code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
'''simple docstring''' import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow if is_torch_available(): import torch from transformers import XLMRobertaModel @require_sentencepiece @require_tokenizers @require_torch class UpperCAmelCase_ ( unittest.TestCase ): @slow def __UpperCAmelCase ( self : str ) -> List[str]: lowerCAmelCase = XLMRobertaModel.from_pretrained('xlm-roberta-base' ) lowerCAmelCase = torch.tensor([[0, 5_8_1, 1_0_2_6_9, 8_3, 9_9_9_4_2, 1_3_6, 6_0_7_4_2, 2_3, 7_0, 8_0_5_8_3, 1_8_2_7_6, 2]] ) # The dog is cute and lives in the garden house lowerCAmelCase = torch.Size((1, 1_2, 7_6_8) ) # batch_size, sequence_length, embedding_vector_dim lowerCAmelCase = torch.tensor( [[-0.0_101, 0.1_218, -0.0_803, 0.0_801, 0.1_327, 0.0_776, -0.1_215, 0.2_383, 0.3_338, 0.3_106, 0.0_300, 0.0_252]] ) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): lowerCAmelCase = model(UpperCAmelCase__ )['last_hidden_state'].detach() self.assertEqual(output.shape , UpperCAmelCase__ ) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , UpperCAmelCase__ , atol=1E-3 ) ) @slow def __UpperCAmelCase ( self : List[Any] ) -> Tuple: lowerCAmelCase = XLMRobertaModel.from_pretrained('xlm-roberta-large' ) lowerCAmelCase = torch.tensor([[0, 5_8_1, 1_0_2_6_9, 8_3, 9_9_9_4_2, 1_3_6, 6_0_7_4_2, 2_3, 7_0, 8_0_5_8_3, 1_8_2_7_6, 2]] ) # The dog is cute and lives in the garden house lowerCAmelCase = torch.Size((1, 1_2, 1_0_2_4) ) # batch_size, sequence_length, embedding_vector_dim lowerCAmelCase = torch.tensor( [[-0.0_699, -0.0_318, 0.0_705, -0.1_241, 0.0_999, -0.0_520, 0.1_004, -0.1_838, -0.4_704, 0.1_437, 0.0_821, 0.0_126]] ) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.large') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): lowerCAmelCase = model(UpperCAmelCase__ )['last_hidden_state'].detach() self.assertEqual(output.shape , UpperCAmelCase__ ) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , UpperCAmelCase__ , atol=1E-3 ) )
4
'''simple docstring''' from __future__ import annotations from typing import Any class UpperCAmelCase_ : def __init__( self : Optional[int] , UpperCAmelCase__ : int , UpperCAmelCase__ : int , UpperCAmelCase__ : float = 0 ) -> None: lowerCAmelCase , lowerCAmelCase = row, column lowerCAmelCase = [[default_value for c in range(UpperCAmelCase__ )] for r in range(UpperCAmelCase__ )] def __str__( self : List[str] ) -> str: lowerCAmelCase = F'''Matrix consist of {self.row} rows and {self.column} columns\n''' # Make string identifier lowerCAmelCase = 0 for row_vector in self.array: for obj in row_vector: lowerCAmelCase = max(UpperCAmelCase__ , len(str(UpperCAmelCase__ ) ) ) lowerCAmelCase = F'''%{max_element_length}s''' # Make string and return def single_line(UpperCAmelCase__ : list[float] ) -> str: nonlocal string_format_identifier lowerCAmelCase = '[' line += ", ".join(string_format_identifier % (obj,) for obj in row_vector ) line += "]" return line s += "\n".join(single_line(UpperCAmelCase__ ) for row_vector in self.array ) return s def __repr__( self : List[str] ) -> str: return str(self ) def __UpperCAmelCase ( self : Optional[int] , UpperCAmelCase__ : tuple[int, int] ) -> bool: if not (isinstance(UpperCAmelCase__ , (list, tuple) ) and len(UpperCAmelCase__ ) == 2): return False elif not (0 <= loc[0] < self.row and 0 <= loc[1] < self.column): return False else: return True def __getitem__( self : Any , UpperCAmelCase__ : tuple[int, int] ) -> Any: assert self.validate_indicies(UpperCAmelCase__ ) return self.array[loc[0]][loc[1]] def __setitem__( self : Dict , UpperCAmelCase__ : tuple[int, int] , UpperCAmelCase__ : float ) -> None: assert self.validate_indicies(UpperCAmelCase__ ) lowerCAmelCase = value def __add__( self : Any , UpperCAmelCase__ : Matrix ) -> Matrix: assert isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) assert self.row == another.row and self.column == another.column # Add lowerCAmelCase = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): lowerCAmelCase = self[r, c] + another[r, c] return result def __neg__( self : int ) -> Matrix: lowerCAmelCase = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): lowerCAmelCase = -self[r, c] return result def __sub__( self : str , UpperCAmelCase__ : Matrix ) -> Matrix: return self + (-another) def __mul__( self : str , UpperCAmelCase__ : int | float | Matrix ) -> Matrix: if isinstance(UpperCAmelCase__ , (int, float) ): # Scalar multiplication lowerCAmelCase = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): lowerCAmelCase = self[r, c] * another return result elif isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): # Matrix multiplication assert self.column == another.row lowerCAmelCase = Matrix(self.row , another.column ) for r in range(self.row ): for c in range(another.column ): for i in range(self.column ): result[r, c] += self[r, i] * another[i, c] return result else: lowerCAmelCase = F'''Unsupported type given for another ({type(UpperCAmelCase__ )})''' raise TypeError(UpperCAmelCase__ ) def __UpperCAmelCase ( self : Optional[Any] ) -> Matrix: lowerCAmelCase = Matrix(self.column , self.row ) for r in range(self.row ): for c in range(self.column ): lowerCAmelCase = self[r, c] return result def __UpperCAmelCase ( self : List[str] , UpperCAmelCase__ : Matrix , UpperCAmelCase__ : Matrix ) -> Any: assert isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) and isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) assert self.row == self.column == u.row == v.row # u, v should be column vector assert u.column == v.column == 1 # u, v should be column vector # Calculate lowerCAmelCase = v.transpose() lowerCAmelCase = (v_t * self * u)[0, 0] + 1 if numerator_factor == 0: return None # It's not invertable return self - ((self * u) * (v_t * self) * (1.0 / numerator_factor)) # Testing if __name__ == "__main__": def a_ ( ): # a^(-1) lowerCAmelCase = Matrix(3 , 3 , 0 ) for i in range(3 ): lowerCAmelCase = 1 print(f'''a^(-1) is {ainv}''' ) # u, v lowerCAmelCase = Matrix(3 , 1 , 0 ) lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = 1, 2, -3 lowerCAmelCase = Matrix(3 , 1 , 0 ) lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = 4, -2, 5 print(f'''u is {u}''' ) print(f'''v is {v}''' ) print(f'''uv^T is {u * v.transpose()}''' ) # Sherman Morrison print(f'''(a + uv^T)^(-1) is {ainv.sherman_morrison(lowerCamelCase , lowerCamelCase )}''' ) def a_ ( ): import doctest doctest.testmod() testa()
4
1
'''simple docstring''' def a__ ( a__ = 2_00 ): """simple docstring""" __SCREAMING_SNAKE_CASE = [1, 2, 5, 10, 20, 50, 1_00, 2_00] __SCREAMING_SNAKE_CASE = [0] * (pence + 1) __SCREAMING_SNAKE_CASE = 1 # base case: 1 way to make 0 pence for coin in coins: for i in range(a__ , pence + 1 , 1 ): number_of_ways[i] += number_of_ways[i - coin] return number_of_ways[pence] if __name__ == "__main__": assert solution(2_0_0) == 7_3_6_8_2
369
'''simple docstring''' import os # Precomputes a list of the 100 first triangular numbers UpperCAmelCase : int = [int(0.5 * n * (n + 1)) for n in range(1, 1_0_1)] def a__ ( ): """simple docstring""" __SCREAMING_SNAKE_CASE = os.path.dirname(os.path.realpath(a__ ) ) __SCREAMING_SNAKE_CASE = os.path.join(a__ , """words.txt""" ) __SCREAMING_SNAKE_CASE = """""" with open(a__ ) as f: __SCREAMING_SNAKE_CASE = f.readline() __SCREAMING_SNAKE_CASE = [word.strip("""\"""" ) for word in words.strip("""\r\n""" ).split(""",""" )] __SCREAMING_SNAKE_CASE = [ word for word in [sum(ord(a__ ) - 64 for x in word ) for word in words] if word in TRIANGULAR_NUMBERS ] return len(a__ ) if __name__ == "__main__": print(solution())
331
0
"""simple docstring""" # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.test_utils import execute_subprocess_async def lowerCamelCase__ ( _lowerCamelCase : int=None ) -> int: if subparsers is not None: lowerCamelCase_ = subparsers.add_parser('test' ) else: lowerCamelCase_ = argparse.ArgumentParser('Accelerate test command' ) parser.add_argument( '--config_file' , default=_lowerCamelCase , help=( 'The path to use to store the config file. Will default to a file named default_config.yaml in the cache ' 'location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ' 'such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ' 'with \'huggingface\'.' ) , ) if subparsers is not None: parser.set_defaults(func=_lowerCamelCase ) return parser def lowerCamelCase__ ( _lowerCamelCase : Optional[Any] ) -> Union[str, Any]: lowerCamelCase_ = os.path.sep.join(__file__.split(os.path.sep )[:-2] + ['test_utils', 'scripts', 'test_script.py'] ) if args.config_file is None: lowerCamelCase_ = script_name else: lowerCamelCase_ = F'''--config_file={args.config_file} {script_name}''' lowerCamelCase_ = ['accelerate-launch'] + test_args.split() lowerCamelCase_ = execute_subprocess_async(_lowerCamelCase , env=os.environ.copy() ) if result.returncode == 0: print('Test is a success! You are ready for your distributed training!' ) def lowerCamelCase__ ( ) -> List[Any]: lowerCamelCase_ = test_command_parser() lowerCamelCase_ = parser.parse_args() test_command(_lowerCamelCase ) if __name__ == "__main__": main()
183
"""simple docstring""" import json import multiprocessing import os import re from collections import defaultdict import torch from accelerate import Accelerator from accelerate.utils import set_seed from arguments import HumanEvalArguments from datasets import load_dataset, load_metric from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from tqdm import tqdm import transformers from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, StoppingCriteria, StoppingCriteriaList _SCREAMING_SNAKE_CASE : Union[str, Any] = ['''\nclass''', '''\ndef''', '''\n#''', '''\n@''', '''\nprint''', '''\nif'''] class a ( __snake_case ): def __init__( self : Dict , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Any=None , __SCREAMING_SNAKE_CASE : Tuple=1 ) -> str: lowerCamelCase_ = tokenizer lowerCamelCase_ = dataset lowerCamelCase_ = len(__SCREAMING_SNAKE_CASE ) if n_tasks is None else n_tasks lowerCamelCase_ = n_copies def __iter__( self : Dict ) -> Any: lowerCamelCase_ = [] for task in range(self.n_tasks ): # without strip, the model generate commented codes ... prompts.append(self.tokenizer.eos_token + self.dataset[task]['prompt'].strip() ) lowerCamelCase_ = self.tokenizer(__SCREAMING_SNAKE_CASE , padding=__SCREAMING_SNAKE_CASE , return_tensors='pt' ) for task in range(self.n_tasks ): for _ in range(self.n_copies ): yield { "ids": outputs.input_ids[task], "task_id": task, "input_len": outputs.attention_mask[task].sum(), } class a ( __snake_case ): def __init__( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Any ) -> List[Any]: lowerCamelCase_ = start_length lowerCamelCase_ = eof_strings lowerCamelCase_ = tokenizer def __call__( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Dict , **__SCREAMING_SNAKE_CASE : Union[str, Any] ) -> Optional[Any]: lowerCamelCase_ = self.tokenizer.batch_decode(input_ids[:, self.start_length :] ) lowerCamelCase_ = [] for decoded_generation in decoded_generations: done.append(any(stop_string in decoded_generation for stop_string in self.eof_strings ) ) return all(__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( _lowerCamelCase : List[Any] ) -> Tuple: lowerCamelCase_ = re.split('(%s)' % '|'.join(_lowerCamelCase ) , _lowerCamelCase ) # last string should be "" return "".join(string_list[:-2] ) def lowerCamelCase__ ( _lowerCamelCase : str , _lowerCamelCase : str , _lowerCamelCase : Optional[Any] , _lowerCamelCase : Optional[Any] , _lowerCamelCase : str , _lowerCamelCase : Dict=20 , **_lowerCamelCase : Dict ) -> List[str]: lowerCamelCase_ = defaultdict(_lowerCamelCase ) # dict of list of generated tokens for step, batch in tqdm(enumerate(_lowerCamelCase ) ): with torch.no_grad(): lowerCamelCase_ = batch['ids'].shape[-1] lowerCamelCase_ = accelerator.unwrap_model(_lowerCamelCase ).generate( input_ids=batch['ids'][:, : batch['input_len']] , num_return_sequences=_lowerCamelCase , **_lowerCamelCase ) # each task is generated batch_size times lowerCamelCase_ = batch['task_id'].repeat(_lowerCamelCase ) lowerCamelCase_ = accelerator.pad_across_processes( _lowerCamelCase , dim=1 , pad_index=tokenizer.pad_token_id ) lowerCamelCase_ , lowerCamelCase_ = accelerator.gather((generated_tokens, generated_tasks) ) lowerCamelCase_ = generated_tokens.cpu().numpy() lowerCamelCase_ = generated_tasks.cpu().numpy() for task, generated_tokens in zip(_lowerCamelCase , _lowerCamelCase ): gen_token_dict[task].append(_lowerCamelCase ) lowerCamelCase_ = [[] for _ in range(_lowerCamelCase )] for task, generated_tokens in gen_token_dict.items(): for s in generated_tokens: lowerCamelCase_ = tokenizer.decode(_lowerCamelCase , skip_special_tokens=_lowerCamelCase , clean_up_tokenization_spaces=_lowerCamelCase ) code_gens[task].append(remove_last_block(_lowerCamelCase ) ) return code_gens def lowerCamelCase__ ( ) -> Tuple: # Setup configuration lowerCamelCase_ = HfArgumentParser(_lowerCamelCase ) lowerCamelCase_ = parser.parse_args() transformers.logging.set_verbosity_error() # enables code execution in code_eval metric lowerCamelCase_ = args.HF_ALLOW_CODE_EVAL # make sure tokenizer plays nice with multiprocessing lowerCamelCase_ = 'false' if args.num_workers is None: lowerCamelCase_ = multiprocessing.cpu_count() # Use dataset load to feed to accelerate lowerCamelCase_ = Accelerator() set_seed(args.seed , device_specific=_lowerCamelCase ) # Load model and tokenizer lowerCamelCase_ = AutoTokenizer.from_pretrained(args.model_ckpt ) lowerCamelCase_ = tokenizer.eos_token lowerCamelCase_ = AutoModelForCausalLM.from_pretrained(args.model_ckpt ) # Generation settings lowerCamelCase_ = { 'do_sample': args.do_sample, 'temperature': args.temperature, 'max_new_tokens': args.max_new_tokens, 'top_p': args.top_p, 'top_k': args.top_k, 'stopping_criteria': StoppingCriteriaList([EndOfFunctionCriteria(0 , _lowerCamelCase , _lowerCamelCase )] ), } # Load evaluation dataset and metric lowerCamelCase_ = load_dataset('openai_humaneval' ) lowerCamelCase_ = load_metric('code_eval' ) lowerCamelCase_ = args.num_tasks if args.num_tasks is not None else len(human_eval['test'] ) lowerCamelCase_ = args.n_samples // args.batch_size lowerCamelCase_ = TokenizedDataset(_lowerCamelCase , human_eval['test'] , n_copies=_lowerCamelCase , n_tasks=_lowerCamelCase ) # do not confuse args.batch_size, which is actually the num_return_sequences lowerCamelCase_ = DataLoader(_lowerCamelCase , batch_size=1 ) # Run a quick test to see if code evaluation is enabled try: lowerCamelCase_ = code_eval_metric.compute(references=[''] , predictions=[['']] ) except ValueError as exception: print( 'Code evaluation not enabled. Read the warning below carefully and then use `--HF_ALLOW_CODE_EVAL="1"`' ' flag to enable code evaluation.' ) raise exception lowerCamelCase_ , lowerCamelCase_ = accelerator.prepare(_lowerCamelCase , _lowerCamelCase ) lowerCamelCase_ = complete_code( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , n_tasks=_lowerCamelCase , batch_size=args.batch_size , **_lowerCamelCase , ) if accelerator.is_main_process: lowerCamelCase_ = [] for task in tqdm(range(_lowerCamelCase ) ): lowerCamelCase_ = human_eval['test'][task]['test'] lowerCamelCase_ = F'''check({human_eval["test"][task]["entry_point"]})''' references.append('\n' + test_func + '\n' + entry_point ) # Evaluate completions with "code_eval" metric lowerCamelCase_ , lowerCamelCase_ = code_eval_metric.compute( references=_lowerCamelCase , predictions=_lowerCamelCase , num_workers=args.num_workers ) print(F'''Results: {pass_at_k}''' ) # Save results to json file with open(args.output_file , 'w' ) as fp: json.dump(_lowerCamelCase , _lowerCamelCase ) # For some reason the folliwng seems to be necessary sometimes for code_eval to work nice with multiprocessing # https://stackoverflow.com/questions/60804599/python-multiprocessing-keeps-spawning-the-whole-script if __name__ == "__main__": main()
183
1
import unittest import numpy as np import requests from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11 else: lowercase_ = False if is_vision_available(): from PIL import Image from transformers import PixaStructImageProcessor class SCREAMING_SNAKE_CASE (unittest.TestCase ): def __init__( self : str , a : Tuple , a : Tuple=7 , a : Tuple=3 , a : Any=18 , a : str=30 , a : Dict=400 , a : List[Any]=None , a : Optional[Any]=True , a : Optional[int]=True , a : str=None , )-> str: """simple docstring""" lowercase__ = size if size is not None else {'height': 20, 'width': 20} lowercase__ = parent lowercase__ = batch_size lowercase__ = num_channels lowercase__ = image_size lowercase__ = min_resolution lowercase__ = max_resolution lowercase__ = size lowercase__ = do_normalize lowercase__ = do_convert_rgb lowercase__ = [512, 1_024, 2_048, 4_096] lowercase__ = patch_size if patch_size is not None else {'height': 16, 'width': 16} def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] )-> List[str]: """simple docstring""" return {"do_normalize": self.do_normalize, "do_convert_rgb": self.do_convert_rgb} def SCREAMING_SNAKE_CASE_ ( self : Dict )-> List[Any]: """simple docstring""" lowercase__ = 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/australia.jpg' lowercase__ = Image.open(requests.get(a__ , stream=a__ ).raw ).convert('RGB' ) return raw_image @unittest.skipIf( not is_torch_greater_or_equal_than_1_11 , reason='`Pix2StructImageProcessor` requires `torch>=1.11.0`.' , ) @require_torch @require_vision class SCREAMING_SNAKE_CASE (lowerCAmelCase__ , unittest.TestCase ): _UpperCamelCase : Tuple = PixaStructImageProcessor if is_vision_available() else None def SCREAMING_SNAKE_CASE_ ( self : int )-> Any: """simple docstring""" lowercase__ = PixaStructImageProcessingTester(self ) @property def SCREAMING_SNAKE_CASE_ ( self : str )-> str: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE_ ( self : Any )-> List[str]: """simple docstring""" lowercase__ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(a__ , 'do_normalize' ) ) self.assertTrue(hasattr(a__ , 'do_convert_rgb' ) ) def SCREAMING_SNAKE_CASE_ ( self : Dict )-> Any: """simple docstring""" lowercase__ = self.image_processor_tester.prepare_dummy_image() lowercase__ = self.image_processing_class(**self.image_processor_dict ) lowercase__ = 2_048 lowercase__ = image_processor(a__ , return_tensors='pt' , max_patches=a__ ) self.assertTrue(torch.allclose(inputs.flattened_patches.mean() , torch.tensor(0.0606 ) , atol=1E-3 , rtol=1E-3 ) ) def SCREAMING_SNAKE_CASE_ ( self : Tuple )-> int: """simple docstring""" lowercase__ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowercase__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=a__ ) for image in image_inputs: self.assertIsInstance(a__ , Image.Image ) # Test not batched input lowercase__ = ( (self.image_processor_tester.patch_size['height'] * self.image_processor_tester.patch_size['width']) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input lowercase__ = image_processor( image_inputs[0] , return_tensors='pt' , max_patches=a__ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched lowercase__ = image_processor( a__ , return_tensors='pt' , max_patches=a__ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def SCREAMING_SNAKE_CASE_ ( self : Dict )-> List[str]: """simple docstring""" lowercase__ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowercase__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=a__ ) for image in image_inputs: self.assertIsInstance(a__ , Image.Image ) # Test not batched input lowercase__ = ( (self.image_processor_tester.patch_size['height'] * self.image_processor_tester.patch_size['width']) * self.image_processor_tester.num_channels ) + 2 lowercase__ = True for max_patch in self.image_processor_tester.max_patches: # Test not batched input with self.assertRaises(a__ ): lowercase__ = image_processor( image_inputs[0] , return_tensors='pt' , max_patches=a__ ).flattened_patches lowercase__ = 'Hello' lowercase__ = image_processor( image_inputs[0] , return_tensors='pt' , max_patches=a__ , header_text=a__ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched lowercase__ = image_processor( a__ , return_tensors='pt' , max_patches=a__ , header_text=a__ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] )-> str: """simple docstring""" lowercase__ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowercase__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=a__ , numpify=a__ ) for image in image_inputs: self.assertIsInstance(a__ , np.ndarray ) lowercase__ = ( (self.image_processor_tester.patch_size['height'] * self.image_processor_tester.patch_size['width']) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input lowercase__ = image_processor( image_inputs[0] , return_tensors='pt' , max_patches=a__ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched lowercase__ = image_processor( a__ , return_tensors='pt' , max_patches=a__ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def SCREAMING_SNAKE_CASE_ ( self : str )-> List[str]: """simple docstring""" lowercase__ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowercase__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=a__ , torchify=a__ ) for image in image_inputs: self.assertIsInstance(a__ , torch.Tensor ) # Test not batched input lowercase__ = ( (self.image_processor_tester.patch_size['height'] * self.image_processor_tester.patch_size['width']) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input lowercase__ = image_processor( image_inputs[0] , return_tensors='pt' , max_patches=a__ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched lowercase__ = image_processor( a__ , return_tensors='pt' , max_patches=a__ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) @unittest.skipIf( not is_torch_greater_or_equal_than_1_11 , reason='`Pix2StructImageProcessor` requires `torch>=1.11.0`.' , ) @require_torch @require_vision class SCREAMING_SNAKE_CASE (lowerCAmelCase__ , unittest.TestCase ): _UpperCamelCase : str = PixaStructImageProcessor if is_vision_available() else None def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] )-> Union[str, Any]: """simple docstring""" lowercase__ = PixaStructImageProcessingTester(self , num_channels=4 ) lowercase__ = 3 @property def SCREAMING_SNAKE_CASE_ ( self : str )-> Any: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE_ ( self : Optional[int] )-> Union[str, Any]: """simple docstring""" lowercase__ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(a__ , 'do_normalize' ) ) self.assertTrue(hasattr(a__ , 'do_convert_rgb' ) ) def SCREAMING_SNAKE_CASE_ ( self : Any )-> Optional[int]: """simple docstring""" lowercase__ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowercase__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=a__ ) for image in image_inputs: self.assertIsInstance(a__ , Image.Image ) # Test not batched input lowercase__ = ( (self.image_processor_tester.patch_size['height'] * self.image_processor_tester.patch_size['width']) * (self.image_processor_tester.num_channels - 1) ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input lowercase__ = image_processor( image_inputs[0] , return_tensors='pt' , max_patches=a__ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched lowercase__ = image_processor( a__ , return_tensors='pt' , max_patches=a__ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
364
import sys lowercase_ = ( """73167176531330624919225119674426574742355349194934""" """96983520312774506326239578318016984801869478851843""" """85861560789112949495459501737958331952853208805511""" """12540698747158523863050715693290963295227443043557""" """66896648950445244523161731856403098711121722383113""" """62229893423380308135336276614282806444486645238749""" """30358907296290491560440772390713810515859307960866""" """70172427121883998797908792274921901699720888093776""" """65727333001053367881220235421809751254540594752243""" """52584907711670556013604839586446706324415722155397""" """53697817977846174064955149290862569321978468622482""" """83972241375657056057490261407972968652414535100474""" """82166370484403199890008895243450658541227588666881""" """16427171479924442928230863465674813919123162824586""" """17866458359124566529476545682848912883142607690042""" """24219022671055626321111109370544217506941658960408""" """07198403850962455444362981230987879927244284909188""" """84580156166097919133875499200524063689912560717606""" """05886116467109405077541002256983155200055935729725""" """71636269561882670428252483600823257530420752963450""" ) def __UpperCamelCase (_SCREAMING_SNAKE_CASE = N ) -> int: lowercase__ = -sys.maxsize - 1 for i in range(len(_SCREAMING_SNAKE_CASE ) - 12 ): lowercase__ = 1 for j in range(13 ): product *= int(n[i + j] ) if product > largest_product: lowercase__ = product return largest_product if __name__ == "__main__": print(f'''{solution() = }''')
269
0
import argparse from pathlib import Path import torch from transformers import OPTConfig, OPTModel from transformers.utils import logging logging.set_verbosity_info() lowercase__ : List[Any] = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE_ ( snake_case__ ) -> Optional[int]: lowerCAmelCase = torch.load(snake_case__ , map_location='''cpu''' ) if "model" in sd.keys(): lowerCAmelCase = torch.load(snake_case__ , map_location='''cpu''' )['''model'''] # pop unnecessary weights lowerCAmelCase = [ '''decoder.version''', '''decoder.output_projection.weight''', ] for key in keys_to_delete: if key in sd: sd.pop(snake_case__ ) lowerCAmelCase = { '''decoder.project_in_dim.weight''': '''decoder.project_in.weight''', '''decoder.project_out_dim.weight''': '''decoder.project_out.weight''', '''decoder.layer_norm.weight''': '''decoder.final_layer_norm.weight''', '''decoder.layer_norm.bias''': '''decoder.final_layer_norm.bias''', } for old_key, new_key in keys_to_rename.items(): if old_key in sd: lowerCAmelCase = sd.pop(snake_case__ ) lowerCAmelCase = list(sd.keys() ) for key in keys: if ".qkv_proj." in key: lowerCAmelCase = sd[key] # We split QKV in separate Q,K,V lowerCAmelCase = key.replace('''.qkv_proj.''' , '''.q_proj.''' ) lowerCAmelCase = key.replace('''.qkv_proj.''' , '''.k_proj.''' ) lowerCAmelCase = key.replace('''.qkv_proj.''' , '''.v_proj.''' ) lowerCAmelCase = value.shape[0] assert depth % 3 == 0 # `SequeuceParallelTransformerBlock` has QKV weight is separated in K,V,Q despite the naming: # https://cs.github.com/facebookresearch/metaseq/blob/51871bd73cd04c038f239ea2a26db1d7f6b37927/metaseq/modules/sequence_parallel_transformer_layer.py#L97 lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = torch.split(snake_case__ , depth // 3 , dim=0 ) lowerCAmelCase = q lowerCAmelCase = k lowerCAmelCase = v del sd[key] return sd @torch.no_grad() def SCREAMING_SNAKE_CASE_ ( snake_case__ , snake_case__ , snake_case__=None ) -> str: lowerCAmelCase = load_checkpoint(snake_case__ ) if config is not None: lowerCAmelCase = OPTConfig.from_pretrained(snake_case__ ) else: lowerCAmelCase = OPTConfig() lowerCAmelCase = OPTModel(snake_case__ ).half().eval() model.load_state_dict(snake_case__ ) # Check results Path(snake_case__ ).mkdir(exist_ok=snake_case__ ) model.save_pretrained(snake_case__ ) if __name__ == "__main__": lowercase__ : int = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--fairseq_path''', type=str, help=( '''path to fairseq checkpoint in correct format. You can find all checkpoints in the correct format here:''' ''' https://huggingface.co/models?other=opt_metasq''' ), ) parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--hf_config''', default=None, type=str, help='''Define HF config.''') lowercase__ : str = parser.parse_args() convert_opt_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, config=args.hf_config)
338
lowercase__ : Optional[int] = '''ABCDEFGHIJKLMNOPQRSTUVWXYZ''' def SCREAMING_SNAKE_CASE_ ( ) -> None: lowerCAmelCase = input('''Enter message: ''' ) lowerCAmelCase = input('''Enter key [alphanumeric]: ''' ) lowerCAmelCase = input('''Encrypt/Decrypt [e/d]: ''' ) if mode.lower().startswith('''e''' ): lowerCAmelCase = '''encrypt''' lowerCAmelCase = encrypt_message(snake_case__ , snake_case__ ) elif mode.lower().startswith('''d''' ): lowerCAmelCase = '''decrypt''' lowerCAmelCase = decrypt_message(snake_case__ , snake_case__ ) print(f"\n{mode.title()}ed message:" ) print(snake_case__ ) def SCREAMING_SNAKE_CASE_ ( snake_case__ , snake_case__ ) -> str: return translate_message(snake_case__ , snake_case__ , '''encrypt''' ) def SCREAMING_SNAKE_CASE_ ( snake_case__ , snake_case__ ) -> str: return translate_message(snake_case__ , snake_case__ , '''decrypt''' ) def SCREAMING_SNAKE_CASE_ ( snake_case__ , snake_case__ , snake_case__ ) -> str: lowerCAmelCase = [] lowerCAmelCase = 0 lowerCAmelCase = key.upper() for symbol in message: lowerCAmelCase = LETTERS.find(symbol.upper() ) if num != -1: if mode == "encrypt": num += LETTERS.find(key[key_index] ) elif mode == "decrypt": num -= LETTERS.find(key[key_index] ) num %= len(snake_case__ ) if symbol.isupper(): translated.append(LETTERS[num] ) elif symbol.islower(): translated.append(LETTERS[num].lower() ) key_index += 1 if key_index == len(snake_case__ ): lowerCAmelCase = 0 else: translated.append(snake_case__ ) return "".join(snake_case__ ) if __name__ == "__main__": main()
338
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __a = {'''configuration_wavlm''': ['''WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''WavLMConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ '''WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''WavLMForAudioFrameClassification''', '''WavLMForCTC''', '''WavLMForSequenceClassification''', '''WavLMForXVector''', '''WavLMModel''', '''WavLMPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_wavlm import WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP, WavLMConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavlm import ( WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST, WavLMForAudioFrameClassification, WavLMForCTC, WavLMForSequenceClassification, WavLMForXVector, WavLMModel, WavLMPreTrainedModel, ) else: import sys __a = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
173
import os import pytest from attr import dataclass __a = '''us-east-1''' # defaults region @dataclass class __SCREAMING_SNAKE_CASE : A : str A : str = 'arn:aws:iam::558105141721:role/sagemaker_execution_role' A : Union[str, Any] = { 'task_name': 'mnli', 'per_device_train_batch_size': 16, 'per_device_eval_batch_size': 16, 'do_train': True, 'do_eval': True, 'do_predict': True, 'output_dir': '/opt/ml/model', 'overwrite_output_dir': True, 'max_steps': 500, 'save_steps': 5500, } A : str = {**hyperparameters, 'max_steps': 1000} @property def __lowerCamelCase ( self ): if self.framework == "pytorch": return [ {"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"}, {"Name": "eval_accuracy", "Regex": r"eval_accuracy.*=\D*(.*?)$"}, {"Name": "eval_loss", "Regex": r"eval_loss.*=\D*(.*?)$"}, ] else: return [ {"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"}, {"Name": "eval_accuracy", "Regex": r"loss.*=\D*(.*?)]?$"}, {"Name": "eval_loss", "Regex": r"sparse_categorical_accuracy.*=\D*(.*?)]?$"}, ] @property def __lowerCamelCase ( self ): return f"""{self.framework}-transfromers-test""" @property def __lowerCamelCase ( self ): return f"""./tests/sagemaker/scripts/{self.framework}""" @property def __lowerCamelCase ( self ): if self.framework == "pytorch": return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-pytorch-training:1.7.1-transformers4.6.1-gpu-py36-cu110-ubuntu18.04" else: return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-tensorflow-training:2.4.1-transformers4.6.1-gpu-py37-cu110-ubuntu18.04" @pytest.fixture(scope='''class''' ) def __lowercase ( _UpperCamelCase ) ->str: """simple docstring""" lowercase : Union[str, Any] = SageMakerTestEnvironment(framework=request.cls.framework )
173
1
import unittest from transformers import DonutProcessor __UpperCamelCase : Optional[Any] = """naver-clova-ix/donut-base""" class __SCREAMING_SNAKE_CASE( unittest.TestCase ): def lowerCAmelCase_ ( self: str ) -> int: snake_case__ = DonutProcessor.from_pretrained(_SCREAMING_SNAKE_CASE ) def lowerCAmelCase_ ( self: Optional[int] ) -> List[Any]: snake_case__ = { '''name''': '''John Doe''', '''age''': '''99''', '''city''': '''Atlanta''', '''state''': '''GA''', '''zip''': '''30301''', '''phone''': '''123-4567''', '''nicknames''': [{'''nickname''': '''Johnny'''}, {'''nickname''': '''JD'''}], } snake_case__ = ( '''<s_name>John Doe</s_name><s_age>99</s_age><s_city>Atlanta</s_city>''' '''<s_state>GA</s_state><s_zip>30301</s_zip><s_phone>123-4567</s_phone>''' '''<s_nicknames><s_nickname>Johnny</s_nickname>''' '''<sep/><s_nickname>JD</s_nickname></s_nicknames>''' ) snake_case__ = self.processor.tokenajson(_SCREAMING_SNAKE_CASE ) self.assertDictEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
307
import collections import inspect import unittest from transformers import SwinvaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel from transformers.models.swinva.modeling_swinva import SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _a : def __init__( self : List[str] , _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : Tuple=13 , _SCREAMING_SNAKE_CASE : Tuple=32 , _SCREAMING_SNAKE_CASE : Dict=2 , _SCREAMING_SNAKE_CASE : List[Any]=3 , _SCREAMING_SNAKE_CASE : str=16 , _SCREAMING_SNAKE_CASE : Union[str, Any]=[1, 2, 1] , _SCREAMING_SNAKE_CASE : List[Any]=[2, 2, 4] , _SCREAMING_SNAKE_CASE : str=2 , _SCREAMING_SNAKE_CASE : Optional[int]=2.0 , _SCREAMING_SNAKE_CASE : Tuple=True , _SCREAMING_SNAKE_CASE : Dict=0.0 , _SCREAMING_SNAKE_CASE : str=0.0 , _SCREAMING_SNAKE_CASE : List[str]=0.1 , _SCREAMING_SNAKE_CASE : Tuple="gelu" , _SCREAMING_SNAKE_CASE : str=False , _SCREAMING_SNAKE_CASE : Dict=True , _SCREAMING_SNAKE_CASE : List[Any]=0.02 , _SCREAMING_SNAKE_CASE : Any=1E-5 , _SCREAMING_SNAKE_CASE : Tuple=True , _SCREAMING_SNAKE_CASE : Union[str, Any]=None , _SCREAMING_SNAKE_CASE : Dict=True , _SCREAMING_SNAKE_CASE : Any=10 , _SCREAMING_SNAKE_CASE : Union[str, Any]=8 , )-> Dict: lowerCAmelCase__ : Optional[Any] = parent lowerCAmelCase__ : Optional[int] = batch_size lowerCAmelCase__ : Tuple = image_size lowerCAmelCase__ : Optional[Any] = patch_size lowerCAmelCase__ : Dict = num_channels lowerCAmelCase__ : Dict = embed_dim lowerCAmelCase__ : Optional[Any] = depths lowerCAmelCase__ : Tuple = num_heads lowerCAmelCase__ : Dict = window_size lowerCAmelCase__ : List[str] = mlp_ratio lowerCAmelCase__ : str = qkv_bias lowerCAmelCase__ : List[Any] = hidden_dropout_prob lowerCAmelCase__ : int = attention_probs_dropout_prob lowerCAmelCase__ : Tuple = drop_path_rate lowerCAmelCase__ : Dict = hidden_act lowerCAmelCase__ : Tuple = use_absolute_embeddings lowerCAmelCase__ : int = patch_norm lowerCAmelCase__ : Optional[int] = layer_norm_eps lowerCAmelCase__ : Optional[int] = initializer_range lowerCAmelCase__ : Dict = is_training lowerCAmelCase__ : Any = scope lowerCAmelCase__ : int = use_labels lowerCAmelCase__ : Tuple = type_sequence_label_size lowerCAmelCase__ : Any = encoder_stride def UpperCAmelCase__( self : str )-> Optional[int]: lowerCAmelCase__ : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase__ : Dict = None if self.use_labels: lowerCAmelCase__ : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase__ : Optional[Any] = self.get_config() return config, pixel_values, labels def UpperCAmelCase__( self : Optional[int] )-> str: return SwinvaConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def UpperCAmelCase__( self : Optional[Any] , _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : Any )-> int: lowerCAmelCase__ : Union[str, Any] = SwinvaModel(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() lowerCAmelCase__ : List[str] = model(_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : int = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) lowerCAmelCase__ : Dict = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def UpperCAmelCase__( self : Any , _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : Any )-> List[Any]: lowerCAmelCase__ : Optional[int] = SwinvaForMaskedImageModeling(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() lowerCAmelCase__ : Optional[Any] = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images lowerCAmelCase__ : Any = 1 lowerCAmelCase__ : Dict = SwinvaForMaskedImageModeling(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() lowerCAmelCase__ : Optional[int] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCAmelCase__ : Optional[int] = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def UpperCAmelCase__( self : int , _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : List[Any] )-> Union[str, Any]: lowerCAmelCase__ : Tuple = self.type_sequence_label_size lowerCAmelCase__ : Optional[Any] = SwinvaForImageClassification(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() lowerCAmelCase__ : Any = model(_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def UpperCAmelCase__( self : Tuple )-> str: lowerCAmelCase__ : int = self.prepare_config_and_inputs() lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : Union[str, Any] = config_and_inputs lowerCAmelCase__ : Tuple = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class _a ( _lowercase , _lowercase , unittest.TestCase): _a : str = ( (SwinvaModel, SwinvaForImageClassification, SwinvaForMaskedImageModeling) if is_torch_available() else () ) _a : Tuple = ( {'''feature-extraction''': SwinvaModel, '''image-classification''': SwinvaForImageClassification} if is_torch_available() else {} ) _a : List[str] = False _a : int = False _a : Optional[int] = False _a : Optional[Any] = False def UpperCAmelCase__( self : str )-> Optional[Any]: lowerCAmelCase__ : Tuple = SwinvaModelTester(self ) lowerCAmelCase__ : Any = ConfigTester(self , config_class=_SCREAMING_SNAKE_CASE , embed_dim=37 ) def UpperCAmelCase__( self : str )-> int: self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCAmelCase__( self : Optional[int] )-> Optional[Any]: lowerCAmelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_SCREAMING_SNAKE_CASE ) @unittest.skip(reason='''Got `CUDA error: misaligned address` with PyTorch 2.0.0.''' ) def UpperCAmelCase__( self : Optional[Any] )-> Dict: pass @unittest.skip(reason='''Swinv2 does not use inputs_embeds''' ) def UpperCAmelCase__( self : Tuple )-> Optional[int]: pass def UpperCAmelCase__( self : List[Any] )-> List[str]: lowerCAmelCase__ , lowerCAmelCase__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase__ : List[Any] = model_class(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowerCAmelCase__ : Union[str, Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_SCREAMING_SNAKE_CASE , nn.Linear ) ) def UpperCAmelCase__( self : Any )-> Dict: lowerCAmelCase__ , lowerCAmelCase__ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase__ : Dict = model_class(_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : Optional[int] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase__ : Tuple = [*signature.parameters.keys()] lowerCAmelCase__ : int = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _SCREAMING_SNAKE_CASE ) def UpperCAmelCase__( self : Union[str, Any] )-> Dict: lowerCAmelCase__ , lowerCAmelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase__ : Tuple = True for model_class in self.all_model_classes: lowerCAmelCase__ : List[str] = True lowerCAmelCase__ : Union[str, Any] = False lowerCAmelCase__ : Optional[Any] = True lowerCAmelCase__ : List[Any] = model_class(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() with torch.no_grad(): lowerCAmelCase__ : str = model(**self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) lowerCAmelCase__ : List[str] = outputs.attentions lowerCAmelCase__ : Union[str, Any] = len(self.model_tester.depths ) self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) # check that output_attentions also work using config del inputs_dict["output_attentions"] lowerCAmelCase__ : int = True lowerCAmelCase__ : Dict = config.window_size**2 lowerCAmelCase__ : List[Any] = model_class(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() with torch.no_grad(): lowerCAmelCase__ : Optional[Any] = model(**self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) lowerCAmelCase__ : str = outputs.attentions self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , ) lowerCAmelCase__ : int = len(_SCREAMING_SNAKE_CASE ) # Check attention is always last and order is fine lowerCAmelCase__ : str = True lowerCAmelCase__ : List[str] = True lowerCAmelCase__ : Union[str, Any] = model_class(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() with torch.no_grad(): lowerCAmelCase__ : int = model(**self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) if hasattr(self.model_tester , '''num_hidden_states_types''' ): lowerCAmelCase__ : List[Any] = self.model_tester.num_hidden_states_types else: # also another +1 for reshaped_hidden_states lowerCAmelCase__ : str = 2 self.assertEqual(out_len + added_hidden_states , len(_SCREAMING_SNAKE_CASE ) ) lowerCAmelCase__ : List[Any] = outputs.attentions self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , ) def UpperCAmelCase__( self : Dict , _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : List[str] )-> Tuple: lowerCAmelCase__ : Any = model_class(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() with torch.no_grad(): lowerCAmelCase__ : Any = model(**self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) lowerCAmelCase__ : str = outputs.hidden_states lowerCAmelCase__ : Optional[int] = getattr( self.model_tester , '''expected_num_hidden_layers''' , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) # Swinv2 has a different seq_length lowerCAmelCase__ : List[Any] = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) lowerCAmelCase__ : List[str] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) lowerCAmelCase__ : Dict = outputs.reshaped_hidden_states self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : Optional[Any] = reshaped_hidden_states[0].shape lowerCAmelCase__ : Tuple = ( reshaped_hidden_states[0].view(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , height * width ).permute(0 , 2 , 1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def UpperCAmelCase__( self : Tuple )-> List[Any]: lowerCAmelCase__ , lowerCAmelCase__ : int = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase__ : List[str] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: lowerCAmelCase__ : Any = True self.check_hidden_states_output(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCAmelCase__ : Any = True self.check_hidden_states_output(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def UpperCAmelCase__( self : Any )-> Tuple: lowerCAmelCase__ , lowerCAmelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase__ : Optional[int] = 3 lowerCAmelCase__ : List[str] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) lowerCAmelCase__ : List[str] = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) lowerCAmelCase__ : List[Any] = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) lowerCAmelCase__ : Tuple = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: lowerCAmelCase__ : Optional[Any] = True self.check_hidden_states_output(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCAmelCase__ : Tuple = True self.check_hidden_states_output(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , (padded_height, padded_width) ) def UpperCAmelCase__( self : Dict )-> Optional[Any]: lowerCAmelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__( self : str )-> Optional[Any]: lowerCAmelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_SCREAMING_SNAKE_CASE ) @slow def UpperCAmelCase__( self : Optional[Any] )-> int: for model_name in SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase__ : Optional[Any] = SwinvaModel.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__( self : Dict )-> List[str]: lowerCAmelCase__ , lowerCAmelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase__ : Dict = _config_zero_init(_SCREAMING_SNAKE_CASE ) for model_class in self.all_model_classes: lowerCAmelCase__ : List[str] = model_class(config=_SCREAMING_SNAKE_CASE ) for name, param in model.named_parameters(): if "embeddings" not in name and "logit_scale" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=F'Parameter {name} of model {model_class} seems not properly initialized' , ) @require_vision @require_torch class _a ( unittest.TestCase): @cached_property def UpperCAmelCase__( self : Tuple )-> Optional[Any]: return ( AutoImageProcessor.from_pretrained('''microsoft/swinv2-tiny-patch4-window8-256''' ) if is_vision_available() else None ) @slow def UpperCAmelCase__( self : List[Any] )-> List[str]: lowerCAmelCase__ : Any = SwinvaForImageClassification.from_pretrained('''microsoft/swinv2-tiny-patch4-window8-256''' ).to( _SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : Optional[Any] = self.default_image_processor lowerCAmelCase__ : Tuple = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) lowerCAmelCase__ : List[str] = image_processor(images=_SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).to(_SCREAMING_SNAKE_CASE ) # forward pass with torch.no_grad(): lowerCAmelCase__ : Optional[int] = model(**_SCREAMING_SNAKE_CASE ) # verify the logits lowerCAmelCase__ : Any = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , _SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : List[Any] = torch.tensor([-0.3947, -0.4306, 0.0026] ).to(_SCREAMING_SNAKE_CASE ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _SCREAMING_SNAKE_CASE , atol=1E-4 ) )
131
0
import torch from diffusers import CMStochasticIterativeScheduler from .test_schedulers import SchedulerCommonTest class __lowerCAmelCase ( A ): UpperCamelCase = (CMStochasticIterativeScheduler,) UpperCamelCase = 1_0 def _lowerCamelCase ( self : Dict , **A : Optional[Any]) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase = { 'num_train_timesteps': 2_01, 'sigma_min': 0.0_0_2, 'sigma_max': 8_0.0, } config.update(**A) return config def _lowerCamelCase ( self : Dict) -> str: """simple docstring""" _UpperCAmelCase = 10 _UpperCAmelCase = self.get_scheduler_config() _UpperCAmelCase = self.scheduler_classes[0](**A) scheduler.set_timesteps(A) _UpperCAmelCase = scheduler.timesteps[0] _UpperCAmelCase = scheduler.timesteps[1] _UpperCAmelCase = self.dummy_sample _UpperCAmelCase = 0.1 * sample _UpperCAmelCase = scheduler.step(A , A , A).prev_sample _UpperCAmelCase = scheduler.step(A , A , A).prev_sample self.assertEqual(output_a.shape , sample.shape) self.assertEqual(output_a.shape , output_a.shape) def _lowerCamelCase ( self : int) -> Any: """simple docstring""" for timesteps in [10, 50, 1_00, 10_00]: self.check_over_configs(num_train_timesteps=A) def _lowerCamelCase ( self : int) -> Optional[int]: """simple docstring""" for clip_denoised in [True, False]: self.check_over_configs(clip_denoised=A) def _lowerCamelCase ( self : Optional[Any]) -> Dict: """simple docstring""" _UpperCAmelCase = self.scheduler_classes[0] _UpperCAmelCase = self.get_scheduler_config() _UpperCAmelCase = scheduler_class(**A) _UpperCAmelCase = 1 scheduler.set_timesteps(A) _UpperCAmelCase = scheduler.timesteps _UpperCAmelCase = torch.manual_seed(0) _UpperCAmelCase = self.dummy_model() _UpperCAmelCase = self.dummy_sample_deter * scheduler.init_noise_sigma for i, t in enumerate(A): # 1. scale model input _UpperCAmelCase = scheduler.scale_model_input(A , A) # 2. predict noise residual _UpperCAmelCase = model(A , A) # 3. predict previous sample x_t-1 _UpperCAmelCase = scheduler.step(A , A , A , generator=A).prev_sample _UpperCAmelCase = pred_prev_sample _UpperCAmelCase = torch.sum(torch.abs(A)) _UpperCAmelCase = torch.mean(torch.abs(A)) assert abs(result_sum.item() - 1_9_2.7_6_1_4) < 1E-2 assert abs(result_mean.item() - 0.2_5_1_0) < 1E-3 def _lowerCamelCase ( self : List[str]) -> List[str]: """simple docstring""" _UpperCAmelCase = self.scheduler_classes[0] _UpperCAmelCase = self.get_scheduler_config() _UpperCAmelCase = scheduler_class(**A) _UpperCAmelCase = [1_06, 0] scheduler.set_timesteps(timesteps=A) _UpperCAmelCase = scheduler.timesteps _UpperCAmelCase = torch.manual_seed(0) _UpperCAmelCase = self.dummy_model() _UpperCAmelCase = self.dummy_sample_deter * scheduler.init_noise_sigma for t in timesteps: # 1. scale model input _UpperCAmelCase = scheduler.scale_model_input(A , A) # 2. predict noise residual _UpperCAmelCase = model(A , A) # 3. predict previous sample x_t-1 _UpperCAmelCase = scheduler.step(A , A , A , generator=A).prev_sample _UpperCAmelCase = pred_prev_sample _UpperCAmelCase = torch.sum(torch.abs(A)) _UpperCAmelCase = torch.mean(torch.abs(A)) assert abs(result_sum.item() - 3_4_7.6_3_5_7) < 1E-2 assert abs(result_mean.item() - 0.4_5_2_7) < 1E-3 def _lowerCamelCase ( self : Union[str, Any]) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = self.scheduler_classes[0] _UpperCAmelCase = self.get_scheduler_config() _UpperCAmelCase = scheduler_class(**A) _UpperCAmelCase = [39, 30, 12, 15, 0] with self.assertRaises(A , msg='`timesteps` must be in descending order.'): scheduler.set_timesteps(timesteps=A) def _lowerCamelCase ( self : Optional[Any]) -> Any: """simple docstring""" _UpperCAmelCase = self.scheduler_classes[0] _UpperCAmelCase = self.get_scheduler_config() _UpperCAmelCase = scheduler_class(**A) _UpperCAmelCase = [39, 30, 12, 1, 0] _UpperCAmelCase = len(A) with self.assertRaises(A , msg='Can only pass one of `num_inference_steps` or `timesteps`.'): scheduler.set_timesteps(num_inference_steps=A , timesteps=A) def _lowerCamelCase ( self : str) -> Dict: """simple docstring""" _UpperCAmelCase = self.scheduler_classes[0] _UpperCAmelCase = self.get_scheduler_config() _UpperCAmelCase = scheduler_class(**A) _UpperCAmelCase = [scheduler.config.num_train_timesteps] with self.assertRaises( A , msg='`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}' , ): scheduler.set_timesteps(timesteps=A)
290
UpperCAmelCase__ = { "A": ["B", "C", "E"], "B": ["A", "D", "E"], "C": ["A", "F", "G"], "D": ["B"], "E": ["A", "B", "D"], "F": ["C"], "G": ["C"], } def A ( _UpperCAmelCase : dict , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : List[Any] ) -> list[str]: '''simple docstring''' _UpperCAmelCase = set() # keep track of all the paths to be checked _UpperCAmelCase = [[start]] # return path if start is goal if start == goal: return [start] # keeps looping until all possible paths have been checked while queue: # pop the first path from the queue _UpperCAmelCase = queue.pop(0 ) # get the last node from the path _UpperCAmelCase = path[-1] if node not in explored: _UpperCAmelCase = graph[node] # go through all neighbour nodes, construct a new path and # push it into the queue for neighbour in neighbours: _UpperCAmelCase = list(_UpperCAmelCase ) new_path.append(_UpperCAmelCase ) queue.append(_UpperCAmelCase ) # return path if neighbour is goal if neighbour == goal: return new_path # mark node as explored explored.add(_UpperCAmelCase ) # in case there's no path between the 2 nodes return [] def A ( _UpperCAmelCase : dict , _UpperCAmelCase : Any , _UpperCAmelCase : List[str] ) -> int: '''simple docstring''' if not graph or start not in graph or target not in graph: return -1 if start == target: return 0 _UpperCAmelCase = [start] _UpperCAmelCase = set(_UpperCAmelCase ) # Keep tab on distances from `start` node. _UpperCAmelCase = {start: 0, target: -1} while queue: _UpperCAmelCase = queue.pop(0 ) if node == target: _UpperCAmelCase = ( dist[node] if dist[target] == -1 else min(dist[target] , dist[node] ) ) for adjacent in graph[node]: if adjacent not in visited: visited.add(_UpperCAmelCase ) queue.append(_UpperCAmelCase ) _UpperCAmelCase = dist[node] + 1 return dist[target] if __name__ == "__main__": print(bfs_shortest_path(demo_graph, "G", "D")) # returns ['G', 'C', 'A', 'B', 'D'] print(bfs_shortest_path_distance(demo_graph, "G", "D")) # returns 4
290
1
"""simple docstring""" def lowercase ( __snake_case : str , __snake_case : str ): lowercase_ : int = len(__snake_case ) lowercase_ : int = len(__snake_case ) lowercase_ : int = ( first_str_length if first_str_length > second_str_length else second_str_length ) lowercase_ : list = [] for char_count in range(__snake_case ): if char_count < first_str_length: output_list.append(first_str[char_count] ) if char_count < second_str_length: output_list.append(second_str[char_count] ) return "".join(__snake_case ) if __name__ == "__main__": print(alternative_string_arrange('''AB''', '''XYZ'''), end=''' ''')
33
import pickle import unittest import torch from accelerate import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils import require_cpu @require_cpu class UpperCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def _lowercase ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" __magic_name__ = torch.nn.Linear(10 , 10 ) __magic_name__ = torch.optim.SGD(model.parameters() , 0.1 ) __magic_name__ = Accelerator() __magic_name__ = accelerator.prepare(UpperCamelCase__ ) try: pickle.loads(pickle.dumps(UpperCamelCase__ ) ) except Exception as e: self.fail(F'''Accelerated optimizer pickling failed with {e}''' ) AcceleratorState._reset_state()
88
0
from collections.abc import Iterator, MutableMapping from dataclasses import dataclass from typing import Generic, TypeVar __snake_case : Optional[Any] = TypeVar("""KEY""") __snake_case : str = TypeVar("""VAL""") @dataclass(frozen=__lowercase , slots=__lowercase) class __SCREAMING_SNAKE_CASE ( Generic[KEY, VAL]): _SCREAMING_SNAKE_CASE : KEY _SCREAMING_SNAKE_CASE : VAL class __SCREAMING_SNAKE_CASE ( _Item): def __init__( self ): """simple docstring""" super().__init__(_UpperCamelCase , _UpperCamelCase ) def __bool__( self ): """simple docstring""" return False __snake_case : int = _DeletedItem() class __SCREAMING_SNAKE_CASE ( MutableMapping[KEY, VAL]): def __init__( self , _UpperCamelCase = 8 , _UpperCamelCase = 0.75 ): """simple docstring""" lowerCAmelCase__ = initial_block_size lowerCAmelCase__ = [None] * initial_block_size assert 0.0 < capacity_factor < 1.0 lowerCAmelCase__ = capacity_factor lowerCAmelCase__ = 0 def UpperCamelCase__ ( self , _UpperCamelCase ): """simple docstring""" return hash(_UpperCamelCase ) % len(self._buckets ) def UpperCamelCase__ ( self , _UpperCamelCase ): """simple docstring""" return (ind + 1) % len(self._buckets ) def UpperCamelCase__ ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): """simple docstring""" lowerCAmelCase__ = self._buckets[ind] if not stored: lowerCAmelCase__ = _Item(_UpperCamelCase , _UpperCamelCase ) self._len += 1 return True elif stored.key == key: lowerCAmelCase__ = _Item(_UpperCamelCase , _UpperCamelCase ) return True else: return False def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase__ = len(self._buckets ) * self._capacity_factor return len(self ) >= int(_UpperCamelCase ) def UpperCamelCase__ ( self ): """simple docstring""" if len(self._buckets ) <= self._initial_block_size: return False lowerCAmelCase__ = len(self._buckets ) * self._capacity_factor / 2 return len(self ) < limit def UpperCamelCase__ ( self , _UpperCamelCase ): """simple docstring""" lowerCAmelCase__ = self._buckets lowerCAmelCase__ = [None] * new_size lowerCAmelCase__ = 0 for item in old_buckets: if item: self._add_item(item.key , item.val ) def UpperCamelCase__ ( self ): """simple docstring""" self._resize(len(self._buckets ) * 2 ) def UpperCamelCase__ ( self ): """simple docstring""" self._resize(len(self._buckets ) // 2 ) def UpperCamelCase__ ( self , _UpperCamelCase ): """simple docstring""" lowerCAmelCase__ = self._get_bucket_index(_UpperCamelCase ) for _ in range(len(self._buckets ) ): yield ind lowerCAmelCase__ = self._get_next_ind(_UpperCamelCase ) def UpperCamelCase__ ( self , _UpperCamelCase , _UpperCamelCase ): """simple docstring""" for ind in self._iterate_buckets(_UpperCamelCase ): if self._try_set(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): break def __setitem__( self , _UpperCamelCase , _UpperCamelCase ): """simple docstring""" if self._is_full(): self._size_up() self._add_item(_UpperCamelCase , _UpperCamelCase ) def __delitem__( self , _UpperCamelCase ): """simple docstring""" for ind in self._iterate_buckets(_UpperCamelCase ): lowerCAmelCase__ = self._buckets[ind] if item is None: raise KeyError(_UpperCamelCase ) if item is _deleted: continue if item.key == key: lowerCAmelCase__ = _deleted self._len -= 1 break if self._is_sparse(): self._size_down() def __getitem__( self , _UpperCamelCase ): """simple docstring""" for ind in self._iterate_buckets(_UpperCamelCase ): lowerCAmelCase__ = self._buckets[ind] if item is None: break if item is _deleted: continue if item.key == key: return item.val raise KeyError(_UpperCamelCase ) def __len__( self ): """simple docstring""" return self._len def __iter__( self ): """simple docstring""" yield from (item.key for item in self._buckets if item) def __repr__( self ): """simple docstring""" lowerCAmelCase__ = ' ,'.join( F"{item.key}: {item.val}" for item in self._buckets if item ) return F"HashMap({val_string})"
350
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging __snake_case : Any = logging.get_logger(__name__) class __SCREAMING_SNAKE_CASE ( __lowercase): _SCREAMING_SNAKE_CASE : List[Any] = ['''pixel_values'''] def __init__( self , _UpperCamelCase = True , _UpperCamelCase = None , _UpperCamelCase = PILImageResampling.BILINEAR , _UpperCamelCase = True , _UpperCamelCase = None , _UpperCamelCase = True , _UpperCamelCase = 1 / 2_55 , _UpperCamelCase = True , _UpperCamelCase = None , _UpperCamelCase = None , **_UpperCamelCase , ): """simple docstring""" super().__init__(**_UpperCamelCase ) lowerCAmelCase__ = size if size is not None else {'shortest_edge': 2_56} lowerCAmelCase__ = get_size_dict(_UpperCamelCase , default_to_square=_UpperCamelCase ) lowerCAmelCase__ = crop_size if crop_size is not None else {'height': 2_24, 'width': 2_24} lowerCAmelCase__ = get_size_dict(_UpperCamelCase ) lowerCAmelCase__ = do_resize lowerCAmelCase__ = size lowerCAmelCase__ = resample lowerCAmelCase__ = do_center_crop lowerCAmelCase__ = crop_size lowerCAmelCase__ = do_rescale lowerCAmelCase__ = rescale_factor lowerCAmelCase__ = do_normalize lowerCAmelCase__ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN lowerCAmelCase__ = image_std if image_std is not None else IMAGENET_STANDARD_STD def UpperCamelCase__ ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = PILImageResampling.BICUBIC , _UpperCamelCase = None , **_UpperCamelCase , ): """simple docstring""" lowerCAmelCase__ = get_size_dict(_UpperCamelCase , default_to_square=_UpperCamelCase ) if "shortest_edge" not in size: raise ValueError(F"The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}" ) lowerCAmelCase__ = get_resize_output_image_size(_UpperCamelCase , size=size['shortest_edge'] , default_to_square=_UpperCamelCase ) return resize(_UpperCamelCase , size=_UpperCamelCase , resample=_UpperCamelCase , data_format=_UpperCamelCase , **_UpperCamelCase ) def UpperCamelCase__ ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = None , **_UpperCamelCase , ): """simple docstring""" lowerCAmelCase__ = get_size_dict(_UpperCamelCase ) return center_crop(_UpperCamelCase , size=(size['height'], size['width']) , data_format=_UpperCamelCase , **_UpperCamelCase ) def UpperCamelCase__ ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = None , **_UpperCamelCase ): """simple docstring""" return rescale(_UpperCamelCase , scale=_UpperCamelCase , data_format=_UpperCamelCase , **_UpperCamelCase ) def UpperCamelCase__ ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = None , **_UpperCamelCase , ): """simple docstring""" return normalize(_UpperCamelCase , mean=_UpperCamelCase , std=_UpperCamelCase , data_format=_UpperCamelCase , **_UpperCamelCase ) def UpperCamelCase__ ( self , _UpperCamelCase , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = ChannelDimension.FIRST , **_UpperCamelCase , ): """simple docstring""" lowerCAmelCase__ = do_resize if do_resize is not None else self.do_resize lowerCAmelCase__ = size if size is not None else self.size lowerCAmelCase__ = get_size_dict(_UpperCamelCase , default_to_square=_UpperCamelCase ) lowerCAmelCase__ = resample if resample is not None else self.resample lowerCAmelCase__ = do_center_crop if do_center_crop is not None else self.do_center_crop lowerCAmelCase__ = crop_size if crop_size is not None else self.crop_size lowerCAmelCase__ = get_size_dict(_UpperCamelCase ) lowerCAmelCase__ = do_rescale if do_rescale is not None else self.do_rescale lowerCAmelCase__ = rescale_factor if rescale_factor is not None else self.rescale_factor lowerCAmelCase__ = do_normalize if do_normalize is not None else self.do_normalize lowerCAmelCase__ = image_mean if image_mean is not None else self.image_mean lowerCAmelCase__ = image_std if image_std is not None else self.image_std lowerCAmelCase__ = make_list_of_images(_UpperCamelCase ) if not valid_images(_UpperCamelCase ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. lowerCAmelCase__ = [to_numpy_array(_UpperCamelCase ) for image in images] if do_resize: lowerCAmelCase__ = [self.resize(image=_UpperCamelCase , size=_UpperCamelCase , resample=_UpperCamelCase ) for image in images] if do_center_crop: lowerCAmelCase__ = [self.center_crop(image=_UpperCamelCase , size=_UpperCamelCase ) for image in images] if do_rescale: lowerCAmelCase__ = [self.rescale(image=_UpperCamelCase , scale=_UpperCamelCase ) for image in images] if do_normalize: lowerCAmelCase__ = [self.normalize(image=_UpperCamelCase , mean=_UpperCamelCase , std=_UpperCamelCase ) for image in images] lowerCAmelCase__ = [to_channel_dimension_format(_UpperCamelCase , _UpperCamelCase ) for image in images] lowerCAmelCase__ = {'pixel_values': images} return BatchFeature(data=_UpperCamelCase , tensor_type=_UpperCamelCase )
