code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
'''simple docstring''' import json import os import unittest from transformers import BatchEncoding, LEDTokenizer, LEDTokenizerFast from transformers.models.led.tokenization_led import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, require_torch from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCAmelCase_ ( __lowercase , unittest.TestCase ): lowerCamelCase : str = LEDTokenizer lowerCamelCase : Any = LEDTokenizerFast lowerCamelCase : int = True def __UpperCAmelCase ( self : Optional[Any] ) -> str: super().setUp() lowerCAmelCase = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', '\u0120', '\u0120l', '\u0120n', '\u0120lo', '\u0120low', 'er', '\u0120lowest', '\u0120newer', '\u0120wider', '<unk>', ] lowerCAmelCase = dict(zip(UpperCAmelCase__ , range(len(UpperCAmelCase__ ) ) ) ) lowerCAmelCase = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', ''] lowerCAmelCase = {'unk_token': '<unk>'} lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(UpperCAmelCase__ ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(UpperCAmelCase__ ) ) def __UpperCAmelCase ( self : Dict , **UpperCAmelCase__ : Optional[Any] ) -> Dict: kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **UpperCAmelCase__ ) def __UpperCAmelCase ( self : Optional[int] , **UpperCAmelCase__ : Optional[int] ) -> List[str]: kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **UpperCAmelCase__ ) def __UpperCAmelCase ( self : Any , UpperCAmelCase__ : Any ) -> int: return "lower newer", "lower newer" @cached_property def __UpperCAmelCase ( self : int ) -> List[Any]: return LEDTokenizer.from_pretrained('allenai/led-base-16384' ) @cached_property def __UpperCAmelCase ( self : List[Any] ) -> Tuple: return LEDTokenizerFast.from_pretrained('allenai/led-base-16384' ) @require_torch def __UpperCAmelCase ( self : Any ) -> Any: lowerCAmelCase = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] lowerCAmelCase = [0, 2_5_0, 2_5_1, 1_7_8_1_8, 1_3, 3_9_1_8_6, 1_9_3_8, 4, 2] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowerCAmelCase = tokenizer(UpperCAmelCase__ , max_length=len(UpperCAmelCase__ ) , padding=UpperCAmelCase__ , return_tensors='pt' ) self.assertIsInstance(UpperCAmelCase__ , UpperCAmelCase__ ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) lowerCAmelCase = batch.input_ids.tolist()[0] self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ ) @require_torch def __UpperCAmelCase ( self : List[Any] ) -> Optional[int]: lowerCAmelCase = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowerCAmelCase = tokenizer(UpperCAmelCase__ , padding=UpperCAmelCase__ , return_tensors='pt' ) self.assertIn('input_ids' , UpperCAmelCase__ ) self.assertIn('attention_mask' , UpperCAmelCase__ ) self.assertNotIn('labels' , UpperCAmelCase__ ) self.assertNotIn('decoder_attention_mask' , UpperCAmelCase__ ) @require_torch def __UpperCAmelCase ( self : Optional[int] ) -> Optional[int]: lowerCAmelCase = [ 'Summary of the text.', 'Another summary.', ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowerCAmelCase = tokenizer(text_target=UpperCAmelCase__ , max_length=3_2 , padding='max_length' , return_tensors='pt' ) self.assertEqual(3_2 , targets['input_ids'].shape[1] ) @require_torch def __UpperCAmelCase ( self : Any ) -> Any: for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowerCAmelCase = tokenizer( ['I am a small frog' * 1_0_2_4, 'I am a small frog'] , padding=UpperCAmelCase__ , truncation=UpperCAmelCase__ , return_tensors='pt' ) self.assertIsInstance(UpperCAmelCase__ , UpperCAmelCase__ ) self.assertEqual(batch.input_ids.shape , (2, 5_1_2_2) ) @require_torch def __UpperCAmelCase ( self : str ) -> List[Any]: lowerCAmelCase = ['A long paragraph for summarization.'] lowerCAmelCase = [ 'Summary of the text.', ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowerCAmelCase = tokenizer(UpperCAmelCase__ , return_tensors='pt' ) lowerCAmelCase = tokenizer(text_target=UpperCAmelCase__ , return_tensors='pt' ) lowerCAmelCase = inputs['input_ids'] lowerCAmelCase = targets['input_ids'] self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() ) self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() ) @require_torch def __UpperCAmelCase ( self : Dict ) -> Optional[int]: for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowerCAmelCase = ['Summary of the text.', 'Another summary.'] lowerCAmelCase = [[0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, -1, -1]] lowerCAmelCase = tokenizer(UpperCAmelCase__ , padding=UpperCAmelCase__ ) lowerCAmelCase = [[0] * len(UpperCAmelCase__ ) for x in encoded_output['input_ids']] lowerCAmelCase = tokenizer.pad(UpperCAmelCase__ ) self.assertSequenceEqual(outputs['global_attention_mask'] , UpperCAmelCase__ ) def __UpperCAmelCase ( self : str ) -> Optional[int]: pass def __UpperCAmelCase ( self : str ) -> Tuple: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): lowerCAmelCase = self.rust_tokenizer_class.from_pretrained(UpperCAmelCase__ , **UpperCAmelCase__ ) lowerCAmelCase = self.tokenizer_class.from_pretrained(UpperCAmelCase__ , **UpperCAmelCase__ ) lowerCAmelCase = 'A, <mask> AllenNLP sentence.' lowerCAmelCase = tokenizer_r.encode_plus(UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ , return_token_type_ids=UpperCAmelCase__ ) lowerCAmelCase = tokenizer_p.encode_plus(UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ , return_token_type_ids=UpperCAmelCase__ ) self.assertEqual(sum(tokens_r['token_type_ids'] ) , sum(tokens_p['token_type_ids'] ) ) self.assertEqual( sum(tokens_r['attention_mask'] ) / len(tokens_r['attention_mask'] ) , sum(tokens_p['attention_mask'] ) / len(tokens_p['attention_mask'] ) , ) lowerCAmelCase = tokenizer_r.convert_ids_to_tokens(tokens_r['input_ids'] ) lowerCAmelCase = tokenizer_p.convert_ids_to_tokens(tokens_p['input_ids'] ) self.assertSequenceEqual(tokens_p['input_ids'] , [0, 2_5_0, 6, 5_0_2_6_4, 3_8_2_3, 4_8_7, 2_1_9_9_2, 3_6_4_5, 4, 2] ) self.assertSequenceEqual(tokens_r['input_ids'] , [0, 2_5_0, 6, 5_0_2_6_4, 3_8_2_3, 4_8_7, 2_1_9_9_2, 3_6_4_5, 4, 2] ) self.assertSequenceEqual( UpperCAmelCase__ , ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] ) self.assertSequenceEqual( UpperCAmelCase__ , ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] )
4
"""simple docstring""" def __lowerCAmelCase ( lowercase : int ) -> bool: """simple docstring""" if p < 2: raise ValueError("p should not be less than 2!" ) elif p == 2: return True snake_case : Dict = 4 snake_case : str = (1 << p) - 1 for _ in range(p - 2 ): snake_case : Any = ((s * s) - 2) % m return s == 0 if __name__ == "__main__": print(lucas_lehmer_test(7)) print(lucas_lehmer_test(11))
203
0
from pathlib import Path from typing import List from transformers import is_torch_available, is_vision_available from transformers.testing_utils import get_tests_dir, is_tool_test from transformers.tools.agent_types import AGENT_TYPE_MAPPING, AgentAudio, AgentImage, AgentText if is_torch_available(): import torch if is_vision_available(): from PIL import Image a =["""text""", """image""", """audio"""] def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ) -> List[str]: __lowerCamelCase : int = [] for input_type in input_types: if input_type == "text": inputs.append('Text input' ) elif input_type == "image": inputs.append( Image.open(Path(get_tests_dir('fixtures/tests_samples/COCO' ) ) / '000000039769.png' ).resize((5_1_2, 5_1_2) ) ) elif input_type == "audio": inputs.append(torch.ones(3_0_0_0 ) ) elif isinstance(lowerCamelCase__ , lowerCamelCase__ ): inputs.append(create_inputs(lowerCamelCase__ ) ) else: raise ValueError(F"Invalid type requested: {input_type}" ) return inputs def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ) -> str: __lowerCamelCase : Any = [] for output in outputs: if isinstance(lowerCamelCase__ , (str, AgentText) ): output_types.append('text' ) elif isinstance(lowerCamelCase__ , (Image.Image, AgentImage) ): output_types.append('image' ) elif isinstance(lowerCamelCase__ , (torch.Tensor, AgentAudio) ): output_types.append('audio' ) else: raise ValueError(F"Invalid output: {output}" ) return output_types @is_tool_test class A_ : def lowerCAmelCase ( self : str): self.assertTrue(hasattr(self.tool ,'inputs')) self.assertTrue(hasattr(self.tool ,'outputs')) __lowerCamelCase : Union[str, Any] = self.tool.inputs for _input in inputs: if isinstance(_input ,SCREAMING_SNAKE_CASE__): for __input in _input: self.assertTrue(__input in authorized_types) else: self.assertTrue(_input in authorized_types) __lowerCamelCase : Optional[Any] = self.tool.outputs for _output in outputs: self.assertTrue(_output in authorized_types) def lowerCAmelCase ( self : int): __lowerCamelCase : List[str] = create_inputs(self.tool.inputs) __lowerCamelCase : Optional[int] = self.tool(*SCREAMING_SNAKE_CASE__) # There is a single output if len(self.tool.outputs) == 1: __lowerCamelCase : Tuple = [outputs] self.assertListEqual(output_types(SCREAMING_SNAKE_CASE__) ,self.tool.outputs) def lowerCAmelCase ( self : List[str]): self.assertTrue(hasattr(self.tool ,'description')) self.assertTrue(hasattr(self.tool ,'default_checkpoint')) self.assertTrue(self.tool.description.startswith('This is a tool that')) def lowerCAmelCase ( self : Union[str, Any]): __lowerCamelCase : int = create_inputs(self.tool.inputs) __lowerCamelCase : Dict = self.tool(*SCREAMING_SNAKE_CASE__) if not isinstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__): __lowerCamelCase : Union[str, Any] = [outputs] self.assertEqual(len(SCREAMING_SNAKE_CASE__) ,len(self.tool.outputs)) for output, output_type in zip(SCREAMING_SNAKE_CASE__ ,self.tool.outputs): __lowerCamelCase : Optional[int] = AGENT_TYPE_MAPPING[output_type] self.assertTrue(isinstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__)) def lowerCAmelCase ( self : Any): __lowerCamelCase : str = create_inputs(self.tool.inputs) __lowerCamelCase : int = [] for _input, input_type in zip(SCREAMING_SNAKE_CASE__ ,self.tool.inputs): if isinstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__): _inputs.append([AGENT_TYPE_MAPPING[_input_type](_input) for _input_type in input_type]) else: _inputs.append(AGENT_TYPE_MAPPING[input_type](_input)) # Should not raise an error __lowerCamelCase : Dict = self.tool(*SCREAMING_SNAKE_CASE__) if not isinstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__): __lowerCamelCase : Dict = [outputs] self.assertEqual(len(SCREAMING_SNAKE_CASE__) ,len(self.tool.outputs))
113
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse from ...utils.dataclasses import ( ComputeEnvironment, DistributedType, DynamoBackend, PrecisionType, SageMakerDistributedType, ) from ..menu import BulletMenu a =[ """EAGER""", """AOT_EAGER""", """INDUCTOR""", """NVFUSER""", """AOT_NVFUSER""", """AOT_CUDAGRAPHS""", """OFI""", """FX2TRT""", """ONNXRT""", """IPEX""", ] def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__=None ) -> Optional[int]: __lowerCamelCase : int = True while ask_again: __lowerCamelCase : Dict = input(lowerCamelCase__ ) try: if default is not None and len(lowerCamelCase__ ) == 0: return default return convert_value(lowerCamelCase__ ) if convert_value is not None else result except Exception: if error_message is not None: print(lowerCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__=[] , lowerCamelCase__=None , lowerCamelCase__=0 ) -> str: __lowerCamelCase : Union[str, Any] = BulletMenu(lowerCamelCase__ , lowerCamelCase__ ) __lowerCamelCase : Tuple = menu.run(default_choice=lowerCamelCase__ ) return convert_value(lowerCamelCase__ ) if convert_value is not None else result def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ) -> Dict: __lowerCamelCase : List[str] = int(lowerCamelCase__ ) return ComputeEnvironment(['LOCAL_MACHINE', 'AMAZON_SAGEMAKER'][value] ) def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ) -> Optional[int]: __lowerCamelCase : Union[str, Any] = int(lowerCamelCase__ ) return DistributedType(['NO', 'MULTI_CPU', 'MULTI_XPU', 'MULTI_GPU', 'MULTI_NPU', 'TPU'][value] ) def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ) -> Union[str, Any]: __lowerCamelCase : Optional[Any] = int(lowerCamelCase__ ) return DynamoBackend(DYNAMO_BACKENDS[value] ).value def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ) -> int: __lowerCamelCase : Union[str, Any] = int(lowerCamelCase__ ) return PrecisionType(['no', 'fp16', 'bf16', 'fp8'][value] ) def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ) -> str: __lowerCamelCase : Optional[Any] = int(lowerCamelCase__ ) return SageMakerDistributedType(['NO', 'DATA_PARALLEL', 'MODEL_PARALLEL'][value] ) def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ) -> Optional[Any]: return {"yes": True, "no": False}[value.lower()] class A_ ( argparse.RawDescriptionHelpFormatter ): def lowerCAmelCase ( self : Optional[int] ,SCREAMING_SNAKE_CASE__ : str ,SCREAMING_SNAKE_CASE__ : int ,SCREAMING_SNAKE_CASE__ : Union[str, Any] ,SCREAMING_SNAKE_CASE__ : str): __lowerCamelCase : int = super()._format_usage(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) __lowerCamelCase : Union[str, Any] = usage.replace('<command> [<args>] ' ,'') return usage
113
1
from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available from ...utils import OptionalDependencyNotAvailable snake_case_ : Union[str, Any] = {"configuration_gpt_neox": ["GPT_NEOX_PRETRAINED_CONFIG_ARCHIVE_MAP", "GPTNeoXConfig"]} try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : Dict = ["GPTNeoXTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : str = [ "GPT_NEOX_PRETRAINED_MODEL_ARCHIVE_LIST", "GPTNeoXForCausalLM", "GPTNeoXForQuestionAnswering", "GPTNeoXForSequenceClassification", "GPTNeoXForTokenClassification", "GPTNeoXLayer", "GPTNeoXModel", "GPTNeoXPreTrainedModel", ] if TYPE_CHECKING: from .configuration_gpt_neox import GPT_NEOX_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoXConfig try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_gpt_neox_fast import GPTNeoXTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neox import ( GPT_NEOX_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, GPTNeoXLayer, GPTNeoXModel, GPTNeoXPreTrainedModel, ) else: import sys snake_case_ : Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
51
from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case_ : int = logging.get_logger(__name__) snake_case_ : str = {} class __snake_case ( a ): UpperCAmelCase__ : str = '''llama''' UpperCAmelCase__ : Dict = ['''past_key_values'''] def __init__( self : str , _snake_case : List[str]=32000 , _snake_case : int=4096 , _snake_case : List[str]=11008 , _snake_case : Optional[int]=32 , _snake_case : List[Any]=32 , _snake_case : Tuple=None , _snake_case : int="silu" , _snake_case : List[Any]=2048 , _snake_case : List[str]=0.0_2 , _snake_case : Any=1e-6 , _snake_case : List[str]=True , _snake_case : Optional[Any]=0 , _snake_case : Dict=1 , _snake_case : List[Any]=2 , _snake_case : str=1 , _snake_case : Union[str, Any]=False , _snake_case : str=None , **_snake_case : List[Any] , ): """simple docstring""" UpperCAmelCase_ = vocab_size UpperCAmelCase_ = max_position_embeddings UpperCAmelCase_ = hidden_size UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads # for backward compatibility if num_key_value_heads is None: UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = num_key_value_heads UpperCAmelCase_ = hidden_act UpperCAmelCase_ = initializer_range UpperCAmelCase_ = rms_norm_eps UpperCAmelCase_ = pretraining_tp UpperCAmelCase_ = use_cache UpperCAmelCase_ = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=_snake_case , bos_token_id=_snake_case , eos_token_id=_snake_case , tie_word_embeddings=_snake_case , **_snake_case , ) def lowerCamelCase ( self : Optional[int]): """simple docstring""" if self.rope_scaling is None: return if not isinstance(self.rope_scaling , _snake_case) or len(self.rope_scaling) != 2: raise ValueError( '''`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, ''' F"""got {self.rope_scaling}""") UpperCAmelCase_ = self.rope_scaling.get('''type''' , _snake_case) UpperCAmelCase_ = self.rope_scaling.get('''factor''' , _snake_case) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( F"""`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}""") if rope_scaling_factor is None or not isinstance(_snake_case , _snake_case) or rope_scaling_factor <= 1.0: raise ValueError(F"""`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}""")
51
1
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaImgaImgPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class _a ( _lowerCAmelCase , unittest.TestCase ): UpperCamelCase = KandinskyVaaImgaImgPipeline UpperCamelCase = ['''image_embeds''', '''negative_image_embeds''', '''image'''] UpperCamelCase = [ '''image_embeds''', '''negative_image_embeds''', '''image''', ] UpperCamelCase = [ '''generator''', '''height''', '''width''', '''strength''', '''guidance_scale''', '''num_inference_steps''', '''return_dict''', '''guidance_scale''', '''num_images_per_prompt''', '''output_type''', '''return_dict''', ] UpperCamelCase = False @property def snake_case ( self : Union[str, Any] ) -> int: '''simple docstring''' return 3_2 @property def snake_case ( self : Union[str, Any] ) -> Any: '''simple docstring''' return 3_2 @property def snake_case ( self : Optional[Any] ) -> List[str]: '''simple docstring''' return self.time_input_dim @property def snake_case ( self : List[Any] ) -> Optional[Any]: '''simple docstring''' return self.time_input_dim * 4 @property def snake_case ( self : List[str] ) -> List[Any]: '''simple docstring''' return 1_0_0 @property def snake_case ( self : Dict ) -> Optional[int]: '''simple docstring''' torch.manual_seed(0 ) _UpperCamelCase : List[str] = { '''in_channels''': 4, # Out channels is double in channels because predicts mean and variance '''out_channels''': 8, '''addition_embed_type''': '''image''', '''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''), '''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''), '''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''', '''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2), '''layers_per_block''': 1, '''encoder_hid_dim''': self.text_embedder_hidden_size, '''encoder_hid_dim_type''': '''image_proj''', '''cross_attention_dim''': self.cross_attention_dim, '''attention_head_dim''': 4, '''resnet_time_scale_shift''': '''scale_shift''', '''class_embed_type''': None, } _UpperCamelCase : Dict = UNetaDConditionModel(**lowerCAmelCase__ ) return model @property def snake_case ( self : int ) -> int: '''simple docstring''' return { "block_out_channels": [3_2, 6_4], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 1_2, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def snake_case ( self : Any ) -> Union[str, Any]: '''simple docstring''' torch.manual_seed(0 ) _UpperCamelCase : Union[str, Any] = VQModel(**self.dummy_movq_kwargs ) return model def snake_case ( self : Any ) -> List[Any]: '''simple docstring''' _UpperCamelCase : Optional[Any] = self.dummy_unet _UpperCamelCase : List[str] = self.dummy_movq _UpperCamelCase : List[str] = { '''num_train_timesteps''': 1_0_0_0, '''beta_schedule''': '''linear''', '''beta_start''': 0.00_085, '''beta_end''': 0.012, '''clip_sample''': False, '''set_alpha_to_one''': False, '''steps_offset''': 0, '''prediction_type''': '''epsilon''', '''thresholding''': False, } _UpperCamelCase : Tuple = DDIMScheduler(**lowerCAmelCase__ ) _UpperCamelCase : Optional[Any] = { '''unet''': unet, '''scheduler''': scheduler, '''movq''': movq, } return components def snake_case ( self : List[Any], lowerCAmelCase__ : Optional[Any], lowerCAmelCase__ : int=0 ) -> Tuple: '''simple docstring''' _UpperCamelCase : Optional[Any] = floats_tensor((1, self.text_embedder_hidden_size), rng=random.Random(lowerCAmelCase__ ) ).to(lowerCAmelCase__ ) _UpperCamelCase : Dict = floats_tensor((1, self.text_embedder_hidden_size), rng=random.Random(seed + 1 ) ).to( lowerCAmelCase__ ) # create init_image _UpperCamelCase : int = floats_tensor((1, 3, 6_4, 6_4), rng=random.Random(lowerCAmelCase__ ) ).to(lowerCAmelCase__ ) _UpperCamelCase : str = image.cpu().permute(0, 2, 3, 1 )[0] _UpperCamelCase : Optional[int] = Image.fromarray(np.uinta(lowerCAmelCase__ ) ).convert('''RGB''' ).resize((2_5_6, 2_5_6) ) if str(lowerCAmelCase__ ).startswith('''mps''' ): _UpperCamelCase : List[str] = torch.manual_seed(lowerCAmelCase__ ) else: _UpperCamelCase : List[str] = torch.Generator(device=lowerCAmelCase__ ).manual_seed(lowerCAmelCase__ ) _UpperCamelCase : Tuple = { '''image''': init_image, '''image_embeds''': image_embeds, '''negative_image_embeds''': negative_image_embeds, '''generator''': generator, '''height''': 6_4, '''width''': 6_4, '''num_inference_steps''': 1_0, '''guidance_scale''': 7.0, '''strength''': 0.2, '''output_type''': '''np''', } return inputs def snake_case ( self : Optional[int] ) -> int: '''simple docstring''' _UpperCamelCase : Dict = '''cpu''' _UpperCamelCase : int = self.get_dummy_components() _UpperCamelCase : List[Any] = self.pipeline_class(**lowerCAmelCase__ ) _UpperCamelCase : str = pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) _UpperCamelCase : str = pipe(**self.get_dummy_inputs(lowerCAmelCase__ ) ) _UpperCamelCase : Any = output.images _UpperCamelCase : Optional[int] = pipe( **self.get_dummy_inputs(lowerCAmelCase__ ), return_dict=lowerCAmelCase__, )[0] _UpperCamelCase : int = image[0, -3:, -3:, -1] _UpperCamelCase : str = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) _UpperCamelCase : List[Any] = np.array( [0.6_199_778, 0.63_984_406, 0.46_145_785, 0.62_944_984, 0.5_622_215, 0.47_306_132, 0.47_441_456, 0.4_607_606, 0.48_719_263] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), f""" expected_slice {expected_slice}, but got {image_slice.flatten()}""" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), f""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}""" @slow @require_torch_gpu class _a ( unittest.TestCase ): def snake_case ( self : int ) -> Optional[int]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case ( self : List[Any] ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase : str = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinskyv22/kandinskyv22_img2img_frog.npy''' ) _UpperCamelCase : str = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/cat.png''' ) _UpperCamelCase : Tuple = '''A red cartoon frog, 4k''' _UpperCamelCase : Optional[Any] = KandinskyVaaPriorPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-prior''', torch_dtype=torch.floataa ) pipe_prior.to(lowerCAmelCase__ ) _UpperCamelCase : Tuple = KandinskyVaaImgaImgPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-decoder''', torch_dtype=torch.floataa ) _UpperCamelCase : Tuple = pipeline.to(lowerCAmelCase__ ) pipeline.set_progress_bar_config(disable=lowerCAmelCase__ ) _UpperCamelCase : int = torch.Generator(device='''cpu''' ).manual_seed(0 ) _UpperCamelCase , _UpperCamelCase : List[str] = pipe_prior( lowerCAmelCase__, generator=lowerCAmelCase__, num_inference_steps=5, negative_prompt='''''', ).to_tuple() _UpperCamelCase : Union[str, Any] = pipeline( image=lowerCAmelCase__, image_embeds=lowerCAmelCase__, negative_image_embeds=lowerCAmelCase__, generator=lowerCAmelCase__, num_inference_steps=1_0_0, height=7_6_8, width=7_6_8, strength=0.2, output_type='''np''', ) _UpperCamelCase : List[Any] = output.images[0] assert image.shape == (7_6_8, 7_6_8, 3) assert_mean_pixel_difference(lowerCAmelCase__, lowerCAmelCase__ )
128
"""simple docstring""" def a_ ( _lowercase = 100 ): _UpperCamelCase : List[Any] = 0 _UpperCamelCase : Optional[Any] = 0 for i in range(1 , n + 1 ): sum_of_squares += i**2 sum_of_ints += i return sum_of_ints**2 - sum_of_squares if __name__ == "__main__": print(F"{solution() = }")
128
1
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices a__ : List[Any] = logging.get_logger(__name__) a__ : List[Any] = { '''google/bit-50''': '''https://huggingface.co/google/bit-50/resolve/main/config.json''', } class a_ ( a__ , a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE : Any = 'bit' __SCREAMING_SNAKE_CASE : Tuple = ['preactivation', 'bottleneck'] __SCREAMING_SNAKE_CASE : Tuple = ['SAME', 'VALID'] def __init__( self , _lowerCamelCase=3 , _lowerCamelCase=64 , _lowerCamelCase=[256, 512, 1024, 2048] , _lowerCamelCase=[3, 4, 6, 3] , _lowerCamelCase="preactivation" , _lowerCamelCase="relu" , _lowerCamelCase=None , _lowerCamelCase=32 , _lowerCamelCase=0.0 , _lowerCamelCase=False , _lowerCamelCase=32 , _lowerCamelCase=1 , _lowerCamelCase=None , _lowerCamelCase=None , **_lowerCamelCase , ) ->Union[str, Any]: super().__init__(**_lowerCamelCase ) if layer_type not in self.layer_types: raise ValueError(F"""layer_type={layer_type} is not one of {",".join(self.layer_types )}""" ) if global_padding is not None: if global_padding.upper() in self.supported_padding: SCREAMING_SNAKE_CASE : Any = global_padding.upper() else: raise ValueError(F"""Padding strategy {global_padding} not supported""" ) SCREAMING_SNAKE_CASE : List[Any] = num_channels SCREAMING_SNAKE_CASE : Optional[Any] = embedding_size SCREAMING_SNAKE_CASE : Union[str, Any] = hidden_sizes SCREAMING_SNAKE_CASE : Any = depths SCREAMING_SNAKE_CASE : Dict = layer_type SCREAMING_SNAKE_CASE : int = hidden_act SCREAMING_SNAKE_CASE : List[Any] = global_padding SCREAMING_SNAKE_CASE : Optional[Any] = num_groups SCREAMING_SNAKE_CASE : Optional[Any] = drop_path_rate SCREAMING_SNAKE_CASE : Any = embedding_dynamic_padding SCREAMING_SNAKE_CASE : List[Any] = output_stride SCREAMING_SNAKE_CASE : int = width_factor SCREAMING_SNAKE_CASE : Optional[int] = ['''stem'''] + [F"""stage{idx}""" for idx in range(1 , len(_lowerCamelCase ) + 1 )] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = get_aligned_output_features_output_indices( out_features=_lowerCamelCase , out_indices=_lowerCamelCase , stage_names=self.stage_names )
313
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a__ : Optional[Any] = logging.get_logger(__name__) a__ : List[str] = { '''kssteven/ibert-roberta-base''': '''https://huggingface.co/kssteven/ibert-roberta-base/resolve/main/config.json''', '''kssteven/ibert-roberta-large''': '''https://huggingface.co/kssteven/ibert-roberta-large/resolve/main/config.json''', '''kssteven/ibert-roberta-large-mnli''': ( '''https://huggingface.co/kssteven/ibert-roberta-large-mnli/resolve/main/config.json''' ), } class a_ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = 'ibert' def __init__( self , _lowerCamelCase=3_0522 , _lowerCamelCase=768 , _lowerCamelCase=12 , _lowerCamelCase=12 , _lowerCamelCase=3072 , _lowerCamelCase="gelu" , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase=512 , _lowerCamelCase=2 , _lowerCamelCase=0.0_2 , _lowerCamelCase=1e-12 , _lowerCamelCase=1 , _lowerCamelCase=0 , _lowerCamelCase=2 , _lowerCamelCase="absolute" , _lowerCamelCase=False , _lowerCamelCase="none" , **_lowerCamelCase , ) ->Any: super().__init__(pad_token_id=_lowerCamelCase , bos_token_id=_lowerCamelCase , eos_token_id=_lowerCamelCase , **_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[Any] = vocab_size SCREAMING_SNAKE_CASE : str = hidden_size SCREAMING_SNAKE_CASE : Tuple = num_hidden_layers SCREAMING_SNAKE_CASE : List[Any] = num_attention_heads SCREAMING_SNAKE_CASE : Dict = hidden_act SCREAMING_SNAKE_CASE : Optional[int] = intermediate_size SCREAMING_SNAKE_CASE : Optional[Any] = hidden_dropout_prob SCREAMING_SNAKE_CASE : Optional[int] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : Optional[Any] = max_position_embeddings SCREAMING_SNAKE_CASE : Tuple = type_vocab_size SCREAMING_SNAKE_CASE : Optional[int] = initializer_range SCREAMING_SNAKE_CASE : Union[str, Any] = layer_norm_eps SCREAMING_SNAKE_CASE : str = position_embedding_type SCREAMING_SNAKE_CASE : Optional[int] = quant_mode SCREAMING_SNAKE_CASE : Dict = force_dequant class a_ ( a__ ): """simple docstring""" @property def __lowerCAmelCase ( self ) ->Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": SCREAMING_SNAKE_CASE : Dict = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: SCREAMING_SNAKE_CASE : List[Any] = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
313
1
"""simple docstring""" import argparse from pathlib import Path import fairseq import torch from fairseq.models.xmod import XMODModel as FairseqXmodModel from packaging import version from transformers import XmodConfig, XmodForMaskedLM, XmodForSequenceClassification from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse('0.12.2'): raise Exception('requires fairseq >= 0.12.2') if version.parse(fairseq.__version__) > version.parse('2'): raise Exception('requires fairseq < v2') logging.set_verbosity_info() _a = logging.get_logger(__name__) _a = 'Hello, World!' _a = 'en_XX' def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): UpperCAmelCase_ : List[Any] = Path("data_bin" ) UpperCAmelCase_ : str = FairseqXmodModel.from_pretrained( model_name_or_path=str(Path(A__ ).parent ), checkpoint_file=Path(A__ ).name, _name="xmod_base", arch="xmod_base", task="multilingual_masked_lm", data_name_or_path=str(A__ ), bpe="sentencepiece", sentencepiece_model=str(Path(A__ ).parent / "sentencepiece.bpe.model" ), src_dict=str(data_dir / "dict.txt" ), ) xmod.eval() # disable dropout print(A__ ) UpperCAmelCase_ : int = xmod.model.encoder.sentence_encoder UpperCAmelCase_ : List[str] = XmodConfig( vocab_size=xmod_sent_encoder.embed_tokens.num_embeddings, hidden_size=xmod.cfg.model.encoder_embed_dim, num_hidden_layers=xmod.cfg.model.encoder_layers, num_attention_heads=xmod.cfg.model.encoder_attention_heads, intermediate_size=xmod.cfg.model.encoder_ffn_embed_dim, max_position_embeddings=514, type_vocab_size=1, layer_norm_eps=1E-5, pre_norm=xmod.cfg.model.encoder_normalize_before, adapter_reduction_factor=getattr(xmod.cfg.model, "bottleneck", 2 ), adapter_layer_norm=xmod.cfg.model.adapter_layer_norm, adapter_reuse_layer_norm=xmod.cfg.model.adapter_reuse_layer_norm, ln_before_adapter=xmod.cfg.model.ln_before_adapter, languages=xmod.cfg.model.languages, ) if classification_head: UpperCAmelCase_ : Optional[int] = xmod.model.classification_heads["mnli"].out_proj.weight.shape[0] print("Our X-MOD config:", A__ ) UpperCAmelCase_ : Optional[Any] = XmodForSequenceClassification(A__ ) if classification_head else XmodForMaskedLM(A__ ) model.eval() # Now let's copy all the weights. # Embeddings UpperCAmelCase_ : int = xmod_sent_encoder.embed_tokens.weight UpperCAmelCase_ : int = xmod_sent_encoder.embed_positions.weight UpperCAmelCase_ : Union[str, Any] = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c xmod doesn't use them. UpperCAmelCase_ : List[Any] = xmod_sent_encoder.layernorm_embedding.weight UpperCAmelCase_ : Dict = xmod_sent_encoder.layernorm_embedding.bias for i in range(config.num_hidden_layers ): # Encoder: start of layer UpperCAmelCase_ : int = model.roberta.encoder.layer[i] UpperCAmelCase_ : str = xmod_sent_encoder.layers[i] # self attention UpperCAmelCase_ : Optional[Any] = layer.attention.self if not ( xmod_layer.self_attn.k_proj.weight.data.shape == xmod_layer.self_attn.q_proj.weight.data.shape == xmod_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size) ) ): raise AssertionError("Dimensions of self-attention weights do not match." ) UpperCAmelCase_ : Tuple = xmod_layer.self_attn.q_proj.weight UpperCAmelCase_ : Dict = xmod_layer.self_attn.q_proj.bias UpperCAmelCase_ : Dict = xmod_layer.self_attn.k_proj.weight UpperCAmelCase_ : List[Any] = xmod_layer.self_attn.k_proj.bias UpperCAmelCase_ : str = xmod_layer.self_attn.v_proj.weight UpperCAmelCase_ : int = xmod_layer.self_attn.v_proj.bias # self-attention output UpperCAmelCase_ : Tuple = layer.attention.output if self_output.dense.weight.shape != xmod_layer.self_attn.out_proj.weight.shape: raise AssertionError("Dimensions of self-attention output weights do not match." ) UpperCAmelCase_ : List[str] = xmod_layer.self_attn.out_proj.weight UpperCAmelCase_ : Dict = xmod_layer.self_attn.out_proj.bias UpperCAmelCase_ : List[str] = xmod_layer.self_attn_layer_norm.weight UpperCAmelCase_ : Optional[Any] = xmod_layer.self_attn_layer_norm.bias # intermediate UpperCAmelCase_ : List[str] = layer.intermediate if intermediate.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError("Dimensions of intermediate weights do not match." ) UpperCAmelCase_ : List[str] = xmod_layer.fca.weight UpperCAmelCase_ : int = xmod_layer.fca.bias # output UpperCAmelCase_ : Tuple = layer.output if bert_output.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError("Dimensions of feed-forward weights do not match." ) UpperCAmelCase_ : int = xmod_layer.fca.weight UpperCAmelCase_ : Union[str, Any] = xmod_layer.fca.bias UpperCAmelCase_ : List[Any] = xmod_layer.final_layer_norm.weight UpperCAmelCase_ : str = xmod_layer.final_layer_norm.bias if bert_output.adapter_layer_norm is not None: UpperCAmelCase_ : Optional[int] = xmod_layer.adapter_layer_norm.weight UpperCAmelCase_ : Tuple = xmod_layer.adapter_layer_norm.bias if sorted(bert_output.adapter_modules.keys() ) != sorted(xmod_layer.adapter_modules.keys() ): raise AssertionError("Lists of language adapters do not match." ) for lang_code, adapter in xmod_layer.adapter_modules.items(): UpperCAmelCase_ : Dict = bert_output.adapter_modules[lang_code] UpperCAmelCase_ : Dict = xmod_layer.adapter_modules[lang_code] UpperCAmelCase_ : int = from_adapter.fca.weight UpperCAmelCase_ : Optional[Any] = from_adapter.fca.bias UpperCAmelCase_ : Any = from_adapter.fca.weight UpperCAmelCase_ : Tuple = from_adapter.fca.bias # end of layer if xmod_sent_encoder.layer_norm is not None: UpperCAmelCase_ : Union[str, Any] = xmod_sent_encoder.layer_norm.weight UpperCAmelCase_ : str = xmod_sent_encoder.layer_norm.bias if classification_head: UpperCAmelCase_ : List[Any] = xmod.model.classification_heads["mnli"].dense.weight UpperCAmelCase_ : List[Any] = xmod.model.classification_heads["mnli"].dense.bias UpperCAmelCase_ : Any = xmod.model.classification_heads["mnli"].out_proj.weight UpperCAmelCase_ : int = xmod.model.classification_heads["mnli"].out_proj.bias else: # LM Head UpperCAmelCase_ : Dict = xmod.model.encoder.lm_head.dense.weight UpperCAmelCase_ : Tuple = xmod.model.encoder.lm_head.dense.bias UpperCAmelCase_ : Optional[Any] = xmod.model.encoder.lm_head.layer_norm.weight UpperCAmelCase_ : str = xmod.model.encoder.lm_head.layer_norm.bias UpperCAmelCase_ : Tuple = xmod.model.encoder.lm_head.weight UpperCAmelCase_ : str = xmod.model.encoder.lm_head.bias # Let's check that we get the same results. UpperCAmelCase_ : List[str] = xmod.encode(A__ ).unsqueeze(0 ) # batch of size 1 model.roberta.set_default_language(A__ ) UpperCAmelCase_ : str = model(A__ )[0] if classification_head: UpperCAmelCase_ : str = xmod.model.classification_heads["mnli"](xmod.extract_features(A__ ) ) else: UpperCAmelCase_ : str = xmod.model(A__, lang_id=[SAMPLE_LANGUAGE] )[0] print(our_output.shape, their_output.shape ) UpperCAmelCase_ : int = torch.max(torch.abs(our_output - their_output ) ).item() print(f"""max_absolute_diff = {max_absolute_diff}""" ) # ~ 1e-7 UpperCAmelCase_ : int = torch.allclose(A__, A__, atol=1E-3 ) print("Do both models output the same tensors?", "🔥" if success else "💩" ) if not success: raise Exception("Something went wRoNg" ) Path(A__ ).mkdir(parents=A__, exist_ok=A__ ) print(f"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(A__ ) if __name__ == "__main__": _a = argparse.ArgumentParser() # Required parameters parser.add_argument( '--xmod_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument( '--classification_head', action='store_true', help='Whether to convert a final classification head.' ) _a = parser.parse_args() convert_xmod_checkpoint_to_pytorch( args.xmod_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
356
"""simple docstring""" def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): # Return True if there is node that has not iterated. UpperCAmelCase_ : List[Any] = [False] * len(__lowerCamelCase ) UpperCAmelCase_ : Any = [] queue.append(__lowerCamelCase ) UpperCAmelCase_ : Tuple = True while queue: UpperCAmelCase_ : str = queue.pop(0 ) for ind in range(len(graph[u] ) ): if visited[ind] is False and graph[u][ind] > 0: queue.append(__lowerCamelCase ) UpperCAmelCase_ : Any = True UpperCAmelCase_ : Union[str, Any] = u return visited[t] def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): # This array is filled by BFS and to store path UpperCAmelCase_ : List[str] = [-1] * (len(__lowerCamelCase )) UpperCAmelCase_ : Any = 0 while bfs(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): UpperCAmelCase_ : int = float("Inf" ) UpperCAmelCase_ : Tuple = sink while s != source: # Find the minimum value in select path UpperCAmelCase_ : Tuple = min(__lowerCamelCase, graph[parent[s]][s] ) UpperCAmelCase_ : Dict = parent[s] max_flow += path_flow UpperCAmelCase_ : Optional[Any] = sink while v != source: UpperCAmelCase_ : List[str] = parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow UpperCAmelCase_ : Optional[int] = parent[v] return max_flow _a = [ [0, 16, 13, 0, 0, 0], [0, 0, 10, 12, 0, 0], [0, 4, 0, 0, 14, 0], [0, 0, 9, 0, 0, 20], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] _a , _a = 0, 5 print(ford_fulkerson(graph, source, sink))
23
0
import numpy as np import torch from imwatermark import WatermarkEncoder # Copied from https://github.com/Stability-AI/generative-models/blob/613af104c6b85184091d42d374fef420eddb356d/scripts/demo/streamlit_helpers.py#L66 UpperCAmelCase_ : Any = 0B1011_0011_1110_1100_1001_0000_0111_1011_1011_0001_1001_1110 # bin(x)[2:] gives bits of x as str, use int to convert them to 0/1 UpperCAmelCase_ : List[Any] = [int(bit) for bit in bin(WATERMARK_MESSAGE)[2:]] class _SCREAMING_SNAKE_CASE : def __init__( self : int ): UpperCamelCase :Optional[int] = WATERMARK_BITS UpperCamelCase :Dict = WatermarkEncoder() self.encoder.set_watermark("""bits""" , self.watermark ) def _A ( self : str , __lowerCamelCase : torch.FloatTensor ): # can't encode images that are smaller than 256 if images.shape[-1] < 256: return images UpperCamelCase :Optional[Any] = (255 * (images / 2 + 0.5)).cpu().permute(0 , 2 , 3 , 1 ).float().numpy() UpperCamelCase :Dict = [self.encoder.encode(__lowerCamelCase , """dwtDct""" ) for image in images] UpperCamelCase :Optional[Any] = torch.from_numpy(np.array(__lowerCamelCase ) ).permute(0 , 3 , 1 , 2 ) UpperCamelCase :Optional[Any] = torch.clamp(2 * (images / 255 - 0.5) , min=-1.0 , max=1.0 ) return images
38
'''simple docstring''' import os def lowerCamelCase ( UpperCAmelCase__ : str = "input.txt" ) -> int: with open(os.path.join(os.path.dirname(UpperCAmelCase__ ) , UpperCAmelCase__ ) ) as input_file: lowercase_ : str = [ [int(UpperCAmelCase__ ) for element in line.split(""",""" )] for line in input_file.readlines() ] lowercase_ : Optional[Any] = len(UpperCAmelCase__ ) lowercase_ : Any = len(matrix[0] ) lowercase_ : Union[str, Any] = [[-1 for _ in range(UpperCAmelCase__ )] for _ in range(UpperCAmelCase__ )] for i in range(UpperCAmelCase__ ): lowercase_ : int = matrix[i][0] for j in range(1 , UpperCAmelCase__ ): for i in range(UpperCAmelCase__ ): lowercase_ : Union[str, Any] = minimal_path_sums[i][j - 1] + matrix[i][j] for i in range(1 , UpperCAmelCase__ ): lowercase_ : Tuple = min( minimal_path_sums[i][j] , minimal_path_sums[i - 1][j] + matrix[i][j] ) for i in range(rows - 2 , -1 , -1 ): lowercase_ : Dict = min( minimal_path_sums[i][j] , minimal_path_sums[i + 1][j] + matrix[i][j] ) return min(minimal_path_sums_row[-1] for minimal_path_sums_row in minimal_path_sums ) if __name__ == "__main__": print(f"""{solution() = }""")
239
0
'''simple docstring''' import os import unittest from transformers.models.cpmant.tokenization_cpmant import VOCAB_FILES_NAMES, CpmAntTokenizer from transformers.testing_utils import require_jieba, tooslow from ...test_tokenization_common import TokenizerTesterMixin @require_jieba class a_ ( _lowerCAmelCase , unittest.TestCase ): __A = CpmAntTokenizer __A = False def lowercase__ ( self : Optional[int] ): """simple docstring""" super().setUp() lowercase_ :List[str] = [ "<d>", "</d>", "<s>", "</s>", "</_>", "<unk>", "<pad>", "</n>", "我", "是", "C", "P", "M", "A", "n", "t", ] lowercase_ :Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) @tooslow def lowercase__ ( self : Any ): """simple docstring""" lowercase_ :Tuple = CpmAntTokenizer.from_pretrained("openbmb/cpm-ant-10b" ) lowercase_ :Tuple = "今天天气真好!" lowercase_ :List[Any] = ["今天", "天气", "真", "好", "!"] lowercase_ :int = tokenizer.tokenize(lowercase ) self.assertListEqual(lowercase , lowercase ) lowercase_ :List[str] = "今天天气真好!" lowercase_ :List[Any] = [tokenizer.bos_token] + tokens lowercase_ :Dict = [6, 9_802, 14_962, 2_082, 831, 244] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowercase ) , lowercase ) lowercase_ :Tuple = tokenizer.decode(lowercase ) self.assertEqual(lowercase , lowercase )
359
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) lowerCAmelCase : int ={ '''configuration_clip''': [ '''CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''CLIPConfig''', '''CLIPOnnxConfig''', '''CLIPTextConfig''', '''CLIPVisionConfig''', ], '''processing_clip''': ['''CLIPProcessor'''], '''tokenization_clip''': ['''CLIPTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Any =['''CLIPTokenizerFast'''] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : str =['''CLIPFeatureExtractor'''] lowerCAmelCase : Optional[int] =['''CLIPImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Any =[ '''CLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''CLIPModel''', '''CLIPPreTrainedModel''', '''CLIPTextModel''', '''CLIPTextModelWithProjection''', '''CLIPVisionModel''', '''CLIPVisionModelWithProjection''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Union[str, Any] =[ '''TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFCLIPModel''', '''TFCLIPPreTrainedModel''', '''TFCLIPTextModel''', '''TFCLIPVisionModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : List[Any] =[ '''FlaxCLIPModel''', '''FlaxCLIPPreTrainedModel''', '''FlaxCLIPTextModel''', '''FlaxCLIPTextPreTrainedModel''', '''FlaxCLIPVisionModel''', '''FlaxCLIPVisionPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_clip import ( CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPConfig, CLIPOnnxConfig, CLIPTextConfig, CLIPVisionConfig, ) from .processing_clip import CLIPProcessor from .tokenization_clip import CLIPTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_clip_fast import CLIPTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clip import CLIPFeatureExtractor from .image_processing_clip import CLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clip import ( CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPModel, CLIPPreTrainedModel, CLIPTextModel, CLIPTextModelWithProjection, CLIPVisionModel, CLIPVisionModelWithProjection, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_clip import ( TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFCLIPModel, TFCLIPPreTrainedModel, TFCLIPTextModel, TFCLIPVisionModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_clip import ( FlaxCLIPModel, FlaxCLIPPreTrainedModel, FlaxCLIPTextModel, FlaxCLIPTextPreTrainedModel, FlaxCLIPVisionModel, FlaxCLIPVisionPreTrainedModel, ) else: import sys lowerCAmelCase : int =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
147
0
'''simple docstring''' from __future__ import annotations SCREAMING_SNAKE_CASE_: Any =[] def lowerCAmelCase_ ( snake_case_ : list[list[int]] , snake_case_ : int , snake_case_ : int ) -> bool: '''simple docstring''' for i in range(len(snake_case_ ) ): if board[row][i] == 1: return False for i in range(len(snake_case_ ) ): if board[i][column] == 1: return False for i, j in zip(range(snake_case_ , -1 , -1 ) , range(snake_case_ , -1 , -1 ) ): if board[i][j] == 1: return False for i, j in zip(range(snake_case_ , -1 , -1 ) , range(snake_case_ , len(snake_case_ ) ) ): if board[i][j] == 1: return False return True def lowerCAmelCase_ ( snake_case_ : list[list[int]] , snake_case_ : int ) -> bool: '''simple docstring''' if row >= len(snake_case_ ): solution.append(snake_case_ ) printboard(snake_case_ ) print() return True for i in range(len(snake_case_ ) ): if is_safe(snake_case_ , snake_case_ , snake_case_ ): UpperCAmelCase_ = 1 solve(snake_case_ , row + 1 ) UpperCAmelCase_ = 0 return False def lowerCAmelCase_ ( snake_case_ : list[list[int]] ) -> None: '''simple docstring''' for i in range(len(snake_case_ ) ): for j in range(len(snake_case_ ) ): if board[i][j] == 1: print("Q" , end=" " ) else: print("." , end=" " ) print() # n=int(input("The no. of queens")) SCREAMING_SNAKE_CASE_: Tuple =8 SCREAMING_SNAKE_CASE_: Optional[Any] =[[0 for i in range(n)] for j in range(n)] solve(board, 0) print('The total no. of solutions are :', len(solution))
1
'''simple docstring''' from typing import Dict import numpy as np from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline, PipelineException if is_tf_available(): import tensorflow as tf from ..tf_utils import stable_softmax if is_torch_available(): import torch SCREAMING_SNAKE_CASE_: Optional[int] =logging.get_logger(__name__) @add_end_docstrings( UpperCamelCase__ , r""" top_k (`int`, defaults to 5): The number of predictions to return. targets (`str` or `List[str]`, *optional*): When passed, the model will limit the scores to the passed targets instead of looking up in the whole vocab. If the provided targets are not in the model vocab, they will be tokenized and the first resulting token will be used (with a warning, and that might be slower). """ , ) class __A ( UpperCamelCase__ ): def _lowercase (self : str , __a : GenericTensor ): if self.framework == "tf": UpperCAmelCase_ = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy() elif self.framework == "pt": UpperCAmelCase_ = torch.nonzero(input_ids == self.tokenizer.mask_token_id , as_tuple=__a ) else: raise ValueError("Unsupported framework" ) return masked_index def _lowercase (self : Tuple , __a : GenericTensor ): UpperCAmelCase_ = self.get_masked_index(__a ) UpperCAmelCase_ = np.prod(masked_index.shape ) if numel < 1: raise PipelineException( "fill-mask" , self.model.base_model_prefix , f"""No mask_token ({self.tokenizer.mask_token}) found on the input""" , ) def _lowercase (self : List[Any] , __a : GenericTensor ): if isinstance(__a , __a ): for model_input in model_inputs: self._ensure_exactly_one_mask_token(model_input["input_ids"][0] ) else: for input_ids in model_inputs["input_ids"]: self._ensure_exactly_one_mask_token(__a ) def _lowercase (self : Tuple , __a : Dict , __a : List[str]=None , **__a : Any ): if return_tensors is None: UpperCAmelCase_ = self.framework UpperCAmelCase_ = self.tokenizer(__a , return_tensors=__a ) self.ensure_exactly_one_mask_token(__a ) return model_inputs def _lowercase (self : str , __a : Optional[int] ): UpperCAmelCase_ = self.model(**__a ) UpperCAmelCase_ = model_inputs["input_ids"] return model_outputs def _lowercase (self : List[str] , __a : Tuple , __a : int=5 , __a : Dict=None ): # Cap top_k if there are targets if target_ids is not None and target_ids.shape[0] < top_k: UpperCAmelCase_ = target_ids.shape[0] UpperCAmelCase_ = model_outputs["input_ids"][0] UpperCAmelCase_ = model_outputs["logits"] if self.framework == "tf": UpperCAmelCase_ = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy()[:, 0] UpperCAmelCase_ = outputs.numpy() UpperCAmelCase_ = outputs[0, masked_index, :] UpperCAmelCase_ = stable_softmax(__a , axis=-1 ) if target_ids is not None: UpperCAmelCase_ = tf.gather_nd(tf.squeeze(__a , 0 ) , target_ids.reshape(-1 , 1 ) ) UpperCAmelCase_ = tf.expand_dims(__a , 0 ) UpperCAmelCase_ = tf.math.top_k(__a , k=__a ) UpperCAmelCase_ , UpperCAmelCase_ = topk.values.numpy(), topk.indices.numpy() else: UpperCAmelCase_ = torch.nonzero(input_ids == self.tokenizer.mask_token_id , as_tuple=__a ).squeeze(-1 ) # Fill mask pipeline supports only one ${mask_token} per sample UpperCAmelCase_ = outputs[0, masked_index, :] UpperCAmelCase_ = logits.softmax(dim=-1 ) if target_ids is not None: UpperCAmelCase_ = probs[..., target_ids] UpperCAmelCase_ , UpperCAmelCase_ = probs.topk(__a ) UpperCAmelCase_ = [] UpperCAmelCase_ = values.shape[0] == 1 for i, (_values, _predictions) in enumerate(zip(values.tolist() , predictions.tolist() ) ): UpperCAmelCase_ = [] for v, p in zip(_values , _predictions ): # Copy is important since we're going to modify this array in place UpperCAmelCase_ = input_ids.numpy().copy() if target_ids is not None: UpperCAmelCase_ = target_ids[p].tolist() UpperCAmelCase_ = p # Filter padding out: UpperCAmelCase_ = tokens[np.where(tokens != self.tokenizer.pad_token_id )] # Originally we skip special tokens to give readable output. # For multi masks though, the other [MASK] would be removed otherwise # making the output look odd, so we add them back UpperCAmelCase_ = self.tokenizer.decode(__a , skip_special_tokens=__a ) UpperCAmelCase_ = {"score": v, "token": p, "token_str": self.tokenizer.decode([p] ), "sequence": sequence} row.append(__a ) result.append(__a ) if single_mask: return result[0] return result def _lowercase (self : Dict , __a : List[Any] , __a : List[str]=None ): if isinstance(__a , __a ): UpperCAmelCase_ = [targets] try: UpperCAmelCase_ = self.tokenizer.get_vocab() except Exception: UpperCAmelCase_ = {} UpperCAmelCase_ = [] for target in targets: UpperCAmelCase_ = vocab.get(__a , __a ) if id_ is None: UpperCAmelCase_ = self.tokenizer( __a , add_special_tokens=__a , return_attention_mask=__a , return_token_type_ids=__a , max_length=1 , truncation=__a , )["input_ids"] if len(__a ) == 0: logger.warning( f"""The specified target token `{target}` does not exist in the model vocabulary. """ "We cannot replace it with anything meaningful, ignoring it" ) continue UpperCAmelCase_ = input_ids[0] # XXX: If users encounter this pass # it becomes pretty slow, so let's make sure # The warning enables them to fix the input to # get faster performance. logger.warning( f"""The specified target token `{target}` does not exist in the model vocabulary. """ f"""Replacing with `{self.tokenizer.convert_ids_to_tokens(id_ )}`.""" ) target_ids.append(id_ ) UpperCAmelCase_ = list(set(__a ) ) if len(__a ) == 0: raise ValueError("At least one target must be provided when passed." ) UpperCAmelCase_ = np.array(__a ) return target_ids def _lowercase (self : Tuple , __a : Dict=None , __a : List[str]=None ): UpperCAmelCase_ = {} if targets is not None: UpperCAmelCase_ = self.get_target_ids(__a , __a ) UpperCAmelCase_ = target_ids if top_k is not None: UpperCAmelCase_ = top_k if self.tokenizer.mask_token_id is None: raise PipelineException( "fill-mask" , self.model.base_model_prefix , "The tokenizer does not define a `mask_token`." ) return {}, {}, postprocess_params def __call__(self : Union[str, Any] , __a : str , *__a : Any , **__a : Tuple ): UpperCAmelCase_ = super().__call__(__a , **__a ) if isinstance(__a , __a ) and len(__a ) == 1: return outputs[0] return outputs
1
1
"""simple docstring""" from typing import Callable, List, Optional, Union import PIL import torch from transformers import ( CLIPImageProcessor, CLIPSegForImageSegmentation, CLIPSegProcessor, CLIPTextModel, CLIPTokenizer, ) from diffusers import DiffusionPipeline from diffusers.configuration_utils import FrozenDict from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion import StableDiffusionInpaintPipeline from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler from diffusers.utils import deprecate, is_accelerate_available, logging _lowerCAmelCase : List[str] = logging.get_logger(__name__) # pylint: disable=invalid-name class UpperCAmelCase_ ( _lowercase ): def __init__( self : Dict , A : CLIPSegForImageSegmentation , A : CLIPSegProcessor , A : AutoencoderKL , A : CLIPTextModel , A : CLIPTokenizer , A : UNetaDConditionModel , A : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , A : StableDiffusionSafetyChecker , A : CLIPImageProcessor , ): super().__init__() if hasattr(scheduler.config , "steps_offset" ) and scheduler.config.steps_offset != 1: _UpperCAmelCase : str = ( f'The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`' f' should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure ' "to update the config accordingly as leaving `steps_offset` might led to incorrect results" " in future versions. If you have downloaded this checkpoint from the Hugging Face Hub," " it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`" " file" ) deprecate("steps_offset!=1" , "1.0.0" , __UpperCamelCase , standard_warn=__UpperCamelCase ) _UpperCAmelCase : Any = dict(scheduler.config ) _UpperCAmelCase : Tuple = 1 _UpperCAmelCase : Dict = FrozenDict(__UpperCamelCase ) if hasattr(scheduler.config , "skip_prk_steps" ) and scheduler.config.skip_prk_steps is False: _UpperCAmelCase : List[str] = ( f'The configuration file of this scheduler: {scheduler} has not set the configuration' " `skip_prk_steps`. `skip_prk_steps` should be set to True in the configuration file. Please make" " sure to update the config accordingly as not setting `skip_prk_steps` in the config might lead to" " incorrect results in future versions. If you have downloaded this checkpoint from the Hugging Face" " Hub, it would be very nice if you could open a Pull request for the" " `scheduler/scheduler_config.json` file" ) deprecate("skip_prk_steps not set" , "1.0.0" , __UpperCamelCase , standard_warn=__UpperCamelCase ) _UpperCAmelCase : Optional[int] = dict(scheduler.config ) _UpperCAmelCase : Tuple = True _UpperCAmelCase : Dict = FrozenDict(__UpperCamelCase ) if safety_checker is None: logger.warning( f'You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure' " that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered" " results in services or applications open to the public. Both the diffusers team and Hugging Face" " strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling" " it only for use-cases that involve analyzing network behavior or auditing its results. For more" " information, please have a look at https://github.com/huggingface/diffusers/pull/254 ." ) self.register_modules( segmentation_model=__UpperCamelCase , segmentation_processor=__UpperCamelCase , vae=__UpperCamelCase , text_encoder=__UpperCamelCase , tokenizer=__UpperCamelCase , unet=__UpperCamelCase , scheduler=__UpperCamelCase , safety_checker=__UpperCamelCase , feature_extractor=__UpperCamelCase , ) def snake_case_ ( self : Any , A : Optional[Union[str, int]] = "auto" ): if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory _UpperCAmelCase : List[Any] = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(__UpperCamelCase ) def snake_case_ ( self : Optional[Any] ): self.enable_attention_slicing(__UpperCamelCase ) def snake_case_ ( self : Dict ): if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("Please install accelerate via `pip install accelerate`" ) _UpperCAmelCase : Optional[int] = torch.device("cuda" ) for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae, self.safety_checker]: if cpu_offloaded_model is not None: cpu_offload(__UpperCamelCase , __UpperCamelCase ) @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def snake_case_ ( self : Optional[Any] ): if self.device != torch.device("meta" ) or not hasattr(self.unet , "_hf_hook" ): return self.device for module in self.unet.modules(): if ( hasattr(__UpperCamelCase , "_hf_hook" ) and hasattr(module._hf_hook , "execution_device" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() def __call__( self : Optional[Any] , A : Union[str, List[str]] , A : Union[torch.FloatTensor, PIL.Image.Image] , A : str , A : int = 5_1_2 , A : int = 5_1_2 , A : int = 5_0 , A : float = 7.5 , A : Optional[Union[str, List[str]]] = None , A : Optional[int] = 1 , A : float = 0.0 , A : Optional[torch.Generator] = None , A : Optional[torch.FloatTensor] = None , A : Optional[str] = "pil" , A : bool = True , A : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , A : int = 1 , **A : Tuple , ): _UpperCAmelCase : Any = self.segmentation_processor( text=[text] , images=[image] , padding="max_length" , return_tensors="pt" ).to(self.device ) _UpperCAmelCase : Any = self.segmentation_model(**__UpperCamelCase ) _UpperCAmelCase : Optional[int] = torch.sigmoid(outputs.logits ).cpu().detach().unsqueeze(-1 ).numpy() _UpperCAmelCase : Optional[Any] = self.numpy_to_pil(__UpperCamelCase )[0].resize(image.size ) # Run inpainting pipeline with the generated mask _UpperCAmelCase : int = StableDiffusionInpaintPipeline( vae=self.vae , text_encoder=self.text_encoder , tokenizer=self.tokenizer , unet=self.unet , scheduler=self.scheduler , safety_checker=self.safety_checker , feature_extractor=self.feature_extractor , ) return inpainting_pipeline( prompt=__UpperCamelCase , image=__UpperCamelCase , mask_image=__UpperCamelCase , height=__UpperCamelCase , width=__UpperCamelCase , num_inference_steps=__UpperCamelCase , guidance_scale=__UpperCamelCase , negative_prompt=__UpperCamelCase , num_images_per_prompt=__UpperCamelCase , eta=__UpperCamelCase , generator=__UpperCamelCase , latents=__UpperCamelCase , output_type=__UpperCamelCase , return_dict=__UpperCamelCase , callback=__UpperCamelCase , callback_steps=__UpperCamelCase , )
360
"""simple docstring""" import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _lowerCAmelCase : Optional[int] = logging.get_logger(__name__) _lowerCAmelCase : Dict = {"vocab_file": "vocab.json", "merges_file": "merges.txt"} _lowerCAmelCase : Tuple = { "vocab_file": { "allenai/longformer-base-4096": "https://huggingface.co/allenai/longformer-base-4096/resolve/main/vocab.json", "allenai/longformer-large-4096": ( "https://huggingface.co/allenai/longformer-large-4096/resolve/main/vocab.json" ), "allenai/longformer-large-4096-finetuned-triviaqa": ( "https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/vocab.json" ), "allenai/longformer-base-4096-extra.pos.embd.only": ( "https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/vocab.json" ), "allenai/longformer-large-4096-extra.pos.embd.only": ( "https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/vocab.json" ), }, "merges_file": { "allenai/longformer-base-4096": "https://huggingface.co/allenai/longformer-base-4096/resolve/main/merges.txt", "allenai/longformer-large-4096": ( "https://huggingface.co/allenai/longformer-large-4096/resolve/main/merges.txt" ), "allenai/longformer-large-4096-finetuned-triviaqa": ( "https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/merges.txt" ), "allenai/longformer-base-4096-extra.pos.embd.only": ( "https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/merges.txt" ), "allenai/longformer-large-4096-extra.pos.embd.only": ( "https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/merges.txt" ), }, } _lowerCAmelCase : str = { "allenai/longformer-base-4096": 40_96, "allenai/longformer-large-4096": 40_96, "allenai/longformer-large-4096-finetuned-triviaqa": 40_96, "allenai/longformer-base-4096-extra.pos.embd.only": 40_96, "allenai/longformer-large-4096-extra.pos.embd.only": 40_96, } @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def __snake_case ( ) -> List[Any]: '''simple docstring''' _UpperCAmelCase : str = ( list(range(ord("!" ) , ord("~" ) + 1 ) ) + list(range(ord("¡" ) , ord("¬" ) + 1 ) ) + list(range(ord("®" ) , ord("ÿ" ) + 1 ) ) ) _UpperCAmelCase : Any = bs[:] _UpperCAmelCase : Tuple = 0 for b in range(2**8 ): if b not in bs: bs.append(SCREAMING_SNAKE_CASE__ ) cs.append(2**8 + n ) n += 1 _UpperCAmelCase : Union[str, Any] = [chr(SCREAMING_SNAKE_CASE__ ) for n in cs] return dict(zip(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) def __snake_case ( SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> int: '''simple docstring''' _UpperCAmelCase : int = set() _UpperCAmelCase : int = word[0] for char in word[1:]: pairs.add((prev_char, char) ) _UpperCAmelCase : Optional[int] = char return pairs class UpperCAmelCase_ ( _UpperCamelCase ): __SCREAMING_SNAKE_CASE : List[str] = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE : List[str] = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE : Union[str, Any] = ['input_ids', 'attention_mask'] def __init__( self : Optional[Any] , A : int , A : Any , A : List[str]="replace" , A : List[Any]="<s>" , A : int="</s>" , A : Union[str, Any]="</s>" , A : Tuple="<s>" , A : str="<unk>" , A : Dict="<pad>" , A : Optional[Any]="<mask>" , A : Tuple=False , **A : Dict , ): _UpperCAmelCase : Tuple = AddedToken(A , lstrip=A , rstrip=A ) if isinstance(A , A ) else bos_token _UpperCAmelCase : int = AddedToken(A , lstrip=A , rstrip=A ) if isinstance(A , A ) else eos_token _UpperCAmelCase : int = AddedToken(A , lstrip=A , rstrip=A ) if isinstance(A , A ) else sep_token _UpperCAmelCase : Dict = AddedToken(A , lstrip=A , rstrip=A ) if isinstance(A , A ) else cls_token _UpperCAmelCase : Optional[int] = AddedToken(A , lstrip=A , rstrip=A ) if isinstance(A , A ) else unk_token _UpperCAmelCase : Dict = AddedToken(A , lstrip=A , rstrip=A ) if isinstance(A , A ) else pad_token # Mask token behave like a normal word, i.e. include the space before it _UpperCAmelCase : Dict = AddedToken(A , lstrip=A , rstrip=A ) if isinstance(A , A ) else mask_token super().__init__( errors=A , bos_token=A , eos_token=A , unk_token=A , sep_token=A , cls_token=A , pad_token=A , mask_token=A , add_prefix_space=A , **A , ) with open(A , encoding="utf-8" ) as vocab_handle: _UpperCAmelCase : Union[str, Any] = json.load(A ) _UpperCAmelCase : List[str] = {v: k for k, v in self.encoder.items()} _UpperCAmelCase : Dict = errors # how to handle errors in decoding _UpperCAmelCase : List[str] = bytes_to_unicode() _UpperCAmelCase : Dict = {v: k for k, v in self.byte_encoder.items()} with open(A , encoding="utf-8" ) as merges_handle: _UpperCAmelCase : Union[str, Any] = merges_handle.read().split("\n" )[1:-1] _UpperCAmelCase : Union[str, Any] = [tuple(merge.split() ) for merge in bpe_merges] _UpperCAmelCase : List[str] = dict(zip(A , range(len(A ) ) ) ) _UpperCAmelCase : Tuple = {} _UpperCAmelCase : Optional[Any] = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions _UpperCAmelCase : Optional[int] = re.compile(R"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" ) @property def snake_case_ ( self : Optional[Any] ): return len(self.encoder ) def snake_case_ ( self : List[str] ): return dict(self.encoder , **self.added_tokens_encoder ) def snake_case_ ( self : Tuple , A : Union[str, Any] ): if token in self.cache: return self.cache[token] _UpperCAmelCase : Optional[int] = tuple(A ) _UpperCAmelCase : Optional[Any] = get_pairs(A ) if not pairs: return token while True: _UpperCAmelCase : Optional[int] = min(A , key=lambda A : self.bpe_ranks.get(A , float("inf" ) ) ) if bigram not in self.bpe_ranks: break _UpperCAmelCase , _UpperCAmelCase : str = bigram _UpperCAmelCase : Dict = [] _UpperCAmelCase : Union[str, Any] = 0 while i < len(A ): try: _UpperCAmelCase : int = word.index(A , A ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) _UpperCAmelCase : Dict = j if word[i] == first and i < len(A ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 _UpperCAmelCase : Optional[Any] = tuple(A ) _UpperCAmelCase : Dict = new_word if len(A ) == 1: break else: _UpperCAmelCase : Optional[int] = get_pairs(A ) _UpperCAmelCase : Any = " ".join(A ) _UpperCAmelCase : int = word return word def snake_case_ ( self : Optional[int] , A : List[str] ): _UpperCAmelCase : str = [] for token in re.findall(self.pat , A ): _UpperCAmelCase : Optional[Any] = "".join( self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(A ).split(" " ) ) return bpe_tokens def snake_case_ ( self : Optional[int] , A : Union[str, Any] ): return self.encoder.get(A , self.encoder.get(self.unk_token ) ) def snake_case_ ( self : Union[str, Any] , A : List[str] ): return self.decoder.get(A ) def snake_case_ ( self : Dict , A : int ): _UpperCAmelCase : Tuple = "".join(A ) _UpperCAmelCase : Dict = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8" , errors=self.errors ) return text def snake_case_ ( self : int , A : str , A : Optional[str] = None ): if not os.path.isdir(A ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return _UpperCAmelCase : List[Any] = os.path.join( A , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) _UpperCAmelCase : Any = os.path.join( A , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(A , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=A , ensure_ascii=A ) + "\n" ) _UpperCAmelCase : Optional[Any] = 0 with open(A , "w" , encoding="utf-8" ) as writer: writer.write("#version: 0.2\n" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda A : kv[1] ): if index != token_index: logger.warning( f'Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.' " Please check that the tokenizer is not corrupted!" ) _UpperCAmelCase : Any = token_index writer.write(" ".join(A ) + "\n" ) index += 1 return vocab_file, merge_file def snake_case_ ( self : int , A : List[int] , A : Optional[List[int]] = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _UpperCAmelCase : List[Any] = [self.cls_token_id] _UpperCAmelCase : List[Any] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def snake_case_ ( self : Optional[Any] , A : List[int] , A : Optional[List[int]] = None , A : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=A , token_ids_a=A , already_has_special_tokens=A ) if token_ids_a is None: return [1] + ([0] * len(A )) + [1] return [1] + ([0] * len(A )) + [1, 1] + ([0] * len(A )) + [1] def snake_case_ ( self : str , A : List[int] , A : Optional[List[int]] = None ): _UpperCAmelCase : Optional[Any] = [self.sep_token_id] _UpperCAmelCase : Any = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def snake_case_ ( self : str , A : List[str] , A : List[str]=False , **A : List[str] ): _UpperCAmelCase : Optional[Any] = kwargs.pop("add_prefix_space" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(A ) > 0 and not text[0].isspace()): _UpperCAmelCase : List[Any] = " " + text return (text, kwargs)
202
0
'''simple docstring''' import argparse import json import os import sys import tempfile import unittest from argparse import Namespace from dataclasses import dataclass, field from enum import Enum from pathlib import Path from typing import List, Literal, Optional import yaml from transformers import HfArgumentParser, TrainingArguments from transformers.hf_argparser import make_choice_type_function, string_to_bool # Since Python 3.10, we can use the builtin `|` operator for Union types # See PEP 604: https://peps.python.org/pep-0604 lowercase_ = sys.version_info >= (3, 10) def lowerCAmelCase (__A=None , __A=None): """simple docstring""" return field(default_factory=lambda: default , metadata=__A) @dataclass class __A : '''simple docstring''' __lowerCamelCase : int __lowerCamelCase : float __lowerCamelCase : str __lowerCamelCase : bool @dataclass class __A : '''simple docstring''' __lowerCamelCase : int = 42 __lowerCamelCase : str = field(default='toto' , metadata={'help': 'help message'} ) @dataclass class __A : '''simple docstring''' __lowerCamelCase : bool = False __lowerCamelCase : bool = True __lowerCamelCase : Optional[bool] = None class __A ( A ): '''simple docstring''' __lowerCamelCase : Any = 'titi' __lowerCamelCase : Optional[Any] = 'toto' class __A ( A ): '''simple docstring''' __lowerCamelCase : Any = 'titi' __lowerCamelCase : Optional[Any] = 'toto' __lowerCamelCase : List[Any] = 42 @dataclass class __A : '''simple docstring''' __lowerCamelCase : BasicEnum = "toto" def a__ (self ) -> List[str]: """simple docstring""" _a = BasicEnum(self.foo ) @dataclass class __A : '''simple docstring''' __lowerCamelCase : MixedTypeEnum = "toto" def a__ (self ) -> Optional[int]: """simple docstring""" _a = MixedTypeEnum(self.foo ) @dataclass class __A : '''simple docstring''' __lowerCamelCase : Optional[int] = None __lowerCamelCase : Optional[float] = field(default=A , metadata={'help': 'help message'} ) __lowerCamelCase : Optional[str] = None __lowerCamelCase : Optional[List[str]] = list_field(default=[] ) __lowerCamelCase : Optional[List[int]] = list_field(default=[] ) @dataclass class __A : '''simple docstring''' __lowerCamelCase : List[int] = list_field(default=[] ) __lowerCamelCase : List[int] = list_field(default=[1, 2, 3] ) __lowerCamelCase : List[str] = list_field(default=['Hallo', 'Bonjour', 'Hello'] ) __lowerCamelCase : List[float] = list_field(default=[0.1, 0.2, 0.3] ) @dataclass class __A : '''simple docstring''' __lowerCamelCase : List[int] = field() __lowerCamelCase : str = field() __lowerCamelCase : BasicEnum = field() def a__ (self ) -> Tuple: """simple docstring""" _a = BasicEnum(self.required_enum ) @dataclass class __A : '''simple docstring''' __lowerCamelCase : int __lowerCamelCase : "BasicEnum" = field() __lowerCamelCase : "Optional[bool]" = None __lowerCamelCase : "str" = field(default='toto' , metadata={'help': 'help message'} ) __lowerCamelCase : "List[str]" = list_field(default=['Hallo', 'Bonjour', 'Hello'] ) if is_python_no_less_than_3_10: @dataclass class __A : '''simple docstring''' __lowerCamelCase : bool = False __lowerCamelCase : bool = True __lowerCamelCase : bool | None = None @dataclass class __A : '''simple docstring''' __lowerCamelCase : int | None = None __lowerCamelCase : float | None = field(default=A , metadata={'help': 'help message'} ) __lowerCamelCase : str | None = None __lowerCamelCase : list[str] | None = list_field(default=[] ) __lowerCamelCase : list[int] | None = list_field(default=[] ) class __A ( unittest.TestCase ): '''simple docstring''' def a__ (self , A , A ) -> str: """simple docstring""" self.assertEqual(len(a._actions ) , len(b._actions ) ) for x, y in zip(a._actions , b._actions ): _a = {k: v for k, v in vars(A ).items() if k != '''container'''} _a = {k: v for k, v in vars(A ).items() if k != '''container'''} # Choices with mixed type have custom function as "type" # So we need to compare results directly for equality if xx.get('''choices''' , A ) and yy.get('''choices''' , A ): for expected_choice in yy["choices"] + xx["choices"]: self.assertEqual(xx['''type'''](A ) , yy['''type'''](A ) ) del xx["type"], yy["type"] self.assertEqual(A , A ) def a__ (self ) -> List[str]: """simple docstring""" _a = HfArgumentParser(A ) _a = argparse.ArgumentParser() expected.add_argument('''--foo''' , type=A , required=A ) expected.add_argument('''--bar''' , type=A , required=A ) expected.add_argument('''--baz''' , type=A , required=A ) expected.add_argument('''--flag''' , type=A , default=A , const=A , nargs='''?''' ) self.argparsersEqual(A , A ) _a = ['''--foo''', '''1''', '''--baz''', '''quux''', '''--bar''', '''0.5'''] ((_a) , ) = parser.parse_args_into_dataclasses(A , look_for_args_file=A ) self.assertFalse(example.flag ) def a__ (self ) -> int: """simple docstring""" _a = HfArgumentParser(A ) _a = argparse.ArgumentParser() expected.add_argument('''--foo''' , default=42 , type=A ) expected.add_argument('''--baz''' , default='''toto''' , type=A , help='''help message''' ) self.argparsersEqual(A , A ) def a__ (self ) -> Optional[Any]: """simple docstring""" _a = argparse.ArgumentParser() expected.add_argument('''--foo''' , type=A , default=A , const=A , nargs='''?''' ) expected.add_argument('''--baz''' , type=A , default=A , const=A , nargs='''?''' ) # A boolean no_* argument always has to come after its "default: True" regular counter-part # and its default must be set to False expected.add_argument('''--no_baz''' , action='''store_false''' , default=A , dest='''baz''' ) expected.add_argument('''--opt''' , type=A , default=A ) _a = [WithDefaultBoolExample] if is_python_no_less_than_3_10: dataclass_types.append(A ) for dataclass_type in dataclass_types: _a = HfArgumentParser(A ) self.argparsersEqual(A , A ) _a = parser.parse_args([] ) self.assertEqual(A , Namespace(foo=A , baz=A , opt=A ) ) _a = parser.parse_args(['''--foo''', '''--no_baz'''] ) self.assertEqual(A , Namespace(foo=A , baz=A , opt=A ) ) _a = parser.parse_args(['''--foo''', '''--baz'''] ) self.assertEqual(A , Namespace(foo=A , baz=A , opt=A ) ) _a = parser.parse_args(['''--foo''', '''True''', '''--baz''', '''True''', '''--opt''', '''True'''] ) self.assertEqual(A , Namespace(foo=A , baz=A , opt=A ) ) _a = parser.parse_args(['''--foo''', '''False''', '''--baz''', '''False''', '''--opt''', '''False'''] ) self.assertEqual(A , Namespace(foo=A , baz=A , opt=A ) ) def a__ (self ) -> Optional[Any]: """simple docstring""" _a = HfArgumentParser(A ) _a = argparse.ArgumentParser() expected.add_argument( '''--foo''' , default='''toto''' , choices=['''titi''', '''toto''', 42] , type=make_choice_type_function(['''titi''', '''toto''', 42] ) , ) self.argparsersEqual(A , A ) _a = parser.parse_args([] ) self.assertEqual(args.foo , '''toto''' ) _a = parser.parse_args_into_dataclasses([] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.toto ) _a = parser.parse_args(['''--foo''', '''titi'''] ) self.assertEqual(args.foo , '''titi''' ) _a = parser.parse_args_into_dataclasses(['''--foo''', '''titi'''] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.titi ) _a = parser.parse_args(['''--foo''', '''42'''] ) self.assertEqual(args.foo , 42 ) _a = parser.parse_args_into_dataclasses(['''--foo''', '''42'''] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.fourtytwo ) def a__ (self ) -> Union[str, Any]: """simple docstring""" @dataclass class __A : '''simple docstring''' __lowerCamelCase : Literal["titi", "toto", 42] = "toto" _a = HfArgumentParser(A ) _a = argparse.ArgumentParser() expected.add_argument( '''--foo''' , default='''toto''' , choices=('''titi''', '''toto''', 42) , type=make_choice_type_function(['''titi''', '''toto''', 42] ) , ) self.argparsersEqual(A , A ) _a = parser.parse_args([] ) self.assertEqual(args.foo , '''toto''' ) _a = parser.parse_args(['''--foo''', '''titi'''] ) self.assertEqual(args.foo , '''titi''' ) _a = parser.parse_args(['''--foo''', '''42'''] ) self.assertEqual(args.foo , 42 ) def a__ (self ) -> List[Any]: """simple docstring""" _a = HfArgumentParser(A ) _a = argparse.ArgumentParser() expected.add_argument('''--foo_int''' , nargs='''+''' , default=[] , type=A ) expected.add_argument('''--bar_int''' , nargs='''+''' , default=[1, 2, 3] , type=A ) expected.add_argument('''--foo_str''' , nargs='''+''' , default=['''Hallo''', '''Bonjour''', '''Hello'''] , type=A ) expected.add_argument('''--foo_float''' , nargs='''+''' , default=[0.1, 0.2, 0.3] , type=A ) self.argparsersEqual(A , A ) _a = parser.parse_args([] ) self.assertEqual( A , Namespace(foo_int=[] , bar_int=[1, 2, 3] , foo_str=['''Hallo''', '''Bonjour''', '''Hello'''] , foo_float=[0.1, 0.2, 0.3] ) , ) _a = parser.parse_args('''--foo_int 1 --bar_int 2 3 --foo_str a b c --foo_float 0.1 0.7'''.split() ) self.assertEqual(A , Namespace(foo_int=[1] , bar_int=[2, 3] , foo_str=['''a''', '''b''', '''c'''] , foo_float=[0.1, 0.7] ) ) def a__ (self ) -> Optional[Any]: """simple docstring""" _a = argparse.ArgumentParser() expected.add_argument('''--foo''' , default=A , type=A ) expected.add_argument('''--bar''' , default=A , type=A , help='''help message''' ) expected.add_argument('''--baz''' , default=A , type=A ) expected.add_argument('''--ces''' , nargs='''+''' , default=[] , type=A ) expected.add_argument('''--des''' , nargs='''+''' , default=[] , type=A ) _a = [OptionalExample] if is_python_no_less_than_3_10: dataclass_types.append(A ) for dataclass_type in dataclass_types: _a = HfArgumentParser(A ) self.argparsersEqual(A , A ) _a = parser.parse_args([] ) self.assertEqual(A , Namespace(foo=A , bar=A , baz=A , ces=[] , des=[] ) ) _a = parser.parse_args('''--foo 12 --bar 3.14 --baz 42 --ces a b c --des 1 2 3'''.split() ) self.assertEqual(A , Namespace(foo=12 , bar=3.14 , baz='''42''' , ces=['''a''', '''b''', '''c'''] , des=[1, 2, 3] ) ) def a__ (self ) -> Tuple: """simple docstring""" _a = HfArgumentParser(A ) _a = argparse.ArgumentParser() expected.add_argument('''--required_list''' , nargs='''+''' , type=A , required=A ) expected.add_argument('''--required_str''' , type=A , required=A ) expected.add_argument( '''--required_enum''' , type=make_choice_type_function(['''titi''', '''toto'''] ) , choices=['''titi''', '''toto'''] , required=A , ) self.argparsersEqual(A , A ) def a__ (self ) -> Optional[Any]: """simple docstring""" _a = HfArgumentParser(A ) _a = argparse.ArgumentParser() expected.add_argument('''--foo''' , type=A , required=A ) expected.add_argument( '''--required_enum''' , type=make_choice_type_function(['''titi''', '''toto'''] ) , choices=['''titi''', '''toto'''] , required=A , ) expected.add_argument('''--opt''' , type=A , default=A ) expected.add_argument('''--baz''' , default='''toto''' , type=A , help='''help message''' ) expected.add_argument('''--foo_str''' , nargs='''+''' , default=['''Hallo''', '''Bonjour''', '''Hello'''] , type=A ) self.argparsersEqual(A , A ) def a__ (self ) -> Dict: """simple docstring""" _a = HfArgumentParser(A ) _a = { '''foo''': 12, '''bar''': 3.14, '''baz''': '''42''', '''flag''': True, } _a = parser.parse_dict(A )[0] _a = BasicExample(**A ) self.assertEqual(A , A ) def a__ (self ) -> Any: """simple docstring""" _a = HfArgumentParser(A ) _a = { '''foo''': 12, '''bar''': 3.14, '''baz''': '''42''', '''flag''': True, '''extra''': 42, } self.assertRaises(A , parser.parse_dict , A , allow_extra_keys=A ) def a__ (self ) -> Optional[Any]: """simple docstring""" _a = HfArgumentParser(A ) _a = { '''foo''': 12, '''bar''': 3.14, '''baz''': '''42''', '''flag''': True, } with tempfile.TemporaryDirectory() as tmp_dir: _a = os.path.join(A , '''temp_json''' ) os.mkdir(A ) with open(temp_local_path + '''.json''' , '''w+''' ) as f: json.dump(A , A ) _a = parser.parse_yaml_file(Path(temp_local_path + '''.json''' ) )[0] _a = BasicExample(**A ) self.assertEqual(A , A ) def a__ (self ) -> Dict: """simple docstring""" _a = HfArgumentParser(A ) _a = { '''foo''': 12, '''bar''': 3.14, '''baz''': '''42''', '''flag''': True, } with tempfile.TemporaryDirectory() as tmp_dir: _a = os.path.join(A , '''temp_yaml''' ) os.mkdir(A ) with open(temp_local_path + '''.yaml''' , '''w+''' ) as f: yaml.dump(A , A ) _a = parser.parse_yaml_file(Path(temp_local_path + '''.yaml''' ) )[0] _a = BasicExample(**A ) self.assertEqual(A , A ) def a__ (self ) -> int: """simple docstring""" _a = HfArgumentParser(A ) self.assertIsNotNone(A )
211
'''simple docstring''' import unicodedata from dataclasses import dataclass from typing import Optional, Union import numpy as np from transformers.data.data_collator import DataCollatorMixin from transformers.file_utils import PaddingStrategy from transformers.tokenization_utils_base import PreTrainedTokenizerBase def lowerCAmelCase (__A , __A , __A , __A): """simple docstring""" if isinstance(__A , __A): _a = np.full((len(__A), sequence_length, 2) , __A) else: _a = np.full((len(__A), sequence_length) , __A) for i, tensor in enumerate(__A): if padding_side == "right": if isinstance(__A , __A): _a = tensor[:sequence_length] else: _a = tensor[:sequence_length] else: if isinstance(__A , __A): _a = tensor[:sequence_length] else: _a = tensor[:sequence_length] return out_tensor.tolist() def lowerCAmelCase (__A): """simple docstring""" _a = ord(__A) if (cp >= 33 and cp <= 47) or (cp >= 58 and cp <= 64) or (cp >= 91 and cp <= 96) or (cp >= 123 and cp <= 126): return True _a = unicodedata.category(__A) if cat.startswith('''P'''): return True return False @dataclass class __A ( A ): '''simple docstring''' __lowerCamelCase : PreTrainedTokenizerBase __lowerCamelCase : Union[bool, str, PaddingStrategy] = True __lowerCamelCase : Optional[int] = None __lowerCamelCase : Optional[int] = None __lowerCamelCase : int = -100 __lowerCamelCase : str = "pt" def a__ (self , A ) -> List[str]: """simple docstring""" import torch _a = '''label''' if '''label''' in features[0].keys() else '''labels''' _a = [feature[label_name] for feature in features] if label_name in features[0].keys() else None _a = self.tokenizer.pad( A , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='''pt''' if labels is None else None , ) if labels is None: return batch _a = torch.tensor(batch['''entity_ids'''] ).shape[1] _a = self.tokenizer.padding_side if padding_side == "right": _a = [ list(A ) + [self.label_pad_token_id] * (sequence_length - len(A )) for label in labels ] else: _a = [ [self.label_pad_token_id] * (sequence_length - len(A )) + list(A ) for label in labels ] _a = [feature['''ner_tags'''] for feature in features] _a = padding_tensor(A , -1 , A , A ) _a = [feature['''original_entity_spans'''] for feature in features] _a = padding_tensor(A , (-1, -1) , A , A ) _a = {k: torch.tensor(A , dtype=torch.intaa ) for k, v in batch.items()} return batch
211
1
"""simple docstring""" from __future__ import annotations from typing import Any def SCREAMING_SNAKE_CASE_ ( snake_case : list[Any] )-> None: create_state_space_tree(snake_case , [] , 0 ) def SCREAMING_SNAKE_CASE_ ( snake_case : list[Any] , snake_case : list[Any] , snake_case : int )-> None: if index == len(snake_case ): print(snake_case ) return create_state_space_tree(snake_case , snake_case , index + 1 ) current_subsequence.append(sequence[index] ) create_state_space_tree(snake_case , snake_case , index + 1 ) current_subsequence.pop() if __name__ == "__main__": A_ : list[Any] =[3, 1, 2, 4] generate_all_subsequences(seq) seq.clear() seq.extend(["""A""", """B""", """C"""]) generate_all_subsequences(seq)
367
"""simple docstring""" def SCREAMING_SNAKE_CASE_ ( snake_case : list )-> list: def merge(snake_case : list , snake_case : list ) -> list: def _merge(): while left and right: yield (left if left[0] <= right[0] else right).pop(0 ) yield from left yield from right return list(_merge() ) if len(snake_case ) <= 1: return collection _lowerCamelCase = len(snake_case ) // 2 return merge(merge_sort(collection[:mid] ) , merge_sort(collection[mid:] ) ) if __name__ == "__main__": import doctest doctest.testmod() A_ : int =input("""Enter numbers separated by a comma:\n""").strip() A_ : Dict =[int(item) for item in user_input.split(""",""")] print(*merge_sort(unsorted), sep=""",""")
80
0
'''simple docstring''' from pickle import UnpicklingError import jax import jax.numpy as jnp import numpy as np from flax.serialization import from_bytes from flax.traverse_util import flatten_dict from ..utils import logging _lowerCAmelCase = logging.get_logger(__name__) def _SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase ): """simple docstring""" try: with open(UpperCamelCase , """rb""" ) as flax_state_f: lowerCAmelCase__ : Union[str, Any] = from_bytes(UpperCamelCase , flax_state_f.read() ) except UnpicklingError as e: try: with open(UpperCamelCase ) as f: if f.read().startswith("""version""" ): raise OSError( """You seem to have cloned a repository without having git-lfs installed. Please""" """ install git-lfs and run `git lfs install` followed by `git lfs pull` in the""" """ folder you cloned.""" ) else: raise ValueError from e except (UnicodeDecodeError, ValueError): raise EnvironmentError(f"""Unable to convert {model_file} to Flax deserializable object. """ ) return load_flax_weights_in_pytorch_model(UpperCamelCase , UpperCamelCase ) def _SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase ): """simple docstring""" try: import torch # noqa: F401 except ImportError: logger.error( """Loading Flax weights in PyTorch requires both PyTorch and Flax to be installed. Please see""" """ https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation""" """ instructions.""" ) raise # check if we have bf16 weights lowerCAmelCase__ : str = flatten_dict(jax.tree_util.tree_map(lambda UpperCamelCase : x.dtype == jnp.bfloataa , UpperCamelCase ) ).values() if any(UpperCamelCase ): # convert all weights to fp32 if they are bf16 since torch.from_numpy can-not handle bf16 # and bf16 is not fully supported in PT yet. logger.warning( """Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` """ """before loading those in PyTorch model.""" ) lowerCAmelCase__ : Dict = jax.tree_util.tree_map( lambda UpperCamelCase : params.astype(np.floataa ) if params.dtype == jnp.bfloataa else params , UpperCamelCase ) lowerCAmelCase__ : Any = """""" lowerCAmelCase__ : Any = flatten_dict(UpperCamelCase , sep=""".""" ) lowerCAmelCase__ : Optional[int] = pt_model.state_dict() # keep track of unexpected & missing keys lowerCAmelCase__ : Optional[Any] = [] lowerCAmelCase__ : int = set(pt_model_dict.keys() ) for flax_key_tuple, flax_tensor in flax_state_dict.items(): lowerCAmelCase__ : Union[str, Any] = flax_key_tuple.split(""".""" ) if flax_key_tuple_array[-1] == "kernel" and flax_tensor.ndim == 4: lowerCAmelCase__ : Optional[int] = flax_key_tuple_array[:-1] + ["""weight"""] lowerCAmelCase__ : Any = jnp.transpose(UpperCamelCase , (3, 2, 0, 1) ) elif flax_key_tuple_array[-1] == "kernel": lowerCAmelCase__ : str = flax_key_tuple_array[:-1] + ["""weight"""] lowerCAmelCase__ : Any = flax_tensor.T elif flax_key_tuple_array[-1] == "scale": lowerCAmelCase__ : int = flax_key_tuple_array[:-1] + ["""weight"""] if "time_embedding" not in flax_key_tuple_array: for i, flax_key_tuple_string in enumerate(UpperCamelCase ): lowerCAmelCase__ : List[str] = ( flax_key_tuple_string.replace("""_0""" , """.0""" ) .replace("""_1""" , """.1""" ) .replace("""_2""" , """.2""" ) .replace("""_3""" , """.3""" ) .replace("""_4""" , """.4""" ) .replace("""_5""" , """.5""" ) .replace("""_6""" , """.6""" ) .replace("""_7""" , """.7""" ) .replace("""_8""" , """.8""" ) .replace("""_9""" , """.9""" ) ) lowerCAmelCase__ : Union[str, Any] = """.""".join(UpperCamelCase ) if flax_key in pt_model_dict: if flax_tensor.shape != pt_model_dict[flax_key].shape: raise ValueError( f"""Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected """ f"""to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}.""" ) else: # add weight to pytorch dict lowerCAmelCase__ : int = np.asarray(UpperCamelCase ) if not isinstance(UpperCamelCase , np.ndarray ) else flax_tensor lowerCAmelCase__ : int = torch.from_numpy(UpperCamelCase ) # remove from missing keys missing_keys.remove(UpperCamelCase ) else: # weight is not expected by PyTorch model unexpected_keys.append(UpperCamelCase ) pt_model.load_state_dict(UpperCamelCase ) # re-transform missing_keys to list lowerCAmelCase__ : Optional[int] = list(UpperCamelCase ) if len(UpperCamelCase ) > 0: logger.warning( """Some weights of the Flax model were not used when initializing the PyTorch model""" f""" {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing""" f""" {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture""" """ (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This""" f""" IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect""" """ to be exactly identical (e.g. initializing a BertForSequenceClassification model from a""" """ FlaxBertForSequenceClassification model).""" ) if len(UpperCamelCase ) > 0: logger.warning( f"""Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly""" f""" initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to""" """ use it for predictions and inference.""" ) return pt_model
37
'''simple docstring''' from __future__ import annotations import math from collections import Counter from string import ascii_lowercase def _SCREAMING_SNAKE_CASE ( UpperCamelCase ): """simple docstring""" lowerCAmelCase__ , lowerCAmelCase__ : List[str] = analyze_text(UpperCamelCase ) lowerCAmelCase__ : Optional[int] = list(""" """ + ascii_lowercase ) # what is our total sum of probabilities. lowerCAmelCase__ : List[Any] = sum(single_char_strings.values() ) # one length string lowerCAmelCase__ : Optional[int] = 0 # for each alpha we go in our dict and if it is in it we calculate entropy for ch in my_alphas: if ch in single_char_strings: lowerCAmelCase__ : List[Any] = single_char_strings[ch] lowerCAmelCase__ : List[Any] = my_str / all_sum my_fir_sum += prob * math.loga(UpperCamelCase ) # entropy formula. # print entropy print(f"""{round(-1 * my_fir_sum ):.1f}""" ) # two len string lowerCAmelCase__ : Dict = sum(two_char_strings.values() ) lowerCAmelCase__ : int = 0 # for each alpha (two in size) calculate entropy. for cha in my_alphas: for cha in my_alphas: lowerCAmelCase__ : Union[str, Any] = cha + cha if sequence in two_char_strings: lowerCAmelCase__ : Dict = two_char_strings[sequence] lowerCAmelCase__ : Tuple = int(UpperCamelCase ) / all_sum my_sec_sum += prob * math.loga(UpperCamelCase ) # print second entropy print(f"""{round(-1 * my_sec_sum ):.1f}""" ) # print the difference between them print(f"""{round((-1 * my_sec_sum) - (-1 * my_fir_sum) ):.1f}""" ) def _SCREAMING_SNAKE_CASE ( UpperCamelCase ): """simple docstring""" lowerCAmelCase__ : Optional[Any] = Counter() # type: ignore lowerCAmelCase__ : Tuple = Counter() # type: ignore single_char_strings[text[-1]] += 1 # first case when we have space at start. two_char_strings[" " + text[0]] += 1 for i in range(0 , len(UpperCamelCase ) - 1 ): single_char_strings[text[i]] += 1 two_char_strings[text[i : i + 2]] += 1 return single_char_strings, two_char_strings def _SCREAMING_SNAKE_CASE ( ): """simple docstring""" import doctest doctest.testmod() # text = ( # "Had repulsive dashwoods suspicion sincerity but advantage now him. Remark " # "easily garret nor nay. Civil those mrs enjoy shy fat merry. You greatest " # "jointure saw horrible. He private he on be imagine suppose. Fertile " # "beloved evident through no service elderly is. Blind there if every no so " # "at. Own neglected you preferred way sincerity delivered his attempted. To " # "of message cottage windows do besides against uncivil. Delightful " # "unreserved impossible few estimating men favourable see entreaties. She " # "propriety immediate was improving. He or entrance humoured likewise " # "moderate. Much nor game son say feel. Fat make met can must form into " # "gate. Me we offending prevailed discovery. " # ) # calculate_prob(text) if __name__ == "__main__": main()
37
1
"""simple docstring""" import os from pathlib import Path def lowercase_ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> str: """simple docstring""" lowerCAmelCase__ : List[str] = { """en""": """Machine learning is great, isn't it?""", """ru""": """Машинное обучение - это здорово, не так ли?""", """de""": """Maschinelles Lernen ist großartig, oder?""", } # BLUE scores as follows: # "pair": [fairseq, transformers] lowerCAmelCase__ : Optional[Any] = { """ru-en""": ["""[41.3](http://matrix.statmt.org/matrix/output/1907?run_id=6937)""", """39.20"""], """en-ru""": ["""[36.4](http://matrix.statmt.org/matrix/output/1914?run_id=6724)""", """33.47"""], """en-de""": ["""[43.1](http://matrix.statmt.org/matrix/output/1909?run_id=6862)""", """42.83"""], """de-en""": ["""[42.3](http://matrix.statmt.org/matrix/output/1902?run_id=6750)""", """41.35"""], } lowerCAmelCase__ : Optional[Any] = f"""{src_lang}-{tgt_lang}""" lowerCAmelCase__ : Tuple = f"""\n---\nlanguage: \n- {src_lang}\n- {tgt_lang}\nthumbnail:\ntags:\n- translation\n- wmt19\n- facebook\nlicense: apache-2.0\ndatasets:\n- wmt19\nmetrics:\n- bleu\n---\n\n# FSMT\n\n## Model description\n\nThis is a ported version of [fairseq wmt19 transformer](https://github.com/pytorch/fairseq/blob/master/examples/wmt19/README.md) for {src_lang}-{tgt_lang}.\n\nFor more details, please see, [Facebook FAIR's WMT19 News Translation Task Submission](https://arxiv.org/abs/1907.06616).\n\nThe abbreviation FSMT stands for FairSeqMachineTranslation\n\nAll four models are available:\n\n* [wmt19-en-ru](https://huggingface.co/facebook/wmt19-en-ru)\n* [wmt19-ru-en](https://huggingface.co/facebook/wmt19-ru-en)\n* [wmt19-en-de](https://huggingface.co/facebook/wmt19-en-de)\n* [wmt19-de-en](https://huggingface.co/facebook/wmt19-de-en)\n\n## Intended uses & limitations\n\n#### How to use\n\n```python\nfrom transformers import FSMTForConditionalGeneration, FSMTTokenizer\nmname = \"facebook/wmt19-{src_lang}-{tgt_lang}\"\ntokenizer = FSMTTokenizer.from_pretrained(mname)\nmodel = FSMTForConditionalGeneration.from_pretrained(mname)\n\ninput = \"{texts[src_lang]}\"\ninput_ids = tokenizer.encode(input, return_tensors=\"pt\")\noutputs = model.generate(input_ids)\ndecoded = tokenizer.decode(outputs[0], skip_special_tokens=True)\nprint(decoded) # {texts[tgt_lang]}\n\n```\n\n#### Limitations and bias\n\n- The original (and this ported model) doesn't seem to handle well inputs with repeated sub-phrases, [content gets truncated](https://discuss.huggingface.co/t/issues-with-translating-inputs-containing-repeated-phrases/981)\n\n## Training data\n\nPretrained weights were left identical to the original model released by fairseq. For more details, please, see the [paper](https://arxiv.org/abs/1907.06616).\n\n## Eval results\n\npair | fairseq | transformers\n-------|---------|----------\n{pair} | {scores[pair][0]} | {scores[pair][1]}\n\nThe score is slightly below the score reported by `fairseq`, since `transformers`` currently doesn't support:\n- model ensemble, therefore the best performing checkpoint was ported (``model4.pt``).\n- re-ranking\n\nThe score was calculated using this code:\n\n```bash\ngit clone https://github.com/huggingface/transformers\ncd transformers\nexport PAIR={pair}\nexport DATA_DIR=data/$PAIR\nexport SAVE_DIR=data/$PAIR\nexport BS=8\nexport NUM_BEAMS=15\nmkdir -p $DATA_DIR\nsacrebleu -t wmt19 -l $PAIR --echo src > $DATA_DIR/val.source\nsacrebleu -t wmt19 -l $PAIR --echo ref > $DATA_DIR/val.target\necho $PAIR\nPYTHONPATH=\"src:examples/seq2seq\" python examples/seq2seq/run_eval.py facebook/wmt19-$PAIR $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS\n```\nnote: fairseq reports using a beam of 50, so you should get a slightly higher score if re-run with `--num_beams 50`.\n\n## Data Sources\n\n- [training, etc.](http://www.statmt.org/wmt19/)\n- [test set](http://matrix.statmt.org/test_sets/newstest2019.tgz?1556572561)\n\n\n### BibTeX entry and citation info\n\n```bibtex\n@inproceedings{{...,\n year={{2020}},\n title={{Facebook FAIR's WMT19 News Translation Task Submission}},\n author={{Ng, Nathan and Yee, Kyra and Baevski, Alexei and Ott, Myle and Auli, Michael and Edunov, Sergey}},\n booktitle={{Proc. of WMT}},\n}}\n```\n\n\n## TODO\n\n- port model ensemble (fairseq uses 4 model checkpoints)\n\n""" os.makedirs(__UpperCAmelCase , exist_ok=__UpperCAmelCase ) lowerCAmelCase__ : List[str] = os.path.join(__UpperCAmelCase , """README.md""" ) print(f"""Generating {path}""" ) with open(__UpperCAmelCase , """w""" , encoding="""utf-8""" ) as f: f.write(__UpperCAmelCase ) # make sure we are under the root of the project _A = Path(__file__).resolve().parent.parent.parent _A = repo_dir / "model_cards" for model_name in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: _A = model_name.split("""-""") _A = model_cards_dir / "facebook" / model_name write_model_card(model_card_dir, src_lang=src_lang, tgt_lang=tgt_lang)
