int = dl_manager.download_and_extract(self.config.data_files ) if isinstance(snake_case , (str, list, tuple) ): A__ : Optional[Any] = data_files if isinstance(snake_case , snake_case ): A__ : List[str] = [files] A__ : Union[str, Any] = [dl_manager.iter_files(snake_case ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"""files""": files} )] A__ : str = [] for split_name, files in data_files.items(): if isinstance(snake_case , snake_case ): A__ : List[Any] = [files] A__ : List[str] = [dl_manager.iter_files(snake_case ) for file in files] splits.append(datasets.SplitGenerator(name=snake_case , gen_kwargs={"""files""": files} ) ) return splits def _UpperCamelCase ( self : List[str] , snake_case : pa.Table ): '''simple docstring''' if self.config.features is not None: A__ : int = self.config.features.arrow_schema if all(not require_storage_cast(snake_case ) for feature in self.config.features.values() ): # cheaper cast A__ : int = pa.Table.from_arrays([pa_table[field.name] for field in schema] , schema=snake_case ) else: # more expensive cast; allows str <-> int/float or str to Audio for example A__ : Dict = table_cast(snake_case , snake_case ) return pa_table def _UpperCamelCase ( self : int , snake_case : Dict ): '''simple docstring''' A__ : Optional[int] = self.config.features.arrow_schema if self.config.features else None # dtype allows reading an int column as str A__ : int = ( { name: dtype.to_pandas_dtype() if not require_storage_cast(snake_case ) else object for name, dtype, feature in zip(schema.names , schema.types , self.config.features.values() ) } if schema is not None else None ) for file_idx, file in enumerate(itertools.chain.from_iterable(snake_case ) ): A__ : Optional[int] = pd.read_csv(snake_case , iterator=snake_case , dtype=snake_case , **self.config.pd_read_csv_kwargs ) try: for batch_idx, df in enumerate(snake_case ): A__ : Union[str, Any] = pa.Table.from_pandas(snake_case ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(snake_case ) except ValueError as e: logger.error(F'Failed to read file \'{file}\' with error {type(snake_case )}: {e}' ) raise
296
"""simple docstring""" import argparse import glob import importlib.util import os import re import black from doc_builder.style_doc import style_docstrings_in_code # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py A_ = '''src/diffusers''' A_ = '''.''' # This is to make sure the diffusers module imported is the one in the repo. A_ = importlib.util.spec_from_file_location( '''diffusers''', os.path.join(DIFFUSERS_PATH, '''__init__.py'''), submodule_search_locations=[DIFFUSERS_PATH], ) A_ = spec.loader.load_module() def _lowerCAmelCase ( UpperCAmelCase__ : Optional[int], UpperCAmelCase__ : Optional[Any] ) ->Any: return line.startswith(UpperCAmelCase__ ) or len(UpperCAmelCase__ ) <= 1 or re.search(R"""^\s*\)(\s*->.*:|:)\s*$""", UpperCAmelCase__ ) is not None def _lowerCAmelCase ( UpperCAmelCase__ : List[str] ) ->Union[str, Any]: A__ : Any = object_name.split(""".""" ) A__ : int = 0 # First let's find the module where our object lives. A__ : str = parts[i] while i < len(UpperCAmelCase__ ) and not os.path.isfile(os.path.join(UpperCAmelCase__, f'{module}.py' ) ): i += 1 if i < len(UpperCAmelCase__ ): A__ : Union[str, Any] = os.path.join(UpperCAmelCase__, parts[i] ) if i >= len(UpperCAmelCase__ ): raise ValueError(f'`object_name` should begin with the name of a module of diffusers but got {object_name}.' ) with open(os.path.join(UpperCAmelCase__, f'{module}.py' ), """r""", encoding="""utf-8""", newline="""\n""" ) as f: A__ : List[Any] = f.readlines() # Now let's find the class / func in the code! A__ : Optional[Any] = """""" A__ : Any = 0 for name in parts[i + 1 :]: while ( line_index < len(UpperCAmelCase__ ) and re.search(Rf'^{indent}(class|def)\s+{name}(\(|\:)', lines[line_index] ) is None ): line_index += 1 indent += " " line_index += 1 if line_index >= len(UpperCAmelCase__ ): raise ValueError(f' {object_name} does not match any function or class in {module}.' ) # We found the beginning of the class / func, now let's find the end (when the indent diminishes). A__ : List[Any] = line_index while line_index < len(UpperCAmelCase__ ) and _should_continue(lines[line_index], UpperCAmelCase__ ): line_index += 1 # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 A__ : List[Any] = lines[start_index:line_index] return "".join(UpperCAmelCase__ ) A_ = re.compile(r'''^(\s*)#\s*Copied from\s+diffusers\.(\S+\.\S+)\s*($|\S.*$)''') A_ = re.compile(r'''^\s*(\S+)->(\S+)(\s+.*|$)''') A_ = re.compile(r'''<FILL\s+[^>]*>''') def _lowerCAmelCase ( UpperCAmelCase__ : List[str] ) ->Optional[Any]: A__ : Dict = code.split("""\n""" ) A__ : List[Any] = 0 while idx < len(UpperCAmelCase__ ) and len(lines[idx] ) == 0: idx += 1 if idx < len(UpperCAmelCase__ ): return re.search(R"""^(\s*)\S""", lines[idx] ).groups()[0] return "" def _lowerCAmelCase ( UpperCAmelCase__ : Optional[Any] ) ->int: A__ : str = len(get_indent(UpperCAmelCase__ ) ) > 0 if has_indent: A__ : Union[str, Any] = f'class Bla:\n{code}' A__ : Optional[Any] = black.Mode(target_versions={black.TargetVersion.PYaa}, line_length=1_1_9, preview=UpperCAmelCase__ ) A__ : Tuple = black.format_str(UpperCAmelCase__, mode=UpperCAmelCase__ ) A__ , A__ : List[Any] = style_docstrings_in_code(UpperCAmelCase__ ) return result[len("""class Bla:\n""" ) :] if has_indent else result def _lowerCAmelCase ( UpperCAmelCase__ : Any, UpperCAmelCase__ : Dict=False ) ->List[Any]: with open(UpperCAmelCase__, """r""", encoding="""utf-8""", newline="""\n""" ) as f: A__ : int = f.readlines() A__ : Dict = [] A__ : List[str] = 0 # Not a for loop cause `lines` is going to change (if `overwrite=True`). while line_index < len(UpperCAmelCase__ ): A__ : Dict = _re_copy_warning.search(lines[line_index] ) if search is None: line_index += 1 continue # There is some copied code here, let's retrieve the original. A__ , A__ , A__ : Dict = search.groups() A__ : Tuple = find_code_in_diffusers(UpperCAmelCase__ ) A__ : int = get_indent(UpperCAmelCase__ ) A__ : List[str] = line_index + 1 if indent == theoretical_indent else line_index + 2 A__ : Tuple = theoretical_indent A__ : Optional[Any] = start_index # Loop to check the observed code, stop when indentation diminishes or if we see a End copy comment. A__ : Tuple = True while line_index < len(UpperCAmelCase__ ) and should_continue: line_index += 1 if line_index >= len(UpperCAmelCase__ ): break A__ : Optional[int] = lines[line_index] A__ : Tuple = _should_continue(UpperCAmelCase__, UpperCAmelCase__ ) and re.search(f'^{indent}# End copy', UpperCAmelCase__ ) is None # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 A__ : Dict = lines[start_index:line_index] A__ : Tuple = """""".join(UpperCAmelCase__ ) # Remove any nested `Copied from` comments to avoid circular copies A__ : Optional[int] = [line for line in theoretical_code.split("""\n""" ) if _re_copy_warning.search(UpperCAmelCase__ ) is None] A__ : Optional[Any] = """\n""".join(UpperCAmelCase__ ) # Before comparing, use the `replace_pattern` on the original code. if len(UpperCAmelCase__ ) > 0: A__ : int = replace_pattern.replace("""with""", """""" ).split(""",""" ) A__ : List[Any] = [_re_replace_pattern.search(UpperCAmelCase__ ) for p in patterns] for pattern in patterns: if pattern is None: continue A__ , A__ , A__ : Union[str, Any] = pattern.groups() A__ : Union[str, Any] = re.sub(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) if option.strip() == "all-casing": A__ : List[Any] = re.sub(obja.lower(), obja.lower(), UpperCAmelCase__ ) A__ : Tuple = re.sub(obja.upper(), obja.upper(), UpperCAmelCase__ ) # Blackify after replacement. To be able to do that, we need the header (class or function definition) # from the previous line A__ : Optional[int] = blackify(lines[start_index - 1] + theoretical_code ) A__ : List[Any] = theoretical_code[len(lines[start_index - 1] ) :] # Test for a diff and act accordingly. if observed_code != theoretical_code: diffs.append([object_name, start_index] ) if overwrite: A__ : List[Any] = lines[:start_index] + [theoretical_code] + lines[line_index:] A__ : Tuple = start_index + 1 if overwrite and len(UpperCAmelCase__ ) > 0: # Warn the user a file has been modified. print(f'Detected changes, rewriting {filename}.' ) with open(UpperCAmelCase__, """w""", encoding="""utf-8""", newline="""\n""" ) as f: f.writelines(UpperCAmelCase__ ) return diffs def _lowerCAmelCase ( UpperCAmelCase__ : bool = False ) ->Any: A__ : Dict = glob.glob(os.path.join(UpperCAmelCase__, """**/*.py""" ), recursive=UpperCAmelCase__ ) A__ : str = [] for filename in all_files: A__ : Any = is_copy_consistent(UpperCAmelCase__, UpperCAmelCase__ ) diffs += [f'- {filename}: copy does not match {d[0]} at line {d[1]}' for d in new_diffs] if not overwrite and len(UpperCAmelCase__ ) > 0: A__ : Any = """\n""".join(UpperCAmelCase__ ) raise Exception( """Found the following copy inconsistencies:\n""" + diff + """\nRun `make fix-copies` or `python utils/check_copies.py --fix_and_overwrite` to fix them.""" ) if __name__ == "__main__": A_ = argparse.ArgumentParser() parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''') A_ = parser.parse_args() check_copies(args.fix_and_overwrite)
296
1
"""simple docstring""" from maths.is_square_free import is_square_free from maths.prime_factors import prime_factors def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> int: '''simple docstring''' lowercase_ = prime_factors(__lowerCAmelCase ) if is_square_free(__lowerCAmelCase ): return -1 if len(__lowerCAmelCase ) % 2 else 1 return 0 if __name__ == "__main__": import doctest doctest.testmod()
136
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) UpperCAmelCase : Tuple = {"configuration_plbart": ["PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP", "PLBartConfig"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : List[Any] = ["PLBartTokenizer"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : Dict = [ "PLBART_PRETRAINED_MODEL_ARCHIVE_LIST", "PLBartForCausalLM", "PLBartForConditionalGeneration", "PLBartForSequenceClassification", "PLBartModel", "PLBartPreTrainedModel", ] if TYPE_CHECKING: from .configuration_plbart import PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP, PLBartConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_plbart import PLBartTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_plbart import ( PLBART_PRETRAINED_MODEL_ARCHIVE_LIST, PLBartForCausalLM, PLBartForConditionalGeneration, PLBartForSequenceClassification, PLBartModel, PLBartPreTrainedModel, ) else: import sys UpperCAmelCase : Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure)
136
1
'''simple docstring''' import multiprocessing from typing import TYPE_CHECKING, Optional, Union from .. import Dataset, Features, config from ..formatting import query_table from ..packaged_modules.sql.sql import Sql from ..utils import logging from .abc import AbstractDatasetInputStream if TYPE_CHECKING: import sqlitea import sqlalchemy class lowerCAmelCase__ ( UpperCamelCase_ ): def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = False , **__SCREAMING_SNAKE_CASE , ): """simple docstring""" super().__init__(features=_a , cache_dir=_a , keep_in_memory=_a , **_a ) lowercase_ : int = Sql( cache_dir=_a , features=_a , sql=_a , con=_a , **_a , ) def _snake_case ( self ): """simple docstring""" lowercase_ : Optional[Any] = None lowercase_ : List[Any] = None lowercase_ : Any = None lowercase_ : Tuple = None self.builder.download_and_prepare( download_config=_a , download_mode=_a , verification_mode=_a , base_path=_a , ) # Build dataset for splits lowercase_ : int = self.builder.as_dataset( split='''train''' , verification_mode=_a , in_memory=self.keep_in_memory ) return dataset class lowerCAmelCase__ : def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , **__SCREAMING_SNAKE_CASE , ): """simple docstring""" if num_proc is not None and num_proc <= 0: raise ValueError(F'''num_proc {num_proc} must be an integer > 0.''' ) lowercase_ : str = dataset lowercase_ : Any = name lowercase_ : Dict = con lowercase_ : Dict = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE lowercase_ : List[str] = num_proc lowercase_ : Union[str, Any] = to_sql_kwargs def _snake_case ( self ): """simple docstring""" lowercase_ : Union[str, Any] = self.to_sql_kwargs.pop('''sql''' , _a ) lowercase_ : Optional[Any] = self.to_sql_kwargs.pop('''con''' , _a ) lowercase_ : List[str] = self.to_sql_kwargs.pop('''index''' , _a ) lowercase_ : Optional[int] = self._write(index=_a , **self.to_sql_kwargs ) return written def _snake_case ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase_ : Any = args lowercase_ : List[Any] = {**to_sql_kwargs, """if_exists""": """append"""} if offset > 0 else to_sql_kwargs lowercase_ : Union[str, Any] = query_table( table=self.dataset.data , key=slice(_a , offset + self.batch_size ) , indices=self.dataset._indices , ) lowercase_ : Any = batch.to_pandas() lowercase_ : Any = df.to_sql(self.name , self.con , index=_a , **_a ) return num_rows or len(_a ) def _snake_case ( self , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase_ : Optional[int] = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 , len(self.dataset ) , self.batch_size ) , unit='''ba''' , disable=not logging.is_progress_bar_enabled() , desc='''Creating SQL from Arrow format''' , ): written += self._batch_sql((offset, index, to_sql_kwargs) ) else: lowercase_ : Any = len(self.dataset ), self.batch_size with multiprocessing.Pool(self.num_proc ) as pool: for num_rows in logging.tqdm( pool.imap( self._batch_sql , [(offset, index, to_sql_kwargs) for offset in range(0 , _a , _a )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit='''ba''' , disable=not logging.is_progress_bar_enabled() , desc='''Creating SQL from Arrow format''' , ): written += num_rows return written
362
'''simple docstring''' import logging from dataclasses import dataclass, field from pathlib import Path from typing import Optional, Union from .generation.configuration_utils import GenerationConfig from .training_args import TrainingArguments from .utils import add_start_docstrings _lowercase : Tuple = logging.getLogger(__name__) @dataclass @add_start_docstrings(TrainingArguments.__doc__ ) class lowerCAmelCase__ ( lowerCamelCase_ ): lowerCAmelCase_ = field(default=lowerCamelCase_ , metadata={'''help''': '''Whether to use SortishSampler or not.'''} ) lowerCAmelCase_ = field( default=lowerCamelCase_ , metadata={'''help''': '''Whether to use generate to calculate generative metrics (ROUGE, BLEU).'''} ) lowerCAmelCase_ = field( default=lowerCamelCase_ , metadata={ '''help''': ( '''The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default ''' '''to the `max_length` value of the model configuration.''' ) } , ) lowerCAmelCase_ = field( default=lowerCamelCase_ , metadata={ '''help''': ( '''The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default ''' '''to the `num_beams` value of the model configuration.''' ) } , ) lowerCAmelCase_ = field( default=lowerCamelCase_ , metadata={ '''help''': '''Model id, file path or url pointing to a GenerationConfig json file, to use during prediction.''' } , ) def _snake_case ( self ): """simple docstring""" lowercase_ : Dict = super().to_dict() for k, v in d.items(): if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): lowercase_ : str = v.to_dict() return d
264
0
import argparse from transformers import BigBirdConfig, BigBirdForPreTraining, BigBirdForQuestionAnswering, load_tf_weights_in_big_bird from transformers.utils import logging logging.set_verbosity_info() def __lowercase ( a__ , a__ , a__ , a__ ) -> Any: # Initialise PyTorch model __SCREAMING_SNAKE_CASE = BigBirdConfig.from_json_file(a__ ) print(f"""Building PyTorch model from configuration: {config}""" ) if is_trivia_qa: __SCREAMING_SNAKE_CASE = BigBirdForQuestionAnswering(a__ ) else: __SCREAMING_SNAKE_CASE = BigBirdForPreTraining(a__ ) # Load weights from tf checkpoint load_tf_weights_in_big_bird(a__ , a__ , is_trivia_qa=a__ ) # Save pytorch-model print(f"""Save PyTorch model to {pytorch_dump_path}""" ) model.save_pretrained(a__ ) if __name__ == "__main__": lowerCAmelCase__ : List[str] =argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--big_bird_config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained BERT model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--is_trivia_qa''', action='''store_true''', help='''Whether to convert a model with a trivia_qa head.''' ) lowerCAmelCase__ : Optional[Any] =parser.parse_args() convert_tf_checkpoint_to_pytorch( args.tf_checkpoint_path, args.big_bird_config_file, args.pytorch_dump_path, args.is_trivia_qa )
257
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCAmelCase__ : Optional[Any] ={ '''configuration_mobilenet_v2''': [ '''MOBILENET_V2_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MobileNetV2Config''', '''MobileNetV2OnnxConfig''', ], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ : Dict =['''MobileNetV2FeatureExtractor'''] lowerCAmelCase__ : str =['''MobileNetV2ImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ : Union[str, Any] =[ '''MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MobileNetV2ForImageClassification''', '''MobileNetV2ForSemanticSegmentation''', '''MobileNetV2Model''', '''MobileNetV2PreTrainedModel''', '''load_tf_weights_in_mobilenet_v2''', ] if TYPE_CHECKING: from .configuration_mobilenet_va import ( MOBILENET_V2_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileNetVaConfig, MobileNetVaOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_mobilenet_va import MobileNetVaFeatureExtractor from .image_processing_mobilenet_va import MobileNetVaImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilenet_va import ( MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST, MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation, MobileNetVaModel, MobileNetVaPreTrainedModel, load_tf_weights_in_mobilenet_va, ) else: import sys lowerCAmelCase__ : Union[str, Any] =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
257
1
from __future__ import absolute_import, division, print_function, unicode_literals from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers import RobertaConfig from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.roberta.modeling_roberta import ( ROBERTA_INPUTS_DOCSTRING, ROBERTA_START_DOCSTRING, RobertaEmbeddings, ) from .modeling_highway_bert import BertPreTrainedModel, DeeBertModel, HighwayException, entropy @add_start_docstrings( """The RoBERTa Model transformer with early exiting (DeeRoBERTa). """ , lowerCamelCase__ , ) class __A ( lowerCamelCase__ ): __A = RobertaConfig __A = 'roberta' def __init__( self , UpperCAmelCase_ ): super().__init__(lowercase__ ) lowerCamelCase =RobertaEmbeddings(lowercase__ ) self.init_weights() @add_start_docstrings( """RoBERTa Model (with early exiting - DeeRoBERTa) with a classifier on top,\n also takes care of multi-layer training. """ , lowerCamelCase__ , ) class __A ( lowerCamelCase__ ): __A = RobertaConfig __A = 'roberta' def __init__( self , UpperCAmelCase_ ): super().__init__(lowercase__ ) lowerCamelCase =config.num_labels lowerCamelCase =config.num_hidden_layers lowerCamelCase =DeeRobertaModel(lowercase__ ) lowerCamelCase =nn.Dropout(config.hidden_dropout_prob ) lowerCamelCase =nn.Linear(config.hidden_size , self.config.num_labels ) @add_start_docstrings_to_model_forward(lowercase__ ) def _snake_case ( self , UpperCAmelCase_=None , UpperCAmelCase_=None , UpperCAmelCase_=None , UpperCAmelCase_=None , UpperCAmelCase_=None , UpperCAmelCase_=None , UpperCAmelCase_=None , UpperCAmelCase_=-1 , UpperCAmelCase_=False , ): lowerCamelCase =self.num_layers try: lowerCamelCase =self.roberta( lowercase__ , attention_mask=lowercase__ , token_type_ids=lowercase__ , position_ids=lowercase__ , head_mask=lowercase__ , inputs_embeds=lowercase__ , ) lowerCamelCase =outputs[1] lowerCamelCase =self.dropout(lowercase__ ) lowerCamelCase =self.classifier(lowercase__ ) lowerCamelCase =(logits,) + outputs[2:] # add hidden states and attention if they are here except HighwayException as e: lowerCamelCase =e.message lowerCamelCase =e.exit_layer lowerCamelCase =outputs[0] if not self.training: lowerCamelCase =entropy(lowercase__ ) lowerCamelCase =[] lowerCamelCase =[] if labels is not None: if self.num_labels == 1: # We are doing regression lowerCamelCase =MSELoss() lowerCamelCase =loss_fct(logits.view(-1 ) , labels.view(-1 ) ) else: lowerCamelCase =CrossEntropyLoss() lowerCamelCase =loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) # work with highway exits lowerCamelCase =[] for highway_exit in outputs[-1]: lowerCamelCase =highway_exit[0] if not self.training: highway_logits_all.append(lowercase__ ) highway_entropy.append(highway_exit[2] ) if self.num_labels == 1: # We are doing regression lowerCamelCase =MSELoss() lowerCamelCase =loss_fct(highway_logits.view(-1 ) , labels.view(-1 ) ) else: lowerCamelCase =CrossEntropyLoss() lowerCamelCase =loss_fct(highway_logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) highway_losses.append(lowercase__ ) if train_highway: lowerCamelCase =(sum(highway_losses[:-1] ),) + outputs # exclude the final highway, of course else: lowerCamelCase =(loss,) + outputs if not self.training: lowerCamelCase =outputs + ((original_entropy, highway_entropy), exit_layer) if output_layer >= 0: lowerCamelCase =( (outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:] ) # use the highway of the last layer return outputs # (loss), logits, (hidden_states), (attentions), entropy
358
import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import numpy as np from utils_multiple_choice import MultipleChoiceDataset, Split, processors import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process UpperCAmelCase__ : Union[str, Any] =logging.getLogger(__name__) def _lowercase ( _UpperCAmelCase , _UpperCAmelCase ) -> int: return (preds == labels).mean() @dataclass class __A : __A = field( metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) __A = field( default=a , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) __A = field( default=a , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) __A = field( default=a , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) @dataclass class __A : __A = field(metadata={"""help""": """The name of the task to train on: """ + """, """.join(processors.keys() )} ) __A = field(metadata={"""help""": """Should contain the data files for the task."""} ) __A = field( default=1_28 , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) __A = field( default=a , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) def _lowercase ( ) -> Optional[int]: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. lowerCamelCase =HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) lowerCamelCase , lowerCamelCase , lowerCamelCase =parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. Use""" """ --overwrite_output_dir to overcome.""" ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( """Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s""" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info("""Training/evaluation parameters %s""" , _UpperCAmelCase ) # Set seed set_seed(training_args.seed ) try: lowerCamelCase =processors[data_args.task_name]() lowerCamelCase =processor.get_labels() lowerCamelCase =len(_UpperCAmelCase ) except KeyError: raise ValueError("""Task not found: %s""" % (data_args.task_name) ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowerCamelCase =AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=_UpperCAmelCase , finetuning_task=data_args.task_name , cache_dir=model_args.cache_dir , ) lowerCamelCase =AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) lowerCamelCase =AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=_UpperCAmelCase , cache_dir=model_args.cache_dir , ) # Get datasets lowerCamelCase =( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=_UpperCAmelCase , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) lowerCamelCase =( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=_UpperCAmelCase , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def compute_metrics(_UpperCAmelCase ) -> Dict: lowerCamelCase =np.argmax(p.predictions , axis=1 ) return {"acc": simple_accuracy(_UpperCAmelCase , p.label_ids )} # Data collator lowerCamelCase =DataCollatorWithPadding(_UpperCAmelCase , pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer lowerCamelCase =Trainer( model=_UpperCAmelCase , args=_UpperCAmelCase , train_dataset=_UpperCAmelCase , eval_dataset=_UpperCAmelCase , compute_metrics=_UpperCAmelCase , data_collator=_UpperCAmelCase , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation lowerCamelCase ={} if training_args.do_eval: logger.info("""*** Evaluate ***""" ) lowerCamelCase =trainer.evaluate() lowerCamelCase =os.path.join(training_args.output_dir , """eval_results.txt""" ) if trainer.is_world_master(): with open(_UpperCAmelCase , """w""" ) as writer: logger.info("""***** Eval results *****""" ) for key, value in result.items(): logger.info(""" %s = %s""" , _UpperCAmelCase , _UpperCAmelCase ) writer.write("""%s = %s\n""" % (key, value) ) results.update(_UpperCAmelCase ) return results def _lowercase ( _UpperCAmelCase ) -> Union[str, Any]: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
262
0
def _A ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : int ): """simple docstring""" a__ : Union[str, Any] =word.split() def justify(SCREAMING_SNAKE_CASE : list , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int ) -> str: a__ : Optional[Any] =max_width - width a__ : Optional[int] =len(SCREAMING_SNAKE_CASE ) if len(SCREAMING_SNAKE_CASE ) == 1: # if there is only word in line # just insert overall_spaces_count for the remainder of line return line[0] + " " * overall_spaces_count else: a__ : List[str] =words_count - 1 # num_spaces_between_words_list[i] : tells you to insert # num_spaces_between_words_list[i] spaces # after word on line[i] a__ : Union[str, Any] =spaces_to_insert_between_words * [ overall_spaces_count // spaces_to_insert_between_words ] a__ : Union[str, Any] =( overall_spaces_count % spaces_to_insert_between_words ) # distribute spaces via round robin to the left words for i in range(SCREAMING_SNAKE_CASE ): num_spaces_between_words_list[i] += 1 a__ : Any =[] for i in range(SCREAMING_SNAKE_CASE ): # add the word aligned_words_list.append(line[i] ) # add the spaces to insert aligned_words_list.append(num_spaces_between_words_list[i] * " " ) # just add the last word to the sentence aligned_words_list.append(line[-1] ) # join the aligned words list to form a justified line return "".join(SCREAMING_SNAKE_CASE ) a__ : Optional[Any] =[] a__ : list[str] =[] a__ : Tuple =0 for word in words: if width + len(SCREAMING_SNAKE_CASE ) + len(SCREAMING_SNAKE_CASE ) <= max_width: # keep adding words until we can fill out max_width # width = sum of length of all words (without overall_spaces_count) # len(word) = length of current word # len(line) = number of overall_spaces_count to insert between words line.append(SCREAMING_SNAKE_CASE ) width += len(SCREAMING_SNAKE_CASE ) else: # justify the line and add it to result answer.append(justify(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) # reset new line and new width a__ , a__ : str =[word], len(SCREAMING_SNAKE_CASE ) a__ : List[Any] =max_width - width - len(SCREAMING_SNAKE_CASE ) answer.append(" ".join(SCREAMING_SNAKE_CASE ) + (remaining_spaces + 1) * " " ) return answer if __name__ == "__main__": from doctest import testmod testmod()
95
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class __lowerCAmelCase ( unittest.TestCase): def __init__( self , lowerCAmelCase__ , lowerCAmelCase__=7 , lowerCAmelCase__=3 , lowerCAmelCase__=1_8 , lowerCAmelCase__=3_0 , lowerCAmelCase__=4_0_0 , lowerCAmelCase__=True , lowerCAmelCase__=None , lowerCAmelCase__=True , lowerCAmelCase__=None , ) -> Optional[int]: '''simple docstring''' a__ : str =size if size is not None else {"shortest_edge": 2_0} a__ : Union[str, Any] =crop_size if crop_size is not None else {"height": 1_8, "width": 1_8} a__ : Tuple =parent a__ : Optional[int] =batch_size a__ : Any =num_channels a__ : List[str] =image_size a__ : Dict =min_resolution a__ : List[Any] =max_resolution a__ : Dict =do_resize a__ : Union[str, Any] =size a__ : str =do_center_crop a__ : List[str] =crop_size def _lowercase ( self ) -> str: '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, } @require_torch @require_vision class __lowerCAmelCase ( UpperCamelCase__ , unittest.TestCase): _lowercase : Optional[Any] = MobileNetVaImageProcessor if is_vision_available() else None def _lowercase ( self ) -> Tuple: '''simple docstring''' a__ : Optional[int] =MobileNetVaImageProcessingTester(self ) @property def _lowercase ( self ) -> List[str]: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def _lowercase ( self ) -> Any: '''simple docstring''' a__ : List[str] =self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCAmelCase__ , "do_resize" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , "size" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , "do_center_crop" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , "crop_size" ) ) def _lowercase ( self ) -> str: '''simple docstring''' a__ : Any =self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"shortest_edge": 2_0} ) self.assertEqual(image_processor.crop_size , {"height": 1_8, "width": 1_8} ) a__ : Dict =self.image_processing_class.from_dict(self.image_processor_dict , size=4_2 , crop_size=8_4 ) self.assertEqual(image_processor.size , {"shortest_edge": 4_2} ) self.assertEqual(image_processor.crop_size , {"height": 8_4, "width": 8_4} ) def _lowercase ( self ) -> Any: '''simple docstring''' pass def _lowercase ( self ) -> Optional[int]: '''simple docstring''' a__ : Dict =self.image_processing_class(**self.image_processor_dict ) # create random PIL images a__ : Optional[Any] =prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , Image.Image ) # Test not batched input a__ : List[Any] =image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched a__ : Dict =image_processing(lowerCAmelCase__ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def _lowercase ( self ) -> int: '''simple docstring''' a__ : str =self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors a__ : str =prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , numpify=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , np.ndarray ) # Test not batched input a__ : List[str] =image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched a__ : Union[str, Any] =image_processing(lowerCAmelCase__ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def _lowercase ( self ) -> Optional[int]: '''simple docstring''' a__ : Any =self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors a__ : int =prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , torchify=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , torch.Tensor ) # Test not batched input a__ : Optional[Any] =image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched a__ : str =image_processing(lowerCAmelCase__ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , )
95
1
def UpperCAmelCase_ ( __UpperCAmelCase : str ) -> str: if not all(char in '01' for char in bin_string ): raise ValueError('Non-binary value was passed to the function' ) if not bin_string: raise ValueError('Empty string was passed to the function' ) SCREAMING_SNAKE_CASE_ = '' while len(lowerCAmelCase__ ) % 3 != 0: SCREAMING_SNAKE_CASE_ = '0' + bin_string SCREAMING_SNAKE_CASE_ = [ bin_string[index : index + 3] for index in range(len(lowerCAmelCase__ ) ) if index % 3 == 0 ] for bin_group in bin_string_in_3_list: SCREAMING_SNAKE_CASE_ = 0 for index, val in enumerate(lowerCAmelCase__ ): oct_val += int(2 ** (2 - index) * int(lowerCAmelCase__ ) ) oct_string += str(lowerCAmelCase__ ) return oct_string if __name__ == "__main__": from doctest import testmod testmod()
361
import importlib import json import os import sys import tempfile import unittest from pathlib import Path import transformers import transformers.models.auto from transformers.models.auto.configuration_auto import CONFIG_MAPPING, AutoConfig from transformers.models.bert.configuration_bert import BertConfig from transformers.models.roberta.configuration_roberta import RobertaConfig from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir sys.path.append(str(Path(__file__).parent.parent.parent.parent / 'utils')) from test_module.custom_configuration import CustomConfig # noqa E402 lowerCamelCase__ : str = get_tests_dir('fixtures/dummy-config.json') class lowerCamelCase_ ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase_ ( self : Dict ): SCREAMING_SNAKE_CASE_ = 0 def lowerCAmelCase_ ( self : Optional[int] ): self.assertIsNotNone(transformers.models.auto.__spec__ ) self.assertIsNotNone(importlib.util.find_spec('transformers.models.auto' ) ) def lowerCAmelCase_ ( self : Any ): SCREAMING_SNAKE_CASE_ = AutoConfig.from_pretrained('bert-base-uncased' ) self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase ) def lowerCAmelCase_ ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE_ = AutoConfig.from_pretrained(_lowerCAmelCase ) self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase ) def lowerCAmelCase_ ( self : Optional[Any] ): SCREAMING_SNAKE_CASE_ = AutoConfig.from_pretrained(_lowerCAmelCase ) self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase ) def lowerCAmelCase_ ( self : Dict ): SCREAMING_SNAKE_CASE_ = AutoConfig.for_model('roberta' ) self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase ) def lowerCAmelCase_ ( self : Dict ): with tempfile.TemporaryDirectory() as tmp_dir: # This model name contains bert and roberta, but roberta ends up being picked. SCREAMING_SNAKE_CASE_ = os.path.join(_lowerCAmelCase , 'fake-roberta' ) os.makedirs(_lowerCAmelCase , exist_ok=_lowerCAmelCase ) with open(os.path.join(_lowerCAmelCase , 'config.json' ) , 'w' ) as f: f.write(json.dumps({} ) ) SCREAMING_SNAKE_CASE_ = AutoConfig.from_pretrained(_lowerCAmelCase ) self.assertEqual(type(_lowerCAmelCase ) , _lowerCAmelCase ) def lowerCAmelCase_ ( self : Optional[Any] ): try: AutoConfig.register('custom' , _lowerCAmelCase ) # Wrong model type will raise an error with self.assertRaises(_lowerCAmelCase ): AutoConfig.register('model' , _lowerCAmelCase ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(_lowerCAmelCase ): AutoConfig.register('bert' , _lowerCAmelCase ) # Now that the config is registered, it can be used as any other config with the auto-API SCREAMING_SNAKE_CASE_ = CustomConfig() with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = AutoConfig.from_pretrained(_lowerCAmelCase ) self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] def lowerCAmelCase_ ( self : Optional[int] ): with self.assertRaisesRegex( _lowerCAmelCase , 'bert-base is not a local folder and is not a valid model identifier' ): SCREAMING_SNAKE_CASE_ = AutoConfig.from_pretrained('bert-base' ) def lowerCAmelCase_ ( self : int ): with self.assertRaisesRegex( _lowerCAmelCase , R'aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)' ): SCREAMING_SNAKE_CASE_ = AutoConfig.from_pretrained(_lowerCAmelCase , revision='aaaaaa' ) def lowerCAmelCase_ ( self : Tuple ): with self.assertRaisesRegex( _lowerCAmelCase , 'hf-internal-testing/no-config-test-repo does not appear to have a file named config.json.' , ): SCREAMING_SNAKE_CASE_ = AutoConfig.from_pretrained('hf-internal-testing/no-config-test-repo' ) def lowerCAmelCase_ ( self : Union[str, Any] ): # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(_lowerCAmelCase ): SCREAMING_SNAKE_CASE_ = AutoConfig.from_pretrained('hf-internal-testing/test_dynamic_model' ) # If remote code is disabled, we can't load this config. with self.assertRaises(_lowerCAmelCase ): SCREAMING_SNAKE_CASE_ = AutoConfig.from_pretrained('hf-internal-testing/test_dynamic_model' , trust_remote_code=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = AutoConfig.from_pretrained('hf-internal-testing/test_dynamic_model' , trust_remote_code=_lowerCAmelCase ) self.assertEqual(config.__class__.__name__ , 'NewModelConfig' ) # Test config can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = AutoConfig.from_pretrained(_lowerCAmelCase , trust_remote_code=_lowerCAmelCase ) self.assertEqual(reloaded_config.__class__.__name__ , 'NewModelConfig' ) def lowerCAmelCase_ ( self : Any ): class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = "new-model" try: AutoConfig.register('new-model' , _lowerCAmelCase ) # If remote code is not set, the default is to use local SCREAMING_SNAKE_CASE_ = AutoConfig.from_pretrained('hf-internal-testing/test_dynamic_model' ) self.assertEqual(config.__class__.__name__ , 'NewModelConfigLocal' ) # If remote code is disabled, we load the local one. SCREAMING_SNAKE_CASE_ = AutoConfig.from_pretrained('hf-internal-testing/test_dynamic_model' , trust_remote_code=_lowerCAmelCase ) self.assertEqual(config.__class__.__name__ , 'NewModelConfigLocal' ) # If remote is enabled, we load from the Hub SCREAMING_SNAKE_CASE_ = AutoConfig.from_pretrained('hf-internal-testing/test_dynamic_model' , trust_remote_code=_lowerCAmelCase ) self.assertEqual(config.__class__.__name__ , 'NewModelConfig' ) finally: if "new-model" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["new-model"]
210
0
import json from typing import Dict, List, Optional, Tuple, Union from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding, EncodedInput from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_led import LEDTokenizer a__ : Dict = logging.get_logger(__name__) a__ : Dict = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} a__ : str = { '''vocab_file''': { '''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json''', }, '''merges_file''': { '''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt''', }, '''tokenizer_file''': { '''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json''', }, } a__ : Optional[int] = { '''allenai/led-base-16384''': 16_384, } class a_ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE : Tuple = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE : Union[str, Any] = LEDTokenizer __SCREAMING_SNAKE_CASE : Optional[int] = ['input_ids', 'attention_mask'] def __init__( self , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase="replace" , _lowerCamelCase="<s>" , _lowerCamelCase="</s>" , _lowerCamelCase="</s>" , _lowerCamelCase="<s>" , _lowerCamelCase="<unk>" , _lowerCamelCase="<pad>" , _lowerCamelCase="<mask>" , _lowerCamelCase=False , _lowerCamelCase=True , **_lowerCamelCase , ) ->Union[str, Any]: super().__init__( _lowerCamelCase , _lowerCamelCase , tokenizer_file=_lowerCamelCase , errors=_lowerCamelCase , bos_token=_lowerCamelCase , eos_token=_lowerCamelCase , sep_token=_lowerCamelCase , cls_token=_lowerCamelCase , unk_token=_lowerCamelCase , pad_token=_lowerCamelCase , mask_token=_lowerCamelCase , add_prefix_space=_lowerCamelCase , trim_offsets=_lowerCamelCase , **_lowerCamelCase , ) SCREAMING_SNAKE_CASE : Dict = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' , _lowerCamelCase ) != add_prefix_space: SCREAMING_SNAKE_CASE : str = getattr(_lowerCamelCase , pre_tok_state.pop('''type''' ) ) SCREAMING_SNAKE_CASE : Optional[int] = add_prefix_space SCREAMING_SNAKE_CASE : str = pre_tok_class(**_lowerCamelCase ) SCREAMING_SNAKE_CASE : Any = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` SCREAMING_SNAKE_CASE : List[Any] = '''post_processor''' SCREAMING_SNAKE_CASE : int = getattr(self.backend_tokenizer , _lowerCamelCase , _lowerCamelCase ) if tokenizer_component_instance: SCREAMING_SNAKE_CASE : Any = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: SCREAMING_SNAKE_CASE : Optional[int] = tuple(state['''sep'''] ) if "cls" in state: SCREAMING_SNAKE_CASE : Optional[Any] = tuple(state['''cls'''] ) SCREAMING_SNAKE_CASE : Any = False if state.get('''add_prefix_space''' , _lowerCamelCase ) != add_prefix_space: SCREAMING_SNAKE_CASE : Union[str, Any] = add_prefix_space SCREAMING_SNAKE_CASE : Union[str, Any] = True if state.get('''trim_offsets''' , _lowerCamelCase ) != trim_offsets: SCREAMING_SNAKE_CASE : List[Any] = trim_offsets SCREAMING_SNAKE_CASE : Union[str, Any] = True if changes_to_apply: SCREAMING_SNAKE_CASE : List[str] = getattr(_lowerCamelCase , state.pop('''type''' ) ) SCREAMING_SNAKE_CASE : List[Any] = component_class(**_lowerCamelCase ) setattr(self.backend_tokenizer , _lowerCamelCase , _lowerCamelCase ) @property # Copied from transformers.models.bart.tokenization_bart_fast.BartTokenizerFast.mask_token with BART->LED def __lowerCAmelCase ( self ) ->str: if self._mask_token is None: if self.verbose: logger.error('''Using mask_token, but it is not set yet.''' ) return None return str(self._mask_token ) @mask_token.setter def __lowerCAmelCase ( self , _lowerCamelCase ) ->List[Any]: SCREAMING_SNAKE_CASE : str = AddedToken(_lowerCamelCase , lstrip=_lowerCamelCase , rstrip=_lowerCamelCase ) if isinstance(_lowerCamelCase , _lowerCamelCase ) else value SCREAMING_SNAKE_CASE : List[Any] = value def __lowerCAmelCase ( self , *_lowerCamelCase , **_lowerCamelCase ) ->BatchEncoding: SCREAMING_SNAKE_CASE : Tuple = kwargs.get('''is_split_into_words''' , _lowerCamelCase ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ '''to use it with pretokenized inputs.''' ) return super()._batch_encode_plus(*_lowerCamelCase , **_lowerCamelCase ) def __lowerCAmelCase ( self , *_lowerCamelCase , **_lowerCamelCase ) ->BatchEncoding: SCREAMING_SNAKE_CASE : List[Any] = kwargs.get('''is_split_into_words''' , _lowerCamelCase ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ '''to use it with pretokenized inputs.''' ) return super()._encode_plus(*_lowerCamelCase , **_lowerCamelCase ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None ) ->Tuple[str]: SCREAMING_SNAKE_CASE : Any = self._tokenizer.model.save(_lowerCamelCase , name=_lowerCamelCase ) return tuple(_lowerCamelCase ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase=None ) ->Any: SCREAMING_SNAKE_CASE : Union[str, Any] = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None ) ->List[int]: SCREAMING_SNAKE_CASE : Any = [self.sep_token_id] SCREAMING_SNAKE_CASE : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = PaddingStrategy.DO_NOT_PAD , _lowerCamelCase = None , _lowerCamelCase = None , ) ->dict: SCREAMING_SNAKE_CASE : Tuple = super()._pad( encoded_inputs=_lowerCamelCase , max_length=_lowerCamelCase , padding_strategy=_lowerCamelCase , pad_to_multiple_of=_lowerCamelCase , return_attention_mask=_lowerCamelCase , ) # Load from model defaults if return_attention_mask is None: SCREAMING_SNAKE_CASE : Optional[Any] = '''attention_mask''' in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: SCREAMING_SNAKE_CASE : int = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. SCREAMING_SNAKE_CASE : Tuple = len(encoded_inputs['''global_attention_mask'''] ) != len(_lowerCamelCase ) if needs_to_be_padded: SCREAMING_SNAKE_CASE : int = len(_lowerCamelCase ) - len(encoded_inputs['''global_attention_mask'''] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` SCREAMING_SNAKE_CASE : str = ( encoded_inputs['''global_attention_mask'''] + [-1] * difference ) elif self.padding_side == "left": SCREAMING_SNAKE_CASE : Optional[Any] = [-1] * difference + encoded_inputs[ '''global_attention_mask''' ] else: raise ValueError('''Invalid padding strategy:''' + str(self.padding_side ) ) return encoded_inputs
313
import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaPriorEmbaEmbPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class a_ ( a__ , unittest.TestCase ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[Any] = KandinskyVaaControlnetImgaImgPipeline __SCREAMING_SNAKE_CASE : Optional[int] = ['image_embeds', 'negative_image_embeds', 'image', 'hint'] __SCREAMING_SNAKE_CASE : List[Any] = ['image_embeds', 'negative_image_embeds', 'image', 'hint'] __SCREAMING_SNAKE_CASE : List[str] = [ 'generator', 'height', 'width', 'strength', 'guidance_scale', 'num_inference_steps', 'return_dict', 'guidance_scale', 'num_images_per_prompt', 'output_type', 'return_dict', ] __SCREAMING_SNAKE_CASE : List[Any] = False @property def __lowerCAmelCase ( self ) ->Optional[Any]: return 32 @property def __lowerCAmelCase ( self ) ->Optional[int]: return 32 @property def __lowerCAmelCase ( self ) ->str: return self.time_input_dim @property def __lowerCAmelCase ( self ) ->Dict: return self.time_input_dim * 4 @property def __lowerCAmelCase ( self ) ->Tuple: return 100 @property def __lowerCAmelCase ( self ) ->int: torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Union[str, Any] = { '''in_channels''': 8, # Out channels is double in channels because predicts mean and variance '''out_channels''': 8, '''addition_embed_type''': '''image_hint''', '''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''), '''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''), '''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''', '''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2), '''layers_per_block''': 1, '''encoder_hid_dim''': self.text_embedder_hidden_size, '''encoder_hid_dim_type''': '''image_proj''', '''cross_attention_dim''': self.cross_attention_dim, '''attention_head_dim''': 4, '''resnet_time_scale_shift''': '''scale_shift''', '''class_embed_type''': None, } SCREAMING_SNAKE_CASE : List[str] = UNetaDConditionModel(**_lowerCamelCase ) return model @property def __lowerCAmelCase ( self ) ->Any: return { "block_out_channels": [32, 32, 64, 64], "down_block_types": [ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "AttnDownEncoderBlock2D", ], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], "vq_embed_dim": 4, } @property def __lowerCAmelCase ( self ) ->Tuple: torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Optional[int] = VQModel(**self.dummy_movq_kwargs ) return model def __lowerCAmelCase ( self ) ->List[str]: SCREAMING_SNAKE_CASE : str = self.dummy_unet SCREAMING_SNAKE_CASE : Union[str, Any] = self.dummy_movq SCREAMING_SNAKE_CASE : List[str] = { '''num_train_timesteps''': 1000, '''beta_schedule''': '''linear''', '''beta_start''': 0.0_0_0_8_5, '''beta_end''': 0.0_1_2, '''clip_sample''': False, '''set_alpha_to_one''': False, '''steps_offset''': 0, '''prediction_type''': '''epsilon''', '''thresholding''': False, } SCREAMING_SNAKE_CASE : str = DDIMScheduler(**_lowerCamelCase ) SCREAMING_SNAKE_CASE : str = { '''unet''': unet, '''scheduler''': scheduler, '''movq''': movq, } return components def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase=0 ) ->int: SCREAMING_SNAKE_CASE : str = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(_lowerCamelCase ) ).to(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Union[str, Any] = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( _lowerCamelCase ) # create init_image SCREAMING_SNAKE_CASE : Any = floats_tensor((1, 3, 64, 64) , rng=random.Random(_lowerCamelCase ) ).to(_lowerCamelCase ) SCREAMING_SNAKE_CASE : int = image.cpu().permute(0 , 2 , 3 , 1 )[0] SCREAMING_SNAKE_CASE : Dict = Image.fromarray(np.uinta(_lowerCamelCase ) ).convert('''RGB''' ).resize((256, 256) ) # create hint SCREAMING_SNAKE_CASE : Any = floats_tensor((1, 3, 64, 64) , rng=random.Random(_lowerCamelCase ) ).to(_lowerCamelCase ) if str(_lowerCamelCase ).startswith('''mps''' ): SCREAMING_SNAKE_CASE : List[str] = torch.manual_seed(_lowerCamelCase ) else: SCREAMING_SNAKE_CASE : List[str] = torch.Generator(device=_lowerCamelCase ).manual_seed(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = { '''image''': init_image, '''image_embeds''': image_embeds, '''negative_image_embeds''': negative_image_embeds, '''hint''': hint, '''generator''': generator, '''height''': 64, '''width''': 64, '''num_inference_steps''': 10, '''guidance_scale''': 7.0, '''strength''': 0.2, '''output_type''': '''np''', } return inputs def __lowerCAmelCase ( self ) ->Dict: SCREAMING_SNAKE_CASE : Optional[int] = '''cpu''' SCREAMING_SNAKE_CASE : Optional[Any] = self.get_dummy_components() SCREAMING_SNAKE_CASE : Tuple = self.pipeline_class(**_lowerCamelCase ) SCREAMING_SNAKE_CASE : int = pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[Any] = pipe(**self.get_dummy_inputs(_lowerCamelCase ) ) SCREAMING_SNAKE_CASE : str = output.images SCREAMING_SNAKE_CASE : Any = pipe( **self.get_dummy_inputs(_lowerCamelCase ) , return_dict=_lowerCamelCase , )[0] SCREAMING_SNAKE_CASE : Any = image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE : Union[str, Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) SCREAMING_SNAKE_CASE : Union[str, Any] = np.array( [0.5_4_9_8_5_0_3_4, 0.5_5_5_0_9_3_6_5, 0.5_2_5_6_1_5_0_4, 0.5_5_7_0_4_9_4, 0.5_5_9_3_8_1_8, 0.5_2_6_3_9_7_9, 0.5_0_2_8_5_6_4_3, 0.5_0_6_9_8_4_6, 0.5_1_1_9_6_7_3_6] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), F""" expected_slice {expected_slice}, but got {image_slice.flatten()}""" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), F""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}""" @slow @require_torch_gpu class a_ ( unittest.TestCase ): """simple docstring""" def __lowerCAmelCase ( self ) ->Union[str, Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCAmelCase ( self ) ->Optional[int]: SCREAMING_SNAKE_CASE : int = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinskyv22/kandinskyv22_controlnet_img2img_robotcat_fp16.npy''' ) SCREAMING_SNAKE_CASE : int = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/cat.png''' ) SCREAMING_SNAKE_CASE : Optional[Any] = init_image.resize((512, 512) ) SCREAMING_SNAKE_CASE : Dict = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinskyv22/hint_image_cat.png''' ) SCREAMING_SNAKE_CASE : List[Any] = torch.from_numpy(np.array(_lowerCamelCase ) ).float() / 2_5_5.0 SCREAMING_SNAKE_CASE : int = hint.permute(2 , 0 , 1 ).unsqueeze(0 ) SCREAMING_SNAKE_CASE : List[Any] = '''A robot, 4k photo''' SCREAMING_SNAKE_CASE : List[str] = KandinskyVaaPriorEmbaEmbPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-prior''' , torch_dtype=torch.floataa ) pipe_prior.to(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Tuple = KandinskyVaaControlnetImgaImgPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-controlnet-depth''' , torch_dtype=torch.floataa ) SCREAMING_SNAKE_CASE : Any = pipeline.to(_lowerCamelCase ) pipeline.set_progress_bar_config(disable=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Any = torch.Generator(device='''cpu''' ).manual_seed(0 ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Union[str, Any] = pipe_prior( _lowerCamelCase , image=_lowerCamelCase , strength=0.8_5 , generator=_lowerCamelCase , negative_prompt='''''' , ).to_tuple() SCREAMING_SNAKE_CASE : List[str] = pipeline( image=_lowerCamelCase , image_embeds=_lowerCamelCase , negative_image_embeds=_lowerCamelCase , hint=_lowerCamelCase , generator=_lowerCamelCase , num_inference_steps=100 , height=512 , width=512 , strength=0.5 , output_type='''np''' , ) SCREAMING_SNAKE_CASE : Any = output.images[0] assert image.shape == (512, 512, 3) assert_mean_pixel_difference(_lowerCamelCase , _lowerCamelCase )
313
1