122
0
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..models.auto import AutoProcessor from ..models.vision_encoder_decoder import VisionEncoderDecoderModel from ..utils import is_vision_available from .base import PipelineTool if is_vision_available(): from PIL import Image class __A ( _SCREAMING_SNAKE_CASE ): """simple docstring""" __lowerCAmelCase = "naver-clova-ix/donut-base-finetuned-docvqa" __lowerCAmelCase = ( "This is a tool that answers a question about an document (pdf). It takes an input named `document` which " "should be the document containing the information, as well as a `question` that is the question about the " "document. It returns a text that contains the answer to the question." ) __lowerCAmelCase = "document_qa" __lowerCAmelCase = AutoProcessor __lowerCAmelCase = VisionEncoderDecoderModel __lowerCAmelCase = ["image", "text"] __lowerCAmelCase = ["text"] def __init__( self , *__A , **__A ) -> Tuple: if not is_vision_available(): raise ValueError('''Pillow must be installed to use the DocumentQuestionAnsweringTool.''' ) super().__init__(*__A , **__A ) def SCREAMING_SNAKE_CASE ( self , __A , __A ) -> List[str]: a ='''<s_docvqa><s_question>{user_input}</s_question><s_answer>''' a =task_prompt.replace('''{user_input}''' , __A ) a =self.pre_processor.tokenizer( __A , add_special_tokens=__A , return_tensors='''pt''' ).input_ids a =self.pre_processor(__A , return_tensors='''pt''' ).pixel_values return {"decoder_input_ids": decoder_input_ids, "pixel_values": pixel_values} def SCREAMING_SNAKE_CASE ( self , __A ) -> int: return self.model.generate( inputs['''pixel_values'''].to(self.device ) , decoder_input_ids=inputs['''decoder_input_ids'''].to(self.device ) , max_length=self.model.decoder.config.max_position_embeddings , early_stopping=__A , pad_token_id=self.pre_processor.tokenizer.pad_token_id , eos_token_id=self.pre_processor.tokenizer.eos_token_id , use_cache=__A , num_beams=1 , bad_words_ids=[[self.pre_processor.tokenizer.unk_token_id]] , return_dict_in_generate=__A , ).sequences def SCREAMING_SNAKE_CASE ( self , __A ) -> Optional[Any]: a =self.pre_processor.batch_decode(__A )[0] a =sequence.replace(self.pre_processor.tokenizer.eos_token , '''''' ) a =sequence.replace(self.pre_processor.tokenizer.pad_token , '''''' ) a =re.sub(r'''<.*?>''' , '''''' , __A , count=1 ).strip() # remove first task start token a =self.pre_processor.tokenajson(__A ) return sequence["answer"]
81
'''simple docstring''' import os import pytest from attr import dataclass _snake_case = 'us-east-1' # defaults region @dataclass class a__ : _SCREAMING_SNAKE_CASE : str _SCREAMING_SNAKE_CASE : str = 'arn:aws:iam::558105141721:role/sagemaker_execution_role' _SCREAMING_SNAKE_CASE : Dict = { 'task_name': 'mnli', 'per_device_train_batch_size': 16, 'per_device_eval_batch_size': 16, 'do_train': True, 'do_eval': True, 'do_predict': True, 'output_dir': '/opt/ml/model', 'overwrite_output_dir': True, 'max_steps': 500, 'save_steps': 5500, } _SCREAMING_SNAKE_CASE : List[str] = {**hyperparameters, 'max_steps': 1000} @property def _lowerCamelCase ( self ): """simple docstring""" if self.framework == "pytorch": return [ {"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"}, {"Name": "eval_accuracy", "Regex": r"eval_accuracy.*=\D*(.*?)$"}, {"Name": "eval_loss", "Regex": r"eval_loss.*=\D*(.*?)$"}, ] else: return [ {"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"}, {"Name": "eval_accuracy", "Regex": r"loss.*=\D*(.*?)]?$"}, {"Name": "eval_loss", "Regex": r"sparse_categorical_accuracy.*=\D*(.*?)]?$"}, ] @property def _lowerCamelCase ( self ): """simple docstring""" return f'''{self.framework}-transfromers-test''' @property def _lowerCamelCase ( self ): """simple docstring""" return f'''./tests/sagemaker/scripts/{self.framework}''' @property def _lowerCamelCase ( self ): """simple docstring""" if self.framework == "pytorch": return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-pytorch-training:1.7.1-transformers4.6.1-gpu-py36-cu110-ubuntu18.04" else: return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-tensorflow-training:2.4.1-transformers4.6.1-gpu-py37-cu110-ubuntu18.04" @pytest.fixture(scope="class" ) def _A ( snake_case ) -> Tuple: _lowercase : List[Any] = SageMakerTestEnvironment(framework=request.cls.framework )
250
0
from __future__ import annotations from collections import deque class lowerCAmelCase_ : '''simple docstring''' def __init__( self : Dict , _UpperCAmelCase : list[str] ): """simple docstring""" UpperCAmelCase__ = [] self.adlist.append( {"""value""": """""", """next_states""": [], """fail_state""": 0, """output""": []} ) for keyword in keywords: self.add_keyword(_UpperCAmelCase ) self.set_fail_transitions() def SCREAMING_SNAKE_CASE__ ( self : Any , _UpperCAmelCase : int , _UpperCAmelCase : str ): """simple docstring""" for state in self.adlist[current_state]["next_states"]: if char == self.adlist[state]["value"]: return state return None def SCREAMING_SNAKE_CASE__ ( self : int , _UpperCAmelCase : str ): """simple docstring""" UpperCAmelCase__ = 0 for character in keyword: UpperCAmelCase__ = self.find_next_state(_UpperCAmelCase , _UpperCAmelCase ) if next_state is None: self.adlist.append( { """value""": character, """next_states""": [], """fail_state""": 0, """output""": [], } ) self.adlist[current_state]["next_states"].append(len(self.adlist ) - 1 ) UpperCAmelCase__ = len(self.adlist ) - 1 else: UpperCAmelCase__ = next_state self.adlist[current_state]["output"].append(_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): """simple docstring""" UpperCAmelCase__ = deque() for node in self.adlist[0]["next_states"]: q.append(_UpperCAmelCase ) UpperCAmelCase__ = 0 while q: UpperCAmelCase__ = q.popleft() for child in self.adlist[r]["next_states"]: q.append(_UpperCAmelCase ) UpperCAmelCase__ = self.adlist[r]["""fail_state"""] while ( self.find_next_state(_UpperCAmelCase , self.adlist[child]["""value"""] ) is None and state != 0 ): UpperCAmelCase__ = self.adlist[state]["""fail_state"""] UpperCAmelCase__ = self.find_next_state( _UpperCAmelCase , self.adlist[child]["""value"""] ) if self.adlist[child]["fail_state"] is None: UpperCAmelCase__ = 0 UpperCAmelCase__ = ( self.adlist[child]["""output"""] + self.adlist[self.adlist[child]["""fail_state"""]]["""output"""] ) def SCREAMING_SNAKE_CASE__ ( self : Any , _UpperCAmelCase : str ): """simple docstring""" UpperCAmelCase__ = {} # returns a dict with keywords and list of its occurrences UpperCAmelCase__ = 0 for i in range(len(_UpperCAmelCase ) ): while ( self.find_next_state(_UpperCAmelCase , string[i] ) is None and current_state != 0 ): UpperCAmelCase__ = self.adlist[current_state]["""fail_state"""] UpperCAmelCase__ = self.find_next_state(_UpperCAmelCase , string[i] ) if next_state is None: UpperCAmelCase__ = 0 else: UpperCAmelCase__ = next_state for key in self.adlist[current_state]["output"]: if key not in result: UpperCAmelCase__ = [] result[key].append(i - len(_UpperCAmelCase ) + 1 ) return result if __name__ == "__main__": import doctest doctest.testmod()
368
'''simple docstring''' import argparse import logging from collections import namedtuple import torch from model_bertabs import BertAbsSummarizer from models.model_builder import AbsSummarizer # The authors' implementation from transformers import BertTokenizer logging.basicConfig(level=logging.INFO) UpperCAmelCase_ = logging.getLogger(__name__) UpperCAmelCase_ = 'Hello world! cécé herlolip' UpperCAmelCase_ = namedtuple( 'BertAbsConfig', [ 'temp_dir', 'large', 'use_bert_emb', 'finetune_bert', 'encoder', 'share_emb', 'max_pos', 'enc_layers', 'enc_hidden_size', 'enc_heads', 'enc_ff_size', 'enc_dropout', 'dec_layers', 'dec_hidden_size', 'dec_heads', 'dec_ff_size', 'dec_dropout', ], ) def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Tuple ): '''simple docstring''' UpperCAmelCase__ = BertAbsConfig( temp_dir=""".""" , finetune_bert=SCREAMING_SNAKE_CASE__ , large=SCREAMING_SNAKE_CASE__ , share_emb=SCREAMING_SNAKE_CASE__ , use_bert_emb=SCREAMING_SNAKE_CASE__ , encoder="""bert""" , max_pos=512 , enc_layers=6 , enc_hidden_size=512 , enc_heads=8 , enc_ff_size=512 , enc_dropout=0.2 , dec_layers=6 , dec_hidden_size=768 , dec_heads=8 , dec_ff_size=2048 , dec_dropout=0.2 , ) UpperCAmelCase__ = torch.load(SCREAMING_SNAKE_CASE__ , lambda SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : storage ) UpperCAmelCase__ = AbsSummarizer(SCREAMING_SNAKE_CASE__ , torch.device("""cpu""" ) , SCREAMING_SNAKE_CASE__ ) original.eval() UpperCAmelCase__ = BertAbsSummarizer(SCREAMING_SNAKE_CASE__ , torch.device("""cpu""" ) ) new_model.eval() # ------------------- # Convert the weights # ------------------- logging.info("""convert the model""" ) new_model.bert.load_state_dict(original.bert.state_dict() ) new_model.decoder.load_state_dict(original.decoder.state_dict() ) new_model.generator.load_state_dict(original.generator.state_dict() ) # ---------------------------------- # Make sure the outpus are identical # ---------------------------------- logging.info("""Make sure that the models' outputs are identical""" ) UpperCAmelCase__ = BertTokenizer.from_pretrained("""bert-base-uncased""" ) # prepare the model inputs UpperCAmelCase__ = tokenizer.encode("""This is sample éàalj'-.""" ) encoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(SCREAMING_SNAKE_CASE__ )) ) UpperCAmelCase__ = torch.tensor(SCREAMING_SNAKE_CASE__ ).unsqueeze(0 ) UpperCAmelCase__ = tokenizer.encode("""This is sample 3 éàalj'-.""" ) decoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(SCREAMING_SNAKE_CASE__ )) ) UpperCAmelCase__ = torch.tensor(SCREAMING_SNAKE_CASE__ ).unsqueeze(0 ) # failsafe to make sure the weights reset does not affect the # loaded weights. assert torch.max(torch.abs(original.generator[0].weight - new_model.generator[0].weight ) ) == 0 # forward pass UpperCAmelCase__ = encoder_input_ids UpperCAmelCase__ = decoder_input_ids UpperCAmelCase__ = UpperCAmelCase__ = None UpperCAmelCase__ = None UpperCAmelCase__ = UpperCAmelCase__ = None UpperCAmelCase__ = UpperCAmelCase__ = None UpperCAmelCase__ = None # The original model does not apply the geneator layer immediatly but rather in # the beam search (where it combines softmax + linear layer). Since we already # apply the softmax in our generation process we only apply the linear layer here. # We make sure that the outputs of the full stack are identical UpperCAmelCase__ = original(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )[0] UpperCAmelCase__ = original.generator(SCREAMING_SNAKE_CASE__ ) UpperCAmelCase__ = new_model( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )[0] UpperCAmelCase__ = new_model.generator(SCREAMING_SNAKE_CASE__ ) UpperCAmelCase__ = torch.max(torch.abs(output_converted_model - output_original_model ) ).item() print("""Maximum absolute difference beween weights: {:.2f}""".format(SCREAMING_SNAKE_CASE__ ) ) UpperCAmelCase__ = torch.max(torch.abs(output_converted_generator - output_original_generator ) ).item() print("""Maximum absolute difference beween weights: {:.2f}""".format(SCREAMING_SNAKE_CASE__ ) ) UpperCAmelCase__ = torch.allclose(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , atol=1e-3 ) if are_identical: logging.info("""all weights are equal up to 1e-3""" ) else: raise ValueError("""the weights are different. The new model is likely different from the original one.""" ) # The model has been saved with torch.save(model) and this is bound to the exact # directory structure. We save the state_dict instead. logging.info("""saving the model's state dictionary""" ) torch.save( new_model.state_dict() , """./bertabs-finetuned-cnndm-extractive-abstractive-summarization/pytorch_model.bin""" ) if __name__ == "__main__": UpperCAmelCase_ = argparse.ArgumentParser() parser.add_argument( '--bertabs_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.', ) UpperCAmelCase_ = parser.parse_args() convert_bertabs_checkpoints( args.bertabs_checkpoint_path, args.pytorch_dump_folder_path, )
61
0
"""simple docstring""" from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class _UpperCAmelCase ( A__ ): '''simple docstring''' a__ =['image_processor', 'tokenizer'] a__ ='AutoImageProcessor' a__ ='AutoTokenizer' def __init__( self , A , A ) -> Union[str, Any]: super().__init__(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) _UpperCAmelCase : int = self.image_processor def __call__( self , A=None , A=None , A=None , **A ) -> int: if text is None and images is None: raise ValueError('''You have to specify either text or images. Both cannot be none.''' ) if text is not None: _UpperCAmelCase : Optional[int] = self.tokenizer(SCREAMING_SNAKE_CASE__ , return_tensors=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) if images is not None: _UpperCAmelCase : Optional[Any] = self.image_processor(SCREAMING_SNAKE_CASE__ , return_tensors=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) if text is not None and images is not None: _UpperCAmelCase : Union[str, Any] = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**SCREAMING_SNAKE_CASE__ ) , tensor_type=SCREAMING_SNAKE_CASE__ ) def __lowerCAmelCase ( self , *A , **A ) -> Dict: return self.tokenizer.batch_decode(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) def __lowerCAmelCase ( self , *A , **A ) -> List[str]: return self.tokenizer.decode(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) @property def __lowerCAmelCase ( self ) -> Union[str, Any]: return ["input_ids", "attention_mask", "pixel_values"]
263
from collections.abc import Callable class __SCREAMING_SNAKE_CASE : def __init__( self , SCREAMING_SNAKE_CASE__ = None ): # Stores actual heap items. lowercase : list = [] # Stores indexes of each item for supporting updates and deletion. lowercase : dict = {} # Stores current size of heap. lowercase : str = 0 # Stores function used to evaluate the score of an item on which basis ordering # will be done. lowercase : Tuple = key or (lambda SCREAMING_SNAKE_CASE__ : x) def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ ): return int((i - 1) / 2 ) if i > 0 else None def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ ): lowercase : Any = int(2 * i + 1 ) return left if 0 < left < self.size else None def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ ): lowercase : Any = int(2 * i + 2 ) return right if 0 < right < self.size else None def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): lowercase , lowercase : Dict = ( self.pos_map[self.arr[j][0]], self.pos_map[self.arr[i][0]], ) # Then swap the items in the list. lowercase , lowercase : int = self.arr[j], self.arr[i] def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): return self.arr[i][1] < self.arr[j][1] def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ ): lowercase : int = self._left(SCREAMING_SNAKE_CASE__ ) lowercase : Optional[int] = self._right(SCREAMING_SNAKE_CASE__ ) lowercase : List[Any] = i if left is not None and not self._cmp(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): lowercase : Dict = left if right is not None and not self._cmp(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): lowercase : List[str] = right return valid_parent def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ ): lowercase : Optional[int] = self._parent(SCREAMING_SNAKE_CASE__ ) while parent is not None and not self._cmp(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): self._swap(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowercase , lowercase : Optional[int] = parent, self._parent(SCREAMING_SNAKE_CASE__ ) def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ ): lowercase : Dict = self._get_valid_parent(SCREAMING_SNAKE_CASE__ ) while valid_parent != index: self._swap(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowercase , lowercase : str = valid_parent, self._get_valid_parent(SCREAMING_SNAKE_CASE__ ) def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): if item not in self.pos_map: return lowercase : str = self.pos_map[item] lowercase : Optional[int] = [item, self.key(SCREAMING_SNAKE_CASE__ )] # Make sure heap is right in both up and down direction. # Ideally only one of them will make any change. self._heapify_up(SCREAMING_SNAKE_CASE__ ) self._heapify_down(SCREAMING_SNAKE_CASE__ ) def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ ): if item not in self.pos_map: return lowercase : List[str] = self.pos_map[item] del self.pos_map[item] lowercase : Optional[int] = self.arr[self.size - 1] lowercase : int = index self.size -= 1 # Make sure heap is right in both up and down direction. Ideally only one # of them will make any change- so no performance loss in calling both. if self.size > index: self._heapify_up(SCREAMING_SNAKE_CASE__ ) self._heapify_down(SCREAMING_SNAKE_CASE__ ) def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): lowercase : str = len(self.arr ) if arr_len == self.size: self.arr.append([item, self.key(SCREAMING_SNAKE_CASE__ )] ) else: lowercase : int = [item, self.key(SCREAMING_SNAKE_CASE__ )] lowercase : str = self.size self.size += 1 self._heapify_up(self.size - 1 ) def __lowerCamelCase ( self ): return self.arr[0] if self.size else None def __lowerCamelCase ( self ): lowercase : str = self.get_top() if top_item_tuple: self.delete_item(top_item_tuple[0] ) return top_item_tuple def __lowercase ( ) ->None: """simple docstring""" if __name__ == "__main__": import doctest doctest.testmod()
337
0
import itertools from dataclasses import dataclass from typing import List, Optional import pyarrow as pa import pyarrow.parquet as pq import datasets from datasets.table import table_cast UpperCamelCase = datasets.utils.logging.get_logger(__name__) @dataclass class __lowerCamelCase ( datasets.BuilderConfig ): """simple docstring""" snake_case__ = 1_0_0_0_0 snake_case__ = None snake_case__ = None class __lowerCamelCase ( datasets.ArrowBasedBuilder ): """simple docstring""" snake_case__ = ParquetConfig def a ( self : Optional[Any] ) -> Any: return datasets.DatasetInfo(features=self.config.features ) def a ( self : Dict , SCREAMING_SNAKE_CASE__ : Dict ) -> str: if not self.config.data_files: raise ValueError(f'At least one data file must be specified, but got data_files={self.config.data_files}' ) lowerCAmelCase__ = dl_manager.download_and_extract(self.config.data_files ) if isinstance(__lowercase , (str, list, tuple) ): lowerCAmelCase__ = data_files if isinstance(__lowercase , __lowercase ): lowerCAmelCase__ = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive lowerCAmelCase__ = [dl_manager.iter_files(__lowercase ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"files": files} )] lowerCAmelCase__ = [] for split_name, files in data_files.items(): if isinstance(__lowercase , __lowercase ): lowerCAmelCase__ = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive lowerCAmelCase__ = [dl_manager.iter_files(__lowercase ) for file in files] # Infer features is they are stoed in the arrow schema if self.info.features is None: for file in itertools.chain.from_iterable(__lowercase ): with open(__lowercase , "rb" ) as f: lowerCAmelCase__ = datasets.Features.from_arrow_schema(pq.read_schema(__lowercase ) ) break splits.append(datasets.SplitGenerator(name=__lowercase , gen_kwargs={"files": files} ) ) return splits def a ( self : int , SCREAMING_SNAKE_CASE__ : pa.Table ) -> int: if self.info.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example lowerCAmelCase__ = table_cast(__lowercase , self.info.features.arrow_schema ) return pa_table def a ( self : Tuple , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Optional[int]: lowerCAmelCase__ = self.info.features.arrow_schema if self.info.features is not None else None if self.info.features is not None and self.config.columns is not None: if sorted(field.name for field in schema ) != sorted(self.config.columns ): raise ValueError( f'Tried to load parquet data with columns \'{self.config.columns}\' with mismatching features \'{self.info.features}\'' ) for file_idx, file in enumerate(itertools.chain.from_iterable(__lowercase ) ): with open(__lowercase , "rb" ) as f: lowerCAmelCase__ = pq.ParquetFile(__lowercase ) try: for batch_idx, record_batch in enumerate( parquet_file.iter_batches(batch_size=self.config.batch_size , columns=self.config.columns ) ): lowerCAmelCase__ = pa.Table.from_batches([record_batch] ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield f'{file_idx}_{batch_idx}', self._cast_table(__lowercase ) except ValueError as e: logger.error(f'Failed to read file \'{file}\' with error {type(__lowercase )}: {e}' ) raise
350
import inspect import unittest import torch import torch.nn as nn from accelerate.hooks import ( AlignDevicesHook, ModelHook, SequentialHook, add_hook_to_module, attach_align_device_hook, remove_hook_from_module, remove_hook_from_submodules, ) from accelerate.test_utils import require_multi_gpu class __lowerCamelCase ( nn.Module ): """simple docstring""" def __init__( self : Dict ) -> Optional[int]: super().__init__() lowerCAmelCase__ = nn.Linear(3 , 4 ) lowerCAmelCase__ = nn.BatchNormad(4 ) lowerCAmelCase__ = nn.Linear(4 , 5 ) def a ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : int ) -> List[Any]: return self.lineara(self.batchnorm(self.lineara(SCREAMING_SNAKE_CASE__ ) ) ) class __lowerCamelCase ( UpperCamelCase__ ): """simple docstring""" def a ( self : Any , SCREAMING_SNAKE_CASE__ : str , *SCREAMING_SNAKE_CASE__ : Tuple , **SCREAMING_SNAKE_CASE__ : Any ) -> Union[str, Any]: return (args[0] + 1,) + args[1:], kwargs class __lowerCamelCase ( UpperCamelCase__ ): """simple docstring""" def a ( self : List[Any] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : str ) -> Dict: return output + 1 class __lowerCamelCase ( unittest.TestCase ): """simple docstring""" def a ( self : List[str] ) -> Tuple: lowerCAmelCase__ = ModelForTest() lowerCAmelCase__ = ModelHook() add_hook_to_module(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) self.assertEqual(test_model._hf_hook , SCREAMING_SNAKE_CASE__ ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , "_old_forward" ) ) # Check adding the hook did not change the name or the signature self.assertEqual(test_model.forward.__name__ , "forward" ) self.assertListEqual(list(inspect.signature(test_model.forward ).parameters ) , ["x"] ) remove_hook_from_module(SCREAMING_SNAKE_CASE__ ) self.assertFalse(hasattr(SCREAMING_SNAKE_CASE__ , "_hf_hook" ) ) self.assertFalse(hasattr(SCREAMING_SNAKE_CASE__ , "_old_forward" ) ) def a ( self : Union[str, Any] ) -> int: lowerCAmelCase__ = ModelForTest() lowerCAmelCase__ = ModelHook() add_hook_to_module(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) add_hook_to_module(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , append=SCREAMING_SNAKE_CASE__ ) self.assertEqual(isinstance(test_model._hf_hook , SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ ) self.assertEqual(len(test_model._hf_hook.hooks ) , 2 ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , "_old_forward" ) ) # Check adding the hook did not change the name or the signature self.assertEqual(test_model.forward.__name__ , "forward" ) self.assertListEqual(list(inspect.signature(test_model.forward ).parameters ) , ["x"] ) remove_hook_from_module(SCREAMING_SNAKE_CASE__ ) self.assertFalse(hasattr(SCREAMING_SNAKE_CASE__ , "_hf_hook" ) ) self.assertFalse(hasattr(SCREAMING_SNAKE_CASE__ , "_old_forward" ) ) def a ( self : List[str] ) -> Any: lowerCAmelCase__ = ModelForTest() lowerCAmelCase__ = torch.randn(2 , 3 ) lowerCAmelCase__ = test_model(x + 1 ) lowerCAmelCase__ = test_model(x + 2 ) lowerCAmelCase__ = PreForwardHook() add_hook_to_module(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = test_model(SCREAMING_SNAKE_CASE__ ) self.assertTrue(torch.allclose(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , atol=1e-5 ) ) # Attaching a hook to a model when it already has one replaces, does not chain lowerCAmelCase__ = PreForwardHook() add_hook_to_module(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = test_model(SCREAMING_SNAKE_CASE__ ) self.assertTrue(torch.allclose(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , atol=1e-5 ) ) # You need to use the sequential hook to chain two or more hooks lowerCAmelCase__ = SequentialHook(PreForwardHook() , PreForwardHook() ) add_hook_to_module(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = test_model(SCREAMING_SNAKE_CASE__ ) assert torch.allclose(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , atol=1e-5 ) def a ( self : Any ) -> Union[str, Any]: lowerCAmelCase__ = ModelForTest() lowerCAmelCase__ = torch.randn(2 , 3 ) lowerCAmelCase__ = test_model(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = PostForwardHook() add_hook_to_module(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = test_model(SCREAMING_SNAKE_CASE__ ) self.assertTrue(torch.allclose(SCREAMING_SNAKE_CASE__ , output + 1 , atol=1e-5 ) ) # Attaching a hook to a model when it already has one replaces, does not chain lowerCAmelCase__ = PostForwardHook() add_hook_to_module(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = test_model(SCREAMING_SNAKE_CASE__ ) self.assertTrue(torch.allclose(SCREAMING_SNAKE_CASE__ , output + 1 , atol=1e-5 ) ) # You need to use the sequential hook to chain two or more hooks lowerCAmelCase__ = SequentialHook(PostForwardHook() , PostForwardHook() ) add_hook_to_module(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = test_model(SCREAMING_SNAKE_CASE__ ) assert torch.allclose(SCREAMING_SNAKE_CASE__ , output + 2 , atol=1e-5 ) def a ( self : Optional[int] ) -> int: lowerCAmelCase__ = ModelForTest() lowerCAmelCase__ = torch.randn(2 , 3 ) lowerCAmelCase__ = test_model(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = PostForwardHook() add_hook_to_module(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = test_model(SCREAMING_SNAKE_CASE__ ) self.assertTrue(torch.allclose(SCREAMING_SNAKE_CASE__ , output + 1 ) ) self.assertTrue(outputa.requires_grad ) lowerCAmelCase__ = True lowerCAmelCase__ = test_model(SCREAMING_SNAKE_CASE__ ) self.assertFalse(outputa.requires_grad ) @require_multi_gpu def a ( self : Optional[Any] ) -> List[str]: lowerCAmelCase__ = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device("cpu" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("cpu" ) ) self.assertEqual(model.lineara.weight.device , torch.device("cpu" ) ) # This will move each submodule on different devices add_hook_to_module(model.lineara , AlignDevicesHook(execution_device=0 ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(execution_device=0 ) ) add_hook_to_module(model.lineara , AlignDevicesHook(execution_device=1 ) ) self.assertEqual(model.lineara.weight.device , torch.device(0 ) ) self.assertEqual(model.batchnorm.weight.device , torch.device(0 ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device(0 ) ) self.assertEqual(model.lineara.weight.device , torch.device(1 ) ) # We can still make a forward pass. The input does not need to be on any particular device lowerCAmelCase__ = torch.randn(2 , 3 ) lowerCAmelCase__ = model(SCREAMING_SNAKE_CASE__ ) self.assertEqual(output.device , torch.device(1 ) ) # We can add a general hook to put back output on same device as input. add_hook_to_module(SCREAMING_SNAKE_CASE__ , AlignDevicesHook(io_same_device=SCREAMING_SNAKE_CASE__ ) ) lowerCAmelCase__ = torch.randn(2 , 3 ).to(0 ) lowerCAmelCase__ = model(SCREAMING_SNAKE_CASE__ ) self.assertEqual(output.device , torch.device(0 ) ) def a ( self : List[str] ) -> List[str]: lowerCAmelCase__ = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device("cpu" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("cpu" ) ) self.assertEqual(model.lineara.weight.device , torch.device("cpu" ) ) # This will move each submodule on different devices lowerCAmelCase__ = {"execution_device": 0 if torch.cuda.is_available() else "cpu", "offload": True} add_hook_to_module(model.lineara , AlignDevicesHook(**SCREAMING_SNAKE_CASE__ ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(**SCREAMING_SNAKE_CASE__ ) ) add_hook_to_module(model.lineara , AlignDevicesHook(**SCREAMING_SNAKE_CASE__ ) ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device("meta" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("meta" ) ) self.assertEqual(model.lineara.weight.device , torch.device("meta" ) ) # Buffers are not included in the offload by default, so are on the execution device lowerCAmelCase__ = torch.device(hook_kwargs["execution_device"] ) self.assertEqual(model.batchnorm.running_mean.device , SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = torch.randn(2 , 3 ) lowerCAmelCase__ = model(SCREAMING_SNAKE_CASE__ ) self.assertEqual(output.device , SCREAMING_SNAKE_CASE__ ) # Removing hooks loads back the weights in the model. remove_hook_from_module(model.lineara ) remove_hook_from_module(model.batchnorm ) remove_hook_from_module(model.lineara ) self.assertEqual(model.lineara.weight.device , torch.device("cpu" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("cpu" ) ) self.assertEqual(model.lineara.weight.device , torch.device("cpu" ) ) # Now test with buffers included in the offload lowerCAmelCase__ = { "execution_device": 0 if torch.cuda.is_available() else "cpu", "offload": True, "offload_buffers": True, } add_hook_to_module(model.lineara , AlignDevicesHook(**SCREAMING_SNAKE_CASE__ ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(**SCREAMING_SNAKE_CASE__ ) ) add_hook_to_module(model.lineara , AlignDevicesHook(**SCREAMING_SNAKE_CASE__ ) ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device("meta" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("meta" ) ) self.assertEqual(model.lineara.weight.device , torch.device("meta" ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device("meta" ) ) lowerCAmelCase__ = torch.randn(2 , 3 ) lowerCAmelCase__ = model(SCREAMING_SNAKE_CASE__ ) self.assertEqual(output.device , SCREAMING_SNAKE_CASE__ ) # Removing hooks loads back the weights in the model. remove_hook_from_module(model.lineara ) remove_hook_from_module(model.batchnorm ) remove_hook_from_module(model.lineara ) self.assertEqual(model.lineara.weight.device , torch.device("cpu" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("cpu" ) ) self.assertEqual(model.lineara.weight.device , torch.device("cpu" ) ) def a ( self : Optional[int] ) -> Union[str, Any]: lowerCAmelCase__ = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device("cpu" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("cpu" ) ) self.assertEqual(model.lineara.weight.device , torch.device("cpu" ) ) # This will move each submodule on different devices lowerCAmelCase__ = 0 if torch.cuda.is_available() else "cpu" attach_align_device_hook(SCREAMING_SNAKE_CASE__ , execution_device=SCREAMING_SNAKE_CASE__ , offload=SCREAMING_SNAKE_CASE__ ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device("meta" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("meta" ) ) self.assertEqual(model.lineara.weight.device , torch.device("meta" ) ) # Buffers are not included in the offload by default, so are on the execution device lowerCAmelCase__ = torch.device(SCREAMING_SNAKE_CASE__ ) self.assertEqual(model.batchnorm.running_mean.device , SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = torch.randn(2 , 3 ) lowerCAmelCase__ = model(SCREAMING_SNAKE_CASE__ ) self.assertEqual(output.device , SCREAMING_SNAKE_CASE__ ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(SCREAMING_SNAKE_CASE__ ) self.assertEqual(model.lineara.weight.device , torch.device("cpu" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("cpu" ) ) self.assertEqual(model.lineara.weight.device , torch.device("cpu" ) ) # Now test with buffers included in the offload attach_align_device_hook(SCREAMING_SNAKE_CASE__ , execution_device=SCREAMING_SNAKE_CASE__ , offload=SCREAMING_SNAKE_CASE__ , offload_buffers=SCREAMING_SNAKE_CASE__ ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device("meta" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("meta" ) ) self.assertEqual(model.lineara.weight.device , torch.device("meta" ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device("meta" ) ) lowerCAmelCase__ = torch.randn(2 , 3 ) lowerCAmelCase__ = model(SCREAMING_SNAKE_CASE__ ) self.assertEqual(output.device , SCREAMING_SNAKE_CASE__ ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(SCREAMING_SNAKE_CASE__ ) self.assertEqual(model.lineara.weight.device , torch.device("cpu" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("cpu" ) ) self.assertEqual(model.lineara.weight.device , torch.device("cpu" ) ) def a ( self : Optional[Any] ) -> str: lowerCAmelCase__ = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device("cpu" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("cpu" ) ) self.assertEqual(model.lineara.weight.device , torch.device("cpu" ) ) # This will move each submodule on different devices lowerCAmelCase__ = 0 if torch.cuda.is_available() else "cpu" attach_align_device_hook( SCREAMING_SNAKE_CASE__ , execution_device=SCREAMING_SNAKE_CASE__ , offload=SCREAMING_SNAKE_CASE__ , weights_map=model.state_dict() ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device("meta" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("meta" ) ) self.assertEqual(model.lineara.weight.device , torch.device("meta" ) ) # Buffers are not included in the offload by default, so are on the execution device lowerCAmelCase__ = torch.device(SCREAMING_SNAKE_CASE__ ) self.assertEqual(model.batchnorm.running_mean.device , SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = torch.randn(2 , 3 ) lowerCAmelCase__ = model(SCREAMING_SNAKE_CASE__ ) self.assertEqual(output.device , SCREAMING_SNAKE_CASE__ ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(SCREAMING_SNAKE_CASE__ ) self.assertEqual(model.lineara.weight.device , torch.device("cpu" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("cpu" ) ) self.assertEqual(model.lineara.weight.device , torch.device("cpu" ) ) # Now test with buffers included in the offload attach_align_device_hook( SCREAMING_SNAKE_CASE__ , execution_device=SCREAMING_SNAKE_CASE__ , offload=SCREAMING_SNAKE_CASE__ , weights_map=model.state_dict() , offload_buffers=SCREAMING_SNAKE_CASE__ , ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device("meta" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("meta" ) ) self.assertEqual(model.lineara.weight.device , torch.device("meta" ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device("meta" ) ) lowerCAmelCase__ = torch.randn(2 , 3 ) lowerCAmelCase__ = model(SCREAMING_SNAKE_CASE__ ) self.assertEqual(output.device , SCREAMING_SNAKE_CASE__ ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(SCREAMING_SNAKE_CASE__ ) self.assertEqual(model.lineara.weight.device , torch.device("cpu" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("cpu" ) ) self.assertEqual(model.lineara.weight.device , torch.device("cpu" ) )
221
0
'''simple docstring''' from abc import ABC, abstractmethod from typing import Optional, Union from .. import Dataset, DatasetDict, Features, IterableDataset, IterableDatasetDict, NamedSplit from ..utils.typing import NestedDataStructureLike, PathLike class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" def __init__( self : int , __a : Optional[NestedDataStructureLike[PathLike]] = None , __a : Optional[NamedSplit] = None , __a : Optional[Features] = None , __a : str = None , __a : bool = False , __a : bool = False , __a : Optional[int] = None , **__a : int , ): _a = path_or_paths _a = split if split or isinstance(__a , __a ) else "train" _a = features _a = cache_dir _a = keep_in_memory _a = streaming _a = num_proc _a = kwargs @abstractmethod def UpperCamelCase__ ( self : Union[str, Any] ): pass class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" def __init__( self : List[Any] , __a : Optional[Features] = None , __a : str = None , __a : bool = False , __a : bool = False , __a : Optional[int] = None , **__a : List[Any] , ): _a = features _a = cache_dir _a = keep_in_memory _a = streaming _a = num_proc _a = kwargs @abstractmethod def UpperCamelCase__ ( self : List[Any] ): pass
63
'''simple docstring''' import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def lowerCamelCase ( lowerCAmelCase : Tuple ): """simple docstring""" __magic_name__ : List[Any] = filter(lambda lowerCAmelCase : p.requires_grad , model.parameters() ) __magic_name__ : Tuple = sum([np.prod(p.size() ) for p in model_parameters] ) return params lowerCAmelCase :Union[str, Any] = logging.getLogger(__name__) def lowerCamelCase ( lowerCAmelCase : List[Any] , lowerCAmelCase : int ): """simple docstring""" if metric == "rouge2": __magic_name__ : Any = '{val_avg_rouge2:.4f}-{step_count}' elif metric == "bleu": __magic_name__ : Optional[Any] = '{val_avg_bleu:.4f}-{step_count}' elif metric == "em": __magic_name__ : Dict = '{val_avg_em:.4f}-{step_count}' elif metric == "loss": __magic_name__ : int = '{val_avg_loss:.4f}-{step_count}' else: raise NotImplementedError( f'seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this' ' function.' ) __magic_name__ : List[Any] = ModelCheckpoint( dirpath=lowerCAmelCase , filename=lowerCAmelCase , monitor=f'val_{metric}' , mode='max' , save_top_k=1 , every_n_epochs=1 , ) return checkpoint_callback def lowerCamelCase ( lowerCAmelCase : Optional[int] , lowerCAmelCase : Optional[Any] ): """simple docstring""" return EarlyStopping( monitor=f'val_{metric}' , mode='min' if 'loss' in metric else 'max' , patience=lowerCAmelCase , verbose=lowerCAmelCase , ) class _lowerCamelCase ( pl.Callback ): '''simple docstring''' def __lowerCAmelCase ( self : List[str] , _A : Optional[Any] , _A : List[str] ) -> int: __magic_name__ : Optional[Any] = {F'lr_group_{i}': param['lr'] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )} pl_module.logger.log_metrics(_A ) @rank_zero_only def __lowerCAmelCase ( self : Any , _A : pl.Trainer , _A : pl.LightningModule , _A : str , _A : Dict=True ) -> None: logger.info(F'***** {type_path} results at step {trainer.global_step:05d} *****' ) __magic_name__ : List[str] = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ['log', 'progress_bar', 'preds']} ) # Log results __magic_name__ : Optional[Any] = Path(pl_module.hparams.output_dir ) if type_path == "test": __magic_name__ : List[Any] = od / 'test_results.txt' __magic_name__ : Dict = od / 'test_generations.txt' else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. __magic_name__ : Dict = od / F'{type_path}_results/{trainer.global_step:05d}.txt' __magic_name__ : Optional[Any] = od / F'{type_path}_generations/{trainer.global_step:05d}.txt' results_file.parent.mkdir(exist_ok=_A ) generations_file.parent.mkdir(exist_ok=_A ) with open(_A , 'a+' ) as writer: for key in sorted(_A ): if key in ["log", "progress_bar", "preds"]: continue __magic_name__ : Optional[Any] = metrics[key] if isinstance(_A , torch.Tensor ): __magic_name__ : Tuple = val.item() __magic_name__ : int = F'{key}: {val:.6f}\n' writer.write(_A ) if not save_generations: return if "preds" in metrics: __magic_name__ : str = '\n'.join(metrics['preds'] ) generations_file.open('w+' ).write(_A ) @rank_zero_only def __lowerCAmelCase ( self : List[str] , _A : Union[str, Any] , _A : Tuple ) -> Tuple: try: __magic_name__ : str = pl_module.model.model.num_parameters() except AttributeError: __magic_name__ : List[str] = pl_module.model.num_parameters() __magic_name__ : List[Any] = count_trainable_parameters(_A ) # mp stands for million parameters trainer.logger.log_metrics({'n_params': npars, 'mp': npars / 1E6, 'grad_mp': n_trainable_pars / 1E6} ) @rank_zero_only def __lowerCAmelCase ( self : Union[str, Any] , _A : pl.Trainer , _A : pl.LightningModule ) -> List[Any]: save_json(pl_module.metrics , pl_module.metrics_save_path ) return self._write_logs(_A , _A , 'test' ) @rank_zero_only def __lowerCAmelCase ( self : Tuple , _A : pl.Trainer , _A : Any ) -> List[Any]: save_json(pl_module.metrics , pl_module.metrics_save_path ) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
331
0
import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartaaTokenizer, MBartaaTokenizerFast, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, slow, ) from ...test_tokenization_common import TokenizerTesterMixin _A = get_tests_dir('fixtures/test_sentencepiece.model') if is_torch_available(): from transformers.models.mbart.modeling_mbart import shift_tokens_right _A = 25_0004 _A = 25_0020 @require_sentencepiece @require_tokenizers class UpperCAmelCase__ ( A_ , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : Optional[int] = MBartaaTokenizer UpperCAmelCase__ : Optional[int] = MBartaaTokenizerFast UpperCAmelCase__ : Tuple = True UpperCAmelCase__ : List[Any] = True def _a ( self ) -> List[Any]: super().setUp() # We have a SentencePiece fixture for testing __UpperCamelCase =MBartaaTokenizer(A_ , src_lang='en_XX' , tgt_lang='ro_RO' , keep_accents=A_ ) tokenizer.save_pretrained(self.tmpdirname ) def _a ( self ) -> List[Any]: __UpperCamelCase ='<s>' __UpperCamelCase =0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(A_ ) , A_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(A_ ) , A_ ) def _a ( self ) -> str: __UpperCamelCase =list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<s>' ) self.assertEqual(vocab_keys[1] , '<pad>' ) self.assertEqual(vocab_keys[-1] , '<mask>' ) self.assertEqual(len(A_ ) , 1054 ) def _a ( self ) -> Any: self.assertEqual(self.get_tokenizer().vocab_size , 1054 ) def _a ( self ) -> Optional[int]: __UpperCamelCase =MBartaaTokenizer(A_ , src_lang='en_XX' , tgt_lang='ro_RO' , keep_accents=A_ ) __UpperCamelCase =tokenizer.tokenize('This is a test' ) self.assertListEqual(A_ , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(A_ ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) __UpperCamelCase =tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( A_ , [SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.'] , ) __UpperCamelCase =tokenizer.convert_tokens_to_ids(A_ ) self.assertListEqual( A_ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) __UpperCamelCase =tokenizer.convert_ids_to_tokens(A_ ) self.assertListEqual( A_ , [SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.'] , ) @slow def _a ( self ) -> int: # fmt: off __UpperCamelCase ={'input_ids': [[250004, 11062, 82772, 7, 15, 82772, 538, 51529, 237, 17198, 1290, 206, 9, 215175, 1314, 136, 17198, 1290, 206, 9, 56359, 42, 122009, 9, 16466, 16, 87344, 4537, 9, 4717, 78381, 6, 159958, 7, 15, 24480, 618, 4, 527, 22693, 5428, 4, 2777, 24480, 9874, 4, 43523, 594, 4, 803, 18392, 33189, 18, 4, 43523, 24447, 12399, 100, 24955, 83658, 9626, 144057, 15, 839, 22335, 16, 136, 24955, 83658, 83479, 15, 39102, 724, 16, 678, 645, 2789, 1328, 4589, 42, 122009, 115774, 23, 805, 1328, 46876, 7, 136, 53894, 1940, 42227, 41159, 17721, 823, 425, 4, 27512, 98722, 206, 136, 5531, 4970, 919, 17336, 5, 2], [250004, 20080, 618, 83, 82775, 47, 479, 9, 1517, 73, 53894, 333, 80581, 110117, 18811, 5256, 1295, 51, 152526, 297, 7986, 390, 124416, 538, 35431, 214, 98, 15044, 25737, 136, 7108, 43701, 23, 756, 135355, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [250004, 581, 63773, 119455, 6, 147797, 88203, 7, 645, 70, 21, 3285, 10269, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=A_ , model_name='facebook/mbart-large-50' , revision='d3913889c59cd5c9e456b269c376325eabad57e2' , ) def _a ( self ) -> Union[str, Any]: if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return __UpperCamelCase =(self.rust_tokenizer_class, 'hf-internal-testing/tiny-random-mbart50', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): __UpperCamelCase =self.rust_tokenizer_class.from_pretrained(A_ , **A_ ) __UpperCamelCase =self.tokenizer_class.from_pretrained(A_ , **A_ ) __UpperCamelCase =tempfile.mkdtemp() __UpperCamelCase =tokenizer_r.save_pretrained(A_ ) __UpperCamelCase =tokenizer_p.save_pretrained(A_ ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) ) __UpperCamelCase =tuple(f for f in tokenizer_r_files if 'tokenizer.json' not in f ) self.assertSequenceEqual(A_ , A_ ) # Checks everything loads correctly in the same way __UpperCamelCase =tokenizer_r.from_pretrained(A_ ) __UpperCamelCase =tokenizer_p.from_pretrained(A_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(A_ , A_ ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(A_ ) # Save tokenizer rust, legacy_format=True __UpperCamelCase =tempfile.mkdtemp() __UpperCamelCase =tokenizer_r.save_pretrained(A_ , legacy_format=A_ ) __UpperCamelCase =tokenizer_p.save_pretrained(A_ ) # Checks it save with the same files self.assertSequenceEqual(A_ , A_ ) # Checks everything loads correctly in the same way __UpperCamelCase =tokenizer_r.from_pretrained(A_ ) __UpperCamelCase =tokenizer_p.from_pretrained(A_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(A_ , A_ ) ) shutil.rmtree(A_ ) # Save tokenizer rust, legacy_format=False __UpperCamelCase =tempfile.mkdtemp() __UpperCamelCase =tokenizer_r.save_pretrained(A_ , legacy_format=A_ ) __UpperCamelCase =tokenizer_p.save_pretrained(A_ ) # Checks it saved the tokenizer.json file self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way __UpperCamelCase =tokenizer_r.from_pretrained(A_ ) __UpperCamelCase =tokenizer_p.from_pretrained(A_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(A_ , A_ ) ) shutil.rmtree(A_ ) @require_torch @require_sentencepiece @require_tokenizers class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : Any = "facebook/mbart-large-50-one-to-many-mmt" UpperCAmelCase__ : Tuple = [ " UN Chief Says There Is No Military Solution in Syria", " Secretary-General Ban Ki-moon says his response to Russia's stepped up military support for Syria is that \"there is no military solution\" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.", ] UpperCAmelCase__ : Tuple = [ "Şeful ONU declară că nu există o soluţie militară în Siria", "Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei" " pentru Siria este că \"nu există o soluţie militară\" la conflictul de aproape cinci ani şi că noi arme nu vor" " face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.", ] UpperCAmelCase__ : List[str] = [EN_CODE, 8_2_7_4, 1_2_7_8_7_3, 2_5_9_1_6, 7, 8_6_2_2, 2_0_7_1, 4_3_8, 6_7_4_8_5, 5_3, 1_8_7_8_9_5, 2_3, 5_1_7_1_2, 2] @classmethod def _a ( cls ) -> Optional[Any]: __UpperCamelCase =MBartaaTokenizer.from_pretrained( cls.checkpoint_name , src_lang='en_XX' , tgt_lang='ro_RO' ) __UpperCamelCase =1 return cls def _a ( self ) -> Optional[int]: self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['ar_AR'] , 250001 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['en_EN'] , 250004 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['ro_RO'] , 250020 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['mr_IN'] , 250038 ) def _a ( self ) -> Tuple: __UpperCamelCase =self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , A_ ) def _a ( self ) -> List[str]: self.assertIn(A_ , self.tokenizer.all_special_ids ) __UpperCamelCase =[RO_CODE, 884, 9019, 96, 9, 916, 86792, 36, 18743, 15596, 5, 2] __UpperCamelCase =self.tokenizer.decode(A_ , skip_special_tokens=A_ ) __UpperCamelCase =self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=A_ ) self.assertEqual(A_ , A_ ) self.assertNotIn(self.tokenizer.eos_token , A_ ) def _a ( self ) -> Any: __UpperCamelCase =['this is gunna be a long sentence ' * 20] assert isinstance(src_text[0] , A_ ) __UpperCamelCase =10 __UpperCamelCase =self.tokenizer(A_ , max_length=A_ , truncation=A_ ).input_ids[0] self.assertEqual(ids[0] , A_ ) self.assertEqual(ids[-1] , 2 ) self.assertEqual(len(A_ ) , A_ ) def _a ( self ) -> int: self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['<mask>', 'ar_AR'] ) , [250053, 250001] ) def _a ( self ) -> Optional[Any]: __UpperCamelCase =tempfile.mkdtemp() __UpperCamelCase =self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(A_ ) __UpperCamelCase =MBartaaTokenizer.from_pretrained(A_ ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , A_ ) @require_torch def _a ( self ) -> Tuple: __UpperCamelCase =self.tokenizer(self.src_text , text_target=self.tgt_text , padding=A_ , return_tensors='pt' ) __UpperCamelCase =shift_tokens_right(batch['labels'] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 assert batch.input_ids[1][0] == EN_CODE assert batch.input_ids[1][-1] == 2 assert batch.labels[1][0] == RO_CODE assert batch.labels[1][-1] == 2 assert batch.decoder_input_ids[1][:2].tolist() == [2, RO_CODE] @require_torch def _a ( self ) -> List[Any]: __UpperCamelCase =self.tokenizer( self.src_text , text_target=self.tgt_text , padding=A_ , truncation=A_ , max_length=len(self.expected_src_tokens ) , return_tensors='pt' , ) __UpperCamelCase =shift_tokens_right(batch['labels'] , self.tokenizer.pad_token_id ) self.assertIsInstance(A_ , A_ ) self.assertEqual((2, 14) , batch.input_ids.shape ) self.assertEqual((2, 14) , batch.attention_mask.shape ) __UpperCamelCase =batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , A_ ) self.assertEqual(2 , batch.decoder_input_ids[0, 0] ) # decoder_start_token_id # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [EN_CODE] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) def _a ( self ) -> Optional[int]: __UpperCamelCase =self.tokenizer(self.src_text , padding=A_ , truncation=A_ , max_length=3 , return_tensors='pt' ) __UpperCamelCase =self.tokenizer( text_target=self.tgt_text , padding=A_ , truncation=A_ , max_length=10 , return_tensors='pt' ) __UpperCamelCase =targets['input_ids'] __UpperCamelCase =shift_tokens_right(A_ , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def _a ( self ) -> Any: __UpperCamelCase =self.tokenizer._build_translation_inputs( 'A test' , return_tensors='pt' , src_lang='en_XX' , tgt_lang='ar_AR' ) self.assertEqual( nested_simplify(A_ ) , { # en_XX, A, test, EOS 'input_ids': [[250004, 62, 3034, 2]], 'attention_mask': [[1, 1, 1, 1]], # ar_AR 'forced_bos_token_id': 250001, } , )
117
import json import os from collections import Counter import torch import torchvision import torchvision.transforms as transforms from PIL import Image from torch import nn from torch.utils.data import Dataset _A = {1: (1, 1), 2: (2, 1), 3: (3, 1), 4: (2, 2), 5: (5, 1), 6: (3, 2), 7: (7, 1), 8: (4, 2), 9: (3, 3)} class UpperCAmelCase__ ( nn.Module ): """simple docstring""" def __init__( self , A_ ) -> Optional[int]: super().__init__() __UpperCamelCase =torchvision.models.resnetaaa(pretrained=A_ ) __UpperCamelCase =list(model.children() )[:-2] __UpperCamelCase =nn.Sequential(*A_ ) __UpperCamelCase =nn.AdaptiveAvgPoolad(POOLING_BREAKDOWN[args.num_image_embeds] ) def _a ( self , A_ ) -> int: # Bx3x224x224 -> Bx2048x7x7 -> Bx2048xN -> BxNx2048 __UpperCamelCase =self.pool(self.model(A_ ) ) __UpperCamelCase =torch.flatten(A_ , start_dim=2 ) __UpperCamelCase =out.transpose(1 , 2 ).contiguous() return out # BxNx2048 class UpperCAmelCase__ ( A_ ): """simple docstring""" def __init__( self , A_ , A_ , A_ , A_ , A_ ) -> List[str]: __UpperCamelCase =[json.loads(A_ ) for l in open(A_ )] __UpperCamelCase =os.path.dirname(A_ ) __UpperCamelCase =tokenizer __UpperCamelCase =labels __UpperCamelCase =len(A_ ) __UpperCamelCase =max_seq_length __UpperCamelCase =transforms def __len__( self ) -> Any: return len(self.data ) def __getitem__( self , A_ ) -> Union[str, Any]: __UpperCamelCase =torch.LongTensor(self.tokenizer.encode(self.data[index]['text'] , add_special_tokens=A_ ) ) __UpperCamelCase , __UpperCamelCase , __UpperCamelCase =sentence[0], sentence[1:-1], sentence[-1] __UpperCamelCase =sentence[: self.max_seq_length] __UpperCamelCase =torch.zeros(self.n_classes ) __UpperCamelCase =1 __UpperCamelCase =Image.open(os.path.join(self.data_dir , self.data[index]['img'] ) ).convert('RGB' ) __UpperCamelCase =self.transforms(A_ ) return { "image_start_token": start_token, "image_end_token": end_token, "sentence": sentence, "image": image, "label": label, } def _a ( self ) -> List[str]: __UpperCamelCase =Counter() for row in self.data: label_freqs.update(row['label'] ) return label_freqs def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Union[str, Any] ): __UpperCamelCase =[len(row['sentence'] ) for row in batch] __UpperCamelCase , __UpperCamelCase =len(SCREAMING_SNAKE_CASE__ ), max(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =torch.zeros(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , dtype=torch.long ) __UpperCamelCase =torch.zeros(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , dtype=torch.long ) for i_batch, (input_row, length) in enumerate(zip(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ): __UpperCamelCase =input_row['sentence'] __UpperCamelCase =1 __UpperCamelCase =torch.stack([row['image'] for row in batch] ) __UpperCamelCase =torch.stack([row['label'] for row in batch] ) __UpperCamelCase =torch.stack([row['image_start_token'] for row in batch] ) __UpperCamelCase =torch.stack([row['image_end_token'] for row in batch] ) return text_tensor, mask_tensor, img_tensor, img_start_token, img_end_token, tgt_tensor def _UpperCAmelCase ( ): return [ "Crime", "Drama", "Thriller", "Action", "Comedy", "Romance", "Documentary", "Short", "Mystery", "History", "Family", "Adventure", "Fantasy", "Sci-Fi", "Western", "Horror", "Sport", "War", "Music", "Musical", "Animation", "Biography", "Film-Noir", ] def _UpperCAmelCase ( ): return transforms.Compose( [ transforms.Resize(2_56 ), transforms.CenterCrop(2_24 ), transforms.ToTensor(), transforms.Normalize( mean=[0.46777044, 0.44531429, 0.40661017] , std=[0.12221994, 0.12145835, 0.14380469] , ), ] )
117
1
"""simple docstring""" import importlib import os import sys # This is required to make the module import works (when the python process is running from the root of the repo) sys.path.append(""".""") def __UpperCAmelCase ( lowercase ): """simple docstring""" _UpperCAmelCase = test_file.split(os.path.sep ) if components[0:2] != ["tests", "models"]: raise ValueError( """`test_file` should start with `tests/models/` (with `/` being the OS specific path separator). Got """ f'''{test_file} instead.''' ) _UpperCAmelCase = components[-1] if not test_fn.endswith("""py""" ): raise ValueError(f'''`test_file` should be a python file. Got {test_fn} instead.''' ) if not test_fn.startswith("""test_modeling_""" ): raise ValueError( f'''`test_file` should point to a file name of the form `test_modeling_*.py`. Got {test_fn} instead.''' ) _UpperCAmelCase = components[:-1] + [test_fn.replace(""".py""" ,"""""" )] _UpperCAmelCase = """.""".join(lowercase ) return test_module_path def __UpperCAmelCase ( lowercase ): """simple docstring""" _UpperCAmelCase = get_module_path(lowercase ) _UpperCAmelCase = importlib.import_module(lowercase ) return test_module def __UpperCAmelCase ( lowercase ): """simple docstring""" _UpperCAmelCase = [] _UpperCAmelCase = get_test_module(lowercase ) for attr in dir(lowercase ): if attr.endswith("""ModelTester""" ): tester_classes.append(getattr(lowercase ,lowercase ) ) # sort with class names return sorted(lowercase ,key=lambda lowercase : x.__name__ ) def __UpperCAmelCase ( lowercase ): """simple docstring""" _UpperCAmelCase = [] _UpperCAmelCase = get_test_module(lowercase ) for attr in dir(lowercase ): _UpperCAmelCase = getattr(lowercase ,lowercase ) # (TF/Flax)ModelTesterMixin is also an attribute in specific model test module. Let's exclude them by checking # `all_model_classes` is not empty (which also excludes other special classes). _UpperCAmelCase = getattr(lowercase ,"""all_model_classes""" ,[] ) if len(lowercase ) > 0: test_classes.append(lowercase ) # sort with class names return sorted(lowercase ,key=lambda lowercase : x.__name__ ) def __UpperCAmelCase ( lowercase ): """simple docstring""" _UpperCAmelCase = get_test_classes(lowercase ) _UpperCAmelCase = set() for test_class in test_classes: model_classes.update(test_class.all_model_classes ) # sort with class names return sorted(lowercase ,key=lambda lowercase : x.__name__ ) def __UpperCAmelCase ( lowercase ): """simple docstring""" _UpperCAmelCase = test_class() if hasattr(lowercase ,"""setUp""" ): test.setUp() _UpperCAmelCase = None if hasattr(lowercase ,"""model_tester""" ): # `(TF/Flax)ModelTesterMixin` has this attribute default to `None`. Let's skip this case. if test.model_tester is not None: _UpperCAmelCase = test.model_tester.__class__ return model_tester def __UpperCAmelCase ( lowercase ,lowercase ): """simple docstring""" _UpperCAmelCase = get_test_classes(lowercase ) _UpperCAmelCase = [] for test_class in test_classes: if model_class in test_class.all_model_classes: target_test_classes.append(lowercase ) # sort with class names return sorted(lowercase ,key=lambda lowercase : x.__name__ ) def __UpperCAmelCase ( lowercase ,lowercase ): """simple docstring""" _UpperCAmelCase = get_test_classes_for_model(lowercase ,lowercase ) _UpperCAmelCase = [] for test_class in test_classes: _UpperCAmelCase = get_model_tester_from_test_class(lowercase ) if tester_class is not None: tester_classes.append(lowercase ) # sort with class names return sorted(lowercase ,key=lambda lowercase : x.__name__ ) def __UpperCAmelCase ( lowercase ): """simple docstring""" _UpperCAmelCase = get_test_classes(lowercase ) _UpperCAmelCase = {test_class: get_model_tester_from_test_class(lowercase ) for test_class in test_classes} return test_tester_mapping def __UpperCAmelCase ( lowercase ): """simple docstring""" _UpperCAmelCase = get_model_classes(lowercase ) _UpperCAmelCase = { model_class: get_test_classes_for_model(lowercase ,lowercase ) for model_class in model_classes } return model_test_mapping def __UpperCAmelCase ( lowercase ): """simple docstring""" _UpperCAmelCase = get_model_classes(lowercase ) _UpperCAmelCase = { model_class: get_tester_classes_for_model(lowercase ,lowercase ) for model_class in model_classes } return model_to_tester_mapping def __UpperCAmelCase ( lowercase ): """simple docstring""" if isinstance(lowercase ,lowercase ): return o elif isinstance(lowercase ,lowercase ): return o.__name__ elif isinstance(lowercase ,(list, tuple) ): return [to_json(lowercase ) for x in o] elif isinstance(lowercase ,lowercase ): return {to_json(lowercase ): to_json(lowercase ) for k, v in o.items()} else: return o
289