360
"""simple docstring""" from __future__ import annotations import collections import tempfile import unittest import numpy as np from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import is_tf_available, is_vision_available from ...test_modeling_tf_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_tf_bert import TFBertModelTester from ..clip.test_modeling_tf_clip import TFCLIPVisionModelTester from ..deit.test_modeling_tf_deit import TFDeiTModelTester from ..roberta.test_modeling_tf_roberta import TFRobertaModelTester from ..vit.test_modeling_tf_vit import TFViTModelTester if is_tf_available(): from transformers import ( TFBertModel, TFCLIPVisionModel, TFDeiTModel, TFRobertaModel, TFVisionTextDualEncoderModel, TFViTModel, VisionTextDualEncoderConfig, ) if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor def lowercase_ ( __UpperCAmelCase ) -> str: if isinstance(__UpperCAmelCase , collections.abc.Iterable ): return x return (x, x) @require_tf class _lowerCamelCase : def _lowerCAmelCase ( self : Dict , UpperCamelCase : List[Any] , UpperCamelCase : int ) -> int: """simple docstring""" pass def _lowerCAmelCase ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" pass def _lowerCAmelCase ( self : Tuple ) -> List[Any]: """simple docstring""" pass def _lowerCAmelCase ( self : str , UpperCamelCase : Tuple , UpperCamelCase : Optional[Any] , UpperCamelCase : List[Any] , UpperCamelCase : Dict , UpperCamelCase : Any=None , **UpperCamelCase : Optional[Any] ) -> str: """simple docstring""" lowerCAmelCase__ : Optional[int] = VisionTextDualEncoderConfig.from_vision_text_configs(UpperCamelCase , UpperCamelCase ) lowerCAmelCase__ : Dict = TFVisionTextDualEncoderModel(UpperCamelCase ) lowerCAmelCase__ : List[Any] = model(input_ids=UpperCamelCase , pixel_values=UpperCamelCase , attention_mask=UpperCamelCase ) self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], config.projection_dim) ) self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], config.projection_dim) ) def _lowerCAmelCase ( self : int , UpperCamelCase : List[str] , UpperCamelCase : Union[str, Any] , UpperCamelCase : Tuple , UpperCamelCase : Dict , UpperCamelCase : Any=None , **UpperCamelCase : Union[str, Any] ) -> Dict: """simple docstring""" lowerCAmelCase__ , lowerCAmelCase__ : Optional[int] = self.get_vision_text_model(UpperCamelCase , UpperCamelCase ) lowerCAmelCase__ : Union[str, Any] = TFVisionTextDualEncoderModel(vision_model=UpperCamelCase , text_model=UpperCamelCase ) lowerCAmelCase__ : Optional[int] = model(input_ids=UpperCamelCase , pixel_values=UpperCamelCase , attention_mask=UpperCamelCase ) self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], model.config.projection_dim) ) def _lowerCAmelCase ( self : Optional[int] , UpperCamelCase : Any , UpperCamelCase : str , UpperCamelCase : Tuple , UpperCamelCase : Union[str, Any] , UpperCamelCase : List[str]=None , **UpperCamelCase : Optional[Any] ) -> Any: """simple docstring""" lowerCAmelCase__ , lowerCAmelCase__ : int = self.get_vision_text_model(UpperCamelCase , UpperCamelCase ) lowerCAmelCase__ : Dict = {"""vision_model""": vision_model, """text_model""": text_model} lowerCAmelCase__ : Optional[int] = TFVisionTextDualEncoderModel.from_vision_text_pretrained(**UpperCamelCase ) lowerCAmelCase__ : Union[str, Any] = model(input_ids=UpperCamelCase , pixel_values=UpperCamelCase , attention_mask=UpperCamelCase ) self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], model.config.projection_dim) ) def _lowerCAmelCase ( self : int , UpperCamelCase : List[str] , UpperCamelCase : Optional[Any] , UpperCamelCase : Any , UpperCamelCase : List[str] , UpperCamelCase : Tuple=None , **UpperCamelCase : Optional[Any] ) -> Any: """simple docstring""" lowerCAmelCase__ , lowerCAmelCase__ : Optional[int] = self.get_vision_text_model(UpperCamelCase , UpperCamelCase ) lowerCAmelCase__ : Optional[Any] = TFVisionTextDualEncoderModel(vision_model=UpperCamelCase , text_model=UpperCamelCase ) lowerCAmelCase__ : List[Any] = model(input_ids=UpperCamelCase , pixel_values=UpperCamelCase , attention_mask=UpperCamelCase ) lowerCAmelCase__ : Union[str, Any] = output[0].numpy() with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(UpperCamelCase ) lowerCAmelCase__ : str = TFVisionTextDualEncoderModel.from_pretrained(UpperCamelCase ) lowerCAmelCase__ : Optional[Any] = model(input_ids=UpperCamelCase , pixel_values=UpperCamelCase , attention_mask=UpperCamelCase ) lowerCAmelCase__ : int = after_output[0].numpy() lowerCAmelCase__ : Tuple = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(UpperCamelCase , 1E-5 ) def _lowerCAmelCase ( self : int , UpperCamelCase : Dict , UpperCamelCase : str , UpperCamelCase : Optional[int] , UpperCamelCase : List[str] , UpperCamelCase : List[Any]=None , **UpperCamelCase : Optional[int] ) -> Dict: """simple docstring""" lowerCAmelCase__ , lowerCAmelCase__ : str = self.get_vision_text_model(UpperCamelCase , UpperCamelCase ) lowerCAmelCase__ : int = TFVisionTextDualEncoderModel(vision_model=UpperCamelCase , text_model=UpperCamelCase ) lowerCAmelCase__ : Dict = model( input_ids=UpperCamelCase , pixel_values=UpperCamelCase , attention_mask=UpperCamelCase , output_attentions=UpperCamelCase ) lowerCAmelCase__ : Optional[int] = output.vision_model_output.attentions self.assertEqual(len(UpperCamelCase ) , vision_config.num_hidden_layers ) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) lowerCAmelCase__ : Optional[int] = to_atuple(vision_model.config.image_size ) lowerCAmelCase__ : Any = to_atuple(vision_model.config.patch_size ) lowerCAmelCase__ : List[str] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) lowerCAmelCase__ : Tuple = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) lowerCAmelCase__ : List[str] = output.text_model_output.attentions self.assertEqual(len(UpperCamelCase ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def _lowerCAmelCase ( self : Union[str, Any] , UpperCamelCase : np.ndarray , UpperCamelCase : np.ndarray , UpperCamelCase : float ) -> Optional[Any]: """simple docstring""" lowerCAmelCase__ : List[str] = np.abs((a - b) ).max() self.assertLessEqual(UpperCamelCase , UpperCamelCase , f"""Difference between torch and flax is {diff} (>= {tol}).""" ) def _lowerCAmelCase ( self : str ) -> Dict: """simple docstring""" lowerCAmelCase__ : Union[str, Any] = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_model(**UpperCamelCase ) def _lowerCAmelCase ( self : Dict ) -> int: """simple docstring""" lowerCAmelCase__ : Any = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**UpperCamelCase ) def _lowerCAmelCase ( self : Optional[Any] ) -> Tuple: """simple docstring""" lowerCAmelCase__ : Optional[int] = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**UpperCamelCase ) def _lowerCAmelCase ( self : Any ) -> str: """simple docstring""" lowerCAmelCase__ : Optional[Any] = self.prepare_config_and_inputs() self.check_save_load(**UpperCamelCase ) def _lowerCAmelCase ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" lowerCAmelCase__ : Optional[int] = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**UpperCamelCase ) @slow def _lowerCAmelCase ( self : str ) -> List[str]: """simple docstring""" lowerCAmelCase__ , lowerCAmelCase__ : List[str] = self.get_pretrained_model_and_inputs() lowerCAmelCase__ : Union[str, Any] = model_a(**UpperCamelCase ) lowerCAmelCase__ : Any = outputs[0].numpy() with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(UpperCamelCase ) lowerCAmelCase__ : int = TFVisionTextDualEncoderModel.from_pretrained(UpperCamelCase ) lowerCAmelCase__ : List[str] = model_a(**UpperCamelCase ) lowerCAmelCase__ : Dict = after_outputs[0].numpy() lowerCAmelCase__ : List[str] = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(UpperCamelCase , 1E-5 ) @require_tf class _lowerCamelCase ( a_ , unittest.TestCase ): def _lowerCAmelCase ( self : int ) -> Dict: """simple docstring""" lowerCAmelCase__ : Dict = TFVisionTextDualEncoderModel.from_vision_text_pretrained( """hf-internal-testing/tiny-random-vit""" , """hf-internal-testing/tiny-random-bert""" ) lowerCAmelCase__ : Optional[Any] = 13 lowerCAmelCase__ : List[str] = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) lowerCAmelCase__ : Dict = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) lowerCAmelCase__ : Optional[Any] = random_attention_mask([batch_size, 4] ) lowerCAmelCase__ : Dict = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask} return model, inputs def _lowerCAmelCase ( self : Any , UpperCamelCase : Union[str, Any] , UpperCamelCase : int ) -> str: """simple docstring""" lowerCAmelCase__ : str = TFViTModel(UpperCamelCase , name="""vision_model""" ) lowerCAmelCase__ : Any = TFBertModel(UpperCamelCase , name="""text_model""" ) return vision_model, text_model def _lowerCAmelCase ( self : int ) -> Dict: """simple docstring""" lowerCAmelCase__ : str = TFViTModelTester(self ) lowerCAmelCase__ : str = TFBertModelTester(self ) lowerCAmelCase__ : Optional[int] = vit_model_tester.prepare_config_and_inputs() lowerCAmelCase__ : List[Any] = bert_model_tester.prepare_config_and_inputs() lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : Dict = vision_config_and_inputs ( ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ) : List[Any] = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class _lowerCamelCase ( a_ , unittest.TestCase ): def _lowerCAmelCase ( self : int ) -> str: """simple docstring""" # DeiT repo doesn't have TF weights, but we don't actually use the weights at all so let's # just reinitialize it. lowerCAmelCase__ : Union[str, Any] = TFVisionTextDualEncoderModel.from_vision_text_pretrained( """Rocketknight1/tiny-random-deit-tf""" , """hf-internal-testing/tiny-random-roberta""" ) lowerCAmelCase__ : str = 13 lowerCAmelCase__ : Optional[int] = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) lowerCAmelCase__ : List[Any] = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) lowerCAmelCase__ : Optional[Any] = random_attention_mask([batch_size, 4] ) lowerCAmelCase__ : List[Any] = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask} return model, inputs def _lowerCAmelCase ( self : Optional[Any] , UpperCamelCase : Union[str, Any] , UpperCamelCase : Union[str, Any] , UpperCamelCase : Optional[Any] , UpperCamelCase : str , UpperCamelCase : str=None , **UpperCamelCase : Optional[Any] ) -> int: """simple docstring""" lowerCAmelCase__ , lowerCAmelCase__ : List[Any] = self.get_vision_text_model(UpperCamelCase , UpperCamelCase ) lowerCAmelCase__ : Optional[Any] = TFVisionTextDualEncoderModel(vision_model=UpperCamelCase , text_model=UpperCamelCase ) lowerCAmelCase__ : Optional[Any] = model( input_ids=UpperCamelCase , pixel_values=UpperCamelCase , attention_mask=UpperCamelCase , output_attentions=UpperCamelCase ) lowerCAmelCase__ : Optional[int] = output.vision_model_output.attentions self.assertEqual(len(UpperCamelCase ) , vision_config.num_hidden_layers ) # in DEiT, the seq_len equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens) lowerCAmelCase__ : Dict = to_atuple(vision_model.config.image_size ) lowerCAmelCase__ : Any = to_atuple(vision_model.config.patch_size ) lowerCAmelCase__ : Dict = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) lowerCAmelCase__ : Optional[Any] = num_patches + 2 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) lowerCAmelCase__ : Union[str, Any] = output.text_model_output.attentions self.assertEqual(len(UpperCamelCase ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def _lowerCAmelCase ( self : int , UpperCamelCase : Any , UpperCamelCase : str ) -> List[Any]: """simple docstring""" lowerCAmelCase__ : Any = TFDeiTModel(UpperCamelCase , name="""vision_model""" ) lowerCAmelCase__ : str = TFRobertaModel(UpperCamelCase , name="""text_model""" ) return vision_model, text_model def _lowerCAmelCase ( self : List[str] ) -> str: """simple docstring""" lowerCAmelCase__ : Optional[Any] = TFDeiTModelTester(self ) lowerCAmelCase__ : Union[str, Any] = TFRobertaModelTester(self ) lowerCAmelCase__ : Optional[int] = vit_model_tester.prepare_config_and_inputs() lowerCAmelCase__ : Any = bert_model_tester.prepare_config_and_inputs() lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : Optional[Any] = vision_config_and_inputs ( ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ) : str = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class _lowerCamelCase ( a_ , unittest.TestCase ): def _lowerCAmelCase ( self : List[str] ) -> Tuple: """simple docstring""" lowerCAmelCase__ : Union[str, Any] = TFVisionTextDualEncoderModel.from_vision_text_pretrained( """Rocketknight1/tiny-random-clip-tf""" , """hf-internal-testing/tiny-random-bert""" ) lowerCAmelCase__ : Any = 13 lowerCAmelCase__ : List[str] = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) lowerCAmelCase__ : Optional[Any] = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) lowerCAmelCase__ : str = random_attention_mask([batch_size, 4] ) lowerCAmelCase__ : List[str] = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask} return model, inputs def _lowerCAmelCase ( self : str , UpperCamelCase : str , UpperCamelCase : Optional[Any] ) -> Any: """simple docstring""" lowerCAmelCase__ : int = TFCLIPVisionModel(UpperCamelCase , name="""vision_model""" ) lowerCAmelCase__ : List[str] = TFBertModel(UpperCamelCase , name="""text_model""" ) return vision_model, text_model def _lowerCAmelCase ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" lowerCAmelCase__ : str = TFCLIPVisionModelTester(self ) lowerCAmelCase__ : int = TFBertModelTester(self ) lowerCAmelCase__ : str = clip_model_tester.prepare_config_and_inputs() lowerCAmelCase__ : Optional[int] = bert_model_tester.prepare_config_and_inputs() lowerCAmelCase__ , lowerCAmelCase__ : Dict = vision_config_and_inputs ( ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ) : str = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_vision @require_tf class _lowerCamelCase ( unittest.TestCase ): @slow def _lowerCAmelCase ( self : Optional[int] ) -> Optional[int]: """simple docstring""" lowerCAmelCase__ : List[str] = TFVisionTextDualEncoderModel.from_pretrained( """clip-italian/clip-italian""" , logit_scale_init_value=1.0 , from_pt=UpperCamelCase ) lowerCAmelCase__ : Any = VisionTextDualEncoderProcessor.from_pretrained("""clip-italian/clip-italian""" ) lowerCAmelCase__ : Any = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) lowerCAmelCase__ : Tuple = processor( text=["""una foto di un gatto""", """una foto di un cane"""] , images=UpperCamelCase , padding=UpperCamelCase , return_tensors="""np""" ) lowerCAmelCase__ : Tuple = model(**UpperCamelCase ) # verify the logits self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) ) self.assertEqual( outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , ) lowerCAmelCase__ : List[Any] = np.array([[1.228_4727, 0.310_4122]] ) self.assertTrue(np.allclose(outputs.logits_per_image.numpy() , UpperCamelCase , atol=1E-3 ) )
212
0
import unittest from transformers import AutoTokenizer, FalconConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( FalconForCausalLM, FalconForQuestionAnswering, FalconForSequenceClassification, FalconForTokenClassification, FalconModel, ) class __lowercase : def __init__( self , A_ , A_=3 , A_=7 , A_=True , A_=True , A_=False , A_=True , A_=99 , A_=32 , A_=5 , A_=4 , A_=37 , A_="gelu" , A_=0.1 , A_=0.1 , A_=512 , A_=16 , A_=2 , A_=0.02 , A_=3 , A_=4 , A_=None , ) ->List[Any]: '''simple docstring''' __lowerCAmelCase : Tuple = parent __lowerCAmelCase : Optional[Any] = batch_size __lowerCAmelCase : Any = seq_length __lowerCAmelCase : Dict = is_training __lowerCAmelCase : Optional[int] = use_input_mask __lowerCAmelCase : Optional[Any] = use_token_type_ids __lowerCAmelCase : Optional[Any] = use_labels __lowerCAmelCase : List[str] = vocab_size __lowerCAmelCase : List[Any] = hidden_size __lowerCAmelCase : List[Any] = num_hidden_layers __lowerCAmelCase : List[str] = num_attention_heads __lowerCAmelCase : Dict = intermediate_size __lowerCAmelCase : Optional[Any] = hidden_act __lowerCAmelCase : Union[str, Any] = hidden_dropout_prob __lowerCAmelCase : int = attention_probs_dropout_prob __lowerCAmelCase : Tuple = max_position_embeddings __lowerCAmelCase : int = type_vocab_size __lowerCAmelCase : Union[str, Any] = type_sequence_label_size __lowerCAmelCase : Any = initializer_range __lowerCAmelCase : Any = num_labels __lowerCAmelCase : Union[str, Any] = num_choices __lowerCAmelCase : Any = scope def UpperCamelCase__ ( self ) ->Union[str, Any]: '''simple docstring''' __lowerCAmelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowerCAmelCase : Tuple = None if self.use_input_mask: __lowerCAmelCase : List[Any] = random_attention_mask([self.batch_size, self.seq_length] ) __lowerCAmelCase : str = None __lowerCAmelCase : List[str] = None __lowerCAmelCase : Dict = None __lowerCAmelCase : Optional[int] = None if self.use_labels: __lowerCAmelCase : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowerCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowerCAmelCase : Dict = ids_tensor([self.batch_size] , self.num_choices ) __lowerCAmelCase : Union[str, Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase__ ( self ) ->Dict: '''simple docstring''' return FalconConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=A_ , initializer_range=self.initializer_range , pad_token_id=1 , new_decoder_architecture=A_ , ) def UpperCamelCase__ ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) ->Optional[int]: '''simple docstring''' __lowerCAmelCase : Tuple = FalconModel(config=A_ ) model.to(A_ ) model.eval() __lowerCAmelCase : Optional[int] = model(A_ , attention_mask=A_ ) __lowerCAmelCase : List[str] = model(A_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase__ ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , ) ->Dict: '''simple docstring''' __lowerCAmelCase : Any = True __lowerCAmelCase : Dict = FalconModel(A_ ) model.to(A_ ) model.eval() __lowerCAmelCase : str = model( A_ , attention_mask=A_ , encoder_hidden_states=A_ , encoder_attention_mask=A_ , ) __lowerCAmelCase : Tuple = model( A_ , attention_mask=A_ , encoder_hidden_states=A_ , ) __lowerCAmelCase : int = model(A_ , attention_mask=A_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase__ ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , ) ->Any: '''simple docstring''' __lowerCAmelCase : List[str] = FalconForCausalLM(config=A_ ) model.to(A_ ) model.eval() __lowerCAmelCase : Any = model(A_ , attention_mask=A_ , labels=A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase__ ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , ) ->Any: '''simple docstring''' __lowerCAmelCase : List[str] = True __lowerCAmelCase : Any = True __lowerCAmelCase : Any = FalconForCausalLM(config=A_ ) model.to(A_ ) model.eval() # first forward pass __lowerCAmelCase : List[Any] = model( A_ , attention_mask=A_ , encoder_hidden_states=A_ , encoder_attention_mask=A_ , use_cache=A_ , ) __lowerCAmelCase : int = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids __lowerCAmelCase : List[str] = ids_tensor((self.batch_size, 3) , config.vocab_size ) __lowerCAmelCase : List[str] = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and __lowerCAmelCase : str = torch.cat([input_ids, next_tokens] , dim=-1 ) __lowerCAmelCase : Any = torch.cat([input_mask, next_mask] , dim=-1 ) __lowerCAmelCase : Optional[int] = model( A_ , attention_mask=A_ , encoder_hidden_states=A_ , encoder_attention_mask=A_ , output_hidden_states=A_ , )['''hidden_states'''][0] __lowerCAmelCase : List[Any] = model( A_ , attention_mask=A_ , encoder_hidden_states=A_ , encoder_attention_mask=A_ , past_key_values=A_ , output_hidden_states=A_ , )['''hidden_states'''][0] # select random slice __lowerCAmelCase : List[Any] = ids_tensor((1,) , output_from_past.shape[-1] ).item() __lowerCAmelCase : Any = output_from_no_past[:, -3:, random_slice_idx].detach() __lowerCAmelCase : Tuple = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(A_ , A_ , atol=1e-3 ) ) def UpperCamelCase__ ( self ) ->int: '''simple docstring''' __lowerCAmelCase : Tuple = self.prepare_config_and_inputs() ( ( __lowerCAmelCase ), ( __lowerCAmelCase ), ( __lowerCAmelCase ), ( __lowerCAmelCase ), ( __lowerCAmelCase ), ( __lowerCAmelCase ), ( __lowerCAmelCase ), ) : str = config_and_inputs __lowerCAmelCase : List[str] = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class __lowercase (_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): _UpperCamelCase = ( ( FalconModel, FalconForCausalLM, FalconForSequenceClassification, FalconForTokenClassification, FalconForQuestionAnswering, ) if is_torch_available() else () ) _UpperCamelCase = (FalconForCausalLM,) if is_torch_available() else () _UpperCamelCase = ( { """feature-extraction""": FalconModel, """text-classification""": FalconForSequenceClassification, """text-generation""": FalconForCausalLM, """question-answering""": FalconForQuestionAnswering, """token-classification""": FalconForTokenClassification, """zero-shot""": FalconForSequenceClassification, } if is_torch_available() else {} ) _UpperCamelCase = False _UpperCamelCase = False def UpperCamelCase__ ( self ) ->List[Any]: '''simple docstring''' __lowerCAmelCase : Optional[Any] = FalconModelTester(self ) __lowerCAmelCase : Union[str, Any] = ConfigTester(self , config_class=A_ , hidden_size=37 ) def UpperCamelCase__ ( self ) ->List[str]: '''simple docstring''' self.config_tester.run_common_tests() def UpperCamelCase__ ( self ) ->Optional[Any]: '''simple docstring''' __lowerCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A_ ) def UpperCamelCase__ ( self ) ->Dict: '''simple docstring''' __lowerCAmelCase, *__lowerCAmelCase : str = self.model_tester.prepare_config_and_inputs() for alibi in [True, False]: __lowerCAmelCase : int = alibi self.model_tester.create_and_check_model(A_ , *A_ ) def UpperCamelCase__ ( self ) ->int: '''simple docstring''' __lowerCAmelCase, __lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() __lowerCAmelCase : Dict = 3 __lowerCAmelCase : Union[str, Any] = input_dict['''input_ids'''] __lowerCAmelCase : str = input_ids.ne(1 ).to(A_ ) __lowerCAmelCase : Any = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) __lowerCAmelCase : Tuple = FalconForSequenceClassification(A_ ) model.to(A_ ) model.eval() __lowerCAmelCase : Optional[int] = model(A_ , attention_mask=A_ , labels=A_ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def UpperCamelCase__ ( self ) ->Optional[int]: '''simple docstring''' __lowerCAmelCase, __lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() __lowerCAmelCase : Union[str, Any] = 3 __lowerCAmelCase : Optional[Any] = '''single_label_classification''' __lowerCAmelCase : Optional[int] = input_dict['''input_ids'''] __lowerCAmelCase : Optional[Any] = input_ids.ne(1 ).to(A_ ) __lowerCAmelCase : List[Any] = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) __lowerCAmelCase : int = FalconForSequenceClassification(A_ ) model.to(A_ ) model.eval() __lowerCAmelCase : Union[str, Any] = model(A_ , attention_mask=A_ , labels=A_ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def UpperCamelCase__ ( self ) ->List[str]: '''simple docstring''' __lowerCAmelCase, __lowerCAmelCase : str = self.model_tester.prepare_config_and_inputs_for_common() __lowerCAmelCase : List[Any] = input_dict['''input_ids'''] __lowerCAmelCase : List[str] = FalconForCausalLM(A_ ) model.to(A_ ) model.eval() __lowerCAmelCase : Tuple = model(A_ , use_cache=A_ ) __lowerCAmelCase : Any = input_ids.shape[0] __lowerCAmelCase : Optional[int] = model._convert_to_rw_cache(result.past_key_values ) __lowerCAmelCase : Optional[Any] = model._convert_cache_to_standard_format(A_ , A_ ) for layer in range(len(A_ ) ): for tensor_idx in range(2 ): self.assertTrue(rw_cache[layer][tensor_idx].ndim == 3 ) self.assertTrue(result.past_key_values[layer][tensor_idx].ndim == 4 ) self.assertTrue( torch.all(result.past_key_values[layer][tensor_idx] == standard_cache[layer][tensor_idx] ) ) def UpperCamelCase__ ( self ) ->Optional[int]: '''simple docstring''' __lowerCAmelCase, __lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs_for_common() __lowerCAmelCase : str = 3 __lowerCAmelCase : Union[str, Any] = '''multi_label_classification''' __lowerCAmelCase : List[Any] = input_dict['''input_ids'''] __lowerCAmelCase : Tuple = input_ids.ne(1 ).to(A_ ) __lowerCAmelCase : Optional[int] = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) __lowerCAmelCase : Optional[int] = FalconForSequenceClassification(A_ ) model.to(A_ ) model.eval() __lowerCAmelCase : Dict = model(A_ , attention_mask=A_ , labels=A_ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def UpperCamelCase__ ( self ) ->Tuple: '''simple docstring''' for model_class in self.all_generative_model_classes: __lowerCAmelCase, __lowerCAmelCase : str = self.model_tester.prepare_config_and_inputs_for_common() # If it doesn't support cache, pass the test if not hasattr(A_ , '''use_cache''' ): return __lowerCAmelCase : Optional[int] = model_class(A_ ).to(A_ ) if "use_cache" not in inputs: __lowerCAmelCase : Union[str, Any] = True __lowerCAmelCase : Tuple = model(**A_ ) # If "past_key_values" is not returned, pass the test (e.g. RWKV uses a different cache name and format) if "past_key_values" not in outputs: return __lowerCAmelCase : Union[str, Any] = ( getattr(A_ , '''decoder_layers''' , A_ ) or getattr(A_ , '''num_decoder_layers''' , A_ ) or config.num_hidden_layers ) __lowerCAmelCase : List[str] = getattr(A_ , '''num_kv_heads''' , config.num_attention_heads ) __lowerCAmelCase : Optional[int] = getattr(A_ , '''d_model''' , config.hidden_size ) __lowerCAmelCase : List[str] = embed_dim // num_attention_heads __lowerCAmelCase : List[Any] = outputs['''past_key_values'''] self.assertEqual(len(A_ ) , A_ ) __lowerCAmelCase, __lowerCAmelCase : List[str] = inputs['''input_ids'''].shape for i in range(A_ ): if config.new_decoder_architecture: __lowerCAmelCase : List[Any] = config.num_attention_heads elif config.multi_query: __lowerCAmelCase : int = 1 self.assertEqual(len(past_kv[0] ) , 2 ) # K V for the decoder = 2 self.assertEqual( past_kv[i][0].shape , (batch_size, num_attention_heads, seq_length, per_head_embed_dim) ) self.assertEqual( past_kv[i][1].shape , (batch_size, num_attention_heads, seq_length, per_head_embed_dim) ) @require_torch class __lowercase (unittest.TestCase ): @slow def UpperCamelCase__ ( self ) ->Union[str, Any]: '''simple docstring''' __lowerCAmelCase : str = AutoTokenizer.from_pretrained('''Rocketknight1/falcon-rw-1b''' ) __lowerCAmelCase : List[Any] = FalconForCausalLM.from_pretrained('''Rocketknight1/falcon-rw-1b''' ) model.eval() model.to(A_ ) __lowerCAmelCase : Tuple = tokenizer('''My favorite food is''' , return_tensors='''pt''' ).to(A_ ) __lowerCAmelCase : Union[str, Any] = ( '''My favorite food is pizza. I love it so much that I have a pizza party every year for my birthday.''' ) __lowerCAmelCase : Tuple = model.generate(**A_ , do_sample=A_ , max_new_tokens=19 ) __lowerCAmelCase : Optional[int] = tokenizer.batch_decode(A_ )[0] self.assertEqual(A_ , A_ ) @slow def UpperCamelCase__ ( self ) ->List[str]: '''simple docstring''' for repo in ["Rocketknight1/tiny-random-falcon-7b", "Rocketknight1/tiny-random-falcon-40b"]: __lowerCAmelCase : Union[str, Any] = AutoTokenizer.from_pretrained(A_ ) __lowerCAmelCase : Optional[Any] = FalconForCausalLM.from_pretrained(A_ ) model.eval() model.to(A_ ) __lowerCAmelCase : Any = tokenizer('''My favorite food is''' , return_tensors='''pt''' ).to(A_ ) # We just test that these run without errors - the models are randomly initialized # and so the actual text outputs will be garbage model.generate(**A_ , do_sample=A_ , max_new_tokens=4 ) model.generate(**A_ , do_sample=A_ , max_new_tokens=4 ) model.generate(**A_ , num_beams=2 , max_new_tokens=4 ) @slow def UpperCamelCase__ ( self ) ->Any: '''simple docstring''' with torch.no_grad(): for repo in [ "Rocketknight1/falcon-rw-1b", "Rocketknight1/tiny-random-falcon-7b", "Rocketknight1/tiny-random-falcon-40b", ]: __lowerCAmelCase : Any = AutoTokenizer.from_pretrained(A_ ) __lowerCAmelCase : Tuple = FalconForCausalLM.from_pretrained(A_ ) model.eval() model.to(device=A_ ) __lowerCAmelCase : Dict = tokenizer('''My favorite food is''' , return_tensors='''pt''' ).to(A_ ) # Test results are the same with and without cache __lowerCAmelCase : Dict = model.generate(**A_ , do_sample=A_ , max_new_tokens=20 , use_cache=A_ ) __lowerCAmelCase : List[str] = model.generate(**A_ , do_sample=A_ , max_new_tokens=20 , use_cache=A_ ) self.assertTrue((outputs_cache - outputs_no_cache).sum().item() == 0 )
275
import unittest from transformers import DebertaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DebertaForMaskedLM, DebertaForQuestionAnswering, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaModel, ) from transformers.models.deberta.modeling_deberta import DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST class __lowercase (_UpperCAmelCase ): def __init__( self , A_ , A_=13 , A_=7 , A_=True , A_=True , A_=True , A_=True , A_=99 , A_=32 , A_=5 , A_=4 , A_=37 , A_="gelu" , A_=0.1 , A_=0.1 , A_=512 , A_=16 , A_=2 , A_=0.02 , A_=False , A_=True , A_="None" , A_=3 , A_=4 , A_=None , ) ->List[Any]: '''simple docstring''' __lowerCAmelCase : Union[str, Any] = parent __lowerCAmelCase : List[str] = batch_size __lowerCAmelCase : Dict = seq_length __lowerCAmelCase : List[Any] = is_training __lowerCAmelCase : List[Any] = use_input_mask __lowerCAmelCase : Optional[int] = use_token_type_ids __lowerCAmelCase : Tuple = use_labels __lowerCAmelCase : str = vocab_size __lowerCAmelCase : int = hidden_size __lowerCAmelCase : Any = num_hidden_layers __lowerCAmelCase : Any = num_attention_heads __lowerCAmelCase : Dict = intermediate_size __lowerCAmelCase : int = hidden_act __lowerCAmelCase : int = hidden_dropout_prob __lowerCAmelCase : Any = attention_probs_dropout_prob __lowerCAmelCase : List[str] = max_position_embeddings __lowerCAmelCase : Union[str, Any] = type_vocab_size __lowerCAmelCase : Union[str, Any] = type_sequence_label_size __lowerCAmelCase : Optional[int] = initializer_range __lowerCAmelCase : int = num_labels __lowerCAmelCase : int = num_choices __lowerCAmelCase : List[str] = relative_attention __lowerCAmelCase : Union[str, Any] = position_biased_input __lowerCAmelCase : int = pos_att_type __lowerCAmelCase : List[Any] = scope def UpperCamelCase__ ( self ) ->Dict: '''simple docstring''' __lowerCAmelCase : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowerCAmelCase : int = None if self.use_input_mask: __lowerCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) __lowerCAmelCase : List[str] = None if self.use_token_type_ids: __lowerCAmelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowerCAmelCase : Union[str, Any] = None __lowerCAmelCase : int = None __lowerCAmelCase : List[str] = None if self.use_labels: __lowerCAmelCase : str = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowerCAmelCase : Dict = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowerCAmelCase : Union[str, Any] = ids_tensor([self.batch_size] , self.num_choices ) __lowerCAmelCase : Tuple = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase__ ( self ) ->List[Any]: '''simple docstring''' return DebertaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , pos_att_type=self.pos_att_type , ) def UpperCamelCase__ ( self ) ->str: '''simple docstring''' __lowerCAmelCase : str = self.get_config() __lowerCAmelCase : Dict = 300 return config def UpperCamelCase__ ( self , A_ ) ->Union[str, Any]: '''simple docstring''' self.parent.assertListEqual(list(result.loss.size() ) , [] ) def UpperCamelCase__ ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) ->Any: '''simple docstring''' __lowerCAmelCase : Optional[Any] = DebertaModel(config=A_ ) model.to(A_ ) model.eval() __lowerCAmelCase : str = model(A_ , attention_mask=A_ , token_type_ids=A_ )[0] __lowerCAmelCase : Any = model(A_ , token_type_ids=A_ )[0] __lowerCAmelCase : List[str] = model(A_ )[0] self.parent.assertListEqual(list(sequence_output.size() ) , [self.batch_size, self.seq_length, self.hidden_size] ) def UpperCamelCase__ ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) ->int: '''simple docstring''' __lowerCAmelCase : Tuple = DebertaForMaskedLM(config=A_ ) model.to(A_ ) model.eval() __lowerCAmelCase : Union[str, Any] = model(A_ , attention_mask=A_ , token_type_ids=A_ , labels=A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase__ ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) ->Any: '''simple docstring''' __lowerCAmelCase : Any = self.num_labels __lowerCAmelCase : Tuple = DebertaForSequenceClassification(A_ ) model.to(A_ ) model.eval() __lowerCAmelCase : Union[str, Any] = model(A_ , attention_mask=A_ , token_type_ids=A_ , labels=A_ ) self.parent.assertListEqual(list(result.logits.size() ) , [self.batch_size, self.num_labels] ) self.check_loss_output(A_ ) def UpperCamelCase__ ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) ->Dict: '''simple docstring''' __lowerCAmelCase : List[Any] = self.num_labels __lowerCAmelCase : Optional[int] = DebertaForTokenClassification(config=A_ ) model.to(A_ ) model.eval() __lowerCAmelCase : Tuple = model(A_ , attention_mask=A_ , token_type_ids=A_ , labels=A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase__ ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) ->str: '''simple docstring''' __lowerCAmelCase : List[str] = DebertaForQuestionAnswering(config=A_ ) model.to(A_ ) model.eval() __lowerCAmelCase : int = model( A_ , attention_mask=A_ , token_type_ids=A_ , start_positions=A_ , end_positions=A_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCamelCase__ ( self ) ->List[str]: '''simple docstring''' __lowerCAmelCase : Any = self.prepare_config_and_inputs() ( ( __lowerCAmelCase ), ( __lowerCAmelCase ), ( __lowerCAmelCase ), ( __lowerCAmelCase ), ( __lowerCAmelCase ), ( __lowerCAmelCase ), ( __lowerCAmelCase ), ) : Tuple = config_and_inputs __lowerCAmelCase : Tuple = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class __lowercase (_UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): _UpperCamelCase = ( ( DebertaModel, DebertaForMaskedLM, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaForQuestionAnswering, ) if is_torch_available() else () ) _UpperCamelCase = ( { """feature-extraction""": DebertaModel, """fill-mask""": DebertaForMaskedLM, """question-answering""": DebertaForQuestionAnswering, """text-classification""": DebertaForSequenceClassification, """token-classification""": DebertaForTokenClassification, """zero-shot""": DebertaForSequenceClassification, } if is_torch_available() else {} ) _UpperCamelCase = True _UpperCamelCase = False _UpperCamelCase = False _UpperCamelCase = False _UpperCamelCase = False def UpperCamelCase__ ( self ) ->int: '''simple docstring''' __lowerCAmelCase : int = DebertaModelTester(self ) __lowerCAmelCase : List[Any] = ConfigTester(self , config_class=A_ , hidden_size=37 ) def UpperCamelCase__ ( self ) ->Optional[Any]: '''simple docstring''' self.config_tester.run_common_tests() def UpperCamelCase__ ( self ) ->List[Any]: '''simple docstring''' __lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_model(*A_ ) def UpperCamelCase__ ( self ) ->int: '''simple docstring''' __lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_sequence_classification(*A_ ) def UpperCamelCase__ ( self ) ->int: '''simple docstring''' __lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_masked_lm(*A_ ) def UpperCamelCase__ ( self ) ->Optional[int]: '''simple docstring''' __lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_question_answering(*A_ ) def UpperCamelCase__ ( self ) ->List[Any]: '''simple docstring''' __lowerCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_token_classification(*A_ ) @slow def UpperCamelCase__ ( self ) ->Tuple: '''simple docstring''' for model_name in DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCAmelCase : Optional[int] = DebertaModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) @require_torch @require_sentencepiece @require_tokenizers class __lowercase (unittest.TestCase ): @unittest.skip(reason='''Model not available yet''' ) def UpperCamelCase__ ( self ) ->Dict: '''simple docstring''' pass @slow def UpperCamelCase__ ( self ) ->Tuple: '''simple docstring''' __lowerCAmelCase : str = DebertaModel.from_pretrained('''microsoft/deberta-base''' ) __lowerCAmelCase : Tuple = torch.tensor([[0, 3_1414, 232, 328, 740, 1140, 1_2695, 69, 4_6078, 1588, 2]] ) __lowerCAmelCase : Union[str, Any] = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): __lowerCAmelCase : Optional[int] = model(A_ , attention_mask=A_ )[0] # compare the actual values for a slice. __lowerCAmelCase : Optional[Any] = torch.tensor( [[[-0.5_986, -0.8_055, -0.8_462], [1.4_484, -0.9_348, -0.8_059], [0.3_123, 0.0_032, -1.4_131]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , A_ , atol=1e-4 ) , f"""{output[:, 1:4, 1:4]}""" )
275
1
def a ( SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : Optional[int] ): global f # a global dp table for knapsack if f[i][j] < 0: if j < wt[i - 1]: UpperCamelCase : str = mf_knapsack(i - 1 , snake_case_ , snake_case_ , snake_case_ ) else: UpperCamelCase : Union[str, Any] = max( mf_knapsack(i - 1 , snake_case_ , snake_case_ , snake_case_ ) , mf_knapsack(i - 1 , snake_case_ , snake_case_ , j - wt[i - 1] ) + val[i - 1] , ) UpperCamelCase : List[str] = val return f[i][j] def a ( SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Optional[Any] ): UpperCamelCase : Optional[Any] = [[0] * (w + 1) for _ in range(n + 1 )] for i in range(1 , n + 1 ): for w_ in range(1 , w + 1 ): if wt[i - 1] <= w_: UpperCamelCase : List[Any] = max(val[i - 1] + dp[i - 1][w_ - wt[i - 1]] , dp[i - 1][w_] ) else: UpperCamelCase : Dict = dp[i - 1][w_] return dp[n][w_], dp def a ( SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : list , SCREAMING_SNAKE_CASE_ : list ): if not (isinstance(snake_case_ , (list, tuple) ) and isinstance(snake_case_ , (list, tuple) )): raise ValueError( '''Both the weights and values vectors must be either lists or tuples''' ) UpperCamelCase : int = len(snake_case_ ) if num_items != len(snake_case_ ): UpperCamelCase : Any = ( """The number of weights must be the same as the number of values.\n""" F"""But got {num_items} weights and {len(snake_case_ )} values""" ) raise ValueError(snake_case_ ) for i in range(snake_case_ ): if not isinstance(wt[i] , snake_case_ ): UpperCamelCase : List[Any] = ( """All weights must be integers but got weight of """ F"""type {type(wt[i] )} at index {i}""" ) raise TypeError(snake_case_ ) UpperCamelCase : Union[str, Any] = knapsack(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) UpperCamelCase : set = set() _construct_solution(snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) return optimal_val, example_optional_set def a ( SCREAMING_SNAKE_CASE_ : list , SCREAMING_SNAKE_CASE_ : list , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : set ): # for the current item i at a maximum weight j to be part of an optimal subset, # the optimal value at (i, j) must be greater than the optimal value at (i-1, j). # where i - 1 means considering only the previous items at the given maximum weight if i > 0 and j > 0: if dp[i - 1][j] == dp[i][j]: _construct_solution(snake_case_ , snake_case_ , i - 1 , snake_case_ , snake_case_ ) else: optimal_set.add(snake_case_ ) _construct_solution(snake_case_ , snake_case_ , i - 1 , j - wt[i - 1] , snake_case_ ) if __name__ == "__main__": __UpperCAmelCase : str = [3, 2, 4, 4] __UpperCAmelCase : Optional[int] = [4, 3, 2, 3] __UpperCAmelCase : Any = 4 __UpperCAmelCase : List[str] = 6 __UpperCAmelCase : Dict = [[0] * (w + 1)] + [[0] + [-1] * (w + 1) for _ in range(n + 1)] __UpperCAmelCase : Any = knapsack(w, wt, val, n) print(optimal_solution) print(mf_knapsack(n, wt, val, w)) # switched the n and w # testing the dynamic programming problem with example # the optimal subset for the above example are items 3 and 4 __UpperCAmelCase : List[str] = knapsack_with_example_solution(w, wt, val) assert optimal_solution == 8 assert optimal_subset == {3, 4} print("optimal_value = ", optimal_solution) print("An optimal subset corresponding to the optimal value", optimal_subset)
355
import torch import torch.nn as nn from transformers import CLIPConfig, CLIPVisionModel, PreTrainedModel from ...utils import logging __UpperCAmelCase : str = logging.get_logger(__name__) def a ( SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Optional[int] ): """simple docstring""" UpperCamelCase : Union[str, Any] = nn.functional.normalize(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Any = nn.functional.normalize(SCREAMING_SNAKE_CASE_ ) return torch.mm(SCREAMING_SNAKE_CASE_ , normalized_text_embeds.t() ) class UpperCAmelCase_ ( _a): '''simple docstring''' __UpperCamelCase : List[str] = CLIPConfig __UpperCamelCase : Optional[int] = ["CLIPEncoderLayer"] def __init__( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" super().__init__(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Any = CLIPVisionModel(config.vision_config ) UpperCamelCase : List[str] = nn.Linear(config.vision_config.hidden_size , config.projection_dim , bias=__SCREAMING_SNAKE_CASE ) UpperCamelCase : Dict = nn.Parameter(torch.ones(17 , config.projection_dim ) , requires_grad=__SCREAMING_SNAKE_CASE ) UpperCamelCase : Optional[int] = nn.Parameter(torch.ones(3 , config.projection_dim ) , requires_grad=__SCREAMING_SNAKE_CASE ) UpperCamelCase : Optional[Any] = nn.Parameter(torch.ones(17 ) , requires_grad=__SCREAMING_SNAKE_CASE ) UpperCamelCase : Optional[Any] = nn.Parameter(torch.ones(3 ) , requires_grad=__SCREAMING_SNAKE_CASE ) @torch.no_grad() def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : Tuple = self.vision_model(__SCREAMING_SNAKE_CASE )[1] # pooled_output UpperCamelCase : Union[str, Any] = self.visual_projection(__SCREAMING_SNAKE_CASE ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 UpperCamelCase : Optional[int] = cosine_distance(__SCREAMING_SNAKE_CASE , self.special_care_embeds ).cpu().float().numpy() UpperCamelCase : List[Any] = cosine_distance(__SCREAMING_SNAKE_CASE , self.concept_embeds ).cpu().float().numpy() UpperCamelCase : Dict = [] UpperCamelCase : List[str] = image_embeds.shape[0] for i in range(__SCREAMING_SNAKE_CASE ): UpperCamelCase : Optional[Any] = {'''special_scores''': {}, '''special_care''': [], '''concept_scores''': {}, '''bad_concepts''': []} # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign images UpperCamelCase : Optional[int] = 0.0 for concept_idx in range(len(special_cos_dist[0] ) ): UpperCamelCase : List[str] = special_cos_dist[i][concept_idx] UpperCamelCase : Optional[Any] = self.special_care_embeds_weights[concept_idx].item() UpperCamelCase : Any = round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["special_scores"][concept_idx] > 0: result_img["special_care"].append({concept_idx, result_img['''special_scores'''][concept_idx]} ) UpperCamelCase : Optional[int] = 0.01 for concept_idx in range(len(cos_dist[0] ) ): UpperCamelCase : Optional[int] = cos_dist[i][concept_idx] UpperCamelCase : List[str] = self.concept_embeds_weights[concept_idx].item() UpperCamelCase : Any = round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["concept_scores"][concept_idx] > 0: result_img["bad_concepts"].append(__SCREAMING_SNAKE_CASE ) result.append(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Union[str, Any] = [len(res['''bad_concepts'''] ) > 0 for res in result] return images, has_nsfw_concepts @torch.no_grad() def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : Any = self.vision_model(__SCREAMING_SNAKE_CASE )[1] # pooled_output UpperCamelCase : int = self.visual_projection(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Tuple = cosine_distance(__SCREAMING_SNAKE_CASE , self.special_care_embeds ) UpperCamelCase : str = cosine_distance(__SCREAMING_SNAKE_CASE , self.concept_embeds ) # increase this value to create a stronger `nsfw` filter # at the cost of increasing the possibility of filtering benign images UpperCamelCase : Union[str, Any] = 0.0 UpperCamelCase : Optional[Any] = special_cos_dist - self.special_care_embeds_weights + adjustment # special_scores = special_scores.round(decimals=3) UpperCamelCase : Optional[Any] = torch.any(special_scores > 0 , dim=1 ) UpperCamelCase : int = special_care * 0.01 UpperCamelCase : Tuple = special_adjustment.unsqueeze(1 ).expand(-1 , cos_dist.shape[1] ) UpperCamelCase : Optional[int] = (cos_dist - self.concept_embeds_weights) + special_adjustment # concept_scores = concept_scores.round(decimals=3) UpperCamelCase : List[str] = torch.any(concept_scores > 0 , dim=1 ) return images, has_nsfw_concepts
315
0
'''simple docstring''' class _a : '''simple docstring''' def __init__( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = 0 SCREAMING_SNAKE_CASE : str = 0 SCREAMING_SNAKE_CASE : Optional[int] = {} def UpperCamelCase_ ( self, A ): '''simple docstring''' if vertex not in self.adjacency: SCREAMING_SNAKE_CASE : List[str] = {} self.num_vertices += 1 def UpperCamelCase_ ( self, A, A, A ): '''simple docstring''' self.add_vertex(A ) self.add_vertex(A ) if head == tail: return SCREAMING_SNAKE_CASE : List[Any] = weight SCREAMING_SNAKE_CASE : Optional[Any] = weight def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = self.get_edges() for edge in edges: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = edge edges.remove((tail, head, weight) ) for i in range(len(A ) ): SCREAMING_SNAKE_CASE : Optional[Any] = list(edges[i] ) edges.sort(key=lambda A : e[2] ) for i in range(len(A ) - 1 ): if edges[i][2] >= edges[i + 1][2]: SCREAMING_SNAKE_CASE : Dict = edges[i][2] + 1 for edge in edges: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = edge SCREAMING_SNAKE_CASE : Union[str, Any] = weight SCREAMING_SNAKE_CASE : Optional[Any] = weight def __str__( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = '' for tail in self.adjacency: for head in self.adjacency[tail]: SCREAMING_SNAKE_CASE : Union[str, Any] = self.adjacency[head][tail] string += F"{head} -> {tail} == {weight}\n" return string.rstrip('\n' ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = [] for tail in self.adjacency: for head in self.adjacency[tail]: output.append((tail, head, self.adjacency[head][tail]) ) return output def UpperCamelCase_ ( self ): '''simple docstring''' return self.adjacency.keys() @staticmethod def UpperCamelCase_ ( A=None, A=None ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = Graph() if vertices is None: SCREAMING_SNAKE_CASE : Optional[Any] = [] if edges is None: SCREAMING_SNAKE_CASE : List[Any] = [] for vertex in vertices: g.add_vertex(A ) for edge in edges: g.add_edge(*A ) return g class _a : '''simple docstring''' def __init__( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = {} SCREAMING_SNAKE_CASE : str = {} def __len__( self ): '''simple docstring''' return len(self.parent ) def UpperCamelCase_ ( self, A ): '''simple docstring''' if item in self.parent: return self.find(A ) SCREAMING_SNAKE_CASE : Dict = item SCREAMING_SNAKE_CASE : Tuple = 0 return item def UpperCamelCase_ ( self, A ): '''simple docstring''' if item not in self.parent: return self.make_set(A ) if item != self.parent[item]: SCREAMING_SNAKE_CASE : Tuple = self.find(self.parent[item] ) return self.parent[item] def UpperCamelCase_ ( self, A, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = self.find(A ) SCREAMING_SNAKE_CASE : Optional[Any] = self.find(A ) if roota == roota: return roota if self.rank[roota] > self.rank[roota]: SCREAMING_SNAKE_CASE : Tuple = roota return roota if self.rank[roota] < self.rank[roota]: SCREAMING_SNAKE_CASE : Optional[int] = roota return roota if self.rank[roota] == self.rank[roota]: self.rank[roota] += 1 SCREAMING_SNAKE_CASE : Tuple = roota return roota return None @staticmethod def UpperCamelCase_ ( A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = graph.num_vertices SCREAMING_SNAKE_CASE : List[str] = Graph.UnionFind() SCREAMING_SNAKE_CASE : Dict = [] while num_components > 1: SCREAMING_SNAKE_CASE : List[Any] = {} for vertex in graph.get_vertices(): SCREAMING_SNAKE_CASE : str = -1 SCREAMING_SNAKE_CASE : Tuple = graph.get_edges() for edge in edges: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[Any] = edge edges.remove((tail, head, weight) ) for edge in edges: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = edge SCREAMING_SNAKE_CASE : Optional[int] = union_find.find(A ) SCREAMING_SNAKE_CASE : int = union_find.find(A ) if seta != seta: if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: SCREAMING_SNAKE_CASE : str = [head, tail, weight] if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: SCREAMING_SNAKE_CASE : Optional[int] = [head, tail, weight] for vertex in cheap_edge: if cheap_edge[vertex] != -1: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = cheap_edge[vertex] if union_find.find(A ) != union_find.find(A ): union_find.union(A, A ) mst_edges.append(cheap_edge[vertex] ) SCREAMING_SNAKE_CASE : Dict = num_components - 1 SCREAMING_SNAKE_CASE : Tuple = Graph.build(edges=A ) return mst
251
'''simple docstring''' class _a : '''simple docstring''' def __init__( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = 0 SCREAMING_SNAKE_CASE : str = 0 SCREAMING_SNAKE_CASE : Optional[int] = {} def UpperCamelCase_ ( self, A ): '''simple docstring''' if vertex not in self.adjacency: SCREAMING_SNAKE_CASE : List[str] = {} self.num_vertices += 1 def UpperCamelCase_ ( self, A, A, A ): '''simple docstring''' self.add_vertex(A ) self.add_vertex(A ) if head == tail: return SCREAMING_SNAKE_CASE : List[Any] = weight SCREAMING_SNAKE_CASE : Optional[Any] = weight def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = self.get_edges() for edge in edges: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = edge edges.remove((tail, head, weight) ) for i in range(len(A ) ): SCREAMING_SNAKE_CASE : Optional[Any] = list(edges[i] ) edges.sort(key=lambda A : e[2] ) for i in range(len(A ) - 1 ): if edges[i][2] >= edges[i + 1][2]: SCREAMING_SNAKE_CASE : Dict = edges[i][2] + 1 for edge in edges: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = edge SCREAMING_SNAKE_CASE : Union[str, Any] = weight SCREAMING_SNAKE_CASE : Optional[Any] = weight def __str__( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = '' for tail in self.adjacency: for head in self.adjacency[tail]: SCREAMING_SNAKE_CASE : Union[str, Any] = self.adjacency[head][tail] string += F"{head} -> {tail} == {weight}\n" return string.rstrip('\n' ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = [] for tail in self.adjacency: for head in self.adjacency[tail]: output.append((tail, head, self.adjacency[head][tail]) ) return output def UpperCamelCase_ ( self ): '''simple docstring''' return self.adjacency.keys() @staticmethod def UpperCamelCase_ ( A=None, A=None ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = Graph() if vertices is None: SCREAMING_SNAKE_CASE : Optional[Any] = [] if edges is None: SCREAMING_SNAKE_CASE : List[Any] = [] for vertex in vertices: g.add_vertex(A ) for edge in edges: g.add_edge(*A ) return g class _a : '''simple docstring''' def __init__( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = {} SCREAMING_SNAKE_CASE : str = {} def __len__( self ): '''simple docstring''' return len(self.parent ) def UpperCamelCase_ ( self, A ): '''simple docstring''' if item in self.parent: return self.find(A ) SCREAMING_SNAKE_CASE : Dict = item SCREAMING_SNAKE_CASE : Tuple = 0 return item def UpperCamelCase_ ( self, A ): '''simple docstring''' if item not in self.parent: return self.make_set(A ) if item != self.parent[item]: SCREAMING_SNAKE_CASE : Tuple = self.find(self.parent[item] ) return self.parent[item] def UpperCamelCase_ ( self, A, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = self.find(A ) SCREAMING_SNAKE_CASE : Optional[Any] = self.find(A ) if roota == roota: return roota if self.rank[roota] > self.rank[roota]: SCREAMING_SNAKE_CASE : Tuple = roota return roota if self.rank[roota] < self.rank[roota]: SCREAMING_SNAKE_CASE : Optional[int] = roota return roota if self.rank[roota] == self.rank[roota]: self.rank[roota] += 1 SCREAMING_SNAKE_CASE : Tuple = roota return roota return None @staticmethod def UpperCamelCase_ ( A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = graph.num_vertices SCREAMING_SNAKE_CASE : List[str] = Graph.UnionFind() SCREAMING_SNAKE_CASE : Dict = [] while num_components > 1: SCREAMING_SNAKE_CASE : List[Any] = {} for vertex in graph.get_vertices(): SCREAMING_SNAKE_CASE : str = -1 SCREAMING_SNAKE_CASE : Tuple = graph.get_edges() for edge in edges: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[Any] = edge edges.remove((tail, head, weight) ) for edge in edges: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = edge SCREAMING_SNAKE_CASE : Optional[int] = union_find.find(A ) SCREAMING_SNAKE_CASE : int = union_find.find(A ) if seta != seta: if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: SCREAMING_SNAKE_CASE : str = [head, tail, weight] if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: SCREAMING_SNAKE_CASE : Optional[int] = [head, tail, weight] for vertex in cheap_edge: if cheap_edge[vertex] != -1: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = cheap_edge[vertex] if union_find.find(A ) != union_find.find(A ): union_find.union(A, A ) mst_edges.append(cheap_edge[vertex] ) SCREAMING_SNAKE_CASE : Dict = num_components - 1 SCREAMING_SNAKE_CASE : Tuple = Graph.build(edges=A ) return mst
251
1
import inspect import unittest from transformers import ConvNextConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextBackbone, ConvNextForImageClassification, ConvNextModel from transformers.models.convnext.modeling_convnext import CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __magic_name__ : def __init__( self , __snake_case , __snake_case=13 , __snake_case=32 , __snake_case=3 , __snake_case=4 , __snake_case=[10, 20, 30, 40] , __snake_case=[2, 2, 3, 2] , __snake_case=True , __snake_case=True , __snake_case=37 , __snake_case="gelu" , __snake_case=10 , __snake_case=0.02 , __snake_case=["stage2", "stage3", "stage4"] , __snake_case=[2, 3, 4] , __snake_case=None , ) -> Union[str, Any]: '''simple docstring''' __a =parent __a =batch_size __a =image_size __a =num_channels __a =num_stages __a =hidden_sizes __a =depths __a =is_training __a =use_labels __a =intermediate_size __a =hidden_act __a =num_labels __a =initializer_range __a =out_features __a =out_indices __a =scope def __magic_name__ ( self ) -> int: '''simple docstring''' __a =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __a =None if self.use_labels: __a =ids_tensor([self.batch_size] , self.num_labels ) __a =self.get_config() return config, pixel_values, labels def __magic_name__ ( self ) -> Tuple: '''simple docstring''' return ConvNextConfig( num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=__snake_case , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , ) def __magic_name__ ( self , __snake_case , __snake_case , __snake_case ) -> str: '''simple docstring''' __a =ConvNextModel(config=__snake_case ) model.to(__snake_case ) model.eval() __a =model(__snake_case ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def __magic_name__ ( self , __snake_case , __snake_case , __snake_case ) -> Tuple: '''simple docstring''' __a =ConvNextForImageClassification(__snake_case ) model.to(__snake_case ) model.eval() __a =model(__snake_case , labels=__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __magic_name__ ( self , __snake_case , __snake_case , __snake_case ) -> int: '''simple docstring''' __a =ConvNextBackbone(config=__snake_case ) model.to(__snake_case ) model.eval() __a =model(__snake_case ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None __a =None __a =ConvNextBackbone(config=__snake_case ) model.to(__snake_case ) model.eval() __a =model(__snake_case ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def __magic_name__ ( self ) -> Union[str, Any]: '''simple docstring''' __a =self.prepare_config_and_inputs() __a , __a , __a =config_and_inputs __a ={'pixel_values': pixel_values} return config, inputs_dict @require_torch class __magic_name__ ( lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ): SCREAMING_SNAKE_CASE = ( ( ConvNextModel, ConvNextForImageClassification, ConvNextBackbone, ) if is_torch_available() else () ) SCREAMING_SNAKE_CASE = ( {'feature-extraction': ConvNextModel, 'image-classification': ConvNextForImageClassification} if is_torch_available() else {} ) SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False def __magic_name__ ( self ) -> Dict: '''simple docstring''' __a =ConvNextModelTester(self ) __a =ConfigTester(self , config_class=__snake_case , has_text_modality=__snake_case , hidden_size=37 ) def __magic_name__ ( self ) -> Union[str, Any]: '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __magic_name__ ( self ) -> Tuple: '''simple docstring''' return @unittest.skip(reason='ConvNext does not use inputs_embeds' ) def __magic_name__ ( self ) -> str: '''simple docstring''' pass @unittest.skip(reason='ConvNext does not support input and output embeddings' ) def __magic_name__ ( self ) -> Optional[Any]: '''simple docstring''' pass @unittest.skip(reason='ConvNext does not use feedforward chunking' ) def __magic_name__ ( self ) -> Optional[int]: '''simple docstring''' pass def __magic_name__ ( self ) -> List[Any]: '''simple docstring''' __a , __a =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __a =model_class(__snake_case ) __a =inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __a =[*signature.parameters.keys()] __a =['pixel_values'] self.assertListEqual(arg_names[:1] , __snake_case ) def __magic_name__ ( self ) -> Optional[int]: '''simple docstring''' __a =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__snake_case ) def __magic_name__ ( self ) -> Any: '''simple docstring''' __a =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*__snake_case ) def __magic_name__ ( self ) -> Dict: '''simple docstring''' def check_hidden_states_output(__snake_case , __snake_case , __snake_case ): __a =model_class(__snake_case ) model.to(__snake_case ) model.eval() with torch.no_grad(): __a =model(**self._prepare_for_class(__snake_case , __snake_case ) ) __a =outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __a =self.model_tester.num_stages self.assertEqual(len(__snake_case ) , expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) __a , __a =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __a =True check_hidden_states_output(__snake_case , __snake_case , __snake_case ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __a =True check_hidden_states_output(__snake_case , __snake_case , __snake_case ) def __magic_name__ ( self ) -> str: '''simple docstring''' __a =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__snake_case ) @slow def __magic_name__ ( self ) -> List[Any]: '''simple docstring''' for model_name in CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __a =ConvNextModel.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) def UpperCamelCase_( ): """simple docstring""" __a =Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class __magic_name__ ( unittest.TestCase ): @cached_property def __magic_name__ ( self ) -> int: '''simple docstring''' return AutoImageProcessor.from_pretrained('facebook/convnext-tiny-224' ) if is_vision_available() else None @slow def __magic_name__ ( self ) -> str: '''simple docstring''' __a =ConvNextForImageClassification.from_pretrained('facebook/convnext-tiny-224' ).to(__snake_case ) __a =self.default_image_processor __a =prepare_img() __a =image_processor(images=__snake_case , return_tensors='pt' ).to(__snake_case ) # forward pass with torch.no_grad(): __a =model(**__snake_case ) # verify the logits __a =torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , __snake_case ) __a =torch.tensor([-0.0260, -0.4739, 0.1911] ).to(__snake_case ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __snake_case , atol=1e-4 ) ) @require_torch class __magic_name__ ( unittest.TestCase , lowerCAmelCase_ ): SCREAMING_SNAKE_CASE = (ConvNextBackbone,) if is_torch_available() else () SCREAMING_SNAKE_CASE = ConvNextConfig SCREAMING_SNAKE_CASE = False def __magic_name__ ( self ) -> List[str]: '''simple docstring''' __a =ConvNextModelTester(self )
308
from __future__ import annotations import matplotlib.pyplot as plt # type: ignore import numpy # initial triangle of Koch snowflake _lowerCAmelCase : Optional[Any] = numpy.array([0, 0]) _lowerCAmelCase : Dict = numpy.array([0.5, 0.8660254]) _lowerCAmelCase : Any = numpy.array([1, 0]) _lowerCAmelCase : int = [VECTOR_1, VECTOR_2, VECTOR_3, VECTOR_1] def UpperCamelCase_( _snake_case : list[numpy.ndarray] , _snake_case : int ): """simple docstring""" __a =initial_vectors for _ in range(_snake_case ): __a =iteration_step(_snake_case ) return vectors def UpperCamelCase_( _snake_case : list[numpy.ndarray] ): """simple docstring""" __a =[] for i, start_vector in enumerate(vectors[:-1] ): __a =vectors[i + 1] new_vectors.append(_snake_case ) __a =end_vector - start_vector new_vectors.append(start_vector + difference_vector / 3 ) new_vectors.append( start_vector + difference_vector / 3 + rotate(difference_vector / 3 , 60 ) ) new_vectors.append(start_vector + difference_vector * 2 / 3 ) new_vectors.append(vectors[-1] ) return new_vectors def UpperCamelCase_( _snake_case : numpy.ndarray , _snake_case : float ): """simple docstring""" __a =numpy.radians(_snake_case ) __a , __a =numpy.cos(_snake_case ), numpy.sin(_snake_case ) __a =numpy.array(((c, -s), (s, c)) ) return numpy.dot(_snake_case , _snake_case ) def UpperCamelCase_( _snake_case : list[numpy.ndarray] ): """simple docstring""" __a =plt.gca() axes.set_aspect('equal' ) # matplotlib.pyplot.plot takes a list of all x-coordinates and a list of all # y-coordinates as inputs, which are constructed from the vector-list using # zip() __a , __a =zip(*_snake_case ) plt.plot(_snake_case , _snake_case ) plt.show() if __name__ == "__main__": import doctest doctest.testmod() _lowerCAmelCase : List[Any] = iterate(INITIAL_VECTORS, 5) plot(processed_vectors)
308
1
'''simple docstring''' import unittest from transformers import load_tool from transformers.utils import is_torch_available if is_torch_available(): import torch from transformers.testing_utils import require_torch from .test_tools_common import ToolTesterMixin @require_torch class SCREAMING_SNAKE_CASE ( unittest.TestCase , _a ): """simple docstring""" def A ( self : Any ): """simple docstring""" UpperCamelCase = load_tool('text-to-speech' ) self.tool.setup() def A ( self : Dict ): """simple docstring""" torch.manual_seed(0 ) UpperCamelCase = self.tool('hey' ) UpperCamelCase = result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.0_0_0_5_9_6_6_6_6_8_8_3_2_1_1_5_8_2_9, -0.0_0_0_3_6_5_7_6_4_0_1_9_0_7_9_5_0_6_4, -0.0_0_0_1_3_4_3_9_5_0_2_7_9_9_8_8_3_4_8_5] ) , ) ) def A ( self : Optional[int] ): """simple docstring""" torch.manual_seed(0 ) UpperCamelCase = self.tool('hey' ) UpperCamelCase = result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.0_0_0_5_9_6_6_6_6_8_8_3_2_1_1_5_8_2_9, -0.0_0_0_3_6_5_7_6_4_0_1_9_0_7_9_5_0_6_4, -0.0_0_0_1_3_4_3_9_5_0_2_7_9_9_8_8_3_4_8_5] ) , ) )
28
'''simple docstring''' import io import json import fsspec import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.json import JsonDatasetReader, JsonDatasetWriter from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def snake_case_ ( _lowerCAmelCase : List[str] , _lowerCAmelCase : Optional[Any] ) -> Optional[int]: assert isinstance(_lowerCAmelCase , _lowerCAmelCase ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''keep_in_memory''' , [False, True] ) def snake_case_ ( _lowerCAmelCase : int , _lowerCAmelCase : Dict , _lowerCAmelCase : Optional[int] ) -> Dict: UpperCAmelCase : Dict = tmp_path / '''cache''' UpperCAmelCase : List[Any] = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): UpperCAmelCase : str = JsonDatasetReader(_lowerCAmelCase , cache_dir=_lowerCAmelCase , keep_in_memory=_lowerCAmelCase ).read() _check_json_dataset(_lowerCAmelCase , _lowerCAmelCase ) @pytest.mark.parametrize( '''features''' , [ None, {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}, {'''col_1''': '''string''', '''col_2''': '''string''', '''col_3''': '''string'''}, {'''col_1''': '''int32''', '''col_2''': '''int32''', '''col_3''': '''int32'''}, {'''col_1''': '''float32''', '''col_2''': '''float32''', '''col_3''': '''float32'''}, ] , ) def snake_case_ ( _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Dict , _lowerCAmelCase : int ) -> Optional[int]: UpperCAmelCase : Any = tmp_path / '''cache''' UpperCAmelCase : Tuple = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} UpperCAmelCase : Any = features.copy() if features else default_expected_features UpperCAmelCase : List[Any] = ( Features({feature: Value(_lowerCAmelCase ) for feature, dtype in features.items()} ) if features is not None else None ) UpperCAmelCase : Dict = JsonDatasetReader(_lowerCAmelCase , features=_lowerCAmelCase , cache_dir=_lowerCAmelCase ).read() _check_json_dataset(_lowerCAmelCase , _lowerCAmelCase ) @pytest.mark.parametrize( '''features''' , [ None, {'''col_3''': '''float64''', '''col_1''': '''string''', '''col_2''': '''int64'''}, ] , ) def snake_case_ ( _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Tuple ) -> Tuple: UpperCAmelCase : Optional[Any] = tmp_path / '''cache''' UpperCAmelCase : Optional[int] = {'''col_3''': '''float64''', '''col_1''': '''string''', '''col_2''': '''int64'''} UpperCAmelCase : int = features.copy() if features else default_expected_features UpperCAmelCase : Any = ( Features({feature: Value(_lowerCAmelCase ) for feature, dtype in features.items()} ) if features is not None else None ) UpperCAmelCase : Tuple = JsonDatasetReader(_lowerCAmelCase , features=_lowerCAmelCase , cache_dir=_lowerCAmelCase ).read() assert isinstance(_lowerCAmelCase , _lowerCAmelCase ) assert dataset.num_rows == 2 assert dataset.num_columns == 3 assert dataset.column_names == ["col_3", "col_1", "col_2"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype def snake_case_ ( _lowerCAmelCase : List[str] , _lowerCAmelCase : Dict ) -> Union[str, Any]: # jsonl_312_path features are {"col_3": "float64", "col_1": "string", "col_2": "int64"} UpperCAmelCase : Tuple = {'''col_2''': '''int64''', '''col_3''': '''float64''', '''col_1''': '''string'''} UpperCAmelCase : List[str] = features.copy() UpperCAmelCase : Union[str, Any] = ( Features({feature: Value(_lowerCAmelCase ) for feature, dtype in features.items()} ) if features is not None else None ) UpperCAmelCase : Tuple = tmp_path / '''cache''' UpperCAmelCase : List[str] = JsonDatasetReader(_lowerCAmelCase , features=_lowerCAmelCase , cache_dir=_lowerCAmelCase ).read() assert isinstance(_lowerCAmelCase , _lowerCAmelCase ) assert dataset.num_rows == 2 assert dataset.num_columns == 3 assert dataset.column_names == ["col_2", "col_3", "col_1"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''split''' , [None, NamedSplit('''train''' ), '''train''', '''test'''] ) def snake_case_ ( _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Tuple , _lowerCAmelCase : List[str] ) -> Optional[Any]: UpperCAmelCase : Any = tmp_path / '''cache''' UpperCAmelCase : List[Any] = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} UpperCAmelCase : List[Any] = JsonDatasetReader(_lowerCAmelCase , cache_dir=_lowerCAmelCase , split=_lowerCAmelCase ).read() _check_json_dataset(_lowerCAmelCase , _lowerCAmelCase ) assert dataset.split == split if split else "train" @pytest.mark.parametrize('''path_type''' , [str, list] ) def snake_case_ ( _lowerCAmelCase : List[Any] , _lowerCAmelCase : str , _lowerCAmelCase : Any ) -> Dict: if issubclass(_lowerCAmelCase , _lowerCAmelCase ): UpperCAmelCase : str = jsonl_path elif issubclass(_lowerCAmelCase , _lowerCAmelCase ): UpperCAmelCase : Dict = [jsonl_path] UpperCAmelCase : int = tmp_path / '''cache''' UpperCAmelCase : Dict = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} UpperCAmelCase : Optional[int] = JsonDatasetReader(_lowerCAmelCase , cache_dir=_lowerCAmelCase ).read() _check_json_dataset(_lowerCAmelCase , _lowerCAmelCase ) def snake_case_ ( _lowerCAmelCase : List[str] , _lowerCAmelCase : Dict , _lowerCAmelCase : Dict=("train",) ) -> Union[str, Any]: assert isinstance(_lowerCAmelCase , _lowerCAmelCase ) for split in splits: UpperCAmelCase : List[str] = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''keep_in_memory''' , [False, True] ) def snake_case_ ( _lowerCAmelCase : int , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : str ) -> Any: UpperCAmelCase : Optional[Any] = tmp_path / '''cache''' UpperCAmelCase : List[str] = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): UpperCAmelCase : Optional[int] = JsonDatasetReader({'''train''': jsonl_path} , cache_dir=_lowerCAmelCase , keep_in_memory=_lowerCAmelCase ).read() _check_json_datasetdict(_lowerCAmelCase , _lowerCAmelCase ) @pytest.mark.parametrize( '''features''' , [ None, {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}, {'''col_1''': '''string''', '''col_2''': '''string''', '''col_3''': '''string'''}, {'''col_1''': '''int32''', '''col_2''': '''int32''', '''col_3''': '''int32'''}, {'''col_1''': '''float32''', '''col_2''': '''float32''', '''col_3''': '''float32'''}, ] , ) def snake_case_ ( _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Union[str, Any] ) -> int: UpperCAmelCase : Dict = tmp_path / '''cache''' UpperCAmelCase : Dict = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} UpperCAmelCase : Optional[int] = features.copy() if features else default_expected_features UpperCAmelCase : Union[str, Any] = ( Features({feature: Value(_lowerCAmelCase ) for feature, dtype in features.items()} ) if features is not None else None ) UpperCAmelCase : Tuple = JsonDatasetReader({'''train''': jsonl_path} , features=_lowerCAmelCase , cache_dir=_lowerCAmelCase ).read() _check_json_datasetdict(_lowerCAmelCase , _lowerCAmelCase ) @pytest.mark.parametrize('''split''' , [None, NamedSplit('''train''' ), '''train''', '''test'''] ) def snake_case_ ( _lowerCAmelCase : Any , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Dict ) -> Union[str, Any]: if split: UpperCAmelCase : Optional[int] = {split: jsonl_path} else: UpperCAmelCase : Any = '''train''' UpperCAmelCase : Any = {'''train''': jsonl_path, '''test''': jsonl_path} UpperCAmelCase : Tuple = tmp_path / '''cache''' UpperCAmelCase : int = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} UpperCAmelCase : Optional[Any] = JsonDatasetReader(_lowerCAmelCase , cache_dir=_lowerCAmelCase ).read() _check_json_datasetdict(_lowerCAmelCase , _lowerCAmelCase , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def snake_case_ ( _lowerCAmelCase : List[str] ) -> str: return json.load(_lowerCAmelCase ) def snake_case_ ( _lowerCAmelCase : Dict ) -> str: return [json.loads(_lowerCAmelCase ) for line in buffer] class SCREAMING_SNAKE_CASE: """simple docstring""" @pytest.mark.parametrize('''lines, load_json_function''' , [(True, load_json_lines), (False, load_json)] ) def A ( self : Union[str, Any] , __snake_case : Tuple , __snake_case : Optional[Any] , __snake_case : Optional[int] ) -> Dict: with io.BytesIO() as buffer: JsonDatasetWriter(__snake_case , __snake_case , lines=__snake_case ).write() buffer.seek(0 ) UpperCAmelCase : Union[str, Any] = load_json_function(__snake_case ) assert isinstance(__snake_case , __snake_case ) assert isinstance(exported_content[0] , __snake_case ) assert len(__snake_case ) == 10 @pytest.mark.parametrize( '''orient, container, keys, len_at''' , [ ('''records''', list, {'''tokens''', '''labels''', '''answers''', '''id'''}, None), ('''split''', dict, {'''columns''', '''data'''}, '''data'''), ('''index''', dict, set('''0123456789''' ), None), ('''columns''', dict, {'''tokens''', '''labels''', '''answers''', '''id'''}, '''tokens'''), ('''values''', list, None, None), ('''table''', dict, {'''schema''', '''data'''}, '''data'''), ] , ) def A ( self : Optional[int] , __snake_case : Optional[Any] , __snake_case : str , __snake_case : Optional[Any] , __snake_case : List[str] , __snake_case : Optional[Any] ) -> List[Any]: with io.BytesIO() as buffer: JsonDatasetWriter(__snake_case , __snake_case , lines=__snake_case , orient=__snake_case ).write() buffer.seek(0 ) UpperCAmelCase : Union[str, Any] = load_json(__snake_case ) assert isinstance(__snake_case , __snake_case ) if keys: if container is dict: assert exported_content.keys() == keys else: assert exported_content[0].keys() == keys else: assert not hasattr(__snake_case , '''keys''' ) and not hasattr(exported_content[0] , '''keys''' ) if len_at: assert len(exported_content[len_at] ) == 10 else: assert len(__snake_case ) == 10 @pytest.mark.parametrize('''lines, load_json_function''' , [(True, load_json_lines), (False, load_json)] ) def A ( self : str , __snake_case : str , __snake_case : str , __snake_case : int ) -> Any: with io.BytesIO() as buffer: JsonDatasetWriter(__snake_case , __snake_case , lines=__snake_case , num_proc=2 ).write() buffer.seek(0 ) UpperCAmelCase : Any = load_json_function(__snake_case ) assert isinstance(__snake_case , __snake_case ) assert isinstance(exported_content[0] , __snake_case ) assert len(__snake_case ) == 10 @pytest.mark.parametrize( '''orient, container, keys, len_at''' , [ ('''records''', list, {'''tokens''', '''labels''', '''answers''', '''id'''}, None), ('''split''', dict, {'''columns''', '''data'''}, '''data'''), ('''index''', dict, set('''0123456789''' ), None), ('''columns''', dict, {'''tokens''', '''labels''', '''answers''', '''id'''}, '''tokens'''), ('''values''', list, None, None), ('''table''', dict, {'''schema''', '''data'''}, '''data'''), ] , ) def A ( self : Any , __snake_case : int , __snake_case : Union[str, Any] , __snake_case : Optional[int] , __snake_case : Optional[Any] , __snake_case : List[str] ) -> Any: with io.BytesIO() as buffer: JsonDatasetWriter(__snake_case , __snake_case , lines=__snake_case , orient=__snake_case , num_proc=2 ).write() buffer.seek(0 ) UpperCAmelCase : List[str] = load_json(__snake_case ) assert isinstance(__snake_case , __snake_case ) if keys: if container is dict: assert exported_content.keys() == keys else: assert exported_content[0].keys() == keys else: assert not hasattr(__snake_case , '''keys''' ) and not hasattr(exported_content[0] , '''keys''' ) if len_at: assert len(exported_content[len_at] ) == 10 else: assert len(__snake_case ) == 10 def A ( self : List[Any] , __snake_case : str ) -> Dict: with pytest.raises(__snake_case ): with io.BytesIO() as buffer: JsonDatasetWriter(__snake_case , __snake_case , num_proc=0 ) @pytest.mark.parametrize('''compression, extension''' , [('''gzip''', '''gz'''), ('''bz2''', '''bz2'''), ('''xz''', '''xz''')] ) def A ( self : Optional[int] , __snake_case : Any , __snake_case : str , __snake_case : Union[str, Any] , __snake_case : Union[str, Any] , __snake_case : Dict ) -> Union[str, Any]: UpperCAmelCase : List[str] = tmp_path_factory.mktemp('''data''' ) / F"""test.json.{extension}""" UpperCAmelCase : List[Any] = str(shared_datadir / F"""test_file.json.{extension}""" ) JsonDatasetWriter(__snake_case , __snake_case , compression=__snake_case ).write() with fsspec.open(__snake_case , '''rb''' , compression='''infer''' ) as f: UpperCAmelCase : str = f.read() with fsspec.open(__snake_case , '''rb''' , compression='''infer''' ) as f: UpperCAmelCase : Optional[int] = f.read() assert exported_content == original_content
23
0
from pathlib import Path import fire from tqdm import tqdm def A_ ( _lowerCAmelCase="ro" , _lowerCAmelCase="en" , _lowerCAmelCase="wmt16" , _lowerCAmelCase=None ) -> List[str]: try: import datasets except (ModuleNotFoundError, ImportError): raise ImportError("run pip install datasets" ) UpperCamelCase : int = F"""{src_lang}-{tgt_lang}""" print(F"""Converting {dataset}-{pair}""" ) UpperCamelCase : Optional[int] = datasets.load_dataset(_a , _a ) if save_dir is None: UpperCamelCase : List[str] = F"""{dataset}-{pair}""" UpperCamelCase : int = Path(_a ) save_dir.mkdir(exist_ok=_a ) for split in ds.keys(): print(F"""Splitting {split} with {ds[split].num_rows} records""" ) # to save to val.source, val.target like summary datasets UpperCamelCase : Tuple = """val""" if split == """validation""" else split UpperCamelCase : str = save_dir.joinpath(F"""{fn}.source""" ) UpperCamelCase : Optional[int] = save_dir.joinpath(F"""{fn}.target""" ) UpperCamelCase : int = src_path.open("w+" ) UpperCamelCase : Any = tgt_path.open("w+" ) # reader is the bottleneck so writing one record at a time doesn't slow things down for x in tqdm(ds[split] ): UpperCamelCase : Dict = x["""translation"""] src_fp.write(ex[src_lang] + "\n" ) tgt_fp.write(ex[tgt_lang] + "\n" ) print(F"""Saved {dataset} dataset to {save_dir}""" ) if __name__ == "__main__": fire.Fire(download_wmt_dataset)
365
from scipy.stats import spearmanr import datasets __lowerCamelCase : List[str] = """ The Spearman rank-order correlation coefficient is a measure of the relationship between two datasets. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Positive correlations imply that as data in dataset x increases, so does data in dataset y. Negative correlations imply that as x increases, y decreases. Correlations of -1 or +1 imply an exact monotonic relationship. Unlike the Pearson correlation, the Spearman correlation does not assume that both datasets are normally distributed. The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Spearman correlation at least as extreme as the one computed from these datasets. The p-values are not entirely reliable but are probably reasonable for datasets larger than 500 or so. """ __lowerCamelCase : List[Any] = """ Args: predictions (`List[float]`): Predicted labels, as returned by a model. references (`List[float]`): Ground truth labels. return_pvalue (`bool`): If `True`, returns the p-value. If `False`, returns only the spearmanr score. Defaults to `False`. Returns: spearmanr (`float`): Spearman correlation coefficient. p-value (`float`): p-value. **Note**: is only returned if `return_pvalue=True` is input. Examples: Example 1: >>> spearmanr_metric = datasets.load_metric(\"spearmanr\") >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], predictions=[10, 9, 2.5, 6, 4]) >>> print(results) {'spearmanr': -0.7} Example 2: >>> spearmanr_metric = datasets.load_metric(\"spearmanr\") >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], ... predictions=[10, 9, 2.5, 6, 4], ... return_pvalue=True) >>> print(results['spearmanr']) -0.7 >>> print(round(results['spearmanr_pvalue'], 2)) 0.19 """ __lowerCamelCase : Optional[int] = r"""\ @book{kokoska2000crc, title={CRC standard probability and statistics tables and formulae}, author={Kokoska, Stephen and Zwillinger, Daniel}, year={2000}, publisher={Crc Press} } @article{2020SciPy-NMeth, author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and Haberland, Matt and Reddy, Tyler and Cournapeau, David and Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and Bright, Jonathan and {van der Walt}, St{\'e}fan J. and Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and Kern, Robert and Larson, Eric and Carey, C J and Polat, {\.I}lhan and Feng, Yu and Moore, Eric W. and {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and Harris, Charles R. and Archibald, Anne M. and Ribeiro, Ant{\^o}nio H. and Pedregosa, Fabian and {van Mulbregt}, Paul and {SciPy 1.0 Contributors}}, title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific Computing in Python}}, journal = {Nature Methods}, year = {2020}, volume = {17}, pages = {261--272}, adsurl = {https://rdcu.be/b08Wh}, doi = {10.1038/s41592-019-0686-2}, } """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A__ ( datasets.Metric ): def __UpperCamelCase( self ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("float" ), "references": datasets.Value("float" ), } ) , reference_urls=["https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html"] , ) def __UpperCamelCase( self , A_ , A_ , A_=False ): '''simple docstring''' UpperCamelCase : Tuple = spearmanr(A_ , A_ ) if return_pvalue: return {"spearmanr": results[0], "spearmanr_pvalue": results[1]} else: return {"spearmanr": results[0]}
140
0
'''simple docstring''' from argparse import ArgumentParser, Namespace from ..utils import logging from . import BaseTransformersCLICommand def UpperCamelCase_ ( snake_case_ : Namespace ) -> Any: '''simple docstring''' return ConvertCommand( args.model_type , args.tf_checkpoint , args.pytorch_dump_output , args.config , args.finetuning_task_name ) _A : Optional[Any] = ''' transformers can only be used from the commandline to convert TensorFlow models in PyTorch, In that case, it requires TensorFlow to be installed. Please see https://www.tensorflow.org/install/ for installation instructions. ''' class _lowercase ( UpperCAmelCase__ ): '''simple docstring''' @staticmethod def a ( SCREAMING_SNAKE_CASE__ : ArgumentParser ) -> Optional[int]: __lowerCAmelCase = parser.add_parser( """convert""" , help="""CLI tool to run convert model from original author checkpoints to Transformers PyTorch checkpoints.""" , ) train_parser.add_argument("""--model_type""" , type=SCREAMING_SNAKE_CASE__ , required=SCREAMING_SNAKE_CASE__ , help="""Model's type.""" ) train_parser.add_argument( """--tf_checkpoint""" , type=SCREAMING_SNAKE_CASE__ , required=SCREAMING_SNAKE_CASE__ , help="""TensorFlow checkpoint path or folder.""" ) train_parser.add_argument( """--pytorch_dump_output""" , type=SCREAMING_SNAKE_CASE__ , required=SCREAMING_SNAKE_CASE__ , help="""Path to the PyTorch saved model output.""" ) train_parser.add_argument("""--config""" , type=SCREAMING_SNAKE_CASE__ , default="""""" , help="""Configuration file path or folder.""" ) train_parser.add_argument( """--finetuning_task_name""" , type=SCREAMING_SNAKE_CASE__ , default=SCREAMING_SNAKE_CASE__ , help="""Optional fine-tuning task name if the TF model was a finetuned model.""" , ) train_parser.set_defaults(func=SCREAMING_SNAKE_CASE__ ) def __init__( self : int , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str , *SCREAMING_SNAKE_CASE__ : Any , ) -> Any: __lowerCAmelCase = logging.get_logger("""transformers-cli/converting""" ) self._logger.info(f"""Loading model {model_type}""" ) __lowerCAmelCase = model_type __lowerCAmelCase = tf_checkpoint __lowerCAmelCase = pytorch_dump_output __lowerCAmelCase = config __lowerCAmelCase = finetuning_task_name def a ( self : Optional[int] ) -> Any: if self._model_type == "albert": try: from ..models.albert.convert_albert_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(SCREAMING_SNAKE_CASE__ ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "bert": try: from ..models.bert.convert_bert_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(SCREAMING_SNAKE_CASE__ ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "funnel": try: from ..models.funnel.convert_funnel_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(SCREAMING_SNAKE_CASE__ ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "t5": try: from ..models.ta.convert_ta_original_tf_checkpoint_to_pytorch import convert_tf_checkpoint_to_pytorch except ImportError: raise ImportError(SCREAMING_SNAKE_CASE__ ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "gpt": from ..models.openai.convert_openai_original_tf_checkpoint_to_pytorch import ( convert_openai_checkpoint_to_pytorch, ) convert_openai_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "transfo_xl": try: from ..models.transfo_xl.convert_transfo_xl_original_tf_checkpoint_to_pytorch import ( convert_transfo_xl_checkpoint_to_pytorch, ) except ImportError: raise ImportError(SCREAMING_SNAKE_CASE__ ) if "ckpt" in self._tf_checkpoint.lower(): __lowerCAmelCase = self._tf_checkpoint __lowerCAmelCase = """""" else: __lowerCAmelCase = self._tf_checkpoint __lowerCAmelCase = """""" convert_transfo_xl_checkpoint_to_pytorch( SCREAMING_SNAKE_CASE__ , self._config , self._pytorch_dump_output , SCREAMING_SNAKE_CASE__ ) elif self._model_type == "gpt2": try: from ..models.gpta.convert_gpta_original_tf_checkpoint_to_pytorch import ( convert_gpta_checkpoint_to_pytorch, ) except ImportError: raise ImportError(SCREAMING_SNAKE_CASE__ ) convert_gpta_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "xlnet": try: from ..models.xlnet.convert_xlnet_original_tf_checkpoint_to_pytorch import ( convert_xlnet_checkpoint_to_pytorch, ) except ImportError: raise ImportError(SCREAMING_SNAKE_CASE__ ) convert_xlnet_checkpoint_to_pytorch( self._tf_checkpoint , self._config , self._pytorch_dump_output , self._finetuning_task_name ) elif self._model_type == "xlm": from ..models.xlm.convert_xlm_original_pytorch_checkpoint_to_pytorch import ( convert_xlm_checkpoint_to_pytorch, ) convert_xlm_checkpoint_to_pytorch(self._tf_checkpoint , self._pytorch_dump_output ) elif self._model_type == "lxmert": from ..models.lxmert.convert_lxmert_original_tf_checkpoint_to_pytorch import ( convert_lxmert_checkpoint_to_pytorch, ) convert_lxmert_checkpoint_to_pytorch(self._tf_checkpoint , self._pytorch_dump_output ) elif self._model_type == "rembert": from ..models.rembert.convert_rembert_tf_checkpoint_to_pytorch import ( convert_rembert_tf_checkpoint_to_pytorch, ) convert_rembert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) else: raise ValueError( """--model_type should be selected in the list [bert, gpt, gpt2, t5, transfo_xl, xlnet, xlm, lxmert]""" )
229
'''simple docstring''' def UpperCamelCase_ ( snake_case_ : int , snake_case_ : int ) -> str: '''simple docstring''' if a < 0 or b < 0: raise ValueError("""the value of both inputs must be positive""" ) __lowerCAmelCase = str(bin(snake_case_ ) )[2:] # remove the leading "0b" __lowerCAmelCase = str(bin(snake_case_ ) )[2:] # remove the leading "0b" __lowerCAmelCase = max(len(snake_case_ ) , len(snake_case_ ) ) return "0b" + "".join( str(int(char_a == """1""" and char_b == """1""" ) ) for char_a, char_b in zip(a_binary.zfill(snake_case_ ) , b_binary.zfill(snake_case_ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
229
1
def __lowercase ( _UpperCamelCase, _UpperCamelCase ) ->list[str]: """simple docstring""" return [sentence[i : i + ngram_size] for i in range(len(_UpperCamelCase ) - ngram_size + 1 )] if __name__ == "__main__": from doctest import testmod testmod()
173