"""simple docstring""" import json import multiprocessing import os import re from collections import defaultdict import torch from accelerate import Accelerator from accelerate.utils import set_seed from arguments import HumanEvalArguments from datasets import load_dataset, load_metric from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from tqdm import tqdm import transformers from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, StoppingCriteria, StoppingCriteriaList __A = ["""\nclass""", """\ndef""", """\n#""", """\n@""", """\nprint""", """\nif"""] class _snake_case ( lowerCamelCase__ ): def __init__( self : Optional[Any] , UpperCAmelCase : List[Any] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Tuple=None , UpperCAmelCase : Tuple=1 ): __lowerCamelCase : Dict = tokenizer __lowerCamelCase : Tuple = dataset __lowerCamelCase : str = len(UpperCAmelCase ) if n_tasks is None else n_tasks __lowerCamelCase : Optional[int] = n_copies def __iter__( self : Dict ): __lowerCamelCase : List[str] = [] for task in range(self.n_tasks ): # without strip, the model generate commented codes ... prompts.append(self.tokenizer.eos_token + self.dataset[task]["prompt"].strip() ) __lowerCamelCase : Tuple = self.tokenizer(UpperCAmelCase , padding=UpperCAmelCase , return_tensors="pt" ) for task in range(self.n_tasks ): for _ in range(self.n_copies ): yield { "ids": outputs.input_ids[task], "task_id": task, "input_len": outputs.attention_mask[task].sum(), } class _snake_case ( lowerCamelCase__ ): def __init__( self : Optional[Any] , UpperCAmelCase : Any , UpperCAmelCase : Tuple , UpperCAmelCase : int ): __lowerCamelCase : Optional[int] = start_length __lowerCamelCase : List[Any] = eof_strings __lowerCamelCase : int = tokenizer def __call__( self : str , UpperCAmelCase : str , UpperCAmelCase : Union[str, Any] , **UpperCAmelCase : Optional[int] ): __lowerCamelCase : Optional[Any] = self.tokenizer.batch_decode(input_ids[:, self.start_length :] ) __lowerCamelCase : List[str] = [] for decoded_generation in decoded_generations: done.append(any(stop_string in decoded_generation for stop_string in self.eof_strings ) ) return all(UpperCAmelCase ) def lowercase_ ( _lowerCamelCase: List[Any] ) -> List[str]: '''simple docstring''' __lowerCamelCase : Optional[int] = re.split("(%s)" % "|".join(__snake_case ) , __snake_case ) # last string should be "" return "".join(string_list[:-2] ) def lowercase_ ( _lowerCamelCase: str , _lowerCamelCase: Any , _lowerCamelCase: Dict , _lowerCamelCase: Optional[int] , _lowerCamelCase: Optional[int] , _lowerCamelCase: Optional[int]=20 , **_lowerCamelCase: int ) -> Any: '''simple docstring''' __lowerCamelCase : str = defaultdict(__snake_case ) # dict of list of generated tokens for step, batch in tqdm(enumerate(__snake_case ) ): with torch.no_grad(): __lowerCamelCase : str = batch["ids"].shape[-1] __lowerCamelCase : List[str] = accelerator.unwrap_model(__snake_case ).generate( input_ids=batch["ids"][:, : batch["input_len"]] , num_return_sequences=__snake_case , **__snake_case ) # each task is generated batch_size times __lowerCamelCase : List[str] = batch["task_id"].repeat(__snake_case ) __lowerCamelCase : List[str] = accelerator.pad_across_processes( __snake_case , dim=1 , pad_index=tokenizer.pad_token_id ) __lowerCamelCase , __lowerCamelCase : Union[str, Any] = accelerator.gather((generated_tokens, generated_tasks) ) __lowerCamelCase : Dict = generated_tokens.cpu().numpy() __lowerCamelCase : Any = generated_tasks.cpu().numpy() for task, generated_tokens in zip(__snake_case , __snake_case ): gen_token_dict[task].append(__snake_case ) __lowerCamelCase : List[Any] = [[] for _ in range(__snake_case )] for task, generated_tokens in gen_token_dict.items(): for s in generated_tokens: __lowerCamelCase : Dict = tokenizer.decode(__snake_case , skip_special_tokens=__snake_case , clean_up_tokenization_spaces=__snake_case ) code_gens[task].append(remove_last_block(__snake_case ) ) return code_gens def lowercase_ ( ) -> Any: '''simple docstring''' __lowerCamelCase : List[Any] = HfArgumentParser(__snake_case ) __lowerCamelCase : int = parser.parse_args() transformers.logging.set_verbosity_error() # enables code execution in code_eval metric __lowerCamelCase : Any = args.HF_ALLOW_CODE_EVAL # make sure tokenizer plays nice with multiprocessing __lowerCamelCase : int = "false" if args.num_workers is None: __lowerCamelCase : Optional[int] = multiprocessing.cpu_count() # Use dataset load to feed to accelerate __lowerCamelCase : List[str] = Accelerator() set_seed(args.seed , device_specific=__snake_case ) # Load model and tokenizer __lowerCamelCase : Any = AutoTokenizer.from_pretrained(args.model_ckpt ) __lowerCamelCase : Union[str, Any] = tokenizer.eos_token __lowerCamelCase : Any = AutoModelForCausalLM.from_pretrained(args.model_ckpt ) # Generation settings __lowerCamelCase : Optional[Any] = { "do_sample": args.do_sample, "temperature": args.temperature, "max_new_tokens": args.max_new_tokens, "top_p": args.top_p, "top_k": args.top_k, "stopping_criteria": StoppingCriteriaList([EndOfFunctionCriteria(0 , __snake_case , __snake_case )] ), } # Load evaluation dataset and metric __lowerCamelCase : int = load_dataset("openai_humaneval" ) __lowerCamelCase : Dict = load_metric("code_eval" ) __lowerCamelCase : Union[str, Any] = args.num_tasks if args.num_tasks is not None else len(human_eval["test"] ) __lowerCamelCase : List[str] = args.n_samples // args.batch_size __lowerCamelCase : Dict = TokenizedDataset(__snake_case , human_eval["test"] , n_copies=__snake_case , n_tasks=__snake_case ) # do not confuse args.batch_size, which is actually the num_return_sequences __lowerCamelCase : Union[str, Any] = DataLoader(__snake_case , batch_size=1 ) # Run a quick test to see if code evaluation is enabled try: __lowerCamelCase : Optional[int] = code_eval_metric.compute(references=[""] , predictions=[[""]] ) except ValueError as exception: print( "Code evaluation not enabled. Read the warning below carefully and then use `--HF_ALLOW_CODE_EVAL=\"1\"`" " flag to enable code evaluation." ) raise exception __lowerCamelCase , __lowerCamelCase : Union[str, Any] = accelerator.prepare(__snake_case , __snake_case ) __lowerCamelCase : Tuple = complete_code( __snake_case , __snake_case , __snake_case , __snake_case , n_tasks=__snake_case , batch_size=args.batch_size , **__snake_case , ) if accelerator.is_main_process: __lowerCamelCase : Dict = [] for task in tqdm(range(__snake_case ) ): __lowerCamelCase : Any = human_eval["test"][task]["test"] __lowerCamelCase : Optional[Any] = F"""check({human_eval["test"][task]["entry_point"]})""" references.append("\n" + test_func + "\n" + entry_point ) # Evaluate completions with "code_eval" metric __lowerCamelCase , __lowerCamelCase : Dict = code_eval_metric.compute( references=__snake_case , predictions=__snake_case , num_workers=args.num_workers ) print(F"""Results: {pass_at_k}""" ) # Save results to json file with open(args.output_file , "w" ) as fp: json.dump(__snake_case , __snake_case ) # For some reason the folliwng seems to be necessary sometimes for code_eval to work nice with multiprocessing # https://stackoverflow.com/questions/60804599/python-multiprocessing-keeps-spawning-the-whole-script if __name__ == "__main__": main()
356
"""simple docstring""" import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTImageProcessor, ViTMSNConfig, ViTMSNModel from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD torch.set_grad_enabled(False) def lowercase_ ( _lowerCamelCase: Tuple , _lowerCamelCase: Dict=False ) -> Any: '''simple docstring''' __lowerCamelCase : Any = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"""module.blocks.{i}.norm1.weight""", F"""vit.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((F"""module.blocks.{i}.norm1.bias""", F"""vit.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append( (F"""module.blocks.{i}.attn.proj.weight""", F"""vit.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append((F"""module.blocks.{i}.attn.proj.bias""", F"""vit.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((F"""module.blocks.{i}.norm2.weight""", F"""vit.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((F"""module.blocks.{i}.norm2.bias""", F"""vit.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append((F"""module.blocks.{i}.mlp.fc1.weight""", F"""vit.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((F"""module.blocks.{i}.mlp.fc1.bias""", F"""vit.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((F"""module.blocks.{i}.mlp.fc2.weight""", F"""vit.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((F"""module.blocks.{i}.mlp.fc2.bias""", F"""vit.encoder.layer.{i}.output.dense.bias""") ) # projection layer + position embeddings rename_keys.extend( [ ("module.cls_token", "vit.embeddings.cls_token"), ("module.patch_embed.proj.weight", "vit.embeddings.patch_embeddings.projection.weight"), ("module.patch_embed.proj.bias", "vit.embeddings.patch_embeddings.projection.bias"), ("module.pos_embed", "vit.embeddings.position_embeddings"), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("module.norm.weight", "layernorm.weight"), ("module.norm.bias", "layernorm.bias"), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" __lowerCamelCase : str = [(pair[0], pair[1][4:]) if pair[1].startswith("vit" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("norm.weight", "vit.layernorm.weight"), ("norm.bias", "vit.layernorm.bias"), ("head.weight", "classifier.weight"), ("head.bias", "classifier.bias"), ] ) return rename_keys def lowercase_ ( _lowerCamelCase: Optional[int] , _lowerCamelCase: int , _lowerCamelCase: List[str]=False ) -> Union[str, Any]: '''simple docstring''' for i in range(config.num_hidden_layers ): if base_model: __lowerCamelCase : Any = "" else: __lowerCamelCase : Optional[int] = "vit." # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) __lowerCamelCase : Optional[int] = state_dict.pop(F"""module.blocks.{i}.attn.qkv.weight""" ) __lowerCamelCase : List[str] = state_dict.pop(F"""module.blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict __lowerCamelCase : Union[str, Any] = in_proj_weight[ : config.hidden_size, : ] __lowerCamelCase : str = in_proj_bias[: config.hidden_size] __lowerCamelCase : List[str] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] __lowerCamelCase : Any = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] __lowerCamelCase : Any = in_proj_weight[ -config.hidden_size :, : ] __lowerCamelCase : str = in_proj_bias[-config.hidden_size :] def lowercase_ ( _lowerCamelCase: int ) -> List[Any]: '''simple docstring''' __lowerCamelCase : Tuple = ["head.weight", "head.bias"] for k in ignore_keys: state_dict.pop(_lowerCamelCase , _lowerCamelCase ) def lowercase_ ( _lowerCamelCase: Tuple ) -> List[str]: '''simple docstring''' __lowerCamelCase : List[Any] = [ "module.fc.fc1.weight", "module.fc.fc1.bias", "module.fc.bn1.weight", "module.fc.bn1.bias", "module.fc.bn1.running_mean", "module.fc.bn1.running_var", "module.fc.bn1.num_batches_tracked", "module.fc.fc2.weight", "module.fc.fc2.bias", "module.fc.bn2.weight", "module.fc.bn2.bias", "module.fc.bn2.running_mean", "module.fc.bn2.running_var", "module.fc.bn2.num_batches_tracked", "module.fc.fc3.weight", "module.fc.fc3.bias", ] for k in ignore_keys: state_dict.pop(_lowerCamelCase , _lowerCamelCase ) def lowercase_ ( _lowerCamelCase: Optional[int] , _lowerCamelCase: List[str] , _lowerCamelCase: Optional[int] ) -> Any: '''simple docstring''' __lowerCamelCase : str = dct.pop(_lowerCamelCase ) __lowerCamelCase : Union[str, Any] = val def lowercase_ ( _lowerCamelCase: Union[str, Any] , _lowerCamelCase: Tuple ) -> List[Any]: '''simple docstring''' __lowerCamelCase : int = ViTMSNConfig() __lowerCamelCase : Dict = 1000 __lowerCamelCase : str = "datasets/huggingface/label-files" __lowerCamelCase : Optional[int] = "imagenet-1k-id2label.json" __lowerCamelCase : List[str] = json.load(open(hf_hub_download(_lowerCamelCase , _lowerCamelCase ) , "r" ) ) __lowerCamelCase : str = {int(_lowerCamelCase ): v for k, v in idalabel.items()} __lowerCamelCase : int = idalabel __lowerCamelCase : List[str] = {v: k for k, v in idalabel.items()} if "s16" in checkpoint_url: __lowerCamelCase : int = 384 __lowerCamelCase : Optional[int] = 1536 __lowerCamelCase : str = 6 elif "l16" in checkpoint_url: __lowerCamelCase : Optional[Any] = 1024 __lowerCamelCase : str = 4096 __lowerCamelCase : Any = 24 __lowerCamelCase : Optional[int] = 16 __lowerCamelCase : Union[str, Any] = 0.1 elif "b4" in checkpoint_url: __lowerCamelCase : Optional[Any] = 4 elif "l7" in checkpoint_url: __lowerCamelCase : str = 7 __lowerCamelCase : int = 1024 __lowerCamelCase : int = 4096 __lowerCamelCase : Union[str, Any] = 24 __lowerCamelCase : Optional[int] = 16 __lowerCamelCase : List[Any] = 0.1 __lowerCamelCase : str = ViTMSNModel(_lowerCamelCase ) __lowerCamelCase : Union[str, Any] = torch.hub.load_state_dict_from_url(_lowerCamelCase , map_location="cpu" )["target_encoder"] __lowerCamelCase : Any = ViTImageProcessor(size=config.image_size ) remove_projection_head(_lowerCamelCase ) __lowerCamelCase : Tuple = create_rename_keys(_lowerCamelCase , base_model=_lowerCamelCase ) for src, dest in rename_keys: rename_key(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) read_in_q_k_v(_lowerCamelCase , _lowerCamelCase , base_model=_lowerCamelCase ) model.load_state_dict(_lowerCamelCase ) model.eval() __lowerCamelCase : Any = "http://images.cocodataset.org/val2017/000000039769.jpg" __lowerCamelCase : Tuple = Image.open(requests.get(_lowerCamelCase , stream=_lowerCamelCase ).raw ) __lowerCamelCase : List[str] = ViTImageProcessor( size=config.image_size , image_mean=_lowerCamelCase , image_std=_lowerCamelCase ) __lowerCamelCase : Tuple = image_processor(images=_lowerCamelCase , return_tensors="pt" ) # forward pass torch.manual_seed(2 ) __lowerCamelCase : Optional[int] = model(**_lowerCamelCase ) __lowerCamelCase : List[str] = outputs.last_hidden_state # The following Colab Notebook was used to generate these outputs: # https://colab.research.google.com/gist/sayakpaul/3672419a04f5997827503fd84079bdd1/scratchpad.ipynb if "s16" in checkpoint_url: __lowerCamelCase : Any = torch.tensor([[-1.0915, -1.4876, -1.1809]] ) elif "b16" in checkpoint_url: __lowerCamelCase : Optional[Any] = torch.tensor([[14.2889, -18.9045, 11.7281]] ) elif "l16" in checkpoint_url: __lowerCamelCase : List[str] = torch.tensor([[41.5028, -22.8681, 45.6475]] ) elif "b4" in checkpoint_url: __lowerCamelCase : str = torch.tensor([[-4.3868, 5.2932, -0.4137]] ) else: __lowerCamelCase : Optional[int] = torch.tensor([[-0.1792, -0.6465, 2.4263]] ) # verify logits assert torch.allclose(last_hidden_state[:, 0, :3] , _lowerCamelCase , atol=1E-4 ) print(F"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(_lowerCamelCase ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(_lowerCamelCase ) if __name__ == "__main__": __A = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint_url''', default='''https://dl.fbaipublicfiles.com/msn/vits16_800ep.pth.tar''', type=str, help='''URL of the checkpoint you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) __A = parser.parse_args() convert_vit_msn_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
64
0
import argparse import os import gluonnlp as nlp import mxnet as mx import numpy as np import torch from gluonnlp.base import get_home_dir from gluonnlp.model.bert import BERTEncoder from gluonnlp.model.utils import _load_vocab from gluonnlp.vocab import Vocab from packaging import version from torch import nn from transformers import BertConfig, BertForMaskedLM, BertModel, RobertaTokenizer from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertSelfAttention, BertSelfOutput, ) from transformers.utils import logging if version.parse(nlp.__version__) != version.parse("""0.8.3"""): raise Exception("""requires gluonnlp == 0.8.3""") if version.parse(mx.__version__) != version.parse("""1.5.0"""): raise Exception("""requires mxnet == 1.5.0""") logging.set_verbosity_info() lowercase : List[Any] = logging.get_logger(__name__) lowercase : List[str] = """The Nymphenburg Palace is a beautiful palace in Munich!""" def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> List[str]: lowercase : int = { """attention_cell""": """multi_head""", """num_layers""": 4, """units""": 1_024, """hidden_size""": 768, """max_length""": 512, """num_heads""": 8, """scaled""": True, """dropout""": 0.1, """use_residual""": True, """embed_size""": 1_024, """embed_dropout""": 0.1, """word_embed""": None, """layer_norm_eps""": 1e-5, """token_type_vocab_size""": 2, } lowercase : List[Any] = bort_4_8_768_1024_hparams # Let's construct the original Bort model here # Taken from official BERT implementation, see: # https://github.com/alexa/bort/blob/master/bort/bort.py lowercase : Union[str, Any] = BERTEncoder( attention_cell=predefined_args["""attention_cell"""] , num_layers=predefined_args["""num_layers"""] , units=predefined_args["""units"""] , hidden_size=predefined_args["""hidden_size"""] , max_length=predefined_args["""max_length"""] , num_heads=predefined_args["""num_heads"""] , scaled=predefined_args["""scaled"""] , dropout=predefined_args["""dropout"""] , output_attention=SCREAMING_SNAKE_CASE__ , output_all_encodings=SCREAMING_SNAKE_CASE__ , use_residual=predefined_args["""use_residual"""] , activation=predefined_args.get("""activation""" , """gelu""" ) , layer_norm_eps=predefined_args.get("""layer_norm_eps""" , SCREAMING_SNAKE_CASE__ ) , ) # Vocab information needs to be fetched first # It's the same as RoBERTa, so RobertaTokenizer can be used later lowercase : Any = """openwebtext_ccnews_stories_books_cased""" # Specify download folder to Gluonnlp's vocab lowercase : Optional[int] = os.path.join(get_home_dir() , """models""" ) lowercase : List[Any] = _load_vocab(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , cls=SCREAMING_SNAKE_CASE__ ) lowercase : int = nlp.model.BERTModel( SCREAMING_SNAKE_CASE__ , len(SCREAMING_SNAKE_CASE__ ) , units=predefined_args["""units"""] , embed_size=predefined_args["""embed_size"""] , embed_dropout=predefined_args["""embed_dropout"""] , word_embed=predefined_args["""word_embed"""] , use_pooler=SCREAMING_SNAKE_CASE__ , use_token_type_embed=SCREAMING_SNAKE_CASE__ , token_type_vocab_size=predefined_args["""token_type_vocab_size"""] , use_classifier=SCREAMING_SNAKE_CASE__ , use_decoder=SCREAMING_SNAKE_CASE__ , ) original_bort.load_parameters(SCREAMING_SNAKE_CASE__ , cast_dtype=SCREAMING_SNAKE_CASE__ , ignore_extra=SCREAMING_SNAKE_CASE__ ) lowercase : Optional[Any] = original_bort._collect_params_with_prefix() # Build our config 🤗 lowercase : Union[str, Any] = { """architectures""": ["""BertForMaskedLM"""], """attention_probs_dropout_prob""": predefined_args["""dropout"""], """hidden_act""": """gelu""", """hidden_dropout_prob""": predefined_args["""dropout"""], """hidden_size""": predefined_args["""embed_size"""], """initializer_range""": 0.02, """intermediate_size""": predefined_args["""hidden_size"""], """layer_norm_eps""": predefined_args["""layer_norm_eps"""], """max_position_embeddings""": predefined_args["""max_length"""], """model_type""": """bort""", """num_attention_heads""": predefined_args["""num_heads"""], """num_hidden_layers""": predefined_args["""num_layers"""], """pad_token_id""": 1, # 2 = BERT, 1 = RoBERTa """type_vocab_size""": 1, # 2 = BERT, 1 = RoBERTa """vocab_size""": len(SCREAMING_SNAKE_CASE__ ), } lowercase : Dict = BertConfig.from_dict(SCREAMING_SNAKE_CASE__ ) lowercase : Any = BertForMaskedLM(SCREAMING_SNAKE_CASE__ ) hf_bort_model.eval() # Parameter mapping table (Gluonnlp to Transformers) # * denotes layer index # # | Gluon Parameter | Transformers Parameter # | -------------------------------------------------------------- | ---------------------- # | `encoder.layer_norm.beta` | `bert.embeddings.LayerNorm.bias` # | `encoder.layer_norm.gamma` | `bert.embeddings.LayerNorm.weight` # | `encoder.position_weight` | `bert.embeddings.position_embeddings.weight` # | `word_embed.0.weight` | `bert.embeddings.word_embeddings.weight` # | `encoder.transformer_cells.*.attention_cell.proj_key.bias` | `bert.encoder.layer.*.attention.self.key.bias` # | `encoder.transformer_cells.*.attention_cell.proj_key.weight` | `bert.encoder.layer.*.attention.self.key.weight` # | `encoder.transformer_cells.*.attention_cell.proj_query.bias` | `bert.encoder.layer.*.attention.self.query.bias` # | `encoder.transformer_cells.*.attention_cell.proj_query.weight` | `bert.encoder.layer.*.attention.self.query.weight` # | `encoder.transformer_cells.*.attention_cell.proj_value.bias` | `bert.encoder.layer.*.attention.self.value.bias` # | `encoder.transformer_cells.*.attention_cell.proj_value.weight` | `bert.encoder.layer.*.attention.self.value.weight` # | `encoder.transformer_cells.*.ffn.ffn_2.bias` | `bert.encoder.layer.*.attention.output.dense.bias` # | `encoder.transformer_cells.*.ffn.ffn_2.weight` | `bert.encoder.layer.*.attention.output.dense.weight` # | `encoder.transformer_cells.*.layer_norm.beta` | `bert.encoder.layer.*.attention.output.LayerNorm.bias` # | `encoder.transformer_cells.*.layer_norm.gamma` | `bert.encoder.layer.*.attention.output.LayerNorm.weight` # | `encoder.transformer_cells.*.ffn.ffn_1.bias` | `bert.encoder.layer.*.intermediate.dense.bias` # | `encoder.transformer_cells.*.ffn.ffn_1.weight` | `bert.encoder.layer.*.intermediate.dense.weight` # | `encoder.transformer_cells.*.ffn.layer_norm.beta` | `bert.encoder.layer.*.output.LayerNorm.bias` # | `encoder.transformer_cells.*.ffn.layer_norm.gamma` | `bert.encoder.layer.*.output.LayerNorm.weight` # | `encoder.transformer_cells.*.proj.bias` | `bert.encoder.layer.*.output.dense.bias` # | `encoder.transformer_cells.*.proj.weight` | `bert.encoder.layer.*.output.dense.weight` # Helper function to convert MXNET Arrays to PyTorch def to_torch(SCREAMING_SNAKE_CASE__ ) -> nn.Parameter: return nn.Parameter(torch.FloatTensor(mx_array.data().asnumpy() ) ) # Check param shapes and map new HF param back def check_and_map_params(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): lowercase : Tuple = hf_param.shape lowercase : int = to_torch(params[gluon_param] ) lowercase : str = gluon_param.shape assert ( shape_hf == shape_gluon ), f"The gluon parameter {gluon_param} has shape {shape_gluon}, but expects shape {shape_hf} for Transformers" return gluon_param lowercase : List[str] = check_and_map_params( hf_bort_model.bert.embeddings.word_embeddings.weight , """word_embed.0.weight""" ) lowercase : Dict = check_and_map_params( hf_bort_model.bert.embeddings.position_embeddings.weight , """encoder.position_weight""" ) lowercase : Union[str, Any] = check_and_map_params( hf_bort_model.bert.embeddings.LayerNorm.bias , """encoder.layer_norm.beta""" ) lowercase : int = check_and_map_params( hf_bort_model.bert.embeddings.LayerNorm.weight , """encoder.layer_norm.gamma""" ) # Inspired by RoBERTa conversion script, we just zero them out (Bort does not use them) lowercase : Tuple = torch.zeros_like( hf_bort_model.bert.embeddings.token_type_embeddings.weight.data ) for i in range(hf_bort_config.num_hidden_layers ): lowercase : BertLayer = hf_bort_model.bert.encoder.layer[i] # self attention lowercase : BertSelfAttention = layer.attention.self lowercase : Any = check_and_map_params( self_attn.key.bias.data , f"encoder.transformer_cells.{i}.attention_cell.proj_key.bias" ) lowercase : str = check_and_map_params( self_attn.key.weight.data , f"encoder.transformer_cells.{i}.attention_cell.proj_key.weight" ) lowercase : Any = check_and_map_params( self_attn.query.bias.data , f"encoder.transformer_cells.{i}.attention_cell.proj_query.bias" ) lowercase : List[str] = check_and_map_params( self_attn.query.weight.data , f"encoder.transformer_cells.{i}.attention_cell.proj_query.weight" ) lowercase : List[str] = check_and_map_params( self_attn.value.bias.data , f"encoder.transformer_cells.{i}.attention_cell.proj_value.bias" ) lowercase : Optional[Any] = check_and_map_params( self_attn.value.weight.data , f"encoder.transformer_cells.{i}.attention_cell.proj_value.weight" ) # self attention output lowercase : BertSelfOutput = layer.attention.output lowercase : List[Any] = check_and_map_params( self_output.dense.bias , f"encoder.transformer_cells.{i}.proj.bias" ) lowercase : Optional[Any] = check_and_map_params( self_output.dense.weight , f"encoder.transformer_cells.{i}.proj.weight" ) lowercase : Union[str, Any] = check_and_map_params( self_output.LayerNorm.bias , f"encoder.transformer_cells.{i}.layer_norm.beta" ) lowercase : List[str] = check_and_map_params( self_output.LayerNorm.weight , f"encoder.transformer_cells.{i}.layer_norm.gamma" ) # intermediate lowercase : BertIntermediate = layer.intermediate lowercase : Dict = check_and_map_params( intermediate.dense.bias , f"encoder.transformer_cells.{i}.ffn.ffn_1.bias" ) lowercase : str = check_and_map_params( intermediate.dense.weight , f"encoder.transformer_cells.{i}.ffn.ffn_1.weight" ) # output lowercase : BertOutput = layer.output lowercase : Optional[Any] = check_and_map_params( bert_output.dense.bias , f"encoder.transformer_cells.{i}.ffn.ffn_2.bias" ) lowercase : int = check_and_map_params( bert_output.dense.weight , f"encoder.transformer_cells.{i}.ffn.ffn_2.weight" ) lowercase : str = check_and_map_params( bert_output.LayerNorm.bias , f"encoder.transformer_cells.{i}.ffn.layer_norm.beta" ) lowercase : List[str] = check_and_map_params( bert_output.LayerNorm.weight , f"encoder.transformer_cells.{i}.ffn.layer_norm.gamma" ) # Save space and energy 🎄 hf_bort_model.half() # Compare output of both models lowercase : List[Any] = RobertaTokenizer.from_pretrained("""roberta-base""" ) lowercase : int = tokenizer.encode_plus(SCREAMING_SNAKE_CASE__ )["""input_ids"""] # Get gluon output lowercase : Any = mx.nd.array([input_ids] ) lowercase : List[Any] = original_bort(inputs=SCREAMING_SNAKE_CASE__ , token_types=[] ) # Get Transformer output (save and reload model again) hf_bort_model.save_pretrained(SCREAMING_SNAKE_CASE__ ) lowercase : str = BertModel.from_pretrained(SCREAMING_SNAKE_CASE__ ) hf_bort_model.eval() lowercase : Union[str, Any] = tokenizer.encode_plus(SCREAMING_SNAKE_CASE__ , return_tensors="""pt""" ) lowercase : List[str] = hf_bort_model(**SCREAMING_SNAKE_CASE__ )[0] lowercase : str = output_gluon[0].asnumpy() lowercase : Optional[int] = output_hf[0].detach().numpy() lowercase : Optional[Any] = np.max(np.abs(hf_layer - gluon_layer ) ).item() lowercase : List[str] = np.allclose(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , atol=1e-3 ) if success: print("""✔️ Both model do output the same tensors""" ) else: print("""❌ Both model do **NOT** output the same tensors""" ) print("""Absolute difference is:""" , SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": lowercase : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--bort_checkpoint_path""", default=None, type=str, required=True, help="""Path the official Bort params file.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) lowercase : Union[str, Any] = parser.parse_args() convert_bort_checkpoint_to_pytorch(args.bort_checkpoint_path, args.pytorch_dump_folder_path)
20
import argparse import os import transformers from .convert_slow_tokenizer import SLOW_TO_FAST_CONVERTERS from .utils import logging logging.set_verbosity_info() _lowerCAmelCase : Any = logging.get_logger(__name__) _lowerCAmelCase : Tuple = {name: getattr(transformers, name + "Fast") for name in SLOW_TO_FAST_CONVERTERS} def lowerCAmelCase ( _lowerCAmelCase : Tuple , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Union[str, Any] ): """simple docstring""" if tokenizer_name is not None and tokenizer_name not in TOKENIZER_CLASSES: raise ValueError(F'''Unrecognized tokenizer name, should be one of {list(TOKENIZER_CLASSES.keys() )}.''' ) if tokenizer_name is None: UpperCAmelCase__ = TOKENIZER_CLASSES else: UpperCAmelCase__ = {tokenizer_name: getattr(_lowerCAmelCase , tokenizer_name + "Fast" )} logger.info(F'''Loading tokenizer classes: {tokenizer_names}''' ) for tokenizer_name in tokenizer_names: UpperCAmelCase__ = TOKENIZER_CLASSES[tokenizer_name] UpperCAmelCase__ = True if checkpoint_name is None: UpperCAmelCase__ = list(tokenizer_class.max_model_input_sizes.keys() ) else: UpperCAmelCase__ = [checkpoint_name] logger.info(F'''For tokenizer {tokenizer_class.__class__.__name__} loading checkpoints: {checkpoint_names}''' ) for checkpoint in checkpoint_names: logger.info(F'''Loading {tokenizer_class.__class__.__name__} {checkpoint}''' ) # Load tokenizer UpperCAmelCase__ = tokenizer_class.from_pretrained(_lowerCAmelCase , force_download=_lowerCAmelCase ) # Save fast tokenizer logger.info(F'''Save fast tokenizer to {dump_path} with prefix {checkpoint} add_prefix {add_prefix}''' ) # For organization names we create sub-directories if "/" in checkpoint: UpperCAmelCase__ , UpperCAmelCase__ = checkpoint.split("/" ) UpperCAmelCase__ = os.path.join(_lowerCAmelCase , _lowerCAmelCase ) elif add_prefix: UpperCAmelCase__ = checkpoint UpperCAmelCase__ = dump_path else: UpperCAmelCase__ = None UpperCAmelCase__ = dump_path logger.info(F'''=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}''' ) if checkpoint in list(tokenizer.pretrained_vocab_files_map.values() )[0]: UpperCAmelCase__ = list(tokenizer.pretrained_vocab_files_map.values() )[0][checkpoint] UpperCAmelCase__ = file_path.split(_lowerCAmelCase )[-1][0] if next_char == "/": UpperCAmelCase__ = os.path.join(_lowerCAmelCase , _lowerCAmelCase ) UpperCAmelCase__ = None logger.info(F'''=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}''' ) UpperCAmelCase__ = tokenizer.save_pretrained( _lowerCAmelCase , legacy_format=_lowerCAmelCase , filename_prefix=_lowerCAmelCase ) logger.info(F'''=> File names {file_names}''' ) for file_name in file_names: if not file_name.endswith("tokenizer.json" ): os.remove(_lowerCAmelCase ) logger.info(F'''=> removing {file_name}''' ) if __name__ == "__main__": _lowerCAmelCase : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( "--dump_path", default=None, type=str, required=True, help="Path to output generated fast tokenizer files." ) parser.add_argument( "--tokenizer_name", default=None, type=str, help=( F'''Optional tokenizer type selected in the list of {list(TOKENIZER_CLASSES.keys())}. If not given, will ''' "download and convert all the checkpoints from AWS." ), ) parser.add_argument( "--checkpoint_name", default=None, type=str, help="Optional checkpoint name. If not given, will download and convert the canonical checkpoints from AWS.", ) parser.add_argument( "--force_download", action="store_true", help="Re-download checkpoints.", ) _lowerCAmelCase : str = parser.parse_args() convert_slow_checkpoint_to_fast(args.tokenizer_name, args.checkpoint_name, args.dump_path, args.force_download)
169
0
'''simple docstring''' import time import warnings from abc import ABC from copy import deepcopy from typing import Optional import torch from ..utils import add_start_docstrings, logging lowerCAmelCase_ : str = logging.get_logger(__name__) lowerCAmelCase_ : str = r''' Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) scores (`torch.FloatTensor` of shape `(batch_size, config.vocab_size)`): Prediction scores of a language modeling head. These can be scores for each vocabulary token before SoftMax or scores for each vocabulary token after SoftMax. kwargs (`Dict[str, Any]`, *optional*): Additional stopping criteria specific kwargs. Return: `bool`. `False` indicates we should continue, `True` indicates we should stop. ''' class __lowerCAmelCase ( __a ): @add_start_docstrings(lowerCAmelCase__ ) def __call__(self , lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ ): raise NotImplementedError("""StoppingCriteria needs to be subclassed""" ) class __lowerCAmelCase ( __a ): def __init__(self , lowerCAmelCase__ , lowerCAmelCase__ = None ): _UpperCAmelCase : Any = max_length _UpperCAmelCase : Optional[int] = max_position_embeddings @add_start_docstrings(lowerCAmelCase__ ) def __call__(self , lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ ): _UpperCAmelCase : Dict = input_ids.shape[-1] _UpperCAmelCase : Optional[Any] = cur_len >= self.max_length if self.max_position_embeddings is not None and not is_done and cur_len >= self.max_position_embeddings: logger.warning_once( """This is a friendly reminder - the current text generation call will exceed the model's predefined """ F"maximum length ({self.max_position_embeddings}). Depending on the model, you may observe " """exceptions, performance degradation, or nothing at all.""" ) return is_done class __lowerCAmelCase ( __a ): def __init__(self , lowerCAmelCase__ , lowerCAmelCase__ ): warnings.warn( """The class `MaxNewTokensCriteria` is deprecated. """ F"Please use `MaxLengthCriteria(max_length={start_length + max_new_tokens})` " """with `max_length = start_length + max_new_tokens` instead.""" , lowerCAmelCase__ , ) _UpperCAmelCase : int = start_length _UpperCAmelCase : Any = max_new_tokens _UpperCAmelCase : Optional[Any] = start_length + max_new_tokens @add_start_docstrings(lowerCAmelCase__ ) def __call__(self , lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ ): return input_ids.shape[-1] >= self.max_length class __lowerCAmelCase ( __a ): def __init__(self , lowerCAmelCase__ , lowerCAmelCase__ = None ): _UpperCAmelCase : str = max_time _UpperCAmelCase : str = time.time() if initial_timestamp is None else initial_timestamp @add_start_docstrings(lowerCAmelCase__ ) def __call__(self , lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ ): return time.time() - self.initial_timestamp > self.max_time class __lowerCAmelCase ( __a ): @add_start_docstrings(lowerCAmelCase__ ) def __call__(self , lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ ): return any(criteria(lowerCAmelCase__ , lowerCAmelCase__ ) for criteria in self ) @property def snake_case_ (self ): for stopping_criterium in self: if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): return stopping_criterium.max_length elif isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): return stopping_criterium.max_length return None def __A ( lowerCAmelCase_ , lowerCAmelCase_ ): _UpperCAmelCase : List[str] = stopping_criteria.max_length _UpperCAmelCase : Optional[int] = deepcopy(lowerCAmelCase_ ) if stopping_max_length is not None and stopping_max_length != max_length: warnings.warn("""You set different `max_length` for stopping criteria and `max_length` parameter""" , lowerCAmelCase_ ) elif stopping_max_length is None: new_stopping_criteria.append(MaxLengthCriteria(max_length=lowerCAmelCase_ ) ) return new_stopping_criteria
170
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_barthez import BarthezTokenizer else: lowerCAmelCase_ : List[Any] = None lowerCAmelCase_ : Any = logging.get_logger(__name__) lowerCAmelCase_ : Optional[Any] = {'''vocab_file''': '''sentencepiece.bpe.model''', '''tokenizer_file''': '''tokenizer.json'''} lowerCAmelCase_ : List[str] = { '''vocab_file''': { '''moussaKam/mbarthez''': '''https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model''', '''moussaKam/barthez''': '''https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model''', '''moussaKam/barthez-orangesum-title''': ( '''https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model''' ), }, '''tokenizer_file''': { '''moussaKam/mbarthez''': '''https://huggingface.co/moussaKam/mbarthez/resolve/main/tokenizer.json''', '''moussaKam/barthez''': '''https://huggingface.co/moussaKam/barthez/resolve/main/tokenizer.json''', '''moussaKam/barthez-orangesum-title''': ( '''https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/tokenizer.json''' ), }, } lowerCAmelCase_ : Tuple = { '''moussaKam/mbarthez''': 1024, '''moussaKam/barthez''': 1024, '''moussaKam/barthez-orangesum-title''': 1024, } lowerCAmelCase_ : str = '''▁''' class __lowerCAmelCase ( __a ): snake_case : List[str] = VOCAB_FILES_NAMES snake_case : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP snake_case : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case : str = ["""input_ids""", """attention_mask"""] snake_case : List[Any] = BarthezTokenizer def __init__(self , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__="<s>" , lowerCAmelCase__="</s>" , lowerCAmelCase__="</s>" , lowerCAmelCase__="<s>" , lowerCAmelCase__="<unk>" , lowerCAmelCase__="<pad>" , lowerCAmelCase__="<mask>" , **lowerCAmelCase__ , ): # Mask token behave like a normal word, i.e. include the space before it _UpperCAmelCase : Union[str, Any] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else mask_token super().__init__( lowerCAmelCase__ , tokenizer_file=lowerCAmelCase__ , bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , **lowerCAmelCase__ , ) _UpperCAmelCase : List[str] = vocab_file _UpperCAmelCase : Tuple = False if not self.vocab_file else True def snake_case_ (self , lowerCAmelCase__ , lowerCAmelCase__ = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _UpperCAmelCase : int = [self.cls_token_id] _UpperCAmelCase : Tuple = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def snake_case_ (self , lowerCAmelCase__ , lowerCAmelCase__ = None ): _UpperCAmelCase : str = [self.sep_token_id] _UpperCAmelCase : List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def snake_case_ (self , lowerCAmelCase__ , lowerCAmelCase__ = None ): if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(lowerCAmelCase__ ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return _UpperCAmelCase : Union[str, Any] = os.path.join( lowerCAmelCase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase__ ): copyfile(self.vocab_file , lowerCAmelCase__ ) return (out_vocab_file,)
170
1
from __future__ import annotations def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE ): if not nums: return 0 lowercase = nums[0] lowercase = 0 for num in nums[1:]: lowercase , lowercase = ( max_excluding + num, max(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ), ) return max(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod()
195
import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def UpperCAmelCase_ ( ): lowercase = ArgumentParser( description=( 'PyTorch TPU distributed training launch ' 'helper utility that will spawn up ' 'multiple distributed processes' ) ) # Optional arguments for the launch helper parser.add_argument('--num_cores' , type=__SCREAMING_SNAKE_CASE , default=1 , help='Number of TPU cores to use (1 or 8).' ) # positional parser.add_argument( 'training_script' , type=__SCREAMING_SNAKE_CASE , help=( 'The full path to the single TPU training ' 'program/script to be launched in parallel, ' 'followed by all the arguments for the ' 'training script' ) , ) # rest from the training program parser.add_argument('training_script_args' , nargs=__SCREAMING_SNAKE_CASE ) return parser.parse_args() def UpperCAmelCase_ ( ): lowercase = parse_args() # Import training_script as a module. lowercase = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) lowercase = script_fpath.stem lowercase = importlib.import_module(__SCREAMING_SNAKE_CASE ) # Patch sys.argv lowercase = [args.training_script] + args.training_script_args + ['--tpu_num_cores', str(args.num_cores )] xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores ) if __name__ == "__main__": main()
195
1
'''simple docstring''' from typing import List, Optional, Union import numpy as np import PIL import torch from PIL import Image from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) lowercase__ = logging.get_logger(__name__) # pylint: disable=invalid-name lowercase__ = "\n Examples:\n ```py\n >>> from diffusers import KandinskyV22Img2ImgPipeline, KandinskyV22PriorPipeline\n >>> from diffusers.utils import load_image\n >>> import torch\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\n ... \"kandinsky-community/kandinsky-2-2-prior\", torch_dtype=torch.float16\n ... )\n >>> pipe_prior.to(\"cuda\")\n\n >>> prompt = \"A red cartoon frog, 4k\"\n >>> image_emb, zero_image_emb = pipe_prior(prompt, return_dict=False)\n\n >>> pipe = KandinskyV22Img2ImgPipeline.from_pretrained(\n ... \"kandinsky-community/kandinsky-2-2-decoder\", torch_dtype=torch.float16\n ... )\n >>> pipe.to(\"cuda\")\n\n >>> init_image = load_image(\n ... \"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main\"\n ... \"/kandinsky/frog.png\"\n ... )\n\n >>> image = pipe(\n ... image=init_image,\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=100,\n ... strength=0.2,\n ... ).images\n\n >>> image[0].save(\"red_frog.png\")\n ```\n" def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_=8 ): UpperCAmelCase : Tuple = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 UpperCAmelCase : Union[str, Any] = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_=5_12 , UpperCAmelCase_=5_12 ): UpperCAmelCase : List[Any] = pil_image.resize((w, h) , resample=Image.BICUBIC , reducing_gap=1 ) UpperCAmelCase : Tuple = np.array(pil_image.convert('RGB' ) ) UpperCAmelCase : List[Any] = arr.astype(np.floataa ) / 127.5 - 1 UpperCAmelCase : List[str] = np.transpose(UpperCAmelCase_ , [2, 0, 1] ) UpperCAmelCase : Tuple = torch.from_numpy(UpperCAmelCase_ ).unsqueeze(0 ) return image class A_ ( _snake_case ): '''simple docstring''' def __init__( self : List[str] , lowercase_ : UNetaDConditionModel , lowercase_ : DDPMScheduler , lowercase_ : VQModel , ) -> str: super().__init__() self.register_modules( unet=lowercase_ , scheduler=lowercase_ , movq=lowercase_ , ) UpperCAmelCase : Dict = 2 ** (len(self.movq.config.block_out_channels ) - 1) def UpperCAmelCase_ ( self : List[Any] , lowercase_ : List[Any] , lowercase_ : Tuple , lowercase_ : str ) -> Dict: # get the original timestep using init_timestep UpperCAmelCase : Tuple = min(int(num_inference_steps * strength ) , lowercase_ ) UpperCAmelCase : Any = max(num_inference_steps - init_timestep , 0 ) UpperCAmelCase : Any = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def UpperCAmelCase_ ( self : str , lowercase_ : List[Any] , lowercase_ : Dict , lowercase_ : Any , lowercase_ : Optional[int] , lowercase_ : Dict , lowercase_ : Dict , lowercase_ : Any=None ) -> Optional[Any]: if not isinstance(lowercase_ , (torch.Tensor, PIL.Image.Image, list) ): raise ValueError( f"""`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(lowercase_ )}""" ) UpperCAmelCase : Any = image.to(device=lowercase_ , dtype=lowercase_ ) UpperCAmelCase : List[Any] = batch_size * num_images_per_prompt if image.shape[1] == 4: UpperCAmelCase : List[Any] = image else: if isinstance(lowercase_ , lowercase_ ) and len(lowercase_ ) != batch_size: raise ValueError( f"""You have passed a list of generators of length {len(lowercase_ )}, but requested an effective batch""" f""" size of {batch_size}. Make sure the batch size matches the length of the generators.""" ) elif isinstance(lowercase_ , lowercase_ ): UpperCAmelCase : str = [ self.movq.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(lowercase_ ) ] UpperCAmelCase : Dict = torch.cat(lowercase_ , dim=0 ) else: UpperCAmelCase : List[str] = self.movq.encode(lowercase_ ).latent_dist.sample(lowercase_ ) UpperCAmelCase : Optional[Any] = self.movq.config.scaling_factor * init_latents UpperCAmelCase : int = torch.cat([init_latents] , dim=0 ) UpperCAmelCase : Union[str, Any] = init_latents.shape UpperCAmelCase : Union[str, Any] = randn_tensor(lowercase_ , generator=lowercase_ , device=lowercase_ , dtype=lowercase_ ) # get latents UpperCAmelCase : Union[str, Any] = self.scheduler.add_noise(lowercase_ , lowercase_ , lowercase_ ) UpperCAmelCase : Optional[Any] = init_latents return latents def UpperCAmelCase_ ( self : Union[str, Any] , lowercase_ : Union[str, Any]=0 ) -> Tuple: if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('Please install accelerate via `pip install accelerate`' ) UpperCAmelCase : int = torch.device(f"""cuda:{gpu_id}""" ) UpperCAmelCase : Union[str, Any] = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(lowercase_ , lowercase_ ) def UpperCAmelCase_ ( self : Union[str, Any] , lowercase_ : int=0 ) -> str: if is_accelerate_available() and is_accelerate_version('>=' , '0.17.0.dev0' ): from accelerate import cpu_offload_with_hook else: raise ImportError('`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.' ) UpperCAmelCase : int = torch.device(f"""cuda:{gpu_id}""" ) if self.device.type != "cpu": self.to('cpu' , silence_dtype_warnings=lowercase_ ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) UpperCAmelCase : Any = None for cpu_offloaded_model in [self.unet, self.movq]: UpperCAmelCase , UpperCAmelCase : Dict = cpu_offload_with_hook(lowercase_ , lowercase_ , prev_module_hook=lowercase_ ) # We'll offload the last model manually. UpperCAmelCase : Optional[Any] = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def UpperCAmelCase_ ( self : Tuple ) -> List[str]: if not hasattr(self.unet , '_hf_hook' ): return self.device for module in self.unet.modules(): if ( hasattr(lowercase_ , '_hf_hook' ) and hasattr(module._hf_hook , 'execution_device' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(lowercase_ ) def __call__( self : Optional[Any] , lowercase_ : Union[torch.FloatTensor, List[torch.FloatTensor]] , lowercase_ : Union[torch.FloatTensor, PIL.Image.Image, List[torch.FloatTensor], List[PIL.Image.Image]] , lowercase_ : Union[torch.FloatTensor, List[torch.FloatTensor]] , lowercase_ : int = 512 , lowercase_ : int = 512 , lowercase_ : int = 100 , lowercase_ : float = 4.0 , lowercase_ : float = 0.3 , lowercase_ : int = 1 , lowercase_ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , lowercase_ : Optional[str] = "pil" , lowercase_ : bool = True , ) -> Dict: UpperCAmelCase : str = self._execution_device UpperCAmelCase : int = guidance_scale > 1.0 if isinstance(lowercase_ , lowercase_ ): UpperCAmelCase : int = torch.cat(lowercase_ , dim=0 ) UpperCAmelCase : List[str] = image_embeds.shape[0] if isinstance(lowercase_ , lowercase_ ): UpperCAmelCase : str = torch.cat(lowercase_ , dim=0 ) if do_classifier_free_guidance: UpperCAmelCase : Tuple = image_embeds.repeat_interleave(lowercase_ , dim=0 ) UpperCAmelCase : Dict = negative_image_embeds.repeat_interleave(lowercase_ , dim=0 ) UpperCAmelCase : Tuple = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=lowercase_ ) if not isinstance(lowercase_ , lowercase_ ): UpperCAmelCase : Optional[Any] = [image] if not all(isinstance(lowercase_ , (PIL.Image.Image, torch.Tensor) ) for i in image ): raise ValueError( f"""Input is in incorrect format: {[type(lowercase_ ) for i in image]}. Currently, we only support PIL image and pytorch tensor""" ) UpperCAmelCase : Dict = torch.cat([prepare_image(lowercase_ , lowercase_ , lowercase_ ) for i in image] , dim=0 ) UpperCAmelCase : Optional[int] = image.to(dtype=image_embeds.dtype , device=lowercase_ ) UpperCAmelCase : List[str] = self.movq.encode(lowercase_ )['latents'] UpperCAmelCase : int = latents.repeat_interleave(lowercase_ , dim=0 ) self.scheduler.set_timesteps(lowercase_ , device=lowercase_ ) UpperCAmelCase , UpperCAmelCase : Dict = self.get_timesteps(lowercase_ , lowercase_ , lowercase_ ) UpperCAmelCase : Optional[Any] = timesteps[:1].repeat(batch_size * num_images_per_prompt ) UpperCAmelCase , UpperCAmelCase : Dict = downscale_height_and_width(lowercase_ , lowercase_ , self.movq_scale_factor ) UpperCAmelCase : int = self.prepare_latents( lowercase_ , lowercase_ , lowercase_ , lowercase_ , image_embeds.dtype , lowercase_ , lowercase_ ) for i, t in enumerate(self.progress_bar(lowercase_ ) ): # expand the latents if we are doing classifier free guidance UpperCAmelCase : int = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents UpperCAmelCase : int = {'image_embeds': image_embeds} UpperCAmelCase : Optional[int] = self.unet( sample=lowercase_ , timestep=lowercase_ , encoder_hidden_states=lowercase_ , added_cond_kwargs=lowercase_ , return_dict=lowercase_ , )[0] if do_classifier_free_guidance: UpperCAmelCase , UpperCAmelCase : List[Any] = noise_pred.split(latents.shape[1] , dim=1 ) UpperCAmelCase , UpperCAmelCase : Optional[int] = noise_pred.chunk(2 ) UpperCAmelCase , UpperCAmelCase : int = variance_pred.chunk(2 ) UpperCAmelCase : Union[str, Any] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) UpperCAmelCase : Dict = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , 'variance_type' ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): UpperCAmelCase , UpperCAmelCase : Dict = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 UpperCAmelCase : Optional[Any] = self.scheduler.step( lowercase_ , lowercase_ , lowercase_ , generator=lowercase_ , )[0] # post-processing UpperCAmelCase : List[Any] = self.movq.decode(lowercase_ , force_not_quantize=lowercase_ )['sample'] if output_type not in ["pt", "np", "pil"]: raise ValueError(f"""Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}""" ) if output_type in ["np", "pil"]: UpperCAmelCase : int = image * 0.5 + 0.5 UpperCAmelCase : List[Any] = image.clamp(0 , 1 ) UpperCAmelCase : Optional[int] = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": UpperCAmelCase : str = self.numpy_to_pil(lowercase_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=lowercase_ )
280
'''simple docstring''' from collections.abc import Iterator, MutableMapping from dataclasses import dataclass from typing import Generic, TypeVar lowercase__ = TypeVar("KEY") lowercase__ = TypeVar("VAL") @dataclass(frozen=_snake_case , slots=_snake_case ) class A_ ( Generic[KEY, VAL] ): '''simple docstring''' UpperCAmelCase_ : KEY UpperCAmelCase_ : VAL class A_ ( _Item ): '''simple docstring''' def __init__( self : Any ) -> None: super().__init__(lowercase_ , lowercase_ ) def __bool__( self : List[str] ) -> bool: return False lowercase__ = _DeletedItem() class A_ ( MutableMapping[KEY, VAL] ): '''simple docstring''' def __init__( self : Optional[int] , lowercase_ : int = 8 , lowercase_ : float = 0.75 ) -> None: UpperCAmelCase : Dict = initial_block_size UpperCAmelCase : list[_Item | None] = [None] * initial_block_size assert 0.0 < capacity_factor < 1.0 UpperCAmelCase : Any = capacity_factor UpperCAmelCase : Union[str, Any] = 0 def UpperCAmelCase_ ( self : str , lowercase_ : KEY ) -> int: return hash(lowercase_ ) % len(self._buckets ) def UpperCAmelCase_ ( self : Any , lowercase_ : int ) -> int: return (ind + 1) % len(self._buckets ) def UpperCAmelCase_ ( self : Dict , lowercase_ : int , lowercase_ : KEY , lowercase_ : VAL ) -> bool: UpperCAmelCase : List[Any] = self._buckets[ind] if not stored: UpperCAmelCase : Dict = _Item(lowercase_ , lowercase_ ) self._len += 1 return True elif stored.key == key: UpperCAmelCase : Dict = _Item(lowercase_ , lowercase_ ) return True else: return False def UpperCAmelCase_ ( self : Any ) -> bool: UpperCAmelCase : List[str] = len(self._buckets ) * self._capacity_factor return len(self ) >= int(lowercase_ ) def UpperCAmelCase_ ( self : Optional[int] ) -> bool: if len(self._buckets ) <= self._initial_block_size: return False UpperCAmelCase : Optional[int] = len(self._buckets ) * self._capacity_factor / 2 return len(self ) < limit def UpperCAmelCase_ ( self : Dict , lowercase_ : int ) -> None: UpperCAmelCase : int = self._buckets UpperCAmelCase : List[str] = [None] * new_size UpperCAmelCase : Dict = 0 for item in old_buckets: if item: self._add_item(item.key , item.val ) def UpperCAmelCase_ ( self : Dict ) -> None: self._resize(len(self._buckets ) * 2 ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> None: self._resize(len(self._buckets ) // 2 ) def UpperCAmelCase_ ( self : Union[str, Any] , lowercase_ : KEY ) -> Iterator[int]: UpperCAmelCase : Dict = self._get_bucket_index(lowercase_ ) for _ in range(len(self._buckets ) ): yield ind UpperCAmelCase : Union[str, Any] = self._get_next_ind(lowercase_ ) def UpperCAmelCase_ ( self : Dict , lowercase_ : KEY , lowercase_ : VAL ) -> None: for ind in self._iterate_buckets(lowercase_ ): if self._try_set(lowercase_ , lowercase_ , lowercase_ ): break def __setitem__( self : Union[str, Any] , lowercase_ : KEY , lowercase_ : VAL ) -> None: if self._is_full(): self._size_up() self._add_item(lowercase_ , lowercase_ ) def __delitem__( self : Tuple , lowercase_ : KEY ) -> None: for ind in self._iterate_buckets(lowercase_ ): UpperCAmelCase : int = self._buckets[ind] if item is None: raise KeyError(lowercase_ ) if item is _deleted: continue if item.key == key: UpperCAmelCase : Union[str, Any] = _deleted self._len -= 1 break if self._is_sparse(): self._size_down() def __getitem__( self : Dict , lowercase_ : KEY ) -> VAL: for ind in self._iterate_buckets(lowercase_ ): UpperCAmelCase : List[str] = self._buckets[ind] if item is None: break if item is _deleted: continue if item.key == key: return item.val raise KeyError(lowercase_ ) def __len__( self : Optional[Any] ) -> int: return self._len def __iter__( self : int ) -> Iterator[KEY]: yield from (item.key for item in self._buckets if item) def __repr__( self : Optional[Any] ) -> str: UpperCAmelCase : int = ' ,'.join( f"""{item.key}: {item.val}""" for item in self._buckets if item ) return f"""HashMap({val_string})"""
280
1
def SCREAMING_SNAKE_CASE ( lowercase_ ) -> int: """simple docstring""" assert column_title.isupper() A__ = 0 A__ = len(lowercase_ ) - 1 A__ = 0 while index >= 0: A__ = (ord(column_title[index] ) - 64) * pow(26 , lowercase_ ) answer += value power += 1 index -= 1 return answer if __name__ == "__main__": from doctest import testmod testmod()
14
'''simple docstring''' class UpperCAmelCase__ : """simple docstring""" def __init__( self : Dict ): '''simple docstring''' _a : Dict = {} def __lowercase ( self : Union[str, Any] ): '''simple docstring''' print(self.vertex ) for i in self.vertex: print(_a ,' -> ' ,' -> '.join([str(_a ) for j in self.vertex[i]] ) ) def __lowercase ( self : Dict ,_a : int ,_a : int ): '''simple docstring''' if from_vertex in self.vertex: self.vertex[from_vertex].append(_a ) else: # else make a new vertex _a : int = [to_vertex] def __lowercase ( self : Optional[int] ): '''simple docstring''' _a : Tuple = [False] * len(self.vertex ) # call the recursive helper function for i in range(len(self.vertex ) ): if not visited[i]: self.dfs_recursive(_a ,_a ) def __lowercase ( self : Union[str, Any] ,_a : int ,_a : list ): '''simple docstring''' _a : List[Any] = True print(_a ,end=' ' ) # Recur for all the vertices that are adjacent to this node for i in self.vertex: if not visited[i]: self.dfs_recursive(_a ,_a ) if __name__ == "__main__": __lowerCAmelCase = Graph() g.add_edge(0, 1) g.add_edge(0, 2) g.add_edge(1, 2) g.add_edge(2, 0) g.add_edge(2, 3) g.add_edge(3, 3) g.print_graph() print("""DFS:""") g.dfs() # OUTPUT: # 0 -> 1 -> 2 # 1 -> 2 # 2 -> 0 -> 3 # 3 -> 3 # DFS: # 0 1 2 3
271
0
'''simple docstring''' def SCREAMING_SNAKE_CASE__ ( snake_case : int , snake_case : int ) -> bool: """simple docstring""" return numa ^ numa < 0 if __name__ == "__main__": import doctest doctest.testmod()
345
'''simple docstring''' import argparse import json import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import AutoImageProcessor, SwinConfig, SwinForImageClassification def SCREAMING_SNAKE_CASE__ ( snake_case : str ) -> Optional[Any]: """simple docstring""" a : Union[str, Any] = SwinConfig() a : Optional[int] = swin_name.split('_' ) a : Union[str, Any] = name_split[1] a : Dict = int(name_split[4] ) a : Union[str, Any] = int(name_split[3][-1] ) if model_size == "tiny": a : Optional[Any] = 96 a : Any = (2, 2, 6, 2) a : List[str] = (3, 6, 12, 24) elif model_size == "small": a : int = 96 a : List[str] = (2, 2, 18, 2) a : int = (3, 6, 12, 24) elif model_size == "base": a : Tuple = 128 a : Optional[int] = (2, 2, 18, 2) a : List[Any] = (4, 8, 16, 32) else: a : Dict = 192 a : str = (2, 2, 18, 2) a : List[Any] = (6, 12, 24, 48) if "in22k" in swin_name: a : Any = 21_841 else: a : str = 1_000 a : str = 'huggingface/label-files' a : Optional[Any] = 'imagenet-1k-id2label.json' a : Dict = json.load(open(hf_hub_download(snake_case , snake_case , repo_type='dataset' ) , 'r' ) ) a : Tuple = {int(snake_case ): v for k, v in idalabel.items()} a : int = idalabel a : str = {v: k for k, v in idalabel.items()} a : Dict = img_size a : List[Any] = num_classes a : str = embed_dim a : Dict = depths a : Union[str, Any] = num_heads a : int = window_size return config def SCREAMING_SNAKE_CASE__ ( snake_case : List[Any] ) -> Optional[int]: """simple docstring""" if "patch_embed.proj" in name: a : int = name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' ) if "patch_embed.norm" in name: a : Tuple = name.replace('patch_embed.norm' , 'embeddings.norm' ) if "layers" in name: a : Optional[int] = 'encoder.' + name if "attn.proj" in name: a : List[Any] = name.replace('attn.proj' , 'attention.output.dense' ) if "attn" in name: a : Tuple = name.replace('attn' , 'attention.self' ) if "norm1" in name: a : Optional[int] = name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: a : Dict = name.replace('norm2' , 'layernorm_after' ) if "mlp.fc1" in name: a : Union[str, Any] = name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: a : Any = name.replace('mlp.fc2' , 'output.dense' ) if name == "norm.weight": a : Union[str, Any] = 'layernorm.weight' if name == "norm.bias": a : List[str] = 'layernorm.bias' if "head" in name: a : Union[str, Any] = name.replace('head' , 'classifier' ) else: a : List[Any] = 'swin.' + name return name def SCREAMING_SNAKE_CASE__ ( snake_case : List[Any] , snake_case : Tuple ) -> List[str]: """simple docstring""" for key in orig_state_dict.copy().keys(): a : Any = orig_state_dict.pop(snake_case ) if "mask" in key: continue elif "qkv" in key: a : Optional[Any] = key.split('.' ) a : Dict = int(key_split[1] ) a : Optional[int] = int(key_split[3] ) a : Tuple = model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: a : Optional[Any] = val[:dim, :] a : List[Any] = val[ dim : dim * 2, : ] a : List[Any] = val[-dim:, :] else: a : Dict = val[ :dim ] a : Union[str, Any] = val[ dim : dim * 2 ] a : Union[str, Any] = val[ -dim: ] else: a : Dict = val return orig_state_dict def SCREAMING_SNAKE_CASE__ ( snake_case : Optional[int] , snake_case : Dict ) -> List[str]: """simple docstring""" a : Any = timm.create_model(snake_case , pretrained=snake_case ) timm_model.eval() a : str = get_swin_config(snake_case ) a : Optional[int] = SwinForImageClassification(snake_case ) model.eval() a : Union[str, Any] = convert_state_dict(timm_model.state_dict() , snake_case ) model.load_state_dict(snake_case ) a : List[str] = 'http://images.cocodataset.org/val2017/000000039769.jpg' a : Optional[Any] = AutoImageProcessor.from_pretrained('microsoft/{}'.format(swin_name.replace('_' , '-' ) ) ) a : str = Image.open(requests.get(snake_case , stream=snake_case ).raw ) a : Union[str, Any] = image_processor(images=snake_case , return_tensors='pt' ) a : int = timm_model(inputs['pixel_values'] ) a : Optional[int] = model(**snake_case ).logits assert torch.allclose(snake_case , snake_case , atol=1E-3 ) print(F"""Saving model {swin_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(snake_case ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(snake_case ) if __name__ == "__main__": UpperCamelCase : int = argparse.ArgumentParser() # Required parameters parser.add_argument( """--swin_name""", default="""swin_tiny_patch4_window7_224""", type=str, help="""Name of the Swin timm model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) UpperCamelCase : Optional[Any] = parser.parse_args() convert_swin_checkpoint(args.swin_name, args.pytorch_dump_folder_path)