"""simple docstring""" import gc import unittest import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DDPMScheduler, PriorTransformer, StableUnCLIPPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.testing_utils import enable_full_determinism, load_numpy, require_torch_gpu, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ): _snake_case : int = StableUnCLIPPipeline _snake_case : str = TEXT_TO_IMAGE_PARAMS _snake_case : Any = TEXT_TO_IMAGE_BATCH_PARAMS _snake_case : Optional[Any] = TEXT_TO_IMAGE_IMAGE_PARAMS _snake_case : str = TEXT_TO_IMAGE_IMAGE_PARAMS # TODO(will) Expected attn_bias.stride(1) == 0 to be true, but got false _snake_case : str = False def lowerCAmelCase_ ( self : Optional[int] ): _UpperCAmelCase = 32 _UpperCAmelCase = embedder_hidden_size # prior components torch.manual_seed(0 ) _UpperCAmelCase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) torch.manual_seed(0 ) _UpperCAmelCase = CLIPTextModelWithProjection( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=__lowerCAmelCase , projection_dim=__lowerCAmelCase , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) ) torch.manual_seed(0 ) _UpperCAmelCase = PriorTransformer( num_attention_heads=2 , attention_head_dim=12 , embedding_dim=__lowerCAmelCase , num_layers=1 , ) torch.manual_seed(0 ) _UpperCAmelCase = DDPMScheduler( variance_type="""fixed_small_log""" , prediction_type="""sample""" , num_train_timesteps=1000 , clip_sample=__lowerCAmelCase , clip_sample_range=5.0 , beta_schedule="""squaredcos_cap_v2""" , ) # regular denoising components torch.manual_seed(0 ) _UpperCAmelCase = StableUnCLIPImageNormalizer(embedding_dim=__lowerCAmelCase ) _UpperCAmelCase = DDPMScheduler(beta_schedule="""squaredcos_cap_v2""" ) torch.manual_seed(0 ) _UpperCAmelCase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) torch.manual_seed(0 ) _UpperCAmelCase = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=__lowerCAmelCase , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) ) torch.manual_seed(0 ) _UpperCAmelCase = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""CrossAttnDownBlock2D""", """DownBlock2D""") , up_block_types=("""UpBlock2D""", """CrossAttnUpBlock2D""") , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type="""projection""" , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=__lowerCAmelCase , layers_per_block=1 , upcast_attention=__lowerCAmelCase , use_linear_projection=__lowerCAmelCase , ) torch.manual_seed(0 ) _UpperCAmelCase = DDIMScheduler( beta_schedule="""scaled_linear""" , beta_start=0.00_085 , beta_end=0.012 , prediction_type="""v_prediction""" , set_alpha_to_one=__lowerCAmelCase , steps_offset=1 , ) torch.manual_seed(0 ) _UpperCAmelCase = AutoencoderKL() _UpperCAmelCase = { # prior components """prior_tokenizer""": prior_tokenizer, """prior_text_encoder""": prior_text_encoder, """prior""": prior, """prior_scheduler""": prior_scheduler, # image noising components """image_normalizer""": image_normalizer, """image_noising_scheduler""": image_noising_scheduler, # regular denoising components """tokenizer""": tokenizer, """text_encoder""": text_encoder, """unet""": unet, """scheduler""": scheduler, """vae""": vae, } return components def lowerCAmelCase_ ( self : Optional[int] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : str=0 ): if str(__lowerCAmelCase ).startswith("""mps""" ): _UpperCAmelCase = torch.manual_seed(__lowerCAmelCase ) else: _UpperCAmelCase = torch.Generator(device=__lowerCAmelCase ).manual_seed(__lowerCAmelCase ) _UpperCAmelCase = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """prior_num_inference_steps""": 2, """output_type""": """numpy""", } return inputs def lowerCAmelCase_ ( self : Optional[int] ): _UpperCAmelCase = torch_device == """cpu""" self._test_attention_slicing_forward_pass(test_max_difference=__lowerCAmelCase ) def lowerCAmelCase_ ( self : List[str] ): _UpperCAmelCase = torch_device in ["""cpu""", """mps"""] self._test_inference_batch_single_identical(test_max_difference=__lowerCAmelCase ) @slow @require_torch_gpu class a ( unittest.TestCase ): def lowerCAmelCase_ ( self : str ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase_ ( self : List[Any] ): _UpperCAmelCase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_anime_turtle_fp16.npy""" ) _UpperCAmelCase = StableUnCLIPPipeline.from_pretrained("""fusing/stable-unclip-2-1-l""" , torch_dtype=torch.floataa ) pipe.to(__lowerCAmelCase ) pipe.set_progress_bar_config(disable=__lowerCAmelCase ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() _UpperCAmelCase = torch.Generator(device="""cpu""" ).manual_seed(0 ) _UpperCAmelCase = pipe("""anime turle""" , generator=__lowerCAmelCase , output_type="""np""" ) _UpperCAmelCase = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(__lowerCAmelCase , __lowerCAmelCase ) def lowerCAmelCase_ ( self : Any ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() _UpperCAmelCase = StableUnCLIPPipeline.from_pretrained("""fusing/stable-unclip-2-1-l""" , torch_dtype=torch.floataa ) _UpperCAmelCase = pipe.to(__lowerCAmelCase ) pipe.set_progress_bar_config(disable=__lowerCAmelCase ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() _UpperCAmelCase = pipe( """anime turtle""" , prior_num_inference_steps=2 , num_inference_steps=2 , output_type="""np""" , ) _UpperCAmelCase = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
289
1
"""simple docstring""" import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, ByTaTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): UpperCamelCase = '''pt''' elif is_tf_available(): UpperCamelCase = '''tf''' else: UpperCamelCase = '''jax''' class _lowerCamelCase ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" snake_case = ByTaTokenizer snake_case = False def _snake_case ( self )->Any: '''simple docstring''' super().setUp() A_ : Dict = ByTaTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def _snake_case ( self )->Dict: '''simple docstring''' return ByTaTokenizer.from_pretrained('''google/byt5-small''' ) def _snake_case ( self , **_SCREAMING_SNAKE_CASE )->ByTaTokenizer: '''simple docstring''' return self.tokenizer_class.from_pretrained(self.tmpdirname , **_SCREAMING_SNAKE_CASE ) def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=20 , _SCREAMING_SNAKE_CASE=5 )->Tuple[str, list]: '''simple docstring''' A_ : Union[str, Any] = [] for i in range(len(_SCREAMING_SNAKE_CASE ) ): try: A_ : List[Any] = tokenizer.decode([i] , clean_up_tokenization_spaces=_SCREAMING_SNAKE_CASE ) except UnicodeDecodeError: pass toks.append((i, tok) ) A_ : Dict = list(filter(lambda _SCREAMING_SNAKE_CASE : re.match(R'''^[ a-zA-Z]+$''' , t[1] ) , _SCREAMING_SNAKE_CASE ) ) A_ : List[Any] = list(filter(lambda _SCREAMING_SNAKE_CASE : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) ) if max_length is not None and len(_SCREAMING_SNAKE_CASE ) > max_length: A_ : Optional[int] = toks[:max_length] if min_length is not None and len(_SCREAMING_SNAKE_CASE ) < min_length and len(_SCREAMING_SNAKE_CASE ) > 0: while len(_SCREAMING_SNAKE_CASE ) < min_length: A_ : Optional[Any] = toks + toks # toks_str = [t[1] for t in toks] A_ : Optional[int] = [t[0] for t in toks] # Ensure consistency A_ : Tuple = tokenizer.decode(_SCREAMING_SNAKE_CASE , clean_up_tokenization_spaces=_SCREAMING_SNAKE_CASE ) if " " not in output_txt and len(_SCREAMING_SNAKE_CASE ) > 1: A_ : Optional[Any] = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=_SCREAMING_SNAKE_CASE ) + " " + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=_SCREAMING_SNAKE_CASE ) ) if with_prefix_space: A_ : int = " " + output_txt A_ : Dict = tokenizer.encode(_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE ) return output_txt, output_ids def _snake_case ( self )->Optional[Any]: '''simple docstring''' A_ : str = self.ta_base_tokenizer A_ : List[Any] = tokenizer(['''hi</s>''', '''I went to the gym</s>''', '''</s>'''] ) A_ : Any = tokenizer(['''hi''', '''I went to the gym''', ''''''] ) self.assertListEqual(batch_with_eos_added['''input_ids'''] , batch_without_eos_added['''input_ids'''] ) def _snake_case ( self )->Union[str, Any]: '''simple docstring''' A_ : Optional[int] = self.ta_base_tokenizer A_ : Any = "Unicode €." A_ : Union[str, Any] = tokenizer(_SCREAMING_SNAKE_CASE ) A_ : Tuple = [88, 113, 108, 102, 114, 103, 104, 35, 229, 133, 175, 49, 1] self.assertEqual(encoded['''input_ids'''] , _SCREAMING_SNAKE_CASE ) # decoding A_ : List[Any] = tokenizer.decode(_SCREAMING_SNAKE_CASE ) self.assertEqual(_SCREAMING_SNAKE_CASE , '''Unicode €.</s>''' ) A_ : Optional[Any] = tokenizer('''e è é ê ë''' ) A_ : Any = [104, 35, 198, 171, 35, 198, 172, 35, 198, 173, 35, 198, 174, 1] self.assertEqual(encoded['''input_ids'''] , _SCREAMING_SNAKE_CASE ) # decoding A_ : Optional[Any] = tokenizer.decode(_SCREAMING_SNAKE_CASE ) self.assertEqual(_SCREAMING_SNAKE_CASE , '''e è é ê ë</s>''' ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode('''e è é ê ë''' ) ) , '''e è é ê ë</s>''' ) def _snake_case ( self )->Any: '''simple docstring''' A_ : int = self.ta_base_tokenizer A_ : Any = ["A long paragraph for summarization.", "Another paragraph for summarization."] # fmt: off A_ : Union[str, Any] = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 1, 0] # fmt: on A_ : Tuple = tokenizer(_SCREAMING_SNAKE_CASE , padding=_SCREAMING_SNAKE_CASE , return_tensors=_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if FRAMEWORK != "jax": A_ : Optional[Any] = list(batch.input_ids.numpy()[0] ) else: A_ : Optional[int] = list(batch.input_ids.tolist()[0] ) self.assertListEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) self.assertEqual((2, 37) , batch.input_ids.shape ) self.assertEqual((2, 37) , batch.attention_mask.shape ) def _snake_case ( self )->Optional[Any]: '''simple docstring''' A_ : Tuple = self.ta_base_tokenizer A_ : Any = ["A long paragraph for summarization.", "Another paragraph for summarization."] A_ : Optional[int] = tokenizer(_SCREAMING_SNAKE_CASE , padding=_SCREAMING_SNAKE_CASE , return_tensors=_SCREAMING_SNAKE_CASE ) # check if input_ids are returned and no decoder_input_ids self.assertIn('''input_ids''' , _SCREAMING_SNAKE_CASE ) self.assertIn('''attention_mask''' , _SCREAMING_SNAKE_CASE ) self.assertNotIn('''decoder_input_ids''' , _SCREAMING_SNAKE_CASE ) self.assertNotIn('''decoder_attention_mask''' , _SCREAMING_SNAKE_CASE ) def _snake_case ( self )->str: '''simple docstring''' A_ : Any = self.ta_base_tokenizer A_ : Union[str, Any] = [ "Summary of the text.", "Another summary.", ] A_ : Optional[int] = tokenizer( text_target=_SCREAMING_SNAKE_CASE , max_length=32 , padding='''max_length''' , truncation=_SCREAMING_SNAKE_CASE , return_tensors=_SCREAMING_SNAKE_CASE ) self.assertEqual(32 , targets['''input_ids'''].shape[1] ) def _snake_case ( self )->Optional[Any]: '''simple docstring''' A_ : List[Any] = self.ta_base_tokenizer A_ : int = ["A long paragraph for summarization. </s>"] A_ : List[str] = ["Summary of the text. </s>"] # fmt: off A_ : Any = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 35, 1] A_ : List[str] = [86, 120, 112, 112, 100, 117, 124, 35, 114, 105, 35, 119, 107, 104, 35, 119, 104, 123, 119, 49, 35, 1] # fmt: on A_ : int = tokenizer(_SCREAMING_SNAKE_CASE , text_target=_SCREAMING_SNAKE_CASE ) self.assertEqual(_SCREAMING_SNAKE_CASE , batch['''input_ids'''][0] ) self.assertEqual(_SCREAMING_SNAKE_CASE , batch['''labels'''][0] ) def _snake_case ( self )->Union[str, Any]: '''simple docstring''' A_ : Union[str, Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test A_ : List[Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc A_ : Dict = tempfile.mkdtemp() A_ : List[Any] = " He is very happy, UNwant\u00E9d,running" A_ : Tuple = tokenizer.encode(_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE ) tokenizer.save_pretrained(_SCREAMING_SNAKE_CASE ) A_ : List[Any] = tokenizer.__class__.from_pretrained(_SCREAMING_SNAKE_CASE ) A_ : Union[str, Any] = after_tokenizer.encode(_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE ) self.assertListEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) shutil.rmtree(_SCREAMING_SNAKE_CASE ) A_ : List[str] = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc A_ : str = tempfile.mkdtemp() A_ : int = " He is very happy, UNwant\u00E9d,running" tokenizer.add_tokens(['''bim''', '''bambam'''] ) A_ : Optional[int] = tokenizer.additional_special_tokens additional_special_tokens.append('''new_additional_special_token''' ) tokenizer.add_special_tokens({'''additional_special_tokens''': additional_special_tokens} ) A_ : Tuple = tokenizer.encode(_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE ) tokenizer.save_pretrained(_SCREAMING_SNAKE_CASE ) A_ : str = tokenizer.__class__.from_pretrained(_SCREAMING_SNAKE_CASE ) A_ : Tuple = after_tokenizer.encode(_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE ) self.assertListEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) self.assertIn('''new_additional_special_token''' , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) A_ : List[str] = tokenizer.__class__.from_pretrained(_SCREAMING_SNAKE_CASE , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(_SCREAMING_SNAKE_CASE ) def _snake_case ( self )->Optional[int]: '''simple docstring''' A_ : List[Any] = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(_SCREAMING_SNAKE_CASE ) with open(os.path.join(_SCREAMING_SNAKE_CASE , '''special_tokens_map.json''' ) , encoding='''utf-8''' ) as json_file: A_ : Union[str, Any] = json.load(_SCREAMING_SNAKE_CASE ) with open(os.path.join(_SCREAMING_SNAKE_CASE , '''tokenizer_config.json''' ) , encoding='''utf-8''' ) as json_file: A_ : Dict = json.load(_SCREAMING_SNAKE_CASE ) A_ : Tuple = [F'''<extra_id_{i}>''' for i in range(125 )] A_ : Optional[Any] = added_tokens_extra_ids + [ "an_additional_special_token" ] A_ : Dict = added_tokens_extra_ids + [ "an_additional_special_token" ] with open(os.path.join(_SCREAMING_SNAKE_CASE , '''special_tokens_map.json''' ) , '''w''' , encoding='''utf-8''' ) as outfile: json.dump(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) with open(os.path.join(_SCREAMING_SNAKE_CASE , '''tokenizer_config.json''' ) , '''w''' , encoding='''utf-8''' ) as outfile: json.dump(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files A_ : Union[str, Any] = tokenizer_class.from_pretrained( _SCREAMING_SNAKE_CASE , ) self.assertIn( '''an_additional_special_token''' , tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( ['''an_additional_special_token'''] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(['''an_additional_special_token'''] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained A_ : List[str] = added_tokens_extra_ids + [AddedToken('''a_new_additional_special_token''' , lstrip=_SCREAMING_SNAKE_CASE )] A_ : Union[str, Any] = tokenizer_class.from_pretrained( _SCREAMING_SNAKE_CASE , additional_special_tokens=_SCREAMING_SNAKE_CASE , ) self.assertIn('''a_new_additional_special_token''' , tokenizer.additional_special_tokens ) self.assertEqual( ['''a_new_additional_special_token'''] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(['''a_new_additional_special_token'''] ) ) , ) def _snake_case ( self )->Any: '''simple docstring''' A_ : Optional[Any] = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(_SCREAMING_SNAKE_CASE ) A_ : Tuple = tokenizer_class.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertTrue(tokenizer.decode([255] ) == '''''' ) def _snake_case ( self )->List[str]: '''simple docstring''' pass def _snake_case ( self )->int: '''simple docstring''' pass def _snake_case ( self )->List[Any]: '''simple docstring''' pass def _snake_case ( self )->Optional[int]: '''simple docstring''' pass def _snake_case ( self )->List[Any]: '''simple docstring''' A_ : Optional[Any] = self.get_tokenizers(fast=_SCREAMING_SNAKE_CASE , do_lower_case=_SCREAMING_SNAKE_CASE ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): A_ : List[str] = ["t", "h", "i", "s", " ", "i", "s", " ", "a", " ", "t", "e", "x", "t", "</s>"] A_ : List[str] = tokenizer.convert_tokens_to_string(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def _snake_case ( self )->Optional[int]: '''simple docstring''' A_ : Optional[Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): A_ : Tuple = [ "bos_token", "eos_token", "unk_token", "sep_token", "pad_token", "cls_token", "mask_token", ] A_ : Union[str, Any] = 0 A_ : Dict = tokenizer.convert_ids_to_tokens( _SCREAMING_SNAKE_CASE , skip_special_tokens=_SCREAMING_SNAKE_CASE ) for attr in attributes_list: setattr(_SCREAMING_SNAKE_CASE , attr + '''_id''' , _SCREAMING_SNAKE_CASE ) self.assertEqual(getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) self.assertEqual(getattr(_SCREAMING_SNAKE_CASE , attr + '''_id''' ) , _SCREAMING_SNAKE_CASE ) setattr(_SCREAMING_SNAKE_CASE , attr + '''_id''' , _SCREAMING_SNAKE_CASE ) self.assertEqual(getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) self.assertEqual(getattr(_SCREAMING_SNAKE_CASE , attr + '''_id''' ) , _SCREAMING_SNAKE_CASE ) setattr(_SCREAMING_SNAKE_CASE , '''additional_special_tokens_ids''' , [] ) self.assertListEqual(getattr(_SCREAMING_SNAKE_CASE , '''additional_special_tokens''' ) , [] ) self.assertListEqual(getattr(_SCREAMING_SNAKE_CASE , '''additional_special_tokens_ids''' ) , [] ) setattr(_SCREAMING_SNAKE_CASE , '''additional_special_tokens_ids''' , [token_id_to_test_setters] ) self.assertListEqual(getattr(_SCREAMING_SNAKE_CASE , '''additional_special_tokens''' ) , [token_to_test_setters] ) self.assertListEqual(getattr(_SCREAMING_SNAKE_CASE , '''additional_special_tokens_ids''' ) , [token_id_to_test_setters] )
364
import tempfile import unittest from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from transformers.testing_utils import ( is_torch_available, require_optimum, require_torch, slow, ) if is_torch_available(): import torch @require_torch @require_optimum @slow class _lowerCamelCase ( unittest.TestCase ): """simple docstring""" def _snake_case ( self )->Any: '''simple docstring''' A_ : Dict = '''hf-internal-testing/tiny-random-t5''' A_ : str = AutoTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ) A_ : Union[str, Any] = AutoModelForSeqaSeqLM.from_pretrained(_SCREAMING_SNAKE_CASE ) A_ : Union[str, Any] = tokenizer('''This is me''' , return_tensors='''pt''' ) A_ : Tuple = model.to_bettertransformer() self.assertTrue(any('''BetterTransformer''' in mod.__class__.__name__ for _, mod in model.named_modules() ) ) A_ : Dict = model.generate(**_SCREAMING_SNAKE_CASE ) A_ : Union[str, Any] = model.reverse_bettertransformer() self.assertFalse(any('''BetterTransformer''' in mod.__class__.__name__ for _, mod in model.named_modules() ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_SCREAMING_SNAKE_CASE ) A_ : List[Any] = AutoModelForSeqaSeqLM.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertFalse( any('''BetterTransformer''' in mod.__class__.__name__ for _, mod in model_reloaded.named_modules() ) ) A_ : str = model_reloaded.generate(**_SCREAMING_SNAKE_CASE ) self.assertTrue(torch.allclose(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) def _snake_case ( self )->Optional[Any]: '''simple docstring''' A_ : List[str] = '''hf-internal-testing/tiny-random-t5''' A_ : Dict = AutoModelForSeqaSeqLM.from_pretrained(_SCREAMING_SNAKE_CASE ) A_ : List[Any] = model.to_bettertransformer() with tempfile.TemporaryDirectory() as tmpdirname: with self.assertRaises(_SCREAMING_SNAKE_CASE ): model.save_pretrained(_SCREAMING_SNAKE_CASE ) A_ : List[str] = model.reverse_bettertransformer() model.save_pretrained(_SCREAMING_SNAKE_CASE )
65
0
import warnings from typing import List import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import is_flax_available, is_tf_available, is_torch_available class UpperCAmelCase ( lowercase_ ): '''simple docstring''' lowerCAmelCase_ = ['''image_processor''', '''tokenizer'''] lowerCAmelCase_ = '''OwlViTImageProcessor''' lowerCAmelCase_ = ('''CLIPTokenizer''', '''CLIPTokenizerFast''') def __init__( self : Optional[int] , __lowercase : Dict=None , __lowercase : Optional[int]=None , **__lowercase : Optional[Any] ): """simple docstring""" snake_case_ = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , lowerCAmelCase_ , ) snake_case_ = kwargs.pop("feature_extractor" ) snake_case_ = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(lowerCAmelCase_ , lowerCAmelCase_ ) def __call__( self : Dict , __lowercase : str=None , __lowercase : Union[str, Any]=None , __lowercase : Tuple=None , __lowercase : Optional[int]="max_length" , __lowercase : Dict="np" , **__lowercase : Optional[Any] ): """simple docstring""" if text is None and query_images is None and images is None: raise ValueError( "You have to specify at least one text or query image or image. All three cannot be none." ) if text is not None: if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) or (isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and not isinstance(text[0] , lowerCAmelCase_ )): snake_case_ = [self.tokenizer(lowerCAmelCase_ , padding=lowerCAmelCase_ , return_tensors=lowerCAmelCase_ , **lowerCAmelCase_ )] elif isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and isinstance(text[0] , lowerCAmelCase_ ): snake_case_ = [] # Maximum number of queries across batch snake_case_ = max([len(lowerCAmelCase_ ) for t in text] ) # Pad all batch samples to max number of text queries for t in text: if len(lowerCAmelCase_ ) != max_num_queries: snake_case_ = t + [""" """] * (max_num_queries - len(lowerCAmelCase_ )) snake_case_ = self.tokenizer(lowerCAmelCase_ , padding=lowerCAmelCase_ , return_tensors=lowerCAmelCase_ , **lowerCAmelCase_ ) encodings.append(lowerCAmelCase_ ) else: raise TypeError("Input text should be a string, a list of strings or a nested list of strings" ) if return_tensors == "np": snake_case_ = np.concatenate([encoding["input_ids"] for encoding in encodings] , axis=0 ) snake_case_ = np.concatenate([encoding["attention_mask"] for encoding in encodings] , axis=0 ) elif return_tensors == "jax" and is_flax_available(): import jax.numpy as jnp snake_case_ = jnp.concatenate([encoding["input_ids"] for encoding in encodings] , axis=0 ) snake_case_ = jnp.concatenate([encoding["attention_mask"] for encoding in encodings] , axis=0 ) elif return_tensors == "pt" and is_torch_available(): import torch snake_case_ = torch.cat([encoding["input_ids"] for encoding in encodings] , dim=0 ) snake_case_ = torch.cat([encoding["attention_mask"] for encoding in encodings] , dim=0 ) elif return_tensors == "tf" and is_tf_available(): import tensorflow as tf snake_case_ = tf.stack([encoding["input_ids"] for encoding in encodings] , axis=0 ) snake_case_ = tf.stack([encoding["attention_mask"] for encoding in encodings] , axis=0 ) else: raise ValueError("Target return tensor type could not be returned" ) snake_case_ = BatchEncoding() snake_case_ = input_ids snake_case_ = attention_mask if query_images is not None: snake_case_ = BatchEncoding() snake_case_ = self.image_processor( lowerCAmelCase_ , return_tensors=lowerCAmelCase_ , **lowerCAmelCase_ ).pixel_values snake_case_ = query_pixel_values if images is not None: snake_case_ = self.image_processor(lowerCAmelCase_ , return_tensors=lowerCAmelCase_ , **lowerCAmelCase_ ) if text is not None and images is not None: snake_case_ = image_features.pixel_values return encoding elif query_images is not None and images is not None: snake_case_ = image_features.pixel_values return encoding elif text is not None or query_images is not None: return encoding else: return BatchEncoding(data=dict(**lowerCAmelCase_ ) , tensor_type=lowerCAmelCase_ ) def snake_case__ ( self : List[str] , *__lowercase : List[str] , **__lowercase : List[str] ): """simple docstring""" return self.image_processor.post_process(*lowerCAmelCase_ , **lowerCAmelCase_ ) def snake_case__ ( self : Dict , *__lowercase : Optional[Any] , **__lowercase : List[str] ): """simple docstring""" return self.image_processor.post_process_object_detection(*lowerCAmelCase_ , **lowerCAmelCase_ ) def snake_case__ ( self : Union[str, Any] , *__lowercase : Optional[int] , **__lowercase : Optional[Any] ): """simple docstring""" return self.image_processor.post_process_image_guided_detection(*lowerCAmelCase_ , **lowerCAmelCase_ ) def snake_case__ ( self : List[Any] , *__lowercase : int , **__lowercase : str ): """simple docstring""" return self.tokenizer.batch_decode(*lowerCAmelCase_ , **lowerCAmelCase_ ) def snake_case__ ( self : Optional[Any] , *__lowercase : int , **__lowercase : Optional[Any] ): """simple docstring""" return self.tokenizer.decode(*lowerCAmelCase_ , **lowerCAmelCase_ ) @property def snake_case__ ( self : Optional[int] ): """simple docstring""" warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , lowerCAmelCase_ , ) return self.image_processor_class @property def snake_case__ ( self : Any ): """simple docstring""" warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , lowerCAmelCase_ , ) return self.image_processor
187
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __snake_case : Union[str, Any] = logging.get_logger(__name__) __snake_case : int = { 'xlm-roberta-base': 'https://huggingface.co/xlm-roberta-base/resolve/main/config.json', 'xlm-roberta-large': 'https://huggingface.co/xlm-roberta-large/resolve/main/config.json', 'xlm-roberta-large-finetuned-conll02-dutch': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/config.json' ), 'xlm-roberta-large-finetuned-conll02-spanish': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/config.json' ), 'xlm-roberta-large-finetuned-conll03-english': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/config.json' ), 'xlm-roberta-large-finetuned-conll03-german': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/config.json' ), } class lowerCamelCase ( lowercase_ ): '''simple docstring''' __snake_case = 'xlm-roberta' def __init__( self : List[Any] , lowerCAmelCase_ : str=3_05_22 , lowerCAmelCase_ : Any=7_68 , lowerCAmelCase_ : Any=12 , lowerCAmelCase_ : Tuple=12 , lowerCAmelCase_ : List[Any]=30_72 , lowerCAmelCase_ : Tuple="gelu" , lowerCAmelCase_ : int=0.1 , lowerCAmelCase_ : List[str]=0.1 , lowerCAmelCase_ : Any=5_12 , lowerCAmelCase_ : int=2 , lowerCAmelCase_ : List[str]=0.02 , lowerCAmelCase_ : str=1e-12 , lowerCAmelCase_ : Optional[Any]=1 , lowerCAmelCase_ : Optional[int]=0 , lowerCAmelCase_ : Optional[Any]=2 , lowerCAmelCase_ : Any="absolute" , lowerCAmelCase_ : Optional[Any]=True , lowerCAmelCase_ : Dict=None , **lowerCAmelCase_ : int , ) -> Optional[Any]: '''simple docstring''' super().__init__(pad_token_id=lowerCAmelCase_ , bos_token_id=lowerCAmelCase_ , eos_token_id=lowerCAmelCase_ , **lowerCAmelCase_ ) A__ : Any =vocab_size A__ : Any =hidden_size A__ : Any =num_hidden_layers A__ : str =num_attention_heads A__ : Union[str, Any] =hidden_act A__ : Union[str, Any] =intermediate_size A__ : Optional[Any] =hidden_dropout_prob A__ : List[Any] =attention_probs_dropout_prob A__ : Dict =max_position_embeddings A__ : int =type_vocab_size A__ : Any =initializer_range A__ : Union[str, Any] =layer_norm_eps A__ : str =position_embedding_type A__ : str =use_cache A__ : Any =classifier_dropout class lowerCamelCase ( lowercase_ ): '''simple docstring''' @property def lowercase__ ( self : Optional[int] ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": A__ : Union[str, Any] ={0: """batch""", 1: """choice""", 2: """sequence"""} else: A__ : str ={0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
134
0
"""simple docstring""" from random import shuffle import tensorflow as tf from numpy import array def snake_case_ ( A_ : Optional[int], A_ : Optional[int] ): '''simple docstring''' _lowerCamelCase : Optional[Any] = int(A_ ) assert noofclusters < len(A_ ) # Find out the dimensionality _lowerCamelCase : Optional[Any] = len(vectors[0] ) # Will help select random centroids from among the available vectors _lowerCamelCase : Optional[Any] = list(range(len(A_ ) ) ) shuffle(A_ ) # GRAPH OF COMPUTATION # We initialize a new graph and set it as the default during each run # of this algorithm. This ensures that as this function is called # multiple times, the default graph doesn't keep getting crowded with # unused ops and Variables from previous function calls. _lowerCamelCase : Optional[Any] = tf.Graph() with graph.as_default(): # SESSION OF COMPUTATION _lowerCamelCase : List[str] = tf.Session() ##CONSTRUCTING THE ELEMENTS OF COMPUTATION ##First lets ensure we have a Variable vector for each centroid, ##initialized to one of the vectors from the available data points _lowerCamelCase : Tuple = [ tf.Variable(vectors[vector_indices[i]] ) for i in range(A_ ) ] ##These nodes will assign the centroid Variables the appropriate ##values _lowerCamelCase : Optional[Any] = tf.placeholder('''float64''', [dim] ) _lowerCamelCase : Optional[Any] = [] for centroid in centroids: cent_assigns.append(tf.assign(A_, A_ ) ) ##Variables for cluster assignments of individual vectors(initialized ##to 0 at first) _lowerCamelCase : Any = [tf.Variable(0 ) for i in range(len(A_ ) )] ##These nodes will assign an assignment Variable the appropriate ##value _lowerCamelCase : List[Any] = tf.placeholder('''int32''' ) _lowerCamelCase : str = [] for assignment in assignments: cluster_assigns.append(tf.assign(A_, A_ ) ) ##Now lets construct the node that will compute the mean # The placeholder for the input _lowerCamelCase : Tuple = tf.placeholder('''float''', [None, dim] ) # The Node/op takes the input and computes a mean along the 0th # dimension, i.e. the list of input vectors _lowerCamelCase : Optional[int] = tf.reduce_mean(A_, 0 ) ##Node for computing Euclidean distances # Placeholders for input _lowerCamelCase : Tuple = tf.placeholder('''float''', [dim] ) _lowerCamelCase : List[Any] = tf.placeholder('''float''', [dim] ) _lowerCamelCase : Tuple = tf.sqrt(tf.reduce_sum(tf.pow(tf.sub(A_, A_ ), 2 ) ) ) ##This node will figure out which cluster to assign a vector to, ##based on Euclidean distances of the vector from the centroids. # Placeholder for input _lowerCamelCase : Union[str, Any] = tf.placeholder('''float''', [noofclusters] ) _lowerCamelCase : Dict = tf.argmin(A_, 0 ) ##INITIALIZING STATE VARIABLES ##This will help initialization of all Variables defined with respect ##to the graph. The Variable-initializer should be defined after ##all the Variables have been constructed, so that each of them ##will be included in the initialization. _lowerCamelCase : Union[str, Any] = tf.initialize_all_variables() # Initialize all variables sess.run(A_ ) ##CLUSTERING ITERATIONS # Now perform the Expectation-Maximization steps of K-Means clustering # iterations. To keep things simple, we will only do a set number of # iterations, instead of using a Stopping Criterion. _lowerCamelCase : Union[str, Any] = 1_00 for _ in range(A_ ): ##EXPECTATION STEP ##Based on the centroid locations till last iteration, compute ##the _expected_ centroid assignments. # Iterate over each vector for vector_n in range(len(A_ ) ): _lowerCamelCase : str = vectors[vector_n] # Compute Euclidean distance between this vector and each # centroid. Remember that this list cannot be named #'centroid_distances', since that is the input to the # cluster assignment node. _lowerCamelCase : Dict = [ sess.run(A_, feed_dict={va: vect, va: sess.run(A_ )} ) for centroid in centroids ] # Now use the cluster assignment node, with the distances # as the input _lowerCamelCase : Tuple = sess.run( A_, feed_dict={centroid_distances: distances} ) # Now assign the value to the appropriate state variable sess.run( cluster_assigns[vector_n], feed_dict={assignment_value: assignment} ) ##MAXIMIZATION STEP # Based on the expected state computed from the Expectation Step, # compute the locations of the centroids so as to maximize the # overall objective of minimizing within-cluster Sum-of-Squares for cluster_n in range(A_ ): # Collect all the vectors assigned to this cluster _lowerCamelCase : Any = [ vectors[i] for i in range(len(A_ ) ) if sess.run(assignments[i] ) == cluster_n ] # Compute new centroid location _lowerCamelCase : Dict = sess.run( A_, feed_dict={mean_input: array(A_ )} ) # Assign value to appropriate variable sess.run( cent_assigns[cluster_n], feed_dict={centroid_value: new_location} ) # Return centroids and assignments _lowerCamelCase : int = sess.run(A_ ) _lowerCamelCase : Tuple = sess.run(A_ ) return centroids, assignments
354
"""simple docstring""" import random import unittest import numpy as np import torch from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionUpscalePipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class __snake_case ( _lowercase , unittest.TestCase): # TODO: is there an appropriate internal test set? snake_case__ : List[str] = "ssube/stable-diffusion-x4-upscaler-onnx" def SCREAMING_SNAKE_CASE ( self : Optional[Any] , __lowerCAmelCase : int=0 ): """simple docstring""" _lowerCamelCase : Tuple = floats_tensor((1, 3, 1_2_8, 1_2_8) , rng=random.Random(__lowerCAmelCase ) ) _lowerCamelCase : Union[str, Any] = torch.manual_seed(__lowerCAmelCase ) _lowerCamelCase : Tuple = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': image, '''generator''': generator, '''num_inference_steps''': 3, '''guidance_scale''': 7.5, '''output_type''': '''numpy''', } return inputs def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" _lowerCamelCase : Union[str, Any] = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) pipe.set_progress_bar_config(disable=__lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = self.get_dummy_inputs() _lowerCamelCase : Any = pipe(**__lowerCAmelCase ).images _lowerCamelCase : Dict = image[0, -3:, -3:, -1].flatten() # started as 128, should now be 512 assert image.shape == (1, 5_1_2, 5_1_2, 3) _lowerCamelCase : str = np.array( [0.6_97_47_82, 0.68_90_20_93, 0.70_13_58_85, 0.7_58_36_18, 0.7_80_45_45, 0.7_85_49_12, 0.78_66_74_26, 0.78_74_38_63, 0.78_07_02_23] ) assert np.abs(image_slice - expected_slice ).max() < 1E-1 def SCREAMING_SNAKE_CASE ( self : List[Any] ): """simple docstring""" _lowerCamelCase : Optional[Any] = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) _lowerCamelCase : List[str] = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=__lowerCAmelCase ) pipe.set_progress_bar_config(disable=__lowerCAmelCase ) _lowerCamelCase : int = self.get_dummy_inputs() _lowerCamelCase : Optional[Any] = pipe(**__lowerCAmelCase ).images _lowerCamelCase : str = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) _lowerCamelCase : Optional[int] = np.array( [0.6_89_88_92, 0.59_24_05_56, 0.52_49_95_27, 0.58_86_62_15, 0.52_25_82_35, 0.52_57_27_15, 0.62_41_44_73, 0.6_17_43_87, 0.6_21_49_64] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def SCREAMING_SNAKE_CASE ( self : Optional[int] ): """simple docstring""" _lowerCamelCase : Optional[int] = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) _lowerCamelCase : Optional[int] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=__lowerCAmelCase ) _lowerCamelCase : Tuple = self.get_dummy_inputs() _lowerCamelCase : str = pipe(**__lowerCAmelCase ).images _lowerCamelCase : Tuple = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) _lowerCamelCase : str = np.array( [0.7_65_92_78, 0.76_43_76_64, 0.75_57_91_07, 0.7_69_11_16, 0.77_66_69_86, 0.7_72_76_72, 0.7_75_86_64, 0.7_81_22_26, 0.76_94_25_15] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def SCREAMING_SNAKE_CASE ( self : Any ): """simple docstring""" _lowerCamelCase : Any = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) _lowerCamelCase : Union[str, Any] = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=__lowerCAmelCase ) _lowerCamelCase : Optional[Any] = self.get_dummy_inputs() _lowerCamelCase : Tuple = pipe(**__lowerCAmelCase ).images _lowerCamelCase : Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) _lowerCamelCase : Union[str, Any] = np.array( [0.6_97_47_82, 0.68_90_20_93, 0.70_13_58_85, 0.7_58_36_18, 0.7_80_45_45, 0.7_85_49_12, 0.78_66_74_26, 0.78_74_38_63, 0.78_07_02_23] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def SCREAMING_SNAKE_CASE ( self : Any ): """simple docstring""" _lowerCamelCase : Dict = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) _lowerCamelCase : int = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=__lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = self.get_dummy_inputs() _lowerCamelCase : List[Any] = pipe(**__lowerCAmelCase ).images _lowerCamelCase : Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) _lowerCamelCase : Optional[int] = np.array( [0.77_42_44_96, 0.77_36_01, 0.7_64_52_88, 0.7_76_95_98, 0.7_77_27_39, 0.7_73_86_88, 0.78_18_72_33, 0.77_87_95_84, 0.76_70_43] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 @nightly @require_onnxruntime @require_torch_gpu class __snake_case ( unittest.TestCase): @property def SCREAMING_SNAKE_CASE ( self : str ): """simple docstring""" return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def SCREAMING_SNAKE_CASE ( self : Any ): """simple docstring""" _lowerCamelCase : Optional[int] = ort.SessionOptions() _lowerCamelCase : List[str] = False return options def SCREAMING_SNAKE_CASE ( self : Optional[int] ): """simple docstring""" _lowerCamelCase : Optional[int] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/img2img/sketch-mountains-input.jpg''' ) _lowerCamelCase : Any = init_image.resize((1_2_8, 1_2_8) ) # using the PNDM scheduler by default _lowerCamelCase : List[str] = OnnxStableDiffusionUpscalePipeline.from_pretrained( '''ssube/stable-diffusion-x4-upscaler-onnx''' , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=__lowerCAmelCase ) _lowerCamelCase : int = '''A fantasy landscape, trending on artstation''' _lowerCamelCase : List[Any] = torch.manual_seed(0 ) _lowerCamelCase : List[str] = pipe( prompt=__lowerCAmelCase , image=__lowerCAmelCase , guidance_scale=7.5 , num_inference_steps=1_0 , generator=__lowerCAmelCase , output_type='''np''' , ) _lowerCamelCase : List[Any] = output.images _lowerCamelCase : List[Any] = images[0, 2_5_5:2_5_8, 3_8_3:3_8_6, -1] assert images.shape == (1, 5_1_2, 5_1_2, 3) _lowerCamelCase : str = np.array([0.48_83, 0.49_47, 0.49_80, 0.49_75, 0.49_82, 0.49_80, 0.50_00, 0.50_06, 0.49_72] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2 def SCREAMING_SNAKE_CASE ( self : str ): """simple docstring""" _lowerCamelCase : Union[str, Any] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/img2img/sketch-mountains-input.jpg''' ) _lowerCamelCase : int = init_image.resize((1_2_8, 1_2_8) ) _lowerCamelCase : str = LMSDiscreteScheduler.from_pretrained( '''ssube/stable-diffusion-x4-upscaler-onnx''' , subfolder='''scheduler''' ) _lowerCamelCase : Dict = OnnxStableDiffusionUpscalePipeline.from_pretrained( '''ssube/stable-diffusion-x4-upscaler-onnx''' , scheduler=__lowerCAmelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=__lowerCAmelCase ) _lowerCamelCase : Optional[int] = '''A fantasy landscape, trending on artstation''' _lowerCamelCase : int = torch.manual_seed(0 ) _lowerCamelCase : List[str] = pipe( prompt=__lowerCAmelCase , image=__lowerCAmelCase , guidance_scale=7.5 , num_inference_steps=2_0 , generator=__lowerCAmelCase , output_type='''np''' , ) _lowerCamelCase : Union[str, Any] = output.images _lowerCamelCase : Optional[Any] = images[0, 2_5_5:2_5_8, 3_8_3:3_8_6, -1] assert images.shape == (1, 5_1_2, 5_1_2, 3) _lowerCamelCase : str = np.array( [0.50_17_37_53, 0.50_22_33_56, 0.50_20_39, 0.50_23_30_36, 0.5_02_37_25, 0.5_02_26_01, 0.5_01_87_58, 0.50_23_40_85, 0.50_24_15_66] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2
175
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _a = logging.get_logger(__name__) _a = { 'facebook/nllb-moe-54B': 'https://huggingface.co/facebook/nllb-moe-54b/resolve/main/config.json', } class _lowerCAmelCase ( lowercase ): """simple docstring""" __UpperCAmelCase : Any = "nllb-moe" __UpperCAmelCase : str = ["past_key_values"] __UpperCAmelCase : Any = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__( self : List[Any], UpperCAmelCase__ : str=1_2_8_1_1_2, UpperCAmelCase__ : int=1_0_2_4, UpperCAmelCase__ : Optional[Any]=1_2, UpperCAmelCase__ : List[str]=4_0_9_6, UpperCAmelCase__ : Dict=1_6, UpperCAmelCase__ : Tuple=1_2, UpperCAmelCase__ : Union[str, Any]=4_0_9_6, UpperCAmelCase__ : int=1_6, UpperCAmelCase__ : Optional[int]=0.05, UpperCAmelCase__ : Union[str, Any]=0.05, UpperCAmelCase__ : Optional[int]=True, UpperCAmelCase__ : str=True, UpperCAmelCase__ : Tuple="relu", UpperCAmelCase__ : Optional[int]=1_0_2_4, UpperCAmelCase__ : str=0.1, UpperCAmelCase__ : Any=0.1, UpperCAmelCase__ : Optional[int]=0.0, UpperCAmelCase__ : Dict=0.02, UpperCAmelCase__ : str=2, UpperCAmelCase__ : List[Any]=True, UpperCAmelCase__ : int=False, UpperCAmelCase__ : Dict="float32", UpperCAmelCase__ : List[str]=False, UpperCAmelCase__ : Any=1_2_8, UpperCAmelCase__ : Any=6_4, UpperCAmelCase__ : str=4, UpperCAmelCase__ : Any=4, UpperCAmelCase__ : int=0.001, UpperCAmelCase__ : Optional[int]=0.001, UpperCAmelCase__ : Optional[Any]="all", UpperCAmelCase__ : Optional[int]=False, UpperCAmelCase__ : str=False, UpperCAmelCase__ : Dict=1.0, UpperCAmelCase__ : List[str]=0.2, UpperCAmelCase__ : Any=1, UpperCAmelCase__ : Optional[Any]=0, UpperCAmelCase__ : Dict=2, UpperCAmelCase__ : List[str]=False, **UpperCAmelCase__ : int, ): __lowercase = vocab_size __lowercase = max_position_embeddings __lowercase = d_model __lowercase = encoder_ffn_dim __lowercase = encoder_layers __lowercase = encoder_attention_heads __lowercase = decoder_ffn_dim __lowercase = decoder_layers __lowercase = decoder_attention_heads __lowercase = dropout __lowercase = attention_dropout __lowercase = activation_dropout __lowercase = activation_function __lowercase = init_std __lowercase = encoder_layerdrop __lowercase = decoder_layerdrop __lowercase = use_cache __lowercase = encoder_layers __lowercase = scale_embedding # scale factor will be sqrt(d_model) if True __lowercase = router_z_loss_coef __lowercase = router_aux_loss_coef __lowercase = decoder_sparse_step __lowercase = encoder_sparse_step __lowercase = num_experts __lowercase = expert_capacity __lowercase = router_bias if router_dtype not in ["float32", "float16", "bfloat16"]: raise ValueError(F"""`router_dtype` must be one of 'float32', 'float16' or 'bfloat16', got {router_dtype}""" ) __lowercase = router_dtype __lowercase = router_ignore_padding_tokens __lowercase = batch_prioritized_routing __lowercase = second_expert_policy __lowercase = normalize_router_prob_before_dropping __lowercase = moe_eval_capacity_token_fraction __lowercase = moe_token_dropout __lowercase = output_router_logits super().__init__( pad_token_id=UpperCAmelCase__, bos_token_id=UpperCAmelCase__, eos_token_id=UpperCAmelCase__, is_encoder_decoder=UpperCAmelCase__, decoder_start_token_id=UpperCAmelCase__, **UpperCAmelCase__, )
17
"""simple docstring""" from __future__ import annotations __a = 10 def A_ ( _lowercase ): '''simple docstring''' snake_case_ :Union[str, Any] = 1 snake_case_ :List[str] = max(_lowercase ) while placement <= max_digit: # declare and initialize empty buckets snake_case_ :list[list] = [[] for _ in range(_lowercase )] # split list_of_ints between the buckets for i in list_of_ints: snake_case_ :Any = int((i / placement) % RADIX ) buckets[tmp].append(_lowercase ) # put each buckets' contents into list_of_ints snake_case_ :Optional[Any] = 0 for b in range(_lowercase ): for i in buckets[b]: snake_case_ :Union[str, Any] = i a += 1 # move to next placement *= RADIX return list_of_ints if __name__ == "__main__": import doctest doctest.testmod()
66
0
'''simple docstring''' from __future__ import annotations def lowerCamelCase__ ( __lowerCamelCase : list[int] , __lowerCamelCase : int ): '''simple docstring''' if len(_snake_case ) == 0: return False _UpperCAmelCase : Dict =len(_snake_case ) // 2 if a_list[midpoint] == item: return True if item < a_list[midpoint]: return binary_search(a_list[:midpoint] , _snake_case ) else: return binary_search(a_list[midpoint + 1 :] , _snake_case ) if __name__ == "__main__": lowercase =input('Enter numbers separated by comma:\n').strip() lowercase =[int(item.strip()) for item in user_input.split(',')] lowercase =int(input('Enter the number to be found in the list:\n').strip()) lowercase ="" if binary_search(sequence, target) else "not " print(F"""{target} was {not_str}found in {sequence}""")
369
'''simple docstring''' def lowerCamelCase__ ( __lowerCamelCase : int , __lowerCamelCase : list[int] , __lowerCamelCase : int ): '''simple docstring''' def count_of_possible_combinations(__lowerCamelCase : int ) -> int: if target < 0: return 0 if target == 0: return 1 return sum(count_of_possible_combinations(target - item ) for item in array ) return count_of_possible_combinations(__lowerCamelCase ) def lowerCamelCase__ ( __lowerCamelCase : int , __lowerCamelCase : list[int] , __lowerCamelCase : int ): '''simple docstring''' def count_of_possible_combinations_with_dp_array( __lowerCamelCase : int , __lowerCamelCase : list[int] ) -> int: if target < 0: return 0 if target == 0: return 1 if dp_array[target] != -1: return dp_array[target] _UpperCAmelCase : str =sum( count_of_possible_combinations_with_dp_array(target - item , __lowerCamelCase ) for item in array ) _UpperCAmelCase : Optional[Any] =answer return answer _UpperCAmelCase : int =[-1] * (target + 1) return count_of_possible_combinations_with_dp_array(__lowerCamelCase , __lowerCamelCase ) def lowerCamelCase__ ( __lowerCamelCase : int , __lowerCamelCase : list[int] , __lowerCamelCase : int ): '''simple docstring''' _UpperCAmelCase : Tuple =[0] * (target + 1) _UpperCAmelCase : Dict =1 for i in range(1 , target + 1 ): for j in range(__lowerCamelCase ): if i - array[j] >= 0: dp_array[i] += dp_array[i - array[j]] return dp_array[target] if __name__ == "__main__": import doctest doctest.testmod() lowercase =3 lowercase =5 lowercase =[1, 2, 5] print(combination_sum_iv(n, array, target))
242
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available __lowerCamelCase : Optional[int] = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Tuple = ['''MLukeTokenizer'''] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mluke import MLukeTokenizer else: import sys __lowerCamelCase : Union[str, Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
219
import sys from collections import defaultdict class __lowerCAmelCase : def __init__( self : int) -> str: """simple docstring""" _UpperCAmelCase = [] def _lowerCamelCase ( self : Any , A : List[str]) -> int: """simple docstring""" return self.node_position[vertex] def _lowerCamelCase ( self : Optional[Any] , A : Optional[int] , A : str) -> List[str]: """simple docstring""" _UpperCAmelCase = pos def _lowerCamelCase ( self : Tuple , A : Tuple , A : Dict , A : List[str] , A : Optional[Any]) -> Dict: """simple docstring""" if start > size // 2 - 1: return else: if 2 * start + 2 >= size: _UpperCAmelCase = 2 * start + 1 else: if heap[2 * start + 1] < heap[2 * start + 2]: _UpperCAmelCase = 2 * start + 1 else: _UpperCAmelCase = 2 * start + 2 if heap[smallest_child] < heap[start]: _UpperCAmelCase , _UpperCAmelCase = heap[smallest_child], positions[smallest_child] _UpperCAmelCase , _UpperCAmelCase = ( heap[start], positions[start], ) _UpperCAmelCase , _UpperCAmelCase = temp, tempa _UpperCAmelCase = self.get_position(positions[smallest_child]) self.set_position( positions[smallest_child] , self.get_position(positions[start])) self.set_position(positions[start] , A) self.top_to_bottom(A , A , A , A) def _lowerCamelCase ( self : Optional[int] , A : str , A : Optional[Any] , A : Optional[int] , A : str) -> Any: """simple docstring""" _UpperCAmelCase = position[index] while index != 0: _UpperCAmelCase = int((index - 2) / 2) if index % 2 == 0 else int((index - 1) / 2) if val < heap[parent]: _UpperCAmelCase = heap[parent] _UpperCAmelCase = position[parent] self.set_position(position[parent] , A) else: _UpperCAmelCase = val _UpperCAmelCase = temp self.set_position(A , A) break _UpperCAmelCase = parent else: _UpperCAmelCase = val _UpperCAmelCase = temp self.set_position(A , 0) def _lowerCamelCase ( self : Union[str, Any] , A : Optional[int] , A : Tuple) -> str: """simple docstring""" _UpperCAmelCase = len(A) // 2 - 1 for i in range(A , -1 , -1): self.top_to_bottom(A , A , len(A) , A) def _lowerCamelCase ( self : Optional[int] , A : int , A : str) -> List[str]: """simple docstring""" _UpperCAmelCase = positions[0] _UpperCAmelCase = sys.maxsize self.top_to_bottom(A , 0 , len(A) , A) return temp def A ( _UpperCAmelCase : int ) -> Any: '''simple docstring''' _UpperCAmelCase = Heap() _UpperCAmelCase = [0] * len(_UpperCAmelCase ) _UpperCAmelCase = [-1] * len(_UpperCAmelCase ) # Neighboring Tree Vertex of selected vertex # Minimum Distance of explored vertex with neighboring vertex of partial tree # formed in graph _UpperCAmelCase = [] # Heap of Distance of vertices from their neighboring vertex _UpperCAmelCase = [] for vertex in range(len(_UpperCAmelCase ) ): distance_tv.append(sys.maxsize ) positions.append(_UpperCAmelCase ) heap.node_position.append(_UpperCAmelCase ) _UpperCAmelCase = [] _UpperCAmelCase = 1 _UpperCAmelCase = sys.maxsize for neighbor, distance in adjacency_list[0]: _UpperCAmelCase = 0 _UpperCAmelCase = distance heap.heapify(_UpperCAmelCase , _UpperCAmelCase ) for _ in range(1 , len(_UpperCAmelCase ) ): _UpperCAmelCase = heap.delete_minimum(_UpperCAmelCase , _UpperCAmelCase ) if visited[vertex] == 0: tree_edges.append((nbr_tv[vertex], vertex) ) _UpperCAmelCase = 1 for neighbor, distance in adjacency_list[vertex]: if ( visited[neighbor] == 0 and distance < distance_tv[heap.get_position(_UpperCAmelCase )] ): _UpperCAmelCase = distance heap.bottom_to_top( _UpperCAmelCase , heap.get_position(_UpperCAmelCase ) , _UpperCAmelCase , _UpperCAmelCase ) _UpperCAmelCase = vertex return tree_edges if __name__ == "__main__": # pragma: no cover # < --------- Prims Algorithm --------- > UpperCAmelCase__ = int(input("Enter number of edges: ").strip()) UpperCAmelCase__ = defaultdict(list) for _ in range(edges_number): UpperCAmelCase__ = [int(x) for x in input().strip().split()] adjacency_list[edge[0]].append([edge[1], edge[2]]) adjacency_list[edge[1]].append([edge[0], edge[2]]) print(prisms_algorithm(adjacency_list))
339
0
'''simple docstring''' import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .tokenization_wavaveca import WavaVecaCTCTokenizer class a_ ( _lowerCAmelCase ): __A = "Wav2Vec2FeatureExtractor" __A = "AutoTokenizer" def __init__( self : List[str] , lowercase : Optional[Any] , lowercase : Union[str, Any] ): """simple docstring""" super().__init__(lowercase , lowercase ) lowercase_ :Optional[int] = self.feature_extractor lowercase_ :Optional[Any] = False @classmethod def lowercase__ ( cls : Dict , lowercase : Union[str, Any] , **lowercase : str ): """simple docstring""" try: return super().from_pretrained(lowercase , **lowercase ) except OSError: warnings.warn( F'Loading a tokenizer inside {cls.__name__} from a config that does not' " include a `tokenizer_class` attribute is deprecated and will be " "removed in v5. Please add `'tokenizer_class': 'Wav2Vec2CTCTokenizer'`" " attribute to either your `config.json` or `tokenizer_config.json` " "file to suppress this warning: " , lowercase , ) lowercase_ :Tuple = WavaVecaFeatureExtractor.from_pretrained(lowercase , **lowercase ) lowercase_ :int = WavaVecaCTCTokenizer.from_pretrained(lowercase , **lowercase ) return cls(feature_extractor=lowercase , tokenizer=lowercase ) def __call__( self : int , *lowercase : List[str] , **lowercase : Union[str, Any] ): """simple docstring""" if self._in_target_context_manager: return self.current_processor(*lowercase , **lowercase ) if "raw_speech" in kwargs: warnings.warn("Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead." ) lowercase_ :Union[str, Any] = kwargs.pop("raw_speech" ) else: lowercase_ :Any = kwargs.pop("audio" , lowercase ) lowercase_ :List[str] = kwargs.pop("sampling_rate" , lowercase ) lowercase_ :str = kwargs.pop("text" , lowercase ) if len(lowercase ) > 0: lowercase_ :str = args[0] lowercase_ :Optional[int] = args[1:] if audio is None and text is None: raise ValueError("You need to specify either an `audio` or `text` input to process." ) if audio is not None: lowercase_ :str = self.feature_extractor(lowercase , *lowercase , sampling_rate=lowercase , **lowercase ) if text is not None: lowercase_ :str = self.tokenizer(lowercase , **lowercase ) if text is None: return inputs elif audio is None: return encodings else: lowercase_ :Union[str, Any] = encodings["input_ids"] return inputs def lowercase__ ( self : int , *lowercase : Union[str, Any] , **lowercase : Any ): """simple docstring""" if self._in_target_context_manager: return self.current_processor.pad(*lowercase , **lowercase ) lowercase_ :List[Any] = kwargs.pop("input_features" , lowercase ) lowercase_ :Any = kwargs.pop("labels" , lowercase ) if len(lowercase ) > 0: lowercase_ :Any = args[0] lowercase_ :Union[str, Any] = args[1:] if input_features is not None: lowercase_ :Optional[int] = self.feature_extractor.pad(lowercase , *lowercase , **lowercase ) if labels is not None: lowercase_ :str = self.tokenizer.pad(lowercase , **lowercase ) if labels is None: return input_features elif input_features is None: return labels else: lowercase_ :Dict = labels["input_ids"] return input_features def lowercase__ ( self : Any , *lowercase : List[str] , **lowercase : List[Any] ): """simple docstring""" return self.tokenizer.batch_decode(*lowercase , **lowercase ) def lowercase__ ( self : Optional[int] , *lowercase : Tuple , **lowercase : Optional[int] ): """simple docstring""" return self.tokenizer.decode(*lowercase , **lowercase ) @contextmanager def lowercase__ ( self : Union[str, Any] ): """simple docstring""" warnings.warn( "`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your " "labels by using the argument `text` of the regular `__call__` method (either in the same call as " "your audio inputs, or in a separate call." ) lowercase_ :Any = True lowercase_ :Optional[int] = self.tokenizer yield lowercase_ :Optional[Any] = self.feature_extractor lowercase_ :List[Any] = False
360
'''simple docstring''' from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast from ...utils import logging lowerCAmelCase : Union[str, Any] =logging.get_logger(__name__) lowerCAmelCase : Optional[Any] ={ '''EleutherAI/gpt-neo-1.3B''': '''https://huggingface.co/EleutherAI/gpt-neo-1.3B/resolve/main/config.json''', # See all GPTNeo models at https://huggingface.co/models?filter=gpt_neo } class a_ ( _lowerCAmelCase ): __A = "gpt_neo" __A = ["past_key_values"] __A = {"num_attention_heads": "num_heads", "num_hidden_layers": "num_layers"} def __init__( self : Union[str, Any] , lowercase : Tuple=50_257 , lowercase : Optional[Any]=2_048 , lowercase : Union[str, Any]=2_048 , lowercase : int=24 , lowercase : Optional[Any]=[[["global", "local"], 12]] , lowercase : List[Any]=16 , lowercase : List[str]=None , lowercase : Union[str, Any]=256 , lowercase : Optional[Any]="gelu_new" , lowercase : Any=0.0 , lowercase : List[Any]=0.0 , lowercase : Any=0.0 , lowercase : str=0.1 , lowercase : Dict=1e-5 , lowercase : List[str]=0.02 , lowercase : Union[str, Any]=True , lowercase : int=50_256 , lowercase : Union[str, Any]=50_256 , **lowercase : Dict , ): """simple docstring""" lowercase_ :str = vocab_size lowercase_ :Tuple = max_position_embeddings lowercase_ :Tuple = hidden_size lowercase_ :List[str] = num_layers lowercase_ :int = num_heads lowercase_ :Union[str, Any] = intermediate_size lowercase_ :Tuple = window_size lowercase_ :Any = activation_function lowercase_ :Tuple = resid_dropout lowercase_ :Any = embed_dropout lowercase_ :str = attention_dropout lowercase_ :List[str] = classifier_dropout lowercase_ :List[Any] = layer_norm_epsilon lowercase_ :List[str] = initializer_range lowercase_ :int = use_cache lowercase_ :Tuple = bos_token_id lowercase_ :Optional[Any] = eos_token_id lowercase_ :int = attention_types lowercase_ :Tuple = self.expand_attention_types_params(lowercase ) if len(self.attention_layers ) != self.num_layers: raise ValueError( "Configuration for convolutional module is incorrect. " "It is required that `len(config.attention_layers)` == `config.num_layers` " F'but is `len(config.attention_layers) = {len(self.attention_layers )}`, ' F'`config.num_layers = {self.num_layers}`. ' "`config.attention_layers` is prepared using `config.attention_types`. " "Please verify the value of `config.attention_types` argument." ) super().__init__(bos_token_id=lowercase , eos_token_id=lowercase , **lowercase ) @staticmethod def lowercase__ ( lowercase : str ): """simple docstring""" lowercase_ :Union[str, Any] = [] for item in attention_types: for _ in range(item[1] ): attentions.extend(item[0] ) return attentions def UpperCAmelCase_ ( __lowerCamelCase : Union[str, Any] ,__lowerCamelCase : Optional[int] ,__lowerCamelCase : Optional[Any] ,__lowerCamelCase : Dict ): import torch lowercase_ :List[str] = input.size() lowercase_ :Union[str, Any] = len(__lowerCamelCase ) lowercase_ :Any = shape[dimension] lowercase_ :str = torch.arange(0 ,__lowerCamelCase ,__lowerCamelCase ) lowercase_ :Union[str, Any] = torch.div(sizedim - size ,__lowerCamelCase ,rounding_mode="floor" ) + 1 lowercase_ :int = torch.arange(__lowerCamelCase ) + low_indices[:min_length][:, None] lowercase_ :List[Any] = [slice(__lowerCamelCase )] * rank lowercase_ :int = indices lowercase_ :Dict = input[s] lowercase_ :List[str] = list(range(0 ,rank + 1 ) ) perm.append(perm.pop(dimension + 1 ) ) return sliced.permute(__lowerCamelCase ) def UpperCAmelCase_ ( __lowerCamelCase : List[str] ,__lowerCamelCase : Any ): import torch lowercase_ :List[Any] = torch.arange(1 ,__lowerCamelCase ) lowercase_ :int = torch.remainder(__lowerCamelCase ,__lowerCamelCase ) lowercase_ :Optional[int] = remainders == 0 lowercase_ :int = candidates[divisor_indices] lowercase_ :Tuple = torch.max(__lowerCamelCase ) return largest_divisor, torch.div(__lowerCamelCase ,__lowerCamelCase ,rounding_mode="floor" ) class a_ ( _lowerCAmelCase ): @property def lowercase__ ( self : str ): """simple docstring""" lowercase_ :int = OrderedDict({"input_ids": {0: "batch", 1: "sequence"}} ) if self.use_past: self.fill_with_past_key_values_(lowercase , direction="inputs" ) lowercase_ :Union[str, Any] = {0: "batch", 1: "past_sequence + sequence"} else: lowercase_ :str = {0: "batch", 1: "sequence"} return common_inputs @property def lowercase__ ( self : Tuple ): """simple docstring""" return self._config.num_heads def lowercase__ ( self : List[str] , lowercase : PreTrainedTokenizer , lowercase : int = -1 , lowercase : int = -1 , lowercase : bool = False , lowercase : Optional[TensorType] = None , ): """simple docstring""" lowercase_ :List[str] = super(lowercase , self ).generate_dummy_inputs( lowercase , batch_size=lowercase , seq_length=lowercase , is_pair=lowercase , framework=lowercase ) # We need to order the input in the way they appears in the forward() lowercase_ :Tuple = OrderedDict({"input_ids": common_inputs["input_ids"]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch lowercase_ , lowercase_ :Tuple = common_inputs["input_ids"].shape # Not using the same length for past_key_values lowercase_ :Any = seqlen + 2 lowercase_ :List[Any] = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) lowercase_ :Dict = [ (torch.zeros(lowercase ), torch.zeros(lowercase )) for _ in range(self.num_layers ) ] lowercase_ :Tuple = common_inputs["attention_mask"] if self.use_past: lowercase_ :Optional[int] = ordered_inputs["attention_mask"].dtype lowercase_ :List[Any] = torch.cat( [ordered_inputs["attention_mask"], torch.ones(lowercase , lowercase , dtype=lowercase )] , dim=1 ) return ordered_inputs @property def lowercase__ ( self : int ): """simple docstring""" return 13
147
0