# Note: if you intend to run this script make sure you look under scripts/fsmt/ # to locate the appropriate script to do the work correctly. There is a set of scripts to: # - download and prepare data and run the conversion script # - perform eval to get the best hparam into the config # - generate model_cards - useful if you have multiple models from the same paper import argparse import json import os import re from collections import OrderedDict from os.path import basename, dirname import fairseq import torch from fairseq import hub_utils from fairseq.data.dictionary import Dictionary from transformers import FSMTConfig, FSMTForConditionalGeneration from transformers.models.fsmt.tokenization_fsmt import VOCAB_FILES_NAMES from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE from transformers.utils import WEIGHTS_NAME, logging logging.set_verbosity_warning() __a = 2 # based on the results of a search on a range of `num_beams`, `length_penalty` and `early_stopping` # values against wmt19 test data to obtain the best BLEU scores, we will use the following defaults: # # * `num_beams`: 5 (higher scores better, but requires more memory/is slower, can be adjusted by users) # * `early_stopping`: `False` consistently scored better # * `length_penalty` varied, so will assign the best one depending on the model __a = { # fairseq: '''wmt19-ru-en''': {'''length_penalty''': 1.1}, '''wmt19-en-ru''': {'''length_penalty''': 1.1_5}, '''wmt19-en-de''': {'''length_penalty''': 1.0}, '''wmt19-de-en''': {'''length_penalty''': 1.1}, # allenai: '''wmt16-en-de-dist-12-1''': {'''length_penalty''': 0.6}, '''wmt16-en-de-dist-6-1''': {'''length_penalty''': 0.6}, '''wmt16-en-de-12-1''': {'''length_penalty''': 0.8}, '''wmt19-de-en-6-6-base''': {'''length_penalty''': 0.6}, '''wmt19-de-en-6-6-big''': {'''length_penalty''': 0.6}, } # this remaps the different models to their organization names __a = {} for m in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: __a = '''facebook''' for m in [ "wmt16-en-de-dist-12-1", "wmt16-en-de-dist-6-1", "wmt16-en-de-12-1", "wmt19-de-en-6-6-base", "wmt19-de-en-6-6-big", ]: __a = '''allenai''' def __lowercase ( _UpperCamelCase ) ->str: """simple docstring""" lowercase : Tuple = dict((re.sub(R'''@@$''', '''''', _UpperCamelCase ), v) if k.endswith('''@@''' ) else (re.sub(R'''$''', '''</w>''', _UpperCamelCase ), v) for k, v in d.items() ) lowercase : List[str] = '''<s> <pad> </s> <unk>'''.split() # restore the special tokens for k in keep_keys: del da[f"""{k}</w>"""] lowercase : Union[str, Any] = d[k] # restore return da def __lowercase ( _UpperCamelCase, _UpperCamelCase ) ->Any: """simple docstring""" assert os.path.exists(_UpperCamelCase ) os.makedirs(_UpperCamelCase, exist_ok=_UpperCamelCase ) print(f"""Writing results to {pytorch_dump_folder_path}""" ) # handle various types of models lowercase : Union[str, Any] = basename(_UpperCamelCase ) lowercase : List[str] = dirname(_UpperCamelCase ) lowercase : Optional[Any] = fairseq.model_parallel.models.transformer.ModelParallelTransformerModel lowercase : List[str] = cls.hub_models() lowercase : Tuple = {'''bpe''': '''fastbpe''', '''tokenizer''': '''moses'''} lowercase : List[str] = '''.''' # note: since the model dump is old, fairseq has upgraded its model some # time later, and it does a whole lot of rewrites and splits on the saved # weights, therefore we can't use torch.load() directly on the model file. # see: upgrade_state_dict(state_dict) in fairseq_model.py print(f"""using checkpoint {checkpoint_file}""" ) lowercase : int = hub_utils.from_pretrained( _UpperCamelCase, _UpperCamelCase, _UpperCamelCase, archive_map=_UpperCamelCase, **_UpperCamelCase ) lowercase : int = vars(chkpt['''args''']['''model'''] ) lowercase : Union[str, Any] = args['''source_lang'''] lowercase : Dict = args['''target_lang'''] lowercase : Optional[int] = dirname(_UpperCamelCase ) lowercase : str = basename(_UpperCamelCase ) # dicts lowercase : Optional[Any] = os.path.join(_UpperCamelCase, f"""dict.{src_lang}.txt""" ) lowercase : Any = os.path.join(_UpperCamelCase, f"""dict.{tgt_lang}.txt""" ) lowercase : Union[str, Any] = Dictionary.load(_UpperCamelCase ) lowercase : List[Any] = rewrite_dict_keys(src_dict.indices ) lowercase : List[str] = len(_UpperCamelCase ) lowercase : Tuple = os.path.join(_UpperCamelCase, '''vocab-src.json''' ) print(f"""Generating {src_vocab_file} of {src_vocab_size} of {src_lang} records""" ) with open(_UpperCamelCase, '''w''', encoding='''utf-8''' ) as f: f.write(json.dumps(_UpperCamelCase, ensure_ascii=_UpperCamelCase, indent=_UpperCamelCase ) ) # detect whether this is a do_lower_case situation, which can be derived by checking whether we # have at least one uppercase letter in the source vocab lowercase : str = True for k in src_vocab.keys(): if not k.islower(): lowercase : Dict = False break lowercase : Union[str, Any] = Dictionary.load(_UpperCamelCase ) lowercase : Any = rewrite_dict_keys(tgt_dict.indices ) lowercase : Tuple = len(_UpperCamelCase ) lowercase : Dict = os.path.join(_UpperCamelCase, '''vocab-tgt.json''' ) print(f"""Generating {tgt_vocab_file} of {tgt_vocab_size} of {tgt_lang} records""" ) with open(_UpperCamelCase, '''w''', encoding='''utf-8''' ) as f: f.write(json.dumps(_UpperCamelCase, ensure_ascii=_UpperCamelCase, indent=_UpperCamelCase ) ) # merges_file (bpecodes) lowercase : Optional[int] = os.path.join(_UpperCamelCase, VOCAB_FILES_NAMES['''merges_file'''] ) for fn in ["bpecodes", "code"]: # older fairseq called the merges file "code" lowercase : str = os.path.join(_UpperCamelCase, _UpperCamelCase ) if os.path.exists(_UpperCamelCase ): break with open(_UpperCamelCase, encoding='''utf-8''' ) as fin: lowercase : List[str] = fin.read() lowercase : Tuple = re.sub(R''' \d+$''', '''''', _UpperCamelCase, 0, re.M ) # remove frequency number print(f"""Generating {merges_file}""" ) with open(_UpperCamelCase, '''w''', encoding='''utf-8''' ) as fout: fout.write(_UpperCamelCase ) # model config lowercase : Dict = os.path.join(_UpperCamelCase, '''config.json''' ) # validate bpe/tokenizer config, as currently it's hardcoded to moses+fastbpe - # may have to modify the tokenizer if a different type is used by a future model assert args["bpe"] == "fastbpe", f"""need to extend tokenizer to support bpe={args['bpe']}""" assert args["tokenizer"] == "moses", f"""need to extend tokenizer to support bpe={args['tokenizer']}""" lowercase : Optional[int] = { '''architectures''': ['''FSMTForConditionalGeneration'''], '''model_type''': '''fsmt''', '''activation_dropout''': args['''activation_dropout'''], '''activation_function''': '''relu''', '''attention_dropout''': args['''attention_dropout'''], '''d_model''': args['''decoder_embed_dim'''], '''dropout''': args['''dropout'''], '''init_std''': 0.0_2, '''max_position_embeddings''': args['''max_source_positions'''], '''num_hidden_layers''': args['''encoder_layers'''], '''src_vocab_size''': src_vocab_size, '''tgt_vocab_size''': tgt_vocab_size, '''langs''': [src_lang, tgt_lang], '''encoder_attention_heads''': args['''encoder_attention_heads'''], '''encoder_ffn_dim''': args['''encoder_ffn_embed_dim'''], '''encoder_layerdrop''': args['''encoder_layerdrop'''], '''encoder_layers''': args['''encoder_layers'''], '''decoder_attention_heads''': args['''decoder_attention_heads'''], '''decoder_ffn_dim''': args['''decoder_ffn_embed_dim'''], '''decoder_layerdrop''': args['''decoder_layerdrop'''], '''decoder_layers''': args['''decoder_layers'''], '''bos_token_id''': 0, '''pad_token_id''': 1, '''eos_token_id''': 2, '''is_encoder_decoder''': True, '''scale_embedding''': not args['''no_scale_embedding'''], '''tie_word_embeddings''': args['''share_all_embeddings'''], } # good hparam defaults to start with lowercase : Dict = 5 lowercase : List[str] = False if model_dir in best_score_hparams and "length_penalty" in best_score_hparams[model_dir]: lowercase : int = best_score_hparams[model_dir]['''length_penalty'''] else: lowercase : Any = 1.0 print(f"""Generating {fsmt_model_config_file}""" ) with open(_UpperCamelCase, '''w''', encoding='''utf-8''' ) as f: f.write(json.dumps(_UpperCamelCase, ensure_ascii=_UpperCamelCase, indent=_UpperCamelCase ) ) # tokenizer config lowercase : Any = os.path.join(_UpperCamelCase, _UpperCamelCase ) lowercase : Tuple = { '''langs''': [src_lang, tgt_lang], '''model_max_length''': 1024, '''do_lower_case''': do_lower_case, } print(f"""Generating {fsmt_tokenizer_config_file}""" ) with open(_UpperCamelCase, '''w''', encoding='''utf-8''' ) as f: f.write(json.dumps(_UpperCamelCase, ensure_ascii=_UpperCamelCase, indent=_UpperCamelCase ) ) # model lowercase : int = chkpt['''models'''][0] lowercase : Optional[Any] = model.state_dict() # rename keys to start with 'model.' lowercase : Union[str, Any] = OrderedDict(('''model.''' + k, v) for k, v in model_state_dict.items() ) # remove unneeded keys lowercase : int = [ '''model.model''', '''model.encoder.version''', '''model.decoder.version''', '''model.encoder_embed_tokens.weight''', '''model.decoder_embed_tokens.weight''', '''model.encoder.embed_positions._float_tensor''', '''model.decoder.embed_positions._float_tensor''', ] for k in ignore_keys: model_state_dict.pop(_UpperCamelCase, _UpperCamelCase ) lowercase : str = FSMTConfig.from_pretrained(_UpperCamelCase ) lowercase : str = FSMTForConditionalGeneration(_UpperCamelCase ) # check that it loads ok model_new.load_state_dict(_UpperCamelCase, strict=_UpperCamelCase ) # save lowercase : List[Any] = os.path.join(_UpperCamelCase, _UpperCamelCase ) print(f"""Generating {pytorch_weights_dump_path}""" ) torch.save(_UpperCamelCase, _UpperCamelCase ) print('''Conversion is done!''' ) print('''\nLast step is to upload the files to s3''' ) print(f"""cd {data_root}""" ) print(f"""transformers-cli upload {model_dir}""" ) if __name__ == "__main__": __a = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--fsmt_checkpoint_path''', default=None, type=str, required=True, help=( '''Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts,''' ''' bpecodes, etc.''' ), ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) __a = parser.parse_args() convert_fsmt_checkpoint_to_pytorch(args.fsmt_checkpoint_path, args.pytorch_dump_folder_path)
173
1
'''simple docstring''' def __UpperCAmelCase ( a_: Tuple, a_: List[str], a_: List[str] ): if n == 0: return 1 elif n % 2 == 1: return (binary_exponentiation(a_, n - 1, a_ ) * a) % mod else: _UpperCAmelCase : Any = binary_exponentiation(a_, n / 2, a_ ) return (b * b) % mod # a prime number __a = 701 __a = 1_000_000_000 __a = 10 # using binary exponentiation function, O(log(p)): print((a / b) % p == (a * binary_exponentiation(b, p - 2, p)) % p) print((a / b) % p == (a * b ** (p - 2)) % p)
145
'''simple docstring''' def __UpperCAmelCase ( a_: str, a_: str ): if len(a_ ) != len(a_ ): raise ValueError("String lengths must match!" ) _UpperCAmelCase : Dict = 0 for chara, chara in zip(a_, a_ ): if chara != chara: count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
145
1
"""simple docstring""" from transformers import HfArgumentParser, TensorFlowBenchmark, TensorFlowBenchmarkArguments def _lowerCAmelCase ( ): __SCREAMING_SNAKE_CASE = HfArgumentParser(UpperCamelCase_ ) __SCREAMING_SNAKE_CASE = parser.parse_args_into_dataclasses()[0] __SCREAMING_SNAKE_CASE = TensorFlowBenchmark(args=UpperCamelCase_ ) try: __SCREAMING_SNAKE_CASE = parser.parse_args_into_dataclasses()[0] except ValueError as e: __SCREAMING_SNAKE_CASE = """Arg --no_{0} is no longer used, please use --no-{0} instead.""" __SCREAMING_SNAKE_CASE = """ """.join(str(UpperCamelCase_ ).split(""" """ )[:-1] ) __SCREAMING_SNAKE_CASE = """""" __SCREAMING_SNAKE_CASE = eval(str(UpperCamelCase_ ).split(""" """ )[-1] ) __SCREAMING_SNAKE_CASE = [] for arg in depreciated_args: # arg[2:] removes '--' if arg[2:] in TensorFlowBenchmark.deprecated_args: # arg[5:] removes '--no_' full_error_msg += arg_error_msg.format(arg[5:] ) else: wrong_args.append(UpperCamelCase_ ) if len(UpperCamelCase_ ) > 0: __SCREAMING_SNAKE_CASE = full_error_msg + begin_error_msg + str(UpperCamelCase_ ) raise ValueError(UpperCamelCase_ ) benchmark.run() if __name__ == "__main__": main()
354
"""simple docstring""" def _lowerCAmelCase ( UpperCamelCase_ , UpperCamelCase_ ): while b: __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = b, a % b return a def _lowerCAmelCase ( UpperCamelCase_ , UpperCamelCase_ ): return a if b == 0 else euclidean_gcd_recursive(UpperCamelCase_ , a % b ) def _lowerCAmelCase ( ): print(f"euclidean_gcd(3, 5) = {euclidean_gcd(3 , 5 )}" ) print(f"euclidean_gcd(5, 3) = {euclidean_gcd(5 , 3 )}" ) print(f"euclidean_gcd(1, 3) = {euclidean_gcd(1 , 3 )}" ) print(f"euclidean_gcd(3, 6) = {euclidean_gcd(3 , 6 )}" ) print(f"euclidean_gcd(6, 3) = {euclidean_gcd(6 , 3 )}" ) print(f"euclidean_gcd_recursive(3, 5) = {euclidean_gcd_recursive(3 , 5 )}" ) print(f"euclidean_gcd_recursive(5, 3) = {euclidean_gcd_recursive(5 , 3 )}" ) print(f"euclidean_gcd_recursive(1, 3) = {euclidean_gcd_recursive(1 , 3 )}" ) print(f"euclidean_gcd_recursive(3, 6) = {euclidean_gcd_recursive(3 , 6 )}" ) print(f"euclidean_gcd_recursive(6, 3) = {euclidean_gcd_recursive(6 , 3 )}" ) if __name__ == "__main__": main()
255
0
"""simple docstring""" from __future__ import annotations def lowercase ( _SCREAMING_SNAKE_CASE : list , _SCREAMING_SNAKE_CASE : int | None = None , _SCREAMING_SNAKE_CASE : int | None = None ): '''simple docstring''' if start is None: _UpperCAmelCase = 0 if end is None: _UpperCAmelCase = len(_SCREAMING_SNAKE_CASE ) - 1 if start >= end: return _UpperCAmelCase = (start + end) // 2 slowsort(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) slowsort(_SCREAMING_SNAKE_CASE , mid + 1 , _SCREAMING_SNAKE_CASE ) if sequence[end] < sequence[mid]: _UpperCAmelCase , _UpperCAmelCase = sequence[mid], sequence[end] slowsort(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , end - 1 ) if __name__ == "__main__": from doctest import testmod testmod()
260
"""simple docstring""" import numpy as np import torch from torch.nn import CrossEntropyLoss from transformers import AutoModelForCausalLM, AutoTokenizer import datasets from datasets import logging __A : Union[str, Any] = "\\n\n" __A : Any = "\nPerplexity (PPL) is one of the most common metrics for evaluating language models.\nIt is defined as the exponentiated average negative log-likelihood of a sequence.\n\nFor more information, see https://huggingface.co/docs/transformers/perplexity\n" __A : List[str] = "\nArgs:\n model_id (str): model used for calculating Perplexity\n NOTE: Perplexity can only be calculated for causal language models.\n This includes models such as gpt2, causal variations of bert,\n causal versions of t5, and more (the full list can be found\n in the AutoModelForCausalLM documentation here:\n https://huggingface.co/docs/transformers/master/en/model_doc/auto#transformers.AutoModelForCausalLM )\n\n input_texts (list of str): input text, each separate text snippet\n is one list entry.\n batch_size (int): the batch size to run texts through the model. Defaults to 16.\n add_start_token (bool): whether to add the start token to the texts,\n so the perplexity can include the probability of the first word. Defaults to True.\n device (str): device to run on, defaults to 'cuda' when available\nReturns:\n perplexity: dictionary containing the perplexity scores for the texts\n in the input list, as well as the mean perplexity. If one of the input texts is\n longer than the max input length of the model, then it is truncated to the\n max length for the perplexity computation.\nExamples:\n Example 1:\n >>> perplexity = datasets.load_metric(\"perplexity\")\n >>> input_texts = [\"lorem ipsum\", \"Happy Birthday!\", \"Bienvenue\"]\n >>> results = perplexity.compute(model_id='gpt2',\n ... add_start_token=False,\n ... input_texts=input_texts) # doctest:+ELLIPSIS\n >>> print(list(results.keys()))\n ['perplexities', 'mean_perplexity']\n >>> print(round(results[\"mean_perplexity\"], 2))\n 78.22\n >>> print(round(results[\"perplexities\"][0], 2))\n 11.11\n\n Example 2:\n >>> perplexity = datasets.load_metric(\"perplexity\")\n >>> input_texts = datasets.load_dataset(\"wikitext\",\n ... \"wikitext-2-raw-v1\",\n ... split=\"test\")[\"text\"][:50] # doctest:+ELLIPSIS\n [...]\n >>> input_texts = [s for s in input_texts if s!='']\n >>> results = perplexity.compute(model_id='gpt2',\n ... input_texts=input_texts) # doctest:+ELLIPSIS\n >>> print(list(results.keys()))\n ['perplexities', 'mean_perplexity']\n >>> print(round(results[\"mean_perplexity\"], 2))\n 60.35\n >>> print(round(results[\"perplexities\"][0], 2))\n 81.12\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION) class _a ( datasets.Metric): """simple docstring""" def lowercase__ ( self : List[Any] )->Union[str, Any]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''input_texts''': datasets.Value('''string''' ), } ) , reference_urls=['''https://huggingface.co/docs/transformers/perplexity'''] , ) def lowercase__ ( self : Dict , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Dict , __UpperCamelCase : int = 1_6 , __UpperCamelCase : bool = True , __UpperCamelCase : List[Any]=None )->Any: if device is not None: assert device in ["gpu", "cpu", "cuda"], "device should be either gpu or cpu." if device == "gpu": _UpperCAmelCase = '''cuda''' else: _UpperCAmelCase = '''cuda''' if torch.cuda.is_available() else '''cpu''' _UpperCAmelCase = AutoModelForCausalLM.from_pretrained(__UpperCamelCase ) _UpperCAmelCase = model.to(__UpperCamelCase ) _UpperCAmelCase = AutoTokenizer.from_pretrained(__UpperCamelCase ) # if batch_size > 1 (which generally leads to padding being required), and # if there is not an already assigned pad_token, assign an existing # special token to also be the padding token if tokenizer.pad_token is None and batch_size > 1: _UpperCAmelCase = list(tokenizer.special_tokens_map_extended.values() ) # check that the model already has at least one special token defined assert ( len(__UpperCamelCase ) > 0 ), "If batch_size > 1, model must have at least one special token to use for padding. Please use a different model or set batch_size=1." # assign one of the special tokens to also be the pad token tokenizer.add_special_tokens({'''pad_token''': existing_special_tokens[0]} ) if add_start_token: # leave room for <BOS> token to be added: assert ( tokenizer.bos_token is not None ), "Input model must already have a BOS token if using add_start_token=True. Please use a different model, or set add_start_token=False" _UpperCAmelCase = model.config.max_length - 1 else: _UpperCAmelCase = model.config.max_length _UpperCAmelCase = tokenizer( __UpperCamelCase , add_special_tokens=__UpperCamelCase , padding=__UpperCamelCase , truncation=__UpperCamelCase , max_length=__UpperCamelCase , return_tensors='''pt''' , return_attention_mask=__UpperCamelCase , ).to(__UpperCamelCase ) _UpperCAmelCase = encodings['''input_ids'''] _UpperCAmelCase = encodings['''attention_mask'''] # check that each input is long enough: if add_start_token: assert torch.all(torch.ge(attn_masks.sum(1 ) , 1 ) ), "Each input text must be at least one token long." else: assert torch.all( torch.ge(attn_masks.sum(1 ) , 2 ) ), "When add_start_token=False, each input text must be at least two tokens long. Run with add_start_token=True if inputting strings of only one token, and remove all empty input strings." _UpperCAmelCase = [] _UpperCAmelCase = CrossEntropyLoss(reduction='''none''' ) for start_index in logging.tqdm(range(0 , len(__UpperCamelCase ) , __UpperCamelCase ) ): _UpperCAmelCase = min(start_index + batch_size , len(__UpperCamelCase ) ) _UpperCAmelCase = encoded_texts[start_index:end_index] _UpperCAmelCase = attn_masks[start_index:end_index] if add_start_token: _UpperCAmelCase = torch.tensor([[tokenizer.bos_token_id]] * encoded_batch.size(dim=0 ) ).to(__UpperCamelCase ) _UpperCAmelCase = torch.cat([bos_tokens_tensor, encoded_batch] , dim=1 ) _UpperCAmelCase = torch.cat( [torch.ones(bos_tokens_tensor.size() , dtype=torch.intaa ).to(__UpperCamelCase ), attn_mask] , dim=1 ) _UpperCAmelCase = encoded_batch with torch.no_grad(): _UpperCAmelCase = model(__UpperCamelCase , attention_mask=__UpperCamelCase ).logits _UpperCAmelCase = out_logits[..., :-1, :].contiguous() _UpperCAmelCase = labels[..., 1:].contiguous() _UpperCAmelCase = attn_mask[..., 1:].contiguous() _UpperCAmelCase = torch.expa( (loss_fct(shift_logits.transpose(1 , 2 ) , __UpperCamelCase ) * shift_attention_mask_batch).sum(1 ) / shift_attention_mask_batch.sum(1 ) ) ppls += perplexity_batch.tolist() return {"perplexities": ppls, "mean_perplexity": np.mean(__UpperCamelCase )}
260
1
'''simple docstring''' import logging import numpy as np import pytest from scipy.linalg import eigh logging.basicConfig(level=logging.INFO, format="%(message)s") def SCREAMING_SNAKE_CASE__ ( __A ) -> np.ndarray: return input_array.reshape((input_array.size, 1) ) def SCREAMING_SNAKE_CASE__ ( __A , __A , __A ) -> np.ndarray: _snake_case = np.nan for i in range(__A ): _snake_case = features[:, labels == i] _snake_case = data.mean(1 ) # Centralize the data of class i _snake_case = data - column_reshape(__A ) if i > 0: # If covariance_sum is not None covariance_sum += np.dot(__A , centered_data.T ) else: # If covariance_sum is np.nan (i.e. first loop) _snake_case = np.dot(__A , centered_data.T ) return covariance_sum / features.shape[1] def SCREAMING_SNAKE_CASE__ ( __A , __A , __A ) -> np.ndarray: _snake_case = features.mean(1 ) _snake_case = np.nan for i in range(__A ): _snake_case = features[:, labels == i] _snake_case = data.shape[1] _snake_case = data.mean(1 ) if i > 0: # If covariance_sum is not None covariance_sum += device_data * np.dot( column_reshape(__A ) - column_reshape(__A ) , (column_reshape(__A ) - column_reshape(__A )).T , ) else: # If covariance_sum is np.nan (i.e. first loop) _snake_case = device_data * np.dot( column_reshape(__A ) - column_reshape(__A ) , (column_reshape(__A ) - column_reshape(__A )).T , ) return covariance_sum / features.shape[1] def SCREAMING_SNAKE_CASE__ ( __A , __A ) -> np.ndarray: # Check if the features have been loaded if features.any(): _snake_case = features.mean(1 ) # Center the dataset _snake_case = features - np.reshape(__A , (data_mean.size, 1) ) _snake_case = np.dot(__A , centered_data.T ) / features.shape[1] _snake_case , _snake_case = np.linalg.eigh(__A ) # Take all the columns in the reverse order (-1), and then takes only the first _snake_case = eigenvectors[:, ::-1][:, 0:dimensions] # Project the database on the new space _snake_case = np.dot(filtered_eigenvectors.T , __A ) logging.info('Principal Component Analysis computed' ) return projected_data else: logging.basicConfig(level=logging.ERROR , format='%(message)s' , force=__A ) logging.error('Dataset empty' ) raise AssertionError def SCREAMING_SNAKE_CASE__ ( __A , __A , __A , __A ) -> np.ndarray: assert classes > dimensions # Check if features have been already loaded if features.any: _snake_case , _snake_case = eigh( covariance_between_classes(__A , __A , __A ) , covariance_within_classes(__A , __A , __A ) , ) _snake_case = eigenvectors[:, ::-1][:, :dimensions] _snake_case , _snake_case , _snake_case = np.linalg.svd(__A ) _snake_case = svd_matrix[:, 0:dimensions] _snake_case = np.dot(filtered_svd_matrix.T , __A ) logging.info('Linear Discriminant Analysis computed' ) return projected_data else: logging.basicConfig(level=logging.ERROR , format='%(message)s' , force=__A ) logging.error('Dataset empty' ) raise AssertionError def SCREAMING_SNAKE_CASE__ ( ) -> None: # Create dummy dataset with 2 classes and 3 features _snake_case = np.array([[1, 2, 3, 4, 5], [2, 3, 4, 5, 6], [3, 4, 5, 6, 7]] ) _snake_case = np.array([0, 0, 0, 1, 1] ) _snake_case = 2 _snake_case = 2 # Assert that the function raises an AssertionError if dimensions > classes with pytest.raises(__A ) as error_info: _snake_case = linear_discriminant_analysis( __A , __A , __A , __A ) if isinstance(__A , np.ndarray ): raise AssertionError( 'Did not raise AssertionError for dimensions > classes' ) assert error_info.type is AssertionError def SCREAMING_SNAKE_CASE__ ( ) -> None: _snake_case = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]] ) _snake_case = 2 _snake_case = np.array([[6.9_2_8_2_0_3_2_3, 8.6_6_0_2_5_4_0_4, 1_0.3_9_2_3_0_4_8_5], [3.0, 3.0, 3.0]] ) with pytest.raises(__A ) as error_info: _snake_case = principal_component_analysis(__A , __A ) if not np.allclose(__A , __A ): raise AssertionError assert error_info.type is AssertionError if __name__ == "__main__": import doctest doctest.testmod()
160
'''simple docstring''' class __UpperCAmelCase : def __init__( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case = name _snake_case = value _snake_case = weight def __repr__( self ): """simple docstring""" return F'{self.__class__.__name__}({self.name}, {self.value}, {self.weight})' def lowerCamelCase ( self ): """simple docstring""" return self.value def lowerCamelCase ( self ): """simple docstring""" return self.name def lowerCamelCase ( self ): """simple docstring""" return self.weight def lowerCamelCase ( self ): """simple docstring""" return self.value / self.weight def SCREAMING_SNAKE_CASE__ ( __A , __A , __A ) -> int: _snake_case = [] for i in range(len(__A ) ): menu.append(Things(name[i] , value[i] , weight[i] ) ) return menu def SCREAMING_SNAKE_CASE__ ( __A , __A , __A ) -> Optional[int]: _snake_case = sorted(__A , key=__A , reverse=__A ) _snake_case = [] _snake_case , _snake_case = 0.0, 0.0 for i in range(len(__A ) ): if (total_cost + items_copy[i].get_weight()) <= max_cost: result.append(items_copy[i] ) total_cost += items_copy[i].get_weight() total_value += items_copy[i].get_value() return (result, total_value) def SCREAMING_SNAKE_CASE__ ( ) -> Optional[Any]: pass if __name__ == "__main__": import doctest doctest.testmod()
160
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) lowerCAmelCase_ = { '''configuration_falcon''': ['''FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''FalconConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ '''FALCON_PRETRAINED_MODEL_ARCHIVE_LIST''', '''FalconForCausalLM''', '''FalconModel''', '''FalconPreTrainedModel''', '''FalconForSequenceClassification''', '''FalconForTokenClassification''', '''FalconForQuestionAnswering''', ] if TYPE_CHECKING: from .configuration_falcon import FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP, FalconConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_falcon import ( FALCON_PRETRAINED_MODEL_ARCHIVE_LIST, FalconForCausalLM, FalconForQuestionAnswering, FalconForSequenceClassification, FalconForTokenClassification, FalconModel, FalconPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
279
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import GLPNImageProcessor class __lowerCAmelCase ( unittest.TestCase ): def __init__(self , __magic_name__ , __magic_name__=7 , __magic_name__=3 , __magic_name__=18 , __magic_name__=30 , __magic_name__=400 , __magic_name__=True , __magic_name__=32 , __magic_name__=True , ) -> Dict: '''simple docstring''' snake_case_ : Tuple = parent snake_case_ : Union[str, Any] = batch_size snake_case_ : Union[str, Any] = num_channels snake_case_ : Optional[Any] = image_size snake_case_ : int = min_resolution snake_case_ : Any = max_resolution snake_case_ : Tuple = do_resize snake_case_ : str = size_divisor snake_case_ : Optional[Any] = do_rescale def lowerCamelCase (self ) -> Dict: '''simple docstring''' return { "do_resize": self.do_resize, "size_divisor": self.size_divisor, "do_rescale": self.do_rescale, } @require_torch @require_vision class __lowerCAmelCase ( _a, unittest.TestCase ): lowerCamelCase_ : Optional[Any] = GLPNImageProcessor if is_vision_available() else None def lowerCamelCase (self ) -> Optional[Any]: '''simple docstring''' snake_case_ : str = GLPNImageProcessingTester(self ) @property def lowerCamelCase (self ) -> Union[str, Any]: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def lowerCamelCase (self ) -> List[str]: '''simple docstring''' snake_case_ : Optional[int] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__magic_name__ , '''do_resize''' ) ) self.assertTrue(hasattr(__magic_name__ , '''size_divisor''' ) ) self.assertTrue(hasattr(__magic_name__ , '''resample''' ) ) self.assertTrue(hasattr(__magic_name__ , '''do_rescale''' ) ) def lowerCamelCase (self ) -> List[Any]: '''simple docstring''' pass def lowerCamelCase (self ) -> int: '''simple docstring''' snake_case_ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images snake_case_ : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__magic_name__ ) for image in image_inputs: self.assertIsInstance(__magic_name__ , Image.Image ) # Test not batched input (GLPNImageProcessor doesn't support batching) snake_case_ : Optional[int] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 ) def lowerCamelCase (self ) -> Dict: '''simple docstring''' snake_case_ : str = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors snake_case_ : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__magic_name__ , numpify=__magic_name__ ) for image in image_inputs: self.assertIsInstance(__magic_name__ , np.ndarray ) # Test not batched input (GLPNImageProcessor doesn't support batching) snake_case_ : Any = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 ) def lowerCamelCase (self ) -> Optional[Any]: '''simple docstring''' snake_case_ : Dict = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors snake_case_ : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__magic_name__ , torchify=__magic_name__ ) for image in image_inputs: self.assertIsInstance(__magic_name__ , torch.Tensor ) # Test not batched input (GLPNImageProcessor doesn't support batching) snake_case_ : Dict = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 )
279
1
import cva import numpy as np class UpperCamelCase__ : '''simple docstring''' def __init__( self : str ,lowerCamelCase__ : str ,lowerCamelCase__ : int ) -> Optional[Any]: '''simple docstring''' if k in (0.04, 0.06): SCREAMING_SNAKE_CASE = k SCREAMING_SNAKE_CASE = window_size else: raise ValueError("""invalid k value""" ) def __str__( self : Union[str, Any] ) -> str: '''simple docstring''' return str(self.k ) def SCREAMING_SNAKE_CASE__ ( self : int ,lowerCamelCase__ : Optional[Any] ) -> tuple[cva.Mat, list[list[int]]]: '''simple docstring''' SCREAMING_SNAKE_CASE = cva.imread(lowerCamelCase__ ,0 ) SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE = img.shape SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = img.copy() SCREAMING_SNAKE_CASE = cva.cvtColor(lowerCamelCase__ ,cva.COLOR_GRAY2RGB ) SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE = np.gradient(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = dx**2 SCREAMING_SNAKE_CASE = dy**2 SCREAMING_SNAKE_CASE = dx * dy SCREAMING_SNAKE_CASE = 0.04 SCREAMING_SNAKE_CASE = self.window_size // 2 for y in range(lowerCamelCase__ ,h - offset ): for x in range(lowerCamelCase__ ,w - offset ): SCREAMING_SNAKE_CASE = ixx[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() SCREAMING_SNAKE_CASE = iyy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() SCREAMING_SNAKE_CASE = ixy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() SCREAMING_SNAKE_CASE = (wxx * wyy) - (wxy**2) SCREAMING_SNAKE_CASE = wxx + wyy SCREAMING_SNAKE_CASE = det - k * (trace**2) # Can change the value if r > 0.5: corner_list.append([x, y, r] ) color_img.itemset((y, x, 0) ,0 ) color_img.itemset((y, x, 1) ,0 ) color_img.itemset((y, x, 2) ,255 ) return color_img, corner_list if __name__ == "__main__": SCREAMING_SNAKE_CASE_ = HarrisCorner(0.04, 3) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = edge_detect.detect("""path_to_image""") cva.imwrite("""detect.png""", color_img)
353
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) SCREAMING_SNAKE_CASE_ = {"""configuration_reformer""": ["""REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ReformerConfig"""]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ = ["""ReformerTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ = ["""ReformerTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ = [ """REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """ReformerAttention""", """ReformerForMaskedLM""", """ReformerForQuestionAnswering""", """ReformerForSequenceClassification""", """ReformerLayer""", """ReformerModel""", """ReformerModelWithLMHead""", """ReformerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_reformer import REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ReformerConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer import ReformerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer_fast import ReformerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_reformer import ( REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ReformerAttention, ReformerForMaskedLM, ReformerForQuestionAnswering, ReformerForSequenceClassification, ReformerLayer, ReformerModel, ReformerModelWithLMHead, ReformerPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
193
0
'''simple docstring''' from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFCamembertModel @require_tf @require_sentencepiece @require_tokenizers class UpperCAmelCase ( unittest.TestCase ): @slow def lowercase__ ( self : int ) -> Tuple: _lowerCAmelCase = TFCamembertModel.from_pretrained("""jplu/tf-camembert-base""" ) _lowerCAmelCase = tf.convert_to_tensor( [[5, 1_21, 11, 6_60, 16, 7_30, 2_55_43, 1_10, 83, 6]] , dtype=tf.intaa , ) # J'aime le camembert !" _lowerCAmelCase = model(__snake_case )["""last_hidden_state"""] _lowerCAmelCase = tf.TensorShape((1, 10, 7_68) ) self.assertEqual(output.shape , __snake_case ) # compare the actual values for a slice. _lowerCAmelCase = tf.convert_to_tensor( [[[-0.02_54, 0.02_35, 0.10_27], [0.06_06, -0.18_11, -0.04_18], [-0.15_61, -0.11_27, 0.26_87]]] , dtype=tf.floataa , ) # camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0') # camembert.eval() # expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach() self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
70
from typing import Optional, Tuple, Union import flax import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict from ..configuration_utils import ConfigMixin, flax_register_to_config from ..utils import BaseOutput from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps from .modeling_flax_utils import FlaxModelMixin from .unet_ad_blocks_flax import ( FlaxCrossAttnDownBlockaD, FlaxCrossAttnUpBlockaD, FlaxDownBlockaD, FlaxUNetMidBlockaDCrossAttn, FlaxUpBlockaD, ) @flax.struct.dataclass class a_ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE : jnp.ndarray @flax_register_to_config class a_ ( nn.Module , a__ , a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE : int = 32 __SCREAMING_SNAKE_CASE : int = 4 __SCREAMING_SNAKE_CASE : int = 4 __SCREAMING_SNAKE_CASE : Tuple[str] = ( "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D", ) __SCREAMING_SNAKE_CASE : Tuple[str] = ("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D") __SCREAMING_SNAKE_CASE : Union[bool, Tuple[bool]] = False __SCREAMING_SNAKE_CASE : Tuple[int] = (320, 640, 1280, 1280) __SCREAMING_SNAKE_CASE : int = 2 __SCREAMING_SNAKE_CASE : Union[int, Tuple[int]] = 8 __SCREAMING_SNAKE_CASE : Optional[Union[int, Tuple[int]]] = None __SCREAMING_SNAKE_CASE : int = 1280 __SCREAMING_SNAKE_CASE : float = 0.0 __SCREAMING_SNAKE_CASE : bool = False __SCREAMING_SNAKE_CASE : jnp.dtype = jnp.floataa __SCREAMING_SNAKE_CASE : bool = True __SCREAMING_SNAKE_CASE : int = 0 __SCREAMING_SNAKE_CASE : bool = False def __lowerCAmelCase ( self , _lowerCamelCase ) ->FrozenDict: # init input tensors SCREAMING_SNAKE_CASE : List[Any] = (1, self.in_channels, self.sample_size, self.sample_size) SCREAMING_SNAKE_CASE : List[Any] = jnp.zeros(_lowerCamelCase , dtype=jnp.floataa ) SCREAMING_SNAKE_CASE : Tuple = jnp.ones((1,) , dtype=jnp.intaa ) SCREAMING_SNAKE_CASE : List[Any] = jnp.zeros((1, 1, self.cross_attention_dim) , dtype=jnp.floataa ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[Any] = jax.random.split(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Tuple = {'''params''': params_rng, '''dropout''': dropout_rng} return self.init(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase )["params"] def __lowerCAmelCase ( self ) ->int: SCREAMING_SNAKE_CASE : List[str] = self.block_out_channels SCREAMING_SNAKE_CASE : Optional[int] = block_out_channels[0] * 4 if self.num_attention_heads is not None: raise ValueError( '''At the moment it is not possible to define the number of attention heads via `num_attention_heads` because of a naming issue as described in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131. Passing `num_attention_heads` will only be supported in diffusers v0.19.''' ) # If `num_attention_heads` is not defined (which is the case for most models) # it will default to `attention_head_dim`. This looks weird upon first reading it and it is. # The reason for this behavior is to correct for incorrectly named variables that were introduced # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking # which is why we correct for the naming here. SCREAMING_SNAKE_CASE : List[str] = self.num_attention_heads or self.attention_head_dim # input SCREAMING_SNAKE_CASE : Optional[int] = nn.Conv( block_out_channels[0] , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) # time SCREAMING_SNAKE_CASE : Tuple = FlaxTimesteps( block_out_channels[0] , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.config.freq_shift ) SCREAMING_SNAKE_CASE : Dict = FlaxTimestepEmbedding(_lowerCamelCase , dtype=self.dtype ) SCREAMING_SNAKE_CASE : Union[str, Any] = self.only_cross_attention if isinstance(_lowerCamelCase , _lowerCamelCase ): SCREAMING_SNAKE_CASE : str = (only_cross_attention,) * len(self.down_block_types ) if isinstance(_lowerCamelCase , _lowerCamelCase ): SCREAMING_SNAKE_CASE : str = (num_attention_heads,) * len(self.down_block_types ) # down SCREAMING_SNAKE_CASE : Optional[int] = [] SCREAMING_SNAKE_CASE : Optional[Any] = block_out_channels[0] for i, down_block_type in enumerate(self.down_block_types ): SCREAMING_SNAKE_CASE : str = output_channel SCREAMING_SNAKE_CASE : int = block_out_channels[i] SCREAMING_SNAKE_CASE : List[Any] = i == len(_lowerCamelCase ) - 1 if down_block_type == "CrossAttnDownBlock2D": SCREAMING_SNAKE_CASE : Union[str, Any] = FlaxCrossAttnDownBlockaD( in_channels=_lowerCamelCase , out_channels=_lowerCamelCase , dropout=self.dropout , num_layers=self.layers_per_block , num_attention_heads=num_attention_heads[i] , add_downsample=not is_final_block , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) else: SCREAMING_SNAKE_CASE : Union[str, Any] = FlaxDownBlockaD( in_channels=_lowerCamelCase , out_channels=_lowerCamelCase , dropout=self.dropout , num_layers=self.layers_per_block , add_downsample=not is_final_block , dtype=self.dtype , ) down_blocks.append(_lowerCamelCase ) SCREAMING_SNAKE_CASE : str = down_blocks # mid SCREAMING_SNAKE_CASE : int = FlaxUNetMidBlockaDCrossAttn( in_channels=block_out_channels[-1] , dropout=self.dropout , num_attention_heads=num_attention_heads[-1] , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) # up SCREAMING_SNAKE_CASE : str = [] SCREAMING_SNAKE_CASE : str = list(reversed(_lowerCamelCase ) ) SCREAMING_SNAKE_CASE : int = list(reversed(_lowerCamelCase ) ) SCREAMING_SNAKE_CASE : int = list(reversed(_lowerCamelCase ) ) SCREAMING_SNAKE_CASE : List[str] = reversed_block_out_channels[0] for i, up_block_type in enumerate(self.up_block_types ): SCREAMING_SNAKE_CASE : Dict = output_channel SCREAMING_SNAKE_CASE : Union[str, Any] = reversed_block_out_channels[i] SCREAMING_SNAKE_CASE : Tuple = reversed_block_out_channels[min(i + 1 , len(_lowerCamelCase ) - 1 )] SCREAMING_SNAKE_CASE : Dict = i == len(_lowerCamelCase ) - 1 if up_block_type == "CrossAttnUpBlock2D": SCREAMING_SNAKE_CASE : str = FlaxCrossAttnUpBlockaD( in_channels=_lowerCamelCase , out_channels=_lowerCamelCase , prev_output_channel=_lowerCamelCase , num_layers=self.layers_per_block + 1 , num_attention_heads=reversed_num_attention_heads[i] , add_upsample=not is_final_block , dropout=self.dropout , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) else: SCREAMING_SNAKE_CASE : Optional[int] = FlaxUpBlockaD( in_channels=_lowerCamelCase , out_channels=_lowerCamelCase , prev_output_channel=_lowerCamelCase , num_layers=self.layers_per_block + 1 , add_upsample=not is_final_block , dropout=self.dropout , dtype=self.dtype , ) up_blocks.append(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = output_channel SCREAMING_SNAKE_CASE : Tuple = up_blocks # out SCREAMING_SNAKE_CASE : Any = nn.GroupNorm(num_groups=32 , epsilon=1e-5 ) SCREAMING_SNAKE_CASE : Any = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase = True , _lowerCamelCase = False , ) ->Union[FlaxUNetaDConditionOutput, Tuple]: # 1. time if not isinstance(_lowerCamelCase , jnp.ndarray ): SCREAMING_SNAKE_CASE : int = jnp.array([timesteps] , dtype=jnp.intaa ) elif isinstance(_lowerCamelCase , jnp.ndarray ) and len(timesteps.shape ) == 0: SCREAMING_SNAKE_CASE : List[str] = timesteps.astype(dtype=jnp.floataa ) SCREAMING_SNAKE_CASE : Optional[Any] = jnp.expand_dims(_lowerCamelCase , 0 ) SCREAMING_SNAKE_CASE : List[str] = self.time_proj(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[int] = self.time_embedding(_lowerCamelCase ) # 2. pre-process SCREAMING_SNAKE_CASE : int = jnp.transpose(_lowerCamelCase , (0, 2, 3, 1) ) SCREAMING_SNAKE_CASE : List[Any] = self.conv_in(_lowerCamelCase ) # 3. down SCREAMING_SNAKE_CASE : Optional[int] = (sample,) for down_block in self.down_blocks: if isinstance(_lowerCamelCase , _lowerCamelCase ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = down_block(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , deterministic=not train ) else: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = down_block(_lowerCamelCase , _lowerCamelCase , deterministic=not train ) down_block_res_samples += res_samples if down_block_additional_residuals is not None: SCREAMING_SNAKE_CASE : int = () for down_block_res_sample, down_block_additional_residual in zip( _lowerCamelCase , _lowerCamelCase ): down_block_res_sample += down_block_additional_residual new_down_block_res_samples += (down_block_res_sample,) SCREAMING_SNAKE_CASE : Dict = new_down_block_res_samples # 4. mid SCREAMING_SNAKE_CASE : Optional[Any] = self.mid_block(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , deterministic=not train ) if mid_block_additional_residual is not None: sample += mid_block_additional_residual # 5. up for up_block in self.up_blocks: SCREAMING_SNAKE_CASE : Optional[Any] = down_block_res_samples[-(self.layers_per_block + 1) :] SCREAMING_SNAKE_CASE : Optional[int] = down_block_res_samples[: -(self.layers_per_block + 1)] if isinstance(_lowerCamelCase , _lowerCamelCase ): SCREAMING_SNAKE_CASE : str = up_block( _lowerCamelCase , temb=_lowerCamelCase , encoder_hidden_states=_lowerCamelCase , res_hidden_states_tuple=_lowerCamelCase , deterministic=not train , ) else: SCREAMING_SNAKE_CASE : Optional[int] = up_block(_lowerCamelCase , temb=_lowerCamelCase , res_hidden_states_tuple=_lowerCamelCase , deterministic=not train ) # 6. post-process SCREAMING_SNAKE_CASE : Optional[int] = self.conv_norm_out(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[int] = nn.silu(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = self.conv_out(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[Any] = jnp.transpose(_lowerCamelCase , (0, 3, 1, 2) ) if not return_dict: return (sample,) return FlaxUNetaDConditionOutput(sample=_lowerCamelCase )
313
0
def __lowerCamelCase ( lowerCamelCase__ : int , lowerCamelCase__ : int ): '''simple docstring''' if a < 0 or b < 0: raise ValueError("""the value of both inputs must be positive""" ) lowerCamelCase = str(bin(lowerCamelCase__ ) )[2:] # remove the leading "0b" lowerCamelCase = str(bin(lowerCamelCase__ ) )[2:] # remove the leading "0b" lowerCamelCase = max(len(lowerCamelCase__ ) , len(lowerCamelCase__ ) ) return "0b" + "".join( str(int(char_a != char_b ) ) for char_a, char_b in zip(a_binary.zfill(lowerCamelCase__ ) , b_binary.zfill(lowerCamelCase__ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
66
def __lowerCamelCase ( ): '''simple docstring''' lowerCamelCase = [] lowerCamelCase = 1 while len(lowerCamelCase__ ) < 1E6: constant.append(str(lowerCamelCase__ ) ) i += 1 lowerCamelCase = """""".join(lowerCamelCase__ ) return ( int(constant[0] ) * int(constant[9] ) * int(constant[99] ) * int(constant[999] ) * int(constant[9999] ) * int(constant[99999] ) * int(constant[999999] ) ) if __name__ == "__main__": print(solution())
66
1
'''simple docstring''' from datetime import datetime import requests def _A ( A__ ): """simple docstring""" __lowercase = '''https://downloadgram.net/wp-json/wppress/video-downloader/video?url=''' __lowercase = requests.get(base_url + url ).json()[0]['''urls'''][0]['''src'''] return requests.get(A__ ).content if __name__ == "__main__": lowerCAmelCase__ = input('''Enter Video/IGTV url: ''').strip() lowerCAmelCase__ = f'{datetime.now():%Y-%m-%d_%H:%M:%S}.mp4' with open(file_name, '''wb''') as fp: fp.write(download_video(url)) print(f'Done. Video saved to disk as {file_name}.')
104
"""simple docstring""" _UpperCamelCase: Dict = [ 9_9_9, 8_0_0, 7_9_9, 6_0_0, 5_9_9, 5_0_0, 4_0_0, 3_9_9, 3_7_7, 3_5_5, 3_3_3, 3_1_1, 2_8_8, 2_6_6, 2_4_4, 2_2_2, 2_0_0, 1_9_9, 1_7_7, 1_5_5, 1_3_3, 1_1_1, 8_8, 6_6, 4_4, 2_2, 0, ] _UpperCamelCase: Optional[int] = [ 9_9_9, 9_7_6, 9_5_2, 9_2_8, 9_0_5, 8_8_2, 8_5_8, 8_5_7, 8_1_0, 7_6_2, 7_1_5, 7_1_4, 5_7_2, 4_2_9, 4_2_8, 2_8_6, 2_8_5, 2_3_8, 1_9_0, 1_4_3, 1_4_2, 1_1_8, 9_5, 7_1, 4_7, 2_4, 0, ] _UpperCamelCase: int = [ 9_9_9, 9_8_8, 9_7_7, 9_6_6, 9_5_5, 9_4_4, 9_3_3, 9_2_2, 9_1_1, 9_0_0, 8_9_9, 8_7_9, 8_5_9, 8_4_0, 8_2_0, 8_0_0, 7_9_9, 7_6_6, 7_3_3, 7_0_0, 6_9_9, 6_5_0, 6_0_0, 5_9_9, 5_0_0, 4_9_9, 4_0_0, 3_9_9, 3_5_0, 3_0_0, 2_9_9, 2_6_6, 2_3_3, 2_0_0, 1_9_9, 1_7_9, 1_5_9, 1_4_0, 1_2_0, 1_0_0, 9_9, 8_8, 7_7, 6_6, 5_5, 4_4, 3_3, 2_2, 1_1, 0, ] _UpperCamelCase: List[str] = [ 9_9_9, 9_9_5, 9_9_2, 9_8_9, 9_8_5, 9_8_1, 9_7_8, 9_7_5, 9_7_1, 9_6_7, 9_6_4, 9_6_1, 9_5_7, 9_5_6, 9_5_1, 9_4_7, 9_4_2, 9_3_7, 9_3_3, 9_2_8, 9_2_3, 9_1_9, 9_1_4, 9_1_3, 9_0_8, 9_0_3, 8_9_7, 8_9_2, 8_8_7, 8_8_1, 8_7_6, 8_7_1, 8_7_0, 8_6_4, 8_5_8, 8_5_2, 8_4_6, 8_4_0, 8_3_4, 8_2_8, 8_2_7, 8_2_0, 8_1_3, 8_0_6, 7_9_9, 7_9_2, 7_8_5, 7_8_4, 7_7_7, 7_7_0, 7_6_3, 7_5_6, 7_4_9, 7_4_2, 7_4_1, 7_3_3, 7_2_4, 7_1_6, 7_0_7, 6_9_9, 6_9_8, 6_8_8, 6_7_7, 6_6_6, 6_5_6, 6_5_5, 6_4_5, 6_3_4, 6_2_3, 6_1_3, 6_1_2, 5_9_8, 5_8_4, 5_7_0, 5_6_9, 5_5_5, 5_4_1, 5_2_7, 5_2_6, 5_0_5, 4_8_4, 4_8_3, 4_6_2, 4_4_0, 4_3_9, 3_9_6, 3_9_5, 3_5_2, 3_5_1, 3_0_8, 3_0_7, 2_6_4, 2_6_3, 2_2_0, 2_1_9, 1_7_6, 1_3_2, 8_8, 4_4, 0, ] _UpperCamelCase: Any = [ 9_9_9, 9_9_7, 9_9_5, 9_9_2, 9_9_0, 9_8_8, 9_8_6, 9_8_4, 9_8_1, 9_7_9, 9_7_7, 9_7_5, 9_7_2, 9_7_0, 9_6_8, 9_6_6, 9_6_4, 9_6_1, 9_5_9, 9_5_7, 9_5_6, 9_5_4, 9_5_1, 9_4_9, 9_4_6, 9_4_4, 9_4_1, 9_3_9, 9_3_6, 9_3_4, 9_3_1, 9_2_9, 9_2_6, 9_2_4, 9_2_1, 9_1_9, 9_1_6, 9_1_4, 9_1_3, 9_1_0, 9_0_7, 9_0_5, 9_0_2, 8_9_9, 8_9_6, 8_9_3, 8_9_1, 8_8_8, 8_8_5, 8_8_2, 8_7_9, 8_7_7, 8_7_4, 8_7_1, 8_7_0, 8_6_7, 8_6_4, 8_6_1, 8_5_8, 8_5_5, 8_5_2, 8_4_9, 8_4_6, 8_4_3, 8_4_0, 8_3_7, 8_3_4, 8_3_1, 8_2_8, 8_2_7, 8_2_4, 8_2_1, 8_1_7, 8_1_4, 8_1_1, 8_0_8, 8_0_4, 8_0_1, 7_9_8, 7_9_5, 7_9_1, 7_8_8, 7_8_5, 7_8_4, 7_8_0, 7_7_7, 7_7_4, 7_7_0, 7_6_6, 7_6_3, 7_6_0, 7_5_6, 7_5_2, 7_4_9, 7_4_6, 7_4_2, 7_4_1, 7_3_7, 7_3_3, 7_3_0, 7_2_6, 7_2_2, 7_1_8, 7_1_4, 7_1_0, 7_0_7, 7_0_3, 6_9_9, 6_9_8, 6_9_4, 6_9_0, 6_8_5, 6_8_1, 6_7_7, 6_7_3, 6_6_9, 6_6_4, 6_6_0, 6_5_6, 6_5_5, 6_5_0, 6_4_6, 6_4_1, 6_3_6, 6_3_2, 6_2_7, 6_2_2, 6_1_8, 6_1_3, 6_1_2, 6_0_7, 6_0_2, 5_9_6, 5_9_1, 5_8_6, 5_8_0, 5_7_5, 5_7_0, 5_6_9, 5_6_3, 5_5_7, 5_5_1, 5_4_5, 5_3_9, 5_3_3, 5_2_7, 5_2_6, 5_1_9, 5_1_2, 5_0_5, 4_9_8, 4_9_1, 4_8_4, 4_8_3, 4_7_4, 4_6_6, 4_5_7, 4_4_9, 4_4_0, 4_3_9, 4_2_8, 4_1_8, 4_0_7, 3_9_6, 3_9_5, 3_8_1, 3_6_6, 3_5_2, 3_5_1, 3_3_0, 3_0_8, 3_0_7, 2_8_6, 2_6_4, 2_6_3, 2_4_2, 2_2_0, 2_1_9, 1_7_6, 1_7_5, 1_3_2, 1_3_1, 8_8, 4_4, 0, ] _UpperCamelCase: str = [ 9_9_9, 9_9_1, 9_8_2, 9_7_4, 9_6_6, 9_5_8, 9_5_0, 9_4_1, 9_3_3, 9_2_5, 9_1_6, 9_0_8, 9_0_0, 8_9_9, 8_7_4, 8_5_0, 8_2_5, 8_0_0, 7_9_9, 7_0_0, 6_0_0, 5_0_0, 4_0_0, 3_0_0, 2_0_0, 1_0_0, 0, ] _UpperCamelCase: Optional[Any] = [ 9_9_9, 9_9_2, 9_8_5, 9_7_8, 9_7_1, 9_6_4, 9_5_7, 9_4_9, 9_4_2, 9_3_5, 9_2_8, 9_2_1, 9_1_4, 9_0_7, 9_0_0, 8_9_9, 8_7_9, 8_5_9, 8_4_0, 8_2_0, 8_0_0, 7_9_9, 7_6_6, 7_3_3, 7_0_0, 6_9_9, 6_5_0, 6_0_0, 5_9_9, 5_0_0, 4_9_9, 4_0_0, 3_9_9, 3_0_0, 2_9_9, 2_0_0, 1_9_9, 1_0_0, 9_9, 0, ] _UpperCamelCase: Optional[int] = [ 9_9_9, 9_9_6, 9_9_2, 9_8_9, 9_8_5, 9_8_2, 9_7_9, 9_7_5, 9_7_2, 9_6_8, 9_6_5, 9_6_1, 9_5_8, 9_5_5, 9_5_1, 9_4_8, 9_4_4, 9_4_1, 9_3_8, 9_3_4, 9_3_1, 9_2_7, 9_2_4, 9_2_0, 9_1_7, 9_1_4, 9_1_0, 9_0_7, 9_0_3, 9_0_0, 8_9_9, 8_9_1, 8_8_4, 8_7_6, 8_6_9, 8_6_1, 8_5_3, 8_4_6, 8_3_8, 8_3_0, 8_2_3, 8_1_5, 8_0_8, 8_0_0, 7_9_9, 7_8_8, 7_7_7, 7_6_6, 7_5_5, 7_4_4, 7_3_3, 7_2_2, 7_1_1, 7_0_0, 6_9_9, 6_8_8, 6_7_7, 6_6_6, 6_5_5, 6_4_4, 6_3_3, 6_2_2, 6_1_1, 6_0_0, 5_9_9, 5_8_5, 5_7_1, 5_5_7, 5_4_2, 5_2_8, 5_1_4, 5_0_0, 4_9_9, 4_8_5, 4_7_1, 4_5_7, 4_4_2, 4_2_8, 4_1_4, 4_0_0, 3_9_9, 3_7_9, 3_5_9, 3_4_0, 3_2_0, 3_0_0, 2_9_9, 2_7_9, 2_5_9, 2_4_0, 2_2_0, 2_0_0, 1_9_9, 1_6_6, 1_3_3, 1_0_0, 9_9, 6_6, 3_3, 0, ]
255
0
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool SCREAMING_SNAKE_CASE_ = { 'Acehnese Arabic': 'ace_Arab', 'Acehnese Latin': 'ace_Latn', 'Mesopotamian Arabic': 'acm_Arab', 'Ta\'izzi-Adeni Arabic': 'acq_Arab', 'Tunisian Arabic': 'aeb_Arab', 'Afrikaans': 'afr_Latn', 'South Levantine Arabic': 'ajp_Arab', 'Akan': 'aka_Latn', 'Amharic': 'amh_Ethi', 'North Levantine Arabic': 'apc_Arab', 'Modern Standard Arabic': 'arb_Arab', 'Modern Standard Arabic Romanized': 'arb_Latn', 'Najdi Arabic': 'ars_Arab', 'Moroccan Arabic': 'ary_Arab', 'Egyptian Arabic': 'arz_Arab', 'Assamese': 'asm_Beng', 'Asturian': 'ast_Latn', 'Awadhi': 'awa_Deva', 'Central Aymara': 'ayr_Latn', 'South Azerbaijani': 'azb_Arab', 'North Azerbaijani': 'azj_Latn', 'Bashkir': 'bak_Cyrl', 'Bambara': 'bam_Latn', 'Balinese': 'ban_Latn', 'Belarusian': 'bel_Cyrl', 'Bemba': 'bem_Latn', 'Bengali': 'ben_Beng', 'Bhojpuri': 'bho_Deva', 'Banjar Arabic': 'bjn_Arab', 'Banjar Latin': 'bjn_Latn', 'Standard Tibetan': 'bod_Tibt', 'Bosnian': 'bos_Latn', 'Buginese': 'bug_Latn', 'Bulgarian': 'bul_Cyrl', 'Catalan': 'cat_Latn', 'Cebuano': 'ceb_Latn', 'Czech': 'ces_Latn', 'Chokwe': 'cjk_Latn', 'Central Kurdish': 'ckb_Arab', 'Crimean Tatar': 'crh_Latn', 'Welsh': 'cym_Latn', 'Danish': 'dan_Latn', 'German': 'deu_Latn', 'Southwestern Dinka': 'dik_Latn', 'Dyula': 'dyu_Latn', 'Dzongkha': 'dzo_Tibt', 'Greek': 'ell_Grek', 'English': 'eng_Latn', 'Esperanto': 'epo_Latn', 'Estonian': 'est_Latn', 'Basque': 'eus_Latn', 'Ewe': 'ewe_Latn', 'Faroese': 'fao_Latn', 'Fijian': 'fij_Latn', 'Finnish': 'fin_Latn', 'Fon': 'fon_Latn', 'French': 'fra_Latn', 'Friulian': 'fur_Latn', 'Nigerian Fulfulde': 'fuv_Latn', 'Scottish Gaelic': 'gla_Latn', 'Irish': 'gle_Latn', 'Galician': 'glg_Latn', 'Guarani': 'grn_Latn', 'Gujarati': 'guj_Gujr', 'Haitian Creole': 'hat_Latn', 'Hausa': 'hau_Latn', 'Hebrew': 'heb_Hebr', 'Hindi': 'hin_Deva', 'Chhattisgarhi': 'hne_Deva', 'Croatian': 'hrv_Latn', 'Hungarian': 'hun_Latn', 'Armenian': 'hye_Armn', 'Igbo': 'ibo_Latn', 'Ilocano': 'ilo_Latn', 'Indonesian': 'ind_Latn', 'Icelandic': 'isl_Latn', 'Italian': 'ita_Latn', 'Javanese': 'jav_Latn', 'Japanese': 'jpn_Jpan', 'Kabyle': 'kab_Latn', 'Jingpho': 'kac_Latn', 'Kamba': 'kam_Latn', 'Kannada': 'kan_Knda', 'Kashmiri Arabic': 'kas_Arab', 'Kashmiri Devanagari': 'kas_Deva', 'Georgian': 'kat_Geor', 'Central Kanuri Arabic': 'knc_Arab', 'Central Kanuri Latin': 'knc_Latn', 'Kazakh': 'kaz_Cyrl', 'Kabiyè': 'kbp_Latn', 'Kabuverdianu': 'kea_Latn', 'Khmer': 'khm_Khmr', 'Kikuyu': 'kik_Latn', 'Kinyarwanda': 'kin_Latn', 'Kyrgyz': 'kir_Cyrl', 'Kimbundu': 'kmb_Latn', 'Northern Kurdish': 'kmr_Latn', 'Kikongo': 'kon_Latn', 'Korean': 'kor_Hang', 'Lao': 'lao_Laoo', 'Ligurian': 'lij_Latn', 'Limburgish': 'lim_Latn', 'Lingala': 'lin_Latn', 'Lithuanian': 'lit_Latn', 'Lombard': 'lmo_Latn', 'Latgalian': 'ltg_Latn', 'Luxembourgish': 'ltz_Latn', 'Luba-Kasai': 'lua_Latn', 'Ganda': 'lug_Latn', 'Luo': 'luo_Latn', 'Mizo': 'lus_Latn', 'Standard Latvian': 'lvs_Latn', 'Magahi': 'mag_Deva', 'Maithili': 'mai_Deva', 'Malayalam': 'mal_Mlym', 'Marathi': 'mar_Deva', 'Minangkabau Arabic ': 'min_Arab', 'Minangkabau Latin': 'min_Latn', 'Macedonian': 'mkd_Cyrl', 'Plateau Malagasy': 'plt_Latn', 'Maltese': 'mlt_Latn', 'Meitei Bengali': 'mni_Beng', 'Halh Mongolian': 'khk_Cyrl', 'Mossi': 'mos_Latn', 'Maori': 'mri_Latn', 'Burmese': 'mya_Mymr', 'Dutch': 'nld_Latn', 'Norwegian Nynorsk': 'nno_Latn', 'Norwegian Bokmål': 'nob_Latn', 'Nepali': 'npi_Deva', 'Northern Sotho': 'nso_Latn', 'Nuer': 'nus_Latn', 'Nyanja': 'nya_Latn', 'Occitan': 'oci_Latn', 'West Central Oromo': 'gaz_Latn', 'Odia': 'ory_Orya', 'Pangasinan': 'pag_Latn', 'Eastern Panjabi': 'pan_Guru', 'Papiamento': 'pap_Latn', 'Western Persian': 'pes_Arab', 'Polish': 'pol_Latn', 'Portuguese': 'por_Latn', 'Dari': 'prs_Arab', 'Southern Pashto': 'pbt_Arab', 'Ayacucho Quechua': 'quy_Latn', 'Romanian': 'ron_Latn', 'Rundi': 'run_Latn', 'Russian': 'rus_Cyrl', 'Sango': 'sag_Latn', 'Sanskrit': 'san_Deva', 'Santali': 'sat_Olck', 'Sicilian': 'scn_Latn', 'Shan': 'shn_Mymr', 'Sinhala': 'sin_Sinh', 'Slovak': 'slk_Latn', 'Slovenian': 'slv_Latn', 'Samoan': 'smo_Latn', 'Shona': 'sna_Latn', 'Sindhi': 'snd_Arab', 'Somali': 'som_Latn', 'Southern Sotho': 'sot_Latn', 'Spanish': 'spa_Latn', 'Tosk Albanian': 'als_Latn', 'Sardinian': 'srd_Latn', 'Serbian': 'srp_Cyrl', 'Swati': 'ssw_Latn', 'Sundanese': 'sun_Latn', 'Swedish': 'swe_Latn', 'Swahili': 'swh_Latn', 'Silesian': 'szl_Latn', 'Tamil': 'tam_Taml', 'Tatar': 'tat_Cyrl', 'Telugu': 'tel_Telu', 'Tajik': 'tgk_Cyrl', 'Tagalog': 'tgl_Latn', 'Thai': 'tha_Thai', 'Tigrinya': 'tir_Ethi', 'Tamasheq Latin': 'taq_Latn', 'Tamasheq Tifinagh': 'taq_Tfng', 'Tok Pisin': 'tpi_Latn', 'Tswana': 'tsn_Latn', 'Tsonga': 'tso_Latn', 'Turkmen': 'tuk_Latn', 'Tumbuka': 'tum_Latn', 'Turkish': 'tur_Latn', 'Twi': 'twi_Latn', 'Central Atlas Tamazight': 'tzm_Tfng', 'Uyghur': 'uig_Arab', 'Ukrainian': 'ukr_Cyrl', 'Umbundu': 'umb_Latn', 'Urdu': 'urd_Arab', 'Northern Uzbek': 'uzn_Latn', 'Venetian': 'vec_Latn', 'Vietnamese': 'vie_Latn', 'Waray': 'war_Latn', 'Wolof': 'wol_Latn', 'Xhosa': 'xho_Latn', 'Eastern Yiddish': 'ydd_Hebr', 'Yoruba': 'yor_Latn', 'Yue Chinese': 'yue_Hant', 'Chinese Simplified': 'zho_Hans', 'Chinese Traditional': 'zho_Hant', 'Standard Malay': 'zsm_Latn', 'Zulu': 'zul_Latn', } class a ( UpperCAmelCase ): _lowercase = "facebook/nllb-200-distilled-600M" _lowercase = ( "This is a tool that translates text from a language to another. It takes three inputs: `text`, which should " "be the text to translate, `src_lang`, which should be the language of the text to translate and `tgt_lang`, " "which should be the language for the desired ouput language. Both `src_lang` and `tgt_lang` are written in " "plain English, such as 'Romanian', or 'Albanian'. It returns the text translated in `tgt_lang`." ) _lowercase = "translator" _lowercase = AutoTokenizer _lowercase = AutoModelForSeqaSeqLM _lowercase = LANGUAGE_CODES _lowercase = ["text", "text", "text"] _lowercase = ["text"] def _UpperCAmelCase ( self , A_ , A_ , A_ ): '''simple docstring''' if src_lang not in self.lang_to_code: raise ValueError(f'{src_lang} is not a supported language.' ) if tgt_lang not in self.lang_to_code: raise ValueError(f'{tgt_lang} is not a supported language.' ) _UpperCAmelCase : int = self.lang_to_code[src_lang] _UpperCAmelCase : int = self.lang_to_code[tgt_lang] return self.pre_processor._build_translation_inputs( A_ , return_tensors="pt" , src_lang=A_ , tgt_lang=A_ ) def _UpperCAmelCase ( self , A_ ): '''simple docstring''' return self.model.generate(**A_ ) def _UpperCAmelCase ( self , A_ ): '''simple docstring''' return self.post_processor.decode(outputs[0].tolist() , skip_special_tokens=A_ )
369
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool SCREAMING_SNAKE_CASE_ = { 'Acehnese Arabic': 'ace_Arab', 'Acehnese Latin': 'ace_Latn', 'Mesopotamian Arabic': 'acm_Arab', 'Ta\'izzi-Adeni Arabic': 'acq_Arab', 'Tunisian Arabic': 'aeb_Arab', 'Afrikaans': 'afr_Latn', 'South Levantine Arabic': 'ajp_Arab', 'Akan': 'aka_Latn', 'Amharic': 'amh_Ethi', 'North Levantine Arabic': 'apc_Arab', 'Modern Standard Arabic': 'arb_Arab', 'Modern Standard Arabic Romanized': 'arb_Latn', 'Najdi Arabic': 'ars_Arab', 'Moroccan Arabic': 'ary_Arab', 'Egyptian Arabic': 'arz_Arab', 'Assamese': 'asm_Beng', 'Asturian': 'ast_Latn', 'Awadhi': 'awa_Deva', 'Central Aymara': 'ayr_Latn', 'South Azerbaijani': 'azb_Arab', 'North Azerbaijani': 'azj_Latn', 'Bashkir': 'bak_Cyrl', 'Bambara': 'bam_Latn', 'Balinese': 'ban_Latn', 'Belarusian': 'bel_Cyrl', 'Bemba': 'bem_Latn', 'Bengali': 'ben_Beng', 'Bhojpuri': 'bho_Deva', 'Banjar Arabic': 'bjn_Arab', 'Banjar Latin': 'bjn_Latn', 'Standard Tibetan': 'bod_Tibt', 'Bosnian': 'bos_Latn', 'Buginese': 'bug_Latn', 'Bulgarian': 'bul_Cyrl', 'Catalan': 'cat_Latn', 'Cebuano': 'ceb_Latn', 'Czech': 'ces_Latn', 'Chokwe': 'cjk_Latn', 'Central Kurdish': 'ckb_Arab', 'Crimean Tatar': 'crh_Latn', 'Welsh': 'cym_Latn', 'Danish': 'dan_Latn', 'German': 'deu_Latn', 'Southwestern Dinka': 'dik_Latn', 'Dyula': 'dyu_Latn', 'Dzongkha': 'dzo_Tibt', 'Greek': 'ell_Grek', 'English': 'eng_Latn', 'Esperanto': 'epo_Latn', 'Estonian': 'est_Latn', 'Basque': 'eus_Latn', 'Ewe': 'ewe_Latn', 'Faroese': 'fao_Latn', 'Fijian': 'fij_Latn', 'Finnish': 'fin_Latn', 'Fon': 'fon_Latn', 'French': 'fra_Latn', 'Friulian': 'fur_Latn', 'Nigerian Fulfulde': 'fuv_Latn', 'Scottish Gaelic': 'gla_Latn', 'Irish': 'gle_Latn', 'Galician': 'glg_Latn', 'Guarani': 'grn_Latn', 'Gujarati': 'guj_Gujr', 'Haitian Creole': 'hat_Latn', 'Hausa': 'hau_Latn', 'Hebrew': 'heb_Hebr', 'Hindi': 'hin_Deva', 'Chhattisgarhi': 'hne_Deva', 'Croatian': 'hrv_Latn', 'Hungarian': 'hun_Latn', 'Armenian': 'hye_Armn', 'Igbo': 'ibo_Latn', 'Ilocano': 'ilo_Latn', 'Indonesian': 'ind_Latn', 'Icelandic': 'isl_Latn', 'Italian': 'ita_Latn', 'Javanese': 'jav_Latn', 'Japanese': 'jpn_Jpan', 'Kabyle': 'kab_Latn', 'Jingpho': 'kac_Latn', 'Kamba': 'kam_Latn', 'Kannada': 'kan_Knda', 'Kashmiri Arabic': 'kas_Arab', 'Kashmiri Devanagari': 'kas_Deva', 'Georgian': 'kat_Geor', 'Central Kanuri Arabic': 'knc_Arab', 'Central Kanuri Latin': 'knc_Latn', 'Kazakh': 'kaz_Cyrl', 'Kabiyè': 'kbp_Latn', 'Kabuverdianu': 'kea_Latn', 'Khmer': 'khm_Khmr', 'Kikuyu': 'kik_Latn', 'Kinyarwanda': 'kin_Latn', 'Kyrgyz': 'kir_Cyrl', 'Kimbundu': 'kmb_Latn', 'Northern Kurdish': 'kmr_Latn', 'Kikongo': 'kon_Latn', 'Korean': 'kor_Hang', 'Lao': 'lao_Laoo', 'Ligurian': 'lij_Latn', 'Limburgish': 'lim_Latn', 'Lingala': 'lin_Latn', 'Lithuanian': 'lit_Latn', 'Lombard': 'lmo_Latn', 'Latgalian': 'ltg_Latn', 'Luxembourgish': 'ltz_Latn', 'Luba-Kasai': 'lua_Latn', 'Ganda': 'lug_Latn', 'Luo': 'luo_Latn', 'Mizo': 'lus_Latn', 'Standard Latvian': 'lvs_Latn', 'Magahi': 'mag_Deva', 'Maithili': 'mai_Deva', 'Malayalam': 'mal_Mlym', 'Marathi': 'mar_Deva', 'Minangkabau Arabic ': 'min_Arab', 'Minangkabau Latin': 'min_Latn', 'Macedonian': 'mkd_Cyrl', 'Plateau Malagasy': 'plt_Latn', 'Maltese': 'mlt_Latn', 'Meitei Bengali': 'mni_Beng', 'Halh Mongolian': 'khk_Cyrl', 'Mossi': 'mos_Latn', 'Maori': 'mri_Latn', 'Burmese': 'mya_Mymr', 'Dutch': 'nld_Latn', 'Norwegian Nynorsk': 'nno_Latn', 'Norwegian Bokmål': 'nob_Latn', 'Nepali': 'npi_Deva', 'Northern Sotho': 'nso_Latn', 'Nuer': 'nus_Latn', 'Nyanja': 'nya_Latn', 'Occitan': 'oci_Latn', 'West Central Oromo': 'gaz_Latn', 'Odia': 'ory_Orya', 'Pangasinan': 'pag_Latn', 'Eastern Panjabi': 'pan_Guru', 'Papiamento': 'pap_Latn', 'Western Persian': 'pes_Arab', 'Polish': 'pol_Latn', 'Portuguese': 'por_Latn', 'Dari': 'prs_Arab', 'Southern Pashto': 'pbt_Arab', 'Ayacucho Quechua': 'quy_Latn', 'Romanian': 'ron_Latn', 'Rundi': 'run_Latn', 'Russian': 'rus_Cyrl', 'Sango': 'sag_Latn', 'Sanskrit': 'san_Deva', 'Santali': 'sat_Olck', 'Sicilian': 'scn_Latn', 'Shan': 'shn_Mymr', 'Sinhala': 'sin_Sinh', 'Slovak': 'slk_Latn', 'Slovenian': 'slv_Latn', 'Samoan': 'smo_Latn', 'Shona': 'sna_Latn', 'Sindhi': 'snd_Arab', 'Somali': 'som_Latn', 'Southern Sotho': 'sot_Latn', 'Spanish': 'spa_Latn', 'Tosk Albanian': 'als_Latn', 'Sardinian': 'srd_Latn', 'Serbian': 'srp_Cyrl', 'Swati': 'ssw_Latn', 'Sundanese': 'sun_Latn', 'Swedish': 'swe_Latn', 'Swahili': 'swh_Latn', 'Silesian': 'szl_Latn', 'Tamil': 'tam_Taml', 'Tatar': 'tat_Cyrl', 'Telugu': 'tel_Telu', 'Tajik': 'tgk_Cyrl', 'Tagalog': 'tgl_Latn', 'Thai': 'tha_Thai', 'Tigrinya': 'tir_Ethi', 'Tamasheq Latin': 'taq_Latn', 'Tamasheq Tifinagh': 'taq_Tfng', 'Tok Pisin': 'tpi_Latn', 'Tswana': 'tsn_Latn', 'Tsonga': 'tso_Latn', 'Turkmen': 'tuk_Latn', 'Tumbuka': 'tum_Latn', 'Turkish': 'tur_Latn', 'Twi': 'twi_Latn', 'Central Atlas Tamazight': 'tzm_Tfng', 'Uyghur': 'uig_Arab', 'Ukrainian': 'ukr_Cyrl', 'Umbundu': 'umb_Latn', 'Urdu': 'urd_Arab', 'Northern Uzbek': 'uzn_Latn', 'Venetian': 'vec_Latn', 'Vietnamese': 'vie_Latn', 'Waray': 'war_Latn', 'Wolof': 'wol_Latn', 'Xhosa': 'xho_Latn', 'Eastern Yiddish': 'ydd_Hebr', 'Yoruba': 'yor_Latn', 'Yue Chinese': 'yue_Hant', 'Chinese Simplified': 'zho_Hans', 'Chinese Traditional': 'zho_Hant', 'Standard Malay': 'zsm_Latn', 'Zulu': 'zul_Latn', } class a ( UpperCAmelCase ): _lowercase = "facebook/nllb-200-distilled-600M" _lowercase = ( "This is a tool that translates text from a language to another. It takes three inputs: `text`, which should " "be the text to translate, `src_lang`, which should be the language of the text to translate and `tgt_lang`, " "which should be the language for the desired ouput language. Both `src_lang` and `tgt_lang` are written in " "plain English, such as 'Romanian', or 'Albanian'. It returns the text translated in `tgt_lang`." ) _lowercase = "translator" _lowercase = AutoTokenizer _lowercase = AutoModelForSeqaSeqLM _lowercase = LANGUAGE_CODES _lowercase = ["text", "text", "text"] _lowercase = ["text"] def _UpperCAmelCase ( self , A_ , A_ , A_ ): '''simple docstring''' if src_lang not in self.lang_to_code: raise ValueError(f'{src_lang} is not a supported language.' ) if tgt_lang not in self.lang_to_code: raise ValueError(f'{tgt_lang} is not a supported language.' ) _UpperCAmelCase : int = self.lang_to_code[src_lang] _UpperCAmelCase : int = self.lang_to_code[tgt_lang] return self.pre_processor._build_translation_inputs( A_ , return_tensors="pt" , src_lang=A_ , tgt_lang=A_ ) def _UpperCAmelCase ( self , A_ ): '''simple docstring''' return self.model.generate(**A_ ) def _UpperCAmelCase ( self , A_ ): '''simple docstring''' return self.post_processor.decode(outputs[0].tolist() , skip_special_tokens=A_ )
189
0
'''simple docstring''' def lowercase__ ( __lowercase : Union[str, Any] , __lowercase : List[Any] , __lowercase : Optional[int] ) -> Any: """simple docstring""" if n == 0: return 1 elif n % 2 == 1: return (binary_exponentiation(__lowercase , n - 1 , __lowercase ) * a) % mod else: __UpperCamelCase = binary_exponentiation(__lowercase , n / 2 , __lowercase ) return (b * b) % mod # a prime number a__ : Tuple =701 a__ : Union[str, Any] =1_000_000_000 a__ : List[Any] =10 # using binary exponentiation function, O(log(p)): print((a / b) % p == (a * binary_exponentiation(b, p - 2, p)) % p) print((a / b) % p == (a * b ** (p - 2)) % p)
53
from __future__ import annotations import random # Maximum size of the population. Bigger could be faster but is more memory expensive. __snake_case :Optional[int] = 200 # Number of elements selected in every generation of evolution. The selection takes # place from best to worst of that generation and must be smaller than N_POPULATION. __snake_case :List[str] = 50 # Probability that an element of a generation can mutate, changing one of its genes. # This will guarantee that all genes will be used during evolution. __snake_case :List[Any] = 0.4 # Just a seed to improve randomness required by the algorithm. random.seed(random.randint(0, 1000)) def __snake_case ( _UpperCAmelCase , _UpperCAmelCase ): __a = len([g for position, g in enumerate(_UpperCAmelCase ) if g == main_target[position]] ) return (item, float(_UpperCAmelCase )) def __snake_case ( _UpperCAmelCase , _UpperCAmelCase ): __a = random.randint(0 , len(_UpperCAmelCase ) - 1 ) __a = parent_a[:random_slice] + parent_a[random_slice:] __a = parent_a[:random_slice] + parent_a[random_slice:] return (child_a, child_a) def __snake_case ( _UpperCAmelCase , _UpperCAmelCase ): __a = list(_UpperCAmelCase ) if random.uniform(0 , 1 ) < MUTATION_PROBABILITY: __a = random.choice(_UpperCAmelCase ) return "".join(_UpperCAmelCase ) def __snake_case ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , ): __a = [] # Generate more children proportionally to the fitness score. __a = int(parent_a[1] * 100 ) + 1 __a = 10 if child_n >= 10 else child_n for _ in range(_UpperCAmelCase ): __a = population_score[random.randint(0 , _UpperCAmelCase )][0] __a , __a = crossover(parent_a[0] , _UpperCAmelCase ) # Append new string to the population list. pop.append(mutate(_UpperCAmelCase , _UpperCAmelCase ) ) pop.append(mutate(_UpperCAmelCase , _UpperCAmelCase ) ) return pop def __snake_case ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = True ): # Verify if N_POPULATION is bigger than N_SELECTED if N_POPULATION < N_SELECTED: __a = f'{N_POPULATION} must be bigger than {N_SELECTED}' raise ValueError(_UpperCAmelCase ) # Verify that the target contains no genes besides the ones inside genes variable. __a = sorted({c for c in target if c not in genes} ) if not_in_genes_list: __a = f'{not_in_genes_list} is not in genes list, evolution cannot converge' raise ValueError(_UpperCAmelCase ) # Generate random starting population. __a = [] for _ in range(_UpperCAmelCase ): population.append(''''''.join([random.choice(_UpperCAmelCase ) for i in range(len(_UpperCAmelCase ) )] ) ) # Just some logs to know what the algorithms is doing. __a , __a = 0, 0 # This loop will end when we find a perfect match for our target. while True: generation += 1 total_population += len(_UpperCAmelCase ) # Random population created. Now it's time to evaluate. # Adding a bit of concurrency can make everything faster, # # import concurrent.futures # population_score: list[tuple[str, float]] = [] # with concurrent.futures.ThreadPoolExecutor( # max_workers=NUM_WORKERS) as executor: # futures = {executor.submit(evaluate, item) for item in population} # concurrent.futures.wait(futures) # population_score = [item.result() for item in futures] # # but with a simple algorithm like this, it will probably be slower. # We just need to call evaluate for every item inside the population. __a = [evaluate(_UpperCAmelCase , _UpperCAmelCase ) for item in population] # Check if there is a matching evolution. __a = sorted(_UpperCAmelCase , key=lambda _UpperCAmelCase : x[1] , reverse=_UpperCAmelCase ) if population_score[0][0] == target: return (generation, total_population, population_score[0][0]) # Print the best result every 10 generation. # Just to know that the algorithm is working. if debug and generation % 10 == 0: print( f'\nGeneration: {generation}' f'\nTotal Population:{total_population}' f'\nBest score: {population_score[0][1]}' f'\nBest string: {population_score[0][0]}' ) # Flush the old population, keeping some of the best evolutions. # Keeping this avoid regression of evolution. __a = population[: int(N_POPULATION / 3 )] population.clear() population.extend(_UpperCAmelCase ) # Normalize population score to be between 0 and 1. __a = [ (item, score / len(_UpperCAmelCase )) for item, score in population_score ] # This is selection for i in range(_UpperCAmelCase ): population.extend(select(population_score[int(_UpperCAmelCase )] , _UpperCAmelCase , _UpperCAmelCase ) ) # Check if the population has already reached the maximum value and if so, # break the cycle. If this check is disabled, the algorithm will take # forever to compute large strings, but will also calculate small strings in # a far fewer generations. if len(_UpperCAmelCase ) > N_POPULATION: break if __name__ == "__main__": __snake_case :Optional[int] = ( '''This is a genetic algorithm to evaluate, combine, evolve, and mutate a string!''' ) __snake_case :List[Any] = list( ''' ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklm''' '''nopqrstuvwxyz.,;!?+-*#@^\'èéòà€ù=)(&%$£/\\''' ) __snake_case ,__snake_case ,__snake_case :Dict = basic(target_str, genes_list) print( f'\nGeneration: {generation}\nTotal Population: {population}\nTarget: {target}' )
49
0
import itertools import random import unittest import numpy as np from transformers import ASTFeatureExtractor from transformers.testing_utils import require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin UpperCAmelCase =random.Random() if is_torch_available(): import torch def _A ( _a : int , _a : Optional[int]=1.0 , _a : List[str]=None , _a : List[str]=None ): """simple docstring""" if rng is None: A = global_rng A = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class lowerCamelCase__ ( unittest.TestCase ): '''simple docstring''' def __init__( self ,lowerCamelCase_ ,lowerCamelCase_=7 ,lowerCamelCase_=4_0_0 ,lowerCamelCase_=2_0_0_0 ,lowerCamelCase_=1 ,lowerCamelCase_=0.0 ,lowerCamelCase_=1_6_0_0_0 ,lowerCamelCase_=True ,lowerCamelCase_=True ,) -> Optional[int]: A = parent A = batch_size A = min_seq_length A = max_seq_length A = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) A = feature_size A = padding_value A = sampling_rate A = return_attention_mask A = do_normalize def UpperCamelCase__ ( self ) -> Any: return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def UpperCamelCase__ ( self ,lowerCamelCase_=False ,lowerCamelCase_=False ) -> List[str]: def _flatten(lowerCamelCase_ ): return list(itertools.chain(*__snake_case ) ) if equal_length: A = floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size A = [ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length ,self.max_seq_length ,self.seq_length_diff ) ] if numpify: A = [np.asarray(__snake_case ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class lowerCamelCase__ ( lowerCamelCase_ , unittest.TestCase ): '''simple docstring''' _lowerCamelCase = ASTFeatureExtractor def UpperCamelCase__ ( self ) -> Tuple: A = ASTFeatureExtractionTester(self ) def UpperCamelCase__ ( self ) -> str: # Tests that all call wrap to encode_plus and batch_encode_plus A = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 A = [floats_list((1, x) )[0] for x in range(8_0_0 ,1_4_0_0 ,2_0_0 )] A = [np.asarray(__snake_case ) for speech_input in speech_inputs] # Test not batched input A = feat_extract(speech_inputs[0] ,return_tensors="""np""" ).input_values A = feat_extract(np_speech_inputs[0] ,return_tensors="""np""" ).input_values self.assertTrue(np.allclose(__snake_case ,__snake_case ,atol=1E-3 ) ) # Test batched A = feat_extract(__snake_case ,padding=__snake_case ,return_tensors="""np""" ).input_values A = feat_extract(__snake_case ,padding=__snake_case ,return_tensors="""np""" ).input_values for enc_seq_a, enc_seq_a in zip(__snake_case ,__snake_case ): self.assertTrue(np.allclose(__snake_case ,__snake_case ,atol=1E-3 ) ) # Test 2-D numpy arrays are batched. A = [floats_list((1, x) )[0] for x in (8_0_0, 8_0_0, 8_0_0)] A = np.asarray(__snake_case ) A = feat_extract(__snake_case ,return_tensors="""np""" ).input_values A = feat_extract(__snake_case ,return_tensors="""np""" ).input_values for enc_seq_a, enc_seq_a in zip(__snake_case ,__snake_case ): self.assertTrue(np.allclose(__snake_case ,__snake_case ,atol=1E-3 ) ) @require_torch def UpperCamelCase__ ( self ) -> Union[str, Any]: import torch A = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) A = np.random.rand(1_0_0 ).astype(np.floataa ) A = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: A = feature_extractor.pad([{"""input_values""": inputs}] ,return_tensors="""np""" ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) A = feature_extractor.pad([{"""input_values""": inputs}] ,return_tensors="""pt""" ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) def UpperCamelCase__ ( self ,lowerCamelCase_ ) -> Any: from datasets import load_dataset A = load_dataset("""hf-internal-testing/librispeech_asr_dummy""" ,"""clean""" ,split="""validation""" ) # automatic decoding with librispeech A = ds.sort("""id""" ).select(range(__snake_case ) )[:num_samples]["""audio"""] return [x["array"] for x in speech_samples] @require_torch def UpperCamelCase__ ( self ) -> Any: # fmt: off A = torch.tensor( [-0.98_94, -1.27_76, -0.90_66, -1.27_76, -0.93_49, -1.26_09, -1.03_86, -1.27_76, -1.15_61, -1.27_76, -1.20_52, -1.27_23, -1.21_90, -1.21_32, -1.27_76, -1.11_33, -1.19_53, -1.13_43, -1.15_84, -1.22_03, -1.17_70, -1.24_74, -1.23_81, -1.19_36, -0.92_70, -0.83_17, -0.80_49, -0.77_06, -0.75_65, -0.78_69] ) # fmt: on A = self._load_datasamples(1 ) A = ASTFeatureExtractor() A = feature_extractor(__snake_case ,return_tensors="""pt""" ).input_values self.assertEquals(input_values.shape ,(1, 1_0_2_4, 1_2_8) ) self.assertTrue(torch.allclose(input_values[0, 0, :3_0] ,__snake_case ,atol=1E-4 ) )
370
"""simple docstring""" def _A ( _a : int ): """simple docstring""" A = abs(_a ) A = 0 while n > 0: res += n % 1_0 n //= 1_0 return res def _A ( _a : int ): """simple docstring""" A = abs(_a ) return n if n < 1_0 else n % 1_0 + sum_of_digits(n // 1_0 ) def _A ( _a : int ): """simple docstring""" return sum(int(_a ) for c in str(abs(_a ) ) ) def _A ( ): """simple docstring""" from collections.abc import Callable from timeit import timeit def benchmark_a_function(_a : Callable , _a : int ) -> None: A = f'{func.__name__}({value})' A = timeit(f'__main__.{call}' , setup="""import __main__""" ) print(f'{call:56} = {func(_a )} -- {timing:.4f} seconds' ) for value in (2_6_2_1_4_4, 1_1_2_5_8_9_9_9_0_6_8_4_2_6_2_4, 1_2_6_7_6_5_0_6_0_0_2_2_8_2_2_9_4_0_1_4_9_6_7_0_3_2_0_5_3_7_6): for func in (sum_of_digits, sum_of_digits_recursion, sum_of_digits_compact): benchmark_a_function(_a , _a ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
77
0
'''simple docstring''' from collections import Counter import numpy as np from sklearn import datasets from sklearn.model_selection import train_test_split lowercase__ : Tuple = datasets.load_iris() lowercase__ : Union[str, Any] = np.array(data['data']) lowercase__ : List[str] = np.array(data['target']) lowercase__ : Tuple = data['target_names'] lowercase__ , lowercase__ , lowercase__ , lowercase__ : Tuple = train_test_split(X, y) def a__ ( lowercase : Optional[Any], lowercase : int ) -> Dict: """simple docstring""" return np.linalg.norm(np.array(_SCREAMING_SNAKE_CASE ) - np.array(_SCREAMING_SNAKE_CASE ) ) def a__ ( lowercase : List[str], lowercase : Optional[Any], lowercase : List[str], lowercase : Union[str, Any], lowercase : Optional[int]=5 ) -> Optional[Any]: """simple docstring""" _UpperCamelCase = zip(_SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE ) # List of distances of all points from the point to be classified _UpperCamelCase = [] for data_point in data: _UpperCamelCase = euclidean_distance(data_point[0], _SCREAMING_SNAKE_CASE ) distances.append((distance, data_point[1]) ) # Choosing 'k' points with the least distances. _UpperCamelCase = [i[1] for i in sorted(_SCREAMING_SNAKE_CASE )[:k]] # Most commonly occurring class among them # is the class into which the point is classified _UpperCamelCase = Counter(_SCREAMING_SNAKE_CASE ).most_common(1 )[0][0] return classes[result] if __name__ == "__main__": print(classifier(X_train, y_train, classes, [4.4, 3.1, 1.3, 1.4]))
324
"""simple docstring""" import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, UNetaDConditionModel, VideoToVideoSDPipeline, ) from diffusers.utils import floats_tensor, is_xformers_available, skip_mps from diffusers.utils.testing_utils import enable_full_determinism, slow, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() @skip_mps class _lowerCamelCase ( _lowercase , unittest.TestCase ): UpperCAmelCase_ = VideoToVideoSDPipeline UpperCAmelCase_ = TEXT_GUIDED_IMAGE_VARIATION_PARAMS.union({"video"} ) - {"image", "width", "height"} UpperCAmelCase_ = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({"video"} ) - {"image"} UpperCAmelCase_ = PipelineTesterMixin.required_optional_params - {"latents"} UpperCAmelCase_ = False # No `output_type`. UpperCAmelCase_ = frozenset( [ "num_inference_steps", "generator", "latents", "return_dict", "callback", "callback_steps", ] ) def snake_case_ (self ) -> List[Any]: torch.manual_seed(0 ) UpperCamelCase = UNetaDConditionModel( block_out_channels=(32, 64, 64, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("CrossAttnDownBlock3D", "CrossAttnDownBlock3D", "CrossAttnDownBlock3D", "DownBlock3D") , up_block_types=("UpBlock3D", "CrossAttnUpBlock3D", "CrossAttnUpBlock3D", "CrossAttnUpBlock3D") , cross_attention_dim=32 , attention_head_dim=4 , ) UpperCamelCase = DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule="scaled_linear" , clip_sample=__a , set_alpha_to_one=__a , ) torch.manual_seed(0 ) UpperCamelCase = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , sample_size=1_28 , ) torch.manual_seed(0 ) UpperCamelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act="gelu" , projection_dim=5_12 , ) UpperCamelCase = CLIPTextModel(__a ) UpperCamelCase = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) UpperCamelCase = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, } return components def snake_case_ (self , __a , __a=0 ) -> Dict: # 3 frames UpperCamelCase = floats_tensor((1, 3, 3, 32, 32) , rng=random.Random(__a ) ).to(__a ) if str(__a ).startswith("mps" ): UpperCamelCase = torch.manual_seed(__a ) else: UpperCamelCase = torch.Generator(device=__a ).manual_seed(__a ) UpperCamelCase = { "prompt": "A painting of a squirrel eating a burger", "video": video, "generator": generator, "num_inference_steps": 2, "guidance_scale": 6.0, "output_type": "pt", } return inputs def snake_case_ (self ) -> List[Any]: UpperCamelCase = "cpu" # ensure determinism for the device-dependent torch.Generator UpperCamelCase = self.get_dummy_components() UpperCamelCase = VideoToVideoSDPipeline(**__a ) UpperCamelCase = sd_pipe.to(__a ) sd_pipe.set_progress_bar_config(disable=__a ) UpperCamelCase = self.get_dummy_inputs(__a ) UpperCamelCase = "np" UpperCamelCase = sd_pipe(**__a ).frames UpperCamelCase = frames[0][-3:, -3:, -1] assert frames[0].shape == (32, 32, 3) UpperCamelCase = np.array([1_06, 1_17, 1_13, 1_74, 1_37, 1_12, 1_48, 1_51, 1_31] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def snake_case_ (self ) -> Dict: self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=__a , expected_max_diff=5e-3 ) @unittest.skip(reason="Batching needs to be properly figured out first for this pipeline." ) def snake_case_ (self ) -> List[Any]: pass @unittest.skip(reason="Batching needs to be properly figured out first for this pipeline." ) def snake_case_ (self ) -> Optional[Any]: pass @unittest.skip(reason="`num_images_per_prompt` argument is not supported for this pipeline." ) def snake_case_ (self ) -> Dict: pass def snake_case_ (self ) -> Optional[int]: return super().test_progress_bar() @slow @skip_mps class _lowerCamelCase ( unittest.TestCase ): def snake_case_ (self ) -> List[str]: UpperCamelCase = VideoToVideoSDPipeline.from_pretrained("cerspense/zeroscope_v2_XL" , torch_dtype=torch.floataa ) pipe.enable_model_cpu_offload() # 10 frames UpperCamelCase = torch.Generator(device="cpu" ).manual_seed(0 ) UpperCamelCase = torch.randn((1, 10, 3, 10_24, 5_76) , generator=__a ) UpperCamelCase = video.to("cuda" ) UpperCamelCase = "Spiderman is surfing" UpperCamelCase = pipe(__a , video=__a , generator=__a , num_inference_steps=3 , output_type="pt" ).frames UpperCamelCase = np.array([-1.0458984, -1.1279297, -0.9663086, -0.91503906, -0.75097656] ) assert np.abs(video_frames.cpu().numpy()[0, 0, 0, 0, -5:] - expected_array ).sum() < 1e-2
153
0
"""simple docstring""" import math import os from copy import deepcopy import datasets import evaluate import torch import transformers from datasets import load_dataset from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer from accelerate import Accelerator from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import is_tpu_available, set_seed lowerCAmelCase__ = '''true''' def a__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=82 , _SCREAMING_SNAKE_CASE=16 ): """simple docstring""" set_seed(42 ) UpperCamelCase = RegressionModel() UpperCamelCase = deepcopy(_SCREAMING_SNAKE_CASE ) UpperCamelCase = RegressionDataset(length=_SCREAMING_SNAKE_CASE ) UpperCamelCase = DataLoader(_SCREAMING_SNAKE_CASE , batch_size=_SCREAMING_SNAKE_CASE ) model.to(accelerator.device ) UpperCamelCase , UpperCamelCase = accelerator.prepare(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return model, ddp_model, dataloader def a__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False ): """simple docstring""" UpperCamelCase = AutoTokenizer.from_pretrained("hf-internal-testing/mrpc-bert-base-cased" ) UpperCamelCase = load_dataset("glue" , "mrpc" , split="validation" ) def tokenize_function(_SCREAMING_SNAKE_CASE ): UpperCamelCase = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=_SCREAMING_SNAKE_CASE , max_length=_SCREAMING_SNAKE_CASE ) return outputs with accelerator.main_process_first(): UpperCamelCase = dataset.map( _SCREAMING_SNAKE_CASE , batched=_SCREAMING_SNAKE_CASE , remove_columns=["idx", "sentence1", "sentence2"] , ) UpperCamelCase = tokenized_datasets.rename_column("label" , "labels" ) def collate_fn(_SCREAMING_SNAKE_CASE ): if use_longest: return tokenizer.pad(_SCREAMING_SNAKE_CASE , padding="longest" , return_tensors="pt" ) return tokenizer.pad(_SCREAMING_SNAKE_CASE , padding="max_length" , max_length=128 , return_tensors="pt" ) return DataLoader(_SCREAMING_SNAKE_CASE , shuffle=_SCREAMING_SNAKE_CASE , collate_fn=_SCREAMING_SNAKE_CASE , batch_size=16 ) def a__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase = Accelerator(dispatch_batches=_SCREAMING_SNAKE_CASE , split_batches=_SCREAMING_SNAKE_CASE ) UpperCamelCase = get_dataloader(_SCREAMING_SNAKE_CASE , not dispatch_batches ) UpperCamelCase = AutoModelForSequenceClassification.from_pretrained( "hf-internal-testing/mrpc-bert-base-cased" , return_dict=_SCREAMING_SNAKE_CASE ) UpperCamelCase , UpperCamelCase = accelerator.prepare(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return {"ddp": [ddp_model, ddp_dataloader, "cuda:0"], "no": [model, dataloader, accelerator.device]}, accelerator def a__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase = [] for batch in dataloader: UpperCamelCase , UpperCamelCase = batch.values() with torch.no_grad(): UpperCamelCase = model(_SCREAMING_SNAKE_CASE ) UpperCamelCase , UpperCamelCase = accelerator.gather_for_metrics((logit, target) ) logits_and_targets.append((logit, target) ) UpperCamelCase , UpperCamelCase = [], [] for logit, targ in logits_and_targets: logits.append(_SCREAMING_SNAKE_CASE ) targs.append(_SCREAMING_SNAKE_CASE ) UpperCamelCase , UpperCamelCase = torch.cat(_SCREAMING_SNAKE_CASE ), torch.cat(_SCREAMING_SNAKE_CASE ) return logits, targs def a__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=82 , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=16 ): """simple docstring""" UpperCamelCase , UpperCamelCase , UpperCamelCase = get_basic_setup(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCamelCase , UpperCamelCase = generate_predictions(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) assert ( len(_SCREAMING_SNAKE_CASE ) == num_samples ), F"Unexpected number of inputs:\n Expected: {num_samples}\n Actual: {len(_SCREAMING_SNAKE_CASE )}" def a__ ( _SCREAMING_SNAKE_CASE = False , _SCREAMING_SNAKE_CASE = False ): """simple docstring""" UpperCamelCase = evaluate.load("glue" , "mrpc" ) UpperCamelCase , UpperCamelCase = get_mrpc_setup(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # First do baseline UpperCamelCase , UpperCamelCase , UpperCamelCase = setup["no"] model.to(_SCREAMING_SNAKE_CASE ) model.eval() for batch in dataloader: batch.to(_SCREAMING_SNAKE_CASE ) with torch.inference_mode(): UpperCamelCase = model(**_SCREAMING_SNAKE_CASE ) UpperCamelCase = outputs.logits.argmax(dim=-1 ) metric.add_batch(predictions=_SCREAMING_SNAKE_CASE , references=batch["labels"] ) UpperCamelCase = metric.compute() # Then do distributed UpperCamelCase , UpperCamelCase , UpperCamelCase = setup["ddp"] model.eval() for batch in dataloader: with torch.inference_mode(): UpperCamelCase = model(**_SCREAMING_SNAKE_CASE ) UpperCamelCase = outputs.logits.argmax(dim=-1 ) UpperCamelCase = batch["labels"] UpperCamelCase , UpperCamelCase = accelerator.gather_for_metrics((preds, references) ) metric.add_batch(predictions=_SCREAMING_SNAKE_CASE , references=_SCREAMING_SNAKE_CASE ) UpperCamelCase = metric.compute() for key in "accuracy f1".split(): assert math.isclose( baseline[key] , distributed[key] ), F"Baseline and Distributed are not the same for key {key}:\n\tBaseline: {baseline[key]}\n\tDistributed: {distributed[key]}\n" def a__ ( ): """simple docstring""" UpperCamelCase = Accelerator(split_batches=_SCREAMING_SNAKE_CASE , dispatch_batches=_SCREAMING_SNAKE_CASE ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_warning() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # These are a bit slower so they should only be ran on the GPU or TPU if torch.cuda.is_available() or is_tpu_available(): if accelerator.is_local_main_process: print("**Testing gather_for_metrics**" ) for split_batches in [True, False]: for dispatch_batches in [True, False]: if accelerator.is_local_main_process: print(F"With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`" ) test_mrpc(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) accelerator.state._reset_state() if accelerator.is_local_main_process: print("**Test torch metrics**" ) for split_batches in [True, False]: for dispatch_batches in [True, False]: UpperCamelCase = Accelerator(split_batches=_SCREAMING_SNAKE_CASE , dispatch_batches=_SCREAMING_SNAKE_CASE ) if accelerator.is_local_main_process: print(F"With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`, length=99" ) test_torch_metrics(_SCREAMING_SNAKE_CASE , 99 ) accelerator.state._reset_state() if accelerator.is_local_main_process: print("**Test last batch is not dropped when perfectly divisible**" ) UpperCamelCase = Accelerator() test_torch_metrics(_SCREAMING_SNAKE_CASE , 512 ) accelerator.state._reset_state() def a__ ( _SCREAMING_SNAKE_CASE ): """simple docstring""" main() if __name__ == "__main__": main()
244
"""simple docstring""" import math def a__ ( _SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase = 0 UpperCamelCase = 0 while num > 0: UpperCamelCase = num % 8 UpperCamelCase = octal + (remainder * math.floor(math.pow(10 , _SCREAMING_SNAKE_CASE ) )) counter += 1 UpperCamelCase = math.floor(num / 8 ) # basically /= 8 without remainder if any # This formatting removes trailing '.0' from `octal`. return F"0o{int(_SCREAMING_SNAKE_CASE )}" def a__ ( ): """simple docstring""" print("\n2 in octal is:" ) print(decimal_to_octal(2 ) ) # = 2 print("\n8 in octal is:" ) print(decimal_to_octal(8 ) ) # = 10 print("\n65 in octal is:" ) print(decimal_to_octal(65 ) ) # = 101 print("\n216 in octal is:" ) print(decimal_to_octal(216 ) ) # = 330 print("\n512 in octal is:" ) print(decimal_to_octal(512 ) ) # = 1000 print("\n" ) if __name__ == "__main__": main()
244
1
"""simple docstring""" import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt'''} # See all BART models at https://huggingface.co/models?filter=bart __UpperCamelCase = { '''vocab_file''': { '''facebook/bart-base''': '''https://huggingface.co/facebook/bart-base/resolve/main/vocab.json''', '''facebook/bart-large''': '''https://huggingface.co/facebook/bart-large/resolve/main/vocab.json''', '''facebook/bart-large-mnli''': '''https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json''', '''facebook/bart-large-cnn''': '''https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json''', '''facebook/bart-large-xsum''': '''https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json''', '''yjernite/bart_eli5''': '''https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json''', }, '''merges_file''': { '''facebook/bart-base''': '''https://huggingface.co/facebook/bart-base/resolve/main/merges.txt''', '''facebook/bart-large''': '''https://huggingface.co/facebook/bart-large/resolve/main/merges.txt''', '''facebook/bart-large-mnli''': '''https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt''', '''facebook/bart-large-cnn''': '''https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt''', '''facebook/bart-large-xsum''': '''https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt''', '''yjernite/bart_eli5''': '''https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt''', }, } __UpperCamelCase = { '''facebook/bart-base''': 1024, '''facebook/bart-large''': 1024, '''facebook/bart-large-mnli''': 1024, '''facebook/bart-large-cnn''': 1024, '''facebook/bart-large-xsum''': 1024, '''yjernite/bart_eli5''': 1024, } @lru_cache() def UpperCAmelCase ( ) -> Dict: snake_case_ = ( list(range(ord('!' ) , ord('~' ) + 1 ) ) + list(range(ord('¡' ) , ord('¬' ) + 1 ) ) + list(range(ord('®' ) , ord('ÿ' ) + 1 ) ) ) snake_case_ = bs[:] snake_case_ = 0 for b in range(2**8 ): if b not in bs: bs.append(UpperCAmelCase ) cs.append(2**8 + n ) n += 1 snake_case_ = [chr(UpperCAmelCase ) for n in cs] return dict(zip(UpperCAmelCase , UpperCAmelCase ) ) def UpperCAmelCase ( UpperCAmelCase ) -> int: snake_case_ = set() snake_case_ = word[0] for char in word[1:]: pairs.add((prev_char, char) ) snake_case_ = char return pairs class UpperCamelCase ( lowerCAmelCase__ ): SCREAMING_SNAKE_CASE_ = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE_ = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE_ = ["input_ids", "attention_mask"] def __init__( self, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__="replace", lowerCAmelCase__="<s>", lowerCAmelCase__="</s>", lowerCAmelCase__="</s>", lowerCAmelCase__="<s>", lowerCAmelCase__="<unk>", lowerCAmelCase__="<pad>", lowerCAmelCase__="<mask>", lowerCAmelCase__=False, **lowerCAmelCase__, ) -> Union[str, Any]: snake_case_ = AddedToken(lowerCAmelCase__, lstrip=lowerCAmelCase__, rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__, lowerCAmelCase__) else bos_token snake_case_ = AddedToken(lowerCAmelCase__, lstrip=lowerCAmelCase__, rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__, lowerCAmelCase__) else eos_token snake_case_ = AddedToken(lowerCAmelCase__, lstrip=lowerCAmelCase__, rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__, lowerCAmelCase__) else sep_token snake_case_ = AddedToken(lowerCAmelCase__, lstrip=lowerCAmelCase__, rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__, lowerCAmelCase__) else cls_token snake_case_ = AddedToken(lowerCAmelCase__, lstrip=lowerCAmelCase__, rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__, lowerCAmelCase__) else unk_token snake_case_ = AddedToken(lowerCAmelCase__, lstrip=lowerCAmelCase__, rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__, lowerCAmelCase__) else pad_token # Mask token behave like a normal word, i.e. include the space before it snake_case_ = AddedToken(lowerCAmelCase__, lstrip=lowerCAmelCase__, rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__, lowerCAmelCase__) else mask_token super().__init__( errors=lowerCAmelCase__, bos_token=lowerCAmelCase__, eos_token=lowerCAmelCase__, unk_token=lowerCAmelCase__, sep_token=lowerCAmelCase__, cls_token=lowerCAmelCase__, pad_token=lowerCAmelCase__, mask_token=lowerCAmelCase__, add_prefix_space=lowerCAmelCase__, **lowerCAmelCase__, ) with open(lowerCAmelCase__, encoding='utf-8') as vocab_handle: snake_case_ = json.load(lowerCAmelCase__) snake_case_ = {v: k for k, v in self.encoder.items()} snake_case_ = errors # how to handle errors in decoding snake_case_ = bytes_to_unicode() snake_case_ = {v: k for k, v in self.byte_encoder.items()} with open(lowerCAmelCase__, encoding='utf-8') as merges_handle: snake_case_ = merges_handle.read().split('\n')[1:-1] snake_case_ = [tuple(merge.split()) for merge in bpe_merges] snake_case_ = dict(zip(lowerCAmelCase__, range(len(lowerCAmelCase__)))) snake_case_ = {} snake_case_ = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions snake_case_ = re.compile(R'\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+') @property def a_ ( self) -> Optional[int]: return len(self.encoder) def a_ ( self) -> Optional[Any]: return dict(self.encoder, **self.added_tokens_encoder) def a_ ( self, lowerCAmelCase__) -> Union[str, Any]: if token in self.cache: return self.cache[token] snake_case_ = tuple(lowerCAmelCase__) snake_case_ = get_pairs(lowerCAmelCase__) if not pairs: return token while True: snake_case_ = min(lowerCAmelCase__, key=lambda lowerCAmelCase__: self.bpe_ranks.get(lowerCAmelCase__, float('inf'))) if bigram not in self.bpe_ranks: break snake_case_ , snake_case_ = bigram snake_case_ = [] snake_case_ = 0 while i < len(lowerCAmelCase__): try: snake_case_ = word.index(lowerCAmelCase__, lowerCAmelCase__) except ValueError: new_word.extend(word[i:]) break else: new_word.extend(word[i:j]) snake_case_ = j if word[i] == first and i < len(lowerCAmelCase__) - 1 and word[i + 1] == second: new_word.append(first + second) i += 2 else: new_word.append(word[i]) i += 1 snake_case_ = tuple(lowerCAmelCase__) snake_case_ = new_word if len(lowerCAmelCase__) == 1: break else: snake_case_ = get_pairs(lowerCAmelCase__) snake_case_ = ' '.join(lowerCAmelCase__) snake_case_ = word return word def a_ ( self, lowerCAmelCase__) -> Dict: snake_case_ = [] for token in re.findall(self.pat, lowerCAmelCase__): snake_case_ = ''.join( self.byte_encoder[b] for b in token.encode('utf-8')) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(lowerCAmelCase__).split(' ')) return bpe_tokens def a_ ( self, lowerCAmelCase__) -> List[str]: return self.encoder.get(lowerCAmelCase__, self.encoder.get(self.unk_token)) def a_ ( self, lowerCAmelCase__) -> int: return self.decoder.get(lowerCAmelCase__) def a_ ( self, lowerCAmelCase__) -> Optional[int]: snake_case_ = ''.join(lowerCAmelCase__) snake_case_ = bytearray([self.byte_decoder[c] for c in text]).decode('utf-8', errors=self.errors) return text def a_ ( self, lowerCAmelCase__, lowerCAmelCase__ = None) -> Tuple[str]: if not os.path.isdir(lowerCAmelCase__): logger.error(f'Vocabulary path ({save_directory}) should be a directory') return snake_case_ = os.path.join( lowerCAmelCase__, (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']) snake_case_ = os.path.join( lowerCAmelCase__, (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file']) with open(lowerCAmelCase__, 'w', encoding='utf-8') as f: f.write(json.dumps(self.encoder, indent=2, sort_keys=lowerCAmelCase__, ensure_ascii=lowerCAmelCase__) + '\n') snake_case_ = 0 with open(lowerCAmelCase__, 'w', encoding='utf-8') as writer: writer.write('#version: 0.2\n') for bpe_tokens, token_index in sorted(self.bpe_ranks.items(), key=lambda lowerCAmelCase__: kv[1]): if index != token_index: logger.warning( f'Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.' ' Please check that the tokenizer is not corrupted!') snake_case_ = token_index writer.write(' '.join(lowerCAmelCase__) + '\n') index += 1 return vocab_file, merge_file def a_ ( self, lowerCAmelCase__, lowerCAmelCase__ = None) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] snake_case_ = [self.cls_token_id] snake_case_ = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def a_ ( self, lowerCAmelCase__, lowerCAmelCase__ = None, lowerCAmelCase__ = False) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase__, token_ids_a=lowerCAmelCase__, already_has_special_tokens=lowerCAmelCase__) if token_ids_a is None: return [1] + ([0] * len(lowerCAmelCase__)) + [1] return [1] + ([0] * len(lowerCAmelCase__)) + [1, 1] + ([0] * len(lowerCAmelCase__)) + [1] def a_ ( self, lowerCAmelCase__, lowerCAmelCase__ = None) -> List[int]: snake_case_ = [self.sep_token_id] snake_case_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0] def a_ ( self, lowerCAmelCase__, lowerCAmelCase__=False, **lowerCAmelCase__) -> int: snake_case_ = kwargs.pop('add_prefix_space', self.add_prefix_space) if (is_split_into_words or add_prefix_space) and (len(lowerCAmelCase__) > 0 and not text[0].isspace()): snake_case_ = ' ' + text return (text, kwargs)
69
"""simple docstring""" def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> int: while a != 0: snake_case_ , snake_case_ = b % a, a return b def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> int: if gcd(UpperCAmelCase , UpperCAmelCase ) != 1: snake_case_ = f'mod inverse of {a!r} and {m!r} does not exist' raise ValueError(UpperCAmelCase ) snake_case_ , snake_case_ , snake_case_ = 1, 0, a snake_case_ , snake_case_ , snake_case_ = 0, 1, m while va != 0: snake_case_ = ua // va snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ = (ua - q * va), (ua - q * va), (ua - q * va), va, va, va return ua % m
69