345
1
import os from typing import Optional import fsspec from fsspec.archive import AbstractArchiveFileSystem from fsspec.utils import DEFAULT_BLOCK_SIZE class A ( UpperCAmelCase_ ): __UpperCAmelCase : Optional[Any] = '' __UpperCAmelCase : str = ( None # protocol passed in prefix to the url. ex: "gzip", for gzip://file.txt::http://foo.bar/file.txt.gz ) __UpperCAmelCase : str = None # compression type in fsspec. ex: "gzip" __UpperCAmelCase : str = None # extension of the filename to strip. ex: "".gz" to get file.txt from file.txt.gz def __init__(self : List[str] , __UpperCAmelCase : str = "" , __UpperCAmelCase : Optional[str] = None , __UpperCAmelCase : Optional[dict] = None , **__UpperCAmelCase : Union[str, Any] ) -> Dict: """simple docstring""" super().__init__(self , **__UpperCAmelCase ) # always open as "rb" since fsspec can then use the TextIOWrapper to make it work for "r" mode UpperCAmelCase__ = fsspec.open( __UpperCAmelCase , mode="rb" , protocol=__UpperCAmelCase , compression=self.compression , client_kwargs={ "requote_redirect_url": False, # see https://github.com/huggingface/datasets/pull/5459 "trust_env": True, # Enable reading proxy env variables. **(target_options or {}).pop("client_kwargs" , {} ), # To avoid issues if it was already passed. } , **(target_options or {}) , ) UpperCAmelCase__ = os.path.basename(self.file.path.split("::" )[0] ) UpperCAmelCase__ = ( self.compressed_name[: self.compressed_name.rindex("." )] if "." in self.compressed_name else self.compressed_name ) UpperCAmelCase__ = None @classmethod def lowercase_ (cls : int , __UpperCAmelCase : Union[str, Any] ) -> Dict: """simple docstring""" return super()._strip_protocol(__UpperCAmelCase ).lstrip("/" ) def lowercase_ (self : Any ) -> Any: """simple docstring""" if self.dir_cache is None: UpperCAmelCase__ = {**self.file.fs.info(self.file.path ), "name": self.uncompressed_name} UpperCAmelCase__ = {f["name"]: f} def lowercase_ (self : Union[str, Any] , __UpperCAmelCase : str ) -> Union[str, Any]: """simple docstring""" return self.file.open().read() def lowercase_ (self : Any , __UpperCAmelCase : str , __UpperCAmelCase : str = "rb" , __UpperCAmelCase : Any=None , __UpperCAmelCase : str=True , __UpperCAmelCase : Optional[Any]=None , **__UpperCAmelCase : str , ) -> Dict: """simple docstring""" UpperCAmelCase__ = self._strip_protocol(__UpperCAmelCase ) if mode != "rb": raise ValueError(f"""Tried to read with mode {mode} on file {self.file.path} opened with mode 'rb'""" ) return self.file.open() class A ( UpperCAmelCase_ ): __UpperCAmelCase : Optional[int] = 'bz2' __UpperCAmelCase : Dict = 'bz2' __UpperCAmelCase : Dict = '.bz2' class A ( UpperCAmelCase_ ): __UpperCAmelCase : Optional[int] = 'gzip' __UpperCAmelCase : Optional[Any] = 'gzip' __UpperCAmelCase : Union[str, Any] = '.gz' class A ( UpperCAmelCase_ ): __UpperCAmelCase : List[str] = 'lz4' __UpperCAmelCase : str = 'lz4' __UpperCAmelCase : Any = '.lz4' class A ( UpperCAmelCase_ ): __UpperCAmelCase : str = 'xz' __UpperCAmelCase : int = 'xz' __UpperCAmelCase : Union[str, Any] = '.xz' class A ( UpperCAmelCase_ ): __UpperCAmelCase : str = 'zstd' __UpperCAmelCase : str = 'zstd' __UpperCAmelCase : Optional[Any] = '.zst' def __init__(self : List[Any] , __UpperCAmelCase : str , __UpperCAmelCase : str = "rb" , __UpperCAmelCase : Optional[str] = None , __UpperCAmelCase : Optional[dict] = None , __UpperCAmelCase : int = DEFAULT_BLOCK_SIZE , **__UpperCAmelCase : List[str] , ) -> List[str]: """simple docstring""" super().__init__( fo=__UpperCAmelCase , mode=__UpperCAmelCase , target_protocol=__UpperCAmelCase , target_options=__UpperCAmelCase , block_size=__UpperCAmelCase , **__UpperCAmelCase , ) # We need to wrap the zstd decompressor to avoid this error in fsspec==2021.7.0 and zstandard==0.15.2: # # File "/Users/user/.virtualenvs/hf-datasets/lib/python3.7/site-packages/fsspec/core.py", line 145, in open # out.close = close # AttributeError: 'zstd.ZstdDecompressionReader' object attribute 'close' is read-only # # see https://github.com/intake/filesystem_spec/issues/725 UpperCAmelCase__ = self.file.__enter__ class A : def __init__(self : List[Any] , __UpperCAmelCase : Any ) -> List[str]: """simple docstring""" UpperCAmelCase__ = file_ def __enter__(self : List[str] ) -> Tuple: """simple docstring""" self._file.__enter__() return self def __exit__(self : int , *__UpperCAmelCase : Any , **__UpperCAmelCase : Tuple ) -> str: """simple docstring""" self._file.__exit__(*__UpperCAmelCase , **__UpperCAmelCase ) def __iter__(self : str ) -> List[Any]: """simple docstring""" return iter(self._file ) def lowercase_ (self : int ) -> Any: """simple docstring""" return next(self._file ) def __getattr__(self : Optional[int] , __UpperCAmelCase : Any ) -> Dict: """simple docstring""" return getattr(self._file , __UpperCAmelCase ) def fixed_enter(*__UpperCAmelCase : Tuple , **__UpperCAmelCase : Union[str, Any] ): return WrappedFile(_enter(*__UpperCAmelCase , **__UpperCAmelCase ) ) UpperCAmelCase__ = fixed_enter
65
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ : int = logging.get_logger(__name__) lowercase__ : List[Any] = { '''EleutherAI/gpt-neox-20b''': '''https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/config.json''', # See all GPTNeoX models at https://huggingface.co/models?filter=gpt_neox } class _UpperCAmelCase ( lowerCAmelCase__): _lowerCAmelCase : List[Any] = """gpt_neox""" def __init__( self : List[str] , lowercase_ : str=50432 , lowercase_ : List[Any]=6144 , lowercase_ : List[Any]=44 , lowercase_ : Union[str, Any]=64 , lowercase_ : List[str]=24576 , lowercase_ : List[Any]="gelu" , lowercase_ : str=0.25 , lowercase_ : Optional[int]=10000 , lowercase_ : Optional[int]=0.0 , lowercase_ : Optional[int]=0.0 , lowercase_ : int=0.1 , lowercase_ : Tuple=2048 , lowercase_ : Union[str, Any]=0.02 , lowercase_ : List[str]=1E-5 , lowercase_ : str=True , lowercase_ : str=0 , lowercase_ : Union[str, Any]=2 , lowercase_ : List[str]=False , lowercase_ : Optional[int]=True , lowercase_ : List[Any]=None , **lowercase_ : Optional[int] , ): super().__init__(bos_token_id=lowercase_ , eos_token_id=lowercase_ , **lowercase_ ) snake_case_ : List[str] = vocab_size snake_case_ : Optional[Any] = max_position_embeddings snake_case_ : str = hidden_size snake_case_ : Dict = num_hidden_layers snake_case_ : Dict = num_attention_heads snake_case_ : List[Any] = intermediate_size snake_case_ : List[Any] = hidden_act snake_case_ : str = rotary_pct snake_case_ : Dict = rotary_emb_base snake_case_ : Optional[int] = attention_dropout snake_case_ : Tuple = hidden_dropout snake_case_ : Tuple = classifier_dropout snake_case_ : List[str] = initializer_range snake_case_ : Union[str, Any] = layer_norm_eps snake_case_ : Any = use_cache snake_case_ : Optional[int] = tie_word_embeddings snake_case_ : Any = use_parallel_residual snake_case_ : Union[str, Any] = rope_scaling self._rope_scaling_validation() if self.hidden_size % self.num_attention_heads != 0: raise ValueError( '''The hidden size is not divisble by the number of attention heads! Make sure to update them!''' ) def _snake_case ( self : Optional[int] ): if self.rope_scaling is None: return if not isinstance(self.rope_scaling , lowercase_ ) or len(self.rope_scaling ) != 2: raise ValueError( '''`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, ''' f"got {self.rope_scaling}" ) snake_case_ : Any = self.rope_scaling.get('''type''' , lowercase_ ) snake_case_ : Union[str, Any] = self.rope_scaling.get('''factor''' , lowercase_ ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f"`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}" ) if rope_scaling_factor is None or not isinstance(lowercase_ , lowercase_ ) or rope_scaling_factor <= 1.0: raise ValueError(f"`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}" )
264
0
"""simple docstring""" import logging import os import quant_trainer import torch from torch.utils.data import DataLoader from transformers import Trainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput lowercase__ = logging.getLogger(__name__) if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class __lowerCamelCase ( A__ ): '''simple docstring''' def __init__( self : int , *a_ : Optional[Any] , a_ : Tuple=None , a_ : Dict=None , a_ : Tuple=None , **a_ : str ): super().__init__(*a_ , **a_ ) lowerCAmelCase_ : Optional[Any] = eval_examples lowerCAmelCase_ : Tuple = post_process_function lowerCAmelCase_ : Any = quant_trainer_args lowerCAmelCase_ : List[Any] = 1_28 # default number of calibration samples def lowerCamelCase ( self : Union[str, Any] , a_ : Optional[Any]=None ): if calib_dataset is None and self.calib_dataset is None: raise ValueError("Trainer: calibration requires an calib_dataset." ) lowerCAmelCase_ : Dict = calib_dataset if calib_dataset is not None else self.calib_dataset lowerCAmelCase_ : Any = self._remove_unused_columns(a_ , description="Calibration" ) return DataLoader( a_ , batch_size=self.args.eval_batch_size , collate_fn=self.data_collator , drop_last=self.args.dataloader_drop_last , num_workers=self.args.dataloader_num_workers , pin_memory=self.args.dataloader_pin_memory , shuffle=a_ , ) def lowerCamelCase ( self : Optional[Any] , a_ : Union[str, Any]=None ): lowerCAmelCase_ : List[Any] = self.train_dataset if calib_dataset is None else calib_dataset lowerCAmelCase_ : List[str] = self.get_calib_dataloader(a_ ) lowerCAmelCase_ : int = self.model quant_trainer.configure_model(a_ , self.quant_trainer_args , calib=a_ ) model.eval() quant_trainer.enable_calibration(a_ ) logger.info("***** Running calibration *****" ) logger.info(f''' Num examples = {self.calib_num}''' ) logger.info(f''' Batch size = {calib_dataloader.batch_size}''' ) for step, inputs in enumerate(a_ ): # Prediction step lowerCAmelCase_ : Union[str, Any] = self.prediction_step(a_ , a_ , prediction_loss_only=a_ ) if (step + 1) * calib_dataloader.batch_size >= self.calib_num: break quant_trainer.finish_calibration(a_ , self.quant_trainer_args ) lowerCAmelCase_ : Tuple = model def lowerCamelCase ( self : List[Any] , a_ : List[Any]=None , a_ : Dict=None , a_ : Optional[int]=None , a_ : str = "eval" ): lowerCAmelCase_ : List[str] = self.eval_dataset if eval_dataset is None else eval_dataset lowerCAmelCase_ : List[Any] = self.get_eval_dataloader(a_ ) lowerCAmelCase_ : List[str] = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. lowerCAmelCase_ : Tuple = self.compute_metrics lowerCAmelCase_ : Tuple = None lowerCAmelCase_ : int = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: lowerCAmelCase_ : Optional[Any] = eval_loop( a_ , description="Evaluation" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=a_ , ) finally: lowerCAmelCase_ : Optional[int] = compute_metrics if self.post_process_function is not None and self.compute_metrics is not None: lowerCAmelCase_ : Union[str, Any] = self.post_process_function(a_ , a_ , output.predictions ) lowerCAmelCase_ : List[str] = self.compute_metrics(a_ ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f'''{metric_key_prefix}_''' ): lowerCAmelCase_ : List[str] = metrics.pop(a_ ) self.log(a_ ) else: lowerCAmelCase_ : Any = {} if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) lowerCAmelCase_ : int = self.callback_handler.on_evaluate(self.args , self.state , self.control , a_ ) return metrics def lowerCamelCase ( self : str , a_ : Dict , a_ : int , a_ : Dict=None , a_ : str = "test" ): lowerCAmelCase_ : List[Any] = self.get_test_dataloader(a_ ) # Temporarily disable metric computation, we will do it in the loop here. lowerCAmelCase_ : List[str] = self.compute_metrics lowerCAmelCase_ : int = None lowerCAmelCase_ : Any = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: lowerCAmelCase_ : Dict = eval_loop( a_ , description="Prediction" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=a_ , ) finally: lowerCAmelCase_ : int = compute_metrics if self.post_process_function is None or self.compute_metrics is None: return output lowerCAmelCase_ : Any = self.post_process_function(a_ , a_ , output.predictions , "predict" ) lowerCAmelCase_ : Dict = self.compute_metrics(a_ ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f'''{metric_key_prefix}_''' ): lowerCAmelCase_ : Union[str, Any] = metrics.pop(a_ ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=a_ ) def lowerCamelCase ( self : Union[str, Any] , a_ : str="./" ): lowerCAmelCase_ : Any = self.eval_dataset lowerCAmelCase_ : Tuple = self.get_eval_dataloader(a_ ) lowerCAmelCase_ : Any = next(iter(a_ ) ) # saving device - to make it consistent lowerCAmelCase_ : List[str] = torch.device("cuda" if torch.cuda.is_available() else "cpu" ) # convert to tuple lowerCAmelCase_ : Any = tuple(v.to(a_ ) for k, v in batch.items() ) logger.info("Converting model to be onnx compatible" ) from pytorch_quantization.nn import TensorQuantizer lowerCAmelCase_ : int = True lowerCAmelCase_ : Dict = self.model.to(a_ ) model.eval() model.float() lowerCAmelCase_ : List[Any] = model.module if hasattr(a_ , "module" ) else model quant_trainer.configure_model(a_ , self.quant_trainer_args ) lowerCAmelCase_ : List[Any] = os.path.join(a_ , "model.onnx" ) logger.info(f'''exporting model to {output_model_file}''' ) lowerCAmelCase_ : Tuple = {0: "batch_size", 1: "seq_len"} torch.onnx.export( a_ , a_ , a_ , export_params=a_ , opset_version=13 , do_constant_folding=a_ , input_names=["input_ids", "attention_mask", "token_type_ids"] , output_names=["output_start_logits", "output_end_logits"] , dynamic_axes={ "input_ids": axes, "attention_mask": axes, "token_type_ids": axes, "output_start_logits": axes, "output_end_logits": axes, } , verbose=a_ , ) logger.info("onnx export finished" )
352
"""simple docstring""" import random import unittest import numpy as np import torch from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionUpscalePipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class __lowerCamelCase ( A__ , unittest.TestCase ): '''simple docstring''' a_ : str = """ssube/stable-diffusion-x4-upscaler-onnx""" def lowerCamelCase ( self : Any , a_ : Dict=0 ): lowerCAmelCase_ : Dict = floats_tensor((1, 3, 1_28, 1_28) , rng=random.Random(a_ ) ) lowerCAmelCase_ : Tuple = torch.manual_seed(a_ ) lowerCAmelCase_ : List[str] = { "prompt": "A painting of a squirrel eating a burger", "image": image, "generator": generator, "num_inference_steps": 3, "guidance_scale": 7.5, "output_type": "numpy", } return inputs def lowerCamelCase ( self : Union[str, Any] ): lowerCAmelCase_ : Tuple = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) pipe.set_progress_bar_config(disable=a_ ) lowerCAmelCase_ : Tuple = self.get_dummy_inputs() lowerCAmelCase_ : List[Any] = pipe(**a_ ).images lowerCAmelCase_ : str = image[0, -3:, -3:, -1].flatten() # started as 128, should now be 512 assert image.shape == (1, 5_12, 5_12, 3) lowerCAmelCase_ : int = np.array( [0.6974782, 0.68902093, 0.70135885, 0.7583618, 0.7804545, 0.7854912, 0.78667426, 0.78743863, 0.78070223] ) assert np.abs(image_slice - expected_slice ).max() < 1e-1 def lowerCamelCase ( self : Optional[Any] ): lowerCAmelCase_ : str = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) lowerCAmelCase_ : int = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=a_ ) pipe.set_progress_bar_config(disable=a_ ) lowerCAmelCase_ : Optional[Any] = self.get_dummy_inputs() lowerCAmelCase_ : Union[str, Any] = pipe(**a_ ).images lowerCAmelCase_ : str = image[0, -3:, -3:, -1] assert image.shape == (1, 5_12, 5_12, 3) lowerCAmelCase_ : str = np.array( [0.6898892, 0.59240556, 0.52499527, 0.58866215, 0.52258235, 0.52572715, 0.62414473, 0.6174387, 0.6214964] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def lowerCamelCase ( self : Union[str, Any] ): lowerCAmelCase_ : Tuple = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) lowerCAmelCase_ : str = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=a_ ) lowerCAmelCase_ : Optional[int] = self.get_dummy_inputs() lowerCAmelCase_ : Tuple = pipe(**a_ ).images lowerCAmelCase_ : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 5_12, 5_12, 3) lowerCAmelCase_ : str = np.array( [0.7659278, 0.76437664, 0.75579107, 0.7691116, 0.77666986, 0.7727672, 0.7758664, 0.7812226, 0.76942515] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def lowerCamelCase ( self : Dict ): lowerCAmelCase_ : str = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) lowerCAmelCase_ : str = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=a_ ) lowerCAmelCase_ : Tuple = self.get_dummy_inputs() lowerCAmelCase_ : List[Any] = pipe(**a_ ).images lowerCAmelCase_ : Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 5_12, 5_12, 3) lowerCAmelCase_ : Optional[int] = np.array( [0.6974782, 0.68902093, 0.70135885, 0.7583618, 0.7804545, 0.7854912, 0.78667426, 0.78743863, 0.78070223] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def lowerCamelCase ( self : Tuple ): lowerCAmelCase_ : List[str] = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) lowerCAmelCase_ : int = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=a_ ) lowerCAmelCase_ : Tuple = self.get_dummy_inputs() lowerCAmelCase_ : List[str] = pipe(**a_ ).images lowerCAmelCase_ : List[str] = image[0, -3:, -3:, -1] assert image.shape == (1, 5_12, 5_12, 3) lowerCAmelCase_ : Optional[Any] = np.array( [0.77424496, 0.773601, 0.7645288, 0.7769598, 0.7772739, 0.7738688, 0.78187233, 0.77879584, 0.767043] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 @nightly @require_onnxruntime @require_torch_gpu class __lowerCamelCase ( unittest.TestCase ): '''simple docstring''' @property def lowerCamelCase ( self : Optional[Any] ): return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def lowerCamelCase ( self : List[Any] ): lowerCAmelCase_ : Tuple = ort.SessionOptions() lowerCAmelCase_ : List[str] = False return options def lowerCamelCase ( self : Any ): lowerCAmelCase_ : List[str] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg" ) lowerCAmelCase_ : List[Any] = init_image.resize((1_28, 1_28) ) # using the PNDM scheduler by default lowerCAmelCase_ : List[str] = OnnxStableDiffusionUpscalePipeline.from_pretrained( "ssube/stable-diffusion-x4-upscaler-onnx" , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=a_ ) lowerCAmelCase_ : Dict = "A fantasy landscape, trending on artstation" lowerCAmelCase_ : Any = torch.manual_seed(0 ) lowerCAmelCase_ : Dict = pipe( prompt=a_ , image=a_ , guidance_scale=7.5 , num_inference_steps=10 , generator=a_ , output_type="np" , ) lowerCAmelCase_ : Dict = output.images lowerCAmelCase_ : Optional[int] = images[0, 2_55:2_58, 3_83:3_86, -1] assert images.shape == (1, 5_12, 5_12, 3) lowerCAmelCase_ : Optional[int] = np.array([0.4883, 0.4947, 0.4980, 0.4975, 0.4982, 0.4980, 0.5000, 0.5006, 0.4972] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2 def lowerCamelCase ( self : str ): lowerCAmelCase_ : Tuple = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg" ) lowerCAmelCase_ : Union[str, Any] = init_image.resize((1_28, 1_28) ) lowerCAmelCase_ : List[Any] = LMSDiscreteScheduler.from_pretrained( "ssube/stable-diffusion-x4-upscaler-onnx" , subfolder="scheduler" ) lowerCAmelCase_ : Dict = OnnxStableDiffusionUpscalePipeline.from_pretrained( "ssube/stable-diffusion-x4-upscaler-onnx" , scheduler=a_ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=a_ ) lowerCAmelCase_ : Any = "A fantasy landscape, trending on artstation" lowerCAmelCase_ : Optional[int] = torch.manual_seed(0 ) lowerCAmelCase_ : List[str] = pipe( prompt=a_ , image=a_ , guidance_scale=7.5 , num_inference_steps=20 , generator=a_ , output_type="np" , ) lowerCAmelCase_ : List[str] = output.images lowerCAmelCase_ : Any = images[0, 2_55:2_58, 3_83:3_86, -1] assert images.shape == (1, 5_12, 5_12, 3) lowerCAmelCase_ : List[str] = np.array( [0.50173753, 0.50223356, 0.502039, 0.50233036, 0.5023725, 0.5022601, 0.5018758, 0.50234085, 0.50241566] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2
161
0
"""simple docstring""" import os def _lowerCAmelCase ( UpperCamelCase_ = "matrix.txt" ): with open(os.path.join(os.path.dirname(lowerCamelCase__ ) , lowerCamelCase__ ) ) as in_file: __SCREAMING_SNAKE_CASE = in_file.read() __SCREAMING_SNAKE_CASE = [[int(lowerCamelCase__ ) for cell in row.split(""",""" )] for row in data.strip().splitlines()] __SCREAMING_SNAKE_CASE = [[0 for cell in row] for row in grid] __SCREAMING_SNAKE_CASE = len(grid[0] ) __SCREAMING_SNAKE_CASE = [[0 for i in range(lowerCamelCase__ )] for j in range(lowerCamelCase__ )] __SCREAMING_SNAKE_CASE = grid[0][0] for i in range(1 , lowerCamelCase__ ): __SCREAMING_SNAKE_CASE = grid[0][i] + dp[0][i - 1] for i in range(1 , lowerCamelCase__ ): __SCREAMING_SNAKE_CASE = grid[i][0] + dp[i - 1][0] for i in range(1 , lowerCamelCase__ ): for j in range(1 , lowerCamelCase__ ): __SCREAMING_SNAKE_CASE = grid[i][j] + min(dp[i - 1][j] , dp[i][j - 1] ) return dp[-1][-1] if __name__ == "__main__": print(F"""{solution() = }""")
100
from typing import Optional, Union import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models.modeling_utils import ModelMixin class snake_case__(_UpperCamelCase , _UpperCamelCase ): """simple docstring""" @register_to_config def __init__( self : Dict , SCREAMING_SNAKE_CASE : int = 768 , ): super().__init__() lowercase__ : List[str] = nn.Parameter(torch.zeros(1 , SCREAMING_SNAKE_CASE ) ) lowercase__ : Optional[int] = nn.Parameter(torch.ones(1 , SCREAMING_SNAKE_CASE ) ) def snake_case ( self : Optional[int] , SCREAMING_SNAKE_CASE : Optional[Union[str, torch.device]] = None , SCREAMING_SNAKE_CASE : Optional[torch.dtype] = None , ): lowercase__ : Union[str, Any] = nn.Parameter(self.mean.to(SCREAMING_SNAKE_CASE ).to(SCREAMING_SNAKE_CASE ) ) lowercase__ : Dict = nn.Parameter(self.std.to(SCREAMING_SNAKE_CASE ).to(SCREAMING_SNAKE_CASE ) ) return self def snake_case ( self : Optional[Any] , SCREAMING_SNAKE_CASE : Union[str, Any] ): lowercase__ : Optional[int] = (embeds - self.mean) * 1.0 / self.std return embeds def snake_case ( self : Dict , SCREAMING_SNAKE_CASE : str ): lowercase__ : Any = (embeds * self.std) + self.mean return embeds
130
0
import os from bleurt import score # From: git+https://github.com/google-research/bleurt.git import datasets __snake_case : int = datasets.logging.get_logger(__name__) __snake_case : Union[str, Any] = """\ @inproceedings{bleurt, title={BLEURT: Learning Robust Metrics for Text Generation}, author={Thibault Sellam and Dipanjan Das and Ankur P. Parikh}, booktitle={ACL}, year={2020}, url={https://arxiv.org/abs/2004.04696} } """ __snake_case : Dict = """\ BLEURT a learnt evaluation metric for Natural Language Generation. It is built using multiple phases of transfer learning starting from a pretrained BERT model (Devlin et al. 2018) and then employing another pre-training phrase using synthetic data. Finally it is trained on WMT human annotations. You may run BLEURT out-of-the-box or fine-tune it for your specific application (the latter is expected to perform better). See the project's README at https://github.com/google-research/bleurt#readme for more information. """ __snake_case : str = """ BLEURT score. Args: `predictions` (list of str): prediction/candidate sentences `references` (list of str): reference sentences `checkpoint` BLEURT checkpoint. Will default to BLEURT-tiny if None. Returns: 'scores': List of scores. Examples: >>> predictions = [\"hello there\", \"general kenobi\"] >>> references = [\"hello there\", \"general kenobi\"] >>> bleurt = datasets.load_metric(\"bleurt\") >>> results = bleurt.compute(predictions=predictions, references=references) >>> print([round(v, 2) for v in results[\"scores\"]]) [1.03, 1.04] """ __snake_case : int = { """bleurt-tiny-128""": """https://storage.googleapis.com/bleurt-oss/bleurt-tiny-128.zip""", """bleurt-tiny-512""": """https://storage.googleapis.com/bleurt-oss/bleurt-tiny-512.zip""", """bleurt-base-128""": """https://storage.googleapis.com/bleurt-oss/bleurt-base-128.zip""", """bleurt-base-512""": """https://storage.googleapis.com/bleurt-oss/bleurt-base-512.zip""", """bleurt-large-128""": """https://storage.googleapis.com/bleurt-oss/bleurt-large-128.zip""", """bleurt-large-512""": """https://storage.googleapis.com/bleurt-oss/bleurt-large-512.zip""", """BLEURT-20-D3""": """https://storage.googleapis.com/bleurt-oss-21/BLEURT-20-D3.zip""", """BLEURT-20-D6""": """https://storage.googleapis.com/bleurt-oss-21/BLEURT-20-D6.zip""", """BLEURT-20-D12""": """https://storage.googleapis.com/bleurt-oss-21/BLEURT-20-D12.zip""", """BLEURT-20""": """https://storage.googleapis.com/bleurt-oss-21/BLEURT-20.zip""", } @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION) class __SCREAMING_SNAKE_CASE ( datasets.Metric): def UpperCamelCase__ ( self ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='https://github.com/google-research/bleurt' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Value('string' , id='sequence' ), } ) , codebase_urls=['https://github.com/google-research/bleurt'] , reference_urls=['https://github.com/google-research/bleurt', 'https://arxiv.org/abs/2004.04696'] , ) def UpperCamelCase__ ( self , _UpperCamelCase ): """simple docstring""" # check that config name specifies a valid BLEURT model if self.config_name == "default": logger.warning( 'Using default BLEURT-Base checkpoint for sequence maximum length 128. ' 'You can use a bigger model for better results with e.g.: datasets.load_metric(\'bleurt\', \'bleurt-large-512\').' ) lowerCAmelCase__ = 'bleurt-base-128' if self.config_name.lower() in CHECKPOINT_URLS: lowerCAmelCase__ = self.config_name.lower() elif self.config_name.upper() in CHECKPOINT_URLS: lowerCAmelCase__ = self.config_name.upper() else: raise KeyError( F"{self.config_name} model not found. You should supply the name of a model checkpoint for bleurt in {CHECKPOINT_URLS.keys()}" ) # download the model checkpoint specified by self.config_name and set up the scorer lowerCAmelCase__ = dl_manager.download_and_extract(CHECKPOINT_URLS[checkpoint_name] ) lowerCAmelCase__ = score.BleurtScorer(os.path.join(_UpperCamelCase , _UpperCamelCase ) ) def UpperCamelCase__ ( self , _UpperCamelCase , _UpperCamelCase ): """simple docstring""" lowerCAmelCase__ = self.scorer.score(references=_UpperCamelCase , candidates=_UpperCamelCase ) return {"scores": scores}
122
import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaInpaintPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class __SCREAMING_SNAKE_CASE ( __lowercase , unittest.TestCase): _SCREAMING_SNAKE_CASE : int = KandinskyVaaInpaintPipeline _SCREAMING_SNAKE_CASE : int = ['''image_embeds''', '''negative_image_embeds''', '''image''', '''mask_image'''] _SCREAMING_SNAKE_CASE : Optional[Any] = [ '''image_embeds''', '''negative_image_embeds''', '''image''', '''mask_image''', ] _SCREAMING_SNAKE_CASE : List[Any] = [ '''generator''', '''height''', '''width''', '''latents''', '''guidance_scale''', '''num_inference_steps''', '''return_dict''', '''guidance_scale''', '''num_images_per_prompt''', '''output_type''', '''return_dict''', ] _SCREAMING_SNAKE_CASE : Optional[Any] = False @property def UpperCamelCase__ ( self ): """simple docstring""" return 32 @property def UpperCamelCase__ ( self ): """simple docstring""" return 32 @property def UpperCamelCase__ ( self ): """simple docstring""" return self.time_input_dim @property def UpperCamelCase__ ( self ): """simple docstring""" return self.time_input_dim * 4 @property def UpperCamelCase__ ( self ): """simple docstring""" return 1_00 @property def UpperCamelCase__ ( self ): """simple docstring""" torch.manual_seed(0 ) lowerCAmelCase__ = { 'in_channels': 9, # Out channels is double in channels because predicts mean and variance 'out_channels': 8, 'addition_embed_type': 'image', 'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'), 'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'), 'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn', 'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2), 'layers_per_block': 1, 'encoder_hid_dim': self.text_embedder_hidden_size, 'encoder_hid_dim_type': 'image_proj', 'cross_attention_dim': self.cross_attention_dim, 'attention_head_dim': 4, 'resnet_time_scale_shift': 'scale_shift', 'class_embed_type': None, } lowerCAmelCase__ = UNetaDConditionModel(**_UpperCamelCase ) return model @property def UpperCamelCase__ ( self ): """simple docstring""" return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def UpperCamelCase__ ( self ): """simple docstring""" torch.manual_seed(0 ) lowerCAmelCase__ = VQModel(**self.dummy_movq_kwargs ) return model def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase__ = self.dummy_unet lowerCAmelCase__ = self.dummy_movq lowerCAmelCase__ = DDIMScheduler( num_train_timesteps=10_00 , beta_schedule='linear' , beta_start=0.0_00_85 , beta_end=0.0_12 , clip_sample=_UpperCamelCase , set_alpha_to_one=_UpperCamelCase , steps_offset=1 , prediction_type='epsilon' , thresholding=_UpperCamelCase , ) lowerCAmelCase__ = { 'unet': unet, 'scheduler': scheduler, 'movq': movq, } return components def UpperCamelCase__ ( self , _UpperCamelCase , _UpperCamelCase=0 ): """simple docstring""" lowerCAmelCase__ = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(_UpperCamelCase ) ).to(_UpperCamelCase ) lowerCAmelCase__ = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( _UpperCamelCase ) # create init_image lowerCAmelCase__ = floats_tensor((1, 3, 64, 64) , rng=random.Random(_UpperCamelCase ) ).to(_UpperCamelCase ) lowerCAmelCase__ = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowerCAmelCase__ = Image.fromarray(np.uinta(_UpperCamelCase ) ).convert('RGB' ).resize((2_56, 2_56) ) # create mask lowerCAmelCase__ = np.ones((64, 64) , dtype=np.floataa ) lowerCAmelCase__ = 0 if str(_UpperCamelCase ).startswith('mps' ): lowerCAmelCase__ = torch.manual_seed(_UpperCamelCase ) else: lowerCAmelCase__ = torch.Generator(device=_UpperCamelCase ).manual_seed(_UpperCamelCase ) lowerCAmelCase__ = { 'image': init_image, 'mask_image': mask, 'image_embeds': image_embeds, 'negative_image_embeds': negative_image_embeds, 'generator': generator, 'height': 64, 'width': 64, 'num_inference_steps': 2, 'guidance_scale': 4.0, 'output_type': 'np', } return inputs def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase__ = 'cpu' lowerCAmelCase__ = self.get_dummy_components() lowerCAmelCase__ = self.pipeline_class(**_UpperCamelCase ) lowerCAmelCase__ = pipe.to(_UpperCamelCase ) pipe.set_progress_bar_config(disable=_UpperCamelCase ) lowerCAmelCase__ = pipe(**self.get_dummy_inputs(_UpperCamelCase ) ) lowerCAmelCase__ = output.images lowerCAmelCase__ = pipe( **self.get_dummy_inputs(_UpperCamelCase ) , return_dict=_UpperCamelCase , )[0] lowerCAmelCase__ = image[0, -3:, -3:, -1] lowerCAmelCase__ = image_from_tuple[0, -3:, -3:, -1] print(F"image.shape {image.shape}" ) assert image.shape == (1, 64, 64, 3) lowerCAmelCase__ = np.array( [0.50_77_59_03, 0.49_52_71_95, 0.48_82_45_43, 0.50_19_22_37, 0.48_64_49_06, 0.49_37_38_14, 0.4_78_05_98, 0.47_23_48_27, 0.48_32_78_48] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), F" expected_slice {expected_slice}, but got {image_slice.flatten()}" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), F" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}" def UpperCamelCase__ ( self ): """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class __SCREAMING_SNAKE_CASE ( unittest.TestCase): def UpperCamelCase__ ( self ): """simple docstring""" # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase__ = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinskyv22/kandinskyv22_inpaint_cat_with_hat_fp16.npy' ) lowerCAmelCase__ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinsky/cat.png' ) lowerCAmelCase__ = np.ones((7_68, 7_68) , dtype=np.floataa ) lowerCAmelCase__ = 0 lowerCAmelCase__ = 'a hat' lowerCAmelCase__ = KandinskyVaaPriorPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-prior' , torch_dtype=torch.floataa ) pipe_prior.to(_UpperCamelCase ) lowerCAmelCase__ = KandinskyVaaInpaintPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-decoder-inpaint' , torch_dtype=torch.floataa ) lowerCAmelCase__ = pipeline.to(_UpperCamelCase ) pipeline.set_progress_bar_config(disable=_UpperCamelCase ) lowerCAmelCase__ = torch.Generator(device='cpu' ).manual_seed(0 ) lowerCAmelCase__ , lowerCAmelCase__ = pipe_prior( _UpperCamelCase , generator=_UpperCamelCase , num_inference_steps=5 , negative_prompt='' , ).to_tuple() lowerCAmelCase__ = pipeline( image=_UpperCamelCase , mask_image=_UpperCamelCase , image_embeds=_UpperCamelCase , negative_image_embeds=_UpperCamelCase , generator=_UpperCamelCase , num_inference_steps=1_00 , height=7_68 , width=7_68 , output_type='np' , ) lowerCAmelCase__ = output.images[0] assert image.shape == (7_68, 7_68, 3) assert_mean_pixel_difference(_UpperCamelCase , _UpperCamelCase )
122
1
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging a__ : Any =logging.get_logger(__name__) a__ : List[str] ='''▁''' a__ : Optional[Any] ={'''vocab_file''': '''sentencepiece.bpe.model'''} a__ : Any ={ '''vocab_file''': { '''facebook/mbart-large-en-ro''': ( '''https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model''' ), '''facebook/mbart-large-cc25''': ( '''https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model''' ), } } a__ : Optional[int] ={ '''facebook/mbart-large-en-ro''': 1_024, '''facebook/mbart-large-cc25''': 1_024, } # fmt: off a__ : Optional[Any] =['''ar_AR''', '''cs_CZ''', '''de_DE''', '''en_XX''', '''es_XX''', '''et_EE''', '''fi_FI''', '''fr_XX''', '''gu_IN''', '''hi_IN''', '''it_IT''', '''ja_XX''', '''kk_KZ''', '''ko_KR''', '''lt_LT''', '''lv_LV''', '''my_MM''', '''ne_NP''', '''nl_XX''', '''ro_RO''', '''ru_RU''', '''si_LK''', '''tr_TR''', '''vi_VN''', '''zh_CN'''] class snake_case ( __lowerCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple =VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE_ : List[str] =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE_ : Dict =PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE_ : List[str] =["input_ids", "attention_mask"] SCREAMING_SNAKE_CASE_ : List[int] =[] SCREAMING_SNAKE_CASE_ : List[int] =[] def __init__( self : Optional[int] , __A : Union[str, Any] , __A : Any="<s>" , __A : List[str]="</s>" , __A : Dict="</s>" , __A : str="<s>" , __A : Optional[int]="<unk>" , __A : str="<pad>" , __A : Optional[int]="<mask>" , __A : List[str]=None , __A : Optional[int]=None , __A : Optional[Any]=None , __A : Optional[Dict[str, Any]] = None , __A : Dict=None , **__A : int , ): # Mask token behave like a normal word, i.e. include the space before it __UpperCamelCase = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else mask_token __UpperCamelCase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=__A , eos_token=__A , unk_token=__A , sep_token=__A , cls_token=__A , pad_token=__A , mask_token=__A , tokenizer_file=__A , src_lang=__A , tgt_lang=__A , additional_special_tokens=__A , sp_model_kwargs=self.sp_model_kwargs , **__A , ) __UpperCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(__A ) ) __UpperCamelCase = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token __UpperCamelCase = {'<s>': 0, '<pad>': 1, '</s>': 2, '<unk>': 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab __UpperCamelCase = 1 __UpperCamelCase = len(self.sp_model ) __UpperCamelCase = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(__A ) } __UpperCamelCase = {v: k for k, v in self.lang_code_to_id.items()} __UpperCamelCase = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) __UpperCamelCase = {v: k for k, v in self.fairseq_tokens_to_ids.items()} __UpperCamelCase = list(self.lang_code_to_id.keys() ) if additional_special_tokens is not None: # Only add those special tokens if they are not already there. self._additional_special_tokens.extend( [t for t in additional_special_tokens if t not in self._additional_special_tokens] ) __UpperCamelCase = src_lang if src_lang is not None else 'en_XX' __UpperCamelCase = self.lang_code_to_id[self._src_lang] __UpperCamelCase = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__( self : List[Any] ): __UpperCamelCase = self.__dict__.copy() __UpperCamelCase = None __UpperCamelCase = self.sp_model.serialized_model_proto() return state def __setstate__( self : Optional[Any] , __A : int ): __UpperCamelCase = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): __UpperCamelCase = {} __UpperCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) @property def _lowerCamelCase ( self : Union[str, Any] ): return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def _lowerCamelCase ( self : List[str] ): return self._src_lang @src_lang.setter def _lowerCamelCase ( self : Optional[int] , __A : str ): __UpperCamelCase = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def _lowerCamelCase ( self : Optional[Any] , __A : List[int] , __A : Optional[List[int]] = None , __A : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__A , token_ids_a=__A , already_has_special_tokens=__A ) __UpperCamelCase = [1] * len(self.prefix_tokens ) __UpperCamelCase = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(__A )) + suffix_ones return prefix_ones + ([0] * len(__A )) + ([0] * len(__A )) + suffix_ones def _lowerCamelCase ( self : Union[str, Any] , __A : List[int] , __A : Optional[List[int]] = None ): if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def _lowerCamelCase ( self : Tuple , __A : List[int] , __A : Optional[List[int]] = None ): __UpperCamelCase = [self.sep_token_id] __UpperCamelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _lowerCamelCase ( self : Union[str, Any] , __A : Union[str, Any] , __A : str , __A : Optional[str] , __A : Optional[str] , **__A : List[str] ): if src_lang is None or tgt_lang is None: raise ValueError('Translation requires a `src_lang` and a `tgt_lang` for this model' ) __UpperCamelCase = src_lang __UpperCamelCase = self(__A , add_special_tokens=__A , return_tensors=__A , **__A ) __UpperCamelCase = self.convert_tokens_to_ids(__A ) __UpperCamelCase = tgt_lang_id return inputs def _lowerCamelCase ( self : str ): __UpperCamelCase = {self.convert_ids_to_tokens(__A ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def _lowerCamelCase ( self : List[Any] , __A : str ): return self.sp_model.encode(__A , out_type=__A ) def _lowerCamelCase ( self : Optional[int] , __A : List[str] ): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] __UpperCamelCase = self.sp_model.PieceToId(__A ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def _lowerCamelCase ( self : Dict , __A : List[str] ): if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def _lowerCamelCase ( self : Optional[Any] , __A : Optional[Any] ): __UpperCamelCase = ''.join(__A ).replace(__A , ' ' ).strip() return out_string def _lowerCamelCase ( self : Tuple , __A : str , __A : Optional[str] = None ): if not os.path.isdir(__A ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return __UpperCamelCase = os.path.join( __A , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__A ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __A ) elif not os.path.isfile(self.vocab_file ): with open(__A , 'wb' ) as fi: __UpperCamelCase = self.sp_model.serialized_model_proto() fi.write(__A ) return (out_vocab_file,) def _lowerCamelCase ( self : Tuple , __A : List[str] , __A : str = "en_XX" , __A : Optional[List[str]] = None , __A : str = "ro_RO" , **__A : int , ): __UpperCamelCase = src_lang __UpperCamelCase = tgt_lang return super().prepare_seqaseq_batch(__A , __A , **__A ) def _lowerCamelCase ( self : Optional[Any] ): return self.set_src_lang_special_tokens(self.src_lang ) def _lowerCamelCase ( self : Optional[Any] ): return self.set_tgt_lang_special_tokens(self.tgt_lang ) def _lowerCamelCase ( self : Dict , __A : List[Any] ): __UpperCamelCase = self.lang_code_to_id[src_lang] __UpperCamelCase = [] __UpperCamelCase = [self.eos_token_id, self.cur_lang_code] def _lowerCamelCase ( self : Tuple , __A : str ): __UpperCamelCase = self.lang_code_to_id[lang] __UpperCamelCase = [] __UpperCamelCase = [self.eos_token_id, self.cur_lang_code]
53
"""simple docstring""" import argparse import json import subprocess def lowerCamelCase__ ( _lowerCamelCase : Tuple , _lowerCamelCase : str ) -> List[Any]: lowerCamelCase_ = [] lowerCamelCase_ = ( F'''curl -H "Accept: application/vnd.github+json" -H "Authorization: Bearer {token}"''' ' https://api.github.com/repos/huggingface/transformers/actions/runners' ) lowerCamelCase_ = subprocess.run(_lowerCamelCase , shell=_lowerCamelCase , stdout=subprocess.PIPE ) lowerCamelCase_ = output.stdout.decode('utf-8' ) lowerCamelCase_ = json.loads(_lowerCamelCase ) lowerCamelCase_ = status['runners'] for runner in runners: if runner["name"] in target_runners: if runner["status"] == "offline": offline_runners.append(_lowerCamelCase ) # save the result so we can report them on Slack with open('offline_runners.txt' , 'w' ) as fp: fp.write(json.dumps(_lowerCamelCase ) ) if len(_lowerCamelCase ) > 0: lowerCamelCase_ = '\n'.join([x['name'] for x in offline_runners] ) raise ValueError(F'''The following runners are offline:\n{failed}''' ) if __name__ == "__main__": def lowerCamelCase__ ( _lowerCamelCase : Dict ) -> Tuple: return values.split(',' ) _SCREAMING_SNAKE_CASE : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--target_runners''', default=None, type=list_str, required=True, help='''Comma-separated list of runners to check status.''', ) parser.add_argument( '''--token''', default=None, type=str, required=True, help='''A token that has actions:read permission.''' ) _SCREAMING_SNAKE_CASE : Any = parser.parse_args() get_runner_status(args.target_runners, args.token)
183
0
# Copyright 2022 The HuggingFace Team and The OpenBMB Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowerCAmelCase_ = { '''configuration_cpmant''': ['''CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''CpmAntConfig'''], '''tokenization_cpmant''': ['''CpmAntTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ '''CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''CpmAntForCausalLM''', '''CpmAntModel''', '''CpmAntPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_cpmant import CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP, CpmAntConfig from .tokenization_cpmant import CpmAntTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_cpmant import ( CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST, CpmAntForCausalLM, CpmAntModel, CpmAntPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
279
def lowerCamelCase_ ( _UpperCamelCase ) -> int: """simple docstring""" if not isinstance(_UpperCamelCase , _UpperCamelCase ): raise ValueError('''multiplicative_persistence() only accepts integral values''' ) if num < 0: raise ValueError('''multiplicative_persistence() does not accept negative values''' ) snake_case_ : List[Any] = 0 snake_case_ : Tuple = str(_UpperCamelCase ) while len(_UpperCamelCase ) != 1: snake_case_ : Tuple = [int(_UpperCamelCase ) for i in num_string] snake_case_ : Dict = 1 for i in range(0 , len(_UpperCamelCase ) ): total *= numbers[i] snake_case_ : str = str(_UpperCamelCase ) steps += 1 return steps def lowerCamelCase_ ( _UpperCamelCase ) -> int: """simple docstring""" if not isinstance(_UpperCamelCase , _UpperCamelCase ): raise ValueError('''additive_persistence() only accepts integral values''' ) if num < 0: raise ValueError('''additive_persistence() does not accept negative values''' ) snake_case_ : Any = 0 snake_case_ : Tuple = str(_UpperCamelCase ) while len(_UpperCamelCase ) != 1: snake_case_ : List[str] = [int(_UpperCamelCase ) for i in num_string] snake_case_ : Optional[int] = 0 for i in range(0 , len(_UpperCamelCase ) ): total += numbers[i] snake_case_ : Tuple = str(_UpperCamelCase ) steps += 1 return steps if __name__ == "__main__": import doctest doctest.testmod()
279
1
'''simple docstring''' import argparse import os import shutil from pathlib import Path import onnx import torch from packaging import version from torch.onnx import export from diffusers import OnnxRuntimeModel, OnnxStableDiffusionPipeline, StableDiffusionPipeline a_ : Optional[int] = version.parse(version.parse(torch.__version__).base_version) < version.parse("""1.11""") def a_ ( __snake_case : Optional[Any] , __snake_case : tuple , __snake_case : Path , __snake_case : List[Any] , __snake_case : str , __snake_case : int , __snake_case : Union[str, Any] , __snake_case : int=False , ) -> Any: """simple docstring""" output_path.parent.mkdir(parents=__snake_case , exist_ok=__snake_case ) # PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11, # so we check the torch version for backwards compatibility if is_torch_less_than_1_11: export( __snake_case , __snake_case , f=output_path.as_posix() , input_names=__snake_case , output_names=__snake_case , dynamic_axes=__snake_case , do_constant_folding=__snake_case , use_external_data_format=__snake_case , enable_onnx_checker=__snake_case , opset_version=__snake_case , ) else: export( __snake_case , __snake_case , f=output_path.as_posix() , input_names=__snake_case , output_names=__snake_case , dynamic_axes=__snake_case , do_constant_folding=__snake_case , opset_version=__snake_case , ) @torch.no_grad() def a_ ( __snake_case : str , __snake_case : str , __snake_case : int , __snake_case : bool = False ) -> Dict: """simple docstring""" lowerCamelCase_ =torch.floataa if fpaa else torch.floataa if fpaa and torch.cuda.is_available(): lowerCamelCase_ ='''cuda''' elif fpaa and not torch.cuda.is_available(): raise ValueError('''`float16` model export is only supported on GPUs with CUDA''' ) else: lowerCamelCase_ ='''cpu''' lowerCamelCase_ =StableDiffusionPipeline.from_pretrained(__snake_case , torch_dtype=__snake_case ).to(__snake_case ) lowerCamelCase_ =Path(__snake_case ) # TEXT ENCODER lowerCamelCase_ =pipeline.text_encoder.config.max_position_embeddings lowerCamelCase_ =pipeline.text_encoder.config.hidden_size lowerCamelCase_ =pipeline.tokenizer( '''A sample prompt''' , padding='''max_length''' , max_length=pipeline.tokenizer.model_max_length , truncation=__snake_case , return_tensors='''pt''' , ) onnx_export( pipeline.text_encoder , model_args=(text_input.input_ids.to(device=__snake_case , dtype=torch.intaa )) , output_path=output_path / '''text_encoder''' / '''model.onnx''' , ordered_input_names=['''input_ids'''] , output_names=['''last_hidden_state''', '''pooler_output'''] , dynamic_axes={ '''input_ids''': {0: '''batch''', 1: '''sequence'''}, } , opset=__snake_case , ) del pipeline.text_encoder # UNET lowerCamelCase_ =pipeline.unet.config.in_channels lowerCamelCase_ =pipeline.unet.config.sample_size lowerCamelCase_ =output_path / '''unet''' / '''model.onnx''' onnx_export( pipeline.unet , model_args=( torch.randn(2 , __snake_case , __snake_case , __snake_case ).to(device=__snake_case , dtype=__snake_case ), torch.randn(2 ).to(device=__snake_case , dtype=__snake_case ), torch.randn(2 , __snake_case , __snake_case ).to(device=__snake_case , dtype=__snake_case ), False, ) , output_path=__snake_case , ordered_input_names=['''sample''', '''timestep''', '''encoder_hidden_states''', '''return_dict'''] , output_names=['''out_sample'''] , dynamic_axes={ '''sample''': {0: '''batch''', 1: '''channels''', 2: '''height''', 3: '''width'''}, '''timestep''': {0: '''batch'''}, '''encoder_hidden_states''': {0: '''batch''', 1: '''sequence'''}, } , opset=__snake_case , use_external_data_format=__snake_case , ) lowerCamelCase_ =str(unet_path.absolute().as_posix() ) lowerCamelCase_ =os.path.dirname(__snake_case ) lowerCamelCase_ =onnx.load(__snake_case ) # clean up existing tensor files shutil.rmtree(__snake_case ) os.mkdir(__snake_case ) # collate external tensor files into one onnx.save_model( __snake_case , __snake_case , save_as_external_data=__snake_case , all_tensors_to_one_file=__snake_case , location='''weights.pb''' , convert_attribute=__snake_case , ) del pipeline.unet # VAE ENCODER lowerCamelCase_ =pipeline.vae lowerCamelCase_ =vae_encoder.config.in_channels lowerCamelCase_ =vae_encoder.config.sample_size # need to get the raw tensor output (sample) from the encoder lowerCamelCase_ =lambda __snake_case , __snake_case : vae_encoder.encode(__snake_case , __snake_case )[0].sample() onnx_export( __snake_case , model_args=( torch.randn(1 , __snake_case , __snake_case , __snake_case ).to(device=__snake_case , dtype=__snake_case ), False, ) , output_path=output_path / '''vae_encoder''' / '''model.onnx''' , ordered_input_names=['''sample''', '''return_dict'''] , output_names=['''latent_sample'''] , dynamic_axes={ '''sample''': {0: '''batch''', 1: '''channels''', 2: '''height''', 3: '''width'''}, } , opset=__snake_case , ) # VAE DECODER lowerCamelCase_ =pipeline.vae lowerCamelCase_ =vae_decoder.config.latent_channels lowerCamelCase_ =vae_decoder.config.out_channels # forward only through the decoder part lowerCamelCase_ =vae_encoder.decode onnx_export( __snake_case , model_args=( torch.randn(1 , __snake_case , __snake_case , __snake_case ).to(device=__snake_case , dtype=__snake_case ), False, ) , output_path=output_path / '''vae_decoder''' / '''model.onnx''' , ordered_input_names=['''latent_sample''', '''return_dict'''] , output_names=['''sample'''] , dynamic_axes={ '''latent_sample''': {0: '''batch''', 1: '''channels''', 2: '''height''', 3: '''width'''}, } , opset=__snake_case , ) del pipeline.vae # SAFETY CHECKER if pipeline.safety_checker is not None: lowerCamelCase_ =pipeline.safety_checker lowerCamelCase_ =safety_checker.config.vision_config.num_channels lowerCamelCase_ =safety_checker.config.vision_config.image_size lowerCamelCase_ =safety_checker.forward_onnx onnx_export( pipeline.safety_checker , model_args=( torch.randn( 1 , __snake_case , __snake_case , __snake_case , ).to(device=__snake_case , dtype=__snake_case ), torch.randn(1 , __snake_case , __snake_case , __snake_case ).to(device=__snake_case , dtype=__snake_case ), ) , output_path=output_path / '''safety_checker''' / '''model.onnx''' , ordered_input_names=['''clip_input''', '''images'''] , output_names=['''out_images''', '''has_nsfw_concepts'''] , dynamic_axes={ '''clip_input''': {0: '''batch''', 1: '''channels''', 2: '''height''', 3: '''width'''}, '''images''': {0: '''batch''', 1: '''height''', 2: '''width''', 3: '''channels'''}, } , opset=__snake_case , ) del pipeline.safety_checker lowerCamelCase_ =OnnxRuntimeModel.from_pretrained(output_path / '''safety_checker''' ) lowerCamelCase_ =pipeline.feature_extractor else: lowerCamelCase_ =None lowerCamelCase_ =None lowerCamelCase_ =OnnxStableDiffusionPipeline( vae_encoder=OnnxRuntimeModel.from_pretrained(output_path / '''vae_encoder''' ) , vae_decoder=OnnxRuntimeModel.from_pretrained(output_path / '''vae_decoder''' ) , text_encoder=OnnxRuntimeModel.from_pretrained(output_path / '''text_encoder''' ) , tokenizer=pipeline.tokenizer , unet=OnnxRuntimeModel.from_pretrained(output_path / '''unet''' ) , scheduler=pipeline.scheduler , safety_checker=__snake_case , feature_extractor=__snake_case , requires_safety_checker=safety_checker is not None , ) onnx_pipeline.save_pretrained(__snake_case ) print('''ONNX pipeline saved to''' , __snake_case ) del pipeline del onnx_pipeline lowerCamelCase_ =OnnxStableDiffusionPipeline.from_pretrained(__snake_case , provider='''CPUExecutionProvider''' ) print('''ONNX pipeline is loadable''' ) if __name__ == "__main__": a_ : List[Any] = argparse.ArgumentParser() parser.add_argument( """--model_path""", type=str, required=True, help="""Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).""", ) parser.add_argument("""--output_path""", type=str, required=True, help="""Path to the output model.""") parser.add_argument( """--opset""", default=14, type=int, help="""The version of the ONNX operator set to use.""", ) parser.add_argument("""--fp16""", action="""store_true""", default=False, help="""Export the models in `float16` mode""") a_ : int = parser.parse_args() convert_models(args.model_path, args.output_path, args.opset, args.fpaa)
75
from __future__ import annotations def __lowerCamelCase ( snake_case__ ,snake_case__ ) -> list[int]: """simple docstring""" _SCREAMING_SNAKE_CASE = 0 _SCREAMING_SNAKE_CASE = len(snake_case__ ) - 1 while i < j: if nums[i] + nums[j] == target: return [i, j] elif nums[i] + nums[j] < target: _SCREAMING_SNAKE_CASE = i + 1 else: _SCREAMING_SNAKE_CASE = j - 1 return [] if __name__ == "__main__": import doctest doctest.testmod() print(f"{two_pointer([2, 7, 11, 15], 9) = }")
306
0