import os from pathlib import Path import numpy as np import pytest from pack_dataset import pack_data_dir from parameterized import parameterized from save_len_file import save_len_file from torch.utils.data import DataLoader from transformers import AutoTokenizer from transformers.models.mbart.modeling_mbart import shift_tokens_right from transformers.testing_utils import TestCasePlus, slow from utils import FAIRSEQ_AVAILABLE, DistributedSortishSampler, LegacySeqaSeqDataset, SeqaSeqDataset _UpperCAmelCase : Dict = "bert-base-cased" _UpperCAmelCase : List[str] = "google/pegasus-xsum" _UpperCAmelCase : Optional[int] = [" Sam ate lunch today.", "Sams lunch ingredients."] _UpperCAmelCase : Optional[Any] = ["A very interesting story about what I ate for lunch.", "Avocado, celery, turkey, coffee"] _UpperCAmelCase : Optional[int] = "patrickvonplaten/t5-tiny-random" _UpperCAmelCase : Optional[int] = "sshleifer/bart-tiny-random" _UpperCAmelCase : List[Any] = "sshleifer/tiny-mbart" _UpperCAmelCase : str = "sshleifer/tiny-marian-en-de" def UpperCAmelCase__ ( lowerCamelCase, lowerCamelCase ): lowercase :int = "\n".join(__lowerCamelCase ) Path(__lowerCamelCase ).open("w" ).writelines(__lowerCamelCase ) def UpperCAmelCase__ ( lowerCamelCase ): for split in ["train", "val", "test"]: _dump_articles(os.path.join(__lowerCamelCase, F"{split}.source" ), __lowerCamelCase ) _dump_articles(os.path.join(__lowerCamelCase, F"{split}.target" ), __lowerCamelCase ) return tmp_dir class __lowerCAmelCase ( A_): @parameterized.expand( [ MBART_TINY, MARIAN_TINY, T5_TINY, BART_TINY, PEGASUS_XSUM, ] , ) @slow def SCREAMING_SNAKE_CASE ( self: Tuple , _lowerCAmelCase: Union[str, Any] ): lowercase :List[Any] = AutoTokenizer.from_pretrained(_lowerCamelCase ) lowercase :Dict = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) lowercase :List[str] = max(len(tokenizer.encode(_lowerCamelCase ) ) for a in ARTICLES ) lowercase :Optional[Any] = max(len(tokenizer.encode(_lowerCamelCase ) ) for a in SUMMARIES ) lowercase :Optional[int] = 4 lowercase :List[Any] = 8 assert max_len_target > max_src_len # Will be truncated assert max_len_source > max_src_len # Will be truncated lowercase , lowercase :Any = "ro_RO", "de_DE" # ignored for all but mbart, but never causes error. lowercase :Any = SeqaSeqDataset( _lowerCamelCase , data_dir=_lowerCamelCase , type_path="train" , max_source_length=_lowerCamelCase , max_target_length=_lowerCamelCase , src_lang=_lowerCamelCase , tgt_lang=_lowerCamelCase , ) lowercase :Optional[int] = DataLoader(_lowerCamelCase , batch_size=2 , collate_fn=train_dataset.collate_fn ) for batch in dataloader: assert isinstance(_lowerCamelCase , _lowerCamelCase ) assert batch["attention_mask"].shape == batch["input_ids"].shape # show that articles were trimmed. assert batch["input_ids"].shape[1] == max_src_len # show that targets are the same len assert batch["labels"].shape[1] == max_tgt_len if tok_name != MBART_TINY: continue # check language codes in correct place lowercase :Union[str, Any] = shift_tokens_right(batch["labels"] , tokenizer.pad_token_id ) assert batch["decoder_input_ids"][0, 0].item() == tokenizer.lang_code_to_id[tgt_lang] assert batch["decoder_input_ids"][0, -1].item() == tokenizer.eos_token_id assert batch["input_ids"][0, -2].item() == tokenizer.eos_token_id assert batch["input_ids"][0, -1].item() == tokenizer.lang_code_to_id[src_lang] break # No need to test every batch @parameterized.expand([BART_TINY, BERT_BASE_CASED] ) def SCREAMING_SNAKE_CASE ( self: Union[str, Any] , _lowerCAmelCase: Optional[Any] ): lowercase :List[Any] = AutoTokenizer.from_pretrained(_lowerCamelCase ) lowercase :Any = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) lowercase :int = max(len(tokenizer.encode(_lowerCamelCase ) ) for a in ARTICLES ) lowercase :Optional[int] = max(len(tokenizer.encode(_lowerCamelCase ) ) for a in SUMMARIES ) lowercase :str = 4 lowercase :List[str] = LegacySeqaSeqDataset( _lowerCamelCase , data_dir=_lowerCamelCase , type_path="train" , max_source_length=20 , max_target_length=_lowerCamelCase , ) lowercase :Dict = DataLoader(_lowerCamelCase , batch_size=2 , collate_fn=train_dataset.collate_fn ) for batch in dataloader: assert batch["attention_mask"].shape == batch["input_ids"].shape # show that articles were trimmed. assert batch["input_ids"].shape[1] == max_len_source assert 20 >= batch["input_ids"].shape[1] # trimmed significantly # show that targets were truncated assert batch["labels"].shape[1] == trunc_target # Truncated assert max_len_target > trunc_target # Truncated break # No need to test every batch def SCREAMING_SNAKE_CASE ( self: str ): lowercase :Tuple = AutoTokenizer.from_pretrained("facebook/mbart-large-cc25" ) lowercase :Dict = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) ) lowercase :Optional[Any] = tmp_dir.joinpath("train.source" ).open().readlines() lowercase :Union[str, Any] = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) ) pack_data_dir(_lowerCamelCase , _lowerCamelCase , 1_28 , _lowerCamelCase ) lowercase :Optional[int] = {x.name for x in tmp_dir.iterdir()} lowercase :Dict = {x.name for x in save_dir.iterdir()} lowercase :List[str] = save_dir.joinpath("train.source" ).open().readlines() # orig: [' Sam ate lunch today.\n', 'Sams lunch ingredients.'] # desired_packed: [' Sam ate lunch today.\n Sams lunch ingredients.'] assert len(_lowerCamelCase ) < len(_lowerCamelCase ) assert len(_lowerCamelCase ) == 1 assert len(packed_examples[0] ) == sum(len(_lowerCamelCase ) for x in orig_examples ) assert orig_paths == new_paths @pytest.mark.skipif(not FAIRSEQ_AVAILABLE , reason="This test requires fairseq" ) def SCREAMING_SNAKE_CASE ( self: str ): if not FAIRSEQ_AVAILABLE: return lowercase , lowercase , lowercase :Any = self._get_dataset(max_len=64 ) lowercase :List[str] = 64 lowercase :Optional[int] = ds.make_dynamic_sampler(_lowerCamelCase , required_batch_size_multiple=_lowerCamelCase ) lowercase :Tuple = [len(_lowerCamelCase ) for x in batch_sampler] assert len(set(_lowerCamelCase ) ) > 1 # it's not dynamic batch size if every batch is the same length assert sum(_lowerCamelCase ) == len(_lowerCamelCase ) # no dropped or added examples lowercase :Dict = DataLoader(_lowerCamelCase , batch_sampler=_lowerCamelCase , collate_fn=ds.collate_fn , num_workers=2 ) lowercase :str = [] lowercase :Union[str, Any] = [] for batch in data_loader: lowercase :Dict = batch["input_ids"].shape lowercase :Tuple = src_shape[0] assert bs % required_batch_size_multiple == 0 or bs < required_batch_size_multiple lowercase :Union[str, Any] = np.product(batch["input_ids"].shape ) num_src_per_batch.append(_lowerCamelCase ) if num_src_tokens > (max_tokens * 1.1): failures.append(_lowerCamelCase ) assert num_src_per_batch[0] == max(_lowerCamelCase ) if failures: raise AssertionError(F"too many tokens in {len(_lowerCamelCase )} batches" ) def SCREAMING_SNAKE_CASE ( self: Optional[Any] ): lowercase , lowercase , lowercase :Tuple = self._get_dataset(max_len=5_12 ) lowercase :Union[str, Any] = 2 lowercase :Any = ds.make_sortish_sampler(_lowerCamelCase , shuffle=_lowerCamelCase ) lowercase :str = DataLoader(_lowerCamelCase , batch_size=_lowerCamelCase , collate_fn=ds.collate_fn , num_workers=2 ) lowercase :Tuple = DataLoader(_lowerCamelCase , batch_size=_lowerCamelCase , collate_fn=ds.collate_fn , num_workers=2 , sampler=_lowerCamelCase ) lowercase :Dict = tokenizer.pad_token_id def count_pad_tokens(_lowerCAmelCase: Optional[Any] , _lowerCAmelCase: Optional[int]="input_ids" ): return [batch[k].eq(_lowerCamelCase ).sum().item() for batch in data_loader] assert sum(count_pad_tokens(_lowerCamelCase , k="labels" ) ) < sum(count_pad_tokens(_lowerCamelCase , k="labels" ) ) assert sum(count_pad_tokens(_lowerCamelCase ) ) < sum(count_pad_tokens(_lowerCamelCase ) ) assert len(_lowerCamelCase ) == len(_lowerCamelCase ) def SCREAMING_SNAKE_CASE ( self: List[Any] , _lowerCAmelCase: Any=10_00 , _lowerCAmelCase: Optional[Any]=1_28 ): if os.getenv("USE_REAL_DATA" , _lowerCamelCase ): lowercase :Dict = "examples/seq2seq/wmt_en_ro" lowercase :List[Any] = max_len * 2 * 64 if not Path(_lowerCamelCase ).joinpath("train.len" ).exists(): save_len_file(_lowerCamelCase , _lowerCamelCase ) else: lowercase :Optional[Any] = "examples/seq2seq/test_data/wmt_en_ro" lowercase :Optional[Any] = max_len * 4 save_len_file(_lowerCamelCase , _lowerCamelCase ) lowercase :Optional[int] = AutoTokenizer.from_pretrained(_lowerCamelCase ) lowercase :int = SeqaSeqDataset( _lowerCamelCase , data_dir=_lowerCamelCase , type_path="train" , max_source_length=_lowerCamelCase , max_target_length=_lowerCamelCase , n_obs=_lowerCamelCase , ) return ds, max_tokens, tokenizer def SCREAMING_SNAKE_CASE ( self: Optional[Any] ): lowercase , lowercase , lowercase :Tuple = self._get_dataset() lowercase :List[str] = set(DistributedSortishSampler(_lowerCamelCase , 2_56 , num_replicas=2 , rank=0 , add_extra_examples=_lowerCamelCase ) ) lowercase :List[str] = set(DistributedSortishSampler(_lowerCamelCase , 2_56 , num_replicas=2 , rank=1 , add_extra_examples=_lowerCamelCase ) ) assert idsa.intersection(_lowerCamelCase ) == set() @parameterized.expand( [ MBART_TINY, MARIAN_TINY, T5_TINY, BART_TINY, PEGASUS_XSUM, ] , ) def SCREAMING_SNAKE_CASE ( self: Tuple , _lowerCAmelCase: Any ): lowercase :int = AutoTokenizer.from_pretrained(_lowerCamelCase , use_fast=_lowerCamelCase ) if tok_name == MBART_TINY: lowercase :Optional[Any] = SeqaSeqDataset( _lowerCamelCase , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) , type_path="train" , max_source_length=4 , max_target_length=8 , src_lang="EN" , tgt_lang="FR" , ) lowercase :Union[str, Any] = train_dataset.dataset_kwargs assert "src_lang" in kwargs and "tgt_lang" in kwargs else: lowercase :Union[str, Any] = SeqaSeqDataset( _lowerCamelCase , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) , type_path="train" , max_source_length=4 , max_target_length=8 , ) lowercase :int = train_dataset.dataset_kwargs assert "add_prefix_space" not in kwargs if tok_name != BART_TINY else "add_prefix_space" in kwargs assert len(_lowerCamelCase ) == 1 if tok_name == BART_TINY else len(_lowerCamelCase ) == 0
236
"""simple docstring""" import argparse import os from pathlib import Path import fairseq import torch from packaging import version from torch import nn from transformers import ( BartConfig, BartForConditionalGeneration, BartForSequenceClassification, BartModel, BartTokenizer, ) from transformers.utils import logging UpperCAmelCase__ = ['bart.large', 'bart.large.mnli', 'bart.large.cnn', 'bart_xsum/model.pt'] UpperCAmelCase__ = {'bart.large': BartModel, 'bart.large.mnli': BartForSequenceClassification} if version.parse(fairseq.__version__) < version.parse('0.9.0'): raise Exception('requires fairseq >= 0.9.0') logging.set_verbosity_info() UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = ' Hello world! cécé herlolip' UpperCAmelCase__ = [ ('model.classification_heads.mnli.dense.weight', 'classification_head.dense.weight'), ('model.classification_heads.mnli.dense.bias', 'classification_head.dense.bias'), ('model.classification_heads.mnli.out_proj.weight', 'classification_head.out_proj.weight'), ('model.classification_heads.mnli.out_proj.bias', 'classification_head.out_proj.bias'), ] def _UpperCAmelCase ( __lowerCamelCase : Optional[Any] ) -> Optional[int]: _snake_case = [ '''encoder.version''', '''decoder.version''', '''model.encoder.version''', '''model.decoder.version''', '''_float_tensor''', ] for k in ignore_keys: state_dict.pop(__lowerCamelCase , __lowerCamelCase ) def _UpperCAmelCase ( __lowerCamelCase : List[Any] , __lowerCamelCase : int , __lowerCamelCase : int ) -> int: _snake_case = dct.pop(__lowerCamelCase ) _snake_case = val def _UpperCAmelCase ( __lowerCamelCase : Dict ) -> str: _snake_case = torch.load(__lowerCamelCase , map_location='''cpu''' ) _snake_case = torch.hub.load('''pytorch/fairseq''' , '''bart.large.cnn''' ).eval() hub_interface.model.load_state_dict(sd['''model'''] ) return hub_interface def _UpperCAmelCase ( __lowerCamelCase : Optional[int] ) -> Union[str, Any]: _snake_case , _snake_case = emb.weight.shape _snake_case = nn.Linear(__lowerCamelCase , __lowerCamelCase , bias=__lowerCamelCase ) _snake_case = emb.weight.data return lin_layer @torch.no_grad() def _UpperCAmelCase ( __lowerCamelCase : List[Any] , __lowerCamelCase : Tuple , __lowerCamelCase : Union[str, Any]=None ) -> List[Any]: if not os.path.exists(__lowerCamelCase ): _snake_case = torch.hub.load('''pytorch/fairseq''' , __lowerCamelCase ).eval() else: _snake_case = load_xsum_checkpoint(__lowerCamelCase ) bart.model.upgrade_state_dict(bart.model.state_dict() ) if hf_checkpoint_name is None: _snake_case = checkpoint_path.replace('''.''' , '''-''' ) _snake_case = BartConfig.from_pretrained(__lowerCamelCase ) _snake_case = bart.encode(__lowerCamelCase ).unsqueeze(0 ) _snake_case = BartTokenizer.from_pretrained(__lowerCamelCase ).encode(__lowerCamelCase , return_tensors='''pt''' ).unsqueeze(0 ) if not torch.eq(__lowerCamelCase , __lowerCamelCase ).all(): raise ValueError( f'''converted tokenizer and pretrained tokenizer returned different output: {tokens} != {tokensa}''' ) if checkpoint_path == "bart.large.mnli": _snake_case = bart.state_dict() remove_ignore_keys_(__lowerCamelCase ) _snake_case = state_dict['''model.decoder.embed_tokens.weight'''] for src, dest in mnli_rename_keys: rename_key(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) _snake_case = BartForSequenceClassification(__lowerCamelCase ).eval() model.load_state_dict(__lowerCamelCase ) _snake_case = bart.predict('''mnli''' , __lowerCamelCase , return_logits=__lowerCamelCase ) _snake_case = model(__lowerCamelCase )[0] # logits else: # no classification heads to worry about _snake_case = bart.model.state_dict() remove_ignore_keys_(__lowerCamelCase ) _snake_case = state_dict['''decoder.embed_tokens.weight'''] _snake_case = bart.extract_features(__lowerCamelCase ) if hf_checkpoint_name == "facebook/bart-large": _snake_case = BartModel(__lowerCamelCase ).eval() model.load_state_dict(__lowerCamelCase ) _snake_case = model(__lowerCamelCase ).model[0] else: _snake_case = BartForConditionalGeneration(__lowerCamelCase ).eval() # an existing summarization ckpt model.model.load_state_dict(__lowerCamelCase ) if hasattr(__lowerCamelCase , '''lm_head''' ): _snake_case = make_linear_from_emb(model.model.shared ) _snake_case = model.model(__lowerCamelCase )[0] # Check results if fairseq_output.shape != new_model_outputs.shape: raise ValueError( f'''`fairseq_output` shape and `new_model_output` shape are different: {fairseq_output.shape=}, {new_model_outputs.shape}''' ) if (fairseq_output != new_model_outputs).any().item(): raise ValueError('''Some values in `fairseq_output` are different from `new_model_outputs`''' ) Path(__lowerCamelCase ).mkdir(exist_ok=__lowerCamelCase ) model.save_pretrained(__lowerCamelCase ) if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( 'fairseq_path', type=str, help='bart.large, bart.large.cnn or a path to a model.pt on local filesystem.' ) parser.add_argument('pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument( '--hf_config', default=None, type=str, help='Which huggingface architecture to use: bart-large-xsum' ) UpperCAmelCase__ = parser.parse_args() convert_bart_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, hf_checkpoint_name=args.hf_config)
288
0
import flax.linen as nn import jax.numpy as jnp from .attention_flax import FlaxTransformeraDModel from .resnet_flax import FlaxDownsampleaD, FlaxResnetBlockaD, FlaxUpsampleaD class __A ( nn.Module ): lowerCAmelCase_ : int lowerCAmelCase_ : int lowerCAmelCase_ : float = 0.0 lowerCAmelCase_ : int = 1 lowerCAmelCase_ : int = 1 lowerCAmelCase_ : bool = True lowerCAmelCase_ : bool = False lowerCAmelCase_ : bool = False lowerCAmelCase_ : bool = False lowerCAmelCase_ : jnp.dtype = jnp.floataa def lowercase__ ( self : Dict ): lowerCAmelCase : Dict = [] lowerCAmelCase : Optional[Any] = [] for i in range(self.num_layers ): lowerCAmelCase : Dict = self.in_channels if i == 0 else self.out_channels lowerCAmelCase : Optional[int] = FlaxResnetBlockaD( in_channels=UpperCAmelCase_ , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(UpperCAmelCase_ ) lowerCAmelCase : Tuple = FlaxTransformeraDModel( in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(UpperCAmelCase_ ) lowerCAmelCase : Optional[int] = resnets lowerCAmelCase : str = attentions if self.add_downsample: lowerCAmelCase : List[str] = FlaxDownsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self : str , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : int=True ): lowerCAmelCase : Optional[Any] = () for resnet, attn in zip(self.resnets , self.attentions ): lowerCAmelCase : List[Any] = resnet(UpperCAmelCase_ , UpperCAmelCase_ , deterministic=UpperCAmelCase_ ) lowerCAmelCase : Dict = attn(UpperCAmelCase_ , UpperCAmelCase_ , deterministic=UpperCAmelCase_ ) output_states += (hidden_states,) if self.add_downsample: lowerCAmelCase : str = self.downsamplers_a(UpperCAmelCase_ ) output_states += (hidden_states,) return hidden_states, output_states class __A ( nn.Module ): lowerCAmelCase_ : int lowerCAmelCase_ : int lowerCAmelCase_ : float = 0.0 lowerCAmelCase_ : int = 1 lowerCAmelCase_ : bool = True lowerCAmelCase_ : jnp.dtype = jnp.floataa def lowercase__ ( self : Optional[int] ): lowerCAmelCase : List[Any] = [] for i in range(self.num_layers ): lowerCAmelCase : List[str] = self.in_channels if i == 0 else self.out_channels lowerCAmelCase : Tuple = FlaxResnetBlockaD( in_channels=UpperCAmelCase_ , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(UpperCAmelCase_ ) lowerCAmelCase : Union[str, Any] = resnets if self.add_downsample: lowerCAmelCase : List[str] = FlaxDownsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self : str , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Dict=True ): lowerCAmelCase : Any = () for resnet in self.resnets: lowerCAmelCase : Tuple = resnet(UpperCAmelCase_ , UpperCAmelCase_ , deterministic=UpperCAmelCase_ ) output_states += (hidden_states,) if self.add_downsample: lowerCAmelCase : List[str] = self.downsamplers_a(UpperCAmelCase_ ) output_states += (hidden_states,) return hidden_states, output_states class __A ( nn.Module ): lowerCAmelCase_ : int lowerCAmelCase_ : int lowerCAmelCase_ : int lowerCAmelCase_ : float = 0.0 lowerCAmelCase_ : int = 1 lowerCAmelCase_ : int = 1 lowerCAmelCase_ : bool = True lowerCAmelCase_ : bool = False lowerCAmelCase_ : bool = False lowerCAmelCase_ : bool = False lowerCAmelCase_ : jnp.dtype = jnp.floataa def lowercase__ ( self : Union[str, Any] ): lowerCAmelCase : str = [] lowerCAmelCase : List[str] = [] for i in range(self.num_layers ): lowerCAmelCase : Optional[Any] = self.in_channels if (i == self.num_layers - 1) else self.out_channels lowerCAmelCase : Union[str, Any] = self.prev_output_channel if i == 0 else self.out_channels lowerCAmelCase : List[str] = FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(UpperCAmelCase_ ) lowerCAmelCase : Optional[int] = FlaxTransformeraDModel( in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(UpperCAmelCase_ ) lowerCAmelCase : List[Any] = resnets lowerCAmelCase : Union[str, Any] = attentions if self.add_upsample: lowerCAmelCase : List[str] = FlaxUpsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self : Tuple , UpperCAmelCase_ : Any , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : List[str]=True ): for resnet, attn in zip(self.resnets , self.attentions ): # pop res hidden states lowerCAmelCase : Tuple = res_hidden_states_tuple[-1] lowerCAmelCase : List[Any] = res_hidden_states_tuple[:-1] lowerCAmelCase : Optional[int] = jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 ) lowerCAmelCase : str = resnet(UpperCAmelCase_ , UpperCAmelCase_ , deterministic=UpperCAmelCase_ ) lowerCAmelCase : Dict = attn(UpperCAmelCase_ , UpperCAmelCase_ , deterministic=UpperCAmelCase_ ) if self.add_upsample: lowerCAmelCase : Dict = self.upsamplers_a(UpperCAmelCase_ ) return hidden_states class __A ( nn.Module ): lowerCAmelCase_ : int lowerCAmelCase_ : int lowerCAmelCase_ : int lowerCAmelCase_ : float = 0.0 lowerCAmelCase_ : int = 1 lowerCAmelCase_ : bool = True lowerCAmelCase_ : jnp.dtype = jnp.floataa def lowercase__ ( self : Tuple ): lowerCAmelCase : int = [] for i in range(self.num_layers ): lowerCAmelCase : Tuple = self.in_channels if (i == self.num_layers - 1) else self.out_channels lowerCAmelCase : Union[str, Any] = self.prev_output_channel if i == 0 else self.out_channels lowerCAmelCase : str = FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(UpperCAmelCase_ ) lowerCAmelCase : Optional[Any] = resnets if self.add_upsample: lowerCAmelCase : List[str] = FlaxUpsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self : Dict , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : Any , UpperCAmelCase_ : List[Any]=True ): for resnet in self.resnets: # pop res hidden states lowerCAmelCase : Union[str, Any] = res_hidden_states_tuple[-1] lowerCAmelCase : Tuple = res_hidden_states_tuple[:-1] lowerCAmelCase : Optional[Any] = jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 ) lowerCAmelCase : Tuple = resnet(UpperCAmelCase_ , UpperCAmelCase_ , deterministic=UpperCAmelCase_ ) if self.add_upsample: lowerCAmelCase : Tuple = self.upsamplers_a(UpperCAmelCase_ ) return hidden_states class __A ( nn.Module ): lowerCAmelCase_ : int lowerCAmelCase_ : float = 0.0 lowerCAmelCase_ : int = 1 lowerCAmelCase_ : int = 1 lowerCAmelCase_ : bool = False lowerCAmelCase_ : bool = False lowerCAmelCase_ : jnp.dtype = jnp.floataa def lowercase__ ( self : Any ): # there is always at least one resnet lowerCAmelCase : List[Any] = [ FlaxResnetBlockaD( in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , ) ] lowerCAmelCase : List[str] = [] for _ in range(self.num_layers ): lowerCAmelCase : List[str] = FlaxTransformeraDModel( in_channels=self.in_channels , n_heads=self.num_attention_heads , d_head=self.in_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(UpperCAmelCase_ ) lowerCAmelCase : Dict = FlaxResnetBlockaD( in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(UpperCAmelCase_ ) lowerCAmelCase : Union[str, Any] = resnets lowerCAmelCase : Any = attentions def __call__( self : Dict , UpperCAmelCase_ : int , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : int=True ): lowerCAmelCase : List[str] = self.resnets[0](UpperCAmelCase_ , UpperCAmelCase_ ) for attn, resnet in zip(self.attentions , self.resnets[1:] ): lowerCAmelCase : Optional[Any] = attn(UpperCAmelCase_ , UpperCAmelCase_ , deterministic=UpperCAmelCase_ ) lowerCAmelCase : List[str] = resnet(UpperCAmelCase_ , UpperCAmelCase_ , deterministic=UpperCAmelCase_ ) return hidden_states
323
def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> int: '''simple docstring''' if len(_UpperCAmelCase ) != len(_UpperCAmelCase ): raise ValueError('String lengths must match!' ) lowerCAmelCase : Tuple = 0 for chara, chara in zip(_UpperCAmelCase, _UpperCAmelCase ): if chara != chara: count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
323
1
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase = logging.get_logger(__name__) def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=False ): """simple docstring""" lowercase__ = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f'blocks.{i}.norm1.weight', f'vit.encoder.layer.{i}.layernorm_before.weight') ) rename_keys.append((f'blocks.{i}.norm1.bias', f'vit.encoder.layer.{i}.layernorm_before.bias') ) rename_keys.append((f'blocks.{i}.attn.proj.weight', f'vit.encoder.layer.{i}.attention.output.dense.weight') ) rename_keys.append((f'blocks.{i}.attn.proj.bias', f'vit.encoder.layer.{i}.attention.output.dense.bias') ) rename_keys.append((f'blocks.{i}.norm2.weight', f'vit.encoder.layer.{i}.layernorm_after.weight') ) rename_keys.append((f'blocks.{i}.norm2.bias', f'vit.encoder.layer.{i}.layernorm_after.bias') ) rename_keys.append((f'blocks.{i}.mlp.fc1.weight', f'vit.encoder.layer.{i}.intermediate.dense.weight') ) rename_keys.append((f'blocks.{i}.mlp.fc1.bias', f'vit.encoder.layer.{i}.intermediate.dense.bias') ) rename_keys.append((f'blocks.{i}.mlp.fc2.weight', f'vit.encoder.layer.{i}.output.dense.weight') ) rename_keys.append((f'blocks.{i}.mlp.fc2.bias', f'vit.encoder.layer.{i}.output.dense.bias') ) # projection layer + position embeddings rename_keys.extend( [ ('''cls_token''', '''vit.embeddings.cls_token'''), ('''patch_embed.proj.weight''', '''vit.embeddings.patch_embeddings.projection.weight'''), ('''patch_embed.proj.bias''', '''vit.embeddings.patch_embeddings.projection.bias'''), ('''pos_embed''', '''vit.embeddings.position_embeddings'''), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('''norm.weight''', '''layernorm.weight'''), ('''norm.bias''', '''layernorm.bias'''), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" lowercase__ = [(pair[0], pair[1][4:]) if pair[1].startswith('''vit''' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('''norm.weight''', '''vit.layernorm.weight'''), ('''norm.bias''', '''vit.layernorm.bias'''), ('''head.weight''', '''classifier.weight'''), ('''head.bias''', '''classifier.bias'''), ] ) return rename_keys def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=False ): """simple docstring""" for i in range(config.num_hidden_layers ): if base_model: lowercase__ = '''''' else: lowercase__ = '''vit.''' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowercase__ = state_dict.pop(f'blocks.{i}.attn.qkv.weight' ) lowercase__ = state_dict.pop(f'blocks.{i}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict lowercase__ = in_proj_weight[ : config.hidden_size, : ] lowercase__ = in_proj_bias[: config.hidden_size] lowercase__ = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowercase__ = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowercase__ = in_proj_weight[ -config.hidden_size :, : ] lowercase__ = in_proj_bias[-config.hidden_size :] def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = ['''head.weight''', '''head.bias'''] for k in ignore_keys: state_dict.pop(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = dct.pop(SCREAMING_SNAKE_CASE ) lowercase__ = val def _a ( ): """simple docstring""" lowercase__ = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowercase__ = Image.open(requests.get(SCREAMING_SNAKE_CASE , stream=SCREAMING_SNAKE_CASE ).raw ) return im @torch.no_grad() def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=True ): """simple docstring""" lowercase__ = ViTConfig() # patch_size if model_name[-1] == "8": lowercase__ = 8 # set labels if required if not base_model: lowercase__ = 10_00 lowercase__ = '''huggingface/label-files''' lowercase__ = '''imagenet-1k-id2label.json''' lowercase__ = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , repo_type='''dataset''' ) , '''r''' ) ) lowercase__ = {int(SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} lowercase__ = idalabel lowercase__ = {v: k for k, v in idalabel.items()} # size of the architecture if model_name in ["dino_vits8", "dino_vits16"]: lowercase__ = 3_84 lowercase__ = 15_36 lowercase__ = 12 lowercase__ = 6 # load original model from torch hub lowercase__ = torch.hub.load('''facebookresearch/dino:main''' , SCREAMING_SNAKE_CASE ) original_model.eval() # load state_dict of original model, remove and rename some keys lowercase__ = original_model.state_dict() if base_model: remove_classification_head_(SCREAMING_SNAKE_CASE ) lowercase__ = create_rename_keys(SCREAMING_SNAKE_CASE , base_model=SCREAMING_SNAKE_CASE ) for src, dest in rename_keys: rename_key(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) read_in_q_k_v(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # load HuggingFace model if base_model: lowercase__ = ViTModel(SCREAMING_SNAKE_CASE , add_pooling_layer=SCREAMING_SNAKE_CASE ).eval() else: lowercase__ = ViTForImageClassification(SCREAMING_SNAKE_CASE ).eval() model.load_state_dict(SCREAMING_SNAKE_CASE ) # Check outputs on an image, prepared by ViTImageProcessor lowercase__ = ViTImageProcessor() lowercase__ = image_processor(images=prepare_img() , return_tensors='''pt''' ) lowercase__ = encoding['''pixel_values'''] lowercase__ = model(SCREAMING_SNAKE_CASE ) if base_model: lowercase__ = original_model(SCREAMING_SNAKE_CASE ) assert torch.allclose(SCREAMING_SNAKE_CASE , outputs.last_hidden_state[:, 0, :] , atol=1E-1 ) else: lowercase__ = original_model(SCREAMING_SNAKE_CASE ) assert logits.shape == outputs.logits.shape assert torch.allclose(SCREAMING_SNAKE_CASE , outputs.logits , atol=1E-3 ) Path(SCREAMING_SNAKE_CASE ).mkdir(exist_ok=SCREAMING_SNAKE_CASE ) print(f'Saving model {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(SCREAMING_SNAKE_CASE ) print(f'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='dino_vitb16', type=str, help='Name of the model trained with DINO you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--base_model', action='store_true', help='Whether to only convert the base model (no projection head weights).', ) parser.set_defaults(base_model=True) lowerCAmelCase = parser.parse_args() convert_vit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.base_model)
110
from pickle import UnpicklingError import jax import jax.numpy as jnp import numpy as np from flax.serialization import from_bytes from flax.traverse_util import flatten_dict from ..utils import logging lowerCAmelCase = logging.get_logger(__name__) def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" try: with open(SCREAMING_SNAKE_CASE , '''rb''' ) as flax_state_f: lowercase__ = from_bytes(SCREAMING_SNAKE_CASE , flax_state_f.read() ) except UnpicklingError as e: try: with open(SCREAMING_SNAKE_CASE ) as f: if f.read().startswith('''version''' ): raise OSError( '''You seem to have cloned a repository without having git-lfs installed. Please''' ''' install git-lfs and run `git lfs install` followed by `git lfs pull` in the''' ''' folder you cloned.''' ) else: raise ValueError from e except (UnicodeDecodeError, ValueError): raise EnvironmentError(f'Unable to convert {model_file} to Flax deserializable object. ' ) return load_flax_weights_in_pytorch_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" try: import torch # noqa: F401 except ImportError: logger.error( '''Loading Flax weights in PyTorch requires both PyTorch and Flax to be installed. Please see''' ''' https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation''' ''' instructions.''' ) raise # check if we have bf16 weights lowercase__ = flatten_dict(jax.tree_util.tree_map(lambda SCREAMING_SNAKE_CASE : x.dtype == jnp.bfloataa , SCREAMING_SNAKE_CASE ) ).values() if any(SCREAMING_SNAKE_CASE ): # convert all weights to fp32 if they are bf16 since torch.from_numpy can-not handle bf16 # and bf16 is not fully supported in PT yet. logger.warning( '''Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` ''' '''before loading those in PyTorch model.''' ) lowercase__ = jax.tree_util.tree_map( lambda SCREAMING_SNAKE_CASE : params.astype(np.floataa ) if params.dtype == jnp.bfloataa else params , SCREAMING_SNAKE_CASE ) lowercase__ = '''''' lowercase__ = flatten_dict(SCREAMING_SNAKE_CASE , sep='''.''' ) lowercase__ = pt_model.state_dict() # keep track of unexpected & missing keys lowercase__ = [] lowercase__ = set(pt_model_dict.keys() ) for flax_key_tuple, flax_tensor in flax_state_dict.items(): lowercase__ = flax_key_tuple.split('''.''' ) if flax_key_tuple_array[-1] == "kernel" and flax_tensor.ndim == 4: lowercase__ = flax_key_tuple_array[:-1] + ['''weight'''] lowercase__ = jnp.transpose(SCREAMING_SNAKE_CASE , (3, 2, 0, 1) ) elif flax_key_tuple_array[-1] == "kernel": lowercase__ = flax_key_tuple_array[:-1] + ['''weight'''] lowercase__ = flax_tensor.T elif flax_key_tuple_array[-1] == "scale": lowercase__ = flax_key_tuple_array[:-1] + ['''weight'''] if "time_embedding" not in flax_key_tuple_array: for i, flax_key_tuple_string in enumerate(SCREAMING_SNAKE_CASE ): lowercase__ = ( flax_key_tuple_string.replace('''_0''' , '''.0''' ) .replace('''_1''' , '''.1''' ) .replace('''_2''' , '''.2''' ) .replace('''_3''' , '''.3''' ) .replace('''_4''' , '''.4''' ) .replace('''_5''' , '''.5''' ) .replace('''_6''' , '''.6''' ) .replace('''_7''' , '''.7''' ) .replace('''_8''' , '''.8''' ) .replace('''_9''' , '''.9''' ) ) lowercase__ = '''.'''.join(SCREAMING_SNAKE_CASE ) if flax_key in pt_model_dict: if flax_tensor.shape != pt_model_dict[flax_key].shape: raise ValueError( f'Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected ' f'to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}.' ) else: # add weight to pytorch dict lowercase__ = np.asarray(SCREAMING_SNAKE_CASE ) if not isinstance(SCREAMING_SNAKE_CASE , np.ndarray ) else flax_tensor lowercase__ = torch.from_numpy(SCREAMING_SNAKE_CASE ) # remove from missing keys missing_keys.remove(SCREAMING_SNAKE_CASE ) else: # weight is not expected by PyTorch model unexpected_keys.append(SCREAMING_SNAKE_CASE ) pt_model.load_state_dict(SCREAMING_SNAKE_CASE ) # re-transform missing_keys to list lowercase__ = list(SCREAMING_SNAKE_CASE ) if len(SCREAMING_SNAKE_CASE ) > 0: logger.warning( '''Some weights of the Flax model were not used when initializing the PyTorch model''' f' {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing' f' {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture' ''' (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This''' f' IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect' ''' to be exactly identical (e.g. initializing a BertForSequenceClassification model from a''' ''' FlaxBertForSequenceClassification model).''' ) if len(SCREAMING_SNAKE_CASE ) > 0: logger.warning( f'Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly' f' initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to' ''' use it for predictions and inference.''' ) return pt_model
110
1
'''simple docstring''' def a__ ( _SCREAMING_SNAKE_CASE : int ) -> int: """simple docstring""" assert ( isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and number_of_steps > 0 ), F'''number_of_steps needs to be positive integer, your input {number_of_steps}''' if number_of_steps == 1: return 1 UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = 1, 1 for _ in range(number_of_steps - 1 ): UpperCAmelCase_ , UpperCAmelCase_ : str = current + previous, current return current if __name__ == "__main__": import doctest doctest.testmod()
67
'''simple docstring''' import re def a__ ( _SCREAMING_SNAKE_CASE : str ) -> str: """simple docstring""" if len(re.findall("[ATCG]" , _SCREAMING_SNAKE_CASE ) ) != len(_SCREAMING_SNAKE_CASE ): raise ValueError("Invalid Strand" ) return dna.translate(dna.maketrans("ATCG" , "TAGC" ) ) if __name__ == "__main__": import doctest doctest.testmod()
67
1
from __future__ import annotations import math import random from typing import Any class UpperCamelCase_ : '''simple docstring''' def __init__( self ) -> None: snake_case_ = [] snake_case_ = 0 snake_case_ = 0 def _UpperCamelCase ( self ) -> bool: return self.head == self.tail def _UpperCamelCase ( self , a ) -> None: self.data.append(a ) snake_case_ = self.tail + 1 def _UpperCamelCase ( self ) -> Any: snake_case_ = self.data[self.head] snake_case_ = self.head + 1 return ret def _UpperCamelCase ( self ) -> int: return self.tail - self.head def _UpperCamelCase ( self ) -> None: print(self.data ) print('**************' ) print(self.data[self.head : self.tail] ) class UpperCamelCase_ : '''simple docstring''' def __init__( self , a ) -> None: snake_case_ = data snake_case_ = None snake_case_ = None snake_case_ = 1 def _UpperCamelCase ( self ) -> Any: return self.data def _UpperCamelCase ( self ) -> MyNode | None: return self.left def _UpperCamelCase ( self ) -> MyNode | None: return self.right def _UpperCamelCase ( self ) -> int: return self.height def _UpperCamelCase ( self , a ) -> None: snake_case_ = data def _UpperCamelCase ( self , a ) -> None: snake_case_ = node def _UpperCamelCase ( self , a ) -> None: snake_case_ = node def _UpperCamelCase ( self , a ) -> None: snake_case_ = height def __UpperCAmelCase ( a_): if node is None: return 0 return node.get_height() def __UpperCAmelCase ( a_ , a_): if a > b: return a return b def __UpperCAmelCase ( a_): print('left rotation node:' , node.get_data()) snake_case_ = node.get_left() assert ret is not None node.set_left(ret.get_right()) ret.set_right(a_) snake_case_ = my_max(get_height(node.get_right()) , get_height(node.get_left())) + 1 node.set_height(a_) snake_case_ = my_max(get_height(ret.get_right()) , get_height(ret.get_left())) + 1 ret.set_height(a_) return ret def __UpperCAmelCase ( a_): print('right rotation node:' , node.get_data()) snake_case_ = node.get_right() assert ret is not None node.set_right(ret.get_left()) ret.set_left(a_) snake_case_ = my_max(get_height(node.get_right()) , get_height(node.get_left())) + 1 node.set_height(a_) snake_case_ = my_max(get_height(ret.get_right()) , get_height(ret.get_left())) + 1 ret.set_height(a_) return ret def __UpperCAmelCase ( a_): snake_case_ = node.get_left() assert left_child is not None node.set_left(left_rotation(a_)) return right_rotation(a_) def __UpperCAmelCase ( a_): snake_case_ = node.get_right() assert right_child is not None node.set_right(right_rotation(a_)) return left_rotation(a_) def __UpperCAmelCase ( a_ , a_): if node is None: return MyNode(a_) if data < node.get_data(): node.set_left(insert_node(node.get_left() , a_)) if ( get_height(node.get_left()) - get_height(node.get_right()) == 2 ): # an unbalance detected snake_case_ = node.get_left() assert left_child is not None if ( data < left_child.get_data() ): # new node is the left child of the left child snake_case_ = right_rotation(a_) else: snake_case_ = lr_rotation(a_) else: node.set_right(insert_node(node.get_right() , a_)) if get_height(node.get_right()) - get_height(node.get_left()) == 2: snake_case_ = node.get_right() assert right_child is not None if data < right_child.get_data(): snake_case_ = rl_rotation(a_) else: snake_case_ = left_rotation(a_) snake_case_ = my_max(get_height(node.get_right()) , get_height(node.get_left())) + 1 node.set_height(a_) return node def __UpperCAmelCase ( a_): while True: snake_case_ = root.get_right() if right_child is None: break snake_case_ = right_child return root.get_data() def __UpperCAmelCase ( a_): while True: snake_case_ = root.get_left() if left_child is None: break snake_case_ = left_child return root.get_data() def __UpperCAmelCase ( a_ , a_): snake_case_ = root.get_left() snake_case_ = root.get_right() if root.get_data() == data: if left_child is not None and right_child is not None: snake_case_ = get_left_most(a_) root.set_data(a_) root.set_right(del_node(a_ , a_)) elif left_child is not None: snake_case_ = left_child elif right_child is not None: snake_case_ = right_child else: return None elif root.get_data() > data: if left_child is None: print('No such data') return root else: root.set_left(del_node(a_ , a_)) else: # root.get_data() < data if right_child is None: return root else: root.set_right(del_node(a_ , a_)) if get_height(a_) - get_height(a_) == 2: assert right_child is not None if get_height(right_child.get_right()) > get_height(right_child.get_left()): snake_case_ = left_rotation(a_) else: snake_case_ = rl_rotation(a_) elif get_height(a_) - get_height(a_) == -2: assert left_child is not None if get_height(left_child.get_left()) > get_height(left_child.get_right()): snake_case_ = right_rotation(a_) else: snake_case_ = lr_rotation(a_) snake_case_ = my_max(get_height(root.get_right()) , get_height(root.get_left())) + 1 root.set_height(a_) return root class UpperCamelCase_ : '''simple docstring''' def __init__( self ) -> None: snake_case_ = None def _UpperCamelCase ( self ) -> int: return get_height(self.root ) def _UpperCamelCase ( self , a ) -> None: print('insert:' + str(a ) ) snake_case_ = insert_node(self.root , a ) def _UpperCamelCase ( self , a ) -> None: print('delete:' + str(a ) ) if self.root is None: print('Tree is empty!' ) return snake_case_ = del_node(self.root , a ) def __str__( self , ) -> str: # a level traversale, gives a more intuitive look on the tree snake_case_ = '' snake_case_ = MyQueue() q.push(self.root ) snake_case_ = self.get_height() if layer == 0: return output snake_case_ = 0 while not q.is_empty(): snake_case_ = q.pop() snake_case_ = ' ' * int(math.pow(2 , layer - 1 ) ) output += space if node is None: output += "*" q.push(a ) q.push(a ) else: output += str(node.get_data() ) q.push(node.get_left() ) q.push(node.get_right() ) output += space snake_case_ = cnt + 1 for i in range(1_00 ): if cnt == math.pow(2 , a ) - 1: snake_case_ = layer - 1 if layer == 0: output += "\n*************************************" return output output += "\n" break output += "\n*************************************" return output def __UpperCAmelCase ( ): import doctest doctest.testmod() if __name__ == "__main__": _test() lowercase = AVLtree() lowercase = list(range(10)) random.shuffle(lst) for i in lst: t.insert(i) print(str(t)) random.shuffle(lst) for i in lst: t.del_node(i) print(str(t))
178
from __future__ import annotations def __UpperCAmelCase ( a_ , a_ , a_ , a_): # noqa: E741 while r - l > 1: snake_case_ = (l + r) // 2 if v[m] >= key: snake_case_ = m else: snake_case_ = m # noqa: E741 return r def __UpperCAmelCase ( a_): if len(a_) == 0: return 0 snake_case_ = [0] * len(a_) snake_case_ = 1 snake_case_ = v[0] for i in range(1 , len(a_)): if v[i] < tail[0]: snake_case_ = v[i] elif v[i] > tail[length - 1]: snake_case_ = v[i] length += 1 else: snake_case_ = v[i] return length if __name__ == "__main__": import doctest doctest.testmod()
178
1
def _UpperCamelCase ( snake_case__ ) -> Union[str, Any]: __UpperCAmelCase : str = (1 + 24 * n) ** 0.5 return ((1 + root) / 6) % 1 == 0 def _UpperCamelCase ( snake_case__ = 5000 ) -> Optional[int]: __UpperCAmelCase : int = [(i * (3 * i - 1)) // 2 for i in range(1, snake_case_ )] for i, pentagonal_i in enumerate(snake_case_ ): for j in range(snake_case_, len(snake_case_ ) ): __UpperCAmelCase : Union[str, Any] = pentagonal_nums[j] __UpperCAmelCase : Dict = pentagonal_i + pentagonal_j __UpperCAmelCase : List[Any] = pentagonal_j - pentagonal_i if is_pentagonal(snake_case_ ) and is_pentagonal(snake_case_ ): return b return -1 if __name__ == "__main__": print(F'{solution() = }')
355
import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import numpy as np import pytest from datasets.arrow_dataset import Dataset from datasets.search import ElasticSearchIndex, FaissIndex, MissingIndex from .utils import require_elasticsearch, require_faiss _snake_case = pytest.mark.integration @require_faiss class _snake_case ( _lowercase ): def _lowerCamelCase ( self: Union[str, Any] ) -> str: __UpperCAmelCase : Optional[int] = Dataset.from_dict({"filename": ["my_name-train" + "_" + str(__lowerCamelCase ) for x in np.arange(30 ).tolist()]} ) return dset def _lowerCamelCase ( self: Optional[Any] ) -> Tuple: import faiss __UpperCAmelCase : Dataset = self._create_dummy_dataset() __UpperCAmelCase : int = dset.map( lambda __lowerCamelCase , __lowerCamelCase : {"vecs": i * np.ones(5 , dtype=np.floataa )} , with_indices=__lowerCamelCase , keep_in_memory=__lowerCamelCase ) __UpperCAmelCase : Tuple = dset.add_faiss_index("vecs" , batch_size=1_00 , metric_type=faiss.METRIC_INNER_PRODUCT ) __UpperCAmelCase , __UpperCAmelCase : Dict = dset.get_nearest_examples("vecs" , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples["filename"][0] , "my_name-train_29" ) dset.drop_index("vecs" ) def _lowerCamelCase ( self: List[str] ) -> int: import faiss __UpperCAmelCase : Dataset = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name="vecs" , batch_size=1_00 , metric_type=faiss.METRIC_INNER_PRODUCT , ) __UpperCAmelCase , __UpperCAmelCase : Tuple = dset.get_nearest_examples("vecs" , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples["filename"][0] , "my_name-train_29" ) def _lowerCamelCase ( self: Optional[int] ) -> Dict: import faiss __UpperCAmelCase : Dataset = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name="vecs" , metric_type=faiss.METRIC_INNER_PRODUCT , ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=__lowerCamelCase ) as tmp_file: dset.save_faiss_index("vecs" , tmp_file.name ) dset.load_faiss_index("vecs2" , tmp_file.name ) os.unlink(tmp_file.name ) __UpperCAmelCase , __UpperCAmelCase : List[Any] = dset.get_nearest_examples("vecs2" , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples["filename"][0] , "my_name-train_29" ) def _lowerCamelCase ( self: List[Any] ) -> List[Any]: __UpperCAmelCase : Dataset = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name="vecs" ) dset.drop_index("vecs" ) self.assertRaises(__lowerCamelCase , partial(dset.get_nearest_examples , "vecs2" , np.ones(5 , dtype=np.floataa ) ) ) def _lowerCamelCase ( self: List[str] ) -> Dict: from elasticsearch import Elasticsearch __UpperCAmelCase : Dataset = self._create_dummy_dataset() with patch("elasticsearch.Elasticsearch.search" ) as mocked_search, patch( "elasticsearch.client.IndicesClient.create" ) as mocked_index_create, patch("elasticsearch.helpers.streaming_bulk" ) as mocked_bulk: __UpperCAmelCase : int = {"acknowledged": True} mocked_bulk.return_value([(True, None)] * 30 ) __UpperCAmelCase : Dict = {"hits": {"hits": [{"_score": 1, "_id": 29}]}} __UpperCAmelCase : Any = Elasticsearch() dset.add_elasticsearch_index("filename" , es_client=__lowerCamelCase ) __UpperCAmelCase , __UpperCAmelCase : Optional[int] = dset.get_nearest_examples("filename" , "my_name-train_29" ) self.assertEqual(examples["filename"][0] , "my_name-train_29" ) @require_faiss class _snake_case ( _lowercase ): def _lowerCamelCase ( self: List[str] ) -> Optional[int]: import faiss __UpperCAmelCase : int = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) # add vectors index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsNotNone(index.faiss_index ) self.assertEqual(index.faiss_index.ntotal , 5 ) index.add_vectors(np.zeros((5, 5) , dtype=np.floataa ) ) self.assertEqual(index.faiss_index.ntotal , 10 ) # single query __UpperCAmelCase : Dict = np.zeros(5 , dtype=np.floataa ) __UpperCAmelCase : List[str] = 1 __UpperCAmelCase , __UpperCAmelCase : List[str] = index.search(__lowerCamelCase ) self.assertRaises(__lowerCamelCase , index.search , query.reshape(-1 , 1 ) ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) # batched queries __UpperCAmelCase : List[str] = np.eye(5 , dtype=np.floataa )[::-1] __UpperCAmelCase , __UpperCAmelCase : Any = index.search_batch(__lowerCamelCase ) self.assertRaises(__lowerCamelCase , index.search_batch , queries[0] ) __UpperCAmelCase : Dict = [scores[0] for scores in total_scores] __UpperCAmelCase : int = [indices[0] for indices in total_indices] self.assertGreater(np.min(__lowerCamelCase ) , 0 ) self.assertListEqual([4, 3, 2, 1, 0] , __lowerCamelCase ) def _lowerCamelCase ( self: Any ) -> List[str]: import faiss __UpperCAmelCase : Dict = FaissIndex(string_factory="Flat" ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) __UpperCAmelCase : Optional[Any] = FaissIndex(string_factory="LSH" ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexLSH ) with self.assertRaises(__lowerCamelCase ): __UpperCAmelCase : Any = FaissIndex(string_factory="Flat" , custom_index=faiss.IndexFlat(5 ) ) def _lowerCamelCase ( self: List[str] ) -> Dict: import faiss __UpperCAmelCase : str = faiss.IndexFlat(5 ) __UpperCAmelCase : int = FaissIndex(custom_index=__lowerCamelCase ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) def _lowerCamelCase ( self: Union[str, Any] ) -> int: import faiss __UpperCAmelCase : Any = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=__lowerCamelCase ) as tmp_file: index.save(tmp_file.name ) __UpperCAmelCase : List[str] = FaissIndex.load(tmp_file.name ) os.unlink(tmp_file.name ) __UpperCAmelCase : Tuple = np.zeros(5 , dtype=np.floataa ) __UpperCAmelCase : Tuple = 1 __UpperCAmelCase , __UpperCAmelCase : List[Any] = index.search(__lowerCamelCase ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) @require_faiss def _UpperCamelCase ( snake_case__ ) -> Optional[Any]: import faiss __UpperCAmelCase : Optional[Any] = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5, dtype=np.floataa ) ) __UpperCAmelCase : Optional[Any] = "index.faiss" __UpperCAmelCase : Optional[int] = f'''mock://{index_name}''' index.save(snake_case__, storage_options=mockfs.storage_options ) __UpperCAmelCase : Dict = FaissIndex.load(snake_case__, storage_options=mockfs.storage_options ) __UpperCAmelCase : str = np.zeros(5, dtype=np.floataa ) __UpperCAmelCase : Any = 1 __UpperCAmelCase , __UpperCAmelCase : List[str] = index.search(snake_case__ ) assert scores[0] > 0 assert indices[0] == 1 @require_elasticsearch class _snake_case ( _lowercase ): def _lowerCamelCase ( self: str ) -> Union[str, Any]: from elasticsearch import Elasticsearch with patch("elasticsearch.Elasticsearch.search" ) as mocked_search, patch( "elasticsearch.client.IndicesClient.create" ) as mocked_index_create, patch("elasticsearch.helpers.streaming_bulk" ) as mocked_bulk: __UpperCAmelCase : Optional[Any] = Elasticsearch() __UpperCAmelCase : Dict = {"acknowledged": True} __UpperCAmelCase : Any = ElasticSearchIndex(es_client=__lowerCamelCase ) mocked_bulk.return_value([(True, None)] * 3 ) index.add_documents(["foo", "bar", "foobar"] ) # single query __UpperCAmelCase : Dict = "foo" __UpperCAmelCase : Optional[Any] = {"hits": {"hits": [{"_score": 1, "_id": 0}]}} __UpperCAmelCase , __UpperCAmelCase : Optional[int] = index.search(__lowerCamelCase ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # single query with timeout __UpperCAmelCase : int = "foo" __UpperCAmelCase : Optional[Any] = {"hits": {"hits": [{"_score": 1, "_id": 0}]}} __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = index.search(__lowerCamelCase , request_timeout=30 ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # batched queries __UpperCAmelCase : int = ["foo", "bar", "foobar"] __UpperCAmelCase : Union[str, Any] = {"hits": {"hits": [{"_score": 1, "_id": 1}]}} __UpperCAmelCase , __UpperCAmelCase : List[Any] = index.search_batch(__lowerCamelCase ) __UpperCAmelCase : Tuple = [scores[0] for scores in total_scores] __UpperCAmelCase : Optional[int] = [indices[0] for indices in total_indices] self.assertGreater(np.min(__lowerCamelCase ) , 0 ) self.assertListEqual([1, 1, 1] , __lowerCamelCase ) # batched queries with timeout __UpperCAmelCase : str = ["foo", "bar", "foobar"] __UpperCAmelCase : Tuple = {"hits": {"hits": [{"_score": 1, "_id": 1}]}} __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = index.search_batch(__lowerCamelCase , request_timeout=30 ) __UpperCAmelCase : Union[str, Any] = [scores[0] for scores in total_scores] __UpperCAmelCase : List[Any] = [indices[0] for indices in total_indices] self.assertGreater(np.min(__lowerCamelCase ) , 0 ) self.assertListEqual([1, 1, 1] , __lowerCamelCase )
342
0
import argparse from collections import OrderedDict from pathlib import Path import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision.transforms import functional as F from transformers import DetrImageProcessor, TableTransformerConfig, TableTransformerForObjectDetection from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase__ : Optional[Any] = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) UpperCAmelCase__ : Optional[int] = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (F"""transformer.encoder.layers.{i}.self_attn.out_proj.weight""", F"""encoder.layers.{i}.self_attn.out_proj.weight""") ) rename_keys.append( (F"""transformer.encoder.layers.{i}.self_attn.out_proj.bias""", F"""encoder.layers.{i}.self_attn.out_proj.bias""") ) rename_keys.append((F"""transformer.encoder.layers.{i}.linear1.weight""", F"""encoder.layers.{i}.fc1.weight""")) rename_keys.append((F"""transformer.encoder.layers.{i}.linear1.bias""", F"""encoder.layers.{i}.fc1.bias""")) rename_keys.append((F"""transformer.encoder.layers.{i}.linear2.weight""", F"""encoder.layers.{i}.fc2.weight""")) rename_keys.append((F"""transformer.encoder.layers.{i}.linear2.bias""", F"""encoder.layers.{i}.fc2.bias""")) rename_keys.append( (F"""transformer.encoder.layers.{i}.norm1.weight""", F"""encoder.layers.{i}.self_attn_layer_norm.weight""") ) rename_keys.append((F"""transformer.encoder.layers.{i}.norm1.bias""", F"""encoder.layers.{i}.self_attn_layer_norm.bias""")) rename_keys.append((F"""transformer.encoder.layers.{i}.norm2.weight""", F"""encoder.layers.{i}.final_layer_norm.weight""")) rename_keys.append((F"""transformer.encoder.layers.{i}.norm2.bias""", F"""encoder.layers.{i}.final_layer_norm.bias""")) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (F"""transformer.decoder.layers.{i}.self_attn.out_proj.weight""", F"""decoder.layers.{i}.self_attn.out_proj.weight""") ) rename_keys.append( (F"""transformer.decoder.layers.{i}.self_attn.out_proj.bias""", F"""decoder.layers.{i}.self_attn.out_proj.bias""") ) rename_keys.append( ( F"""transformer.decoder.layers.{i}.multihead_attn.out_proj.weight""", F"""decoder.layers.{i}.encoder_attn.out_proj.weight""", ) ) rename_keys.append( ( F"""transformer.decoder.layers.{i}.multihead_attn.out_proj.bias""", F"""decoder.layers.{i}.encoder_attn.out_proj.bias""", ) ) rename_keys.append((F"""transformer.decoder.layers.{i}.linear1.weight""", F"""decoder.layers.{i}.fc1.weight""")) rename_keys.append((F"""transformer.decoder.layers.{i}.linear1.bias""", F"""decoder.layers.{i}.fc1.bias""")) rename_keys.append((F"""transformer.decoder.layers.{i}.linear2.weight""", F"""decoder.layers.{i}.fc2.weight""")) rename_keys.append((F"""transformer.decoder.layers.{i}.linear2.bias""", F"""decoder.layers.{i}.fc2.bias""")) rename_keys.append( (F"""transformer.decoder.layers.{i}.norm1.weight""", F"""decoder.layers.{i}.self_attn_layer_norm.weight""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.norm1.bias""", F"""decoder.layers.{i}.self_attn_layer_norm.bias""")) rename_keys.append( (F"""transformer.decoder.layers.{i}.norm2.weight""", F"""decoder.layers.{i}.encoder_attn_layer_norm.weight""") ) rename_keys.append( (F"""transformer.decoder.layers.{i}.norm2.bias""", F"""decoder.layers.{i}.encoder_attn_layer_norm.bias""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.norm3.weight""", F"""decoder.layers.{i}.final_layer_norm.weight""")) rename_keys.append((F"""transformer.decoder.layers.{i}.norm3.bias""", F"""decoder.layers.{i}.final_layer_norm.bias""")) # convolutional projection + query embeddings + layernorm of encoder + layernorm of decoder + class and bounding box heads rename_keys.extend( [ ('input_proj.weight', 'input_projection.weight'), ('input_proj.bias', 'input_projection.bias'), ('query_embed.weight', 'query_position_embeddings.weight'), ('transformer.encoder.norm.weight', 'encoder.layernorm.weight'), ('transformer.encoder.norm.bias', 'encoder.layernorm.bias'), ('transformer.decoder.norm.weight', 'decoder.layernorm.weight'), ('transformer.decoder.norm.bias', 'decoder.layernorm.bias'), ('class_embed.weight', 'class_labels_classifier.weight'), ('class_embed.bias', 'class_labels_classifier.bias'), ('bbox_embed.layers.0.weight', 'bbox_predictor.layers.0.weight'), ('bbox_embed.layers.0.bias', 'bbox_predictor.layers.0.bias'), ('bbox_embed.layers.1.weight', 'bbox_predictor.layers.1.weight'), ('bbox_embed.layers.1.bias', 'bbox_predictor.layers.1.bias'), ('bbox_embed.layers.2.weight', 'bbox_predictor.layers.2.weight'), ('bbox_embed.layers.2.bias', 'bbox_predictor.layers.2.bias'), ] ) def lowerCamelCase__ ( a , a , a ) -> Union[str, Any]: _A: Any = state_dict.pop(a ) _A: List[Any] = val def lowerCamelCase__ ( a ) -> str: _A: Optional[int] = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: _A: str = key.replace('''backbone.0.body''' , '''backbone.conv_encoder.model''' ) _A: Tuple = value else: _A: int = value return new_state_dict def lowerCamelCase__ ( a ) -> int: _A: Dict = '''''' # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) _A: Optional[int] = state_dict.pop(f"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight""" ) _A: Optional[int] = state_dict.pop(f"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict _A: str = in_proj_weight[:2_56, :] _A: Any = in_proj_bias[:2_56] _A: Optional[int] = in_proj_weight[2_56:5_12, :] _A: Optional[Any] = in_proj_bias[2_56:5_12] _A: Union[str, Any] = in_proj_weight[-2_56:, :] _A: Union[str, Any] = in_proj_bias[-2_56:] # next: transformer decoder (which is a bit more complex because it also includes cross-attention) for i in range(6 ): # read in weights + bias of input projection layer of self-attention _A: List[Any] = state_dict.pop(f"""{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_weight""" ) _A: int = state_dict.pop(f"""{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict _A: Dict = in_proj_weight[:2_56, :] _A: int = in_proj_bias[:2_56] _A: Union[str, Any] = in_proj_weight[2_56:5_12, :] _A: Optional[int] = in_proj_bias[2_56:5_12] _A: Tuple = in_proj_weight[-2_56:, :] _A: List[Any] = in_proj_bias[-2_56:] # read in weights + bias of input projection layer of cross-attention _A: List[Any] = state_dict.pop( f"""{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_weight""" ) _A: int = state_dict.pop(f"""{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) of cross-attention to the state dict _A: Tuple = in_proj_weight_cross_attn[:2_56, :] _A: Optional[int] = in_proj_bias_cross_attn[:2_56] _A: Union[str, Any] = in_proj_weight_cross_attn[2_56:5_12, :] _A: List[str] = in_proj_bias_cross_attn[2_56:5_12] _A: str = in_proj_weight_cross_attn[-2_56:, :] _A: Optional[int] = in_proj_bias_cross_attn[-2_56:] def lowerCamelCase__ ( a , a ) -> Optional[Any]: _A , _A: Tuple = image.size _A: int = max(a , a ) _A: Optional[int] = 8_00 if '''detection''' in checkpoint_url else 10_00 _A: Optional[Any] = target_max_size / current_max_size _A: List[Any] = image.resize((int(round(scale * width ) ), int(round(scale * height ) )) ) return resized_image def lowerCamelCase__ ( a ) -> Optional[Any]: _A: int = F.to_tensor(a ) _A: List[str] = F.normalize(a , mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] ) return image @torch.no_grad() def lowerCamelCase__ ( a , a , a ) -> List[str]: logger.info('''Converting model...''' ) # load original state dict _A: Optional[int] = torch.hub.load_state_dict_from_url(a , map_location='''cpu''' ) # rename keys for src, dest in rename_keys: rename_key(a , a , a ) _A: Union[str, Any] = rename_backbone_keys(a ) # query, key and value matrices need special treatment read_in_q_k_v(a ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them _A: Any = '''model.''' for key in state_dict.copy().keys(): if not key.startswith('''class_labels_classifier''' ) and not key.startswith('''bbox_predictor''' ): _A: List[str] = state_dict.pop(a ) _A: Optional[Any] = val # create HuggingFace model and load state dict _A: Optional[int] = TableTransformerConfig( backbone='''resnet18''' , mask_loss_coefficient=1 , dice_loss_coefficient=1 , ce_loss_coefficient=1 , bbox_loss_coefficient=5 , giou_loss_coefficient=2 , eos_coefficient=0.4 , class_cost=1 , bbox_cost=5 , giou_cost=2 , ) if "detection" in checkpoint_url: _A: Union[str, Any] = 15 _A: Dict = 2 _A: Tuple = {0: '''table''', 1: '''table rotated'''} _A: int = idalabel _A: Any = {v: k for k, v in idalabel.items()} else: _A: List[str] = 1_25 _A: Optional[int] = 6 _A: Tuple = { 0: '''table''', 1: '''table column''', 2: '''table row''', 3: '''table column header''', 4: '''table projected row header''', 5: '''table spanning cell''', } _A: Union[str, Any] = idalabel _A: Optional[int] = {v: k for k, v in idalabel.items()} _A: Union[str, Any] = DetrImageProcessor( format='''coco_detection''' , max_size=8_00 if '''detection''' in checkpoint_url else 10_00 ) _A: Dict = TableTransformerForObjectDetection(a ) model.load_state_dict(a ) model.eval() # verify our conversion _A: Any = '''example_pdf.png''' if '''detection''' in checkpoint_url else '''example_table.png''' _A: str = hf_hub_download(repo_id='''nielsr/example-pdf''' , repo_type='''dataset''' , filename=a ) _A: Optional[int] = Image.open(a ).convert('''RGB''' ) _A: Any = normalize(resize(a , a ) ).unsqueeze(0 ) _A: Optional[Any] = model(a ) if "detection" in checkpoint_url: _A: Tuple = (1, 15, 3) _A: List[Any] = torch.tensor( [[-6.7897, -16.9985, 6.7937], [-8.0186, -22.2192, 6.9677], [-7.3117, -21.0708, 7.4055]] ) _A: Dict = torch.tensor([[0.4867, 0.1767, 0.6732], [0.6718, 0.4479, 0.3830], [0.4716, 0.1760, 0.6364]] ) else: _A: List[Any] = (1, 1_25, 7) _A: Union[str, Any] = torch.tensor( [[-18.1430, -8.3214, 4.8274], [-18.4685, -7.1361, -4.2667], [-26.3693, -9.3429, -4.9962]] ) _A: Optional[Any] = torch.tensor([[0.4983, 0.5595, 0.9440], [0.4916, 0.6315, 0.5954], [0.6108, 0.8637, 0.1135]] ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, :3, :3] , a , atol=1E-4 ) assert torch.allclose(outputs.pred_boxes[0, :3, :3] , a , atol=1E-4 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: # Save model and image processor logger.info(f"""Saving PyTorch model and image processor to {pytorch_dump_folder_path}...""" ) Path(a ).mkdir(exist_ok=a ) model.save_pretrained(a ) image_processor.save_pretrained(a ) if push_to_hub: # Push model to HF hub logger.info('''Pushing model to the hub...''' ) _A: Any = ( '''microsoft/table-transformer-detection''' if '''detection''' in checkpoint_url else '''microsoft/table-transformer-structure-recognition''' ) model.push_to_hub(a ) image_processor.push_to_hub(a ) if __name__ == "__main__": UpperCAmelCase__ : List[Any] = argparse.ArgumentParser() parser.add_argument( '--checkpoint_url', default='https://pubtables1m.blob.core.windows.net/model/pubtables1m_detection_detr_r18.pth', type=str, choices=[ 'https://pubtables1m.blob.core.windows.net/model/pubtables1m_detection_detr_r18.pth', 'https://pubtables1m.blob.core.windows.net/model/pubtables1m_structure_detr_r18.pth', ], help='URL of the Table Transformer checkpoint you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) UpperCAmelCase__ : Any = parser.parse_args() convert_table_transformer_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