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowercase = { """configuration_instructblip""": [ """INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""", """InstructBlipConfig""", """InstructBlipQFormerConfig""", """InstructBlipVisionConfig""", ], """processing_instructblip""": ["""InstructBlipProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase = [ """INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """InstructBlipQFormerModel""", """InstructBlipPreTrainedModel""", """InstructBlipForConditionalGeneration""", """InstructBlipVisionModel""", ] if TYPE_CHECKING: from .configuration_instructblip import ( INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, InstructBlipConfig, InstructBlipQFormerConfig, InstructBlipVisionConfig, ) from .processing_instructblip import InstructBlipProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_instructblip import ( INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST, InstructBlipForConditionalGeneration, InstructBlipPreTrainedModel, InstructBlipQFormerModel, InstructBlipVisionModel, ) else: import sys __lowercase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
359
"""simple docstring""" import copy import fnmatch import json import os import pickle as pkl import shutil import sys import tarfile import tempfile from collections import OrderedDict from contextlib import contextmanager from functools import partial from hashlib import shaaaa from io import BytesIO from pathlib import Path from urllib.parse import urlparse from zipfile import ZipFile, is_zipfile import cva import numpy as np import requests import wget from filelock import FileLock from PIL import Image from tqdm.auto import tqdm from yaml import Loader, dump, load try: import torch __lowercase = True except ImportError: __lowercase = False try: from torch.hub import _get_torch_home __lowercase = _get_torch_home() except ImportError: __lowercase = os.path.expanduser( os.getenv("""TORCH_HOME""", os.path.join(os.getenv("""XDG_CACHE_HOME""", """~/.cache"""), """torch""")) ) __lowercase = os.path.join(torch_cache_home, """transformers""") __lowercase = """https://cdn.huggingface.co""" __lowercase = """https://s3.amazonaws.com/models.huggingface.co/bert""" __lowercase = """/""".join(str(Path(__file__).resolve()).split("""/""")[:-1]) __lowercase = os.path.join(PATH, """config.yaml""") __lowercase = os.path.join(PATH, """attributes.txt""") __lowercase = os.path.join(PATH, """objects.txt""") __lowercase = os.getenv("""PYTORCH_PRETRAINED_BERT_CACHE""", default_cache_path) __lowercase = os.getenv("""PYTORCH_TRANSFORMERS_CACHE""", PYTORCH_PRETRAINED_BERT_CACHE) __lowercase = os.getenv("""TRANSFORMERS_CACHE""", PYTORCH_TRANSFORMERS_CACHE) __lowercase = """pytorch_model.bin""" __lowercase = """config.yaml""" def lowercase ( A_=OBJECTS , A_=ATTRIBUTES )-> Union[str, Any]: '''simple docstring''' a : Optional[Any] = [] with open(A_ ) as f: for object in f.readlines(): vg_classes.append(object.split("," )[0].lower().strip() ) a : Union[str, Any] = [] with open(A_ ) as f: for object in f.readlines(): vg_attrs.append(object.split("," )[0].lower().strip() ) return vg_classes, vg_attrs def lowercase ( A_ )-> Optional[Any]: '''simple docstring''' a : Dict = OrderedDict() with open(A_ , "rb" ) as f: a : Optional[Any] = pkl.load(A_ )["model"] for k in copy.deepcopy(list(ckp.keys() ) ): a : Dict = ckp.pop(A_ ) if isinstance(A_ , np.ndarray ): a : Optional[Any] = torch.tensor(A_ ) else: assert isinstance(A_ , torch.tensor ), type(A_ ) a : int = v return r class _A : """simple docstring""" UpperCAmelCase : int = {} def __init__( self : Any , __UpperCAmelCase : dict , __UpperCAmelCase : str = "root" , __UpperCAmelCase : Optional[int]=0): a : List[str] = name a : Tuple = level a : int = {} for k, v in dictionary.items(): if v is None: raise ValueError() a : List[Any] = copy.deepcopy(__UpperCAmelCase) a : int = copy.deepcopy(__UpperCAmelCase) if isinstance(__UpperCAmelCase , __UpperCAmelCase): a : Union[str, Any] = Config(__UpperCAmelCase , name=__UpperCAmelCase , level=level + 1) a : Dict = v setattr(self , __UpperCAmelCase , __UpperCAmelCase) a : Tuple = d def __repr__( self : List[str]): return str(list((self._pointer.keys()))) def __setattr__( self : Dict , __UpperCAmelCase : str , __UpperCAmelCase : Tuple): a : Optional[Any] = val a : Tuple = val a : Dict = key.split(".") a : Union[str, Any] = len(__UpperCAmelCase) - 1 a : Optional[int] = self._pointer if len(__UpperCAmelCase) > 1: for i, l in enumerate(__UpperCAmelCase): if hasattr(self , __UpperCAmelCase) and isinstance(getattr(self , __UpperCAmelCase) , __UpperCAmelCase): setattr(getattr(self , __UpperCAmelCase) , ".".join(levels[i:]) , __UpperCAmelCase) if l == last_level: a : int = val else: a : str = pointer[l] def __snake_case ( self : str): return self._pointer def __snake_case ( self : int , __UpperCAmelCase : Tuple , __UpperCAmelCase : List[Any]): with open(f'''{file_name}''' , "w") as stream: dump(__UpperCAmelCase , __UpperCAmelCase) def __snake_case ( self : int , __UpperCAmelCase : Dict , __UpperCAmelCase : int): with open(f'''{file_name}''' , "w") as stream: json.dump(__UpperCAmelCase , __UpperCAmelCase) @staticmethod def __snake_case ( __UpperCAmelCase : Dict): with open(__UpperCAmelCase) as stream: a : List[str] = load(__UpperCAmelCase , Loader=__UpperCAmelCase) return data def __str__( self : Tuple): a : str = " " if self._name != "root": a : List[str] = f'''{t * (self._level-1)}{self._name}:\n''' else: a : Optional[Any] = "" a : List[Any] = self._level for i, (k, v) in enumerate(self._pointer.items()): if isinstance(__UpperCAmelCase , __UpperCAmelCase): r += f'''{t * (self._level)}{v}\n''' self._level += 1 else: r += f'''{t * (self._level)}{k}: {v} ({type(__UpperCAmelCase).__name__})\n''' a : Tuple = level return r[:-1] @classmethod def __snake_case ( cls : str , __UpperCAmelCase : str , **__UpperCAmelCase : List[Any]): a , a : Tuple = cls.get_config_dict(__UpperCAmelCase , **__UpperCAmelCase) return cls(__UpperCAmelCase) @classmethod def __snake_case ( cls : Union[str, Any] , __UpperCAmelCase : str , **__UpperCAmelCase : List[str]): a : int = kwargs.pop("cache_dir" , __UpperCAmelCase) a : List[Any] = kwargs.pop("force_download" , __UpperCAmelCase) a : Optional[int] = kwargs.pop("resume_download" , __UpperCAmelCase) a : Tuple = kwargs.pop("proxies" , __UpperCAmelCase) a : int = kwargs.pop("local_files_only" , __UpperCAmelCase) if os.path.isdir(__UpperCAmelCase): a : Union[str, Any] = os.path.join(__UpperCAmelCase , __UpperCAmelCase) elif os.path.isfile(__UpperCAmelCase) or is_remote_url(__UpperCAmelCase): a : List[Any] = pretrained_model_name_or_path else: a : int = hf_bucket_url(__UpperCAmelCase , filename=__UpperCAmelCase , use_cdn=__UpperCAmelCase) try: # Load from URL or cache if already cached a : Optional[Any] = cached_path( __UpperCAmelCase , cache_dir=__UpperCAmelCase , force_download=__UpperCAmelCase , proxies=__UpperCAmelCase , resume_download=__UpperCAmelCase , local_files_only=__UpperCAmelCase , ) # Load config dict if resolved_config_file is None: raise EnvironmentError a : Union[str, Any] = Config.load_yaml(__UpperCAmelCase) except EnvironmentError: a : str = "Can't load config for" raise EnvironmentError(__UpperCAmelCase) if resolved_config_file == config_file: print("loading configuration file from path") else: print("loading configuration file cache") return Config.load_yaml(__UpperCAmelCase), kwargs def lowercase ( A_ )-> str: '''simple docstring''' a : Tuple = torch.load("dump.pt" , map_location=in_tensor.device ) a : Any = in_tensor.numpy() a : Optional[int] = out_tensor.numpy()[0] print(na.shape , na[0, 0, :5] ) print(na.shape , na[0, 0, :5] ) assert np.allclose(A_ , A_ , rtol=0.0_1 , atol=0.1 ), ( F'''{sum([1 for x in np.isclose(A_ , A_ , rtol=0.0_1 , atol=0.1 ).flatten() if x is False] )/len(na.flatten() )*100:.4f} %''' " element-wise mismatch" ) raise Exception("tensors are all good" ) # Hugging face functions below def lowercase ( A_ )-> Optional[Any]: '''simple docstring''' a : Optional[Any] = urlparse(A_ ) return parsed.scheme in ("http", "https") def lowercase ( A_ , A_ , A_=True )-> str: '''simple docstring''' a : List[Any] = CLOUDFRONT_DISTRIB_PREFIX if use_cdn else S3_BUCKET_PREFIX a : str = "/" not in model_id if legacy_format: return F'''{endpoint}/{model_id}-{filename}''' else: return F'''{endpoint}/{model_id}/{filename}''' def lowercase ( A_ , A_ , A_=None , A_=0 , A_=None , )-> List[str]: '''simple docstring''' a : Optional[int] = "python/{}".format(sys.version.split()[0] ) if _torch_available: ua += "; torch/{}".format(torch.__version__ ) if isinstance(A_ , A_ ): ua += "; " + "; ".join("{}/{}".format(A_ , A_ ) for k, v in user_agent.items() ) elif isinstance(A_ , A_ ): ua += "; " + user_agent a : str = {"user-agent": ua} if resume_size > 0: a : List[Any] = "bytes=%d-" % (resume_size,) a : str = requests.get(A_ , stream=A_ , proxies=A_ , headers=A_ ) if response.status_code == 416: # Range not satisfiable return a : Optional[int] = response.headers.get("Content-Length" ) a : List[Any] = resume_size + int(A_ ) if content_length is not None else None a : List[Any] = tqdm( unit="B" , unit_scale=A_ , total=A_ , initial=A_ , desc="Downloading" , ) for chunk in response.iter_content(chunk_size=1_024 ): if chunk: # filter out keep-alive new chunks progress.update(len(A_ ) ) temp_file.write(A_ ) progress.close() def lowercase ( A_ , A_=None , A_=False , A_=None , A_=10 , A_=False , A_=None , A_=False , )-> str: '''simple docstring''' if cache_dir is None: a : List[Any] = TRANSFORMERS_CACHE if isinstance(A_ , A_ ): a : Tuple = str(A_ ) os.makedirs(A_ , exist_ok=A_ ) a : Optional[Any] = None if not local_files_only: try: a : Dict = requests.head(A_ , allow_redirects=A_ , proxies=A_ , timeout=A_ ) if response.status_code == 200: a : int = response.headers.get("ETag" ) except (EnvironmentError, requests.exceptions.Timeout): # etag is already None pass a : List[str] = url_to_filename(A_ , A_ ) # get cache path to put the file a : List[str] = os.path.join(A_ , A_ ) # etag is None = we don't have a connection, or url doesn't exist, or is otherwise inaccessible. # try to get the last downloaded one if etag is None: if os.path.exists(A_ ): return cache_path else: a : Any = [ file for file in fnmatch.filter(os.listdir(A_ ) , filename + ".*" ) if not file.endswith(".json" ) and not file.endswith(".lock" ) ] if len(A_ ) > 0: return os.path.join(A_ , matching_files[-1] ) else: # If files cannot be found and local_files_only=True, # the models might've been found if local_files_only=False # Notify the user about that if local_files_only: raise ValueError( "Cannot find the requested files in the cached path and outgoing traffic has been" " disabled. To enable model look-ups and downloads online, set 'local_files_only'" " to False." ) return None # From now on, etag is not None. if os.path.exists(A_ ) and not force_download: return cache_path # Prevent parallel downloads of the same file with a lock. a : Dict = cache_path + ".lock" with FileLock(A_ ): # If the download just completed while the lock was activated. if os.path.exists(A_ ) and not force_download: # Even if returning early like here, the lock will be released. return cache_path if resume_download: a : Optional[Any] = cache_path + ".incomplete" @contextmanager def _resumable_file_manager(): with open(A_ , "a+b" ) as f: yield f a : Tuple = _resumable_file_manager if os.path.exists(A_ ): a : Optional[Any] = os.stat(A_ ).st_size else: a : Optional[int] = 0 else: a : Union[str, Any] = partial(tempfile.NamedTemporaryFile , dir=A_ , delete=A_ ) a : Dict = 0 # Download to temporary file, then copy to cache dir once finished. # Otherwise you get corrupt cache entries if the download gets interrupted. with temp_file_manager() as temp_file: print( "%s not found in cache or force_download set to True, downloading to %s" , A_ , temp_file.name , ) http_get( A_ , A_ , proxies=A_ , resume_size=A_ , user_agent=A_ , ) os.replace(temp_file.name , A_ ) a : List[str] = {"url": url, "etag": etag} a : Tuple = cache_path + ".json" with open(A_ , "w" ) as meta_file: json.dump(A_ , A_ ) return cache_path def lowercase ( A_ , A_=None )-> Any: '''simple docstring''' a : Dict = url.encode("utf-8" ) a : Optional[Any] = shaaaa(A_ ) a : Any = url_hash.hexdigest() if etag: a : Union[str, Any] = etag.encode("utf-8" ) a : Tuple = shaaaa(A_ ) filename += "." + etag_hash.hexdigest() if url.endswith(".h5" ): filename += ".h5" return filename def lowercase ( A_ , A_=None , A_=False , A_=None , A_=False , A_=None , A_=False , A_=False , A_=False , )-> Tuple: '''simple docstring''' if cache_dir is None: a : Union[str, Any] = TRANSFORMERS_CACHE if isinstance(A_ , A_ ): a : List[Any] = str(A_ ) if isinstance(A_ , A_ ): a : int = str(A_ ) if is_remote_url(A_ ): # URL, so get it from the cache (downloading if necessary) a : Optional[Any] = get_from_cache( A_ , cache_dir=A_ , force_download=A_ , proxies=A_ , resume_download=A_ , user_agent=A_ , local_files_only=A_ , ) elif os.path.exists(A_ ): # File, and it exists. a : Union[str, Any] = url_or_filename elif urlparse(A_ ).scheme == "": # File, but it doesn't exist. raise EnvironmentError("file {} not found".format(A_ ) ) else: # Something unknown raise ValueError("unable to parse {} as a URL or as a local path".format(A_ ) ) if extract_compressed_file: if not is_zipfile(A_ ) and not tarfile.is_tarfile(A_ ): return output_path # Path where we extract compressed archives # We avoid '.' in dir name and add "-extracted" at the end: "./model.zip" => "./model-zip-extracted/" a , a : Dict = os.path.split(A_ ) a : List[str] = output_file.replace("." , "-" ) + "-extracted" a : Optional[Any] = os.path.join(A_ , A_ ) if os.path.isdir(A_ ) and os.listdir(A_ ) and not force_extract: return output_path_extracted # Prevent parallel extractions a : Tuple = output_path + ".lock" with FileLock(A_ ): shutil.rmtree(A_ , ignore_errors=A_ ) os.makedirs(A_ ) if is_zipfile(A_ ): with ZipFile(A_ , "r" ) as zip_file: zip_file.extractall(A_ ) zip_file.close() elif tarfile.is_tarfile(A_ ): a : List[str] = tarfile.open(A_ ) tar_file.extractall(A_ ) tar_file.close() else: raise EnvironmentError("Archive format of {} could not be identified".format(A_ ) ) return output_path_extracted return output_path def lowercase ( A_ , A_="," )-> Union[str, Any]: '''simple docstring''' assert isinstance(A_ , A_ ) if os.path.isfile(A_ ): with open(A_ ) as f: a : str = eval(f.read() ) else: a : List[Any] = requests.get(A_ ) try: a : Any = requests.json() except Exception: a : Any = req.content.decode() assert data is not None, "could not connect" try: a : Optional[Any] = eval(A_ ) except Exception: a : Any = data.split("\n" ) req.close() return data def lowercase ( A_ )-> str: '''simple docstring''' a : Optional[int] = requests.get(A_ ) a : List[str] = np.array(Image.open(BytesIO(response.content ) ) ) return img def lowercase ( A_ )-> Any: '''simple docstring''' a : List[Any] = url.split("/" )[-1] if fn not in os.listdir(os.getcwd() ): wget.download(A_ ) with open(A_ , "rb" ) as stream: a : Any = pkl.load(A_ ) a : List[str] = weights.pop("model" ) a : Dict = {} for k, v in model.items(): a : List[str] = torch.from_numpy(A_ ) if "running_var" in k: a : Dict = torch.tensor([0] ) a : Any = k.replace("running_var" , "num_batches_tracked" ) a : List[Any] = zero return new def lowercase ( )-> Optional[int]: '''simple docstring''' print(F'''{os.path.abspath(os.path.join(A_ , os.pardir ) )}/demo.ipynb''' ) def lowercase ( A_ , A_="RGB" )-> Any: '''simple docstring''' assert isinstance(A_ , A_ ) if os.path.isfile(A_ ): a : Dict = cva.imread(A_ ) else: a : Union[str, Any] = get_image_from_url(A_ ) assert img is not None, F'''could not connect to: {im}''' a : int = cva.cvtColor(A_ , cva.COLOR_BGR2RGB ) if input_format == "RGB": a : List[str] = img[:, :, ::-1] return img def lowercase ( A_ , A_=1 )-> int: '''simple docstring''' return (images[i : i + batch] for i in range(0 , len(A_ ) , A_ ))
226
0
'''simple docstring''' def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : str ) -> list[int]: _a : Union[str, Any] =[0 for i in range(len(_UpperCAmelCase ) )] # initialize interval's left pointer and right pointer _a , _a : List[Any] =0, 0 for i in range(1 ,len(_UpperCAmelCase ) ): # case when current index is inside the interval if i <= right_pointer: _a : Any =min(right_pointer - i + 1 ,z_result[i - left_pointer] ) _a : Dict =min_edge while go_next(_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ): z_result[i] += 1 # if new index's result gives us more right interval, # we've to update left_pointer and right_pointer if i + z_result[i] - 1 > right_pointer: _a , _a : Tuple =i, i + z_result[i] - 1 return z_result def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : int ,_UpperCAmelCase : list[int] ,_UpperCAmelCase : str ) -> bool: return i + z_result[i] < len(_UpperCAmelCase ) and s[z_result[i]] == s[i + z_result[i]] def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : str ,_UpperCAmelCase : str ) -> int: _a : int =0 # concatenate 'pattern' and 'input_str' and call z_function # with concatenated string _a : List[Any] =z_function(pattern + input_str ) for val in z_result: # if value is greater then length of the pattern string # that means this index is starting position of substring # which is equal to pattern string if val >= len(_UpperCAmelCase ): answer += 1 return answer if __name__ == "__main__": import doctest doctest.testmod()
276
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging A__: Dict = logging.get_logger(__name__) A__: Tuple = { '''weiweishi/roc-bert-base-zh''': '''https://huggingface.co/weiweishi/roc-bert-base-zh/resolve/main/config.json''', } class A__ ( UpperCAmelCase__ ): __UpperCamelCase : Tuple = "roc_bert" def __init__( self :Optional[int] , SCREAMING_SNAKE_CASE :Tuple=3_0_5_2_2 , SCREAMING_SNAKE_CASE :List[str]=7_6_8 , SCREAMING_SNAKE_CASE :Dict=1_2 , SCREAMING_SNAKE_CASE :List[str]=1_2 , SCREAMING_SNAKE_CASE :Tuple=3_0_7_2 , SCREAMING_SNAKE_CASE :List[Any]="gelu" , SCREAMING_SNAKE_CASE :Union[str, Any]=0.1 , SCREAMING_SNAKE_CASE :List[Any]=0.1 , SCREAMING_SNAKE_CASE :int=5_1_2 , SCREAMING_SNAKE_CASE :Optional[Any]=2 , SCREAMING_SNAKE_CASE :Union[str, Any]=0.02 , SCREAMING_SNAKE_CASE :Optional[Any]=1e-12 , SCREAMING_SNAKE_CASE :Any=True , SCREAMING_SNAKE_CASE :List[Any]=0 , SCREAMING_SNAKE_CASE :Optional[int]="absolute" , SCREAMING_SNAKE_CASE :Union[str, Any]=None , SCREAMING_SNAKE_CASE :List[Any]=True , SCREAMING_SNAKE_CASE :int=True , SCREAMING_SNAKE_CASE :Optional[int]=7_6_8 , SCREAMING_SNAKE_CASE :Optional[Any]=9_1_0 , SCREAMING_SNAKE_CASE :Union[str, Any]=5_1_2 , SCREAMING_SNAKE_CASE :str=2_4_8_5_8 , SCREAMING_SNAKE_CASE :List[Any]=True , **SCREAMING_SNAKE_CASE :Tuple , ) -> Optional[int]: '''simple docstring''' _a : List[str] =vocab_size _a : List[str] =max_position_embeddings _a : Optional[Any] =hidden_size _a : List[Any] =num_hidden_layers _a : List[str] =num_attention_heads _a : int =intermediate_size _a : Any =hidden_act _a : Dict =hidden_dropout_prob _a : int =attention_probs_dropout_prob _a : str =initializer_range _a : Optional[int] =type_vocab_size _a : Any =layer_norm_eps _a : Any =use_cache _a : Optional[int] =enable_pronunciation _a : Optional[Any] =enable_shape _a : Optional[Any] =pronunciation_embed_dim _a : Tuple =pronunciation_vocab_size _a : Union[str, Any] =shape_embed_dim _a : Any =shape_vocab_size _a : Tuple =concat_input _a : List[str] =position_embedding_type _a : List[str] =classifier_dropout super().__init__(pad_token_id=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE )
276
1
'''simple docstring''' import unittest import numpy as np import requests from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11 else: __lowerCAmelCase = False if is_vision_available(): from PIL import Image from transformers import PixaStructImageProcessor class __magic_name__ ( unittest.TestCase ): def __init__( self : str ,_UpperCAmelCase : Any ,_UpperCAmelCase : int=7 ,_UpperCAmelCase : int=3 ,_UpperCAmelCase : List[str]=18 ,_UpperCAmelCase : str=30 ,_UpperCAmelCase : Tuple=400 ,_UpperCAmelCase : List[Any]=None ,_UpperCAmelCase : List[Any]=True ,_UpperCAmelCase : Any=True ,_UpperCAmelCase : Optional[Any]=None ,): _a : int = size if size is not None else {'height': 20, 'width': 20} _a : List[Any] = parent _a : List[Any] = batch_size _a : List[Any] = num_channels _a : str = image_size _a : Optional[Any] = min_resolution _a : str = max_resolution _a : List[Any] = size _a : int = do_normalize _a : Any = do_convert_rgb _a : Tuple = [512, 1024, 2048, 4096] _a : Tuple = patch_size if patch_size is not None else {'height': 16, 'width': 16} def __lowercase ( self : List[Any] ): return {"do_normalize": self.do_normalize, "do_convert_rgb": self.do_convert_rgb} def __lowercase ( self : List[Any] ): _a : List[str] = 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/australia.jpg' _a : Any = Image.open(requests.get(_UpperCAmelCase ,stream=_UpperCAmelCase ).raw ).convert('RGB' ) return raw_image @unittest.skipIf( not is_torch_greater_or_equal_than_1_11 , reason='`Pix2StructImageProcessor` requires `torch>=1.11.0`.' , ) @require_torch @require_vision class __magic_name__ ( _UpperCamelCase , unittest.TestCase ): lowerCAmelCase : Optional[Any] = PixaStructImageProcessor if is_vision_available() else None def __lowercase ( self : List[Any] ): _a : Dict = PixaStructImageProcessingTester(self ) @property def __lowercase ( self : Dict ): return self.image_processor_tester.prepare_image_processor_dict() def __lowercase ( self : str ): _a : int = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_UpperCAmelCase ,'do_normalize' ) ) self.assertTrue(hasattr(_UpperCAmelCase ,'do_convert_rgb' ) ) def __lowercase ( self : Dict ): _a : List[Any] = self.image_processor_tester.prepare_dummy_image() _a : Optional[int] = self.image_processing_class(**self.image_processor_dict ) _a : List[str] = 2048 _a : Dict = image_processor(_UpperCAmelCase ,return_tensors='pt' ,max_patches=_UpperCAmelCase ) self.assertTrue(torch.allclose(inputs.flattened_patches.mean() ,torch.tensor(0.06_06 ) ,atol=1E-3 ,rtol=1E-3 ) ) def __lowercase ( self : Dict ): # Initialize image_processor _a : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _a : Union[str, Any] = prepare_image_inputs(self.image_processor_tester ,equal_resolution=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase ,Image.Image ) # Test not batched input _a : Dict = ( (self.image_processor_tester.patch_size['height'] * self.image_processor_tester.patch_size['width']) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input _a : Union[str, Any] = image_processor( image_inputs[0] ,return_tensors='pt' ,max_patches=_UpperCAmelCase ).flattened_patches self.assertEqual( encoded_images.shape ,(1, max_patch, expected_hidden_dim) ,) # Test batched _a : Union[str, Any] = image_processor( _UpperCAmelCase ,return_tensors='pt' ,max_patches=_UpperCAmelCase ).flattened_patches self.assertEqual( encoded_images.shape ,(self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) ,) def __lowercase ( self : int ): # Initialize image_processor _a : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _a : int = prepare_image_inputs(self.image_processor_tester ,equal_resolution=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase ,Image.Image ) # Test not batched input _a : Dict = ( (self.image_processor_tester.patch_size['height'] * self.image_processor_tester.patch_size['width']) * self.image_processor_tester.num_channels ) + 2 _a : List[str] = True for max_patch in self.image_processor_tester.max_patches: # Test not batched input with self.assertRaises(_UpperCAmelCase ): _a : str = image_processor( image_inputs[0] ,return_tensors='pt' ,max_patches=_UpperCAmelCase ).flattened_patches _a : Union[str, Any] = 'Hello' _a : str = image_processor( image_inputs[0] ,return_tensors='pt' ,max_patches=_UpperCAmelCase ,header_text=_UpperCAmelCase ).flattened_patches self.assertEqual( encoded_images.shape ,(1, max_patch, expected_hidden_dim) ,) # Test batched _a : Union[str, Any] = image_processor( _UpperCAmelCase ,return_tensors='pt' ,max_patches=_UpperCAmelCase ,header_text=_UpperCAmelCase ).flattened_patches self.assertEqual( encoded_images.shape ,(self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) ,) def __lowercase ( self : int ): # Initialize image_processor _a : Dict = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _a : Dict = prepare_image_inputs(self.image_processor_tester ,equal_resolution=_UpperCAmelCase ,numpify=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase ,np.ndarray ) _a : Any = ( (self.image_processor_tester.patch_size['height'] * self.image_processor_tester.patch_size['width']) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input _a : Dict = image_processor( image_inputs[0] ,return_tensors='pt' ,max_patches=_UpperCAmelCase ).flattened_patches self.assertEqual( encoded_images.shape ,(1, max_patch, expected_hidden_dim) ,) # Test batched _a : str = image_processor( _UpperCAmelCase ,return_tensors='pt' ,max_patches=_UpperCAmelCase ).flattened_patches self.assertEqual( encoded_images.shape ,(self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) ,) def __lowercase ( self : Union[str, Any] ): # Initialize image_processor _a : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _a : List[Any] = prepare_image_inputs(self.image_processor_tester ,equal_resolution=_UpperCAmelCase ,torchify=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase ,torch.Tensor ) # Test not batched input _a : Union[str, Any] = ( (self.image_processor_tester.patch_size['height'] * self.image_processor_tester.patch_size['width']) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input _a : Optional[int] = image_processor( image_inputs[0] ,return_tensors='pt' ,max_patches=_UpperCAmelCase ).flattened_patches self.assertEqual( encoded_images.shape ,(1, max_patch, expected_hidden_dim) ,) # Test batched _a : Union[str, Any] = image_processor( _UpperCAmelCase ,return_tensors='pt' ,max_patches=_UpperCAmelCase ).flattened_patches self.assertEqual( encoded_images.shape ,(self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) ,) @unittest.skipIf( not is_torch_greater_or_equal_than_1_11 , reason='`Pix2StructImageProcessor` requires `torch>=1.11.0`.' , ) @require_torch @require_vision class __magic_name__ ( _UpperCamelCase , unittest.TestCase ): lowerCAmelCase : Optional[int] = PixaStructImageProcessor if is_vision_available() else None def __lowercase ( self : Tuple ): _a : Tuple = PixaStructImageProcessingTester(self ,num_channels=4 ) _a : Tuple = 3 @property def __lowercase ( self : Dict ): return self.image_processor_tester.prepare_image_processor_dict() def __lowercase ( self : Union[str, Any] ): _a : List[Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_UpperCAmelCase ,'do_normalize' ) ) self.assertTrue(hasattr(_UpperCAmelCase ,'do_convert_rgb' ) ) def __lowercase ( self : Tuple ): # Initialize image_processor _a : Any = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _a : Any = prepare_image_inputs(self.image_processor_tester ,equal_resolution=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase ,Image.Image ) # Test not batched input _a : int = ( (self.image_processor_tester.patch_size['height'] * self.image_processor_tester.patch_size['width']) * (self.image_processor_tester.num_channels - 1) ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input _a : Optional[int] = image_processor( image_inputs[0] ,return_tensors='pt' ,max_patches=_UpperCAmelCase ).flattened_patches self.assertEqual( encoded_images.shape ,(1, max_patch, expected_hidden_dim) ,) # Test batched _a : Optional[Any] = image_processor( _UpperCAmelCase ,return_tensors='pt' ,max_patches=_UpperCAmelCase ).flattened_patches self.assertEqual( encoded_images.shape ,(self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) ,)
356
'''simple docstring''' def __lowerCamelCase ( lowerCAmelCase_ ) -> list: if any(not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) or x < 0 for x in sequence ): raise TypeError('Sequence must be list of non-negative integers' ) for _ in range(len(lowerCAmelCase_ ) ): for i, (rod_upper, rod_lower) in enumerate(zip(lowerCAmelCase_ , sequence[1:] ) ): if rod_upper > rod_lower: sequence[i] -= rod_upper - rod_lower sequence[i + 1] += rod_upper - rod_lower return sequence if __name__ == "__main__": assert bead_sort([5, 4, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bead_sort([7, 9, 4, 3, 5]) == [3, 4, 5, 7, 9]
107
0
import json import os from typing import Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _lowerCamelCase : Tuple = logging.get_logger(__name__) _lowerCamelCase : Optional[Any] = { """vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", } _lowerCamelCase : Union[str, Any] = { """vocab_file""": {"""ctrl""": """https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-vocab.json"""}, """merges_file""": {"""ctrl""": """https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-merges.txt"""}, } _lowerCamelCase : Optional[Any] = { """ctrl""": 256, } _lowerCamelCase : Tuple = { """Pregnancy""": 168629, """Christianity""": 7675, """Explain""": 106423, """Fitness""": 63440, """Saving""": 63163, """Ask""": 27171, """Ass""": 95985, """Joke""": 163509, """Questions""": 45622, """Thoughts""": 49605, """Retail""": 52342, """Feminism""": 164338, """Writing""": 11992, """Atheism""": 192263, """Netflix""": 48616, """Computing""": 39639, """Opinion""": 43213, """Alone""": 44967, """Funny""": 58917, """Gaming""": 40358, """Human""": 4088, """India""": 1331, """Joker""": 77138, """Diet""": 36206, """Legal""": 11859, """Norman""": 4939, """Tip""": 72689, """Weight""": 52343, """Movies""": 46273, """Running""": 23425, """Science""": 2090, """Horror""": 37793, """Confession""": 60572, """Finance""": 12250, """Politics""": 16360, """Scary""": 191985, """Support""": 12654, """Technologies""": 32516, """Teenage""": 66160, """Event""": 32769, """Learned""": 67460, """Notion""": 182770, """Wikipedia""": 37583, """Books""": 6665, """Extract""": 76050, """Confessions""": 102701, """Conspiracy""": 75932, """Links""": 63674, """Narcissus""": 150425, """Relationship""": 54766, """Relationships""": 134796, """Reviews""": 41671, """News""": 4256, """Translation""": 26820, """multilingual""": 128406, } def SCREAMING_SNAKE_CASE ( lowercase_ ) -> List[str]: """simple docstring""" A__ = set() A__ = word[0] for char in word[1:]: pairs.add((prev_char, char) ) A__ = char A__ = set(lowercase_ ) return pairs class UpperCamelCase_ ( UpperCAmelCase__ ): '''simple docstring''' UpperCAmelCase__ = VOCAB_FILES_NAMES UpperCAmelCase__ = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__ = CONTROL_CODES def __init__( self : str , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Union[str, Any]="<unk>" , **UpperCAmelCase__ : List[Any]) ->List[str]: '''simple docstring''' super().__init__(unk_token=UpperCAmelCase__ , **UpperCAmelCase__) with open(UpperCAmelCase__ , encoding='''utf-8''') as vocab_handle: A__ = json.load(UpperCAmelCase__) A__ = {v: k for k, v in self.encoder.items()} with open(UpperCAmelCase__ , encoding='''utf-8''') as merges_handle: A__ = merges_handle.read().split('''\n''')[1:-1] A__ = [tuple(merge.split()) for merge in merges] A__ = dict(zip(UpperCAmelCase__ , range(len(UpperCAmelCase__)))) A__ = {} @property def SCREAMING_SNAKE_CASE ( self : List[Any]) ->Union[str, Any]: '''simple docstring''' return len(self.encoder) def SCREAMING_SNAKE_CASE ( self : List[Any]) ->Dict: '''simple docstring''' return dict(self.encoder , **self.added_tokens_encoder) def SCREAMING_SNAKE_CASE ( self : str , UpperCAmelCase__ : List[Any]) ->Optional[Any]: '''simple docstring''' if token in self.cache: return self.cache[token] A__ = tuple(UpperCAmelCase__) A__ = tuple(list(word[:-1]) + [word[-1] + '''</w>''']) A__ = get_pairs(UpperCAmelCase__) if not pairs: return token while True: A__ = min(UpperCAmelCase__ , key=lambda UpperCAmelCase__: self.bpe_ranks.get(UpperCAmelCase__ , float('''inf'''))) if bigram not in self.bpe_ranks: break A__ , A__ = bigram A__ = [] A__ = 0 while i < len(UpperCAmelCase__): try: A__ = word.index(UpperCAmelCase__ , UpperCAmelCase__) except ValueError: new_word.extend(word[i:]) break else: new_word.extend(word[i:j]) A__ = j if word[i] == first and i < len(UpperCAmelCase__) - 1 and word[i + 1] == second: new_word.append(first + second) i += 2 else: new_word.append(word[i]) i += 1 A__ = tuple(UpperCAmelCase__) A__ = new_word if len(UpperCAmelCase__) == 1: break else: A__ = get_pairs(UpperCAmelCase__) A__ = '''@@ '''.join(UpperCAmelCase__) A__ = word[:-4] A__ = word return word def SCREAMING_SNAKE_CASE ( self : str , UpperCAmelCase__ : Any) ->Optional[int]: '''simple docstring''' A__ = [] A__ = re.findall(R'''\S+\n?''' , UpperCAmelCase__) for token in words: split_tokens.extend(list(self.bpe(UpperCAmelCase__).split(''' '''))) return split_tokens def SCREAMING_SNAKE_CASE ( self : Optional[Any] , UpperCAmelCase__ : List[str]) ->Any: '''simple docstring''' return self.encoder.get(UpperCAmelCase__ , self.encoder.get(self.unk_token)) def SCREAMING_SNAKE_CASE ( self : Optional[int] , UpperCAmelCase__ : str) ->int: '''simple docstring''' return self.decoder.get(UpperCAmelCase__ , self.unk_token) def SCREAMING_SNAKE_CASE ( self : Tuple , UpperCAmelCase__ : Tuple) ->Union[str, Any]: '''simple docstring''' A__ = ''' '''.join(UpperCAmelCase__).replace('''@@ ''' , '''''').strip() return out_string def SCREAMING_SNAKE_CASE ( self : Any , UpperCAmelCase__ : str , UpperCAmelCase__ : Optional[str] = None) ->Tuple[str]: '''simple docstring''' if not os.path.isdir(UpperCAmelCase__): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""") return A__ = os.path.join( UpperCAmelCase__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file''']) A__ = os.path.join( UpperCAmelCase__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file''']) with open(UpperCAmelCase__ , '''w''' , encoding='''utf-8''') as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=UpperCAmelCase__ , ensure_ascii=UpperCAmelCase__) + '''\n''') A__ = 0 with open(UpperCAmelCase__ , '''w''' , encoding='''utf-8''') as writer: writer.write('''#version: 0.2\n''') for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda UpperCAmelCase__: kv[1]): if index != token_index: logger.warning( f"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" ''' Please check that the tokenizer is not corrupted!''') A__ = token_index writer.write(''' '''.join(UpperCAmelCase__) + '''\n''') index += 1 return vocab_file, merge_file # def decode(self, token_ids, skip_special_tokens=False, clean_up_tokenization_spaces=True): # filtered_tokens = ' '.join(self.convert_ids_to_tokens(token_ids, skip_special_tokens=skip_special_tokens)) # tokens_generated_so_far = re.sub('(@@ )', '', string=filtered_tokens) # tokens_generated_so_far = re.sub('(@@ ?$)', '', string=tokens_generated_so_far) # return ''.join(tokens_generated_so_far)
14
'''simple docstring''' import gc import inspect import unittest import torch from parameterized import parameterized from diffusers import PriorTransformer from diffusers.utils import floats_tensor, slow, torch_all_close, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin enable_full_determinism() class __magic_name__ ( _UpperCAmelCase, unittest.TestCase): UpperCamelCase__ = PriorTransformer UpperCamelCase__ = '''hidden_states''' @property def SCREAMING_SNAKE_CASE_ ( self : int ): lowercase_ : Optional[Any] = 4 lowercase_ : int = 8 lowercase_ : Union[str, Any] = 7 lowercase_ : List[str] = floats_tensor((batch_size, embedding_dim) ).to(lowercase_ ) lowercase_ : Tuple = floats_tensor((batch_size, embedding_dim) ).to(lowercase_ ) lowercase_ : List[str] = floats_tensor((batch_size, num_embeddings, embedding_dim) ).to(lowercase_ ) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } def SCREAMING_SNAKE_CASE_ ( self : List[str] , lowercase_ : Optional[Any]=0 ): torch.manual_seed(lowercase_ ) lowercase_ : int = 4 lowercase_ : Any = 8 lowercase_ : Tuple = 7 lowercase_ : Union[str, Any] = torch.randn((batch_size, embedding_dim) ).to(lowercase_ ) lowercase_ : Tuple = torch.randn((batch_size, embedding_dim) ).to(lowercase_ ) lowercase_ : Union[str, Any] = torch.randn((batch_size, num_embeddings, embedding_dim) ).to(lowercase_ ) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } @property def SCREAMING_SNAKE_CASE_ ( self : str ): return (4, 8) @property def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): return (4, 8) def SCREAMING_SNAKE_CASE_ ( self : Tuple ): lowercase_ : Optional[Any] = { """num_attention_heads""": 2, """attention_head_dim""": 4, """num_layers""": 2, """embedding_dim""": 8, """num_embeddings""": 7, """additional_embeddings""": 4, } lowercase_ : List[Any] = self.dummy_input return init_dict, inputs_dict def SCREAMING_SNAKE_CASE_ ( self : List[str] ): lowercase_ , lowercase_ : Tuple = PriorTransformer.from_pretrained( """hf-internal-testing/prior-dummy""" , output_loading_info=lowercase_ ) self.assertIsNotNone(lowercase_ ) self.assertEqual(len(loading_info["""missing_keys"""] ) , 0 ) model.to(lowercase_ ) lowercase_ : Optional[int] = model(**self.dummy_input )[0] assert hidden_states is not None, "Make sure output is not None" def SCREAMING_SNAKE_CASE_ ( self : Any ): lowercase_ , lowercase_ : str = self.prepare_init_args_and_inputs_for_common() lowercase_ : List[Any] = self.model_class(**lowercase_ ) lowercase_ : Any = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase_ : Any = [*signature.parameters.keys()] lowercase_ : Optional[Any] = ["""hidden_states""", """timestep"""] self.assertListEqual(arg_names[:2] , lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : List[str] ): lowercase_ : Optional[Any] = PriorTransformer.from_pretrained("""hf-internal-testing/prior-dummy""" ) lowercase_ : Any = model.to(lowercase_ ) if hasattr(lowercase_ , """set_default_attn_processor""" ): model.set_default_attn_processor() lowercase_ : Any = self.get_dummy_seed_input() with torch.no_grad(): lowercase_ : List[str] = model(**lowercase_ )[0] lowercase_ : Tuple = output[0, :5].flatten().cpu() print(lowercase_ ) # Since the VAE Gaussian prior's generator is seeded on the appropriate device, # the expected output slices are not the same for CPU and GPU. lowercase_ : Dict = torch.tensor([-1.34_36, -0.28_70, 0.75_38, 0.43_68, -0.02_39] ) self.assertTrue(torch_all_close(lowercase_ , lowercase_ , rtol=1E-2 ) ) @slow class __magic_name__ ( unittest.TestCase): def SCREAMING_SNAKE_CASE_ ( self : List[Any] , lowercase_ : Union[str, Any]=1 , lowercase_ : Optional[Any]=768 , lowercase_ : Tuple=77 , lowercase_ : Optional[int]=0 ): torch.manual_seed(lowercase_ ) lowercase_ : Optional[Any] = batch_size lowercase_ : int = embedding_dim lowercase_ : int = num_embeddings lowercase_ : Dict = torch.randn((batch_size, embedding_dim) ).to(lowercase_ ) lowercase_ : Any = torch.randn((batch_size, embedding_dim) ).to(lowercase_ ) lowercase_ : List[Any] = torch.randn((batch_size, num_embeddings, embedding_dim) ).to(lowercase_ ) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } def SCREAMING_SNAKE_CASE_ ( self : Any ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @parameterized.expand( [ # fmt: off [13, [-0.58_61, 0.12_83, -0.09_31, 0.08_82, 0.44_76, 0.13_29, -0.04_98, 0.06_40]], [37, [-0.49_13, 0.01_10, -0.04_83, 0.05_41, 0.49_54, -0.01_70, 0.03_54, 0.16_51]], # fmt: on ] ) def SCREAMING_SNAKE_CASE_ ( self : int , lowercase_ : Any , lowercase_ : List[str] ): lowercase_ : List[Any] = PriorTransformer.from_pretrained("""kandinsky-community/kandinsky-2-1-prior""" , subfolder="""prior""" ) model.to(lowercase_ ) lowercase_ : Optional[Any] = self.get_dummy_seed_input(seed=lowercase_ ) with torch.no_grad(): lowercase_ : Tuple = model(**lowercase_ )[0] assert list(sample.shape ) == [1, 768] lowercase_ : Union[str, Any] = sample[0, :8].flatten().cpu() print(lowercase_ ) lowercase_ : Optional[Any] = torch.tensor(lowercase_ ) assert torch_all_close(lowercase_ , lowercase_ , atol=1E-3 )
239
0
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class UpperCAmelCase ( unittest.TestCase): def __init__( self : Optional[Any], a_ : int, a_ : Union[str, Any]=7, a_ : List[Any]=3, a_ : Optional[int]=18, a_ : Union[str, Any]=30, a_ : Any=400, a_ : Union[str, Any]=True, a_ : Any=None, a_ : Union[str, Any]=True, a_ : str=None, a_ : List[Any]=True, ): """simple docstring""" UpperCamelCase__ = size if size is not None else {"shortest_edge": 20} UpperCamelCase__ = crop_size if crop_size is not None else {"height": 18, "width": 18} UpperCamelCase__ = parent UpperCamelCase__ = batch_size UpperCamelCase__ = num_channels UpperCamelCase__ = image_size UpperCamelCase__ = min_resolution UpperCamelCase__ = max_resolution UpperCamelCase__ = do_resize UpperCamelCase__ = size UpperCamelCase__ = do_center_crop UpperCamelCase__ = crop_size UpperCamelCase__ = do_flip_channel_order def lowercase_ ( self : Dict ): """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_flip_channel_order": self.do_flip_channel_order, } @require_torch @require_vision class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ , unittest.TestCase): _lowerCamelCase : str = MobileViTImageProcessor if is_vision_available() else None def lowercase_ ( self : Optional[Any] ): """simple docstring""" UpperCamelCase__ = MobileViTImageProcessingTester(self ) @property def lowercase_ ( self : List[Any] ): """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def lowercase_ ( self : Optional[int] ): """simple docstring""" UpperCamelCase__ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(a_, "do_resize" ) ) self.assertTrue(hasattr(a_, "size" ) ) self.assertTrue(hasattr(a_, "do_center_crop" ) ) self.assertTrue(hasattr(a_, "center_crop" ) ) self.assertTrue(hasattr(a_, "do_flip_channel_order" ) ) def lowercase_ ( self : List[Any] ): """simple docstring""" UpperCamelCase__ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size, {"shortest_edge": 20} ) self.assertEqual(image_processor.crop_size, {"height": 18, "width": 18} ) UpperCamelCase__ = self.image_processing_class.from_dict(self.image_processor_dict, size=42, crop_size=84 ) self.assertEqual(image_processor.size, {"shortest_edge": 42} ) self.assertEqual(image_processor.crop_size, {"height": 84, "width": 84} ) def lowercase_ ( self : Tuple ): """simple docstring""" pass def lowercase_ ( self : int ): """simple docstring""" UpperCamelCase__ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCamelCase__ = prepare_image_inputs(self.image_processor_tester, equal_resolution=a_ ) for image in image_inputs: self.assertIsInstance(a_, Image.Image ) # Test not batched input UpperCamelCase__ = image_processing(image_inputs[0], return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape, ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ), ) # Test batched UpperCamelCase__ = image_processing(a_, return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ), ) def lowercase_ ( self : Union[str, Any] ): """simple docstring""" UpperCamelCase__ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCamelCase__ = prepare_image_inputs(self.image_processor_tester, equal_resolution=a_, numpify=a_ ) for image in image_inputs: self.assertIsInstance(a_, np.ndarray ) # Test not batched input UpperCamelCase__ = image_processing(image_inputs[0], return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape, ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ), ) # Test batched UpperCamelCase__ = image_processing(a_, return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ), ) def lowercase_ ( self : Union[str, Any] ): """simple docstring""" UpperCamelCase__ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCamelCase__ = prepare_image_inputs(self.image_processor_tester, equal_resolution=a_, torchify=a_ ) for image in image_inputs: self.assertIsInstance(a_, torch.Tensor ) # Test not batched input UpperCamelCase__ = image_processing(image_inputs[0], return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape, ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ), ) # Test batched UpperCamelCase__ = image_processing(a_, return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ), )
31
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __lowercase: str = logging.get_logger(__name__) __lowercase: Optional[Any] = { "abeja/gpt-neox-japanese-2.7b": "https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/config.json", } class UpperCAmelCase ( SCREAMING_SNAKE_CASE__): _lowerCamelCase : Any = 'gpt_neox_japanese' def __init__( self : List[str], a_ : Union[str, Any]=3_2000, a_ : str=2560, a_ : Dict=32, a_ : Tuple=32, a_ : Union[str, Any]=4, a_ : Union[str, Any]="gelu", a_ : int=1.00, a_ : Dict=1_0000, a_ : Any=2048, a_ : Optional[int]=0.02, a_ : int=1e-5, a_ : int=True, a_ : Optional[int]=3_1996, a_ : List[str]=3_1999, a_ : List[str]=0.1, a_ : Optional[int]=0.0, **a_ : Tuple, ): """simple docstring""" super().__init__(bos_token_id=a_, eos_token_id=a_, **a_ ) UpperCamelCase__ = vocab_size UpperCamelCase__ = max_position_embeddings UpperCamelCase__ = hidden_size UpperCamelCase__ = num_hidden_layers UpperCamelCase__ = num_attention_heads UpperCamelCase__ = intermediate_multiple_size UpperCamelCase__ = hidden_act UpperCamelCase__ = rotary_pct UpperCamelCase__ = rotary_emb_base UpperCamelCase__ = initializer_range UpperCamelCase__ = layer_norm_eps UpperCamelCase__ = use_cache UpperCamelCase__ = attention_dropout UpperCamelCase__ = hidden_dropout
31
1
lowercase_ = "Alexander Joslin" import operator as op from .stack import Stack def _snake_case( SCREAMING_SNAKE_CASE__ : str ) -> int: '''simple docstring''' A__ = {'*': op.mul, '/': op.truediv, '+': op.add, '-': op.sub} A__ = Stack() A__ = Stack() for i in equation: if i.isdigit(): # RULE 1 operand_stack.push(int(SCREAMING_SNAKE_CASE__ ) ) elif i in operators: # RULE 2 operator_stack.push(SCREAMING_SNAKE_CASE__ ) elif i == ")": # RULE 4 A__ = operator_stack.peek() operator_stack.pop() A__ = operand_stack.peek() operand_stack.pop() A__ = operand_stack.peek() operand_stack.pop() A__ = operators[opr](SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) operand_stack.push(SCREAMING_SNAKE_CASE__ ) # RULE 5 return operand_stack.peek() if __name__ == "__main__": lowercase_ = "(5 + ((4 * 2) * (2 + 3)))" # answer = 45 print(f"""{equation} = {dijkstras_two_stack_algorithm(equation)}""")
7
"""simple docstring""" def _SCREAMING_SNAKE_CASE ( __snake_case : int = 1_00 ): '''simple docstring''' lowercase = 0 lowercase = 0 for i in range(1 , n + 1 ): sum_of_squares += i**2 sum_of_ints += i return sum_of_ints**2 - sum_of_squares if __name__ == "__main__": print(F'''{solution() = }''')
220
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_tf_available, is_torch_available, ) __A : List[str] = { 'configuration_speech_to_text': ['SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Speech2TextConfig'], 'processing_speech_to_text': ['Speech2TextProcessor'], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Union[str, Any] = ['Speech2TextTokenizer'] try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : List[Any] = ['Speech2TextFeatureExtractor'] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Dict = [ 'TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFSpeech2TextForConditionalGeneration', 'TFSpeech2TextModel', 'TFSpeech2TextPreTrainedModel', ] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Dict = [ 'SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST', 'Speech2TextForConditionalGeneration', 'Speech2TextModel', 'Speech2TextPreTrainedModel', ] if TYPE_CHECKING: from .configuration_speech_to_text import SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, SpeechaTextConfig from .processing_speech_to_text import SpeechaTextProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speech_to_text import SpeechaTextTokenizer try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_speech_to_text import SpeechaTextFeatureExtractor try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_speech_to_text import ( TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, TFSpeechaTextForConditionalGeneration, TFSpeechaTextModel, TFSpeechaTextPreTrainedModel, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_to_text import ( SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechaTextForConditionalGeneration, SpeechaTextModel, SpeechaTextPreTrainedModel, ) else: import sys __A : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
371
"""simple docstring""" import json import os import shutil import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoConfig, BertConfig, GPTaConfig from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import TOKEN, USER, is_staging_test sys.path.append(str(Path(__file__).parent.parent / 'utils')) from test_module.custom_configuration import CustomConfig # noqa E402 __A : Tuple = { 'return_dict': False, 'output_hidden_states': True, 'output_attentions': True, 'torchscript': True, 'torch_dtype': 'float16', 'use_bfloat16': True, 'tf_legacy_loss': True, 'pruned_heads': {'a': 1}, 'tie_word_embeddings': False, 'is_decoder': True, 'cross_attention_hidden_size': 1_28, 'add_cross_attention': True, 'tie_encoder_decoder': True, 'max_length': 50, 'min_length': 3, 'do_sample': True, 'early_stopping': True, 'num_beams': 3, 'num_beam_groups': 3, 'diversity_penalty': 0.5, 'temperature': 2.0, 'top_k': 10, 'top_p': 0.7, 'typical_p': 0.2, 'repetition_penalty': 0.8, 'length_penalty': 0.8, 'no_repeat_ngram_size': 5, 'encoder_no_repeat_ngram_size': 5, 'bad_words_ids': [1, 2, 3], 'num_return_sequences': 3, 'chunk_size_feed_forward': 5, 'output_scores': True, 'return_dict_in_generate': True, 'forced_bos_token_id': 2, 'forced_eos_token_id': 3, 'remove_invalid_values': True, 'architectures': ['BertModel'], 'finetuning_task': 'translation', 'id2label': {0: 'label'}, 'label2id': {'label': '0'}, 'tokenizer_class': 'BertTokenizerFast', 'prefix': 'prefix', 'bos_token_id': 6, 'pad_token_id': 7, 'eos_token_id': 8, 'sep_token_id': 9, 'decoder_start_token_id': 10, 'exponential_decay_length_penalty': (5, 1.01), 'suppress_tokens': [0, 1], 'begin_suppress_tokens': 2, 'task_specific_params': {'translation': 'some_params'}, 'problem_type': 'regression', } @is_staging_test class __UpperCamelCase ( unittest.TestCase ): @classmethod def SCREAMING_SNAKE_CASE__ (cls : int): A = TOKEN HfFolder.save_token(__SCREAMING_SNAKE_CASE) @classmethod def SCREAMING_SNAKE_CASE__ (cls : Dict): try: delete_repo(token=cls._token , repo_id="test-config") except HTTPError: pass try: delete_repo(token=cls._token , repo_id="valid_org/test-config-org") except HTTPError: pass try: delete_repo(token=cls._token , repo_id="test-dynamic-config") except HTTPError: pass def SCREAMING_SNAKE_CASE__ (self : Dict): A = BertConfig( vocab_size=9_9 , hidden_size=3_2 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=3_7) config.push_to_hub("test-config" , use_auth_token=self._token) A = BertConfig.from_pretrained(F"""{USER}/test-config""") for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__SCREAMING_SNAKE_CASE , getattr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE)) # Reset repo delete_repo(token=self._token , repo_id="test-config") # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(__SCREAMING_SNAKE_CASE , repo_id="test-config" , push_to_hub=__SCREAMING_SNAKE_CASE , use_auth_token=self._token) A = BertConfig.from_pretrained(F"""{USER}/test-config""") for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__SCREAMING_SNAKE_CASE , getattr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE)) def SCREAMING_SNAKE_CASE__ (self : int): A = BertConfig( vocab_size=9_9 , hidden_size=3_2 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=3_7) config.push_to_hub("valid_org/test-config-org" , use_auth_token=self._token) A = BertConfig.from_pretrained("valid_org/test-config-org") for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__SCREAMING_SNAKE_CASE , getattr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE)) # Reset repo delete_repo(token=self._token , repo_id="valid_org/test-config-org") # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( __SCREAMING_SNAKE_CASE , repo_id="valid_org/test-config-org" , push_to_hub=__SCREAMING_SNAKE_CASE , use_auth_token=self._token) A = BertConfig.from_pretrained("valid_org/test-config-org") for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__SCREAMING_SNAKE_CASE , getattr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE)) def SCREAMING_SNAKE_CASE__ (self : Union[str, Any]): CustomConfig.register_for_auto_class() A = CustomConfig(attribute=4_2) config.push_to_hub("test-dynamic-config" , use_auth_token=self._token) # This has added the proper auto_map field to the config self.assertDictEqual(config.auto_map , {"AutoConfig": "custom_configuration.CustomConfig"}) A = AutoConfig.from_pretrained(F"""{USER}/test-dynamic-config""" , trust_remote_code=__SCREAMING_SNAKE_CASE) # Can't make an isinstance check because the new_config is from the FakeConfig class of a dynamic module self.assertEqual(new_config.__class__.__name__ , "CustomConfig") self.assertEqual(new_config.attribute , 4_2) class __UpperCamelCase ( unittest.TestCase ): def SCREAMING_SNAKE_CASE__ (self : Optional[Any]): A = GPTaConfig() # attempt to modify each of int/float/bool/str config records and verify they were updated A = c.n_embd + 1 # int A = c.resid_pdrop + 1.0 # float A = not c.scale_attn_weights # bool A = c.summary_type + "foo" # str c.update_from_string( F"""n_embd={n_embd},resid_pdrop={resid_pdrop},scale_attn_weights={scale_attn_weights},summary_type={summary_type}""") self.assertEqual(__SCREAMING_SNAKE_CASE , c.n_embd , "mismatch for key: n_embd") self.assertEqual(__SCREAMING_SNAKE_CASE , c.resid_pdrop , "mismatch for key: resid_pdrop") self.assertEqual(__SCREAMING_SNAKE_CASE , c.scale_attn_weights , "mismatch for key: scale_attn_weights") self.assertEqual(__SCREAMING_SNAKE_CASE , c.summary_type , "mismatch for key: summary_type") def SCREAMING_SNAKE_CASE__ (self : Dict): A = PretrainedConfig() A = [key for key in base_config.__dict__ if key not in config_common_kwargs] # If this part of the test fails, you have arguments to addin config_common_kwargs above. self.assertListEqual( __SCREAMING_SNAKE_CASE , ["is_encoder_decoder", "_name_or_path", "_commit_hash", "transformers_version"]) A = [key for key, value in config_common_kwargs.items() if value == getattr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE)] if len(__SCREAMING_SNAKE_CASE) > 0: raise ValueError( "The following keys are set with the default values in" " `test_configuration_common.config_common_kwargs` pick another value for them:" F""" {", ".join(__SCREAMING_SNAKE_CASE)}.""") def SCREAMING_SNAKE_CASE__ (self : Dict): with self.assertRaises(__SCREAMING_SNAKE_CASE): # config is in subfolder, the following should not work without specifying the subfolder A = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert-subfolder") A = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert-subfolder" , subfolder="bert") self.assertIsNotNone(__SCREAMING_SNAKE_CASE) def SCREAMING_SNAKE_CASE__ (self : int): # A mock response for an HTTP head request to emulate server down A = mock.Mock() A = 5_0_0 A = {} A = HTTPError A = {} # Download this model to make sure it's in the cache. A = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert") # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch("requests.Session.request" , return_value=__SCREAMING_SNAKE_CASE) as mock_head: A = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert") # This check we did call the fake head request mock_head.assert_called() def SCREAMING_SNAKE_CASE__ (self : Optional[int]): # This test is for deprecated behavior and can be removed in v5 A = BertConfig.from_pretrained( "https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/config.json") def SCREAMING_SNAKE_CASE__ (self : Union[str, Any]): A = AutoConfig.from_pretrained("bert-base-cased") A = ["config.4.0.0.json"] with tempfile.TemporaryDirectory() as tmp_dir: configuration.save_pretrained(__SCREAMING_SNAKE_CASE) A = 2 json.dump(configuration.to_dict() , open(os.path.join(__SCREAMING_SNAKE_CASE , "config.4.0.0.json") , "w")) # This should pick the new configuration file as the version of Transformers is > 4.0.0 A = AutoConfig.from_pretrained(__SCREAMING_SNAKE_CASE) self.assertEqual(new_configuration.hidden_size , 2) # Will need to be adjusted if we reach v42 and this test is still here. # Should pick the old configuration file as the version of Transformers is < 4.42.0 A = ["config.42.0.0.json"] A = 7_6_8 configuration.save_pretrained(__SCREAMING_SNAKE_CASE) shutil.move(os.path.join(__SCREAMING_SNAKE_CASE , "config.4.0.0.json") , os.path.join(__SCREAMING_SNAKE_CASE , "config.42.0.0.json")) A = AutoConfig.from_pretrained(__SCREAMING_SNAKE_CASE) self.assertEqual(new_configuration.hidden_size , 7_6_8) def SCREAMING_SNAKE_CASE__ (self : Optional[int]): # This repo has two configuration files, one for v4.0.0 and above with a different hidden size. A = "hf-internal-testing/test-two-configs" import transformers as new_transformers A = "v4.0.0" A , A = new_transformers.models.auto.AutoConfig.from_pretrained( __SCREAMING_SNAKE_CASE , return_unused_kwargs=__SCREAMING_SNAKE_CASE) self.assertEqual(new_configuration.hidden_size , 2) # This checks `_configuration_file` ia not kept in the kwargs by mistake. self.assertDictEqual(__SCREAMING_SNAKE_CASE , {}) # Testing an older version by monkey-patching the version in the module it's used. import transformers as old_transformers A = "v3.0.0" A = old_transformers.models.auto.AutoConfig.from_pretrained(__SCREAMING_SNAKE_CASE) self.assertEqual(old_configuration.hidden_size , 7_6_8)
57
0
import inspect import unittest import warnings from math import ceil, floor from transformers import LevitConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, MODEL_MAPPING, LevitForImageClassification, LevitForImageClassificationWithTeacher, LevitModel, ) from transformers.models.levit.modeling_levit import LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LevitImageProcessor class _UpperCamelCase ( _UpperCAmelCase ): """simple docstring""" def _SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: '''simple docstring''' __lowercase = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(lowerCAmelCase__ , '''hidden_sizes''' ) ) self.parent.assertTrue(hasattr(lowerCAmelCase__ , '''num_attention_heads''' ) ) class _UpperCamelCase : """simple docstring""" def __init__( self , lowerCAmelCase__ , lowerCAmelCase__=13 , lowerCAmelCase__=64 , lowerCAmelCase__=3 , lowerCAmelCase__=3 , lowerCAmelCase__=2 , lowerCAmelCase__=1 , lowerCAmelCase__=16 , lowerCAmelCase__=[1_28, 2_56, 3_84] , lowerCAmelCase__=[4, 6, 8] , lowerCAmelCase__=[2, 3, 4] , lowerCAmelCase__=[16, 16, 16] , lowerCAmelCase__=0 , lowerCAmelCase__=[2, 2, 2] , lowerCAmelCase__=[2, 2, 2] , lowerCAmelCase__=0.02 , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__=2 , ) -> Tuple: '''simple docstring''' __lowercase = parent __lowercase = batch_size __lowercase = image_size __lowercase = num_channels __lowercase = kernel_size __lowercase = stride __lowercase = padding __lowercase = hidden_sizes __lowercase = num_attention_heads __lowercase = depths __lowercase = key_dim __lowercase = drop_path_rate __lowercase = patch_size __lowercase = attention_ratio __lowercase = mlp_ratio __lowercase = initializer_range __lowercase = [ ['''Subsample''', key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ['''Subsample''', key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] __lowercase = is_training __lowercase = use_labels __lowercase = num_labels __lowercase = initializer_range def _SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: '''simple docstring''' __lowercase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowercase = None if self.use_labels: __lowercase = ids_tensor([self.batch_size] , self.num_labels ) __lowercase = self.get_config() return config, pixel_values, labels def _SCREAMING_SNAKE_CASE ( self ) -> int: '''simple docstring''' return LevitConfig( image_size=self.image_size , num_channels=self.num_channels , kernel_size=self.kernel_size , stride=self.stride , padding=self.padding , patch_size=self.patch_size , hidden_sizes=self.hidden_sizes , num_attention_heads=self.num_attention_heads , depths=self.depths , key_dim=self.key_dim , drop_path_rate=self.drop_path_rate , mlp_ratio=self.mlp_ratio , attention_ratio=self.attention_ratio , initializer_range=self.initializer_range , down_ops=self.down_ops , ) def _SCREAMING_SNAKE_CASE ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Tuple: '''simple docstring''' __lowercase = LevitModel(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __lowercase = model(lowerCAmelCase__ ) __lowercase = (self.image_size, self.image_size) __lowercase , __lowercase = image_size[0], image_size[1] for _ in range(4 ): __lowercase = floor(((height + 2 * self.padding - self.kernel_size) / self.stride) + 1 ) __lowercase = floor(((width + 2 * self.padding - self.kernel_size) / self.stride) + 1 ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, ceil(height / 4 ) * ceil(width / 4 ), self.hidden_sizes[-1]) , ) def _SCREAMING_SNAKE_CASE ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> str: '''simple docstring''' __lowercase = self.num_labels __lowercase = LevitForImageClassification(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __lowercase = model(lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: '''simple docstring''' __lowercase = self.prepare_config_and_inputs() __lowercase , __lowercase , __lowercase = config_and_inputs __lowercase = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class _UpperCamelCase ( _UpperCAmelCase ,_UpperCAmelCase ,unittest.TestCase ): """simple docstring""" __a : int = ( (LevitModel, LevitForImageClassification, LevitForImageClassificationWithTeacher) if is_torch_available() else () ) __a : List[str] = ( { '''feature-extraction''': LevitModel, '''image-classification''': (LevitForImageClassification, LevitForImageClassificationWithTeacher), } if is_torch_available() else {} ) __a : int = False __a : Dict = False __a : Optional[Any] = False __a : Optional[int] = False __a : Dict = False def _SCREAMING_SNAKE_CASE ( self ) -> List[Any]: '''simple docstring''' __lowercase = LevitModelTester(self ) __lowercase = ConfigTester(self , config_class=lowerCAmelCase__ , has_text_modality=lowerCAmelCase__ , hidden_size=37 ) def _SCREAMING_SNAKE_CASE ( self ) -> List[Any]: '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _SCREAMING_SNAKE_CASE ( self ) -> List[str]: '''simple docstring''' return @unittest.skip(reason='''Levit does not use inputs_embeds''' ) def _SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: '''simple docstring''' pass @unittest.skip(reason='''Levit does not support input and output embeddings''' ) def _SCREAMING_SNAKE_CASE ( self ) -> List[str]: '''simple docstring''' pass @unittest.skip(reason='''Levit does not output attentions''' ) def _SCREAMING_SNAKE_CASE ( self ) -> Tuple: '''simple docstring''' pass def _SCREAMING_SNAKE_CASE ( self ) -> str: '''simple docstring''' __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase = model_class(lowerCAmelCase__ ) __lowercase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowercase = [*signature.parameters.keys()] __lowercase = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , lowerCAmelCase__ ) def _SCREAMING_SNAKE_CASE ( self ) -> List[str]: '''simple docstring''' def check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): __lowercase = model_class(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() with torch.no_grad(): __lowercase = model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) ) __lowercase = outputs.hidden_states __lowercase = len(self.model_tester.depths ) + 1 self.assertEqual(len(lowerCAmelCase__ ) , lowerCAmelCase__ ) __lowercase = (self.model_tester.image_size, self.model_tester.image_size) __lowercase , __lowercase = image_size[0], image_size[1] for _ in range(4 ): __lowercase = floor( ( (height + 2 * self.model_tester.padding - self.model_tester.kernel_size) / self.model_tester.stride ) + 1 ) __lowercase = floor( ( (width + 2 * self.model_tester.padding - self.model_tester.kernel_size) / self.model_tester.stride ) + 1 ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [ height * width, self.model_tester.hidden_sizes[0], ] , ) __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase = True check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowercase = True check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def _SCREAMING_SNAKE_CASE ( self ) -> int: '''simple docstring''' pass def _SCREAMING_SNAKE_CASE ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=False ) -> str: '''simple docstring''' __lowercase = super()._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ , return_labels=lowerCAmelCase__ ) if return_labels: if model_class.__name__ == "LevitForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def _SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: '''simple docstring''' __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase__ ) def _SCREAMING_SNAKE_CASE ( self ) -> Dict: '''simple docstring''' __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase__ ) def _SCREAMING_SNAKE_CASE ( self ) -> List[str]: '''simple docstring''' if not self.model_tester.is_training: return __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() __lowercase = True for model_class in self.all_model_classes: # LevitForImageClassificationWithTeacher supports inference-only if ( model_class in get_values(lowerCAmelCase__ ) or model_class.__name__ == "LevitForImageClassificationWithTeacher" ): continue __lowercase = model_class(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.train() __lowercase = self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ , return_labels=lowerCAmelCase__ ) __lowercase = model(**lowerCAmelCase__ ).loss loss.backward() def _SCREAMING_SNAKE_CASE ( self ) -> Any: '''simple docstring''' __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return __lowercase = False __lowercase = True for model_class in self.all_model_classes: if model_class in get_values(lowerCAmelCase__ ) or not model_class.supports_gradient_checkpointing: continue # LevitForImageClassificationWithTeacher supports inference-only if model_class.__name__ == "LevitForImageClassificationWithTeacher": continue __lowercase = model_class(lowerCAmelCase__ ) model.gradient_checkpointing_enable() model.to(lowerCAmelCase__ ) model.train() __lowercase = self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ , return_labels=lowerCAmelCase__ ) __lowercase = model(**lowerCAmelCase__ ).loss loss.backward() def _SCREAMING_SNAKE_CASE ( self ) -> str: '''simple docstring''' __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() __lowercase = [ {'''title''': '''multi_label_classification''', '''num_labels''': 2, '''dtype''': torch.float}, {'''title''': '''single_label_classification''', '''num_labels''': 1, '''dtype''': torch.long}, {'''title''': '''regression''', '''num_labels''': 1, '''dtype''': torch.float}, ] for model_class in self.all_model_classes: if ( model_class not in [ *get_values(lowerCAmelCase__ ), ] or model_class.__name__ == "LevitForImageClassificationWithTeacher" ): continue for problem_type in problem_types: with self.subTest(msg=F"Testing {model_class} with {problem_type['title']}" ): __lowercase = problem_type['''title'''] __lowercase = problem_type['''num_labels'''] __lowercase = model_class(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.train() __lowercase = self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ , return_labels=lowerCAmelCase__ ) if problem_type["num_labels"] > 1: __lowercase = inputs['''labels'''].unsqueeze(1 ).repeat(1 , problem_type['''num_labels'''] ) __lowercase = inputs['''labels'''].to(problem_type['''dtype'''] ) # This tests that we do not trigger the warning form PyTorch "Using a target size that is different # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure # they have the same size." which is a symptom something in wrong for the regression problem. # See https://github.com/huggingface/transformers/issues/11780 with warnings.catch_warnings(record=lowerCAmelCase__ ) as warning_list: __lowercase = model(**lowerCAmelCase__ ).loss for w in warning_list: if "Using a target size that is different to the input size" in str(w.message ): raise ValueError( F"Something is going wrong in the regression problem: intercepted {w.message}" ) loss.backward() @slow def _SCREAMING_SNAKE_CASE ( self ) -> Dict: '''simple docstring''' for model_name in LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase = LevitModel.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) def UpperCAmelCase ( ): """simple docstring""" __lowercase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class _UpperCamelCase ( unittest.TestCase ): """simple docstring""" @cached_property def _SCREAMING_SNAKE_CASE ( self ) -> str: '''simple docstring''' return LevitImageProcessor.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def _SCREAMING_SNAKE_CASE ( self ) -> Dict: '''simple docstring''' __lowercase = LevitForImageClassificationWithTeacher.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to( lowerCAmelCase__ ) __lowercase = self.default_image_processor __lowercase = prepare_img() __lowercase = image_processor(images=lowerCAmelCase__ , return_tensors='''pt''' ).to(lowerCAmelCase__ ) # forward pass with torch.no_grad(): __lowercase = model(**lowerCAmelCase__ ) # verify the logits __lowercase = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase__ ) __lowercase = torch.tensor([1.0448, -0.3745, -1.8317] ).to(lowerCAmelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCAmelCase__ , atol=1E-4 ) )
210
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging __a : str = logging.get_logger(__name__) __a : int = { """microsoft/wavlm-base""": """https://huggingface.co/microsoft/wavlm-base/resolve/main/config.json""", # See all WavLM models at https://huggingface.co/models?filter=wavlm } class _UpperCamelCase ( _UpperCAmelCase ): """simple docstring""" __a : Any = '''wavlm''' def __init__( self , lowerCAmelCase__=32 , lowerCAmelCase__=7_68 , lowerCAmelCase__=12 , lowerCAmelCase__=12 , lowerCAmelCase__=30_72 , lowerCAmelCase__="gelu" , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.0 , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.02 , lowerCAmelCase__=1E-5 , lowerCAmelCase__="group" , lowerCAmelCase__="gelu" , lowerCAmelCase__=(5_12, 5_12, 5_12, 5_12, 5_12, 5_12, 5_12) , lowerCAmelCase__=(5, 2, 2, 2, 2, 2, 2) , lowerCAmelCase__=(10, 3, 3, 3, 3, 2, 2) , lowerCAmelCase__=False , lowerCAmelCase__=1_28 , lowerCAmelCase__=16 , lowerCAmelCase__=3_20 , lowerCAmelCase__=8_00 , lowerCAmelCase__=False , lowerCAmelCase__=True , lowerCAmelCase__=0.05 , lowerCAmelCase__=10 , lowerCAmelCase__=2 , lowerCAmelCase__=0.0 , lowerCAmelCase__=10 , lowerCAmelCase__=3_20 , lowerCAmelCase__=2 , lowerCAmelCase__=0.1 , lowerCAmelCase__=1_00 , lowerCAmelCase__=2_56 , lowerCAmelCase__=2_56 , lowerCAmelCase__=0.1 , lowerCAmelCase__="mean" , lowerCAmelCase__=False , lowerCAmelCase__=False , lowerCAmelCase__=2_56 , lowerCAmelCase__=(5_12, 5_12, 5_12, 5_12, 15_00) , lowerCAmelCase__=(5, 3, 3, 1, 1) , lowerCAmelCase__=(1, 2, 3, 1, 1) , lowerCAmelCase__=5_12 , lowerCAmelCase__=80 , lowerCAmelCase__=0 , lowerCAmelCase__=1 , lowerCAmelCase__=2 , lowerCAmelCase__=False , lowerCAmelCase__=3 , lowerCAmelCase__=2 , lowerCAmelCase__=3 , lowerCAmelCase__=None , **lowerCAmelCase__ , ) -> Tuple: '''simple docstring''' super().__init__(**lowerCAmelCase__ , pad_token_id=lowerCAmelCase__ , bos_token_id=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__ ) __lowercase = hidden_size __lowercase = feat_extract_norm __lowercase = feat_extract_activation __lowercase = list(lowerCAmelCase__ ) __lowercase = list(lowerCAmelCase__ ) __lowercase = list(lowerCAmelCase__ ) __lowercase = conv_bias __lowercase = num_buckets __lowercase = max_bucket_distance __lowercase = num_conv_pos_embeddings __lowercase = num_conv_pos_embedding_groups __lowercase = len(self.conv_dim ) __lowercase = num_hidden_layers __lowercase = intermediate_size __lowercase = hidden_act __lowercase = num_attention_heads __lowercase = hidden_dropout __lowercase = attention_dropout __lowercase = activation_dropout __lowercase = feat_proj_dropout __lowercase = final_dropout __lowercase = layerdrop __lowercase = layer_norm_eps __lowercase = initializer_range __lowercase = num_ctc_classes __lowercase = vocab_size __lowercase = do_stable_layer_norm __lowercase = use_weighted_layer_sum __lowercase = classifier_proj_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==''' ''' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =''' F" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`," F" `len(config.conv_kernel) = {len(self.conv_kernel )}`." ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __lowercase = apply_spec_augment __lowercase = mask_time_prob __lowercase = mask_time_length __lowercase = mask_time_min_masks __lowercase = mask_feature_prob __lowercase = mask_feature_length # parameters for pretraining with codevector quantized representations __lowercase = num_codevectors_per_group __lowercase = num_codevector_groups __lowercase = contrastive_logits_temperature __lowercase = num_negatives __lowercase = codevector_dim __lowercase = proj_codevector_dim __lowercase = diversity_loss_weight # ctc loss __lowercase = ctc_loss_reduction __lowercase = ctc_zero_infinity # adapter __lowercase = add_adapter __lowercase = adapter_kernel_size __lowercase = adapter_stride __lowercase = num_adapter_layers __lowercase = output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. __lowercase = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. __lowercase = list(lowerCAmelCase__ ) __lowercase = list(lowerCAmelCase__ ) __lowercase = list(lowerCAmelCase__ ) __lowercase = xvector_output_dim @property def _SCREAMING_SNAKE_CASE ( self ) -> int: '''simple docstring''' return functools.reduce(operator.mul , self.conv_stride , 1 )
210
1
"""simple docstring""" import warnings from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import TensorType, is_torch_available, logging _a = logging.get_logger(__name__) _a = { 'facebook/bart-large': 'https://huggingface.co/facebook/bart-large/resolve/main/config.json', # See all BART models at https://huggingface.co/models?filter=bart } class A_ (A__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Union[str, Any] = """bart""" SCREAMING_SNAKE_CASE__ : List[Any] = ["""past_key_values"""] SCREAMING_SNAKE_CASE__ : Optional[Any] = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self , lowercase_=5_0265 , lowercase_=1024 , lowercase_=12 , lowercase_=4096 , lowercase_=16 , lowercase_=12 , lowercase_=4096 , lowercase_=16 , lowercase_=0.0 , lowercase_=0.0 , lowercase_="gelu" , lowercase_=1024 , lowercase_=0.1 , lowercase_=0.0 , lowercase_=0.0 , lowercase_=0.02 , lowercase_=0.0 , lowercase_=False , lowercase_=True , lowercase_=3 , lowercase_=1 , lowercase_=0 , lowercase_=2 , lowercase_=True , lowercase_=2 , lowercase_=2 , **lowercase_ , ): """simple docstring""" UpperCAmelCase_ : Union[str, Any] = vocab_size UpperCAmelCase_ : Any = max_position_embeddings UpperCAmelCase_ : List[Any] = d_model UpperCAmelCase_ : Optional[int] = encoder_ffn_dim UpperCAmelCase_ : Optional[Any] = encoder_layers UpperCAmelCase_ : Optional[Any] = encoder_attention_heads UpperCAmelCase_ : str = decoder_ffn_dim UpperCAmelCase_ : Tuple = decoder_layers UpperCAmelCase_ : str = decoder_attention_heads UpperCAmelCase_ : Optional[Any] = dropout UpperCAmelCase_ : Optional[Any] = attention_dropout UpperCAmelCase_ : str = activation_dropout UpperCAmelCase_ : Optional[Any] = activation_function UpperCAmelCase_ : Tuple = init_std UpperCAmelCase_ : List[str] = encoder_layerdrop UpperCAmelCase_ : List[Any] = decoder_layerdrop UpperCAmelCase_ : str = classifier_dropout UpperCAmelCase_ : Dict = use_cache UpperCAmelCase_ : List[Any] = encoder_layers UpperCAmelCase_ : int = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( num_labels=__snake_case , pad_token_id=__snake_case , bos_token_id=__snake_case , eos_token_id=__snake_case , is_encoder_decoder=__snake_case , decoder_start_token_id=__snake_case , forced_eos_token_id=__snake_case , **__snake_case , ) # ensure backward compatibility for BART CNN models if self.forced_bos_token_id is None and kwargs.get("force_bos_token_to_be_generated" , __snake_case ): UpperCAmelCase_ : Tuple = self.bos_token_id warnings.warn( F"""Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. """ "The config can simply be saved and uploaded again to be fixed." ) class A_ (A__ ): '''simple docstring''' @property def UpperCamelCase__ ( self ): """simple docstring""" if self.task in ["default", "seq2seq-lm"]: UpperCAmelCase_ : int = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ] ) if self.use_past: UpperCAmelCase_ : Union[str, Any] = {0: "batch"} UpperCAmelCase_ : List[str] = {0: "batch", 1: "past_decoder_sequence + sequence"} else: UpperCAmelCase_ : Any = {0: "batch", 1: "decoder_sequence"} UpperCAmelCase_ : Optional[Any] = {0: "batch", 1: "decoder_sequence"} if self.use_past: self.fill_with_past_key_values_(__snake_case , direction="inputs" ) elif self.task == "causal-lm": # TODO: figure this case out. UpperCAmelCase_ : List[str] = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ] ) if self.use_past: UpperCAmelCase_ , UpperCAmelCase_ : List[str] = self.num_layers for i in range(__snake_case ): UpperCAmelCase_ : Optional[int] = {0: "batch", 2: "past_sequence + sequence"} UpperCAmelCase_ : List[Any] = {0: "batch", 2: "past_sequence + sequence"} else: UpperCAmelCase_ : str = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ("decoder_input_ids", {0: "batch", 1: "decoder_sequence"}), ("decoder_attention_mask", {0: "batch", 1: "decoder_sequence"}), ] ) return common_inputs @property def UpperCamelCase__ ( self ): """simple docstring""" if self.task in ["default", "seq2seq-lm"]: UpperCAmelCase_ : List[Any] = super().outputs else: UpperCAmelCase_ : Union[str, Any] = super(__snake_case , self ).outputs if self.use_past: UpperCAmelCase_ , UpperCAmelCase_ : str = self.num_layers for i in range(__snake_case ): UpperCAmelCase_ : Union[str, Any] = {0: "batch", 2: "past_sequence + sequence"} UpperCAmelCase_ : List[Any] = {0: "batch", 2: "past_sequence + sequence"} return common_outputs def UpperCamelCase__ ( self , lowercase_ , lowercase_ = -1 , lowercase_ = -1 , lowercase_ = False , lowercase_ = None , ): """simple docstring""" UpperCAmelCase_ : int = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case ) # Generate decoder inputs UpperCAmelCase_ : Any = seq_length if not self.use_past else 1 UpperCAmelCase_ : Union[str, Any] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case ) UpperCAmelCase_ : Optional[Any] = {F"""decoder_{name}""": tensor for name, tensor in decoder_inputs.items()} UpperCAmelCase_ : Optional[int] = dict(**__snake_case , **__snake_case ) if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch UpperCAmelCase_ , UpperCAmelCase_ : Dict = common_inputs["input_ids"].shape UpperCAmelCase_ : Tuple = common_inputs["decoder_input_ids"].shape[1] UpperCAmelCase_ , UpperCAmelCase_ : List[str] = self.num_attention_heads UpperCAmelCase_ : Union[str, Any] = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) UpperCAmelCase_ : Any = decoder_seq_length + 3 UpperCAmelCase_ : str = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) UpperCAmelCase_ : int = torch.cat( [common_inputs["decoder_attention_mask"], torch.ones(__snake_case , __snake_case )] , dim=1 ) UpperCAmelCase_ : str = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered UpperCAmelCase_ , UpperCAmelCase_ : Dict = self.num_layers UpperCAmelCase_ : Union[str, Any] = min(__snake_case , __snake_case ) UpperCAmelCase_ : Optional[int] = max(__snake_case , __snake_case ) - min_num_layers UpperCAmelCase_ : Optional[int] = "encoder" if num_encoder_layers > num_decoder_layers else "decoder" for _ in range(__snake_case ): common_inputs["past_key_values"].append( ( torch.zeros(__snake_case ), torch.zeros(__snake_case ), torch.zeros(__snake_case ), torch.zeros(__snake_case ), ) ) # TODO: test this. UpperCAmelCase_ : Any = encoder_shape if remaining_side_name == "encoder" else decoder_shape for _ in range(__snake_case , __snake_case ): common_inputs["past_key_values"].append((torch.zeros(__snake_case ), torch.zeros(__snake_case )) ) return common_inputs def UpperCamelCase__ ( self , lowercase_ , lowercase_ = -1 , lowercase_ = -1 , lowercase_ = False , lowercase_ = None , ): """simple docstring""" UpperCAmelCase_ : List[str] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case ) if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch UpperCAmelCase_ , UpperCAmelCase_ : int = common_inputs["input_ids"].shape # Not using the same length for past_key_values UpperCAmelCase_ : Optional[int] = seqlen + 2 UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = self.num_layers UpperCAmelCase_ , UpperCAmelCase_ : List[str] = self.num_attention_heads UpperCAmelCase_ : Dict = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) UpperCAmelCase_ : List[Any] = common_inputs["attention_mask"].dtype UpperCAmelCase_ : int = torch.cat( [common_inputs["attention_mask"], torch.ones(__snake_case , __snake_case , dtype=__snake_case )] , dim=1 ) UpperCAmelCase_ : List[str] = [ (torch.zeros(__snake_case ), torch.zeros(__snake_case )) for _ in range(__snake_case ) ] return common_inputs def UpperCamelCase__ ( self , lowercase_ , lowercase_ = -1 , lowercase_ = -1 , lowercase_ = False , lowercase_ = None , ): """simple docstring""" # Copied from OnnxConfig.generate_dummy_inputs # Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity. # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX UpperCAmelCase_ : Dict = compute_effective_axis_dimension( __snake_case , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX UpperCAmelCase_ : str = tokenizer.num_special_tokens_to_add(__snake_case ) UpperCAmelCase_ : Optional[int] = compute_effective_axis_dimension( __snake_case , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=__snake_case ) # Generate dummy inputs according to compute batch and sequence UpperCAmelCase_ : List[str] = [" ".join([tokenizer.unk_token] ) * seq_length] * batch_size UpperCAmelCase_ : List[Any] = dict(tokenizer(__snake_case , return_tensors=__snake_case ) ) return common_inputs def UpperCamelCase__ ( self , lowercase_ , lowercase_ = -1 , lowercase_ = -1 , lowercase_ = False , lowercase_ = None , ): """simple docstring""" if self.task in ["default", "seq2seq-lm"]: UpperCAmelCase_ : List[Any] = self._generate_dummy_inputs_for_default_and_seqaseq_lm( __snake_case , batch_size=__snake_case , seq_length=__snake_case , is_pair=__snake_case , framework=__snake_case ) elif self.task == "causal-lm": UpperCAmelCase_ : Optional[Any] = self._generate_dummy_inputs_for_causal_lm( __snake_case , batch_size=__snake_case , seq_length=__snake_case , is_pair=__snake_case , framework=__snake_case ) else: UpperCAmelCase_ : List[str] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( __snake_case , batch_size=__snake_case , seq_length=__snake_case , is_pair=__snake_case , framework=__snake_case ) return common_inputs def UpperCamelCase__ ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ ): """simple docstring""" if self.task in ["default", "seq2seq-lm"]: UpperCAmelCase_ : Optional[int] = super()._flatten_past_key_values_(__snake_case , __snake_case , __snake_case , __snake_case ) else: UpperCAmelCase_ : int = super(__snake_case , self )._flatten_past_key_values_( __snake_case , __snake_case , __snake_case , __snake_case )
353
"""simple docstring""" from typing import List, Optional, Union import torch from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) _a = logging.get_logger(__name__) # pylint: disable=invalid-name _a = '\n Examples:\n ```py\n >>> from diffusers import KandinskyV22Pipeline, KandinskyV22PriorPipeline\n >>> import torch\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained("kandinsky-community/kandinsky-2-2-prior")\n >>> pipe_prior.to("cuda")\n >>> prompt = "red cat, 4k photo"\n >>> out = pipe_prior(prompt)\n >>> image_emb = out.image_embeds\n >>> zero_image_emb = out.negative_image_embeds\n >>> pipe = KandinskyV22Pipeline.from_pretrained("kandinsky-community/kandinsky-2-2-decoder")\n >>> pipe.to("cuda")\n >>> image = pipe(\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=50,\n ... ).images\n >>> image[0].save("cat.png")\n ```\n' def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase=8 ): UpperCAmelCase_ : List[str] = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 UpperCAmelCase_ : Tuple = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor class A_ (lowercase__ ): '''simple docstring''' def __init__( self , lowercase_ , lowercase_ , lowercase_ , ): """simple docstring""" super().__init__() self.register_modules( unet=lowercase_ , scheduler=lowercase_ , movq=lowercase_ , ) UpperCAmelCase_ : int = 2 ** (len(self.movq.config.block_out_channels ) - 1) def UpperCamelCase__ ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ): """simple docstring""" if latents is None: UpperCAmelCase_ : Dict = randn_tensor(lowercase_ , generator=lowercase_ , device=lowercase_ , dtype=lowercase_ ) else: if latents.shape != shape: raise ValueError(F"""Unexpected latents shape, got {latents.shape}, expected {shape}""" ) UpperCAmelCase_ : str = latents.to(lowercase_ ) UpperCAmelCase_ : Dict = latents * scheduler.init_noise_sigma return latents def UpperCamelCase__ ( self , lowercase_=0 ): """simple docstring""" if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("Please install accelerate via `pip install accelerate`" ) UpperCAmelCase_ : Any = torch.device(F"""cuda:{gpu_id}""" ) UpperCAmelCase_ : int = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(lowercase_ , lowercase_ ) def UpperCamelCase__ ( self , lowercase_=0 ): """simple docstring""" if is_accelerate_available() and is_accelerate_version(">=" , "0.17.0.dev0" ): from accelerate import cpu_offload_with_hook else: raise ImportError("`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher." ) UpperCAmelCase_ : Any = torch.device(F"""cuda:{gpu_id}""" ) if self.device.type != "cpu": self.to("cpu" , silence_dtype_warnings=lowercase_ ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) UpperCAmelCase_ : List[Any] = None for cpu_offloaded_model in [self.unet, self.movq]: UpperCAmelCase_ , UpperCAmelCase_ : str = cpu_offload_with_hook(lowercase_ , lowercase_ , prev_module_hook=lowercase_ ) # We'll offload the last model manually. UpperCAmelCase_ : Tuple = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def UpperCamelCase__ ( self ): """simple docstring""" if not hasattr(self.unet , "_hf_hook" ): return self.device for module in self.unet.modules(): if ( hasattr(lowercase_ , "_hf_hook" ) and hasattr(module._hf_hook , "execution_device" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(lowercase_ ) def __call__( self , lowercase_ , lowercase_ , lowercase_ = 512 , lowercase_ = 512 , lowercase_ = 100 , lowercase_ = 4.0 , lowercase_ = 1 , lowercase_ = None , lowercase_ = None , lowercase_ = "pil" , lowercase_ = True , ): """simple docstring""" UpperCAmelCase_ : str = self._execution_device UpperCAmelCase_ : List[Any] = guidance_scale > 1.0 if isinstance(lowercase_ , lowercase_ ): UpperCAmelCase_ : int = torch.cat(lowercase_ , dim=0 ) UpperCAmelCase_ : Any = image_embeds.shape[0] * num_images_per_prompt if isinstance(lowercase_ , lowercase_ ): UpperCAmelCase_ : List[Any] = torch.cat(lowercase_ , dim=0 ) if do_classifier_free_guidance: UpperCAmelCase_ : Tuple = image_embeds.repeat_interleave(lowercase_ , dim=0 ) UpperCAmelCase_ : List[str] = negative_image_embeds.repeat_interleave(lowercase_ , dim=0 ) UpperCAmelCase_ : Optional[Any] = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=lowercase_ ) self.scheduler.set_timesteps(lowercase_ , device=lowercase_ ) UpperCAmelCase_ : List[Any] = self.scheduler.timesteps UpperCAmelCase_ : List[str] = self.unet.config.in_channels UpperCAmelCase_ , UpperCAmelCase_ : Dict = downscale_height_and_width(lowercase_ , lowercase_ , self.movq_scale_factor ) # create initial latent UpperCAmelCase_ : int = self.prepare_latents( (batch_size, num_channels_latents, height, width) , image_embeds.dtype , lowercase_ , lowercase_ , lowercase_ , self.scheduler , ) for i, t in enumerate(self.progress_bar(lowercase_ ) ): # expand the latents if we are doing classifier free guidance UpperCAmelCase_ : Tuple = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents UpperCAmelCase_ : Union[str, Any] = {"image_embeds": image_embeds} UpperCAmelCase_ : Optional[Any] = self.unet( sample=lowercase_ , timestep=lowercase_ , encoder_hidden_states=lowercase_ , added_cond_kwargs=lowercase_ , return_dict=lowercase_ , )[0] if do_classifier_free_guidance: UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = noise_pred.split(latents.shape[1] , dim=1 ) UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = noise_pred.chunk(2 ) UpperCAmelCase_ , UpperCAmelCase_ : Tuple = variance_pred.chunk(2 ) UpperCAmelCase_ : int = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) UpperCAmelCase_ : str = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , "variance_type" ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): UpperCAmelCase_ , UpperCAmelCase_ : Dict = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 UpperCAmelCase_ : List[str] = self.scheduler.step( lowercase_ , lowercase_ , lowercase_ , generator=lowercase_ , )[0] # post-processing UpperCAmelCase_ : Tuple = self.movq.decode(lowercase_ , force_not_quantize=lowercase_ )["sample"] if output_type not in ["pt", "np", "pil"]: raise ValueError(F"""Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}""" ) if output_type in ["np", "pil"]: UpperCAmelCase_ : List[Any] = image * 0.5 + 0.5 UpperCAmelCase_ : int = image.clamp(0 , 1 ) UpperCAmelCase_ : Tuple = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": UpperCAmelCase_ : Dict = self.numpy_to_pil(lowercase_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=lowercase_ )
23
0
'''simple docstring''' from math import factorial lowerCAmelCase_ : Optional[int] = {str(d): factorial(d) for d in range(10)} def _lowerCamelCase ( lowercase : int ) -> int: return sum(DIGIT_FACTORIAL[d] for d in str(lowercase ) ) def _lowerCamelCase ( ) -> int: _a = 7 * factorial(9 ) + 1 return sum(i for i in range(3 , lowercase ) if sum_of_digit_factorial(lowercase ) == i ) if __name__ == "__main__": print(f"""{solution() = }""")
63