'''simple docstring''' import unittest import numpy as np from transformers.file_utils import is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class __magic_name__ ( unittest.TestCase ): def __init__( self , snake_case , snake_case=7 , snake_case=3 , snake_case=1_8 , snake_case=3_0 , snake_case=4_0_0 , snake_case=True , snake_case=None , snake_case=True , snake_case=[0.5, 0.5, 0.5] , snake_case=[0.5, 0.5, 0.5] , ) -> List[str]: '''simple docstring''' _UpperCAmelCase : Dict =size if size is not None else {'height': 1_8, 'width': 1_8} _UpperCAmelCase : Tuple =parent _UpperCAmelCase : Any =batch_size _UpperCAmelCase : Union[str, Any] =num_channels _UpperCAmelCase : int =image_size _UpperCAmelCase : int =min_resolution _UpperCAmelCase : Tuple =max_resolution _UpperCAmelCase : List[str] =do_resize _UpperCAmelCase : Any =size _UpperCAmelCase : int =do_normalize _UpperCAmelCase : Any =image_mean _UpperCAmelCase : Any =image_std def lowerCAmelCase ( self) -> List[Any]: '''simple docstring''' return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, } @require_torch @require_vision class __magic_name__ ( __UpperCamelCase ,unittest.TestCase ): UpperCAmelCase =DPTImageProcessor if is_vision_available() else None def lowerCAmelCase ( self) -> Optional[int]: '''simple docstring''' _UpperCAmelCase : Dict =DPTImageProcessingTester(self) @property def lowerCAmelCase ( self) -> int: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def lowerCAmelCase ( self) -> str: '''simple docstring''' _UpperCAmelCase : int =self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(snake_case , 'image_mean')) self.assertTrue(hasattr(snake_case , 'image_std')) self.assertTrue(hasattr(snake_case , 'do_normalize')) self.assertTrue(hasattr(snake_case , 'do_resize')) self.assertTrue(hasattr(snake_case , 'size')) def lowerCAmelCase ( self) -> str: '''simple docstring''' _UpperCAmelCase : Tuple =self.image_processing_class.from_dict(self.image_processor_dict) self.assertEqual(image_processor.size , {'height': 1_8, 'width': 1_8}) _UpperCAmelCase : Optional[int] =self.image_processing_class.from_dict(self.image_processor_dict , size=4_2) self.assertEqual(image_processor.size , {'height': 4_2, 'width': 4_2}) def lowerCAmelCase ( self) -> Any: '''simple docstring''' # Initialize image_processing _UpperCAmelCase : Optional[int] =self.image_processing_class(**self.image_processor_dict) # create random PIL images _UpperCAmelCase : str =prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case) for image in image_inputs: self.assertIsInstance(snake_case , Image.Image) # Test not batched input _UpperCAmelCase : str =image_processing(image_inputs[0] , return_tensors='pt').pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched _UpperCAmelCase : str =image_processing(snake_case , return_tensors='pt').pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def lowerCAmelCase ( self) -> str: '''simple docstring''' # Initialize image_processing _UpperCAmelCase : Union[str, Any] =self.image_processing_class(**self.image_processor_dict) # create random numpy tensors _UpperCAmelCase : str =prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case , numpify=snake_case) for image in image_inputs: self.assertIsInstance(snake_case , np.ndarray) # Test not batched input _UpperCAmelCase : Any =image_processing(image_inputs[0] , return_tensors='pt').pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched _UpperCAmelCase : Dict =image_processing(snake_case , return_tensors='pt').pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def lowerCAmelCase ( self) -> Union[str, Any]: '''simple docstring''' # Initialize image_processing _UpperCAmelCase : Any =self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors _UpperCAmelCase : Any =prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case , torchify=snake_case) for image in image_inputs: self.assertIsInstance(snake_case , torch.Tensor) # Test not batched input _UpperCAmelCase : str =image_processing(image_inputs[0] , return_tensors='pt').pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched _UpperCAmelCase : Any =image_processing(snake_case , return_tensors='pt').pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , )
351
'''simple docstring''' from typing import Any def lowerCamelCase__ ( __lowerCamelCase : list , __lowerCamelCase : list , __lowerCamelCase : dict , __lowerCamelCase : dict , __lowerCamelCase : dict , ): '''simple docstring''' _validation( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , ) # Creates data structures and fill initial step _UpperCAmelCase : dict ={} _UpperCAmelCase : dict ={} for state in states_space: _UpperCAmelCase : int =observations_space[0] _UpperCAmelCase : int =( initial_probabilities[state] * emission_probabilities[state][observation] ) _UpperCAmelCase : int =None # Fills the data structure with the probabilities of # different transitions and pointers to previous states for o in range(1 , len(__lowerCamelCase ) ): _UpperCAmelCase : List[Any] =observations_space[o] _UpperCAmelCase : Optional[int] =observations_space[o - 1] for state in states_space: # Calculates the argmax for probability function _UpperCAmelCase : List[str] ='' _UpperCAmelCase : Dict =-1 for k_state in states_space: _UpperCAmelCase : List[str] =( probabilities[(k_state, prior_observation)] * transition_probabilities[k_state][state] * emission_probabilities[state][observation] ) if probability > max_probability: _UpperCAmelCase : int =probability _UpperCAmelCase : List[Any] =k_state # Update probabilities and pointers dicts _UpperCAmelCase : str =( probabilities[(arg_max, prior_observation)] * transition_probabilities[arg_max][state] * emission_probabilities[state][observation] ) _UpperCAmelCase : List[Any] =arg_max # The final observation _UpperCAmelCase : int =observations_space[len(__lowerCamelCase ) - 1] # argmax for given final observation _UpperCAmelCase : Any ='' _UpperCAmelCase : Union[str, Any] =-1 for k_state in states_space: _UpperCAmelCase : Optional[int] =probabilities[(k_state, final_observation)] if probability > max_probability: _UpperCAmelCase : Union[str, Any] =probability _UpperCAmelCase : int =k_state _UpperCAmelCase : int =arg_max # Process pointers backwards _UpperCAmelCase : List[str] =last_state _UpperCAmelCase : Optional[int] =[] for o in range(len(__lowerCamelCase ) - 1 , -1 , -1 ): result.append(__lowerCamelCase ) _UpperCAmelCase : Optional[Any] =pointers[previous, observations_space[o]] result.reverse() return result def lowerCamelCase__ ( __lowerCamelCase : Any , __lowerCamelCase : Any , __lowerCamelCase : Any , __lowerCamelCase : Any , __lowerCamelCase : Any , ): '''simple docstring''' _validate_not_empty( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , ) _validate_lists(__lowerCamelCase , __lowerCamelCase ) _validate_dicts( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) def lowerCamelCase__ ( __lowerCamelCase : Any , __lowerCamelCase : Any , __lowerCamelCase : Any , __lowerCamelCase : Any , __lowerCamelCase : Any , ): '''simple docstring''' if not all( [ observations_space, states_space, initial_probabilities, transition_probabilities, emission_probabilities, ] ): raise ValueError('There\'s an empty parameter' ) def lowerCamelCase__ ( __lowerCamelCase : Any , __lowerCamelCase : Any ): '''simple docstring''' _validate_list(__lowerCamelCase , 'observations_space' ) _validate_list(__lowerCamelCase , 'states_space' ) def lowerCamelCase__ ( __lowerCamelCase : Any , __lowerCamelCase : str ): '''simple docstring''' if not isinstance(_object , __lowerCamelCase ): _UpperCAmelCase : Any =f"{var_name} must be a list" raise ValueError(__lowerCamelCase ) else: for x in _object: if not isinstance(__lowerCamelCase , __lowerCamelCase ): _UpperCAmelCase : Optional[int] =f"{var_name} must be a list of strings" raise ValueError(__lowerCamelCase ) def lowerCamelCase__ ( __lowerCamelCase : Any , __lowerCamelCase : Any , __lowerCamelCase : Any , ): '''simple docstring''' _validate_dict(__lowerCamelCase , 'initial_probabilities' , __lowerCamelCase ) _validate_nested_dict(__lowerCamelCase , 'transition_probabilities' ) _validate_nested_dict(__lowerCamelCase , 'emission_probabilities' ) def lowerCamelCase__ ( __lowerCamelCase : Any , __lowerCamelCase : str ): '''simple docstring''' _validate_dict(_object , __lowerCamelCase , __lowerCamelCase ) for x in _object.values(): _validate_dict(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) def lowerCamelCase__ ( __lowerCamelCase : Any , __lowerCamelCase : str , __lowerCamelCase : type , __lowerCamelCase : bool = False ): '''simple docstring''' if not isinstance(_object , __lowerCamelCase ): _UpperCAmelCase : List[str] =f"{var_name} must be a dict" raise ValueError(__lowerCamelCase ) if not all(isinstance(__lowerCamelCase , __lowerCamelCase ) for x in _object ): _UpperCAmelCase : str =f"{var_name} all keys must be strings" raise ValueError(__lowerCamelCase ) if not all(isinstance(__lowerCamelCase , __lowerCamelCase ) for x in _object.values() ): _UpperCAmelCase : int ='nested dictionary ' if nested else '' _UpperCAmelCase : Optional[int] =f"{var_name} {nested_text}all values must be {value_type.__name__}" raise ValueError(__lowerCamelCase ) if __name__ == "__main__": from doctest import testmod testmod()
242
0
'''simple docstring''' from __future__ import annotations from random import random class lowercase_ : """simple docstring""" def __init__( self : Union[str, Any] ,lowercase__ : int | None = None ): __lowercase = value __lowercase = random() __lowercase = None __lowercase = None def __repr__( self : List[str] ): from pprint import pformat if self.left is None and self.right is None: return F"'{self.value}: {self.prior:.5}'" else: return pformat( {F"{self.value}: {self.prior:.5}": (self.left, self.right)} ,indent=1 ) def __str__( self : List[Any] ): __lowercase = str(self.value ) + ''' ''' __lowercase = str(self.left or '''''' ) __lowercase = str(self.right or '''''' ) return value + left + right def _A ( A__ , A__ ): """simple docstring""" if root is None: # None tree is split into 2 Nones return None, None elif root.value is None: return None, None else: if value < root.value: __lowercase , __lowercase = split(root.left , A__ ) return left, root else: __lowercase , __lowercase = split(root.right , A__ ) return root, right def _A ( A__ , A__ ): """simple docstring""" if (not left) or (not right): # If one node is None, return the other return left or right elif left.prior < right.prior: __lowercase = merge(left.right , A__ ) return left else: __lowercase = merge(A__ , right.left ) return right def _A ( A__ , A__ ): """simple docstring""" __lowercase = Node(A__ ) __lowercase , __lowercase = split(A__ , A__ ) return merge(merge(A__ , A__ ) , A__ ) def _A ( A__ , A__ ): """simple docstring""" __lowercase , __lowercase = split(A__ , value - 1 ) __lowercase , __lowercase = split(A__ , A__ ) return merge(A__ , A__ ) def _A ( A__ ): """simple docstring""" if not root: # None return else: inorder(root.left ) print(root.value , end=''',''' ) inorder(root.right ) def _A ( A__ , A__ ): """simple docstring""" for arg in args.split(): if arg[0] == "+": __lowercase = insert(A__ , int(arg[1:] ) ) elif arg[0] == "-": __lowercase = erase(A__ , int(arg[1:] ) ) else: print('''Unknown command''' ) return root def _A ( ): """simple docstring""" __lowercase = None print( '''enter numbers to create a tree, + value to add value into treap, ''' '''- value to erase all nodes with value. \'q\' to quit. ''' ) __lowercase = input() while args != "q": __lowercase = interact_treap(A__ , A__ ) print(A__ ) __lowercase = input() print('''good by!''' ) if __name__ == "__main__": import doctest doctest.testmod() main()
104
"""simple docstring""" def __magic_name__ ( __snake_case : int , __snake_case : int , __snake_case : int ) -> float: lowercase : List[Any] = (num_of_terms / 2) * (2 * first_term + (num_of_terms - 1) * common_diff) # formula for sum of series return total def __magic_name__ ( ) -> int: print(sum_of_series(1 , 1 , 10 ) ) if __name__ == "__main__": import doctest doctest.testmod()
202
0
from typing import Optional, Tuple, Union import tensorflow as tf from ...activations_tf import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_tf_outputs import ( TFBaseModelOutputWithNoAttention, TFBaseModelOutputWithPoolingAndNoAttention, TFSequenceClassifierOutput, ) from ...modeling_tf_utils import TFPreTrainedModel, TFSequenceClassificationLoss, keras_serializable, unpack_inputs from ...tf_utils import shape_list from ...utils import logging from .configuration_regnet import RegNetConfig __a :Optional[Any] = logging.get_logger(__name__) # General docstring __a :Optional[Any] = 'RegNetConfig' # Base docstring __a :List[str] = 'facebook/regnet-y-040' __a :Tuple = [1, 1088, 7, 7] # Image classification docstring __a :Optional[Any] = 'facebook/regnet-y-040' __a :int = 'tabby, tabby cat' __a :Union[str, Any] = [ 'facebook/regnet-y-040', # See all regnet models at https://huggingface.co/models?filter=regnet ] class _a ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self : Dict , UpperCAmelCase : int , UpperCAmelCase : int = 3 , UpperCAmelCase : int = 1 , UpperCAmelCase : int = 1 , UpperCAmelCase : Optional[str] = "relu" , **UpperCAmelCase : Tuple , ): super().__init__(**__lowercase ) # The padding and conv has been verified in # https://colab.research.google.com/gist/sayakpaul/854bc10eeaf21c9ee2119e0b9f3841a7/scratchpad.ipynb A_ = tf.keras.layers.ZeroPaddingaD(padding=kernel_size // 2 ) A_ = tf.keras.layers.ConvaD( filters=__lowercase , kernel_size=__lowercase , strides=__lowercase , padding="VALID" , groups=__lowercase , use_bias=__lowercase , name="convolution" , ) A_ = tf.keras.layers.BatchNormalization(epsilon=1E-5 , momentum=0.9 , name="normalization" ) A_ = ACTaFN[activation] if activation is not None else tf.identity def __A ( self : Dict , UpperCAmelCase : Optional[Any] ): A_ = self.convolution(self.padding(__lowercase ) ) A_ = self.normalization(__lowercase ) A_ = self.activation(__lowercase ) return hidden_state class _a ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self : int , UpperCAmelCase : RegNetConfig , **UpperCAmelCase : Optional[Any] ): super().__init__(**__lowercase ) A_ = config.num_channels A_ = TFRegNetConvLayer( out_channels=config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act , name="embedder" , ) def __A ( self : Tuple , UpperCAmelCase : Any ): A_ = shape_list(__lowercase )[1] if tf.executing_eagerly() and num_channels != self.num_channels: raise ValueError( "Make sure that the channel dimension of the pixel values match with the one set in the configuration." ) # When running on CPU, `tf.keras.layers.Conv2D` doesn't support `NCHW` format. # So change the input format from `NCHW` to `NHWC`. # shape = (batch_size, in_height, in_width, in_channels=num_channels) A_ = tf.transpose(__lowercase , perm=(0, 2, 3, 1) ) A_ = self.embedder(__lowercase ) return hidden_state class _a ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self : Any , UpperCAmelCase : int , UpperCAmelCase : int = 2 , **UpperCAmelCase : Optional[Any] ): super().__init__(**__lowercase ) A_ = tf.keras.layers.ConvaD( filters=__lowercase , kernel_size=1 , strides=__lowercase , use_bias=__lowercase , name="convolution" ) A_ = tf.keras.layers.BatchNormalization(epsilon=1E-5 , momentum=0.9 , name="normalization" ) def __A ( self : Union[str, Any] , UpperCAmelCase : tf.Tensor , UpperCAmelCase : bool = False ): return self.normalization(self.convolution(__lowercase ) , training=__lowercase ) class _a ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self : Any , UpperCAmelCase : int , UpperCAmelCase : int , **UpperCAmelCase : int ): super().__init__(**__lowercase ) A_ = tf.keras.layers.GlobalAveragePoolingaD(keepdims=__lowercase , name="pooler" ) A_ = [ tf.keras.layers.ConvaD(filters=__lowercase , kernel_size=1 , activation="relu" , name="attention.0" ), tf.keras.layers.ConvaD(filters=__lowercase , kernel_size=1 , activation="sigmoid" , name="attention.2" ), ] def __A ( self : List[Any] , UpperCAmelCase : Optional[int] ): # [batch_size, h, w, num_channels] -> [batch_size, 1, 1, num_channels] A_ = self.pooler(__lowercase ) for layer_module in self.attention: A_ = layer_module(__lowercase ) A_ = hidden_state * pooled return hidden_state class _a ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self : List[Any] , UpperCAmelCase : RegNetConfig , UpperCAmelCase : int , UpperCAmelCase : int , UpperCAmelCase : int = 1 , **UpperCAmelCase : int ): super().__init__(**__lowercase ) A_ = in_channels != out_channels or stride != 1 A_ = max(1 , out_channels // config.groups_width ) A_ = ( TFRegNetShortCut(__lowercase , stride=__lowercase , name="shortcut" ) if should_apply_shortcut else tf.keras.layers.Activation("linear" , name="shortcut" ) ) # `self.layers` instead of `self.layer` because that is a reserved argument. A_ = [ TFRegNetConvLayer(__lowercase , kernel_size=1 , activation=config.hidden_act , name="layer.0" ), TFRegNetConvLayer( __lowercase , stride=__lowercase , groups=__lowercase , activation=config.hidden_act , name="layer.1" ), TFRegNetConvLayer(__lowercase , kernel_size=1 , activation=__lowercase , name="layer.2" ), ] A_ = ACTaFN[config.hidden_act] def __A ( self : List[str] , UpperCAmelCase : Any ): A_ = hidden_state for layer_module in self.layers: A_ = layer_module(__lowercase ) A_ = self.shortcut(__lowercase ) hidden_state += residual A_ = self.activation(__lowercase ) return hidden_state class _a ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self : List[Any] , UpperCAmelCase : RegNetConfig , UpperCAmelCase : int , UpperCAmelCase : int , UpperCAmelCase : int = 1 , **UpperCAmelCase : List[str] ): super().__init__(**__lowercase ) A_ = in_channels != out_channels or stride != 1 A_ = max(1 , out_channels // config.groups_width ) A_ = ( TFRegNetShortCut(__lowercase , stride=__lowercase , name="shortcut" ) if should_apply_shortcut else tf.keras.layers.Activation("linear" , name="shortcut" ) ) A_ = [ TFRegNetConvLayer(__lowercase , kernel_size=1 , activation=config.hidden_act , name="layer.0" ), TFRegNetConvLayer( __lowercase , stride=__lowercase , groups=__lowercase , activation=config.hidden_act , name="layer.1" ), TFRegNetSELayer(__lowercase , reduced_channels=int(round(in_channels / 4 ) ) , name="layer.2" ), TFRegNetConvLayer(__lowercase , kernel_size=1 , activation=__lowercase , name="layer.3" ), ] A_ = ACTaFN[config.hidden_act] def __A ( self : int , UpperCAmelCase : List[Any] ): A_ = hidden_state for layer_module in self.layers: A_ = layer_module(__lowercase ) A_ = self.shortcut(__lowercase ) hidden_state += residual A_ = self.activation(__lowercase ) return hidden_state class _a ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self : Union[str, Any] , UpperCAmelCase : RegNetConfig , UpperCAmelCase : int , UpperCAmelCase : int , UpperCAmelCase : int = 2 , UpperCAmelCase : int = 2 , **UpperCAmelCase : Any ): super().__init__(**__lowercase ) A_ = TFRegNetXLayer if config.layer_type == '''x''' else TFRegNetYLayer A_ = [ # downsampling is done in the first layer with stride of 2 layer(__lowercase , __lowercase , __lowercase , stride=__lowercase , name="layers.0" ), *[layer(__lowercase , __lowercase , __lowercase , name=f'''layers.{i+1}''' ) for i in range(depth - 1 )], ] def __A ( self : str , UpperCAmelCase : Dict ): for layer_module in self.layers: A_ = layer_module(__lowercase ) return hidden_state class _a ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self : Optional[Any] , UpperCAmelCase : RegNetConfig , **UpperCAmelCase : List[Any] ): super().__init__(**__lowercase ) A_ = [] # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( TFRegNetStage( __lowercase , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , name="stages.0" , ) ) A_ = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for i, ((in_channels, out_channels), depth) in enumerate(zip(__lowercase , config.depths[1:] ) ): self.stages.append(TFRegNetStage(__lowercase , __lowercase , __lowercase , depth=__lowercase , name=f'''stages.{i+1}''' ) ) def __A ( self : str , UpperCAmelCase : tf.Tensor , UpperCAmelCase : bool = False , UpperCAmelCase : bool = True ): A_ = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: A_ = hidden_states + (hidden_state,) A_ = stage_module(__lowercase ) if output_hidden_states: A_ = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return TFBaseModelOutputWithNoAttention(last_hidden_state=__lowercase , hidden_states=__lowercase ) @keras_serializable class _a ( tf.keras.layers.Layer ): """simple docstring""" _lowerCamelCase : Dict = RegNetConfig def __init__( self : List[Any] , UpperCAmelCase : Optional[int] , **UpperCAmelCase : Dict ): super().__init__(**__lowercase ) A_ = config A_ = TFRegNetEmbeddings(__lowercase , name="embedder" ) A_ = TFRegNetEncoder(__lowercase , name="encoder" ) A_ = tf.keras.layers.GlobalAveragePoolingaD(keepdims=__lowercase , name="pooler" ) @unpack_inputs def __A ( self : Union[str, Any] , UpperCAmelCase : tf.Tensor , UpperCAmelCase : Optional[bool] = None , UpperCAmelCase : Optional[bool] = None , UpperCAmelCase : bool = False , ): A_ = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) A_ = return_dict if return_dict is not None else self.config.use_return_dict A_ = self.embedder(__lowercase , training=__lowercase ) A_ = self.encoder( __lowercase , output_hidden_states=__lowercase , return_dict=__lowercase , training=__lowercase ) A_ = encoder_outputs[0] A_ = self.pooler(__lowercase ) # Change to NCHW output format have uniformity in the modules A_ = tf.transpose(__lowercase , perm=(0, 3, 1, 2) ) A_ = tf.transpose(__lowercase , perm=(0, 3, 1, 2) ) # Change the other hidden state outputs to NCHW as well if output_hidden_states: A_ = tuple([tf.transpose(__lowercase , perm=(0, 3, 1, 2) ) for h in encoder_outputs[1]] ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=__lowercase , pooler_output=__lowercase , hidden_states=hidden_states if output_hidden_states else encoder_outputs.hidden_states , ) class _a ( __lowerCamelCase ): """simple docstring""" _lowerCamelCase : Optional[Any] = RegNetConfig _lowerCamelCase : List[str] = """regnet""" _lowerCamelCase : Any = """pixel_values""" @property def __A ( self : Tuple ): return {"pixel_values": tf.TensorSpec(shape=(None, self.config.num_channels, 224, 224) , dtype=tf.floataa )} __a :Optional[Any] = R'\n Parameters:\n This model is a Tensorflow\n [tf.keras.layers.Layer](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Layer) sub-class. Use it as a\n regular Tensorflow Module and refer to the Tensorflow documentation for all matter related to general usage and\n behavior.\n config ([`RegNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights.\n' __a :Optional[int] = R'\n Args:\n pixel_values (`tf.Tensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConveNextImageProcessor.__call__`] for details.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n' @add_start_docstrings( 'The bare RegNet model outputting raw features without any specific head on top.' , __lowerCamelCase , ) class _a ( __lowerCamelCase ): """simple docstring""" def __init__( self : Any , UpperCAmelCase : RegNetConfig , *UpperCAmelCase : Dict , **UpperCAmelCase : Union[str, Any] ): super().__init__(__lowercase , *__lowercase , **__lowercase ) A_ = TFRegNetMainLayer(__lowercase , name="regnet" ) @unpack_inputs @add_start_docstrings_to_model_forward(__lowercase ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=__lowercase , config_class=_CONFIG_FOR_DOC , modality="vision" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def __A ( self : Optional[Any] , UpperCAmelCase : tf.Tensor , UpperCAmelCase : Optional[bool] = None , UpperCAmelCase : Optional[bool] = None , UpperCAmelCase : Tuple=False , ): A_ = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) A_ = return_dict if return_dict is not None else self.config.use_return_dict A_ = self.regnet( pixel_values=__lowercase , output_hidden_states=__lowercase , return_dict=__lowercase , training=__lowercase , ) if not return_dict: return (outputs[0],) + outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=outputs.last_hidden_state , pooler_output=outputs.pooler_output , hidden_states=outputs.hidden_states , ) @add_start_docstrings( '\n RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n ' , __lowerCamelCase , ) class _a ( __lowerCamelCase , __lowerCamelCase ): """simple docstring""" def __init__( self : str , UpperCAmelCase : RegNetConfig , *UpperCAmelCase : str , **UpperCAmelCase : str ): super().__init__(__lowercase , *__lowercase , **__lowercase ) A_ = config.num_labels A_ = TFRegNetMainLayer(__lowercase , name="regnet" ) # classification head A_ = [ tf.keras.layers.Flatten(), tf.keras.layers.Dense(config.num_labels , name="classifier.1" ) if config.num_labels > 0 else tf.identity, ] @unpack_inputs @add_start_docstrings_to_model_forward(__lowercase ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=__lowercase , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def __A ( self : Union[str, Any] , UpperCAmelCase : tf.Tensor = None , UpperCAmelCase : tf.Tensor = None , UpperCAmelCase : bool = None , UpperCAmelCase : bool = None , UpperCAmelCase : List[Any]=False , ): A_ = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) A_ = return_dict if return_dict is not None else self.config.use_return_dict A_ = self.regnet( __lowercase , output_hidden_states=__lowercase , return_dict=__lowercase , training=__lowercase ) A_ = outputs.pooler_output if return_dict else outputs[1] A_ = self.classifier[0](__lowercase ) A_ = self.classifier[1](__lowercase ) A_ = None if labels is None else self.hf_compute_loss(labels=__lowercase , logits=__lowercase ) if not return_dict: A_ = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFSequenceClassifierOutput(loss=__lowercase , logits=__lowercase , hidden_states=outputs.hidden_states )
350
from maths.prime_factors import prime_factors def __snake_case ( __UpperCamelCase : int ): """simple docstring""" if not isinstance(__UpperCamelCase ,__UpperCamelCase ): A_ = f'''Input value of [number={number}] must be an integer''' raise TypeError(__UpperCamelCase ) if number < 1: raise ValueError("Input must be a positive integer" ) return -1 if len(prime_factors(__UpperCamelCase ) ) % 2 else 1 if __name__ == "__main__": import doctest doctest.testmod()
329
0
'''simple docstring''' import copy from typing import Any, Dict, List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging a_ : Tuple = logging.get_logger(__name__) class a ( _a ): _lowerCAmelCase = ['''input_features'''] def __init__( self , __magic_name__=80 , __magic_name__=1_60_00 , __magic_name__=1_60 , __magic_name__=30 , __magic_name__=4_00 , __magic_name__=0.0 , __magic_name__=False , **__magic_name__ , ) -> Optional[int]: super().__init__( feature_size=__magic_name__ , sampling_rate=__magic_name__ , padding_value=__magic_name__ , return_attention_mask=__magic_name__ , **__magic_name__ , ) _a = n_fft _a = hop_length _a = chunk_length _a = chunk_length * sampling_rate _a = self.n_samples // hop_length _a = sampling_rate _a = mel_filter_bank( num_frequency_bins=1 + n_fft // 2 , num_mel_filters=__magic_name__ , min_frequency=0.0 , max_frequency=80_00.0 , sampling_rate=__magic_name__ , norm='slaney' , mel_scale='slaney' , ) def __UpperCAmelCase ( self , __magic_name__ ) -> np.ndarray: _a = spectrogram( __magic_name__ , window_function(self.n_fft , 'hann' ) , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters , log_mel='log10' , ) _a = log_spec[:, :-1] _a = np.maximum(__magic_name__ , log_spec.max() - 8.0 ) _a = (log_spec + 4.0) / 4.0 return log_spec @staticmethod # Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm def __UpperCAmelCase ( __magic_name__ , __magic_name__ , __magic_name__ = 0.0 ) -> List[np.ndarray]: if attention_mask is not None: _a = np.array(__magic_name__ , np.intaa ) _a = [] for vector, length in zip(__magic_name__ , attention_mask.sum(-1 ) ): _a = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1e-7 ) if length < normed_slice.shape[0]: _a = padding_value normed_input_values.append(__magic_name__ ) else: _a = [(x - x.mean()) / np.sqrt(x.var() + 1e-7 ) for x in input_values] return normed_input_values def __call__( self , __magic_name__ , __magic_name__ = True , __magic_name__ = None , __magic_name__ = None , __magic_name__ = None , __magic_name__ = "max_length" , __magic_name__ = None , __magic_name__ = None , __magic_name__ = None , **__magic_name__ , ) -> BatchFeature: if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f'The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a' f' sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input' f' was sampled with {self.sampling_rate} and not {sampling_rate}.' ) else: logger.warning( 'It is strongly recommended to pass the `sampling_rate` argument to this function. ' 'Failing to do so can result in silent errors that might be hard to debug.' ) _a = isinstance(__magic_name__ , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f'Only mono-channel audio is supported for input to {self}' ) _a = is_batched_numpy or ( isinstance(__magic_name__ , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: _a = [np.asarray([speech] , dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(__magic_name__ , np.ndarray ): _a = np.asarray(__magic_name__ , dtype=np.floataa ) elif isinstance(__magic_name__ , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): _a = raw_speech.astype(np.floataa ) # always return batch if not is_batched: _a = [np.asarray([raw_speech] ).T] _a = BatchFeature({'input_features': raw_speech} ) # convert into correct format for padding _a = self.pad( __magic_name__ , padding=__magic_name__ , max_length=max_length if max_length else self.n_samples , truncation=__magic_name__ , pad_to_multiple_of=__magic_name__ , return_attention_mask=return_attention_mask or do_normalize , ) # zero-mean and unit-variance normalization if do_normalize: _a = self.zero_mean_unit_var_norm( padded_inputs['input_features'] , attention_mask=padded_inputs['attention_mask'] , padding_value=self.padding_value , ) _a = np.stack(padded_inputs['input_features'] , axis=0 ) # make sure list is in array format _a = padded_inputs.get('input_features' ).transpose(2 , 0 , 1 ) _a = [self._np_extract_fbank_features(__magic_name__ ) for waveform in input_features[0]] if isinstance(input_features[0] , __magic_name__ ): _a = [np.asarray(__magic_name__ , dtype=np.floataa ) for feature in input_features] else: _a = input_features if return_attention_mask: # rescale from sample (48000) to feature (3000) _a = padded_inputs['''attention_mask'''][:, :: self.hop_length] if return_tensors is not None: _a = padded_inputs.convert_to_tensors(__magic_name__ ) return padded_inputs def __UpperCAmelCase ( self ) -> Dict[str, Any]: _a = copy.deepcopy(self.__dict__ ) _a = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] return output
168
def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase ) -> str: """simple docstring""" return "\n".join( f'''{number} * {i} = {number * i}''' for i in range(1 , number_of_terms + 1 ) ) if __name__ == "__main__": print(multiplication_table(number=5, number_of_terms=1_0))
279
0
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging UpperCamelCase : Optional[int] = '''▁''' UpperCamelCase : List[str] = {'''vocab_file''': '''spiece.model'''} UpperCamelCase : List[Any] = { '''vocab_file''': {'''google/pegasus-xsum''': '''https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model'''} } UpperCamelCase : Optional[int] = { '''google/pegasus-xsum''': 5_1_2, } UpperCamelCase : Tuple = logging.get_logger(__name__) class __lowerCAmelCase ( a__ ): lowercase = VOCAB_FILES_NAMES lowercase = VOCAB_FILES_NAMES lowercase = PRETRAINED_VOCAB_FILES_MAP lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase = ["""input_ids""", """attention_mask"""] def __init__( self , __UpperCAmelCase , __UpperCAmelCase="<pad>" , __UpperCAmelCase="</s>" , __UpperCAmelCase="<unk>" , __UpperCAmelCase="<mask_2>" , __UpperCAmelCase="<mask_1>" , __UpperCAmelCase=None , __UpperCAmelCase=103 , __UpperCAmelCase = None , **__UpperCAmelCase , ): '''simple docstring''' __UpperCamelCase = offset if additional_special_tokens is not None: if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): raise TypeError( F'additional_special_tokens should be of type {type(lowerCAmelCase__ )}, but is' F' {type(lowerCAmelCase__ )}' ) __UpperCamelCase = ( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ F'<unk_{i}>' for i in range(len(lowerCAmelCase__ ) , self.offset - 1 ) ] if len(set(lowerCAmelCase__ ) ) != len(lowerCAmelCase__ ): raise ValueError( 'Please make sure that the provided additional_special_tokens do not contain an incorrectly' F' shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}.' ) __UpperCamelCase = additional_special_tokens_extended else: __UpperCamelCase = [mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [F'<unk_{i}>' for i in range(2 , self.offset )] __UpperCamelCase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , mask_token_sent=lowerCAmelCase__ , offset=lowerCAmelCase__ , additional_special_tokens=lowerCAmelCase__ , sp_model_kwargs=self.sp_model_kwargs , **lowerCAmelCase__ , ) __UpperCamelCase = mask_token_sent __UpperCamelCase = vocab_file __UpperCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(lowerCAmelCase__ ) # add special tokens to encoder dict __UpperCamelCase = { 0: self.pad_token, 1: self.eos_token, } if self.mask_token_sent is not None: self.encoder.update( { 2: self.mask_token_sent, 3: self.mask_token, } ) if self.offset > 0: # entries 2-104 are only used for pretraining and called <mask_1>, <mask_2>, unk_2, ...unk_102 # mask_token_sent is already added to list -> so start at 1 self.encoder.update({i + 3: additional_special_tokens[i] for i in range(1 , self.offset - 1 )} ) __UpperCamelCase = {v: k for k, v in self.encoder.items()} @property def UpperCAmelCase ( self ): '''simple docstring''' return len(self.sp_model ) + self.offset def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = {self.convert_ids_to_tokens(lowerCAmelCase__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ): '''simple docstring''' __UpperCamelCase = self.__dict__.copy() __UpperCamelCase = None return state def __setstate__( self , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): __UpperCamelCase = {} __UpperCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' return self.sp_model.encode(lowerCAmelCase__ , out_type=lowerCAmelCase__ ) def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' if token in self.decoder: return self.decoder[token] elif token in self.added_tokens_decoder: return self.added_tokens_decoder[token] __UpperCamelCase = self.sp_model.piece_to_id(lowerCAmelCase__ ) return sp_id + self.offset def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' if index in self.encoder: return self.encoder[index] elif index in self.added_tokens_encoder: return self.added_tokens_encoder[index] else: __UpperCamelCase = self.sp_model.IdToPiece(index - self.offset ) return token def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = [] __UpperCamelCase = "" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(lowerCAmelCase__ ) + token __UpperCamelCase = [] else: current_sub_tokens.append(lowerCAmelCase__ ) out_string += self.sp_model.decode(lowerCAmelCase__ ) return out_string.strip() def UpperCAmelCase ( self , __UpperCAmelCase=False ): '''simple docstring''' return 1 def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = set(self.all_special_ids ) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special return [1 if x in all_special_ids else 0 for x in seq] def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = False ): '''simple docstring''' if already_has_special_tokens: return self._special_token_mask(lowerCAmelCase__ ) elif token_ids_a is None: return self._special_token_mask(lowerCAmelCase__ ) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a ) + [1] def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase=None ): '''simple docstring''' if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ): '''simple docstring''' if not os.path.isdir(lowerCAmelCase__ ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return __UpperCamelCase = os.path.join( lowerCAmelCase__ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowerCAmelCase__ ) elif not os.path.isfile(self.vocab_file ): with open(lowerCAmelCase__ , 'wb' ) as fi: __UpperCamelCase = self.sp_model.serialized_model_proto() fi.write(lowerCAmelCase__ ) return (out_vocab_file,)
363
"""simple docstring""" import json import os import re import unicodedata from json.encoder import INFINITY from typing import Any, Dict, List, Optional, Tuple, Union import numpy as np import regex from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, is_flax_available, is_tf_available, is_torch_available, logging from ...utils.generic import _is_jax, _is_numpy UpperCamelCase : Tuple = logging.get_logger(__name__) UpperCamelCase : int = { "artists_file": "artists.json", "lyrics_file": "lyrics.json", "genres_file": "genres.json", } UpperCamelCase : Optional[Any] = { "artists_file": { "jukebox": "https://huggingface.co/ArthurZ/jukebox/blob/main/artists.json", }, "genres_file": { "jukebox": "https://huggingface.co/ArthurZ/jukebox/blob/main/genres.json", }, "lyrics_file": { "jukebox": "https://huggingface.co/ArthurZ/jukebox/blob/main/lyrics.json", }, } UpperCamelCase : Any = { "jukebox": 5_1_2, } class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): lowercase = VOCAB_FILES_NAMES lowercase = PRETRAINED_VOCAB_FILES_MAP lowercase = PRETRAINED_LYRIC_TOKENS_SIZES lowercase = ["input_ids", "attention_mask"] def __init__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=["v3", "v2", "v2"] , __UpperCAmelCase=512 , __UpperCAmelCase=5 , __UpperCAmelCase="<|endoftext|>" , **__UpperCAmelCase , ): '''simple docstring''' __UpperCamelCase = AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else unk_token super().__init__( unk_token=__UpperCAmelCase , n_genres=__UpperCAmelCase , version=__UpperCAmelCase , max_n_lyric_tokens=__UpperCAmelCase , **__UpperCAmelCase , ) __UpperCamelCase = version __UpperCamelCase = max_n_lyric_tokens __UpperCamelCase = n_genres with open(__UpperCAmelCase , encoding='utf-8' ) as vocab_handle: __UpperCamelCase = json.load(__UpperCAmelCase ) with open(__UpperCAmelCase , encoding='utf-8' ) as vocab_handle: __UpperCamelCase = json.load(__UpperCAmelCase ) with open(__UpperCAmelCase , encoding='utf-8' ) as vocab_handle: __UpperCamelCase = json.load(__UpperCAmelCase ) __UpperCamelCase = R'[^A-Za-z0-9.,:;!?\-\'\"()\[\] \t\n]+' # In v2, we had a n_vocab=80 and in v3 we missed + and so n_vocab=79 of characters. if len(self.lyrics_encoder ) == 79: __UpperCamelCase = oov.replace(R'\-\'' , R'\-+\'' ) __UpperCamelCase = regex.compile(__UpperCAmelCase ) __UpperCamelCase = {v: k for k, v in self.artists_encoder.items()} __UpperCamelCase = {v: k for k, v in self.genres_encoder.items()} __UpperCamelCase = {v: k for k, v in self.lyrics_encoder.items()} @property def UpperCAmelCase ( self ): '''simple docstring''' return len(self.artists_encoder ) + len(self.genres_encoder ) + len(self.lyrics_encoder ) def UpperCAmelCase ( self ): '''simple docstring''' return dict(self.artists_encoder , self.genres_encoder , self.lyrics_encoder ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = [self.artists_encoder.get(__UpperCAmelCase , 0 ) for artist in list_artists] for genres in range(len(__UpperCAmelCase ) ): __UpperCamelCase = [self.genres_encoder.get(__UpperCAmelCase , 0 ) for genre in list_genres[genres]] __UpperCamelCase = list_genres[genres] + [-1] * (self.n_genres - len(list_genres[genres] )) __UpperCamelCase = [[self.lyrics_encoder.get(__UpperCAmelCase , 0 ) for character in list_lyrics[0]], [], []] return artists_id, list_genres, lyric_ids def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' return list(__UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = self.prepare_for_tokenization(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) __UpperCamelCase = self._tokenize(__UpperCAmelCase ) return artist, genre, lyrics def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = False ): '''simple docstring''' for idx in range(len(self.version ) ): if self.version[idx] == "v3": __UpperCamelCase = artists[idx].lower() __UpperCamelCase = [genres[idx].lower()] else: __UpperCamelCase = self._normalize(artists[idx] ) + '.v2' __UpperCamelCase = [ self._normalize(__UpperCAmelCase ) + '.v2' for genre in genres[idx].split('_' ) ] # split is for the full dictionary with combined genres if self.version[0] == "v2": __UpperCamelCase = regex.compile(R'[^A-Za-z0-9.,:;!?\-\'\"()\[\] \t\n]+' ) __UpperCamelCase = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789.,:;!?-+\'\"()[] \t\n' __UpperCamelCase = {vocab[index]: index + 1 for index in range(len(__UpperCAmelCase ) )} __UpperCamelCase = 0 __UpperCamelCase = len(__UpperCAmelCase ) + 1 __UpperCamelCase = self.vocab __UpperCamelCase = {v: k for k, v in self.vocab.items()} __UpperCamelCase = '' else: __UpperCamelCase = regex.compile(R'[^A-Za-z0-9.,:;!?\-+\'\"()\[\] \t\n]+' ) __UpperCamelCase = self._run_strip_accents(__UpperCAmelCase ) __UpperCamelCase = lyrics.replace('\\' , '\n' ) __UpperCamelCase = self.out_of_vocab.sub('' , __UpperCAmelCase ), [], [] return artists, genres, lyrics def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = unicodedata.normalize('NFD' , __UpperCAmelCase ) __UpperCamelCase = [] for char in text: __UpperCamelCase = unicodedata.category(__UpperCAmelCase ) if cat == "Mn": continue output.append(__UpperCAmelCase ) return "".join(__UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = ( [chr(__UpperCAmelCase ) for i in range(ord('a' ) , ord('z' ) + 1 )] + [chr(__UpperCAmelCase ) for i in range(ord('A' ) , ord('Z' ) + 1 )] + [chr(__UpperCAmelCase ) for i in range(ord('0' ) , ord('9' ) + 1 )] + ['.'] ) __UpperCamelCase = frozenset(__UpperCAmelCase ) __UpperCamelCase = re.compile(R'_+' ) __UpperCamelCase = ''.join([c if c in accepted else '_' for c in text.lower()] ) __UpperCamelCase = pattern.sub('_' , __UpperCAmelCase ).strip('_' ) return text def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' return " ".join(__UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = False ): '''simple docstring''' if not isinstance(__UpperCAmelCase , __UpperCAmelCase ): __UpperCamelCase = TensorType(__UpperCAmelCase ) # Get a function reference for the correct framework if tensor_type == TensorType.TENSORFLOW: if not is_tf_available(): raise ImportError( 'Unable to convert output to TensorFlow tensors format, TensorFlow is not installed.' ) import tensorflow as tf __UpperCamelCase = tf.constant __UpperCamelCase = tf.is_tensor elif tensor_type == TensorType.PYTORCH: if not is_torch_available(): raise ImportError('Unable to convert output to PyTorch tensors format, PyTorch is not installed.' ) import torch __UpperCamelCase = torch.tensor __UpperCamelCase = torch.is_tensor elif tensor_type == TensorType.JAX: if not is_flax_available(): raise ImportError('Unable to convert output to JAX tensors format, JAX is not installed.' ) import jax.numpy as jnp # noqa: F811 __UpperCamelCase = jnp.array __UpperCamelCase = _is_jax else: __UpperCamelCase = np.asarray __UpperCamelCase = _is_numpy # Do the tensor conversion in batch try: if prepend_batch_axis: __UpperCamelCase = [inputs] if not is_tensor(__UpperCAmelCase ): __UpperCamelCase = as_tensor(__UpperCAmelCase ) except: # noqa E722 raise ValueError( 'Unable to create tensor, you should probably activate truncation and/or padding ' 'with \'padding=True\' \'truncation=True\' to have batched tensors with the same length.' ) return inputs def __call__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase="" , __UpperCAmelCase="pt" ): '''simple docstring''' __UpperCamelCase = [0, 0, 0] __UpperCamelCase = [artist] * len(self.version ) __UpperCamelCase = [genres] * len(self.version ) __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = self.tokenize(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = self._convert_token_to_id(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) __UpperCamelCase = [-INFINITY] * len(full_tokens[-1] ) __UpperCamelCase = [ self.convert_to_tensors( [input_ids + [artists_id[i]] + genres_ids[i] + full_tokens[i]] , tensor_type=__UpperCAmelCase ) for i in range(len(self.version ) ) ] return BatchEncoding({'input_ids': input_ids, 'attention_masks': attention_masks} ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ): '''simple docstring''' if not os.path.isdir(__UpperCAmelCase ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return __UpperCamelCase = os.path.join( __UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['artists_file'] ) with open(__UpperCAmelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.artists_encoder , ensure_ascii=__UpperCAmelCase ) ) __UpperCamelCase = os.path.join( __UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['genres_file'] ) with open(__UpperCAmelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.genres_encoder , ensure_ascii=__UpperCAmelCase ) ) __UpperCamelCase = os.path.join( __UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['lyrics_file'] ) with open(__UpperCAmelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.lyrics_encoder , ensure_ascii=__UpperCAmelCase ) ) return (artists_file, genres_file, lyrics_file) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = self.artists_decoder.get(__UpperCAmelCase ) __UpperCamelCase = [self.genres_decoder.get(__UpperCAmelCase ) for genre in genres_index] __UpperCamelCase = [self.lyrics_decoder.get(__UpperCAmelCase ) for character in lyric_index] return artist, genres, lyrics
263
0
import unittest from transformers import is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device if is_torch_available(): import torch from transformers import AutoModelForImageClassification if is_vision_available(): from transformers import AutoImageProcessor @require_torch @require_vision class __lowerCAmelCase ( unittest.TestCase ): @slow def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = AutoImageProcessor.from_pretrained('''microsoft/dit-base-finetuned-rvlcdip''' ) __lowerCamelCase = AutoModelForImageClassification.from_pretrained('''microsoft/dit-base-finetuned-rvlcdip''' ) model.to(__UpperCAmelCase ) from datasets import load_dataset __lowerCamelCase = load_dataset('''nielsr/rvlcdip-demo''' ) __lowerCamelCase = dataset['''train'''][0]['''image'''].convert('''RGB''' ) __lowerCamelCase = image_processor(__UpperCAmelCase , return_tensors='''pt''' ).to(__UpperCAmelCase ) # forward pass with torch.no_grad(): __lowerCamelCase = model(**__UpperCAmelCase ) __lowerCamelCase = outputs.logits __lowerCamelCase = torch.Size((1, 16) ) self.assertEqual(logits.shape , __UpperCAmelCase ) __lowerCamelCase = torch.tensor( [-0.4_158, -0.4_092, -0.4_347] , device=__UpperCAmelCase , dtype=torch.float , ) self.assertTrue(torch.allclose(logits[0, :3] , __UpperCAmelCase , atol=1E-4 ) )
330
import logging import os import threading import time try: import warnings except ImportError: a_ = None try: import msvcrt except ImportError: a_ = None try: import fcntl except ImportError: a_ = None # Backward compatibility # ------------------------------------------------ try: TimeoutError except NameError: a_ = OSError # Data # ------------------------------------------------ a_ = [ """Timeout""", """BaseFileLock""", """WindowsFileLock""", """UnixFileLock""", """SoftFileLock""", """FileLock""", ] a_ = """3.0.12""" a_ = None def a__ ( ): global _logger __lowerCamelCase = _logger or logging.getLogger(__name__ ) return _logger class __lowerCAmelCase ( lowerCAmelCase__ ): def __init__( self , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = lock_file return None def __str__( self ): '''simple docstring''' __lowerCamelCase = F"""The file lock '{self.lock_file}' could not be acquired.""" return temp class __lowerCAmelCase : def __init__( self , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = lock return None def __enter__( self ): '''simple docstring''' return self.lock def __exit__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' self.lock.release() return None class __lowerCAmelCase : def __init__( self , __UpperCAmelCase , __UpperCAmelCase=-1 , __UpperCAmelCase=None ): '''simple docstring''' __lowerCamelCase = max_filename_length if max_filename_length is not None else 255 # Hash the filename if it's too long __lowerCamelCase = self.hash_filename_if_too_long(__UpperCAmelCase , __UpperCAmelCase ) # The path to the lock file. __lowerCamelCase = lock_file # The file descriptor for the *_lock_file* as it is returned by the # os.open() function. # This file lock is only NOT None, if the object currently holds the # lock. __lowerCamelCase = None # The default timeout value. __lowerCamelCase = timeout # We use this lock primarily for the lock counter. __lowerCamelCase = threading.Lock() # The lock counter is used for implementing the nested locking # mechanism. Whenever the lock is acquired, the counter is increased and # the lock is only released, when this value is 0 again. __lowerCamelCase = 0 return None @property def lowerCamelCase ( self ): '''simple docstring''' return self._lock_file @property def lowerCamelCase ( self ): '''simple docstring''' return self._timeout @timeout.setter def lowerCamelCase ( self , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = float(__UpperCAmelCase ) return None def lowerCamelCase ( self ): '''simple docstring''' raise NotImplementedError() def lowerCamelCase ( self ): '''simple docstring''' raise NotImplementedError() @property def lowerCamelCase ( self ): '''simple docstring''' return self._lock_file_fd is not None def lowerCamelCase ( self , __UpperCAmelCase=None , __UpperCAmelCase=0.05 ): '''simple docstring''' # Use the default timeout, if no timeout is provided. if timeout is None: __lowerCamelCase = self.timeout # Increment the number right at the beginning. # We can still undo it, if something fails. with self._thread_lock: self._lock_counter += 1 __lowerCamelCase = id(self ) __lowerCamelCase = self._lock_file __lowerCamelCase = time.time() try: while True: with self._thread_lock: if not self.is_locked: logger().debug(F"""Attempting to acquire lock {lock_id} on {lock_filename}""" ) self._acquire() if self.is_locked: logger().debug(F"""Lock {lock_id} acquired on {lock_filename}""" ) break elif timeout >= 0 and time.time() - start_time > timeout: logger().debug(F"""Timeout on acquiring lock {lock_id} on {lock_filename}""" ) raise Timeout(self._lock_file ) else: logger().debug( F"""Lock {lock_id} not acquired on {lock_filename}, waiting {poll_intervall} seconds ...""" ) time.sleep(__UpperCAmelCase ) except: # noqa # Something did go wrong, so decrement the counter. with self._thread_lock: __lowerCamelCase = max(0 , self._lock_counter - 1 ) raise return _Acquire_ReturnProxy(lock=self ) def lowerCamelCase ( self , __UpperCAmelCase=False ): '''simple docstring''' with self._thread_lock: if self.is_locked: self._lock_counter -= 1 if self._lock_counter == 0 or force: __lowerCamelCase = id(self ) __lowerCamelCase = self._lock_file logger().debug(F"""Attempting to release lock {lock_id} on {lock_filename}""" ) self._release() __lowerCamelCase = 0 logger().debug(F"""Lock {lock_id} released on {lock_filename}""" ) return None def __enter__( self ): '''simple docstring''' self.acquire() return self def __exit__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' self.release() return None def __del__( self ): '''simple docstring''' self.release(force=__UpperCAmelCase ) return None def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = os.path.basename(__UpperCAmelCase ) if len(__UpperCAmelCase ) > max_length and max_length > 0: __lowerCamelCase = os.path.dirname(__UpperCAmelCase ) __lowerCamelCase = str(hash(__UpperCAmelCase ) ) __lowerCamelCase = filename[: max_length - len(__UpperCAmelCase ) - 8] + '''...''' + hashed_filename + '''.lock''' return os.path.join(__UpperCAmelCase , __UpperCAmelCase ) else: return path class __lowerCAmelCase ( lowerCAmelCase__ ): def __init__( self , __UpperCAmelCase , __UpperCAmelCase=-1 , __UpperCAmelCase=None ): '''simple docstring''' from .file_utils import relative_to_absolute_path super().__init__(__UpperCAmelCase , timeout=__UpperCAmelCase , max_filename_length=__UpperCAmelCase ) __lowerCamelCase = '''\\\\?\\''' + relative_to_absolute_path(self.lock_file ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = os.O_RDWR | os.O_CREAT | os.O_TRUNC try: __lowerCamelCase = os.open(self._lock_file , __UpperCAmelCase ) except OSError: pass else: try: msvcrt.locking(__UpperCAmelCase , msvcrt.LK_NBLCK , 1 ) except OSError: os.close(__UpperCAmelCase ) else: __lowerCamelCase = fd return None def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = self._lock_file_fd __lowerCamelCase = None msvcrt.locking(__UpperCAmelCase , msvcrt.LK_UNLCK , 1 ) os.close(__UpperCAmelCase ) try: os.remove(self._lock_file ) # Probably another instance of the application # that acquired the file lock. except OSError: pass return None class __lowerCAmelCase ( lowerCAmelCase__ ): def __init__( self , __UpperCAmelCase , __UpperCAmelCase=-1 , __UpperCAmelCase=None ): '''simple docstring''' __lowerCamelCase = os.statvfs(os.path.dirname(__UpperCAmelCase ) ).f_namemax super().__init__(__UpperCAmelCase , timeout=__UpperCAmelCase , max_filename_length=__UpperCAmelCase ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = os.O_RDWR | os.O_CREAT | os.O_TRUNC __lowerCamelCase = os.open(self._lock_file , __UpperCAmelCase ) try: fcntl.flock(__UpperCAmelCase , fcntl.LOCK_EX | fcntl.LOCK_NB ) except OSError: os.close(__UpperCAmelCase ) else: __lowerCamelCase = fd return None def lowerCamelCase ( self ): '''simple docstring''' # Do not remove the lockfile: # # https://github.com/benediktschmitt/py-filelock/issues/31 # https://stackoverflow.com/questions/17708885/flock-removing-locked-file-without-race-condition __lowerCamelCase = self._lock_file_fd __lowerCamelCase = None fcntl.flock(__UpperCAmelCase , fcntl.LOCK_UN ) os.close(__UpperCAmelCase ) return None class __lowerCAmelCase ( lowerCAmelCase__ ): def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = os.O_WRONLY | os.O_CREAT | os.O_EXCL | os.O_TRUNC try: __lowerCamelCase = os.open(self._lock_file , __UpperCAmelCase ) except OSError: pass else: __lowerCamelCase = fd return None def lowerCamelCase ( self ): '''simple docstring''' os.close(self._lock_file_fd ) __lowerCamelCase = None try: os.remove(self._lock_file ) # The file is already deleted and that's what we want. except OSError: pass return None a_ = None if msvcrt: a_ = WindowsFileLock elif fcntl: a_ = UnixFileLock else: a_ = SoftFileLock if warnings is not None: warnings.warn("""only soft file lock is available""")
330
1