121
import argparse from torch import nn # transformers_old should correspond to branch `save_old_prophetnet_model_structure` here # original prophetnet_checkpoints are saved under `patrickvonplaten/..._old` respectively from transformers_old.modeling_prophetnet import ( ProphetNetForConditionalGeneration as ProphetNetForConditionalGenerationOld, ) from transformers_old.modeling_xlm_prophetnet import ( XLMProphetNetForConditionalGeneration as XLMProphetNetForConditionalGenerationOld, ) from transformers import ProphetNetForConditionalGeneration, XLMProphetNetForConditionalGeneration, logging UpperCAmelCase__ : List[Any] = logging.get_logger(__name__) logging.set_verbosity_info() def lowerCamelCase__ ( a , a ) -> Dict: if "xprophetnet" in prophetnet_checkpoint_path: _A: List[Any] = XLMProphetNetForConditionalGenerationOld.from_pretrained(a ) _A , _A: Union[str, Any] = XLMProphetNetForConditionalGeneration.from_pretrained( a , output_loading_info=a ) else: _A: Dict = ProphetNetForConditionalGenerationOld.from_pretrained(a ) _A , _A: Tuple = ProphetNetForConditionalGeneration.from_pretrained( a , output_loading_info=a ) _A: Optional[int] = ['''key_proj''', '''value_proj''', '''query_proj'''] _A: List[Any] = { '''self_attn''': '''ngram_self_attn''', '''cross_attn''': '''encoder_attn''', '''cross_attn_layer_norm''': '''encoder_attn_layer_norm''', '''feed_forward_layer_norm''': '''final_layer_norm''', '''feed_forward''': '''''', '''intermediate''': '''fc1''', '''output''': '''fc2''', '''key_proj''': '''k_proj''', '''query_proj''': '''q_proj''', '''value_proj''': '''v_proj''', '''word_embeddings''': '''embed_tokens''', '''embeddings_layer_norm''': '''emb_layer_norm''', '''relative_pos_embeddings''': '''relative_linear''', '''ngram_embeddings''': '''ngram_input_embed''', '''position_embeddings''': '''embed_positions''', } for key in loading_info["missing_keys"]: _A: List[str] = key.split('''.''' ) if attributes[0] == "lm_head": _A: Optional[int] = prophet _A: Tuple = prophet_old else: _A: Tuple = prophet.prophetnet _A: Any = prophet_old.model _A: int = False for attribute in attributes: if attribute in mapping: _A: Optional[int] = mapping[attribute] if not hasattr(a , a ) and len(a ) > 0: _A: int = attribute elif hasattr(a , a ): _A: Tuple = attribute if attribute == "weight": assert old_model.weight.shape == model.weight.shape, "Shapes have to match!" _A: Union[str, Any] = old_model.weight logger.info(f"""{attribute} is initialized.""" ) _A: Any = True break elif attribute == "bias": assert old_model.bias.shape == model.bias.shape, "Shapes have to match!" _A: str = old_model.bias logger.info(f"""{attribute} is initialized""" ) _A: Dict = True break elif attribute in special_keys and hasattr(a , '''in_proj_weight''' ): _A: Optional[int] = old_model.in_proj_weight.shape[0] // 3 _A: Tuple = getattr(a , a ) param.weight.shape == old_model.in_proj_weight[:embed_dim, :].shape, "Shapes have to match" param.bias.shape == old_model.in_proj_bias[:embed_dim].shape, "Shapes have to match" if attribute == "query_proj": _A: List[str] = nn.Parameter(old_model.in_proj_weight[:embed_dim, :] ) _A: List[Any] = nn.Parameter(old_model.in_proj_bias[:embed_dim] ) elif attribute == "key_proj": _A: int = nn.Parameter(old_model.in_proj_weight[embed_dim : 2 * embed_dim, :] ) _A: Optional[int] = nn.Parameter(old_model.in_proj_bias[embed_dim : 2 * embed_dim] ) elif attribute == "value_proj": _A: List[Any] = nn.Parameter(old_model.in_proj_weight[2 * embed_dim :, :] ) _A: int = nn.Parameter(old_model.in_proj_bias[2 * embed_dim :] ) _A: Tuple = True break elif attribute == "position_embeddings": assert ( model.position_embeddings.weight.shape[-1] == old_model.embed_positions.weight.shape[-1] ), "Hidden size has to match" assert model.position_embeddings.weight.shape[0] == 5_12, "We want 512 position_embeddings." _A: Union[str, Any] = nn.Parameter(old_model.embed_positions.weight[:5_12, :] ) _A: List[Any] = True break if attribute.isdigit(): _A: Tuple = model[int(a )] _A: int = old_model[int(a )] else: _A: Union[str, Any] = getattr(a , a ) if old_attribute == "": _A: Union[str, Any] = old_model else: if not hasattr(a , a ): raise ValueError(f"""{old_model} does not have {old_attribute}""" ) _A: List[Any] = getattr(a , a ) if not is_key_init: raise ValueError(f"""{key} was not correctly initialized!""" ) print(f"""Saving model to {pytorch_dump_folder_path}""" ) prophet.save_pretrained(a ) if __name__ == "__main__": UpperCAmelCase__ : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( '--prophetnet_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) UpperCAmelCase__ : Tuple = parser.parse_args() convert_prophetnet_checkpoint_to_pytorch(args.prophetnet_checkpoint_path, args.pytorch_dump_folder_path)
121
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowercase = { """configuration_bloom""": ["""BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BloomConfig""", """BloomOnnxConfig"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase = ["""BloomTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase = [ """BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST""", """BloomForCausalLM""", """BloomModel""", """BloomPreTrainedModel""", """BloomForSequenceClassification""", """BloomForTokenClassification""", """BloomForQuestionAnswering""", ] if TYPE_CHECKING: from .configuration_bloom import BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP, BloomConfig, BloomOnnxConfig try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bloom_fast import BloomTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bloom import ( BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST, BloomForCausalLM, BloomForQuestionAnswering, BloomForSequenceClassification, BloomForTokenClassification, BloomModel, BloomPreTrainedModel, ) else: import sys lowercase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
35
from __future__ import annotations from typing import Any def lowerCamelCase_ ( UpperCamelCase__ : list ): '''simple docstring''' if not postfix_notation: return 0 UpperCamelCase__ = {'''+''', '''-''', '''*''', '''/'''} UpperCamelCase__ = [] for token in postfix_notation: if token in operations: UpperCamelCase__ , UpperCamelCase__ = stack.pop(), stack.pop() if token == "+": stack.append(a + b ) elif token == "-": stack.append(a - b ) elif token == "*": stack.append(a * b ) else: if a * b < 0 and a % b != 0: stack.append(a // b + 1 ) else: stack.append(a // b ) else: stack.append(int(UpperCamelCase__ ) ) return stack.pop() if __name__ == "__main__": import doctest doctest.testmod()
35
1
from ...configuration_utils import PretrainedConfig from ...utils import logging A__ : str = logging.get_logger(__name__) A__ : List[str] = { '''facebook/s2t-small-librispeech-asr''': ( '''https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/config.json''' ), # See all Speech2Text models at https://huggingface.co/models?filter=speech_to_text } class __snake_case ( UpperCamelCase_ ): _a = '''speech_to_text''' _a = ['''past_key_values'''] _a = {'''num_attention_heads''': '''encoder_attention_heads''', '''hidden_size''': '''d_model'''} def __init__( self : Union[str, Any] , A_ : Optional[Any]=1_0_0_0_0 , A_ : Optional[int]=1_2 , A_ : int=2_0_4_8 , A_ : str=4 , A_ : Tuple=6 , A_ : Dict=2_0_4_8 , A_ : Optional[int]=4 , A_ : Any=0.0 , A_ : Dict=0.0 , A_ : Optional[Any]=True , A_ : List[Any]=True , A_ : Tuple="relu" , A_ : List[str]=2_5_6 , A_ : Tuple=0.1 , A_ : Dict=0.0 , A_ : List[str]=0.0 , A_ : Optional[Any]=0.02 , A_ : Dict=2 , A_ : Tuple=True , A_ : int=1 , A_ : Any=0 , A_ : List[Any]=2 , A_ : Optional[Any]=6_0_0_0 , A_ : Union[str, Any]=1_0_2_4 , A_ : List[str]=2 , A_ : List[Any]=(5, 5) , A_ : Union[str, Any]=1_0_2_4 , A_ : Any=8_0 , A_ : Any=1 , **A_ : List[str] , ): lowerCAmelCase_ : Dict = vocab_size lowerCAmelCase_ : Optional[Any] = d_model lowerCAmelCase_ : List[str] = encoder_ffn_dim lowerCAmelCase_ : Optional[Any] = encoder_layers lowerCAmelCase_ : Any = encoder_attention_heads lowerCAmelCase_ : List[str] = decoder_ffn_dim lowerCAmelCase_ : int = decoder_layers lowerCAmelCase_ : Tuple = decoder_attention_heads lowerCAmelCase_ : Optional[int] = dropout lowerCAmelCase_ : List[Any] = attention_dropout lowerCAmelCase_ : List[Any] = activation_dropout lowerCAmelCase_ : List[str] = activation_function lowerCAmelCase_ : List[str] = init_std lowerCAmelCase_ : List[str] = encoder_layerdrop lowerCAmelCase_ : Union[str, Any] = decoder_layerdrop lowerCAmelCase_ : Union[str, Any] = use_cache lowerCAmelCase_ : Optional[int] = encoder_layers lowerCAmelCase_ : Union[str, Any] = scale_embedding # scale factor will be sqrt(d_model) if True lowerCAmelCase_ : Optional[Any] = max_source_positions lowerCAmelCase_ : int = max_target_positions lowerCAmelCase_ : Tuple = num_conv_layers lowerCAmelCase_ : str = list(A_) lowerCAmelCase_ : int = conv_channels lowerCAmelCase_ : str = input_feat_per_channel lowerCAmelCase_ : Dict = input_channels if len(self.conv_kernel_sizes) != self.num_conv_layers: raise ValueError( '''Configuration for convolutional module is incorrect. ''' '''It is required that `len(config.conv_kernel_sizes)` == `config.num_conv_layers` ''' F"""but is `len(config.conv_kernel_sizes) = {len(self.conv_kernel_sizes)}`, """ F"""`config.num_conv_layers = {self.num_conv_layers}`.""") super().__init__( pad_token_id=A_ , bos_token_id=A_ , eos_token_id=A_ , is_encoder_decoder=A_ , decoder_start_token_id=A_ , **A_ , )
103
import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_tf_available from transformers.testing_utils import require_tf if is_tf_available(): import tensorflow as tf from transformers import TensorFlowBenchmark, TensorFlowBenchmarkArguments @require_tf class _lowercase ( unittest.TestCase ): def SCREAMING_SNAKE_CASE__ ( self : int , snake_case : Union[str, Any] ) -> Optional[int]: """simple docstring""" for model_result in results.values(): for batch_size, sequence_length in zip(model_result['bs'] , model_result['ss'] ): UpperCamelCase_ : Optional[Any] = model_result['result'][batch_size][sequence_length] self.assertIsNotNone(snake_case ) def SCREAMING_SNAKE_CASE__ ( self : int ) -> Tuple: """simple docstring""" UpperCamelCase_ : Optional[Any] = 'sshleifer/tiny-gpt2' UpperCamelCase_ : Dict = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=snake_case , inference=snake_case , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=snake_case , multi_process=snake_case , ) UpperCamelCase_ : Tuple = TensorFlowBenchmark(snake_case ) UpperCamelCase_ : List[str] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def SCREAMING_SNAKE_CASE__ ( self : str ) -> Optional[Any]: """simple docstring""" UpperCamelCase_ : Dict = 'sgugger/tiny-distilbert-classification' UpperCamelCase_ : int = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=snake_case , inference=snake_case , sequence_lengths=[8] , batch_sizes=[1] , multi_process=snake_case , only_pretrain_model=snake_case , ) UpperCamelCase_ : int = TensorFlowBenchmark(snake_case ) UpperCamelCase_ : Tuple = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def SCREAMING_SNAKE_CASE__ ( self : Tuple ) -> List[str]: """simple docstring""" UpperCamelCase_ : str = 'sshleifer/tiny-gpt2' UpperCamelCase_ : Any = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=snake_case , inference=snake_case , sequence_lengths=[8] , batch_sizes=[1] , multi_process=snake_case , ) UpperCamelCase_ : List[str] = TensorFlowBenchmark(snake_case ) UpperCamelCase_ : Optional[int] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def SCREAMING_SNAKE_CASE__ ( self : Tuple ) -> Dict: """simple docstring""" UpperCamelCase_ : List[str] = 'sshleifer/tiny-gpt2' UpperCamelCase_ : str = AutoConfig.from_pretrained(snake_case ) UpperCamelCase_ : List[str] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=snake_case , inference=snake_case , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=snake_case , multi_process=snake_case , ) UpperCamelCase_ : int = TensorFlowBenchmark(snake_case , [config] ) UpperCamelCase_ : Optional[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ) -> List[str]: """simple docstring""" UpperCamelCase_ : List[str] = 'sshleifer/tiny-gpt2' UpperCamelCase_ : int = AutoConfig.from_pretrained(snake_case ) UpperCamelCase_ : Any = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=snake_case , inference=snake_case , sequence_lengths=[8] , batch_sizes=[1] , multi_process=snake_case , ) UpperCamelCase_ : Tuple = TensorFlowBenchmark(snake_case , [config] ) UpperCamelCase_ : Tuple = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def SCREAMING_SNAKE_CASE__ ( self : Tuple ) -> int: """simple docstring""" UpperCamelCase_ : Optional[int] = 'sshleifer/tiny-gpt2' UpperCamelCase_ : Tuple = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=snake_case , inference=snake_case , sequence_lengths=[8] , batch_sizes=[1] , multi_process=snake_case , ) UpperCamelCase_ : Optional[int] = TensorFlowBenchmark(snake_case ) UpperCamelCase_ : str = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def SCREAMING_SNAKE_CASE__ ( self : Any ) -> int: """simple docstring""" UpperCamelCase_ : Tuple = 'sshleifer/tiny-gpt2' UpperCamelCase_ : List[str] = AutoConfig.from_pretrained(snake_case ) UpperCamelCase_ : int = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=snake_case , inference=snake_case , sequence_lengths=[8] , batch_sizes=[1] , multi_process=snake_case , ) UpperCamelCase_ : List[Any] = TensorFlowBenchmark(snake_case , [config] ) UpperCamelCase_ : int = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ) -> Dict: """simple docstring""" UpperCamelCase_ : Tuple = 'patrickvonplaten/t5-tiny-random' UpperCamelCase_ : List[str] = AutoConfig.from_pretrained(snake_case ) UpperCamelCase_ : List[str] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=snake_case , inference=snake_case , sequence_lengths=[8] , batch_sizes=[1] , multi_process=snake_case , ) UpperCamelCase_ : int = TensorFlowBenchmark(snake_case , configs=[config] ) UpperCamelCase_ : Optional[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(is_tf_available() and len(tf.config.list_physical_devices('GPU' ) ) == 0 , 'Cannot do xla on CPU.' ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ) -> Dict: """simple docstring""" UpperCamelCase_ : int = 'sshleifer/tiny-gpt2' UpperCamelCase_ : Union[str, Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=snake_case , inference=snake_case , sequence_lengths=[8] , batch_sizes=[1] , use_xla=snake_case , multi_process=snake_case , ) UpperCamelCase_ : Union[str, Any] = TensorFlowBenchmark(snake_case ) UpperCamelCase_ : List[str] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def SCREAMING_SNAKE_CASE__ ( self : List[str] ) -> Optional[int]: """simple docstring""" UpperCamelCase_ : List[Any] = 'sshleifer/tiny-gpt2' with tempfile.TemporaryDirectory() as tmp_dir: UpperCamelCase_ : List[Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , inference=snake_case , save_to_csv=snake_case , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(snake_case , 'inf_time.csv' ) , inference_memory_csv_file=os.path.join(snake_case , 'inf_mem.csv' ) , env_info_csv_file=os.path.join(snake_case , 'env.csv' ) , multi_process=snake_case , ) UpperCamelCase_ : List[str] = TensorFlowBenchmark(snake_case ) benchmark.run() self.assertTrue(Path(os.path.join(snake_case , 'inf_time.csv' ) ).exists() ) self.assertTrue(Path(os.path.join(snake_case , 'inf_mem.csv' ) ).exists() ) self.assertTrue(Path(os.path.join(snake_case , 'env.csv' ) ).exists() ) def SCREAMING_SNAKE_CASE__ ( self : List[str] ) -> str: """simple docstring""" UpperCamelCase_ : Optional[Any] = 'sshleifer/tiny-gpt2' def _check_summary_is_not_empty(snake_case : Union[str, Any] ): self.assertTrue(hasattr(snake_case , 'sequential' ) ) self.assertTrue(hasattr(snake_case , 'cumulative' ) ) self.assertTrue(hasattr(snake_case , 'current' ) ) self.assertTrue(hasattr(snake_case , 'total' ) ) with tempfile.TemporaryDirectory() as tmp_dir: UpperCamelCase_ : str = TensorFlowBenchmarkArguments( models=[MODEL_ID] , inference=snake_case , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(snake_case , 'log.txt' ) , log_print=snake_case , trace_memory_line_by_line=snake_case , eager_mode=snake_case , multi_process=snake_case , ) UpperCamelCase_ : Tuple = TensorFlowBenchmark(snake_case ) UpperCamelCase_ : Union[str, Any] = benchmark.run() _check_summary_is_not_empty(result.inference_summary ) self.assertTrue(Path(os.path.join(snake_case , 'log.txt' ) ).exists() )
175
0
from __future__ import annotations from functools import lru_cache from math import ceil _snake_case : Tuple = 100 _snake_case : int = set(range(3, NUM_PRIMES, 2)) primes.add(2) _snake_case : int for prime in range(3, ceil(NUM_PRIMES**0.5), 2): if prime not in primes: continue primes.difference_update(set(range(prime * prime, NUM_PRIMES, prime))) @lru_cache(maxsize=1_0_0 ) def lowerCAmelCase_ ( __lowerCamelCase ): if number_to_partition < 0: return set() elif number_to_partition == 0: return {1} __snake_case : set[int] = set() __snake_case : int __snake_case : int for prime in primes: if prime > number_to_partition: continue for sub in partition(number_to_partition - prime ): ret.add(sub * prime ) return ret def lowerCAmelCase_ ( __lowerCamelCase = 5_0_0_0 ): for number_to_partition in range(1 , __lowerCamelCase ): if len(partition(__lowerCamelCase ) ) > number_unique_partitions: return number_to_partition return None if __name__ == "__main__": print(f'''{solution() = }''')
134
import importlib import math import os from dataclasses import dataclass from enum import Enum from typing import Any, Dict, Optional, Tuple, Union import flax import jax.numpy as jnp from ..utils import BaseOutput _snake_case : int = "scheduler_config.json" class a (_lowerCAmelCase ): """simple docstring""" __UpperCAmelCase : Tuple = 1 __UpperCAmelCase : Tuple = 2 __UpperCAmelCase : Union[str, Any] = 3 __UpperCAmelCase : List[Any] = 4 __UpperCAmelCase : Tuple = 5 @dataclass class a (_lowerCAmelCase ): """simple docstring""" __UpperCAmelCase : jnp.ndarray class a : """simple docstring""" __UpperCAmelCase : Dict = SCHEDULER_CONFIG_NAME __UpperCAmelCase : Union[str, Any] = ["dtype"] __UpperCAmelCase : Tuple = [] __UpperCAmelCase : int = True @classmethod def __snake_case ( cls : List[str] , lowerCamelCase : Dict[str, Any] = None , lowerCamelCase : Optional[str] = None , lowerCamelCase : List[str]=False , **lowerCamelCase : Union[str, Any] , ) -> List[str]: __snake_case , __snake_case : List[str] = cls.load_config( pretrained_model_name_or_path=lowerCamelCase , subfolder=lowerCamelCase , return_unused_kwargs=lowerCamelCase , **lowerCamelCase , ) __snake_case , __snake_case : Dict = cls.from_config(lowerCamelCase , return_unused_kwargs=lowerCamelCase , **lowerCamelCase ) if hasattr(lowerCamelCase , "create_state" ) and getattr(lowerCamelCase , "has_state" , lowerCamelCase ): __snake_case : Tuple = scheduler.create_state() if return_unused_kwargs: return scheduler, state, unused_kwargs return scheduler, state def __snake_case ( self : Any , lowerCamelCase : Union[str, os.PathLike] , lowerCamelCase : bool = False , **lowerCamelCase : List[Any] ) -> int: self.save_config(save_directory=lowerCamelCase , push_to_hub=lowerCamelCase , **lowerCamelCase ) @property def __snake_case ( self : Tuple ) -> List[Any]: return self._get_compatibles() @classmethod def __snake_case ( cls : int ) -> Dict: __snake_case : Tuple = list(set([cls.__name__] + cls._compatibles ) ) __snake_case : int = importlib.import_module(__name__.split("." )[0] ) __snake_case : Tuple = [ getattr(lowerCamelCase , lowerCamelCase ) for c in compatible_classes_str if hasattr(lowerCamelCase , lowerCamelCase ) ] return compatible_classes def lowerCAmelCase_ ( __lowerCamelCase , __lowerCamelCase ): assert len(__lowerCamelCase ) >= x.ndim return jnp.broadcast_to(x.reshape(x.shape + (1,) * (len(__lowerCamelCase ) - x.ndim) ) , __lowerCamelCase ) def lowerCAmelCase_ ( __lowerCamelCase , __lowerCamelCase=0.9_9_9 , __lowerCamelCase=jnp.floataa ): def alpha_bar(__lowerCamelCase ): return math.cos((time_step + 0.0_0_8) / 1.0_0_8 * math.pi / 2 ) ** 2 __snake_case : List[Any] = [] for i in range(__lowerCamelCase ): __snake_case : Dict = i / num_diffusion_timesteps __snake_case : str = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar(__lowerCamelCase ) / alpha_bar(__lowerCamelCase ) , __lowerCamelCase ) ) return jnp.array(__lowerCamelCase , dtype=__lowerCamelCase ) @flax.struct.dataclass class a : """simple docstring""" __UpperCAmelCase : jnp.ndarray __UpperCAmelCase : jnp.ndarray __UpperCAmelCase : jnp.ndarray @classmethod def __snake_case ( cls : Union[str, Any] , lowerCamelCase : int ) -> List[Any]: __snake_case : Dict = scheduler.config if config.trained_betas is not None: __snake_case : Dict = jnp.asarray(config.trained_betas , dtype=scheduler.dtype ) elif config.beta_schedule == "linear": __snake_case : Optional[int] = jnp.linspace(config.beta_start , config.beta_end , config.num_train_timesteps , dtype=scheduler.dtype ) elif config.beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. __snake_case : str = ( jnp.linspace( config.beta_start**0.5 , config.beta_end**0.5 , config.num_train_timesteps , dtype=scheduler.dtype ) ** 2 ) elif config.beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule __snake_case : Optional[Any] = betas_for_alpha_bar(config.num_train_timesteps , dtype=scheduler.dtype ) else: raise NotImplementedError( F'beta_schedule {config.beta_schedule} is not implemented for scheduler {scheduler.__class__.__name__}' ) __snake_case : Any = 1.0 - betas __snake_case : int = jnp.cumprod(lowerCamelCase , axis=0 ) return cls( alphas=lowerCamelCase , betas=lowerCamelCase , alphas_cumprod=lowerCamelCase , ) def lowerCAmelCase_ ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ): __snake_case : List[Any] = state.alphas_cumprod __snake_case : str = alphas_cumprod[timesteps] ** 0.5 __snake_case : Dict = sqrt_alpha_prod.flatten() __snake_case : str = broadcast_to_shape_from_left(__lowerCamelCase , original_samples.shape ) __snake_case : Tuple = (1 - alphas_cumprod[timesteps]) ** 0.5 __snake_case : str = sqrt_one_minus_alpha_prod.flatten() __snake_case : Tuple = broadcast_to_shape_from_left(__lowerCamelCase , original_samples.shape ) return sqrt_alpha_prod, sqrt_one_minus_alpha_prod def lowerCAmelCase_ ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ): __snake_case , __snake_case : Union[str, Any] = get_sqrt_alpha_prod(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) __snake_case : List[str] = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise return noisy_samples def lowerCAmelCase_ ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ): __snake_case , __snake_case : Dict = get_sqrt_alpha_prod(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) __snake_case : Optional[int] = sqrt_alpha_prod * noise - sqrt_one_minus_alpha_prod * sample return velocity
134
1
import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import numpy as np import pytest from datasets.arrow_dataset import Dataset from datasets.search import ElasticSearchIndex, FaissIndex, MissingIndex from .utils import require_elasticsearch, require_faiss __lowerCamelCase : Union[str, Any] = pytest.mark.integration @require_faiss class A__ ( __snake_case ): def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : Union[str, Any] = Dataset.from_dict({"filename": ["my_name-train" + "_" + str(A_ ) for x in np.arange(30 ).tolist()]} ) return dset def __UpperCamelCase( self ): '''simple docstring''' import faiss UpperCamelCase : Dataset = self._create_dummy_dataset() UpperCamelCase : List[Any] = dset.map( lambda A_ , A_ : {"vecs": i * np.ones(5 , dtype=np.floataa )} , with_indices=A_ , keep_in_memory=A_ ) UpperCamelCase : List[str] = dset.add_faiss_index("vecs" , batch_size=100 , metric_type=faiss.METRIC_INNER_PRODUCT ) UpperCamelCase , UpperCamelCase : Tuple = dset.get_nearest_examples("vecs" , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples["filename"][0] , "my_name-train_29" ) dset.drop_index("vecs" ) def __UpperCamelCase( self ): '''simple docstring''' import faiss UpperCamelCase : Dataset = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name="vecs" , batch_size=100 , metric_type=faiss.METRIC_INNER_PRODUCT , ) UpperCamelCase , UpperCamelCase : int = dset.get_nearest_examples("vecs" , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples["filename"][0] , "my_name-train_29" ) def __UpperCamelCase( self ): '''simple docstring''' import faiss UpperCamelCase : Dataset = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name="vecs" , metric_type=faiss.METRIC_INNER_PRODUCT , ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=A_ ) as tmp_file: dset.save_faiss_index("vecs" , tmp_file.name ) dset.load_faiss_index("vecs2" , tmp_file.name ) os.unlink(tmp_file.name ) UpperCamelCase , UpperCamelCase : List[str] = dset.get_nearest_examples("vecs2" , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples["filename"][0] , "my_name-train_29" ) def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : Dataset = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name="vecs" ) dset.drop_index("vecs" ) self.assertRaises(A_ , partial(dset.get_nearest_examples , "vecs2" , np.ones(5 , dtype=np.floataa ) ) ) def __UpperCamelCase( self ): '''simple docstring''' from elasticsearch import Elasticsearch UpperCamelCase : Dataset = self._create_dummy_dataset() with patch("elasticsearch.Elasticsearch.search" ) as mocked_search, patch( "elasticsearch.client.IndicesClient.create" ) as mocked_index_create, patch("elasticsearch.helpers.streaming_bulk" ) as mocked_bulk: UpperCamelCase : List[str] = {"acknowledged": True} mocked_bulk.return_value([(True, None)] * 30 ) UpperCamelCase : List[Any] = {"hits": {"hits": [{"_score": 1, "_id": 29}]}} UpperCamelCase : Optional[Any] = Elasticsearch() dset.add_elasticsearch_index("filename" , es_client=A_ ) UpperCamelCase , UpperCamelCase : List[str] = dset.get_nearest_examples("filename" , "my_name-train_29" ) self.assertEqual(examples["filename"][0] , "my_name-train_29" ) @require_faiss class A__ ( __snake_case ): def __UpperCamelCase( self ): '''simple docstring''' import faiss UpperCamelCase : Optional[int] = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) # add vectors index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsNotNone(index.faiss_index ) self.assertEqual(index.faiss_index.ntotal , 5 ) index.add_vectors(np.zeros((5, 5) , dtype=np.floataa ) ) self.assertEqual(index.faiss_index.ntotal , 10 ) # single query UpperCamelCase : Any = np.zeros(5 , dtype=np.floataa ) UpperCamelCase : Optional[Any] = 1 UpperCamelCase , UpperCamelCase : Optional[Any] = index.search(A_ ) self.assertRaises(A_ , index.search , query.reshape(-1 , 1 ) ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) # batched queries UpperCamelCase : Optional[int] = np.eye(5 , dtype=np.floataa )[::-1] UpperCamelCase , UpperCamelCase : Tuple = index.search_batch(A_ ) self.assertRaises(A_ , index.search_batch , queries[0] ) UpperCamelCase : Optional[int] = [scores[0] for scores in total_scores] UpperCamelCase : Tuple = [indices[0] for indices in total_indices] self.assertGreater(np.min(A_ ) , 0 ) self.assertListEqual([4, 3, 2, 1, 0] , A_ ) def __UpperCamelCase( self ): '''simple docstring''' import faiss UpperCamelCase : List[str] = FaissIndex(string_factory="Flat" ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) UpperCamelCase : List[str] = FaissIndex(string_factory="LSH" ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexLSH ) with self.assertRaises(A_ ): UpperCamelCase : List[str] = FaissIndex(string_factory="Flat" , custom_index=faiss.IndexFlat(5 ) ) def __UpperCamelCase( self ): '''simple docstring''' import faiss UpperCamelCase : Dict = faiss.IndexFlat(5 ) UpperCamelCase : Union[str, Any] = FaissIndex(custom_index=A_ ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) def __UpperCamelCase( self ): '''simple docstring''' import faiss UpperCamelCase : str = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=A_ ) as tmp_file: index.save(tmp_file.name ) UpperCamelCase : int = FaissIndex.load(tmp_file.name ) os.unlink(tmp_file.name ) UpperCamelCase : str = np.zeros(5 , dtype=np.floataa ) UpperCamelCase : int = 1 UpperCamelCase , UpperCamelCase : Dict = index.search(A_ ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) @require_faiss def A_ ( _lowerCAmelCase ) -> Optional[int]: import faiss UpperCamelCase : Union[str, Any] = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) UpperCamelCase : List[Any] = "index.faiss" UpperCamelCase : List[str] = F"""mock://{index_name}""" index.save(_lowerCAmelCase , storage_options=mockfs.storage_options ) UpperCamelCase : List[str] = FaissIndex.load(_lowerCAmelCase , storage_options=mockfs.storage_options ) UpperCamelCase : List[str] = np.zeros(5 , dtype=np.floataa ) UpperCamelCase : Optional[int] = 1 UpperCamelCase , UpperCamelCase : List[str] = index.search(_lowerCAmelCase ) assert scores[0] > 0 assert indices[0] == 1 @require_elasticsearch class A__ ( __snake_case ): def __UpperCamelCase( self ): '''simple docstring''' from elasticsearch import Elasticsearch with patch("elasticsearch.Elasticsearch.search" ) as mocked_search, patch( "elasticsearch.client.IndicesClient.create" ) as mocked_index_create, patch("elasticsearch.helpers.streaming_bulk" ) as mocked_bulk: UpperCamelCase : List[str] = Elasticsearch() UpperCamelCase : Union[str, Any] = {"acknowledged": True} UpperCamelCase : Union[str, Any] = ElasticSearchIndex(es_client=A_ ) mocked_bulk.return_value([(True, None)] * 3 ) index.add_documents(["foo", "bar", "foobar"] ) # single query UpperCamelCase : str = "foo" UpperCamelCase : Dict = {"hits": {"hits": [{"_score": 1, "_id": 0}]}} UpperCamelCase , UpperCamelCase : Tuple = index.search(A_ ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # single query with timeout UpperCamelCase : Dict = "foo" UpperCamelCase : Optional[Any] = {"hits": {"hits": [{"_score": 1, "_id": 0}]}} UpperCamelCase , UpperCamelCase : str = index.search(A_ , request_timeout=30 ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # batched queries UpperCamelCase : Dict = ["foo", "bar", "foobar"] UpperCamelCase : List[Any] = {"hits": {"hits": [{"_score": 1, "_id": 1}]}} UpperCamelCase , UpperCamelCase : Optional[int] = index.search_batch(A_ ) UpperCamelCase : str = [scores[0] for scores in total_scores] UpperCamelCase : Optional[Any] = [indices[0] for indices in total_indices] self.assertGreater(np.min(A_ ) , 0 ) self.assertListEqual([1, 1, 1] , A_ ) # batched queries with timeout UpperCamelCase : int = ["foo", "bar", "foobar"] UpperCamelCase : List[Any] = {"hits": {"hits": [{"_score": 1, "_id": 1}]}} UpperCamelCase , UpperCamelCase : Union[str, Any] = index.search_batch(A_ , request_timeout=30 ) UpperCamelCase : Union[str, Any] = [scores[0] for scores in total_scores] UpperCamelCase : Dict = [indices[0] for indices in total_indices] self.assertGreater(np.min(A_ ) , 0 ) self.assertListEqual([1, 1, 1] , A_ )
52
"""simple docstring""" import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTImageProcessor, ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() __SCREAMING_SNAKE_CASE : Tuple = logging.get_logger(__name__) def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False ) -> Any: snake_case_ = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f"""blocks.{i}.norm1.weight""", f"""vit.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((f"""blocks.{i}.norm1.bias""", f"""vit.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append((f"""blocks.{i}.attn.proj.weight""", f"""vit.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append((f"""blocks.{i}.attn.proj.bias""", f"""vit.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((f"""blocks.{i}.norm2.weight""", f"""vit.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((f"""blocks.{i}.norm2.bias""", f"""vit.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append((f"""blocks.{i}.mlp.fc1.weight""", f"""vit.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((f"""blocks.{i}.mlp.fc1.bias""", f"""vit.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((f"""blocks.{i}.mlp.fc2.weight""", f"""vit.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((f"""blocks.{i}.mlp.fc2.bias""", f"""vit.encoder.layer.{i}.output.dense.bias""") ) # projection layer + position embeddings rename_keys.extend( [ ("""cls_token""", """vit.embeddings.cls_token"""), ("""patch_embed.proj.weight""", """vit.embeddings.patch_embeddings.projection.weight"""), ("""patch_embed.proj.bias""", """vit.embeddings.patch_embeddings.projection.bias"""), ("""pos_embed""", """vit.embeddings.position_embeddings"""), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("""norm.weight""", """layernorm.weight"""), ("""norm.bias""", """layernorm.bias"""), ("""pre_logits.fc.weight""", """pooler.dense.weight"""), ("""pre_logits.fc.bias""", """pooler.dense.bias"""), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" snake_case_ = [(pair[0], pair[1][4:]) if pair[1].startswith("""vit""" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("""norm.weight""", """vit.layernorm.weight"""), ("""norm.bias""", """vit.layernorm.bias"""), ("""head.weight""", """classifier.weight"""), ("""head.bias""", """classifier.bias"""), ] ) return rename_keys def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False ) -> Tuple: for i in range(config.num_hidden_layers ): if base_model: snake_case_ = """""" else: snake_case_ = """vit.""" # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) snake_case_ = state_dict.pop(f"""blocks.{i}.attn.qkv.weight""" ) snake_case_ = state_dict.pop(f"""blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict snake_case_ = in_proj_weight[ : config.hidden_size, : ] snake_case_ = in_proj_bias[: config.hidden_size] snake_case_ = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] snake_case_ = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] snake_case_ = in_proj_weight[ -config.hidden_size :, : ] snake_case_ = in_proj_bias[-config.hidden_size :] def _a ( _SCREAMING_SNAKE_CASE ) -> List[str]: snake_case_ = ["""head.weight""", """head.bias"""] for k in ignore_keys: state_dict.pop(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> str: snake_case_ = dct.pop(_SCREAMING_SNAKE_CASE ) snake_case_ = val def _a ( ) -> Any: snake_case_ = """http://images.cocodataset.org/val2017/000000039769.jpg""" snake_case_ = Image.open(requests.get(_SCREAMING_SNAKE_CASE , stream=_SCREAMING_SNAKE_CASE ).raw ) return im @torch.no_grad() def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Any: snake_case_ = ViTConfig() snake_case_ = False # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size if vit_name[-5:] == "in21k": snake_case_ = True snake_case_ = int(vit_name[-12:-10] ) snake_case_ = int(vit_name[-9:-6] ) else: snake_case_ = 1_000 snake_case_ = """huggingface/label-files""" snake_case_ = """imagenet-1k-id2label.json""" snake_case_ = json.load(open(hf_hub_download(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , repo_type="""dataset""" ) , """r""" ) ) snake_case_ = {int(_SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} snake_case_ = idalabel snake_case_ = {v: k for k, v in idalabel.items()} snake_case_ = int(vit_name[-6:-4] ) snake_case_ = int(vit_name[-3:] ) # size of the architecture if "deit" in vit_name: if vit_name[9:].startswith("""tiny""" ): snake_case_ = 192 snake_case_ = 768 snake_case_ = 12 snake_case_ = 3 elif vit_name[9:].startswith("""small""" ): snake_case_ = 384 snake_case_ = 1_536 snake_case_ = 12 snake_case_ = 6 else: pass else: if vit_name[4:].startswith("""small""" ): snake_case_ = 768 snake_case_ = 2_304 snake_case_ = 8 snake_case_ = 8 elif vit_name[4:].startswith("""base""" ): pass elif vit_name[4:].startswith("""large""" ): snake_case_ = 1_024 snake_case_ = 4_096 snake_case_ = 24 snake_case_ = 16 elif vit_name[4:].startswith("""huge""" ): snake_case_ = 1_280 snake_case_ = 5_120 snake_case_ = 32 snake_case_ = 16 # load original model from timm snake_case_ = timm.create_model(_SCREAMING_SNAKE_CASE , pretrained=_SCREAMING_SNAKE_CASE ) timm_model.eval() # load state_dict of original model, remove and rename some keys snake_case_ = timm_model.state_dict() if base_model: remove_classification_head_(_SCREAMING_SNAKE_CASE ) snake_case_ = create_rename_keys(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for src, dest in rename_keys: rename_key(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) read_in_q_k_v(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # load HuggingFace model if vit_name[-5:] == "in21k": snake_case_ = ViTModel(_SCREAMING_SNAKE_CASE ).eval() else: snake_case_ = ViTForImageClassification(_SCREAMING_SNAKE_CASE ).eval() model.load_state_dict(_SCREAMING_SNAKE_CASE ) # Check outputs on an image, prepared by ViTImageProcessor/DeiTImageProcessor if "deit" in vit_name: snake_case_ = DeiTImageProcessor(size=config.image_size ) else: snake_case_ = ViTImageProcessor(size=config.image_size ) snake_case_ = image_processor(images=prepare_img() , return_tensors="""pt""" ) snake_case_ = encoding["""pixel_values"""] snake_case_ = model(_SCREAMING_SNAKE_CASE ) if base_model: snake_case_ = timm_model.forward_features(_SCREAMING_SNAKE_CASE ) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(_SCREAMING_SNAKE_CASE , outputs.pooler_output , atol=1E-3 ) else: snake_case_ = timm_model(_SCREAMING_SNAKE_CASE ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(_SCREAMING_SNAKE_CASE , outputs.logits , atol=1E-3 ) Path(_SCREAMING_SNAKE_CASE ).mkdir(exist_ok=_SCREAMING_SNAKE_CASE ) print(f"""Saving model {vit_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(_SCREAMING_SNAKE_CASE ) print(f"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE : int = argparse.ArgumentParser() # Required parameters parser.add_argument( '--vit_name', default='vit_base_patch16_224', type=str, help='Name of the ViT timm model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) __SCREAMING_SNAKE_CASE : int = parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path)
347
0
def SCREAMING_SNAKE_CASE__ ( lowercase ) -> int: snake_case : Any = hex_num.strip() if not hex_num: raise ValueError("""No value was passed to the function""" ) snake_case : List[str] = hex_num[0] == """-""" if is_negative: snake_case : Optional[Any] = hex_num[1:] try: snake_case : Any = int(lowercase ,16 ) except ValueError: raise ValueError("""Invalid value was passed to the function""" ) snake_case : Tuple = """""" while int_num > 0: snake_case : List[str] = str(int_num % 2 ) + bin_str int_num >>= 1 return int(("""-""" + bin_str) if is_negative else bin_str ) if __name__ == "__main__": import doctest doctest.testmod()
353
def SCREAMING_SNAKE_CASE__ ( lowercase = 1000 ) -> int: snake_case : Optional[int] = 3 snake_case : List[Any] = 0 while a < n: if a % 3 == 0 or a % 5 == 0: result += a elif a % 15 == 0: result -= a a += 1 return result if __name__ == "__main__": print(f"""{solution() = }""")
176
0
"""simple docstring""" import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert import BertTokenizer UpperCAmelCase : List[str] = logging.get_logger(__name__) UpperCAmelCase : Optional[Any] = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} UpperCAmelCase : str = { """vocab_file""": { """facebook/dpr-ctx_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt""" ), """facebook/dpr-ctx_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """facebook/dpr-ctx_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json""" ), """facebook/dpr-ctx_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json""" ), }, } UpperCAmelCase : str = { """vocab_file""": { """facebook/dpr-question_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt""" ), """facebook/dpr-question_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """facebook/dpr-question_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json""" ), """facebook/dpr-question_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json""" ), }, } UpperCAmelCase : Dict = { """vocab_file""": { """facebook/dpr-reader-single-nq-base""": ( """https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt""" ), """facebook/dpr-reader-multiset-base""": ( """https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """facebook/dpr-reader-single-nq-base""": ( """https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json""" ), """facebook/dpr-reader-multiset-base""": ( """https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json""" ), }, } UpperCAmelCase : Optional[int] = { """facebook/dpr-ctx_encoder-single-nq-base""": 512, """facebook/dpr-ctx_encoder-multiset-base""": 512, } UpperCAmelCase : Optional[Any] = { """facebook/dpr-question_encoder-single-nq-base""": 512, """facebook/dpr-question_encoder-multiset-base""": 512, } UpperCAmelCase : str = { """facebook/dpr-reader-single-nq-base""": 512, """facebook/dpr-reader-multiset-base""": 512, } UpperCAmelCase : Optional[Any] = { """facebook/dpr-ctx_encoder-single-nq-base""": {"""do_lower_case""": True}, """facebook/dpr-ctx_encoder-multiset-base""": {"""do_lower_case""": True}, } UpperCAmelCase : List[str] = { """facebook/dpr-question_encoder-single-nq-base""": {"""do_lower_case""": True}, """facebook/dpr-question_encoder-multiset-base""": {"""do_lower_case""": True}, } UpperCAmelCase : Tuple = { """facebook/dpr-reader-single-nq-base""": {"""do_lower_case""": True}, """facebook/dpr-reader-multiset-base""": {"""do_lower_case""": True}, } class SCREAMING_SNAKE_CASE__ ( snake_case_ ): lowercase__ = VOCAB_FILES_NAMES lowercase__ = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP lowercase__ = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__ = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION class SCREAMING_SNAKE_CASE__ ( snake_case_ ): lowercase__ = VOCAB_FILES_NAMES lowercase__ = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP lowercase__ = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__ = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION UpperCAmelCase : Optional[int] = collections.namedtuple( "DPRSpanPrediction", ["span_score", "relevance_score", "doc_id", "start_index", "end_index", "text"] ) UpperCAmelCase : str = collections.namedtuple("DPRReaderOutput", ["start_logits", "end_logits", "relevance_logits"]) UpperCAmelCase : Any = R""" Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`. It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers), using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)` with the format: ``` [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids> ``` Args: questions (`str` or `List[str]`): The questions to be encoded. You can specify one question for many passages. In this case, the question will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in `titles` or `texts`. titles (`str` or `List[str]`): The passages titles to be encoded. This can be a string or a list of strings if there are several passages. texts (`str` or `List[str]`): The passages texts to be encoded. This can be a string or a list of strings if there are several passages. padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`): Activates and controls padding. Accepts the following values: - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence if provided). - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different lengths). truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`): Activates and controls truncation. Accepts the following values: - `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will truncate token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch of pairs) is provided. - `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths greater than the model maximum admissible input size). max_length (`int`, *optional*): Controls the maximum length to use by one of the truncation/padding parameters. If left unset or set to `None`, this will use the predefined model maximum length if a maximum length is required by one of the truncation/padding parameters. If the model has no specific maximum input length (like XLNet) truncation/padding to a maximum length will be deactivated. return_tensors (`str` or [`~utils.TensorType`], *optional*): If set, will return tensors instead of list of python integers. Acceptable values are: - `'tf'`: Return TensorFlow `tf.constant` objects. - `'pt'`: Return PyTorch `torch.Tensor` objects. - `'np'`: Return Numpy `np.ndarray` objects. return_attention_mask (`bool`, *optional*): Whether or not to return the attention mask. If not set, will return the attention mask according to the specific tokenizer's default, defined by the `return_outputs` attribute. [What are attention masks?](../glossary#attention-mask) Returns: `Dict[str, List[List[int]]]`: A dictionary with the following keys: - `input_ids`: List of token ids to be fed to a model. - `attention_mask`: List of indices specifying which tokens should be attended to by the model. """ @add_start_docstrings(snake_case_ ) class SCREAMING_SNAKE_CASE__ : def __call__( self : List[Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : str = None , lowerCAmelCase_ : str = None , lowerCAmelCase_ : Optional[int] = False , lowerCAmelCase_ : Union[str, Any] = False , lowerCAmelCase_ : Tuple = None , lowerCAmelCase_ : str = None , lowerCAmelCase_ : List[Any] = None , **lowerCAmelCase_ : Optional[Any] , ): """simple docstring""" if titles is None and texts is None: return super().__call__( lowerCAmelCase_ , padding=lowerCAmelCase_ , truncation=lowerCAmelCase_ , max_length=lowerCAmelCase_ , return_tensors=lowerCAmelCase_ , return_attention_mask=lowerCAmelCase_ , **lowerCAmelCase_ , ) elif titles is None or texts is None: lowercase_ = titles if texts is None else texts return super().__call__( lowerCAmelCase_ , lowerCAmelCase_ , padding=lowerCAmelCase_ , truncation=lowerCAmelCase_ , max_length=lowerCAmelCase_ , return_tensors=lowerCAmelCase_ , return_attention_mask=lowerCAmelCase_ , **lowerCAmelCase_ , ) lowercase_ = titles if not isinstance(lowerCAmelCase_ , lowerCAmelCase_) else [titles] lowercase_ = texts if not isinstance(lowerCAmelCase_ , lowerCAmelCase_) else [texts] lowercase_ = len(lowerCAmelCase_) lowercase_ = questions if not isinstance(lowerCAmelCase_ , lowerCAmelCase_) else [questions] * n_passages if len(lowerCAmelCase_) != len(lowerCAmelCase_): raise ValueError( F'''There should be as many titles than texts but got {len(lowerCAmelCase_)} titles and {len(lowerCAmelCase_)} texts.''') lowercase_ = super().__call__(lowerCAmelCase_ , lowerCAmelCase_ , padding=lowerCAmelCase_ , truncation=lowerCAmelCase_)["""input_ids"""] lowercase_ = super().__call__(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ , padding=lowerCAmelCase_ , truncation=lowerCAmelCase_)["""input_ids"""] lowercase_ = { """input_ids""": [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(lowerCAmelCase_ , lowerCAmelCase_) ] } if return_attention_mask is not False: lowercase_ = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id) for input_id in input_ids]) lowercase_ = attention_mask return self.pad(lowerCAmelCase_ , padding=lowerCAmelCase_ , max_length=lowerCAmelCase_ , return_tensors=lowerCAmelCase_) def _UpperCAmelCase ( self : Tuple , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Union[str, Any] = 1_6 , lowerCAmelCase_ : Union[str, Any] = 6_4 , lowerCAmelCase_ : Any = 4 , ): """simple docstring""" lowercase_ = reader_input["""input_ids"""] lowercase_ , lowercase_ , lowercase_ = reader_output[:3] lowercase_ = len(lowerCAmelCase_) lowercase_ = sorted(range(lowerCAmelCase_) , reverse=lowerCAmelCase_ , key=relevance_logits.__getitem__) lowercase_ = [] for doc_id in sorted_docs: lowercase_ = list(input_ids[doc_id]) # assuming question & title information is at the beginning of the sequence lowercase_ = sequence_ids.index(self.sep_token_id , 2) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: lowercase_ = sequence_ids.index(self.pad_token_id) else: lowercase_ = len(lowerCAmelCase_) lowercase_ = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=lowerCAmelCase_ , top_spans=lowerCAmelCase_ , ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=lowerCAmelCase_ , start_index=lowerCAmelCase_ , end_index=lowerCAmelCase_ , text=self.decode(sequence_ids[start_index : end_index + 1]) , )) if len(lowerCAmelCase_) >= num_spans: break return nbest_spans_predictions[:num_spans] def _UpperCAmelCase ( self : Tuple , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : List[Any] , ): """simple docstring""" lowercase_ = [] for start_index, start_score in enumerate(lowerCAmelCase_): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length]): scores.append(((start_index, start_index + answer_length), start_score + end_score)) lowercase_ = sorted(lowerCAmelCase_ , key=lambda lowerCAmelCase_: x[1] , reverse=lowerCAmelCase_) lowercase_ = [] for (start_index, end_index), score in scores: if start_index > end_index: raise ValueError(F'''Wrong span indices: [{start_index}:{end_index}]''') lowercase_ = end_index - start_index + 1 if length > max_answer_length: raise ValueError(F'''Span is too long: {length} > {max_answer_length}''') if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals): continue chosen_span_intervals.append((start_index, end_index)) if len(lowerCAmelCase_) == top_spans: break return chosen_span_intervals @add_end_docstrings(snake_case_ ) class SCREAMING_SNAKE_CASE__ ( snake_case_ , snake_case_ ): lowercase__ = VOCAB_FILES_NAMES lowercase__ = READER_PRETRAINED_VOCAB_FILES_MAP lowercase__ = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__ = READER_PRETRAINED_INIT_CONFIGURATION lowercase__ = ["""input_ids""", """attention_mask"""]
136
"""simple docstring""" import itertools import random import unittest import numpy as np from transformers import ASTFeatureExtractor from transformers.testing_utils import require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin SCREAMING_SNAKE_CASE__:Any = random.Random() if is_torch_available(): import torch def _lowerCamelCase( a , a=1.0 , a=None , a=None ): if rng is None: __a = global_rng __a = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class snake_case__ ( unittest.TestCase ): def __init__( self , lowerCamelCase , lowerCamelCase=7 , lowerCamelCase=400 , lowerCamelCase=2000 , lowerCamelCase=1 , lowerCamelCase=0.0 , lowerCamelCase=16000 , lowerCamelCase=True , lowerCamelCase=True , ): __a = parent __a = batch_size __a = min_seq_length __a = max_seq_length __a = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) __a = feature_size __a = padding_value __a = sampling_rate __a = return_attention_mask __a = do_normalize def a__ ( self ): return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def a__ ( self , lowerCamelCase=False , lowerCamelCase=False ): def _flatten(lowerCamelCase ): return list(itertools.chain(*lowerCamelCase ) ) if equal_length: __a = floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size __a = [ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: __a = [np.asarray(lowerCamelCase ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class snake_case__ ( snake_case_, unittest.TestCase ): _snake_case : str = ASTFeatureExtractor def a__ ( self ): __a = ASTFeatureExtractionTester(self ) def a__ ( self ): # Tests that all call wrap to encode_plus and batch_encode_plus __a = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 __a = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] __a = [np.asarray(lowerCamelCase ) for speech_input in speech_inputs] # Test not batched input __a = feat_extract(speech_inputs[0] , return_tensors="np" ).input_values __a = feat_extract(np_speech_inputs[0] , return_tensors="np" ).input_values self.assertTrue(np.allclose(lowerCamelCase , lowerCamelCase , atol=1E-3 ) ) # Test batched __a = feat_extract(lowerCamelCase , padding=lowerCamelCase , return_tensors="np" ).input_values __a = feat_extract(lowerCamelCase , padding=lowerCamelCase , return_tensors="np" ).input_values for enc_seq_a, enc_seq_a in zip(lowerCamelCase , lowerCamelCase ): self.assertTrue(np.allclose(lowerCamelCase , lowerCamelCase , atol=1E-3 ) ) # Test 2-D numpy arrays are batched. __a = [floats_list((1, x) )[0] for x in (800, 800, 800)] __a = np.asarray(lowerCamelCase ) __a = feat_extract(lowerCamelCase , return_tensors="np" ).input_values __a = feat_extract(lowerCamelCase , return_tensors="np" ).input_values for enc_seq_a, enc_seq_a in zip(lowerCamelCase , lowerCamelCase ): self.assertTrue(np.allclose(lowerCamelCase , lowerCamelCase , atol=1E-3 ) ) @require_torch def a__ ( self ): import torch __a = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) __a = np.random.rand(100 ).astype(np.floataa ) __a = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: __a = feature_extractor.pad([{"input_values": inputs}] , return_tensors="np" ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) __a = feature_extractor.pad([{"input_values": inputs}] , return_tensors="pt" ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) def a__ ( self , lowerCamelCase ): from datasets import load_dataset __a = load_dataset("hf-internal-testing/librispeech_asr_dummy" , "clean" , split="validation" ) # automatic decoding with librispeech __a = ds.sort("id" ).select(range(lowerCamelCase ) )[:num_samples]["audio"] return [x["array"] for x in speech_samples] @require_torch def a__ ( self ): # fmt: off __a = torch.tensor( [-0.9894, -1.2776, -0.9066, -1.2776, -0.9349, -1.2609, -1.0386, -1.2776, -1.1561, -1.2776, -1.2052, -1.2723, -1.2190, -1.2132, -1.2776, -1.1133, -1.1953, -1.1343, -1.1584, -1.2203, -1.1770, -1.2474, -1.2381, -1.1936, -0.9270, -0.8317, -0.8049, -0.7706, -0.7565, -0.7869] ) # fmt: on __a = self._load_datasamples(1 ) __a = ASTFeatureExtractor() __a = feature_extractor(lowerCamelCase , return_tensors="pt" ).input_values self.assertEquals(input_values.shape , (1, 1024, 128) ) self.assertTrue(torch.allclose(input_values[0, 0, :30] , lowerCamelCase , atol=1E-4 ) )
261
0
'''simple docstring''' import warnings from ...utils import logging from .image_processing_glpn import GLPNImageProcessor __a = logging.get_logger(__name__) class UpperCAmelCase_ ( _a ): """simple docstring""" def __init__( self : List[str] , *snake_case_ : str , **snake_case_ : List[Any] ): warnings.warn( """The class GLPNFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use GLPNImageProcessor instead.""" , _a , ) super().__init__(*_a , **_a )
370