import argparse import csv import logging import os import random import numpy as np import torch from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset from tqdm import tqdm, trange from transformers import ( CONFIG_NAME, WEIGHTS_NAME, AdamW, OpenAIGPTDoubleHeadsModel, OpenAIGPTTokenizer, get_linear_schedule_with_warmup, ) logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO ) A : Tuple = logging.getLogger(__name__) def __lowerCamelCase ( __a :Optional[int] , __a :List[str] ) -> Tuple: """simple docstring""" A__ = np.argmax(__a , axis=1 ) return np.sum(outputs == labels ) def __lowerCamelCase ( __a :Tuple ) -> Dict: """simple docstring""" with open(__a , encoding="""utf_8""" ) as f: A__ = csv.reader(__a ) A__ = [] next(__a ) # skip the first line for line in tqdm(__a ): output.append((""" """.join(line[1:5] ), line[5], line[6], int(line[-1] ) - 1) ) return output def __lowerCamelCase ( __a :Optional[int] , __a :List[Any] , __a :Dict , __a :Optional[Any] , __a :Optional[Any] , __a :int ) -> Union[str, Any]: """simple docstring""" A__ = [] for dataset in encoded_datasets: A__ = len(__a ) A__ = np.zeros((n_batch, 2, input_len) , dtype=np.intaa ) A__ = np.zeros((n_batch, 2) , dtype=np.intaa ) A__ = np.full((n_batch, 2, input_len) , fill_value=-1_0_0 , dtype=np.intaa ) A__ = np.zeros((n_batch,) , dtype=np.intaa ) for ( i, (story, conta, conta, mc_label), ) in enumerate(__a ): A__ = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] A__ = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] A__ = with_conta A__ = with_conta A__ = len(__a ) - 1 A__ = len(__a ) - 1 A__ = with_conta A__ = with_conta A__ = mc_label A__ = (input_ids, mc_token_ids, lm_labels, mc_labels) tensor_datasets.append(tuple(torch.tensor(__a ) for t in all_inputs ) ) return tensor_datasets def __lowerCamelCase ( ) -> Union[str, Any]: """simple docstring""" A__ = argparse.ArgumentParser() parser.add_argument("""--model_name""" , type=__a , default="""openai-gpt""" , help="""pretrained model name""" ) parser.add_argument("""--do_train""" , action="""store_true""" , help="""Whether to run training.""" ) parser.add_argument("""--do_eval""" , action="""store_true""" , help="""Whether to run eval on the dev set.""" ) parser.add_argument( """--output_dir""" , default=__a , type=__a , required=__a , help="""The output directory where the model predictions and checkpoints will be written.""" , ) parser.add_argument("""--train_dataset""" , type=__a , default="""""" ) parser.add_argument("""--eval_dataset""" , type=__a , default="""""" ) parser.add_argument("""--seed""" , type=__a , default=4_2 ) parser.add_argument("""--num_train_epochs""" , type=__a , default=3 ) parser.add_argument("""--train_batch_size""" , type=__a , default=8 ) parser.add_argument("""--eval_batch_size""" , type=__a , default=1_6 ) parser.add_argument("""--adam_epsilon""" , default=1E-8 , type=__a , help="""Epsilon for Adam optimizer.""" ) parser.add_argument("""--max_grad_norm""" , type=__a , default=1 ) parser.add_argument( """--max_steps""" , default=-1 , type=__a , help=( """If > 0: set total number of training steps to perform. Override num_train_epochs.""" ) , ) parser.add_argument( """--gradient_accumulation_steps""" , type=__a , default=1 , help="""Number of updates steps to accumulate before performing a backward/update pass.""" , ) parser.add_argument("""--learning_rate""" , type=__a , default=6.25E-5 ) parser.add_argument("""--warmup_steps""" , default=0 , type=__a , help="""Linear warmup over warmup_steps.""" ) parser.add_argument("""--lr_schedule""" , type=__a , default="""warmup_linear""" ) parser.add_argument("""--weight_decay""" , type=__a , default=0.01 ) parser.add_argument("""--lm_coef""" , type=__a , default=0.9 ) parser.add_argument("""--n_valid""" , type=__a , default=3_7_4 ) parser.add_argument("""--server_ip""" , type=__a , default="""""" , help="""Can be used for distant debugging.""" ) parser.add_argument("""--server_port""" , type=__a , default="""""" , help="""Can be used for distant debugging.""" ) A__ = parser.parse_args() print(__a ) if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print("""Waiting for debugger attach""" ) ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=__a ) ptvsd.wait_for_attach() random.seed(args.seed ) np.random.seed(args.seed ) torch.manual_seed(args.seed ) torch.cuda.manual_seed_all(args.seed ) A__ = torch.device("""cuda""" if torch.cuda.is_available() else """cpu""" ) A__ = torch.cuda.device_count() logger.info("""device: {}, n_gpu {}""".format(__a , __a ) ) if not args.do_train and not args.do_eval: raise ValueError("""At least one of `do_train` or `do_eval` must be True.""" ) if not os.path.exists(args.output_dir ): os.makedirs(args.output_dir ) # Load tokenizer and model # This loading functions also add new tokens and embeddings called `special tokens` # These new embeddings will be fine-tuned on the RocStories dataset A__ = ["""_start_""", """_delimiter_""", """_classify_"""] A__ = OpenAIGPTTokenizer.from_pretrained(args.model_name ) tokenizer.add_tokens(__a ) A__ = tokenizer.convert_tokens_to_ids(__a ) A__ = OpenAIGPTDoubleHeadsModel.from_pretrained(args.model_name ) model.resize_token_embeddings(len(__a ) ) model.to(__a ) # Load and encode the datasets def tokenize_and_encode(__a :Tuple ): if isinstance(__a , __a ): return tokenizer.convert_tokens_to_ids(tokenizer.tokenize(__a ) ) elif isinstance(__a , __a ): return obj return [tokenize_and_encode(__a ) for o in obj] logger.info("""Encoding dataset...""" ) A__ = load_rocstories_dataset(args.train_dataset ) A__ = load_rocstories_dataset(args.eval_dataset ) A__ = (train_dataset, eval_dataset) A__ = tokenize_and_encode(__a ) # Compute the max input length for the Transformer A__ = model.config.n_positions // 2 - 2 A__ = max( len(story[:max_length] ) + max(len(conta[:max_length] ) , len(conta[:max_length] ) ) + 3 for dataset in encoded_datasets for story, conta, conta, _ in dataset ) A__ = min(__a , model.config.n_positions ) # Max size of input for the pre-trained model # Prepare inputs tensors and dataloaders A__ = pre_process_datasets(__a , __a , __a , *__a ) A__ , A__ = tensor_datasets[0], tensor_datasets[1] A__ = TensorDataset(*__a ) A__ = RandomSampler(__a ) A__ = DataLoader(__a , sampler=__a , batch_size=args.train_batch_size ) A__ = TensorDataset(*__a ) A__ = SequentialSampler(__a ) A__ = DataLoader(__a , sampler=__a , batch_size=args.eval_batch_size ) # Prepare optimizer if args.do_train: if args.max_steps > 0: A__ = args.max_steps A__ = args.max_steps // (len(__a ) // args.gradient_accumulation_steps) + 1 else: A__ = len(__a ) // args.gradient_accumulation_steps * args.num_train_epochs A__ = list(model.named_parameters() ) A__ = ["""bias""", """LayerNorm.bias""", """LayerNorm.weight"""] A__ = [ { """params""": [p for n, p in param_optimizer if not any(nd in n for nd in no_decay )], """weight_decay""": args.weight_decay, }, {"""params""": [p for n, p in param_optimizer if any(nd in n for nd in no_decay )], """weight_decay""": 0.0}, ] A__ = AdamW(__a , lr=args.learning_rate , eps=args.adam_epsilon ) A__ = get_linear_schedule_with_warmup( __a , num_warmup_steps=args.warmup_steps , num_training_steps=__a ) if args.do_train: A__ , A__ , A__ = 0, 0, None model.train() for _ in trange(int(args.num_train_epochs ) , desc="""Epoch""" ): A__ = 0 A__ = 0 A__ = tqdm(__a , desc="""Training""" ) for step, batch in enumerate(__a ): A__ = tuple(t.to(__a ) for t in batch ) A__ , A__ , A__ , A__ = batch A__ = model(__a , mc_token_ids=__a , lm_labels=__a , mc_labels=__a ) A__ = args.lm_coef * losses[0] + losses[1] loss.backward() optimizer.step() scheduler.step() optimizer.zero_grad() tr_loss += loss.item() A__ = ( loss.item() if exp_average_loss is None else 0.7 * exp_average_loss + 0.3 * loss.item() ) nb_tr_steps += 1 A__ = """Training loss: {:.2e} lr: {:.2e}""".format(__a , scheduler.get_lr()[0] ) # Save a trained model if args.do_train: # Save a trained model, configuration and tokenizer A__ = model.module if hasattr(__a , """module""" ) else model # Only save the model itself # If we save using the predefined names, we can load using `from_pretrained` A__ = os.path.join(args.output_dir , __a ) A__ = os.path.join(args.output_dir , __a ) torch.save(model_to_save.state_dict() , __a ) model_to_save.config.to_json_file(__a ) tokenizer.save_vocabulary(args.output_dir ) # Load a trained model and vocabulary that you have fine-tuned A__ = OpenAIGPTDoubleHeadsModel.from_pretrained(args.output_dir ) A__ = OpenAIGPTTokenizer.from_pretrained(args.output_dir ) model.to(__a ) if args.do_eval: model.eval() A__ , A__ = 0, 0 A__ , A__ = 0, 0 for batch in tqdm(__a , desc="""Evaluating""" ): A__ = tuple(t.to(__a ) for t in batch ) A__ , A__ , A__ , A__ = batch with torch.no_grad(): A__ , A__ , A__ , A__ = model( __a , mc_token_ids=__a , lm_labels=__a , mc_labels=__a ) A__ = mc_logits.detach().cpu().numpy() A__ = mc_labels.to("""cpu""" ).numpy() A__ = accuracy(__a , __a ) eval_loss += mc_loss.mean().item() eval_accuracy += tmp_eval_accuracy nb_eval_examples += input_ids.size(0 ) nb_eval_steps += 1 A__ = eval_loss / nb_eval_steps A__ = eval_accuracy / nb_eval_examples A__ = tr_loss / nb_tr_steps if args.do_train else None A__ = {"""eval_loss""": eval_loss, """eval_accuracy""": eval_accuracy, """train_loss""": train_loss} A__ = os.path.join(args.output_dir , """eval_results.txt""" ) with open(__a , """w""" ) as writer: logger.info("""***** Eval results *****""" ) for key in sorted(result.keys() ): logger.info(""" %s = %s""" , __a , str(result[key] ) ) writer.write("""%s = %s\n""" % (key, str(result[key] )) ) if __name__ == "__main__": main()
274
0
'''simple docstring''' from __future__ import annotations from collections import Counter from random import random class A_ : '''simple docstring''' def __init__( self : List[Any] ) -> Union[str, Any]: UpperCAmelCase : List[str] = {} def UpperCAmelCase_ ( self : Tuple , lowercase_ : str ) -> None: UpperCAmelCase : int = {} def UpperCAmelCase_ ( self : Dict , lowercase_ : str , lowercase_ : str , lowercase_ : float ) -> None: if nodea not in self.connections: self.add_node(lowercase_ ) if nodea not in self.connections: self.add_node(lowercase_ ) UpperCAmelCase : Any = probability def UpperCAmelCase_ ( self : Union[str, Any] ) -> list[str]: return list(self.connections ) def UpperCAmelCase_ ( self : List[str] , lowercase_ : str ) -> str: UpperCAmelCase : Any = 0 UpperCAmelCase : Union[str, Any] = random() for dest in self.connections[node]: current_probability += self.connections[node][dest] if current_probability > random_value: return dest return "" def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): UpperCAmelCase : Tuple = MarkovChainGraphUndirectedUnweighted() for nodea, nodea, probability in transitions: graph.add_transition_probability(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) UpperCAmelCase : Tuple = Counter(graph.get_nodes() ) UpperCAmelCase : Tuple = start for _ in range(UpperCAmelCase_ ): UpperCAmelCase : Optional[Any] = graph.transition(UpperCAmelCase_ ) visited[node] += 1 return visited if __name__ == "__main__": import doctest doctest.testmod()
280
'''simple docstring''' import argparse import json from tqdm import tqdm def UpperCamelCase( ): UpperCAmelCase : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--src_path' , type=UpperCAmelCase_ , default='biencoder-nq-dev.json' , help='Path to raw DPR training data' , ) parser.add_argument( '--evaluation_set' , type=UpperCAmelCase_ , help='where to store parsed evaluation_set file' , ) parser.add_argument( '--gold_data_path' , type=UpperCAmelCase_ , help='where to store parsed gold_data_path file' , ) UpperCAmelCase : int = parser.parse_args() with open(args.src_path , 'r' ) as src_file, open(args.evaluation_set , 'w' ) as eval_file, open( args.gold_data_path , 'w' ) as gold_file: UpperCAmelCase : int = json.load(UpperCAmelCase_ ) for dpr_record in tqdm(UpperCAmelCase_ ): UpperCAmelCase : Any = dpr_record['question'] UpperCAmelCase : List[str] = [context['title'] for context in dpr_record['positive_ctxs']] eval_file.write(question + '\n' ) gold_file.write('\t'.join(UpperCAmelCase_ ) + '\n' ) if __name__ == "__main__": main()
280
1
import math from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase_ = logging.get_logger(__name__) lowerCamelCase_ = { '''facebook/data2vec-base-960h''': '''https://huggingface.co/facebook/data2vec-audio-base-960h/resolve/main/config.json''', # See all Data2VecAudio models at https://huggingface.co/models?filter=data2vec-audio } class __A( __lowerCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE__ = """data2vec-audio""" def __init__(self , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=7_68 , SCREAMING_SNAKE_CASE_=12 , SCREAMING_SNAKE_CASE_=12 , SCREAMING_SNAKE_CASE_=30_72 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.02 , SCREAMING_SNAKE_CASE_=1E-5 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=(5_12, 5_12, 5_12, 5_12, 5_12, 5_12, 5_12) , SCREAMING_SNAKE_CASE_=(5, 2, 2, 2, 2, 2, 2) , SCREAMING_SNAKE_CASE_=(10, 3, 3, 3, 3, 2, 2) , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=16 , SCREAMING_SNAKE_CASE_=19 , SCREAMING_SNAKE_CASE_=5 , SCREAMING_SNAKE_CASE_=0.05 , SCREAMING_SNAKE_CASE_=10 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=10 , SCREAMING_SNAKE_CASE_=0 , SCREAMING_SNAKE_CASE_="sum" , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=2_56 , SCREAMING_SNAKE_CASE_=(5_12, 5_12, 5_12, 5_12, 15_00) , SCREAMING_SNAKE_CASE_=(5, 3, 3, 1, 1) , SCREAMING_SNAKE_CASE_=(1, 2, 3, 1, 1) , SCREAMING_SNAKE_CASE_=5_12 , SCREAMING_SNAKE_CASE_=0 , SCREAMING_SNAKE_CASE_=1 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=None , **SCREAMING_SNAKE_CASE_ , ): super().__init__(**SCREAMING_SNAKE_CASE_ , pad_token_id=SCREAMING_SNAKE_CASE_ , bos_token_id=SCREAMING_SNAKE_CASE_ , eos_token_id=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = hidden_size UpperCamelCase__ = feat_extract_activation UpperCamelCase__ = list(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = list(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = list(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = conv_bias UpperCamelCase__ = num_conv_pos_embeddings UpperCamelCase__ = num_conv_pos_embedding_groups UpperCamelCase__ = conv_pos_kernel_size UpperCamelCase__ = len(self.conv_dim ) UpperCamelCase__ = num_hidden_layers UpperCamelCase__ = intermediate_size UpperCamelCase__ = hidden_act UpperCamelCase__ = num_attention_heads UpperCamelCase__ = hidden_dropout UpperCamelCase__ = attention_dropout UpperCamelCase__ = activation_dropout UpperCamelCase__ = feat_proj_dropout UpperCamelCase__ = final_dropout UpperCamelCase__ = layerdrop UpperCamelCase__ = layer_norm_eps UpperCamelCase__ = initializer_range UpperCamelCase__ = vocab_size UpperCamelCase__ = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( """Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==""" """ `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =""" F" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`," F" `len(config.conv_kernel) = {len(self.conv_kernel )}`." ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 UpperCamelCase__ = mask_time_prob UpperCamelCase__ = mask_time_length UpperCamelCase__ = mask_time_min_masks UpperCamelCase__ = mask_feature_prob UpperCamelCase__ = mask_feature_length UpperCamelCase__ = mask_feature_min_masks # ctc loss UpperCamelCase__ = ctc_loss_reduction UpperCamelCase__ = ctc_zero_infinity # adapter UpperCamelCase__ = add_adapter UpperCamelCase__ = adapter_kernel_size UpperCamelCase__ = adapter_stride UpperCamelCase__ = num_adapter_layers UpperCamelCase__ = output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. UpperCamelCase__ = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. UpperCamelCase__ = list(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = list(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = list(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = xvector_output_dim @property def UpperCAmelCase_ (self ): return math.prod(self.conv_stride )
244
from collections.abc import Generator def __magic_name__ ( ): '''simple docstring''' UpperCamelCase__ , UpperCamelCase__ = 0, 1 while True: UpperCamelCase__ , UpperCamelCase__ = b, a + b yield b def __magic_name__ ( __a : int = 1_000 ): '''simple docstring''' UpperCamelCase__ = 1 UpperCamelCase__ = fibonacci_generator() while len(str(next(__a ) ) ) < n: answer += 1 return answer + 1 if __name__ == "__main__": print(solution(int(str(input()).strip())))
244
1
'''simple docstring''' from __future__ import annotations def _SCREAMING_SNAKE_CASE ( UpperCamelCase ): """simple docstring""" if not nums: raise ValueError("""List is empty""" ) return sum(UpperCamelCase ) / len(UpperCamelCase ) if __name__ == "__main__": import doctest doctest.testmod()
184
'''simple docstring''' import unittest import torch from diffusers import VQModel from diffusers.utils import floats_tensor, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin enable_full_determinism() class lowerCAmelCase_( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ): '''simple docstring''' __lowercase : Optional[Any] = VQModel __lowercase : Tuple = '''sample''' @property def UpperCAmelCase_ ( self ,__UpperCAmelCase=(32, 32) ) -> List[Any]: lowerCAmelCase__ : Dict = 4 lowerCAmelCase__ : List[str] = 3 lowerCAmelCase__ : Dict = floats_tensor((batch_size, num_channels) + sizes ).to(__UpperCAmelCase ) return {"sample": image} @property def UpperCAmelCase_ ( self ) -> List[Any]: return (3, 32, 32) @property def UpperCAmelCase_ ( self ) -> Optional[Any]: return (3, 32, 32) def UpperCAmelCase_ ( self ) -> List[Any]: lowerCAmelCase__ : Dict = { """block_out_channels""": [32, 64], """in_channels""": 3, """out_channels""": 3, """down_block_types""": ["""DownEncoderBlock2D""", """DownEncoderBlock2D"""], """up_block_types""": ["""UpDecoderBlock2D""", """UpDecoderBlock2D"""], """latent_channels""": 3, } lowerCAmelCase__ : Any = self.dummy_input return init_dict, inputs_dict def UpperCAmelCase_ ( self ) -> Union[str, Any]: pass def UpperCAmelCase_ ( self ) -> Optional[int]: pass def UpperCAmelCase_ ( self ) -> Tuple: lowerCAmelCase__ , lowerCAmelCase__ : Union[str, Any] = VQModel.from_pretrained("""fusing/vqgan-dummy""" ,output_loading_info=__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) self.assertEqual(len(loading_info["""missing_keys"""] ) ,0 ) model.to(__UpperCAmelCase ) lowerCAmelCase__ : List[Any] = model(**self.dummy_input ) assert image is not None, "Make sure output is not None" def UpperCAmelCase_ ( self ) -> List[str]: lowerCAmelCase__ : Tuple = VQModel.from_pretrained("""fusing/vqgan-dummy""" ) model.to(__UpperCAmelCase ).eval() torch.manual_seed(0 ) if torch.cuda.is_available(): torch.cuda.manual_seed_all(0 ) lowerCAmelCase__ : List[str] = torch.randn(1 ,model.config.in_channels ,model.config.sample_size ,model.config.sample_size ) lowerCAmelCase__ : Optional[Any] = image.to(__UpperCAmelCase ) with torch.no_grad(): lowerCAmelCase__ : Optional[Any] = model(__UpperCAmelCase ).sample lowerCAmelCase__ : Tuple = output[0, -1, -3:, -3:].flatten().cpu() # fmt: off lowerCAmelCase__ : Tuple = torch.tensor([-0.0_1_5_3, -0.4_0_4_4, -0.1_8_8_0, -0.5_1_6_1, -0.2_4_1_8, -0.4_0_7_2, -0.1_6_1_2, -0.0_6_3_3, -0.0_1_4_3] ) # fmt: on self.assertTrue(torch.allclose(__UpperCAmelCase ,__UpperCAmelCase ,atol=1E-3 ) )
184
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices a__ : List[Any] =logging.get_logger(__name__) a__ : Tuple ={ '''microsoft/focalnet-tiny''': '''https://huggingface.co/microsoft/focalnet-tiny/resolve/main/config.json''', } class snake_case ( __lowerCamelCase , __lowerCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int ="focalnet" def __init__( self : List[Any] , __A : int=2_2_4 , __A : Tuple=4 , __A : Tuple=3 , __A : List[str]=9_6 , __A : Any=False , __A : List[Any]=[1_9_2, 3_8_4, 7_6_8, 7_6_8] , __A : Union[str, Any]=[2, 2, 6, 2] , __A : str=[2, 2, 2, 2] , __A : Optional[int]=[3, 3, 3, 3] , __A : Optional[Any]="gelu" , __A : Any=4.0 , __A : List[Any]=0.0 , __A : Union[str, Any]=0.1 , __A : str=False , __A : Any=1e-4 , __A : List[Any]=False , __A : Union[str, Any]=False , __A : Union[str, Any]=False , __A : List[Any]=0.02 , __A : Tuple=1e-5 , __A : List[str]=3_2 , __A : Optional[int]=None , __A : int=None , **__A : List[Any] , ): super().__init__(**__A ) __UpperCamelCase = image_size __UpperCamelCase = patch_size __UpperCamelCase = num_channels __UpperCamelCase = embed_dim __UpperCamelCase = use_conv_embed __UpperCamelCase = hidden_sizes __UpperCamelCase = depths __UpperCamelCase = focal_levels __UpperCamelCase = focal_windows __UpperCamelCase = hidden_act __UpperCamelCase = mlp_ratio __UpperCamelCase = hidden_dropout_prob __UpperCamelCase = drop_path_rate __UpperCamelCase = use_layerscale __UpperCamelCase = layerscale_value __UpperCamelCase = use_post_layernorm __UpperCamelCase = use_post_layernorm_in_modulation __UpperCamelCase = normalize_modulator __UpperCamelCase = initializer_range __UpperCamelCase = layer_norm_eps __UpperCamelCase = encoder_stride __UpperCamelCase = ['stem'] + [f'''stage{idx}''' for idx in range(1 , len(self.depths ) + 1 )] __UpperCamelCase , __UpperCamelCase = get_aligned_output_features_output_indices( out_features=__A , out_indices=__A , stage_names=self.stage_names )
53
'''simple docstring''' from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version('''>=''', '''4.25.0''')): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( VersatileDiffusionDualGuidedPipeline, VersatileDiffusionImageVariationPipeline, VersatileDiffusionPipeline, VersatileDiffusionTextToImagePipeline, ) else: from .modeling_text_unet import UNetFlatConditionModel from .pipeline_versatile_diffusion import VersatileDiffusionPipeline from .pipeline_versatile_diffusion_dual_guided import VersatileDiffusionDualGuidedPipeline from .pipeline_versatile_diffusion_image_variation import VersatileDiffusionImageVariationPipeline from .pipeline_versatile_diffusion_text_to_image import VersatileDiffusionTextToImagePipeline
53
1
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, is_batched, to_numpy_array, valid_images, ) from ...utils import TensorType, logging lowercase__ = logging.get_logger(__name__) class lowerCAmelCase__ ( lowercase ): '''simple docstring''' lowerCamelCase__ = ["""pixel_values"""] def __init__( self , lowercase = True , lowercase = None , lowercase = PILImageResampling.BICUBIC , lowercase = True , lowercase = True , lowercase = 1 / 255 , lowercase = None , lowercase = True , lowercase = None , lowercase = None , **lowercase , ): super().__init__(**lowercase ) _lowerCamelCase : Any = size if size is not None else {'height': 224, 'width': 224} _lowerCamelCase : List[str] = get_size_dict(lowercase ) _lowerCamelCase : int = crop_size if crop_size is not None else {'height': 224, 'width': 224} _lowerCamelCase : List[Any] = get_size_dict(lowercase , default_to_square=lowercase , param_name='crop_size' ) _lowerCamelCase : List[Any] = do_resize _lowerCamelCase : str = do_rescale _lowerCamelCase : Optional[Any] = do_normalize _lowerCamelCase : Optional[int] = do_center_crop _lowerCamelCase : Union[str, Any] = crop_size _lowerCamelCase : Any = size _lowerCamelCase : Union[str, Any] = resample _lowerCamelCase : List[str] = rescale_factor _lowerCamelCase : Union[str, Any] = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN _lowerCamelCase : Tuple = image_std if image_std is not None else IMAGENET_DEFAULT_STD def A_ ( self , lowercase , lowercase , lowercase = PILImageResampling.BILINEAR , lowercase = None , **lowercase , ): _lowerCamelCase : Optional[Any] = get_size_dict(lowercase ) if "shortest_edge" in size: _lowerCamelCase : List[str] = get_resize_output_image_size(lowercase , size=size['shortest_edge'] , default_to_square=lowercase ) # size = get_resize_output_image_size(image, size["shortest_edge"], size["longest_edge"]) elif "height" in size and "width" in size: _lowerCamelCase : Optional[Any] = (size['height'], size['width']) else: raise ValueError(F'''Size must contain \'height\' and \'width\' keys or \'shortest_edge\' key. Got {size.keys()}''' ) return resize(lowercase , size=lowercase , resample=lowercase , data_format=lowercase , **lowercase ) def A_ ( self , lowercase , lowercase , lowercase = None , **lowercase , ): _lowerCamelCase : int = get_size_dict(lowercase ) if "height" not in size or "width" not in size: raise ValueError(F'''The `size` parameter must contain the keys (height, width). Got {size.keys()}''' ) return center_crop(lowercase , size=(size['height'], size['width']) , data_format=lowercase , **lowercase ) def A_ ( self , lowercase , lowercase , lowercase = None , **lowercase ): return rescale(lowercase , scale=lowercase , data_format=lowercase , **lowercase ) def A_ ( self , lowercase , lowercase , lowercase , lowercase = None , **lowercase , ): return normalize(lowercase , mean=lowercase , std=lowercase , data_format=lowercase , **lowercase ) def A_ ( self , lowercase , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = ChannelDimension.FIRST , **lowercase , ): _lowerCamelCase : List[Any] = do_resize if do_resize is not None else self.do_resize _lowerCamelCase : List[Any] = do_rescale if do_rescale is not None else self.do_rescale _lowerCamelCase : Dict = do_normalize if do_normalize is not None else self.do_normalize _lowerCamelCase : Optional[int] = do_center_crop if do_center_crop is not None else self.do_center_crop _lowerCamelCase : List[str] = crop_size if crop_size is not None else self.crop_size _lowerCamelCase : Tuple = get_size_dict(lowercase , param_name='crop_size' , default_to_square=lowercase ) _lowerCamelCase : Any = resample if resample is not None else self.resample _lowerCamelCase : Union[str, Any] = rescale_factor if rescale_factor is not None else self.rescale_factor _lowerCamelCase : Union[str, Any] = image_mean if image_mean is not None else self.image_mean _lowerCamelCase : Dict = image_std if image_std is not None else self.image_std _lowerCamelCase : Dict = size if size is not None else self.size _lowerCamelCase : List[str] = get_size_dict(lowercase ) if not is_batched(lowercase ): _lowerCamelCase : List[Any] = [images] if not valid_images(lowercase ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) # All transformations expect numpy arrays. _lowerCamelCase : Union[str, Any] = [to_numpy_array(lowercase ) for image in images] if do_resize: _lowerCamelCase : int = [self.resize(image=lowercase , size=lowercase , resample=lowercase ) for image in images] if do_center_crop: _lowerCamelCase : Any = [self.center_crop(image=lowercase , size=lowercase ) for image in images] if do_rescale: _lowerCamelCase : str = [self.rescale(image=lowercase , scale=lowercase ) for image in images] if do_normalize: _lowerCamelCase : List[Any] = [self.normalize(image=lowercase , mean=lowercase , std=lowercase ) for image in images] _lowerCamelCase : List[str] = [to_channel_dimension_format(lowercase , lowercase ) for image in images] _lowerCamelCase : List[Any] = {'pixel_values': images} return BatchFeature(data=lowercase , tensor_type=lowercase )
355
"""simple docstring""" import argparse import torch from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_from_original_stable_diffusion_ckpt if __name__ == "__main__": lowercase__ = argparse.ArgumentParser() parser.add_argument( """--checkpoint_path""", default=None, type=str, required=True, help="""Path to the checkpoint to convert.""" ) # !wget https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml parser.add_argument( """--original_config_file""", default=None, type=str, help="""The YAML config file corresponding to the original architecture.""", ) parser.add_argument( """--num_in_channels""", default=None, type=int, help="""The number of input channels. If `None` number of input channels will be automatically inferred.""", ) parser.add_argument( """--scheduler_type""", default="""pndm""", type=str, help="""Type of scheduler to use. Should be one of ['pndm', 'lms', 'ddim', 'euler', 'euler-ancestral', 'dpm']""", ) parser.add_argument( """--pipeline_type""", default=None, type=str, help=( """The pipeline type. One of 'FrozenOpenCLIPEmbedder', 'FrozenCLIPEmbedder', 'PaintByExample'""" """. If `None` pipeline will be automatically inferred.""" ), ) parser.add_argument( """--image_size""", default=None, type=int, help=( """The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2""" """ Base. Use 768 for Stable Diffusion v2.""" ), ) parser.add_argument( """--prediction_type""", default=None, type=str, help=( """The prediction type that the model was trained on. Use 'epsilon' for Stable Diffusion v1.X and Stable""" """ Diffusion v2 Base. Use 'v_prediction' for Stable Diffusion v2.""" ), ) parser.add_argument( """--extract_ema""", action="""store_true""", help=( """Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights""" """ or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield""" """ higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning.""" ), ) parser.add_argument( """--upcast_attention""", action="""store_true""", help=( """Whether the attention computation should always be upcasted. This is necessary when running stable""" """ diffusion 2.1.""" ), ) parser.add_argument( """--from_safetensors""", action="""store_true""", help="""If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.""", ) parser.add_argument( """--to_safetensors""", action="""store_true""", help="""Whether to store pipeline in safetensors format or not.""", ) parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the output model.""") parser.add_argument("""--device""", type=str, help="""Device to use (e.g. cpu, cuda:0, cuda:1, etc.)""") parser.add_argument( """--stable_unclip""", type=str, default=None, required=False, help="""Set if this is a stable unCLIP model. One of 'txt2img' or 'img2img'.""", ) parser.add_argument( """--stable_unclip_prior""", type=str, default=None, required=False, help="""Set if this is a stable unCLIP txt2img model. Selects which prior to use. If `--stable_unclip` is set to `txt2img`, the karlo prior (https://huggingface.co/kakaobrain/karlo-v1-alpha/tree/main/prior) is selected by default.""", ) parser.add_argument( """--clip_stats_path""", type=str, help="""Path to the clip stats file. Only required if the stable unclip model's config specifies `model.params.noise_aug_config.params.clip_stats_path`.""", required=False, ) parser.add_argument( """--controlnet""", action="""store_true""", default=None, help="""Set flag if this is a controlnet checkpoint.""" ) parser.add_argument("""--half""", action="""store_true""", help="""Save weights in half precision.""") parser.add_argument( """--vae_path""", type=str, default=None, required=False, help="""Set to a path, hub id to an already converted vae to not convert it again.""", ) lowercase__ = parser.parse_args() lowercase__ = download_from_original_stable_diffusion_ckpt( checkpoint_path=args.checkpoint_path, original_config_file=args.original_config_file, image_size=args.image_size, prediction_type=args.prediction_type, model_type=args.pipeline_type, extract_ema=args.extract_ema, scheduler_type=args.scheduler_type, num_in_channels=args.num_in_channels, upcast_attention=args.upcast_attention, from_safetensors=args.from_safetensors, device=args.device, stable_unclip=args.stable_unclip, stable_unclip_prior=args.stable_unclip_prior, clip_stats_path=args.clip_stats_path, controlnet=args.controlnet, vae_path=args.vae_path, ) if args.half: pipe.to(torch_dtype=torch.floataa) if args.controlnet: # only save the controlnet model pipe.controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors) else: pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
12
0
import numpy as np def A_ ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = 1e-12 , _lowerCAmelCase = 100 , ) -> tuple[float, np.ndarray]: assert np.shape(_lowerCAmelCase )[0] == np.shape(_lowerCAmelCase )[1] # Ensure proper dimensionality. assert np.shape(_lowerCAmelCase )[0] == np.shape(_lowerCAmelCase )[0] # Ensure inputs are either both complex or both real assert np.iscomplexobj(_lowerCAmelCase ) == np.iscomplexobj(_lowerCAmelCase ) UpperCamelCase : Optional[int] = np.iscomplexobj(_lowerCAmelCase ) if is_complex: # Ensure complex input_matrix is Hermitian assert np.array_equal(_lowerCAmelCase , input_matrix.conj().T ) # Set convergence to False. Will define convergence when we exceed max_iterations # or when we have small changes from one iteration to next. UpperCamelCase : str = False UpperCamelCase : int = 0 UpperCamelCase : Optional[int] = 0 UpperCamelCase : Tuple = 1e12 while not convergence: # Multiple matrix by the vector. UpperCamelCase : Any = np.dot(_lowerCAmelCase , _lowerCAmelCase ) # Normalize the resulting output vector. UpperCamelCase : List[str] = w / np.linalg.norm(_lowerCAmelCase ) # Find rayleigh quotient # (faster than usual b/c we know vector is normalized already) UpperCamelCase : List[str] = vector.conj().T if is_complex else vector.T UpperCamelCase : List[Any] = np.dot(_lowerCAmelCase , np.dot(_lowerCAmelCase , _lowerCAmelCase ) ) # Check convergence. UpperCamelCase : List[Any] = np.abs(lambda_ - lambda_previous ) / lambda_ iterations += 1 if error <= error_tol or iterations >= max_iterations: UpperCamelCase : str = True UpperCamelCase : Union[str, Any] = lambda_ if is_complex: UpperCamelCase : Optional[Any] = np.real(lambda_ ) return lambda_, vector def A_ ( ) -> None: UpperCamelCase : Any = np.array([[41, 4, 20], [4, 26, 30], [20, 30, 50]] ) UpperCamelCase : str = np.array([41, 4, 20] ) UpperCamelCase : Optional[Any] = real_input_matrix.astype(np.complexaaa ) UpperCamelCase : Dict = np.triu(1j * complex_input_matrix , 1 ) complex_input_matrix += imag_matrix complex_input_matrix += -1 * imag_matrix.T UpperCamelCase : Optional[int] = np.array([41, 4, 20] ).astype(np.complexaaa ) for problem_type in ["real", "complex"]: if problem_type == "real": UpperCamelCase : int = real_input_matrix UpperCamelCase : Any = real_vector elif problem_type == "complex": UpperCamelCase : Union[str, Any] = complex_input_matrix UpperCamelCase : Tuple = complex_vector # Our implementation. UpperCamelCase , UpperCamelCase : List[Any] = power_iteration(_lowerCAmelCase , _lowerCAmelCase ) # Numpy implementation. # Get eigenvalues and eigenvectors using built-in numpy # eigh (eigh used for symmetric or hermetian matrices). UpperCamelCase , UpperCamelCase : Optional[int] = np.linalg.eigh(_lowerCAmelCase ) # Last eigenvalue is the maximum one. UpperCamelCase : Tuple = eigen_values[-1] # Last column in this matrix is eigenvector corresponding to largest eigenvalue. UpperCamelCase : List[Any] = eigen_vectors[:, -1] # Check our implementation and numpy gives close answers. assert np.abs(eigen_value - eigen_value_max ) <= 1e-6 # Take absolute values element wise of each eigenvector. # as they are only unique to a minus sign. assert np.linalg.norm(np.abs(_lowerCAmelCase ) - np.abs(_lowerCAmelCase ) ) <= 1e-6 if __name__ == "__main__": import doctest doctest.testmod() test_power_iteration()
52
import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import numpy as np import pytest from datasets.arrow_dataset import Dataset from datasets.search import ElasticSearchIndex, FaissIndex, MissingIndex from .utils import require_elasticsearch, require_faiss __lowerCamelCase : Union[str, Any] = pytest.mark.integration @require_faiss class A__ ( __snake_case ): def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : Union[str, Any] = Dataset.from_dict({"filename": ["my_name-train" + "_" + str(A_ ) for x in np.arange(30 ).tolist()]} ) return dset def __UpperCamelCase( self ): '''simple docstring''' import faiss UpperCamelCase : Dataset = self._create_dummy_dataset() UpperCamelCase : List[Any] = dset.map( lambda A_ , A_ : {"vecs": i * np.ones(5 , dtype=np.floataa )} , with_indices=A_ , keep_in_memory=A_ ) UpperCamelCase : List[str] = dset.add_faiss_index("vecs" , batch_size=100 , metric_type=faiss.METRIC_INNER_PRODUCT ) UpperCamelCase , UpperCamelCase : Tuple = dset.get_nearest_examples("vecs" , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples["filename"][0] , "my_name-train_29" ) dset.drop_index("vecs" ) def __UpperCamelCase( self ): '''simple docstring''' import faiss UpperCamelCase : Dataset = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name="vecs" , batch_size=100 , metric_type=faiss.METRIC_INNER_PRODUCT , ) UpperCamelCase , UpperCamelCase : int = dset.get_nearest_examples("vecs" , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples["filename"][0] , "my_name-train_29" ) def __UpperCamelCase( self ): '''simple docstring''' import faiss UpperCamelCase : Dataset = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name="vecs" , metric_type=faiss.METRIC_INNER_PRODUCT , ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=A_ ) as tmp_file: dset.save_faiss_index("vecs" , tmp_file.name ) dset.load_faiss_index("vecs2" , tmp_file.name ) os.unlink(tmp_file.name ) UpperCamelCase , UpperCamelCase : List[str] = dset.get_nearest_examples("vecs2" , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples["filename"][0] , "my_name-train_29" ) def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : Dataset = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name="vecs" ) dset.drop_index("vecs" ) self.assertRaises(A_ , partial(dset.get_nearest_examples , "vecs2" , np.ones(5 , dtype=np.floataa ) ) ) def __UpperCamelCase( self ): '''simple docstring''' from elasticsearch import Elasticsearch UpperCamelCase : Dataset = self._create_dummy_dataset() with patch("elasticsearch.Elasticsearch.search" ) as mocked_search, patch( "elasticsearch.client.IndicesClient.create" ) as mocked_index_create, patch("elasticsearch.helpers.streaming_bulk" ) as mocked_bulk: UpperCamelCase : List[str] = {"acknowledged": True} mocked_bulk.return_value([(True, None)] * 30 ) UpperCamelCase : List[Any] = {"hits": {"hits": [{"_score": 1, "_id": 29}]}} UpperCamelCase : Optional[Any] = Elasticsearch() dset.add_elasticsearch_index("filename" , es_client=A_ ) UpperCamelCase , UpperCamelCase : List[str] = dset.get_nearest_examples("filename" , "my_name-train_29" ) self.assertEqual(examples["filename"][0] , "my_name-train_29" ) @require_faiss class A__ ( __snake_case ): def __UpperCamelCase( self ): '''simple docstring''' import faiss UpperCamelCase : Optional[int] = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) # add vectors index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsNotNone(index.faiss_index ) self.assertEqual(index.faiss_index.ntotal , 5 ) index.add_vectors(np.zeros((5, 5) , dtype=np.floataa ) ) self.assertEqual(index.faiss_index.ntotal , 10 ) # single query UpperCamelCase : Any = np.zeros(5 , dtype=np.floataa ) UpperCamelCase : Optional[Any] = 1 UpperCamelCase , UpperCamelCase : Optional[Any] = index.search(A_ ) self.assertRaises(A_ , index.search , query.reshape(-1 , 1 ) ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) # batched queries UpperCamelCase : Optional[int] = np.eye(5 , dtype=np.floataa )[::-1] UpperCamelCase , UpperCamelCase : Tuple = index.search_batch(A_ ) self.assertRaises(A_ , index.search_batch , queries[0] ) UpperCamelCase : Optional[int] = [scores[0] for scores in total_scores] UpperCamelCase : Tuple = [indices[0] for indices in total_indices] self.assertGreater(np.min(A_ ) , 0 ) self.assertListEqual([4, 3, 2, 1, 0] , A_ ) def __UpperCamelCase( self ): '''simple docstring''' import faiss UpperCamelCase : List[str] = FaissIndex(string_factory="Flat" ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) UpperCamelCase : List[str] = FaissIndex(string_factory="LSH" ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexLSH ) with self.assertRaises(A_ ): UpperCamelCase : List[str] = FaissIndex(string_factory="Flat" , custom_index=faiss.IndexFlat(5 ) ) def __UpperCamelCase( self ): '''simple docstring''' import faiss UpperCamelCase : Dict = faiss.IndexFlat(5 ) UpperCamelCase : Union[str, Any] = FaissIndex(custom_index=A_ ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) def __UpperCamelCase( self ): '''simple docstring''' import faiss UpperCamelCase : str = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=A_ ) as tmp_file: index.save(tmp_file.name ) UpperCamelCase : int = FaissIndex.load(tmp_file.name ) os.unlink(tmp_file.name ) UpperCamelCase : str = np.zeros(5 , dtype=np.floataa ) UpperCamelCase : int = 1 UpperCamelCase , UpperCamelCase : Dict = index.search(A_ ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) @require_faiss def A_ ( _lowerCAmelCase ) -> Optional[int]: import faiss UpperCamelCase : Union[str, Any] = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) UpperCamelCase : List[Any] = "index.faiss" UpperCamelCase : List[str] = F"""mock://{index_name}""" index.save(_lowerCAmelCase , storage_options=mockfs.storage_options ) UpperCamelCase : List[str] = FaissIndex.load(_lowerCAmelCase , storage_options=mockfs.storage_options ) UpperCamelCase : List[str] = np.zeros(5 , dtype=np.floataa ) UpperCamelCase : Optional[int] = 1 UpperCamelCase , UpperCamelCase : List[str] = index.search(_lowerCAmelCase ) assert scores[0] > 0 assert indices[0] == 1 @require_elasticsearch class A__ ( __snake_case ): def __UpperCamelCase( self ): '''simple docstring''' from elasticsearch import Elasticsearch with patch("elasticsearch.Elasticsearch.search" ) as mocked_search, patch( "elasticsearch.client.IndicesClient.create" ) as mocked_index_create, patch("elasticsearch.helpers.streaming_bulk" ) as mocked_bulk: UpperCamelCase : List[str] = Elasticsearch() UpperCamelCase : Union[str, Any] = {"acknowledged": True} UpperCamelCase : Union[str, Any] = ElasticSearchIndex(es_client=A_ ) mocked_bulk.return_value([(True, None)] * 3 ) index.add_documents(["foo", "bar", "foobar"] ) # single query UpperCamelCase : str = "foo" UpperCamelCase : Dict = {"hits": {"hits": [{"_score": 1, "_id": 0}]}} UpperCamelCase , UpperCamelCase : Tuple = index.search(A_ ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # single query with timeout UpperCamelCase : Dict = "foo" UpperCamelCase : Optional[Any] = {"hits": {"hits": [{"_score": 1, "_id": 0}]}} UpperCamelCase , UpperCamelCase : str = index.search(A_ , request_timeout=30 ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # batched queries UpperCamelCase : Dict = ["foo", "bar", "foobar"] UpperCamelCase : List[Any] = {"hits": {"hits": [{"_score": 1, "_id": 1}]}} UpperCamelCase , UpperCamelCase : Optional[int] = index.search_batch(A_ ) UpperCamelCase : str = [scores[0] for scores in total_scores] UpperCamelCase : Optional[Any] = [indices[0] for indices in total_indices] self.assertGreater(np.min(A_ ) , 0 ) self.assertListEqual([1, 1, 1] , A_ ) # batched queries with timeout UpperCamelCase : int = ["foo", "bar", "foobar"] UpperCamelCase : List[Any] = {"hits": {"hits": [{"_score": 1, "_id": 1}]}} UpperCamelCase , UpperCamelCase : Union[str, Any] = index.search_batch(A_ , request_timeout=30 ) UpperCamelCase : Union[str, Any] = [scores[0] for scores in total_scores] UpperCamelCase : Dict = [indices[0] for indices in total_indices] self.assertGreater(np.min(A_ ) , 0 ) self.assertListEqual([1, 1, 1] , A_ )
52
1
from math import factorial def a ( SCREAMING_SNAKE_CASE_ : int = 1_0_0 ): """simple docstring""" return sum(int(lowerCAmelCase__ ) for x in str(factorial(lowerCAmelCase__ ) ) ) if __name__ == "__main__": print(solution(int(input("Enter the Number: ").strip())))
366
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __UpperCAmelCase : Tuple = logging.get_logger(__name__) __UpperCAmelCase : Union[str, Any] = { "kssteven/ibert-roberta-base": "https://huggingface.co/kssteven/ibert-roberta-base/resolve/main/config.json", "kssteven/ibert-roberta-large": "https://huggingface.co/kssteven/ibert-roberta-large/resolve/main/config.json", "kssteven/ibert-roberta-large-mnli": ( "https://huggingface.co/kssteven/ibert-roberta-large-mnli/resolve/main/config.json" ), } class UpperCAmelCase_ ( _a): '''simple docstring''' __UpperCamelCase : List[Any] = "ibert" def __init__( self , __SCREAMING_SNAKE_CASE=30_522 , __SCREAMING_SNAKE_CASE=768 , __SCREAMING_SNAKE_CASE=12 , __SCREAMING_SNAKE_CASE=12 , __SCREAMING_SNAKE_CASE=3_072 , __SCREAMING_SNAKE_CASE="gelu" , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=512 , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=0.02 , __SCREAMING_SNAKE_CASE=1e-12 , __SCREAMING_SNAKE_CASE=1 , __SCREAMING_SNAKE_CASE=0 , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE="absolute" , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE="none" , **__SCREAMING_SNAKE_CASE , ): """simple docstring""" super().__init__(pad_token_id=__SCREAMING_SNAKE_CASE , bos_token_id=__SCREAMING_SNAKE_CASE , eos_token_id=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) UpperCamelCase : Union[str, Any] = vocab_size UpperCamelCase : Optional[int] = hidden_size UpperCamelCase : Tuple = num_hidden_layers UpperCamelCase : Optional[Any] = num_attention_heads UpperCamelCase : Dict = hidden_act UpperCamelCase : Union[str, Any] = intermediate_size UpperCamelCase : str = hidden_dropout_prob UpperCamelCase : Any = attention_probs_dropout_prob UpperCamelCase : Dict = max_position_embeddings UpperCamelCase : Union[str, Any] = type_vocab_size UpperCamelCase : Optional[Any] = initializer_range UpperCamelCase : Union[str, Any] = layer_norm_eps UpperCamelCase : Dict = position_embedding_type UpperCamelCase : int = quant_mode UpperCamelCase : Any = force_dequant class UpperCAmelCase_ ( _a): '''simple docstring''' @property def _lowercase ( self ): """simple docstring""" if self.task == "multiple-choice": UpperCamelCase : int = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: UpperCamelCase : Optional[int] = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
315
0
"""simple docstring""" import argparse import os import re lowercase_ = "src/transformers/models/auto" # re pattern that matches mapping introductions: # SUPER_MODEL_MAPPING_NAMES = OrderedDict or SUPER_MODEL_MAPPING = OrderedDict lowercase_ = re.compile(r"[A-Z_]+_MAPPING(\s+|_[A-Z_]+\s+)=\s+OrderedDict") # re pattern that matches identifiers in mappings lowercase_ = re.compile(r"\s*\(\s*\"(\S[^\"]+)\"") def lowercase ( lowerCAmelCase__ : str , lowerCAmelCase__ : bool = False ) -> Dict: with open(snake_case__ , '''r''' , encoding='''utf-8''' ) as f: __a = f.read() __a = content.split('''\n''' ) __a = [] __a = 0 while line_idx < len(snake_case__ ): if _re_intro_mapping.search(lines[line_idx] ) is not None: __a = len(re.search(r'''^(\s*)\S''' , lines[line_idx] ).groups()[0] ) + 8 # Start of a new mapping! while not lines[line_idx].startswith(''' ''' * indent + '''(''' ): new_lines.append(lines[line_idx] ) line_idx += 1 __a = [] while lines[line_idx].strip() != "]": # Blocks either fit in one line or not if lines[line_idx].strip() == "(": __a = line_idx while not lines[line_idx].startswith(''' ''' * indent + ''')''' ): line_idx += 1 blocks.append('''\n'''.join(lines[start_idx : line_idx + 1] ) ) else: blocks.append(lines[line_idx] ) line_idx += 1 # Sort blocks by their identifiers __a = sorted(snake_case__ , key=lambda lowerCAmelCase__ : _re_identifier.search(snake_case__ ).groups()[0] ) new_lines += blocks else: new_lines.append(lines[line_idx] ) line_idx += 1 if overwrite: with open(snake_case__ , '''w''' , encoding='''utf-8''' ) as f: f.write('''\n'''.join(snake_case__ ) ) elif "\n".join(snake_case__ ) != content: return True def lowercase ( lowerCAmelCase__ : bool = False ) -> Any: __a = [os.path.join(snake_case__ , snake_case__ ) for f in os.listdir(snake_case__ ) if f.endswith('''.py''' )] __a = [sort_auto_mapping(snake_case__ , overwrite=snake_case__ ) for fname in fnames] if not overwrite and any(snake_case__ ): __a = [f for f, d in zip(snake_case__ , snake_case__ ) if d] raise ValueError( f'''The following files have auto mappings that need sorting: {', '.join(snake_case__ )}. Run `make style` to fix''' ''' this.''' ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() parser.add_argument("--check_only", action="store_true", help="Whether to only check or fix style.") lowercase_ = parser.parse_args() sort_all_auto_mappings(not args.check_only)
45
import os def a ( ): '''simple docstring''' lowercase_ = os.path.join(os.path.dirname(snake_case__ ) , '''num.txt''' ) with open(snake_case__ ) as file_hand: return str(sum(int(snake_case__ ) for line in file_hand ) )[:10] if __name__ == "__main__": print(solution())
30
0
import os _SCREAMING_SNAKE_CASE = {"""I""": 1, """V""": 5, """X""": 10, """L""": 50, """C""": 1_00, """D""": 5_00, """M""": 10_00} def SCREAMING_SNAKE_CASE__ ( __a ): snake_case_ : Union[str, Any] = 0 snake_case_ : Union[str, Any] = 0 while index < len(__a ) - 1: snake_case_ : Any = SYMBOLS[numerals[index]] snake_case_ : List[Any] = SYMBOLS[numerals[index + 1]] if current_value < next_value: total_value -= current_value else: total_value += current_value index += 1 total_value += SYMBOLS[numerals[index]] return total_value def SCREAMING_SNAKE_CASE__ ( __a ): snake_case_ : List[str] = '' snake_case_ : str = num // 10_00 numerals += m_count * "M" num %= 10_00 snake_case_ : List[Any] = num // 1_00 if c_count == 9: numerals += "CM" c_count -= 9 elif c_count == 4: numerals += "CD" c_count -= 4 if c_count >= 5: numerals += "D" c_count -= 5 numerals += c_count * "C" num %= 1_00 snake_case_ : Tuple = num // 10 if x_count == 9: numerals += "XC" x_count -= 9 elif x_count == 4: numerals += "XL" x_count -= 4 if x_count >= 5: numerals += "L" x_count -= 5 numerals += x_count * "X" num %= 10 if num == 9: numerals += "IX" num -= 9 elif num == 4: numerals += "IV" num -= 4 if num >= 5: numerals += "V" num -= 5 numerals += num * "I" return numerals def SCREAMING_SNAKE_CASE__ ( __a = "/p089_roman.txt" ): snake_case_ : Optional[int] = 0 with open(os.path.dirname(__a ) + roman_numerals_filename ) as filea: snake_case_ : List[Any] = filea.readlines() for line in lines: snake_case_ : Optional[int] = line.strip() snake_case_ : Dict = parse_roman_numerals(__a ) snake_case_ : List[str] = generate_roman_numerals(__a ) savings += len(__a ) - len(__a ) return savings if __name__ == "__main__": print(F'''{solution() = }''')
88
from __future__ import annotations import pandas as pd def SCREAMING_SNAKE_CASE__ ( __a , __a , __a ): snake_case_ : Optional[Any] = [0] * no_of_processes snake_case_ : Tuple = [0] * no_of_processes # Copy the burst time into remaining_time[] for i in range(__a ): snake_case_ : Union[str, Any] = burst_time[i] snake_case_ : Optional[Any] = 0 snake_case_ : Dict = 0 snake_case_ : Any = 9_99_99_99_99 snake_case_ : Tuple = 0 snake_case_ : List[Any] = False # Process until all processes are completed while complete != no_of_processes: for j in range(__a ): if arrival_time[j] <= increment_time and remaining_time[j] > 0: if remaining_time[j] < minm: snake_case_ : str = remaining_time[j] snake_case_ : Any = j snake_case_ : List[str] = True if not check: increment_time += 1 continue remaining_time[short] -= 1 snake_case_ : Any = remaining_time[short] if minm == 0: snake_case_ : Dict = 9_99_99_99_99 if remaining_time[short] == 0: complete += 1 snake_case_ : List[str] = False # Find finish time of current process snake_case_ : List[str] = increment_time + 1 # Calculate waiting time snake_case_ : Any = finish_time - arrival_time[short] snake_case_ : Any = finar - burst_time[short] if waiting_time[short] < 0: snake_case_ : Optional[int] = 0 # Increment time increment_time += 1 return waiting_time def SCREAMING_SNAKE_CASE__ ( __a , __a , __a ): snake_case_ : Tuple = [0] * no_of_processes for i in range(__a ): snake_case_ : str = burst_time[i] + waiting_time[i] return turn_around_time def SCREAMING_SNAKE_CASE__ ( __a , __a , __a ): snake_case_ : int = 0 snake_case_ : Optional[Any] = 0 for i in range(__a ): snake_case_ : int = total_waiting_time + waiting_time[i] snake_case_ : Optional[Any] = total_turn_around_time + turn_around_time[i] print(f"""Average waiting time = {total_waiting_time / no_of_processes:.5f}""" ) print('Average turn around time =' , total_turn_around_time / no_of_processes ) if __name__ == "__main__": print("""Enter how many process you want to analyze""") _SCREAMING_SNAKE_CASE = int(input()) _SCREAMING_SNAKE_CASE = [0] * no_of_processes _SCREAMING_SNAKE_CASE = [0] * no_of_processes _SCREAMING_SNAKE_CASE = list(range(1, no_of_processes + 1)) for i in range(no_of_processes): print("""Enter the arrival time and burst time for process:--""" + str(i + 1)) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = map(int, input().split()) _SCREAMING_SNAKE_CASE = calculate_waitingtime(arrival_time, burst_time, no_of_processes) _SCREAMING_SNAKE_CASE = burst_time _SCREAMING_SNAKE_CASE = no_of_processes _SCREAMING_SNAKE_CASE = waiting_time _SCREAMING_SNAKE_CASE = calculate_turnaroundtime(bt, n, wt) calculate_average_times(waiting_time, turn_around_time, no_of_processes) _SCREAMING_SNAKE_CASE = pd.DataFrame( list(zip(processes, burst_time, arrival_time, waiting_time, turn_around_time)), columns=[ """Process""", """BurstTime""", """ArrivalTime""", """WaitingTime""", """TurnAroundTime""", ], ) # Printing the dataFrame pd.set_option("""display.max_rows""", fcfs.shape[0] + 1) print(fcfs)
88
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase__ = { '''configuration_albert''': ['''ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''AlbertConfig''', '''AlbertOnnxConfig'''], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = ['''AlbertTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = ['''AlbertTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ '''ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''AlbertForMaskedLM''', '''AlbertForMultipleChoice''', '''AlbertForPreTraining''', '''AlbertForQuestionAnswering''', '''AlbertForSequenceClassification''', '''AlbertForTokenClassification''', '''AlbertModel''', '''AlbertPreTrainedModel''', '''load_tf_weights_in_albert''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ '''TF_ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFAlbertForMaskedLM''', '''TFAlbertForMultipleChoice''', '''TFAlbertForPreTraining''', '''TFAlbertForQuestionAnswering''', '''TFAlbertForSequenceClassification''', '''TFAlbertForTokenClassification''', '''TFAlbertMainLayer''', '''TFAlbertModel''', '''TFAlbertPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ '''FlaxAlbertForMaskedLM''', '''FlaxAlbertForMultipleChoice''', '''FlaxAlbertForPreTraining''', '''FlaxAlbertForQuestionAnswering''', '''FlaxAlbertForSequenceClassification''', '''FlaxAlbertForTokenClassification''', '''FlaxAlbertModel''', '''FlaxAlbertPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_albert import ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, AlbertConfig, AlbertOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_albert import AlbertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_albert_fast import AlbertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_albert import ( ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForPreTraining, AlbertForQuestionAnswering, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertModel, AlbertPreTrainedModel, load_tf_weights_in_albert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_albert import ( TF_ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFAlbertForMaskedLM, TFAlbertForMultipleChoice, TFAlbertForPreTraining, TFAlbertForQuestionAnswering, TFAlbertForSequenceClassification, TFAlbertForTokenClassification, TFAlbertMainLayer, TFAlbertModel, TFAlbertPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_albert import ( FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForPreTraining, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertModel, FlaxAlbertPreTrainedModel, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
104
def a_ ( lowerCAmelCase_ : int ): if p < 2: raise ValueError('p should not be less than 2!' ) elif p == 2: return True __lowerCAmelCase = 4 __lowerCAmelCase = (1 << p) - 1 for _ in range(p - 2 ): __lowerCAmelCase = ((s * s) - 2) % m return s == 0 if __name__ == "__main__": print(lucas_lehmer_test(7)) print(lucas_lehmer_test(11))
284
0
import os import pytest from attr import dataclass __lowerCamelCase = """us-east-1""" # defaults region @dataclass class UpperCAmelCase : A__ : Union[str, Any] = 42 A__ : Optional[Any] = "arn:aws:iam::558105141721:role/sagemaker_execution_role" A__ : Dict = { "task_name": "mnli", "per_device_train_batch_size": 16, "per_device_eval_batch_size": 16, "do_train": True, "do_eval": True, "do_predict": True, "output_dir": "/opt/ml/model", "overwrite_output_dir": True, "max_steps": 5_00, "save_steps": 55_00, } A__ : Optional[Any] = {**hyperparameters, "max_steps": 10_00} @property def _SCREAMING_SNAKE_CASE (self : List[Any] ) -> str: '''simple docstring''' if self.framework == "pytorch": return [ {"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"}, {"Name": "eval_accuracy", "Regex": r"eval_accuracy.*=\D*(.*?)$"}, {"Name": "eval_loss", "Regex": r"eval_loss.*=\D*(.*?)$"}, ] else: return [ {"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"}, {"Name": "eval_accuracy", "Regex": r"loss.*=\D*(.*?)]?$"}, {"Name": "eval_loss", "Regex": r"sparse_categorical_accuracy.*=\D*(.*?)]?$"}, ] @property def _SCREAMING_SNAKE_CASE (self : Dict ) -> str: '''simple docstring''' return f"""{self.framework}-transfromers-test""" @property def _SCREAMING_SNAKE_CASE (self : Dict ) -> str: '''simple docstring''' return f"""./tests/sagemaker/scripts/{self.framework}""" @property def _SCREAMING_SNAKE_CASE (self : List[str] ) -> str: '''simple docstring''' if self.framework == "pytorch": return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-pytorch-training:1.7.1-transformers4.6.1-gpu-py36-cu110-ubuntu18.04" else: return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-tensorflow-training:2.4.1-transformers4.6.1-gpu-py37-cu110-ubuntu18.04" @pytest.fixture(scope="class" ) def UpperCamelCase ( __lowerCamelCase : Optional[Any] ): snake_case : Union[str, Any] = SageMakerTestEnvironment(framework=request.cls.framework )
368
import os # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_doctest_list.py __lowerCamelCase = """.""" if __name__ == "__main__": __lowerCamelCase = os.path.join(REPO_PATH, """utils/documentation_tests.txt""") __lowerCamelCase = [] __lowerCamelCase = [] with open(doctest_file_path) as fp: for line in fp: __lowerCamelCase = line.strip() __lowerCamelCase = os.path.join(REPO_PATH, line) if not (os.path.isfile(path) or os.path.isdir(path)): non_existent_paths.append(line) all_paths.append(path) if len(non_existent_paths) > 0: __lowerCamelCase = """\n""".join(non_existent_paths) raise ValueError(F'`utils/documentation_tests.txt` contains non-existent paths:\n{non_existent_paths}') if all_paths != sorted(all_paths): raise ValueError("""Files in `utils/documentation_tests.txt` are not in alphabetical order.""")
10
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCamelCase : List[Any] = { 'configuration_pegasus_x': ['PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PegasusXConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Union[str, Any] = [ 'PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST', 'PegasusXForConditionalGeneration', 'PegasusXModel', 'PegasusXPreTrainedModel', ] if TYPE_CHECKING: from .configuration_pegasus_x import PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP, PegasusXConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pegasus_x import ( PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST, PegasusXForConditionalGeneration, PegasusXModel, PegasusXPreTrainedModel, ) else: import sys lowerCamelCase : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
2
'''simple docstring''' from math import isclose, sqrt def snake_case_ ( _lowerCAmelCase : float , _lowerCAmelCase : float , _lowerCAmelCase : float ) -> tuple[float, float, float]: UpperCAmelCase : Optional[int] = point_y / 4 / point_x UpperCAmelCase : str = 2 * normal_gradient / (1 + normal_gradient * normal_gradient) UpperCAmelCase : Any = (1 - normal_gradient * normal_gradient) / ( 1 + normal_gradient * normal_gradient ) UpperCAmelCase : Union[str, Any] = (sa - ca * incoming_gradient) / (ca + sa * incoming_gradient) # to find the next point, solve the simultaeneous equations: # y^2 + 4x^2 = 100 # y - b = m * (x - a) # ==> A x^2 + B x + C = 0 UpperCAmelCase : Union[str, Any] = outgoing_gradient**2 + 4 UpperCAmelCase : Dict = 2 * outgoing_gradient * (point_y - outgoing_gradient * point_x) UpperCAmelCase : List[Any] = (point_y - outgoing_gradient * point_x) ** 2 - 100 UpperCAmelCase : List[str] = ( -linear_term - sqrt(linear_term**2 - 4 * quadratic_term * constant_term ) ) / (2 * quadratic_term) UpperCAmelCase : Optional[int] = ( -linear_term + sqrt(linear_term**2 - 4 * quadratic_term * constant_term ) ) / (2 * quadratic_term) # two solutions, one of which is our input point UpperCAmelCase : Optional[Any] = x_minus if isclose(_lowerCAmelCase , _lowerCAmelCase ) else x_plus UpperCAmelCase : Union[str, Any] = point_y + outgoing_gradient * (next_x - point_x) return next_x, next_y, outgoing_gradient def snake_case_ ( _lowerCAmelCase : float = 1.4 , _lowerCAmelCase : float = -9.6 ) -> int: UpperCAmelCase : int = 0 UpperCAmelCase : float = first_x_coord UpperCAmelCase : float = first_y_coord UpperCAmelCase : float = (1_0.1 - point_y) / (0.0 - point_x) while not (-0.0_1 <= point_x <= 0.0_1 and point_y > 0): UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : str = next_point(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) num_reflections += 1 return num_reflections if __name__ == "__main__": print(F"{solution() = }")
23
0
from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ : str = logging.get_logger(__name__) lowercase__ : List[str] = {} class a__ ( UpperCamelCase__ ): a : Union[str, Any] = "llama" a : Union[str, Any] = ["past_key_values"] def __init__( self , A=32000 , A=4096 , A=11008 , A=32 , A=32 , A=None , A="silu" , A=2048 , A=0.0_2 , A=1e-6 , A=True , A=0 , A=1 , A=2 , A=1 , A=False , A=None , **A , ) -> int: '''simple docstring''' a = vocab_size a = max_position_embeddings a = hidden_size a = intermediate_size a = num_hidden_layers a = num_attention_heads # for backward compatibility if num_key_value_heads is None: a = num_attention_heads a = num_key_value_heads a = hidden_act a = initializer_range a = rms_norm_eps a = pretraining_tp a = use_cache a = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=A , bos_token_id=A , eos_token_id=A , tie_word_embeddings=A , **A , ) def lowerCAmelCase_ ( self ) -> List[str]: '''simple docstring''' if self.rope_scaling is None: return if not isinstance(self.rope_scaling , A ) or len(self.rope_scaling ) != 2: raise ValueError( "`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, " F'''got {self.rope_scaling}''' ) a = self.rope_scaling.get("type" , A ) a = self.rope_scaling.get("factor" , A ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( F'''`rope_scaling`\'s name field must be one of [\'linear\', \'dynamic\'], got {rope_scaling_type}''' ) if rope_scaling_factor is None or not isinstance(A , A ) or rope_scaling_factor <= 1.0: raise ValueError(F'''`rope_scaling`\'s factor field must be an float > 1, got {rope_scaling_factor}''' )
353
def SCREAMING_SNAKE_CASE ( __UpperCamelCase) -> int: return 1 if digit in (0, 1) else (digit * factorial(digit - 1)) def SCREAMING_SNAKE_CASE ( __UpperCamelCase) -> bool: a = 0 a = number while duplicate > 0: a , a = divmod(__UpperCamelCase , 10) fact_sum += factorial(__UpperCamelCase) return fact_sum == number if __name__ == "__main__": print("Program to check whether a number is a Krisnamurthy Number or not.") lowercase__ : str = int(input("Enter number: ").strip()) print( F'{number} is {"" if krishnamurthy(number) else "not "}a Krishnamurthy Number.' )
180
0
import json import os import shutil import tempfile import unittest import numpy as np from transformers import BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES, BertTokenizer from transformers.testing_utils import require_tokenizers, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor, ViTImageProcessor @require_tokenizers @require_vision class lowerCamelCase_ ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase__ ( self) -> int: __UpperCamelCase :List[str] = tempfile.mkdtemp() # fmt: off __UpperCamelCase :Any = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest'''] # fmt: on __UpperCamelCase :Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file''']) with open(self.vocab_file , '''w''' , encoding='''utf-8''') as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens])) __UpperCamelCase :List[Any] = { '''do_resize''': True, '''size''': {'''height''': 18, '''width''': 18}, '''do_normalize''': True, '''image_mean''': [0.5, 0.5, 0.5], '''image_std''': [0.5, 0.5, 0.5], } __UpperCamelCase :List[str] = os.path.join(self.tmpdirname , __lowercase) with open(self.image_processor_file , '''w''' , encoding='''utf-8''') as fp: json.dump(__lowercase , __lowercase) def UpperCamelCase__ ( self , **__lowercase) -> List[Any]: return BertTokenizer.from_pretrained(self.tmpdirname , **__lowercase) def UpperCamelCase__ ( self , **__lowercase) -> Any: return ViTImageProcessor.from_pretrained(self.tmpdirname , **__lowercase) def UpperCamelCase__ ( self) -> Dict: shutil.rmtree(self.tmpdirname) def UpperCamelCase__ ( self) -> Tuple: __UpperCamelCase :List[Any] = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta)] __UpperCamelCase :Any = [Image.fromarray(np.moveaxis(__lowercase , 0 , -1)) for x in image_inputs] return image_inputs def UpperCamelCase__ ( self) -> Tuple: __UpperCamelCase :str = self.get_tokenizer() __UpperCamelCase :List[str] = self.get_image_processor() __UpperCamelCase :List[Any] = VisionTextDualEncoderProcessor(tokenizer=__lowercase , image_processor=__lowercase) processor.save_pretrained(self.tmpdirname) __UpperCamelCase :Any = VisionTextDualEncoderProcessor.from_pretrained(self.tmpdirname) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab()) self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast)) self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string()) self.assertIsInstance(processor.image_processor , __lowercase) def UpperCamelCase__ ( self) -> Any: __UpperCamelCase :List[Any] = VisionTextDualEncoderProcessor( tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor()) processor.save_pretrained(self.tmpdirname) __UpperCamelCase :List[Any] = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''') __UpperCamelCase :Any = self.get_image_processor(do_normalize=__lowercase , padding_value=1.0) __UpperCamelCase :List[Any] = VisionTextDualEncoderProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=__lowercase , padding_value=1.0) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab()) self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast)) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string()) self.assertIsInstance(processor.image_processor , __lowercase) def UpperCamelCase__ ( self) -> Optional[Any]: __UpperCamelCase :Optional[Any] = self.get_image_processor() __UpperCamelCase :Optional[Any] = self.get_tokenizer() __UpperCamelCase :str = VisionTextDualEncoderProcessor(tokenizer=__lowercase , image_processor=__lowercase) __UpperCamelCase :str = self.prepare_image_inputs() __UpperCamelCase :Optional[int] = image_processor(__lowercase , return_tensors='''np''') __UpperCamelCase :str = processor(images=__lowercase , return_tensors='''np''') for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2) def UpperCamelCase__ ( self) -> str: __UpperCamelCase :List[Any] = self.get_image_processor() __UpperCamelCase :List[Any] = self.get_tokenizer() __UpperCamelCase :Any = VisionTextDualEncoderProcessor(tokenizer=__lowercase , image_processor=__lowercase) __UpperCamelCase :Optional[Any] = '''lower newer''' __UpperCamelCase :Optional[int] = processor(text=__lowercase) __UpperCamelCase :Any = tokenizer(__lowercase) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key]) def UpperCamelCase__ ( self) -> Optional[int]: __UpperCamelCase :str = self.get_image_processor() __UpperCamelCase :int = self.get_tokenizer() __UpperCamelCase :Any = VisionTextDualEncoderProcessor(tokenizer=__lowercase , image_processor=__lowercase) __UpperCamelCase :Tuple = '''lower newer''' __UpperCamelCase :Tuple = self.prepare_image_inputs() __UpperCamelCase :Dict = processor(text=__lowercase , images=__lowercase) self.assertListEqual(list(inputs.keys()) , ['''input_ids''', '''token_type_ids''', '''attention_mask''', '''pixel_values''']) # test if it raises when no input is passed with self.assertRaises(__lowercase): processor() def UpperCamelCase__ ( self) -> List[Any]: __UpperCamelCase :Dict = self.get_image_processor() __UpperCamelCase :Dict = self.get_tokenizer() __UpperCamelCase :Optional[int] = VisionTextDualEncoderProcessor(tokenizer=__lowercase , image_processor=__lowercase) __UpperCamelCase :Union[str, Any] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __UpperCamelCase :Union[str, Any] = processor.batch_decode(__lowercase) __UpperCamelCase :str = tokenizer.batch_decode(__lowercase) self.assertListEqual(__lowercase , __lowercase) def UpperCamelCase__ ( self) -> Any: __UpperCamelCase :int = self.get_image_processor() __UpperCamelCase :Tuple = self.get_tokenizer() __UpperCamelCase :Optional[int] = VisionTextDualEncoderProcessor(tokenizer=__lowercase , image_processor=__lowercase) __UpperCamelCase :Tuple = '''lower newer''' __UpperCamelCase :Optional[int] = self.prepare_image_inputs() __UpperCamelCase :Tuple = processor(text=__lowercase , images=__lowercase) self.assertListEqual(list(inputs.keys()) , processor.model_input_names)
43
"""simple docstring""" import io import itertools import json from dataclasses import dataclass from typing import Optional import pyarrow as pa import pyarrow.json as paj import datasets from datasets.table import table_cast from datasets.utils.file_utils import readline _a : int= datasets.utils.logging.get_logger(__name__) @dataclass class UpperCamelCase ( datasets.BuilderConfig ): UpperCAmelCase : Optional[datasets.Features] = None UpperCAmelCase : str = "utf-8" UpperCAmelCase : Optional[str] = None UpperCAmelCase : Optional[str] = None UpperCAmelCase : bool = True # deprecated UpperCAmelCase : Optional[int] = None # deprecated UpperCAmelCase : int = 10 << 20 # 10MB UpperCAmelCase : Optional[bool] = None class UpperCamelCase ( datasets.ArrowBasedBuilder ): UpperCAmelCase : int = JsonConfig def _lowercase (self : int) -> List[str]: if self.config.block_size is not None: logger.warning('The JSON loader parameter `block_size` is deprecated. Please use `chunksize` instead') __snake_case : Any = self.config.block_size if self.config.use_threads is not True: logger.warning( 'The JSON loader parameter `use_threads` is deprecated and doesn\'t have any effect anymore.') if self.config.newlines_in_values is not None: raise ValueError('The JSON loader parameter `newlines_in_values` is no longer supported') return datasets.DatasetInfo(features=self.config.features) def _lowercase (self : Dict , _A : Any) -> Optional[Any]: if not self.config.data_files: raise ValueError(f"At least one data file must be specified, but got data_files={self.config.data_files}") __snake_case : Dict = dl_manager.download_and_extract(self.config.data_files) if isinstance(_A , (str, list, tuple)): __snake_case : str = data_files if isinstance(_A , _A): __snake_case : int = [files] __snake_case : Tuple = [dl_manager.iter_files(_A) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'files': files})] __snake_case : str = [] for split_name, files in data_files.items(): if isinstance(_A , _A): __snake_case : Optional[int] = [files] __snake_case : int = [dl_manager.iter_files(_A) for file in files] splits.append(datasets.SplitGenerator(name=_A , gen_kwargs={'files': files})) return splits def _lowercase (self : Optional[Any] , _A : pa.Table) -> pa.Table: if self.config.features is not None: # adding missing columns for column_name in set(self.config.features) - set(pa_table.column_names): __snake_case : List[Any] = self.config.features.arrow_schema.field(_A).type __snake_case : Any = pa_table.append_column(_A , pa.array([None] * len(_A) , type=_A)) # more expensive cast to support nested structures with keys in a different order # allows str <-> int/float or str to Audio for example __snake_case : List[str] = table_cast(_A , self.config.features.arrow_schema) return pa_table def _lowercase (self : Dict , _A : Any) -> Union[str, Any]: for file_idx, file in enumerate(itertools.chain.from_iterable(_A)): # If the file is one json object and if we need to look at the list of items in one specific field if self.config.field is not None: with open(_A , encoding=self.config.encoding , errors=self.config.encoding_errors) as f: __snake_case : Tuple = json.load(_A) # We keep only the field we are interested in __snake_case : List[str] = dataset[self.config.field] # We accept two format: a list of dicts or a dict of lists if isinstance(_A , (list, tuple)): __snake_case : Optional[int] = set().union(*[row.keys() for row in dataset]) __snake_case : List[str] = {col: [row.get(_A) for row in dataset] for col in keys} else: __snake_case : Optional[int] = dataset __snake_case : Tuple = pa.Table.from_pydict(_A) yield file_idx, self._cast_table(_A) # If the file has one json object per line else: with open(_A , 'rb') as f: __snake_case : int = 0 # Use block_size equal to the chunk size divided by 32 to leverage multithreading # Set a default minimum value of 16kB if the chunk size is really small __snake_case : Tuple = max(self.config.chunksize // 32 , 16 << 10) __snake_case : str = ( self.config.encoding_errors if self.config.encoding_errors is not None else 'strict' ) while True: __snake_case : Union[str, Any] = f.read(self.config.chunksize) if not batch: break # Finish current line try: batch += f.readline() except (AttributeError, io.UnsupportedOperation): batch += readline(_A) # PyArrow only accepts utf-8 encoded bytes if self.config.encoding != "utf-8": __snake_case : int = batch.decode(self.config.encoding , errors=_A).encode('utf-8') try: while True: try: __snake_case : Tuple = paj.read_json( io.BytesIO(_A) , read_options=paj.ReadOptions(block_size=_A)) break except (pa.ArrowInvalid, pa.ArrowNotImplementedError) as e: if ( isinstance(_A , pa.ArrowInvalid) and "straddling" not in str(_A) or block_size > len(_A) ): raise else: # Increase the block size in case it was too small. # The block size will be reset for the next file. logger.debug( f"Batch of {len(_A)} bytes couldn't be parsed with block_size={block_size}. Retrying with block_size={block_size * 2}.") block_size *= 2 except pa.ArrowInvalid as e: try: with open( _A , encoding=self.config.encoding , errors=self.config.encoding_errors) as f: __snake_case : List[Any] = json.load(_A) except json.JSONDecodeError: logger.error(f"Failed to read file '{file}' with error {type(_A)}: {e}") raise e # If possible, parse the file as a list of json objects and exit the loop if isinstance(_A , _A): # list is the only sequence type supported in JSON try: __snake_case : List[str] = set().union(*[row.keys() for row in dataset]) __snake_case : List[str] = {col: [row.get(_A) for row in dataset] for col in keys} __snake_case : List[str] = pa.Table.from_pydict(_A) except (pa.ArrowInvalid, AttributeError) as e: logger.error(f"Failed to read file '{file}' with error {type(_A)}: {e}") raise ValueError(f"Not able to read records in the JSON file at {file}.") from None yield file_idx, self._cast_table(_A) break else: logger.error(f"Failed to read file '{file}' with error {type(_A)}: {e}") raise ValueError( f"Not able to read records in the JSON file at {file}. " f"You should probably indicate the field of the JSON file containing your records. " f"This JSON file contain the following fields: {str(list(dataset.keys()))}. " f"Select the correct one and provide it as `field='XXX'` to the dataset loading method. ") from None # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(_A) batch_idx += 1
172
0
import argparse from collections import OrderedDict from pathlib import Path import torch from transformers import ( VisualBertConfig, VisualBertForMultipleChoice, VisualBertForPreTraining, VisualBertForQuestionAnswering, VisualBertForVisualReasoning, ) from transformers.utils import logging logging.set_verbosity_info() __A = logging.get_logger(__name__) __A = [ ('''bert.bert''', '''visual_bert'''), ('''bert.cls''', '''cls'''), ('''bert.classifier''', '''cls'''), ('''token_type_embeddings_visual''', '''visual_token_type_embeddings'''), ('''position_embeddings_visual''', '''visual_position_embeddings'''), ('''projection''', '''visual_projection'''), ] __A = [ '''nlvr2_coco_pre_trained.th''', '''nlvr2_fine_tuned.th''', '''nlvr2_pre_trained.th''', '''vcr_coco_pre_train.th''', '''vcr_fine_tune.th''', '''vcr_pre_train.th''', '''vqa_coco_pre_trained.th''', '''vqa_fine_tuned.th''', '''vqa_pre_trained.th''', ] def snake_case_(_UpperCamelCase ) -> Union[str, Any]: """simple docstring""" _snake_case = torch.load(_UpperCamelCase , map_location='''cpu''' ) return sd def snake_case_(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase=rename_keys_prefix ) -> List[Any]: """simple docstring""" _snake_case = OrderedDict() _snake_case = torch.arange(config.max_position_embeddings ).expand((1, -1) ) # detector_d = OrderedDict() for key in d: if "detector" in key: # detector_d[key.replace('detector.','')] = d[key] continue _snake_case = key for name_pair in rename_keys_prefix: _snake_case = new_key.replace(name_pair[0] , name_pair[1] ) _snake_case = d[key] if key == "bert.cls.predictions.decoder.weight": # Old bert code didn't have `decoder.bias`, but was added separately _snake_case = new_d['''cls.predictions.bias'''] return new_d @torch.no_grad() def snake_case_(_UpperCamelCase , _UpperCamelCase ) -> int: """simple docstring""" assert ( checkpoint_path.split('''/''' )[-1] in ACCEPTABLE_CHECKPOINTS ), F"""The checkpoint provided must be in {ACCEPTABLE_CHECKPOINTS}.""" # Get Config if "pre" in checkpoint_path: _snake_case = '''pretraining''' if "vcr" in checkpoint_path: _snake_case = {'''visual_embedding_dim''': 512} elif "vqa_advanced" in checkpoint_path: _snake_case = {'''visual_embedding_dim''': 2_048} elif "vqa" in checkpoint_path: _snake_case = {'''visual_embedding_dim''': 2_048} elif "nlvr" in checkpoint_path: _snake_case = {'''visual_embedding_dim''': 1_024} else: raise NotImplementedError(F"""No implementation found for `{checkpoint_path}`.""" ) else: if "vcr" in checkpoint_path: _snake_case = {'''visual_embedding_dim''': 512} _snake_case = '''multichoice''' elif "vqa_advanced" in checkpoint_path: _snake_case = {'''visual_embedding_dim''': 2_048} _snake_case = '''vqa_advanced''' elif "vqa" in checkpoint_path: _snake_case = {'''visual_embedding_dim''': 2_048, '''num_labels''': 3_129} _snake_case = '''vqa''' elif "nlvr" in checkpoint_path: _snake_case = { '''visual_embedding_dim''': 1_024, '''num_labels''': 2, } _snake_case = '''nlvr''' _snake_case = VisualBertConfig(**_UpperCamelCase ) # Load State Dict _snake_case = load_state_dict(_UpperCamelCase ) _snake_case = get_new_dict(_UpperCamelCase , _UpperCamelCase ) if model_type == "pretraining": _snake_case = VisualBertForPreTraining(_UpperCamelCase ) elif model_type == "vqa": _snake_case = VisualBertForQuestionAnswering(_UpperCamelCase ) elif model_type == "nlvr": _snake_case = VisualBertForVisualReasoning(_UpperCamelCase ) elif model_type == "multichoice": _snake_case = VisualBertForMultipleChoice(_UpperCamelCase ) model.load_state_dict(_UpperCamelCase ) # Save Checkpoints Path(_UpperCamelCase ).mkdir(exist_ok=_UpperCamelCase ) model.save_pretrained(_UpperCamelCase ) if __name__ == "__main__": __A = argparse.ArgumentParser() # Required parameters parser.add_argument('''orig_checkpoint_path''', type=str, help='''A path to .th on local filesystem.''') parser.add_argument('''pytorch_dump_folder_path''', type=str, help='''Path to the output PyTorch model.''') __A = parser.parse_args() convert_visual_bert_checkpoint(args.orig_checkpoint_path, args.pytorch_dump_folder_path)
278
import warnings from ...utils import logging from .image_processing_deformable_detr import DeformableDetrImageProcessor __A = logging.get_logger(__name__) class lowercase_ ( __lowercase ): def __init__( self : Optional[Any] , *A__ : List[Any] , **A__ : int ) -> None: warnings.warn( '''The class DeformableDetrFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use DeformableDetrImageProcessor instead.''' , A__ , ) super().__init__(*A__ , **A__ )
278
1
import argparse import torch # Step 1. clone https://github.com/microsoft/unilm # Step 2. git checkout to https://github.com/microsoft/unilm/commit/b94ec76c36f02fb2b0bf0dcb0b8554a2185173cd # Step 3. cd unilm # Step 4. ln -s $(realpath wavlm/modules.py) ./ # create simlink # import classes from unilm.wavlm.WavLM import WavLM as WavLMOrig from unilm.wavlm.WavLM import WavLMConfig as WavLMConfigOrig from transformers import WavLMConfig, WavLMModel, logging logging.set_verbosity_info() _a = logging.get_logger(__name__) _a = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn.grep_linear": "encoder.layers.*.attention.gru_rel_pos_linear", "self_attn.relative_attention_bias": "encoder.layers.*.attention.rel_attn_embed", "self_attn.grep_a": "encoder.layers.*.attention.gru_rel_pos_const", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "ctc_proj", "mask_emb": "masked_spec_embed", } _a = [ "ctc_proj", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", ] def lowerCAmelCase__(__snake_case ,__snake_case ,__snake_case ,__snake_case ,__snake_case ) -> int: '''simple docstring''' for attribute in key.split('''.''' ): lowerCamelCase__ = getattr(__lowercase ,__lowercase ) if weight_type is not None: lowerCamelCase__ = getattr(__lowercase ,__lowercase ).shape else: lowerCamelCase__ = hf_pointer.shape assert hf_shape == value.shape, ( F'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' F' {value.shape} for {full_name}' ) if weight_type == "weight": lowerCamelCase__ = value elif weight_type == "weight_g": lowerCamelCase__ = value elif weight_type == "weight_v": lowerCamelCase__ = value elif weight_type == "bias": lowerCamelCase__ = value else: lowerCamelCase__ = value logger.info(F'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' ) def lowerCAmelCase__(__snake_case ,__snake_case ) -> Any: '''simple docstring''' lowerCamelCase__ = [] lowerCamelCase__ = fairseq_model.state_dict() lowerCamelCase__ = hf_model.feature_extractor for name, value in fairseq_dict.items(): lowerCamelCase__ = False if "conv_layers" in name: load_conv_layer( __lowercase ,__lowercase ,__lowercase ,__lowercase ,hf_model.config.feat_extract_norm == '''group''' ,) lowerCamelCase__ = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: lowerCamelCase__ = True if "*" in mapped_key: lowerCamelCase__ = name.split(__lowercase )[0].split('''.''' )[-2] lowerCamelCase__ = mapped_key.replace('''*''' ,__lowercase ) if "weight_g" in name: lowerCamelCase__ = '''weight_g''' elif "weight_v" in name: lowerCamelCase__ = '''weight_v''' elif "bias" in name and "relative_attention_bias" not in name: lowerCamelCase__ = '''bias''' elif "weight" in name: # TODO: don't match quantizer.weight_proj lowerCamelCase__ = '''weight''' else: lowerCamelCase__ = None set_recursively(__lowercase ,__lowercase ,__lowercase ,__lowercase ,__lowercase ) continue if not is_used: unused_weights.append(__lowercase ) logger.warning(F'Unused weights: {unused_weights}' ) def lowerCAmelCase__(__snake_case ,__snake_case ,__snake_case ,__snake_case ,__snake_case ) -> Any: '''simple docstring''' lowerCamelCase__ = full_name.split('''conv_layers.''' )[-1] lowerCamelCase__ = name.split('''.''' ) lowerCamelCase__ = int(items[0] ) lowerCamelCase__ = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) lowerCamelCase__ = value logger.info(F'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) lowerCamelCase__ = value logger.info(F'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was' " found." ) lowerCamelCase__ = value logger.info(F'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'{full_name} has size {value.shape}, but' F' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.' ) lowerCamelCase__ = value logger.info(F'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(__lowercase ) @torch.no_grad() def lowerCAmelCase__(__snake_case ,__snake_case ,__snake_case=None ) -> Union[str, Any]: '''simple docstring''' lowerCamelCase__ = torch.load(__lowercase ) lowerCamelCase__ = WavLMConfigOrig(checkpoint['''cfg'''] ) lowerCamelCase__ = WavLMOrig(__lowercase ) model.load_state_dict(checkpoint['''model'''] ) model.eval() if config_path is not None: lowerCamelCase__ = WavLMConfig.from_pretrained(__lowercase ) else: lowerCamelCase__ = WavLMConfig() lowerCamelCase__ = WavLMModel(__lowercase ) recursively_load_weights(__lowercase ,__lowercase ) hf_wavlm.save_pretrained(__lowercase ) if __name__ == "__main__": _a = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") _a = parser.parse_args() convert_wavlm_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
209
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase_ = logging.get_logger(__name__) lowerCamelCase_ = { '''EleutherAI/gpt-neox-20b''': '''https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/config.json''', # See all GPTNeoX models at https://huggingface.co/models?filter=gpt_neox } class _UpperCAmelCase ( snake_case_ ): """simple docstring""" snake_case = '''gpt_neox''' def __init__( self : List[Any] , __UpperCAmelCase : List[Any]=50432 , __UpperCAmelCase : Any=6144 , __UpperCAmelCase : List[str]=44 , __UpperCAmelCase : List[Any]=64 , __UpperCAmelCase : List[str]=24576 , __UpperCAmelCase : Union[str, Any]="gelu" , __UpperCAmelCase : Tuple=0.25 , __UpperCAmelCase : Optional[Any]=10000 , __UpperCAmelCase : int=0.0 , __UpperCAmelCase : str=0.0 , __UpperCAmelCase : Any=0.1 , __UpperCAmelCase : Tuple=2048 , __UpperCAmelCase : Optional[int]=0.02 , __UpperCAmelCase : Union[str, Any]=1E-5 , __UpperCAmelCase : str=True , __UpperCAmelCase : List[Any]=0 , __UpperCAmelCase : Dict=2 , __UpperCAmelCase : Optional[Any]=False , __UpperCAmelCase : str=True , __UpperCAmelCase : Dict=None , **__UpperCAmelCase : Tuple , ): '''simple docstring''' super().__init__(bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , **__UpperCAmelCase ) _A = vocab_size _A = max_position_embeddings _A = hidden_size _A = num_hidden_layers _A = num_attention_heads _A = intermediate_size _A = hidden_act _A = rotary_pct _A = rotary_emb_base _A = attention_dropout _A = hidden_dropout _A = classifier_dropout _A = initializer_range _A = layer_norm_eps _A = use_cache _A = tie_word_embeddings _A = use_parallel_residual _A = rope_scaling self._rope_scaling_validation() if self.hidden_size % self.num_attention_heads != 0: raise ValueError( "The hidden size is not divisble by the number of attention heads! Make sure to update them!" ) def lowerCAmelCase ( self : Dict ): '''simple docstring''' if self.rope_scaling is None: return if not isinstance(self.rope_scaling , __UpperCAmelCase ) or len(self.rope_scaling ) != 2: raise ValueError( "`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, " f'''got {self.rope_scaling}''' ) _A = self.rope_scaling.get("type" , __UpperCAmelCase ) _A = self.rope_scaling.get("factor" , __UpperCAmelCase ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f'''`rope_scaling`\'s name field must be one of [\'linear\', \'dynamic\'], got {rope_scaling_type}''' ) if rope_scaling_factor is None or not isinstance(__UpperCAmelCase , __UpperCAmelCase ) or rope_scaling_factor <= 1.0: raise ValueError(f'''`rope_scaling`\'s factor field must be an float > 1, got {rope_scaling_factor}''' )
79
0
import sys from pathlib import Path SCREAMING_SNAKE_CASE : Tuple = Path(__file__).resolve().parents[3] / "src" sys.path.insert(1, str(git_repo_path)) import dataclasses # noqa import io # noqa import itertools # noqa import json # noqa import os # noqa import unittest # noqa from copy import deepcopy # noqa from parameterized import parameterized # noqa from transformers import TrainingArguments, is_torch_available # noqa from transformers.deepspeed import is_deepspeed_available # noqa from transformers.file_utils import WEIGHTS_NAME # noqa from transformers.testing_utils import ( # noqa CaptureLogger, ExtendSysPath, TestCasePlus, execute_subprocess_async, get_gpu_count, mockenv_context, require_deepspeed, require_torch_gpu, require_torch_multi_gpu, slow, ) from transformers.trainer_utils import set_seed # noqa set_seed(42) SCREAMING_SNAKE_CASE : Optional[Any] = {"base": "patrickvonplaten/wav2vec2_tiny_random", "robust": "patrickvonplaten/wav2vec2_tiny_random_robust"} SCREAMING_SNAKE_CASE : Union[str, Any] = "zero2" SCREAMING_SNAKE_CASE : Optional[Any] = "zero3" SCREAMING_SNAKE_CASE : int = [ZEROa, ZEROa] def __magic_name__ ( __lowerCAmelCase : List[Any] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Optional[Any] ) -> Dict: # customize the test name generator function as we want both params to appear in the sub-test # name, as by default it shows only the first param __lowerCamelCase = parameterized.to_safe_name('''_'''.join(str(lowercase__ ) for x in param.args ) ) return f'''{func.__name__}_{param_based_name}''' # Cartesian-product of zero stages with models to test SCREAMING_SNAKE_CASE : List[Any] = list(itertools.product(stages, models.keys())) @slow @require_deepspeed @require_torch_gpu class lowerCAmelCase__ ( __lowercase ): @parameterized.expand(SCREAMING_SNAKE_CASE__ , name_func=SCREAMING_SNAKE_CASE__ ) def __A ( self : List[str] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> int: self.run_and_check( stage=SCREAMING_SNAKE_CASE__ , model=SCREAMING_SNAKE_CASE__ , distributed=SCREAMING_SNAKE_CASE__ , fpaa=SCREAMING_SNAKE_CASE__ , ) @require_torch_multi_gpu @parameterized.expand(SCREAMING_SNAKE_CASE__ , name_func=SCREAMING_SNAKE_CASE__ ) def __A ( self : List[str] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Dict ) -> Optional[Any]: self.run_and_check( stage=SCREAMING_SNAKE_CASE__ , model=SCREAMING_SNAKE_CASE__ , distributed=SCREAMING_SNAKE_CASE__ , fpaa=SCREAMING_SNAKE_CASE__ , ) @parameterized.expand(SCREAMING_SNAKE_CASE__ , name_func=SCREAMING_SNAKE_CASE__ ) def __A ( self : List[str] , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : int ) -> List[str]: self.run_and_check( stage=SCREAMING_SNAKE_CASE__ , model=SCREAMING_SNAKE_CASE__ , distributed=SCREAMING_SNAKE_CASE__ , fpaa=SCREAMING_SNAKE_CASE__ , ) @require_torch_multi_gpu @parameterized.expand(SCREAMING_SNAKE_CASE__ , name_func=SCREAMING_SNAKE_CASE__ ) def __A ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : str ) -> str: self.run_and_check( stage=SCREAMING_SNAKE_CASE__ , model=SCREAMING_SNAKE_CASE__ , distributed=SCREAMING_SNAKE_CASE__ , fpaa=SCREAMING_SNAKE_CASE__ , ) def __A ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[str] ) -> Tuple: # XXX: run_asr is premature and doesn't save any results # so all we check for now is that the process didn't fail pass def __A ( self : Tuple , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Optional[int] = 10 , SCREAMING_SNAKE_CASE__ : Optional[Any] = True , SCREAMING_SNAKE_CASE__ : List[Any] = True , SCREAMING_SNAKE_CASE__ : Union[str, Any] = True , ) -> List[str]: __lowerCamelCase = models[model] __lowerCamelCase = self.run_trainer( stage=SCREAMING_SNAKE_CASE__ , model_name=SCREAMING_SNAKE_CASE__ , eval_steps=SCREAMING_SNAKE_CASE__ , num_train_epochs=1 , distributed=SCREAMING_SNAKE_CASE__ , fpaa=SCREAMING_SNAKE_CASE__ , ) self.do_checks(SCREAMING_SNAKE_CASE__ ) return output_dir def __A ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Dict = 10 , SCREAMING_SNAKE_CASE__ : Tuple = 1 , SCREAMING_SNAKE_CASE__ : Optional[Any] = True , SCREAMING_SNAKE_CASE__ : List[Any] = True , ) -> str: __lowerCamelCase = self.get_auto_remove_tmp_dir('''./xxx''' , after=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = f''' --model_name_or_path {model_name} --dataset_name hf-internal-testing/librispeech_asr_dummy --dataset_config_name clean --train_split_name validation --validation_split_name validation --output_dir {output_dir} --num_train_epochs {str(SCREAMING_SNAKE_CASE__ )} --per_device_train_batch_size 2 --per_device_eval_batch_size 2 --evaluation_strategy steps --learning_rate 5e-4 --warmup_steps 8 --orthography timit --preprocessing_num_workers 1 --group_by_length --freeze_feature_extractor --report_to none --save_steps 0 --eval_steps {eval_steps} --report_to none '''.split() if fpaa: args.extend(['''--fp16'''] ) # currently ds_config_wav2vec2_zero.json requires "zero_optimization.find_unused_parameters": true, # hence the separate config files __lowerCamelCase = f'''--deepspeed {self.test_file_dir_str}/ds_config_wav2vec2_{stage}.json'''.split() __lowerCamelCase = [f'''{self.examples_dir_str}/research_projects/wav2vec2/run_asr.py'''] __lowerCamelCase = self.get_launcher(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = launcher + script + args + ds_args # keep for quick debug # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die execute_subprocess_async(SCREAMING_SNAKE_CASE__ , env=self.get_env() ) return output_dir def __A ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Tuple=False ) -> str: # 1. explicitly set --num_nodes=1 just in case these tests end up run on a multi-node setup # - it won't be able to handle that # 2. for now testing with just 2 gpus max (since some quality tests may give different # results with mode gpus because we use very little data) __lowerCamelCase = min(2 , get_gpu_count() ) if distributed else 1 return f'''deepspeed --num_nodes 1 --num_gpus {num_gpus}'''.split()
362
def __magic_name__ ( __lowerCAmelCase : int , __lowerCAmelCase : int ) -> str: if a < 0 or b < 0: raise ValueError('''the value of both inputs must be positive''' ) __lowerCamelCase = str(bin(__lowerCAmelCase ) )[2:] # remove the leading "0b" __lowerCamelCase = str(bin(__lowerCAmelCase ) )[2:] # remove the leading "0b" __lowerCamelCase = max(len(__lowerCAmelCase ) , len(__lowerCAmelCase ) ) return "0b" + "".join( str(int(char_a == '''1''' and char_b == '''1''' ) ) for char_a, char_b in zip(a_binary.zfill(__lowerCAmelCase ) , b_binary.zfill(__lowerCAmelCase ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
339