"""simple docstring""" import argparse import json import os import numpy as np import PIL import requests import tensorflow.keras.applications.efficientnet as efficientnet import torch from huggingface_hub import hf_hub_download from PIL import Image from tensorflow.keras.preprocessing import image from transformers import ( EfficientNetConfig, EfficientNetForImageClassification, EfficientNetImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() lowercase__ : List[str] = logging.get_logger(__name__) lowercase__ : Any = { '''b0''': efficientnet.EfficientNetBa, '''b1''': efficientnet.EfficientNetBa, '''b2''': efficientnet.EfficientNetBa, '''b3''': efficientnet.EfficientNetBa, '''b4''': efficientnet.EfficientNetBa, '''b5''': efficientnet.EfficientNetBa, '''b6''': efficientnet.EfficientNetBa, '''b7''': efficientnet.EfficientNetBa, } lowercase__ : Tuple = { '''b0''': { '''hidden_dim''': 12_80, '''width_coef''': 1.0, '''depth_coef''': 1.0, '''image_size''': 2_24, '''dropout_rate''': 0.2, '''dw_padding''': [], }, '''b1''': { '''hidden_dim''': 12_80, '''width_coef''': 1.0, '''depth_coef''': 1.1, '''image_size''': 2_40, '''dropout_rate''': 0.2, '''dw_padding''': [16], }, '''b2''': { '''hidden_dim''': 14_08, '''width_coef''': 1.1, '''depth_coef''': 1.2, '''image_size''': 2_60, '''dropout_rate''': 0.3, '''dw_padding''': [5, 8, 16], }, '''b3''': { '''hidden_dim''': 15_36, '''width_coef''': 1.2, '''depth_coef''': 1.4, '''image_size''': 3_00, '''dropout_rate''': 0.3, '''dw_padding''': [5, 18], }, '''b4''': { '''hidden_dim''': 17_92, '''width_coef''': 1.4, '''depth_coef''': 1.8, '''image_size''': 3_80, '''dropout_rate''': 0.4, '''dw_padding''': [6], }, '''b5''': { '''hidden_dim''': 20_48, '''width_coef''': 1.6, '''depth_coef''': 2.2, '''image_size''': 4_56, '''dropout_rate''': 0.4, '''dw_padding''': [13, 27], }, '''b6''': { '''hidden_dim''': 23_04, '''width_coef''': 1.8, '''depth_coef''': 2.6, '''image_size''': 5_28, '''dropout_rate''': 0.5, '''dw_padding''': [31], }, '''b7''': { '''hidden_dim''': 25_60, '''width_coef''': 2.0, '''depth_coef''': 3.1, '''image_size''': 6_00, '''dropout_rate''': 0.5, '''dw_padding''': [18], }, } def __lowercase ( _a ): snake_case_ : Optional[int] = EfficientNetConfig() snake_case_ : Tuple = CONFIG_MAP[model_name]['''hidden_dim'''] snake_case_ : Optional[Any] = CONFIG_MAP[model_name]['''width_coef'''] snake_case_ : str = CONFIG_MAP[model_name]['''depth_coef'''] snake_case_ : Optional[int] = CONFIG_MAP[model_name]['''image_size'''] snake_case_ : int = CONFIG_MAP[model_name]['''dropout_rate'''] snake_case_ : Optional[int] = CONFIG_MAP[model_name]['''dw_padding'''] snake_case_ : List[str] = '''huggingface/label-files''' snake_case_ : Any = '''imagenet-1k-id2label.json''' snake_case_ : Union[str, Any] = 1_000 snake_case_ : Dict = json.load(open(hf_hub_download(_lowerCAmelCase , _lowerCAmelCase , repo_type='''dataset''' ) , '''r''' ) ) snake_case_ : List[str] = {int(_lowerCAmelCase ): v for k, v in idalabel.items()} snake_case_ : int = idalabel snake_case_ : Optional[Any] = {v: k for k, v in idalabel.items()} return config def __lowercase ( ): snake_case_ : List[Any] = '''http://images.cocodataset.org/val2017/000000039769.jpg''' snake_case_ : List[str] = Image.open(requests.get(_lowerCAmelCase , stream=_lowerCAmelCase ).raw ) return im def __lowercase ( _a ): snake_case_ : Optional[Any] = CONFIG_MAP[model_name]['''image_size'''] snake_case_ : Optional[Any] = EfficientNetImageProcessor( size={'''height''': size, '''width''': size} , image_mean=[0.485, 0.456, 0.406] , image_std=[0.4785_3944, 0.473_2864, 0.4743_4163] , do_center_crop=_lowerCAmelCase , ) return preprocessor def __lowercase ( _a ): snake_case_ : Optional[Any] = [v.split('''_''' )[0].split('''block''' )[1] for v in original_param_names if v.startswith('''block''' )] snake_case_ : Union[str, Any] = sorted(set(_lowerCAmelCase ) ) snake_case_ : int = len(_lowerCAmelCase ) snake_case_ : Tuple = {b: str(_lowerCAmelCase ) for b, i in zip(_lowerCAmelCase , range(_lowerCAmelCase ) )} snake_case_ : List[str] = [] rename_keys.append(('''stem_conv/kernel:0''', '''embeddings.convolution.weight''') ) rename_keys.append(('''stem_bn/gamma:0''', '''embeddings.batchnorm.weight''') ) rename_keys.append(('''stem_bn/beta:0''', '''embeddings.batchnorm.bias''') ) rename_keys.append(('''stem_bn/moving_mean:0''', '''embeddings.batchnorm.running_mean''') ) rename_keys.append(('''stem_bn/moving_variance:0''', '''embeddings.batchnorm.running_var''') ) for b in block_names: snake_case_ : List[str] = block_name_mapping[b] rename_keys.append((f"block{b}_expand_conv/kernel:0", f"encoder.blocks.{hf_b}.expansion.expand_conv.weight") ) rename_keys.append((f"block{b}_expand_bn/gamma:0", f"encoder.blocks.{hf_b}.expansion.expand_bn.weight") ) rename_keys.append((f"block{b}_expand_bn/beta:0", f"encoder.blocks.{hf_b}.expansion.expand_bn.bias") ) rename_keys.append( (f"block{b}_expand_bn/moving_mean:0", f"encoder.blocks.{hf_b}.expansion.expand_bn.running_mean") ) rename_keys.append( (f"block{b}_expand_bn/moving_variance:0", f"encoder.blocks.{hf_b}.expansion.expand_bn.running_var") ) rename_keys.append( (f"block{b}_dwconv/depthwise_kernel:0", f"encoder.blocks.{hf_b}.depthwise_conv.depthwise_conv.weight") ) rename_keys.append((f"block{b}_bn/gamma:0", f"encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.weight") ) rename_keys.append((f"block{b}_bn/beta:0", f"encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.bias") ) rename_keys.append( (f"block{b}_bn/moving_mean:0", f"encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_mean") ) rename_keys.append( (f"block{b}_bn/moving_variance:0", f"encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_var") ) rename_keys.append((f"block{b}_se_reduce/kernel:0", f"encoder.blocks.{hf_b}.squeeze_excite.reduce.weight") ) rename_keys.append((f"block{b}_se_reduce/bias:0", f"encoder.blocks.{hf_b}.squeeze_excite.reduce.bias") ) rename_keys.append((f"block{b}_se_expand/kernel:0", f"encoder.blocks.{hf_b}.squeeze_excite.expand.weight") ) rename_keys.append((f"block{b}_se_expand/bias:0", f"encoder.blocks.{hf_b}.squeeze_excite.expand.bias") ) rename_keys.append( (f"block{b}_project_conv/kernel:0", f"encoder.blocks.{hf_b}.projection.project_conv.weight") ) rename_keys.append((f"block{b}_project_bn/gamma:0", f"encoder.blocks.{hf_b}.projection.project_bn.weight") ) rename_keys.append((f"block{b}_project_bn/beta:0", f"encoder.blocks.{hf_b}.projection.project_bn.bias") ) rename_keys.append( (f"block{b}_project_bn/moving_mean:0", f"encoder.blocks.{hf_b}.projection.project_bn.running_mean") ) rename_keys.append( (f"block{b}_project_bn/moving_variance:0", f"encoder.blocks.{hf_b}.projection.project_bn.running_var") ) rename_keys.append(('''top_conv/kernel:0''', '''encoder.top_conv.weight''') ) rename_keys.append(('''top_bn/gamma:0''', '''encoder.top_bn.weight''') ) rename_keys.append(('''top_bn/beta:0''', '''encoder.top_bn.bias''') ) rename_keys.append(('''top_bn/moving_mean:0''', '''encoder.top_bn.running_mean''') ) rename_keys.append(('''top_bn/moving_variance:0''', '''encoder.top_bn.running_var''') ) snake_case_ : List[str] = {} for item in rename_keys: if item[0] in original_param_names: snake_case_ : str = '''efficientnet.''' + item[1] snake_case_ : int = '''classifier.weight''' snake_case_ : Union[str, Any] = '''classifier.bias''' return key_mapping def __lowercase ( _a , _a , _a ): for key, value in tf_params.items(): if "normalization" in key: continue snake_case_ : Dict = key_mapping[key] if "_conv" in key and "kernel" in key: snake_case_ : Tuple = torch.from_numpy(_lowerCAmelCase ).permute(3 , 2 , 0 , 1 ) elif "depthwise_kernel" in key: snake_case_ : List[Any] = torch.from_numpy(_lowerCAmelCase ).permute(2 , 3 , 0 , 1 ) elif "kernel" in key: snake_case_ : str = torch.from_numpy(np.transpose(_lowerCAmelCase ) ) else: snake_case_ : Any = torch.from_numpy(_lowerCAmelCase ) # Replace HF parameters with original TF model parameters assert hf_params[hf_key].shape == new_hf_value.shape hf_params[hf_key].copy_(_lowerCAmelCase ) @torch.no_grad() def __lowercase ( _a , _a , _a , _a ): snake_case_ : List[str] = model_classes[model_name]( include_top=_lowerCAmelCase , weights='''imagenet''' , input_tensor=_lowerCAmelCase , input_shape=_lowerCAmelCase , pooling=_lowerCAmelCase , classes=1_000 , classifier_activation='''softmax''' , ) snake_case_ : Tuple = original_model.trainable_variables snake_case_ : Optional[Any] = original_model.non_trainable_variables snake_case_ : Any = {param.name: param.numpy() for param in tf_params} for param in tf_non_train_params: snake_case_ : Dict = param.numpy() snake_case_ : Any = list(tf_params.keys() ) # Load HuggingFace model snake_case_ : Any = get_efficientnet_config(_lowerCAmelCase ) snake_case_ : str = EfficientNetForImageClassification(_lowerCAmelCase ).eval() snake_case_ : Union[str, Any] = hf_model.state_dict() # Create src-to-dst parameter name mapping dictionary print('''Converting parameters...''' ) snake_case_ : Optional[Any] = rename_keys(_lowerCAmelCase ) replace_params(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # Initialize preprocessor and preprocess input image snake_case_ : str = convert_image_processor(_lowerCAmelCase ) snake_case_ : List[Any] = preprocessor(images=prepare_img() , return_tensors='''pt''' ) # HF model inference hf_model.eval() with torch.no_grad(): snake_case_ : Any = hf_model(**_lowerCAmelCase ) snake_case_ : Optional[int] = outputs.logits.detach().numpy() # Original model inference snake_case_ : List[Any] = False snake_case_ : List[str] = CONFIG_MAP[model_name]['''image_size'''] snake_case_ : List[Any] = prepare_img().resize((image_size, image_size) , resample=PIL.Image.NEAREST ) snake_case_ : List[str] = image.img_to_array(_lowerCAmelCase ) snake_case_ : Optional[Any] = np.expand_dims(_lowerCAmelCase , axis=0 ) snake_case_ : Optional[int] = original_model.predict(_lowerCAmelCase ) # Check whether original and HF model outputs match -> np.allclose assert np.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1E-3 ), "The predicted logits are not the same." print('''Model outputs match!''' ) if save_model: # Create folder to save model if not os.path.isdir(_lowerCAmelCase ): os.mkdir(_lowerCAmelCase ) # Save converted model and image processor hf_model.save_pretrained(_lowerCAmelCase ) preprocessor.save_pretrained(_lowerCAmelCase ) if push_to_hub: # Push model and image processor to hub print(f"Pushing converted {model_name} to the hub..." ) snake_case_ : Any = f"efficientnet-{model_name}" preprocessor.push_to_hub(_lowerCAmelCase ) hf_model.push_to_hub(_lowerCAmelCase ) if __name__ == "__main__": lowercase__ : str = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''b0''', type=str, help='''Version name of the EfficientNet model you want to convert, select from [b0, b1, b2, b3, b4, b5, b6, b7].''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default='''hf_model''', type=str, help='''Path to the output PyTorch model directory.''', ) parser.add_argument('''--save_model''', action='''store_true''', help='''Save model to local''') parser.add_argument('''--push_to_hub''', action='''store_true''', help='''Push model and image processor to the hub''') lowercase__ : Dict = parser.parse_args() convert_efficientnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.save_model, args.push_to_hub)
354
"""simple docstring""" import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoFeatureExtractor, WavaVecaFeatureExtractor from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test sys.path.append(str(Path(__file__).parent.parent / '''utils''')) from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 lowercase__ : Union[str, Any] = get_tests_dir('''fixtures''') class _UpperCAmelCase ( unittest.TestCase): def _snake_case ( self : Any ): # A mock response for an HTTP head request to emulate server down snake_case_ : Any = mock.Mock() snake_case_ : Tuple = 500 snake_case_ : Dict = {} snake_case_ : Optional[Any] = HTTPError snake_case_ : Optional[int] = {} # Download this model to make sure it's in the cache. snake_case_ : List[Any] = WavaVecaFeatureExtractor.from_pretrained('''hf-internal-testing/tiny-random-wav2vec2''' ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('''requests.Session.request''' , return_value=lowercase_ ) as mock_head: snake_case_ : Any = WavaVecaFeatureExtractor.from_pretrained('''hf-internal-testing/tiny-random-wav2vec2''' ) # This check we did call the fake head request mock_head.assert_called() def _snake_case ( self : Optional[int] ): # This test is for deprecated behavior and can be removed in v5 snake_case_ : Optional[Any] = WavaVecaFeatureExtractor.from_pretrained( '''https://huggingface.co/hf-internal-testing/tiny-random-wav2vec2/resolve/main/preprocessor_config.json''' ) @is_staging_test class _UpperCAmelCase ( unittest.TestCase): @classmethod def _snake_case ( cls : List[Any] ): snake_case_ : Dict = TOKEN HfFolder.save_token(lowercase_ ) @classmethod def _snake_case ( cls : int ): try: delete_repo(token=cls._token , repo_id='''test-feature-extractor''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-feature-extractor-org''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''test-dynamic-feature-extractor''' ) except HTTPError: pass def _snake_case ( self : Any ): snake_case_ : str = WavaVecaFeatureExtractor.from_pretrained(lowercase_ ) feature_extractor.push_to_hub('''test-feature-extractor''' , use_auth_token=self._token ) snake_case_ : Optional[int] = WavaVecaFeatureExtractor.from_pretrained(f"{USER}/test-feature-extractor" ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(lowercase_ , getattr(lowercase_ , lowercase_ ) ) # Reset repo delete_repo(token=self._token , repo_id='''test-feature-extractor''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained( lowercase_ , repo_id='''test-feature-extractor''' , push_to_hub=lowercase_ , use_auth_token=self._token ) snake_case_ : Optional[int] = WavaVecaFeatureExtractor.from_pretrained(f"{USER}/test-feature-extractor" ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(lowercase_ , getattr(lowercase_ , lowercase_ ) ) def _snake_case ( self : List[Any] ): snake_case_ : List[Any] = WavaVecaFeatureExtractor.from_pretrained(lowercase_ ) feature_extractor.push_to_hub('''valid_org/test-feature-extractor''' , use_auth_token=self._token ) snake_case_ : Optional[int] = WavaVecaFeatureExtractor.from_pretrained('''valid_org/test-feature-extractor''' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(lowercase_ , getattr(lowercase_ , lowercase_ ) ) # Reset repo delete_repo(token=self._token , repo_id='''valid_org/test-feature-extractor''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained( lowercase_ , repo_id='''valid_org/test-feature-extractor-org''' , push_to_hub=lowercase_ , use_auth_token=self._token ) snake_case_ : str = WavaVecaFeatureExtractor.from_pretrained('''valid_org/test-feature-extractor-org''' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(lowercase_ , getattr(lowercase_ , lowercase_ ) ) def _snake_case ( self : List[Any] ): CustomFeatureExtractor.register_for_auto_class() snake_case_ : int = CustomFeatureExtractor.from_pretrained(lowercase_ ) feature_extractor.push_to_hub('''test-dynamic-feature-extractor''' , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual( feature_extractor.auto_map , {'''AutoFeatureExtractor''': '''custom_feature_extraction.CustomFeatureExtractor'''} , ) snake_case_ : List[str] = AutoFeatureExtractor.from_pretrained( f"{USER}/test-dynamic-feature-extractor" , trust_remote_code=lowercase_ ) # Can't make an isinstance check because the new_feature_extractor is from the CustomFeatureExtractor class of a dynamic module self.assertEqual(new_feature_extractor.__class__.__name__ , '''CustomFeatureExtractor''' )
155
0
"""simple docstring""" import math def __lowerCAmelCase (_UpperCamelCase ): __lowerCAmelCase : Tuple = [] __lowerCAmelCase : Dict = 2 __lowerCAmelCase : Any = int(math.sqrt(_UpperCamelCase ) ) # Size of every segment __lowerCAmelCase : Tuple = [True] * (end + 1) __lowerCAmelCase : Any = [] while start <= end: if temp[start] is True: in_prime.append(_UpperCamelCase ) for i in range(start * start , end + 1 , _UpperCamelCase ): __lowerCAmelCase : int = False start += 1 prime += in_prime __lowerCAmelCase : Union[str, Any] = end + 1 __lowerCAmelCase : Tuple = min(2 * end , _UpperCamelCase ) while low <= n: __lowerCAmelCase : List[str] = [True] * (high - low + 1) for each in in_prime: __lowerCAmelCase : int = math.floor(low / each ) * each if t < low: t += each for j in range(_UpperCamelCase , high + 1 , _UpperCamelCase ): __lowerCAmelCase : Any = False for j in range(len(_UpperCamelCase ) ): if temp[j] is True: prime.append(j + low ) __lowerCAmelCase : Tuple = high + 1 __lowerCAmelCase : int = min(high + end , _UpperCamelCase ) return prime print(sieve(10**6))
86
'''simple docstring''' import argparse import os import gluonnlp as nlp import mxnet as mx import numpy as np import torch from gluonnlp.base import get_home_dir from gluonnlp.model.bert import BERTEncoder from gluonnlp.model.utils import _load_vocab from gluonnlp.vocab import Vocab from packaging import version from torch import nn from transformers import BertConfig, BertForMaskedLM, BertModel, RobertaTokenizer from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertSelfAttention, BertSelfOutput, ) from transformers.utils import logging if version.parse(nlp.__version__) != version.parse('''0.8.3'''): raise Exception('''requires gluonnlp == 0.8.3''') if version.parse(mx.__version__) != version.parse('''1.5.0'''): raise Exception('''requires mxnet == 1.5.0''') logging.set_verbosity_info() _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = '''The Nymphenburg Palace is a beautiful palace in Munich!''' def __lowerCAmelCase ( snake_case__ , snake_case__ ): __UpperCamelCase : List[Any] = { "attention_cell": "multi_head", "num_layers": 4, "units": 1_024, "hidden_size": 768, "max_length": 512, "num_heads": 8, "scaled": True, "dropout": 0.1, "use_residual": True, "embed_size": 1_024, "embed_dropout": 0.1, "word_embed": None, "layer_norm_eps": 1E-5, "token_type_vocab_size": 2, } __UpperCamelCase : Optional[int] = bort_4_8_768_1024_hparams # Let's construct the original Bort model here # Taken from official BERT implementation, see: # https://github.com/alexa/bort/blob/master/bort/bort.py __UpperCamelCase : Any = BERTEncoder( attention_cell=predefined_args["attention_cell"] , num_layers=predefined_args["num_layers"] , units=predefined_args["units"] , hidden_size=predefined_args["hidden_size"] , max_length=predefined_args["max_length"] , num_heads=predefined_args["num_heads"] , scaled=predefined_args["scaled"] , dropout=predefined_args["dropout"] , output_attention=snake_case__ , output_all_encodings=snake_case__ , use_residual=predefined_args["use_residual"] , activation=predefined_args.get("activation" , "gelu" ) , layer_norm_eps=predefined_args.get("layer_norm_eps" , snake_case__ ) , ) # Vocab information needs to be fetched first # It's the same as RoBERTa, so RobertaTokenizer can be used later __UpperCamelCase : str = "openwebtext_ccnews_stories_books_cased" # Specify download folder to Gluonnlp's vocab __UpperCamelCase : Tuple = os.path.join(get_home_dir() , "models" ) __UpperCamelCase : Union[str, Any] = _load_vocab(snake_case__ , snake_case__ , snake_case__ , cls=snake_case__ ) __UpperCamelCase : Union[str, Any] = nlp.model.BERTModel( snake_case__ , len(snake_case__ ) , units=predefined_args["units"] , embed_size=predefined_args["embed_size"] , embed_dropout=predefined_args["embed_dropout"] , word_embed=predefined_args["word_embed"] , use_pooler=snake_case__ , use_token_type_embed=snake_case__ , token_type_vocab_size=predefined_args["token_type_vocab_size"] , use_classifier=snake_case__ , use_decoder=snake_case__ , ) original_bort.load_parameters(snake_case__ , cast_dtype=snake_case__ , ignore_extra=snake_case__ ) __UpperCamelCase : int = original_bort._collect_params_with_prefix() # Build our config 🤗 __UpperCamelCase : Any = { "architectures": ["BertForMaskedLM"], "attention_probs_dropout_prob": predefined_args["dropout"], "hidden_act": "gelu", "hidden_dropout_prob": predefined_args["dropout"], "hidden_size": predefined_args["embed_size"], "initializer_range": 0.02, "intermediate_size": predefined_args["hidden_size"], "layer_norm_eps": predefined_args["layer_norm_eps"], "max_position_embeddings": predefined_args["max_length"], "model_type": "bort", "num_attention_heads": predefined_args["num_heads"], "num_hidden_layers": predefined_args["num_layers"], "pad_token_id": 1, # 2 = BERT, 1 = RoBERTa "type_vocab_size": 1, # 2 = BERT, 1 = RoBERTa "vocab_size": len(snake_case__ ), } __UpperCamelCase : List[str] = BertConfig.from_dict(snake_case__ ) __UpperCamelCase : str = BertForMaskedLM(snake_case__ ) hf_bort_model.eval() # Parameter mapping table (Gluonnlp to Transformers) # * denotes layer index # # | Gluon Parameter | Transformers Parameter # | -------------------------------------------------------------- | ---------------------- # | `encoder.layer_norm.beta` | `bert.embeddings.LayerNorm.bias` # | `encoder.layer_norm.gamma` | `bert.embeddings.LayerNorm.weight` # | `encoder.position_weight` | `bert.embeddings.position_embeddings.weight` # | `word_embed.0.weight` | `bert.embeddings.word_embeddings.weight` # | `encoder.transformer_cells.*.attention_cell.proj_key.bias` | `bert.encoder.layer.*.attention.self.key.bias` # | `encoder.transformer_cells.*.attention_cell.proj_key.weight` | `bert.encoder.layer.*.attention.self.key.weight` # | `encoder.transformer_cells.*.attention_cell.proj_query.bias` | `bert.encoder.layer.*.attention.self.query.bias` # | `encoder.transformer_cells.*.attention_cell.proj_query.weight` | `bert.encoder.layer.*.attention.self.query.weight` # | `encoder.transformer_cells.*.attention_cell.proj_value.bias` | `bert.encoder.layer.*.attention.self.value.bias` # | `encoder.transformer_cells.*.attention_cell.proj_value.weight` | `bert.encoder.layer.*.attention.self.value.weight` # | `encoder.transformer_cells.*.ffn.ffn_2.bias` | `bert.encoder.layer.*.attention.output.dense.bias` # | `encoder.transformer_cells.*.ffn.ffn_2.weight` | `bert.encoder.layer.*.attention.output.dense.weight` # | `encoder.transformer_cells.*.layer_norm.beta` | `bert.encoder.layer.*.attention.output.LayerNorm.bias` # | `encoder.transformer_cells.*.layer_norm.gamma` | `bert.encoder.layer.*.attention.output.LayerNorm.weight` # | `encoder.transformer_cells.*.ffn.ffn_1.bias` | `bert.encoder.layer.*.intermediate.dense.bias` # | `encoder.transformer_cells.*.ffn.ffn_1.weight` | `bert.encoder.layer.*.intermediate.dense.weight` # | `encoder.transformer_cells.*.ffn.layer_norm.beta` | `bert.encoder.layer.*.output.LayerNorm.bias` # | `encoder.transformer_cells.*.ffn.layer_norm.gamma` | `bert.encoder.layer.*.output.LayerNorm.weight` # | `encoder.transformer_cells.*.proj.bias` | `bert.encoder.layer.*.output.dense.bias` # | `encoder.transformer_cells.*.proj.weight` | `bert.encoder.layer.*.output.dense.weight` # Helper function to convert MXNET Arrays to PyTorch def to_torch(snake_case__ ) -> nn.Parameter: return nn.Parameter(torch.FloatTensor(mx_array.data().asnumpy() ) ) # Check param shapes and map new HF param back def check_and_map_params(snake_case__ , snake_case__ ): __UpperCamelCase : Any = hf_param.shape __UpperCamelCase : List[Any] = to_torch(params[gluon_param] ) __UpperCamelCase : Union[str, Any] = gluon_param.shape assert ( shape_hf == shape_gluon ), F"The gluon parameter {gluon_param} has shape {shape_gluon}, but expects shape {shape_hf} for Transformers" return gluon_param __UpperCamelCase : Tuple = check_and_map_params( hf_bort_model.bert.embeddings.word_embeddings.weight , "word_embed.0.weight" ) __UpperCamelCase : str = check_and_map_params( hf_bort_model.bert.embeddings.position_embeddings.weight , "encoder.position_weight" ) __UpperCamelCase : Optional[int] = check_and_map_params( hf_bort_model.bert.embeddings.LayerNorm.bias , "encoder.layer_norm.beta" ) __UpperCamelCase : str = check_and_map_params( hf_bort_model.bert.embeddings.LayerNorm.weight , "encoder.layer_norm.gamma" ) # Inspired by RoBERTa conversion script, we just zero them out (Bort does not use them) __UpperCamelCase : Any = torch.zeros_like( hf_bort_model.bert.embeddings.token_type_embeddings.weight.data ) for i in range(hf_bort_config.num_hidden_layers ): __UpperCamelCase : BertLayer = hf_bort_model.bert.encoder.layer[i] # self attention __UpperCamelCase : BertSelfAttention = layer.attention.self __UpperCamelCase : int = check_and_map_params( self_attn.key.bias.data , F"encoder.transformer_cells.{i}.attention_cell.proj_key.bias" ) __UpperCamelCase : List[str] = check_and_map_params( self_attn.key.weight.data , F"encoder.transformer_cells.{i}.attention_cell.proj_key.weight" ) __UpperCamelCase : str = check_and_map_params( self_attn.query.bias.data , F"encoder.transformer_cells.{i}.attention_cell.proj_query.bias" ) __UpperCamelCase : List[Any] = check_and_map_params( self_attn.query.weight.data , F"encoder.transformer_cells.{i}.attention_cell.proj_query.weight" ) __UpperCamelCase : List[str] = check_and_map_params( self_attn.value.bias.data , F"encoder.transformer_cells.{i}.attention_cell.proj_value.bias" ) __UpperCamelCase : Tuple = check_and_map_params( self_attn.value.weight.data , F"encoder.transformer_cells.{i}.attention_cell.proj_value.weight" ) # self attention output __UpperCamelCase : BertSelfOutput = layer.attention.output __UpperCamelCase : List[Any] = check_and_map_params( self_output.dense.bias , F"encoder.transformer_cells.{i}.proj.bias" ) __UpperCamelCase : List[Any] = check_and_map_params( self_output.dense.weight , F"encoder.transformer_cells.{i}.proj.weight" ) __UpperCamelCase : List[Any] = check_and_map_params( self_output.LayerNorm.bias , F"encoder.transformer_cells.{i}.layer_norm.beta" ) __UpperCamelCase : Optional[int] = check_and_map_params( self_output.LayerNorm.weight , F"encoder.transformer_cells.{i}.layer_norm.gamma" ) # intermediate __UpperCamelCase : BertIntermediate = layer.intermediate __UpperCamelCase : Dict = check_and_map_params( intermediate.dense.bias , F"encoder.transformer_cells.{i}.ffn.ffn_1.bias" ) __UpperCamelCase : List[Any] = check_and_map_params( intermediate.dense.weight , F"encoder.transformer_cells.{i}.ffn.ffn_1.weight" ) # output __UpperCamelCase : BertOutput = layer.output __UpperCamelCase : Dict = check_and_map_params( bert_output.dense.bias , F"encoder.transformer_cells.{i}.ffn.ffn_2.bias" ) __UpperCamelCase : Union[str, Any] = check_and_map_params( bert_output.dense.weight , F"encoder.transformer_cells.{i}.ffn.ffn_2.weight" ) __UpperCamelCase : List[str] = check_and_map_params( bert_output.LayerNorm.bias , F"encoder.transformer_cells.{i}.ffn.layer_norm.beta" ) __UpperCamelCase : int = check_and_map_params( bert_output.LayerNorm.weight , F"encoder.transformer_cells.{i}.ffn.layer_norm.gamma" ) # Save space and energy 🎄 hf_bort_model.half() # Compare output of both models __UpperCamelCase : Any = RobertaTokenizer.from_pretrained("roberta-base" ) __UpperCamelCase : int = tokenizer.encode_plus(snake_case__ )["input_ids"] # Get gluon output __UpperCamelCase : Dict = mx.nd.array([input_ids] ) __UpperCamelCase : Any = original_bort(inputs=snake_case__ , token_types=[] ) # Get Transformer output (save and reload model again) hf_bort_model.save_pretrained(snake_case__ ) __UpperCamelCase : Optional[Any] = BertModel.from_pretrained(snake_case__ ) hf_bort_model.eval() __UpperCamelCase : str = tokenizer.encode_plus(snake_case__ , return_tensors="pt" ) __UpperCamelCase : Dict = hf_bort_model(**snake_case__ )[0] __UpperCamelCase : List[Any] = output_gluon[0].asnumpy() __UpperCamelCase : Optional[int] = output_hf[0].detach().numpy() __UpperCamelCase : Dict = np.max(np.abs(hf_layer - gluon_layer ) ).item() __UpperCamelCase : List[Any] = np.allclose(snake_case__ , snake_case__ , atol=1E-3 ) if success: print("✔️ Both model do output the same tensors" ) else: print("❌ Both model do **NOT** output the same tensors" ) print("Absolute difference is:" , snake_case__ ) if __name__ == "__main__": _lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--bort_checkpoint_path''', default=None, type=str, required=True, help='''Path the official Bort params file.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) _lowerCAmelCase = parser.parse_args() convert_bort_checkpoint_to_pytorch(args.bort_checkpoint_path, args.pytorch_dump_folder_path)
298
0
import argparse import csv import logging import os import random import numpy as np import torch from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset from tqdm import tqdm, trange from transformers import ( CONFIG_NAME, WEIGHTS_NAME, AdamW, OpenAIGPTDoubleHeadsModel, OpenAIGPTTokenizer, get_linear_schedule_with_warmup, ) logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO ) __A = logging.getLogger(__name__) def snake_case_(_UpperCamelCase , _UpperCamelCase ) -> str: """simple docstring""" _snake_case = np.argmax(_UpperCamelCase , axis=1 ) return np.sum(outputs == labels ) def snake_case_(_UpperCamelCase ) -> Union[str, Any]: """simple docstring""" with open(_UpperCamelCase , encoding='''utf_8''' ) as f: _snake_case = csv.reader(_UpperCamelCase ) _snake_case = [] next(_UpperCamelCase ) # skip the first line for line in tqdm(_UpperCamelCase ): output.append((''' '''.join(line[1:5] ), line[5], line[6], int(line[-1] ) - 1) ) return output def snake_case_(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> int: """simple docstring""" _snake_case = [] for dataset in encoded_datasets: _snake_case = len(_UpperCamelCase ) _snake_case = np.zeros((n_batch, 2, input_len) , dtype=np.intaa ) _snake_case = np.zeros((n_batch, 2) , dtype=np.intaa ) _snake_case = np.full((n_batch, 2, input_len) , fill_value=-100 , dtype=np.intaa ) _snake_case = np.zeros((n_batch,) , dtype=np.intaa ) for ( i, (story, conta, conta, mc_label), ) in enumerate(_UpperCamelCase ): _snake_case = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] _snake_case = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] _snake_case = with_conta _snake_case = with_conta _snake_case = len(_UpperCamelCase ) - 1 _snake_case = len(_UpperCamelCase ) - 1 _snake_case = with_conta _snake_case = with_conta _snake_case = mc_label _snake_case = (input_ids, mc_token_ids, lm_labels, mc_labels) tensor_datasets.append(tuple(torch.tensor(_UpperCamelCase ) for t in all_inputs ) ) return tensor_datasets def snake_case_() -> Tuple: """simple docstring""" _snake_case = argparse.ArgumentParser() parser.add_argument('''--model_name''' , type=_UpperCamelCase , default='''openai-gpt''' , help='''pretrained model name''' ) parser.add_argument('''--do_train''' , action='''store_true''' , help='''Whether to run training.''' ) parser.add_argument('''--do_eval''' , action='''store_true''' , help='''Whether to run eval on the dev set.''' ) parser.add_argument( '''--output_dir''' , default=_UpperCamelCase , type=_UpperCamelCase , required=_UpperCamelCase , help='''The output directory where the model predictions and checkpoints will be written.''' , ) parser.add_argument('''--train_dataset''' , type=_UpperCamelCase , default='''''' ) parser.add_argument('''--eval_dataset''' , type=_UpperCamelCase , default='''''' ) parser.add_argument('''--seed''' , type=_UpperCamelCase , default=42 ) parser.add_argument('''--num_train_epochs''' , type=_UpperCamelCase , default=3 ) parser.add_argument('''--train_batch_size''' , type=_UpperCamelCase , default=8 ) parser.add_argument('''--eval_batch_size''' , type=_UpperCamelCase , default=16 ) parser.add_argument('''--adam_epsilon''' , default=1E-8 , type=_UpperCamelCase , help='''Epsilon for Adam optimizer.''' ) parser.add_argument('''--max_grad_norm''' , type=_UpperCamelCase , default=1 ) parser.add_argument( '''--max_steps''' , default=-1 , type=_UpperCamelCase , help=( '''If > 0: set total number of training steps to perform. Override num_train_epochs.''' ) , ) parser.add_argument( '''--gradient_accumulation_steps''' , type=_UpperCamelCase , default=1 , help='''Number of updates steps to accumulate before performing a backward/update pass.''' , ) parser.add_argument('''--learning_rate''' , type=_UpperCamelCase , default=6.25E-5 ) parser.add_argument('''--warmup_steps''' , default=0 , type=_UpperCamelCase , help='''Linear warmup over warmup_steps.''' ) parser.add_argument('''--lr_schedule''' , type=_UpperCamelCase , default='''warmup_linear''' ) parser.add_argument('''--weight_decay''' , type=_UpperCamelCase , default=0.01 ) parser.add_argument('''--lm_coef''' , type=_UpperCamelCase , default=0.9 ) parser.add_argument('''--n_valid''' , type=_UpperCamelCase , default=374 ) parser.add_argument('''--server_ip''' , type=_UpperCamelCase , default='''''' , help='''Can be used for distant debugging.''' ) parser.add_argument('''--server_port''' , type=_UpperCamelCase , default='''''' , help='''Can be used for distant debugging.''' ) _snake_case = parser.parse_args() print(_UpperCamelCase ) if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print('''Waiting for debugger attach''' ) ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=_UpperCamelCase ) ptvsd.wait_for_attach() random.seed(args.seed ) np.random.seed(args.seed ) torch.manual_seed(args.seed ) torch.cuda.manual_seed_all(args.seed ) _snake_case = torch.device('''cuda''' if torch.cuda.is_available() else '''cpu''' ) _snake_case = torch.cuda.device_count() logger.info('''device: {}, n_gpu {}'''.format(_UpperCamelCase , _UpperCamelCase ) ) if not args.do_train and not args.do_eval: raise ValueError('''At least one of `do_train` or `do_eval` must be True.''' ) if not os.path.exists(args.output_dir ): os.makedirs(args.output_dir ) # Load tokenizer and model # This loading functions also add new tokens and embeddings called `special tokens` # These new embeddings will be fine-tuned on the RocStories dataset _snake_case = ['''_start_''', '''_delimiter_''', '''_classify_'''] _snake_case = OpenAIGPTTokenizer.from_pretrained(args.model_name ) tokenizer.add_tokens(_UpperCamelCase ) _snake_case = tokenizer.convert_tokens_to_ids(_UpperCamelCase ) _snake_case = OpenAIGPTDoubleHeadsModel.from_pretrained(args.model_name ) model.resize_token_embeddings(len(_UpperCamelCase ) ) model.to(_UpperCamelCase ) # Load and encode the datasets def tokenize_and_encode(_UpperCamelCase ): if isinstance(_UpperCamelCase , _UpperCamelCase ): return tokenizer.convert_tokens_to_ids(tokenizer.tokenize(_UpperCamelCase ) ) elif isinstance(_UpperCamelCase , _UpperCamelCase ): return obj return [tokenize_and_encode(_UpperCamelCase ) for o in obj] logger.info('''Encoding dataset...''' ) _snake_case = load_rocstories_dataset(args.train_dataset ) _snake_case = load_rocstories_dataset(args.eval_dataset ) _snake_case = (train_dataset, eval_dataset) _snake_case = tokenize_and_encode(_UpperCamelCase ) # Compute the max input length for the Transformer _snake_case = model.config.n_positions // 2 - 2 _snake_case = max( len(story[:max_length] ) + max(len(conta[:max_length] ) , len(conta[:max_length] ) ) + 3 for dataset in encoded_datasets for story, conta, conta, _ in dataset ) _snake_case = min(_UpperCamelCase , model.config.n_positions ) # Max size of input for the pre-trained model # Prepare inputs tensors and dataloaders _snake_case = pre_process_datasets(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , *_UpperCamelCase ) _snake_case, _snake_case = tensor_datasets[0], tensor_datasets[1] _snake_case = TensorDataset(*_UpperCamelCase ) _snake_case = RandomSampler(_UpperCamelCase ) _snake_case = DataLoader(_UpperCamelCase , sampler=_UpperCamelCase , batch_size=args.train_batch_size ) _snake_case = TensorDataset(*_UpperCamelCase ) _snake_case = SequentialSampler(_UpperCamelCase ) _snake_case = DataLoader(_UpperCamelCase , sampler=_UpperCamelCase , batch_size=args.eval_batch_size ) # Prepare optimizer if args.do_train: if args.max_steps > 0: _snake_case = args.max_steps _snake_case = args.max_steps // (len(_UpperCamelCase ) // args.gradient_accumulation_steps) + 1 else: _snake_case = len(_UpperCamelCase ) // args.gradient_accumulation_steps * args.num_train_epochs _snake_case = list(model.named_parameters() ) _snake_case = ['''bias''', '''LayerNorm.bias''', '''LayerNorm.weight'''] _snake_case = [ { '''params''': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay )], '''weight_decay''': args.weight_decay, }, {'''params''': [p for n, p in param_optimizer if any(nd in n for nd in no_decay )], '''weight_decay''': 0.0}, ] _snake_case = AdamW(_UpperCamelCase , lr=args.learning_rate , eps=args.adam_epsilon ) _snake_case = get_linear_schedule_with_warmup( _UpperCamelCase , num_warmup_steps=args.warmup_steps , num_training_steps=_UpperCamelCase ) if args.do_train: _snake_case, _snake_case, _snake_case = 0, 0, None model.train() for _ in trange(int(args.num_train_epochs ) , desc='''Epoch''' ): _snake_case = 0 _snake_case = 0 _snake_case = tqdm(_UpperCamelCase , desc='''Training''' ) for step, batch in enumerate(_UpperCamelCase ): _snake_case = tuple(t.to(_UpperCamelCase ) for t in batch ) _snake_case, _snake_case, _snake_case, _snake_case = batch _snake_case = model(_UpperCamelCase , mc_token_ids=_UpperCamelCase , lm_labels=_UpperCamelCase , mc_labels=_UpperCamelCase ) _snake_case = args.lm_coef * losses[0] + losses[1] loss.backward() optimizer.step() scheduler.step() optimizer.zero_grad() tr_loss += loss.item() _snake_case = ( loss.item() if exp_average_loss is None else 0.7 * exp_average_loss + 0.3 * loss.item() ) nb_tr_steps += 1 _snake_case = '''Training loss: {:.2e} lr: {:.2e}'''.format(_UpperCamelCase , scheduler.get_lr()[0] ) # Save a trained model if args.do_train: # Save a trained model, configuration and tokenizer _snake_case = model.module if hasattr(_UpperCamelCase , '''module''' ) else model # Only save the model itself # If we save using the predefined names, we can load using `from_pretrained` _snake_case = os.path.join(args.output_dir , _UpperCamelCase ) _snake_case = os.path.join(args.output_dir , _UpperCamelCase ) torch.save(model_to_save.state_dict() , _UpperCamelCase ) model_to_save.config.to_json_file(_UpperCamelCase ) tokenizer.save_vocabulary(args.output_dir ) # Load a trained model and vocabulary that you have fine-tuned _snake_case = OpenAIGPTDoubleHeadsModel.from_pretrained(args.output_dir ) _snake_case = OpenAIGPTTokenizer.from_pretrained(args.output_dir ) model.to(_UpperCamelCase ) if args.do_eval: model.eval() _snake_case, _snake_case = 0, 0 _snake_case, _snake_case = 0, 0 for batch in tqdm(_UpperCamelCase , desc='''Evaluating''' ): _snake_case = tuple(t.to(_UpperCamelCase ) for t in batch ) _snake_case, _snake_case, _snake_case, _snake_case = batch with torch.no_grad(): _snake_case, _snake_case, _snake_case, _snake_case = model( _UpperCamelCase , mc_token_ids=_UpperCamelCase , lm_labels=_UpperCamelCase , mc_labels=_UpperCamelCase ) _snake_case = mc_logits.detach().cpu().numpy() _snake_case = mc_labels.to('''cpu''' ).numpy() _snake_case = accuracy(_UpperCamelCase , _UpperCamelCase ) eval_loss += mc_loss.mean().item() eval_accuracy += tmp_eval_accuracy nb_eval_examples += input_ids.size(0 ) nb_eval_steps += 1 _snake_case = eval_loss / nb_eval_steps _snake_case = eval_accuracy / nb_eval_examples _snake_case = tr_loss / nb_tr_steps if args.do_train else None _snake_case = {'''eval_loss''': eval_loss, '''eval_accuracy''': eval_accuracy, '''train_loss''': train_loss} _snake_case = os.path.join(args.output_dir , '''eval_results.txt''' ) with open(_UpperCamelCase , '''w''' ) as writer: logger.info('''***** Eval results *****''' ) for key in sorted(result.keys() ): logger.info(''' %s = %s''' , _UpperCamelCase , str(result[key] ) ) writer.write('''%s = %s\n''' % (key, str(result[key] )) ) if __name__ == "__main__": main()
352
from __future__ import annotations def snake_case_(_UpperCamelCase , _UpperCamelCase ) -> bool: """simple docstring""" _snake_case = get_failure_array(_UpperCamelCase ) # 2) Step through text searching for pattern _snake_case, _snake_case = 0, 0 # index into text, pattern while i < len(_UpperCamelCase ): if pattern[j] == text[i]: if j == (len(_UpperCamelCase ) - 1): return True j += 1 # if this is a prefix in our pattern # just go back far enough to continue elif j > 0: _snake_case = failure[j - 1] continue i += 1 return False def snake_case_(_UpperCamelCase ) -> list[int]: """simple docstring""" _snake_case = [0] _snake_case = 0 _snake_case = 1 while j < len(_UpperCamelCase ): if pattern[i] == pattern[j]: i += 1 elif i > 0: _snake_case = failure[i - 1] continue j += 1 failure.append(_UpperCamelCase ) return failure if __name__ == "__main__": # Test 1) __A = '''abc1abc12''' __A = '''alskfjaldsabc1abc1abc12k23adsfabcabc''' __A = '''alskfjaldsk23adsfabcabc''' assert kmp(pattern, texta) and not kmp(pattern, texta) # Test 2) __A = '''ABABX''' __A = '''ABABZABABYABABX''' assert kmp(pattern, text) # Test 3) __A = '''AAAB''' __A = '''ABAAAAAB''' assert kmp(pattern, text) # Test 4) __A = '''abcdabcy''' __A = '''abcxabcdabxabcdabcdabcy''' assert kmp(pattern, text) # Test 5) __A = '''aabaabaaa''' assert get_failure_array(pattern) == [0, 1, 0, 1, 2, 3, 4, 5, 2]
278
0
from collections import deque class _a : """simple docstring""" def __init__( self: Union[str, Any] , __lowerCamelCase: str , __lowerCamelCase: int , __lowerCamelCase: int ): '''simple docstring''' UpperCamelCase__: Optional[Any] = process_name # process name UpperCamelCase__: Optional[Any] = arrival_time # arrival time of the process # completion time of finished process or last interrupted time UpperCamelCase__: Tuple = arrival_time UpperCamelCase__: str = burst_time # remaining burst time UpperCamelCase__: int = 0 # total time of the process wait in ready queue UpperCamelCase__: List[Any] = 0 # time from arrival time to completion time class _a : """simple docstring""" def __init__( self: Optional[int] , __lowerCamelCase: int , __lowerCamelCase: list[int] , __lowerCamelCase: deque[Process] , __lowerCamelCase: int , ): '''simple docstring''' UpperCamelCase__: List[str] = number_of_queues # time slice of queues that round robin algorithm applied UpperCamelCase__: Optional[Any] = time_slices # unfinished process is in this ready_queue UpperCamelCase__: Optional[int] = queue # current time UpperCamelCase__: Any = current_time # finished process is in this sequence queue UpperCamelCase__: deque[Process] = deque() def UpperCAmelCase_ ( self: Optional[Any] ): '''simple docstring''' UpperCamelCase__: str = [] for i in range(len(self.finish_queue ) ): sequence.append(self.finish_queue[i].process_name ) return sequence def UpperCAmelCase_ ( self: Any , __lowerCamelCase: list[Process] ): '''simple docstring''' UpperCamelCase__: Dict = [] for i in range(len(__lowerCamelCase ) ): waiting_times.append(queue[i].waiting_time ) return waiting_times def UpperCAmelCase_ ( self: int , __lowerCamelCase: list[Process] ): '''simple docstring''' UpperCamelCase__: int = [] for i in range(len(__lowerCamelCase ) ): turnaround_times.append(queue[i].turnaround_time ) return turnaround_times def UpperCAmelCase_ ( self: int , __lowerCamelCase: list[Process] ): '''simple docstring''' UpperCamelCase__: Optional[int] = [] for i in range(len(__lowerCamelCase ) ): completion_times.append(queue[i].stop_time ) return completion_times def UpperCAmelCase_ ( self: int , __lowerCamelCase: deque[Process] ): '''simple docstring''' return [q.burst_time for q in queue] def UpperCAmelCase_ ( self: Optional[int] , __lowerCamelCase: Process ): '''simple docstring''' process.waiting_time += self.current_time - process.stop_time return process.waiting_time def UpperCAmelCase_ ( self: List[Any] , __lowerCamelCase: deque[Process] ): '''simple docstring''' UpperCamelCase__: deque[Process] = deque() # sequence deque of finished process while len(__lowerCamelCase ) != 0: UpperCamelCase__: int = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of current process self.update_waiting_time(__lowerCamelCase ) # update current time self.current_time += cp.burst_time # finish the process and set the process's burst-time 0 UpperCamelCase__: Optional[int] = 0 # set the process's turnaround time because it is finished UpperCamelCase__: Optional[Any] = self.current_time - cp.arrival_time # set the completion time UpperCamelCase__: List[Any] = self.current_time # add the process to queue that has finished queue finished.append(__lowerCamelCase ) self.finish_queue.extend(__lowerCamelCase ) # add finished process to finish queue # FCFS will finish all remaining processes return finished def UpperCAmelCase_ ( self: Any , __lowerCamelCase: deque[Process] , __lowerCamelCase: int ): '''simple docstring''' UpperCamelCase__: deque[Process] = deque() # sequence deque of terminated process # just for 1 cycle and unfinished processes will go back to queue for _ in range(len(__lowerCamelCase ) ): UpperCamelCase__: str = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of unfinished processes self.update_waiting_time(__lowerCamelCase ) # if the burst time of process is bigger than time-slice if cp.burst_time > time_slice: # use CPU for only time-slice self.current_time += time_slice # update remaining burst time cp.burst_time -= time_slice # update end point time UpperCamelCase__: Optional[int] = self.current_time # locate the process behind the queue because it is not finished ready_queue.append(__lowerCamelCase ) else: # use CPU for remaining burst time self.current_time += cp.burst_time # set burst time 0 because the process is finished UpperCamelCase__: Optional[int] = 0 # set the finish time UpperCamelCase__: Union[str, Any] = self.current_time # update the process' turnaround time because it is finished UpperCamelCase__: Dict = self.current_time - cp.arrival_time # add the process to queue that has finished queue finished.append(__lowerCamelCase ) self.finish_queue.extend(__lowerCamelCase ) # add finished process to finish queue # return finished processes queue and remaining processes queue return finished, ready_queue def UpperCAmelCase_ ( self: Optional[int] ): '''simple docstring''' for i in range(self.number_of_queues - 1 ): UpperCamelCase__ , UpperCamelCase__: Dict = self.round_robin( self.ready_queue , self.time_slices[i] ) # the last queue has first_come_first_served algorithm self.first_come_first_served(self.ready_queue ) return self.finish_queue if __name__ == "__main__": import doctest A__: Any = Process('''P1''', 0, 53) A__: Tuple = Process('''P2''', 0, 17) A__: Tuple = Process('''P3''', 0, 68) A__: Tuple = Process('''P4''', 0, 24) A__: Any = 3 A__: str = [17, 25] A__: Tuple = deque([Pa, Pa, Pa, Pa]) if len(time_slices) != number_of_queues - 1: raise SystemExit(0) doctest.testmod(extraglobs={'''queue''': deque([Pa, Pa, Pa, Pa])}) A__: str = Process('''P1''', 0, 53) A__: Union[str, Any] = Process('''P2''', 0, 17) A__: Optional[Any] = Process('''P3''', 0, 68) A__: str = Process('''P4''', 0, 24) A__: Any = 3 A__: Optional[Any] = [17, 25] A__: Any = deque([Pa, Pa, Pa, Pa]) A__: Tuple = MLFQ(number_of_queues, time_slices, queue, 0) A__: str = mlfq.multi_level_feedback_queue() # print total waiting times of processes(P1, P2, P3, P4) print( f"waiting time:\ \t\t\t{MLFQ.calculate_waiting_time(mlfq, [Pa, Pa, Pa, Pa])}" ) # print completion times of processes(P1, P2, P3, P4) print( f"completion time:\ \t\t{MLFQ.calculate_completion_time(mlfq, [Pa, Pa, Pa, Pa])}" ) # print total turnaround times of processes(P1, P2, P3, P4) print( f"turnaround time:\ \t\t{MLFQ.calculate_turnaround_time(mlfq, [Pa, Pa, Pa, Pa])}" ) # print sequence of finished processes print( f"sequence of finished processes:\ {mlfq.calculate_sequence_of_finish_queue()}" )
149
import sys from typing import Tuple import numpy as np import torch from PIL import Image from torch import nn from transformers.image_utils import PILImageResampling from utils import img_tensorize class _a : """simple docstring""" def __init__( self: str , __lowerCamelCase: Union[str, Any] , __lowerCamelCase: str=sys.maxsize ): '''simple docstring''' UpperCamelCase__: List[Any] = "bilinear" UpperCamelCase__: Optional[int] = max_size UpperCamelCase__: Optional[int] = short_edge_length def __call__( self: Optional[Any] , __lowerCamelCase: str ): '''simple docstring''' UpperCamelCase__: Union[str, Any] = [] for img in imgs: UpperCamelCase__ , UpperCamelCase__: Any = img.shape[:2] # later: provide list and randomly choose index for resize UpperCamelCase__: Optional[int] = np.random.randint(self.short_edge_length[0] , self.short_edge_length[1] + 1 ) if size == 0: return img UpperCamelCase__: Dict = size * 1.0 / min(__lowerCamelCase , __lowerCamelCase ) if h < w: UpperCamelCase__ , UpperCamelCase__: Optional[Any] = size, scale * w else: UpperCamelCase__ , UpperCamelCase__: Dict = scale * h, size if max(__lowerCamelCase , __lowerCamelCase ) > self.max_size: UpperCamelCase__: str = self.max_size * 1.0 / max(__lowerCamelCase , __lowerCamelCase ) UpperCamelCase__: List[str] = newh * scale UpperCamelCase__: Any = neww * scale UpperCamelCase__: List[str] = int(neww + 0.5 ) UpperCamelCase__: List[Any] = int(newh + 0.5 ) if img.dtype == np.uinta: UpperCamelCase__: Dict = Image.fromarray(__lowerCamelCase ) UpperCamelCase__: Any = pil_image.resize((neww, newh) , PILImageResampling.BILINEAR ) UpperCamelCase__: str = np.asarray(__lowerCamelCase ) else: UpperCamelCase__: Dict = img.permute(2 , 0 , 1 ).unsqueeze(0 ) # 3, 0, 1) # hw(c) -> nchw UpperCamelCase__: Optional[Any] = nn.functional.interpolate( __lowerCamelCase , (newh, neww) , mode=self.interp_method , align_corners=__lowerCamelCase ).squeeze(0 ) img_augs.append(__lowerCamelCase ) return img_augs class _a : """simple docstring""" def __init__( self: Dict , __lowerCamelCase: Optional[Any] ): '''simple docstring''' UpperCamelCase__: List[Any] = ResizeShortestEdge([cfg.INPUT.MIN_SIZE_TEST, cfg.INPUT.MIN_SIZE_TEST] , cfg.INPUT.MAX_SIZE_TEST ) UpperCamelCase__: Union[str, Any] = cfg.INPUT.FORMAT UpperCamelCase__: Union[str, Any] = cfg.SIZE_DIVISIBILITY UpperCamelCase__: Tuple = cfg.PAD_VALUE UpperCamelCase__: str = cfg.INPUT.MAX_SIZE_TEST UpperCamelCase__: int = cfg.MODEL.DEVICE UpperCamelCase__: str = torch.tensor(cfg.MODEL.PIXEL_STD ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 ) UpperCamelCase__: int = torch.tensor(cfg.MODEL.PIXEL_MEAN ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 ) UpperCamelCase__: List[Any] = lambda __lowerCamelCase : (x - self.pixel_mean) / self.pixel_std def UpperCAmelCase_ ( self: List[str] , __lowerCamelCase: List[Any] ): '''simple docstring''' UpperCamelCase__: Dict = tuple(max(__lowerCamelCase ) for s in zip(*[img.shape for img in images] ) ) UpperCamelCase__: Tuple = [im.shape[-2:] for im in images] UpperCamelCase__: Optional[int] = [ nn.functional.pad( __lowerCamelCase , [0, max_size[-1] - size[1], 0, max_size[-2] - size[0]] , value=self.pad_value , ) for size, im in zip(__lowerCamelCase , __lowerCamelCase ) ] return torch.stack(__lowerCamelCase ), torch.tensor(__lowerCamelCase ) def __call__( self: str , __lowerCamelCase: Dict , __lowerCamelCase: Any=False ): '''simple docstring''' with torch.no_grad(): if not isinstance(__lowerCamelCase , __lowerCamelCase ): UpperCamelCase__: int = [images] if single_image: assert len(__lowerCamelCase ) == 1 for i in range(len(__lowerCamelCase ) ): if isinstance(images[i] , torch.Tensor ): images.insert(__lowerCamelCase , images.pop(__lowerCamelCase ).to(self.device ).float() ) elif not isinstance(images[i] , torch.Tensor ): images.insert( __lowerCamelCase , torch.as_tensor(img_tensorize(images.pop(__lowerCamelCase ) , input_format=self.input_format ) ) .to(self.device ) .float() , ) # resize smallest edge UpperCamelCase__: int = torch.tensor([im.shape[:2] for im in images] ) UpperCamelCase__: int = self.aug(__lowerCamelCase ) # transpose images and convert to torch tensors # images = [torch.as_tensor(i.astype("float32")).permute(2, 0, 1).to(self.device) for i in images] # now normalize before pad to avoid useless arithmetic UpperCamelCase__: Any = [self.normalizer(__lowerCamelCase ) for x in images] # now pad them to do the following operations UpperCamelCase__ , UpperCamelCase__: Any = self.pad(__lowerCamelCase ) # Normalize if self.size_divisibility > 0: raise NotImplementedError() # pad UpperCamelCase__: Optional[int] = torch.true_divide(__lowerCamelCase , __lowerCamelCase ) if single_image: return images[0], sizes[0], scales_yx[0] else: return images, sizes, scales_yx def lowerCAmelCase_ ( A_ ,A_): boxes[:, 0::2] *= scale_yx[:, 1] boxes[:, 1::2] *= scale_yx[:, 0] return boxes def lowerCAmelCase_ ( A_ ,A_): assert torch.isfinite(A_).all(), "Box tensor contains infinite or NaN!" UpperCamelCase__ , UpperCamelCase__: int = box_size tensor[:, 0].clamp_(min=0 ,max=A_) tensor[:, 1].clamp_(min=0 ,max=A_) tensor[:, 2].clamp_(min=0 ,max=A_) tensor[:, 3].clamp_(min=0 ,max=A_)
149
1
class lowercase_ : '''simple docstring''' def __init__( self : List[Any] , __UpperCAmelCase : Optional[Any] ) ->Optional[Any]: """simple docstring""" a = val a = None a = None def __lowerCAmelCase ( self : Optional[Any] , __UpperCAmelCase : Union[str, Any] ) ->Tuple: """simple docstring""" if self.val: if val < self.val: if self.left is None: a = Node(__UpperCAmelCase ) else: self.left.insert(__UpperCAmelCase ) elif val > self.val: if self.right is None: a = Node(__UpperCAmelCase ) else: self.right.insert(__UpperCAmelCase ) else: a = val def _a ( a :Union[str, Any] , a :List[str] ) -> Dict: # Recursive traversal if root: inorder(root.left , _lowerCAmelCase ) res.append(root.val ) inorder(root.right , _lowerCAmelCase ) def _a ( a :Any ) -> List[Any]: # Build BST if len(_lowerCAmelCase ) == 0: return arr a = Node(arr[0] ) for i in range(1 , len(_lowerCAmelCase ) ): root.insert(arr[i] ) # Traverse BST in order. a = [] inorder(_lowerCAmelCase , _lowerCAmelCase ) return res if __name__ == "__main__": print(tree_sort([10, 1, 3, 2, 9, 14, 13]))
353