'''simple docstring''' import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert import BertTokenizer __a = logging.get_logger(__name__) __a = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} __a = { "vocab_file": { "facebook/dpr-ctx_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-ctx_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-ctx_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-ctx_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json" ), }, } __a = { "vocab_file": { "facebook/dpr-question_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-question_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-question_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-question_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json" ), }, } __a = { "vocab_file": { "facebook/dpr-reader-single-nq-base": ( "https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-reader-multiset-base": ( "https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-reader-single-nq-base": ( "https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-reader-multiset-base": ( "https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json" ), }, } __a = { "facebook/dpr-ctx_encoder-single-nq-base": 512, "facebook/dpr-ctx_encoder-multiset-base": 512, } __a = { "facebook/dpr-question_encoder-single-nq-base": 512, "facebook/dpr-question_encoder-multiset-base": 512, } __a = { "facebook/dpr-reader-single-nq-base": 512, "facebook/dpr-reader-multiset-base": 512, } __a = { "facebook/dpr-ctx_encoder-single-nq-base": {"do_lower_case": True}, "facebook/dpr-ctx_encoder-multiset-base": {"do_lower_case": True}, } __a = { "facebook/dpr-question_encoder-single-nq-base": {"do_lower_case": True}, "facebook/dpr-question_encoder-multiset-base": {"do_lower_case": True}, } __a = { "facebook/dpr-reader-single-nq-base": {"do_lower_case": True}, "facebook/dpr-reader-multiset-base": {"do_lower_case": True}, } class UpperCAmelCase_ ( _a ): """simple docstring""" lowercase = VOCAB_FILES_NAMES lowercase = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP lowercase = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION class UpperCAmelCase_ ( _a ): """simple docstring""" lowercase = VOCAB_FILES_NAMES lowercase = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP lowercase = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION __a = collections.namedtuple( "DPRSpanPrediction", ["span_score", "relevance_score", "doc_id", "start_index", "end_index", "text"] ) __a = collections.namedtuple("DPRReaderOutput", ["start_logits", "end_logits", "relevance_logits"]) __a = R"\n Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`.\n It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers),\n using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)`\n with the format:\n\n ```\n [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids>\n ```\n\n Args:\n questions (`str` or `List[str]`):\n The questions to be encoded. You can specify one question for many passages. In this case, the question\n will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in\n `titles` or `texts`.\n titles (`str` or `List[str]`):\n The passages titles to be encoded. This can be a string or a list of strings if there are several passages.\n texts (`str` or `List[str]`):\n The passages texts to be encoded. This can be a string or a list of strings if there are several passages.\n padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):\n Activates and controls padding. Accepts the following values:\n\n - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence\n if provided).\n - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided.\n - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different\n lengths).\n truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):\n Activates and controls truncation. Accepts the following values:\n\n - `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to\n the maximum acceptable input length for the model if that argument is not provided. This will truncate\n token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch\n of pairs) is provided.\n - `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the first\n sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the\n second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths\n greater than the model maximum admissible input size).\n max_length (`int`, *optional*):\n Controls the maximum length to use by one of the truncation/padding parameters.\n\n If left unset or set to `None`, this will use the predefined model maximum length if a maximum length\n is required by one of the truncation/padding parameters. If the model has no specific maximum input\n length (like XLNet) truncation/padding to a maximum length will be deactivated.\n return_tensors (`str` or [`~utils.TensorType`], *optional*):\n If set, will return tensors instead of list of python integers. Acceptable values are:\n\n - `'tf'`: Return TensorFlow `tf.constant` objects.\n - `'pt'`: Return PyTorch `torch.Tensor` objects.\n - `'np'`: Return Numpy `np.ndarray` objects.\n return_attention_mask (`bool`, *optional*):\n Whether or not to return the attention mask. If not set, will return the attention mask according to the\n specific tokenizer's default, defined by the `return_outputs` attribute.\n\n [What are attention masks?](../glossary#attention-mask)\n\n Returns:\n `Dict[str, List[List[int]]]`: A dictionary with the following keys:\n\n - `input_ids`: List of token ids to be fed to a model.\n - `attention_mask`: List of indices specifying which tokens should be attended to by the model.\n " @add_start_docstrings(_a ) class UpperCAmelCase_ : """simple docstring""" def __call__( self : str , snake_case_ : Optional[Any] , snake_case_ : Optional[str] = None , snake_case_ : Optional[str] = None , snake_case_ : Union[bool, str] = False , snake_case_ : Union[bool, str] = False , snake_case_ : Optional[int] = None , snake_case_ : Optional[Union[str, TensorType]] = None , snake_case_ : Optional[bool] = None , **snake_case_ : Union[str, Any] , ): if titles is None and texts is None: return super().__call__( snake_case_ , padding=snake_case_ , truncation=snake_case_ , max_length=snake_case_ , return_tensors=snake_case_ , return_attention_mask=snake_case_ , **snake_case_ , ) elif titles is None or texts is None: snake_case__ : int = titles if texts is None else texts return super().__call__( snake_case_ , snake_case_ , padding=snake_case_ , truncation=snake_case_ , max_length=snake_case_ , return_tensors=snake_case_ , return_attention_mask=snake_case_ , **snake_case_ , ) snake_case__ : List[str] = titles if not isinstance(snake_case_ , snake_case_ ) else [titles] snake_case__ : Union[str, Any] = texts if not isinstance(snake_case_ , snake_case_ ) else [texts] snake_case__ : Dict = len(snake_case_ ) snake_case__ : Union[str, Any] = questions if not isinstance(snake_case_ , snake_case_ ) else [questions] * n_passages if len(snake_case_ ) != len(snake_case_ ): raise ValueError( f"There should be as many titles than texts but got {len(snake_case_ )} titles and {len(snake_case_ )} texts." ) snake_case__ : int = super().__call__(snake_case_ , snake_case_ , padding=snake_case_ , truncation=snake_case_ )["""input_ids"""] snake_case__ : Any = super().__call__(snake_case_ , add_special_tokens=snake_case_ , padding=snake_case_ , truncation=snake_case_ )["""input_ids"""] snake_case__ : Dict = { """input_ids""": [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(snake_case_ , snake_case_ ) ] } if return_attention_mask is not False: snake_case__ : List[Any] = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) snake_case__ : Union[str, Any] = attention_mask return self.pad(snake_case_ , padding=snake_case_ , max_length=snake_case_ , return_tensors=snake_case_ ) def lowerCamelCase ( self : Optional[int] , snake_case_ : BatchEncoding , snake_case_ : DPRReaderOutput , snake_case_ : int = 16 , snake_case_ : int = 64 , snake_case_ : int = 4 , ): snake_case__ : Optional[int] = reader_input["""input_ids"""] snake_case__ , snake_case__ , snake_case__ : List[str] = reader_output[:3] snake_case__ : Union[str, Any] = len(snake_case_ ) snake_case__ : Tuple = sorted(range(snake_case_ ) , reverse=snake_case_ , key=relevance_logits.__getitem__ ) snake_case__ : List[DPRReaderOutput] = [] for doc_id in sorted_docs: snake_case__ : Union[str, Any] = list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence snake_case__ : Optional[Any] = sequence_ids.index(self.sep_token_id , 2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: snake_case__ : int = sequence_ids.index(self.pad_token_id ) else: snake_case__ : int = len(snake_case_ ) snake_case__ : Optional[int] = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=snake_case_ , top_spans=snake_case_ , ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=snake_case_ , start_index=snake_case_ , end_index=snake_case_ , text=self.decode(sequence_ids[start_index : end_index + 1] ) , ) ) if len(snake_case_ ) >= num_spans: break return nbest_spans_predictions[:num_spans] def lowerCamelCase ( self : str , snake_case_ : List[int] , snake_case_ : List[int] , snake_case_ : int , snake_case_ : int , ): snake_case__ : List[str] = [] for start_index, start_score in enumerate(snake_case_ ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) snake_case__ : Any = sorted(snake_case_ , key=lambda snake_case_ : x[1] , reverse=snake_case_ ) snake_case__ : Optional[Any] = [] for (start_index, end_index), score in scores: if start_index > end_index: raise ValueError(f"Wrong span indices: [{start_index}:{end_index}]" ) snake_case__ : Union[str, Any] = end_index - start_index + 1 if length > max_answer_length: raise ValueError(f"Span is too long: {length} > {max_answer_length}" ) if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(snake_case_ ) == top_spans: break return chosen_span_intervals @add_end_docstrings(_a ) class UpperCAmelCase_ ( _a , _a ): """simple docstring""" lowercase = VOCAB_FILES_NAMES lowercase = READER_PRETRAINED_VOCAB_FILES_MAP lowercase = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase = READER_PRETRAINED_INIT_CONFIGURATION lowercase = ["input_ids", "attention_mask"]
43
0
"""simple docstring""" import argparse import shlex import runhouse as rh if __name__ == "__main__": # Refer to https://runhouse-docs.readthedocs-hosted.com/en/latest/api/python/cluster.html#hardware-setup for cloud access # setup instructions, if using on-demand hardware # If user passes --user <user> --host <host> --key_path <key_path> <example> <args>, fill them in as BYO cluster # If user passes --instance <instance> --provider <provider> <example> <args>, fill them in as on-demand cluster # Throw an error if user passes both BYO and on-demand cluster args # Otherwise, use default values __lowercase = argparse.ArgumentParser() parser.add_argument("""--user""", type=str, default="""ubuntu""") parser.add_argument("""--host""", type=str, default="""localhost""") parser.add_argument("""--key_path""", type=str, default=None) parser.add_argument("""--instance""", type=str, default="""V100:1""") parser.add_argument("""--provider""", type=str, default="""cheapest""") parser.add_argument("""--use_spot""", type=bool, default=False) parser.add_argument("""--example""", type=str, default="""pytorch/text-generation/run_generation.py""") __lowercase , __lowercase = parser.parse_known_args() if args.host != "localhost": if args.instance != "V100:1" or args.provider != "cheapest": raise ValueError("""Cannot specify both BYO and on-demand cluster args""") __lowercase = rh.cluster( name="""rh-cluster""", ips=[args.host], ssh_creds={"""ssh_user""": args.user, """ssh_private_key""": args.key_path} ) else: __lowercase = rh.cluster( name="""rh-cluster""", instance_type=args.instance, provider=args.provider, use_spot=args.use_spot ) __lowercase = args.example.rsplit("""/""", 1)[0] # Set up remote environment cluster.install_packages(["""pip:./"""]) # Installs transformers from local source # Note transformers is copied into the home directory on the remote machine, so we can install from there cluster.run([f'''pip install -r transformers/examples/{example_dir}/requirements.txt''']) cluster.run(["""pip install torch --upgrade --extra-index-url https://download.pytorch.org/whl/cu117"""]) # Run example. You can bypass the CLI wrapper and paste your own code here. cluster.run([f'''python transformers/examples/{args.example} {' '.join(shlex.quote(arg) for arg in unknown)}''']) # Alternatively, we can just import and run a training function (especially if there's no wrapper CLI): # from my_script... import train # reqs = ['pip:./', 'torch', 'datasets', 'accelerate', 'evaluate', 'tqdm', 'scipy', 'scikit-learn', 'tensorboard'] # launch_train_gpu = rh.function(fn=train, # system=gpu, # reqs=reqs, # name='train_bert_glue') # # We can pass in arguments just like we would to a function: # launch_train_gpu(num_epochs = 3, lr = 2e-5, seed = 42, batch_size = 16 # stream_logs=True)
40
'''simple docstring''' def __magic_name__( lowerCamelCase, lowerCamelCase): # "extended trapezoidal rule" # int(f) = dx/2 * (f1 + 2f2 + ... + fn) __lowerCAmelCase = (boundary[1] - boundary[0]) / steps __lowerCAmelCase = boundary[0] __lowerCAmelCase = boundary[1] __lowerCAmelCase = make_points(lowerCamelCase, lowerCamelCase, lowerCamelCase) __lowerCAmelCase = 0.0 y += (h / 2.0) * f(lowerCamelCase) for i in x_i: # print(i) y += h * f(lowerCamelCase) y += (h / 2.0) * f(lowerCamelCase) return y def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase): __lowerCAmelCase = a + h while x < (b - h): yield x __lowerCAmelCase = x + h def __magic_name__( lowerCamelCase): # enter your function here __lowerCAmelCase = (x - 0) * (x - 0) return y def __magic_name__( ): __lowerCAmelCase = 0.0 # Lower bound of integration __lowerCAmelCase = 1.0 # Upper bound of integration __lowerCAmelCase = 10.0 # define number of steps or resolution __lowerCAmelCase = [a, b] # define boundary of integration __lowerCAmelCase = method_a(lowerCamelCase, lowerCamelCase) print(F"""y = {y}""") if __name__ == "__main__": main()
174
0
def a__ ( UpperCAmelCase : list ) -> list: UpperCAmelCase : Optional[Any] = len(UpperCAmelCase ) for _ in range(UpperCAmelCase ): for i in range(_ % 2 , arr_size - 1 , 2 ): if arr[i + 1] < arr[i]: UpperCAmelCase : Tuple = arr[i + 1], arr[i] return arr if __name__ == "__main__": _lowerCamelCase : Tuple = list(range(1_0, 0, -1)) print(f"""Original: {arr}. Sorted: {odd_even_transposition(arr)}""")
369
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _lowerCamelCase : str = {"configuration_xlnet": ["XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "XLNetConfig"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : List[Any] = ["XLNetTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Optional[Any] = ["XLNetTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Dict = [ "XLNET_PRETRAINED_MODEL_ARCHIVE_LIST", "XLNetForMultipleChoice", "XLNetForQuestionAnswering", "XLNetForQuestionAnsweringSimple", "XLNetForSequenceClassification", "XLNetForTokenClassification", "XLNetLMHeadModel", "XLNetModel", "XLNetPreTrainedModel", "load_tf_weights_in_xlnet", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Union[str, Any] = [ "TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST", "TFXLNetForMultipleChoice", "TFXLNetForQuestionAnsweringSimple", "TFXLNetForSequenceClassification", "TFXLNetForTokenClassification", "TFXLNetLMHeadModel", "TFXLNetMainLayer", "TFXLNetModel", "TFXLNetPreTrainedModel", ] if TYPE_CHECKING: from .configuration_xlnet import XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet import XLNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet_fast import XLNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlnet import ( XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, XLNetForMultipleChoice, XLNetForQuestionAnswering, XLNetForQuestionAnsweringSimple, XLNetForSequenceClassification, XLNetForTokenClassification, XLNetLMHeadModel, XLNetModel, XLNetPreTrainedModel, load_tf_weights_in_xlnet, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlnet import ( TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLNetForMultipleChoice, TFXLNetForQuestionAnsweringSimple, TFXLNetForSequenceClassification, TFXLNetForTokenClassification, TFXLNetLMHeadModel, TFXLNetMainLayer, TFXLNetModel, TFXLNetPreTrainedModel, ) else: import sys _lowerCamelCase : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
99
0
def __lowercase ( __lowerCAmelCase : list ): if len(__lowerCAmelCase ) <= 1: return lst a__ = 1 while i < len(__lowerCAmelCase ): if lst[i - 1] <= lst[i]: i += 1 else: a__ , a__ = lst[i], lst[i - 1] i -= 1 if i == 0: a__ = 1 return lst if __name__ == "__main__": snake_case : List[str] = input('''Enter numbers separated by a comma:\n''').strip() snake_case : Optional[Any] = [int(item) for item in user_input.split(''',''')] print(gnome_sort(unsorted))
240
from abc import ABC, abstractmethod from argparse import ArgumentParser class snake_case_ (lowerCamelCase_ ): @staticmethod @abstractmethod def lowerCamelCase__( __snake_case :ArgumentParser ) -> Dict: raise NotImplementedError() @abstractmethod def lowerCamelCase__( self :Union[str, Any] ) -> Dict: raise NotImplementedError()
240
1
"""simple docstring""" import math import os from copy import deepcopy import datasets import evaluate import torch import transformers from datasets import load_dataset from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer from accelerate import Accelerator from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import is_tpu_available, set_seed __A : List[Any] = 'true' def __SCREAMING_SNAKE_CASE ( lowercase__ , lowercase__=82 , lowercase__=16 ): """simple docstring""" set_seed(42 ) A = RegressionModel() A = deepcopy(SCREAMING_SNAKE_CASE_ ) A = RegressionDataset(length=SCREAMING_SNAKE_CASE_ ) A = DataLoader(SCREAMING_SNAKE_CASE_ , batch_size=SCREAMING_SNAKE_CASE_ ) model.to(accelerator.device ) A , A = accelerator.prepare(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) return model, ddp_model, dataloader def __SCREAMING_SNAKE_CASE ( lowercase__ , lowercase__=False ): """simple docstring""" A = AutoTokenizer.from_pretrained("hf-internal-testing/mrpc-bert-base-cased" ) A = load_dataset("glue" , "mrpc" , split="validation" ) def tokenize_function(lowercase__ ): A = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ ) return outputs with accelerator.main_process_first(): A = dataset.map( SCREAMING_SNAKE_CASE_ , batched=SCREAMING_SNAKE_CASE_ , remove_columns=["idx", "sentence1", "sentence2"] , ) A = tokenized_datasets.rename_column("label" , "labels" ) def collate_fn(lowercase__ ): if use_longest: return tokenizer.pad(SCREAMING_SNAKE_CASE_ , padding="longest" , return_tensors="pt" ) return tokenizer.pad(SCREAMING_SNAKE_CASE_ , padding="max_length" , max_length=128 , return_tensors="pt" ) return DataLoader(SCREAMING_SNAKE_CASE_ , shuffle=SCREAMING_SNAKE_CASE_ , collate_fn=SCREAMING_SNAKE_CASE_ , batch_size=16 ) def __SCREAMING_SNAKE_CASE ( lowercase__ , lowercase__ ): """simple docstring""" A = Accelerator(dispatch_batches=SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) A = get_dataloader(SCREAMING_SNAKE_CASE_ , not dispatch_batches ) A = AutoModelForSequenceClassification.from_pretrained( "hf-internal-testing/mrpc-bert-base-cased" , return_dict=SCREAMING_SNAKE_CASE_ ) A , A = accelerator.prepare(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) return {"ddp": [ddp_model, ddp_dataloader, "cuda:0"], "no": [model, dataloader, accelerator.device]}, accelerator def __SCREAMING_SNAKE_CASE ( lowercase__ , lowercase__ , lowercase__ ): """simple docstring""" A = [] for batch in dataloader: A , A = batch.values() with torch.no_grad(): A = model(SCREAMING_SNAKE_CASE_ ) A , A = accelerator.gather_for_metrics((logit, target) ) logits_and_targets.append((logit, target) ) A , A = [], [] for logit, targ in logits_and_targets: logits.append(SCREAMING_SNAKE_CASE_ ) targs.append(SCREAMING_SNAKE_CASE_ ) A , A = torch.cat(SCREAMING_SNAKE_CASE_ ), torch.cat(SCREAMING_SNAKE_CASE_ ) return logits, targs def __SCREAMING_SNAKE_CASE ( lowercase__ , lowercase__=82 , lowercase__=False , lowercase__=False , lowercase__=16 ): """simple docstring""" A , A , A = get_basic_setup(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) A , A = generate_predictions(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) assert ( len(SCREAMING_SNAKE_CASE_ ) == num_samples ), F"""Unexpected number of inputs:\n Expected: {num_samples}\n Actual: {len(SCREAMING_SNAKE_CASE_ )}""" def __SCREAMING_SNAKE_CASE ( lowercase__ = False , lowercase__ = False ): """simple docstring""" A = evaluate.load("glue" , "mrpc" ) A , A = get_mrpc_setup(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # First do baseline A , A , A = setup["no"] model.to(SCREAMING_SNAKE_CASE_ ) model.eval() for batch in dataloader: batch.to(SCREAMING_SNAKE_CASE_ ) with torch.inference_mode(): A = model(**SCREAMING_SNAKE_CASE_ ) A = outputs.logits.argmax(dim=-1 ) metric.add_batch(predictions=SCREAMING_SNAKE_CASE_ , references=batch["labels"] ) A = metric.compute() # Then do distributed A , A , A = setup["ddp"] model.eval() for batch in dataloader: with torch.inference_mode(): A = model(**SCREAMING_SNAKE_CASE_ ) A = outputs.logits.argmax(dim=-1 ) A = batch["labels"] A , A = accelerator.gather_for_metrics((preds, references) ) metric.add_batch(predictions=SCREAMING_SNAKE_CASE_ , references=SCREAMING_SNAKE_CASE_ ) A = metric.compute() for key in "accuracy f1".split(): assert math.isclose( baseline[key] , distributed[key] ), F"""Baseline and Distributed are not the same for key {key}:\n\tBaseline: {baseline[key]}\n\tDistributed: {distributed[key]}\n""" def __SCREAMING_SNAKE_CASE ( ): """simple docstring""" A = Accelerator(split_batches=SCREAMING_SNAKE_CASE_ , dispatch_batches=SCREAMING_SNAKE_CASE_ ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_warning() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # These are a bit slower so they should only be ran on the GPU or TPU if torch.cuda.is_available() or is_tpu_available(): if accelerator.is_local_main_process: print("**Testing gather_for_metrics**" ) for split_batches in [True, False]: for dispatch_batches in [True, False]: if accelerator.is_local_main_process: print(F"""With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`""" ) test_mrpc(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) accelerator.state._reset_state() if accelerator.is_local_main_process: print("**Test torch metrics**" ) for split_batches in [True, False]: for dispatch_batches in [True, False]: A = Accelerator(split_batches=SCREAMING_SNAKE_CASE_ , dispatch_batches=SCREAMING_SNAKE_CASE_ ) if accelerator.is_local_main_process: print(F"""With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`, length=99""" ) test_torch_metrics(SCREAMING_SNAKE_CASE_ , 99 ) accelerator.state._reset_state() if accelerator.is_local_main_process: print("**Test last batch is not dropped when perfectly divisible**" ) A = Accelerator() test_torch_metrics(SCREAMING_SNAKE_CASE_ , 512 ) accelerator.state._reset_state() def __SCREAMING_SNAKE_CASE ( lowercase__ ): """simple docstring""" # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
363
"""simple docstring""" import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( UniSpeechConfig, UniSpeechForCTC, UniSpeechForPreTraining, WavaVecaFeatureExtractor, WavaVecaPhonemeCTCTokenizer, WavaVecaProcessor, logging, ) logging.set_verbosity_info() __A : int = logging.get_logger(__name__) __A : Optional[Any] = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'ctc_proj', 'mask_emb': 'masked_spec_embed', } __A : str = [ 'ctc_proj', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', ] def __SCREAMING_SNAKE_CASE ( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ): """simple docstring""" for attribute in key.split("." ): if is_finetuned: if attribute in ["quantizer", "project_q", "project_hid"]: # those layers are only relevant for pretraining and should be dropped return if attribute == "ctc_proj": # we should rename `ctc_proj` to `lm_head` for fine-tuned phoneme models A = "lm_head" A = getattr(lowercase__ , lowercase__ ) if weight_type is not None: A = getattr(lowercase__ , lowercase__ ).shape else: A = hf_pointer.shape assert hf_shape == value.shape, ( F"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": A = value elif weight_type == "weight_g": A = value elif weight_type == "weight_v": A = value elif weight_type == "bias": A = value else: A = value logger.info(F"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" ) def __SCREAMING_SNAKE_CASE ( lowercase__ , lowercase__ , lowercase__ ): """simple docstring""" A = [] A = fairseq_model.state_dict() A = hf_model.unispeech.feature_extractor for name, value in fairseq_dict.items(): A = False if "conv_layers" in name: load_conv_layer( lowercase__ , lowercase__ , lowercase__ , lowercase__ , hf_model.config.feat_extract_norm == "group" , ) A = True else: for key, mapped_key in MAPPING.items(): A = "unispeech." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: A = True if "*" in mapped_key: A = name.split(lowercase__ )[0].split("." )[-2] A = mapped_key.replace("*" , lowercase__ ) if "weight_g" in name: A = "weight_g" elif "weight_v" in name: A = "weight_v" elif "bias" in name: A = "bias" elif "weight" in name: # TODO: don't match quantizer.weight_proj A = "weight" else: A = None set_recursively(lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) continue if not is_used: unused_weights.append(lowercase__ ) logger.warning(F"""Unused weights: {unused_weights}""" ) def __SCREAMING_SNAKE_CASE ( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ): """simple docstring""" A = full_name.split("conv_layers." )[-1] A = name.split("." ) A = int(items[0] ) A = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) A = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) A = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was""" " found." ) A = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) A = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(lowercase__ ) @torch.no_grad() def __SCREAMING_SNAKE_CASE ( lowercase__ , lowercase__ , lowercase__=None , lowercase__=None , lowercase__=True ): """simple docstring""" if config_path is not None: A = UniSpeechConfig.from_pretrained(lowercase__ ) else: A = UniSpeechConfig() if is_finetuned: if dict_path: A = Dictionary.load_from_json(lowercase__ ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq A = target_dict.pad_index A = target_dict.bos_index A = target_dict.eos_index A = len(target_dict.symbols ) A = os.path.join(lowercase__ , "vocab.json" ) if not os.path.isdir(lowercase__ ): logger.error("--pytorch_dump_folder_path ({}) should be a directory".format(lowercase__ ) ) return os.makedirs(lowercase__ , exist_ok=lowercase__ ) A = target_dict.indices # fairseq has the <pad> and <s> switched A = 42 A = 43 with open(lowercase__ , "w" , encoding="utf-8" ) as vocab_handle: json.dump(lowercase__ , lowercase__ ) A = WavaVecaPhonemeCTCTokenizer( lowercase__ , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="|" , do_lower_case=lowercase__ , ) A = True if config.feat_extract_norm == "layer" else False A = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16_000 , padding_value=0 , do_normalize=lowercase__ , return_attention_mask=lowercase__ , ) A = WavaVecaProcessor(feature_extractor=lowercase__ , tokenizer=lowercase__ ) processor.save_pretrained(lowercase__ ) A = UniSpeechForCTC(lowercase__ ) else: A = UniSpeechForPreTraining(lowercase__ ) if is_finetuned: A , A , A = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] ), "w2v_path": checkpoint_path} ) else: A , A , A = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) A = model[0].eval() recursively_load_weights(lowercase__ , lowercase__ , lowercase__ ) hf_unispeech.save_pretrained(lowercase__ ) if __name__ == "__main__": __A : List[str] = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not' ) __A : int = parser.parse_args() convert_unispeech_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
57
0
def a( A : list ) -> list: """simple docstring""" a = False while is_sorted is False: # Until all the indices are traversed keep looping a = True for i in range(0 , len(A ) - 1 , 2 ): # iterating over all even indices if input_list[i] > input_list[i + 1]: a , a = input_list[i + 1], input_list[i] # swapping if elements not in order a = False for i in range(1 , len(A ) - 1 , 2 ): # iterating over all odd indices if input_list[i] > input_list[i + 1]: a , a = input_list[i + 1], input_list[i] # swapping if elements not in order a = False return input_list if __name__ == "__main__": print("Enter list to be sorted") _lowercase: Union[str, Any] = [int(x) for x in input().split()] # inputing elements of the list in one line _lowercase: Optional[Any] = odd_even_sort(input_list) print("The sorted list is") print(sorted_list)
227
from __future__ import annotations _lowercase: Tuple = list[list[int]] # assigning initial values to the grid _lowercase: Matrix = [ [3, 0, 6, 5, 0, 8, 4, 0, 0], [5, 2, 0, 0, 0, 0, 0, 0, 0], [0, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] # a grid with no solution _lowercase: Matrix = [ [5, 0, 6, 5, 0, 8, 4, 0, 3], [5, 2, 0, 0, 0, 0, 0, 0, 2], [1, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] def a( A : Matrix , A : int , A : int , A : int ) -> bool: """simple docstring""" for i in range(9 ): if grid[row][i] == n or grid[i][column] == n: return False for i in range(3 ): for j in range(3 ): if grid[(row - row % 3) + i][(column - column % 3) + j] == n: return False return True def a( A : Matrix ) -> tuple[int, int] | None: """simple docstring""" for i in range(9 ): for j in range(9 ): if grid[i][j] == 0: return i, j return None def a( A : Matrix ) -> Matrix | None: """simple docstring""" if location := find_empty_location(A ): a , a = location else: # If the location is ``None``, then the grid is solved. return grid for digit in range(1 , 10 ): if is_safe(A , A , A , A ): a = digit if sudoku(A ) is not None: return grid a = 0 return None def a( A : Matrix ) -> None: """simple docstring""" for row in grid: for cell in row: print(A , end=" " ) print() if __name__ == "__main__": # make a copy of grid so that you can compare with the unmodified grid for example_grid in (initial_grid, no_solution): print("\nExample grid:\n" + "=" * 20) print_solution(example_grid) print("\nExample grid solution:") _lowercase: List[str] = sudoku(example_grid) if solution is not None: print_solution(solution) else: print("Cannot find a solution.")
227
1
"""simple docstring""" import os from datetime import datetime as dt from github import Github UpperCamelCase_ =[ """good first issue""", """good second issue""", """good difficult issue""", """enhancement""", """new pipeline/model""", """new scheduler""", """wip""", ] def a_ ( ): _UpperCamelCase : str = Github(os.environ['''GITHUB_TOKEN'''] ) _UpperCamelCase : List[Any] = g.get_repo('''huggingface/diffusers''' ) _UpperCamelCase : Any = repo.get_issues(state='''open''' ) for issue in open_issues: _UpperCamelCase : Optional[int] = sorted(issue.get_comments() , key=lambda _lowercase : i.created_at , reverse=_lowercase ) _UpperCamelCase : Optional[Any] = comments[0] if len(_lowercase ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Closes the issue after 7 days of inactivity since the Stalebot notification. issue.edit(state='''closed''' ) elif ( "stale" in issue.get_labels() and last_comment is not None and last_comment.user.login != "github-actions[bot]" ): # Opens the issue if someone other than Stalebot commented. issue.edit(state='''open''' ) issue.remove_from_labels('''stale''' ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Post a Stalebot notification after 23 days of inactivity. issue.create_comment( '''This issue has been automatically marked as stale because it has not had ''' '''recent activity. If you think this still needs to be addressed ''' '''please comment on this thread.\n\nPlease note that issues that do not follow the ''' '''[contributing guidelines](https://github.com/huggingface/diffusers/blob/main/CONTRIBUTING.md) ''' '''are likely to be ignored.''' ) issue.add_to_labels('''stale''' ) if __name__ == "__main__": main()
353
"""simple docstring""" import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST, OpenAIGPTConfig, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification, OpenAIGPTLMHeadModel, OpenAIGPTModel, ) class _a : def __init__( self : Dict, lowerCAmelCase__ : Optional[Any], lowerCAmelCase__ : Optional[int]=1_3, lowerCAmelCase__ : Optional[Any]=7, lowerCAmelCase__ : Optional[Any]=True, lowerCAmelCase__ : Any=True, lowerCAmelCase__ : str=True, lowerCAmelCase__ : Any=9_9, lowerCAmelCase__ : Dict=3_2, lowerCAmelCase__ : List[Any]=5, lowerCAmelCase__ : Tuple=4, lowerCAmelCase__ : List[Any]=3_7, lowerCAmelCase__ : Tuple="gelu", lowerCAmelCase__ : Any=0.1, lowerCAmelCase__ : Optional[Any]=0.1, lowerCAmelCase__ : Dict=5_1_2, lowerCAmelCase__ : List[str]=1_6, lowerCAmelCase__ : Tuple=2, lowerCAmelCase__ : int=0.02, lowerCAmelCase__ : int=3, lowerCAmelCase__ : Optional[Any]=4, lowerCAmelCase__ : Dict=None, ) -> int: '''simple docstring''' _UpperCamelCase : Tuple = parent _UpperCamelCase : Union[str, Any] = batch_size _UpperCamelCase : Union[str, Any] = seq_length _UpperCamelCase : Tuple = is_training _UpperCamelCase : Tuple = use_token_type_ids _UpperCamelCase : Optional[int] = use_labels _UpperCamelCase : Dict = vocab_size _UpperCamelCase : int = hidden_size _UpperCamelCase : Optional[Any] = num_hidden_layers _UpperCamelCase : str = num_attention_heads _UpperCamelCase : Union[str, Any] = intermediate_size _UpperCamelCase : List[str] = hidden_act _UpperCamelCase : Optional[Any] = hidden_dropout_prob _UpperCamelCase : int = attention_probs_dropout_prob _UpperCamelCase : Union[str, Any] = max_position_embeddings _UpperCamelCase : int = type_vocab_size _UpperCamelCase : List[str] = type_sequence_label_size _UpperCamelCase : List[str] = initializer_range _UpperCamelCase : int = num_labels _UpperCamelCase : List[str] = num_choices _UpperCamelCase : str = scope _UpperCamelCase : Optional[int] = self.vocab_size - 1 def snake_case ( self : int ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase : Dict = ids_tensor([self.batch_size, self.seq_length], self.vocab_size ) _UpperCamelCase : List[str] = None if self.use_token_type_ids: _UpperCamelCase : Tuple = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size ) _UpperCamelCase : Optional[int] = None _UpperCamelCase : str = None _UpperCamelCase : List[str] = None if self.use_labels: _UpperCamelCase : int = ids_tensor([self.batch_size], self.type_sequence_label_size ) _UpperCamelCase : Dict = ids_tensor([self.batch_size, self.seq_length], self.num_labels ) _UpperCamelCase : Dict = ids_tensor([self.batch_size], self.num_choices ) _UpperCamelCase : str = OpenAIGPTConfig( vocab_size=self.vocab_size, n_embd=self.hidden_size, n_layer=self.num_hidden_layers, n_head=self.num_attention_heads, n_positions=self.max_position_embeddings, pad_token_id=self.pad_token_id, ) _UpperCamelCase : List[Any] = ids_tensor([self.num_hidden_layers, self.num_attention_heads], 2 ) return ( config, input_ids, head_mask, token_type_ids, sequence_labels, token_labels, choice_labels, ) def snake_case ( self : Union[str, Any], lowerCAmelCase__ : Optional[int], lowerCAmelCase__ : List[str], lowerCAmelCase__ : List[str], lowerCAmelCase__ : List[str], *lowerCAmelCase__ : List[Any] ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase : Dict = OpenAIGPTModel(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() _UpperCamelCase : List[str] = model(lowerCAmelCase__, token_type_ids=lowerCAmelCase__, head_mask=lowerCAmelCase__ ) _UpperCamelCase : Any = model(lowerCAmelCase__, token_type_ids=lowerCAmelCase__ ) _UpperCamelCase : List[str] = model(lowerCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def snake_case ( self : Any, lowerCAmelCase__ : Tuple, lowerCAmelCase__ : Union[str, Any], lowerCAmelCase__ : Any, lowerCAmelCase__ : Optional[Any], *lowerCAmelCase__ : Union[str, Any] ) -> Any: '''simple docstring''' _UpperCamelCase : Any = OpenAIGPTLMHeadModel(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() _UpperCamelCase : Tuple = model(lowerCAmelCase__, token_type_ids=lowerCAmelCase__, labels=lowerCAmelCase__ ) self.parent.assertEqual(result.loss.shape, () ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size) ) def snake_case ( self : Optional[int], lowerCAmelCase__ : str, lowerCAmelCase__ : List[str], lowerCAmelCase__ : Any, lowerCAmelCase__ : List[Any], *lowerCAmelCase__ : Any ) -> int: '''simple docstring''' _UpperCamelCase : Tuple = OpenAIGPTDoubleHeadsModel(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() _UpperCamelCase : Optional[int] = model(lowerCAmelCase__, token_type_ids=lowerCAmelCase__, labels=lowerCAmelCase__ ) self.parent.assertEqual(result.loss.shape, () ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size) ) def snake_case ( self : List[str], lowerCAmelCase__ : Dict, lowerCAmelCase__ : Dict, lowerCAmelCase__ : List[str], lowerCAmelCase__ : Optional[Any], *lowerCAmelCase__ : List[str] ) -> int: '''simple docstring''' _UpperCamelCase : List[Any] = self.num_labels _UpperCamelCase : Optional[int] = OpenAIGPTForSequenceClassification(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() _UpperCamelCase : str = ids_tensor([self.batch_size], self.type_sequence_label_size ) _UpperCamelCase : Union[str, Any] = model(lowerCAmelCase__, token_type_ids=lowerCAmelCase__, labels=lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) ) def snake_case ( self : str ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase : Any = self.prepare_config_and_inputs() ( ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ) : Tuple = config_and_inputs _UpperCamelCase : Tuple = { '''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''head_mask''': head_mask, } return config, inputs_dict @require_torch class _a ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): UpperCamelCase = ( (OpenAIGPTModel, OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification) if is_torch_available() else () ) UpperCamelCase = ( (OpenAIGPTLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly UpperCamelCase = ( { '''feature-extraction''': OpenAIGPTModel, '''text-classification''': OpenAIGPTForSequenceClassification, '''text-generation''': OpenAIGPTLMHeadModel, '''zero-shot''': OpenAIGPTForSequenceClassification, } if is_torch_available() else {} ) def snake_case ( self : Union[str, Any], lowerCAmelCase__ : Any, lowerCAmelCase__ : List[str], lowerCAmelCase__ : str, lowerCAmelCase__ : List[str], lowerCAmelCase__ : List[str] ) -> List[str]: '''simple docstring''' if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `OpenAIGPTConfig` was never used in pipeline tests, either because of a missing checkpoint or because a # tiny config could not be created. return True return False def snake_case ( self : str, lowerCAmelCase__ : Optional[int], lowerCAmelCase__ : List[str], lowerCAmelCase__ : Optional[int]=False ) -> Tuple: '''simple docstring''' _UpperCamelCase : Optional[Any] = super()._prepare_for_class(lowerCAmelCase__, lowerCAmelCase__, return_labels=lowerCAmelCase__ ) if return_labels: if model_class.__name__ == "OpenAIGPTDoubleHeadsModel": _UpperCamelCase : Union[str, Any] = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices, self.model_tester.seq_length), dtype=torch.long, device=lowerCAmelCase__, ) _UpperCamelCase : Tuple = inputs_dict['''labels'''] _UpperCamelCase : List[str] = inputs_dict['''labels'''] _UpperCamelCase : Optional[Any] = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices), dtype=torch.long, device=lowerCAmelCase__, ) _UpperCamelCase : Dict = torch.zeros( self.model_tester.batch_size, dtype=torch.long, device=lowerCAmelCase__ ) return inputs_dict def snake_case ( self : List[str] ) -> List[str]: '''simple docstring''' _UpperCamelCase : Optional[Any] = OpenAIGPTModelTester(self ) _UpperCamelCase : int = ConfigTester(self, config_class=lowerCAmelCase__, n_embd=3_7 ) def snake_case ( self : Optional[int] ) -> str: '''simple docstring''' self.config_tester.run_common_tests() def snake_case ( self : Optional[int] ) -> Any: '''simple docstring''' _UpperCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_model(*lowerCAmelCase__ ) def snake_case ( self : Any ) -> Dict: '''simple docstring''' _UpperCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*lowerCAmelCase__ ) def snake_case ( self : int ) -> Dict: '''simple docstring''' _UpperCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_double_lm_head_model(*lowerCAmelCase__ ) def snake_case ( self : List[str] ) -> int: '''simple docstring''' _UpperCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_for_sequence_classification(*lowerCAmelCase__ ) @slow def snake_case ( self : Optional[Any] ) -> Optional[Any]: '''simple docstring''' for model_name in OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase : int = OpenAIGPTModel.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) @require_torch class _a ( unittest.TestCase ): @slow def snake_case ( self : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase : int = OpenAIGPTLMHeadModel.from_pretrained('''openai-gpt''' ) model.to(lowerCAmelCase__ ) _UpperCamelCase : str = torch.tensor([[4_8_1, 4_7_3_5, 5_4_4]], dtype=torch.long, device=lowerCAmelCase__ ) # the president is _UpperCamelCase : Optional[int] = [ 4_8_1, 4_7_3_5, 5_4_4, 2_4_6, 9_6_3, 8_7_0, 7_6_2, 2_3_9, 2_4_4, 4_0_4_7_7, 2_4_4, 2_4_9, 7_1_9, 8_8_1, 4_8_7, 5_4_4, 2_4_0, 2_4_4, 6_0_3, 4_8_1, ] # the president is a very good man. " \n " i\'m sure he is, " said the _UpperCamelCase : Union[str, Any] = model.generate(lowerCAmelCase__, do_sample=lowerCAmelCase__ ) self.assertListEqual(output_ids[0].tolist(), lowerCAmelCase__ )
128
0
'''simple docstring''' import tempfile import unittest import numpy as np from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import BertConfig, is_flax_available from transformers.testing_utils import TOKEN, USER, is_staging_test, require_flax if is_flax_available(): import os from flax.core.frozen_dict import unfreeze from flax.traverse_util import flatten_dict from transformers import FlaxBertModel __a = "0.12" # assumed parallelism: 8 @require_flax @is_staging_test class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" @classmethod def lowerCamelCase ( cls : Optional[Any] ): snake_case__ : Tuple = TOKEN HfFolder.save_token(snake_case_ ) @classmethod def lowerCamelCase ( cls : int ): try: delete_repo(token=cls._token , repo_id="""test-model-flax""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""valid_org/test-model-flax-org""" ) except HTTPError: pass def lowerCamelCase ( self : Optional[int] ): snake_case__ : Optional[Any] = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) snake_case__ : Any = FlaxBertModel(snake_case_ ) model.push_to_hub("""test-model-flax""" , use_auth_token=self._token ) snake_case__ : Optional[Any] = FlaxBertModel.from_pretrained(f"{USER}/test-model-flax" ) snake_case__ : Optional[Any] = flatten_dict(unfreeze(model.params ) ) snake_case__ : List[str] = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): snake_case__ : Any = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(snake_case_ , 1E-3 , msg=f"{key} not identical" ) # Reset repo delete_repo(token=self._token , repo_id="""test-model-flax""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(snake_case_ , repo_id="""test-model-flax""" , push_to_hub=snake_case_ , use_auth_token=self._token ) snake_case__ : Union[str, Any] = FlaxBertModel.from_pretrained(f"{USER}/test-model-flax" ) snake_case__ : List[Any] = flatten_dict(unfreeze(model.params ) ) snake_case__ : Optional[int] = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): snake_case__ : Any = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(snake_case_ , 1E-3 , msg=f"{key} not identical" ) def lowerCamelCase ( self : List[str] ): snake_case__ : str = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) snake_case__ : List[Any] = FlaxBertModel(snake_case_ ) model.push_to_hub("""valid_org/test-model-flax-org""" , use_auth_token=self._token ) snake_case__ : List[str] = FlaxBertModel.from_pretrained("""valid_org/test-model-flax-org""" ) snake_case__ : List[Any] = flatten_dict(unfreeze(model.params ) ) snake_case__ : Dict = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): snake_case__ : Union[str, Any] = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(snake_case_ , 1E-3 , msg=f"{key} not identical" ) # Reset repo delete_repo(token=self._token , repo_id="""valid_org/test-model-flax-org""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained( snake_case_ , repo_id="""valid_org/test-model-flax-org""" , push_to_hub=snake_case_ , use_auth_token=self._token ) snake_case__ : Dict = FlaxBertModel.from_pretrained("""valid_org/test-model-flax-org""" ) snake_case__ : Union[str, Any] = flatten_dict(unfreeze(model.params ) ) snake_case__ : Tuple = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): snake_case__ : Dict = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(snake_case_ , 1E-3 , msg=f"{key} not identical" ) def __snake_case( _lowerCAmelCase , _lowerCAmelCase ) -> Dict: snake_case__ : Optional[int] = True snake_case__ : List[str] = flatten_dict(modela.params ) snake_case__ : Tuple = flatten_dict(modela.params ) for key in flat_params_a.keys(): if np.sum(np.abs(flat_params_a[key] - flat_params_a[key] ) ) > 1e-4: snake_case__ : List[Any] = False return models_are_equal @require_flax class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" def lowerCamelCase ( self : Optional[Any] ): snake_case__ : Dict = BertConfig.from_pretrained("""hf-internal-testing/tiny-bert-flax-only""" ) snake_case__ : Optional[int] = FlaxBertModel(snake_case_ ) snake_case__ : List[Any] = """bert""" with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(snake_case_ , snake_case_ ) ) with self.assertRaises(snake_case_ ): snake_case__ : Union[str, Any] = FlaxBertModel.from_pretrained(snake_case_ ) snake_case__ : Optional[int] = FlaxBertModel.from_pretrained(snake_case_ , subfolder=snake_case_ ) self.assertTrue(check_models_equal(snake_case_ , snake_case_ ) ) def lowerCamelCase ( self : List[Any] ): snake_case__ : Union[str, Any] = BertConfig.from_pretrained("""hf-internal-testing/tiny-bert-flax-only""" ) snake_case__ : List[Any] = FlaxBertModel(snake_case_ ) snake_case__ : Optional[Any] = """bert""" with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(snake_case_ , snake_case_ ) , max_shard_size="""10KB""" ) with self.assertRaises(snake_case_ ): snake_case__ : List[str] = FlaxBertModel.from_pretrained(snake_case_ ) snake_case__ : Union[str, Any] = FlaxBertModel.from_pretrained(snake_case_ , subfolder=snake_case_ ) self.assertTrue(check_models_equal(snake_case_ , snake_case_ ) ) def lowerCamelCase ( self : Optional[Any] ): snake_case__ : List[str] = """bert""" snake_case__ : Union[str, Any] = """hf-internal-testing/tiny-random-bert-subfolder""" with self.assertRaises(snake_case_ ): snake_case__ : Union[str, Any] = FlaxBertModel.from_pretrained(snake_case_ ) snake_case__ : str = FlaxBertModel.from_pretrained(snake_case_ , subfolder=snake_case_ ) self.assertIsNotNone(snake_case_ ) def lowerCamelCase ( self : Dict ): snake_case__ : Optional[int] = """bert""" snake_case__ : Optional[int] = """hf-internal-testing/tiny-random-bert-sharded-subfolder""" with self.assertRaises(snake_case_ ): snake_case__ : Optional[int] = FlaxBertModel.from_pretrained(snake_case_ ) snake_case__ : Tuple = FlaxBertModel.from_pretrained(snake_case_ , subfolder=snake_case_ ) self.assertIsNotNone(snake_case_ )
35
'''simple docstring''' def __snake_case( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> float: snake_case__ : str = (num_of_terms / 2) * (2 * first_term + (num_of_terms - 1) * common_diff) # formula for sum of series return total def __snake_case( ) -> List[str]: print(sum_of_series(1 , 1 , 10 ) ) if __name__ == "__main__": import doctest doctest.testmod()
35
1
# Lint as: python3 # pylint: enable=line-too-long # pylint: disable=g-import-not-at-top,g-bad-import-order,wrong-import-position _lowerCamelCase : List[Any] = '''2.13.1''' import platform import pyarrow from packaging import version if version.parse(platform.python_version()) < version.parse('''3.7'''): raise ImportWarning( '''To use `datasets`, Python>=3.7 is required, and the current version of Python doesn\'t match this condition.''' ) if version.parse(pyarrow.__version__).major < 8: raise ImportWarning( '''To use `datasets`, the module `pyarrow>=8.0.0` is required, and the current version of `pyarrow` doesn\'t match this condition.\n''' '''If you are running this in a Google Colab, you should probably just restart the runtime to use the right version of `pyarrow`.''' ) del platform del pyarrow del version from .arrow_dataset import Dataset from .arrow_reader import ReadInstruction from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder from .combine import concatenate_datasets, interleave_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .download import * from .features import * from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled from .info import DatasetInfo, MetricInfo from .inspect import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, list_datasets, list_metrics, ) from .iterable_dataset import IterableDataset from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric from .metric import Metric from .splits import ( NamedSplit, NamedSplitAll, Split, SplitBase, SplitDict, SplitGenerator, SplitInfo, SubSplitInfo, percent, ) from .tasks import * from .utils import * from .utils import logging # deprecated modules from datasets import arrow_dataset as _arrow_dataset # isort:skip from datasets import utils as _utils # isort:skip from datasets.utils import download_manager as _deprecated_download_manager # isort:skip _lowerCamelCase : Tuple = concatenate_datasets _lowerCamelCase : List[Any] = DownloadConfig _lowerCamelCase : Optional[int] = DownloadManager _lowerCamelCase : Tuple = DownloadMode _lowerCamelCase : List[str] = DownloadConfig _lowerCamelCase : Optional[int] = DownloadMode _lowerCamelCase : List[str] = DownloadManager del _arrow_dataset, _utils, _deprecated_download_manager
206
import inspect import unittest from transformers import MobileNetVaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileNetVaForImageClassification, MobileNetVaModel from transformers.models.mobilenet_va.modeling_mobilenet_va import MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class lowercase ( a ): def __snake_case( self : Optional[int] ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(_UpperCamelCase , "tf_padding" ) ) self.parent.assertTrue(hasattr(_UpperCamelCase , "depth_multiplier" ) ) class lowercase : def __init__( self : Tuple , _UpperCamelCase : Optional[Any] , _UpperCamelCase : Any=13 , _UpperCamelCase : Any=3 , _UpperCamelCase : Union[str, Any]=32 , _UpperCamelCase : Optional[Any]=0.2_5 , _UpperCamelCase : int=8 , _UpperCamelCase : str=True , _UpperCamelCase : Any=1_024 , _UpperCamelCase : Tuple=32 , _UpperCamelCase : List[str]="relu6" , _UpperCamelCase : Tuple=0.1 , _UpperCamelCase : List[str]=0.0_2 , _UpperCamelCase : int=True , _UpperCamelCase : int=True , _UpperCamelCase : Optional[Any]=10 , _UpperCamelCase : List[str]=None , ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE = parent SCREAMING_SNAKE_CASE = batch_size SCREAMING_SNAKE_CASE = num_channels SCREAMING_SNAKE_CASE = image_size SCREAMING_SNAKE_CASE = depth_multiplier SCREAMING_SNAKE_CASE = min_depth SCREAMING_SNAKE_CASE = tf_padding SCREAMING_SNAKE_CASE = int(last_hidden_size * depth_multiplier ) SCREAMING_SNAKE_CASE = output_stride SCREAMING_SNAKE_CASE = hidden_act SCREAMING_SNAKE_CASE = classifier_dropout_prob SCREAMING_SNAKE_CASE = use_labels SCREAMING_SNAKE_CASE = is_training SCREAMING_SNAKE_CASE = num_labels SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = scope def __snake_case( self : Dict ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None if self.use_labels: SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.num_labels ) SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) SCREAMING_SNAKE_CASE = self.get_config() return config, pixel_values, labels, pixel_labels def __snake_case( self : Optional[Any] ) -> str: '''simple docstring''' return MobileNetVaConfig( num_channels=self.num_channels , image_size=self.image_size , depth_multiplier=self.depth_multiplier , min_depth=self.min_depth , tf_padding=self.tf_padding , hidden_act=self.hidden_act , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , ) def __snake_case( self : int , _UpperCamelCase : Optional[int] , _UpperCamelCase : Any , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : int ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE = MobileNetVaModel(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() SCREAMING_SNAKE_CASE = model(_UpperCamelCase ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def __snake_case( self : Dict , _UpperCamelCase : Tuple , _UpperCamelCase : Any , _UpperCamelCase : str , _UpperCamelCase : List[Any] ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE = self.num_labels SCREAMING_SNAKE_CASE = MobileNetVaForImageClassification(_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() SCREAMING_SNAKE_CASE = model(_UpperCamelCase , labels=_UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __snake_case( self : Optional[Any] ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = config_and_inputs SCREAMING_SNAKE_CASE = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class lowercase ( a , a , unittest.TestCase ): lowercase__ : Dict = (MobileNetVaModel, MobileNetVaForImageClassification) if is_torch_available() else () lowercase__ : Tuple = ( {"""feature-extraction""": MobileNetVaModel, """image-classification""": MobileNetVaForImageClassification} if is_torch_available() else {} ) lowercase__ : Union[str, Any] = False lowercase__ : Union[str, Any] = False lowercase__ : Tuple = False lowercase__ : List[str] = False def __snake_case( self : List[str] ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE = MobileNetVaModelTester(self ) SCREAMING_SNAKE_CASE = MobileNetVaConfigTester(self , config_class=_UpperCamelCase , has_text_modality=_UpperCamelCase ) def __snake_case( self : Union[str, Any] ) -> List[Any]: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="MobileNetV1 does not use inputs_embeds" ) def __snake_case( self : Tuple ) -> Tuple: '''simple docstring''' pass @unittest.skip(reason="MobileNetV1 does not support input and output embeddings" ) def __snake_case( self : Optional[int] ) -> Dict: '''simple docstring''' pass @unittest.skip(reason="MobileNetV1 does not output attentions" ) def __snake_case( self : Any ) -> List[str]: '''simple docstring''' pass def __snake_case( self : List[Any] ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE = model_class(_UpperCamelCase ) SCREAMING_SNAKE_CASE = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE = ["pixel_values"] self.assertListEqual(arg_names[:1] , _UpperCamelCase ) def __snake_case( self : List[Any] ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCamelCase ) def __snake_case( self : List[str] ) -> Optional[int]: '''simple docstring''' def check_hidden_states_output(_UpperCamelCase : Any , _UpperCamelCase : Dict , _UpperCamelCase : Tuple ): SCREAMING_SNAKE_CASE = model_class(_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE = model(**self._prepare_for_class(_UpperCamelCase , _UpperCamelCase ) ) SCREAMING_SNAKE_CASE = outputs.hidden_states SCREAMING_SNAKE_CASE = 26 self.assertEqual(len(_UpperCamelCase ) , _UpperCamelCase ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE = True check_hidden_states_output(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] SCREAMING_SNAKE_CASE = True check_hidden_states_output(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) def __snake_case( self : Any ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_UpperCamelCase ) @slow def __snake_case( self : int ) -> str: '''simple docstring''' for model_name in MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE = MobileNetVaModel.from_pretrained(_UpperCamelCase ) self.assertIsNotNone(_UpperCamelCase ) def __lowerCamelCase (): SCREAMING_SNAKE_CASE = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class lowercase ( unittest.TestCase ): @cached_property def __snake_case( self : List[Any] ) -> Optional[int]: '''simple docstring''' return ( MobileNetVaImageProcessor.from_pretrained("google/mobilenet_v1_1.0_224" ) if is_vision_available() else None ) @slow def __snake_case( self : str ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = MobileNetVaForImageClassification.from_pretrained("google/mobilenet_v1_1.0_224" ).to(_UpperCamelCase ) SCREAMING_SNAKE_CASE = self.default_image_processor SCREAMING_SNAKE_CASE = prepare_img() SCREAMING_SNAKE_CASE = image_processor(images=_UpperCamelCase , return_tensors="pt" ).to(_UpperCamelCase ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE = model(**_UpperCamelCase ) # verify the logits SCREAMING_SNAKE_CASE = torch.Size((1, 1_001) ) self.assertEqual(outputs.logits.shape , _UpperCamelCase ) SCREAMING_SNAKE_CASE = torch.tensor([-4.1_7_3_9, -1.1_2_3_3, 3.1_2_0_5] ).to(_UpperCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _UpperCamelCase , atol=1e-4 ) )
206
1
import warnings from ...utils import logging from .image_processing_dpt import DPTImageProcessor _lowerCamelCase : str = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' def __init__( self : List[str] , *lowercase : Optional[Any] , **lowercase : Any ): '''simple docstring''' warnings.warn( 'The class DPTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use DPTImageProcessor instead.' , lowercase , ) super().__init__(*lowercase , **lowercase )
282
import argparse import pickle import numpy as np import torch from torch import nn from transformers import ReformerConfig, ReformerModelWithLMHead from transformers.utils import logging logging.set_verbosity_info() def a_ ( __lowercase : Dict , __lowercase : int , __lowercase : Optional[Any]=None ) -> Any: # set parameter of one layer assert torch_layer.weight.shape == weight.shape, f'''{torch_layer} layer.weight does not match''' _snake_case = nn.Parameter(__lowercase ) if bias is not None: assert torch_layer.bias.shape == bias.shape, f'''{torch_layer} layer.bias does not match''' _snake_case = nn.Parameter(__lowercase ) def a_ ( __lowercase : Any , __lowercase : Dict , __lowercase : Union[str, Any] ) -> Optional[Any]: # set torch weights for 1-to-1 comparison _snake_case = np.asarray(weights[0] ) _snake_case = np.asarray(weights[1] ) _snake_case = np.asarray(weights[2] ) set_param( torch_layer.self_attention.query_key , torch.tensor(__lowercase ).transpose(1 , 2 ).contiguous().view(-1 , __lowercase ) , ) set_param( torch_layer.self_attention.value , torch.tensor(__lowercase ).transpose(1 , 2 ).contiguous().view(-1 , __lowercase ) , ) set_param( torch_layer.output.dense , torch.tensor(__lowercase ).view(-1 , __lowercase ).contiguous().transpose(0 , 1 ) , ) def a_ ( __lowercase : str , __lowercase : Tuple , __lowercase : Any ) -> Optional[Any]: # set torch weights for 1-to-1 comparison _snake_case = np.asarray(weights[0] ) _snake_case = np.asarray(weights[1] ) _snake_case = np.asarray(weights[2] ) _snake_case = np.asarray(weights[3] ) set_param( torch_layer.self_attention.query , torch.tensor(__lowercase ).transpose(1 , 2 ).contiguous().view(-1 , __lowercase ) , ) set_param( torch_layer.self_attention.key , torch.tensor(__lowercase ).transpose(1 , 2 ).contiguous().view(-1 , __lowercase ) , ) set_param( torch_layer.self_attention.value , torch.tensor(__lowercase ).transpose(1 , 2 ).contiguous().view(-1 , __lowercase ) , ) set_param( torch_layer.output.dense , torch.tensor(__lowercase ).view(-1 , __lowercase ).contiguous().transpose(0 , 1 ) , ) def a_ ( __lowercase : Dict , __lowercase : List[str] , __lowercase : Union[str, Any] ) -> Optional[Any]: # layernorm 1 _snake_case = weights[0][0][0] _snake_case = np.asarray(layer_norm_a[0] ) _snake_case = np.asarray(layer_norm_a[1] ) set_param( torch_block.attention.layer_norm , torch.tensor(__lowercase ) , torch.tensor(__lowercase ) , ) # lsh weights + output _snake_case = weights[0][1] if len(__lowercase ) < 4: set_layer_weights_in_torch_lsh(__lowercase , torch_block.attention , __lowercase ) else: set_layer_weights_in_torch_local(__lowercase , torch_block.attention , __lowercase ) # intermediate weighs _snake_case = weights[2][0][1][2] # Chunked Feed Forward if len(__lowercase ) == 4: _snake_case = intermediate_weights[2] # layernorm 2 _snake_case = np.asarray(intermediate_weights[0][0] ) _snake_case = np.asarray(intermediate_weights[0][1] ) set_param( torch_block.feed_forward.layer_norm , torch.tensor(__lowercase ) , torch.tensor(__lowercase ) , ) # intermediate dense _snake_case = np.asarray(intermediate_weights[1][0] ) _snake_case = np.asarray(intermediate_weights[1][1] ) set_param( torch_block.feed_forward.dense.dense , torch.tensor(__lowercase ).transpose(0 , 1 ).contiguous() , torch.tensor(__lowercase ) , ) # intermediate out _snake_case = np.asarray(intermediate_weights[4][0] ) _snake_case = np.asarray(intermediate_weights[4][1] ) set_param( torch_block.feed_forward.output.dense , torch.tensor(__lowercase ).transpose(0 , 1 ).contiguous() , torch.tensor(__lowercase ) , ) def a_ ( __lowercase : Tuple , __lowercase : Tuple , __lowercase : Dict ) -> Optional[int]: # reformer model _snake_case = torch_model.reformer # word embeds _snake_case = np.asarray(weights[1] ) set_param( torch_model_reformer.embeddings.word_embeddings , torch.tensor(__lowercase ) , ) if isinstance(weights[3] , __lowercase ): _snake_case = torch_model_reformer.embeddings.position_embeddings for emb_idx in range(len(position_embeddings.weights ) ): _snake_case = np.asarray(weights[3][emb_idx][0] ) assert ( position_embeddings.weights[emb_idx].shape == emb_weights.shape ), f'''{position_embeddings[emb_idx]} emb does not match''' _snake_case = nn.Parameter(torch.tensor(__lowercase ) ) _snake_case = weights[5] assert len(torch_model_reformer.encoder.layers ) * 4 == len( __lowercase ), "HF and trax model do not have the same number of layers" for layer_idx, layer in enumerate(torch_model_reformer.encoder.layers ): _snake_case = trax_layer_weights[4 * layer_idx : 4 * (layer_idx + 1)] set_block_weights_in_torch(__lowercase , __lowercase , __lowercase ) # output layer norm _snake_case = np.asarray(weights[7][0] ) _snake_case = np.asarray(weights[7][1] ) set_param( torch_model_reformer.encoder.layer_norm , torch.tensor(__lowercase ) , torch.tensor(__lowercase ) , ) # output embeddings _snake_case = np.asarray(weights[9][0] ) _snake_case = np.asarray(weights[9][1] ) set_param( torch_model.lm_head.decoder , torch.tensor(__lowercase ).transpose(0 , 1 ).contiguous() , torch.tensor(__lowercase ) , ) def a_ ( __lowercase : Optional[Any] , __lowercase : Dict , __lowercase : List[Any] ) -> Optional[int]: # Initialise PyTorch model _snake_case = ReformerConfig.from_json_file(__lowercase ) print(f'''Building PyTorch model from configuration: {config}''' ) _snake_case = ReformerModelWithLMHead(__lowercase ) with open(__lowercase , 'rb' ) as f: _snake_case = pickle.load(__lowercase )['weights'] set_model_weights_in_torch(__lowercase , __lowercase , config.hidden_size ) # Save pytorch-model print(f'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict() , __lowercase ) if __name__ == "__main__": _lowerCamelCase : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--trax_model_pkl_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained Reformer model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) _lowerCamelCase : List[Any] = parser.parse_args() convert_trax_checkpoint_to_pytorch(args.trax_model_pkl_path, args.config_file, args.pytorch_dump_path)
282
1