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available _lowerCAmelCase = { '''configuration_data2vec_audio''': ['''DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Data2VecAudioConfig'''], '''configuration_data2vec_text''': [ '''DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Data2VecTextConfig''', '''Data2VecTextOnnxConfig''', ], '''configuration_data2vec_vision''': [ '''DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Data2VecVisionConfig''', '''Data2VecVisionOnnxConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase = [ '''DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Data2VecAudioForAudioFrameClassification''', '''Data2VecAudioForCTC''', '''Data2VecAudioForSequenceClassification''', '''Data2VecAudioForXVector''', '''Data2VecAudioModel''', '''Data2VecAudioPreTrainedModel''', ] _lowerCAmelCase = [ '''DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Data2VecTextForCausalLM''', '''Data2VecTextForMaskedLM''', '''Data2VecTextForMultipleChoice''', '''Data2VecTextForQuestionAnswering''', '''Data2VecTextForSequenceClassification''', '''Data2VecTextForTokenClassification''', '''Data2VecTextModel''', '''Data2VecTextPreTrainedModel''', ] _lowerCAmelCase = [ '''DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Data2VecVisionForImageClassification''', '''Data2VecVisionForMaskedImageModeling''', '''Data2VecVisionForSemanticSegmentation''', '''Data2VecVisionModel''', '''Data2VecVisionPreTrainedModel''', ] if is_tf_available(): _lowerCAmelCase = [ '''TFData2VecVisionForImageClassification''', '''TFData2VecVisionForSemanticSegmentation''', '''TFData2VecVisionModel''', '''TFData2VecVisionPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_dataavec_audio import DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecAudioConfig from .configuration_dataavec_text import ( DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecTextConfig, DataaVecTextOnnxConfig, ) from .configuration_dataavec_vision import ( DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecVisionConfig, DataaVecVisionOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dataavec_audio import ( DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecAudioForAudioFrameClassification, DataaVecAudioForCTC, DataaVecAudioForSequenceClassification, DataaVecAudioForXVector, DataaVecAudioModel, DataaVecAudioPreTrainedModel, ) from .modeling_dataavec_text import ( DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecTextForCausalLM, DataaVecTextForMaskedLM, DataaVecTextForMultipleChoice, DataaVecTextForQuestionAnswering, DataaVecTextForSequenceClassification, DataaVecTextForTokenClassification, DataaVecTextModel, DataaVecTextPreTrainedModel, ) from .modeling_dataavec_vision import ( DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecVisionForImageClassification, DataaVecVisionForMaskedImageModeling, DataaVecVisionForSemanticSegmentation, DataaVecVisionModel, DataaVecVisionPreTrainedModel, ) if is_tf_available(): from .modeling_tf_dataavec_vision import ( TFDataaVecVisionForImageClassification, TFDataaVecVisionForSemanticSegmentation, TFDataaVecVisionModel, TFDataaVecVisionPreTrainedModel, ) else: import sys _lowerCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
298
import gc import random import unittest import numpy as np import torch from transformers import CLIPImageProcessor, CLIPVisionConfig, CLIPVisionModel from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEImgaImgPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import floats_tensor, load_image, load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class lowerCamelCase__( __lowerCamelCase , unittest.TestCase): UpperCAmelCase__ : Tuple = ShapEImgaImgPipeline UpperCAmelCase__ : Optional[Any] = ['image'] UpperCAmelCase__ : int = ['image'] UpperCAmelCase__ : Any = [ 'num_images_per_prompt', 'num_inference_steps', 'generator', 'latents', 'guidance_scale', 'frame_size', 'output_type', 'return_dict', ] UpperCAmelCase__ : int = False @property def lowerCAmelCase__ ( self: int ): return 32 @property def lowerCAmelCase__ ( self: List[str] ): return 32 @property def lowerCAmelCase__ ( self: Any ): return self.time_input_dim * 4 @property def lowerCAmelCase__ ( self: Dict ): return 8 @property def lowerCAmelCase__ ( self: int ): torch.manual_seed(0 ) __lowerCamelCase = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=64 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=1 , ) __lowerCamelCase = CLIPVisionModel(UpperCamelCase_ ) return model @property def lowerCAmelCase__ ( self: Dict ): __lowerCamelCase = CLIPImageProcessor( crop_size=2_24 , do_center_crop=UpperCamelCase_ , do_normalize=UpperCamelCase_ , do_resize=UpperCamelCase_ , image_mean=[0.4814_5466, 0.457_8275, 0.4082_1073] , image_std=[0.2686_2954, 0.2613_0258, 0.2757_7711] , resample=3 , size=2_24 , ) return image_processor @property def lowerCAmelCase__ ( self: Tuple ): torch.manual_seed(0 ) __lowerCamelCase = { """num_attention_heads""": 2, """attention_head_dim""": 16, """embedding_dim""": self.time_input_dim, """num_embeddings""": 32, """embedding_proj_dim""": self.text_embedder_hidden_size, """time_embed_dim""": self.time_embed_dim, """num_layers""": 1, """clip_embed_dim""": self.time_input_dim * 2, """additional_embeddings""": 0, """time_embed_act_fn""": """gelu""", """norm_in_type""": """layer""", """embedding_proj_norm_type""": """layer""", """encoder_hid_proj_type""": None, """added_emb_type""": None, } __lowerCamelCase = PriorTransformer(**UpperCamelCase_ ) return model @property def lowerCAmelCase__ ( self: List[Any] ): torch.manual_seed(0 ) __lowerCamelCase = { """param_shapes""": ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), """d_latent""": self.time_input_dim, """d_hidden""": self.renderer_dim, """n_output""": 12, """background""": ( 0.1, 0.1, 0.1, ), } __lowerCamelCase = ShapERenderer(**UpperCamelCase_ ) return model def lowerCAmelCase__ ( self: List[str] ): __lowerCamelCase = self.dummy_prior __lowerCamelCase = self.dummy_image_encoder __lowerCamelCase = self.dummy_image_processor __lowerCamelCase = self.dummy_renderer __lowerCamelCase = HeunDiscreteScheduler( beta_schedule="""exp""" , num_train_timesteps=10_24 , prediction_type="""sample""" , use_karras_sigmas=UpperCamelCase_ , clip_sample=UpperCamelCase_ , clip_sample_range=1.0 , ) __lowerCamelCase = { """prior""": prior, """image_encoder""": image_encoder, """image_processor""": image_processor, """renderer""": renderer, """scheduler""": scheduler, } return components def lowerCAmelCase__ ( self: int , UpperCamelCase_: List[Any] , UpperCamelCase_: Dict=0 ): __lowerCamelCase = floats_tensor((1, 3, 64, 64) , rng=random.Random(UpperCamelCase_ ) ).to(UpperCamelCase_ ) if str(UpperCamelCase_ ).startswith("""mps""" ): __lowerCamelCase = torch.manual_seed(UpperCamelCase_ ) else: __lowerCamelCase = torch.Generator(device=UpperCamelCase_ ).manual_seed(UpperCamelCase_ ) __lowerCamelCase = { """image""": input_image, """generator""": generator, """num_inference_steps""": 1, """frame_size""": 32, """output_type""": """np""", } return inputs def lowerCAmelCase__ ( self: Tuple ): __lowerCamelCase = """cpu""" __lowerCamelCase = self.get_dummy_components() __lowerCamelCase = self.pipeline_class(**UpperCamelCase_ ) __lowerCamelCase = pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) __lowerCamelCase = pipe(**self.get_dummy_inputs(UpperCamelCase_ ) ) __lowerCamelCase = output.images[0] __lowerCamelCase = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) __lowerCamelCase = np.array( [ 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def lowerCAmelCase__ ( self: List[str] ): # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def lowerCAmelCase__ ( self: Any ): __lowerCamelCase = torch_device == """cpu""" __lowerCamelCase = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=UpperCamelCase_ , relax_max_difference=UpperCamelCase_ , ) def lowerCAmelCase__ ( self: Any ): __lowerCamelCase = self.get_dummy_components() __lowerCamelCase = self.pipeline_class(**UpperCamelCase_ ) __lowerCamelCase = pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) __lowerCamelCase = 1 __lowerCamelCase = 2 __lowerCamelCase = self.get_dummy_inputs(UpperCamelCase_ ) for key in inputs.keys(): if key in self.batch_params: __lowerCamelCase = batch_size * [inputs[key]] __lowerCamelCase = pipe(**UpperCamelCase_ , num_images_per_prompt=UpperCamelCase_ )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class lowerCamelCase__( unittest.TestCase): def lowerCAmelCase__ ( self: Union[str, Any] ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase__ ( self: Any ): __lowerCamelCase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/shap_e/corgi.png""" ) __lowerCamelCase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/shap_e/test_shap_e_img2img_out.npy""" ) __lowerCamelCase = ShapEImgaImgPipeline.from_pretrained("""openai/shap-e-img2img""" ) __lowerCamelCase = pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) __lowerCamelCase = torch.Generator(device=UpperCamelCase_ ).manual_seed(0 ) __lowerCamelCase = pipe( UpperCamelCase_ , generator=UpperCamelCase_ , guidance_scale=3.0 , num_inference_steps=64 , frame_size=64 , output_type="""np""" , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(UpperCamelCase_ , UpperCamelCase_ )
12
0
"""simple docstring""" import warnings from ...utils import logging from .image_processing_deit import DeiTImageProcessor lowercase_ = logging.get_logger(__name__) class __lowerCAmelCase ( snake_case_ ): '''simple docstring''' def __init__( self , *_a , **_a ): warnings.warn( '''The class DeiTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use DeiTImageProcessor instead.''' , _a , ) super().__init__(*_a , **_a )
355
"""simple docstring""" import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_torch_available from transformers.testing_utils import require_torch, torch_device if is_torch_available(): from transformers import PyTorchBenchmark, PyTorchBenchmarkArguments @require_torch class __lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def __UpperCAmelCase ( self , _a ): for model_result in results.values(): for batch_size, sequence_length in zip(model_result['''bs'''] , model_result['''ss'''] ): __a = model_result['''result'''][batch_size][sequence_length] self.assertIsNotNone(_a ) def __UpperCAmelCase ( self ): __a = '''sshleifer/tiny-gpt2''' __a = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_a , inference=_a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_a , ) __a = PyTorchBenchmark(_a ) __a = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __UpperCAmelCase ( self ): __a = '''sgugger/tiny-distilbert-classification''' __a = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_a , inference=_a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_a , only_pretrain_model=_a , ) __a = PyTorchBenchmark(_a ) __a = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __UpperCAmelCase ( self ): __a = '''sshleifer/tiny-gpt2''' __a = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_a , inference=_a , torchscript=_a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_a , ) __a = PyTorchBenchmark(_a ) __a = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(torch_device == '''cpu''' , '''Cant do half precision''' ) def __UpperCAmelCase ( self ): __a = '''sshleifer/tiny-gpt2''' __a = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_a , inference=_a , fpaa=_a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_a , ) __a = PyTorchBenchmark(_a ) __a = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __UpperCAmelCase ( self ): __a = '''sshleifer/tiny-gpt2''' __a = AutoConfig.from_pretrained(_a ) # set architectures equal to `None` __a = None __a = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_a , inference=_a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_a , ) __a = PyTorchBenchmark(_a , configs=[config] ) __a = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __UpperCAmelCase ( self ): __a = '''sshleifer/tiny-gpt2''' __a = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_a , inference=_a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_a , ) __a = PyTorchBenchmark(_a ) __a = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) @unittest.skipIf(torch_device == '''cpu''' , '''Can\'t do half precision''' ) def __UpperCAmelCase ( self ): __a = '''sshleifer/tiny-gpt2''' __a = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_a , inference=_a , sequence_lengths=[8] , batch_sizes=[1] , fpaa=_a , multi_process=_a , ) __a = PyTorchBenchmark(_a ) __a = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def __UpperCAmelCase ( self ): __a = '''sshleifer/tiny-gpt2''' __a = AutoConfig.from_pretrained(_a ) __a = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_a , inference=_a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_a , ) __a = PyTorchBenchmark(_a , configs=[config] ) __a = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __UpperCAmelCase ( self ): __a = '''sshleifer/tinier_bart''' __a = AutoConfig.from_pretrained(_a ) __a = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_a , inference=_a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_a , ) __a = PyTorchBenchmark(_a , configs=[config] ) __a = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __UpperCAmelCase ( self ): __a = '''sshleifer/tiny-gpt2''' __a = AutoConfig.from_pretrained(_a ) __a = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_a , inference=_a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_a , ) __a = PyTorchBenchmark(_a , configs=[config] ) __a = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def __UpperCAmelCase ( self ): __a = '''sshleifer/tinier_bart''' __a = AutoConfig.from_pretrained(_a ) __a = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_a , inference=_a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_a , ) __a = PyTorchBenchmark(_a , configs=[config] ) __a = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def __UpperCAmelCase ( self ): __a = '''sshleifer/tiny-gpt2''' with tempfile.TemporaryDirectory() as tmp_dir: __a = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_a , inference=_a , save_to_csv=_a , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(_a , '''inf_time.csv''' ) , train_memory_csv_file=os.path.join(_a , '''train_mem.csv''' ) , inference_memory_csv_file=os.path.join(_a , '''inf_mem.csv''' ) , train_time_csv_file=os.path.join(_a , '''train_time.csv''' ) , env_info_csv_file=os.path.join(_a , '''env.csv''' ) , multi_process=_a , ) __a = PyTorchBenchmark(_a ) benchmark.run() self.assertTrue(Path(os.path.join(_a , '''inf_time.csv''' ) ).exists() ) self.assertTrue(Path(os.path.join(_a , '''train_time.csv''' ) ).exists() ) self.assertTrue(Path(os.path.join(_a , '''inf_mem.csv''' ) ).exists() ) self.assertTrue(Path(os.path.join(_a , '''train_mem.csv''' ) ).exists() ) self.assertTrue(Path(os.path.join(_a , '''env.csv''' ) ).exists() ) def __UpperCAmelCase ( self ): __a = '''sshleifer/tiny-gpt2''' def _check_summary_is_not_empty(_a ): self.assertTrue(hasattr(_a , '''sequential''' ) ) self.assertTrue(hasattr(_a , '''cumulative''' ) ) self.assertTrue(hasattr(_a , '''current''' ) ) self.assertTrue(hasattr(_a , '''total''' ) ) with tempfile.TemporaryDirectory() as tmp_dir: __a = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_a , inference=_a , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(_a , '''log.txt''' ) , log_print=_a , trace_memory_line_by_line=_a , multi_process=_a , ) __a = PyTorchBenchmark(_a ) __a = benchmark.run() _check_summary_is_not_empty(result.inference_summary ) _check_summary_is_not_empty(result.train_summary ) self.assertTrue(Path(os.path.join(_a , '''log.txt''' ) ).exists() )
11
0
"""simple docstring""" import requests from bsa import BeautifulSoup def __magic_name__ ( lowercase = "https://www.worldometers.info/coronavirus" ): SCREAMING_SNAKE_CASE_: List[str] =BeautifulSoup(requests.get(lowercase ).text , """html.parser""" ) SCREAMING_SNAKE_CASE_: Tuple =soup.findAll("""h1""" ) SCREAMING_SNAKE_CASE_: List[str] =soup.findAll("""div""" , {"""class""": """maincounter-number"""} ) keys += soup.findAll("""span""" , {"""class""": """panel-title"""} ) values += soup.findAll("""div""" , {"""class""": """number-table-main"""} ) return {key.text.strip(): value.text.strip() for key, value in zip(lowercase , lowercase )} if __name__ == "__main__": print("""\033[1m""" + """COVID-19 Status of the World""" + """\033[0m\n""") for key, value in world_covidaa_stats().items(): print(f"""{key}\n{value}\n""")
173
"""simple docstring""" import numpy as np from cva import COLOR_BGR2GRAY, cvtColor, imread from numpy import array, uinta from PIL import Image from digital_image_processing import change_contrast as cc from digital_image_processing import convert_to_negative as cn from digital_image_processing import sepia as sp from digital_image_processing.dithering import burkes as bs from digital_image_processing.edge_detection import canny from digital_image_processing.filters import convolve as conv from digital_image_processing.filters import gaussian_filter as gg from digital_image_processing.filters import local_binary_pattern as lbp from digital_image_processing.filters import median_filter as med from digital_image_processing.filters import sobel_filter as sob from digital_image_processing.resize import resize as rs _UpperCAmelCase = imread(r"""digital_image_processing/image_data/lena_small.jpg""") _UpperCAmelCase = cvtColor(img, COLOR_BGR2GRAY) def __magic_name__ ( ): SCREAMING_SNAKE_CASE_: Any =cn.convert_to_negative(lowercase ) # assert negative_img array for at least one True assert negative_img.any() def __magic_name__ ( ): with Image.open("""digital_image_processing/image_data/lena_small.jpg""" ) as img: # Work around assertion for response assert str(cc.change_contrast(lowercase , 110 ) ).startswith( """<PIL.Image.Image image mode=RGB size=100x100 at""" ) def __magic_name__ ( ): SCREAMING_SNAKE_CASE_: Dict =canny.gen_gaussian_kernel(9 , sigma=1.4 ) # Assert ambiguous array assert resp.all() def __magic_name__ ( ): SCREAMING_SNAKE_CASE_: Optional[int] =imread("""digital_image_processing/image_data/lena_small.jpg""" , 0 ) # assert ambiguous array for all == True assert canny_img.all() SCREAMING_SNAKE_CASE_: List[Any] =canny.canny(lowercase ) # assert canny array for at least one True assert canny_array.any() def __magic_name__ ( ): assert gg.gaussian_filter(lowercase , 5 , sigma=0.9 ).all() def __magic_name__ ( ): # laplace diagonals SCREAMING_SNAKE_CASE_: str =array([[0.25, 0.5, 0.25], [0.5, -3, 0.5], [0.25, 0.5, 0.25]] ) SCREAMING_SNAKE_CASE_: Tuple =conv.img_convolve(lowercase , lowercase ).astype(lowercase ) assert res.any() def __magic_name__ ( ): assert med.median_filter(lowercase , 3 ).any() def __magic_name__ ( ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[Any] =sob.sobel_filter(lowercase ) assert grad.any() and theta.any() def __magic_name__ ( ): SCREAMING_SNAKE_CASE_: Optional[Any] =sp.make_sepia(lowercase , 20 ) assert sepia.all() def __magic_name__ ( lowercase = "digital_image_processing/image_data/lena_small.jpg" ): SCREAMING_SNAKE_CASE_: Dict =bs.Burkes(imread(lowercase , 1 ) , 120 ) burkes.process() assert burkes.output_img.any() def __magic_name__ ( lowercase = "digital_image_processing/image_data/lena_small.jpg" , ): SCREAMING_SNAKE_CASE_: int =rs.NearestNeighbour(imread(lowercase , 1 ) , 400 , 200 ) nn.process() assert nn.output.any() def __magic_name__ ( ): SCREAMING_SNAKE_CASE_: str ="""digital_image_processing/image_data/lena.jpg""" # Reading the image and converting it to grayscale. SCREAMING_SNAKE_CASE_: Tuple =imread(lowercase , 0 ) # Test for get_neighbors_pixel function() return not None SCREAMING_SNAKE_CASE_: Optional[Any] =0 SCREAMING_SNAKE_CASE_: Any =0 SCREAMING_SNAKE_CASE_: List[Any] =image[x_coordinate][y_coordinate] SCREAMING_SNAKE_CASE_: Optional[Any] =lbp.get_neighbors_pixel( lowercase , lowercase , lowercase , lowercase ) assert neighbors_pixels is not None # Test for local_binary_pattern function() # Create a numpy array as the same height and width of read image SCREAMING_SNAKE_CASE_: Dict =np.zeros((image.shape[0], image.shape[1]) ) # Iterating through the image and calculating the local binary pattern value # for each pixel. for i in range(0 , image.shape[0] ): for j in range(0 , image.shape[1] ): SCREAMING_SNAKE_CASE_: List[str] =lbp.local_binary_value(lowercase , lowercase , lowercase ) assert lbp_image.any()
173
1
import unittest from transformers import MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING, AutoTokenizer, is_vision_available from transformers.pipelines import pipeline from transformers.pipelines.document_question_answering import apply_tesseract from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_detectrona, require_pytesseract, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image from transformers.image_utils import load_image else: class __magic_name__ : """simple docstring""" @staticmethod def SCREAMING_SNAKE_CASE ( *snake_case :List[str] , **snake_case :Tuple ): '''simple docstring''' pass def __snake_case ( _lowerCAmelCase : int ) -> Optional[Any]: return None # This is a pinned image from a specific revision of a document question answering space, hosted by HuggingFace, # so we can expect it to be available. _lowerCAmelCase : str = ( '''https://huggingface.co/spaces/impira/docquery/resolve/2f6c96314dc84dfda62d40de9da55f2f5165d403/invoice.png''' ) @is_pipeline_test @require_torch @require_vision class __magic_name__ ( unittest.TestCase ): """simple docstring""" __UpperCamelCase = MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING @require_pytesseract @require_vision def SCREAMING_SNAKE_CASE ( self :int , snake_case :List[str] , snake_case :str , snake_case :Dict ): '''simple docstring''' A_ : Tuple = pipeline( "document-question-answering" , model=snake_case , tokenizer=snake_case , image_processor=snake_case ) A_ : List[Any] = INVOICE_URL A_ : List[str] = list(zip(*apply_tesseract(load_image(snake_case ) , snake_case , "" ) ) ) A_ : List[str] = "What is the placebo?" A_ : List[str] = [ { "image": load_image(snake_case ), "question": question, }, { "image": image, "question": question, }, { "image": image, "question": question, "word_boxes": word_boxes, }, ] return dqa_pipeline, examples def SCREAMING_SNAKE_CASE ( self :Tuple , snake_case :Optional[int] , snake_case :Dict ): '''simple docstring''' A_ : Tuple = dqa_pipeline(snake_case , top_k=2 ) self.assertEqual( snake_case , [ [ {"score": ANY(snake_case ), "answer": ANY(snake_case ), "start": ANY(snake_case ), "end": ANY(snake_case )}, {"score": ANY(snake_case ), "answer": ANY(snake_case ), "start": ANY(snake_case ), "end": ANY(snake_case )}, ] ] * 3 , ) @require_torch @require_detectrona @require_pytesseract def SCREAMING_SNAKE_CASE ( self :Optional[int] ): '''simple docstring''' A_ : Optional[Any] = pipeline("document-question-answering" , model="hf-internal-testing/tiny-random-layoutlmv2" ) A_ : Union[str, Any] = INVOICE_URL A_ : List[str] = "How many cats are there?" A_ : Optional[int] = [ {"score": 0.0001, "answer": "oy 2312/2019", "start": 38, "end": 39}, {"score": 0.0001, "answer": "oy 2312/2019 DUE", "start": 38, "end": 40}, ] A_ : int = dqa_pipeline(image=snake_case , question=snake_case , top_k=2 ) self.assertEqual(nested_simplify(snake_case , decimals=4 ) , snake_case ) A_ : Dict = dqa_pipeline({"image": image, "question": question} , top_k=2 ) self.assertEqual(nested_simplify(snake_case , decimals=4 ) , snake_case ) # This image does not detect ANY text in it, meaning layoutlmv2 should fail. # Empty answer probably A_ : int = "./tests/fixtures/tests_samples/COCO/000000039769.png" A_ : List[str] = dqa_pipeline(image=snake_case , question=snake_case , top_k=2 ) self.assertEqual(snake_case , [] ) # We can optionnally pass directly the words and bounding boxes A_ : int = "./tests/fixtures/tests_samples/COCO/000000039769.png" A_ : int = [] A_ : List[str] = [] A_ : Optional[Any] = dqa_pipeline(image=snake_case , question=snake_case , words=snake_case , boxes=snake_case , top_k=2 ) self.assertEqual(snake_case , [] ) @slow @require_torch @require_detectrona @require_pytesseract def SCREAMING_SNAKE_CASE ( self :Union[str, Any] ): '''simple docstring''' A_ : List[Any] = pipeline( "document-question-answering" , model="tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa" , revision="9977165" , ) A_ : Optional[Any] = INVOICE_URL A_ : Optional[Any] = "What is the invoice number?" A_ : List[Any] = dqa_pipeline(image=snake_case , question=snake_case , top_k=2 ) self.assertEqual( nested_simplify(snake_case , decimals=4 ) , [ {"score": 0.9944, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0009, "answer": "us-001", "start": 16, "end": 16}, ] , ) A_ : Union[str, Any] = dqa_pipeline({"image": image, "question": question} , top_k=2 ) self.assertEqual( nested_simplify(snake_case , decimals=4 ) , [ {"score": 0.9944, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0009, "answer": "us-001", "start": 16, "end": 16}, ] , ) A_ : str = dqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}] , top_k=2 ) self.assertEqual( nested_simplify(snake_case , decimals=4 ) , [ [ {"score": 0.9944, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0009, "answer": "us-001", "start": 16, "end": 16}, ], ] * 2 , ) @slow @require_torch @require_detectrona @require_pytesseract def SCREAMING_SNAKE_CASE ( self :Tuple ): '''simple docstring''' A_ : List[str] = pipeline( "document-question-answering" , model="tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa" , revision="9977165" , max_seq_len=50 , ) A_ : List[Any] = INVOICE_URL A_ : Optional[int] = "What is the invoice number?" A_ : str = dqa_pipeline(image=snake_case , question=snake_case , top_k=2 ) self.assertEqual( nested_simplify(snake_case , decimals=4 ) , [ {"score": 0.9974, "answer": "1110212019", "start": 23, "end": 23}, {"score": 0.9948, "answer": "us-001", "start": 16, "end": 16}, ] , ) A_ : Optional[Any] = dqa_pipeline({"image": image, "question": question} , top_k=2 ) self.assertEqual( nested_simplify(snake_case , decimals=4 ) , [ {"score": 0.9974, "answer": "1110212019", "start": 23, "end": 23}, {"score": 0.9948, "answer": "us-001", "start": 16, "end": 16}, ] , ) A_ : Tuple = dqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}] , top_k=2 ) self.assertEqual( nested_simplify(snake_case , decimals=4 ) , [ [ {"score": 0.9974, "answer": "1110212019", "start": 23, "end": 23}, {"score": 0.9948, "answer": "us-001", "start": 16, "end": 16}, ] ] * 2 , ) @slow @require_torch @require_pytesseract @require_vision def SCREAMING_SNAKE_CASE ( self :Any ): '''simple docstring''' A_ : Optional[Any] = AutoTokenizer.from_pretrained( "impira/layoutlm-document-qa" , revision="3dc6de3" , add_prefix_space=snake_case ) A_ : Dict = pipeline( "document-question-answering" , model="impira/layoutlm-document-qa" , tokenizer=snake_case , revision="3dc6de3" , ) A_ : Tuple = INVOICE_URL A_ : int = "What is the invoice number?" A_ : Optional[int] = dqa_pipeline(image=snake_case , question=snake_case , top_k=2 ) self.assertEqual( nested_simplify(snake_case , decimals=4 ) , [ {"score": 0.4251, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0819, "answer": "1110212019", "start": 23, "end": 23}, ] , ) A_ : List[str] = dqa_pipeline({"image": image, "question": question} , top_k=2 ) self.assertEqual( nested_simplify(snake_case , decimals=4 ) , [ {"score": 0.4251, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0819, "answer": "1110212019", "start": 23, "end": 23}, ] , ) A_ : Dict = dqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}] , top_k=2 ) self.assertEqual( nested_simplify(snake_case , decimals=4 ) , [ [ {"score": 0.4251, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0819, "answer": "1110212019", "start": 23, "end": 23}, ] ] * 2 , ) A_ : Union[str, Any] = list(zip(*apply_tesseract(load_image(snake_case ) , snake_case , "" ) ) ) # This model should also work if `image` is set to None A_ : Tuple = dqa_pipeline({"image": None, "word_boxes": word_boxes, "question": question} , top_k=2 ) self.assertEqual( nested_simplify(snake_case , decimals=4 ) , [ {"score": 0.4251, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0819, "answer": "1110212019", "start": 23, "end": 23}, ] , ) @slow @require_torch @require_pytesseract @require_vision def SCREAMING_SNAKE_CASE ( self :List[Any] ): '''simple docstring''' A_ : str = AutoTokenizer.from_pretrained( "impira/layoutlm-document-qa" , revision="3dc6de3" , add_prefix_space=snake_case ) A_ : Optional[int] = pipeline( "document-question-answering" , model="impira/layoutlm-document-qa" , tokenizer=snake_case , revision="3dc6de3" , max_seq_len=50 , ) A_ : Tuple = INVOICE_URL A_ : int = "What is the invoice number?" A_ : List[Any] = dqa_pipeline(image=snake_case , question=snake_case , top_k=2 ) self.assertEqual( nested_simplify(snake_case , decimals=4 ) , [ {"score": 0.9999, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.9998, "answer": "us-001", "start": 16, "end": 16}, ] , ) A_ : Any = dqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}] , top_k=2 ) self.assertEqual( nested_simplify(snake_case , decimals=4 ) , [ [ {"score": 0.9999, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.9998, "answer": "us-001", "start": 16, "end": 16}, ] ] * 2 , ) A_ : Dict = list(zip(*apply_tesseract(load_image(snake_case ) , snake_case , "" ) ) ) # This model should also work if `image` is set to None A_ : str = dqa_pipeline({"image": None, "word_boxes": word_boxes, "question": question} , top_k=2 ) self.assertEqual( nested_simplify(snake_case , decimals=4 ) , [ {"score": 0.9999, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.9998, "answer": "us-001", "start": 16, "end": 16}, ] , ) @slow @require_torch def SCREAMING_SNAKE_CASE ( self :Tuple ): '''simple docstring''' A_ : Optional[Any] = pipeline( "document-question-answering" , model="naver-clova-ix/donut-base-finetuned-docvqa" , tokenizer=AutoTokenizer.from_pretrained("naver-clova-ix/donut-base-finetuned-docvqa" ) , feature_extractor="naver-clova-ix/donut-base-finetuned-docvqa" , ) A_ : Any = INVOICE_URL A_ : Optional[int] = "What is the invoice number?" A_ : Any = dqa_pipeline(image=snake_case , question=snake_case , top_k=2 ) self.assertEqual(nested_simplify(snake_case , decimals=4 ) , [{"answer": "us-001"}] ) @require_tf @unittest.skip("Document question answering not implemented in TF" ) def SCREAMING_SNAKE_CASE ( self :Optional[Any] ): '''simple docstring''' pass
70
# flake8: noqa # Lint as: python3 from typing import Dict, List, Optional, Type from .. import config from ..utils import logging from .formatting import ( ArrowFormatter, CustomFormatter, Formatter, PandasFormatter, PythonFormatter, TensorFormatter, format_table, query_table, ) from .np_formatter import NumpyFormatter _lowerCAmelCase : Union[str, Any] = logging.get_logger(__name__) _lowerCAmelCase : Dict[Optional[str], Type[Formatter]] = {} _lowerCAmelCase : Dict[Optional[str], str] = {} _lowerCAmelCase : Dict[Optional[str], Exception] = {} def __snake_case ( _lowerCAmelCase : type , _lowerCAmelCase : Optional[str] , _lowerCAmelCase : Optional[List[str]] = None , ) -> List[Any]: A_ : Any = aliases if aliases is not None else [] if format_type in _FORMAT_TYPES: logger.warning( f"Overwriting format type '{format_type}' ({_FORMAT_TYPES[format_type].__name__} -> {formatter_cls.__name__})" ) A_ : str = formatter_cls for alias in set(aliases + [format_type] ): if alias in _FORMAT_TYPES_ALIASES: logger.warning( f"Overwriting format type alias '{alias}' ({_FORMAT_TYPES_ALIASES[alias]} -> {format_type})" ) A_ : Union[str, Any] = format_type def __snake_case ( _lowerCAmelCase : Exception , _lowerCAmelCase : Optional[str] , _lowerCAmelCase : Optional[List[str]] = None ) -> Optional[int]: A_ : Optional[Any] = aliases if aliases is not None else [] for alias in set(aliases + [format_type] ): A_ : List[str] = unavailable_error # Here we define all the available formatting functions that can be used by `Dataset.set_format` _register_formatter(PythonFormatter, None, aliases=['''python''']) _register_formatter(ArrowFormatter, '''arrow''', aliases=['''pa''', '''pyarrow''']) _register_formatter(NumpyFormatter, '''numpy''', aliases=['''np''']) _register_formatter(PandasFormatter, '''pandas''', aliases=['''pd''']) _register_formatter(CustomFormatter, '''custom''') if config.TORCH_AVAILABLE: from .torch_formatter import TorchFormatter _register_formatter(TorchFormatter, '''torch''', aliases=['''pt''', '''pytorch''']) else: _lowerCAmelCase : str = ValueError('''PyTorch needs to be installed to be able to return PyTorch tensors.''') _register_unavailable_formatter(_torch_error, '''torch''', aliases=['''pt''', '''pytorch''']) if config.TF_AVAILABLE: from .tf_formatter import TFFormatter _register_formatter(TFFormatter, '''tensorflow''', aliases=['''tf''']) else: _lowerCAmelCase : Tuple = ValueError('''Tensorflow needs to be installed to be able to return Tensorflow tensors.''') _register_unavailable_formatter(_tf_error, '''tensorflow''', aliases=['''tf''']) if config.JAX_AVAILABLE: from .jax_formatter import JaxFormatter _register_formatter(JaxFormatter, '''jax''', aliases=[]) else: _lowerCAmelCase : List[str] = ValueError('''JAX needs to be installed to be able to return JAX arrays.''') _register_unavailable_formatter(_jax_error, '''jax''', aliases=[]) def __snake_case ( _lowerCAmelCase : Optional[str] ) -> Optional[str]: if format_type in _FORMAT_TYPES_ALIASES: return _FORMAT_TYPES_ALIASES[format_type] else: return format_type def __snake_case ( _lowerCAmelCase : Optional[str] , **_lowerCAmelCase : str ) -> Formatter: A_ : str = get_format_type_from_alias(_lowerCAmelCase ) if format_type in _FORMAT_TYPES: return _FORMAT_TYPES[format_type](**_lowerCAmelCase ) if format_type in _FORMAT_TYPES_ALIASES_UNAVAILABLE: raise _FORMAT_TYPES_ALIASES_UNAVAILABLE[format_type] else: raise ValueError( f"Return type should be None or selected in {list(type for type in _FORMAT_TYPES.keys() if type != None )}, but got '{format_type}'" )
70
1
'''simple docstring''' from dataclasses import dataclass from typing import Tuple import numpy as np import torch @dataclass class UpperCAmelCase : _lowercase: int = 42 # [batch_size x 3] _lowercase: Tuple = 42 # [batch_size x 3] _lowercase: Dict = 42 # [batch_size x 3] _lowercase: Tuple = 42 # [batch_size x 3] _lowercase: List[str] = 42 _lowercase: int = 42 _lowercase: Optional[int] = 42 _lowercase: Optional[int] = 42 _lowercase: Union[str, Any] = 42 def lowercase__ ( self : List[str] ) -> int: assert self.x.shape[0] == self.y.shape[0] == self.z.shape[0] == self.origin.shape[0] assert self.x.shape[1] == self.y.shape[1] == self.z.shape[1] == self.origin.shape[1] == 3 assert len(self.x.shape ) == len(self.y.shape ) == len(self.z.shape ) == len(self.origin.shape ) == 2 def lowercase__ ( self : Optional[int] ) -> str: return torch.from_numpy(np.array([self.width, self.height] , dtype=np.floataa ) ) def lowercase__ ( self : Any ) -> List[str]: return torch.from_numpy(np.array([self.x_fov, self.y_fov] , dtype=np.floataa ) ) def lowercase__ ( self : List[Any] ) -> torch.Tensor: _lowerCAmelCase = torch.arange(self.height * self.width ) _lowerCAmelCase = torch.stack( [ pixel_indices % self.width, torch.div(__snake_case , self.width , rounding_mode="""trunc""" ), ] , axis=1 , ) return coords @property def lowercase__ ( self : Any ) -> Optional[Any]: _lowerCAmelCase , *_lowerCAmelCase = self.shape _lowerCAmelCase = int(np.prod(__snake_case ) ) _lowerCAmelCase = self.get_image_coords() _lowerCAmelCase = torch.broadcast_to(coords.unsqueeze(0 ) , [batch_size * inner_batch_size, *coords.shape] ) _lowerCAmelCase = self.get_camera_rays(__snake_case ) _lowerCAmelCase = rays.view(__snake_case , inner_batch_size * self.height * self.width , 2 , 3 ) return rays def lowercase__ ( self : List[str] , __snake_case : int ) -> torch.Tensor: _lowerCAmelCase , *_lowerCAmelCase , _lowerCAmelCase = coords.shape assert n_coords == 2 assert batch_size == self.origin.shape[0] _lowerCAmelCase = coords.view(__snake_case , -1 , 2 ) _lowerCAmelCase = self.resolution() _lowerCAmelCase = self.fov() _lowerCAmelCase = (flat.float() / (res - 1)) * 2 - 1 _lowerCAmelCase = fracs * torch.tan(fov / 2 ) _lowerCAmelCase = fracs.view(__snake_case , -1 , 2 ) _lowerCAmelCase = ( self.z.view(__snake_case , 1 , 3 ) + self.x.view(__snake_case , 1 , 3 ) * fracs[:, :, :1] + self.y.view(__snake_case , 1 , 3 ) * fracs[:, :, 1:] ) _lowerCAmelCase = directions / directions.norm(dim=-1 , keepdim=__snake_case ) _lowerCAmelCase = torch.stack( [ torch.broadcast_to(self.origin.view(__snake_case , 1 , 3 ) , [batch_size, directions.shape[1], 3] ), directions, ] , dim=2 , ) return rays.view(__snake_case , *__snake_case , 2 , 3 ) def lowercase__ ( self : Any , __snake_case : int , __snake_case : List[str] ) -> "DifferentiableProjectiveCamera": assert width * self.height == height * self.width, "The aspect ratio should not change." return DifferentiableProjectiveCamera( origin=self.origin , x=self.x , y=self.y , z=self.z , width=__snake_case , height=__snake_case , x_fov=self.x_fov , y_fov=self.y_fov , ) def UpperCamelCase__ ( lowerCAmelCase ): """simple docstring""" _lowerCAmelCase = [] _lowerCAmelCase = [] _lowerCAmelCase = [] _lowerCAmelCase = [] for theta in np.linspace(0 , 2 * np.pi , num=20 ): _lowerCAmelCase = np.array([np.sin(__lowerCamelCase ), np.cos(__lowerCamelCase ), -0.5] ) z /= np.sqrt(np.sum(z**2 ) ) _lowerCAmelCase = -z * 4 _lowerCAmelCase = np.array([np.cos(__lowerCamelCase ), -np.sin(__lowerCamelCase ), 0.0] ) _lowerCAmelCase = np.cross(__lowerCamelCase , __lowerCamelCase ) origins.append(__lowerCamelCase ) xs.append(__lowerCamelCase ) ys.append(__lowerCamelCase ) zs.append(__lowerCamelCase ) return DifferentiableProjectiveCamera( origin=torch.from_numpy(np.stack(__lowerCamelCase , axis=0 ) ).float() , x=torch.from_numpy(np.stack(__lowerCamelCase , axis=0 ) ).float() , y=torch.from_numpy(np.stack(__lowerCamelCase , axis=0 ) ).float() , z=torch.from_numpy(np.stack(__lowerCamelCase , axis=0 ) ).float() , width=__lowerCamelCase , height=__lowerCamelCase , x_fov=0.7 , y_fov=0.7 , shape=(1, len(__lowerCamelCase )) , )
70
'''simple docstring''' from typing import List from .keymap import KEYMAP, get_character def lowerCamelCase ( __lowerCamelCase : str ) ->Optional[int]: def decorator(__lowerCamelCase : int ): _SCREAMING_SNAKE_CASE = getattr(__lowerCamelCase , """handle_key""" , [] ) handle += [key] setattr(__lowerCamelCase , """handle_key""" , __lowerCamelCase ) return func return decorator def lowerCamelCase ( *__lowerCamelCase : List[str] ) ->Dict: def decorator(__lowerCamelCase : int ): _SCREAMING_SNAKE_CASE = getattr(__lowerCamelCase , """handle_key""" , [] ) handle += keys setattr(__lowerCamelCase , """handle_key""" , __lowerCamelCase ) return func return decorator class a_ ( snake_case_ ): '''simple docstring''' def __new__( cls , A , A , A ) -> int: _SCREAMING_SNAKE_CASE = super().__new__(cls , A , A , A ) if not hasattr(A , """key_handler""" ): setattr(A , """key_handler""" , {} ) setattr(A , """handle_input""" , KeyHandler.handle_input ) for value in attrs.values(): _SCREAMING_SNAKE_CASE = getattr(A , """handle_key""" , [] ) for key in handled_keys: _SCREAMING_SNAKE_CASE = value return new_cls @staticmethod def snake_case_( cls ) -> str: _SCREAMING_SNAKE_CASE = get_character() if char != KEYMAP["undefined"]: _SCREAMING_SNAKE_CASE = ord(A ) _SCREAMING_SNAKE_CASE = cls.key_handler.get(A ) if handler: _SCREAMING_SNAKE_CASE = char return handler(cls ) else: return None def lowerCamelCase ( cls : Any ) ->Dict: return KeyHandler(cls.__name__ , cls.__bases__ , cls.__dict__.copy() )
58
0
"""simple docstring""" from __future__ import annotations from sys import maxsize from typing import Generic, TypeVar lowerCAmelCase__ = TypeVar('''T''') def a__ ( SCREAMING_SNAKE_CASE : int ): '''simple docstring''' return (position - 1) // 2 def a__ ( SCREAMING_SNAKE_CASE : int ): '''simple docstring''' return (2 * position) + 1 def a__ ( SCREAMING_SNAKE_CASE : int ): '''simple docstring''' return (2 * position) + 2 class SCREAMING_SNAKE_CASE__ ( Generic[T] ): """simple docstring""" def __init__( self ): """simple docstring""" lowerCAmelCase : list[tuple[T, int]] = [] lowerCAmelCase : dict[T, int] = {} lowerCAmelCase : int = 0 def __len__( self ): """simple docstring""" return self.elements def __repr__( self ): """simple docstring""" return str(self.heap ) def lowercase__ ( self ): """simple docstring""" return self.elements == 0 def lowercase__ ( self , snake_case__ , snake_case__ ): """simple docstring""" self.heap.append((elem, weight) ) lowerCAmelCase : Tuple = self.elements self.elements += 1 self._bubble_up(snake_case__ ) def lowercase__ ( self ): """simple docstring""" if self.elements > 1: self._swap_nodes(0 , self.elements - 1 ) lowerCAmelCase : Tuple = self.heap.pop() del self.position_map[elem] self.elements -= 1 if self.elements > 0: lowerCAmelCase : Union[str, Any] = self.heap[0] self._bubble_down(snake_case__ ) return elem def lowercase__ ( self , snake_case__ , snake_case__ ): """simple docstring""" lowerCAmelCase : str = self.position_map[elem] lowerCAmelCase : Optional[int] = (elem, weight) if position > 0: lowerCAmelCase : Union[str, Any] = get_parent_position(snake_case__ ) lowerCAmelCase : List[Any] = self.heap[parent_position] if parent_weight > weight: self._bubble_up(snake_case__ ) else: self._bubble_down(snake_case__ ) else: self._bubble_down(snake_case__ ) def lowercase__ ( self , snake_case__ ): """simple docstring""" lowerCAmelCase : List[str] = self.position_map[elem] if curr_pos == 0: return None lowerCAmelCase : List[str] = get_parent_position(snake_case__ ) lowerCAmelCase : str = self.heap[curr_pos] lowerCAmelCase : Tuple = self.heap[parent_position] if parent_weight > weight: self._swap_nodes(snake_case__ , snake_case__ ) return self._bubble_up(snake_case__ ) return None def lowercase__ ( self , snake_case__ ): """simple docstring""" lowerCAmelCase : Any = self.position_map[elem] lowerCAmelCase : List[str] = self.heap[curr_pos] lowerCAmelCase : Optional[Any] = get_child_left_position(snake_case__ ) lowerCAmelCase : Union[str, Any] = get_child_right_position(snake_case__ ) if child_left_position < self.elements and child_right_position < self.elements: lowerCAmelCase : Optional[Any] = self.heap[child_left_position] lowerCAmelCase : Dict = self.heap[child_right_position] if child_right_weight < child_left_weight and child_right_weight < weight: self._swap_nodes(snake_case__ , snake_case__ ) return self._bubble_down(snake_case__ ) if child_left_position < self.elements: lowerCAmelCase : int = self.heap[child_left_position] if child_left_weight < weight: self._swap_nodes(snake_case__ , snake_case__ ) return self._bubble_down(snake_case__ ) else: return None if child_right_position < self.elements: lowerCAmelCase : Optional[int] = self.heap[child_right_position] if child_right_weight < weight: self._swap_nodes(snake_case__ , snake_case__ ) return self._bubble_down(snake_case__ ) return None def lowercase__ ( self , snake_case__ , snake_case__ ): """simple docstring""" lowerCAmelCase : Dict = self.heap[nodea_pos][0] lowerCAmelCase : Optional[Any] = self.heap[nodea_pos][0] lowerCAmelCase : Tuple = ( self.heap[nodea_pos], self.heap[nodea_pos], ) lowerCAmelCase : int = nodea_pos lowerCAmelCase : str = nodea_pos class SCREAMING_SNAKE_CASE__ ( Generic[T] ): """simple docstring""" def __init__( self ): """simple docstring""" lowerCAmelCase : dict[T, dict[T, int]] = {} lowerCAmelCase : int = 0 def __repr__( self ): """simple docstring""" return str(self.connections ) def __len__( self ): """simple docstring""" return self.nodes def lowercase__ ( self , snake_case__ ): """simple docstring""" if node not in self.connections: lowerCAmelCase : List[Any] = {} self.nodes += 1 def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__ ): """simple docstring""" self.add_node(snake_case__ ) self.add_node(snake_case__ ) lowerCAmelCase : List[Any] = weight lowerCAmelCase : Dict = weight def a__ ( SCREAMING_SNAKE_CASE : GraphUndirectedWeighted[T] , ): '''simple docstring''' lowerCAmelCase : dict[T, int] = {node: maxsize for node in graph.connections} lowerCAmelCase : dict[T, T | None] = {node: None for node in graph.connections} lowerCAmelCase : MinPriorityQueue[T] = MinPriorityQueue() for node, weight in dist.items(): priority_queue.push(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if priority_queue.is_empty(): return dist, parent # initialization lowerCAmelCase : Optional[Any] = priority_queue.extract_min() lowerCAmelCase : Optional[int] = 0 for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: lowerCAmelCase : List[str] = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(SCREAMING_SNAKE_CASE , dist[neighbour] ) lowerCAmelCase : Optional[Any] = node # running prim's algorithm while not priority_queue.is_empty(): lowerCAmelCase : List[str] = priority_queue.extract_min() for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: lowerCAmelCase : str = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(SCREAMING_SNAKE_CASE , dist[neighbour] ) lowerCAmelCase : Tuple = node return dist, parent
359
"""simple docstring""" import unittest from transformers import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING, is_vision_available, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class SCREAMING_SNAKE_CASE__ : """simple docstring""" @staticmethod def lowercase__ ( *snake_case__ , **snake_case__ ): """simple docstring""" pass @is_pipeline_test @require_vision @require_torch class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" a : Optional[Any] =MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__ ): """simple docstring""" lowerCAmelCase : str = pipeline( "zero-shot-object-detection" , model="hf-internal-testing/tiny-random-owlvit-object-detection" ) lowerCAmelCase : Dict = [ { "image": "./tests/fixtures/tests_samples/COCO/000000039769.png", "candidate_labels": ["cat", "remote", "couch"], } ] return object_detector, examples def lowercase__ ( self , snake_case__ , snake_case__ ): """simple docstring""" lowerCAmelCase : Optional[Any] = object_detector(examples[0] , threshold=0.0 ) lowerCAmelCase : Dict = len(snake_case__ ) self.assertGreater(snake_case__ , 0 ) self.assertEqual( snake_case__ , [ { "score": ANY(snake_case__ ), "label": ANY(snake_case__ ), "box": {"xmin": ANY(snake_case__ ), "ymin": ANY(snake_case__ ), "xmax": ANY(snake_case__ ), "ymax": ANY(snake_case__ )}, } for i in range(snake_case__ ) ] , ) @require_tf @unittest.skip("Zero Shot Object Detection not implemented in TF" ) def lowercase__ ( self ): """simple docstring""" pass @require_torch def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : str = pipeline( "zero-shot-object-detection" , model="hf-internal-testing/tiny-random-owlvit-object-detection" ) lowerCAmelCase : Tuple = object_detector( "./tests/fixtures/tests_samples/COCO/000000039769.png" , candidate_labels=["cat", "remote", "couch"] , threshold=0.64 , ) self.assertEqual( nested_simplify(snake_case__ , decimals=4 ) , [ {"score": 0.7235, "label": "cat", "box": {"xmin": 204, "ymin": 167, "xmax": 232, "ymax": 190}}, {"score": 0.7218, "label": "remote", "box": {"xmin": 204, "ymin": 167, "xmax": 232, "ymax": 190}}, {"score": 0.7184, "label": "couch", "box": {"xmin": 204, "ymin": 167, "xmax": 232, "ymax": 190}}, {"score": 0.6748, "label": "remote", "box": {"xmin": 571, "ymin": 83, "xmax": 598, "ymax": 103}}, {"score": 0.6656, "label": "cat", "box": {"xmin": 571, "ymin": 83, "xmax": 598, "ymax": 103}}, {"score": 0.6614, "label": "couch", "box": {"xmin": 571, "ymin": 83, "xmax": 598, "ymax": 103}}, {"score": 0.6456, "label": "remote", "box": {"xmin": 494, "ymin": 105, "xmax": 521, "ymax": 127}}, {"score": 0.642, "label": "remote", "box": {"xmin": 67, "ymin": 274, "xmax": 93, "ymax": 297}}, {"score": 0.6419, "label": "cat", "box": {"xmin": 494, "ymin": 105, "xmax": 521, "ymax": 127}}, ] , ) lowerCAmelCase : Optional[Any] = object_detector( [ { "image": "./tests/fixtures/tests_samples/COCO/000000039769.png", "candidate_labels": ["cat", "remote", "couch"], } ] , threshold=0.64 , ) self.assertEqual( nested_simplify(snake_case__ , decimals=4 ) , [ [ {"score": 0.7235, "label": "cat", "box": {"xmin": 204, "ymin": 167, "xmax": 232, "ymax": 190}}, {"score": 0.7218, "label": "remote", "box": {"xmin": 204, "ymin": 167, "xmax": 232, "ymax": 190}}, {"score": 0.7184, "label": "couch", "box": {"xmin": 204, "ymin": 167, "xmax": 232, "ymax": 190}}, {"score": 0.6748, "label": "remote", "box": {"xmin": 571, "ymin": 83, "xmax": 598, "ymax": 103}}, {"score": 0.6656, "label": "cat", "box": {"xmin": 571, "ymin": 83, "xmax": 598, "ymax": 103}}, {"score": 0.6614, "label": "couch", "box": {"xmin": 571, "ymin": 83, "xmax": 598, "ymax": 103}}, {"score": 0.6456, "label": "remote", "box": {"xmin": 494, "ymin": 105, "xmax": 521, "ymax": 127}}, {"score": 0.642, "label": "remote", "box": {"xmin": 67, "ymin": 274, "xmax": 93, "ymax": 297}}, {"score": 0.6419, "label": "cat", "box": {"xmin": 494, "ymin": 105, "xmax": 521, "ymax": 127}}, ] ] , ) @require_torch @slow def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Dict = pipeline("zero-shot-object-detection" ) lowerCAmelCase : Dict = object_detector( "http://images.cocodataset.org/val2017/000000039769.jpg" , candidate_labels=["cat", "remote", "couch"] , ) self.assertEqual( nested_simplify(snake_case__ , decimals=4 ) , [ {"score": 0.2868, "label": "cat", "box": {"xmin": 324, "ymin": 20, "xmax": 640, "ymax": 373}}, {"score": 0.277, "label": "remote", "box": {"xmin": 40, "ymin": 72, "xmax": 177, "ymax": 115}}, {"score": 0.2537, "label": "cat", "box": {"xmin": 1, "ymin": 55, "xmax": 315, "ymax": 472}}, {"score": 0.1474, "label": "remote", "box": {"xmin": 335, "ymin": 74, "xmax": 371, "ymax": 187}}, {"score": 0.1208, "label": "couch", "box": {"xmin": 4, "ymin": 0, "xmax": 642, "ymax": 476}}, ] , ) lowerCAmelCase : Dict = object_detector( [ { "image": "http://images.cocodataset.org/val2017/000000039769.jpg", "candidate_labels": ["cat", "remote", "couch"], }, { "image": "http://images.cocodataset.org/val2017/000000039769.jpg", "candidate_labels": ["cat", "remote", "couch"], }, ] , ) self.assertEqual( nested_simplify(snake_case__ , decimals=4 ) , [ [ {"score": 0.2868, "label": "cat", "box": {"xmin": 324, "ymin": 20, "xmax": 640, "ymax": 373}}, {"score": 0.277, "label": "remote", "box": {"xmin": 40, "ymin": 72, "xmax": 177, "ymax": 115}}, {"score": 0.2537, "label": "cat", "box": {"xmin": 1, "ymin": 55, "xmax": 315, "ymax": 472}}, {"score": 0.1474, "label": "remote", "box": {"xmin": 335, "ymin": 74, "xmax": 371, "ymax": 187}}, {"score": 0.1208, "label": "couch", "box": {"xmin": 4, "ymin": 0, "xmax": 642, "ymax": 476}}, ], [ {"score": 0.2868, "label": "cat", "box": {"xmin": 324, "ymin": 20, "xmax": 640, "ymax": 373}}, {"score": 0.277, "label": "remote", "box": {"xmin": 40, "ymin": 72, "xmax": 177, "ymax": 115}}, {"score": 0.2537, "label": "cat", "box": {"xmin": 1, "ymin": 55, "xmax": 315, "ymax": 472}}, {"score": 0.1474, "label": "remote", "box": {"xmin": 335, "ymin": 74, "xmax": 371, "ymax": 187}}, {"score": 0.1208, "label": "couch", "box": {"xmin": 4, "ymin": 0, "xmax": 642, "ymax": 476}}, ], ] , ) @require_tf @unittest.skip("Zero Shot Object Detection not implemented in TF" ) def lowercase__ ( self ): """simple docstring""" pass @require_torch @slow def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Dict = 0.2 lowerCAmelCase : List[Any] = pipeline("zero-shot-object-detection" ) lowerCAmelCase : Union[str, Any] = object_detector( "http://images.cocodataset.org/val2017/000000039769.jpg" , candidate_labels=["cat", "remote", "couch"] , threshold=snake_case__ , ) self.assertEqual( nested_simplify(snake_case__ , decimals=4 ) , [ {"score": 0.2868, "label": "cat", "box": {"xmin": 324, "ymin": 20, "xmax": 640, "ymax": 373}}, {"score": 0.277, "label": "remote", "box": {"xmin": 40, "ymin": 72, "xmax": 177, "ymax": 115}}, {"score": 0.2537, "label": "cat", "box": {"xmin": 1, "ymin": 55, "xmax": 315, "ymax": 472}}, ] , ) @require_torch @slow def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : int = 2 lowerCAmelCase : Any = pipeline("zero-shot-object-detection" ) lowerCAmelCase : Any = object_detector( "http://images.cocodataset.org/val2017/000000039769.jpg" , candidate_labels=["cat", "remote", "couch"] , top_k=snake_case__ , ) self.assertEqual( nested_simplify(snake_case__ , decimals=4 ) , [ {"score": 0.2868, "label": "cat", "box": {"xmin": 324, "ymin": 20, "xmax": 640, "ymax": 373}}, {"score": 0.277, "label": "remote", "box": {"xmin": 40, "ymin": 72, "xmax": 177, "ymax": 115}}, ] , )
133
0
'''simple docstring''' import logging import os import sys from pathlib import Path from unittest.mock import patch from parameterized import parameterized from run_eval import run_generate from run_eval_search import run_search from transformers.testing_utils import CaptureStdout, TestCasePlus, slow from utils import ROUGE_KEYS logging.basicConfig(level=logging.DEBUG) _SCREAMING_SNAKE_CASE : Optional[Any] = logging.getLogger() def UpperCamelCase_( snake_case : Path , snake_case : list ): '''simple docstring''' snake_case_ = "\n".join(snake_case ) Path(snake_case ).open("w" ).writelines(snake_case ) _SCREAMING_SNAKE_CASE : List[str] = "patrickvonplaten/t5-tiny-random" _SCREAMING_SNAKE_CASE : str = "sshleifer/bart-tiny-random" _SCREAMING_SNAKE_CASE : Optional[int] = "sshleifer/tiny-mbart" _SCREAMING_SNAKE_CASE : Dict = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) logging.disable(logging.CRITICAL) # remove noisy download output from tracebacks class _snake_case ( lowercase_ ): def lowerCAmelCase__ ( self , a__ ) -> str: '''simple docstring''' snake_case_ = Path(self.get_auto_remove_tmp_dir() ) / "utest_input.source" snake_case_ = input_file_name.parent / "utest_output.txt" assert not output_file_name.exists() snake_case_ = [" New York (CNN)When Liana Barrientos was 23 years old, she got married in Westchester County."] _dump_articles(a__ , a__ ) snake_case_ = str(Path(self.get_auto_remove_tmp_dir() ) / "scores.json" ) snake_case_ = "translation_en_to_de" if model == T5_TINY else "summarization" snake_case_ = F'\n run_eval_search.py\n {model}\n {input_file_name}\n {output_file_name}\n --score_path {score_path}\n --task {task}\n --num_beams 2\n --length_penalty 2.0\n '.split() with patch.object(a__ , "argv" , a__ ): run_generate() assert Path(a__ ).exists() # os.remove(Path(output_file_name)) def lowerCAmelCase__ ( self ) -> Any: '''simple docstring''' self.run_eval_tester(a__ ) @parameterized.expand([BART_TINY, MBART_TINY] ) @slow def lowerCAmelCase__ ( self , a__ ) -> Optional[Any]: '''simple docstring''' self.run_eval_tester(a__ ) @parameterized.expand([T5_TINY, MBART_TINY] ) @slow def lowerCAmelCase__ ( self , a__ ) -> Optional[int]: '''simple docstring''' snake_case_ = Path(self.get_auto_remove_tmp_dir() ) / "utest_input.source" snake_case_ = input_file_name.parent / "utest_output.txt" assert not output_file_name.exists() snake_case_ = { "en": ["Machine learning is great, isn't it?", "I like to eat bananas", "Tomorrow is another great day!"], "de": [ "Maschinelles Lernen ist großartig, oder?", "Ich esse gerne Bananen", "Morgen ist wieder ein toller Tag!", ], } snake_case_ = Path(self.get_auto_remove_tmp_dir() ) snake_case_ = str(tmp_dir / "scores.json" ) snake_case_ = str(tmp_dir / "val.target" ) _dump_articles(a__ , text["en"] ) _dump_articles(a__ , text["de"] ) snake_case_ = "translation_en_to_de" if model == T5_TINY else "summarization" snake_case_ = F'\n run_eval_search.py\n {model}\n {str(a__ )}\n {str(a__ )}\n --score_path {score_path}\n --reference_path {reference_path}\n --task {task}\n '.split() testargs.extend(["--search", "num_beams=1:2 length_penalty=0.9:1.0"] ) with patch.object(a__ , "argv" , a__ ): with CaptureStdout() as cs: run_search() snake_case_ = [" num_beams | length_penalty", model, "Best score args"] snake_case_ = ["Info"] if "translation" in task: expected_strings.append("bleu" ) else: expected_strings.extend(a__ ) for w in expected_strings: assert w in cs.out for w in un_expected_strings: assert w not in cs.out assert Path(a__ ).exists() os.remove(Path(a__ ) )
85
import pyarrow.parquet as pq import pytest from datasets import Audio, Dataset, DatasetDict, Features, NamedSplit, Sequence, Value, config from datasets.features.image import Image from datasets.io.parquet import ParquetDatasetReader, ParquetDatasetWriter, get_writer_batch_size from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def lowerCAmelCase_ ( __a , __a ) -> Optional[Any]: """simple docstring""" assert isinstance(__a , __a ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("keep_in_memory" , [False, True] ) def lowerCAmelCase_ ( __a , __a , __a ) -> List[Any]: """simple docstring""" lowerCamelCase__: Any =tmp_path / "cache" lowerCamelCase__: Optional[int] ={"col_1": "string", "col_2": "int64", "col_3": "float64"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): lowerCamelCase__: int =ParquetDatasetReader(__a , cache_dir=__a , keep_in_memory=__a ).read() _check_parquet_dataset(__a , __a ) @pytest.mark.parametrize( "features" , [ None, {"col_1": "string", "col_2": "int64", "col_3": "float64"}, {"col_1": "string", "col_2": "string", "col_3": "string"}, {"col_1": "int32", "col_2": "int32", "col_3": "int32"}, {"col_1": "float32", "col_2": "float32", "col_3": "float32"}, ] , ) def lowerCAmelCase_ ( __a , __a , __a ) -> List[Any]: """simple docstring""" lowerCamelCase__: int =tmp_path / "cache" lowerCamelCase__: Tuple ={"col_1": "string", "col_2": "int64", "col_3": "float64"} lowerCamelCase__: Union[str, Any] =features.copy() if features else default_expected_features lowerCamelCase__: Union[str, Any] =( Features({feature: Value(__a ) for feature, dtype in features.items()} ) if features is not None else None ) lowerCamelCase__: int =ParquetDatasetReader(__a , features=__a , cache_dir=__a ).read() _check_parquet_dataset(__a , __a ) @pytest.mark.parametrize("split" , [None, NamedSplit("train" ), "train", "test"] ) def lowerCAmelCase_ ( __a , __a , __a ) -> Any: """simple docstring""" lowerCamelCase__: Union[str, Any] =tmp_path / "cache" lowerCamelCase__: Dict ={"col_1": "string", "col_2": "int64", "col_3": "float64"} lowerCamelCase__: Optional[int] =ParquetDatasetReader(__a , cache_dir=__a , split=__a ).read() _check_parquet_dataset(__a , __a ) assert dataset.split == split if split else "train" @pytest.mark.parametrize("path_type" , [str, list] ) def lowerCAmelCase_ ( __a , __a , __a ) -> Dict: """simple docstring""" if issubclass(__a , __a ): lowerCamelCase__: str =parquet_path elif issubclass(__a , __a ): lowerCamelCase__: str =[parquet_path] lowerCamelCase__: Optional[Any] =tmp_path / "cache" lowerCamelCase__: Any ={"col_1": "string", "col_2": "int64", "col_3": "float64"} lowerCamelCase__: Optional[int] =ParquetDatasetReader(__a , cache_dir=__a ).read() _check_parquet_dataset(__a , __a ) def lowerCAmelCase_ ( __a , __a , __a=("train",) ) -> Union[str, Any]: """simple docstring""" assert isinstance(__a , __a ) for split in splits: lowerCamelCase__: Optional[Any] =dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("keep_in_memory" , [False, True] ) def lowerCAmelCase_ ( __a , __a , __a ) -> List[Any]: """simple docstring""" lowerCamelCase__: Any =tmp_path / "cache" lowerCamelCase__: str ={"col_1": "string", "col_2": "int64", "col_3": "float64"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): lowerCamelCase__: List[str] =ParquetDatasetReader( {"train": parquet_path} , cache_dir=__a , keep_in_memory=__a ).read() _check_parquet_datasetdict(__a , __a ) @pytest.mark.parametrize( "features" , [ None, {"col_1": "string", "col_2": "int64", "col_3": "float64"}, {"col_1": "string", "col_2": "string", "col_3": "string"}, {"col_1": "int32", "col_2": "int32", "col_3": "int32"}, {"col_1": "float32", "col_2": "float32", "col_3": "float32"}, ] , ) def lowerCAmelCase_ ( __a , __a , __a ) -> List[Any]: """simple docstring""" lowerCamelCase__: List[Any] =tmp_path / "cache" lowerCamelCase__: Any ={"col_1": "string", "col_2": "int64", "col_3": "float64"} lowerCamelCase__: int =features.copy() if features else default_expected_features lowerCamelCase__: Union[str, Any] =( Features({feature: Value(__a ) for feature, dtype in features.items()} ) if features is not None else None ) lowerCamelCase__: Union[str, Any] =ParquetDatasetReader({"train": parquet_path} , features=__a , cache_dir=__a ).read() _check_parquet_datasetdict(__a , __a ) @pytest.mark.parametrize("split" , [None, NamedSplit("train" ), "train", "test"] ) def lowerCAmelCase_ ( __a , __a , __a ) -> List[str]: """simple docstring""" if split: lowerCamelCase__: Union[str, Any] ={split: parquet_path} else: lowerCamelCase__: int ="train" lowerCamelCase__: Union[str, Any] ={"train": parquet_path, "test": parquet_path} lowerCamelCase__: int =tmp_path / "cache" lowerCamelCase__: Union[str, Any] ={"col_1": "string", "col_2": "int64", "col_3": "float64"} lowerCamelCase__: Optional[Any] =ParquetDatasetReader(__a , cache_dir=__a ).read() _check_parquet_datasetdict(__a , __a , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def lowerCAmelCase_ ( __a , __a ) -> Tuple: """simple docstring""" lowerCamelCase__: Tuple =ParquetDatasetWriter(__a , tmp_path / "foo.parquet" ) assert writer.write() > 0 lowerCamelCase__: Tuple =pq.ParquetFile(tmp_path / "foo.parquet" ) lowerCamelCase__: Optional[int] =pf.read() assert dataset.data.table == output_table def lowerCAmelCase_ ( __a , __a ) -> List[Any]: """simple docstring""" lowerCamelCase__: List[str] =str(shared_datadir / "test_image_rgb.jpg" ) lowerCamelCase__: Union[str, Any] ={"image": [image_path]} lowerCamelCase__: int =Features({"image": Image()} ) lowerCamelCase__: Tuple =Dataset.from_dict(__a , features=__a ) lowerCamelCase__: Optional[int] =ParquetDatasetWriter(__a , tmp_path / "foo.parquet" ) assert writer.write() > 0 lowerCamelCase__: Optional[Any] =Dataset.from_parquet(str(tmp_path / "foo.parquet" ) ) assert dataset.features == reloaded_dataset.features lowerCamelCase__: List[str] =ParquetDatasetReader(str(tmp_path / "foo.parquet" ) , streaming=__a ).read() assert dataset.features == reloaded_iterable_dataset.features @pytest.mark.parametrize( "feature, expected" , [ (Features({"foo": Value("int32" )} ), None), (Features({"image": Image(), "foo": Value("int32" )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS), (Features({"nested": Sequence(Audio() )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS), ] , ) def lowerCAmelCase_ ( __a , __a ) -> Any: """simple docstring""" assert get_writer_batch_size(__a ) == expected
10
0
import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def SCREAMING_SNAKE_CASE__ ( ) -> str: snake_case_ : Tuple = ArgumentParser( description=( 'PyTorch TPU distributed training launch helper utility that will spawn up multiple distributed processes' ) ) # Optional arguments for the launch helper parser.add_argument('--num_cores' , type=_lowerCamelCase , default=1 , help='Number of TPU cores to use (1 or 8).' ) # positional parser.add_argument( 'training_script' , type=_lowerCamelCase , help=( 'The full path to the single TPU training ' 'program/script to be launched in parallel, ' 'followed by all the arguments for the ' 'training script' ) , ) # rest from the training program parser.add_argument('training_script_args' , nargs=_lowerCamelCase ) return parser.parse_args() def SCREAMING_SNAKE_CASE__ ( ) -> Union[str, Any]: snake_case_ : int = parse_args() # Import training_script as a module. snake_case_ : Optional[Any] = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) snake_case_ : Any = script_fpath.stem snake_case_ : str = importlib.import_module(_lowerCamelCase ) # Patch sys.argv snake_case_ : str = [args.training_script] + args.training_script_args + ["--tpu_num_cores", str(args.num_cores )] xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores ) if __name__ == "__main__": main()
370
import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class SCREAMING_SNAKE_CASE_ ( snake_case_ , snake_case_ ): @register_to_config def __init__( self : Optional[Any] , *, _A : int = 4 , _A : int = 768 , _A : int , _A : Tuple , ) -> Dict: """simple docstring""" super().__init__() snake_case_ : int = nn.Parameter(torch.zeros(_A ) ) # parameters for additional clip time embeddings snake_case_ : Tuple = nn.Linear(_A , _A ) snake_case_ : List[Any] = nn.Linear(_A , _A ) # parameters for encoder hidden states snake_case_ : Union[str, Any] = clip_extra_context_tokens snake_case_ : str = nn.Linear( _A , self.clip_extra_context_tokens * cross_attention_dim ) snake_case_ : Any = nn.Linear(_A , _A ) snake_case_ : Tuple = nn.LayerNorm(_A ) def UpperCAmelCase_ ( self : List[str] , *, _A : Tuple , _A : List[Any] , _A : str , _A : Optional[Any] ) -> List[Any]: """simple docstring""" if do_classifier_free_guidance: # Add the classifier free guidance embeddings to the image embeddings snake_case_ : Optional[int] = image_embeddings.shape[0] snake_case_ : Optional[Any] = self.learned_classifier_free_guidance_embeddings.unsqueeze(0 ) snake_case_ : Optional[Any] = classifier_free_guidance_embeddings.expand( _A , -1 ) snake_case_ : Any = torch.cat([classifier_free_guidance_embeddings, image_embeddings] , dim=0 ) # The image embeddings batch size and the text embeddings batch size are equal assert image_embeddings.shape[0] == prompt_embeds.shape[0] snake_case_ : str = prompt_embeds.shape[0] # "Specifically, we modify the architecture described in Nichol et al. (2021) by projecting and # adding CLIP embeddings to the existing timestep embedding, ... snake_case_ : str = self.embedding_proj(_A ) snake_case_ : Dict = self.clip_image_embeddings_project_to_time_embeddings(_A ) snake_case_ : Tuple = time_projected_image_embeddings + time_projected_prompt_embeds # ... and by projecting CLIP embeddings into four # extra tokens of context that are concatenated to the sequence of outputs from the GLIDE text encoder" snake_case_ : List[str] = self.clip_extra_context_tokens_proj(_A ) snake_case_ : Optional[Any] = clip_extra_context_tokens.reshape(_A , -1 , self.clip_extra_context_tokens ) snake_case_ : int = clip_extra_context_tokens.permute(0 , 2 , 1 ) snake_case_ : Optional[int] = self.encoder_hidden_states_proj(_A ) snake_case_ : Any = self.text_encoder_hidden_states_norm(_A ) snake_case_ : Dict = torch.cat([clip_extra_context_tokens, text_encoder_hidden_states] , dim=1 ) return text_encoder_hidden_states, additive_clip_time_embeddings
88
0
from collections import OrderedDict from ...utils import logging from .auto_factory import _BaseAutoModelClass, _LazyAutoMapping, auto_class_update from .configuration_auto import CONFIG_MAPPING_NAMES UpperCamelCase__ = logging.get_logger(__name__) UpperCamelCase__ = OrderedDict( [ # Base model mapping ("""albert""", """FlaxAlbertModel"""), ("""bart""", """FlaxBartModel"""), ("""beit""", """FlaxBeitModel"""), ("""bert""", """FlaxBertModel"""), ("""big_bird""", """FlaxBigBirdModel"""), ("""blenderbot""", """FlaxBlenderbotModel"""), ("""blenderbot-small""", """FlaxBlenderbotSmallModel"""), ("""clip""", """FlaxCLIPModel"""), ("""distilbert""", """FlaxDistilBertModel"""), ("""electra""", """FlaxElectraModel"""), ("""gpt-sw3""", """FlaxGPT2Model"""), ("""gpt2""", """FlaxGPT2Model"""), ("""gpt_neo""", """FlaxGPTNeoModel"""), ("""gptj""", """FlaxGPTJModel"""), ("""longt5""", """FlaxLongT5Model"""), ("""marian""", """FlaxMarianModel"""), ("""mbart""", """FlaxMBartModel"""), ("""mt5""", """FlaxMT5Model"""), ("""opt""", """FlaxOPTModel"""), ("""pegasus""", """FlaxPegasusModel"""), ("""regnet""", """FlaxRegNetModel"""), ("""resnet""", """FlaxResNetModel"""), ("""roberta""", """FlaxRobertaModel"""), ("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormModel"""), ("""roformer""", """FlaxRoFormerModel"""), ("""t5""", """FlaxT5Model"""), ("""vision-text-dual-encoder""", """FlaxVisionTextDualEncoderModel"""), ("""vit""", """FlaxViTModel"""), ("""wav2vec2""", """FlaxWav2Vec2Model"""), ("""whisper""", """FlaxWhisperModel"""), ("""xglm""", """FlaxXGLMModel"""), ("""xlm-roberta""", """FlaxXLMRobertaModel"""), ] ) UpperCamelCase__ = OrderedDict( [ # Model for pre-training mapping ("""albert""", """FlaxAlbertForPreTraining"""), ("""bart""", """FlaxBartForConditionalGeneration"""), ("""bert""", """FlaxBertForPreTraining"""), ("""big_bird""", """FlaxBigBirdForPreTraining"""), ("""electra""", """FlaxElectraForPreTraining"""), ("""longt5""", """FlaxLongT5ForConditionalGeneration"""), ("""mbart""", """FlaxMBartForConditionalGeneration"""), ("""mt5""", """FlaxMT5ForConditionalGeneration"""), ("""roberta""", """FlaxRobertaForMaskedLM"""), ("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForMaskedLM"""), ("""roformer""", """FlaxRoFormerForMaskedLM"""), ("""t5""", """FlaxT5ForConditionalGeneration"""), ("""wav2vec2""", """FlaxWav2Vec2ForPreTraining"""), ("""whisper""", """FlaxWhisperForConditionalGeneration"""), ("""xlm-roberta""", """FlaxXLMRobertaForMaskedLM"""), ] ) UpperCamelCase__ = OrderedDict( [ # Model for Masked LM mapping ("""albert""", """FlaxAlbertForMaskedLM"""), ("""bart""", """FlaxBartForConditionalGeneration"""), ("""bert""", """FlaxBertForMaskedLM"""), ("""big_bird""", """FlaxBigBirdForMaskedLM"""), ("""distilbert""", """FlaxDistilBertForMaskedLM"""), ("""electra""", """FlaxElectraForMaskedLM"""), ("""mbart""", """FlaxMBartForConditionalGeneration"""), ("""roberta""", """FlaxRobertaForMaskedLM"""), ("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForMaskedLM"""), ("""roformer""", """FlaxRoFormerForMaskedLM"""), ("""xlm-roberta""", """FlaxXLMRobertaForMaskedLM"""), ] ) UpperCamelCase__ = OrderedDict( [ # Model for Seq2Seq Causal LM mapping ("""bart""", """FlaxBartForConditionalGeneration"""), ("""blenderbot""", """FlaxBlenderbotForConditionalGeneration"""), ("""blenderbot-small""", """FlaxBlenderbotSmallForConditionalGeneration"""), ("""encoder-decoder""", """FlaxEncoderDecoderModel"""), ("""longt5""", """FlaxLongT5ForConditionalGeneration"""), ("""marian""", """FlaxMarianMTModel"""), ("""mbart""", """FlaxMBartForConditionalGeneration"""), ("""mt5""", """FlaxMT5ForConditionalGeneration"""), ("""pegasus""", """FlaxPegasusForConditionalGeneration"""), ("""t5""", """FlaxT5ForConditionalGeneration"""), ] ) UpperCamelCase__ = OrderedDict( [ # Model for Image-classsification ("""beit""", """FlaxBeitForImageClassification"""), ("""regnet""", """FlaxRegNetForImageClassification"""), ("""resnet""", """FlaxResNetForImageClassification"""), ("""vit""", """FlaxViTForImageClassification"""), ] ) UpperCamelCase__ = OrderedDict( [ ("""vision-encoder-decoder""", """FlaxVisionEncoderDecoderModel"""), ] ) UpperCamelCase__ = OrderedDict( [ # Model for Causal LM mapping ("""bart""", """FlaxBartForCausalLM"""), ("""bert""", """FlaxBertForCausalLM"""), ("""big_bird""", """FlaxBigBirdForCausalLM"""), ("""electra""", """FlaxElectraForCausalLM"""), ("""gpt-sw3""", """FlaxGPT2LMHeadModel"""), ("""gpt2""", """FlaxGPT2LMHeadModel"""), ("""gpt_neo""", """FlaxGPTNeoForCausalLM"""), ("""gptj""", """FlaxGPTJForCausalLM"""), ("""opt""", """FlaxOPTForCausalLM"""), ("""roberta""", """FlaxRobertaForCausalLM"""), ("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForCausalLM"""), ("""xglm""", """FlaxXGLMForCausalLM"""), ("""xlm-roberta""", """FlaxXLMRobertaForCausalLM"""), ] ) UpperCamelCase__ = OrderedDict( [ # Model for Sequence Classification mapping ("""albert""", """FlaxAlbertForSequenceClassification"""), ("""bart""", """FlaxBartForSequenceClassification"""), ("""bert""", """FlaxBertForSequenceClassification"""), ("""big_bird""", """FlaxBigBirdForSequenceClassification"""), ("""distilbert""", """FlaxDistilBertForSequenceClassification"""), ("""electra""", """FlaxElectraForSequenceClassification"""), ("""mbart""", """FlaxMBartForSequenceClassification"""), ("""roberta""", """FlaxRobertaForSequenceClassification"""), ("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForSequenceClassification"""), ("""roformer""", """FlaxRoFormerForSequenceClassification"""), ("""xlm-roberta""", """FlaxXLMRobertaForSequenceClassification"""), ] ) UpperCamelCase__ = OrderedDict( [ # Model for Question Answering mapping ("""albert""", """FlaxAlbertForQuestionAnswering"""), ("""bart""", """FlaxBartForQuestionAnswering"""), ("""bert""", """FlaxBertForQuestionAnswering"""), ("""big_bird""", """FlaxBigBirdForQuestionAnswering"""), ("""distilbert""", """FlaxDistilBertForQuestionAnswering"""), ("""electra""", """FlaxElectraForQuestionAnswering"""), ("""mbart""", """FlaxMBartForQuestionAnswering"""), ("""roberta""", """FlaxRobertaForQuestionAnswering"""), ("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForQuestionAnswering"""), ("""roformer""", """FlaxRoFormerForQuestionAnswering"""), ("""xlm-roberta""", """FlaxXLMRobertaForQuestionAnswering"""), ] ) UpperCamelCase__ = OrderedDict( [ # Model for Token Classification mapping ("""albert""", """FlaxAlbertForTokenClassification"""), ("""bert""", """FlaxBertForTokenClassification"""), ("""big_bird""", """FlaxBigBirdForTokenClassification"""), ("""distilbert""", """FlaxDistilBertForTokenClassification"""), ("""electra""", """FlaxElectraForTokenClassification"""), ("""roberta""", """FlaxRobertaForTokenClassification"""), ("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForTokenClassification"""), ("""roformer""", """FlaxRoFormerForTokenClassification"""), ("""xlm-roberta""", """FlaxXLMRobertaForTokenClassification"""), ] ) UpperCamelCase__ = OrderedDict( [ # Model for Multiple Choice mapping ("""albert""", """FlaxAlbertForMultipleChoice"""), ("""bert""", """FlaxBertForMultipleChoice"""), ("""big_bird""", """FlaxBigBirdForMultipleChoice"""), ("""distilbert""", """FlaxDistilBertForMultipleChoice"""), ("""electra""", """FlaxElectraForMultipleChoice"""), ("""roberta""", """FlaxRobertaForMultipleChoice"""), ("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForMultipleChoice"""), ("""roformer""", """FlaxRoFormerForMultipleChoice"""), ("""xlm-roberta""", """FlaxXLMRobertaForMultipleChoice"""), ] ) UpperCamelCase__ = OrderedDict( [ ("""bert""", """FlaxBertForNextSentencePrediction"""), ] ) UpperCamelCase__ = OrderedDict( [ ("""speech-encoder-decoder""", """FlaxSpeechEncoderDecoderModel"""), ("""whisper""", """FlaxWhisperForConditionalGeneration"""), ] ) UpperCamelCase__ = OrderedDict( [ ("""whisper""", """FlaxWhisperForAudioClassification"""), ] ) UpperCamelCase__ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_MAPPING_NAMES) UpperCamelCase__ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_PRETRAINING_MAPPING_NAMES) UpperCamelCase__ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MASKED_LM_MAPPING_NAMES) UpperCamelCase__ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES ) UpperCamelCase__ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES ) UpperCamelCase__ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES) UpperCamelCase__ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_CAUSAL_LM_MAPPING_NAMES) UpperCamelCase__ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES ) UpperCamelCase__ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES ) UpperCamelCase__ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES ) UpperCamelCase__ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES ) UpperCamelCase__ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES ) UpperCamelCase__ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES ) UpperCamelCase__ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES ) class a__ ( _BaseAutoModelClass ): _a : Tuple = FLAX_MODEL_MAPPING UpperCamelCase__ = auto_class_update(FlaxAutoModel) class a__ ( _BaseAutoModelClass ): _a : Any = FLAX_MODEL_FOR_PRETRAINING_MAPPING UpperCamelCase__ = auto_class_update(FlaxAutoModelForPreTraining, head_doc="""pretraining""") class a__ ( _BaseAutoModelClass ): _a : List[Any] = FLAX_MODEL_FOR_CAUSAL_LM_MAPPING UpperCamelCase__ = auto_class_update(FlaxAutoModelForCausalLM, head_doc="""causal language modeling""") class a__ ( _BaseAutoModelClass ): _a : Optional[int] = FLAX_MODEL_FOR_MASKED_LM_MAPPING UpperCamelCase__ = auto_class_update(FlaxAutoModelForMaskedLM, head_doc="""masked language modeling""") class a__ ( _BaseAutoModelClass ): _a : Dict = FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING UpperCamelCase__ = auto_class_update( FlaxAutoModelForSeqaSeqLM, head_doc="""sequence-to-sequence language modeling""", checkpoint_for_example="""t5-base""" ) class a__ ( _BaseAutoModelClass ): _a : Any = FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING UpperCamelCase__ = auto_class_update( FlaxAutoModelForSequenceClassification, head_doc="""sequence classification""" ) class a__ ( _BaseAutoModelClass ): _a : int = FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING UpperCamelCase__ = auto_class_update(FlaxAutoModelForQuestionAnswering, head_doc="""question answering""") class a__ ( _BaseAutoModelClass ): _a : Tuple = FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING UpperCamelCase__ = auto_class_update( FlaxAutoModelForTokenClassification, head_doc="""token classification""" ) class a__ ( _BaseAutoModelClass ): _a : int = FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING UpperCamelCase__ = auto_class_update(FlaxAutoModelForMultipleChoice, head_doc="""multiple choice""") class a__ ( _BaseAutoModelClass ): _a : List[Any] = FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING UpperCamelCase__ = auto_class_update( FlaxAutoModelForNextSentencePrediction, head_doc="""next sentence prediction""" ) class a__ ( _BaseAutoModelClass ): _a : Tuple = FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING UpperCamelCase__ = auto_class_update( FlaxAutoModelForImageClassification, head_doc="""image classification""" ) class a__ ( _BaseAutoModelClass ): _a : int = FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING UpperCamelCase__ = auto_class_update(FlaxAutoModelForVisionaSeq, head_doc="""vision-to-text modeling""") class a__ ( _BaseAutoModelClass ): _a : int = FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING UpperCamelCase__ = auto_class_update( FlaxAutoModelForSpeechSeqaSeq, head_doc="""sequence-to-sequence speech-to-text modeling""" )
92
'''simple docstring''' import itertools import random import unittest import numpy as np from transformers import WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, WavaVecaConfig, WavaVecaFeatureExtractor from transformers.testing_utils import require_torch, slow from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin snake_case_ : Tuple = random.Random() def A__ ( UpperCAmelCase_ , UpperCAmelCase_=1.0 , UpperCAmelCase_=None , UpperCAmelCase_=None ): if rng is None: _UpperCamelCase : Dict = global_rng _UpperCamelCase : int = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class lowercase__ ( unittest.TestCase ): def __init__( self : Tuple ,lowerCamelCase__ : Optional[Any] ,lowerCamelCase__ : int=7 ,lowerCamelCase__ : str=400 ,lowerCamelCase__ : int=2000 ,lowerCamelCase__ : int=1 ,lowerCamelCase__ : List[str]=0.0 ,lowerCamelCase__ : Union[str, Any]=16000 ,lowerCamelCase__ : Tuple=True ,lowerCamelCase__ : Optional[int]=True ,): '''simple docstring''' _UpperCamelCase : Optional[int] = parent _UpperCamelCase : Union[str, Any] = batch_size _UpperCamelCase : List[str] = min_seq_length _UpperCamelCase : Optional[int] = max_seq_length _UpperCamelCase : Union[str, Any] = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) _UpperCamelCase : List[str] = feature_size _UpperCamelCase : List[str] = padding_value _UpperCamelCase : List[Any] = sampling_rate _UpperCamelCase : Dict = return_attention_mask _UpperCamelCase : Tuple = do_normalize def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def UpperCamelCase_ ( self : List[str] ,lowerCamelCase__ : List[str]=False ,lowerCamelCase__ : Tuple=False ): '''simple docstring''' def _flatten(lowerCamelCase__ : Optional[Any] ): return list(itertools.chain(*lowerCamelCase__ ) ) if equal_length: _UpperCamelCase : Optional[Any] = floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size _UpperCamelCase : Any = [ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length ,self.max_seq_length ,self.seq_length_diff ) ] if numpify: _UpperCamelCase : int = [np.asarray(lowerCamelCase__ ) for x in speech_inputs] return speech_inputs class lowercase__ ( lowercase , unittest.TestCase ): lowercase__ = WavaVecaFeatureExtractor def UpperCamelCase_ ( self : Dict ): '''simple docstring''' _UpperCamelCase : List[str] = WavaVecaFeatureExtractionTester(self ) def UpperCamelCase_ ( self : Union[str, Any] ,lowerCamelCase__ : List[str] ): '''simple docstring''' self.assertTrue(np.all(np.mean(lowerCamelCase__ ,axis=0 ) < 1E-3 ) ) self.assertTrue(np.all(np.abs(np.var(lowerCamelCase__ ,axis=0 ) - 1 ) < 1E-3 ) ) def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' # Tests that all call wrap to encode_plus and batch_encode_plus _UpperCamelCase : Dict = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 _UpperCamelCase : int = [floats_list((1, x) )[0] for x in range(800 ,1400 ,200 )] _UpperCamelCase : Tuple = [np.asarray(lowerCamelCase__ ) for speech_input in speech_inputs] # Test not batched input _UpperCamelCase : Tuple = feat_extract(speech_inputs[0] ,return_tensors='np' ).input_values _UpperCamelCase : Any = feat_extract(np_speech_inputs[0] ,return_tensors='np' ).input_values self.assertTrue(np.allclose(lowerCamelCase__ ,lowerCamelCase__ ,atol=1E-3 ) ) # Test batched _UpperCamelCase : Union[str, Any] = feat_extract(lowerCamelCase__ ,return_tensors='np' ).input_values _UpperCamelCase : Optional[int] = feat_extract(lowerCamelCase__ ,return_tensors='np' ).input_values for enc_seq_a, enc_seq_a in zip(lowerCamelCase__ ,lowerCamelCase__ ): self.assertTrue(np.allclose(lowerCamelCase__ ,lowerCamelCase__ ,atol=1E-3 ) ) # Test 2-D numpy arrays are batched. _UpperCamelCase : str = [floats_list((1, x) )[0] for x in (800, 800, 800)] _UpperCamelCase : str = np.asarray(lowerCamelCase__ ) _UpperCamelCase : List[str] = feat_extract(lowerCamelCase__ ,return_tensors='np' ).input_values _UpperCamelCase : int = feat_extract(lowerCamelCase__ ,return_tensors='np' ).input_values for enc_seq_a, enc_seq_a in zip(lowerCamelCase__ ,lowerCamelCase__ ): self.assertTrue(np.allclose(lowerCamelCase__ ,lowerCamelCase__ ,atol=1E-3 ) ) def UpperCamelCase_ ( self : str ): '''simple docstring''' _UpperCamelCase : Any = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _UpperCamelCase : Optional[int] = [floats_list((1, x) )[0] for x in range(800 ,1400 ,200 )] _UpperCamelCase : str = ['longest', 'max_length', 'do_not_pad'] _UpperCamelCase : List[str] = [None, 1600, None] for max_length, padding in zip(lowerCamelCase__ ,lowerCamelCase__ ): _UpperCamelCase : Union[str, Any] = feat_extract(lowerCamelCase__ ,padding=lowerCamelCase__ ,max_length=lowerCamelCase__ ,return_tensors='np' ) _UpperCamelCase : int = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:800] ) self.assertTrue(input_values[0][800:].sum() < 1E-6 ) self._check_zero_mean_unit_variance(input_values[1][:1000] ) self.assertTrue(input_values[0][1000:].sum() < 1E-6 ) self._check_zero_mean_unit_variance(input_values[2][:1200] ) def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' _UpperCamelCase : Union[str, Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _UpperCamelCase : List[str] = range(800 ,1400 ,200 ) _UpperCamelCase : List[str] = [floats_list((1, x) )[0] for x in lengths] _UpperCamelCase : Optional[Any] = ['longest', 'max_length', 'do_not_pad'] _UpperCamelCase : str = [None, 1600, None] for max_length, padding in zip(lowerCamelCase__ ,lowerCamelCase__ ): _UpperCamelCase : List[str] = feat_extract(lowerCamelCase__ ,max_length=lowerCamelCase__ ,padding=lowerCamelCase__ ) _UpperCamelCase : List[Any] = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:800] ) self._check_zero_mean_unit_variance(input_values[1][:1000] ) self._check_zero_mean_unit_variance(input_values[2][:1200] ) def UpperCamelCase_ ( self : Dict ): '''simple docstring''' _UpperCamelCase : Tuple = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _UpperCamelCase : List[Any] = [floats_list((1, x) )[0] for x in range(800 ,1400 ,200 )] _UpperCamelCase : Union[str, Any] = feat_extract( lowerCamelCase__ ,truncation=lowerCamelCase__ ,max_length=1000 ,padding='max_length' ,return_tensors='np' ) _UpperCamelCase : Union[str, Any] = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1] ) self._check_zero_mean_unit_variance(input_values[2] ) def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' _UpperCamelCase : List[Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _UpperCamelCase : Optional[int] = [floats_list((1, x) )[0] for x in range(800 ,1400 ,200 )] _UpperCamelCase : int = feat_extract( lowerCamelCase__ ,truncation=lowerCamelCase__ ,max_length=1000 ,padding='longest' ,return_tensors='np' ) _UpperCamelCase : Optional[int] = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1, :1000] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertTrue(input_values.shape == (3, 1000) ) _UpperCamelCase : Optional[int] = [floats_list((1, x) )[0] for x in range(800 ,1400 ,200 )] _UpperCamelCase : Any = feat_extract( lowerCamelCase__ ,truncation=lowerCamelCase__ ,max_length=2000 ,padding='longest' ,return_tensors='np' ) _UpperCamelCase : Optional[Any] = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1, :1000] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length > longest -> then pad to longest self.assertTrue(input_values.shape == (3, 1200) ) @require_torch def UpperCamelCase_ ( self : Any ): '''simple docstring''' import torch _UpperCamelCase : Any = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _UpperCamelCase : Optional[int] = np.random.rand(100 ).astype(np.floataa ) _UpperCamelCase : Dict = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: _UpperCamelCase : Optional[int] = feature_extractor.pad([{'input_values': inputs}] ,return_tensors='np' ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) _UpperCamelCase : Tuple = feature_extractor.pad([{'input_values': inputs}] ,return_tensors='pt' ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) @slow @require_torch def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' # this test makes sure that models that are using # group norm don't have their feature extractor return the # attention_mask for model_id in WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST: _UpperCamelCase : Optional[int] = WavaVecaConfig.from_pretrained(lowerCamelCase__ ) _UpperCamelCase : Any = WavaVecaFeatureExtractor.from_pretrained(lowerCamelCase__ ) # only "layer" feature extraction norm should make use of # attention_mask self.assertEqual(feat_extract.return_attention_mask ,config.feat_extract_norm == 'layer' )
83
0
'''simple docstring''' import dataclasses import re import string from typing import Any, Dict, Iterator, List, Mapping, Optional, Sequence, Tuple import numpy as np from . import residue_constants _SCREAMING_SNAKE_CASE = Mapping[str, np.ndarray] _SCREAMING_SNAKE_CASE = Mapping[str, Any] # Is a nested dict. _SCREAMING_SNAKE_CASE = 0.0_1 @dataclasses.dataclass(frozen=lowerCAmelCase__ ) class __lowercase : '''simple docstring''' a : np.ndarray # [num_res, num_atom_type, 3] # Amino-acid type for each residue represented as an integer between 0 and # 20, where 20 is 'X'. a : np.ndarray # [num_res] # Binary float mask to indicate presence of a particular atom. 1.0 if an atom # is present and 0.0 if not. This should be used for loss masking. a : np.ndarray # [num_res, num_atom_type] # Residue index as used in PDB. It is not necessarily continuous or 0-indexed. a : np.ndarray # [num_res] # B-factors, or temperature factors, of each residue (in sq. angstroms units), # representing the displacement of the residue from its ground truth mean # value. a : np.ndarray # [num_res, num_atom_type] # Chain indices for multi-chain predictions a : Optional[np.ndarray] = None # Optional remark about the protein. Included as a comment in output PDB # files a : Optional[str] = None # Templates used to generate this protein (prediction-only) a : Optional[Sequence[str]] = None # Chain corresponding to each parent a : Optional[Sequence[int]] = None def _lowerCAmelCase ( lowerCamelCase_ : str ): __lowercase = r'''(\[[A-Z]+\]\n)''' __lowercase = [tag.strip() for tag in re.split(lowerCamelCase_ , lowerCamelCase_ ) if len(lowerCamelCase_ ) > 0] __lowercase = zip(tags[0::2] , [l.split('''\n''' ) for l in tags[1::2]] ) __lowercase = ["N", "CA", "C"] __lowercase = None __lowercase = None __lowercase = None for g in groups: if "[PRIMARY]" == g[0]: __lowercase = g[1][0].strip() for i in range(len(lowerCamelCase_ ) ): if seq[i] not in residue_constants.restypes: __lowercase = '''X''' # FIXME: strings are immutable __lowercase = np.array( [residue_constants.restype_order.get(lowerCamelCase_ , residue_constants.restype_num ) for res_symbol in seq] ) elif "[TERTIARY]" == g[0]: __lowercase = [] for axis in range(3 ): tertiary.append(list(map(lowerCamelCase_ , g[1][axis].split() ) ) ) __lowercase = np.array(lowerCamelCase_ ) __lowercase = np.zeros((len(tertiary[0] ) // 3, residue_constants.atom_type_num, 3) ).astype(np.floataa ) for i, atom in enumerate(lowerCamelCase_ ): __lowercase = np.transpose(tertiary_np[:, i::3] ) atom_positions *= PICO_TO_ANGSTROM elif "[MASK]" == g[0]: __lowercase = np.array(list(map({'''-''': 0, '''+''': 1}.get , g[1][0].strip() ) ) ) __lowercase = np.zeros( ( len(lowerCamelCase_ ), residue_constants.atom_type_num, ) ).astype(np.floataa ) for i, atom in enumerate(lowerCamelCase_ ): __lowercase = 1 atom_mask *= mask[..., None] assert aatype is not None return Protein( atom_positions=lowerCamelCase_ , atom_mask=lowerCamelCase_ , aatype=lowerCamelCase_ , residue_index=np.arange(len(lowerCamelCase_ ) ) , b_factors=lowerCamelCase_ , ) def _lowerCAmelCase ( lowerCamelCase_ : Protein , lowerCamelCase_ : int = 0 ): __lowercase = [] __lowercase = prot.remark if remark is not None: pdb_headers.append(f"REMARK {remark}" ) __lowercase = prot.parents __lowercase = prot.parents_chain_index if parents is not None and parents_chain_index is not None: __lowercase = [p for i, p in zip(lowerCamelCase_ , lowerCamelCase_ ) if i == chain_id] if parents is None or len(lowerCamelCase_ ) == 0: __lowercase = ['''N/A'''] pdb_headers.append(f"PARENT {' '.join(lowerCamelCase_ )}" ) return pdb_headers def _lowerCAmelCase ( lowerCamelCase_ : Protein , lowerCamelCase_ : str ): __lowercase = [] __lowercase = pdb_str.split('''\n''' ) __lowercase = prot.remark if remark is not None: out_pdb_lines.append(f"REMARK {remark}" ) __lowercase = 42 if prot.parents is not None and len(prot.parents ) > 0: __lowercase = [] if prot.parents_chain_index is not None: __lowercase = {} for p, i in zip(prot.parents , prot.parents_chain_index ): parent_dict.setdefault(str(lowerCamelCase_ ) , [] ) parent_dict[str(lowerCamelCase_ )].append(lowerCamelCase_ ) __lowercase = max([int(lowerCamelCase_ ) for chain_idx in parent_dict] ) for i in range(max_idx + 1 ): __lowercase = parent_dict.get(str(lowerCamelCase_ ) , ['''N/A'''] ) parents_per_chain.append(lowerCamelCase_ ) else: parents_per_chain.append(list(prot.parents ) ) else: __lowercase = [['''N/A''']] def make_parent_line(lowerCamelCase_ : Sequence[str] ) -> str: return f"PARENT {' '.join(lowerCamelCase_ )}" out_pdb_lines.append(make_parent_line(parents_per_chain[0] ) ) __lowercase = 0 for i, l in enumerate(lowerCamelCase_ ): if "PARENT" not in l and "REMARK" not in l: out_pdb_lines.append(lowerCamelCase_ ) if "TER" in l and "END" not in lines[i + 1]: chain_counter += 1 if not chain_counter >= len(lowerCamelCase_ ): __lowercase = parents_per_chain[chain_counter] else: __lowercase = ['''N/A'''] out_pdb_lines.append(make_parent_line(lowerCamelCase_ ) ) return "\n".join(lowerCamelCase_ ) def _lowerCAmelCase ( lowerCamelCase_ : Protein ): __lowercase = residue_constants.restypes + ['''X'''] def res_atoa(lowerCamelCase_ : int ) -> str: return residue_constants.restype_atoa.get(restypes[r] , '''UNK''' ) __lowercase = residue_constants.atom_types __lowercase = [] __lowercase = prot.atom_mask __lowercase = prot.aatype __lowercase = prot.atom_positions __lowercase = prot.residue_index.astype(np.intaa ) __lowercase = prot.b_factors __lowercase = prot.chain_index if np.any(aatype > residue_constants.restype_num ): raise ValueError('''Invalid aatypes.''' ) __lowercase = get_pdb_headers(lowerCamelCase_ ) if len(lowerCamelCase_ ) > 0: pdb_lines.extend(lowerCamelCase_ ) __lowercase = aatype.shape[0] __lowercase = 1 __lowercase = 0 __lowercase = string.ascii_uppercase __lowercase = None # Add all atom sites. for i in range(lowerCamelCase_ ): __lowercase = res_atoa(aatype[i] ) for atom_name, pos, mask, b_factor in zip(lowerCamelCase_ , atom_positions[i] , atom_mask[i] , b_factors[i] ): if mask < 0.5: continue __lowercase = '''ATOM''' __lowercase = atom_name if len(lowerCamelCase_ ) == 4 else f" {atom_name}" __lowercase = '''''' __lowercase = '''''' __lowercase = 1.00 __lowercase = atom_name[0] # Protein supports only C, N, O, S, this works. __lowercase = '''''' __lowercase = '''A''' if chain_index is not None: __lowercase = chain_tags[chain_index[i]] # PDB is a columnar format, every space matters here! __lowercase = ( f"{record_type:<6}{atom_index:>5} {name:<4}{alt_loc:>1}" f"{res_name_a:>3} {chain_tag:>1}" f"{residue_index[i]:>4}{insertion_code:>1} " f"{pos[0]:>8.3f}{pos[1]:>8.3f}{pos[2]:>8.3f}" f"{occupancy:>6.2f}{b_factor:>6.2f} " f"{element:>2}{charge:>2}" ) pdb_lines.append(lowerCamelCase_ ) atom_index += 1 __lowercase = i == n - 1 if chain_index is not None: if i != n - 1 and chain_index[i + 1] != prev_chain_index: __lowercase = True __lowercase = chain_index[i + 1] if should_terminate: # Close the chain. __lowercase = '''TER''' __lowercase = ( f"{chain_end:<6}{atom_index:>5} {res_atoa(aatype[i] ):>3} {chain_tag:>1}{residue_index[i]:>4}" ) pdb_lines.append(lowerCamelCase_ ) atom_index += 1 if i != n - 1: # "prev" is a misnomer here. This happens at the beginning of # each new chain. pdb_lines.extend(get_pdb_headers(lowerCamelCase_ , lowerCamelCase_ ) ) pdb_lines.append('''END''' ) pdb_lines.append('''''' ) return "\n".join(lowerCamelCase_ ) def _lowerCAmelCase ( lowerCamelCase_ : Protein ): return residue_constants.STANDARD_ATOM_MASK[prot.aatype] def _lowerCAmelCase ( lowerCamelCase_ : FeatureDict , lowerCamelCase_ : ModelOutput , lowerCamelCase_ : Optional[np.ndarray] = None , lowerCamelCase_ : Optional[np.ndarray] = None , lowerCamelCase_ : Optional[str] = None , lowerCamelCase_ : Optional[Sequence[str]] = None , lowerCamelCase_ : Optional[Sequence[int]] = None , ): return Protein( aatype=features['''aatype'''] , atom_positions=result['''final_atom_positions'''] , atom_mask=result['''final_atom_mask'''] , residue_index=features['''residue_index'''] + 1 , b_factors=b_factors if b_factors is not None else np.zeros_like(result['''final_atom_mask'''] ) , chain_index=lowerCamelCase_ , remark=lowerCamelCase_ , parents=lowerCamelCase_ , parents_chain_index=lowerCamelCase_ , )