import argparse import numpy as np import torch from transformers import SpeechTaHifiGan, SpeechTaHifiGanConfig, logging logging.set_verbosity_info() UpperCAmelCase__ = logging.get_logger("transformers.models.speecht5") def _a ( a :Optional[Any] , a :Tuple , a :Dict ) -> List[str]: hf_model.apply_weight_norm() a = checkpoint['''input_conv.weight_g'''] a = checkpoint['''input_conv.weight_v'''] a = checkpoint['''input_conv.bias'''] for i in range(len(config.upsample_rates ) ): a = checkpoint[F"""upsamples.{i}.1.weight_g"""] a = checkpoint[F"""upsamples.{i}.1.weight_v"""] a = checkpoint[F"""upsamples.{i}.1.bias"""] for i in range(len(config.upsample_rates ) * len(config.resblock_kernel_sizes ) ): for j in range(len(config.resblock_dilation_sizes ) ): a = checkpoint[F"""blocks.{i}.convs1.{j}.1.weight_g"""] a = checkpoint[F"""blocks.{i}.convs1.{j}.1.weight_v"""] a = checkpoint[F"""blocks.{i}.convs1.{j}.1.bias"""] a = checkpoint[F"""blocks.{i}.convs2.{j}.1.weight_g"""] a = checkpoint[F"""blocks.{i}.convs2.{j}.1.weight_v"""] a = checkpoint[F"""blocks.{i}.convs2.{j}.1.bias"""] a = checkpoint['''output_conv.1.weight_g'''] a = checkpoint['''output_conv.1.weight_v'''] a = checkpoint['''output_conv.1.bias'''] hf_model.remove_weight_norm() @torch.no_grad() def _a ( a :List[str] , a :Union[str, Any] , a :Dict , a :Dict=None , a :List[Any]=None , ) -> int: if config_path is not None: a = SpeechTaHifiGanConfig.from_pretrained(a ) else: a = SpeechTaHifiGanConfig() a = SpeechTaHifiGan(a ) a = torch.load(a ) load_weights(orig_checkpoint['''model''']['''generator'''] , a , a ) a = np.load(a ) a = stats[0].reshape(-1 ) a = stats[1].reshape(-1 ) a = torch.from_numpy(a ).float() a = torch.from_numpy(a ).float() model.save_pretrained(a ) if repo_id: print('''Pushing to the hub...''' ) model.push_to_hub(a ) if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() parser.add_argument("--checkpoint_path", required=True, default=None, type=str, help="Path to original checkpoint") parser.add_argument("--stats_path", required=True, default=None, type=str, help="Path to stats.npy file") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--pytorch_dump_folder_path", required=True, default=None, type=str, help="Path to the output PyTorch model." ) parser.add_argument( "--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub." ) UpperCAmelCase__ = parser.parse_args() convert_hifigan_checkpoint( args.checkpoint_path, args.stats_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
26
0
def SCREAMING_SNAKE_CASE__ ( __a , __a ): snake_case_ : Tuple = [0 for i in range(r + 1 )] # nc0 = 1 snake_case_ : Optional[int] = 1 for i in range(1 , n + 1 ): # to compute current row from previous row. snake_case_ : List[str] = min(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) while j > 0: c[j] += c[j - 1] j -= 1 return c[r] print(binomial_coefficient(n=10, r=5))
327
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, is_vision_available, ) SCREAMING_SNAKE_CASE__ : List[Any] = {'processing_layoutxlm': ['LayoutXLMProcessor']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ : Optional[Any] = ['LayoutXLMTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ : Dict = ['LayoutXLMTokenizerFast'] if TYPE_CHECKING: from .processing_layoutxlm import LayoutXLMProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm import LayoutXLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm_fast import LayoutXLMTokenizerFast else: import sys SCREAMING_SNAKE_CASE__ : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
48
0
import warnings from diffusers import StableDiffusionImgaImgPipeline # noqa F401 warnings.warn( 'The `image_to_image.py` script is outdated. Please use directly `from diffusers import' ' StableDiffusionImg2ImgPipeline` instead.' )
351
import unittest import numpy as np from diffusers import OnnxStableDiffusionInpaintPipelineLegacy from diffusers.utils.testing_utils import ( is_onnx_available, load_image, load_numpy, nightly, require_onnxruntime, require_torch_gpu, ) if is_onnx_available(): import onnxruntime as ort @nightly @require_onnxruntime @require_torch_gpu class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" @property def lowercase ( self : Union[str, Any] ) -> Tuple: return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def lowercase ( self : List[Any] ) -> int: __lowerCAmelCase = ort.SessionOptions() __lowerCAmelCase = False return options def lowercase ( self : Tuple ) -> List[Any]: __lowerCAmelCase = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/in_paint/overture-creations-5sI6fQgYIuo.png' ) __lowerCAmelCase = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/in_paint/overture-creations-5sI6fQgYIuo_mask.png' ) __lowerCAmelCase = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/in_paint/red_cat_sitting_on_a_park_bench_onnx.npy' ) # using the PNDM scheduler by default __lowerCAmelCase = OnnxStableDiffusionInpaintPipelineLegacy.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='onnx' , safety_checker=lowerCAmelCase_ , feature_extractor=lowerCAmelCase_ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) __lowerCAmelCase = 'A red cat sitting on a park bench' __lowerCAmelCase = np.random.RandomState(0 ) __lowerCAmelCase = pipe( prompt=lowerCAmelCase_ , image=lowerCAmelCase_ , mask_image=lowerCAmelCase_ , strength=0.75 , guidance_scale=7.5 , num_inference_steps=1_5 , generator=lowerCAmelCase_ , output_type='np' , ) __lowerCAmelCase = output.images[0] assert image.shape == (5_1_2, 5_1_2, 3) assert np.abs(expected_image - image ).max() < 1e-2
207
0
"""simple docstring""" import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import PoolFormerConfig, PoolFormerForImageClassification, PoolFormerImageProcessor from transformers.utils import logging logging.set_verbosity_info() _a : Tuple = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Optional[Any] ,_lowerCamelCase : Union[str, Any] ,_lowerCamelCase : Dict ,_lowerCamelCase : List[str] ) -> int: _lowerCAmelCase : str = original_name.split(""".""" )[0] _lowerCAmelCase : Optional[int] = key.split(""".""" ) _lowerCAmelCase : Any = int(key_list[key_list.index(_lowerCamelCase ) - 2] ) _lowerCAmelCase : Tuple = int(key_list[key_list.index(_lowerCamelCase ) - 1] ) _lowerCAmelCase : Optional[int] = orig_block_num - offset _lowerCAmelCase : Tuple = key.replace(f"{orig_block_num}.{layer_num}.{original_name}" ,f"block.{new_block_num}.{layer_num}.{new_name}" ) return key def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Union[str, Any] ) -> Optional[int]: _lowerCAmelCase : Optional[Any] = OrderedDict() _lowerCAmelCase , _lowerCAmelCase : int = 0, 0 for key, value in state_dict.items(): if key.startswith("""network""" ): _lowerCAmelCase : Union[str, Any] = key.replace("""network""" ,"""poolformer.encoder""" ) if "proj" in key: # Works for the first embedding as well as the internal embedding layers if key.endswith("""bias""" ) and "patch_embed" not in key: patch_emb_offset += 1 _lowerCAmelCase : Optional[Any] = key[: key.find("""proj""" )] _lowerCAmelCase : Optional[int] = key.replace(_lowerCamelCase ,f"patch_embeddings.{total_embed_found}." ) _lowerCAmelCase : Tuple = key.replace("""proj""" ,"""projection""" ) if key.endswith("""bias""" ): total_embed_found += 1 if "patch_embeddings" in key: _lowerCAmelCase : Optional[Any] = """poolformer.encoder.""" + key if "mlp.fc1" in key: _lowerCAmelCase : Optional[int] = replace_key_with_offset(_lowerCamelCase ,_lowerCamelCase ,"""mlp.fc1""" ,"""output.conv1""" ) if "mlp.fc2" in key: _lowerCAmelCase : List[str] = replace_key_with_offset(_lowerCamelCase ,_lowerCamelCase ,"""mlp.fc2""" ,"""output.conv2""" ) if "norm1" in key: _lowerCAmelCase : List[Any] = replace_key_with_offset(_lowerCamelCase ,_lowerCamelCase ,"""norm1""" ,"""before_norm""" ) if "norm2" in key: _lowerCAmelCase : List[str] = replace_key_with_offset(_lowerCamelCase ,_lowerCamelCase ,"""norm2""" ,"""after_norm""" ) if "layer_scale_1" in key: _lowerCAmelCase : Dict = replace_key_with_offset(_lowerCamelCase ,_lowerCamelCase ,"""layer_scale_1""" ,"""layer_scale_1""" ) if "layer_scale_2" in key: _lowerCAmelCase : Tuple = replace_key_with_offset(_lowerCamelCase ,_lowerCamelCase ,"""layer_scale_2""" ,"""layer_scale_2""" ) if "head" in key: _lowerCAmelCase : Union[str, Any] = key.replace("""head""" ,"""classifier""" ) _lowerCAmelCase : str = value return new_state_dict def SCREAMING_SNAKE_CASE ( ) -> Dict: _lowerCAmelCase : Any = """http://images.cocodataset.org/val2017/000000039769.jpg""" _lowerCAmelCase : List[str] = Image.open(requests.get(_lowerCamelCase ,stream=_lowerCamelCase ).raw ) return image @torch.no_grad() def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Tuple ,_lowerCamelCase : Any ,_lowerCamelCase : str ) -> Dict: _lowerCAmelCase : int = PoolFormerConfig() # set attributes based on model_name _lowerCAmelCase : int = """huggingface/label-files""" _lowerCAmelCase : Tuple = model_name[-3:] _lowerCAmelCase : str = 1000 _lowerCAmelCase : Tuple = """imagenet-1k-id2label.json""" _lowerCAmelCase : Dict = (1, 1000) # set config attributes _lowerCAmelCase : List[str] = json.load(open(hf_hub_download(_lowerCamelCase ,_lowerCamelCase ,repo_type="""dataset""" ) ,"""r""" ) ) _lowerCAmelCase : List[Any] = {int(_lowerCamelCase ): v for k, v in idalabel.items()} _lowerCAmelCase : Optional[int] = idalabel _lowerCAmelCase : str = {v: k for k, v in idalabel.items()} if size == "s12": _lowerCAmelCase : List[str] = [2, 2, 6, 2] _lowerCAmelCase : int = [64, 128, 320, 512] _lowerCAmelCase : int = 4.0 _lowerCAmelCase : List[Any] = 0.9 elif size == "s24": _lowerCAmelCase : Tuple = [4, 4, 12, 4] _lowerCAmelCase : Any = [64, 128, 320, 512] _lowerCAmelCase : int = 4.0 _lowerCAmelCase : List[str] = 0.9 elif size == "s36": _lowerCAmelCase : List[str] = [6, 6, 18, 6] _lowerCAmelCase : Optional[Any] = [64, 128, 320, 512] _lowerCAmelCase : Any = 4.0 _lowerCAmelCase : int = 1e-6 _lowerCAmelCase : str = 0.9 elif size == "m36": _lowerCAmelCase : str = [6, 6, 18, 6] _lowerCAmelCase : Any = [96, 192, 384, 768] _lowerCAmelCase : Tuple = 4.0 _lowerCAmelCase : List[Any] = 1e-6 _lowerCAmelCase : List[str] = 0.95 elif size == "m48": _lowerCAmelCase : Union[str, Any] = [8, 8, 24, 8] _lowerCAmelCase : int = [96, 192, 384, 768] _lowerCAmelCase : str = 4.0 _lowerCAmelCase : Any = 1e-6 _lowerCAmelCase : str = 0.95 else: raise ValueError(f"Size {size} not supported" ) # load image processor _lowerCAmelCase : List[str] = PoolFormerImageProcessor(crop_pct=_lowerCamelCase ) # Prepare image _lowerCAmelCase : int = prepare_img() _lowerCAmelCase : str = image_processor(images=_lowerCamelCase ,return_tensors="""pt""" ).pixel_values logger.info(f"Converting model {model_name}..." ) # load original state dict _lowerCAmelCase : List[Any] = torch.load(_lowerCamelCase ,map_location=torch.device("""cpu""" ) ) # rename keys _lowerCAmelCase : str = rename_keys(_lowerCamelCase ) # create HuggingFace model and load state dict _lowerCAmelCase : Optional[int] = PoolFormerForImageClassification(_lowerCamelCase ) model.load_state_dict(_lowerCamelCase ) model.eval() # Define image processor _lowerCAmelCase : str = PoolFormerImageProcessor(crop_pct=_lowerCamelCase ) _lowerCAmelCase : Optional[Any] = image_processor(images=prepare_img() ,return_tensors="""pt""" ).pixel_values # forward pass _lowerCAmelCase : Union[str, Any] = model(_lowerCamelCase ) _lowerCAmelCase : Dict = outputs.logits # define expected logit slices for different models if size == "s12": _lowerCAmelCase : str = torch.tensor([-0.30_45, -0.67_58, -0.48_69] ) elif size == "s24": _lowerCAmelCase : Optional[Any] = torch.tensor([0.44_02, -0.13_74, -0.80_45] ) elif size == "s36": _lowerCAmelCase : Union[str, Any] = torch.tensor([-0.60_80, -0.51_33, -0.58_98] ) elif size == "m36": _lowerCAmelCase : str = torch.tensor([0.39_52, 0.22_63, -1.26_68] ) elif size == "m48": _lowerCAmelCase : Optional[int] = torch.tensor([0.11_67, -0.06_56, -0.34_23] ) else: raise ValueError(f"Size {size} not supported" ) # verify logits assert logits.shape == expected_shape assert torch.allclose(logits[0, :3] ,_lowerCamelCase ,atol=1e-2 ) # finally, save model and image processor logger.info(f"Saving PyTorch model and image processor to {pytorch_dump_folder_path}..." ) Path(_lowerCamelCase ).mkdir(exist_ok=_lowerCamelCase ) model.save_pretrained(_lowerCamelCase ) print(f"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(_lowerCamelCase ) if __name__ == "__main__": _a : int = argparse.ArgumentParser() parser.add_argument( '--model_name', default='poolformer_s12', type=str, help='Name of the model you\'d like to convert.', ) parser.add_argument( '--checkpoint_path', default=None, type=str, help='Path to the original PyTorch checkpoint (.pth file).' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.' ) _a : Tuple = parser.parse_args() convert_poolformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
44
"""simple docstring""" import itertools from dataclasses import dataclass from typing import List, Optional import pyarrow as pa import pyarrow.parquet as pq import datasets from datasets.table import table_cast _a : Dict = datasets.utils.logging.get_logger(__name__) @dataclass class __A ( datasets.BuilderConfig ): _UpperCamelCase : int = 10_000 _UpperCamelCase : Optional[List[str]] = None _UpperCamelCase : Optional[datasets.Features] = None class __A ( datasets.ArrowBasedBuilder ): _UpperCamelCase : List[str] = ParquetConfig def __A ( self ): return datasets.DatasetInfo(features=self.config.features ) def __A ( self , a__ ): if not self.config.data_files: raise ValueError(F"At least one data file must be specified, but got data_files={self.config.data_files}" ) _lowerCAmelCase : Optional[Any] = dl_manager.download_and_extract(self.config.data_files ) if isinstance(a__ , (str, list, tuple) ): _lowerCAmelCase : Any = data_files if isinstance(a__ , a__ ): _lowerCAmelCase : Tuple = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive _lowerCAmelCase : Any = [dl_manager.iter_files(a__ ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"""files""": files} )] _lowerCAmelCase : Optional[Any] = [] for split_name, files in data_files.items(): if isinstance(a__ , a__ ): _lowerCAmelCase : Dict = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive _lowerCAmelCase : Tuple = [dl_manager.iter_files(a__ ) for file in files] # Infer features is they are stoed in the arrow schema if self.info.features is None: for file in itertools.chain.from_iterable(a__ ): with open(a__ , """rb""" ) as f: _lowerCAmelCase : Optional[Any] = datasets.Features.from_arrow_schema(pq.read_schema(a__ ) ) break splits.append(datasets.SplitGenerator(name=a__ , gen_kwargs={"""files""": files} ) ) return splits def __A ( self , a__ ): if self.info.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example _lowerCAmelCase : Optional[int] = table_cast(a__ , self.info.features.arrow_schema ) return pa_table def __A ( self , a__ ): _lowerCAmelCase : Optional[int] = self.info.features.arrow_schema if self.info.features is not None else None if self.info.features is not None and self.config.columns is not None: if sorted(field.name for field in schema ) != sorted(self.config.columns ): raise ValueError( F"Tried to load parquet data with columns '{self.config.columns}' with mismatching features '{self.info.features}'" ) for file_idx, file in enumerate(itertools.chain.from_iterable(a__ ) ): with open(a__ , """rb""" ) as f: _lowerCAmelCase : Tuple = pq.ParquetFile(a__ ) try: for batch_idx, record_batch in enumerate( parquet_file.iter_batches(batch_size=self.config.batch_size , columns=self.config.columns ) ): _lowerCAmelCase : Any = pa.Table.from_batches([record_batch] ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield F"{file_idx}_{batch_idx}", self._cast_table(a__ ) except ValueError as e: logger.error(F"Failed to read file '{file}' with error {type(a__ )}: {e}" ) raise
44
1
"""simple docstring""" from typing import List import jiwer import jiwer.transforms as tr from packaging import version import datasets from datasets.config import PY_VERSION if PY_VERSION < version.parse('3.8'): import importlib_metadata else: import importlib.metadata as importlib_metadata _UpperCAmelCase = '' if version.parse(importlib_metadata.version('jiwer')) < version.parse('2.3.0'): class _UpperCamelCase ( tr.AbstractTransform ): def __init__( self: Optional[Any] , _SCREAMING_SNAKE_CASE: str = " " ) -> str: """simple docstring""" UpperCamelCase_ = sentence_delimiter def lowercase ( self: Any , _SCREAMING_SNAKE_CASE: str ) -> Any: """simple docstring""" return list(_SCREAMING_SNAKE_CASE ) def lowercase ( self: str , _SCREAMING_SNAKE_CASE: List[str] ) -> List[str]: """simple docstring""" UpperCamelCase_ = [] for sent_idx, sentence in enumerate(_SCREAMING_SNAKE_CASE ): chars.extend(self.process_string(_SCREAMING_SNAKE_CASE ) ) if self.sentence_delimiter is not None and self.sentence_delimiter != "" and sent_idx < len(_SCREAMING_SNAKE_CASE ) - 1: chars.append(self.sentence_delimiter ) return chars _UpperCAmelCase = tr.Compose( [tr.RemoveMultipleSpaces(), tr.Strip(), SentencesToListOfCharacters(SENTENCE_DELIMITER)] ) else: _UpperCAmelCase = tr.Compose( [ tr.RemoveMultipleSpaces(), tr.Strip(), tr.ReduceToSingleSentence(SENTENCE_DELIMITER), tr.ReduceToListOfListOfChars(), ] ) _UpperCAmelCase = '\\n@inproceedings{inproceedings,\n author = {Morris, Andrew and Maier, Viktoria and Green, Phil},\n year = {2004},\n month = {01},\n pages = {},\n title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.}\n}\n' _UpperCAmelCase = '\\nCharacter error rate (CER) is a common metric of the performance of an automatic speech recognition system.\n\nCER is similar to Word Error Rate (WER), but operates on character instead of word. Please refer to docs of WER for further information.\n\nCharacter error rate can be computed as:\n\nCER = (S + D + I) / N = (S + D + I) / (S + D + C)\n\nwhere\n\nS is the number of substitutions,\nD is the number of deletions,\nI is the number of insertions,\nC is the number of correct characters,\nN is the number of characters in the reference (N=S+D+C).\n\nCER\'s output is not always a number between 0 and 1, in particular when there is a high number of insertions. This value is often associated to the percentage of characters that were incorrectly predicted. The lower the value, the better the\nperformance of the ASR system with a CER of 0 being a perfect score.\n' _UpperCAmelCase = '\nComputes CER score of transcribed segments against references.\nArgs:\n references: list of references for each speech input.\n predictions: list of transcribtions to score.\n concatenate_texts: Whether or not to concatenate sentences before evaluation, set to True for more accurate result.\nReturns:\n (float): the character error rate\n\nExamples:\n\n >>> predictions = ["this is the prediction", "there is an other sample"]\n >>> references = ["this is the reference", "there is another one"]\n >>> cer = datasets.load_metric("cer")\n >>> cer_score = cer.compute(predictions=predictions, references=references)\n >>> print(cer_score)\n 0.34146341463414637\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _UpperCamelCase ( datasets.Metric ): def lowercase ( self: Optional[Any] ) -> int: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" , id="sequence" ), "references": datasets.Value("string" , id="sequence" ), } ) , codebase_urls=["https://github.com/jitsi/jiwer/"] , reference_urls=[ "https://en.wikipedia.org/wiki/Word_error_rate", "https://sites.google.com/site/textdigitisation/qualitymeasures/computingerrorrates", ] , ) def lowercase ( self: int , _SCREAMING_SNAKE_CASE: Optional[int] , _SCREAMING_SNAKE_CASE: Optional[Any] , _SCREAMING_SNAKE_CASE: Optional[int]=False ) -> Dict: """simple docstring""" if concatenate_texts: return jiwer.compute_measures( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , truth_transform=_SCREAMING_SNAKE_CASE , hypothesis_transform=_SCREAMING_SNAKE_CASE , )["wer"] UpperCamelCase_ = 0 UpperCamelCase_ = 0 for prediction, reference in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): UpperCamelCase_ = jiwer.compute_measures( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , truth_transform=_SCREAMING_SNAKE_CASE , hypothesis_transform=_SCREAMING_SNAKE_CASE , ) incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"] total += measures["substitutions"] + measures["deletions"] + measures["hits"] return incorrect / total
369
import re from filelock import FileLock try: import nltk _UpperCAmelCase = True except (ImportError, ModuleNotFoundError): _UpperCAmelCase = False if NLTK_AVAILABLE: with FileLock('.lock') as lock: nltk.download('punkt', quiet=True) def lowerCAmelCase_ ( UpperCamelCase_ ) -> str: re.sub("<n>" , "" , UpperCamelCase_ ) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(UpperCamelCase_ ) )
328
0
from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCamelCase : str = logging.get_logger(__name__) __lowerCamelCase : str = { """studio-ousia/luke-base""": """https://huggingface.co/studio-ousia/luke-base/resolve/main/config.json""", """studio-ousia/luke-large""": """https://huggingface.co/studio-ousia/luke-large/resolve/main/config.json""", } class A__ ( __snake_case ): _UpperCAmelCase :List[Any] = 'luke' def __init__( self , A_=5_0267 , A_=50_0000 , A_=768 , A_=256 , A_=12 , A_=12 , A_=3072 , A_="gelu" , A_=0.1 , A_=0.1 , A_=512 , A_=2 , A_=0.02 , A_=1e-12 , A_=True , A_=None , A_=1 , A_=0 , A_=2 , **A_ , ): '''simple docstring''' super().__init__(pad_token_id=A_ , bos_token_id=A_ , eos_token_id=A_ , **A_ ) UpperCamelCase : Any = vocab_size UpperCamelCase : int = entity_vocab_size UpperCamelCase : Any = hidden_size UpperCamelCase : Dict = entity_emb_size UpperCamelCase : List[str] = num_hidden_layers UpperCamelCase : Union[str, Any] = num_attention_heads UpperCamelCase : int = hidden_act UpperCamelCase : Any = intermediate_size UpperCamelCase : List[str] = hidden_dropout_prob UpperCamelCase : Optional[int] = attention_probs_dropout_prob UpperCamelCase : Optional[int] = max_position_embeddings UpperCamelCase : List[Any] = type_vocab_size UpperCamelCase : Optional[int] = initializer_range UpperCamelCase : Dict = layer_norm_eps UpperCamelCase : str = use_entity_aware_attention UpperCamelCase : Optional[int] = classifier_dropout
52
"""simple docstring""" from typing import Dict import numpy as np from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline, PipelineException if is_tf_available(): import tensorflow as tf from ..tf_utils import stable_softmax if is_torch_available(): import torch lowerCamelCase_ : str = logging.get_logger(__name__) @add_end_docstrings( UpperCAmelCase__ , r""" top_k (`int`, defaults to 5): The number of predictions to return. targets (`str` or `List[str]`, *optional*): When passed, the model will limit the scores to the passed targets instead of looking up in the whole vocab. If the provided targets are not in the model vocab, they will be tokenized and the first resulting token will be used (with a warning, and that might be slower). """ , ) class _UpperCAmelCase ( UpperCAmelCase__ ): '''simple docstring''' def lowerCamelCase_ ( self , snake_case_ ): """simple docstring""" if self.framework == "tf": A_ : str = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy() elif self.framework == "pt": A_ : List[str] = torch.nonzero(input_ids == self.tokenizer.mask_token_id , as_tuple=snake_case_ ) else: raise ValueError('Unsupported framework' ) return masked_index def lowerCamelCase_ ( self , snake_case_ ): """simple docstring""" A_ : List[str] = self.get_masked_index(snake_case_ ) A_ : str = np.prod(masked_index.shape ) if numel < 1: raise PipelineException( 'fill-mask' , self.model.base_model_prefix , F"""No mask_token ({self.tokenizer.mask_token}) found on the input""" , ) def lowerCamelCase_ ( self , snake_case_ ): """simple docstring""" if isinstance(snake_case_ , snake_case_ ): for model_input in model_inputs: self._ensure_exactly_one_mask_token(model_input['input_ids'][0] ) else: for input_ids in model_inputs["input_ids"]: self._ensure_exactly_one_mask_token(snake_case_ ) def lowerCamelCase_ ( self , snake_case_ , snake_case_=None , **snake_case_ ): """simple docstring""" if return_tensors is None: A_ : Any = self.framework A_ : Dict = self.tokenizer(snake_case_ , return_tensors=snake_case_ ) self.ensure_exactly_one_mask_token(snake_case_ ) return model_inputs def lowerCamelCase_ ( self , snake_case_ ): """simple docstring""" A_ : Dict = self.model(**snake_case_ ) A_ : Optional[int] = model_inputs['input_ids'] return model_outputs def lowerCamelCase_ ( self , snake_case_ , snake_case_=5 , snake_case_=None ): """simple docstring""" if target_ids is not None and target_ids.shape[0] < top_k: A_ : str = target_ids.shape[0] A_ : Optional[Any] = model_outputs['input_ids'][0] A_ : List[Any] = model_outputs['logits'] if self.framework == "tf": A_ : List[str] = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy()[:, 0] A_ : Union[str, Any] = outputs.numpy() A_ : Optional[int] = outputs[0, masked_index, :] A_ : Optional[Any] = stable_softmax(snake_case_ , axis=-1 ) if target_ids is not None: A_ : Union[str, Any] = tf.gather_nd(tf.squeeze(snake_case_ , 0 ) , target_ids.reshape(-1 , 1 ) ) A_ : Optional[int] = tf.expand_dims(snake_case_ , 0 ) A_ : Any = tf.math.top_k(snake_case_ , k=snake_case_ ) A_ , A_ : str = topk.values.numpy(), topk.indices.numpy() else: A_ : int = torch.nonzero(input_ids == self.tokenizer.mask_token_id , as_tuple=snake_case_ ).squeeze(-1 ) # Fill mask pipeline supports only one ${mask_token} per sample A_ : Tuple = outputs[0, masked_index, :] A_ : List[str] = logits.softmax(dim=-1 ) if target_ids is not None: A_ : str = probs[..., target_ids] A_ , A_ : List[str] = probs.topk(snake_case_ ) A_ : List[Any] = [] A_ : int = values.shape[0] == 1 for i, (_values, _predictions) in enumerate(zip(values.tolist() , predictions.tolist() ) ): A_ : str = [] for v, p in zip(_values , _predictions ): # Copy is important since we're going to modify this array in place A_ : Union[str, Any] = input_ids.numpy().copy() if target_ids is not None: A_ : str = target_ids[p].tolist() A_ : Union[str, Any] = p # Filter padding out: A_ : Any = tokens[np.where(tokens != self.tokenizer.pad_token_id )] # Originally we skip special tokens to give readable output. # For multi masks though, the other [MASK] would be removed otherwise # making the output look odd, so we add them back A_ : Any = self.tokenizer.decode(snake_case_ , skip_special_tokens=snake_case_ ) A_ : Any = {'score': v, 'token': p, 'token_str': self.tokenizer.decode([p] ), 'sequence': sequence} row.append(snake_case_ ) result.append(snake_case_ ) if single_mask: return result[0] return result def lowerCamelCase_ ( self , snake_case_ , snake_case_=None ): """simple docstring""" if isinstance(snake_case_ , snake_case_ ): A_ : List[str] = [targets] try: A_ : Optional[int] = self.tokenizer.get_vocab() except Exception: A_ : int = {} A_ : Tuple = [] for target in targets: A_ : int = vocab.get(snake_case_ , snake_case_ ) if id_ is None: A_ : Tuple = self.tokenizer( snake_case_ , add_special_tokens=snake_case_ , return_attention_mask=snake_case_ , return_token_type_ids=snake_case_ , max_length=1 , truncation=snake_case_ , )['input_ids'] if len(snake_case_ ) == 0: logger.warning( F"""The specified target token `{target}` does not exist in the model vocabulary. """ 'We cannot replace it with anything meaningful, ignoring it' ) continue A_ : str = input_ids[0] # XXX: If users encounter this pass # it becomes pretty slow, so let's make sure # The warning enables them to fix the input to # get faster performance. logger.warning( F"""The specified target token `{target}` does not exist in the model vocabulary. """ F"""Replacing with `{self.tokenizer.convert_ids_to_tokens(id_ )}`.""" ) target_ids.append(id_ ) A_ : Tuple = list(set(snake_case_ ) ) if len(snake_case_ ) == 0: raise ValueError('At least one target must be provided when passed.' ) A_ : Optional[Any] = np.array(snake_case_ ) return target_ids def lowerCamelCase_ ( self , snake_case_=None , snake_case_=None ): """simple docstring""" A_ : List[str] = {} if targets is not None: A_ : Any = self.get_target_ids(snake_case_ , snake_case_ ) A_ : Optional[Any] = target_ids if top_k is not None: A_ : int = top_k if self.tokenizer.mask_token_id is None: raise PipelineException( 'fill-mask' , self.model.base_model_prefix , 'The tokenizer does not define a `mask_token`.' ) return {}, {}, postprocess_params def __call__( self , snake_case_ , *snake_case_ , **snake_case_ ): """simple docstring""" A_ : List[str] = super().__call__(snake_case_ , **snake_case_ ) if isinstance(snake_case_ , snake_case_ ) and len(snake_case_ ) == 1: return outputs[0] return outputs
286
0
import darl # noqa import gym import tqdm from diffusers.experimental import ValueGuidedRLPipeline lowerCAmelCase_ = { """n_samples""": 64, """horizon""": 32, """num_inference_steps""": 20, """n_guide_steps""": 2, # can set to 0 for faster sampling, does not use value network """scale_grad_by_std""": True, """scale""": 0.1, """eta""": 0.0, """t_grad_cutoff""": 2, """device""": """cpu""", } if __name__ == "__main__": lowerCAmelCase_ = """hopper-medium-v2""" lowerCAmelCase_ = gym.make(env_name) lowerCAmelCase_ = ValueGuidedRLPipeline.from_pretrained( """bglick13/hopper-medium-v2-value-function-hor32""", env=env, ) env.seed(0) lowerCAmelCase_ = env.reset() lowerCAmelCase_ = 0 lowerCAmelCase_ = 0 lowerCAmelCase_ = 1000 lowerCAmelCase_ = [obs.copy()] try: for t in tqdm.tqdm(range(T)): # call the policy lowerCAmelCase_ = pipeline(obs, planning_horizon=32) # execute action in environment lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = env.step(denorm_actions) lowerCAmelCase_ = env.get_normalized_score(total_reward) # update return total_reward += reward total_score += score print( F"""Step: {t}, Reward: {reward}, Total Reward: {total_reward}, Score: {score}, Total Score:""" F""" {total_score}""" ) # save observations for rendering rollout.append(next_observation.copy()) lowerCAmelCase_ = next_observation except KeyboardInterrupt: pass print(F"""Total reward: {total_reward}""")
260
import os from typing import BinaryIO, Optional, Union import numpy as np import pyarrow.parquet as pq from .. import Audio, Dataset, Features, Image, NamedSplit, Value, config from ..features.features import FeatureType, _visit from ..formatting import query_table from ..packaged_modules import _PACKAGED_DATASETS_MODULES from ..packaged_modules.parquet.parquet import Parquet from ..utils import logging from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader def lowerCamelCase_ ( lowerCAmelCase: Features )-> Optional[int]: _snake_case : str = np.inf def set_batch_size(lowerCAmelCase: FeatureType ) -> None: nonlocal batch_size if isinstance(lowerCAmelCase , lowerCAmelCase ): _snake_case : List[str] = min(lowerCAmelCase , config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS ) elif isinstance(lowerCAmelCase , lowerCAmelCase ): _snake_case : Union[str, Any] = min(lowerCAmelCase , config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS ) elif isinstance(lowerCAmelCase , lowerCAmelCase ) and feature.dtype == "binary": _snake_case : Union[str, Any] = min(lowerCAmelCase , config.PARQUET_ROW_GROUP_SIZE_FOR_BINARY_DATASETS ) _visit(lowerCAmelCase , lowerCAmelCase ) return None if batch_size is np.inf else batch_size class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' def __init__( self : List[str] , UpperCamelCase : NestedDataStructureLike[PathLike] , UpperCamelCase : Optional[NamedSplit] = None , UpperCamelCase : Optional[Features] = None , UpperCamelCase : str = None , UpperCamelCase : bool = False , UpperCamelCase : bool = False , UpperCamelCase : Optional[int] = None , **UpperCamelCase : Optional[Any] , ): '''simple docstring''' super().__init__( UpperCamelCase , split=UpperCamelCase , features=UpperCamelCase , cache_dir=UpperCamelCase , keep_in_memory=UpperCamelCase , streaming=UpperCamelCase , num_proc=UpperCamelCase , **UpperCamelCase , ) _snake_case : Tuple = path_or_paths if isinstance(UpperCamelCase , UpperCamelCase ) else {self.split: path_or_paths} _snake_case : List[Any] = _PACKAGED_DATASETS_MODULES['parquet'][1] _snake_case : Optional[Any] = Parquet( cache_dir=UpperCamelCase , data_files=UpperCamelCase , features=UpperCamelCase , hash=UpperCamelCase , **UpperCamelCase , ) def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' if self.streaming: _snake_case : Optional[Any] = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: _snake_case : Dict = None _snake_case : Union[str, Any] = None _snake_case : Optional[int] = None _snake_case : Optional[Any] = None self.builder.download_and_prepare( download_config=UpperCamelCase , download_mode=UpperCamelCase , verification_mode=UpperCamelCase , base_path=UpperCamelCase , num_proc=self.num_proc , ) _snake_case : Optional[int] = self.builder.as_dataset( split=self.split , verification_mode=UpperCamelCase , in_memory=self.keep_in_memory ) return dataset class _lowerCAmelCase : '''simple docstring''' def __init__( self : int , UpperCamelCase : Dataset , UpperCamelCase : Union[PathLike, BinaryIO] , UpperCamelCase : Optional[int] = None , **UpperCamelCase : Dict , ): '''simple docstring''' _snake_case : Tuple = dataset _snake_case : Union[str, Any] = path_or_buf _snake_case : List[Any] = batch_size or get_writer_batch_size(dataset.features ) _snake_case : Optional[Any] = parquet_writer_kwargs def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' _snake_case : str = self.batch_size if self.batch_size else config.DEFAULT_MAX_BATCH_SIZE if isinstance(self.path_or_buf , (str, bytes, os.PathLike) ): with open(self.path_or_buf , 'wb+' ) as buffer: _snake_case : Any = self._write(file_obj=UpperCamelCase , batch_size=UpperCamelCase , **self.parquet_writer_kwargs ) else: _snake_case : Tuple = self._write(file_obj=self.path_or_buf , batch_size=UpperCamelCase , **self.parquet_writer_kwargs ) return written def UpperCamelCase_ ( self : Dict , UpperCamelCase : BinaryIO , UpperCamelCase : int , **UpperCamelCase : List[str] ): '''simple docstring''' _snake_case : List[str] = 0 _snake_case : Dict = parquet_writer_kwargs.pop('path_or_buf' , UpperCamelCase ) _snake_case : Optional[Any] = self.dataset.features.arrow_schema _snake_case : str = pq.ParquetWriter(UpperCamelCase , schema=UpperCamelCase , **UpperCamelCase ) for offset in logging.tqdm( range(0 , len(self.dataset ) , UpperCamelCase ) , unit='ba' , disable=not logging.is_progress_bar_enabled() , desc='Creating parquet from Arrow format' , ): _snake_case : Tuple = query_table( table=self.dataset._data , key=slice(UpperCamelCase , offset + batch_size ) , indices=self.dataset._indices if self.dataset._indices is not None else None , ) writer.write_table(UpperCamelCase ) written += batch.nbytes writer.close() return written
260
1
'''simple docstring''' from __future__ import annotations from typing import Generic, TypeVar _lowerCAmelCase = TypeVar('''T''') class lowerCAmelCase_( Generic[T] ): '''simple docstring''' def __init__( self ,__UpperCAmelCase ) -> None: lowerCAmelCase__ : Optional[Any] = data lowerCAmelCase__ : Any = self lowerCAmelCase__ : Tuple = 0 class lowerCAmelCase_( Generic[T] ): '''simple docstring''' def __init__( self ) -> None: # map from node name to the node object lowerCAmelCase__ : dict[T, DisjointSetTreeNode[T]] = {} def UpperCAmelCase_ ( self ,__UpperCAmelCase ) -> None: # create a new set with x as its member lowerCAmelCase__ : Optional[Any] = DisjointSetTreeNode(__UpperCAmelCase ) def UpperCAmelCase_ ( self ,__UpperCAmelCase ) -> DisjointSetTreeNode[T]: # find the set x belongs to (with path-compression) lowerCAmelCase__ : int = self.map[data] if elem_ref != elem_ref.parent: lowerCAmelCase__ : Union[str, Any] = self.find_set(elem_ref.parent.data ) return elem_ref.parent def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase ) -> None: # helper function for union operation if nodea.rank > nodea.rank: lowerCAmelCase__ : Any = nodea else: lowerCAmelCase__ : List[Any] = nodea if nodea.rank == nodea.rank: nodea.rank += 1 def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase ) -> None: # merge 2 disjoint sets self.link(self.find_set(__UpperCAmelCase ) ,self.find_set(__UpperCAmelCase ) ) class lowerCAmelCase_( Generic[T] ): '''simple docstring''' def __init__( self ) -> None: # connections: map from the node to the neighbouring nodes (with weights) lowerCAmelCase__ : dict[T, dict[T, int]] = {} def UpperCAmelCase_ ( self ,__UpperCAmelCase ) -> None: # add a node ONLY if its not present in the graph if node not in self.connections: lowerCAmelCase__ : List[Any] = {} def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ) -> None: # add an edge with the given weight self.add_node(__UpperCAmelCase ) self.add_node(__UpperCAmelCase ) lowerCAmelCase__ : Tuple = weight lowerCAmelCase__ : List[str] = weight def UpperCAmelCase_ ( self ) -> GraphUndirectedWeighted[T]: lowerCAmelCase__ : Tuple = [] lowerCAmelCase__ : Tuple = set() for start in self.connections: for end in self.connections[start]: if (start, end) not in seen: seen.add((end, start) ) edges.append((start, end, self.connections[start][end]) ) edges.sort(key=lambda __UpperCAmelCase : x[2] ) # creating the disjoint set lowerCAmelCase__ : List[Any] = DisjointSetTree[T]() for node in self.connections: disjoint_set.make_set(__UpperCAmelCase ) # MST generation lowerCAmelCase__ : List[str] = 0 lowerCAmelCase__ : Dict = 0 lowerCAmelCase__ : Dict = GraphUndirectedWeighted[T]() while num_edges < len(self.connections ) - 1: lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : Any = edges[index] index += 1 lowerCAmelCase__ : Tuple = disjoint_set.find_set(__UpperCAmelCase ) lowerCAmelCase__ : Optional[int] = disjoint_set.find_set(__UpperCAmelCase ) if parent_u != parent_v: num_edges += 1 graph.add_edge(__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ) disjoint_set.union(__UpperCAmelCase ,__UpperCAmelCase ) return graph
37
"""simple docstring""" import argparse import collections import numpy as np import torch from flax import traverse_util from tax import checkpoints from transformers import MTaConfig, UMTaEncoderModel, UMTaForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() def a__ ( snake_case__ , snake_case__ , snake_case__ ) -> List[Any]: return params[F'{prefix}/{prefix}/relpos_bias/rel_embedding'][:, i, :] def a__ ( snake_case__ , snake_case__ , snake_case__ , snake_case__="attention" ) -> List[Any]: lowerCamelCase = lowerCamelCase = np.ascontiguousarray(params[F'{prefix}/{prefix}/{layer_name}/key/kernel'][:, i, :, :] ) lowerCamelCase = k_tmp.reshape(k_tmp.shape[0] , k_tmp.shape[1] * k_tmp.shape[2] ) lowerCamelCase = np.ascontiguousarray(params[F'{prefix}/{prefix}/{layer_name}/out/kernel'][:, i, :, :] ) lowerCamelCase = o_tmp.reshape(o_tmp.shape[0] * o_tmp.shape[1] , o_tmp.shape[2] ) lowerCamelCase = np.ascontiguousarray(params[F'{prefix}/{prefix}/{layer_name}/query/kernel'][:, i, :, :] ) lowerCamelCase = q_tmp.reshape(q_tmp.shape[0] , q_tmp.shape[1] * q_tmp.shape[2] ) lowerCamelCase = np.ascontiguousarray(params[F'{prefix}/{prefix}/{layer_name}/value/kernel'][:, i, :, :] ) lowerCamelCase = v_tmp.reshape(v_tmp.shape[0] , v_tmp.shape[1] * v_tmp.shape[2] ) return k, o, q, v def a__ ( snake_case__ , snake_case__ , snake_case__ , snake_case__=False ) -> List[str]: if split_mlp_wi: lowerCamelCase = params[F'{prefix}/{prefix}/mlp/wi_0/kernel'][:, i, :] lowerCamelCase = params[F'{prefix}/{prefix}/mlp/wi_1/kernel'][:, i, :] lowerCamelCase = (wi_a, wi_a) else: lowerCamelCase = params[F'{prefix}/{prefix}/mlp/wi/kernel'][:, i, :] lowerCamelCase = params[F'{prefix}/{prefix}/mlp/wo/kernel'][:, i, :] return wi, wo def a__ ( snake_case__ , snake_case__ , snake_case__ , snake_case__ ) -> Tuple: return params[F'{prefix}/{prefix}/{layer_name}/scale'][:, i] def a__ ( snake_case__ , *, snake_case__ , snake_case__ , snake_case__ = False ) -> Dict: lowerCamelCase = traverse_util.flatten_dict(variables["""target"""] ) lowerCamelCase = {"""/""".join(snake_case__ ): v for k, v in old.items()} # v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi lowerCamelCase = """encoder/encoder/mlp/wi_0/kernel""" in old print("""Split MLP:""" , snake_case__ ) lowerCamelCase = collections.OrderedDict() # Shared embeddings. lowerCamelCase = old["""token_embedder/embedding"""] # Encoder. for i in range(snake_case__ ): # Block i, layer 0 (Self Attention). lowerCamelCase = tax_layer_norm_lookup(snake_case__ , snake_case__ , """encoder""" , """pre_attention_layer_norm""" ) lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase = tax_attention_lookup(snake_case__ , snake_case__ , """encoder""" , """attention""" ) lowerCamelCase = layer_norm lowerCamelCase = k.T lowerCamelCase = o.T lowerCamelCase = q.T lowerCamelCase = v.T # Block i, layer 1 (MLP). lowerCamelCase = tax_layer_norm_lookup(snake_case__ , snake_case__ , """encoder""" , """pre_mlp_layer_norm""" ) lowerCamelCase , lowerCamelCase = tax_mlp_lookup(snake_case__ , snake_case__ , """encoder""" , snake_case__ ) lowerCamelCase = layer_norm if split_mlp_wi: lowerCamelCase = wi[0].T lowerCamelCase = wi[1].T else: lowerCamelCase = wi.T lowerCamelCase = wo.T if scalable_attention: # convert the rel_embedding of each layer lowerCamelCase = tax_relpos_bias_lookup( snake_case__ , snake_case__ , """encoder""" ).T lowerCamelCase = old["""encoder/encoder_norm/scale"""] if not scalable_attention: lowerCamelCase = tax_relpos_bias_lookup( snake_case__ , 0 , """encoder""" ).T lowerCamelCase = tax_relpos_bias_lookup( snake_case__ , 0 , """decoder""" ).T if not is_encoder_only: # Decoder. for i in range(snake_case__ ): # Block i, layer 0 (Self Attention). lowerCamelCase = tax_layer_norm_lookup(snake_case__ , snake_case__ , """decoder""" , """pre_self_attention_layer_norm""" ) lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase = tax_attention_lookup(snake_case__ , snake_case__ , """decoder""" , """self_attention""" ) lowerCamelCase = layer_norm lowerCamelCase = k.T lowerCamelCase = o.T lowerCamelCase = q.T lowerCamelCase = v.T # Block i, layer 1 (Cross Attention). lowerCamelCase = tax_layer_norm_lookup(snake_case__ , snake_case__ , """decoder""" , """pre_cross_attention_layer_norm""" ) lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase = tax_attention_lookup(snake_case__ , snake_case__ , """decoder""" , """encoder_decoder_attention""" ) lowerCamelCase = layer_norm lowerCamelCase = k.T lowerCamelCase = o.T lowerCamelCase = q.T lowerCamelCase = v.T # Block i, layer 2 (MLP). lowerCamelCase = tax_layer_norm_lookup(snake_case__ , snake_case__ , """decoder""" , """pre_mlp_layer_norm""" ) lowerCamelCase , lowerCamelCase = tax_mlp_lookup(snake_case__ , snake_case__ , """decoder""" , snake_case__ ) lowerCamelCase = layer_norm if split_mlp_wi: lowerCamelCase = wi[0].T lowerCamelCase = wi[1].T else: lowerCamelCase = wi.T lowerCamelCase = wo.T if scalable_attention: # convert the rel_embedding of each layer lowerCamelCase = tax_relpos_bias_lookup(snake_case__ , snake_case__ , """decoder""" ).T lowerCamelCase = old["""decoder/decoder_norm/scale"""] # LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead) if "decoder/logits_dense/kernel" in old: lowerCamelCase = old["""decoder/logits_dense/kernel"""].T return new def a__ ( snake_case__ , snake_case__ ) -> Optional[int]: lowerCamelCase = collections.OrderedDict([(k, torch.from_numpy(v.copy() )) for (k, v) in converted_params.items()] ) # Add what is missing. if "encoder.embed_tokens.weight" not in state_dict: lowerCamelCase = state_dict["""shared.weight"""] if not is_encoder_only: if "decoder.embed_tokens.weight" not in state_dict: lowerCamelCase = state_dict["""shared.weight"""] if "lm_head.weight" not in state_dict: # For old 1.0 models. print("""Using shared word embeddings as lm_head.""" ) lowerCamelCase = state_dict["""shared.weight"""] return state_dict def a__ ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) -> List[Any]: lowerCamelCase = checkpoints.load_tax_checkpoint(snake_case__ ) lowerCamelCase = convert_tax_to_pytorch( snake_case__ , num_layers=config.num_layers , is_encoder_only=snake_case__ , scalable_attention=snake_case__ ) lowerCamelCase = make_state_dict(snake_case__ , snake_case__ ) model.load_state_dict(snake_case__ , strict=snake_case__ ) def a__ ( snake_case__ , snake_case__ , snake_case__ , snake_case__ = False , snake_case__ = False , ) -> str: lowerCamelCase = MTaConfig.from_json_file(snake_case__ ) print(F'Building PyTorch model from configuration: {config}' ) # Non-v1.1 checkpoints could also use T5Model, but this works for all. # The v1.0 checkpoints will simply have an LM head that is the word embeddings. if is_encoder_only: lowerCamelCase = UMTaEncoderModel(snake_case__ ) else: lowerCamelCase = UMTaForConditionalGeneration(snake_case__ ) # Load weights from tf checkpoint load_tax_weights_in_ta(snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) # Save pytorch-model print(F'Save PyTorch model to {pytorch_dump_path}' ) model.save_pretrained(snake_case__ ) # Verify that we can load the checkpoint. model.from_pretrained(snake_case__ ) print("""Done""" ) if __name__ == "__main__": lowerCAmelCase : Optional[int] = argparse.ArgumentParser(description="""Converts a native T5X checkpoint into a PyTorch checkpoint.""") # Required parameters parser.add_argument( """--t5x_checkpoint_path""", default=None, type=str, required=True, help="""Path to the T5X checkpoint.""" ) parser.add_argument( """--config_file""", default=None, type=str, required=True, help="""The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.""", ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--is_encoder_only""", action="""store_true""", help="""Check if the model is encoder-decoder model""", default=False ) parser.add_argument( """--scalable_attention""", action="""store_true""", help="""Whether the model uses scaled attention (umt5 model)""", default=False, ) lowerCAmelCase : int = parser.parse_args() convert_tax_checkpoint_to_pytorch( args.tax_checkpoint_path, args.config_file, args.pytorch_dump_path, args.is_encoder_only, args.scalable_attention, )
291
0
"""simple docstring""" import argparse import os import torch from transformers import FlavaConfig, FlavaForPreTraining from transformers.models.flava.convert_dalle_to_flava_codebook import convert_dalle_checkpoint def lowerCamelCase__ ( __snake_case ) -> Optional[Any]: """simple docstring""" return sum(param.float().sum() if '''encoder.embeddings''' not in key else 0 for key, param in state_dict.items() ) def lowerCamelCase__ ( __snake_case, __snake_case ) -> Optional[Any]: """simple docstring""" _UpperCamelCase = {} for key, value in state_dict.items(): if "text_encoder.embeddings" in key or "image_encoder.embeddings" in key: continue _UpperCamelCase = key.replace('''heads.cmd.mim_head.cls.predictions''', '''mmm_image_head''' ) _UpperCamelCase = key.replace('''heads.cmd.mlm_head.cls.predictions''', '''mmm_text_head''' ) _UpperCamelCase = key.replace('''heads.cmd.itm_head.cls''', '''itm_head''' ) _UpperCamelCase = key.replace('''heads.cmd.itm_head.pooler''', '''itm_head.pooler''' ) _UpperCamelCase = key.replace('''heads.cmd.clip_head.logit_scale''', '''flava.logit_scale''' ) _UpperCamelCase = key.replace('''heads.fairseq_mlm.cls.predictions''', '''mlm_head''' ) _UpperCamelCase = key.replace('''heads.imagenet.mim_head.cls.predictions''', '''mim_head''' ) _UpperCamelCase = key.replace('''mm_text_projection''', '''flava.text_to_mm_projection''' ) _UpperCamelCase = key.replace('''mm_image_projection''', '''flava.image_to_mm_projection''' ) _UpperCamelCase = key.replace('''image_encoder.module''', '''flava.image_model''' ) _UpperCamelCase = key.replace('''text_encoder.module''', '''flava.text_model''' ) _UpperCamelCase = key.replace('''mm_encoder.module.encoder.cls_token''', '''flava.multimodal_model.cls_token''' ) _UpperCamelCase = key.replace('''mm_encoder.module''', '''flava.multimodal_model''' ) _UpperCamelCase = key.replace('''text_projection''', '''flava.text_projection''' ) _UpperCamelCase = key.replace('''image_projection''', '''flava.image_projection''' ) _UpperCamelCase = value.float() for key, value in codebook_state_dict.items(): _UpperCamelCase = value return upgrade @torch.no_grad() def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case, __snake_case=None ) -> int: """simple docstring""" if config_path is not None: _UpperCamelCase = FlavaConfig.from_pretrained(SCREAMING_SNAKE_CASE_ ) else: _UpperCamelCase = FlavaConfig() _UpperCamelCase = FlavaForPreTraining(SCREAMING_SNAKE_CASE_ ).eval() _UpperCamelCase = convert_dalle_checkpoint(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, save_checkpoint=SCREAMING_SNAKE_CASE_ ) if os.path.exists(SCREAMING_SNAKE_CASE_ ): _UpperCamelCase = torch.load(SCREAMING_SNAKE_CASE_, map_location='''cpu''' ) else: _UpperCamelCase = torch.hub.load_state_dict_from_url(SCREAMING_SNAKE_CASE_, map_location='''cpu''' ) _UpperCamelCase = upgrade_state_dict(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) hf_model.load_state_dict(SCREAMING_SNAKE_CASE_ ) _UpperCamelCase = hf_model.state_dict() _UpperCamelCase = count_parameters(SCREAMING_SNAKE_CASE_ ) _UpperCamelCase = count_parameters(SCREAMING_SNAKE_CASE_ ) + count_parameters(SCREAMING_SNAKE_CASE_ ) assert torch.allclose(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, atol=1e-3 ) hf_model.save_pretrained(SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": _a = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to flava checkpoint""") parser.add_argument("""--codebook_path""", default=None, type=str, help="""Path to flava codebook checkpoint""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") _a = parser.parse_args() convert_flava_checkpoint(args.checkpoint_path, args.codebook_path, args.pytorch_dump_folder_path, args.config_path)
363
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_torch_available, ) _a = { """configuration_trocr""": ["""TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP""", """TrOCRConfig"""], """processing_trocr""": ["""TrOCRProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a = [ """TROCR_PRETRAINED_MODEL_ARCHIVE_LIST""", """TrOCRForCausalLM""", """TrOCRPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_trocr import TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP, TrOCRConfig from .processing_trocr import TrOCRProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trocr import TROCR_PRETRAINED_MODEL_ARCHIVE_LIST, TrOCRForCausalLM, TrOCRPreTrainedModel else: import sys _a = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
100
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A = { '''configuration_x_clip''': [ '''XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XCLIPConfig''', '''XCLIPTextConfig''', '''XCLIPVisionConfig''', ], '''processing_x_clip''': ['''XCLIPProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A = [ '''XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XCLIPModel''', '''XCLIPPreTrainedModel''', '''XCLIPTextModel''', '''XCLIPVisionModel''', ] if TYPE_CHECKING: from .configuration_x_clip import ( XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, XCLIPConfig, XCLIPTextConfig, XCLIPVisionConfig, ) from .processing_x_clip import XCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_x_clip import ( XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, XCLIPModel, XCLIPPreTrainedModel, XCLIPTextModel, XCLIPVisionModel, ) else: import sys A = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
160
"""simple docstring""" import numpy as np from cva import destroyAllWindows, imread, imshow, waitKey class __lowercase : '''simple docstring''' def __init__( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): if dst_width < 0 or dst_height < 0: raise ValueError('''Destination width/height should be > 0''' ) __a : Optional[int] = img __a : Any = img.shape[1] __a : Optional[int] = img.shape[0] __a : Tuple = dst_width __a : List[Any] = dst_height __a : Optional[int] = self.src_w / self.dst_w __a : Tuple = self.src_h / self.dst_h __a : Union[str, Any] = ( np.ones((self.dst_h, self.dst_w, 3) , np.uinta ) * 255 ) def _lowerCamelCase ( self ): for i in range(self.dst_h ): for j in range(self.dst_w ): __a : Optional[int] = self.img[self.get_y(_UpperCAmelCase )][self.get_x(_UpperCAmelCase )] def _lowerCamelCase ( self , _UpperCAmelCase ): return int(self.ratio_x * x ) def _lowerCamelCase ( self , _UpperCAmelCase ): return int(self.ratio_y * y ) if __name__ == "__main__": A , A = 800, 600 A = imread('''image_data/lena.jpg''', 1) A = NearestNeighbour(im, dst_w, dst_h) n.process() imshow( F'Image resized from: {im.shape[1]}x{im.shape[0]} to {dst_w}x{dst_h}', n.output ) waitKey(0) destroyAllWindows()
160
1
'''simple docstring''' import operator def UpperCAmelCase_ ( __lowerCamelCase : list ,__lowerCamelCase : bool = False ,__lowerCamelCase : list | None = None ): lowercase_ :Union[str, Any] = operator.lt if reverse else operator.gt lowercase_ :str = solution or [] if not arr: return solution lowercase_ :List[Any] = [arr.pop(0 )] for i, item in enumerate(__lowerCamelCase ): if _operator(__lowerCamelCase ,sublist[-1] ): sublist.append(__lowerCamelCase ) arr.pop(__lowerCamelCase ) # merging sublist into solution list if not solution: solution.extend(__lowerCamelCase ) else: while sublist: lowercase_ :Tuple = sublist.pop(0 ) for i, xx in enumerate(__lowerCamelCase ): if not _operator(__lowerCamelCase ,__lowerCamelCase ): solution.insert(__lowerCamelCase ,__lowerCamelCase ) break else: solution.append(__lowerCamelCase ) strand_sort(__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ) return solution if __name__ == "__main__": assert strand_sort([4, 3, 5, 1, 2]) == [1, 2, 3, 4, 5] assert strand_sort([4, 3, 5, 1, 2], reverse=True) == [5, 4, 3, 2, 1]
147