'''simple docstring''' import unittest import numpy as np import timeout_decorator # noqa from transformers import BlenderbotSmallConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html __lowercase: Tuple = "platform" import jax import jax.numpy as jnp from transformers.models.blenderbot_small.modeling_flax_blenderbot_small import ( FlaxBlenderbotSmallForConditionalGeneration, FlaxBlenderbotSmallModel, shift_tokens_right, ) def SCREAMING_SNAKE_CASE__( _UpperCamelCase : Dict , _UpperCamelCase : str , _UpperCamelCase : Union[str, Any]=None , _UpperCamelCase : List[Any]=None , _UpperCamelCase : Dict=None , _UpperCamelCase : int=None , _UpperCamelCase : Optional[Any]=None , _UpperCamelCase : Tuple=None , ) -> List[str]: '''simple docstring''' if attention_mask is None: UpperCamelCase__ = np.where(input_ids != config.pad_token_id , 1 , 0 ) if decoder_attention_mask is None: UpperCamelCase__ = np.where(decoder_input_ids != config.pad_token_id , 1 , 0 ) if head_mask is None: UpperCamelCase__ = np.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: UpperCamelCase__ = np.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: UpperCamelCase__ = np.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, } class UpperCAmelCase : def __init__( self : Optional[Any], a_ : List[Any], a_ : Union[str, Any]=13, a_ : Optional[Any]=7, a_ : Any=True, a_ : Optional[Any]=False, a_ : Union[str, Any]=99, a_ : int=16, a_ : List[str]=2, a_ : List[Any]=4, a_ : List[Any]=4, a_ : str="gelu", a_ : Any=0.1, a_ : Optional[int]=0.1, a_ : Optional[Any]=32, a_ : Optional[Any]=2, a_ : Tuple=1, a_ : List[str]=0, a_ : Dict=0.02, ): """simple docstring""" UpperCamelCase__ = parent UpperCamelCase__ = batch_size UpperCamelCase__ = seq_length UpperCamelCase__ = is_training UpperCamelCase__ = use_labels UpperCamelCase__ = vocab_size UpperCamelCase__ = hidden_size UpperCamelCase__ = num_hidden_layers UpperCamelCase__ = num_attention_heads UpperCamelCase__ = intermediate_size UpperCamelCase__ = hidden_act UpperCamelCase__ = hidden_dropout_prob UpperCamelCase__ = attention_probs_dropout_prob UpperCamelCase__ = max_position_embeddings UpperCamelCase__ = eos_token_id UpperCamelCase__ = pad_token_id UpperCamelCase__ = bos_token_id UpperCamelCase__ = initializer_range def lowercase_ ( self : List[Any] ): """simple docstring""" UpperCamelCase__ = np.clip(ids_tensor([self.batch_size, self.seq_length - 1], self.vocab_size ), 3, self.vocab_size ) UpperCamelCase__ = np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1), dtype=np.intaa )), -1 ) UpperCamelCase__ = shift_tokens_right(a_, 1, 2 ) UpperCamelCase__ = BlenderbotSmallConfig( vocab_size=self.vocab_size, d_model=self.hidden_size, encoder_layers=self.num_hidden_layers, decoder_layers=self.num_hidden_layers, encoder_attention_heads=self.num_attention_heads, decoder_attention_heads=self.num_attention_heads, encoder_ffn_dim=self.intermediate_size, decoder_ffn_dim=self.intermediate_size, dropout=self.hidden_dropout_prob, attention_dropout=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, eos_token_id=self.eos_token_id, bos_token_id=self.bos_token_id, pad_token_id=self.pad_token_id, initializer_range=self.initializer_range, use_cache=a_, ) UpperCamelCase__ = prepare_blenderbot_inputs_dict(a_, a_, a_ ) return config, inputs_dict def lowercase_ ( self : str ): """simple docstring""" UpperCamelCase__ , UpperCamelCase__ = self.prepare_config_and_inputs() return config, inputs_dict def lowercase_ ( self : Optional[Any], a_ : int, a_ : Any, a_ : Optional[int] ): """simple docstring""" UpperCamelCase__ = 20 UpperCamelCase__ = model_class_name(a_ ) UpperCamelCase__ = model.encode(inputs_dict["input_ids"] ) UpperCamelCase__ , UpperCamelCase__ = ( inputs_dict["decoder_input_ids"], inputs_dict["decoder_attention_mask"], ) UpperCamelCase__ = model.init_cache(decoder_input_ids.shape[0], a_, a_ ) UpperCamelCase__ = jnp.ones((decoder_input_ids.shape[0], max_decoder_length), dtype="i4" ) UpperCamelCase__ = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :], (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1), ) UpperCamelCase__ = model.decode( decoder_input_ids[:, :-1], a_, decoder_attention_mask=a_, past_key_values=a_, decoder_position_ids=a_, ) UpperCamelCase__ = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]], dtype="i4" ) UpperCamelCase__ = model.decode( decoder_input_ids[:, -1:], a_, decoder_attention_mask=a_, past_key_values=outputs_cache.past_key_values, decoder_position_ids=a_, ) UpperCamelCase__ = model.decode(a_, a_ ) UpperCamelCase__ = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3, msg=f'Max diff is {diff}' ) def lowercase_ ( self : List[Any], a_ : Optional[int], a_ : Optional[int], a_ : Optional[Any] ): """simple docstring""" UpperCamelCase__ = 20 UpperCamelCase__ = model_class_name(a_ ) UpperCamelCase__ = model.encode(inputs_dict["input_ids"] ) UpperCamelCase__ , UpperCamelCase__ = ( inputs_dict["decoder_input_ids"], inputs_dict["decoder_attention_mask"], ) UpperCamelCase__ = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ], axis=-1, ) UpperCamelCase__ = model.init_cache(decoder_input_ids.shape[0], a_, a_ ) UpperCamelCase__ = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :], (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1), ) UpperCamelCase__ = model.decode( decoder_input_ids[:, :-1], a_, decoder_attention_mask=a_, past_key_values=a_, decoder_position_ids=a_, ) UpperCamelCase__ = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]], dtype="i4" ) UpperCamelCase__ = model.decode( decoder_input_ids[:, -1:], a_, past_key_values=outputs_cache.past_key_values, decoder_attention_mask=a_, decoder_position_ids=a_, ) UpperCamelCase__ = model.decode(a_, a_, decoder_attention_mask=a_ ) UpperCamelCase__ = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3, msg=f'Max diff is {diff}' ) @require_flax class UpperCAmelCase ( unittest.TestCase): _lowerCamelCase : Optional[Any] = 99 def lowercase_ ( self : Any ): """simple docstring""" UpperCamelCase__ = np.array( [ [71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 82, 2], [5, 97, 17, 39, 94, 40, 2], [76, 83, 94, 25, 70, 78, 2], [87, 59, 41, 35, 48, 66, 2], [55, 13, 16, 58, 5, 2, 1], # note padding [64, 27, 31, 51, 12, 75, 2], [52, 64, 86, 17, 83, 39, 2], [48, 61, 9, 24, 71, 82, 2], [26, 1, 60, 48, 22, 13, 2], [21, 5, 62, 28, 14, 76, 2], [45, 98, 37, 86, 59, 48, 2], [70, 70, 50, 9, 28, 0, 2], ], dtype=np.intaa, ) UpperCamelCase__ = input_ids.shape[0] UpperCamelCase__ = BlenderbotSmallConfig( vocab_size=self.vocab_size, d_model=24, encoder_layers=2, decoder_layers=2, encoder_attention_heads=2, decoder_attention_heads=2, encoder_ffn_dim=32, decoder_ffn_dim=32, max_position_embeddings=48, eos_token_id=2, pad_token_id=1, bos_token_id=0, ) return config, input_ids, batch_size def lowercase_ ( self : Optional[Any] ): """simple docstring""" UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = self._get_config_and_data() UpperCamelCase__ = FlaxBlenderbotSmallForConditionalGeneration(a_ ) UpperCamelCase__ = lm_model(input_ids=a_ ) UpperCamelCase__ = (batch_size, input_ids.shape[1], config.vocab_size) self.assertEqual(outputs["logits"].shape, a_ ) def lowercase_ ( self : Optional[Any] ): """simple docstring""" UpperCamelCase__ = BlenderbotSmallConfig( vocab_size=self.vocab_size, d_model=14, encoder_layers=2, decoder_layers=2, encoder_attention_heads=2, decoder_attention_heads=2, encoder_ffn_dim=8, decoder_ffn_dim=8, max_position_embeddings=48, ) UpperCamelCase__ = FlaxBlenderbotSmallForConditionalGeneration(a_ ) UpperCamelCase__ = np.array([[71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 2, 1]], dtype=np.intaa ) UpperCamelCase__ = np.array([[82, 71, 82, 18, 2], [58, 68, 2, 1, 1]], dtype=np.intaa ) UpperCamelCase__ = lm_model(input_ids=a_, decoder_input_ids=a_ ) UpperCamelCase__ = (*summary.shape, config.vocab_size) self.assertEqual(outputs["logits"].shape, a_ ) def lowercase_ ( self : Union[str, Any] ): """simple docstring""" UpperCamelCase__ = np.array([[71, 82, 18, 33, 2, 1, 1], [68, 34, 26, 58, 30, 82, 2]], dtype=np.intaa ) UpperCamelCase__ = shift_tokens_right(a_, 1, 2 ) UpperCamelCase__ = np.equal(a_, 1 ).astype(np.floataa ).sum() UpperCamelCase__ = np.equal(a_, 1 ).astype(np.floataa ).sum() self.assertEqual(shifted.shape, input_ids.shape ) self.assertEqual(a_, n_pad_before - 1 ) self.assertTrue(np.equal(shifted[:, 0], 2 ).all() ) @require_flax class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ , unittest.TestCase , SCREAMING_SNAKE_CASE__): _lowerCamelCase : Any = True _lowerCamelCase : Union[str, Any] = ( ( FlaxBlenderbotSmallModel, FlaxBlenderbotSmallForConditionalGeneration, ) if is_flax_available() else () ) _lowerCamelCase : List[Any] = (FlaxBlenderbotSmallForConditionalGeneration,) if is_flax_available() else () def lowercase_ ( self : Any ): """simple docstring""" UpperCamelCase__ = FlaxBlenderbotSmallModelTester(self ) def lowercase_ ( self : Optional[Any] ): """simple docstring""" UpperCamelCase__ , UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(a_, a_, a_ ) def lowercase_ ( self : Any ): """simple docstring""" UpperCamelCase__ , UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(a_, a_, a_ ) def lowercase_ ( self : str ): """simple docstring""" UpperCamelCase__ , UpperCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): UpperCamelCase__ = self._prepare_for_class(a_, a_ ) UpperCamelCase__ = model_class(a_ ) @jax.jit def encode_jitted(a_ : List[str], a_ : Optional[Any]=None, **a_ : Any ): return model.encode(input_ids=a_, attention_mask=a_ ) with self.subTest("JIT Enabled" ): UpperCamelCase__ = encode_jitted(**a_ ).to_tuple() with self.subTest("JIT Disabled" ): with jax.disable_jit(): UpperCamelCase__ = encode_jitted(**a_ ).to_tuple() self.assertEqual(len(a_ ), len(a_ ) ) for jitted_output, output in zip(a_, a_ ): self.assertEqual(jitted_output.shape, output.shape ) def lowercase_ ( self : List[str] ): """simple docstring""" UpperCamelCase__ , UpperCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): UpperCamelCase__ = model_class(a_ ) UpperCamelCase__ = model.encode(inputs_dict["input_ids"], inputs_dict["attention_mask"] ) UpperCamelCase__ = { "decoder_input_ids": inputs_dict["decoder_input_ids"], "decoder_attention_mask": inputs_dict["decoder_attention_mask"], "encoder_outputs": encoder_outputs, } @jax.jit def decode_jitted(a_ : List[Any], a_ : List[Any], a_ : Any ): return model.decode( decoder_input_ids=a_, decoder_attention_mask=a_, encoder_outputs=a_, ) with self.subTest("JIT Enabled" ): UpperCamelCase__ = decode_jitted(**a_ ).to_tuple() with self.subTest("JIT Disabled" ): with jax.disable_jit(): UpperCamelCase__ = decode_jitted(**a_ ).to_tuple() self.assertEqual(len(a_ ), len(a_ ) ) for jitted_output, output in zip(a_, a_ ): self.assertEqual(jitted_output.shape, output.shape ) @slow def lowercase_ ( self : List[str] ): """simple docstring""" for model_class_name in self.all_model_classes: UpperCamelCase__ = model_class_name.from_pretrained("facebook/blenderbot_small-90M" ) # FlaxBlenderbotForSequenceClassification expects eos token in input_ids UpperCamelCase__ = np.ones((1, 1) ) * model.config.eos_token_id UpperCamelCase__ = model(a_ ) self.assertIsNotNone(a_ )
31
'''simple docstring''' import json import os import unittest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ , unittest.TestCase): _lowerCamelCase : Union[str, Any] = CLIPTokenizer _lowerCamelCase : Dict = CLIPTokenizerFast _lowerCamelCase : int = True _lowerCamelCase : Tuple = {} _lowerCamelCase : Tuple = False def lowercase_ ( self : Tuple ): """simple docstring""" super().setUp() # fmt: off UpperCamelCase__ = ["l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "lo", "l</w>", "w</w>", "r</w>", "t</w>", "low</w>", "er</w>", "lowest</w>", "newer</w>", "wider", "<unk>", "<|startoftext|>", "<|endoftext|>"] # fmt: on UpperCamelCase__ = dict(zip(a_, range(len(a_ ) ) ) ) UpperCamelCase__ = ["#version: 0.2", "l o", "lo w</w>", "e r</w>"] UpperCamelCase__ = {"unk_token": "<unk>"} UpperCamelCase__ = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"] ) UpperCamelCase__ = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file, "w", encoding="utf-8" ) as fp: fp.write(json.dumps(a_ ) + "\n" ) with open(self.merges_file, "w", encoding="utf-8" ) as fp: fp.write("\n".join(a_ ) ) def lowercase_ ( self : Optional[Any], **a_ : str ): """simple docstring""" kwargs.update(self.special_tokens_map ) return CLIPTokenizer.from_pretrained(self.tmpdirname, **a_ ) def lowercase_ ( self : str, **a_ : str ): """simple docstring""" kwargs.update(self.special_tokens_map ) return CLIPTokenizerFast.from_pretrained(self.tmpdirname, **a_ ) def lowercase_ ( self : List[Any], a_ : Dict ): """simple docstring""" UpperCamelCase__ = "lower newer" UpperCamelCase__ = "lower newer" return input_text, output_text def lowercase_ ( self : Optional[Any] ): """simple docstring""" UpperCamelCase__ = CLIPTokenizer(self.vocab_file, self.merges_file, **self.special_tokens_map ) UpperCamelCase__ = "lower newer" UpperCamelCase__ = ["lo", "w", "er</w>", "n", "e", "w", "er</w>"] UpperCamelCase__ = tokenizer.tokenize(a_ ) self.assertListEqual(a_, a_ ) UpperCamelCase__ = tokens + [tokenizer.unk_token] UpperCamelCase__ = [10, 2, 16, 9, 3, 2, 16, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(a_ ), a_ ) @require_ftfy def lowercase_ ( self : Dict ): """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): UpperCamelCase__ = self.tokenizer_class.from_pretrained(a_, **a_ ) UpperCamelCase__ = self.rust_tokenizer_class.from_pretrained(a_, **a_ ) UpperCamelCase__ = "A\n'll 11p223RF☆ho!!to?'d'd''d of a cat to-$''d." UpperCamelCase__ = tokenizer_s.tokenize(a_ ) UpperCamelCase__ = tokenizer_r.tokenize(a_ ) self.assertListEqual(a_, a_ ) # Test that the tokenization is identical on an example containing a character (Latin Small Letter A # with Tilde) encoded in 2 different ways UpperCamelCase__ = "xa\u0303y" + " " + "x\xe3y" UpperCamelCase__ = tokenizer_s.tokenize(a_ ) UpperCamelCase__ = tokenizer_r.tokenize(a_ ) self.assertListEqual(a_, a_ ) # Test that the tokenization is identical on unicode of space type UpperCamelCase__ = [ "\u0009", # (horizontal tab, '\t') "\u000B", # (vertical tab) "\u000C", # (form feed) "\u0020", # (space, ' ') "\u200E", # (left-to-right mark):w "\u200F", # (right-to-left mark) ] for unicode_seq in spaces_unicodes: UpperCamelCase__ = tokenizer_s.tokenize(a_ ) UpperCamelCase__ = tokenizer_r.tokenize(a_ ) self.assertListEqual(a_, a_ ) # Test that the tokenization is identical on unicode of line break type UpperCamelCase__ = [ "\u000A", # (line feed, '\n') "\r\n", # (carriage return and line feed, '\r\n') "\u000D", # (carriage return, '\r') "\r", # (carriage return, '\r') "\u000D", # (carriage return, '\r') "\u2028", # (line separator) "\u2029", # (paragraph separator) # "\u0085", # (next line) ] # The tokenization is not identical for the character "\u0085" (next line). The slow version using ftfy transforms # it into the Horizontal Ellipsis character "…" ("\u2026") while the fast version transforms it into a # space (and thus into an empty list). for unicode_seq in line_break_unicodes: UpperCamelCase__ = tokenizer_s.tokenize(a_ ) UpperCamelCase__ = tokenizer_r.tokenize(a_ ) self.assertListEqual(a_, a_ ) def lowercase_ ( self : Tuple ): """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): UpperCamelCase__ = "hello" # `hello` is a token in the vocabulary of `pretrained_name` UpperCamelCase__ = f'{text_of_1_token} {text_of_1_token}' UpperCamelCase__ = self.rust_tokenizer_class.from_pretrained( a_, use_fast=a_, ) UpperCamelCase__ = tokenizer_r(a_, return_offsets_mapping=a_, add_special_tokens=a_ ) self.assertEqual(encoding.offset_mapping[0], (0, len(a_ )) ) self.assertEqual( encoding.offset_mapping[1], (len(a_ ) + 1, len(a_ ) + 1 + len(a_ )), ) UpperCamelCase__ = f' {text}' UpperCamelCase__ = self.rust_tokenizer_class.from_pretrained( a_, use_fast=a_, ) UpperCamelCase__ = tokenizer_r(a_, return_offsets_mapping=a_, add_special_tokens=a_ ) self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(a_ )) ) self.assertEqual( encoding.offset_mapping[1], (1 + len(a_ ) + 1, 1 + len(a_ ) + 1 + len(a_ )), ) def lowercase_ ( self : Tuple ): """simple docstring""" with self.assertRaises(a_ ) as context: self.rust_tokenizer_class.from_pretrained("robot-test/old-clip-tokenizer" ) self.assertTrue( context.exception.args[0].startswith( "The `backend_tokenizer` provided does not match the expected format." ) ) @require_ftfy def lowercase_ ( self : Union[str, Any] ): """simple docstring""" super().test_tokenization_python_rust_equals() def lowercase_ ( self : List[str] ): """simple docstring""" pass
31
1
'''simple docstring''' from typing import Any, Dict, List, Optional, Tuple, Union import torch from torch import nn from torch.utils.data import DistributedSampler, RandomSampler from transformers import PreTrainedModel, Trainer, logging from transformers.integrations import is_fairscale_available from transformers.models.fsmt.configuration_fsmt import FSMTConfig from transformers.optimization import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.trainer_pt_utils import get_tpu_sampler from transformers.training_args import ParallelMode from transformers.utils import is_torch_tpu_available if is_fairscale_available(): from fairscale.optim import OSS lowercase_ = logging.get_logger(__name__) lowercase_ = { """linear""": get_linear_schedule_with_warmup, """cosine""": get_cosine_schedule_with_warmup, """cosine_w_restarts""": get_cosine_with_hard_restarts_schedule_with_warmup, """polynomial""": get_polynomial_decay_schedule_with_warmup, """constant""": get_constant_schedule, """constant_w_warmup""": get_constant_schedule_with_warmup, } class a_ ( snake_case_ ): '''simple docstring''' def __init__( self , A=None , A=None , *A , **A ) -> Optional[int]: super().__init__(*A , **A ) if config is None: assert isinstance(self.model , A ), ( "If no `config` is passed the model to be trained has to be of type `PreTrainedModel`, but is" f' {self.model.__class__}' ) _SCREAMING_SNAKE_CASE = self.model.config else: _SCREAMING_SNAKE_CASE = config _SCREAMING_SNAKE_CASE = data_args _SCREAMING_SNAKE_CASE = self.config.tgt_vocab_size if isinstance(self.config , A ) else self.config.vocab_size if self.args.label_smoothing != 0 or (self.data_args is not None and self.data_args.ignore_pad_token_for_loss): assert self.config.pad_token_id is not None, ( "Make sure that `config.pad_token_id` is correcly defined when ignoring `pad_token` for loss" " calculation or doing label smoothing." ) if self.config.pad_token_id is None and self.config.eos_token_id is not None: logger.warning( f'The `config.pad_token_id` is `None`. Using `config.eos_token_id` = {self.config.eos_token_id} for' """ padding..""" ) if self.args.label_smoothing == 0: _SCREAMING_SNAKE_CASE = torch.nn.CrossEntropyLoss(ignore_index=self.config.pad_token_id ) else: # dynamically import label_smoothed_nll_loss from utils import label_smoothed_nll_loss _SCREAMING_SNAKE_CASE = label_smoothed_nll_loss def snake_case_( self , A ) -> int: if self.optimizer is None: _SCREAMING_SNAKE_CASE = ["""bias""", """LayerNorm.weight"""] _SCREAMING_SNAKE_CASE = [ { """params""": [p for n, p in self.model.named_parameters() if not any(nd in n for nd in no_decay )], """weight_decay""": self.args.weight_decay, }, { """params""": [p for n, p in self.model.named_parameters() if any(nd in n for nd in no_decay )], """weight_decay""": 0.0, }, ] _SCREAMING_SNAKE_CASE = Adafactor if self.args.adafactor else AdamW if self.args.adafactor: _SCREAMING_SNAKE_CASE = Adafactor _SCREAMING_SNAKE_CASE = {"""scale_parameter""": False, """relative_step""": False} else: _SCREAMING_SNAKE_CASE = AdamW _SCREAMING_SNAKE_CASE = { """betas""": (self.args.adam_betaa, self.args.adam_betaa), """eps""": self.args.adam_epsilon, } _SCREAMING_SNAKE_CASE = self.args.learning_rate if self.sharded_ddp: _SCREAMING_SNAKE_CASE = OSS( params=A , optim=A , **A , ) else: _SCREAMING_SNAKE_CASE = optimizer_cls(A , **A ) if self.lr_scheduler is None: _SCREAMING_SNAKE_CASE = self._get_lr_scheduler(A ) else: # ignoring --lr_scheduler logger.warning("""scheduler is passed to `Seq2SeqTrainer`, `--lr_scheduler` arg is ignored.""" ) def snake_case_( self , A ) -> Optional[Any]: _SCREAMING_SNAKE_CASE = arg_to_scheduler[self.args.lr_scheduler] if self.args.lr_scheduler == "constant": _SCREAMING_SNAKE_CASE = schedule_func(self.optimizer ) elif self.args.lr_scheduler == "constant_w_warmup": _SCREAMING_SNAKE_CASE = schedule_func(self.optimizer , num_warmup_steps=self.args.warmup_steps ) else: _SCREAMING_SNAKE_CASE = schedule_func( self.optimizer , num_warmup_steps=self.args.warmup_steps , num_training_steps=A ) return scheduler def snake_case_( self ) -> Optional[torch.utils.data.Sampler]: if isinstance(self.train_dataset , torch.utils.data.IterableDataset ): return None elif is_torch_tpu_available(): return get_tpu_sampler(self.train_dataset ) else: if self.args.sortish_sampler: self.train_dataset.make_sortish_sampler( self.args.per_device_train_batch_size , distributed=(self.args.parallel_mode == ParallelMode.DISTRIBUTED) , ) return ( RandomSampler(self.train_dataset ) if self.args.local_rank == -1 else DistributedSampler(self.train_dataset ) ) def snake_case_( self , A , A , A ) -> List[str]: if self.args.label_smoothing == 0: if self.data_args is not None and self.data_args.ignore_pad_token_for_loss: # force training to ignore pad token _SCREAMING_SNAKE_CASE = model(**A , use_cache=A )[0] _SCREAMING_SNAKE_CASE = self.loss_fn(logits.view(-1 , logits.shape[-1] ) , labels.view(-1 ) ) else: # compute usual loss via models _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = model(**A , labels=A , use_cache=A )[:2] else: # compute label smoothed loss _SCREAMING_SNAKE_CASE = model(**A , use_cache=A )[0] _SCREAMING_SNAKE_CASE = torch.nn.functional.log_softmax(A , dim=-1 ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self.loss_fn(A , A , self.args.label_smoothing , ignore_index=self.config.pad_token_id ) return loss, logits def snake_case_( self , A , A ) -> Union[str, Any]: _SCREAMING_SNAKE_CASE = inputs.pop("""labels""" ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self._compute_loss(A , A , A ) return loss def snake_case_( self , A , A , A , A = None , ) -> Tuple[Optional[float], Optional[torch.Tensor], Optional[torch.Tensor]]: _SCREAMING_SNAKE_CASE = self._prepare_inputs(A ) _SCREAMING_SNAKE_CASE = { """max_length""": self.data_args.val_max_target_length if self.data_args is not None else self.config.max_length, """num_beams""": self.data_args.eval_beams if self.data_args is not None else self.config.num_beams, } if self.args.predict_with_generate and not self.args.prediction_loss_only: _SCREAMING_SNAKE_CASE = self.model.generate( inputs["""input_ids"""] , attention_mask=inputs["""attention_mask"""] , **A , ) # in case the batch is shorter than max length, the output should be padded if generated_tokens.shape[-1] < gen_kwargs["max_length"]: _SCREAMING_SNAKE_CASE = self._pad_tensors_to_max_len(A , gen_kwargs["""max_length"""] ) _SCREAMING_SNAKE_CASE = inputs.pop("""labels""" ) with torch.no_grad(): # compute loss on predict data _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self._compute_loss(A , A , A ) _SCREAMING_SNAKE_CASE = loss.mean().detach() if self.args.prediction_loss_only: return (loss, None, None) _SCREAMING_SNAKE_CASE = generated_tokens if self.args.predict_with_generate else logits if labels.shape[-1] < gen_kwargs["max_length"]: _SCREAMING_SNAKE_CASE = self._pad_tensors_to_max_len(A , gen_kwargs["""max_length"""] ) return (loss, logits, labels) def snake_case_( self , A , A ) -> int: # If PAD token is not defined at least EOS token has to be defined _SCREAMING_SNAKE_CASE = self.config.pad_token_id if self.config.pad_token_id is not None else self.config.eos_token_id if pad_token_id is None: raise ValueError( """Make sure that either `config.pad_token_id` or `config.eos_token_id` is defined if tensor has to be""" f' padded to `max_length`={max_length}' ) _SCREAMING_SNAKE_CASE = pad_token_id * torch.ones( (tensor.shape[0], max_length) , dtype=tensor.dtype , device=tensor.device ) _SCREAMING_SNAKE_CASE = tensor return padded_tensor
58
'''simple docstring''' from string import ascii_lowercase, ascii_uppercase def lowerCamelCase ( __lowerCamelCase : str ) ->str: if not sentence: return "" _SCREAMING_SNAKE_CASE = dict(zip(__lowerCamelCase , __lowerCamelCase ) ) return lower_to_upper.get(sentence[0] , sentence[0] ) + sentence[1:] if __name__ == "__main__": from doctest import testmod testmod()
58
1
import copy from typing import TYPE_CHECKING, Any, Mapping, Optional, OrderedDict from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto.configuration_auto import AutoConfig if TYPE_CHECKING: from ... import PreTrainedTokenizerBase, TensorType A : List[str] = logging.get_logger(__name__) class lowerCamelCase (SCREAMING_SNAKE_CASE__ ): """simple docstring""" lowerCamelCase__ = '''vision-encoder-decoder''' lowerCamelCase__ = True def __init__( self : int , **__magic_name__ : List[str] ) -> List[str]: super().__init__(**__magic_name__ ) if "encoder" not in kwargs or "decoder" not in kwargs: raise ValueError( F'''A configuraton of type {self.model_type} cannot be instantiated because ''' F'''not both `encoder` and `decoder` sub-configurations are passed, but only {kwargs}''' ) SCREAMING_SNAKE_CASE_ = kwargs.pop("encoder" ) SCREAMING_SNAKE_CASE_ = encoder_config.pop("model_type" ) SCREAMING_SNAKE_CASE_ = kwargs.pop("decoder" ) SCREAMING_SNAKE_CASE_ = decoder_config.pop("model_type" ) SCREAMING_SNAKE_CASE_ = AutoConfig.for_model(__magic_name__ , **__magic_name__ ) SCREAMING_SNAKE_CASE_ = AutoConfig.for_model(__magic_name__ , **__magic_name__ ) SCREAMING_SNAKE_CASE_ = True @classmethod def __A ( cls : List[Any] , __magic_name__ : PretrainedConfig , __magic_name__ : PretrainedConfig , **__magic_name__ : Optional[Any] ) -> PretrainedConfig: logger.info("Setting `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config" ) SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **__magic_name__ ) def __A ( self : Tuple ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ = copy.deepcopy(self.__dict__ ) SCREAMING_SNAKE_CASE_ = self.encoder.to_dict() SCREAMING_SNAKE_CASE_ = self.decoder.to_dict() SCREAMING_SNAKE_CASE_ = self.__class__.model_type return output class lowerCamelCase (SCREAMING_SNAKE_CASE__ ): """simple docstring""" lowerCamelCase__ = version.parse('''1.11''' ) @property def __A ( self : Optional[Any] ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def __A ( self : Union[str, Any] ) -> float: return 1e-4 @property def __A ( self : str ) -> Mapping[str, Mapping[int, str]]: return OrderedDict({"last_hidden_state": {0: "batch", 1: "encoder_sequence"}} ) class lowerCamelCase (SCREAMING_SNAKE_CASE__ ): """simple docstring""" @property def __A ( self : Dict ) -> Mapping[str, Mapping[int, str]]: SCREAMING_SNAKE_CASE_ = OrderedDict() SCREAMING_SNAKE_CASE_ = {0: "batch", 1: "past_decoder_sequence + sequence"} SCREAMING_SNAKE_CASE_ = {0: "batch", 1: "past_decoder_sequence + sequence"} SCREAMING_SNAKE_CASE_ = {0: "batch", 1: "encoder_sequence"} return common_inputs def __A ( self : Dict , __magic_name__ : "PreTrainedTokenizerBase" , __magic_name__ : int = -1 , __magic_name__ : int = -1 , __magic_name__ : bool = False , __magic_name__ : Optional["TensorType"] = None , ) -> Mapping[str, Any]: import torch SCREAMING_SNAKE_CASE_ = OrderedDict() SCREAMING_SNAKE_CASE_ = super().generate_dummy_inputs( __magic_name__ , batch_size=__magic_name__ , seq_length=__magic_name__ , is_pair=__magic_name__ , framework=__magic_name__ ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = dummy_input["input_ids"].shape SCREAMING_SNAKE_CASE_ = (batch, encoder_sequence, self._config.encoder_hidden_size) SCREAMING_SNAKE_CASE_ = dummy_input.pop("input_ids" ) SCREAMING_SNAKE_CASE_ = dummy_input.pop("attention_mask" ) SCREAMING_SNAKE_CASE_ = torch.zeros(__magic_name__ ) return common_inputs class lowerCamelCase (SCREAMING_SNAKE_CASE__ ): """simple docstring""" @property def __A ( self : Union[str, Any] ) -> None: pass def __A ( self : Optional[int] , __magic_name__ : PretrainedConfig ) -> OnnxConfig: return VisionEncoderDecoderEncoderOnnxConfig(__magic_name__ ) def __A ( self : Union[str, Any] , __magic_name__ : PretrainedConfig , __magic_name__ : PretrainedConfig , __magic_name__ : str = "default" ) -> OnnxConfig: SCREAMING_SNAKE_CASE_ = encoder_config.hidden_size return VisionEncoderDecoderDecoderOnnxConfig(__magic_name__ , __magic_name__ )
305
from ....utils import logging A : List[str] = logging.get_logger(__name__) class lowerCamelCase (SCREAMING_SNAKE_CASE__ ): """simple docstring""" def __init__( self : List[str] , __magic_name__ : Optional[Any] , __magic_name__ : Any=None , __magic_name__ : List[str]=2_048 ) -> List[Any]: SCREAMING_SNAKE_CASE_ = config.__dict__ SCREAMING_SNAKE_CASE_ = modal_hidden_size if num_labels: SCREAMING_SNAKE_CASE_ = num_labels
305
1
'''simple docstring''' import argparse import re from flax.traverse_util import flatten_dict, unflatten_dict from tax import checkpoints from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model from transformers.utils import logging logging.set_verbosity_info() # should not include what is already done by the `from_pt` argument A__ : Optional[Any] = { '''/attention/''': '''/0/SelfAttention/''', '''/self_attention/''': '''/0/SelfAttention/''', '''/encoder_decoder_attention/''': '''/1/EncDecAttention/''', '''value''': '''v''', '''query''': '''q''', '''key''': '''k''', '''out''': '''o''', '''pre_self_attention_layer_norm''': '''0/layer_norm''', '''pre_cross_attention_layer_norm''': '''1/layer_norm''', '''pre_attention_layer_norm''': '''0/layer_norm''', # previously 1, but seems wrong '''token_embedder''': '''shared''', '''encoder_norm''': '''final_layer_norm''', '''decoder_norm''': '''final_layer_norm''', '''relpos_bias/rel_embedding''': '''block/0/layer/0/SelfAttention/relative_attention_bias/weight''', '''router/router_weights/w/''': '''router/classifier/''', '''roer/roer_weights/w/''': '''router/classifier/''', '''logits_dense''': '''lm_head''', } def UpperCAmelCase__ ( UpperCAmelCase_ : Optional[Any] ) -> Tuple: # 1. in HF T5, we have block.{x}.layer.{y}. which corresponds to layer.{x} in # the original model __lowerCamelCase : Tuple = list(s_dict.keys() ) for key in keys: __lowerCamelCase : Union[str, Any] = R'''.*/layers_(\d+)''' __lowerCamelCase : Optional[int] = key if re.match(__UpperCamelCase , __UpperCamelCase ): __lowerCamelCase : Tuple = re.sub(R'layers_(\d+)' , R'block/\1/layer' , __UpperCamelCase ) __lowerCamelCase : List[Any] = R'''(encoder|decoder)\/''' if re.match(__UpperCamelCase , __UpperCamelCase ): __lowerCamelCase : Union[str, Any] = re.match(__UpperCamelCase , __UpperCamelCase ).groups() if groups[0] == "encoder": __lowerCamelCase : List[Any] = re.sub(R'/mlp/' , R'/1/mlp/' , __UpperCamelCase ) __lowerCamelCase : Optional[int] = re.sub(R'/pre_mlp_layer_norm/' , R'/1/layer_norm/' , __UpperCamelCase ) elif groups[0] == "decoder": __lowerCamelCase : Dict = re.sub(R'/mlp/' , R'/2/mlp/' , __UpperCamelCase ) __lowerCamelCase : List[Any] = re.sub(R'/pre_mlp_layer_norm/' , R'/2/layer_norm/' , __UpperCamelCase ) # 2. Convert other classic mappings for old_key, temp_key in MOE_LAYER_NAME_MAPPING.items(): if old_key in new_key: __lowerCamelCase : Any = new_key.replace(__UpperCamelCase , __UpperCamelCase ) print(F'{key} -> {new_key}' ) __lowerCamelCase : Optional[int] = s_dict.pop(__UpperCamelCase ) if "encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: __lowerCamelCase : List[str] = s_dict[ '''encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight''' ].T if "decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: __lowerCamelCase : Any = s_dict[ '''decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight''' ].T # 3. Take extra care of the EXPERTS layer for key in list(s_dict.keys() ): if "expert" in key: __lowerCamelCase : Tuple = s_dict[key].shape[0] __lowerCamelCase : str = s_dict[key] for idx in range(__UpperCamelCase ): __lowerCamelCase : Tuple = expert_weihts[idx] print(F'{key} -> {key.replace("expert/" , "nested fstring" )}' ) s_dict.pop(__UpperCamelCase ) return s_dict A__ : Any = { '''NUM_ENCODER_LAYERS''': '''num_layers''', '''NUM_DECODER_LAYERS''': '''num_decoder_layers''', '''NUM_HEADS''': '''num_heads''', '''HEAD_DIM''': '''d_kv''', '''EMBED_DIM''': '''d_model''', '''MLP_DIM''': '''d_ff''', '''NUM_SELECTED_EXPERTS''': '''num_selected_experts''', '''NUM_ENCODER_SPARSE_LAYERS''': '''num_sparse_encoder_layers''', '''NUM_DECODER_SPARSE_LAYERS''': '''num_sparse_decoder_layers''', '''dense.MlpBlock.activations''': '''feed_forward_proj''', } def UpperCAmelCase__ ( UpperCAmelCase_ : int , UpperCAmelCase_ : str ) -> Tuple: # Convert a google style config to the hugging face fromat import regex as re with open(__UpperCamelCase , 'r' ) as f: __lowerCamelCase : int = f.read() __lowerCamelCase : str = re.findall(R'(.*) = ([0-9.]*)' , __UpperCamelCase ) __lowerCamelCase : Dict = {} for param, value in regex_match: if param in GIN_TO_CONFIG_MAPPING and value != "": __lowerCamelCase : Dict = float(__UpperCamelCase ) if '''.''' in value else int(__UpperCamelCase ) __lowerCamelCase : Any = re.findall(R'(.*activations) = \(\'(.*)\',\)' , __UpperCamelCase )[0] __lowerCamelCase : List[str] = str(activation[1] ) __lowerCamelCase : Dict = num_experts __lowerCamelCase : Dict = SwitchTransformersConfig(**__UpperCamelCase ) return config def UpperCAmelCase__ ( UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Any=None , UpperCAmelCase_ : Optional[int]="./" , UpperCAmelCase_ : str=8 ) -> Dict: # Initialise PyTorch model print(F'Loading flax weights from : {flax_checkpoint_path}' ) __lowerCamelCase : Optional[int] = checkpoints.load_tax_checkpoint(__UpperCamelCase ) if gin_file is not None: __lowerCamelCase : Tuple = convert_gin_to_config(__UpperCamelCase , __UpperCamelCase ) else: __lowerCamelCase : Tuple = SwitchTransformersConfig.from_pretrained(__UpperCamelCase ) __lowerCamelCase : int = SwitchTransformersForConditionalGeneration(__UpperCamelCase ) __lowerCamelCase : Tuple = flax_params['''target'''] __lowerCamelCase : Optional[Any] = flatten_dict(__UpperCamelCase , sep='/' ) __lowerCamelCase : Tuple = rename_keys(__UpperCamelCase ) __lowerCamelCase : Tuple = unflatten_dict(__UpperCamelCase , sep='/' ) # Load the flax params in the PT model load_flax_weights_in_pytorch_model(__UpperCamelCase , __UpperCamelCase ) print(F'Save PyTorch model to {pytorch_dump_path}' ) pt_model.save_pretrained(__UpperCamelCase ) if __name__ == "__main__": A__ : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( """--switch_t5x_checkpoint_path""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained SwitchTransformers model. \nThis specifies the""" """ model architecture. If not provided, a `gin_file` has to be provided.""" ), ) parser.add_argument( """--gin_file""", default=None, type=str, required=False, help="""Path to the gin config file. If not provided, a `config_file` has to be passed """, ) parser.add_argument( """--config_name""", default=None, type=str, required=False, help="""Config name of SwitchTransformers model.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output pytorch model.""" ) parser.add_argument("""--num_experts""", default=8, type=int, required=False, help="""Number of experts""") A__ : Union[str, Any] = parser.parse_args() convert_flax_checkpoint_to_pytorch( args.switch_tax_checkpoint_path, args.config_name, args.gin_file, args.pytorch_dump_folder_path, args.num_experts, )
185
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_realm import RealmTokenizer A__ : str = logging.get_logger(__name__) A__ : Any = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} A__ : str = { '''vocab_file''': { '''google/realm-cc-news-pretrained-embedder''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/vocab.txt''' ), '''google/realm-cc-news-pretrained-encoder''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/vocab.txt''' ), '''google/realm-cc-news-pretrained-scorer''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/vocab.txt''' ), '''google/realm-cc-news-pretrained-openqa''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/vocab.txt''' ), '''google/realm-orqa-nq-openqa''': '''https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/vocab.txt''', '''google/realm-orqa-nq-reader''': '''https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/vocab.txt''', '''google/realm-orqa-wq-openqa''': '''https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/vocab.txt''', '''google/realm-orqa-wq-reader''': '''https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/vocab.txt''', }, '''tokenizer_file''': { '''google/realm-cc-news-pretrained-embedder''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/tokenizer.jsont''' ), '''google/realm-cc-news-pretrained-encoder''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/tokenizer.json''' ), '''google/realm-cc-news-pretrained-scorer''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/tokenizer.json''' ), '''google/realm-cc-news-pretrained-openqa''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/tokenizer.json''' ), '''google/realm-orqa-nq-openqa''': ( '''https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/tokenizer.json''' ), '''google/realm-orqa-nq-reader''': ( '''https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/tokenizer.json''' ), '''google/realm-orqa-wq-openqa''': ( '''https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/tokenizer.json''' ), '''google/realm-orqa-wq-reader''': ( '''https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/tokenizer.json''' ), }, } A__ : Union[str, Any] = { '''google/realm-cc-news-pretrained-embedder''': 512, '''google/realm-cc-news-pretrained-encoder''': 512, '''google/realm-cc-news-pretrained-scorer''': 512, '''google/realm-cc-news-pretrained-openqa''': 512, '''google/realm-orqa-nq-openqa''': 512, '''google/realm-orqa-nq-reader''': 512, '''google/realm-orqa-wq-openqa''': 512, '''google/realm-orqa-wq-reader''': 512, } A__ : Dict = { '''google/realm-cc-news-pretrained-embedder''': {'''do_lower_case''': True}, '''google/realm-cc-news-pretrained-encoder''': {'''do_lower_case''': True}, '''google/realm-cc-news-pretrained-scorer''': {'''do_lower_case''': True}, '''google/realm-cc-news-pretrained-openqa''': {'''do_lower_case''': True}, '''google/realm-orqa-nq-openqa''': {'''do_lower_case''': True}, '''google/realm-orqa-nq-reader''': {'''do_lower_case''': True}, '''google/realm-orqa-wq-openqa''': {'''do_lower_case''': True}, '''google/realm-orqa-wq-reader''': {'''do_lower_case''': True}, } class __snake_case ( UpperCamelCase_ ): _a = VOCAB_FILES_NAMES _a = PRETRAINED_VOCAB_FILES_MAP _a = PRETRAINED_INIT_CONFIGURATION _a = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _a = RealmTokenizer def __init__( self : int , A_ : Optional[int]=None , A_ : Optional[Any]=None , A_ : Optional[Any]=True , A_ : Optional[int]="[UNK]" , A_ : List[Any]="[SEP]" , A_ : List[Any]="[PAD]" , A_ : Optional[Any]="[CLS]" , A_ : Dict="[MASK]" , A_ : List[Any]=True , A_ : List[str]=None , **A_ : List[str] , ): super().__init__( A_ , tokenizer_file=A_ , do_lower_case=A_ , unk_token=A_ , sep_token=A_ , pad_token=A_ , cls_token=A_ , mask_token=A_ , tokenize_chinese_chars=A_ , strip_accents=A_ , **A_ , ) lowerCAmelCase_ : Optional[int] = json.loads(self.backend_tokenizer.normalizer.__getstate__()) if ( normalizer_state.get('''lowercase''' , A_) != do_lower_case or normalizer_state.get('''strip_accents''' , A_) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , A_) != tokenize_chinese_chars ): lowerCAmelCase_ : int = getattr(A_ , normalizer_state.pop('''type''')) lowerCAmelCase_ : str = do_lower_case lowerCAmelCase_ : Dict = strip_accents lowerCAmelCase_ : Optional[Any] = tokenize_chinese_chars lowerCAmelCase_ : Union[str, Any] = normalizer_class(**A_) lowerCAmelCase_ : Any = do_lower_case def UpperCAmelCase__ ( self : Optional[Any] , A_ : Optional[Any] , **A_ : Tuple): lowerCAmelCase_ : List[str] = PaddingStrategy.MAX_LENGTH lowerCAmelCase_ : str = text lowerCAmelCase_ : int = kwargs.pop('''text_pair''' , A_) lowerCAmelCase_ : str = kwargs.pop('''return_tensors''' , A_) lowerCAmelCase_ : int = { '''input_ids''': [], '''attention_mask''': [], '''token_type_ids''': [], } for idx, candidate_text in enumerate(A_): if batch_text_pair is not None: lowerCAmelCase_ : List[Any] = batch_text_pair[idx] else: lowerCAmelCase_ : List[Any] = None lowerCAmelCase_ : int = super().__call__(A_ , A_ , return_tensors=A_ , **A_) lowerCAmelCase_ : Optional[Any] = encoded_candidates.get('''input_ids''') lowerCAmelCase_ : List[str] = encoded_candidates.get('''attention_mask''') lowerCAmelCase_ : Optional[Any] = encoded_candidates.get('''token_type_ids''') if encoded_input_ids is not None: output_data["input_ids"].append(A_) if encoded_attention_mask is not None: output_data["attention_mask"].append(A_) if encoded_token_type_ids is not None: output_data["token_type_ids"].append(A_) lowerCAmelCase_ : List[str] = {key: item for key, item in output_data.items() if len(A_) != 0} return BatchEncoding(A_ , tensor_type=A_) def UpperCAmelCase__ ( self : List[str] , A_ : Tuple , A_ : List[Any]=None): lowerCAmelCase_ : Optional[Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCAmelCase__ ( self : Tuple , A_ : List[int] , A_ : Optional[List[int]] = None): lowerCAmelCase_ : Tuple = [self.sep_token_id] lowerCAmelCase_ : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] def UpperCAmelCase__ ( self : List[str] , A_ : str , A_ : Optional[str] = None): lowerCAmelCase_ : List[str] = self._tokenizer.model.save(A_ , name=A_) return tuple(A_)
103
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available __UpperCAmelCase = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = ['''BartphoTokenizer'''] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bartpho import BartphoTokenizer else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
353
from math import factorial def __lowerCamelCase ( __magic_name__ : int , __magic_name__ : int , __magic_name__ : float ): if successes > trials: raise ValueError("successes must be lower or equal to trials" ) if trials < 0 or successes < 0: raise ValueError("the function is defined for non-negative integers" ) if not isinstance(__magic_name__ , __magic_name__ ) or not isinstance(__magic_name__ , __magic_name__ ): raise ValueError("the function is defined for non-negative integers" ) if not 0 < prob < 1: raise ValueError("prob has to be in range of 1 - 0" ) a__: Optional[Any] =(prob**successes) * ((1 - prob) ** (trials - successes)) # Calculate the binomial coefficient: n! / k!(n-k)! a__: str =float(factorial(__magic_name__ ) ) coefficient /= factorial(__magic_name__ ) * factorial(trials - successes ) return probability * coefficient if __name__ == "__main__": from doctest import testmod testmod() print('''Probability of 2 successes out of 4 trails''') print('''with probability of 0.75 is:''', end=''' ''') print(binomial_distribution(2, 4, 0.75))
42
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = { "google/vivit-b-16x2-kinetics400": ( "https://huggingface.co/google/vivit-b-16x2-kinetics400/resolve/main/config.json" ), # See all Vivit models at https://huggingface.co/models?filter=vivit } class lowerCAmelCase_ ( lowerCAmelCase ): """simple docstring""" _lowerCAmelCase : str = """vivit""" def __init__( self , lowerCAmelCase=2_24 , lowerCAmelCase=32 , lowerCAmelCase=[2, 16, 16] , lowerCAmelCase=3 , lowerCAmelCase=7_68 , lowerCAmelCase=12 , lowerCAmelCase=12 , lowerCAmelCase=30_72 , lowerCAmelCase="gelu_fast" , lowerCAmelCase=0.0 , lowerCAmelCase=0.0 , lowerCAmelCase=0.02 , lowerCAmelCase=1E-06 , lowerCAmelCase=True , **lowerCAmelCase , ): """simple docstring""" snake_case = hidden_size snake_case = num_hidden_layers snake_case = num_attention_heads snake_case = intermediate_size snake_case = hidden_act snake_case = hidden_dropout_prob snake_case = attention_probs_dropout_prob snake_case = initializer_range snake_case = layer_norm_eps snake_case = image_size snake_case = num_frames snake_case = tubelet_size snake_case = num_channels snake_case = qkv_bias super().__init__(**lowerCAmelCase )
150
"""simple docstring""" import json import os from functools import lru_cache from typing import TYPE_CHECKING, List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = { "vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_config_file": "tokenizer_config.json", } SCREAMING_SNAKE_CASE__ = { "vocab_file": {"facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json"}, "merges_file": {"facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt"}, "tokenizer_config_file": { "facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json" }, } SCREAMING_SNAKE_CASE__ = {"facebook/blenderbot-3B": 128} @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def lowerCAmelCase__ ( ) -> str: """simple docstring""" snake_case = ( list(range(ord('!' ) , ord('~' ) + 1 ) ) + list(range(ord('¡' ) , ord('¬' ) + 1 ) ) + list(range(ord('®' ) , ord('ÿ' ) + 1 ) ) ) snake_case = bs[:] snake_case = 0 for b in range(2**8 ): if b not in bs: bs.append(_UpperCamelCase ) cs.append(2**8 + n ) n += 1 snake_case = [chr(_UpperCamelCase ) for n in cs] return dict(zip(_UpperCamelCase , _UpperCamelCase ) ) def lowerCAmelCase__ ( _UpperCamelCase : List[str] ) -> Union[str, Any]: """simple docstring""" snake_case = set() snake_case = word[0] for char in word[1:]: pairs.add((prev_char, char) ) snake_case = char return pairs class lowerCAmelCase_ ( lowerCAmelCase ): """simple docstring""" _lowerCAmelCase : str = VOCAB_FILES_NAMES _lowerCAmelCase : str = PRETRAINED_VOCAB_FILES_MAP _lowerCAmelCase : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCAmelCase : Optional[Any] = ["""input_ids""", """attention_mask"""] def __init__( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase="replace" , lowerCAmelCase="<s>" , lowerCAmelCase="</s>" , lowerCAmelCase="</s>" , lowerCAmelCase="<s>" , lowerCAmelCase="<unk>" , lowerCAmelCase="<pad>" , lowerCAmelCase="<mask>" , lowerCAmelCase=False , **lowerCAmelCase , ): """simple docstring""" snake_case = AddedToken(lowerCAmelCase , lstrip=lowerCAmelCase , rstrip=lowerCAmelCase ) if isinstance(lowerCAmelCase , lowerCAmelCase ) else bos_token snake_case = AddedToken(lowerCAmelCase , lstrip=lowerCAmelCase , rstrip=lowerCAmelCase ) if isinstance(lowerCAmelCase , lowerCAmelCase ) else eos_token snake_case = AddedToken(lowerCAmelCase , lstrip=lowerCAmelCase , rstrip=lowerCAmelCase ) if isinstance(lowerCAmelCase , lowerCAmelCase ) else sep_token snake_case = AddedToken(lowerCAmelCase , lstrip=lowerCAmelCase , rstrip=lowerCAmelCase ) if isinstance(lowerCAmelCase , lowerCAmelCase ) else cls_token snake_case = AddedToken(lowerCAmelCase , lstrip=lowerCAmelCase , rstrip=lowerCAmelCase ) if isinstance(lowerCAmelCase , lowerCAmelCase ) else unk_token snake_case = AddedToken(lowerCAmelCase , lstrip=lowerCAmelCase , rstrip=lowerCAmelCase ) if isinstance(lowerCAmelCase , lowerCAmelCase ) else pad_token # Mask token behave like a normal word, i.e. include the space before it snake_case = AddedToken(lowerCAmelCase , lstrip=lowerCAmelCase , rstrip=lowerCAmelCase ) if isinstance(lowerCAmelCase , lowerCAmelCase ) else mask_token super().__init__( errors=lowerCAmelCase , bos_token=lowerCAmelCase , eos_token=lowerCAmelCase , unk_token=lowerCAmelCase , sep_token=lowerCAmelCase , cls_token=lowerCAmelCase , pad_token=lowerCAmelCase , mask_token=lowerCAmelCase , add_prefix_space=lowerCAmelCase , **lowerCAmelCase , ) with open(lowerCAmelCase , encoding='utf-8' ) as vocab_handle: snake_case = json.load(lowerCAmelCase ) snake_case = {v: k for k, v in self.encoder.items()} snake_case = errors # how to handle errors in decoding snake_case = bytes_to_unicode() snake_case = {v: k for k, v in self.byte_encoder.items()} with open(lowerCAmelCase , encoding='utf-8' ) as merges_handle: snake_case = merges_handle.read().split('\n' )[1:-1] snake_case = [tuple(merge.split() ) for merge in bpe_merges] snake_case = dict(zip(lowerCAmelCase , range(len(lowerCAmelCase ) ) ) ) snake_case = {} snake_case = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions snake_case = re.compile(R'\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+' ) @property # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.vocab_size with Roberta->Blenderbot, RoBERTa->Blenderbot def snake_case ( self ): """simple docstring""" return len(self.encoder ) def snake_case ( self ): """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder ) def snake_case ( self , lowerCAmelCase ): """simple docstring""" if token in self.cache: return self.cache[token] snake_case = tuple(lowerCAmelCase ) snake_case = get_pairs(lowerCAmelCase ) if not pairs: return token while True: snake_case = min(lowerCAmelCase , key=lambda lowerCAmelCase : self.bpe_ranks.get(lowerCAmelCase , float('inf' ) ) ) if bigram not in self.bpe_ranks: break snake_case ,snake_case = bigram snake_case = [] snake_case = 0 while i < len(lowerCAmelCase ): try: snake_case = word.index(lowerCAmelCase , lowerCAmelCase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) snake_case = j if word[i] == first and i < len(lowerCAmelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 snake_case = tuple(lowerCAmelCase ) snake_case = new_word if len(lowerCAmelCase ) == 1: break else: snake_case = get_pairs(lowerCAmelCase ) snake_case = ' '.join(lowerCAmelCase ) snake_case = word return word def snake_case ( self , lowerCAmelCase ): """simple docstring""" snake_case = [] for token in re.findall(self.pat , lowerCAmelCase ): snake_case = ''.join( self.byte_encoder[b] for b in token.encode('utf-8' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(lowerCAmelCase ).split(' ' ) ) return bpe_tokens def snake_case ( self , lowerCAmelCase ): """simple docstring""" return self.encoder.get(lowerCAmelCase , self.encoder.get(self.unk_token ) ) def snake_case ( self , lowerCAmelCase ): """simple docstring""" return self.decoder.get(lowerCAmelCase ) def snake_case ( self , lowerCAmelCase ): """simple docstring""" snake_case = ''.join(lowerCAmelCase ) snake_case = bytearray([self.byte_decoder[c] for c in text] ).decode('utf-8' , errors=self.errors ) return text def snake_case ( self , lowerCAmelCase , lowerCAmelCase = None ): """simple docstring""" if not os.path.isdir(lowerCAmelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return snake_case = os.path.join( lowerCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) snake_case = os.path.join( lowerCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] ) with open(lowerCAmelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowerCAmelCase , ensure_ascii=lowerCAmelCase ) + '\n' ) snake_case = 0 with open(lowerCAmelCase , 'w' , encoding='utf-8' ) as writer: writer.write('#version: 0.2\n' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowerCAmelCase : kv[1] ): if index != token_index: logger.warning( F"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" ' Please check that the tokenizer is not corrupted!' ) snake_case = token_index writer.write(' '.join(lowerCAmelCase ) + '\n' ) index += 1 return vocab_file, merge_file def snake_case ( self , lowerCAmelCase , lowerCAmelCase = None , lowerCAmelCase = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase , token_ids_a=lowerCAmelCase , already_has_special_tokens=lowerCAmelCase ) if token_ids_a is None: return [1] + ([0] * len(lowerCAmelCase )) + [1] return [1] + ([0] * len(lowerCAmelCase )) + [1, 1] + ([0] * len(lowerCAmelCase )) + [1] def snake_case ( self , lowerCAmelCase , lowerCAmelCase = None ): """simple docstring""" snake_case = [self.sep_token_id] snake_case = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def snake_case ( self , lowerCAmelCase , lowerCAmelCase=False , **lowerCAmelCase ): """simple docstring""" snake_case = kwargs.pop('add_prefix_space' , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(lowerCAmelCase ) > 0 and not text[0].isspace()): snake_case = ' ' + text return (text, kwargs) def snake_case ( self , lowerCAmelCase , lowerCAmelCase = None ): """simple docstring""" return token_ids_a + [self.eos_token_id] def snake_case ( self , lowerCAmelCase ): """simple docstring""" snake_case = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(' ' + text ) else: # Generated responses should contain them already. inputs.append(lowerCAmelCase ) snake_case = ' '.join(lowerCAmelCase ) snake_case = self.encode(lowerCAmelCase ) if len(lowerCAmelCase ) > self.model_max_length: snake_case = input_ids[-self.model_max_length :] logger.warning(F"""Trimmed input from conversation as it was longer than {self.model_max_length} tokens.""" ) return input_ids
150
1
import argparse import math import traceback import dateutil.parser as date_parser import requests def SCREAMING_SNAKE_CASE__ ( lowercase ) -> Tuple: snake_case : Dict = {} snake_case : Union[str, Any] = job["""started_at"""] snake_case : Optional[int] = job["""completed_at"""] snake_case : Tuple = date_parser.parse(lowercase ) snake_case : Tuple = date_parser.parse(lowercase ) snake_case : int = round((end_datetime - start_datetime).total_seconds() / 60.0 ) snake_case : str = start snake_case : str = end snake_case : List[str] = duration_in_min return job_info def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase=None ) -> Dict: snake_case : Any = None if token is not None: snake_case : Optional[Any] = {"""Accept""": """application/vnd.github+json""", """Authorization""": f"""Bearer {token}"""} snake_case : Tuple = f"""https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100""" snake_case : int = requests.get(lowercase ,headers=lowercase ).json() snake_case : Any = {} try: job_time.update({job["""name"""]: extract_time_from_single_job(lowercase ) for job in result["""jobs"""]} ) snake_case : Dict = math.ceil((result["""total_count"""] - 100) / 100 ) for i in range(lowercase ): snake_case : Optional[Any] = requests.get(url + f"""&page={i + 2}""" ,headers=lowercase ).json() job_time.update({job["""name"""]: extract_time_from_single_job(lowercase ) for job in result["""jobs"""]} ) return job_time except Exception: print(f"""Unknown error, could not fetch links:\n{traceback.format_exc()}""" ) return {} if __name__ == "__main__": lowerCamelCase : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument('--workflow_run_id', type=str, required=True, help='A GitHub Actions workflow run id.') lowerCamelCase : Optional[int] = parser.parse_args() lowerCamelCase : int = get_job_time(args.workflow_run_id) lowerCamelCase : Any = dict(sorted(job_time.items(), key=lambda item: item[1]["duration"], reverse=True)) for k, v in job_time.items(): print(f"""{k}: {v["duration"]}""")
176
from typing import List from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase : Optional[int] = logging.get_logger(__name__) lowerCamelCase : Tuple = { 'snap-research/efficientformer-l1-300': ( 'https://huggingface.co/snap-research/efficientformer-l1-300/resolve/main/config.json' ), } class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = """efficientformer""" def __init__( self , A = [3, 2, 6, 4] , A = [4_8, 9_6, 2_2_4, 4_4_8] , A = [True, True, True, True] , A = 4_4_8 , A = 3_2 , A = 4 , A = 7 , A = 5 , A = 8 , A = 4 , A = 0.0 , A = 1_6 , A = 3 , A = 3 , A = 3 , A = 2 , A = 1 , A = 0.0 , A = 1 , A = True , A = True , A = 1e-5 , A = "gelu" , A = 0.02 , A = 1e-1_2 , A = 2_2_4 , A = 1e-0_5 , **A , ) -> None: super().__init__(**A ) snake_case : Dict = hidden_act snake_case : int = hidden_dropout_prob snake_case : Any = hidden_sizes snake_case : Optional[Any] = num_hidden_layers snake_case : List[Any] = num_attention_heads snake_case : List[Any] = initializer_range snake_case : str = layer_norm_eps snake_case : Dict = patch_size snake_case : Optional[int] = num_channels snake_case : int = depths snake_case : Optional[int] = mlp_expansion_ratio snake_case : Any = downsamples snake_case : Dict = dim snake_case : Optional[int] = key_dim snake_case : Union[str, Any] = attention_ratio snake_case : Any = resolution snake_case : Dict = pool_size snake_case : Any = downsample_patch_size snake_case : Tuple = downsample_stride snake_case : Any = downsample_pad snake_case : Union[str, Any] = drop_path_rate snake_case : List[str] = num_metaad_blocks snake_case : Union[str, Any] = distillation snake_case : List[str] = use_layer_scale snake_case : int = layer_scale_init_value snake_case : Union[str, Any] = image_size snake_case : Dict = batch_norm_eps
176
1
"""simple docstring""" def lowercase ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' return numa ^ numa < 0 if __name__ == "__main__": import doctest doctest.testmod()
260
"""simple docstring""" import argparse import os import torch from transformers import FlavaConfig, FlavaForPreTraining from transformers.models.flava.convert_dalle_to_flava_codebook import convert_dalle_checkpoint def lowercase ( _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' return sum(param.float().sum() if '''encoder.embeddings''' not in key else 0 for key, param in state_dict.items() ) def lowercase ( _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : Tuple ): '''simple docstring''' _UpperCAmelCase = {} for key, value in state_dict.items(): if "text_encoder.embeddings" in key or "image_encoder.embeddings" in key: continue _UpperCAmelCase = key.replace('''heads.cmd.mim_head.cls.predictions''' , '''mmm_image_head''' ) _UpperCAmelCase = key.replace('''heads.cmd.mlm_head.cls.predictions''' , '''mmm_text_head''' ) _UpperCAmelCase = key.replace('''heads.cmd.itm_head.cls''' , '''itm_head''' ) _UpperCAmelCase = key.replace('''heads.cmd.itm_head.pooler''' , '''itm_head.pooler''' ) _UpperCAmelCase = key.replace('''heads.cmd.clip_head.logit_scale''' , '''flava.logit_scale''' ) _UpperCAmelCase = key.replace('''heads.fairseq_mlm.cls.predictions''' , '''mlm_head''' ) _UpperCAmelCase = key.replace('''heads.imagenet.mim_head.cls.predictions''' , '''mim_head''' ) _UpperCAmelCase = key.replace('''mm_text_projection''' , '''flava.text_to_mm_projection''' ) _UpperCAmelCase = key.replace('''mm_image_projection''' , '''flava.image_to_mm_projection''' ) _UpperCAmelCase = key.replace('''image_encoder.module''' , '''flava.image_model''' ) _UpperCAmelCase = key.replace('''text_encoder.module''' , '''flava.text_model''' ) _UpperCAmelCase = key.replace('''mm_encoder.module.encoder.cls_token''' , '''flava.multimodal_model.cls_token''' ) _UpperCAmelCase = key.replace('''mm_encoder.module''' , '''flava.multimodal_model''' ) _UpperCAmelCase = key.replace('''text_projection''' , '''flava.text_projection''' ) _UpperCAmelCase = key.replace('''image_projection''' , '''flava.image_projection''' ) _UpperCAmelCase = value.float() for key, value in codebook_state_dict.items(): _UpperCAmelCase = value return upgrade @torch.no_grad() def lowercase ( _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : Optional[int]=None ): '''simple docstring''' if config_path is not None: _UpperCAmelCase = FlavaConfig.from_pretrained(_SCREAMING_SNAKE_CASE ) else: _UpperCAmelCase = FlavaConfig() _UpperCAmelCase = FlavaForPreTraining(_SCREAMING_SNAKE_CASE ).eval() _UpperCAmelCase = convert_dalle_checkpoint(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , save_checkpoint=_SCREAMING_SNAKE_CASE ) if os.path.exists(_SCREAMING_SNAKE_CASE ): _UpperCAmelCase = torch.load(_SCREAMING_SNAKE_CASE , map_location='''cpu''' ) else: _UpperCAmelCase = torch.hub.load_state_dict_from_url(_SCREAMING_SNAKE_CASE , map_location='''cpu''' ) _UpperCAmelCase = upgrade_state_dict(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) hf_model.load_state_dict(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = hf_model.state_dict() _UpperCAmelCase = count_parameters(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = count_parameters(_SCREAMING_SNAKE_CASE ) + count_parameters(_SCREAMING_SNAKE_CASE ) assert torch.allclose(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , atol=1E-3 ) hf_model.save_pretrained(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": __A : Dict = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to flava checkpoint") parser.add_argument("--codebook_path", default=None, type=str, help="Path to flava codebook checkpoint") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") __A : Optional[Any] = parser.parse_args() convert_flava_checkpoint(args.checkpoint_path, args.codebook_path, args.pytorch_dump_folder_path, args.config_path)