217
'''simple docstring''' _SCREAMING_SNAKE_CASE = { '''A''': ['''B''', '''C''', '''E'''], '''B''': ['''A''', '''D''', '''E'''], '''C''': ['''A''', '''F''', '''G'''], '''D''': ['''B'''], '''E''': ['''A''', '''B''', '''D'''], '''F''': ['''C'''], '''G''': ['''C'''], } def _lowerCAmelCase ( lowerCamelCase_ : dict , lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : List[str] ): __lowercase = set() # keep track of all the paths to be checked __lowercase = [[start]] # return path if start is goal if start == goal: return [start] # keeps looping until all possible paths have been checked while queue: # pop the first path from the queue __lowercase = queue.pop(0 ) # get the last node from the path __lowercase = path[-1] if node not in explored: __lowercase = graph[node] # go through all neighbour nodes, construct a new path and # push it into the queue for neighbour in neighbours: __lowercase = list(lowerCamelCase_ ) new_path.append(lowerCamelCase_ ) queue.append(lowerCamelCase_ ) # return path if neighbour is goal if neighbour == goal: return new_path # mark node as explored explored.add(lowerCamelCase_ ) # in case there's no path between the 2 nodes return [] def _lowerCAmelCase ( lowerCamelCase_ : dict , lowerCamelCase_ : str , lowerCamelCase_ : str ): if not graph or start not in graph or target not in graph: return -1 if start == target: return 0 __lowercase = [start] __lowercase = set(lowerCamelCase_ ) # Keep tab on distances from `start` node. __lowercase = {start: 0, target: -1} while queue: __lowercase = queue.pop(0 ) if node == target: __lowercase = ( dist[node] if dist[target] == -1 else min(dist[target] , dist[node] ) ) for adjacent in graph[node]: if adjacent not in visited: visited.add(lowerCamelCase_ ) queue.append(lowerCamelCase_ ) __lowercase = dist[node] + 1 return dist[target] if __name__ == "__main__": print(bfs_shortest_path(demo_graph, '''G''', '''D''')) # returns ['G', 'C', 'A', 'B', 'D'] print(bfs_shortest_path_distance(demo_graph, '''G''', '''D''')) # returns 4
217
1
from math import sqrt def _snake_case( SCREAMING_SNAKE_CASE__ ) -> bool: assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and ( number >= 0 ), "'number' must been an int and positive" lowercase : Union[str, Any] = True # 0 and 1 are none primes. if number <= 1: lowercase : str = False for divisor in range(2 , int(round(sqrt(SCREAMING_SNAKE_CASE__ ) ) ) + 1 ): # if 'number' divisible by 'divisor' then sets 'status' # of false and break up the loop. if number % divisor == 0: lowercase : Any = False break # precondition assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ), "'status' must been from type bool" return status def _snake_case( SCREAMING_SNAKE_CASE__ ) -> Union[str, Any]: assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and (n > 2), "'N' must been an int and > 2" # beginList: contains all natural numbers from 2 up to N lowercase : str = list(range(2 , n + 1 ) ) lowercase : Tuple = [] # this list will be returns. # actual sieve of erathostenes for i in range(len(SCREAMING_SNAKE_CASE__ ) ): for j in range(i + 1 , len(SCREAMING_SNAKE_CASE__ ) ): if (begin_list[i] != 0) and (begin_list[j] % begin_list[i] == 0): lowercase : Tuple = 0 # filters actual prime numbers. lowercase : int = [x for x in begin_list if x != 0] # precondition assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ), "'ans' must been from type list" return ans def _snake_case( SCREAMING_SNAKE_CASE__ ) -> Optional[Any]: assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and (n > 2), "'N' must been an int and > 2" lowercase : Dict = [] # iterates over all numbers between 2 up to N+1 # if a number is prime then appends to list 'ans' for number in range(2 , n + 1 ): if is_prime(SCREAMING_SNAKE_CASE__ ): ans.append(SCREAMING_SNAKE_CASE__ ) # precondition assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ), "'ans' must been from type list" return ans def _snake_case( SCREAMING_SNAKE_CASE__ ) -> Tuple: assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and number >= 0, "'number' must been an int and >= 0" lowercase : Tuple = [] # this list will be returns of the function. # potential prime number factors. lowercase : Optional[Any] = 2 lowercase : Any = number if number == 0 or number == 1: ans.append(SCREAMING_SNAKE_CASE__ ) # if 'number' not prime then builds the prime factorization of 'number' elif not is_prime(SCREAMING_SNAKE_CASE__ ): while quotient != 1: if is_prime(SCREAMING_SNAKE_CASE__ ) and (quotient % factor == 0): ans.append(SCREAMING_SNAKE_CASE__ ) quotient /= factor else: factor += 1 else: ans.append(SCREAMING_SNAKE_CASE__ ) # precondition assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ), "'ans' must been from type list" return ans def _snake_case( SCREAMING_SNAKE_CASE__ ) -> List[Any]: assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and ( number >= 0 ), "'number' bust been an int and >= 0" lowercase : Tuple = 0 # prime factorization of 'number' lowercase : Optional[int] = prime_factorization(SCREAMING_SNAKE_CASE__ ) lowercase : Union[str, Any] = max(SCREAMING_SNAKE_CASE__ ) # precondition assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ), "'ans' must been from type int" return ans def _snake_case( SCREAMING_SNAKE_CASE__ ) -> str: assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and ( number >= 0 ), "'number' bust been an int and >= 0" lowercase : Union[str, Any] = 0 # prime factorization of 'number' lowercase : Tuple = prime_factorization(SCREAMING_SNAKE_CASE__ ) lowercase : Union[str, Any] = min(SCREAMING_SNAKE_CASE__ ) # precondition assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ), "'ans' must been from type int" return ans def _snake_case( SCREAMING_SNAKE_CASE__ ) -> Optional[Any]: assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ), "'number' must been an int" assert isinstance(number % 2 == 0 , SCREAMING_SNAKE_CASE__ ), "compare bust been from type bool" return number % 2 == 0 def _snake_case( SCREAMING_SNAKE_CASE__ ) -> int: assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ), "'number' must been an int" assert isinstance(number % 2 != 0 , SCREAMING_SNAKE_CASE__ ), "compare bust been from type bool" return number % 2 != 0 def _snake_case( SCREAMING_SNAKE_CASE__ ) -> int: assert ( isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and (number > 2) and is_even(SCREAMING_SNAKE_CASE__ ) ), "'number' must been an int, even and > 2" lowercase : Union[str, Any] = [] # this list will returned # creates a list of prime numbers between 2 up to 'number' lowercase : str = get_prime_numbers(SCREAMING_SNAKE_CASE__ ) lowercase : Any = len(SCREAMING_SNAKE_CASE__ ) # run variable for while-loops. lowercase : Optional[Any] = 0 lowercase : List[Any] = None # exit variable. for break up the loops lowercase : Any = True while i < len_pn and loop: lowercase : str = i + 1 while j < len_pn and loop: if prime_numbers[i] + prime_numbers[j] == number: lowercase : Union[str, Any] = False ans.append(prime_numbers[i] ) ans.append(prime_numbers[j] ) j += 1 i += 1 # precondition assert ( isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and (len(SCREAMING_SNAKE_CASE__ ) == 2) and (ans[0] + ans[1] == number) and is_prime(ans[0] ) and is_prime(ans[1] ) ), "'ans' must contains two primes. And sum of elements must been eq 'number'" return ans def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> str: assert ( isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and (numbera >= 0) and (numbera >= 0) ), "'number1' and 'number2' must been positive integer." lowercase : Union[str, Any] = 0 while numbera != 0: lowercase : Optional[int] = numbera % numbera lowercase : Optional[int] = numbera lowercase : Dict = rest # precondition assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and ( numbera >= 0 ), "'number' must been from type int and positive" return numbera def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Tuple: assert ( isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and (numbera >= 1) and (numbera >= 1) ), "'number1' and 'number2' must been positive integer." lowercase : Dict = 1 # actual answer that will be return. # for kgV (x,1) if numbera > 1 and numbera > 1: # builds the prime factorization of 'number1' and 'number2' lowercase : Optional[Any] = prime_factorization(SCREAMING_SNAKE_CASE__ ) lowercase : Optional[int] = prime_factorization(SCREAMING_SNAKE_CASE__ ) elif numbera == 1 or numbera == 1: lowercase : Union[str, Any] = [] lowercase : List[str] = [] lowercase : Dict = max(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowercase : Union[str, Any] = 0 lowercase : Optional[Any] = 0 lowercase : List[str] = [] # captured numbers int both 'primeFac1' and 'primeFac2' # iterates through primeFac1 for n in prime_fac_a: if n not in done: if n in prime_fac_a: lowercase : Dict = prime_fac_a.count(SCREAMING_SNAKE_CASE__ ) lowercase : Optional[Any] = prime_fac_a.count(SCREAMING_SNAKE_CASE__ ) for _ in range(max(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ): ans *= n else: lowercase : List[Any] = prime_fac_a.count(SCREAMING_SNAKE_CASE__ ) for _ in range(SCREAMING_SNAKE_CASE__ ): ans *= n done.append(SCREAMING_SNAKE_CASE__ ) # iterates through primeFac2 for n in prime_fac_a: if n not in done: lowercase : Optional[int] = prime_fac_a.count(SCREAMING_SNAKE_CASE__ ) for _ in range(SCREAMING_SNAKE_CASE__ ): ans *= n done.append(SCREAMING_SNAKE_CASE__ ) # precondition assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and ( ans >= 0 ), "'ans' must been from type int and positive" return ans def _snake_case( SCREAMING_SNAKE_CASE__ ) -> Any: assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and (n >= 0), "'number' must been a positive int" lowercase : Dict = 0 lowercase : List[str] = 2 # this variable holds the answer while index < n: index += 1 ans += 1 # counts to the next number # if ans not prime then # runs to the next prime number. while not is_prime(SCREAMING_SNAKE_CASE__ ): ans += 1 # precondition assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and is_prime( SCREAMING_SNAKE_CASE__ ), "'ans' must been a prime number and from type int" return ans def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> List[Any]: assert ( is_prime(SCREAMING_SNAKE_CASE__ ) and is_prime(SCREAMING_SNAKE_CASE__ ) and (p_number_a < p_number_a) ), "The arguments must been prime numbers and 'pNumber1' < 'pNumber2'" lowercase : List[str] = p_number_a + 1 # jump to the next number lowercase : List[Any] = [] # this list will be returns. # if number is not prime then # fetch the next prime number. while not is_prime(SCREAMING_SNAKE_CASE__ ): number += 1 while number < p_number_a: ans.append(SCREAMING_SNAKE_CASE__ ) number += 1 # fetch the next prime number. while not is_prime(SCREAMING_SNAKE_CASE__ ): number += 1 # precondition assert ( isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and ans[0] != p_number_a and ans[len(SCREAMING_SNAKE_CASE__ ) - 1] != p_number_a ), "'ans' must been a list without the arguments" # 'ans' contains not 'pNumber1' and 'pNumber2' ! return ans def _snake_case( SCREAMING_SNAKE_CASE__ ) -> Any: assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and (n >= 1), "'n' must been int and >= 1" lowercase : Optional[Any] = [] # will be returned. for divisor in range(1 , n + 1 ): if n % divisor == 0: ans.append(SCREAMING_SNAKE_CASE__ ) # precondition assert ans[0] == 1 and ans[len(SCREAMING_SNAKE_CASE__ ) - 1] == n, "Error in function getDivisiors(...)" return ans def _snake_case( SCREAMING_SNAKE_CASE__ ) -> Any: assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and ( number > 1 ), "'number' must been an int and >= 1" lowercase : str = get_divisors(SCREAMING_SNAKE_CASE__ ) # precondition assert ( isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and (divisors[0] == 1) and (divisors[len(SCREAMING_SNAKE_CASE__ ) - 1] == number) ), "Error in help-function getDivisiors(...)" # summed all divisors up to 'number' (exclusive), hence [:-1] return sum(divisors[:-1] ) == number def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Dict: assert ( isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and (denominator != 0) ), "The arguments must been from type int and 'denominator' != 0" # build the greatest common divisor of numerator and denominator. lowercase : Tuple = gcd(abs(SCREAMING_SNAKE_CASE__ ) , abs(SCREAMING_SNAKE_CASE__ ) ) # precondition assert ( isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and (numerator % gcd_of_fraction == 0) and (denominator % gcd_of_fraction == 0) ), "Error in function gcd(...,...)" return (numerator // gcd_of_fraction, denominator // gcd_of_fraction) def _snake_case( SCREAMING_SNAKE_CASE__ ) -> int: assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and (n >= 0), "'n' must been a int and >= 0" lowercase : List[str] = 1 # this will be return. for factor in range(1 , n + 1 ): ans *= factor return ans def _snake_case( SCREAMING_SNAKE_CASE__ ) -> Union[str, Any]: assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and (n >= 0), "'n' must been an int and >= 0" lowercase : int = 0 lowercase : Union[str, Any] = 1 lowercase : int = 1 # this will be return for _ in range(n - 1 ): lowercase : Optional[int] = ans ans += fiba lowercase : Optional[int] = tmp return ans
20
import argparse import hashlib # hashlib is only used inside the Test class import struct class A__ : def __init__( self : Dict , a : str ): '''simple docstring''' lowerCAmelCase__ : Optional[int] = data lowerCAmelCase__ : List[Any] = [0X67_452_301, 0Xef_cda_b89, 0X98_bad_cfe, 0X10_325_476, 0Xc3_d2e_1f0] @staticmethod def _lowerCamelCase ( a : int , a : List[str] ): '''simple docstring''' return ((n << b) | (n >> (32 - b))) & 0Xff_fff_fff def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' lowerCAmelCase__ : Any = b'\x80' + b'\x00' * (63 - (len(self.data ) + 8) % 64) lowerCAmelCase__ : List[str] = self.data + padding + struct.pack('>Q' , 8 * len(self.data ) ) return padded_data def _lowerCamelCase ( self : Tuple ): '''simple docstring''' return [ self.padded_data[i : i + 64] for i in range(0 , len(self.padded_data ) , 64 ) ] def _lowerCamelCase ( self : Tuple , a : List[Any] ): '''simple docstring''' lowerCAmelCase__ : List[Any] = list(struct.unpack('>16L' , a ) ) + [0] * 64 for i in range(16 , 80 ): lowerCAmelCase__ : int = self.rotate((w[i - 3] ^ w[i - 8] ^ w[i - 14] ^ w[i - 16]) , 1 ) return w def _lowerCamelCase ( self : Dict ): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = self.padding() lowerCAmelCase__ : List[Any] = self.split_blocks() for block in self.blocks: lowerCAmelCase__ : str = self.expand_block(a ) lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : str = self.h for i in range(0 , 80 ): if 0 <= i < 20: lowerCAmelCase__ : Tuple = (b & c) | ((~b) & d) lowerCAmelCase__ : int = 0X5a_827_999 elif 20 <= i < 40: lowerCAmelCase__ : List[str] = b ^ c ^ d lowerCAmelCase__ : Any = 0X6e_d9e_ba1 elif 40 <= i < 60: lowerCAmelCase__ : Tuple = (b & c) | (b & d) | (c & d) lowerCAmelCase__ : Tuple = 0X8f_1bb_cdc elif 60 <= i < 80: lowerCAmelCase__ : List[Any] = b ^ c ^ d lowerCAmelCase__ : int = 0Xca_62c_1d6 lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : Dict = ( self.rotate(a , 5 ) + f + e + k + expanded_block[i] & 0Xff_fff_fff, a, self.rotate(a , 30 ), c, d, ) lowerCAmelCase__ : Optional[Any] = ( self.h[0] + a & 0Xff_fff_fff, self.h[1] + b & 0Xff_fff_fff, self.h[2] + c & 0Xff_fff_fff, self.h[3] + d & 0Xff_fff_fff, self.h[4] + e & 0Xff_fff_fff, ) return ("{:08x}" * 5).format(*self.h ) def lowerCAmelCase__ ( ) -> Tuple: lowerCAmelCase__ : Optional[int] = b'Test String' assert SHAaHash(SCREAMING_SNAKE_CASE_ ).final_hash() == hashlib.shaa(SCREAMING_SNAKE_CASE_ ).hexdigest() # noqa: S324 def lowerCAmelCase__ ( ) -> Any: lowerCAmelCase__ : str = argparse.ArgumentParser(description='Process some strings or files' ) parser.add_argument( '--string' , dest='input_string' , default='Hello World!! Welcome to Cryptography' , help='Hash the string' , ) parser.add_argument('--file' , dest='input_file' , help='Hash contents of a file' ) lowerCAmelCase__ : Dict = parser.parse_args() lowerCAmelCase__ : Tuple = args.input_string # In any case hash input should be a bytestring if args.input_file: with open(args.input_file , 'rb' ) as f: lowerCAmelCase__ : List[Any] = f.read() else: lowerCAmelCase__ : Tuple = bytes(SCREAMING_SNAKE_CASE_ , 'utf-8' ) print(SHAaHash(SCREAMING_SNAKE_CASE_ ).final_hash() ) if __name__ == "__main__": main() import doctest doctest.testmod()
212
0
"""simple docstring""" from __future__ import annotations import random import unittest from transformers import TransfoXLConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, TFTransfoXLForSequenceClassification, TFTransfoXLLMHeadModel, TFTransfoXLModel, ) class __A : def __init__( self , a__ , ): _lowerCAmelCase : str = parent _lowerCAmelCase : Any = 13 _lowerCAmelCase : str = 7 _lowerCAmelCase : Dict = 30 _lowerCAmelCase : Dict = self.seq_length + self.mem_len _lowerCAmelCase : Dict = 15 _lowerCAmelCase : Optional[Any] = True _lowerCAmelCase : str = True _lowerCAmelCase : List[str] = 99 _lowerCAmelCase : Optional[Any] = [10, 50, 80] _lowerCAmelCase : Union[str, Any] = 32 _lowerCAmelCase : Tuple = 32 _lowerCAmelCase : Union[str, Any] = 4 _lowerCAmelCase : Tuple = 8 _lowerCAmelCase : Tuple = 128 _lowerCAmelCase : Optional[int] = 2 _lowerCAmelCase : Tuple = 2 _lowerCAmelCase : List[str] = None _lowerCAmelCase : str = 1 _lowerCAmelCase : List[Any] = 0 _lowerCAmelCase : Optional[int] = 3 _lowerCAmelCase : List[Any] = self.vocab_size - 1 _lowerCAmelCase : int = 0.0_1 def __A ( self ): _lowerCAmelCase : Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowerCAmelCase : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowerCAmelCase : Optional[int] = None if self.use_labels: _lowerCAmelCase : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowerCAmelCase : List[str] = TransfoXLConfig( vocab_size=self.vocab_size , mem_len=self.mem_len , clamp_len=self.clamp_len , cutoffs=self.cutoffs , d_model=self.hidden_size , d_embed=self.d_embed , n_head=self.num_attention_heads , d_head=self.d_head , d_inner=self.d_inner , div_val=self.div_val , n_layer=self.num_hidden_layers , eos_token_id=self.eos_token_id , pad_token_id=self.vocab_size - 1 , init_range=self.init_range , num_labels=self.num_labels , ) return (config, input_ids_a, input_ids_a, lm_labels) def __A ( self ): random.seed(self.seed ) tf.random.set_seed(self.seed ) def __A ( self , a__ , a__ , a__ , a__ ): _lowerCAmelCase : List[str] = TFTransfoXLModel(lowercase_ ) _lowerCAmelCase , _lowerCAmelCase : Tuple = model(lowercase_ ).to_tuple() _lowerCAmelCase : str = {"""input_ids""": input_ids_a, """mems""": mems_a} _lowerCAmelCase , _lowerCAmelCase : List[str] = model(lowercase_ ).to_tuple() self.parent.assertEqual(hidden_states_a.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(hidden_states_a.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) def __A ( self , a__ , a__ , a__ , a__ ): _lowerCAmelCase : str = TFTransfoXLLMHeadModel(lowercase_ ) _lowerCAmelCase , _lowerCAmelCase : Dict = model(lowercase_ ).to_tuple() _lowerCAmelCase : str = {"""input_ids""": input_ids_a, """labels""": lm_labels} _lowerCAmelCase , _lowerCAmelCase : List[Any] = model(lowercase_ ).to_tuple() _lowerCAmelCase , _lowerCAmelCase : List[Any] = model([input_ids_a, mems_a] ).to_tuple() _lowerCAmelCase : Union[str, Any] = {"""input_ids""": input_ids_a, """mems""": mems_a, """labels""": lm_labels} _lowerCAmelCase , _lowerCAmelCase : Optional[int] = model(lowercase_ ).to_tuple() self.parent.assertEqual(lm_logits_a.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) self.parent.assertEqual(lm_logits_a.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) def __A ( self , a__ , a__ , a__ , a__ ): _lowerCAmelCase : List[Any] = TFTransfoXLForSequenceClassification(lowercase_ ) _lowerCAmelCase : Any = model(lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __A ( self ): _lowerCAmelCase : Optional[int] = self.prepare_config_and_inputs() ((_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase)) : List[str] = config_and_inputs _lowerCAmelCase : Tuple = {"""input_ids""": input_ids_a} return config, inputs_dict @require_tf class __A ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ): _UpperCamelCase : Union[str, Any] = ( (TFTransfoXLModel, TFTransfoXLLMHeadModel, TFTransfoXLForSequenceClassification) if is_tf_available() else () ) _UpperCamelCase : Tuple = () if is_tf_available() else () _UpperCamelCase : Optional[Any] = ( { "feature-extraction": TFTransfoXLModel, "text-classification": TFTransfoXLForSequenceClassification, "text-generation": TFTransfoXLLMHeadModel, "zero-shot": TFTransfoXLForSequenceClassification, } if is_tf_available() else {} ) # TODO: add this test when TFTransfoXLLMHead has a linear output layer implemented _UpperCamelCase : Union[str, Any] = False _UpperCamelCase : int = False _UpperCamelCase : Union[str, Any] = False _UpperCamelCase : Union[str, Any] = False def __A ( self , a__ , a__ , a__ , a__ , a__ ): if pipeline_test_casse_name == "TextGenerationPipelineTests": # Get `ValueError: AttributeError: 'NoneType' object has no attribute 'new_ones'` or `AssertionError`. # `TransfoXLConfig` was never used in pipeline tests: cannot create a simple # tokenizer. return True return False def __A ( self ): _lowerCAmelCase : Union[str, Any] = TFTransfoXLModelTester(self ) _lowerCAmelCase : Optional[int] = ConfigTester(self , config_class=lowercase_ , d_embed=37 ) def __A ( self ): self.config_tester.run_common_tests() def __A ( self ): self.model_tester.set_seed() _lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_model(*lowercase_ ) def __A ( self ): self.model_tester.set_seed() _lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_lm_head(*lowercase_ ) def __A ( self ): _lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_for_sequence_classification(*lowercase_ ) def __A ( self ): _lowerCAmelCase , _lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase : int = [TFTransfoXLForSequenceClassification] for model_class in self.all_model_classes: _lowerCAmelCase : Dict = model_class(lowercase_ ) assert isinstance(model.get_input_embeddings() , tf.keras.layers.Layer ) if model_class in list_other_models_with_output_ebd: _lowerCAmelCase : Dict = model.get_output_embeddings() assert isinstance(lowercase_ , tf.keras.layers.Layer ) _lowerCAmelCase : List[Any] = model.get_bias() assert name is None else: _lowerCAmelCase : Dict = model.get_output_embeddings() assert x is None _lowerCAmelCase : List[Any] = model.get_bias() assert name is None def __A ( self ): pass @slow def __A ( self ): for model_name in TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase : Optional[int] = TFTransfoXLModel.from_pretrained(lowercase_ ) self.assertIsNotNone(lowercase_ ) @unittest.skip(reason="""This model doesn't play well with fit() due to not returning a single loss.""" ) def __A ( self ): pass @require_tf class __A ( unittest.TestCase ): @unittest.skip("""Skip test until #12651 is resolved.""" ) @slow def __A ( self ): _lowerCAmelCase : Union[str, Any] = TFTransfoXLLMHeadModel.from_pretrained("""transfo-xl-wt103""" ) # fmt: off _lowerCAmelCase : List[Any] = tf.convert_to_tensor([[33,1297,2,1,1009,4,1109,11739,4762,358,5,25,245,22,1706,17,20098,5,3215,21,37,1110,3,13,1041,4,24,603,490,2,71477,20098,104447,2,20961,1,2604,4,1,329,3,6224,831,16002,2,8,603,78967,29546,23,803,20,25,416,5,8,232,4,277,6,1855,4601,3,29546,54,8,3609,5,57211,49,4,1,277,18,8,1755,15691,3,341,25,416,693,42573,71,17,401,94,31,17919,2,29546,7873,18,1,435,23,11011,755,5,5167,3,7983,98,84,2,29546,3267,8,3609,4,1,4865,1075,2,6087,71,6,346,8,5854,3,29546,824,1400,1868,2,19,160,2,311,8,5496,2,20920,17,25,15097,3,24,24,0]] , dtype=tf.intaa ) # noqa: E231 # fmt: on # In 1991 , the remains of Russian Tsar Nicholas II and his family # ( except for Alexei and Maria ) are discovered . # The voice of Nicholas's young son , Tsarevich Alexei Nikolaevich , narrates the # remainder of the story . 1883 Western Siberia , # a young Grigori Rasputin is asked by his father and a group of men to perform magic . # Rasputin has a vision and denounces one of the men as a horse thief . Although his # father initially slaps him for making such an accusation , Rasputin watches as the # man is chased outside and beaten . Twenty years later , Rasputin sees a vision of # the Virgin Mary , prompting him to become a priest . Rasputin quickly becomes famous , # with people , even a bishop , begging for his blessing . <eod> </s> <eos> # fmt: off _lowerCAmelCase : Any = [33,1297,2,1,1009,4,1109,11739,4762,358,5,25,245,22,1706,17,20098,5,3215,21,37,1110,3,13,1041,4,24,603,490,2,71477,20098,104447,2,20961,1,2604,4,1,329,3,6224,831,16002,2,8,603,78967,29546,23,803,20,25,416,5,8,232,4,277,6,1855,4601,3,29546,54,8,3609,5,57211,49,4,1,277,18,8,1755,15691,3,341,25,416,693,42573,71,17,401,94,31,17919,2,29546,7873,18,1,435,23,11011,755,5,5167,3,7983,98,84,2,29546,3267,8,3609,4,1,4865,1075,2,6087,71,6,346,8,5854,3,29546,824,1400,1868,2,19,160,2,311,8,5496,2,20920,17,25,15097,3,24,24,0,33,1,1857,2,1,1009,4,1109,11739,4762,358,5,25,245,28,1110,3,13,1041,4,24,603,490,2,71477,20098,104447,2,20961,1,2604,4,1,329,3,0] # noqa: E231 # fmt: on # In 1991, the remains of Russian Tsar Nicholas II and his family ( # except for Alexei and Maria ) are discovered. The voice of young son, # Tsarevich Alexei Nikolaevich, narrates the remainder of the story. # 1883 Western Siberia, a young Grigori Rasputin is asked by his father # and a group of men to perform magic. Rasputin has a vision and # denounces one of the men as a horse thief. Although his father initially # slaps him for making such an accusation, Rasputin watches as the man # is chased outside and beaten. Twenty years later, Rasputin sees a vision # of the Virgin Mary, prompting him to become a priest. # Rasputin quickly becomes famous, with people, even a bishop, begging for # his blessing. <unk> <unk> <eos> In the 1990s, the remains of Russian Tsar # Nicholas II and his family were discovered. The voice of <unk> young son, # Tsarevich Alexei Nikolaevich, narrates the remainder of the story.<eos> _lowerCAmelCase : int = model.generate(lowercase_ , max_length=200 , do_sample=lowercase_ ) self.assertListEqual(output_ids[0].numpy().tolist() , lowercase_ )
369
"""simple docstring""" import copy import unittest from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_MULTIPLE_CHOICE_MAPPING, MODEL_FOR_QUESTION_ANSWERING_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaModel, ) from transformers.models.layoutlmva.modeling_layoutlmva import LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class __A : def __init__( self , a__ , a__=2 , a__=3 , a__=4 , a__=2 , a__=7 , a__=True , a__=True , a__=True , a__=True , a__=99 , a__=36 , a__=3 , a__=4 , a__=37 , a__="gelu" , a__=0.1 , a__=0.1 , a__=512 , a__=16 , a__=2 , a__=0.0_2 , a__=6 , a__=6 , a__=3 , a__=4 , a__=None , a__=1000 , ): _lowerCAmelCase : Union[str, Any] = parent _lowerCAmelCase : Optional[Any] = batch_size _lowerCAmelCase : List[Any] = num_channels _lowerCAmelCase : str = image_size _lowerCAmelCase : str = patch_size _lowerCAmelCase : str = text_seq_length _lowerCAmelCase : List[Any] = is_training _lowerCAmelCase : List[str] = use_input_mask _lowerCAmelCase : List[Any] = use_token_type_ids _lowerCAmelCase : Optional[Any] = use_labels _lowerCAmelCase : Any = vocab_size _lowerCAmelCase : str = hidden_size _lowerCAmelCase : Dict = num_hidden_layers _lowerCAmelCase : List[Any] = num_attention_heads _lowerCAmelCase : str = intermediate_size _lowerCAmelCase : str = hidden_act _lowerCAmelCase : Optional[Any] = hidden_dropout_prob _lowerCAmelCase : Any = attention_probs_dropout_prob _lowerCAmelCase : Tuple = max_position_embeddings _lowerCAmelCase : Dict = type_vocab_size _lowerCAmelCase : Tuple = type_sequence_label_size _lowerCAmelCase : Union[str, Any] = initializer_range _lowerCAmelCase : Dict = coordinate_size _lowerCAmelCase : Optional[int] = shape_size _lowerCAmelCase : str = num_labels _lowerCAmelCase : Optional[Any] = num_choices _lowerCAmelCase : str = scope _lowerCAmelCase : Dict = range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) _lowerCAmelCase : Optional[int] = text_seq_length _lowerCAmelCase : Any = (image_size // patch_size) ** 2 + 1 _lowerCAmelCase : Any = self.text_seq_length + self.image_seq_length def __A ( self ): _lowerCAmelCase : Tuple = ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size ) _lowerCAmelCase : Tuple = ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: _lowerCAmelCase : Optional[Any] = bbox[i, j, 3] _lowerCAmelCase : List[str] = bbox[i, j, 1] _lowerCAmelCase : List[Any] = t if bbox[i, j, 2] < bbox[i, j, 0]: _lowerCAmelCase : int = bbox[i, j, 2] _lowerCAmelCase : Optional[int] = bbox[i, j, 0] _lowerCAmelCase : Optional[int] = t _lowerCAmelCase : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowerCAmelCase : List[str] = None if self.use_input_mask: _lowerCAmelCase : int = random_attention_mask([self.batch_size, self.text_seq_length] ) _lowerCAmelCase : str = None if self.use_token_type_ids: _lowerCAmelCase : Tuple = ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size ) _lowerCAmelCase : int = None _lowerCAmelCase : int = None if self.use_labels: _lowerCAmelCase : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowerCAmelCase : str = ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels ) _lowerCAmelCase : str = LayoutLMvaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , ) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def __A ( self , a__ , a__ , a__ , a__ , a__ , a__ , a__ , a__ ): _lowerCAmelCase : int = LayoutLMvaModel(config=a__ ) model.to(a__ ) model.eval() # text + image _lowerCAmelCase : Optional[Any] = model(a__ , pixel_values=a__ ) _lowerCAmelCase : Any = model( a__ , bbox=a__ , pixel_values=a__ , attention_mask=a__ , token_type_ids=a__ ) _lowerCAmelCase : List[Any] = model(a__ , bbox=a__ , pixel_values=a__ , token_type_ids=a__ ) _lowerCAmelCase : Tuple = model(a__ , bbox=a__ , pixel_values=a__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # text only _lowerCAmelCase : Dict = model(a__ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) ) # image only _lowerCAmelCase : Optional[Any] = model(pixel_values=a__ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) ) def __A ( self , a__ , a__ , a__ , a__ , a__ , a__ , a__ , a__ ): _lowerCAmelCase : int = self.num_labels _lowerCAmelCase : int = LayoutLMvaForSequenceClassification(a__ ) model.to(a__ ) model.eval() _lowerCAmelCase : Tuple = model( a__ , bbox=a__ , pixel_values=a__ , attention_mask=a__ , token_type_ids=a__ , labels=a__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __A ( self , a__ , a__ , a__ , a__ , a__ , a__ , a__ , a__ ): _lowerCAmelCase : Optional[Any] = self.num_labels _lowerCAmelCase : str = LayoutLMvaForTokenClassification(config=a__ ) model.to(a__ ) model.eval() _lowerCAmelCase : List[str] = model( a__ , bbox=a__ , pixel_values=a__ , attention_mask=a__ , token_type_ids=a__ , labels=a__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) ) def __A ( self , a__ , a__ , a__ , a__ , a__ , a__ , a__ , a__ ): _lowerCAmelCase : Dict = LayoutLMvaForQuestionAnswering(config=a__ ) model.to(a__ ) model.eval() _lowerCAmelCase : str = model( a__ , bbox=a__ , pixel_values=a__ , attention_mask=a__ , token_type_ids=a__ , start_positions=a__ , end_positions=a__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __A ( self ): _lowerCAmelCase : List[str] = self.prepare_config_and_inputs() ( ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ) : Any = config_and_inputs _lowerCAmelCase : Union[str, Any] = { """input_ids""": input_ids, """bbox""": bbox, """pixel_values""": pixel_values, """token_type_ids""": token_type_ids, """attention_mask""": input_mask, } return config, inputs_dict @require_torch class __A ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ): _UpperCamelCase : Tuple = False _UpperCamelCase : Any = False _UpperCamelCase : Any = False _UpperCamelCase : int = ( ( LayoutLMvaModel, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaForQuestionAnswering, ) if is_torch_available() else () ) _UpperCamelCase : Union[str, Any] = ( {"document-question-answering": LayoutLMvaForQuestionAnswering, "feature-extraction": LayoutLMvaModel} if is_torch_available() else {} ) def __A ( self , a__ , a__ , a__ , a__ , a__ ): # `DocumentQuestionAnsweringPipeline` is expected to work with this model, but it combines the text and visual # embedding along the sequence dimension (dim 1), which causes an error during post-processing as `p_mask` has # the sequence dimension of the text embedding only. # (see the line `embedding_output = torch.cat([embedding_output, visual_embeddings], dim=1)`) return True def __A ( self ): _lowerCAmelCase : Any = LayoutLMvaModelTester(self ) _lowerCAmelCase : int = ConfigTester(self , config_class=a__ , hidden_size=37 ) def __A ( self , a__ , a__ , a__=False ): _lowerCAmelCase : List[str] = copy.deepcopy(a__ ) if model_class in get_values(a__ ): _lowerCAmelCase : Optional[int] = { k: v.unsqueeze(1 ).expand(-1 , self.model_tester.num_choices , -1 ).contiguous() if isinstance(a__ , torch.Tensor ) and v.ndim > 1 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(a__ ): _lowerCAmelCase : List[Any] = torch.ones(self.model_tester.batch_size , dtype=torch.long , device=a__ ) elif model_class in get_values(a__ ): _lowerCAmelCase : Optional[int] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=a__ ) _lowerCAmelCase : Any = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=a__ ) elif model_class in [ *get_values(a__ ), ]: _lowerCAmelCase : Optional[int] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=a__ ) elif model_class in [ *get_values(a__ ), ]: _lowerCAmelCase : int = torch.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=torch.long , device=a__ , ) return inputs_dict def __A ( self ): self.config_tester.run_common_tests() def __A ( self ): _lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a__ ) def __A ( self ): _lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _lowerCAmelCase : int = type self.model_tester.create_and_check_model(*a__ ) def __A ( self ): _lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*a__ ) def __A ( self ): _lowerCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*a__ ) def __A ( self ): _lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*a__ ) @slow def __A ( self ): for model_name in LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase : str = LayoutLMvaModel.from_pretrained(a__ ) self.assertIsNotNone(a__ ) def SCREAMING_SNAKE_CASE ( ) -> str: _lowerCAmelCase : Any = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch class __A ( unittest.TestCase ): @cached_property def __A ( self ): return LayoutLMvaImageProcessor(apply_ocr=a__ ) if is_vision_available() else None @slow def __A ( self ): _lowerCAmelCase : Optional[int] = LayoutLMvaModel.from_pretrained("""microsoft/layoutlmv3-base""" ).to(a__ ) _lowerCAmelCase : Dict = self.default_image_processor _lowerCAmelCase : Optional[int] = prepare_img() _lowerCAmelCase : Dict = image_processor(images=a__ , return_tensors="""pt""" ).pixel_values.to(a__ ) _lowerCAmelCase : Optional[Any] = torch.tensor([[1, 2]] ) _lowerCAmelCase : Dict = torch.tensor([[1, 2, 3, 4], [5, 6, 7, 8]] ).unsqueeze(0 ) # forward pass _lowerCAmelCase : str = model( input_ids=input_ids.to(a__ ) , bbox=bbox.to(a__ ) , pixel_values=pixel_values.to(a__ ) , ) # verify the logits _lowerCAmelCase : Optional[int] = torch.Size((1, 199, 768) ) self.assertEqual(outputs.last_hidden_state.shape , a__ ) _lowerCAmelCase : Union[str, Any] = torch.tensor( [[-0.0_5_2_9, 0.3_6_1_8, 0.1_6_3_2], [-0.1_5_8_7, -0.1_6_6_7, -0.0_4_0_0], [-0.1_5_5_7, -0.1_6_7_1, -0.0_5_0_5]] ).to(a__ ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] , a__ , atol=1e-4 ) )
126
0
from typing import Optional import numpy as np import torch from torch import nn from transformers import GPTaConfig, GPTaLMHeadModel from transformers.modeling_utils import ModuleUtilsMixin from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class _a ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__): """simple docstring""" UpperCamelCase__ = [r"""h\.\d+\.attn\.bias""", r"""h\.\d+\.attn\.masked_bias"""] @register_to_config def __init__( self: Tuple , __lowerCamelCase: int , __lowerCamelCase: int , __lowerCamelCase: Optional[int] = None , __lowerCamelCase: int = 5_0257 , __lowerCamelCase: int = 1024 , __lowerCamelCase: int = 768 , __lowerCamelCase: int = 12 , __lowerCamelCase: int = 12 , __lowerCamelCase: Optional[int] = None , __lowerCamelCase: str = "gelu_new" , __lowerCamelCase: float = 0.1 , __lowerCamelCase: float = 0.1 , __lowerCamelCase: float = 0.1 , __lowerCamelCase: float = 1e-5 , __lowerCamelCase: float = 0.02 , __lowerCamelCase: bool = True , __lowerCamelCase: bool = True , __lowerCamelCase: bool = False , __lowerCamelCase: bool = False , ): '''simple docstring''' super().__init__() UpperCamelCase__: Union[str, Any] = prefix_length if prefix_inner_dim != n_embd and prefix_hidden_dim is None: raise ValueError( F"`prefix_hidden_dim` cannot be `None` when `prefix_inner_dim`: {prefix_hidden_dim} and" F" `n_embd`: {n_embd} are not equal." ) UpperCamelCase__: List[str] = prefix_inner_dim UpperCamelCase__: Optional[int] = prefix_hidden_dim UpperCamelCase__: Dict = ( nn.Linear(self.prefix_inner_dim , self.prefix_hidden_dim ) if self.prefix_hidden_dim is not None else nn.Identity() ) UpperCamelCase__: Tuple = ( nn.Linear(self.prefix_hidden_dim , __lowerCamelCase ) if self.prefix_hidden_dim is not None else nn.Identity() ) UpperCamelCase__: List[str] = GPTaConfig( vocab_size=__lowerCamelCase , n_positions=__lowerCamelCase , n_embd=__lowerCamelCase , n_layer=__lowerCamelCase , n_head=__lowerCamelCase , n_inner=__lowerCamelCase , activation_function=__lowerCamelCase , resid_pdrop=__lowerCamelCase , embd_pdrop=__lowerCamelCase , attn_pdrop=__lowerCamelCase , layer_norm_epsilon=__lowerCamelCase , initializer_range=__lowerCamelCase , scale_attn_weights=__lowerCamelCase , use_cache=__lowerCamelCase , scale_attn_by_inverse_layer_idx=__lowerCamelCase , reorder_and_upcast_attn=__lowerCamelCase , ) UpperCamelCase__: Any = GPTaLMHeadModel(__lowerCamelCase ) def UpperCAmelCase_ ( self: int , __lowerCamelCase: torch.Tensor , __lowerCamelCase: torch.Tensor , __lowerCamelCase: Optional[torch.Tensor] = None , __lowerCamelCase: Optional[torch.Tensor] = None , ): '''simple docstring''' UpperCamelCase__: Optional[int] = self.transformer.transformer.wte(__lowerCamelCase ) UpperCamelCase__: Dict = self.encode_prefix(__lowerCamelCase ) UpperCamelCase__: List[Any] = self.decode_prefix(__lowerCamelCase ) UpperCamelCase__: str = torch.cat((prefix_embeds, embedding_text) , dim=1 ) if labels is not None: UpperCamelCase__: Union[str, Any] = self.get_dummy_token(input_ids.shape[0] , input_ids.device ) UpperCamelCase__: Any = torch.cat((dummy_token, input_ids) , dim=1 ) UpperCamelCase__: str = self.transformer(inputs_embeds=__lowerCamelCase , labels=__lowerCamelCase , attention_mask=__lowerCamelCase ) if self.prefix_hidden_dim is not None: return out, hidden else: return out def UpperCAmelCase_ ( self: Any , __lowerCamelCase: int , __lowerCamelCase: torch.device ): '''simple docstring''' return torch.zeros(__lowerCamelCase , self.prefix_length , dtype=torch.intaa , device=__lowerCamelCase ) def UpperCAmelCase_ ( self: Union[str, Any] , __lowerCamelCase: List[Any] ): '''simple docstring''' return self.encode_prefix(__lowerCamelCase ) @torch.no_grad() def UpperCAmelCase_ ( self: List[str] , __lowerCamelCase: Dict , __lowerCamelCase: Any , __lowerCamelCase: List[str] ): '''simple docstring''' UpperCamelCase__: Any = torch.split(__lowerCamelCase , 1 , dim=0 ) UpperCamelCase__: Dict = [] UpperCamelCase__: Union[str, Any] = [] for feature in features: UpperCamelCase__: Tuple = self.decode_prefix(feature.to(__lowerCamelCase ) ) # back to the clip feature # Only support beam search for now UpperCamelCase__ , UpperCamelCase__: List[Any] = self.generate_beam( input_embeds=__lowerCamelCase , device=__lowerCamelCase , eos_token_id=__lowerCamelCase ) generated_tokens.append(output_tokens[0] ) generated_seq_lengths.append(seq_lengths[0] ) UpperCamelCase__: str = torch.stack(__lowerCamelCase ) UpperCamelCase__: str = torch.stack(__lowerCamelCase ) return generated_tokens, generated_seq_lengths @torch.no_grad() def UpperCAmelCase_ ( self: str , __lowerCamelCase: Optional[Any]=None , __lowerCamelCase: Optional[int]=None , __lowerCamelCase: Dict=None , __lowerCamelCase: int = 5 , __lowerCamelCase: int = 67 , __lowerCamelCase: float = 1.0 , __lowerCamelCase: Optional[int] = None , ): '''simple docstring''' UpperCamelCase__: Tuple = eos_token_id UpperCamelCase__: List[str] = None UpperCamelCase__: Any = None UpperCamelCase__: Optional[int] = torch.ones(__lowerCamelCase , device=__lowerCamelCase , dtype=torch.int ) UpperCamelCase__: Dict = torch.zeros(__lowerCamelCase , device=__lowerCamelCase , dtype=torch.bool ) if input_embeds is not None: UpperCamelCase__: Dict = input_embeds else: UpperCamelCase__: Optional[int] = self.transformer.transformer.wte(__lowerCamelCase ) for i in range(__lowerCamelCase ): UpperCamelCase__: Union[str, Any] = self.transformer(inputs_embeds=__lowerCamelCase ) UpperCamelCase__: Tuple = outputs.logits UpperCamelCase__: Dict = logits[:, -1, :] / (temperature if temperature > 0 else 1.0) UpperCamelCase__: List[str] = logits.softmax(-1 ).log() if scores is None: UpperCamelCase__ , UpperCamelCase__: Union[str, Any] = logits.topk(__lowerCamelCase , -1 ) UpperCamelCase__: str = generated.expand(__lowerCamelCase , *generated.shape[1:] ) UpperCamelCase__ , UpperCamelCase__: Dict = next_tokens.permute(1 , 0 ), scores.squeeze(0 ) if tokens is None: UpperCamelCase__: int = next_tokens else: UpperCamelCase__: Optional[int] = tokens.expand(__lowerCamelCase , *tokens.shape[1:] ) UpperCamelCase__: str = torch.cat((tokens, next_tokens) , dim=1 ) else: UpperCamelCase__: Optional[Any] = -float(np.inf ) UpperCamelCase__: Any = 0 UpperCamelCase__: List[str] = scores[:, None] + logits seq_lengths[~is_stopped] += 1 UpperCamelCase__: Any = scores_sum / seq_lengths[:, None] UpperCamelCase__ , UpperCamelCase__: Union[str, Any] = scores_sum_average.view(-1 ).topk(__lowerCamelCase , -1 ) UpperCamelCase__: Dict = next_tokens // scores_sum.shape[1] UpperCamelCase__: Optional[int] = seq_lengths[next_tokens_source] UpperCamelCase__: int = next_tokens % scores_sum.shape[1] UpperCamelCase__: Optional[int] = next_tokens.unsqueeze(1 ) UpperCamelCase__: Tuple = tokens[next_tokens_source] UpperCamelCase__: Tuple = torch.cat((tokens, next_tokens) , dim=1 ) UpperCamelCase__: List[Any] = generated[next_tokens_source] UpperCamelCase__: int = scores_sum_average * seq_lengths UpperCamelCase__: Dict = is_stopped[next_tokens_source] UpperCamelCase__: List[str] = self.transformer.transformer.wte(next_tokens.squeeze() ).view(generated.shape[0] , 1 , -1 ) UpperCamelCase__: Any = torch.cat((generated, next_token_embed) , dim=1 ) UpperCamelCase__: Union[str, Any] = is_stopped + next_tokens.eq(__lowerCamelCase ).squeeze() if is_stopped.all(): break UpperCamelCase__: Optional[Any] = scores / seq_lengths UpperCamelCase__: int = scores.argsort(descending=__lowerCamelCase ) # tokens tensors are already padded to max_seq_length UpperCamelCase__: Dict = [tokens[i] for i in order] UpperCamelCase__: Any = torch.stack(__lowerCamelCase , dim=0 ) UpperCamelCase__: int = torch.tensor([seq_lengths[i] for i in order] , dtype=seq_lengths.dtype ) return output_texts, seq_lengths
149
import requests from bsa import BeautifulSoup def lowerCAmelCase_ ( A_ = "https://www.worldometers.info/coronavirus"): UpperCamelCase__: Union[str, Any] = BeautifulSoup(requests.get(A_).text ,"html.parser") UpperCamelCase__: Tuple = soup.findAll("h1") UpperCamelCase__: str = soup.findAll("div" ,{"class": "maincounter-number"}) keys += soup.findAll("span" ,{"class": "panel-title"}) values += soup.findAll("div" ,{"class": "number-table-main"}) return {key.text.strip(): value.text.strip() for key, value in zip(A_ ,A_)} if __name__ == "__main__": print('''\033[1m''' + '''COVID-19 Status of the World''' + '''\033[0m\n''') for key, value in world_covidaa_stats().items(): print(f"{key}\n{value}\n")
149
1
from functools import reduce lowercase_ = ( """73167176531330624919225119674426574742355349194934""" """96983520312774506326239578318016984801869478851843""" """85861560789112949495459501737958331952853208805511""" """12540698747158523863050715693290963295227443043557""" """66896648950445244523161731856403098711121722383113""" """62229893423380308135336276614282806444486645238749""" """30358907296290491560440772390713810515859307960866""" """70172427121883998797908792274921901699720888093776""" """65727333001053367881220235421809751254540594752243""" """52584907711670556013604839586446706324415722155397""" """53697817977846174064955149290862569321978468622482""" """83972241375657056057490261407972968652414535100474""" """82166370484403199890008895243450658541227588666881""" """16427171479924442928230863465674813919123162824586""" """17866458359124566529476545682848912883142607690042""" """24219022671055626321111109370544217506941658960408""" """07198403850962455444362981230987879927244284909188""" """84580156166097919133875499200524063689912560717606""" """05886116467109405077541002256983155200055935729725""" """71636269561882670428252483600823257530420752963450""" ) def __UpperCamelCase (_SCREAMING_SNAKE_CASE = N ) -> int: return max( # mypy cannot properly interpret reduce int(reduce(lambda _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : str(int(_SCREAMING_SNAKE_CASE ) * int(_SCREAMING_SNAKE_CASE ) ) , n[i : i + 13] ) ) for i in range(len(_SCREAMING_SNAKE_CASE ) - 12 ) ) if __name__ == "__main__": print(f'''{solution() = }''')
269
class SCREAMING_SNAKE_CASE (UpperCAmelCase ): pass class SCREAMING_SNAKE_CASE (UpperCAmelCase ): pass class SCREAMING_SNAKE_CASE : def __init__( self : Dict )-> Optional[int]: """simple docstring""" lowercase__ = [ [], [], [], ] def SCREAMING_SNAKE_CASE_ ( self : Dict , a : int , a : int )-> None: """simple docstring""" try: if len(self.queues[priority] ) >= 100: raise OverflowError('Maximum queue size is 100' ) self.queues[priority].append(a ) except IndexError: raise ValueError('Valid priorities are 0, 1, and 2' ) def SCREAMING_SNAKE_CASE_ ( self : int )-> int: """simple docstring""" for queue in self.queues: if queue: return queue.pop(0 ) raise UnderFlowError('All queues are empty' ) def __str__( self : Dict )-> str: """simple docstring""" return "\n".join(f"""Priority {i}: {q}""" for i, q in enumerate(self.queues ) ) class SCREAMING_SNAKE_CASE : def __init__( self : Optional[Any] )-> Any: """simple docstring""" lowercase__ = [] def SCREAMING_SNAKE_CASE_ ( self : List[str] , a : int )-> None: """simple docstring""" if len(self.queue ) == 100: raise OverFlowError('Maximum queue size is 100' ) self.queue.append(a ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] )-> int: """simple docstring""" if not self.queue: raise UnderFlowError('The queue is empty' ) else: lowercase__ = min(self.queue ) self.queue.remove(a ) return data def __str__( self : Union[str, Any] )-> str: """simple docstring""" return str(self.queue ) def __UpperCamelCase () -> str: lowercase__ = FixedPriorityQueue() fpq.enqueue(0 , 10 ) fpq.enqueue(1 , 70 ) fpq.enqueue(0 , 100 ) fpq.enqueue(2 , 1 ) fpq.enqueue(2 , 5 ) fpq.enqueue(1 , 7 ) fpq.enqueue(2 , 4 ) fpq.enqueue(1 , 64 ) fpq.enqueue(0 , 128 ) print(_SCREAMING_SNAKE_CASE ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(_SCREAMING_SNAKE_CASE ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) def __UpperCamelCase () -> List[str]: lowercase__ = ElementPriorityQueue() epq.enqueue(10 ) epq.enqueue(70 ) epq.enqueue(100 ) epq.enqueue(1 ) epq.enqueue(5 ) epq.enqueue(7 ) epq.enqueue(4 ) epq.enqueue(64 ) epq.enqueue(128 ) print(_SCREAMING_SNAKE_CASE ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(_SCREAMING_SNAKE_CASE ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) if __name__ == "__main__": fixed_priority_queue() element_priority_queue()
269
1
import numpy # List of input, output pairs _UpperCAmelCase : Union[str, Any] = ( ((5, 2, 3), 15), ((6, 5, 9), 25), ((11, 12, 13), 41), ((1, 1, 1), 8), ((11, 12, 13), 41), ) _UpperCAmelCase : Dict = (((5_15, 22, 13), 5_55), ((61, 35, 49), 1_50)) _UpperCAmelCase : Tuple = [2, 4, 1, 5] _UpperCAmelCase : Optional[Any] = len(train_data) _UpperCAmelCase : Optional[Any] = 0.009 def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase="train" ) -> List[str]: return calculate_hypothesis_value(_UpperCAmelCase , _UpperCAmelCase ) - output( _UpperCAmelCase , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> int: lowerCamelCase__ : str = 0 for i in range(len(_UpperCAmelCase ) - 1 ): hyp_val += data_input_tuple[i] * parameter_vector[i + 1] hyp_val += parameter_vector[0] return hyp_val def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase ) -> int: if data_set == "train": return train_data[example_no][1] elif data_set == "test": return test_data[example_no][1] return None def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase ) -> Optional[int]: if data_set == "train": return _hypothesis_value(train_data[example_no][0] ) elif data_set == "test": return _hypothesis_value(test_data[example_no][0] ) return None def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase=m ) -> Dict: lowerCamelCase__ : Union[str, Any] = 0 for i in range(_UpperCAmelCase ): if index == -1: summation_value += _error(_UpperCAmelCase ) else: summation_value += _error(_UpperCAmelCase ) * train_data[i][0][index] return summation_value def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> str: lowerCamelCase__ : List[Any] = summation_of_cost_derivative(_UpperCAmelCase , _UpperCAmelCase ) / m return cost_derivative_value def SCREAMING_SNAKE_CASE ( ) -> Optional[Any]: global parameter_vector # Tune these values to set a tolerance value for predicted output lowerCamelCase__ : List[str] = 0.000_002 lowerCamelCase__ : Any = 0 lowerCamelCase__ : Tuple = 0 while True: j += 1 lowerCamelCase__ : str = [0, 0, 0, 0] for i in range(0 , len(_UpperCAmelCase ) ): lowerCamelCase__ : Optional[Any] = get_cost_derivative(i - 1 ) lowerCamelCase__ : Tuple = ( parameter_vector[i] - LEARNING_RATE * cost_derivative ) if numpy.allclose( _UpperCAmelCase , _UpperCAmelCase , atol=_UpperCAmelCase , rtol=_UpperCAmelCase , ): break lowerCamelCase__ : str = temp_parameter_vector print(('Number of iterations:', j) ) def SCREAMING_SNAKE_CASE ( ) -> Optional[int]: for i in range(len(_UpperCAmelCase ) ): print(('Actual output value:', output(_UpperCAmelCase , 'test' )) ) print(('Hypothesis output:', calculate_hypothesis_value(_UpperCAmelCase , 'test' )) ) if __name__ == "__main__": run_gradient_descent() print("""\nTesting gradient descent for a linear hypothesis function.\n""") test_gradient_descent()
50
import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_nllb import NllbTokenizer else: lowerCAmelCase__ = None lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = {'vocab_file': 'sentencepiece.bpe.model', 'tokenizer_file': 'tokenizer.json'} lowerCAmelCase__ = { 'vocab_file': { 'facebook/nllb-200-distilled-600M': ( 'https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/sentencepiece.bpe.model' ), }, 'tokenizer_file': { 'facebook/nllb-200-distilled-600M': ( 'https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/tokenizer.json' ), }, } lowerCAmelCase__ = { 'facebook/nllb-large-en-ro': 10_24, 'facebook/nllb-200-distilled-600M': 10_24, } # fmt: off lowerCAmelCase__ = ['ace_Arab', 'ace_Latn', 'acm_Arab', 'acq_Arab', 'aeb_Arab', 'afr_Latn', 'ajp_Arab', 'aka_Latn', 'amh_Ethi', 'apc_Arab', 'arb_Arab', 'ars_Arab', 'ary_Arab', 'arz_Arab', 'asm_Beng', 'ast_Latn', 'awa_Deva', 'ayr_Latn', 'azb_Arab', 'azj_Latn', 'bak_Cyrl', 'bam_Latn', 'ban_Latn', 'bel_Cyrl', 'bem_Latn', 'ben_Beng', 'bho_Deva', 'bjn_Arab', 'bjn_Latn', 'bod_Tibt', 'bos_Latn', 'bug_Latn', 'bul_Cyrl', 'cat_Latn', 'ceb_Latn', 'ces_Latn', 'cjk_Latn', 'ckb_Arab', 'crh_Latn', 'cym_Latn', 'dan_Latn', 'deu_Latn', 'dik_Latn', 'dyu_Latn', 'dzo_Tibt', 'ell_Grek', 'eng_Latn', 'epo_Latn', 'est_Latn', 'eus_Latn', 'ewe_Latn', 'fao_Latn', 'pes_Arab', 'fij_Latn', 'fin_Latn', 'fon_Latn', 'fra_Latn', 'fur_Latn', 'fuv_Latn', 'gla_Latn', 'gle_Latn', 'glg_Latn', 'grn_Latn', 'guj_Gujr', 'hat_Latn', 'hau_Latn', 'heb_Hebr', 'hin_Deva', 'hne_Deva', 'hrv_Latn', 'hun_Latn', 'hye_Armn', 'ibo_Latn', 'ilo_Latn', 'ind_Latn', 'isl_Latn', 'ita_Latn', 'jav_Latn', 'jpn_Jpan', 'kab_Latn', 'kac_Latn', 'kam_Latn', 'kan_Knda', 'kas_Arab', 'kas_Deva', 'kat_Geor', 'knc_Arab', 'knc_Latn', 'kaz_Cyrl', 'kbp_Latn', 'kea_Latn', 'khm_Khmr', 'kik_Latn', 'kin_Latn', 'kir_Cyrl', 'kmb_Latn', 'kon_Latn', 'kor_Hang', 'kmr_Latn', 'lao_Laoo', 'lvs_Latn', 'lij_Latn', 'lim_Latn', 'lin_Latn', 'lit_Latn', 'lmo_Latn', 'ltg_Latn', 'ltz_Latn', 'lua_Latn', 'lug_Latn', 'luo_Latn', 'lus_Latn', 'mag_Deva', 'mai_Deva', 'mal_Mlym', 'mar_Deva', 'min_Latn', 'mkd_Cyrl', 'plt_Latn', 'mlt_Latn', 'mni_Beng', 'khk_Cyrl', 'mos_Latn', 'mri_Latn', 'zsm_Latn', 'mya_Mymr', 'nld_Latn', 'nno_Latn', 'nob_Latn', 'npi_Deva', 'nso_Latn', 'nus_Latn', 'nya_Latn', 'oci_Latn', 'gaz_Latn', 'ory_Orya', 'pag_Latn', 'pan_Guru', 'pap_Latn', 'pol_Latn', 'por_Latn', 'prs_Arab', 'pbt_Arab', 'quy_Latn', 'ron_Latn', 'run_Latn', 'rus_Cyrl', 'sag_Latn', 'san_Deva', 'sat_Beng', 'scn_Latn', 'shn_Mymr', 'sin_Sinh', 'slk_Latn', 'slv_Latn', 'smo_Latn', 'sna_Latn', 'snd_Arab', 'som_Latn', 'sot_Latn', 'spa_Latn', 'als_Latn', 'srd_Latn', 'srp_Cyrl', 'ssw_Latn', 'sun_Latn', 'swe_Latn', 'swh_Latn', 'szl_Latn', 'tam_Taml', 'tat_Cyrl', 'tel_Telu', 'tgk_Cyrl', 'tgl_Latn', 'tha_Thai', 'tir_Ethi', 'taq_Latn', 'taq_Tfng', 'tpi_Latn', 'tsn_Latn', 'tso_Latn', 'tuk_Latn', 'tum_Latn', 'tur_Latn', 'twi_Latn', 'tzm_Tfng', 'uig_Arab', 'ukr_Cyrl', 'umb_Latn', 'urd_Arab', 'uzn_Latn', 'vec_Latn', 'vie_Latn', 'war_Latn', 'wol_Latn', 'xho_Latn', 'ydd_Hebr', 'yor_Latn', 'yue_Hant', 'zho_Hans', 'zho_Hant', 'zul_Latn'] class lowerCAmelCase__ ( a): '''simple docstring''' __SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE = ["input_ids", "attention_mask"] __SCREAMING_SNAKE_CASE = NllbTokenizer __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = [] def __init__( self , __lowerCamelCase=None , __lowerCamelCase=None , __lowerCamelCase="<s>" , __lowerCamelCase="</s>" , __lowerCamelCase="</s>" , __lowerCamelCase="<s>" , __lowerCamelCase="<unk>" , __lowerCamelCase="<pad>" , __lowerCamelCase="<mask>" , __lowerCamelCase=None , __lowerCamelCase=None , __lowerCamelCase=None , __lowerCamelCase=False , **__lowerCamelCase , ) -> Tuple: # Mask token behave like a normal word, i.e. include the space before it _A : Any = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase) if isinstance(__lowerCamelCase , __lowerCamelCase) else mask_token _A : Optional[int] = legacy_behaviour super().__init__( vocab_file=__lowerCamelCase , tokenizer_file=__lowerCamelCase , bos_token=__lowerCamelCase , eos_token=__lowerCamelCase , sep_token=__lowerCamelCase , cls_token=__lowerCamelCase , unk_token=__lowerCamelCase , pad_token=__lowerCamelCase , mask_token=__lowerCamelCase , src_lang=__lowerCamelCase , tgt_lang=__lowerCamelCase , additional_special_tokens=__lowerCamelCase , legacy_behaviour=__lowerCamelCase , **__lowerCamelCase , ) _A : int = vocab_file _A : Optional[Any] = False if not self.vocab_file else True _A : Tuple = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens]) self.add_special_tokens({"additional_special_tokens": _additional_special_tokens}) _A : Union[str, Any] = { lang_code: self.convert_tokens_to_ids(__lowerCamelCase) for lang_code in FAIRSEQ_LANGUAGE_CODES } _A : Optional[int] = src_lang if src_lang is not None else "eng_Latn" _A : Union[str, Any] = self.convert_tokens_to_ids(self._src_lang) _A : List[str] = tgt_lang self.set_src_lang_special_tokens(self._src_lang) @property def _lowerCamelCase ( self) -> str: return self._src_lang @src_lang.setter def _lowerCamelCase ( self , __lowerCamelCase) -> None: _A : Tuple = new_src_lang self.set_src_lang_special_tokens(self._src_lang) def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase = None) -> List[int]: if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase = None) -> List[int]: _A : Tuple = [self.sep_token_id] _A : List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0] def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , **__lowerCamelCase) -> Optional[int]: if src_lang is None or tgt_lang is None: raise ValueError("Translation requires a `src_lang` and a `tgt_lang` for this model") _A : List[Any] = src_lang _A : Optional[int] = self(__lowerCamelCase , add_special_tokens=__lowerCamelCase , return_tensors=__lowerCamelCase , **__lowerCamelCase) _A : Tuple = self.convert_tokens_to_ids(__lowerCamelCase) _A : Tuple = tgt_lang_id return inputs def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase = "eng_Latn" , __lowerCamelCase = None , __lowerCamelCase = "fra_Latn" , **__lowerCamelCase , ) -> BatchEncoding: _A : Tuple = src_lang _A : int = tgt_lang return super().prepare_seqaseq_batch(__lowerCamelCase , __lowerCamelCase , **__lowerCamelCase) def _lowerCamelCase ( self) -> str: return self.set_src_lang_special_tokens(self.src_lang) def _lowerCamelCase ( self) -> List[str]: return self.set_tgt_lang_special_tokens(self.tgt_lang) def _lowerCamelCase ( self , __lowerCamelCase) -> None: _A : Dict = self.convert_tokens_to_ids(__lowerCamelCase) if self.legacy_behaviour: _A : List[str] = [] _A : Dict = [self.eos_token_id, self.cur_lang_code] else: _A : Tuple = [self.cur_lang_code] _A : Optional[Any] = [self.eos_token_id] _A : Optional[int] = self.convert_ids_to_tokens(self.prefix_tokens) _A : int = self.convert_ids_to_tokens(self.suffix_tokens) _A : List[Any] = processors.TemplateProcessing( single=prefix_tokens_str + ["$A"] + suffix_tokens_str , pair=prefix_tokens_str + ["$A", "$B"] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens)) , ) def _lowerCamelCase ( self , __lowerCamelCase) -> None: _A : Optional[Any] = self.convert_tokens_to_ids(__lowerCamelCase) if self.legacy_behaviour: _A : Tuple = [] _A : Any = [self.eos_token_id, self.cur_lang_code] else: _A : Union[str, Any] = [self.cur_lang_code] _A : str = [self.eos_token_id] _A : Optional[Any] = self.convert_ids_to_tokens(self.prefix_tokens) _A : Dict = self.convert_ids_to_tokens(self.suffix_tokens) _A : Union[str, Any] = processors.TemplateProcessing( single=prefix_tokens_str + ["$A"] + suffix_tokens_str , pair=prefix_tokens_str + ["$A", "$B"] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens)) , ) def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase = None) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer.") if not os.path.isdir(__lowerCamelCase): logger.error(F"Vocabulary path ({save_directory}) should be a directory.") return _A : Dict = os.path.join( __lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]) if os.path.abspath(self.vocab_file) != os.path.abspath(__lowerCamelCase): copyfile(self.vocab_file , __lowerCamelCase) return (out_vocab_file,)
11
0
'''simple docstring''' def a_ ( __snake_case : list[int] ) -> int: """simple docstring""" if not numbers: return 0 if not isinstance(UpperCAmelCase__ , (list, tuple) ) or not all( isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) for number in numbers ): raise ValueError('''numbers must be an iterable of integers''' ) lowerCamelCase_ =numbers[0] for i in range(1 , len(UpperCAmelCase__ ) ): # update the maximum and minimum subarray products lowerCamelCase_ =numbers[i] if number < 0: lowerCamelCase_ =min_till_now, max_till_now lowerCamelCase_ =max(UpperCAmelCase__ , max_till_now * number ) lowerCamelCase_ =min(UpperCAmelCase__ , min_till_now * number ) # update the maximum product found till now lowerCamelCase_ =max(UpperCAmelCase__ , UpperCAmelCase__ ) return max_prod
370
'''simple docstring''' import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __UpperCamelCase ( lowerCamelCase__ ): lowercase : int =['image_processor', 'tokenizer'] lowercase : int ='LayoutLMv2ImageProcessor' lowercase : Any =('LayoutXLMTokenizer', 'LayoutXLMTokenizerFast') def __init__( self, lowerCAmelCase=None, lowerCAmelCase=None, **lowerCAmelCase ): """simple docstring""" if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''', lowerCAmelCase, ) lowerCamelCase_ =kwargs.pop('''feature_extractor''' ) lowerCamelCase_ =image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(lowerCAmelCase, lowerCAmelCase ) def __call__( self, lowerCAmelCase, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = True, lowerCAmelCase = False, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = 0, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = False, lowerCAmelCase = False, lowerCAmelCase = False, lowerCAmelCase = False, lowerCAmelCase = True, lowerCAmelCase = None, **lowerCAmelCase, ): """simple docstring""" if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( '''You cannot provide bounding boxes ''' '''if you initialized the image processor with apply_ocr set to True.''' ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( '''You cannot provide word labels if you initialized the image processor with apply_ocr set to True.''' ) if return_overflowing_tokens is True and return_offsets_mapping is False: raise ValueError('''You cannot return overflowing tokens without returning the offsets mapping.''' ) # first, apply the image processor lowerCamelCase_ =self.image_processor(images=lowerCAmelCase, return_tensors=lowerCAmelCase ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(lowerCAmelCase, lowerCAmelCase ): lowerCamelCase_ =[text] # add batch dimension (as the image processor always adds a batch dimension) lowerCamelCase_ =features['''words'''] lowerCamelCase_ =self.tokenizer( text=text if text is not None else features['''words'''], text_pair=text_pair if text_pair is not None else None, boxes=boxes if boxes is not None else features['''boxes'''], word_labels=lowerCAmelCase, add_special_tokens=lowerCAmelCase, padding=lowerCAmelCase, truncation=lowerCAmelCase, max_length=lowerCAmelCase, stride=lowerCAmelCase, pad_to_multiple_of=lowerCAmelCase, return_token_type_ids=lowerCAmelCase, return_attention_mask=lowerCAmelCase, return_overflowing_tokens=lowerCAmelCase, return_special_tokens_mask=lowerCAmelCase, return_offsets_mapping=lowerCAmelCase, return_length=lowerCAmelCase, verbose=lowerCAmelCase, return_tensors=lowerCAmelCase, **lowerCAmelCase, ) # add pixel values lowerCamelCase_ =features.pop('''pixel_values''' ) if return_overflowing_tokens is True: lowerCamelCase_ =self.get_overflowing_images(lowerCAmelCase, encoded_inputs['''overflow_to_sample_mapping'''] ) lowerCamelCase_ =images return encoded_inputs def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =[] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(lowerCAmelCase ) != len(lowerCAmelCase ): raise ValueError( '''Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got''' f''' {len(lowerCAmelCase )} and {len(lowerCAmelCase )}''' ) return images_with_overflow def lowercase__ ( self, *lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" return self.tokenizer.batch_decode(*lowerCAmelCase, **lowerCAmelCase ) def lowercase__ ( self, *lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" return self.tokenizer.decode(*lowerCAmelCase, **lowerCAmelCase ) @property def lowercase__ ( self ): """simple docstring""" return ["input_ids", "bbox", "attention_mask", "image"] @property def lowercase__ ( self ): """simple docstring""" warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''', lowerCAmelCase, ) return self.image_processor_class @property def lowercase__ ( self ): """simple docstring""" warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''', lowerCAmelCase, ) return self.image_processor
6
0
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_electra import ElectraTokenizer SCREAMING_SNAKE_CASE : str = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} SCREAMING_SNAKE_CASE : List[str] = { "vocab_file": { "google/electra-small-generator": ( "https://huggingface.co/google/electra-small-generator/resolve/main/vocab.txt" ), "google/electra-base-generator": "https://huggingface.co/google/electra-base-generator/resolve/main/vocab.txt", "google/electra-large-generator": ( "https://huggingface.co/google/electra-large-generator/resolve/main/vocab.txt" ), "google/electra-small-discriminator": ( "https://huggingface.co/google/electra-small-discriminator/resolve/main/vocab.txt" ), "google/electra-base-discriminator": ( "https://huggingface.co/google/electra-base-discriminator/resolve/main/vocab.txt" ), "google/electra-large-discriminator": ( "https://huggingface.co/google/electra-large-discriminator/resolve/main/vocab.txt" ), }, "tokenizer_file": { "google/electra-small-generator": ( "https://huggingface.co/google/electra-small-generator/resolve/main/tokenizer.json" ), "google/electra-base-generator": ( "https://huggingface.co/google/electra-base-generator/resolve/main/tokenizer.json" ), "google/electra-large-generator": ( "https://huggingface.co/google/electra-large-generator/resolve/main/tokenizer.json" ), "google/electra-small-discriminator": ( "https://huggingface.co/google/electra-small-discriminator/resolve/main/tokenizer.json" ), "google/electra-base-discriminator": ( "https://huggingface.co/google/electra-base-discriminator/resolve/main/tokenizer.json" ), "google/electra-large-discriminator": ( "https://huggingface.co/google/electra-large-discriminator/resolve/main/tokenizer.json" ), }, } SCREAMING_SNAKE_CASE : List[str] = { "google/electra-small-generator": 512, "google/electra-base-generator": 512, "google/electra-large-generator": 512, "google/electra-small-discriminator": 512, "google/electra-base-discriminator": 512, "google/electra-large-discriminator": 512, } SCREAMING_SNAKE_CASE : Tuple = { "google/electra-small-generator": {"do_lower_case": True}, "google/electra-base-generator": {"do_lower_case": True}, "google/electra-large-generator": {"do_lower_case": True}, "google/electra-small-discriminator": {"do_lower_case": True}, "google/electra-base-discriminator": {"do_lower_case": True}, "google/electra-large-discriminator": {"do_lower_case": True}, } class _lowerCamelCase( _a ): lowercase_ : int = VOCAB_FILES_NAMES lowercase_ : List[Any] = PRETRAINED_VOCAB_FILES_MAP lowercase_ : Any = PRETRAINED_INIT_CONFIGURATION lowercase_ : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase_ : str = ElectraTokenizer def __init__( self, lowerCamelCase=None, lowerCamelCase=None, lowerCamelCase=True, lowerCamelCase="[UNK]", lowerCamelCase="[SEP]", lowerCamelCase="[PAD]", lowerCamelCase="[CLS]", lowerCamelCase="[MASK]", lowerCamelCase=True, lowerCamelCase=None, **lowerCamelCase, ) -> Union[str, Any]: """simple docstring""" super().__init__( lowerCamelCase, tokenizer_file=lowerCamelCase, do_lower_case=lowerCamelCase, unk_token=lowerCamelCase, sep_token=lowerCamelCase, pad_token=lowerCamelCase, cls_token=lowerCamelCase, mask_token=lowerCamelCase, tokenize_chinese_chars=lowerCamelCase, strip_accents=lowerCamelCase, **lowerCamelCase, ) _lowercase : Union[str, Any] = json.loads(self.backend_tokenizer.normalizer.__getstate__()) if ( normalizer_state.get('lowercase', lowerCamelCase) != do_lower_case or normalizer_state.get('strip_accents', lowerCamelCase) != strip_accents or normalizer_state.get('handle_chinese_chars', lowerCamelCase) != tokenize_chinese_chars ): _lowercase : Dict = getattr(lowerCamelCase, normalizer_state.pop('type')) _lowercase : Optional[int] = do_lower_case _lowercase : Tuple = strip_accents _lowercase : str = tokenize_chinese_chars _lowercase : Optional[Any] = normalizer_class(**lowerCamelCase) _lowercase : Any = do_lower_case def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase=None) -> Optional[Any]: """simple docstring""" _lowercase : List[str] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase = None) -> List[int]: """simple docstring""" _lowercase : Dict = [self.sep_token_id] _lowercase : Any = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase = None) -> Tuple[str]: """simple docstring""" _lowercase : Optional[int] = self._tokenizer.model.save(lowerCamelCase, name=lowerCamelCase) return tuple(lowerCamelCase)
21
def _SCREAMING_SNAKE_CASE ( lowercase : int , lowercase : int ): '''simple docstring''' return int((input_a, input_a).count(1 ) != 0 ) def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' assert or_gate(0 , 0 ) == 0 assert or_gate(0 , 1 ) == 1 assert or_gate(1 , 0 ) == 1 assert or_gate(1 , 1 ) == 1 if __name__ == "__main__": print(or_gate(0, 1)) print(or_gate(1, 0)) print(or_gate(0, 0)) print(or_gate(1, 1))
204
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCAmelCase_ = { 'configuration_xlm_roberta_xl': [ 'XLM_ROBERTA_XL_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XLMRobertaXLConfig', 'XLMRobertaXLOnnxConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ 'XLM_ROBERTA_XL_PRETRAINED_MODEL_ARCHIVE_LIST', 'XLMRobertaXLForCausalLM', 'XLMRobertaXLForMaskedLM', 'XLMRobertaXLForMultipleChoice', 'XLMRobertaXLForQuestionAnswering', 'XLMRobertaXLForSequenceClassification', 'XLMRobertaXLForTokenClassification', 'XLMRobertaXLModel', 'XLMRobertaXLPreTrainedModel', ] if TYPE_CHECKING: from .configuration_xlm_roberta_xl import ( XLM_ROBERTA_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMRobertaXLConfig, XLMRobertaXLOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm_roberta_xl import ( XLM_ROBERTA_XL_PRETRAINED_MODEL_ARCHIVE_LIST, XLMRobertaXLForCausalLM, XLMRobertaXLForMaskedLM, XLMRobertaXLForMultipleChoice, XLMRobertaXLForQuestionAnswering, XLMRobertaXLForSequenceClassification, XLMRobertaXLForTokenClassification, XLMRobertaXLModel, XLMRobertaXLPreTrainedModel, ) else: import sys UpperCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure)
247
import qiskit def lowerCAmelCase_ ( __UpperCAmelCase: int , __UpperCAmelCase: int ) -> qiskit.result.counts.Counts: UpperCamelCase__ : Optional[Any] = qiskit.Aer.get_backend('''aer_simulator''' ) # Create a Quantum Circuit acting on the q register UpperCamelCase__ : str = qiskit.QuantumCircuit(__UpperCAmelCase , __UpperCAmelCase ) # Apply X (NOT) Gate to Qubits 0 & 1 circuit.x(0 ) circuit.x(1 ) # Map the quantum measurement to the classical bits circuit.measure([0, 1] , [0, 1] ) # Execute the circuit on the qasm simulator UpperCamelCase__ : Union[str, Any] = qiskit.execute(__UpperCAmelCase , __UpperCAmelCase , shots=1000 ) # Return the histogram data of the results of the experiment. return job.result().get_counts(__UpperCAmelCase ) if __name__ == "__main__": UpperCAmelCase_ = single_qubit_measure(2, 2) print(F'''Total count for various states are: {counts}''')
247
1
"""simple docstring""" import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to properly calculate the metrics on the # validation dataset when in a distributed system, and builds off the # `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## __UpperCamelCase = 16 __UpperCamelCase = 32 def lowercase (SCREAMING_SNAKE_CASE_ : Accelerator , SCREAMING_SNAKE_CASE_ : int = 16 ) -> int: SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained('bert-base-cased' ) SCREAMING_SNAKE_CASE = load_dataset('glue' , 'mrpc' ) def tokenize_function(SCREAMING_SNAKE_CASE_ : int ): # max_length=None => use the model max length (it's actually the default) SCREAMING_SNAKE_CASE = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=__lowerCamelCase , max_length=__lowerCamelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): SCREAMING_SNAKE_CASE = datasets.map( __lowerCamelCase , batched=__lowerCamelCase , remove_columns=['idx', 'sentence1', 'sentence2'] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library SCREAMING_SNAKE_CASE = tokenized_datasets.rename_column('label' , 'labels' ) def collate_fn(SCREAMING_SNAKE_CASE_ : Any ): # On TPU it's best to pad everything to the same length or training will be very slow. SCREAMING_SNAKE_CASE = 1_28 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": SCREAMING_SNAKE_CASE = 16 elif accelerator.mixed_precision != "no": SCREAMING_SNAKE_CASE = 8 else: SCREAMING_SNAKE_CASE = None return tokenizer.pad( __lowerCamelCase , padding='longest' , max_length=__lowerCamelCase , pad_to_multiple_of=__lowerCamelCase , return_tensors='pt' , ) # Instantiate dataloaders. SCREAMING_SNAKE_CASE = DataLoader( tokenized_datasets['train'] , shuffle=__lowerCamelCase , collate_fn=__lowerCamelCase , batch_size=__lowerCamelCase ) SCREAMING_SNAKE_CASE = DataLoader( tokenized_datasets['validation'] , shuffle=__lowerCamelCase , collate_fn=__lowerCamelCase , batch_size=__lowerCamelCase ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('''TESTING_MOCKED_DATALOADERS''', None) == "1": from accelerate.test_utils.training import mocked_dataloaders __UpperCamelCase = mocked_dataloaders # noqa: F811 def lowercase (SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Any ) -> Optional[Any]: # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS' , __lowerCamelCase ) == "1": SCREAMING_SNAKE_CASE = 2 # Initialize accelerator SCREAMING_SNAKE_CASE = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs SCREAMING_SNAKE_CASE = config['lr'] SCREAMING_SNAKE_CASE = int(config['num_epochs'] ) SCREAMING_SNAKE_CASE = int(config['seed'] ) SCREAMING_SNAKE_CASE = int(config['batch_size'] ) SCREAMING_SNAKE_CASE = evaluate.load('glue' , 'mrpc' ) # If the batch size is too big we use gradient accumulation SCREAMING_SNAKE_CASE = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: SCREAMING_SNAKE_CASE = batch_size // MAX_GPU_BATCH_SIZE SCREAMING_SNAKE_CASE = MAX_GPU_BATCH_SIZE set_seed(__lowerCamelCase ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = get_dataloaders(__lowerCamelCase , __lowerCamelCase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) SCREAMING_SNAKE_CASE = AutoModelForSequenceClassification.from_pretrained('bert-base-cased' , return_dict=__lowerCamelCase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). SCREAMING_SNAKE_CASE = model.to(accelerator.device ) # Instantiate optimizer SCREAMING_SNAKE_CASE = AdamW(params=model.parameters() , lr=__lowerCamelCase ) # Instantiate scheduler SCREAMING_SNAKE_CASE = get_linear_schedule_with_warmup( optimizer=__lowerCamelCase , num_warmup_steps=1_00 , num_training_steps=(len(__lowerCamelCase ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = accelerator.prepare( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # Now we train the model for epoch in range(__lowerCamelCase ): model.train() for step, batch in enumerate(__lowerCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) SCREAMING_SNAKE_CASE = model(**__lowerCamelCase ) SCREAMING_SNAKE_CASE = outputs.loss SCREAMING_SNAKE_CASE = loss / gradient_accumulation_steps accelerator.backward(__lowerCamelCase ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() SCREAMING_SNAKE_CASE = 0 for step, batch in enumerate(__lowerCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): SCREAMING_SNAKE_CASE = model(**__lowerCamelCase ) SCREAMING_SNAKE_CASE = outputs.logits.argmax(dim=-1 ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = accelerator.gather((predictions, batch['labels']) ) # New Code # # First we check if it's a distributed system if accelerator.use_distributed: # Then see if we're on the last batch of our eval dataloader if step == len(__lowerCamelCase ) - 1: # Last batch needs to be truncated on distributed systems as it contains additional samples SCREAMING_SNAKE_CASE = predictions[: len(eval_dataloader.dataset ) - samples_seen] SCREAMING_SNAKE_CASE = references[: len(eval_dataloader.dataset ) - samples_seen] else: # Otherwise we add the number of samples seen samples_seen += references.shape[0] # All of this can be avoided if you use `Accelerator.gather_for_metrics` instead of `Accelerator.gather`: # accelerator.gather_for_metrics((predictions, batch["labels"])) metric.add_batch( predictions=__lowerCamelCase , references=__lowerCamelCase , ) SCREAMING_SNAKE_CASE = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'epoch {epoch}:' , __lowerCamelCase ) def lowercase () -> List[str]: SCREAMING_SNAKE_CASE = argparse.ArgumentParser(description='Simple example of training script.' ) parser.add_argument( '--mixed_precision' , type=__lowerCamelCase , default=__lowerCamelCase , choices=['no', 'fp16', 'bf16', 'fp8'] , help='Whether to use mixed precision. Choose' 'between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.' 'and an Nvidia Ampere GPU.' , ) parser.add_argument('--cpu' , action='store_true' , help='If passed, will train on the CPU.' ) SCREAMING_SNAKE_CASE = parser.parse_args() SCREAMING_SNAKE_CASE = {'lr': 2E-5, 'num_epochs': 3, 'seed': 42, 'batch_size': 16} training_function(__lowerCamelCase , __lowerCamelCase ) if __name__ == "__main__": main()
113
'''simple docstring''' import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import List import timm import torch import torch.nn as nn from huggingface_hub import hf_hub_download from torch import Tensor from transformers import AutoImageProcessor, ResNetConfig, ResNetForImageClassification from transformers.utils import logging logging.set_verbosity_info() lowercase_ = logging.get_logger() @dataclass class a_ : '''simple docstring''' UpperCamelCase = 42 UpperCamelCase = field(default_factory=snake_case_ ) UpperCamelCase = field(default_factory=snake_case_ ) def snake_case_( self , A , A , A ) -> Optional[int]: _SCREAMING_SNAKE_CASE = len(list(m.modules() ) ) == 1 or isinstance(A , nn.Convad ) or isinstance(A , nn.BatchNormad ) if has_not_submodules: self.traced.append(A ) def __call__( self , A ) -> str: for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook ) ) self.module(A ) [x.remove() for x in self.handles] return self @property def snake_case_( self ) -> str: # check the len of the state_dict keys to see if we have learnable params return list(filter(lambda A : len(list(x.state_dict().keys() ) ) > 0 , self.traced ) ) @dataclass class a_ : '''simple docstring''' UpperCamelCase = 42 UpperCamelCase = 42 UpperCamelCase = 0 UpperCamelCase = field(default_factory=snake_case_ ) UpperCamelCase = field(default_factory=snake_case_ ) def __call__( self , A ) -> List[str]: _SCREAMING_SNAKE_CASE = Tracker(self.dest )(A ).parametrized _SCREAMING_SNAKE_CASE = Tracker(self.src )(A ).parametrized _SCREAMING_SNAKE_CASE = list(filter(lambda A : type(A ) not in self.src_skip , A ) ) _SCREAMING_SNAKE_CASE = list(filter(lambda A : type(A ) not in self.dest_skip , A ) ) if len(A ) != len(A ): raise Exception( f'Numbers of operations are different. Source module has {len(A )} operations while' f' destination module has {len(A )}.' ) for dest_m, src_m in zip(A , A ): dest_m.load_state_dict(src_m.state_dict() ) if self.verbose == 1: print(f'Transfered from={src_m} to={dest_m}' ) def lowerCamelCase ( __lowerCamelCase : str , __lowerCamelCase : ResNetConfig , __lowerCamelCase : Path , __lowerCamelCase : bool = True ) ->int: print(F'Converting {name}...' ) with torch.no_grad(): _SCREAMING_SNAKE_CASE = timm.create_model(__lowerCamelCase , pretrained=__lowerCamelCase ).eval() _SCREAMING_SNAKE_CASE = ResNetForImageClassification(__lowerCamelCase ).eval() _SCREAMING_SNAKE_CASE = ModuleTransfer(src=__lowerCamelCase , dest=__lowerCamelCase ) _SCREAMING_SNAKE_CASE = torch.randn((1, 3, 224, 224) ) module_transfer(__lowerCamelCase ) assert torch.allclose(from_model(__lowerCamelCase ) , our_model(__lowerCamelCase ).logits ), "The model logits don't match the original one." _SCREAMING_SNAKE_CASE = F'resnet{"-".join(name.split("resnet" ) )}' print(__lowerCamelCase ) if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message="""Add model""" , use_temp_dir=__lowerCamelCase , ) # we can use the convnext one _SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained("""facebook/convnext-base-224-22k-1k""" ) image_processor.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message="""Add image processor""" , use_temp_dir=__lowerCamelCase , ) print(F'Pushed {checkpoint_name}' ) def lowerCamelCase ( __lowerCamelCase : Path , __lowerCamelCase : str = None , __lowerCamelCase : bool = True ) ->Any: _SCREAMING_SNAKE_CASE = """imagenet-1k-id2label.json""" _SCREAMING_SNAKE_CASE = 1000 _SCREAMING_SNAKE_CASE = (1, num_labels) _SCREAMING_SNAKE_CASE = """huggingface/label-files""" _SCREAMING_SNAKE_CASE = num_labels _SCREAMING_SNAKE_CASE = json.load(open(hf_hub_download(__lowerCamelCase , __lowerCamelCase , repo_type="""dataset""" ) , """r""" ) ) _SCREAMING_SNAKE_CASE = {int(__lowerCamelCase ): v for k, v in idalabel.items()} _SCREAMING_SNAKE_CASE = idalabel _SCREAMING_SNAKE_CASE = {v: k for k, v in idalabel.items()} _SCREAMING_SNAKE_CASE = partial(__lowerCamelCase , num_labels=__lowerCamelCase , idalabel=__lowerCamelCase , labelaid=__lowerCamelCase ) _SCREAMING_SNAKE_CASE = { """resnet18""": ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[64, 128, 256, 512] , layer_type="""basic""" ), """resnet26""": ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[256, 512, 1024, 2048] , layer_type="""bottleneck""" ), """resnet34""": ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[64, 128, 256, 512] , layer_type="""basic""" ), """resnet50""": ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[256, 512, 1024, 2048] , layer_type="""bottleneck""" ), """resnet101""": ImageNetPreTrainedConfig( depths=[3, 4, 23, 3] , hidden_sizes=[256, 512, 1024, 2048] , layer_type="""bottleneck""" ), """resnet152""": ImageNetPreTrainedConfig( depths=[3, 8, 36, 3] , hidden_sizes=[256, 512, 1024, 2048] , layer_type="""bottleneck""" ), } if model_name: convert_weight_and_push(__lowerCamelCase , names_to_config[model_name] , __lowerCamelCase , __lowerCamelCase ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) return config, expected_shape if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default=None, type=str, help=( """The name of the model you wish to convert, it must be one of the supported resnet* architecture,""" """ currently: resnet18,26,34,50,101,152. If `None`, all of them will the converted.""" ), ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=Path, required=True, help="""Path to the output PyTorch model directory.""", ) parser.add_argument( """--push_to_hub""", default=True, type=bool, required=False, help="""If True, push model and image processor to the hub.""", ) lowercase_ = parser.parse_args() lowercase_ = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
58
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __snake_case : List[str] ={ 'configuration_x_clip': [ 'XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XCLIPConfig', 'XCLIPTextConfig', 'XCLIPVisionConfig', ], 'processing_x_clip': ['XCLIPProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : List[Any] =[ 'XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST', 'XCLIPModel', 'XCLIPPreTrainedModel', 'XCLIPTextModel', 'XCLIPVisionModel', ] if TYPE_CHECKING: from .configuration_x_clip import ( XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, XCLIPConfig, XCLIPTextConfig, XCLIPVisionConfig, ) from .processing_x_clip import XCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_x_clip import ( XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, XCLIPModel, XCLIPPreTrainedModel, XCLIPTextModel, XCLIPVisionModel, ) else: import sys __snake_case : Tuple =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
94
__snake_case : Any ='\n# Transformers installation\n! pip install transformers datasets\n# To install from source instead of the last release, comment the command above and uncomment the following one.\n# ! pip install git+https://github.com/huggingface/transformers.git\n' __snake_case : Tuple =[{'type': 'code', 'content': INSTALL_CONTENT}] __snake_case : Tuple ={ '{processor_class}': 'FakeProcessorClass', '{model_class}': 'FakeModelClass', '{object_class}': 'FakeObjectClass', }
94
1
import copy from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING a =logging.get_logger(__name__) a ={ """microsoft/conditional-detr-resnet-50""": ( """https://huggingface.co/microsoft/conditional-detr-resnet-50/resolve/main/config.json""" ), } class A_ ( SCREAMING_SNAKE_CASE ): _UpperCAmelCase : List[str] = '''conditional_detr''' _UpperCAmelCase : int = ['''past_key_values'''] _UpperCAmelCase : Optional[int] = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''encoder_attention_heads''', } def __init__( self : Dict ,SCREAMING_SNAKE_CASE__ : int=True ,SCREAMING_SNAKE_CASE__ : List[str]=None ,SCREAMING_SNAKE_CASE__ : List[str]=3 ,SCREAMING_SNAKE_CASE__ : int=3_0_0 ,SCREAMING_SNAKE_CASE__ : str=6 ,SCREAMING_SNAKE_CASE__ : Dict=2_0_4_8 ,SCREAMING_SNAKE_CASE__ : Union[str, Any]=8 ,SCREAMING_SNAKE_CASE__ : int=6 ,SCREAMING_SNAKE_CASE__ : Optional[int]=2_0_4_8 ,SCREAMING_SNAKE_CASE__ : List[Any]=8 ,SCREAMING_SNAKE_CASE__ : int=0.0 ,SCREAMING_SNAKE_CASE__ : Tuple=0.0 ,SCREAMING_SNAKE_CASE__ : Union[str, Any]=True ,SCREAMING_SNAKE_CASE__ : Optional[Any]="relu" ,SCREAMING_SNAKE_CASE__ : List[Any]=2_5_6 ,SCREAMING_SNAKE_CASE__ : List[Any]=0.1 ,SCREAMING_SNAKE_CASE__ : Any=0.0 ,SCREAMING_SNAKE_CASE__ : List[Any]=0.0 ,SCREAMING_SNAKE_CASE__ : str=0.02 ,SCREAMING_SNAKE_CASE__ : Tuple=1.0 ,SCREAMING_SNAKE_CASE__ : str=False ,SCREAMING_SNAKE_CASE__ : Dict="sine" ,SCREAMING_SNAKE_CASE__ : int="resnet50" ,SCREAMING_SNAKE_CASE__ : Union[str, Any]=True ,SCREAMING_SNAKE_CASE__ : str=False ,SCREAMING_SNAKE_CASE__ : Tuple=2 ,SCREAMING_SNAKE_CASE__ : Optional[int]=5 ,SCREAMING_SNAKE_CASE__ : int=2 ,SCREAMING_SNAKE_CASE__ : List[str]=1 ,SCREAMING_SNAKE_CASE__ : int=1 ,SCREAMING_SNAKE_CASE__ : str=2 ,SCREAMING_SNAKE_CASE__ : Optional[int]=5 ,SCREAMING_SNAKE_CASE__ : int=2 ,SCREAMING_SNAKE_CASE__ : Dict=0.25 ,**SCREAMING_SNAKE_CASE__ : Union[str, Any] ,): if backbone_config is not None and use_timm_backbone: raise ValueError('You can\'t specify both `backbone_config` and `use_timm_backbone`.') if not use_timm_backbone: if backbone_config is None: logger.info('`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.') __lowerCamelCase : str = CONFIG_MAPPING['resnet'](out_features=['stage4']) elif isinstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__): __lowerCamelCase : int = backbone_config.get('model_type') __lowerCamelCase : Optional[int] = CONFIG_MAPPING[backbone_model_type] __lowerCamelCase : int = config_class.from_dict(SCREAMING_SNAKE_CASE__) __lowerCamelCase : Optional[Any] = use_timm_backbone __lowerCamelCase : Dict = backbone_config __lowerCamelCase : int = num_channels __lowerCamelCase : Union[str, Any] = num_queries __lowerCamelCase : List[Any] = d_model __lowerCamelCase : str = encoder_ffn_dim __lowerCamelCase : Union[str, Any] = encoder_layers __lowerCamelCase : Union[str, Any] = encoder_attention_heads __lowerCamelCase : Union[str, Any] = decoder_ffn_dim __lowerCamelCase : Optional[Any] = decoder_layers __lowerCamelCase : int = decoder_attention_heads __lowerCamelCase : Optional[Any] = dropout __lowerCamelCase : Optional[Any] = attention_dropout __lowerCamelCase : Any = activation_dropout __lowerCamelCase : int = activation_function __lowerCamelCase : Dict = init_std __lowerCamelCase : int = init_xavier_std __lowerCamelCase : Any = encoder_layerdrop __lowerCamelCase : str = decoder_layerdrop __lowerCamelCase : Dict = encoder_layers __lowerCamelCase : List[str] = auxiliary_loss __lowerCamelCase : Optional[int] = position_embedding_type __lowerCamelCase : List[str] = backbone __lowerCamelCase : Dict = use_pretrained_backbone __lowerCamelCase : Union[str, Any] = dilation # Hungarian matcher __lowerCamelCase : Dict = class_cost __lowerCamelCase : Dict = bbox_cost __lowerCamelCase : Any = giou_cost # Loss coefficients __lowerCamelCase : List[str] = mask_loss_coefficient __lowerCamelCase : Optional[int] = dice_loss_coefficient __lowerCamelCase : Any = cls_loss_coefficient __lowerCamelCase : str = bbox_loss_coefficient __lowerCamelCase : str = giou_loss_coefficient __lowerCamelCase : Optional[Any] = focal_alpha super().__init__(is_encoder_decoder=SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__) @property def lowerCAmelCase ( self : Union[str, Any]): return self.encoder_attention_heads @property def lowerCAmelCase ( self : int): return self.d_model def lowerCAmelCase ( self : str): __lowerCamelCase : Optional[int] = copy.deepcopy(self.__dict__) if self.backbone_config is not None: __lowerCamelCase : str = self.backbone_config.to_dict() __lowerCamelCase : Optional[int] = self.__class__.model_type return output class A_ ( SCREAMING_SNAKE_CASE ): _UpperCAmelCase : int = version.parse('''1.11''' ) @property def lowerCAmelCase ( self : Optional[int]): return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ('pixel_mask', {0: 'batch'}), ]) @property def lowerCAmelCase ( self : Optional[Any]): return 1E-5 @property def lowerCAmelCase ( self : str): return 1_2
73
'''simple docstring''' import pytest from datasets import inspect_metric, list_metrics, load_metric @pytest.fixture def UpperCAmelCase_ ( __lowerCamelCase : List[str] ): monkeypatch.setattr("datasets.utils.deprecation_utils._emitted_deprecation_warnings" ,set() ) @pytest.fixture def UpperCAmelCase_ ( __lowerCamelCase : Any ): class a_ : def __init__( self : int , lowercase : int ): """simple docstring""" lowercase_ :Optional[Any] = metric_id class a_ : __A = [MetricMock(_lowerCAmelCase ) for metric_id in ["accuracy", "mse", "precision", "codeparrot/apps_metric"]] def lowercase__ ( self : Union[str, Any] ): """simple docstring""" return self._metrics monkeypatch.setattr("datasets.inspect.huggingface_hub" ,HfhMock() ) @pytest.mark.parametrize( "func, args" ,[(load_metric, ("metrics/mse",)), (list_metrics, ()), (inspect_metric, ("metrics/mse", "tmp_path"))] ) def UpperCAmelCase_ ( __lowerCamelCase : Union[str, Any] ,__lowerCamelCase : int ,__lowerCamelCase : Optional[int] ,__lowerCamelCase : Union[str, Any] ,__lowerCamelCase : Tuple ): if "tmp_path" in args: lowercase_ :Union[str, Any] = tuple(arg if arg != "tmp_path" else tmp_path for arg in args ) with pytest.warns(__lowerCamelCase ,match="https://huggingface.co/docs/evaluate" ): func(*__lowerCamelCase )
223
0
import math def A ( lowercase = 100 ) -> int: '''simple docstring''' UpperCamelCase = sum(i * i for i in range(1 , n + 1 ) ) UpperCamelCase = int(math.pow(sum(range(1 , n + 1 ) ) , 2 ) ) return square_of_sum - sum_of_squares if __name__ == "__main__": print(F'''{solution() = }''')
110
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version(">=", "4.25.0")): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import UnCLIPImageVariationPipeline, UnCLIPPipeline else: from .pipeline_unclip import UnCLIPPipeline from .pipeline_unclip_image_variation import UnCLIPImageVariationPipeline from .text_proj import UnCLIPTextProjModel