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from transformers.utils import is_vision_available from transformers.utils.generic import TensorType from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import logging if is_vision_available(): import PIL lowerCAmelCase : Any =logging.get_logger(__name__) def UpperCAmelCase_ ( __lowerCamelCase : List[str] ): if isinstance(__lowerCamelCase ,(list, tuple) ) and isinstance(videos[0] ,(list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(__lowerCamelCase ,(list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(__lowerCamelCase ): return [[videos]] raise ValueError(F'Could not make batched video from {videos}' ) class a_ ( _lowerCAmelCase ): __A = ["pixel_values"] def __init__( self : List[str] , lowercase : bool = True , lowercase : Dict[str, int] = None , lowercase : PILImageResampling = PILImageResampling.BILINEAR , lowercase : bool = True , lowercase : Dict[str, int] = None , lowercase : bool = True , lowercase : Union[int, float] = 1 / 255 , lowercase : bool = True , lowercase : bool = True , lowercase : Optional[Union[float, List[float]]] = None , lowercase : Optional[Union[float, List[float]]] = None , **lowercase : Tuple , ): """simple docstring""" super().__init__(**lowercase ) lowercase_ :Any = size if size is not None else {"shortest_edge": 256} lowercase_ :int = get_size_dict(lowercase , default_to_square=lowercase ) lowercase_ :str = crop_size if crop_size is not None else {"height": 224, "width": 224} lowercase_ :List[str] = get_size_dict(lowercase , param_name="crop_size" ) lowercase_ :List[str] = do_resize lowercase_ :Any = size lowercase_ :Union[str, Any] = do_center_crop lowercase_ :Union[str, Any] = crop_size lowercase_ :Optional[Any] = resample lowercase_ :List[str] = do_rescale lowercase_ :List[Any] = rescale_factor lowercase_ :Dict = offset lowercase_ :Optional[Any] = do_normalize lowercase_ :Dict = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN lowercase_ :Optional[int] = image_std if image_std is not None else IMAGENET_STANDARD_STD def lowercase__ ( self : Union[str, Any] , lowercase : np.ndarray , lowercase : Dict[str, int] , lowercase : PILImageResampling = PILImageResampling.BILINEAR , lowercase : Optional[Union[str, ChannelDimension]] = None , **lowercase : Optional[Any] , ): """simple docstring""" lowercase_ :List[Any] = get_size_dict(lowercase , default_to_square=lowercase ) if "shortest_edge" in size: lowercase_ :int = get_resize_output_image_size(lowercase , size["shortest_edge"] , default_to_square=lowercase ) elif "height" in size and "width" in size: lowercase_ :Union[str, Any] = (size["height"], size["width"]) else: raise ValueError(F'Size must have \'height\' and \'width\' or \'shortest_edge\' as keys. Got {size.keys()}' ) return resize(lowercase , size=lowercase , resample=lowercase , data_format=lowercase , **lowercase ) def lowercase__ ( self : str , lowercase : np.ndarray , lowercase : Dict[str, int] , lowercase : Optional[Union[str, ChannelDimension]] = None , **lowercase : str , ): """simple docstring""" lowercase_ :Any = get_size_dict(lowercase ) if "height" not in size or "width" not in size: raise ValueError(F'Size must have \'height\' and \'width\' as keys. Got {size.keys()}' ) return center_crop(lowercase , size=(size["height"], size["width"]) , data_format=lowercase , **lowercase ) def lowercase__ ( self : List[str] , lowercase : np.ndarray , lowercase : Union[int, float] , lowercase : bool = True , lowercase : Optional[Union[str, ChannelDimension]] = None , **lowercase : List[str] , ): """simple docstring""" lowercase_ :List[str] = image.astype(np.floataa ) if offset: lowercase_ :List[str] = image - (scale / 2) return rescale(lowercase , scale=lowercase , data_format=lowercase , **lowercase ) def lowercase__ ( self : Tuple , lowercase : np.ndarray , lowercase : Union[float, List[float]] , lowercase : Union[float, List[float]] , lowercase : Optional[Union[str, ChannelDimension]] = None , **lowercase : Dict , ): """simple docstring""" return normalize(lowercase , mean=lowercase , std=lowercase , data_format=lowercase , **lowercase ) def lowercase__ ( self : Tuple , lowercase : ImageInput , lowercase : bool = None , lowercase : Dict[str, int] = None , lowercase : PILImageResampling = None , lowercase : bool = None , lowercase : Dict[str, int] = None , lowercase : bool = None , lowercase : float = None , lowercase : bool = None , lowercase : bool = None , lowercase : Optional[Union[float, List[float]]] = None , lowercase : Optional[Union[float, List[float]]] = None , lowercase : Optional[ChannelDimension] = ChannelDimension.FIRST , ): """simple docstring""" if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) if offset and not do_rescale: raise ValueError("For offset, do_rescale must also be set to True." ) # All transformations expect numpy arrays. lowercase_ :Optional[int] = to_numpy_array(lowercase ) if do_resize: lowercase_ :Tuple = self.resize(image=lowercase , size=lowercase , resample=lowercase ) if do_center_crop: lowercase_ :Any = self.center_crop(lowercase , size=lowercase ) if do_rescale: lowercase_ :Optional[Any] = self.rescale(image=lowercase , scale=lowercase , offset=lowercase ) if do_normalize: lowercase_ :Tuple = self.normalize(image=lowercase , mean=lowercase , std=lowercase ) lowercase_ :Optional[Any] = to_channel_dimension_format(lowercase , lowercase ) return image def lowercase__ ( self : Dict , lowercase : ImageInput , lowercase : bool = None , lowercase : Dict[str, int] = None , lowercase : PILImageResampling = None , lowercase : bool = None , lowercase : Dict[str, int] = None , lowercase : bool = None , lowercase : float = None , lowercase : bool = None , lowercase : bool = None , lowercase : Optional[Union[float, List[float]]] = None , lowercase : Optional[Union[float, List[float]]] = None , lowercase : Optional[Union[str, TensorType]] = None , lowercase : ChannelDimension = ChannelDimension.FIRST , **lowercase : Optional[int] , ): """simple docstring""" lowercase_ :str = do_resize if do_resize is not None else self.do_resize lowercase_ :Optional[Any] = resample if resample is not None else self.resample lowercase_ :Tuple = do_center_crop if do_center_crop is not None else self.do_center_crop lowercase_ :Dict = do_rescale if do_rescale is not None else self.do_rescale lowercase_ :Optional[int] = rescale_factor if rescale_factor is not None else self.rescale_factor lowercase_ :Dict = offset if offset is not None else self.offset lowercase_ :Tuple = do_normalize if do_normalize is not None else self.do_normalize lowercase_ :int = image_mean if image_mean is not None else self.image_mean lowercase_ :Optional[int] = image_std if image_std is not None else self.image_std lowercase_ :int = size if size is not None else self.size lowercase_ :Optional[int] = get_size_dict(lowercase , default_to_square=lowercase ) lowercase_ :List[Any] = crop_size if crop_size is not None else self.crop_size lowercase_ :List[str] = get_size_dict(lowercase , param_name="crop_size" ) if not valid_images(lowercase ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) lowercase_ :List[str] = make_batched(lowercase ) lowercase_ :List[Any] = [ [ self._preprocess_image( image=lowercase , do_resize=lowercase , size=lowercase , resample=lowercase , do_center_crop=lowercase , crop_size=lowercase , do_rescale=lowercase , rescale_factor=lowercase , offset=lowercase , do_normalize=lowercase , image_mean=lowercase , image_std=lowercase , data_format=lowercase , ) for img in video ] for video in videos ] lowercase_ :Optional[int] = {"pixel_values": videos} return BatchFeature(data=lowercase , tensor_type=lowercase )
147
1
'''simple docstring''' import requests UpperCamelCase__ = '''https://newsapi.org/v1/articles?source=bbc-news&sortBy=top&apiKey=''' def a__ ( lowerCAmelCase__ ) -> None: # fetching a list of articles in json format UpperCAmelCase__ : Tuple = requests.get(_NEWS_API + bbc_news_api_key ).json() # each article in the list is a dict for i, article in enumerate(bbc_news_page['''articles'''] , 1 ): print(F"""{i}.) {article["title"]}""" ) if __name__ == "__main__": fetch_bbc_news(bbc_news_api_key='''<Your BBC News API key goes here>''')
181
'''simple docstring''' import json import os import unittest from transformers import BatchEncoding, LEDTokenizer, LEDTokenizerFast from transformers.models.led.tokenization_led import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, require_torch from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowerCamelCase_ ( __a , unittest.TestCase ): lowerCAmelCase__ = LEDTokenizer lowerCAmelCase__ = LEDTokenizerFast lowerCAmelCase__ = True def lowercase_ ( self : int ): '''simple docstring''' super().setUp() UpperCAmelCase__ : List[Any] = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''<unk>''', ] UpperCAmelCase__ : Optional[Any] = dict(zip(_A , range(len(_A ) ) ) ) UpperCAmelCase__ : Union[str, Any] = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] UpperCAmelCase__ : Any = {'''unk_token''': '''<unk>'''} UpperCAmelCase__ : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) UpperCAmelCase__ : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(_A ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(_A ) ) def lowercase_ ( self : Optional[int] , **_A : Any ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **_A ) def lowercase_ ( self : Union[str, Any] , **_A : Optional[Any] ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **_A ) def lowercase_ ( self : Tuple , _A : List[str] ): '''simple docstring''' return "lower newer", "lower newer" @cached_property def lowercase_ ( self : List[Any] ): '''simple docstring''' return LEDTokenizer.from_pretrained('''allenai/led-base-16384''' ) @cached_property def lowercase_ ( self : Any ): '''simple docstring''' return LEDTokenizerFast.from_pretrained('''allenai/led-base-16384''' ) @require_torch def lowercase_ ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] UpperCAmelCase__ : Dict = [0, 250, 251, 17_818, 13, 39_186, 1_938, 4, 2] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: UpperCAmelCase__ : Union[str, Any] = tokenizer(_A , max_length=len(_A ) , padding=_A , return_tensors='''pt''' ) self.assertIsInstance(_A , _A ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) UpperCAmelCase__ : int = batch.input_ids.tolist()[0] self.assertListEqual(_A , _A ) @require_torch def lowercase_ ( self : Tuple ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: UpperCAmelCase__ : List[str] = tokenizer(_A , padding=_A , return_tensors='''pt''' ) self.assertIn('''input_ids''' , _A ) self.assertIn('''attention_mask''' , _A ) self.assertNotIn('''labels''' , _A ) self.assertNotIn('''decoder_attention_mask''' , _A ) @require_torch def lowercase_ ( self : str ): '''simple docstring''' UpperCAmelCase__ : Tuple = [ '''Summary of the text.''', '''Another summary.''', ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: UpperCAmelCase__ : Optional[Any] = tokenizer(text_target=_A , max_length=32 , padding='''max_length''' , return_tensors='''pt''' ) self.assertEqual(32 , targets['''input_ids'''].shape[1] ) @require_torch def lowercase_ ( self : Tuple ): '''simple docstring''' for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: UpperCAmelCase__ : Any = tokenizer( ['''I am a small frog''' * 1_024, '''I am a small frog'''] , padding=_A , truncation=_A , return_tensors='''pt''' ) self.assertIsInstance(_A , _A ) self.assertEqual(batch.input_ids.shape , (2, 5_122) ) @require_torch def lowercase_ ( self : List[str] ): '''simple docstring''' UpperCAmelCase__ : Any = ['''A long paragraph for summarization.'''] UpperCAmelCase__ : List[Any] = [ '''Summary of the text.''', ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: UpperCAmelCase__ : Optional[Any] = tokenizer(_A , return_tensors='''pt''' ) UpperCAmelCase__ : int = tokenizer(text_target=_A , return_tensors='''pt''' ) UpperCAmelCase__ : str = inputs['''input_ids'''] UpperCAmelCase__ : Tuple = targets['''input_ids'''] self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() ) self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() ) @require_torch def lowercase_ ( self : List[str] ): '''simple docstring''' for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: UpperCAmelCase__ : Tuple = ['''Summary of the text.''', '''Another summary.'''] UpperCAmelCase__ : List[str] = [[0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, -1, -1]] UpperCAmelCase__ : List[str] = tokenizer(_A , padding=_A ) UpperCAmelCase__ : str = [[0] * len(_A ) for x in encoded_output['''input_ids''']] UpperCAmelCase__ : Any = tokenizer.pad(_A ) self.assertSequenceEqual(outputs['''global_attention_mask'''] , _A ) def lowercase_ ( self : Tuple ): '''simple docstring''' pass def lowercase_ ( self : Dict ): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): UpperCAmelCase__ : Optional[int] = self.rust_tokenizer_class.from_pretrained(_A , **_A ) UpperCAmelCase__ : int = self.tokenizer_class.from_pretrained(_A , **_A ) UpperCAmelCase__ : Any = '''A, <mask> AllenNLP sentence.''' UpperCAmelCase__ : Dict = tokenizer_r.encode_plus(_A , add_special_tokens=_A , return_token_type_ids=_A ) UpperCAmelCase__ : Optional[int] = tokenizer_p.encode_plus(_A , add_special_tokens=_A , return_token_type_ids=_A ) self.assertEqual(sum(tokens_r['''token_type_ids'''] ) , sum(tokens_p['''token_type_ids'''] ) ) self.assertEqual( sum(tokens_r['''attention_mask'''] ) / len(tokens_r['''attention_mask'''] ) , sum(tokens_p['''attention_mask'''] ) / len(tokens_p['''attention_mask'''] ) , ) UpperCAmelCase__ : str = tokenizer_r.convert_ids_to_tokens(tokens_r['''input_ids'''] ) UpperCAmelCase__ : Tuple = tokenizer_p.convert_ids_to_tokens(tokens_p['''input_ids'''] ) self.assertSequenceEqual(tokens_p['''input_ids'''] , [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] ) self.assertSequenceEqual(tokens_r['''input_ids'''] , [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] ) self.assertSequenceEqual( _A , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] ) self.assertSequenceEqual( _A , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] )
181
1
"""simple docstring""" import pytest from datasets.parallel import ParallelBackendConfig, parallel_backend from datasets.utils.py_utils import map_nested from .utils import require_dill_gt_0_3_2, require_joblibspark, require_not_windows def __lowercase ( snake_case_ : List[Any] ) ->Optional[Any]: # picklable for multiprocessing '''simple docstring''' return i + 1 @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows def __lowercase ( ) ->Optional[int]: '''simple docstring''' with parallel_backend('''spark''' ): assert ParallelBackendConfig.backend_name == "spark" __A : List[str] = [1, 2, 3] with pytest.raises(snake_case_ ): with parallel_backend('''unsupported backend''' ): map_nested(snake_case_ ,snake_case_ ,num_proc=2 ) with pytest.raises(snake_case_ ): with parallel_backend('''unsupported backend''' ): map_nested(snake_case_ ,snake_case_ ,num_proc=-1 ) @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows @pytest.mark.parametrize('''num_proc''' ,[2, -1] ) def __lowercase ( snake_case_ : Tuple ) ->str: '''simple docstring''' __A : List[str] = [1, 2] __A : Optional[int] = {'''a''': 1, '''b''': 2} __A : Union[str, Any] = {'''a''': [1, 2], '''b''': [3, 4]} __A : str = {'''a''': {'''1''': 1}, '''b''': 2} __A : Any = {'''a''': 1, '''b''': 2, '''c''': 3, '''d''': 4} __A : Tuple = [2, 3] __A : List[str] = {'''a''': 2, '''b''': 3} __A : Dict = {'''a''': [2, 3], '''b''': [4, 5]} __A : List[Any] = {'''a''': {'''1''': 2}, '''b''': 3} __A : List[Any] = {'''a''': 2, '''b''': 3, '''c''': 4, '''d''': 5} with parallel_backend('''spark''' ): assert map_nested(snake_case_ ,snake_case_ ,num_proc=snake_case_ ) == expected_map_nested_sa assert map_nested(snake_case_ ,snake_case_ ,num_proc=snake_case_ ) == expected_map_nested_sa assert map_nested(snake_case_ ,snake_case_ ,num_proc=snake_case_ ) == expected_map_nested_sa assert map_nested(snake_case_ ,snake_case_ ,num_proc=snake_case_ ) == expected_map_nested_sa assert map_nested(snake_case_ ,snake_case_ ,num_proc=snake_case_ ) == expected_map_nested_sa
356
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available a_ = { """configuration_tapas""": ["""TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP""", """TapasConfig"""], """tokenization_tapas""": ["""TapasTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ """TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST""", """TapasForMaskedLM""", """TapasForQuestionAnswering""", """TapasForSequenceClassification""", """TapasModel""", """TapasPreTrainedModel""", """load_tf_weights_in_tapas""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ """TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFTapasForMaskedLM""", """TFTapasForQuestionAnswering""", """TFTapasForSequenceClassification""", """TFTapasModel""", """TFTapasPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_tapas import TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP, TapasConfig from .tokenization_tapas import TapasTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tapas import ( TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasPreTrainedModel, load_tf_weights_in_tapas, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_tapas import ( TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TFTapasForMaskedLM, TFTapasForQuestionAnswering, TFTapasForSequenceClassification, TFTapasModel, TFTapasPreTrainedModel, ) else: import sys a_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
291
0
"""simple docstring""" from __future__ import annotations import os from collections.abc import Mapping __UpperCamelCase = tuple[int, int] class UpperCamelCase : def __init__( self, lowerCAmelCase__, lowerCAmelCase__) -> None: snake_case_ = vertices snake_case_ = { (min(lowerCAmelCase__), max(lowerCAmelCase__)): weight for edge, weight in edges.items() } def a_ ( self, lowerCAmelCase__, lowerCAmelCase__) -> None: self.vertices.add(edge[0]) self.vertices.add(edge[1]) snake_case_ = weight def a_ ( self) -> Graph: snake_case_ = Graph({min(self.vertices)}, {}) snake_case_ = 42 snake_case_ = 42 snake_case_ = 42 snake_case_ = 42 while len(subgraph.vertices) < len(self.vertices): snake_case_ = max(self.edges.values()) + 1 for edge, weight in self.edges.items(): if (edge[0] in subgraph.vertices) ^ (edge[1] in subgraph.vertices): if weight < min_weight: snake_case_ = edge snake_case_ = weight subgraph.add_edge(lowerCAmelCase__, lowerCAmelCase__) return subgraph def UpperCAmelCase ( UpperCAmelCase = "p107_network.txt" ) -> int: snake_case_ = os.path.abspath(os.path.dirname(UpperCAmelCase ) ) snake_case_ = os.path.join(UpperCAmelCase , UpperCAmelCase ) snake_case_ = {} snake_case_ = 42 snake_case_ = 42 snake_case_ = 42 with open(UpperCAmelCase ) as f: snake_case_ = f.read().strip().split('\n' ) snake_case_ = [line.split(',' ) for line in data] for edgea in range(1 , len(UpperCAmelCase ) ): for edgea in range(UpperCAmelCase ): if adjaceny_matrix[edgea][edgea] != "-": snake_case_ = int(adjaceny_matrix[edgea][edgea] ) snake_case_ = Graph(set(range(len(UpperCAmelCase ) ) ) , UpperCAmelCase ) snake_case_ = graph.prims_algorithm() snake_case_ = sum(graph.edges.values() ) snake_case_ = sum(subgraph.edges.values() ) return initial_total - optimal_total if __name__ == "__main__": print(F"""{solution() = }""")
69
from __future__ import absolute_import, division, print_function, unicode_literals from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers import RobertaConfig from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.roberta.modeling_roberta import ( ROBERTA_INPUTS_DOCSTRING, ROBERTA_START_DOCSTRING, RobertaEmbeddings, ) from .modeling_highway_bert import BertPreTrainedModel, DeeBertModel, HighwayException, entropy @add_start_docstrings( "The RoBERTa Model transformer with early exiting (DeeRoBERTa). ",UpperCamelCase__,) class lowercase ( UpperCamelCase__ ): _a = RobertaConfig _a = "roberta" def __init__( self , _a ) -> Optional[int]: super().__init__(_a ) _A : Union[str, Any] = RobertaEmbeddings(_a ) self.init_weights() @add_start_docstrings( "RoBERTa Model (with early exiting - DeeRoBERTa) with a classifier on top,\n also takes care of multi-layer training. ",UpperCamelCase__,) class lowercase ( UpperCamelCase__ ): _a = RobertaConfig _a = "roberta" def __init__( self , _a ) -> str: super().__init__(_a ) _A : Any = config.num_labels _A : Dict = config.num_hidden_layers _A : List[str] = DeeRobertaModel(_a ) _A : int = nn.Dropout(config.hidden_dropout_prob ) _A : int = nn.Linear(config.hidden_size , self.config.num_labels ) @add_start_docstrings_to_model_forward(_a ) def a__ ( self , _a=None , _a=None , _a=None , _a=None , _a=None , _a=None , _a=None , _a=-1 , _a=False , ) -> Any: _A : Optional[int] = self.num_layers try: _A : List[str] = self.roberta( _a , attention_mask=_a , token_type_ids=_a , position_ids=_a , head_mask=_a , inputs_embeds=_a , ) _A : List[str] = outputs[1] _A : List[str] = self.dropout(_a ) _A : Optional[Any] = self.classifier(_a ) _A : List[Any] = (logits,) + outputs[2:] # add hidden states and attention if they are here except HighwayException as e: _A : List[Any] = e.message _A : Optional[int] = e.exit_layer _A : Optional[int] = outputs[0] if not self.training: _A : int = entropy(_a ) _A : int = [] _A : int = [] if labels is not None: if self.num_labels == 1: # We are doing regression _A : Union[str, Any] = MSELoss() _A : Tuple = loss_fct(logits.view(-1 ) , labels.view(-1 ) ) else: _A : List[Any] = CrossEntropyLoss() _A : Dict = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) # work with highway exits _A : Optional[Any] = [] for highway_exit in outputs[-1]: _A : Tuple = highway_exit[0] if not self.training: highway_logits_all.append(_a ) highway_entropy.append(highway_exit[2] ) if self.num_labels == 1: # We are doing regression _A : List[str] = MSELoss() _A : Optional[int] = loss_fct(highway_logits.view(-1 ) , labels.view(-1 ) ) else: _A : List[Any] = CrossEntropyLoss() _A : Tuple = loss_fct(highway_logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) highway_losses.append(_a ) if train_highway: _A : Dict = (sum(highway_losses[:-1] ),) + outputs # exclude the final highway, of course else: _A : int = (loss,) + outputs if not self.training: _A : Optional[Any] = outputs + ((original_entropy, highway_entropy), exit_layer) if output_layer >= 0: _A : Union[str, Any] = ( (outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:] ) # use the highway of the last layer return outputs # (loss), logits, (hidden_states), (attentions), entropy
26
0
from __future__ import annotations def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : list , __SCREAMING_SNAKE_CASE : int ): '''simple docstring''' # Checks if the entire collection has been sorted if len(__SCREAMING_SNAKE_CASE ) <= 1 or n <= 1: return insert_next(__SCREAMING_SNAKE_CASE , n - 1 ) rec_insertion_sort(__SCREAMING_SNAKE_CASE , n - 1 ) def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : list , __SCREAMING_SNAKE_CASE : int ): '''simple docstring''' # Checks order between adjacent elements if index >= len(__SCREAMING_SNAKE_CASE ) or collection[index - 1] <= collection[index]: return # Swaps adjacent elements since they are not in ascending order __snake_case , __snake_case : int = ( collection[index], collection[index - 1], ) insert_next(__SCREAMING_SNAKE_CASE , index + 1 ) if __name__ == "__main__": lowercase_ = input("Enter integers separated by spaces: ") lowercase_ = [int(num) for num in numbers.split()] rec_insertion_sort(number_list, len(number_list)) print(number_list)
20
import math from typing import Optional import numpy as np from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { "facebook/encodec_24khz": "https://huggingface.co/facebook/encodec_24khz/resolve/main/config.json", "facebook/encodec_48khz": "https://huggingface.co/facebook/encodec_48khz/resolve/main/config.json", } class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ): A : List[Any] = "encodec" def __init__( self : Tuple , _lowerCAmelCase : Union[str, Any]=[1.5, 3.0, 6.0, 12.0, 24.0] , _lowerCAmelCase : Tuple=2_40_00 , _lowerCAmelCase : List[Any]=1 , _lowerCAmelCase : Optional[int]=False , _lowerCAmelCase : Optional[Any]=None , _lowerCAmelCase : Union[str, Any]=None , _lowerCAmelCase : int=1_28 , _lowerCAmelCase : List[Any]=32 , _lowerCAmelCase : Optional[Any]=1 , _lowerCAmelCase : Union[str, Any]=[8, 5, 4, 2] , _lowerCAmelCase : str="weight_norm" , _lowerCAmelCase : Tuple=7 , _lowerCAmelCase : str=7 , _lowerCAmelCase : Any=3 , _lowerCAmelCase : int=2 , _lowerCAmelCase : str=True , _lowerCAmelCase : Dict="reflect" , _lowerCAmelCase : Tuple=2 , _lowerCAmelCase : List[Any]=2 , _lowerCAmelCase : int=1.0 , _lowerCAmelCase : Optional[int]=10_24 , _lowerCAmelCase : int=None , _lowerCAmelCase : List[str]=True , **_lowerCAmelCase : List[Any] , ): __snake_case : Optional[int] = target_bandwidths __snake_case : int = sampling_rate __snake_case : List[Any] = audio_channels __snake_case : str = normalize __snake_case : Union[str, Any] = chunk_length_s __snake_case : Union[str, Any] = overlap __snake_case : Union[str, Any] = hidden_size __snake_case : Union[str, Any] = num_filters __snake_case : Optional[Any] = num_residual_layers __snake_case : List[Any] = upsampling_ratios __snake_case : List[str] = norm_type __snake_case : Union[str, Any] = kernel_size __snake_case : Optional[int] = last_kernel_size __snake_case : Optional[Any] = residual_kernel_size __snake_case : Dict = dilation_growth_rate __snake_case : int = use_causal_conv __snake_case : Tuple = pad_mode __snake_case : str = compress __snake_case : Optional[Any] = num_lstm_layers __snake_case : List[Any] = trim_right_ratio __snake_case : Any = codebook_size __snake_case : int = codebook_dim if codebook_dim is not None else hidden_size __snake_case : int = use_conv_shortcut if self.norm_type not in ["weight_norm", "time_group_norm"]: raise ValueError( f'''self.norm_type must be one of `"weight_norm"`, `"time_group_norm"`), got {self.norm_type}''' ) super().__init__(**_lowerCAmelCase ) @property def snake_case__ ( self : int ): if self.chunk_length_s is None: return None else: return int(self.chunk_length_s * self.sampling_rate ) @property def snake_case__ ( self : int ): if self.chunk_length_s is None or self.overlap is None: return None else: return max(1 , int((1.0 - self.overlap) * self.chunk_length ) ) @property def snake_case__ ( self : Union[str, Any] ): __snake_case : List[str] = np.prod(self.upsampling_ratios ) return math.ceil(self.sampling_rate / hop_length ) @property def snake_case__ ( self : Tuple ): return int(10_00 * self.target_bandwidths[-1] // (self.frame_rate * 10) )
20
1
from __future__ import annotations import time lowerCamelCase_ = list[tuple[int, int]] lowerCamelCase_ = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] lowerCamelCase_ = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right class __A: """simple docstring""" def __init__(self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): UpperCamelCase__ = pos_x UpperCamelCase__ = pos_y UpperCamelCase__ = (pos_y, pos_x) UpperCamelCase__ = goal_x UpperCamelCase__ = goal_y UpperCamelCase__ = parent class __A: """simple docstring""" def __init__(self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): UpperCamelCase__ = Node(start[1] , start[0] , goal[1] , goal[0] , SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = Node(goal[1] , goal[0] , goal[1] , goal[0] , SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = [self.start] UpperCamelCase__ = False def UpperCAmelCase_ (self ): while self.node_queue: UpperCamelCase__ = self.node_queue.pop(0 ) if current_node.pos == self.target.pos: UpperCamelCase__ = True return self.retrace_path(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = self.get_successors(SCREAMING_SNAKE_CASE_ ) for node in successors: self.node_queue.append(SCREAMING_SNAKE_CASE_ ) if not self.reached: return [self.start.pos] return None def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ ): UpperCamelCase__ = [] for action in delta: UpperCamelCase__ = parent.pos_x + action[1] UpperCamelCase__ = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(SCREAMING_SNAKE_CASE_ ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , self.target.pos_y , self.target.pos_x , SCREAMING_SNAKE_CASE_ ) ) return successors def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ ): UpperCamelCase__ = node UpperCamelCase__ = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) UpperCamelCase__ = current_node.parent path.reverse() return path class __A: """simple docstring""" def __init__(self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): UpperCamelCase__ = BreadthFirstSearch(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = BreadthFirstSearch(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = False def UpperCAmelCase_ (self ): while self.fwd_bfs.node_queue or self.bwd_bfs.node_queue: UpperCamelCase__ = self.fwd_bfs.node_queue.pop(0 ) UpperCamelCase__ = self.bwd_bfs.node_queue.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: UpperCamelCase__ = True return self.retrace_bidirectional_path( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = current_bwd_node UpperCamelCase__ = current_fwd_node UpperCamelCase__ = { self.fwd_bfs: self.fwd_bfs.get_successors(SCREAMING_SNAKE_CASE_ ), self.bwd_bfs: self.bwd_bfs.get_successors(SCREAMING_SNAKE_CASE_ ), } for bfs in [self.fwd_bfs, self.bwd_bfs]: for node in successors[bfs]: bfs.node_queue.append(SCREAMING_SNAKE_CASE_ ) if not self.reached: return [self.fwd_bfs.start.pos] return None def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): UpperCamelCase__ = self.fwd_bfs.retrace_path(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = self.bwd_bfs.retrace_path(SCREAMING_SNAKE_CASE_ ) bwd_path.pop() bwd_path.reverse() UpperCamelCase__ = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] import doctest doctest.testmod() lowerCamelCase_ = (0, 0) lowerCamelCase_ = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) lowerCamelCase_ = time.time() lowerCamelCase_ = BreadthFirstSearch(init, goal) lowerCamelCase_ = bfs.search() lowerCamelCase_ = time.time() - start_bfs_time print('''Unidirectional BFS computation time : ''', bfs_time) lowerCamelCase_ = time.time() lowerCamelCase_ = BidirectionalBreadthFirstSearch(init, goal) lowerCamelCase_ = bd_bfs.search() lowerCamelCase_ = time.time() - start_bd_bfs_time print('''Bidirectional BFS computation time : ''', bd_bfs_time)
244
from __future__ import annotations import inspect import unittest from transformers import ViTConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFViTForImageClassification, TFViTModel if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class __A: """simple docstring""" def __init__(self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=13 , SCREAMING_SNAKE_CASE_=30 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=37 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=10 , SCREAMING_SNAKE_CASE_=0.02 , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=None , ): UpperCamelCase__ = parent UpperCamelCase__ = batch_size UpperCamelCase__ = image_size UpperCamelCase__ = patch_size UpperCamelCase__ = num_channels UpperCamelCase__ = is_training UpperCamelCase__ = use_labels UpperCamelCase__ = hidden_size UpperCamelCase__ = num_hidden_layers UpperCamelCase__ = num_attention_heads UpperCamelCase__ = intermediate_size UpperCamelCase__ = hidden_act UpperCamelCase__ = hidden_dropout_prob UpperCamelCase__ = attention_probs_dropout_prob UpperCamelCase__ = type_sequence_label_size UpperCamelCase__ = initializer_range UpperCamelCase__ = scope # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) UpperCamelCase__ = (image_size // patch_size) ** 2 UpperCamelCase__ = num_patches + 1 def UpperCAmelCase_ (self ): UpperCamelCase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase__ = None if self.use_labels: UpperCamelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase__ = self.get_config() return config, pixel_values, labels def UpperCAmelCase_ (self ): return ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=SCREAMING_SNAKE_CASE_ , initializer_range=self.initializer_range , ) def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): UpperCamelCase__ = TFViTModel(config=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = model(SCREAMING_SNAKE_CASE_ , training=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # Test with an image with different size than the one specified in config. UpperCamelCase__ = self.image_size // 2 UpperCamelCase__ = pixel_values[:, :, :image_size, :image_size] UpperCamelCase__ = model(SCREAMING_SNAKE_CASE_ , interpolate_pos_encoding=SCREAMING_SNAKE_CASE_ , training=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = (image_size // self.patch_size) ** 2 + 1 self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, seq_length, self.hidden_size) ) def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): UpperCamelCase__ = self.type_sequence_label_size UpperCamelCase__ = TFViTForImageClassification(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = model(SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ , training=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # Test with an image with different size than the one specified in config. UpperCamelCase__ = self.image_size // 2 UpperCamelCase__ = pixel_values[:, :, :image_size, :image_size] UpperCamelCase__ = model(SCREAMING_SNAKE_CASE_ , interpolate_pos_encoding=SCREAMING_SNAKE_CASE_ , training=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images UpperCamelCase__ = 1 UpperCamelCase__ = TFViTForImageClassification(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCamelCase__ = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def UpperCAmelCase_ (self ): UpperCamelCase__ = self.prepare_config_and_inputs() UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = config_and_inputs UpperCamelCase__ = {"""pixel_values""": pixel_values} return config, inputs_dict @require_tf class __A( __lowerCamelCase , __lowerCamelCase , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE__ = (TFViTModel, TFViTForImageClassification) if is_tf_available() else () SCREAMING_SNAKE_CASE__ = ( {"""feature-extraction""": TFViTModel, """image-classification""": TFViTForImageClassification} if is_tf_available() else {} ) SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = False def UpperCAmelCase_ (self ): UpperCamelCase__ = TFViTModelTester(self ) UpperCamelCase__ = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE_ , has_text_modality=SCREAMING_SNAKE_CASE_ , hidden_size=37 ) def UpperCAmelCase_ (self ): self.config_tester.run_common_tests() @unittest.skip(reason="""ViT does not use inputs_embeds""" ) def UpperCAmelCase_ (self ): pass @unittest.skip(reason="""ViT does not use inputs_embeds""" ) def UpperCAmelCase_ (self ): pass def UpperCAmelCase_ (self ): UpperCamelCase__ , UpperCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase__ = model_class(SCREAMING_SNAKE_CASE_ ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) UpperCamelCase__ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(SCREAMING_SNAKE_CASE_ , tf.keras.layers.Layer ) ) def UpperCAmelCase_ (self ): UpperCamelCase__ , UpperCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase__ = model_class(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase__ = [*signature.parameters.keys()] UpperCamelCase__ = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase_ (self ): UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase_ (self ): UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*SCREAMING_SNAKE_CASE_ ) @slow def UpperCAmelCase_ (self ): UpperCamelCase__ = TFViTModel.from_pretrained("""google/vit-base-patch16-224""" ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) def __magic_name__ ( ): '''simple docstring''' UpperCamelCase__ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_tf @require_vision class __A( unittest.TestCase ): """simple docstring""" @cached_property def UpperCAmelCase_ (self ): return ViTImageProcessor.from_pretrained("""google/vit-base-patch16-224""" ) if is_vision_available() else None @slow def UpperCAmelCase_ (self ): UpperCamelCase__ = TFViTForImageClassification.from_pretrained("""google/vit-base-patch16-224""" ) UpperCamelCase__ = self.default_image_processor UpperCamelCase__ = prepare_img() UpperCamelCase__ = image_processor(images=SCREAMING_SNAKE_CASE_ , return_tensors="""tf""" ) # forward pass UpperCamelCase__ = model(**SCREAMING_SNAKE_CASE_ ) # verify the logits UpperCamelCase__ = tf.TensorShape((1, 10_00) ) self.assertEqual(outputs.logits.shape , SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = tf.constant([-0.2744, 0.8215, -0.0836] ) tf.debugging.assert_near(outputs.logits[0, :3] , SCREAMING_SNAKE_CASE_ , atol=1E-4 )
244
1
'''simple docstring''' import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow if is_torch_available(): import torch from transformers import XLMRobertaModel @require_sentencepiece @require_tokenizers @require_torch class UpperCamelCase_ (unittest.TestCase ): """simple docstring""" @slow def _a ( self : int ): """simple docstring""" A_ : Optional[Any] = XLMRobertaModel.from_pretrained('''xlm-roberta-base''' ) A_ : Any = torch.tensor([[0, 581, 10269, 83, 99942, 136, 60742, 23, 70, 80583, 18276, 2]] ) # The dog is cute and lives in the garden house A_ : List[str] = torch.Size((1, 12, 768) ) # batch_size, sequence_length, embedding_vector_dim A_ : str = torch.tensor( [[-0.01_01, 0.12_18, -0.08_03, 0.08_01, 0.13_27, 0.07_76, -0.12_15, 0.23_83, 0.33_38, 0.31_06, 0.03_00, 0.02_52]] ) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): A_ : Union[str, Any] = model(_lowerCamelCase )['''last_hidden_state'''].detach() self.assertEqual(output.shape , _lowerCamelCase ) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , _lowerCamelCase , atol=1E-3 ) ) @slow def _a ( self : str ): """simple docstring""" A_ : Optional[Any] = XLMRobertaModel.from_pretrained('''xlm-roberta-large''' ) A_ : Union[str, Any] = torch.tensor([[0, 581, 10269, 83, 99942, 136, 60742, 23, 70, 80583, 18276, 2]] ) # The dog is cute and lives in the garden house A_ : Tuple = torch.Size((1, 12, 1024) ) # batch_size, sequence_length, embedding_vector_dim A_ : Union[str, Any] = torch.tensor( [[-0.06_99, -0.03_18, 0.07_05, -0.12_41, 0.09_99, -0.05_20, 0.10_04, -0.18_38, -0.47_04, 0.14_37, 0.08_21, 0.01_26]] ) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.large') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): A_ : Tuple = model(_lowerCamelCase )['''last_hidden_state'''].detach() self.assertEqual(output.shape , _lowerCamelCase ) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , _lowerCamelCase , atol=1E-3 ) )
4
'''simple docstring''' from collections.abc import Sequence def snake_case__ ( lowerCamelCase__ : Sequence[float] , lowerCamelCase__ : bool = False ) -> float: if not arr: return 0 A_ : Union[str, Any] = 0 if allow_empty_subarrays else float('''-inf''' ) A_ : str = 0.0 for num in arr: A_ : Any = max(0 if allow_empty_subarrays else num , curr_sum + num ) A_ : Tuple = max(lowerCamelCase__ , lowerCamelCase__ ) return max_sum if __name__ == "__main__": from doctest import testmod testmod() snake_case__ = [-2, 1, -3, 4, -1, 2, 1, -5, 4] print(F'{max_subarray_sum(nums) = }')
4
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _snake_case : Dict = { 'configuration_bridgetower': [ 'BRIDGETOWER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BridgeTowerConfig', 'BridgeTowerTextConfig', 'BridgeTowerVisionConfig', ], 'processing_bridgetower': ['BridgeTowerProcessor'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case : str = ['BridgeTowerImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case : List[str] = [ 'BRIDGETOWER_PRETRAINED_MODEL_ARCHIVE_LIST', 'BridgeTowerForContrastiveLearning', 'BridgeTowerForImageAndTextRetrieval', 'BridgeTowerForMaskedLM', 'BridgeTowerModel', 'BridgeTowerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_bridgetower import ( BRIDGETOWER_PRETRAINED_CONFIG_ARCHIVE_MAP, BridgeTowerConfig, BridgeTowerTextConfig, BridgeTowerVisionConfig, ) from .processing_bridgetower import BridgeTowerProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_bridgetower import BridgeTowerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bridgetower import ( BRIDGETOWER_PRETRAINED_MODEL_ARCHIVE_LIST, BridgeTowerForContrastiveLearning, BridgeTowerForImageAndTextRetrieval, BridgeTowerForMaskedLM, BridgeTowerModel, BridgeTowerPreTrainedModel, ) else: import sys _snake_case : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure)
284
def a_ ( lowerCAmelCase_ : int ): if number < 0: raise ValueError('number must not be negative' ) return number & (number - 1) == 0 if __name__ == "__main__": import doctest doctest.testmod()
284
1
import unittest from transformers import is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, require_torch, slow if is_flax_available(): import optax from flax.training.common_utils import onehot from transformers import AutoTokenizer, FlaxMTaForConditionalGeneration from transformers.models.ta.modeling_flax_ta import shift_tokens_right @require_torch @require_sentencepiece @require_tokenizers @require_flax class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): @slow def a (self : List[str] ): """simple docstring""" __snake_case = FlaxMTaForConditionalGeneration.from_pretrained('''google/mt5-small''' ) __snake_case = AutoTokenizer.from_pretrained('''google/mt5-small''' ) __snake_case = tokenizer('''Hello there''' , return_tensors='''np''' ).input_ids __snake_case = tokenizer('''Hi I am''' , return_tensors='''np''' ).input_ids __snake_case = shift_tokens_right(a__ , model.config.pad_token_id , model.config.decoder_start_token_id ) __snake_case = model(a__ , decoder_input_ids=a__ ).logits __snake_case = optax.softmax_cross_entropy(a__ , onehot(a__ , logits.shape[-1] ) ).mean() __snake_case = -(labels.shape[-1] * loss.item()) __snake_case = -8_4.9_1_2_7 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1E-4 )
238
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) snake_case_ = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ = ['NllbTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ = ['NllbTokenizerFast'] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb import NllbTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb_fast import NllbTokenizerFast else: import sys snake_case_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
238
1
"""simple docstring""" import os import numpy import onnx def _UpperCAmelCase ( __lowerCamelCase : int , __lowerCamelCase : Optional[int] ) -> int: _snake_case = a.name _snake_case = b.name _snake_case = '''''' _snake_case = '''''' _snake_case = a == b _snake_case = name_a _snake_case = name_b return res def _UpperCAmelCase ( __lowerCamelCase : Tuple , __lowerCamelCase : Any , __lowerCamelCase : Dict ) -> List[str]: for i, input_name in enumerate(node_proto.input ): if input_name == name: node_proto.input.insert(__lowerCamelCase , __lowerCamelCase ) node_proto.input.pop(i + 1 ) if node_proto.op_type == "If": _graph_replace_input_with(node_proto.attribute[0].g , __lowerCamelCase , __lowerCamelCase ) _graph_replace_input_with(node_proto.attribute[1].g , __lowerCamelCase , __lowerCamelCase ) if node_proto.op_type == "Loop": _graph_replace_input_with(node_proto.attribute[0].g , __lowerCamelCase , __lowerCamelCase ) def _UpperCAmelCase ( __lowerCamelCase : Dict , __lowerCamelCase : Optional[int] , __lowerCamelCase : Union[str, Any] ) -> List[str]: for n in graph_proto.node: _node_replace_input_with(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) def _UpperCAmelCase ( __lowerCamelCase : Optional[int] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Dict ) -> List[str]: _snake_case = list(model.graph.initializer ) _snake_case = list(model_without_ext.graph.initializer ) for i, ref_i in ind_to_replace: assert inits_with_data[i].name == inits[i].name assert inits_with_data[ref_i].name == inits[ref_i].name assert i > ref_i _snake_case = inits[i].name _snake_case = inits[ref_i].name model_without_ext.graph.initializer.remove(inits[i] ) # for n in model.graph.node: _graph_replace_input_with(model_without_ext.graph , __lowerCamelCase , __lowerCamelCase ) def _UpperCAmelCase ( __lowerCamelCase : int ) -> Union[str, Any]: _snake_case = os.path.dirname(__lowerCamelCase ) _snake_case = os.path.basename(__lowerCamelCase ) _snake_case = onnx.load(os.path.join(__lowerCamelCase , __lowerCamelCase ) ) _snake_case = list(model.graph.initializer ) _snake_case = set() _snake_case = {} _snake_case = [] _snake_case = 0 for i in range(len(__lowerCamelCase ) ): if i in dup_set: continue for j in range(i + 1 , len(__lowerCamelCase ) ): if j in dup_set: continue if _is_equal_tensor_proto(inits[i] , inits[j] ): dup_set.add(__lowerCamelCase ) dup_set.add(__lowerCamelCase ) _snake_case = inits[j].data_type _snake_case = numpy.prod(inits[j].dims ) if dtype == 1: mem_size *= 4 elif dtype == 6: mem_size *= 4 elif dtype == 7 or dtype == 11: mem_size *= 8 else: print('''unexpected data type: ''' , __lowerCamelCase ) total_reduced_size += mem_size _snake_case = inits[i].name _snake_case = inits[j].name if name_i in dup_map: dup_map[name_i].append(__lowerCamelCase ) else: _snake_case = [name_j] ind_to_replace.append((j, i) ) print('''total reduced size: ''' , total_reduced_size / 10_24 / 10_24 / 10_24 , '''GB''' ) _snake_case = sorted(__lowerCamelCase ) _remove_dup_initializers_from_model(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) _snake_case = '''optimized_''' + model_file_name _snake_case = os.path.join(__lowerCamelCase , __lowerCamelCase ) onnx.save(__lowerCamelCase , __lowerCamelCase ) return new_model
288
"""simple docstring""" import argparse import os import re import torch from flax.traverse_util import flatten_dict from tax import checkpoints from transformers import ( AutoTokenizer, PixaStructConfig, PixaStructForConditionalGeneration, PixaStructImageProcessor, PixaStructProcessor, PixaStructTextConfig, PixaStructVisionConfig, ) def _UpperCAmelCase ( __lowerCamelCase : Tuple ) -> Optional[int]: _snake_case = checkpoints.load_tax_checkpoint(__lowerCamelCase ) _snake_case = flatten_dict(__lowerCamelCase ) return flax_params def _UpperCAmelCase ( __lowerCamelCase : Dict ) -> Optional[int]: _snake_case = {} _snake_case = { '''token_embedder''': '''embeddings''', '''encoder_norm''': '''layernorm''', '''kernel''': '''weight''', '''.out''': '''.output''', '''scale''': '''weight''', '''embedders_0.pos_embedding''': '''row_embedder.weight''', '''embedders_1.pos_embedding''': '''column_embedder.weight''', } _snake_case = { '''query''': '''attention.query''', '''key''': '''attention.key''', '''value''': '''attention.value''', '''output.dense''': '''output''', '''encoder_decoder_attention.o''': '''encoder_decoder_attention.attention.o''', '''pre_self_attention_layer_norm''': '''self_attention.layer_norm''', '''pre_cross_attention_layer_norm''': '''encoder_decoder_attention.layer_norm''', '''mlp.''': '''mlp.DenseReluDense.''', '''pre_mlp_layer_norm''': '''mlp.layer_norm''', '''self_attention.o''': '''self_attention.attention.o''', '''decoder.embeddings.embedding''': '''decoder.embed_tokens.weight''', '''decoder.relpos_bias.rel_embedding''': '''decoder.layer.0.self_attention.attention.relative_attention_bias.weight''', '''decoder.decoder_norm.weight''': '''decoder.final_layer_norm.weight''', '''decoder.logits_dense.weight''': '''decoder.lm_head.weight''', } for key in flax_dict.keys(): if "target" in key: # remove the first prefix from the key _snake_case = '''.'''.join(key[1:] ) # rename the key for old, new in CONVERSION_MAPPING.items(): _snake_case = new_key.replace(__lowerCamelCase , __lowerCamelCase ) if "decoder" in new_key: for old, new in DECODER_CONVERSION_MAPPING.items(): _snake_case = new_key.replace(__lowerCamelCase , __lowerCamelCase ) if "layers" in new_key and "decoder" not in new_key: # use regex to replace the layer number _snake_case = re.sub(R'''layers_(\d+)''' , R'''layer.\1''' , __lowerCamelCase ) _snake_case = new_key.replace('''encoder''' , '''encoder.encoder''' ) elif "layers" in new_key and "decoder" in new_key: # use regex to replace the layer number _snake_case = re.sub(R'''layers_(\d+)''' , R'''layer.\1''' , __lowerCamelCase ) _snake_case = flax_dict[key] _snake_case = {} # convert converted_dict into torch format for key in converted_dict.keys(): if ("embed_tokens" not in key) and ("embedder" not in key): _snake_case = torch.from_numpy(converted_dict[key].T ) else: _snake_case = torch.from_numpy(converted_dict[key] ) return converted_torch_dict def _UpperCAmelCase ( __lowerCamelCase : List[str] , __lowerCamelCase : Dict , __lowerCamelCase : Any=False , __lowerCamelCase : Optional[int]=False ) -> int: _snake_case = get_flax_param(__lowerCamelCase ) if not use_large: _snake_case = PixaStructVisionConfig() _snake_case = PixaStructTextConfig() else: _snake_case = PixaStructVisionConfig( hidden_size=15_36 , d_ff=39_68 , num_attention_heads=24 , num_hidden_layers=18 ) _snake_case = PixaStructTextConfig(hidden_size=15_36 , d_ff=39_68 , num_heads=24 , num_layers=18 ) _snake_case = PixaStructConfig( vision_config=encoder_config.to_dict() , text_config=decoder_config.to_dict() , is_vqa=__lowerCamelCase ) _snake_case = PixaStructForConditionalGeneration(__lowerCamelCase ) _snake_case = rename_and_convert_flax_params(__lowerCamelCase ) model.load_state_dict(__lowerCamelCase ) _snake_case = AutoTokenizer.from_pretrained('''ybelkada/test-pix2struct-tokenizer''' ) _snake_case = PixaStructImageProcessor() _snake_case = PixaStructProcessor(image_processor=__lowerCamelCase , tokenizer=__lowerCamelCase ) if use_large: _snake_case = 40_96 _snake_case = True # mkdir if needed os.makedirs(__lowerCamelCase , exist_ok=__lowerCamelCase ) model.save_pretrained(__lowerCamelCase ) processor.save_pretrained(__lowerCamelCase ) print('''Model saved in {}'''.format(__lowerCamelCase ) ) if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() parser.add_argument('--t5x_checkpoint_path', default=None, type=str, help='Path to the original T5x checkpoint.') parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--use_large', action='store_true', help='Use large model.') parser.add_argument('--is_vqa', action='store_true', help='Use large model.') UpperCAmelCase__ = parser.parse_args() convert_pixastruct_original_pytorch_checkpoint_to_hf( args.tax_checkpoint_path, args.pytorch_dump_folder_path, args.use_large )
288
1