110
1
"""simple docstring""" from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel from ...schedulers import ScoreSdeVeScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class __UpperCamelCase ( __lowerCAmelCase ): lowerCamelCase : UNetaDModel lowerCamelCase : ScoreSdeVeScheduler def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> Optional[int]: super().__init__() self.register_modules(unet=lowerCamelCase__ , scheduler=lowerCamelCase__ ) @torch.no_grad() def __call__( self , lowerCAmelCase__ = 1 , lowerCAmelCase__ = 2000 , lowerCAmelCase__ = None , lowerCAmelCase__ = "pil" , lowerCAmelCase__ = True , **lowerCAmelCase__ , ) -> Union[ImagePipelineOutput, Tuple]: a : str = self.unet.config.sample_size a : Tuple = (batch_size, 3, img_size, img_size) a : Optional[int] = self.unet a : Union[str, Any] = randn_tensor(lowerCamelCase__ , generator=lowerCamelCase__ ) * self.scheduler.init_noise_sigma a : List[str] = sample.to(self.device ) self.scheduler.set_timesteps(lowerCamelCase__ ) self.scheduler.set_sigmas(lowerCamelCase__ ) for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): a : int = self.scheduler.sigmas[i] * torch.ones(shape[0] , device=self.device ) # correction step for _ in range(self.scheduler.config.correct_steps ): a : List[Any] = self.unet(lowerCamelCase__ , lowerCamelCase__ ).sample a : Dict = self.scheduler.step_correct(lowerCamelCase__ , lowerCamelCase__ , generator=lowerCamelCase__ ).prev_sample # prediction step a : Union[str, Any] = model(lowerCamelCase__ , lowerCamelCase__ ).sample a : Optional[int] = self.scheduler.step_pred(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , generator=lowerCamelCase__ ) a : Tuple = output.prev_sample, output.prev_sample_mean a : Any = sample_mean.clamp(0 , 1 ) a : List[str] = sample.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": a : Tuple = self.numpy_to_pil(lowerCamelCase__ ) if not return_dict: return (sample,) return ImagePipelineOutput(images=lowerCamelCase__ )
105
import argparse import logging import os import time import timeit import datasets import numpy as np import pycuda.autoinit # noqa: F401 import pycuda.driver as cuda import tensorrt as trt import torch from absl import logging as absl_logging from accelerate import Accelerator from datasets import load_dataset, load_metric from torch.utils.data import DataLoader from utils_qa import postprocess_qa_predictions import transformers from transformers import AutoTokenizer, EvalPrediction, default_data_collator, set_seed from transformers.trainer_pt_utils import nested_concat, nested_truncate __UpperCamelCase : Dict = trt.Logger(trt.Logger.WARNING) __UpperCamelCase : Union[str, Any] = absl_logging.get_absl_logger() absl_logger.setLevel(logging.WARNING) __UpperCamelCase : int = logging.getLogger(__name__) __UpperCamelCase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--onnx_model_path", default=None, type=str, required=True, help="Path to ONNX model: ", ) parser.add_argument( "--output_dir", default=None, type=str, required=True, help="The output directory where the model checkpoints and predictions will be written.", ) # Other parameters parser.add_argument( "--tokenizer_name", default="", type=str, required=True, help="Pretrained tokenizer name or path if not the same as model_name", ) parser.add_argument( "--version_2_with_negative", action="store_true", help="If true, the SQuAD examples contain some that do not have an answer.", ) parser.add_argument( "--null_score_diff_threshold", type=float, default=0.0, help="If null_score - best_non_null is greater than the threshold predict null.", ) parser.add_argument( "--max_seq_length", default=384, type=int, help=( "The maximum total input sequence length after WordPiece tokenization. Sequences " "longer than this will be truncated, and sequences shorter than this will be padded." ), ) parser.add_argument( "--doc_stride", default=128, type=int, help="When splitting up a long document into chunks, how much stride to take between chunks.", ) parser.add_argument("--per_device_eval_batch_size", default=8, type=int, help="Batch size per GPU/CPU for evaluation.") parser.add_argument( "--n_best_size", default=20, type=int, help="The total number of n-best predictions to generate in the nbest_predictions.json output file.", ) parser.add_argument( "--max_answer_length", default=30, type=int, help=( "The maximum length of an answer that can be generated. This is needed because the start " "and end predictions are not conditioned on one another." ), ) parser.add_argument("--seed", type=int, default=42, help="random seed for initialization") parser.add_argument( "--dataset_name", type=str, default=None, required=True, help="The name of the dataset to use (via the datasets library).", ) parser.add_argument( "--dataset_config_name", type=str, default=None, help="The configuration name of the dataset to use (via the datasets library).", ) parser.add_argument( "--preprocessing_num_workers", type=int, default=4, help="A csv or a json file containing the training data." ) parser.add_argument("--overwrite_cache", action="store_true", help="Overwrite the cached training and evaluation sets") parser.add_argument( "--fp16", action="store_true", help="Whether to use 16-bit (mixed) precision instead of 32-bit", ) parser.add_argument( "--int8", action="store_true", help="Whether to use INT8", ) __UpperCamelCase : Dict = parser.parse_args() if args.tokenizer_name: __UpperCamelCase : Optional[Any] = AutoTokenizer.from_pretrained(args.tokenizer_name, use_fast=True) else: raise ValueError( "You are instantiating a new tokenizer from scratch. This is not supported by this script." "You can do it from another script, save it, and load it from here, using --tokenizer_name." ) logger.info("Training/evaluation parameters %s", args) __UpperCamelCase : Union[str, Any] = args.per_device_eval_batch_size __UpperCamelCase : List[str] = (args.eval_batch_size, args.max_seq_length) # TRT Engine properties __UpperCamelCase : Tuple = True __UpperCamelCase : Union[str, Any] = "temp_engine/bert-fp32.engine" if args.fpaa: __UpperCamelCase : str = "temp_engine/bert-fp16.engine" if args.inta: __UpperCamelCase : int = "temp_engine/bert-int8.engine" # import ONNX file if not os.path.exists("temp_engine"): os.makedirs("temp_engine") __UpperCamelCase : List[str] = 1 << (int)(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH) with trt.Builder(TRT_LOGGER) as builder, builder.create_network(EXPLICIT_BATCH) as network, trt.OnnxParser( network, TRT_LOGGER ) as parser: with open(args.onnx_model_path, "rb") as model: if not parser.parse(model.read()): for error in range(parser.num_errors): print(parser.get_error(error)) # Query input names and shapes from parsed TensorRT network __UpperCamelCase : Optional[Any] = [network.get_input(i) for i in range(network.num_inputs)] __UpperCamelCase : Optional[int] = [_input.name for _input in network_inputs] # ex: ["actual_input1"] with builder.create_builder_config() as config: __UpperCamelCase : List[Any] = 1 << 50 if STRICT_TYPES: config.set_flag(trt.BuilderFlag.STRICT_TYPES) if args.fpaa: config.set_flag(trt.BuilderFlag.FPaa) if args.inta: config.set_flag(trt.BuilderFlag.INTa) __UpperCamelCase : Dict = builder.create_optimization_profile() config.add_optimization_profile(profile) for i in range(len(input_names)): profile.set_shape(input_names[i], INPUT_SHAPE, INPUT_SHAPE, INPUT_SHAPE) __UpperCamelCase : int = builder.build_engine(network, config) # serialize_engine and store in file (can be directly loaded and deserialized): with open(engine_name, "wb") as f: f.write(engine.serialize()) def _a ( SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Union[str, Any] ): """simple docstring""" UpperCamelCase__ : Optional[int] = np.asarray(inputs['''input_ids'''] , dtype=np.intaa ) UpperCamelCase__ : str = np.asarray(inputs['''attention_mask'''] , dtype=np.intaa ) UpperCamelCase__ : Optional[Any] = np.asarray(inputs['''token_type_ids'''] , dtype=np.intaa ) # Copy inputs cuda.memcpy_htod_async(d_inputs[0] , input_ids.ravel() , SCREAMING_SNAKE_CASE ) cuda.memcpy_htod_async(d_inputs[1] , attention_mask.ravel() , SCREAMING_SNAKE_CASE ) cuda.memcpy_htod_async(d_inputs[2] , token_type_ids.ravel() , SCREAMING_SNAKE_CASE ) # start time UpperCamelCase__ : Union[str, Any] = time.time() # Run inference context.execute_async( bindings=[int(SCREAMING_SNAKE_CASE ) for d_inp in d_inputs] + [int(SCREAMING_SNAKE_CASE ), int(SCREAMING_SNAKE_CASE )] , stream_handle=stream.handle ) # Transfer predictions back from GPU cuda.memcpy_dtoh_async(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) cuda.memcpy_dtoh_async(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Synchronize the stream and take time stream.synchronize() # end time UpperCamelCase__ : List[Any] = time.time() UpperCamelCase__ : int = end_time - start_time UpperCamelCase__ : Optional[int] = (h_outputa, h_outputa) # print(outputs) return outputs, infer_time # Initialize the accelerator. We will let the accelerator handle device placement for us in this example. __UpperCamelCase : Optional[int] = Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO, ) # Setup logging, we only want one process per machine to log things on the screen. # accelerator.is_local_main_process is only True for one process per machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). if args.dataset_name is not None: # Downloading and loading a dataset from the hub. __UpperCamelCase : List[str] = load_dataset(args.dataset_name, args.dataset_config_name) else: raise ValueError("Evaluation requires a dataset name") # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Preprocessing the datasets. # Preprocessing is slighlty different for training and evaluation. __UpperCamelCase : str = raw_datasets["validation"].column_names __UpperCamelCase : List[Any] = "question" if "question" in column_names else column_names[0] __UpperCamelCase : Dict = "context" if "context" in column_names else column_names[1] __UpperCamelCase : str = "answers" if "answers" in column_names else column_names[2] # Padding side determines if we do (question|context) or (context|question). __UpperCamelCase : List[Any] = tokenizer.padding_side == "right" if args.max_seq_length > tokenizer.model_max_length: logger.warning( f"The max_seq_length passed ({args.max_seq_length}) is larger than the maximum length for the" f"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}." ) __UpperCamelCase : List[str] = min(args.max_seq_length, tokenizer.model_max_length) def _a ( SCREAMING_SNAKE_CASE : List[Any] ): """simple docstring""" UpperCamelCase__ : Dict = [q.lstrip() for q in examples[question_column_name]] # Tokenize our examples with truncation and maybe padding, but keep the overflows using a stride. This results # in one example possible giving several features when a context is long, each of those features having a # context that overlaps a bit the context of the previous feature. UpperCamelCase__ : List[Any] = tokenizer( examples[question_column_name if pad_on_right else context_column_name] , examples[context_column_name if pad_on_right else question_column_name] , truncation='''only_second''' if pad_on_right else '''only_first''' , max_length=SCREAMING_SNAKE_CASE , stride=args.doc_stride , return_overflowing_tokens=SCREAMING_SNAKE_CASE , return_offsets_mapping=SCREAMING_SNAKE_CASE , padding='''max_length''' , ) # Since one example might give us several features if it has a long context, we need a map from a feature to # its corresponding example. This key gives us just that. UpperCamelCase__ : int = tokenized_examples.pop('''overflow_to_sample_mapping''' ) # For evaluation, we will need to convert our predictions to substrings of the context, so we keep the # corresponding example_id and we will store the offset mappings. UpperCamelCase__ : List[Any] = [] for i in range(len(tokenized_examples['''input_ids'''] ) ): # Grab the sequence corresponding to that example (to know what is the context and what is the question). UpperCamelCase__ : Dict = tokenized_examples.sequence_ids(SCREAMING_SNAKE_CASE ) UpperCamelCase__ : List[str] = 1 if pad_on_right else 0 # One example can give several spans, this is the index of the example containing this span of text. UpperCamelCase__ : Optional[Any] = sample_mapping[i] tokenized_examples["example_id"].append(examples['''id'''][sample_index] ) # Set to None the offset_mapping that are not part of the context so it's easy to determine if a token # position is part of the context or not. UpperCamelCase__ : Any = [ (o if sequence_ids[k] == context_index else None) for k, o in enumerate(tokenized_examples['''offset_mapping'''][i] ) ] return tokenized_examples __UpperCamelCase : str = raw_datasets["validation"] # Validation Feature Creation __UpperCamelCase : Optional[int] = eval_examples.map( prepare_validation_features, batched=True, num_proc=args.preprocessing_num_workers, remove_columns=column_names, load_from_cache_file=not args.overwrite_cache, desc="Running tokenizer on validation dataset", ) __UpperCamelCase : Union[str, Any] = default_data_collator __UpperCamelCase : List[str] = eval_dataset.remove_columns(["example_id", "offset_mapping"]) __UpperCamelCase : Optional[int] = DataLoader( eval_dataset_for_model, collate_fn=data_collator, batch_size=args.per_device_eval_batch_size ) def _a ( SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Union[str, Any]="eval" ): """simple docstring""" UpperCamelCase__ : List[str] = postprocess_qa_predictions( examples=SCREAMING_SNAKE_CASE , features=SCREAMING_SNAKE_CASE , predictions=SCREAMING_SNAKE_CASE , version_2_with_negative=args.version_2_with_negative , n_best_size=args.n_best_size , max_answer_length=args.max_answer_length , null_score_diff_threshold=args.null_score_diff_threshold , output_dir=args.output_dir , prefix=SCREAMING_SNAKE_CASE , ) # Format the result to the format the metric expects. if args.version_2_with_negative: UpperCamelCase__ : List[str] = [ {'''id''': k, '''prediction_text''': v, '''no_answer_probability''': 0.0} for k, v in predictions.items() ] else: UpperCamelCase__ : Optional[Any] = [{'''id''': k, '''prediction_text''': v} for k, v in predictions.items()] UpperCamelCase__ : int = [{'''id''': ex['''id'''], '''answers''': ex[answer_column_name]} for ex in examples] return EvalPrediction(predictions=SCREAMING_SNAKE_CASE , label_ids=SCREAMING_SNAKE_CASE ) __UpperCamelCase : int = load_metric("squad_v2" if args.version_2_with_negative else "squad") # Evaluation! logger.info("Loading ONNX model %s for evaluation", args.onnx_model_path) with open(engine_name, "rb") as f, trt.Runtime(TRT_LOGGER) as runtime, runtime.deserialize_cuda_engine( f.read() ) as engine, engine.create_execution_context() as context: # setup for TRT inferrence for i in range(len(input_names)): context.set_binding_shape(i, INPUT_SHAPE) assert context.all_binding_shapes_specified def _a ( SCREAMING_SNAKE_CASE : List[Any] ): """simple docstring""" return trt.volume(engine.get_binding_shape(SCREAMING_SNAKE_CASE ) ) * engine.get_binding_dtype(SCREAMING_SNAKE_CASE ).itemsize # Allocate device memory for inputs and outputs. __UpperCamelCase : Any = [cuda.mem_alloc(binding_nbytes(binding)) for binding in engine if engine.binding_is_input(binding)] # Allocate output buffer __UpperCamelCase : List[Any] = cuda.pagelocked_empty(tuple(context.get_binding_shape(3)), dtype=np.floataa) __UpperCamelCase : Dict = cuda.pagelocked_empty(tuple(context.get_binding_shape(4)), dtype=np.floataa) __UpperCamelCase : Any = cuda.mem_alloc(h_outputa.nbytes) __UpperCamelCase : List[Any] = cuda.mem_alloc(h_outputa.nbytes) # Create a stream in which to copy inputs/outputs and run inference. __UpperCamelCase : Union[str, Any] = cuda.Stream() # Evaluation logger.info("***** Running Evaluation *****") logger.info(f" Num examples = {len(eval_dataset)}") logger.info(f" Batch size = {args.per_device_eval_batch_size}") __UpperCamelCase : str = 0.0 __UpperCamelCase : int = 0 __UpperCamelCase : List[Any] = timeit.default_timer() __UpperCamelCase : List[str] = None for step, batch in enumerate(eval_dataloader): __UpperCamelCase , __UpperCamelCase : Optional[Any] = model_infer(batch, context, d_inputs, h_outputa, h_outputa, d_outputa, d_outputa, stream) total_time += infer_time niter += 1 __UpperCamelCase , __UpperCamelCase : Optional[Any] = outputs __UpperCamelCase : List[str] = torch.tensor(start_logits) __UpperCamelCase : Optional[Any] = torch.tensor(end_logits) # necessary to pad predictions and labels for being gathered __UpperCamelCase : int = accelerator.pad_across_processes(start_logits, dim=1, pad_index=-100) __UpperCamelCase : List[Any] = accelerator.pad_across_processes(end_logits, dim=1, pad_index=-100) __UpperCamelCase : Union[str, Any] = (accelerator.gather(start_logits).cpu().numpy(), accelerator.gather(end_logits).cpu().numpy()) __UpperCamelCase : Optional[Any] = logits if all_preds is None else nested_concat(all_preds, logits, padding_index=-100) if all_preds is not None: __UpperCamelCase : int = nested_truncate(all_preds, len(eval_dataset)) __UpperCamelCase : Dict = timeit.default_timer() - start_time logger.info(" Evaluation done in total %f secs (%f sec per example)", evalTime, evalTime / len(eval_dataset)) # Inference time from TRT logger.info("Average Inference Time = {:.3f} ms".format(total_time * 1000 / niter)) logger.info("Total Inference Time = {:.3f} ms".format(total_time * 1000)) logger.info("Total Number of Inference = %d", niter) __UpperCamelCase : int = post_processing_function(eval_examples, eval_dataset, all_preds) __UpperCamelCase : Union[str, Any] = metric.compute(predictions=prediction.predictions, references=prediction.label_ids) logger.info(f"Evaluation metrics: {eval_metric}")
146
0
"""simple docstring""" from ..utils import DummyObject, requires_backends class lowerCamelCase ( metaclass=_lowerCAmelCase ): lowercase : str = ["keras_nlp"] def __init__( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): requires_backends(self , ["""keras_nlp"""] )
369
"""simple docstring""" import gc import unittest from diffusers import FlaxStableDiffusionInpaintPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class lowerCamelCase ( unittest.TestCase ): def a_ ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() def a_ ( self ): UpperCamelCase : Tuple = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-inpaint/init_image.png""" ) UpperCamelCase : int = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png""" ) UpperCamelCase : Dict = """xvjiarui/stable-diffusion-2-inpainting""" UpperCamelCase , UpperCamelCase : List[str] = FlaxStableDiffusionInpaintPipeline.from_pretrained(SCREAMING_SNAKE_CASE_ , safety_checker=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[int] = """Face of a yellow cat, high resolution, sitting on a park bench""" UpperCamelCase : List[str] = jax.random.PRNGKey(0 ) UpperCamelCase : Tuple = 50 UpperCamelCase : Dict = jax.device_count() UpperCamelCase : Optional[int] = num_samples * [prompt] UpperCamelCase : int = num_samples * [init_image] UpperCamelCase : List[Any] = num_samples * [mask_image] UpperCamelCase , UpperCamelCase , UpperCamelCase : Optional[Any] = pipeline.prepare_inputs(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # shard inputs and rng UpperCamelCase : Optional[int] = replicate(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[int] = jax.random.split(SCREAMING_SNAKE_CASE_ , jax.device_count() ) UpperCamelCase : str = shard(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Union[str, Any] = shard(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : int = shard(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[Any] = pipeline( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , jit=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[str] = output.images.reshape(SCREAMING_SNAKE_CASE_ , 512 , 512 , 3 ) UpperCamelCase : List[Any] = images[0, 253:256, 253:256, -1] UpperCamelCase : List[Any] = jnp.asarray(jax.device_get(image_slice.flatten() ) ) UpperCamelCase : Dict = jnp.array( [0.3611307, 0.37649736, 0.3757408, 0.38213953, 0.39295167, 0.3841631, 0.41554978, 0.4137475, 0.4217084] ) print(f'output_slice: {output_slice}' ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2
27
0
'''simple docstring''' import argparse import re import requests import torch # git clone https://github.com/salesforce/BLIP.git from models.blip import blip_decoder from models.blip_itm import blip_itm from models.blip_vqa import blip_vqa from PIL import Image from torchvision import transforms from torchvision.transforms.functional import InterpolationMode from transformers import ( BertTokenizer, BlipConfig, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, ) def UpperCamelCase_ ( snake_case_ : List[str] , snake_case_ : List[str] ) -> str: '''simple docstring''' __lowerCAmelCase = '''https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg''' __lowerCAmelCase = Image.open(requests.get(lowerCAmelCase__ , stream=lowerCAmelCase__ ).raw ).convert("""RGB""" ) __lowerCAmelCase = transforms.Compose( [ transforms.Resize((image_size, image_size) , interpolation=InterpolationMode.BICUBIC ), transforms.ToTensor(), transforms.Normalize((0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3) , (0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1) ), ] ) __lowerCAmelCase = transform(lowerCAmelCase__ ).unsqueeze(0 ).to(lowerCAmelCase__ ) return image def UpperCamelCase_ ( snake_case_ : Union[str, Any] ) -> Optional[int]: '''simple docstring''' if "visual_encoder" in key: __lowerCAmelCase = re.sub("""visual_encoder*""" , """vision_model.encoder""" , lowerCAmelCase__ ) if "blocks" in key: __lowerCAmelCase = re.sub(r"""blocks""" , """layers""" , lowerCAmelCase__ ) if "attn" in key: __lowerCAmelCase = re.sub(r"""attn""" , """self_attn""" , lowerCAmelCase__ ) if "norm1" in key: __lowerCAmelCase = re.sub(r"""norm1""" , """layer_norm1""" , lowerCAmelCase__ ) if "norm2" in key: __lowerCAmelCase = re.sub(r"""norm2""" , """layer_norm2""" , lowerCAmelCase__ ) if "encoder.norm" in key: __lowerCAmelCase = re.sub(r"""encoder.norm""" , """post_layernorm""" , lowerCAmelCase__ ) if "encoder.patch_embed.proj" in key: __lowerCAmelCase = re.sub(r"""encoder.patch_embed.proj""" , """embeddings.patch_embedding""" , lowerCAmelCase__ ) if "encoder.pos_embed" in key: __lowerCAmelCase = re.sub(r"""encoder.pos_embed""" , """embeddings.position_embedding""" , lowerCAmelCase__ ) if "encoder.cls_token" in key: __lowerCAmelCase = re.sub(r"""encoder.cls_token""" , """embeddings.class_embedding""" , lowerCAmelCase__ ) if "self_attn" in key: __lowerCAmelCase = re.sub(r"""self_attn.proj""" , """self_attn.projection""" , lowerCAmelCase__ ) return key @torch.no_grad() def UpperCamelCase_ ( snake_case_ : int , snake_case_ : Any=None ) -> Optional[int]: '''simple docstring''' if config_path is not None: __lowerCAmelCase = BlipConfig.from_pretrained(lowerCAmelCase__ ) else: __lowerCAmelCase = BlipConfig(projection_dim=5_12 , text_config={} , vision_config={} ) __lowerCAmelCase = BlipForConditionalGeneration(lowerCAmelCase__ ).eval() __lowerCAmelCase = '''https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_capfilt_large.pth''' __lowerCAmelCase = blip_decoder(pretrained=lowerCAmelCase__ , image_size=3_84 , vit="""base""" ) __lowerCAmelCase = pt_model.eval() __lowerCAmelCase = pt_model.state_dict() for key in modified_state_dict.copy(): __lowerCAmelCase = modified_state_dict.pop(lowerCAmelCase__ ) __lowerCAmelCase = rename_key(lowerCAmelCase__ ) __lowerCAmelCase = value hf_model.load_state_dict(lowerCAmelCase__ ) __lowerCAmelCase = 3_84 __lowerCAmelCase = load_demo_image(image_size=lowerCAmelCase__ , device="""cpu""" ) __lowerCAmelCase = BertTokenizer.from_pretrained("""bert-base-uncased""" ) __lowerCAmelCase = tokenizer(["""a picture of"""] ).input_ids __lowerCAmelCase = hf_model.generate(lowerCAmelCase__ , lowerCAmelCase__ ) assert out[0].tolist() == [3_05_22, 10_37, 38_61, 19_97, 10_37, 24_50, 35_64, 20_06, 19_96, 35_09, 20_07, 20_14, 38_99, 1_02] __lowerCAmelCase = hf_model.generate(lowerCAmelCase__ ) assert out[0].tolist() == [3_05_22, 10_37, 24_50, 35_64, 20_06, 19_96, 35_09, 20_07, 20_14, 38_99, 1_02] if pytorch_dump_folder_path is not None: hf_model.save_pretrained(lowerCAmelCase__ ) # model_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_vqa.pth' __lowerCAmelCase = ( '''https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_vqa_capfilt_large.pth''' ) __lowerCAmelCase = blip_vqa(pretrained=lowerCAmelCase__ , image_size=lowerCAmelCase__ , vit="""base""" ) vqa_model.eval() __lowerCAmelCase = vqa_model.state_dict() for key in modified_state_dict.copy(): __lowerCAmelCase = modified_state_dict.pop(lowerCAmelCase__ ) __lowerCAmelCase = rename_key(lowerCAmelCase__ ) __lowerCAmelCase = value __lowerCAmelCase = BlipForQuestionAnswering(lowerCAmelCase__ ) hf_vqa_model.load_state_dict(lowerCAmelCase__ ) __lowerCAmelCase = ['''How many dogs are in this image?'''] __lowerCAmelCase = tokenizer(lowerCAmelCase__ , return_tensors="""pt""" ).input_ids __lowerCAmelCase = hf_vqa_model.generate(lowerCAmelCase__ , lowerCAmelCase__ ) print(tokenizer.decode(answer[0] ) ) assert tokenizer.decode(answer[0] ) == "[UNK] 1 [SEP]" if pytorch_dump_folder_path is not None: hf_vqa_model.save_pretrained(pytorch_dump_folder_path + """_vqa""" ) __lowerCAmelCase = '''https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_retrieval_coco.pth''' __lowerCAmelCase = blip_itm(pretrained=lowerCAmelCase__ , image_size=lowerCAmelCase__ , vit="""base""" ) itm_model.eval() __lowerCAmelCase = itm_model.state_dict() for key in modified_state_dict.copy(): __lowerCAmelCase = modified_state_dict.pop(lowerCAmelCase__ ) __lowerCAmelCase = rename_key(lowerCAmelCase__ ) __lowerCAmelCase = value __lowerCAmelCase = BlipForImageTextRetrieval(lowerCAmelCase__ ) __lowerCAmelCase = ['''A picture of a woman with a dog sitting in a beach'''] __lowerCAmelCase = tokenizer( lowerCAmelCase__ , return_tensors="""pt""" , padding="""max_length""" , truncation=lowerCAmelCase__ , max_length=35 , ).input_ids hf_itm_model.load_state_dict(lowerCAmelCase__ ) hf_itm_model.eval() __lowerCAmelCase = hf_itm_model(lowerCAmelCase__ , lowerCAmelCase__ , use_itm_head=lowerCAmelCase__ ) __lowerCAmelCase = hf_itm_model(lowerCAmelCase__ , lowerCAmelCase__ , use_itm_head=lowerCAmelCase__ ) assert out[0].item() == 0.2_1_1_0_6_8_7_4_9_4_2_7_7_9_5_4 assert torch.nn.functional.softmax(out_itm[0] , dim=1 )[:, 1].item() == 0.4_5_6_9_8_8_4_5_3_8_6_5_0_5_1_2_7 if pytorch_dump_folder_path is not None: hf_itm_model.save_pretrained(pytorch_dump_folder_path + """_itm""" ) if __name__ == "__main__": _A : Dict = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') _A : Optional[Any] = parser.parse_args() convert_blip_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
229
def __UpperCamelCase ( lowerCAmelCase__ : int = 5_0_0_0_0_0_0_0 ): __a : int = set() __a : str = int((limit - 2_4) ** (1 / 2) ) __a : int = set(range(3 , prime_square_limit + 1 , 2 ) ) primes.add(2 ) for p in range(3 , prime_square_limit + 1 , 2 ): if p not in primes: continue primes.difference_update(set(range(p * p , prime_square_limit + 1 , lowerCAmelCase__ ) ) ) for primea in primes: __a : Union[str, Any] = primea * primea for primea in primes: __a : Union[str, Any] = primea * primea * primea if square + cube >= limit - 1_6: break for primea in primes: __a : int = primea * primea * primea * primea __a : Union[str, Any] = square + cube + tetr if total >= limit: break ret.add(lowerCAmelCase__ ) return len(lowerCAmelCase__ ) if __name__ == "__main__": print(F"""{solution() = }""")
216
0
"""simple docstring""" import argparse import dataclasses import json import logging import os import shutil from typing import List, Optional import datasets from accelerate import Accelerator from datasets import load_dataset from finetuning import finetune from tqdm.auto import tqdm import transformers from transformers import AutoConfig, set_seed from transformers.trainer_utils import IntervalStrategy a :Dict = logging.getLogger(__name__) a :Optional[int] = "pytorch_model.bin" @dataclasses.dataclass class __a : '''simple docstring''' _SCREAMING_SNAKE_CASE :str = dataclasses.field( metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models."""}) _SCREAMING_SNAKE_CASE :Optional[str] = dataclasses.field( default=UpperCamelCase_ , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co."""} , ) @dataclasses.dataclass class __a : '''simple docstring''' _SCREAMING_SNAKE_CASE :str = dataclasses.field(metadata={"""help""": """A csv or a json file containing the training data."""}) _SCREAMING_SNAKE_CASE :str = dataclasses.field(metadata={"""help""": """A csv or a json file containing the data to predict on."""}) _SCREAMING_SNAKE_CASE :Optional[str] = dataclasses.field( default=UpperCamelCase_ , metadata={"""help""": """A csv or a json file containing the validation data."""}) _SCREAMING_SNAKE_CASE :Optional[str] = dataclasses.field( default=UpperCamelCase_ , metadata={"""help""": """The name of the task to train on."""} , ) _SCREAMING_SNAKE_CASE :Optional[List[str]] = dataclasses.field( default=UpperCamelCase_ , metadata={"""help""": """The list of labels for the task."""}) @dataclasses.dataclass class __a : '''simple docstring''' _SCREAMING_SNAKE_CASE :str = dataclasses.field( metadata={"""help""": """The output directory where the model predictions and checkpoints will be written."""}) _SCREAMING_SNAKE_CASE :Optional[str] = dataclasses.field( default="""accuracy""" , metadata={"""help""": """The evaluation metric used for the task."""}) _SCREAMING_SNAKE_CASE :Optional[str] = dataclasses.field( default="""no""" , metadata={ """help""": """The evaluation strategy to adopt during training. Possible values are: [\"no\", \"step\", \"epoch]""" } , ) _SCREAMING_SNAKE_CASE :Optional[int] = dataclasses.field( default=10 , metadata={"""help""": """Number of evaluation calls with no improvement after which training will be stopped."""} , ) _SCREAMING_SNAKE_CASE :Optional[float] = dataclasses.field( default=0.0 , metadata={ """help""": """How much the specified evaluation metric must improve to satisfy early stopping conditions.""" } , ) _SCREAMING_SNAKE_CASE :Optional[bool] = dataclasses.field( default=UpperCamelCase_ , metadata={"""help""": """Whether to filter the pseudo-labeled data based on the confidence score."""} , ) _SCREAMING_SNAKE_CASE :Optional[bool] = dataclasses.field( default=UpperCamelCase_ , metadata={"""help""": """Whether to filter the pseudo-labeled data based on the validation performance."""} , ) _SCREAMING_SNAKE_CASE :Optional[bool] = dataclasses.field( default=UpperCamelCase_ , metadata={"""help""": """Whether to fine-tune on labeled data after pseudo training."""} , ) _SCREAMING_SNAKE_CASE :Optional[float] = dataclasses.field( default=0.0 , metadata={"""help""": """Confidence threshold for pseudo-labeled data filtering."""} , ) _SCREAMING_SNAKE_CASE :Optional[int] = dataclasses.field( default=1_00 , metadata={"""help""": """Number of evaluation calls with no improvement after which training will be stopped."""} , ) _SCREAMING_SNAKE_CASE :Optional[int] = dataclasses.field( default=UpperCamelCase_ , metadata={"""help""": """Random seed for initialization."""} , ) def _lowercase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__ : Optional[Any] = datasets.concatenate_datasets([infer_input, infer_output] , axis=1 ) if args.do_filter_by_confidence: SCREAMING_SNAKE_CASE__ : Union[str, Any] = dataset.filter(lambda __lowerCAmelCase : example["probability"] > args.confidence_threshold ) if args.do_filter_by_val_performance: assert eval_result >= 0.0 and eval_result <= 1.0 SCREAMING_SNAKE_CASE__ : Union[str, Any] = int(eval_result * len(__lowerCAmelCase ) ) print(__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : Optional[Any] = dataset.sort("""probability""" , reverse=__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : Tuple = dataset.select(range(__lowerCAmelCase ) ) SCREAMING_SNAKE_CASE__ : List[str] = dataset.remove_columns(["""label""", """probability"""] ) SCREAMING_SNAKE_CASE__ : List[Any] = dataset.rename_column("""prediction""" , """label""" ) SCREAMING_SNAKE_CASE__ : int = dataset.map(lambda __lowerCAmelCase : {"label": idalabel[example["label"]]} ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = dataset.shuffle(seed=args.seed ) SCREAMING_SNAKE_CASE__ : List[str] = os.path.join(__lowerCAmelCase , F'''train_pseudo.{args.data_file_extension}''' ) if args.data_file_extension == "csv": dataset.to_csv(__lowerCAmelCase , index=__lowerCAmelCase ) else: dataset.to_json(__lowerCAmelCase ) def _lowercase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase ) -> List[str]: SCREAMING_SNAKE_CASE__ : Optional[Any] = Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO , ) logger.info(accelerator.state ) # Setup logging, we only want one process per machine to log things on the # screen. accelerator.is_local_main_process is only True for one process per # machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() SCREAMING_SNAKE_CASE__ : Union[str, Any] = STModelArguments(model_name_or_path=__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : Dict = STDataArguments(train_file=__lowerCAmelCase , infer_file=__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : Dict = STTrainingArguments(output_dir=__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : Dict = argparse.Namespace() for arg_class in (model_args, data_args, training_args): for key, value in vars(__lowerCAmelCase ).items(): setattr(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) for key, value in kwargs.items(): if hasattr(__lowerCAmelCase , __lowerCAmelCase ): setattr(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # Sanity checks SCREAMING_SNAKE_CASE__ : Optional[Any] = {} SCREAMING_SNAKE_CASE__ : Optional[Any] = None # You need to provide the training data and the data to predict on assert args.train_file is not None assert args.infer_file is not None SCREAMING_SNAKE_CASE__ : Union[str, Any] = args.train_file SCREAMING_SNAKE_CASE__ : Tuple = args.infer_file if args.evaluation_strategy != IntervalStrategy.NO.value: assert args.eval_file is not None SCREAMING_SNAKE_CASE__ : Optional[Any] = args.eval_file for key in data_files: SCREAMING_SNAKE_CASE__ : Optional[Any] = data_files[key].split(""".""" )[-1] assert extension in ["csv", "json"], F'''`{key}_file` should be a csv or a json file.''' if args.data_file_extension is None: SCREAMING_SNAKE_CASE__ : str = extension else: assert extension == args.data_file_extension, F'''`{key}_file` should be a {args.data_file_extension} file`.''' assert ( args.eval_metric in datasets.list_metrics() ), F'''{args.eval_metric} not in the list of supported metrics {datasets.list_metrics()}.''' # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed ) logger.info("""Creating the initial data directory for self-training...""" ) SCREAMING_SNAKE_CASE__ : List[Any] = F'''{args.output_dir}/self-train_iter-{{}}'''.format SCREAMING_SNAKE_CASE__ : Dict = data_dir_format(0 ) if accelerator.is_main_process: if args.output_dir is not None: os.makedirs(args.output_dir , exist_ok=__lowerCAmelCase ) os.makedirs(__lowerCAmelCase , exist_ok=__lowerCAmelCase ) accelerator.wait_for_everyone() SCREAMING_SNAKE_CASE__ : List[str] = None SCREAMING_SNAKE_CASE__ : Union[str, Any] = None SCREAMING_SNAKE_CASE__ : str = 0 SCREAMING_SNAKE_CASE__ : Dict = False # Show the progress bar SCREAMING_SNAKE_CASE__ : int = tqdm(range(args.max_selftrain_iterations ) , disable=not accelerator.is_local_main_process ) # Self-train for iteration in range(0 , int(args.max_selftrain_iterations ) ): SCREAMING_SNAKE_CASE__ : Union[str, Any] = data_dir_format(__lowerCAmelCase ) assert os.path.exists(__lowerCAmelCase ) # Stage 1: initial fine-tuning for iteration = 0 or pseudo-training for # iteration > 0 SCREAMING_SNAKE_CASE__ : Dict = os.path.join(__lowerCAmelCase , """stage-1""" ) SCREAMING_SNAKE_CASE__ : Tuple = { """accelerator""": accelerator, """model_name_or_path""": args.model_name_or_path, """cache_dir""": args.cache_dir, """do_train""": True, """train_file""": data_files["""train"""] if iteration == 0 else data_files["""train_pseudo"""], """do_eval""": True if args.eval_file is not None else False, """eval_file""": data_files["""eval"""], """do_predict""": True, """infer_file""": data_files["""infer"""], """task_name""": args.task_name, """label_list""": args.label_list, """output_dir""": current_output_dir, """eval_metric""": args.eval_metric, """evaluation_strategy""": args.evaluation_strategy, """early_stopping_patience""": args.early_stopping_patience, """early_stopping_threshold""": args.early_stopping_threshold, """seed""": args.seed, } # Add additional training arguments for key, value in kwargs.items(): if key not in arguments_dict and not hasattr(__lowerCAmelCase , __lowerCAmelCase ): arguments_dict.update({key: value} ) SCREAMING_SNAKE_CASE__ : Optional[int] = os.path.join(__lowerCAmelCase , """best-checkpoint""" , __lowerCAmelCase ) if os.path.exists(__lowerCAmelCase ): logger.info( """Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 1.""" , __lowerCAmelCase , __lowerCAmelCase , ) else: logger.info("""***** Running self-training: iteration: %d, stage: 1 *****""" , __lowerCAmelCase ) finetune(**__lowerCAmelCase ) accelerator.wait_for_everyone() assert os.path.exists(__lowerCAmelCase ) logger.info("""Self-training job completed: iteration: %d, stage: 1.""" , __lowerCAmelCase ) if iteration > 0 and args.finetune_on_labeled_data: # Stage 2 (optional): fine-tuning on the original labeled data SCREAMING_SNAKE_CASE__ : Union[str, Any] = os.path.join(__lowerCAmelCase , """best-checkpoint""" ) SCREAMING_SNAKE_CASE__ : Dict = os.path.join(__lowerCAmelCase , """stage-2""" ) # Update arguments_dict SCREAMING_SNAKE_CASE__ : Optional[int] = model_path SCREAMING_SNAKE_CASE__ : str = data_files["""train"""] SCREAMING_SNAKE_CASE__ : Tuple = current_output_dir SCREAMING_SNAKE_CASE__ : str = os.path.join(__lowerCAmelCase , """best-checkpoint""" , __lowerCAmelCase ) if os.path.exists(__lowerCAmelCase ): logger.info( """Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 2.""" , __lowerCAmelCase , __lowerCAmelCase , ) else: logger.info("""***** Running self-training: iteration: %d, stage: 2 *****""" , __lowerCAmelCase ) finetune(**__lowerCAmelCase ) accelerator.wait_for_everyone() assert os.path.exists(__lowerCAmelCase ) logger.info("""Self-training job completed: iteration: %d, stage: 2.""" , __lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : Optional[int] = iteration SCREAMING_SNAKE_CASE__ : Tuple = data_dir_format(iteration + 1 ) SCREAMING_SNAKE_CASE__ : str = AutoConfig.from_pretrained(os.path.join(__lowerCAmelCase , """best-checkpoint""" ) ) SCREAMING_SNAKE_CASE__ : Dict = config.idalabel SCREAMING_SNAKE_CASE__ : Any = os.path.join(__lowerCAmelCase , """eval_results_best-checkpoint.json""" ) SCREAMING_SNAKE_CASE__ : str = os.path.join(__lowerCAmelCase , """test_results_best-checkpoint.json""" ) assert os.path.exists(__lowerCAmelCase ) with open(__lowerCAmelCase , """r""" ) as f: SCREAMING_SNAKE_CASE__ : int = float(json.load(__lowerCAmelCase )[args.eval_metric] ) SCREAMING_SNAKE_CASE__ : Dict = os.path.join(__lowerCAmelCase , """infer_output_best-checkpoint.csv""" ) assert os.path.exists(__lowerCAmelCase ) # Loading the dataset from local csv or json files. SCREAMING_SNAKE_CASE__ : List[str] = load_dataset(args.data_file_extension , data_files={"""data""": data_files["""infer"""]} )["""data"""] SCREAMING_SNAKE_CASE__ : Dict = load_dataset("""csv""" , data_files={"""data""": infer_output_file} )["""data"""] if accelerator.is_main_process: os.makedirs(__lowerCAmelCase , exist_ok=__lowerCAmelCase ) shutil.copy(__lowerCAmelCase , os.path.join(__lowerCAmelCase , F'''eval_results_iter-{iteration}.json''' ) ) if os.path.exists(__lowerCAmelCase ): shutil.copy(__lowerCAmelCase , os.path.join(__lowerCAmelCase , F'''test_results_iter-{iteration}.json''' ) ) create_pseudo_labeled_data(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) accelerator.wait_for_everyone() SCREAMING_SNAKE_CASE__ : List[Any] = os.path.join(__lowerCAmelCase , F'''train_pseudo.{args.data_file_extension}''' ) if args.evaluation_strategy != IntervalStrategy.NO.value: SCREAMING_SNAKE_CASE__ : Optional[Any] = eval_result if best_iteration is None: SCREAMING_SNAKE_CASE__ : int = new_iteration SCREAMING_SNAKE_CASE__ : str = new_eval_result else: if new_eval_result - best_eval_result > args.early_stopping_threshold: SCREAMING_SNAKE_CASE__ : Union[str, Any] = new_iteration SCREAMING_SNAKE_CASE__ : Dict = new_eval_result SCREAMING_SNAKE_CASE__ : Optional[Any] = 0 else: if new_eval_result == best_eval_result: SCREAMING_SNAKE_CASE__ : Any = new_iteration SCREAMING_SNAKE_CASE__ : List[Any] = new_eval_result early_stopping_patience_counter += 1 if early_stopping_patience_counter >= args.early_stopping_patience: SCREAMING_SNAKE_CASE__ : List[Any] = True progress_bar.update(1 ) if should_training_stop: break if best_iteration is not None: # Save the best iteration logger.info("""Best iteration: %d""" , __lowerCAmelCase ) logger.info("""Best evaluation result: %s = %f""" , args.eval_metric , __lowerCAmelCase ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(__lowerCAmelCase , F'''eval_results_iter-{iteration}.json''' ) , os.path.join(__lowerCAmelCase , """eval_results_best-iteration.json""" ) , ) else: # Assume that the last iteration is the best logger.info("""Best iteration: %d""" , args.max_selftrain_iterations - 1 ) logger.info("""Best evaluation result: %s = %f""" , args.eval_metric , __lowerCAmelCase ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(__lowerCAmelCase , F'''eval_results_iter-{args.max_selftrain_iterations - 1}.json''' ) , os.path.join(__lowerCAmelCase , """eval_results_best-iteration.json""" ) , )
56
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available a :Dict = { "configuration_rag": ["RagConfig"], "retrieval_rag": ["RagRetriever"], "tokenization_rag": ["RagTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a :Optional[int] = [ "RagModel", "RagPreTrainedModel", "RagSequenceForGeneration", "RagTokenForGeneration", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a :List[str] = [ "TFRagModel", "TFRagPreTrainedModel", "TFRagSequenceForGeneration", "TFRagTokenForGeneration", ] if TYPE_CHECKING: from .configuration_rag import RagConfig from .retrieval_rag import RagRetriever from .tokenization_rag import RagTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_rag import RagModel, RagPreTrainedModel, RagSequenceForGeneration, RagTokenForGeneration try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_rag import ( TFRagModel, TFRagPreTrainedModel, TFRagSequenceForGeneration, TFRagTokenForGeneration, ) else: import sys a :List[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
56
1
"""simple docstring""" def _lowercase ( __snake_case ) -> bool: __lowerCAmelCase : set[int] = set() # To detect a back edge, keep track of vertices currently in the recursion stack __lowerCAmelCase : set[int] = set() return any( node not in visited and depth_first_search(__snake_case ,__snake_case ,__snake_case ,__snake_case ) for node in graph ) def _lowercase ( __snake_case ,__snake_case ,__snake_case ,__snake_case ) -> bool: visited.add(__snake_case ) rec_stk.add(__snake_case ) for node in graph[vertex]: if node not in visited: if depth_first_search(__snake_case ,__snake_case ,__snake_case ,__snake_case ): return True elif node in rec_stk: return True # The node needs to be removed from recursion stack before function ends rec_stk.remove(__snake_case ) return False if __name__ == "__main__": from doctest import testmod testmod()
269
"""simple docstring""" import gc import threading import time import psutil import torch class A__ : '''simple docstring''' def __init__( self: str) -> Optional[Any]: """simple docstring""" __lowerCAmelCase : Optional[Any] = psutil.Process() __lowerCAmelCase : str = False def _SCREAMING_SNAKE_CASE ( self: int) -> Optional[int]: """simple docstring""" __lowerCAmelCase : Optional[Any] = -1 while True: __lowerCAmelCase : str = max(self.process.memory_info().rss , self.cpu_memory_peak) # can't sleep or will not catch the peak right (this comment is here on purpose) if not self.peak_monitoring: break def _SCREAMING_SNAKE_CASE ( self: Tuple) -> int: """simple docstring""" __lowerCAmelCase : List[str] = True __lowerCAmelCase : str = threading.Thread(target=self.peak_monitor) __lowerCAmelCase : Tuple = True self.thread.start() def _SCREAMING_SNAKE_CASE ( self: Optional[Any]) -> List[str]: """simple docstring""" __lowerCAmelCase : Tuple = False self.thread.join() return self.cpu_memory_peak __snake_case : Tuple = PeakCPUMemory() def _lowercase ( ) -> str: # Time __lowerCAmelCase : str = {"time": time.time()} gc.collect() torch.cuda.empty_cache() # CPU mem __lowerCAmelCase : Optional[Any] = psutil.Process().memory_info().rss cpu_peak_tracker.start() # GPU mem for i in range(torch.cuda.device_count() ): __lowerCAmelCase : Union[str, Any] = torch.cuda.memory_allocated(__snake_case ) torch.cuda.reset_peak_memory_stats() return measures def _lowercase ( __snake_case ) -> Optional[Any]: # Time __lowerCAmelCase : str = {"time": time.time() - start_measures["time"]} gc.collect() torch.cuda.empty_cache() # CPU mem __lowerCAmelCase : str = (psutil.Process().memory_info().rss - start_measures["cpu"]) / 2**20 __lowerCAmelCase : List[str] = (cpu_peak_tracker.stop() - start_measures["cpu"]) / 2**20 # GPU mem for i in range(torch.cuda.device_count() ): __lowerCAmelCase : Union[str, Any] = (torch.cuda.memory_allocated(__snake_case ) - start_measures[str(__snake_case )]) / 2**20 __lowerCAmelCase : Any = (torch.cuda.max_memory_allocated(__snake_case ) - start_measures[str(__snake_case )]) / 2**20 return measures def _lowercase ( __snake_case ,__snake_case ) -> Dict: print(F"""{description}:""" ) print(F"""- Time: {measures['time']:.2f}s""" ) for i in range(torch.cuda.device_count() ): print(F"""- GPU {i} allocated: {measures[str(__snake_case )]:.2f}MiB""" ) __lowerCAmelCase : Optional[Any] = measures[F"""{i}-peak"""] print(F"""- GPU {i} peak: {peak:.2f}MiB""" ) print(F"""- CPU RAM allocated: {measures['cpu']:.2f}MiB""" ) print(F"""- CPU RAM peak: {measures['cpu-peak']:.2f}MiB""" )
269
1
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer import diffusers from diffusers import ( AutoencoderKL, EulerDiscreteScheduler, StableDiffusionLatentUpscalePipeline, StableDiffusionPipeline, UNetaDConditionModel, ) from diffusers.schedulers import KarrasDiffusionSchedulers from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() def lowerCamelCase ( UpperCAmelCase__ : Any ) -> Tuple: """simple docstring""" lowercase_ : Any = [tensor.shape for tensor in tensor_list] return all(shape == shapes[0] for shape in shapes[1:] ) class __magic_name__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, unittest.TestCase): UpperCamelCase__ = StableDiffusionLatentUpscalePipeline UpperCamelCase__ = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - { '''height''', '''width''', '''cross_attention_kwargs''', '''negative_prompt_embeds''', '''prompt_embeds''', } UpperCamelCase__ = PipelineTesterMixin.required_optional_params - {'''num_images_per_prompt'''} UpperCamelCase__ = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS UpperCamelCase__ = frozenset( []) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess UpperCamelCase__ = frozenset([]) UpperCamelCase__ = True @property def SCREAMING_SNAKE_CASE_ ( self : Dict ): lowercase_ : List[str] = 1 lowercase_ : Union[str, Any] = 4 lowercase_ : Optional[Any] = (16, 16) lowercase_ : Tuple = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(lowercase_ ) return image def SCREAMING_SNAKE_CASE_ ( self : Tuple ): torch.manual_seed(0 ) lowercase_ : int = UNetaDConditionModel( act_fn="""gelu""" , attention_head_dim=8 , norm_num_groups=lowercase_ , block_out_channels=[32, 32, 64, 64] , time_cond_proj_dim=160 , conv_in_kernel=1 , conv_out_kernel=1 , cross_attention_dim=32 , down_block_types=( """KDownBlock2D""", """KCrossAttnDownBlock2D""", """KCrossAttnDownBlock2D""", """KCrossAttnDownBlock2D""", ) , in_channels=8 , mid_block_type=lowercase_ , only_cross_attention=lowercase_ , out_channels=5 , resnet_time_scale_shift="""scale_shift""" , time_embedding_type="""fourier""" , timestep_post_act="""gelu""" , up_block_types=("""KCrossAttnUpBlock2D""", """KCrossAttnUpBlock2D""", """KCrossAttnUpBlock2D""", """KUpBlock2D""") , ) lowercase_ : List[str] = AutoencoderKL( block_out_channels=[32, 32, 64, 64] , in_channels=3 , out_channels=3 , down_block_types=[ """DownEncoderBlock2D""", """DownEncoderBlock2D""", """DownEncoderBlock2D""", """DownEncoderBlock2D""", ] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D""", """UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) lowercase_ : int = EulerDiscreteScheduler(prediction_type="""sample""" ) lowercase_ : List[Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act="""quick_gelu""" , projection_dim=512 , ) lowercase_ : int = CLIPTextModel(lowercase_ ) lowercase_ : Tuple = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) lowercase_ : List[str] = { """unet""": model.eval(), """vae""": vae.eval(), """scheduler""": scheduler, """text_encoder""": text_encoder, """tokenizer""": tokenizer, } return components def SCREAMING_SNAKE_CASE_ ( self : Dict , lowercase_ : List[str] , lowercase_ : Optional[Any]=0 ): if str(lowercase_ ).startswith("""mps""" ): lowercase_ : Optional[int] = torch.manual_seed(lowercase_ ) else: lowercase_ : str = torch.Generator(device=lowercase_ ).manual_seed(lowercase_ ) lowercase_ : str = { """prompt""": """A painting of a squirrel eating a burger""", """image""": self.dummy_image.cpu(), """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ): lowercase_ : Optional[Any] = """cpu""" lowercase_ : Any = self.get_dummy_components() lowercase_ : str = self.pipeline_class(**lowercase_ ) pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) lowercase_ : Optional[int] = self.get_dummy_inputs(lowercase_ ) lowercase_ : List[Any] = pipe(**lowercase_ ).images lowercase_ : Optional[Any] = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 256, 256, 3) ) lowercase_ : Any = np.array( [0.47_22_24_12, 0.41_92_16_33, 0.44_71_74_34, 0.46_87_41_92, 0.42_58_82_58, 0.46_15_07_26, 0.4_67_75_34, 0.45_58_38_32, 0.48_57_90_55] ) lowercase_ : Optional[int] = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(lowercase_ , 1E-3 ) def SCREAMING_SNAKE_CASE_ ( self : List[str] ): super().test_attention_slicing_forward_pass(expected_max_diff=7E-3 ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): super().test_cpu_offload_forward_pass(expected_max_diff=3E-3 ) def SCREAMING_SNAKE_CASE_ ( self : Tuple ): super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 ) def SCREAMING_SNAKE_CASE_ ( self : Dict ): super().test_inference_batch_single_identical(expected_max_diff=7E-3 ) def SCREAMING_SNAKE_CASE_ ( self : str ): super().test_pt_np_pil_outputs_equivalent(expected_max_diff=3E-3 ) def SCREAMING_SNAKE_CASE_ ( self : str ): super().test_save_load_local(expected_max_difference=3E-3 ) def SCREAMING_SNAKE_CASE_ ( self : int ): super().test_save_load_optional_components(expected_max_difference=3E-3 ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ): lowercase_ : int = [ """DDIMScheduler""", """DDPMScheduler""", """PNDMScheduler""", """HeunDiscreteScheduler""", """EulerAncestralDiscreteScheduler""", """KDPM2DiscreteScheduler""", """KDPM2AncestralDiscreteScheduler""", """DPMSolverSDEScheduler""", ] lowercase_ : Union[str, Any] = self.get_dummy_components() lowercase_ : Dict = self.pipeline_class(**lowercase_ ) # make sure that PNDM does not need warm-up pipe.scheduler.register_to_config(skip_prk_steps=lowercase_ ) pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) lowercase_ : Dict = self.get_dummy_inputs(lowercase_ ) lowercase_ : Optional[int] = 2 lowercase_ : int = [] for scheduler_enum in KarrasDiffusionSchedulers: if scheduler_enum.name in skip_schedulers: # no sigma schedulers are not supported # no schedulers continue lowercase_ : Union[str, Any] = getattr(lowercase_ , scheduler_enum.name ) lowercase_ : List[str] = scheduler_cls.from_config(pipe.scheduler.config ) lowercase_ : Union[str, Any] = pipe(**lowercase_ )[0] outputs.append(lowercase_ ) assert check_same_shape(lowercase_ ) @require_torch_gpu @slow class __magic_name__ ( unittest.TestCase): def SCREAMING_SNAKE_CASE_ ( self : int ): super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE_ ( self : List[Any] ): lowercase_ : int = torch.manual_seed(33 ) lowercase_ : Union[str, Any] = StableDiffusionPipeline.from_pretrained("""CompVis/stable-diffusion-v1-4""" , torch_dtype=torch.floataa ) pipe.to("""cuda""" ) lowercase_ : Any = StableDiffusionLatentUpscalePipeline.from_pretrained( """stabilityai/sd-x2-latent-upscaler""" , torch_dtype=torch.floataa ) upscaler.to("""cuda""" ) lowercase_ : List[Any] = """a photo of an astronaut high resolution, unreal engine, ultra realistic""" lowercase_ : int = pipe(lowercase_ , generator=lowercase_ , output_type="""latent""" ).images lowercase_ : Optional[int] = upscaler( prompt=lowercase_ , image=lowercase_ , num_inference_steps=20 , guidance_scale=0 , generator=lowercase_ , output_type="""np""" , ).images[0] lowercase_ : Any = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/astronaut_1024.npy""" ) assert np.abs((expected_image - image).mean() ) < 5E-2 def SCREAMING_SNAKE_CASE_ ( self : Any ): lowercase_ : List[Any] = torch.manual_seed(33 ) lowercase_ : str = StableDiffusionLatentUpscalePipeline.from_pretrained( """stabilityai/sd-x2-latent-upscaler""" , torch_dtype=torch.floataa ) upscaler.to("""cuda""" ) lowercase_ : Union[str, Any] = """the temple of fire by Ross Tran and Gerardo Dottori, oil on canvas""" lowercase_ : Optional[int] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_512.png""" ) lowercase_ : Dict = upscaler( prompt=lowercase_ , image=lowercase_ , num_inference_steps=20 , guidance_scale=0 , generator=lowercase_ , output_type="""np""" , ).images[0] lowercase_ : Optional[Any] = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_1024.npy""" ) assert np.abs((expected_image - image).max() ) < 5E-2
365
'''simple docstring''' import os import sys from contextlib import contextmanager # Windows only if os.name == "nt": import ctypes import msvcrt # noqa class __magic_name__ ( ctypes.Structure): # _fields is a specific attr expected by ctypes UpperCamelCase__ = [('''size''', ctypes.c_int), ('''visible''', ctypes.c_byte)] def lowerCamelCase ( ) -> List[Any]: if os.name == "nt": lowercase_ : List[Any] = CursorInfo() lowercase_ : int = ctypes.windll.kernelaa.GetStdHandle(-11 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(UpperCAmelCase__ , ctypes.byref(UpperCAmelCase__ ) ) lowercase_ : List[str] = False ctypes.windll.kernelaa.SetConsoleCursorInfo(UpperCAmelCase__ , ctypes.byref(UpperCAmelCase__ ) ) elif os.name == "posix": sys.stdout.write("""\033[?25l""" ) sys.stdout.flush() def lowerCamelCase ( ) -> str: if os.name == "nt": lowercase_ : int = CursorInfo() lowercase_ : Optional[Any] = ctypes.windll.kernelaa.GetStdHandle(-11 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(UpperCAmelCase__ , ctypes.byref(UpperCAmelCase__ ) ) lowercase_ : Optional[int] = True ctypes.windll.kernelaa.SetConsoleCursorInfo(UpperCAmelCase__ , ctypes.byref(UpperCAmelCase__ ) ) elif os.name == "posix": sys.stdout.write("""\033[?25h""" ) sys.stdout.flush() @contextmanager def lowerCamelCase ( ) -> Any: try: hide_cursor() yield finally: show_cursor()
21
0
from maths.is_square_free import is_square_free from maths.prime_factors import prime_factors def UpperCamelCase_( lowerCamelCase_ ) -> int: _lowercase : Optional[Any] = prime_factors(lowerCamelCase_ ) if is_square_free(lowerCamelCase_ ): return -1 if len(lowerCamelCase_ ) % 2 else 1 return 0 if __name__ == "__main__": import doctest doctest.testmod()
21
import html from ...feature_extraction_utils import BatchFeature, FeatureExtractionMixin from ...utils import is_bsa_available, logging, requires_backends if is_bsa_available(): import bsa from bsa import BeautifulSoup A : str = logging.get_logger(__name__) class __A( a ): def __init__( self , **_snake_case ) -> List[Any]: '''simple docstring''' requires_backends(self , ['''bs4'''] ) super().__init__(**_snake_case ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case ) -> int: '''simple docstring''' __a = [] __a = [] __a = element if element.name else element.parent for parent in child.parents: # type: bs4.element.Tag __a = parent.find_all(child.name , recursive=_snake_case ) xpath_tags.append(child.name ) xpath_subscripts.append( 0 if 1 == len(_snake_case ) else next(i for i, s in enumerate(_snake_case , 1 ) if s is child ) ) __a = parent xpath_tags.reverse() xpath_subscripts.reverse() return xpath_tags, xpath_subscripts def SCREAMING_SNAKE_CASE_ ( self , _snake_case ) -> Optional[int]: '''simple docstring''' __a = BeautifulSoup(_snake_case , '''html.parser''' ) __a = [] __a = [] __a = [] for element in html_code.descendants: if type(_snake_case ) == bsa.element.NavigableString: if type(element.parent ) != bsa.element.Tag: continue __a = html.unescape(_snake_case ).strip() if not text_in_this_tag: continue all_doc_strings.append(_snake_case ) __a , __a = self.xpath_soup(_snake_case ) stringaxtag_seq.append(_snake_case ) stringaxsubs_seq.append(_snake_case ) if len(_snake_case ) != len(_snake_case ): raise ValueError('''Number of doc strings and xtags does not correspond''' ) if len(_snake_case ) != len(_snake_case ): raise ValueError('''Number of doc strings and xsubs does not correspond''' ) return all_doc_strings, stringaxtag_seq, stringaxsubs_seq def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case ) -> Optional[int]: '''simple docstring''' __a = '''''' for tagname, subs in zip(_snake_case , _snake_case ): xpath += F"""/{tagname}""" if subs != 0: xpath += F"""[{subs}]""" return xpath def __call__( self , _snake_case ) -> BatchFeature: '''simple docstring''' __a = False # Check that strings has a valid type if isinstance(_snake_case , _snake_case ): __a = True elif isinstance(_snake_case , (list, tuple) ): if len(_snake_case ) == 0 or isinstance(html_strings[0] , _snake_case ): __a = True if not valid_strings: raise ValueError( '''HTML strings must of type `str`, `List[str]` (batch of examples), ''' F"""but is of type {type(_snake_case )}.""" ) __a = bool(isinstance(_snake_case , (list, tuple) ) and (isinstance(html_strings[0] , _snake_case )) ) if not is_batched: __a = [html_strings] # Get nodes + xpaths __a = [] __a = [] for html_string in html_strings: __a , __a , __a = self.get_three_from_single(_snake_case ) nodes.append(_snake_case ) __a = [] for node, tag_list, sub_list in zip(_snake_case , _snake_case , _snake_case ): __a = self.construct_xpath(_snake_case , _snake_case ) xpath_strings.append(_snake_case ) xpaths.append(_snake_case ) # return as Dict __a = {'''nodes''': nodes, '''xpaths''': xpaths} __a = BatchFeature(data=_snake_case , tensor_type=_snake_case ) return encoded_inputs
6
0
"""simple docstring""" from collections import OrderedDict from ...utils import logging from .auto_factory import _BaseAutoModelClass, _LazyAutoMapping, auto_class_update from .configuration_auto import CONFIG_MAPPING_NAMES __snake_case : int = logging.get_logger(__name__) __snake_case : Optional[int] = OrderedDict( [ # Base model mapping ('albert', 'FlaxAlbertModel'), ('bart', 'FlaxBartModel'), ('beit', 'FlaxBeitModel'), ('bert', 'FlaxBertModel'), ('big_bird', 'FlaxBigBirdModel'), ('blenderbot', 'FlaxBlenderbotModel'), ('blenderbot-small', 'FlaxBlenderbotSmallModel'), ('clip', 'FlaxCLIPModel'), ('distilbert', 'FlaxDistilBertModel'), ('electra', 'FlaxElectraModel'), ('gpt-sw3', 'FlaxGPT2Model'), ('gpt2', 'FlaxGPT2Model'), ('gpt_neo', 'FlaxGPTNeoModel'), ('gptj', 'FlaxGPTJModel'), ('longt5', 'FlaxLongT5Model'), ('marian', 'FlaxMarianModel'), ('mbart', 'FlaxMBartModel'), ('mt5', 'FlaxMT5Model'), ('opt', 'FlaxOPTModel'), ('pegasus', 'FlaxPegasusModel'), ('regnet', 'FlaxRegNetModel'), ('resnet', 'FlaxResNetModel'), ('roberta', 'FlaxRobertaModel'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormModel'), ('roformer', 'FlaxRoFormerModel'), ('t5', 'FlaxT5Model'), ('vision-text-dual-encoder', 'FlaxVisionTextDualEncoderModel'), ('vit', 'FlaxViTModel'), ('wav2vec2', 'FlaxWav2Vec2Model'), ('whisper', 'FlaxWhisperModel'), ('xglm', 'FlaxXGLMModel'), ('xlm-roberta', 'FlaxXLMRobertaModel'), ] ) __snake_case : List[Any] = OrderedDict( [ # Model for pre-training mapping ('albert', 'FlaxAlbertForPreTraining'), ('bart', 'FlaxBartForConditionalGeneration'), ('bert', 'FlaxBertForPreTraining'), ('big_bird', 'FlaxBigBirdForPreTraining'), ('electra', 'FlaxElectraForPreTraining'), ('longt5', 'FlaxLongT5ForConditionalGeneration'), ('mbart', 'FlaxMBartForConditionalGeneration'), ('mt5', 'FlaxMT5ForConditionalGeneration'), ('roberta', 'FlaxRobertaForMaskedLM'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForMaskedLM'), ('roformer', 'FlaxRoFormerForMaskedLM'), ('t5', 'FlaxT5ForConditionalGeneration'), ('wav2vec2', 'FlaxWav2Vec2ForPreTraining'), ('whisper', 'FlaxWhisperForConditionalGeneration'), ('xlm-roberta', 'FlaxXLMRobertaForMaskedLM'), ] ) __snake_case : Optional[Any] = OrderedDict( [ # Model for Masked LM mapping ('albert', 'FlaxAlbertForMaskedLM'), ('bart', 'FlaxBartForConditionalGeneration'), ('bert', 'FlaxBertForMaskedLM'), ('big_bird', 'FlaxBigBirdForMaskedLM'), ('distilbert', 'FlaxDistilBertForMaskedLM'), ('electra', 'FlaxElectraForMaskedLM'), ('mbart', 'FlaxMBartForConditionalGeneration'), ('roberta', 'FlaxRobertaForMaskedLM'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForMaskedLM'), ('roformer', 'FlaxRoFormerForMaskedLM'), ('xlm-roberta', 'FlaxXLMRobertaForMaskedLM'), ] ) __snake_case : str = OrderedDict( [ # Model for Seq2Seq Causal LM mapping ('bart', 'FlaxBartForConditionalGeneration'), ('blenderbot', 'FlaxBlenderbotForConditionalGeneration'), ('blenderbot-small', 'FlaxBlenderbotSmallForConditionalGeneration'), ('encoder-decoder', 'FlaxEncoderDecoderModel'), ('longt5', 'FlaxLongT5ForConditionalGeneration'), ('marian', 'FlaxMarianMTModel'), ('mbart', 'FlaxMBartForConditionalGeneration'), ('mt5', 'FlaxMT5ForConditionalGeneration'), ('pegasus', 'FlaxPegasusForConditionalGeneration'), ('t5', 'FlaxT5ForConditionalGeneration'), ] ) __snake_case : List[str] = OrderedDict( [ # Model for Image-classsification ('beit', 'FlaxBeitForImageClassification'), ('regnet', 'FlaxRegNetForImageClassification'), ('resnet', 'FlaxResNetForImageClassification'), ('vit', 'FlaxViTForImageClassification'), ] ) __snake_case : Any = OrderedDict( [ ('vision-encoder-decoder', 'FlaxVisionEncoderDecoderModel'), ] ) __snake_case : Dict = OrderedDict( [ # Model for Causal LM mapping ('bart', 'FlaxBartForCausalLM'), ('bert', 'FlaxBertForCausalLM'), ('big_bird', 'FlaxBigBirdForCausalLM'), ('electra', 'FlaxElectraForCausalLM'), ('gpt-sw3', 'FlaxGPT2LMHeadModel'), ('gpt2', 'FlaxGPT2LMHeadModel'), ('gpt_neo', 'FlaxGPTNeoForCausalLM'), ('gptj', 'FlaxGPTJForCausalLM'), ('opt', 'FlaxOPTForCausalLM'), ('roberta', 'FlaxRobertaForCausalLM'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForCausalLM'), ('xglm', 'FlaxXGLMForCausalLM'), ('xlm-roberta', 'FlaxXLMRobertaForCausalLM'), ] ) __snake_case : Union[str, Any] = OrderedDict( [ # Model for Sequence Classification mapping ('albert', 'FlaxAlbertForSequenceClassification'), ('bart', 'FlaxBartForSequenceClassification'), ('bert', 'FlaxBertForSequenceClassification'), ('big_bird', 'FlaxBigBirdForSequenceClassification'), ('distilbert', 'FlaxDistilBertForSequenceClassification'), ('electra', 'FlaxElectraForSequenceClassification'), ('mbart', 'FlaxMBartForSequenceClassification'), ('roberta', 'FlaxRobertaForSequenceClassification'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForSequenceClassification'), ('roformer', 'FlaxRoFormerForSequenceClassification'), ('xlm-roberta', 'FlaxXLMRobertaForSequenceClassification'), ] ) __snake_case : Optional[Any] = OrderedDict( [ # Model for Question Answering mapping ('albert', 'FlaxAlbertForQuestionAnswering'), ('bart', 'FlaxBartForQuestionAnswering'), ('bert', 'FlaxBertForQuestionAnswering'), ('big_bird', 'FlaxBigBirdForQuestionAnswering'), ('distilbert', 'FlaxDistilBertForQuestionAnswering'), ('electra', 'FlaxElectraForQuestionAnswering'), ('mbart', 'FlaxMBartForQuestionAnswering'), ('roberta', 'FlaxRobertaForQuestionAnswering'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForQuestionAnswering'), ('roformer', 'FlaxRoFormerForQuestionAnswering'), ('xlm-roberta', 'FlaxXLMRobertaForQuestionAnswering'), ] ) __snake_case : Optional[Any] = OrderedDict( [ # Model for Token Classification mapping ('albert', 'FlaxAlbertForTokenClassification'), ('bert', 'FlaxBertForTokenClassification'), ('big_bird', 'FlaxBigBirdForTokenClassification'), ('distilbert', 'FlaxDistilBertForTokenClassification'), ('electra', 'FlaxElectraForTokenClassification'), ('roberta', 'FlaxRobertaForTokenClassification'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForTokenClassification'), ('roformer', 'FlaxRoFormerForTokenClassification'), ('xlm-roberta', 'FlaxXLMRobertaForTokenClassification'), ] ) __snake_case : int = OrderedDict( [ # Model for Multiple Choice mapping ('albert', 'FlaxAlbertForMultipleChoice'), ('bert', 'FlaxBertForMultipleChoice'), ('big_bird', 'FlaxBigBirdForMultipleChoice'), ('distilbert', 'FlaxDistilBertForMultipleChoice'), ('electra', 'FlaxElectraForMultipleChoice'), ('roberta', 'FlaxRobertaForMultipleChoice'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForMultipleChoice'), ('roformer', 'FlaxRoFormerForMultipleChoice'), ('xlm-roberta', 'FlaxXLMRobertaForMultipleChoice'), ] ) __snake_case : List[Any] = OrderedDict( [ ('bert', 'FlaxBertForNextSentencePrediction'), ] ) __snake_case : Optional[int] = OrderedDict( [ ('speech-encoder-decoder', 'FlaxSpeechEncoderDecoderModel'), ('whisper', 'FlaxWhisperForConditionalGeneration'), ] ) __snake_case : Dict = OrderedDict( [ ('whisper', 'FlaxWhisperForAudioClassification'), ] ) __snake_case : str = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_MAPPING_NAMES) __snake_case : str = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_PRETRAINING_MAPPING_NAMES) __snake_case : List[Any] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MASKED_LM_MAPPING_NAMES) __snake_case : Union[str, Any] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES ) __snake_case : Any = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES ) __snake_case : List[Any] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES) __snake_case : Any = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_CAUSAL_LM_MAPPING_NAMES) __snake_case : Optional[int] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES ) __snake_case : int = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES ) __snake_case : List[Any] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES ) __snake_case : List[str] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES ) __snake_case : Optional[Any] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES ) __snake_case : str = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES ) __snake_case : Optional[Any] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES ) class A__ ( _BaseAutoModelClass ): '''simple docstring''' SCREAMING_SNAKE_CASE = FLAX_MODEL_MAPPING __snake_case : Any = auto_class_update(FlaxAutoModel) class A__ ( _BaseAutoModelClass ): '''simple docstring''' SCREAMING_SNAKE_CASE = FLAX_MODEL_FOR_PRETRAINING_MAPPING __snake_case : Tuple = auto_class_update(FlaxAutoModelForPreTraining, head_doc='pretraining') class A__ ( _BaseAutoModelClass ): '''simple docstring''' SCREAMING_SNAKE_CASE = FLAX_MODEL_FOR_CAUSAL_LM_MAPPING __snake_case : Any = auto_class_update(FlaxAutoModelForCausalLM, head_doc='causal language modeling') class A__ ( _BaseAutoModelClass ): '''simple docstring''' SCREAMING_SNAKE_CASE = FLAX_MODEL_FOR_MASKED_LM_MAPPING __snake_case : Tuple = auto_class_update(FlaxAutoModelForMaskedLM, head_doc='masked language modeling') class A__ ( _BaseAutoModelClass ): '''simple docstring''' SCREAMING_SNAKE_CASE = FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING __snake_case : Dict = auto_class_update( FlaxAutoModelForSeqaSeqLM, head_doc='sequence-to-sequence language modeling', checkpoint_for_example='t5-base' ) class A__ ( _BaseAutoModelClass ): '''simple docstring''' SCREAMING_SNAKE_CASE = FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING __snake_case : List[str] = auto_class_update( FlaxAutoModelForSequenceClassification, head_doc='sequence classification' ) class A__ ( _BaseAutoModelClass ): '''simple docstring''' SCREAMING_SNAKE_CASE = FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING __snake_case : List[str] = auto_class_update(FlaxAutoModelForQuestionAnswering, head_doc='question answering') class A__ ( _BaseAutoModelClass ): '''simple docstring''' SCREAMING_SNAKE_CASE = FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING __snake_case : Union[str, Any] = auto_class_update( FlaxAutoModelForTokenClassification, head_doc='token classification' ) class A__ ( _BaseAutoModelClass ): '''simple docstring''' SCREAMING_SNAKE_CASE = FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING __snake_case : Union[str, Any] = auto_class_update(FlaxAutoModelForMultipleChoice, head_doc='multiple choice') class A__ ( _BaseAutoModelClass ): '''simple docstring''' SCREAMING_SNAKE_CASE = FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING __snake_case : Optional[int] = auto_class_update( FlaxAutoModelForNextSentencePrediction, head_doc='next sentence prediction' ) class A__ ( _BaseAutoModelClass ): '''simple docstring''' SCREAMING_SNAKE_CASE = FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING __snake_case : Any = auto_class_update( FlaxAutoModelForImageClassification, head_doc='image classification' ) class A__ ( _BaseAutoModelClass ): '''simple docstring''' SCREAMING_SNAKE_CASE = FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING __snake_case : Tuple = auto_class_update(FlaxAutoModelForVisionaSeq, head_doc='vision-to-text modeling') class A__ ( _BaseAutoModelClass ): '''simple docstring''' SCREAMING_SNAKE_CASE = FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING __snake_case : Optional[Any] = auto_class_update( FlaxAutoModelForSpeechSeqaSeq, head_doc='sequence-to-sequence speech-to-text modeling' )
58
"""simple docstring""" from __future__ import annotations from bisect import bisect_left from functools import total_ordering from heapq import merge @total_ordering class A__ ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __lt__( self: List[Any] , _SCREAMING_SNAKE_CASE: Union[str, Any]) -> Dict: """simple docstring""" return self[-1] < other[-1] def __eq__( self: int , _SCREAMING_SNAKE_CASE: Any) -> Tuple: """simple docstring""" return self[-1] == other[-1] def _lowercase ( __snake_case ) -> list: __lowerCAmelCase : list[Stack] = [] # sort into stacks for element in collection: __lowerCAmelCase : Dict = Stack([element] ) __lowerCAmelCase : str = bisect_left(__snake_case ,__snake_case ) if i != len(__snake_case ): stacks[i].append(__snake_case ) else: stacks.append(__snake_case ) # use a heap-based merge to merge stack efficiently __lowerCAmelCase : Union[str, Any] = merge(*(reversed(__snake_case ) for stack in stacks) ) return collection if __name__ == "__main__": __snake_case : Union[str, Any] = input('Enter numbers separated by a comma:\n').strip() __snake_case : Optional[int] = [int(item) for item in user_input.split(',')] print(patience_sort(unsorted))
58
1
"""simple docstring""" from datasets.utils.patching import _PatchedModuleObj, patch_submodule from . import _test_patching def _SCREAMING_SNAKE_CASE ( ) -> Optional[int]: import os as original_os from os import path as original_path from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join A__ = "__test_patch_submodule_mock__" with patch_submodule(_test_patching , "os.path.join" , lowercase_ ): # Every way to access os.path.join must be patched, and the rest must stay untouched # check os.path.join assert isinstance(_test_patching.os , _PatchedModuleObj ) assert isinstance(_test_patching.os.path , _PatchedModuleObj ) assert _test_patching.os.path.join is mock # check path.join assert isinstance(_test_patching.path , _PatchedModuleObj ) assert _test_patching.path.join is mock # check join assert _test_patching.join is mock # check that the other attributes are untouched assert _test_patching.os.rename is original_rename assert _test_patching.path.dirname is original_dirname assert _test_patching.os.path.dirname is original_dirname # Even renamed modules or objects must be patched # check renamed_os.path.join assert isinstance(_test_patching.renamed_os , _PatchedModuleObj ) assert isinstance(_test_patching.renamed_os.path , _PatchedModuleObj ) assert _test_patching.renamed_os.path.join is mock # check renamed_path.join assert isinstance(_test_patching.renamed_path , _PatchedModuleObj ) assert _test_patching.renamed_path.join is mock # check renamed_join assert _test_patching.renamed_join is mock # check that the other attributes are untouched assert _test_patching.renamed_os.rename is original_rename assert _test_patching.renamed_path.dirname is original_dirname assert _test_patching.renamed_os.path.dirname is original_dirname # check that everthing is back to normal when the patch is over assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join def _SCREAMING_SNAKE_CASE ( ) -> Union[str, Any]: assert _test_patching.open is open A__ = "__test_patch_submodule_builtin_mock__" # _test_patching has "open" in its globals assert _test_patching.open is open with patch_submodule(_test_patching , "open" , lowercase_ ): assert _test_patching.open is mock # check that everthing is back to normal when the patch is over assert _test_patching.open is open def _SCREAMING_SNAKE_CASE ( ) -> int: # pandas.read_csv is not present in _test_patching A__ = "__test_patch_submodule_missing_mock__" with patch_submodule(_test_patching , "pandas.read_csv" , lowercase_ ): pass def _SCREAMING_SNAKE_CASE ( ) -> Union[str, Any]: # builtin should always be mocked even if they're not in the globals # in case they're loaded at one point A__ = "__test_patch_submodule_missing_builtin_mock__" # _test_patching doesn't have "len" in its globals assert getattr(_test_patching , "len" , lowercase_ ) is None with patch_submodule(_test_patching , "len" , lowercase_ ): assert _test_patching.len is mock assert _test_patching.len is len def _SCREAMING_SNAKE_CASE ( ) -> Union[str, Any]: A__ = "__test_patch_submodule_start_and_stop_mock__" A__ = patch_submodule(_test_patching , "open" , lowercase_ ) assert _test_patching.open is open patch.start() assert _test_patching.open is mock patch.stop() assert _test_patching.open is open def _SCREAMING_SNAKE_CASE ( ) -> Optional[Any]: from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join A__ = "__test_patch_submodule_successive_join__" A__ = "__test_patch_submodule_successive_dirname__" A__ = "__test_patch_submodule_successive_rename__" assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename with patch_submodule(_test_patching , "os.path.join" , lowercase_ ): with patch_submodule(_test_patching , "os.rename" , lowercase_ ): with patch_submodule(_test_patching , "os.path.dirname" , lowercase_ ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename # try another order with patch_submodule(_test_patching , "os.rename" , lowercase_ ): with patch_submodule(_test_patching , "os.path.join" , lowercase_ ): with patch_submodule(_test_patching , "os.path.dirname" , lowercase_ ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename def _SCREAMING_SNAKE_CASE ( ) -> Any: A__ = "__test_patch_submodule_doesnt_exist_mock__" with patch_submodule(_test_patching , "__module_that_doesn_exist__.__attribute_that_doesn_exist__" , lowercase_ ): pass with patch_submodule(_test_patching , "os.__attribute_that_doesn_exist__" , lowercase_ ): pass
247
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE = logging.get_logger(__name__) SCREAMING_SNAKE_CASE = { # See all MEGATRON_BERT models at https://huggingface.co/models?filter=bert } class UpperCAmelCase_ ( A_ ): lowercase__ = '''megatron-bert''' def __init__( self : Optional[Any] , snake_case_ : Optional[Any]=29_056 , snake_case_ : int=1_024 , snake_case_ : Optional[int]=24 , snake_case_ : str=16 , snake_case_ : str=4_096 , snake_case_ : Tuple="gelu" , snake_case_ : List[str]=0.1 , snake_case_ : Optional[int]=0.1 , snake_case_ : List[str]=512 , snake_case_ : Optional[int]=2 , snake_case_ : Dict=0.02 , snake_case_ : Optional[Any]=1e-12 , snake_case_ : Optional[Any]=0 , snake_case_ : int="absolute" , snake_case_ : List[str]=True , **snake_case_ : Tuple , ) -> int: '''simple docstring''' super().__init__(pad_token_id=snake_case_ , **snake_case_ ) A__ = vocab_size A__ = hidden_size A__ = num_hidden_layers A__ = num_attention_heads A__ = hidden_act A__ = intermediate_size A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = max_position_embeddings A__ = type_vocab_size A__ = initializer_range A__ = layer_norm_eps A__ = position_embedding_type A__ = use_cache
247
1
"""simple docstring""" def a__ ( __lowercase ) -> int: if not grid or not grid[0]: raise TypeError("The grid does not contain the appropriate information" ) for cell_n in range(1 , len(grid[0] ) ): grid[0][cell_n] += grid[0][cell_n - 1] _A = grid[0] for row_n in range(1 , len(__lowercase ) ): _A = grid[row_n] _A = fill_row(__lowercase , __lowercase ) _A = grid[row_n] return grid[-1][-1] def a__ ( __lowercase , __lowercase ) -> list: current_row[0] += row_above[0] for cell_n in range(1 , len(__lowercase ) ): current_row[cell_n] += min(current_row[cell_n - 1] , row_above[cell_n] ) return current_row if __name__ == "__main__": import doctest doctest.testmod()
358
"""simple docstring""" from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxSeqaSeqConfigWithPast from ...utils import logging a_ = logging.get_logger(__name__) a_ = { "t5-small": "https://huggingface.co/t5-small/resolve/main/config.json", "t5-base": "https://huggingface.co/t5-base/resolve/main/config.json", "t5-large": "https://huggingface.co/t5-large/resolve/main/config.json", "t5-3b": "https://huggingface.co/t5-3b/resolve/main/config.json", "t5-11b": "https://huggingface.co/t5-11b/resolve/main/config.json", } class snake_case ( _UpperCamelCase): __UpperCamelCase = 't5' __UpperCamelCase = ['past_key_values'] __UpperCamelCase = {'hidden_size': 'd_model', 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers'} def __init__( self : Union[str, Any] , a__ : Optional[int]=3_21_28 , a__ : Any=5_12 , a__ : Any=64 , a__ : List[str]=20_48 , a__ : Tuple=6 , a__ : Dict=None , a__ : Optional[int]=8 , a__ : int=32 , a__ : List[str]=1_28 , a__ : Optional[Any]=0.1 , a__ : Union[str, Any]=1E-6 , a__ : Dict=1.0 , a__ : Optional[int]="relu" , a__ : Tuple=True , a__ : Any=True , a__ : Tuple=0 , a__ : Optional[Any]=1 , **a__ : Tuple , ) -> int: '''simple docstring''' _A = vocab_size _A = d_model _A = d_kv _A = d_ff _A = num_layers _A = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry _A = num_heads _A = relative_attention_num_buckets _A = relative_attention_max_distance _A = dropout_rate _A = layer_norm_epsilon _A = initializer_factor _A = feed_forward_proj _A = use_cache _A = self.feed_forward_proj.split("-" ) _A = act_info[-1] _A = act_info[0] == "gated" if len(a__ ) > 1 and act_info[0] != "gated" or len(a__ ) > 2: raise ValueError( F"""`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.""" "Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. " "'gated-gelu' or 'relu'" ) # for backwards compatibility if feed_forward_proj == "gated-gelu": _A = "gelu_new" super().__init__( pad_token_id=a__ , eos_token_id=a__ , is_encoder_decoder=a__ , **a__ , ) class snake_case ( _UpperCamelCase): @property def a_ ( self : Tuple ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' _A = { "input_ids": {0: "batch", 1: "encoder_sequence"}, "attention_mask": {0: "batch", 1: "encoder_sequence"}, } if self.use_past: _A = "past_encoder_sequence + sequence" _A = {0: "batch"} _A = {0: "batch", 1: "past_decoder_sequence + sequence"} else: _A = {0: "batch", 1: "decoder_sequence"} _A = {0: "batch", 1: "decoder_sequence"} if self.use_past: self.fill_with_past_key_values_(a__ , direction="inputs" ) return common_inputs @property def a_ ( self : Union[str, Any] ) -> int: '''simple docstring''' return 13
163
0
"""simple docstring""" from __future__ import annotations def UpperCAmelCase__ (lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): '''simple docstring''' if len(lowerCAmelCase_ ) == 0: raise ValueError("find_max() arg is an empty sequence" ) if ( left >= len(lowerCAmelCase_ ) or left < -len(lowerCAmelCase_ ) or right >= len(lowerCAmelCase_ ) or right < -len(lowerCAmelCase_ ) ): raise IndexError("list index out of range" ) if left == right: return nums[left] __SCREAMING_SNAKE_CASE = (left + right) >> 1 # the middle __SCREAMING_SNAKE_CASE = find_max(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # find max in range[left, mid] __SCREAMING_SNAKE_CASE = find_max(lowerCAmelCase_ , mid + 1 , lowerCAmelCase_ ) # find max in range[mid + 1, right] return left_max if left_max >= right_max else right_max if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
54
"""simple docstring""" def UpperCAmelCase__ (lowerCAmelCase_ = 100_0000 ): '''simple docstring''' __SCREAMING_SNAKE_CASE = set(range(3 , lowerCAmelCase_ , 2 ) ) primes.add(2 ) for p in range(3 , lowerCAmelCase_ , 2 ): if p not in primes: continue primes.difference_update(set(range(p * p , lowerCAmelCase_ , lowerCAmelCase_ ) ) ) __SCREAMING_SNAKE_CASE = [float(lowerCAmelCase_ ) for n in range(limit + 1 )] for p in primes: for n in range(lowerCAmelCase_ , limit + 1 , lowerCAmelCase_ ): phi[n] *= 1 - 1 / p return int(sum(phi[2:] ) ) if __name__ == "__main__": print(F"{solution() = }")
54
1
import gc import unittest from diffusers import FlaxControlNetModel, FlaxStableDiffusionControlNetPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class _lowerCAmelCase( unittest.TestCase ): """simple docstring""" def _a ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() def _a ( self ): UpperCamelCase_ ,UpperCamelCase_: Any = FlaxControlNetModel.from_pretrained( 'lllyasviel/sd-controlnet-canny' , from_pt=_lowerCamelCase , dtype=jnp.bfloataa ) UpperCamelCase_ ,UpperCamelCase_: Optional[Any] = FlaxStableDiffusionControlNetPipeline.from_pretrained( 'runwayml/stable-diffusion-v1-5' , controlnet=_lowerCamelCase , from_pt=_lowerCamelCase , dtype=jnp.bfloataa ) UpperCamelCase_: str = controlnet_params UpperCamelCase_: int = 'bird' UpperCamelCase_: Union[str, Any] = jax.device_count() UpperCamelCase_: Union[str, Any] = pipe.prepare_text_inputs([prompts] * num_samples ) UpperCamelCase_: Optional[int] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png' ) UpperCamelCase_: Optional[Any] = pipe.prepare_image_inputs([canny_image] * num_samples ) UpperCamelCase_: List[Any] = jax.random.PRNGKey(0 ) UpperCamelCase_: Optional[Any] = jax.random.split(_lowerCamelCase , jax.device_count() ) UpperCamelCase_: Any = replicate(_lowerCamelCase ) UpperCamelCase_: Tuple = shard(_lowerCamelCase ) UpperCamelCase_: int = shard(_lowerCamelCase ) UpperCamelCase_: str = pipe( prompt_ids=_lowerCamelCase , image=_lowerCamelCase , params=_lowerCamelCase , prng_seed=_lowerCamelCase , num_inference_steps=5_0 , jit=_lowerCamelCase , ).images assert images.shape == (jax.device_count(), 1, 7_6_8, 5_1_2, 3) UpperCamelCase_: Tuple = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) UpperCamelCase_: List[str] = images[0, 2_5_3:2_5_6, 2_5_3:2_5_6, -1] UpperCamelCase_: Any = jnp.asarray(jax.device_get(image_slice.flatten() ) ) UpperCamelCase_: List[str] = jnp.array( [0.1_6_7_9_6_9, 0.1_1_6_6_9_9, 0.0_8_1_5_4_3, 0.1_5_4_2_9_7, 0.1_3_2_8_1_2, 0.1_0_8_8_8_7, 0.1_6_9_9_2_2, 0.1_6_9_9_2_2, 0.2_0_5_0_7_8] ) print(f'''output_slice: {output_slice}''' ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2 def _a ( self ): UpperCamelCase_ ,UpperCamelCase_: List[str] = FlaxControlNetModel.from_pretrained( 'lllyasviel/sd-controlnet-openpose' , from_pt=_lowerCamelCase , dtype=jnp.bfloataa ) UpperCamelCase_ ,UpperCamelCase_: List[str] = FlaxStableDiffusionControlNetPipeline.from_pretrained( 'runwayml/stable-diffusion-v1-5' , controlnet=_lowerCamelCase , from_pt=_lowerCamelCase , dtype=jnp.bfloataa ) UpperCamelCase_: int = controlnet_params UpperCamelCase_: Union[str, Any] = 'Chef in the kitchen' UpperCamelCase_: List[Any] = jax.device_count() UpperCamelCase_: Tuple = pipe.prepare_text_inputs([prompts] * num_samples ) UpperCamelCase_: List[str] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/pose.png' ) UpperCamelCase_: Tuple = pipe.prepare_image_inputs([pose_image] * num_samples ) UpperCamelCase_: Any = jax.random.PRNGKey(0 ) UpperCamelCase_: str = jax.random.split(_lowerCamelCase , jax.device_count() ) UpperCamelCase_: Optional[int] = replicate(_lowerCamelCase ) UpperCamelCase_: int = shard(_lowerCamelCase ) UpperCamelCase_: Dict = shard(_lowerCamelCase ) UpperCamelCase_: int = pipe( prompt_ids=_lowerCamelCase , image=_lowerCamelCase , params=_lowerCamelCase , prng_seed=_lowerCamelCase , num_inference_steps=5_0 , jit=_lowerCamelCase , ).images assert images.shape == (jax.device_count(), 1, 7_6_8, 5_1_2, 3) UpperCamelCase_: int = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) UpperCamelCase_: Optional[int] = images[0, 2_5_3:2_5_6, 2_5_3:2_5_6, -1] UpperCamelCase_: Dict = jnp.asarray(jax.device_get(image_slice.flatten() ) ) UpperCamelCase_: int = jnp.array( [[0.2_7_1_4_8_4, 0.2_6_1_7_1_9, 0.2_7_5_3_9_1, 0.2_7_7_3_4_4, 0.2_7_9_2_9_7, 0.2_9_1_0_1_6, 0.2_9_4_9_2_2, 0.3_0_2_7_3_4, 0.3_0_2_7_3_4]] ) print(f'''output_slice: {output_slice}''' ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2
292
# A Bipartite Graph is a graph whose vertices can be divided into two independent sets, # U and V such that every edge (u, v) either connects a vertex from U to V or a vertex # from V to U. In other words, for every edge (u, v), either u belongs to U and v to V, # or u belongs to V and v to U. We can also say that there is no edge that connects # vertices of same set. def snake_case (UpperCAmelCase__ ) -> List[str]: UpperCamelCase_: int = [False] * len(UpperCAmelCase__ ) UpperCamelCase_: Any = [-1] * len(UpperCAmelCase__ ) def dfs(UpperCAmelCase__ , UpperCAmelCase__ ): UpperCamelCase_: Tuple = True UpperCamelCase_: Optional[int] = c for u in graph[v]: if not visited[u]: dfs(UpperCAmelCase__ , 1 - c ) for i in range(len(UpperCAmelCase__ ) ): if not visited[i]: dfs(UpperCAmelCase__ , 0 ) for i in range(len(UpperCAmelCase__ ) ): for j in graph[i]: if color[i] == color[j]: return False return True # Adjacency list of graph A_ : Dict = {0: [1, 3], 1: [0, 2], 2: [1, 3], 3: [0, 2], 4: []} print(check_bipartite_dfs(graph))
292
1
"""simple docstring""" from math import pow, sqrt def _snake_case ( *snake_case__ : float ): A = len(snake_case__ ) > 0 and all(value > 0.0 for value in values ) return result def _snake_case ( snake_case__ : float , snake_case__ : float ): return ( round(sqrt(molar_mass_a / molar_mass_a ) , 6 ) if validate(snake_case__ , snake_case__ ) else ValueError('Input Error: Molar mass values must greater than 0.' ) ) def _snake_case ( snake_case__ : float , snake_case__ : float , snake_case__ : float ): return ( round(effusion_rate * sqrt(molar_mass_a / molar_mass_a ) , 6 ) if validate(snake_case__ , snake_case__ , snake_case__ ) else ValueError( 'Input Error: Molar mass and effusion rate values must greater than 0.' ) ) def _snake_case ( snake_case__ : float , snake_case__ : float , snake_case__ : float ): return ( round(effusion_rate / sqrt(molar_mass_a / molar_mass_a ) , 6 ) if validate(snake_case__ , snake_case__ , snake_case__ ) else ValueError( 'Input Error: Molar mass and effusion rate values must greater than 0.' ) ) def _snake_case ( snake_case__ : float , snake_case__ : float , snake_case__ : float ): return ( round(molar_mass / pow(effusion_rate_a / effusion_rate_a , 2 ) , 6 ) if validate(snake_case__ , snake_case__ , snake_case__ ) else ValueError( 'Input Error: Molar mass and effusion rate values must greater than 0.' ) ) def _snake_case ( snake_case__ : float , snake_case__ : float , snake_case__ : float ): return ( round(pow(effusion_rate_a / effusion_rate_a , 2 ) / molar_mass , 6 ) if validate(snake_case__ , snake_case__ , snake_case__ ) else ValueError( 'Input Error: Molar mass and effusion rate values must greater than 0.' ) )
74
lowerCamelCase : Optional[Any] = '''ABCDEFGHIJKLMNOPQRSTUVWXYZ''' def snake_case_ ( ): __lowercase : List[str] = input("""Enter message: """ ) __lowercase : int = input("""Enter key [alphanumeric]: """ ) __lowercase : Optional[Any] = input("""Encrypt/Decrypt [e/d]: """ ) if mode.lower().startswith("""e""" ): __lowercase : Optional[int] = """encrypt""" __lowercase : Dict = encrypt_message(lowerCAmelCase_ , lowerCAmelCase_ ) elif mode.lower().startswith("""d""" ): __lowercase : Union[str, Any] = """decrypt""" __lowercase : Optional[int] = decrypt_message(lowerCAmelCase_ , lowerCAmelCase_ ) print(F"\n{mode.title()}ed message:" ) print(lowerCAmelCase_ ) def snake_case_ ( lowerCAmelCase_ : str , lowerCAmelCase_ : str ): return translate_message(lowerCAmelCase_ , lowerCAmelCase_ , """encrypt""" ) def snake_case_ ( lowerCAmelCase_ : str , lowerCAmelCase_ : str ): return translate_message(lowerCAmelCase_ , lowerCAmelCase_ , """decrypt""" ) def snake_case_ ( lowerCAmelCase_ : str , lowerCAmelCase_ : str , lowerCAmelCase_ : str ): __lowercase : Union[str, Any] = [] __lowercase : Tuple = 0 __lowercase : Dict = key.upper() for symbol in message: __lowercase : Optional[Any] = LETTERS.find(symbol.upper() ) if num != -1: if mode == "encrypt": num += LETTERS.find(key[key_index] ) elif mode == "decrypt": num -= LETTERS.find(key[key_index] ) num %= len(lowerCAmelCase_ ) if symbol.isupper(): translated.append(LETTERS[num] ) elif symbol.islower(): translated.append(LETTERS[num].lower() ) key_index += 1 if key_index == len(lowerCAmelCase_ ): __lowercase : str = 0 else: translated.append(lowerCAmelCase_ ) return "".join(lowerCAmelCase_ ) if __name__ == "__main__": main()
233
0
def _a ( SCREAMING_SNAKE_CASE__ : Optional[int] = 2_00_00_00 ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE__ : Any = [0 for i in range(n + 1 )] SCREAMING_SNAKE_CASE__ : Union[str, Any] = 1 SCREAMING_SNAKE_CASE__ : List[Any] = 1 for i in range(2 , int(n**0.5 ) + 1 ): if primality_list[i] == 0: for j in range(i * i , n + 1 , _lowerCamelCase ): SCREAMING_SNAKE_CASE__ : Any = 1 SCREAMING_SNAKE_CASE__ : int = 0 for i in range(_lowerCamelCase ): if primality_list[i] == 0: sum_of_primes += i return sum_of_primes if __name__ == "__main__": print(f"{solution() = }")
363
_lowerCamelCase : dict[tuple[int, int, int], int] = {} def _a ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ) -> int: '''simple docstring''' if late == 3 or absent == 2: return 0 # if we have no days left, and have not failed any other rules, # we have a prize string if days == 0: return 1 # No easy solution, so now we need to do the recursive calculation # First, check if the combination is already in the cache, and # if yes, return the stored value from there since we already # know the number of possible prize strings from this point on SCREAMING_SNAKE_CASE__ : Union[str, Any] = (days, absent, late) if key in cache: return cache[key] # now we calculate the three possible ways that can unfold from # this point on, depending on our attendance today # 1) if we are late (but not absent), the "absent" counter stays as # it is, but the "late" counter increases by one SCREAMING_SNAKE_CASE__ : Tuple = _calculate(days - 1 , SCREAMING_SNAKE_CASE__ , late + 1 ) # 2) if we are absent, the "absent" counter increases by 1, and the # "late" counter resets to 0 SCREAMING_SNAKE_CASE__ : Dict = _calculate(days - 1 , absent + 1 , 0 ) # 3) if we are on time, this resets the "late" counter and keeps the # absent counter SCREAMING_SNAKE_CASE__ : Any = _calculate(days - 1 , SCREAMING_SNAKE_CASE__ , 0 ) SCREAMING_SNAKE_CASE__ : str = state_late + state_absent + state_ontime SCREAMING_SNAKE_CASE__ : Optional[int] = prizestrings return prizestrings def _a ( SCREAMING_SNAKE_CASE__ : int = 30 ) -> int: '''simple docstring''' return _calculate(SCREAMING_SNAKE_CASE__ , absent=0 , late=0 ) if __name__ == "__main__": print(solution())
191
0