from typing import Optional import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_outputs import ( BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, ) from ...modeling_utils import PreTrainedModel from ...utils import logging from .configuration_regnet import RegNetConfig UpperCAmelCase_ : str = logging.get_logger(__name__) # General docstring UpperCAmelCase_ : Any = "RegNetConfig" # Base docstring UpperCAmelCase_ : List[str] = "facebook/regnet-y-040" UpperCAmelCase_ : Union[str, Any] = [1, 1_088, 7, 7] # Image classification docstring UpperCAmelCase_ : Any = "facebook/regnet-y-040" UpperCAmelCase_ : Dict = "tabby, tabby cat" UpperCAmelCase_ : Union[str, Any] = [ "facebook/regnet-y-040", # See all regnet models at https://huggingface.co/models?filter=regnet ] class UpperCamelCase ( nn.Module ): def __init__( self , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = 3 , UpperCAmelCase__ = 1 , UpperCAmelCase__ = 1 , UpperCAmelCase__ = "relu" , ): super().__init__() A__ = nn.Convad( UpperCAmelCase__ , UpperCAmelCase__ , kernel_size=UpperCAmelCase__ , stride=UpperCAmelCase__ , padding=kernel_size // 2 , groups=UpperCAmelCase__ , bias=UpperCAmelCase__ , ) A__ = nn.BatchNormad(UpperCAmelCase__ ) A__ = ACTaFN[activation] if activation is not None else nn.Identity() def __A ( self , UpperCAmelCase__ ): A__ = self.convolution(UpperCAmelCase__ ) A__ = self.normalization(UpperCAmelCase__ ) A__ = self.activation(UpperCAmelCase__ ) return hidden_state class UpperCamelCase ( nn.Module ): def __init__( self , UpperCAmelCase__ ): super().__init__() A__ = RegNetConvLayer( config.num_channels , config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act ) A__ = config.num_channels def __A ( self , UpperCAmelCase__ ): A__ = pixel_values.shape[1] if num_channels != self.num_channels: raise ValueError( "Make sure that the channel dimension of the pixel values match with the one set in the configuration." ) A__ = self.embedder(UpperCAmelCase__ ) return hidden_state class UpperCamelCase ( nn.Module ): def __init__( self , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = 2 ): super().__init__() A__ = nn.Convad(UpperCAmelCase__ , UpperCAmelCase__ , kernel_size=1 , stride=UpperCAmelCase__ , bias=UpperCAmelCase__ ) A__ = nn.BatchNormad(UpperCAmelCase__ ) def __A ( self , UpperCAmelCase__ ): A__ = self.convolution(UpperCAmelCase__ ) A__ = self.normalization(UpperCAmelCase__ ) return hidden_state class UpperCamelCase ( nn.Module ): def __init__( self , UpperCAmelCase__ , UpperCAmelCase__ ): super().__init__() A__ = nn.AdaptiveAvgPoolad((1, 1) ) A__ = nn.Sequential( nn.Convad(UpperCAmelCase__ , UpperCAmelCase__ , kernel_size=1 ) , nn.ReLU() , nn.Convad(UpperCAmelCase__ , UpperCAmelCase__ , kernel_size=1 ) , nn.Sigmoid() , ) def __A ( self , UpperCAmelCase__ ): # b c h w -> b c 1 1 A__ = self.pooler(UpperCAmelCase__ ) A__ = self.attention(UpperCAmelCase__ ) A__ = hidden_state * attention return hidden_state class UpperCamelCase ( nn.Module ): def __init__( self , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = 1 ): super().__init__() A__ = in_channels != out_channels or stride != 1 A__ = max(1 , out_channels // config.groups_width ) A__ = ( RegNetShortCut(UpperCAmelCase__ , UpperCAmelCase__ , stride=UpperCAmelCase__ ) if should_apply_shortcut else nn.Identity() ) A__ = nn.Sequential( RegNetConvLayer(UpperCAmelCase__ , UpperCAmelCase__ , kernel_size=1 , activation=config.hidden_act ) , RegNetConvLayer(UpperCAmelCase__ , UpperCAmelCase__ , stride=UpperCAmelCase__ , groups=UpperCAmelCase__ , activation=config.hidden_act ) , RegNetConvLayer(UpperCAmelCase__ , UpperCAmelCase__ , kernel_size=1 , activation=UpperCAmelCase__ ) , ) A__ = ACTaFN[config.hidden_act] def __A ( self , UpperCAmelCase__ ): A__ = hidden_state A__ = self.layer(UpperCAmelCase__ ) A__ = self.shortcut(UpperCAmelCase__ ) hidden_state += residual A__ = self.activation(UpperCAmelCase__ ) return hidden_state class UpperCamelCase ( nn.Module ): def __init__( self , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = 1 ): super().__init__() A__ = in_channels != out_channels or stride != 1 A__ = max(1 , out_channels // config.groups_width ) A__ = ( RegNetShortCut(UpperCAmelCase__ , UpperCAmelCase__ , stride=UpperCAmelCase__ ) if should_apply_shortcut else nn.Identity() ) A__ = nn.Sequential( RegNetConvLayer(UpperCAmelCase__ , UpperCAmelCase__ , kernel_size=1 , activation=config.hidden_act ) , RegNetConvLayer(UpperCAmelCase__ , UpperCAmelCase__ , stride=UpperCAmelCase__ , groups=UpperCAmelCase__ , activation=config.hidden_act ) , RegNetSELayer(UpperCAmelCase__ , reduced_channels=int(round(in_channels / 4 ) ) ) , RegNetConvLayer(UpperCAmelCase__ , UpperCAmelCase__ , kernel_size=1 , activation=UpperCAmelCase__ ) , ) A__ = ACTaFN[config.hidden_act] def __A ( self , UpperCAmelCase__ ): A__ = hidden_state A__ = self.layer(UpperCAmelCase__ ) A__ = self.shortcut(UpperCAmelCase__ ) hidden_state += residual A__ = self.activation(UpperCAmelCase__ ) return hidden_state class UpperCamelCase ( nn.Module ): def __init__( self , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = 2 , UpperCAmelCase__ = 2 , ): super().__init__() A__ = RegNetXLayer if config.layer_type == "x" else RegNetYLayer A__ = nn.Sequential( # downsampling is done in the first layer with stride of 2 layer( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , stride=UpperCAmelCase__ , ) , *[layer(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) for _ in range(depth - 1 )] , ) def __A ( self , UpperCAmelCase__ ): A__ = self.layers(UpperCAmelCase__ ) return hidden_state class UpperCamelCase ( nn.Module ): def __init__( self , UpperCAmelCase__ ): super().__init__() A__ = nn.ModuleList([] ) # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( RegNetStage( UpperCAmelCase__ , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , ) ) A__ = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for (in_channels, out_channels), depth in zip(UpperCAmelCase__ , config.depths[1:] ): self.stages.append(RegNetStage(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , depth=UpperCAmelCase__ ) ) def __A ( self , UpperCAmelCase__ , UpperCAmelCase__ = False , UpperCAmelCase__ = True ): A__ = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: A__ = hidden_states + (hidden_state,) A__ = stage_module(UpperCAmelCase__ ) if output_hidden_states: A__ = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return BaseModelOutputWithNoAttention(last_hidden_state=UpperCAmelCase__ , hidden_states=UpperCAmelCase__ ) class UpperCamelCase ( _UpperCAmelCase ): lowerCAmelCase : Any = RegNetConfig lowerCAmelCase : Tuple = """regnet""" lowerCAmelCase : Optional[Any] = """pixel_values""" lowerCAmelCase : Optional[int] = True def __A ( self , UpperCAmelCase__ ): if isinstance(UpperCAmelCase__ , nn.Convad ): nn.init.kaiming_normal_(module.weight , mode="fan_out" , nonlinearity="relu" ) elif isinstance(UpperCAmelCase__ , (nn.BatchNormad, nn.GroupNorm) ): nn.init.constant_(module.weight , 1 ) nn.init.constant_(module.bias , 0 ) def __A ( self , UpperCAmelCase__ , UpperCAmelCase__=False ): if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): A__ = value UpperCAmelCase_ : Tuple = R"\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it\n as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`RegNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n" UpperCAmelCase_ : Any = R"\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConvNextImageProcessor.__call__`] for details.\n\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple.\n" @add_start_docstrings( """The bare RegNet model outputting raw features without any specific head on top.""" , _UpperCAmelCase , ) # Copied from transformers.models.resnet.modeling_resnet.ResNetModel with RESNET->REGNET,ResNet->RegNet class UpperCamelCase ( _UpperCAmelCase ): def __init__( self , UpperCAmelCase__ ): super().__init__(UpperCAmelCase__ ) A__ = config A__ = RegNetEmbeddings(UpperCAmelCase__ ) A__ = RegNetEncoder(UpperCAmelCase__ ) A__ = nn.AdaptiveAvgPoolad((1, 1) ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(UpperCAmelCase__ ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=UpperCAmelCase__ , config_class=_CONFIG_FOR_DOC , modality="vision" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def __A ( self , UpperCAmelCase__ , UpperCAmelCase__ = None , UpperCAmelCase__ = None ): A__ = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) A__ = return_dict if return_dict is not None else self.config.use_return_dict A__ = self.embedder(UpperCAmelCase__ ) A__ = self.encoder( UpperCAmelCase__ , output_hidden_states=UpperCAmelCase__ , return_dict=UpperCAmelCase__ ) A__ = encoder_outputs[0] A__ = self.pooler(UpperCAmelCase__ ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=UpperCAmelCase__ , pooler_output=UpperCAmelCase__ , hidden_states=encoder_outputs.hidden_states , ) @add_start_docstrings( """ RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for ImageNet. """ , _UpperCAmelCase , ) # Copied from transformers.models.resnet.modeling_resnet.ResNetForImageClassification with RESNET->REGNET,ResNet->RegNet,resnet->regnet class UpperCamelCase ( _UpperCAmelCase ): def __init__( self , UpperCAmelCase__ ): super().__init__(UpperCAmelCase__ ) A__ = config.num_labels A__ = RegNetModel(UpperCAmelCase__ ) # classification head A__ = nn.Sequential( nn.Flatten() , nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() , ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(UpperCAmelCase__ ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=UpperCAmelCase__ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def __A ( self , UpperCAmelCase__ = None , UpperCAmelCase__ = None , UpperCAmelCase__ = None , UpperCAmelCase__ = None , ): A__ = return_dict if return_dict is not None else self.config.use_return_dict A__ = self.regnet(UpperCAmelCase__ , output_hidden_states=UpperCAmelCase__ , return_dict=UpperCAmelCase__ ) A__ = outputs.pooler_output if return_dict else outputs[1] A__ = self.classifier(UpperCAmelCase__ ) A__ = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: A__ = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): A__ = "single_label_classification" else: A__ = "multi_label_classification" if self.config.problem_type == "regression": A__ = MSELoss() if self.num_labels == 1: A__ = loss_fct(logits.squeeze() , labels.squeeze() ) else: A__ = loss_fct(UpperCAmelCase__ , UpperCAmelCase__ ) elif self.config.problem_type == "single_label_classification": A__ = CrossEntropyLoss() A__ = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": A__ = BCEWithLogitsLoss() A__ = loss_fct(UpperCAmelCase__ , UpperCAmelCase__ ) if not return_dict: A__ = (logits,) + outputs[2:] return (loss,) + output if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=UpperCAmelCase__ , logits=UpperCAmelCase__ , hidden_states=outputs.hidden_states )
198
import argparse import torch from huggingface_hub import hf_hub_download from transformers import AutoTokenizer, RobertaPreLayerNormConfig, RobertaPreLayerNormForMaskedLM from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase_ : Union[str, Any] = logging.get_logger(__name__) def UpperCamelCase ( _A : str , _A : str )-> Any: """simple docstring""" A__ = RobertaPreLayerNormConfig.from_pretrained( _A , architectures=["RobertaPreLayerNormForMaskedLM"] ) # convert state_dict A__ = torch.load(hf_hub_download(repo_id=_A , filename="pytorch_model.bin" ) ) A__ = {} for tensor_key, tensor_value in original_state_dict.items(): # The transformer implementation gives the model a unique name, rather than overwiriting 'roberta' if tensor_key.startswith("roberta." ): A__ = "roberta_prelayernorm." + tensor_key[len("roberta." ) :] # The original implementation contains weights which are not used, remove them from the state_dict if tensor_key.endswith(".self.LayerNorm.weight" ) or tensor_key.endswith(".self.LayerNorm.bias" ): continue A__ = tensor_value A__ = RobertaPreLayerNormForMaskedLM.from_pretrained( pretrained_model_name_or_path=_A , config=_A , state_dict=_A ) model.save_pretrained(_A ) # convert tokenizer A__ = AutoTokenizer.from_pretrained(_A ) tokenizer.save_pretrained(_A ) if __name__ == "__main__": UpperCAmelCase_ : str = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint-repo", default=None, type=str, required=True, help="Path the official PyTorch dump, e.g. 'andreasmadsen/efficient_mlm_m0.40'.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) UpperCAmelCase_ : List[Any] = parser.parse_args() convert_roberta_prelayernorm_checkpoint_to_pytorch(args.checkpoint_repo, args.pytorch_dump_folder_path)
198
1
import argparse import pickle import numpy as np import torch from torch import nn from transformers import ReformerConfig, ReformerModelWithLMHead from transformers.utils import logging logging.set_verbosity_info() def _A ( _lowercase , _lowercase , _lowercase=None ) -> List[Any]: """simple docstring""" assert torch_layer.weight.shape == weight.shape, f'''{torch_layer} layer.weight does not match''' __UpperCamelCase = nn.Parameter(__snake_case ) if bias is not None: assert torch_layer.bias.shape == bias.shape, f'''{torch_layer} layer.bias does not match''' __UpperCamelCase = nn.Parameter(__snake_case ) def _A ( _lowercase , _lowercase , _lowercase ) -> List[Any]: """simple docstring""" __UpperCamelCase = np.asarray(weights[0] ) __UpperCamelCase = np.asarray(weights[1] ) __UpperCamelCase = np.asarray(weights[2] ) set_param( torch_layer.self_attention.query_key , torch.tensor(__snake_case ).transpose(1 , 2 ).contiguous().view(-1 , __snake_case ) , ) set_param( torch_layer.self_attention.value , torch.tensor(__snake_case ).transpose(1 , 2 ).contiguous().view(-1 , __snake_case ) , ) set_param( torch_layer.output.dense , torch.tensor(__snake_case ).view(-1 , __snake_case ).contiguous().transpose(0 , 1 ) , ) def _A ( _lowercase , _lowercase , _lowercase ) -> str: """simple docstring""" __UpperCamelCase = np.asarray(weights[0] ) __UpperCamelCase = np.asarray(weights[1] ) __UpperCamelCase = np.asarray(weights[2] ) __UpperCamelCase = np.asarray(weights[3] ) set_param( torch_layer.self_attention.query , torch.tensor(__snake_case ).transpose(1 , 2 ).contiguous().view(-1 , __snake_case ) , ) set_param( torch_layer.self_attention.key , torch.tensor(__snake_case ).transpose(1 , 2 ).contiguous().view(-1 , __snake_case ) , ) set_param( torch_layer.self_attention.value , torch.tensor(__snake_case ).transpose(1 , 2 ).contiguous().view(-1 , __snake_case ) , ) set_param( torch_layer.output.dense , torch.tensor(__snake_case ).view(-1 , __snake_case ).contiguous().transpose(0 , 1 ) , ) def _A ( _lowercase , _lowercase , _lowercase ) -> Optional[int]: """simple docstring""" __UpperCamelCase = weights[0][0][0] __UpperCamelCase = np.asarray(layer_norm_a[0] ) __UpperCamelCase = np.asarray(layer_norm_a[1] ) set_param( torch_block.attention.layer_norm , torch.tensor(__snake_case ) , torch.tensor(__snake_case ) , ) # lsh weights + output __UpperCamelCase = weights[0][1] if len(__snake_case ) < 4: set_layer_weights_in_torch_lsh(__snake_case , torch_block.attention , __snake_case ) else: set_layer_weights_in_torch_local(__snake_case , torch_block.attention , __snake_case ) # intermediate weighs __UpperCamelCase = weights[2][0][1][2] # Chunked Feed Forward if len(__snake_case ) == 4: __UpperCamelCase = intermediate_weights[2] # layernorm 2 __UpperCamelCase = np.asarray(intermediate_weights[0][0] ) __UpperCamelCase = np.asarray(intermediate_weights[0][1] ) set_param( torch_block.feed_forward.layer_norm , torch.tensor(__snake_case ) , torch.tensor(__snake_case ) , ) # intermediate dense __UpperCamelCase = np.asarray(intermediate_weights[1][0] ) __UpperCamelCase = np.asarray(intermediate_weights[1][1] ) set_param( torch_block.feed_forward.dense.dense , torch.tensor(__snake_case ).transpose(0 , 1 ).contiguous() , torch.tensor(__snake_case ) , ) # intermediate out __UpperCamelCase = np.asarray(intermediate_weights[4][0] ) __UpperCamelCase = np.asarray(intermediate_weights[4][1] ) set_param( torch_block.feed_forward.output.dense , torch.tensor(__snake_case ).transpose(0 , 1 ).contiguous() , torch.tensor(__snake_case ) , ) def _A ( _lowercase , _lowercase , _lowercase ) -> List[str]: """simple docstring""" __UpperCamelCase = torch_model.reformer # word embeds __UpperCamelCase = np.asarray(weights[1] ) set_param( torch_model_reformer.embeddings.word_embeddings , torch.tensor(__snake_case ) , ) if isinstance(weights[3] , __snake_case ): __UpperCamelCase = torch_model_reformer.embeddings.position_embeddings for emb_idx in range(len(position_embeddings.weights ) ): __UpperCamelCase = np.asarray(weights[3][emb_idx][0] ) assert ( position_embeddings.weights[emb_idx].shape == emb_weights.shape ), f'''{position_embeddings[emb_idx]} emb does not match''' __UpperCamelCase = nn.Parameter(torch.tensor(__snake_case ) ) __UpperCamelCase = weights[5] assert len(torch_model_reformer.encoder.layers ) * 4 == len( __snake_case ), "HF and trax model do not have the same number of layers" for layer_idx, layer in enumerate(torch_model_reformer.encoder.layers ): __UpperCamelCase = trax_layer_weights[4 * layer_idx : 4 * (layer_idx + 1)] set_block_weights_in_torch(__snake_case , __snake_case , __snake_case ) # output layer norm __UpperCamelCase = np.asarray(weights[7][0] ) __UpperCamelCase = np.asarray(weights[7][1] ) set_param( torch_model_reformer.encoder.layer_norm , torch.tensor(__snake_case ) , torch.tensor(__snake_case ) , ) # output embeddings __UpperCamelCase = np.asarray(weights[9][0] ) __UpperCamelCase = np.asarray(weights[9][1] ) set_param( torch_model.lm_head.decoder , torch.tensor(__snake_case ).transpose(0 , 1 ).contiguous() , torch.tensor(__snake_case ) , ) def _A ( _lowercase , _lowercase , _lowercase ) -> str: """simple docstring""" __UpperCamelCase = ReformerConfig.from_json_file(__snake_case ) print(f'''Building PyTorch model from configuration: {config}''' ) __UpperCamelCase = ReformerModelWithLMHead(__snake_case ) with open(__snake_case , 'rb' ) as f: __UpperCamelCase = pickle.load(__snake_case )["""weights"""] set_model_weights_in_torch(__snake_case , __snake_case , config.hidden_size ) # Save pytorch-model print(f'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict() , __snake_case ) if __name__ == "__main__": __snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--trax_model_pkl_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained Reformer model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) __snake_case = parser.parse_args() convert_trax_checkpoint_to_pytorch(args.trax_model_pkl_path, args.config_file, args.pytorch_dump_path)
310
'''simple docstring''' import argparse import collections import numpy as np import torch from flax import traverse_util from tax import checkpoints from transformers import MTaConfig, UMTaEncoderModel, UMTaForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() def __lowerCamelCase ( __snake_case : List[str], __snake_case : Union[str, Any], __snake_case : Dict ) -> Dict: """simple docstring""" return params[f"{prefix}/{prefix}/relpos_bias/rel_embedding"][:, i, :] def __lowerCamelCase ( __snake_case : str, __snake_case : int, __snake_case : Dict, __snake_case : int="attention" ) -> str: """simple docstring""" A__ : Union[str, Any] =np.ascontiguousarray(params[f"{prefix}/{prefix}/{layer_name}/key/kernel"][:, i, :, :] ) A__ : str =k_tmp.reshape(k_tmp.shape[0], k_tmp.shape[1] * k_tmp.shape[2] ) A__ : List[Any] =np.ascontiguousarray(params[f"{prefix}/{prefix}/{layer_name}/out/kernel"][:, i, :, :] ) A__ : Optional[int] =o_tmp.reshape(o_tmp.shape[0] * o_tmp.shape[1], o_tmp.shape[2] ) A__ : Dict =np.ascontiguousarray(params[f"{prefix}/{prefix}/{layer_name}/query/kernel"][:, i, :, :] ) A__ : Dict =q_tmp.reshape(q_tmp.shape[0], q_tmp.shape[1] * q_tmp.shape[2] ) A__ : Union[str, Any] =np.ascontiguousarray(params[f"{prefix}/{prefix}/{layer_name}/value/kernel"][:, i, :, :] ) A__ : List[str] =v_tmp.reshape(v_tmp.shape[0], v_tmp.shape[1] * v_tmp.shape[2] ) return k, o, q, v def __lowerCamelCase ( __snake_case : Dict, __snake_case : Any, __snake_case : Tuple, __snake_case : Optional[Any]=False ) -> Any: """simple docstring""" if split_mlp_wi: A__ : Any =params[f"{prefix}/{prefix}/mlp/wi_0/kernel"][:, i, :] A__ : int =params[f"{prefix}/{prefix}/mlp/wi_1/kernel"][:, i, :] A__ : Optional[Any] =(wi_a, wi_a) else: A__ : Optional[int] =params[f"{prefix}/{prefix}/mlp/wi/kernel"][:, i, :] A__ : int =params[f"{prefix}/{prefix}/mlp/wo/kernel"][:, i, :] return wi, wo def __lowerCamelCase ( __snake_case : Optional[Any], __snake_case : str, __snake_case : Any, __snake_case : int ) -> List[Any]: """simple docstring""" return params[f"{prefix}/{prefix}/{layer_name}/scale"][:, i] def __lowerCamelCase ( __snake_case : dict, *, __snake_case : int, __snake_case : bool, __snake_case : bool = False ) -> Union[str, Any]: """simple docstring""" A__ : Optional[int] =traverse_util.flatten_dict(variables["""target"""] ) A__ : int ={"""/""".join(__snake_case ): v for k, v in old.items()} # v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi A__ : List[Any] ="""encoder/encoder/mlp/wi_0/kernel""" in old print("""Split MLP:""", __snake_case ) A__ : Optional[int] =collections.OrderedDict() # Shared embeddings. A__ : List[Any] =old["""token_embedder/embedding"""] # Encoder. for i in range(__snake_case ): # Block i, layer 0 (Self Attention). A__ : Optional[Any] =tax_layer_norm_lookup(__snake_case, __snake_case, """encoder""", """pre_attention_layer_norm""" ) A__ , A__ , A__ , A__ : Optional[int] =tax_attention_lookup(__snake_case, __snake_case, """encoder""", """attention""" ) A__ : List[str] =layer_norm A__ : Dict =k.T A__ : Optional[int] =o.T A__ : str =q.T A__ : Any =v.T # Block i, layer 1 (MLP). A__ : List[Any] =tax_layer_norm_lookup(__snake_case, __snake_case, """encoder""", """pre_mlp_layer_norm""" ) A__ , A__ : int =tax_mlp_lookup(__snake_case, __snake_case, """encoder""", __snake_case ) A__ : Optional[int] =layer_norm if split_mlp_wi: A__ : List[str] =wi[0].T A__ : List[str] =wi[1].T else: A__ : Optional[int] =wi.T A__ : Optional[Any] =wo.T if scalable_attention: # convert the rel_embedding of each layer A__ : int =tax_relpos_bias_lookup( __snake_case, __snake_case, """encoder""" ).T A__ : Optional[int] =old["""encoder/encoder_norm/scale"""] if not scalable_attention: A__ : List[Any] =tax_relpos_bias_lookup( __snake_case, 0, """encoder""" ).T A__ : Tuple =tax_relpos_bias_lookup( __snake_case, 0, """decoder""" ).T if not is_encoder_only: # Decoder. for i in range(__snake_case ): # Block i, layer 0 (Self Attention). A__ : List[str] =tax_layer_norm_lookup(__snake_case, __snake_case, """decoder""", """pre_self_attention_layer_norm""" ) A__ , A__ , A__ , A__ : List[str] =tax_attention_lookup(__snake_case, __snake_case, """decoder""", """self_attention""" ) A__ : str =layer_norm A__ : List[str] =k.T A__ : int =o.T A__ : Tuple =q.T A__ : Optional[Any] =v.T # Block i, layer 1 (Cross Attention). A__ : int =tax_layer_norm_lookup(__snake_case, __snake_case, """decoder""", """pre_cross_attention_layer_norm""" ) A__ , A__ , A__ , A__ : Optional[Any] =tax_attention_lookup(__snake_case, __snake_case, """decoder""", """encoder_decoder_attention""" ) A__ : str =layer_norm A__ : Union[str, Any] =k.T A__ : str =o.T A__ : Any =q.T A__ : str =v.T # Block i, layer 2 (MLP). A__ : str =tax_layer_norm_lookup(__snake_case, __snake_case, """decoder""", """pre_mlp_layer_norm""" ) A__ , A__ : Optional[int] =tax_mlp_lookup(__snake_case, __snake_case, """decoder""", __snake_case ) A__ : Dict =layer_norm if split_mlp_wi: A__ : List[Any] =wi[0].T A__ : Union[str, Any] =wi[1].T else: A__ : Optional[int] =wi.T A__ : str =wo.T if scalable_attention: # convert the rel_embedding of each layer A__ : str =tax_relpos_bias_lookup(__snake_case, __snake_case, """decoder""" ).T A__ : str =old["""decoder/decoder_norm/scale"""] # LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead) if "decoder/logits_dense/kernel" in old: A__ : Tuple =old["""decoder/logits_dense/kernel"""].T return new def __lowerCamelCase ( __snake_case : Dict, __snake_case : bool ) -> Optional[Any]: """simple docstring""" A__ : Any =collections.OrderedDict([(k, torch.from_numpy(v.copy() )) for (k, v) in converted_params.items()] ) # Add what is missing. if "encoder.embed_tokens.weight" not in state_dict: A__ : Union[str, Any] =state_dict["""shared.weight"""] if not is_encoder_only: if "decoder.embed_tokens.weight" not in state_dict: A__ : List[str] =state_dict["""shared.weight"""] if "lm_head.weight" not in state_dict: # For old 1.0 models. print("""Using shared word embeddings as lm_head.""" ) A__ : Optional[Any] =state_dict["""shared.weight"""] return state_dict def __lowerCamelCase ( __snake_case : str, __snake_case : str, __snake_case : Optional[Any], __snake_case : int, __snake_case : Optional[int] ) -> Optional[int]: """simple docstring""" A__ : str =checkpoints.load_tax_checkpoint(__snake_case ) A__ : Optional[Any] =convert_tax_to_pytorch( __snake_case, num_layers=config.num_layers, is_encoder_only=__snake_case, scalable_attention=__snake_case ) A__ : str =make_state_dict(__snake_case, __snake_case ) model.load_state_dict(__snake_case, strict=__snake_case ) def __lowerCamelCase ( __snake_case : Optional[int], __snake_case : Dict, __snake_case : Optional[int], __snake_case : bool = False, __snake_case : bool = False, ) -> Dict: """simple docstring""" A__ : Tuple =MTaConfig.from_json_file(__snake_case ) print(f"Building PyTorch model from configuration: {config}" ) # Non-v1.1 checkpoints could also use T5Model, but this works for all. # The v1.0 checkpoints will simply have an LM head that is the word embeddings. if is_encoder_only: A__ : List[Any] =UMTaEncoderModel(__snake_case ) else: A__ : int =UMTaForConditionalGeneration(__snake_case ) # Load weights from tf checkpoint load_tax_weights_in_ta(__snake_case, __snake_case, __snake_case, __snake_case, __snake_case ) # Save pytorch-model print(f"Save PyTorch model to {pytorch_dump_path}" ) model.save_pretrained(__snake_case ) # Verify that we can load the checkpoint. model.from_pretrained(__snake_case ) print("""Done""" ) if __name__ == "__main__": __snake_case : str = argparse.ArgumentParser(description='Converts a native T5X checkpoint into a PyTorch checkpoint.') # Required parameters parser.add_argument( '--t5x_checkpoint_path', default=None, type=str, required=True, help='Path to the T5X checkpoint.' ) parser.add_argument( '--config_file', default=None, type=str, required=True, help='The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.', ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument( '--is_encoder_only', action='store_true', help='Check if the model is encoder-decoder model', default=False ) parser.add_argument( '--scalable_attention', action='store_true', help='Whether the model uses scaled attention (umt5 model)', default=False, ) __snake_case : Optional[Any] = parser.parse_args() convert_tax_checkpoint_to_pytorch( args.tax_checkpoint_path, args.config_file, args.pytorch_dump_path, args.is_encoder_only, args.scalable_attention, )
134
0
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging SCREAMING_SNAKE_CASE_ : Union[str, Any] = logging.get_logger(__name__) class a ( lowerCamelCase__ ): """simple docstring""" UpperCAmelCase = ['pixel_values'] def __init__( self: Dict , UpperCamelCase: Tuple = True , UpperCamelCase: int = None , UpperCamelCase: Optional[Any] = PILImageResampling.BILINEAR , UpperCamelCase: Optional[int] = True , UpperCamelCase: Optional[int] = None , UpperCamelCase: Dict = True , UpperCamelCase: Tuple = 1 / 2_55 , UpperCamelCase: Union[str, Any] = True , UpperCamelCase: str = None , UpperCamelCase: List[Any] = None , **UpperCamelCase: str , ): """simple docstring""" super().__init__(**UpperCamelCase ) A__ = size if size is not None else {"""shortest_edge""": 2_56} A__ = get_size_dict(UpperCamelCase , default_to_square=UpperCamelCase ) A__ = crop_size if crop_size is not None else {"""height""": 2_24, """width""": 2_24} A__ = get_size_dict(UpperCamelCase ) A__ = do_resize A__ = size A__ = resample A__ = do_center_crop A__ = crop_size A__ = do_rescale A__ = rescale_factor A__ = do_normalize A__ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN A__ = image_std if image_std is not None else IMAGENET_STANDARD_STD def UpperCamelCase ( self: List[str] , UpperCamelCase: int , UpperCamelCase: List[Any] , UpperCamelCase: Dict = PILImageResampling.BICUBIC , UpperCamelCase: Tuple = None , **UpperCamelCase: Tuple , ): """simple docstring""" A__ = get_size_dict(UpperCamelCase , default_to_square=UpperCamelCase ) if "shortest_edge" not in size: raise ValueError(f"""The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}""" ) A__ = get_resize_output_image_size(UpperCamelCase , size=size["""shortest_edge"""] , default_to_square=UpperCamelCase ) return resize(UpperCamelCase , size=UpperCamelCase , resample=UpperCamelCase , data_format=UpperCamelCase , **UpperCamelCase ) def UpperCamelCase ( self: Tuple , UpperCamelCase: Tuple , UpperCamelCase: List[Any] , UpperCamelCase: List[Any] = None , **UpperCamelCase: Union[str, Any] , ): """simple docstring""" A__ = get_size_dict(UpperCamelCase ) return center_crop(UpperCamelCase , size=(size["""height"""], size["""width"""]) , data_format=UpperCamelCase , **UpperCamelCase ) def UpperCamelCase ( self: int , UpperCamelCase: Optional[Any] , UpperCamelCase: Any , UpperCamelCase: Dict = None , **UpperCamelCase: Optional[Any] ): """simple docstring""" return rescale(UpperCamelCase , scale=UpperCamelCase , data_format=UpperCamelCase , **UpperCamelCase ) def UpperCamelCase ( self: Tuple , UpperCamelCase: List[Any] , UpperCamelCase: Dict , UpperCamelCase: str , UpperCamelCase: str = None , **UpperCamelCase: Dict , ): """simple docstring""" return normalize(UpperCamelCase , mean=UpperCamelCase , std=UpperCamelCase , data_format=UpperCamelCase , **UpperCamelCase ) def UpperCamelCase ( self: str , UpperCamelCase: str , UpperCamelCase: Optional[Any] = None , UpperCamelCase: Dict = None , UpperCamelCase: List[str] = None , UpperCamelCase: List[Any] = None , UpperCamelCase: Tuple = None , UpperCamelCase: str = None , UpperCamelCase: Optional[int] = None , UpperCamelCase: int = None , UpperCamelCase: Any = None , UpperCamelCase: List[str] = None , UpperCamelCase: List[Any] = None , UpperCamelCase: Optional[int] = ChannelDimension.FIRST , **UpperCamelCase: str , ): """simple docstring""" A__ = do_resize if do_resize is not None else self.do_resize A__ = size if size is not None else self.size A__ = get_size_dict(UpperCamelCase , default_to_square=UpperCamelCase ) A__ = resample if resample is not None else self.resample A__ = do_center_crop if do_center_crop is not None else self.do_center_crop A__ = crop_size if crop_size is not None else self.crop_size A__ = get_size_dict(UpperCamelCase ) A__ = do_rescale if do_rescale is not None else self.do_rescale A__ = rescale_factor if rescale_factor is not None else self.rescale_factor A__ = do_normalize if do_normalize is not None else self.do_normalize A__ = image_mean if image_mean is not None else self.image_mean A__ = image_std if image_std is not None else self.image_std A__ = make_list_of_images(UpperCamelCase ) if not valid_images(UpperCamelCase ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. A__ = [to_numpy_array(UpperCamelCase ) for image in images] if do_resize: A__ = [self.resize(image=UpperCamelCase , size=UpperCamelCase , resample=UpperCamelCase ) for image in images] if do_center_crop: A__ = [self.center_crop(image=UpperCamelCase , size=UpperCamelCase ) for image in images] if do_rescale: A__ = [self.rescale(image=UpperCamelCase , scale=UpperCamelCase ) for image in images] if do_normalize: A__ = [self.normalize(image=UpperCamelCase , mean=UpperCamelCase , std=UpperCamelCase ) for image in images] A__ = [to_channel_dimension_format(UpperCamelCase , UpperCamelCase ) for image in images] A__ = {"""pixel_values""": images} return BatchFeature(data=UpperCamelCase , tensor_type=UpperCamelCase )
356
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available SCREAMING_SNAKE_CASE_ : Tuple = { 'configuration_nllb_moe': [ 'NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP', 'NllbMoeConfig', ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ : int = [ 'NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST', 'NllbMoeForConditionalGeneration', 'NllbMoeModel', 'NllbMoePreTrainedModel', 'NllbMoeTop2Router', 'NllbMoeSparseMLP', ] if TYPE_CHECKING: from .configuration_nllb_moe import ( NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP, NllbMoeConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nllb_moe import ( NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST, NllbMoeForConditionalGeneration, NllbMoeModel, NllbMoePreTrainedModel, NllbMoeSparseMLP, NllbMoeTopaRouter, ) else: import sys SCREAMING_SNAKE_CASE_ : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
69
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging a_ : Dict = logging.get_logger(__name__) a_ : Tuple = { """facebook/dpr-ctx_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/config.json""" ), """facebook/dpr-question_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/config.json""" ), """facebook/dpr-reader-single-nq-base""": ( """https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/config.json""" ), """facebook/dpr-ctx_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/config.json""" ), """facebook/dpr-question_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/config.json""" ), """facebook/dpr-reader-multiset-base""": ( """https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/config.json""" ), } class __UpperCamelCase ( lowerCamelCase__ ): lowercase : Tuple ='dpr' def __init__( self, lowerCAmelCase=30_522, lowerCAmelCase=768, lowerCAmelCase=12, lowerCAmelCase=12, lowerCAmelCase=3_072, lowerCAmelCase="gelu", lowerCAmelCase=0.1, lowerCAmelCase=0.1, lowerCAmelCase=512, lowerCAmelCase=2, lowerCAmelCase=0.0_2, lowerCAmelCase=1e-12, lowerCAmelCase=0, lowerCAmelCase="absolute", lowerCAmelCase = 0, **lowerCAmelCase, ): """simple docstring""" super().__init__(pad_token_id=lowerCAmelCase, **lowerCAmelCase ) lowerCamelCase_ =vocab_size lowerCamelCase_ =hidden_size lowerCamelCase_ =num_hidden_layers lowerCamelCase_ =num_attention_heads lowerCamelCase_ =hidden_act lowerCamelCase_ =intermediate_size lowerCamelCase_ =hidden_dropout_prob lowerCamelCase_ =attention_probs_dropout_prob lowerCamelCase_ =max_position_embeddings lowerCamelCase_ =type_vocab_size lowerCamelCase_ =initializer_range lowerCamelCase_ =layer_norm_eps lowerCamelCase_ =projection_dim lowerCamelCase_ =position_embedding_type
75
'''simple docstring''' def a_ ( __snake_case : Any , __snake_case : List[str] ) -> str: """simple docstring""" lowerCamelCase_ ='''''' for i in table: res += inp[i - 1] return res def a_ ( __snake_case : List[str] ) -> Optional[int]: """simple docstring""" return data[1:] + data[0] def a_ ( __snake_case : str , __snake_case : Tuple ) -> int: """simple docstring""" lowerCamelCase_ ='''''' for i in range(len(__snake_case ) ): if a[i] == b[i]: res += "0" else: res += "1" return res def a_ ( __snake_case : Optional[Any] , __snake_case : Tuple ) -> List[Any]: """simple docstring""" lowerCamelCase_ =int('''0b''' + data[0] + data[-1] , 2 ) lowerCamelCase_ =int('''0b''' + data[1:3] , 2 ) return bin(s[row][col] )[2:] def a_ ( __snake_case : Optional[int] , __snake_case : List[str] , __snake_case : int , __snake_case : Tuple , __snake_case : List[Any] ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ =message[:4] lowerCamelCase_ =message[4:] lowerCamelCase_ =apply_table(__snake_case , __snake_case ) lowerCamelCase_ =xor(__snake_case , __snake_case ) lowerCamelCase_ =apply_sbox(__snake_case , temp[:4] ) # noqa: E741 lowerCamelCase_ =apply_sbox(__snake_case , temp[4:] ) lowerCamelCase_ ='''0''' * (2 - len(__snake_case )) + l # noqa: E741 lowerCamelCase_ ='''0''' * (2 - len(__snake_case )) + r lowerCamelCase_ =apply_table(l + r , __snake_case ) lowerCamelCase_ =xor(__snake_case , __snake_case ) return temp + right if __name__ == "__main__": a_ : Any = input("""Enter 10 bit key: """) a_ : Any = input("""Enter 8 bit message: """) a_ : str = [6, 3, 7, 4, 8, 5, 10, 9] a_ : str = [3, 5, 2, 7, 4, 10, 1, 9, 8, 6] a_ : str = [2, 4, 3, 1] a_ : Optional[int] = [2, 6, 3, 1, 4, 8, 5, 7] a_ : Optional[Any] = [4, 1, 3, 5, 7, 2, 8, 6] a_ : Union[str, Any] = [4, 1, 2, 3, 2, 3, 4, 1] a_ : int = [[1, 0, 3, 2], [3, 2, 1, 0], [0, 2, 1, 3], [3, 1, 3, 2]] a_ : Any = [[0, 1, 2, 3], [2, 0, 1, 3], [3, 0, 1, 0], [2, 1, 0, 3]] # key generation a_ : List[Any] = apply_table(key, paa_table) a_ : str = temp[:5] a_ : Optional[Any] = temp[5:] a_ : Tuple = left_shift(left) a_ : Optional[Any] = left_shift(right) a_ : str = apply_table(left + right, pa_table) a_ : Optional[Any] = left_shift(left) a_ : Tuple = left_shift(right) a_ : Union[str, Any] = left_shift(left) a_ : List[str] = left_shift(right) a_ : Optional[int] = apply_table(left + right, pa_table) # encryption a_ : Optional[int] = apply_table(message, IP) a_ : List[Any] = function(expansion, sa, sa, keya, temp) a_ : str = temp[4:] + temp[:4] a_ : List[str] = function(expansion, sa, sa, keya, temp) a_ : Union[str, Any] = apply_table(temp, IP_inv) print("""Cipher text is:""", CT) # decryption a_ : Optional[int] = apply_table(CT, IP) a_ : List[Any] = function(expansion, sa, sa, keya, temp) a_ : int = temp[4:] + temp[:4] a_ : int = function(expansion, sa, sa, keya, temp) a_ : Optional[int] = apply_table(temp, IP_inv) print("""Plain text after decypting is:""", PT)
75
1
from __future__ import annotations from cmath import sqrt def lowerCamelCase_ ( _a , _a , _a ): """simple docstring""" if a == 0: raise ValueError('''Coefficient \'a\' must not be zero.''' ) lowerCAmelCase__ : List[str] = b * b - 4 * a * c lowerCAmelCase__ : Optional[Any] = (-b + sqrt(A_ )) / (2 * a) lowerCAmelCase__ : str = (-b - sqrt(A_ )) / (2 * a) return ( root_a.real if not root_a.imag else root_a, root_a.real if not root_a.imag else root_a, ) def lowerCamelCase_ ( ): """simple docstring""" lowerCAmelCase__ : List[str] = quadratic_roots(a=5 , b=6 , c=1 ) print(f'The solutions are: {solutiona} and {solutiona}' ) if __name__ == "__main__": main()
358
from itertools import product from cva import COLOR_BGR2GRAY, cvtColor, imread, imshow, waitKey from numpy import dot, exp, mgrid, pi, ravel, square, uinta, zeros def lowerCamelCase_ ( _a , _a ): """simple docstring""" lowerCAmelCase__ : List[Any] = k_size // 2 lowerCAmelCase__ , lowerCAmelCase__ : Union[str, Any] = mgrid[0 - center : k_size - center, 0 - center : k_size - center] lowerCAmelCase__ : str = 1 / (2 * pi * sigma) * exp(-(square(_a ) + square(_a )) / (2 * square(_a )) ) return g def lowerCamelCase_ ( _a , _a , _a ): """simple docstring""" lowerCAmelCase__ , lowerCAmelCase__ : int = image.shape[0], image.shape[1] # dst image height and width lowerCAmelCase__ : Any = height - k_size + 1 lowerCAmelCase__ : Tuple = width - k_size + 1 # im2col, turn the k_size*k_size pixels into a row and np.vstack all rows lowerCAmelCase__ : int = zeros((dst_height * dst_width, k_size * k_size) ) lowerCAmelCase__ : List[str] = 0 for i, j in product(range(_a ) , range(_a ) ): lowerCAmelCase__ : Union[str, Any] = ravel(image[i : i + k_size, j : j + k_size] ) lowerCAmelCase__ : List[Any] = window row += 1 # turn the kernel into shape(k*k, 1) lowerCAmelCase__ : List[Any] = gen_gaussian_kernel(_a , _a ) lowerCAmelCase__ : str = ravel(_a ) # reshape and get the dst image lowerCAmelCase__ : int = dot(_a , _a ).reshape(_a , _a ).astype(_a ) return dst if __name__ == "__main__": # read original image lowerCamelCase = imread(R'''../image_data/lena.jpg''') # turn image in gray scale value lowerCamelCase = cvtColor(img, COLOR_BGR2GRAY) # get values with two different mask size lowerCamelCase = gaussian_filter(gray, 3, sigma=1) lowerCamelCase = gaussian_filter(gray, 5, sigma=0.8) # show result images imshow('''gaussian filter with 3x3 mask''', gaussianaxa) imshow('''gaussian filter with 5x5 mask''', gaussianaxa) waitKey()
211
0
from __future__ import annotations import math import numpy as np from numpy.linalg import norm def _snake_case( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : List[str] ) -> float: '''simple docstring''' return math.sqrt(sum(pow(a - b , 2 ) for a, b in zip(snake_case__ , snake_case__ ) ) ) def _snake_case( SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : List[str] ) -> list[list[list[float] | float]]: '''simple docstring''' if dataset.ndim != value_array.ndim: A__ = ( 'Wrong input data\'s dimensions... ' f'dataset : {dataset.ndim}, value_array : {value_array.ndim}' ) raise ValueError(snake_case__ ) try: if dataset.shape[1] != value_array.shape[1]: A__ = ( 'Wrong input data\'s shape... ' f'dataset : {dataset.shape[1]}, value_array : {value_array.shape[1]}' ) raise ValueError(snake_case__ ) except IndexError: if dataset.ndim != value_array.ndim: raise TypeError('Wrong shape' ) if dataset.dtype != value_array.dtype: A__ = ( 'Input data have different datatype... ' f'dataset : {dataset.dtype}, value_array : {value_array.dtype}' ) raise TypeError(snake_case__ ) A__ = [] for value in value_array: A__ = euclidean(snake_case__ , dataset[0] ) A__ = dataset[0].tolist() for dataset_value in dataset[1:]: A__ = euclidean(snake_case__ , snake_case__ ) if dist > temp_dist: A__ = temp_dist A__ = dataset_value.tolist() answer.append([vector, dist] ) return answer def _snake_case( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : List[str] ) -> float: '''simple docstring''' return np.dot(snake_case__ , snake_case__ ) / (norm(snake_case__ ) * norm(snake_case__ )) if __name__ == "__main__": import doctest doctest.testmod()
7
"""simple docstring""" from math import ceil def a__ ( snake_case__ , snake_case__ ) -> Optional[int]: lowerCamelCase = list(range(0 , snake_case__ ) ) lowerCamelCase = [item for sublist in list(device_map.values() ) for item in sublist] # Duplicate check lowerCamelCase = [] for i in device_map_blocks: if device_map_blocks.count(snake_case__ ) > 1 and i not in duplicate_blocks: duplicate_blocks.append(snake_case__ ) # Missing blocks lowerCamelCase = [i for i in blocks if i not in device_map_blocks] lowerCamelCase = [i for i in device_map_blocks if i not in blocks] if len(snake_case__ ) != 0: raise ValueError( """Duplicate attention blocks specified in device_map. Attention blocks must be specified to one device.""" """ These attention blocks were specified more than once: """ + str(snake_case__ ) ) if len(snake_case__ ) != 0: raise ValueError( """There are attention blocks for this model that are not specified in the device_map. Add these attention """ """blocks to a device on the device_map: """ + str(snake_case__ ) ) if len(snake_case__ ) != 0: raise ValueError( """The device_map contains more attention blocks than this model has. Remove these from the device_map:""" + str(snake_case__ ) ) def a__ ( snake_case__ , snake_case__ ) -> List[Any]: lowerCamelCase = list(range(snake_case__ ) ) lowerCamelCase = int(ceil(n_layers / len(snake_case__ ) ) ) lowerCamelCase = [layers[i : i + n_blocks] for i in range(0 , snake_case__ , snake_case__ )] return dict(zip(snake_case__ , snake_case__ ) )
291
0
'''simple docstring''' import os from huggingface_hub.constants import HUGGINGFACE_HUB_CACHE, hf_cache_home _SCREAMING_SNAKE_CASE = HUGGINGFACE_HUB_CACHE _SCREAMING_SNAKE_CASE = '''config.json''' _SCREAMING_SNAKE_CASE = '''diffusion_pytorch_model.bin''' _SCREAMING_SNAKE_CASE = '''diffusion_flax_model.msgpack''' _SCREAMING_SNAKE_CASE = '''model.onnx''' _SCREAMING_SNAKE_CASE = '''diffusion_pytorch_model.safetensors''' _SCREAMING_SNAKE_CASE = '''weights.pb''' _SCREAMING_SNAKE_CASE = '''https://huggingface.co''' _SCREAMING_SNAKE_CASE = default_cache_path _SCREAMING_SNAKE_CASE = '''diffusers_modules''' _SCREAMING_SNAKE_CASE = os.getenv('''HF_MODULES_CACHE''', os.path.join(hf_cache_home, '''modules''')) _SCREAMING_SNAKE_CASE = ['''fp16''', '''non-ema'''] _SCREAMING_SNAKE_CASE = '''.self_attn'''
364
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_electra import ElectraTokenizer _SCREAMING_SNAKE_CASE = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} _SCREAMING_SNAKE_CASE = { '''vocab_file''': { '''google/electra-small-generator''': ( '''https://huggingface.co/google/electra-small-generator/resolve/main/vocab.txt''' ), '''google/electra-base-generator''': '''https://huggingface.co/google/electra-base-generator/resolve/main/vocab.txt''', '''google/electra-large-generator''': ( '''https://huggingface.co/google/electra-large-generator/resolve/main/vocab.txt''' ), '''google/electra-small-discriminator''': ( '''https://huggingface.co/google/electra-small-discriminator/resolve/main/vocab.txt''' ), '''google/electra-base-discriminator''': ( '''https://huggingface.co/google/electra-base-discriminator/resolve/main/vocab.txt''' ), '''google/electra-large-discriminator''': ( '''https://huggingface.co/google/electra-large-discriminator/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''google/electra-small-generator''': ( '''https://huggingface.co/google/electra-small-generator/resolve/main/tokenizer.json''' ), '''google/electra-base-generator''': ( '''https://huggingface.co/google/electra-base-generator/resolve/main/tokenizer.json''' ), '''google/electra-large-generator''': ( '''https://huggingface.co/google/electra-large-generator/resolve/main/tokenizer.json''' ), '''google/electra-small-discriminator''': ( '''https://huggingface.co/google/electra-small-discriminator/resolve/main/tokenizer.json''' ), '''google/electra-base-discriminator''': ( '''https://huggingface.co/google/electra-base-discriminator/resolve/main/tokenizer.json''' ), '''google/electra-large-discriminator''': ( '''https://huggingface.co/google/electra-large-discriminator/resolve/main/tokenizer.json''' ), }, } _SCREAMING_SNAKE_CASE = { '''google/electra-small-generator''': 5_1_2, '''google/electra-base-generator''': 5_1_2, '''google/electra-large-generator''': 5_1_2, '''google/electra-small-discriminator''': 5_1_2, '''google/electra-base-discriminator''': 5_1_2, '''google/electra-large-discriminator''': 5_1_2, } _SCREAMING_SNAKE_CASE = { '''google/electra-small-generator''': {'''do_lower_case''': True}, '''google/electra-base-generator''': {'''do_lower_case''': True}, '''google/electra-large-generator''': {'''do_lower_case''': True}, '''google/electra-small-discriminator''': {'''do_lower_case''': True}, '''google/electra-base-discriminator''': {'''do_lower_case''': True}, '''google/electra-large-discriminator''': {'''do_lower_case''': True}, } class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' a : str = VOCAB_FILES_NAMES a : Dict = PRETRAINED_VOCAB_FILES_MAP a : int = PRETRAINED_INIT_CONFIGURATION a : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a : List[Any] = ElectraTokenizer def __init__(self ,_lowerCamelCase=None ,_lowerCamelCase=None ,_lowerCamelCase=True ,_lowerCamelCase="[UNK]" ,_lowerCamelCase="[SEP]" ,_lowerCamelCase="[PAD]" ,_lowerCamelCase="[CLS]" ,_lowerCamelCase="[MASK]" ,_lowerCamelCase=True ,_lowerCamelCase=None ,**_lowerCamelCase ,) -> List[Any]: '''simple docstring''' super().__init__( _lowerCamelCase ,tokenizer_file=_lowerCamelCase ,do_lower_case=_lowerCamelCase ,unk_token=_lowerCamelCase ,sep_token=_lowerCamelCase ,pad_token=_lowerCamelCase ,cls_token=_lowerCamelCase ,mask_token=_lowerCamelCase ,tokenize_chinese_chars=_lowerCamelCase ,strip_accents=_lowerCamelCase ,**_lowerCamelCase ,) __lowercase = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' ,_lowerCamelCase ) != do_lower_case or normalizer_state.get('''strip_accents''' ,_lowerCamelCase ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' ,_lowerCamelCase ) != tokenize_chinese_chars ): __lowercase = getattr(_lowerCamelCase ,normalizer_state.pop('''type''' ) ) __lowercase = do_lower_case __lowercase = strip_accents __lowercase = tokenize_chinese_chars __lowercase = normalizer_class(**_lowerCamelCase ) __lowercase = do_lower_case def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase=None ) -> str: '''simple docstring''' __lowercase = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase = None ) -> List[int]: '''simple docstring''' __lowercase = [self.sep_token_id] __lowercase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase = None ) -> Tuple[str]: '''simple docstring''' __lowercase = self._tokenizer.model.save(_lowerCamelCase ,name=_lowerCamelCase ) return tuple(_lowerCamelCase )
217
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) lowercase : int = { """configuration_mobilebert""": [ """MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MobileBertConfig""", """MobileBertOnnxConfig""", ], """tokenization_mobilebert""": ["""MobileBertTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Optional[int] = ["""MobileBertTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Optional[Any] = [ """MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """MobileBertForMaskedLM""", """MobileBertForMultipleChoice""", """MobileBertForNextSentencePrediction""", """MobileBertForPreTraining""", """MobileBertForQuestionAnswering""", """MobileBertForSequenceClassification""", """MobileBertForTokenClassification""", """MobileBertLayer""", """MobileBertModel""", """MobileBertPreTrainedModel""", """load_tf_weights_in_mobilebert""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : int = [ """TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFMobileBertForMaskedLM""", """TFMobileBertForMultipleChoice""", """TFMobileBertForNextSentencePrediction""", """TFMobileBertForPreTraining""", """TFMobileBertForQuestionAnswering""", """TFMobileBertForSequenceClassification""", """TFMobileBertForTokenClassification""", """TFMobileBertMainLayer""", """TFMobileBertModel""", """TFMobileBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mobilebert import ( MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileBertConfig, MobileBertOnnxConfig, ) from .tokenization_mobilebert import MobileBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mobilebert_fast import MobileBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilebert import ( MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertLayer, MobileBertModel, MobileBertPreTrainedModel, load_tf_weights_in_mobilebert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilebert import ( TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertMainLayer, TFMobileBertModel, TFMobileBertPreTrainedModel, ) else: import sys lowercase : Union[str, Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
20
from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase : List[str] = logging.get_logger(__name__) lowercase : Any = { """uclanlp/visualbert-vqa""": """https://huggingface.co/uclanlp/visualbert-vqa/resolve/main/config.json""", """uclanlp/visualbert-vqa-pre""": """https://huggingface.co/uclanlp/visualbert-vqa-pre/resolve/main/config.json""", """uclanlp/visualbert-vqa-coco-pre""": ( """https://huggingface.co/uclanlp/visualbert-vqa-coco-pre/resolve/main/config.json""" ), """uclanlp/visualbert-vcr""": """https://huggingface.co/uclanlp/visualbert-vcr/resolve/main/config.json""", """uclanlp/visualbert-vcr-pre""": """https://huggingface.co/uclanlp/visualbert-vcr-pre/resolve/main/config.json""", """uclanlp/visualbert-vcr-coco-pre""": ( """https://huggingface.co/uclanlp/visualbert-vcr-coco-pre/resolve/main/config.json""" ), """uclanlp/visualbert-nlvr2""": """https://huggingface.co/uclanlp/visualbert-nlvr2/resolve/main/config.json""", """uclanlp/visualbert-nlvr2-pre""": """https://huggingface.co/uclanlp/visualbert-nlvr2-pre/resolve/main/config.json""", """uclanlp/visualbert-nlvr2-coco-pre""": ( """https://huggingface.co/uclanlp/visualbert-nlvr2-coco-pre/resolve/main/config.json""" ) # See all VisualBERT models at https://huggingface.co/models?filter=visual_bert } class __snake_case ( lowerCAmelCase ): _a : Union[str, Any]= "visual_bert" def __init__( self ,snake_case=30522 ,snake_case=768 ,snake_case=512 ,snake_case=12 ,snake_case=12 ,snake_case=3072 ,snake_case="gelu" ,snake_case=0.1 ,snake_case=0.1 ,snake_case=512 ,snake_case=2 ,snake_case=0.02 ,snake_case=1e-12 ,snake_case=False ,snake_case=True ,snake_case=1 ,snake_case=0 ,snake_case=2 ,**snake_case ,): '''simple docstring''' super().__init__(pad_token_id=snake_case ,bos_token_id=snake_case ,eos_token_id=snake_case ,**snake_case ) lowercase : Tuple = vocab_size lowercase : int = max_position_embeddings lowercase : Optional[Any] = hidden_size lowercase : int = visual_embedding_dim lowercase : Tuple = num_hidden_layers lowercase : str = num_attention_heads lowercase : Optional[Any] = intermediate_size lowercase : str = hidden_act lowercase : Tuple = hidden_dropout_prob lowercase : List[Any] = attention_probs_dropout_prob lowercase : Union[str, Any] = initializer_range lowercase : int = type_vocab_size lowercase : Union[str, Any] = layer_norm_eps lowercase : Union[str, Any] = bypass_transformer lowercase : int = special_visual_initialize
20
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __UpperCamelCase : List[Any] = { '''configuration_biogpt''': ['''BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BioGptConfig'''], '''tokenization_biogpt''': ['''BioGptTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : List[Any] = [ '''BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BioGptForCausalLM''', '''BioGptForTokenClassification''', '''BioGptForSequenceClassification''', '''BioGptModel''', '''BioGptPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_biogpt import BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP, BioGptConfig from .tokenization_biogpt import BioGptTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_biogpt import ( BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptPreTrainedModel, ) else: import sys __UpperCamelCase : Tuple = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
74
"""simple docstring""" import inspect import unittest import numpy as np from transformers import ViTConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax from transformers.models.vit.modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" def __init__( self : List[Any] ,lowercase_ : List[str] ,lowercase_ : int=1_3 ,lowercase_ : Optional[int]=3_0 ,lowercase_ : int=2 ,lowercase_ : List[Any]=3 ,lowercase_ : str=True ,lowercase_ : int=True ,lowercase_ : str=3_2 ,lowercase_ : Optional[int]=5 ,lowercase_ : Optional[Any]=4 ,lowercase_ : Any=3_7 ,lowercase_ : str="gelu" ,lowercase_ : Any=0.1 ,lowercase_ : List[Any]=0.1 ,lowercase_ : int=1_0 ,lowercase_ : str=0.02 ,): lowerCAmelCase__ : Optional[int] = parent lowerCAmelCase__ : int = batch_size lowerCAmelCase__ : str = image_size lowerCAmelCase__ : Dict = patch_size lowerCAmelCase__ : Dict = num_channels lowerCAmelCase__ : Union[str, Any] = is_training lowerCAmelCase__ : Optional[int] = use_labels lowerCAmelCase__ : List[Any] = hidden_size lowerCAmelCase__ : Dict = num_hidden_layers lowerCAmelCase__ : int = num_attention_heads lowerCAmelCase__ : Any = intermediate_size lowerCAmelCase__ : List[Any] = hidden_act lowerCAmelCase__ : Optional[int] = hidden_dropout_prob lowerCAmelCase__ : List[str] = attention_probs_dropout_prob lowerCAmelCase__ : Any = type_sequence_label_size lowerCAmelCase__ : Optional[int] = initializer_range # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) lowerCAmelCase__ : int = (image_size // patch_size) ** 2 lowerCAmelCase__ : Dict = num_patches + 1 def __lowerCAmelCase ( self : List[str] ): lowerCAmelCase__ : Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase__ : List[Any] = ViTConfig( image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,is_decoder=lowercase_ ,initializer_range=self.initializer_range ,) return config, pixel_values def __lowerCAmelCase ( self : Tuple ,lowercase_ : List[Any] ,lowercase_ : Optional[int] ): lowerCAmelCase__ : Optional[Any] = FlaxViTModel(config=lowercase_ ) lowerCAmelCase__ : Dict = model(lowercase_ ) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) lowerCAmelCase__ : int = (self.image_size, self.image_size) lowerCAmelCase__ : int = (self.patch_size, self.patch_size) lowerCAmelCase__ : Union[str, Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, num_patches + 1, self.hidden_size) ) def __lowerCAmelCase ( self : int ,lowercase_ : List[Any] ,lowercase_ : List[str] ): lowerCAmelCase__ : Optional[int] = self.type_sequence_label_size lowerCAmelCase__ : Any = FlaxViTForImageClassification(config=lowercase_ ) lowerCAmelCase__ : Any = model(lowercase_ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) # test greyscale images lowerCAmelCase__ : List[Any] = 1 lowerCAmelCase__ : Tuple = FlaxViTForImageClassification(lowercase_ ) lowerCAmelCase__ : Any = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCAmelCase__ : str = model(lowercase_ ) def __lowerCAmelCase ( self : Union[str, Any] ): lowerCAmelCase__ : Any = self.prepare_config_and_inputs() ( ( lowerCAmelCase__ ) ,( lowerCAmelCase__ ) , ) : Any = config_and_inputs lowerCAmelCase__ : List[str] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_flax class SCREAMING_SNAKE_CASE ( a_ , unittest.TestCase ): """simple docstring""" lowercase__ = (FlaxViTModel, FlaxViTForImageClassification) if is_flax_available() else () def __lowerCAmelCase ( self : Optional[Any] ): lowerCAmelCase__ : Tuple = FlaxViTModelTester(self ) lowerCAmelCase__ : List[str] = ConfigTester(self ,config_class=lowercase_ ,has_text_modality=lowercase_ ,hidden_size=3_7 ) def __lowerCAmelCase ( self : Dict ): self.config_tester.run_common_tests() def __lowerCAmelCase ( self : List[Any] ): lowerCAmelCase__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase_ ) def __lowerCAmelCase ( self : Tuple ): lowerCAmelCase__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowercase_ ) def __lowerCAmelCase ( self : Optional[int] ): lowerCAmelCase__ ,lowerCAmelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase__ : Union[str, Any] = model_class(lowercase_ ) lowerCAmelCase__ : List[str] = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase__ : List[Any] = [*signature.parameters.keys()] lowerCAmelCase__ : Any = ['''pixel_values'''] self.assertListEqual(arg_names[:1] ,lowercase_ ) def __lowerCAmelCase ( self : str ): lowerCAmelCase__ ,lowerCAmelCase__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): lowerCAmelCase__ : Dict = self._prepare_for_class(lowercase_ ,lowercase_ ) lowerCAmelCase__ : Tuple = model_class(lowercase_ ) @jax.jit def model_jitted(lowercase_ : List[Any] ,**lowercase_ : Optional[int] ): return model(pixel_values=lowercase_ ,**lowercase_ ) with self.subTest('''JIT Enabled''' ): lowerCAmelCase__ : Optional[Any] = model_jitted(**lowercase_ ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): lowerCAmelCase__ : Optional[int] = model_jitted(**lowercase_ ).to_tuple() self.assertEqual(len(lowercase_ ) ,len(lowercase_ ) ) for jitted_output, output in zip(lowercase_ ,lowercase_ ): self.assertEqual(jitted_output.shape ,output.shape ) @slow def __lowerCAmelCase ( self : List[Any] ): for model_class_name in self.all_model_classes: lowerCAmelCase__ : List[Any] = model_class_name.from_pretrained('''google/vit-base-patch16-224''' ) lowerCAmelCase__ : Optional[int] = model(np.ones((1, 3, 2_2_4, 2_2_4) ) ) self.assertIsNotNone(lowercase_ )
74
1