260
1
'''simple docstring''' def _UpperCamelCase ( UpperCamelCase__ ): return "".join(chr(ord(UpperCamelCase__ ) - 3_2 ) if """a""" <= char <= """z""" else char for char in word ) if __name__ == "__main__": from doctest import testmod testmod()
371
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __A ={ 'configuration_table_transformer': [ 'TABLE_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TableTransformerConfig', 'TableTransformerOnnxConfig', ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A =[ 'TABLE_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TableTransformerForObjectDetection', 'TableTransformerModel', 'TableTransformerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_table_transformer import ( TABLE_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TableTransformerConfig, TableTransformerOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_table_transformer import ( TABLE_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TableTransformerForObjectDetection, TableTransformerModel, TableTransformerPreTrainedModel, ) else: import sys __A =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
283
0
'''simple docstring''' import multiprocessing from typing import TYPE_CHECKING, Optional, Union from .. import Dataset, Features, config from ..formatting import query_table from ..packaged_modules.sql.sql import Sql from ..utils import logging from .abc import AbstractDatasetInputStream if TYPE_CHECKING: import sqlitea import sqlalchemy class A__ ( A__ ): def __init__( self : Union[str, Any] , _a : Union[str, "sqlalchemy.sql.Selectable"] , _a : Union[str, "sqlalchemy.engine.Connection", "sqlalchemy.engine.Engine", "sqlite3.Connection"] , _a : Optional[Features] = None , _a : str = None , _a : bool = False , **_a : Union[str, Any] , ) -> Union[str, Any]: '''simple docstring''' super().__init__(features=_a , cache_dir=_a , keep_in_memory=_a , **_a ) _SCREAMING_SNAKE_CASE =Sql( cache_dir=_a , features=_a , sql=_a , con=_a , **_a , ) def A ( self : Optional[int] ) -> Optional[Any]: '''simple docstring''' _SCREAMING_SNAKE_CASE =None _SCREAMING_SNAKE_CASE =None _SCREAMING_SNAKE_CASE =None _SCREAMING_SNAKE_CASE =None self.builder.download_and_prepare( download_config=_a , download_mode=_a , verification_mode=_a , base_path=_a , ) # Build dataset for splits _SCREAMING_SNAKE_CASE =self.builder.as_dataset( split='train' , verification_mode=_a , in_memory=self.keep_in_memory ) return dataset class A__ : def __init__( self : List[Any] , _a : Dataset , _a : str , _a : Union[str, "sqlalchemy.engine.Connection", "sqlalchemy.engine.Engine", "sqlite3.Connection"] , _a : Optional[int] = None , _a : Optional[int] = None , **_a : int , ) -> str: '''simple docstring''' if num_proc is not None and num_proc <= 0: raise ValueError(f"num_proc {num_proc} must be an integer > 0." ) _SCREAMING_SNAKE_CASE =dataset _SCREAMING_SNAKE_CASE =name _SCREAMING_SNAKE_CASE =con _SCREAMING_SNAKE_CASE =batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE _SCREAMING_SNAKE_CASE =num_proc _SCREAMING_SNAKE_CASE =to_sql_kwargs def A ( self : Dict ) -> int: '''simple docstring''' _SCREAMING_SNAKE_CASE =self.to_sql_kwargs.pop('sql' , _a ) _SCREAMING_SNAKE_CASE =self.to_sql_kwargs.pop('con' , _a ) _SCREAMING_SNAKE_CASE =self.to_sql_kwargs.pop('index' , _a ) _SCREAMING_SNAKE_CASE =self._write(index=_a , **self.to_sql_kwargs ) return written def A ( self : Dict , _a : List[str] ) -> Tuple: '''simple docstring''' _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =args _SCREAMING_SNAKE_CASE ={**to_sql_kwargs, 'if_exists': 'append'} if offset > 0 else to_sql_kwargs _SCREAMING_SNAKE_CASE =query_table( table=self.dataset.data , key=slice(_a , offset + self.batch_size ) , indices=self.dataset._indices , ) _SCREAMING_SNAKE_CASE =batch.to_pandas() _SCREAMING_SNAKE_CASE =df.to_sql(self.name , self.con , index=_a , **_a ) return num_rows or len(_a ) def A ( self : Any , _a : Union[str, Any] , **_a : List[str] ) -> int: '''simple docstring''' _SCREAMING_SNAKE_CASE =0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 , len(self.dataset ) , self.batch_size ) , unit='ba' , disable=not logging.is_progress_bar_enabled() , desc='Creating SQL from Arrow format' , ): written += self._batch_sql((offset, index, to_sql_kwargs) ) else: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =len(self.dataset ), self.batch_size with multiprocessing.Pool(self.num_proc ) as pool: for num_rows in logging.tqdm( pool.imap( self._batch_sql , [(offset, index, to_sql_kwargs) for offset in range(0 , _a , _a )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit='ba' , disable=not logging.is_progress_bar_enabled() , desc='Creating SQL from Arrow format' , ): written += num_rows return written
47
"""simple docstring""" # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.utils import ComputeEnvironment from .cluster import get_cluster_input from .config_args import cache_dir, default_config_file, default_yaml_config_file, load_config_from_file # noqa: F401 from .config_utils import _ask_field, _ask_options, _convert_compute_environment # noqa: F401 from .sagemaker import get_sagemaker_input lowerCAmelCase = """Launches a series of prompts to create and save a `default_config.yaml` configuration file for your training system. Should always be ran first on your machine""" def lowerCAmelCase_ ( ) ->Tuple: lowerCamelCase__ : Dict =_ask_options( 'In which compute environment are you running?' , ['This machine', 'AWS (Amazon SageMaker)'] , _convert_compute_environment , ) if compute_environment == ComputeEnvironment.AMAZON_SAGEMAKER: lowerCamelCase__ : int =get_sagemaker_input() else: lowerCamelCase__ : List[str] =get_cluster_input() return config def lowerCAmelCase_ ( snake_case_ : List[Any]=None ) ->List[str]: if subparsers is not None: lowerCamelCase__ : Union[str, Any] =subparsers.add_parser('config' , description=snake_case_ ) else: lowerCamelCase__ : Tuple =argparse.ArgumentParser('Accelerate config command' , description=snake_case_ ) parser.add_argument( '--config_file' , default=snake_case_ , help=( 'The path to use to store the config file. Will default to a file named default_config.yaml in the cache ' 'location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ' 'such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ' 'with \'huggingface\'.' ) , ) if subparsers is not None: parser.set_defaults(func=snake_case_ ) return parser def lowerCAmelCase_ ( snake_case_ : str ) ->List[Any]: lowerCamelCase__ : Optional[int] =get_user_input() if args.config_file is not None: lowerCamelCase__ : Dict =args.config_file else: if not os.path.isdir(snake_case_ ): os.makedirs(snake_case_ ) lowerCamelCase__ : Optional[Any] =default_yaml_config_file if config_file.endswith('.json' ): config.to_json_file(snake_case_ ) else: config.to_yaml_file(snake_case_ ) print(f"""accelerate configuration saved at {config_file}""" ) def lowerCAmelCase_ ( ) ->Optional[Any]: lowerCamelCase__ : Tuple =config_command_parser() lowerCamelCase__ : Tuple =parser.parse_args() config_command(snake_case_ ) if __name__ == "__main__": main()
126
0
from typing import Optional, Union import torch from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_mobilenet_va import MobileNetVaConfig _UpperCamelCase = logging.get_logger(__name__) # General docstring _UpperCamelCase = '''MobileNetV1Config''' # Base docstring _UpperCamelCase = '''google/mobilenet_v1_1.0_224''' _UpperCamelCase = [1, 1024, 7, 7] # Image classification docstring _UpperCamelCase = '''google/mobilenet_v1_1.0_224''' _UpperCamelCase = '''tabby, tabby cat''' _UpperCamelCase = [ '''google/mobilenet_v1_1.0_224''', '''google/mobilenet_v1_0.75_192''', # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 ] def UpperCamelCase_( snake_case__: List[str] , snake_case__: Optional[int] , snake_case__: Optional[Any]=None ) -> int: UpperCAmelCase__ = {} if isinstance(snake_case__ , snake_case__ ): UpperCAmelCase__ = model.mobilenet_va else: UpperCAmelCase__ = model UpperCAmelCase__ = 'MobilenetV1/Conv2d_0/' UpperCAmelCase__ = backbone.conv_stem.convolution.weight UpperCAmelCase__ = backbone.conv_stem.normalization.bias UpperCAmelCase__ = backbone.conv_stem.normalization.weight UpperCAmelCase__ = backbone.conv_stem.normalization.running_mean UpperCAmelCase__ = backbone.conv_stem.normalization.running_var for i in range(13 ): UpperCAmelCase__ = i + 1 UpperCAmelCase__ = i * 2 UpperCAmelCase__ = backbone.layer[pt_index] UpperCAmelCase__ = f"MobilenetV1/Conv2d_{tf_index}_depthwise/" UpperCAmelCase__ = pointer.convolution.weight UpperCAmelCase__ = pointer.normalization.bias UpperCAmelCase__ = pointer.normalization.weight UpperCAmelCase__ = pointer.normalization.running_mean UpperCAmelCase__ = pointer.normalization.running_var UpperCAmelCase__ = backbone.layer[pt_index + 1] UpperCAmelCase__ = f"MobilenetV1/Conv2d_{tf_index}_pointwise/" UpperCAmelCase__ = pointer.convolution.weight UpperCAmelCase__ = pointer.normalization.bias UpperCAmelCase__ = pointer.normalization.weight UpperCAmelCase__ = pointer.normalization.running_mean UpperCAmelCase__ = pointer.normalization.running_var if isinstance(snake_case__ , snake_case__ ): UpperCAmelCase__ = 'MobilenetV1/Logits/Conv2d_1c_1x1/' UpperCAmelCase__ = model.classifier.weight UpperCAmelCase__ = model.classifier.bias return tf_to_pt_map def UpperCamelCase_( snake_case__: Tuple , snake_case__: Tuple , snake_case__: Optional[Any] ) -> Optional[int]: try: import numpy as np import tensorflow as tf except ImportError: logger.error( 'Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see ' 'https://www.tensorflow.org/install/ for installation instructions.' ) raise # Load weights from TF model UpperCAmelCase__ = tf.train.list_variables(snake_case__ ) UpperCAmelCase__ = {} for name, shape in init_vars: logger.info(f"Loading TF weight {name} with shape {shape}" ) UpperCAmelCase__ = tf.train.load_variable(snake_case__ , snake_case__ ) UpperCAmelCase__ = array # Build TF to PyTorch weights loading map UpperCAmelCase__ = _build_tf_to_pytorch_map(snake_case__ , snake_case__ , snake_case__ ) for name, pointer in tf_to_pt_map.items(): logger.info(f"Importing {name}" ) if name not in tf_weights: logger.info(f"{name} not in tf pre-trained weights, skipping" ) continue UpperCAmelCase__ = tf_weights[name] if "depthwise_weights" in name: logger.info('Transposing depthwise' ) UpperCAmelCase__ = np.transpose(snake_case__ , (2, 3, 0, 1) ) elif "weights" in name: logger.info('Transposing' ) if len(pointer.shape ) == 2: # copying into linear layer UpperCAmelCase__ = array.squeeze().transpose() else: UpperCAmelCase__ = np.transpose(snake_case__ , (3, 2, 0, 1) ) if pointer.shape != array.shape: raise ValueError(f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched" ) logger.info(f"Initialize PyTorch weight {name} {array.shape}" ) UpperCAmelCase__ = torch.from_numpy(snake_case__ ) tf_weights.pop(snake_case__ , snake_case__ ) tf_weights.pop(name + '/RMSProp' , snake_case__ ) tf_weights.pop(name + '/RMSProp_1' , snake_case__ ) tf_weights.pop(name + '/ExponentialMovingAverage' , snake_case__ ) logger.info(f"Weights not copied to PyTorch model: {', '.join(tf_weights.keys() )}" ) return model def UpperCamelCase_( snake_case__: torch.Tensor , snake_case__: nn.Convad ) -> torch.Tensor: UpperCAmelCase__ , UpperCAmelCase__ = features.shape[-2:] UpperCAmelCase__ , UpperCAmelCase__ = conv_layer.stride UpperCAmelCase__ , UpperCAmelCase__ = conv_layer.kernel_size if in_height % stride_height == 0: UpperCAmelCase__ = max(kernel_height - stride_height , 0 ) else: UpperCAmelCase__ = max(kernel_height - (in_height % stride_height) , 0 ) if in_width % stride_width == 0: UpperCAmelCase__ = max(kernel_width - stride_width , 0 ) else: UpperCAmelCase__ = max(kernel_width - (in_width % stride_width) , 0 ) UpperCAmelCase__ = pad_along_width // 2 UpperCAmelCase__ = pad_along_width - pad_left UpperCAmelCase__ = pad_along_height // 2 UpperCAmelCase__ = pad_along_height - pad_top UpperCAmelCase__ = (pad_left, pad_right, pad_top, pad_bottom) return nn.functional.pad(snake_case__ , snake_case__ , 'constant' , 0.0 ) class lowercase ( nn.Module ): '''simple docstring''' def __init__(self , __a , __a , __a , __a , __a = 1 , __a = 1 , __a = False , __a = True , __a = True , ) -> None: """simple docstring""" super().__init__() UpperCAmelCase__ = config if in_channels % groups != 0: raise ValueError(F"Input channels ({in_channels}) are not divisible by {groups} groups." ) if out_channels % groups != 0: raise ValueError(F"Output channels ({out_channels}) are not divisible by {groups} groups." ) UpperCAmelCase__ = 0 if config.tf_padding else int((kernel_size - 1) / 2 ) UpperCAmelCase__ = nn.Convad( in_channels=__a , out_channels=__a , kernel_size=__a , stride=__a , padding=__a , groups=__a , bias=__a , padding_mode='zeros' , ) if use_normalization: UpperCAmelCase__ = nn.BatchNormad( num_features=__a , eps=config.layer_norm_eps , momentum=0.99_97 , affine=__a , track_running_stats=__a , ) else: UpperCAmelCase__ = None if use_activation: if isinstance(__a , __a ): UpperCAmelCase__ = ACTaFN[use_activation] elif isinstance(config.hidden_act , __a ): UpperCAmelCase__ = ACTaFN[config.hidden_act] else: UpperCAmelCase__ = config.hidden_act else: UpperCAmelCase__ = None def UpperCamelCase__ (self , __a ) -> torch.Tensor: """simple docstring""" if self.config.tf_padding: UpperCAmelCase__ = apply_tf_padding(__a , self.convolution ) UpperCAmelCase__ = self.convolution(__a ) if self.normalization is not None: UpperCAmelCase__ = self.normalization(__a ) if self.activation is not None: UpperCAmelCase__ = self.activation(__a ) return features class lowercase ( _UpperCamelCase ): '''simple docstring''' __SCREAMING_SNAKE_CASE = MobileNetVaConfig __SCREAMING_SNAKE_CASE = load_tf_weights_in_mobilenet_va __SCREAMING_SNAKE_CASE = """mobilenet_v1""" __SCREAMING_SNAKE_CASE = """pixel_values""" __SCREAMING_SNAKE_CASE = False def UpperCamelCase__ (self , __a ) -> None: """simple docstring""" if isinstance(__a , (nn.Linear, nn.Convad) ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() elif isinstance(__a , nn.BatchNormad ): module.bias.data.zero_() module.weight.data.fill_(1.0 ) _UpperCamelCase = R''' This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`MobileNetV1Config`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. ''' _UpperCamelCase = R''' Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`MobileNetV1ImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. ''' @add_start_docstrings( """The bare MobileNetV1 model outputting raw hidden-states without any specific head on top.""" , _UpperCamelCase , ) class lowercase ( _UpperCamelCase ): '''simple docstring''' def __init__(self , __a , __a = True ) -> int: """simple docstring""" super().__init__(__a ) UpperCAmelCase__ = config UpperCAmelCase__ = 32 UpperCAmelCase__ = max(int(depth * config.depth_multiplier ) , config.min_depth ) UpperCAmelCase__ = MobileNetVaConvLayer( __a , in_channels=config.num_channels , out_channels=__a , kernel_size=3 , stride=2 , ) UpperCAmelCase__ = [1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1] UpperCAmelCase__ = nn.ModuleList() for i in range(13 ): UpperCAmelCase__ = out_channels if strides[i] == 2 or i == 0: depth *= 2 UpperCAmelCase__ = max(int(depth * config.depth_multiplier ) , config.min_depth ) self.layer.append( MobileNetVaConvLayer( __a , in_channels=__a , out_channels=__a , kernel_size=3 , stride=strides[i] , groups=__a , ) ) self.layer.append( MobileNetVaConvLayer( __a , in_channels=__a , out_channels=__a , kernel_size=1 , ) ) UpperCAmelCase__ = nn.AdaptiveAvgPoolad((1, 1) ) if add_pooling_layer else None # Initialize weights and apply final processing self.post_init() def UpperCamelCase__ (self , __a ) -> str: """simple docstring""" raise NotImplementedError @add_start_docstrings_to_model_forward(__a ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=__a , config_class=_CONFIG_FOR_DOC , modality='vision' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def UpperCamelCase__ (self , __a = None , __a = None , __a = None , ) -> Union[tuple, BaseModelOutputWithPoolingAndNoAttention]: """simple docstring""" UpperCAmelCase__ = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) UpperCAmelCase__ = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError('You have to specify pixel_values' ) UpperCAmelCase__ = self.conv_stem(__a ) UpperCAmelCase__ = () if output_hidden_states else None for i, layer_module in enumerate(self.layer ): UpperCAmelCase__ = layer_module(__a ) if output_hidden_states: UpperCAmelCase__ = all_hidden_states + (hidden_states,) UpperCAmelCase__ = hidden_states if self.pooler is not None: UpperCAmelCase__ = torch.flatten(self.pooler(__a ) , start_dim=1 ) else: UpperCAmelCase__ = None if not return_dict: return tuple(v for v in [last_hidden_state, pooled_output, all_hidden_states] if v is not None ) return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=__a , pooler_output=__a , hidden_states=__a , ) @add_start_docstrings( """ MobileNetV1 model with an image classification head on top (a linear layer on top of the pooled features), e.g. for ImageNet. """ , _UpperCamelCase , ) class lowercase ( _UpperCamelCase ): '''simple docstring''' def __init__(self , __a ) -> None: """simple docstring""" super().__init__(__a ) UpperCAmelCase__ = config.num_labels UpperCAmelCase__ = MobileNetVaModel(__a ) UpperCAmelCase__ = self.mobilenet_va.layer[-1].convolution.out_channels # Classifier head UpperCAmelCase__ = nn.Dropout(config.classifier_dropout_prob , inplace=__a ) UpperCAmelCase__ = nn.Linear(__a , config.num_labels ) if config.num_labels > 0 else nn.Identity() # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(__a ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=__a , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def UpperCamelCase__ (self , __a = None , __a = None , __a = None , __a = None , ) -> Union[tuple, ImageClassifierOutputWithNoAttention]: """simple docstring""" UpperCAmelCase__ = return_dict if return_dict is not None else self.config.use_return_dict UpperCAmelCase__ = self.mobilenet_va(__a , output_hidden_states=__a , return_dict=__a ) UpperCAmelCase__ = outputs.pooler_output if return_dict else outputs[1] UpperCAmelCase__ = self.classifier(self.dropout(__a ) ) UpperCAmelCase__ = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: UpperCAmelCase__ = 'regression' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): UpperCAmelCase__ = 'single_label_classification' else: UpperCAmelCase__ = 'multi_label_classification' if self.config.problem_type == "regression": UpperCAmelCase__ = MSELoss() if self.num_labels == 1: UpperCAmelCase__ = loss_fct(logits.squeeze() , labels.squeeze() ) else: UpperCAmelCase__ = loss_fct(__a , __a ) elif self.config.problem_type == "single_label_classification": UpperCAmelCase__ = CrossEntropyLoss() UpperCAmelCase__ = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": UpperCAmelCase__ = BCEWithLogitsLoss() UpperCAmelCase__ = loss_fct(__a , __a ) if not return_dict: UpperCAmelCase__ = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention( loss=__a , logits=__a , hidden_states=outputs.hidden_states , )
335
from .constants import ( MODEL_NAME, OPTIMIZER_NAME, RNG_STATE_NAME, SAFE_WEIGHTS_INDEX_NAME, SAFE_WEIGHTS_NAME, SCALER_NAME, SCHEDULER_NAME, TORCH_LAUNCH_PARAMS, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ) from .dataclasses import ( BnbQuantizationConfig, ComputeEnvironment, CustomDtype, DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, DynamoBackend, FPaRecipeKwargs, FullyShardedDataParallelPlugin, GradientAccumulationPlugin, GradScalerKwargs, InitProcessGroupKwargs, KwargsHandler, LoggerType, MegatronLMPlugin, PrecisionType, ProjectConfiguration, RNGType, SageMakerDistributedType, TensorInformation, TorchDynamoPlugin, ) from .environment import get_int_from_env, parse_choice_from_env, parse_flag_from_env from .imports import ( get_ccl_version, is_abit_bnb_available, is_abit_bnb_available, is_aim_available, is_bfaa_available, is_bnb_available, is_botoa_available, is_ccl_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_fpa_available, is_ipex_available, is_megatron_lm_available, is_mlflow_available, is_mps_available, is_npu_available, is_rich_available, is_safetensors_available, is_sagemaker_available, is_tensorboard_available, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) from .modeling import ( check_device_map, check_tied_parameters_in_config, check_tied_parameters_on_same_device, compute_module_sizes, convert_file_size_to_int, dtype_byte_size, find_tied_parameters, get_balanced_memory, get_max_layer_size, get_max_memory, get_mixed_precision_context_manager, id_tensor_storage, infer_auto_device_map, load_checkpoint_in_model, load_offloaded_weights, load_state_dict, named_module_tensors, retie_parameters, set_module_tensor_to_device, shard_checkpoint, ) from .offload import ( OffloadedWeightsLoader, PrefixedDataset, extract_submodules_state_dict, load_offloaded_weight, offload_state_dict, offload_weight, save_offload_index, ) from .operations import ( broadcast, broadcast_object_list, concatenate, convert_outputs_to_fpaa, convert_to_fpaa, find_batch_size, find_device, gather, gather_object, get_data_structure, honor_type, initialize_tensors, is_namedtuple, is_tensor_information, is_torch_tensor, listify, pad_across_processes, recursively_apply, reduce, send_to_device, slice_tensors, ) from .versions import compare_versions, is_torch_version if is_deepspeed_available(): from .deepspeed import ( DeepSpeedEngineWrapper, DeepSpeedOptimizerWrapper, DeepSpeedSchedulerWrapper, DummyOptim, DummyScheduler, HfDeepSpeedConfig, ) from .bnb import has_abit_bnb_layers, load_and_quantize_model from .fsdp_utils import load_fsdp_model, load_fsdp_optimizer, save_fsdp_model, save_fsdp_optimizer from .launch import ( PrepareForLaunch, _filter_args, prepare_deepspeed_cmd_env, prepare_multi_gpu_env, prepare_sagemager_args_inputs, prepare_simple_launcher_cmd_env, prepare_tpu, ) from .megatron_lm import ( AbstractTrainStep, BertTrainStep, GPTTrainStep, MegatronEngine, MegatronLMDummyDataLoader, MegatronLMDummyScheduler, MegatronLMOptimizerWrapper, MegatronLMSchedulerWrapper, TaTrainStep, avg_losses_across_data_parallel_group, gather_across_data_parallel_groups, ) from .megatron_lm import initialize as megatron_lm_initialize from .megatron_lm import prepare_data_loader as megatron_lm_prepare_data_loader from .megatron_lm import prepare_model as megatron_lm_prepare_model from .megatron_lm import prepare_optimizer as megatron_lm_prepare_optimizer from .megatron_lm import prepare_scheduler as megatron_lm_prepare_scheduler from .memory import find_executable_batch_size, release_memory from .other import ( extract_model_from_parallel, get_pretty_name, is_port_in_use, merge_dicts, patch_environment, save, wait_for_everyone, write_basic_config, ) from .random import set_seed, synchronize_rng_state, synchronize_rng_states from .torch_xla import install_xla from .tqdm import tqdm from .transformer_engine import convert_model, has_transformer_engine_layers
335
1
'''simple docstring''' from math import pow def a ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , ): '''simple docstring''' if current_sum == needed_sum: # If the sum of the powers is equal to needed_sum, then we have a solution. solutions_count += 1 return current_sum, solutions_count A_ : Optional[int] = int(pow(lowerCamelCase__ , lowerCamelCase__ ) ) if current_sum + i_to_n <= needed_sum: # If the sum of the powers is less than needed_sum, then continue adding powers. current_sum += i_to_n A_, A_ : int = backtrack( lowerCamelCase__ , lowerCamelCase__ , current_number + 1 , lowerCamelCase__ , lowerCamelCase__ ) current_sum -= i_to_n if i_to_n < needed_sum: # If the power of i is less than needed_sum, then try with the next power. A_, A_ : int = backtrack( lowerCamelCase__ , lowerCamelCase__ , current_number + 1 , lowerCamelCase__ , lowerCamelCase__ ) return current_sum, solutions_count def a ( lowerCamelCase__ , lowerCamelCase__ ): '''simple docstring''' if not (1 <= needed_sum <= 10_00 and 2 <= power <= 10): raise ValueError( """Invalid input\n""" """needed_sum must be between 1 and 1000, power between 2 and 10.""" ) return backtrack(lowerCamelCase__ , lowerCamelCase__ , 1 , 0 , 0 )[1] # Return the solutions_count if __name__ == "__main__": import doctest doctest.testmod()
206
'''simple docstring''' # Author: OMKAR PATHAK, Nwachukwu Chidiebere # Use a Python dictionary to construct the graph. from __future__ import annotations from pprint import pformat from typing import Generic, TypeVar lowerCamelCase :str = TypeVar('''T''') class _lowerCAmelCase ( Generic[T] ): def __init__(self , lowercase = True ): A_ : dict[T, list[T]] = {} # dictionary of lists A_ : Any = directed def _a (self , lowercase , lowercase ): if not self.directed: # For undirected graphs # if both source vertex and destination vertex are both present in the # adjacency list, add destination vertex to source vertex list of adjacent # vertices and add source vertex to destination vertex list of adjacent # vertices. if source_vertex in self.adj_list and destination_vertex in self.adj_list: self.adj_list[source_vertex].append(lowercase ) self.adj_list[destination_vertex].append(lowercase ) # if only source vertex is present in adjacency list, add destination vertex # to source vertex list of adjacent vertices, then create a new vertex with # destination vertex as key and assign a list containing the source vertex # as it's first adjacent vertex. elif source_vertex in self.adj_list: self.adj_list[source_vertex].append(lowercase ) A_ : Dict = [source_vertex] # if only destination vertex is present in adjacency list, add source vertex # to destination vertex list of adjacent vertices, then create a new vertex # with source vertex as key and assign a list containing the source vertex # as it's first adjacent vertex. elif destination_vertex in self.adj_list: self.adj_list[destination_vertex].append(lowercase ) A_ : int = [destination_vertex] # if both source vertex and destination vertex are not present in adjacency # list, create a new vertex with source vertex as key and assign a list # containing the destination vertex as it's first adjacent vertex also # create a new vertex with destination vertex as key and assign a list # containing the source vertex as it's first adjacent vertex. else: A_ : Optional[Any] = [destination_vertex] A_ : Tuple = [source_vertex] else: # For directed graphs # if both source vertex and destination vertex are present in adjacency # list, add destination vertex to source vertex list of adjacent vertices. if source_vertex in self.adj_list and destination_vertex in self.adj_list: self.adj_list[source_vertex].append(lowercase ) # if only source vertex is present in adjacency list, add destination # vertex to source vertex list of adjacent vertices and create a new vertex # with destination vertex as key, which has no adjacent vertex elif source_vertex in self.adj_list: self.adj_list[source_vertex].append(lowercase ) A_ : Tuple = [] # if only destination vertex is present in adjacency list, create a new # vertex with source vertex as key and assign a list containing destination # vertex as first adjacent vertex elif destination_vertex in self.adj_list: A_ : Tuple = [destination_vertex] # if both source vertex and destination vertex are not present in adjacency # list, create a new vertex with source vertex as key and a list containing # destination vertex as it's first adjacent vertex. Then create a new vertex # with destination vertex as key, which has no adjacent vertex else: A_ : int = [destination_vertex] A_ : List[str] = [] return self def __repr__(self ): return pformat(self.adj_list )
206
1
'''simple docstring''' import os import re import warnings from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_ta import TaTokenizer else: lowerCamelCase :Optional[int] = None lowerCamelCase :Union[str, Any] = logging.get_logger(__name__) lowerCamelCase :Optional[int] = {'''vocab_file''': '''spiece.model''', '''tokenizer_file''': '''tokenizer.json'''} lowerCamelCase :List[Any] = { '''vocab_file''': { '''t5-small''': '''https://huggingface.co/t5-small/resolve/main/spiece.model''', '''t5-base''': '''https://huggingface.co/t5-base/resolve/main/spiece.model''', '''t5-large''': '''https://huggingface.co/t5-large/resolve/main/spiece.model''', '''t5-3b''': '''https://huggingface.co/t5-3b/resolve/main/spiece.model''', '''t5-11b''': '''https://huggingface.co/t5-11b/resolve/main/spiece.model''', }, '''tokenizer_file''': { '''t5-small''': '''https://huggingface.co/t5-small/resolve/main/tokenizer.json''', '''t5-base''': '''https://huggingface.co/t5-base/resolve/main/tokenizer.json''', '''t5-large''': '''https://huggingface.co/t5-large/resolve/main/tokenizer.json''', '''t5-3b''': '''https://huggingface.co/t5-3b/resolve/main/tokenizer.json''', '''t5-11b''': '''https://huggingface.co/t5-11b/resolve/main/tokenizer.json''', }, } # TODO(PVP) - this should be removed in Transformers v5 lowerCamelCase :int = { '''t5-small''': 5_1_2, '''t5-base''': 5_1_2, '''t5-large''': 5_1_2, '''t5-3b''': 5_1_2, '''t5-11b''': 5_1_2, } class _lowerCAmelCase ( __UpperCAmelCase ): __SCREAMING_SNAKE_CASE : Tuple = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE : List[str] = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE : Dict = ['input_ids', 'attention_mask'] __SCREAMING_SNAKE_CASE : int = TaTokenizer __SCREAMING_SNAKE_CASE : List[int] = [] def __init__(self , lowercase=None , lowercase=None , lowercase="</s>" , lowercase="<unk>" , lowercase="<pad>" , lowercase=100 , lowercase=None , **lowercase , ): # Add extra_ids to the special token list if extra_ids > 0 and additional_special_tokens is None: A_ : Dict = [F'<extra_id_{i}>' for i in range(lowercase )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra special tokens A_ : Optional[int] = len(set(filter(lambda lowercase : bool("""extra_id_""" in str(lowercase ) ) , lowercase ) ) ) if extra_tokens != extra_ids: raise ValueError( F'Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are' """ provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids""" """ tokens""" ) super().__init__( lowercase , tokenizer_file=lowercase , eos_token=lowercase , unk_token=lowercase , pad_token=lowercase , extra_ids=lowercase , additional_special_tokens=lowercase , **lowercase , ) A_ : Any = vocab_file A_ : List[Any] = False if not self.vocab_file else True A_ : Any = extra_ids @staticmethod def _a (lowercase , lowercase , lowercase ): if pretrained_model_name_or_path in TaTokenizerFast.max_model_input_sizes: A_ : Optional[Any] = TaTokenizerFast.max_model_input_sizes[pretrained_model_name_or_path] if init_max_model_length is not None and init_max_model_length != max_model_length: return init_max_model_length elif init_max_model_length is None: warnings.warn( """This tokenizer was incorrectly instantiated with a model max length of""" F' {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this' """ behavior is kept to avoid breaking backwards compatibility when padding/encoding with""" """ `truncation is True`.\n- Be aware that you SHOULD NOT rely on""" F' {pretrained_model_name_or_path} automatically truncating your input to' F' {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences' F' longer than {deprecated_max_model_length} you can either instantiate this tokenizer with' """ `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please""" """ instantiate this tokenizer with `model_max_length` set to your preferred value.""" , lowercase , ) return max_model_length def _a (self , lowercase , lowercase = None ): if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(lowercase ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return A_ : Dict = os.path.join( lowercase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowercase ): copyfile(self.vocab_file , lowercase ) logger.info(F'Copy vocab file to {out_vocab_file}' ) return (out_vocab_file,) def _a (self , lowercase , lowercase = None ): A_ : Tuple = token_ids_a + [self.eos_token_id] if token_ids_a is None: return self.prefix_tokens + token_ids_a else: A_ : Any = token_ids_a + [self.eos_token_id] return self.prefix_tokens + token_ids_a + token_ids_a def _a (self , lowercase , lowercase = None ): A_ : int = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def _a (self ): return list( set(filter(lambda lowercase : bool(re.search(R"""<extra_id_\d+>""" , lowercase ) ) is not None , self.additional_special_tokens ) ) ) def _a (self ): return [self.convert_tokens_to_ids(lowercase ) for token in self.get_sentinel_tokens()]
135
'''simple docstring''' from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCamelCase :Dict = {'''configuration_mmbt''': ['''MMBTConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase :str = ['''MMBTForClassification''', '''MMBTModel''', '''ModalEmbeddings'''] if TYPE_CHECKING: from .configuration_mmbt import MMBTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mmbt import MMBTForClassification, MMBTModel, ModalEmbeddings else: import sys lowerCamelCase :Tuple = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
135
1
'''simple docstring''' import time from contextlib import contextmanager from pathlib import Path import pytest import requests from huggingface_hub.hf_api import HfApi, HfFolder __SCREAMING_SNAKE_CASE : Any = """__DUMMY_TRANSFORMERS_USER__""" __SCREAMING_SNAKE_CASE : Any = """Dummy User""" __SCREAMING_SNAKE_CASE : Dict = """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""" __SCREAMING_SNAKE_CASE : Tuple = """https://hub-ci.huggingface.co""" __SCREAMING_SNAKE_CASE : str = CI_HUB_ENDPOINT + """/datasets/{repo_id}/resolve/{revision}/{path}""" __SCREAMING_SNAKE_CASE : Union[str, Any] = CI_HUB_ENDPOINT + """/{repo_id}/resolve/{revision}/{filename}""" __SCREAMING_SNAKE_CASE : str = Path("""~/.huggingface/hub_ci_token""").expanduser() @pytest.fixture def UpperCamelCase_ ( _UpperCAmelCase : str ) -> List[str]: """simple docstring""" monkeypatch.setattr( "huggingface_hub.file_download.HUGGINGFACE_CO_URL_TEMPLATE" , _UpperCAmelCase ) @pytest.fixture def UpperCamelCase_ ( _UpperCAmelCase : Optional[Any] ) -> Any: """simple docstring""" monkeypatch.setattr("datasets.config.HF_ENDPOINT" , _UpperCAmelCase ) monkeypatch.setattr("datasets.config.HUB_DATASETS_URL" , _UpperCAmelCase ) @pytest.fixture def UpperCamelCase_ ( _UpperCAmelCase : Optional[int] ) -> List[str]: """simple docstring""" monkeypatch.setattr("huggingface_hub.hf_api.HfFolder.path_token" , _UpperCAmelCase ) @pytest.fixture def UpperCamelCase_ ( _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : List[str] ) -> List[Any]: """simple docstring""" HfFolder.save_token(_UpperCAmelCase ) yield HfFolder.delete_token() @pytest.fixture(scope="session" ) def UpperCamelCase_ ( ) -> List[str]: """simple docstring""" return HfApi(endpoint=_UpperCAmelCase ) @pytest.fixture(scope="session" ) def UpperCamelCase_ ( _UpperCAmelCase : HfApi ) -> Any: """simple docstring""" _UpperCAmelCase : str = HfFolder.get_token() HfFolder.save_token(_UpperCAmelCase ) yield CI_HUB_USER_TOKEN if previous_token is not None: HfFolder.save_token(_UpperCAmelCase ) @pytest.fixture def UpperCamelCase_ ( _UpperCAmelCase : int ) -> Tuple: """simple docstring""" def _cleanup_repo(_UpperCAmelCase : Optional[Any] ): hf_api.delete_repo(_UpperCAmelCase , token=_UpperCAmelCase , repo_type="dataset" ) return _cleanup_repo @pytest.fixture def UpperCamelCase_ ( _UpperCAmelCase : Tuple ) -> Any: """simple docstring""" @contextmanager def _temporary_repo(_UpperCAmelCase : List[Any] ): try: yield repo_id finally: cleanup_repo(_UpperCAmelCase ) return _temporary_repo @pytest.fixture(scope="session" ) def UpperCamelCase_ ( _UpperCAmelCase : HfApi , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : str ) -> str: """simple docstring""" _UpperCAmelCase : Dict = F"""repo_txt_data-{int(time.time() * 10e3 )}""" _UpperCAmelCase : List[str] = F"""{CI_HUB_USER}/{repo_name}""" hf_api.create_repo(_UpperCAmelCase , token=_UpperCAmelCase , repo_type="dataset" , private=_UpperCAmelCase ) hf_api.upload_file( token=_UpperCAmelCase , path_or_fileobj=str(_UpperCAmelCase ) , path_in_repo="data/text_data.txt" , repo_id=_UpperCAmelCase , repo_type="dataset" , ) yield repo_id try: hf_api.delete_repo(_UpperCAmelCase , token=_UpperCAmelCase , repo_type="dataset" ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def UpperCamelCase_ ( _UpperCAmelCase : Optional[int] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[int] ) -> Union[str, Any]: """simple docstring""" return hf_private_dataset_repo_txt_data_ @pytest.fixture(scope="session" ) def UpperCamelCase_ ( _UpperCAmelCase : HfApi , _UpperCAmelCase : int , _UpperCAmelCase : Any ) -> Tuple: """simple docstring""" _UpperCAmelCase : Union[str, Any] = F"""repo_zipped_txt_data-{int(time.time() * 10e3 )}""" _UpperCAmelCase : List[str] = F"""{CI_HUB_USER}/{repo_name}""" hf_api.create_repo(_UpperCAmelCase , token=_UpperCAmelCase , repo_type="dataset" , private=_UpperCAmelCase ) hf_api.upload_file( token=_UpperCAmelCase , path_or_fileobj=str(_UpperCAmelCase ) , path_in_repo="data.zip" , repo_id=_UpperCAmelCase , repo_type="dataset" , ) yield repo_id try: hf_api.delete_repo(_UpperCAmelCase , token=_UpperCAmelCase , repo_type="dataset" ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def UpperCamelCase_ ( _UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : List[str] ) -> Dict: """simple docstring""" return hf_private_dataset_repo_zipped_txt_data_ @pytest.fixture(scope="session" ) def UpperCamelCase_ ( _UpperCAmelCase : HfApi , _UpperCAmelCase : int , _UpperCAmelCase : int ) -> Dict: """simple docstring""" _UpperCAmelCase : List[str] = F"""repo_zipped_img_data-{int(time.time() * 10e3 )}""" _UpperCAmelCase : Tuple = F"""{CI_HUB_USER}/{repo_name}""" hf_api.create_repo(_UpperCAmelCase , token=_UpperCAmelCase , repo_type="dataset" , private=_UpperCAmelCase ) hf_api.upload_file( token=_UpperCAmelCase , path_or_fileobj=str(_UpperCAmelCase ) , path_in_repo="data.zip" , repo_id=_UpperCAmelCase , repo_type="dataset" , ) yield repo_id try: hf_api.delete_repo(_UpperCAmelCase , token=_UpperCAmelCase , repo_type="dataset" ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def UpperCamelCase_ ( _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[str] ) -> Optional[int]: """simple docstring""" return hf_private_dataset_repo_zipped_img_data_
31
'''simple docstring''' def UpperCamelCase_ ( _UpperCAmelCase : list ) -> list: """simple docstring""" _UpperCAmelCase : List[Any] = len(_UpperCAmelCase ) for _ in range(_UpperCAmelCase ): for i in range(_ % 2 , arr_size - 1 , 2 ): if arr[i + 1] < arr[i]: _UpperCAmelCase , _UpperCAmelCase : int = arr[i + 1], arr[i] return arr if __name__ == "__main__": __SCREAMING_SNAKE_CASE : Optional[Any] = list(range(10, 0, -1)) print(F'Original: {arr}. Sorted: {odd_even_transposition(arr)}')
31
1
import unittest import numpy as np from transformers import AlbertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.albert.modeling_flax_albert import ( FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForPreTraining, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertModel, ) class UpperCAmelCase_ ( unittest.TestCase): def __init__( self, __a, __a=13, __a=7, __a=True, __a=True, __a=True, __a=True, __a=99, __a=32, __a=5, __a=4, __a=37, __a="gelu", __a=0.1, __a=0.1, __a=512, __a=16, __a=2, __a=0.02, __a=4, ): '''simple docstring''' _lowerCAmelCase : int = parent _lowerCAmelCase : Dict = batch_size _lowerCAmelCase : Optional[Any] = seq_length _lowerCAmelCase : Any = is_training _lowerCAmelCase : Optional[int] = use_attention_mask _lowerCAmelCase : List[Any] = use_token_type_ids _lowerCAmelCase : Optional[int] = use_labels _lowerCAmelCase : Optional[int] = vocab_size _lowerCAmelCase : str = hidden_size _lowerCAmelCase : List[Any] = num_hidden_layers _lowerCAmelCase : Union[str, Any] = num_attention_heads _lowerCAmelCase : Optional[int] = intermediate_size _lowerCAmelCase : Optional[int] = hidden_act _lowerCAmelCase : int = hidden_dropout_prob _lowerCAmelCase : Tuple = attention_probs_dropout_prob _lowerCAmelCase : int = max_position_embeddings _lowerCAmelCase : Dict = type_vocab_size _lowerCAmelCase : List[str] = type_sequence_label_size _lowerCAmelCase : Any = initializer_range _lowerCAmelCase : List[str] = num_choices def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Dict = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) _lowerCAmelCase : Any = None if self.use_attention_mask: _lowerCAmelCase : Dict = random_attention_mask([self.batch_size, self.seq_length]) _lowerCAmelCase : Any = None if self.use_token_type_ids: _lowerCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size) _lowerCAmelCase : Optional[Any] = AlbertConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, is_decoder=__a, initializer_range=self.initializer_range, ) return config, input_ids, token_type_ids, attention_mask def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[str] = self.prepare_config_and_inputs() _lowerCAmelCase : str = config_and_inputs _lowerCAmelCase : Optional[int] = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask} return config, inputs_dict @require_flax class UpperCAmelCase_ ( a , unittest.TestCase): lowerCamelCase__ = ( ( FlaxAlbertModel, FlaxAlbertForPreTraining, FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertForQuestionAnswering, ) if is_flax_available() else () ) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Dict = FlaxAlbertModelTester(self) @slow def snake_case__ ( self): '''simple docstring''' for model_class_name in self.all_model_classes: _lowerCAmelCase : int = model_class_name.from_pretrained("albert-base-v2") _lowerCAmelCase : Union[str, Any] = model(np.ones((1, 1))) self.assertIsNotNone(__a) @require_flax class UpperCAmelCase_ ( unittest.TestCase): @slow def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[int] = FlaxAlbertModel.from_pretrained("albert-base-v2") _lowerCAmelCase : int = np.array([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]]) _lowerCAmelCase : Optional[Any] = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]) _lowerCAmelCase : Tuple = model(__a, attention_mask=__a)[0] _lowerCAmelCase : Dict = (1, 11, 768) self.assertEqual(output.shape, __a) _lowerCAmelCase : Tuple = np.array( [[[-0.6_513, 1.5_035, -0.2_766], [-0.6_515, 1.5_046, -0.2_780], [-0.6_512, 1.5_049, -0.2_784]]]) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4], __a, atol=1E-4))
350
import warnings from ...utils import logging from .image_processing_videomae import VideoMAEImageProcessor _snake_case = logging.get_logger(__name__) class UpperCAmelCase_ ( a): def __init__( self, *__a, **__a): '''simple docstring''' warnings.warn( "The class VideoMAEFeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use VideoMAEImageProcessor instead.", __a, ) super().__init__(*__a, **__a)
300
0
"""simple docstring""" import math import unittest def lowercase ( lowerCAmelCase__ : int ) -> bool: assert isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and ( number >= 0 ), "'number' must been an int and positive" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(lowerCAmelCase__ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True class __lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def __UpperCAmelCase ( self ): self.assertTrue(is_prime(2 ) ) self.assertTrue(is_prime(3 ) ) self.assertTrue(is_prime(5 ) ) self.assertTrue(is_prime(7 ) ) self.assertTrue(is_prime(11 ) ) self.assertTrue(is_prime(13 ) ) self.assertTrue(is_prime(17 ) ) self.assertTrue(is_prime(19 ) ) self.assertTrue(is_prime(23 ) ) self.assertTrue(is_prime(29 ) ) def __UpperCAmelCase ( self ): with self.assertRaises(_a ): is_prime(-19 ) self.assertFalse( is_prime(0 ) , '''Zero doesn\'t have any positive factors, primes must have exactly two.''' , ) self.assertFalse( is_prime(1 ) , '''One only has 1 positive factor, primes must have exactly two.''' , ) self.assertFalse(is_prime(2 * 2 ) ) self.assertFalse(is_prime(2 * 3 ) ) self.assertFalse(is_prime(3 * 3 ) ) self.assertFalse(is_prime(3 * 5 ) ) self.assertFalse(is_prime(3 * 5 * 7 ) ) if __name__ == "__main__": unittest.main()
45
"""simple docstring""" import unittest import torch from torch import nn from diffusers.models.activations import get_activation class __lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def __UpperCAmelCase ( self ): __a = get_activation('''swish''' ) self.assertIsInstance(_a , nn.SiLU ) self.assertEqual(act(torch.tensor(-100 , dtype=torch.floataa ) ).item() , 0 ) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 ) def __UpperCAmelCase ( self ): __a = get_activation('''silu''' ) self.assertIsInstance(_a , nn.SiLU ) self.assertEqual(act(torch.tensor(-100 , dtype=torch.floataa ) ).item() , 0 ) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 ) def __UpperCAmelCase ( self ): __a = get_activation('''mish''' ) self.assertIsInstance(_a , nn.Mish ) self.assertEqual(act(torch.tensor(-200 , dtype=torch.floataa ) ).item() , 0 ) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 ) def __UpperCAmelCase ( self ): __a = get_activation('''gelu''' ) self.assertIsInstance(_a , nn.GELU ) self.assertEqual(act(torch.tensor(-100 , dtype=torch.floataa ) ).item() , 0 ) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 )
45
1
import math import random from typing import Any from .hill_climbing import SearchProblem def __UpperCamelCase ( UpperCAmelCase , UpperCAmelCase = True , UpperCAmelCase = math.inf , UpperCAmelCase = -math.inf , UpperCAmelCase = math.inf , UpperCAmelCase = -math.inf , UpperCAmelCase = False , UpperCAmelCase = 100 , UpperCAmelCase = 0.0_1 , UpperCAmelCase = 1 , ): lowercase__ : Union[str, Any] = False lowercase__ : int = search_prob lowercase__ : Optional[Any] = start_temperate lowercase__ : List[Any] = [] lowercase__ : Tuple = 0 lowercase__ : Optional[Any] = None while not search_end: lowercase__ : List[Any] = current_state.score() if best_state is None or current_score > best_state.score(): lowercase__ : int = current_state scores.append(UpperCAmelCase ) iterations += 1 lowercase__ : Optional[Any] = None lowercase__ : Any = current_state.get_neighbors() while ( next_state is None and neighbors ): # till we do not find a neighbor that we can move to lowercase__ : str = random.randint(0 , len(UpperCAmelCase ) - 1 ) # picking a random neighbor lowercase__ : Optional[int] = neighbors.pop(UpperCAmelCase ) lowercase__ : Union[str, Any] = picked_neighbor.score() - current_score if ( picked_neighbor.x > max_x or picked_neighbor.x < min_x or picked_neighbor.y > max_y or picked_neighbor.y < min_y ): continue # neighbor outside our bounds if not find_max: lowercase__ : int = change * -1 # in case we are finding minimum if change > 0: # improves the solution lowercase__ : str = picked_neighbor else: lowercase__ : str = (math.e) ** ( change / current_temp ) # probability generation function if random.random() < probability: # random number within probability lowercase__ : Optional[Any] = picked_neighbor lowercase__ : Tuple = current_temp - (current_temp * rate_of_decrease) if current_temp < threshold_temp or next_state is None: # temperature below threshold, or could not find a suitable neighbor lowercase__ : Dict = True else: lowercase__ : Union[str, Any] = next_state if visualization: from matplotlib import pyplot as plt plt.plot(range(UpperCAmelCase ) , UpperCAmelCase ) plt.xlabel('''Iterations''' ) plt.ylabel('''Function values''' ) plt.show() return best_state if __name__ == "__main__": def __UpperCamelCase ( UpperCAmelCase , UpperCAmelCase ): return (x**2) + (y**2) # starting the problem with initial coordinates (12, 47) __a: Optional[Any] = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) __a: List[Any] = simulated_annealing( prob, find_max=False, max_x=1_00, min_x=5, max_y=50, min_y=-5, visualization=True ) print( """The minimum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 """ F'and 50 > y > - 5 found via hill climbing: {local_min.score()}' ) # starting the problem with initial coordinates (12, 47) __a: List[str] = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) __a: Union[str, Any] = simulated_annealing( prob, find_max=True, max_x=1_00, min_x=5, max_y=50, min_y=-5, visualization=True ) print( """The maximum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 """ F'and 50 > y > - 5 found via hill climbing: {local_min.score()}' ) def __UpperCamelCase ( UpperCAmelCase , UpperCAmelCase ): return (3 * x**2) - (6 * y) __a: Optional[int] = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) __a: Dict = simulated_annealing(prob, find_max=False, visualization=True) print( """The minimum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: """ F'{local_min.score()}' ) __a: Union[str, Any] = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) __a: Dict = simulated_annealing(prob, find_max=True, visualization=True) print( """The maximum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: """ F'{local_min.score()}' )
364
'''simple docstring''' import io import itertools import json from dataclasses import dataclass from typing import Optional import pyarrow as pa import pyarrow.json as paj import datasets from datasets.table import table_cast from datasets.utils.file_utils import readline __a: Tuple = datasets.utils.logging.get_logger(__name__) @dataclass class UpperCAmelCase ( datasets.BuilderConfig ): '''simple docstring''' SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = "utf-8" SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = True # deprecated SCREAMING_SNAKE_CASE = None # deprecated SCREAMING_SNAKE_CASE = 1_0 << 2_0 # 10MB SCREAMING_SNAKE_CASE = None class UpperCAmelCase ( datasets.ArrowBasedBuilder ): '''simple docstring''' SCREAMING_SNAKE_CASE = JsonConfig def _lowerCAmelCase( self ) -> Any: if self.config.block_size is not None: logger.warning('''The JSON loader parameter `block_size` is deprecated. Please use `chunksize` instead''' ) lowercase__ : Tuple = self.config.block_size if self.config.use_threads is not True: logger.warning( '''The JSON loader parameter `use_threads` is deprecated and doesn\'t have any effect anymore.''' ) if self.config.newlines_in_values is not None: raise ValueError('''The JSON loader parameter `newlines_in_values` is no longer supported''' ) return datasets.DatasetInfo(features=self.config.features ) def _lowerCAmelCase( self , __lowerCAmelCase ) -> Optional[Any]: if not self.config.data_files: raise ValueError(F"""At least one data file must be specified, but got data_files={self.config.data_files}""" ) lowercase__ : List[str] = dl_manager.download_and_extract(self.config.data_files ) if isinstance(__lowerCAmelCase , (str, list, tuple) ): lowercase__ : List[str] = data_files if isinstance(__lowerCAmelCase , __lowerCAmelCase ): lowercase__ : Union[str, Any] = [files] lowercase__ : Dict = [dl_manager.iter_files(__lowerCAmelCase ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''files''': files} )] lowercase__ : str = [] for split_name, files in data_files.items(): if isinstance(__lowerCAmelCase , __lowerCAmelCase ): lowercase__ : List[str] = [files] lowercase__ : Optional[Any] = [dl_manager.iter_files(__lowerCAmelCase ) for file in files] splits.append(datasets.SplitGenerator(name=__lowerCAmelCase , gen_kwargs={'''files''': files} ) ) return splits def _lowerCAmelCase( self , __lowerCAmelCase ) -> pa.Table: if self.config.features is not None: # adding missing columns for column_name in set(self.config.features ) - set(pa_table.column_names ): lowercase__ : Optional[int] = self.config.features.arrow_schema.field(__lowerCAmelCase ).type lowercase__ : Union[str, Any] = pa_table.append_column(__lowerCAmelCase , pa.array([None] * len(__lowerCAmelCase ) , type=__lowerCAmelCase ) ) # more expensive cast to support nested structures with keys in a different order # allows str <-> int/float or str to Audio for example lowercase__ : Dict = table_cast(__lowerCAmelCase , self.config.features.arrow_schema ) return pa_table def _lowerCAmelCase( self , __lowerCAmelCase ) -> Optional[int]: for file_idx, file in enumerate(itertools.chain.from_iterable(__lowerCAmelCase ) ): # If the file is one json object and if we need to look at the list of items in one specific field if self.config.field is not None: with open(__lowerCAmelCase , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f: lowercase__ : Dict = json.load(__lowerCAmelCase ) # We keep only the field we are interested in lowercase__ : Any = dataset[self.config.field] # We accept two format: a list of dicts or a dict of lists if isinstance(__lowerCAmelCase , (list, tuple) ): lowercase__ : List[Any] = set().union(*[row.keys() for row in dataset] ) lowercase__ : List[Any] = {col: [row.get(__lowerCAmelCase ) for row in dataset] for col in keys} else: lowercase__ : Union[str, Any] = dataset lowercase__ : Optional[int] = pa.Table.from_pydict(__lowerCAmelCase ) yield file_idx, self._cast_table(__lowerCAmelCase ) # If the file has one json object per line else: with open(__lowerCAmelCase , '''rb''' ) as f: lowercase__ : Optional[int] = 0 # Use block_size equal to the chunk size divided by 32 to leverage multithreading # Set a default minimum value of 16kB if the chunk size is really small lowercase__ : List[str] = max(self.config.chunksize // 32 , 16 << 10 ) lowercase__ : Union[str, Any] = ( self.config.encoding_errors if self.config.encoding_errors is not None else '''strict''' ) while True: lowercase__ : Tuple = f.read(self.config.chunksize ) if not batch: break # Finish current line try: batch += f.readline() except (AttributeError, io.UnsupportedOperation): batch += readline(__lowerCAmelCase ) # PyArrow only accepts utf-8 encoded bytes if self.config.encoding != "utf-8": lowercase__ : Dict = batch.decode(self.config.encoding , errors=__lowerCAmelCase ).encode('''utf-8''' ) try: while True: try: lowercase__ : str = paj.read_json( io.BytesIO(__lowerCAmelCase ) , read_options=paj.ReadOptions(block_size=__lowerCAmelCase ) ) break except (pa.ArrowInvalid, pa.ArrowNotImplementedError) as e: if ( isinstance(__lowerCAmelCase , pa.ArrowInvalid ) and "straddling" not in str(__lowerCAmelCase ) or block_size > len(__lowerCAmelCase ) ): raise else: # Increase the block size in case it was too small. # The block size will be reset for the next file. logger.debug( F"""Batch of {len(__lowerCAmelCase )} bytes couldn't be parsed with block_size={block_size}. Retrying with block_size={block_size * 2}.""" ) block_size *= 2 except pa.ArrowInvalid as e: try: with open( __lowerCAmelCase , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f: lowercase__ : Optional[int] = json.load(__lowerCAmelCase ) except json.JSONDecodeError: logger.error(F"""Failed to read file '{file}' with error {type(__lowerCAmelCase )}: {e}""" ) raise e # If possible, parse the file as a list of json objects and exit the loop if isinstance(__lowerCAmelCase , __lowerCAmelCase ): # list is the only sequence type supported in JSON try: lowercase__ : List[Any] = set().union(*[row.keys() for row in dataset] ) lowercase__ : str = {col: [row.get(__lowerCAmelCase ) for row in dataset] for col in keys} lowercase__ : Optional[int] = pa.Table.from_pydict(__lowerCAmelCase ) except (pa.ArrowInvalid, AttributeError) as e: logger.error(F"""Failed to read file '{file}' with error {type(__lowerCAmelCase )}: {e}""" ) raise ValueError(F"""Not able to read records in the JSON file at {file}.""" ) from None yield file_idx, self._cast_table(__lowerCAmelCase ) break else: logger.error(F"""Failed to read file '{file}' with error {type(__lowerCAmelCase )}: {e}""" ) raise ValueError( F"""Not able to read records in the JSON file at {file}. """ F"""You should probably indicate the field of the JSON file containing your records. """ F"""This JSON file contain the following fields: {str(list(dataset.keys() ) )}. """ F"""Select the correct one and provide it as `field='XXX'` to the dataset loading method. """ ) from None # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(__lowerCAmelCase ) batch_idx += 1
214
0
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _UpperCAmelCase : Any = { "configuration_efficientnet": [ "EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "EfficientNetConfig", "EfficientNetOnnxConfig", ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : Union[str, Any] = ["EfficientNetImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : Union[str, Any] = [ "EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST", "EfficientNetForImageClassification", "EfficientNetModel", "EfficientNetPreTrainedModel", ] if TYPE_CHECKING: from .configuration_efficientnet import ( EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientNetConfig, EfficientNetOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientnet import EfficientNetImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientnet import ( EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientNetForImageClassification, EfficientNetModel, EfficientNetPreTrainedModel, ) else: import sys _UpperCAmelCase : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure)
236
"""simple docstring""" import json import os from pathlib import Path import pytest from datasets.download.download_config import DownloadConfig from datasets.download.download_manager import DownloadManager from datasets.utils.file_utils import hash_url_to_filename UpperCAmelCase__ = 'http://www.mocksite.com/file1.txt' UpperCAmelCase__ = '"text": ["foo", "foo"]' UpperCAmelCase__ = '6d8ce9aa78a471c7477201efbeabd3bb01ac2e7d100a6dc024ba1608361f90a8' class lowerCAmelCase__ : __a = 200 __a = {"""Content-Length""": """100"""} __a = {} def lowercase ( self : List[str] , **_lowerCamelCase : List[str] ): return [bytes(_lowerCamelCase , '''utf-8''' )] def _UpperCAmelCase ( *__lowerCamelCase : List[str] , **__lowerCamelCase : Dict ) -> Dict: return MockResponse() @pytest.mark.parametrize('''urls_type''' , [str, list, dict] ) def _UpperCAmelCase ( __lowerCamelCase : Union[str, Any] , __lowerCamelCase : List[str] , __lowerCamelCase : str ) -> int: import requests monkeypatch.setattr(__lowerCamelCase , '''request''' , __lowerCamelCase ) _snake_case = URL if issubclass(__lowerCamelCase , __lowerCamelCase ): _snake_case = url elif issubclass(__lowerCamelCase , __lowerCamelCase ): _snake_case = [url] elif issubclass(__lowerCamelCase , __lowerCamelCase ): _snake_case = {'''train''': url} _snake_case = '''dummy''' _snake_case = '''downloads''' _snake_case = tmp_path _snake_case = DownloadConfig( cache_dir=os.path.join(__lowerCamelCase , __lowerCamelCase ) , use_etag=__lowerCamelCase , ) _snake_case = DownloadManager(dataset_name=__lowerCamelCase , download_config=__lowerCamelCase ) _snake_case = dl_manager.download(__lowerCamelCase ) _snake_case = urls for downloaded_paths in [downloaded_paths]: if isinstance(__lowerCamelCase , __lowerCamelCase ): _snake_case = [downloaded_paths] _snake_case = [urls] elif isinstance(__lowerCamelCase , __lowerCamelCase ): assert "train" in downloaded_paths.keys() _snake_case = downloaded_paths.values() _snake_case = urls.values() assert downloaded_paths for downloaded_path, input_url in zip(__lowerCamelCase , __lowerCamelCase ): assert downloaded_path == dl_manager.downloaded_paths[input_url] _snake_case = Path(__lowerCamelCase ) _snake_case = downloaded_path.parts assert parts[-1] == HASH assert parts[-2] == cache_subdir assert downloaded_path.exists() _snake_case = downloaded_path.read_text() assert content == CONTENT _snake_case = downloaded_path.with_suffix('''.json''' ) assert metadata_downloaded_path.exists() _snake_case = json.loads(metadata_downloaded_path.read_text() ) assert metadata_content == {"url": URL, "etag": None} @pytest.mark.parametrize('''paths_type''' , [str, list, dict] ) def _UpperCAmelCase ( __lowerCamelCase : int , __lowerCamelCase : str , __lowerCamelCase : Optional[int] ) -> int: _snake_case = str(__lowerCamelCase ) if issubclass(__lowerCamelCase , __lowerCamelCase ): _snake_case = filename elif issubclass(__lowerCamelCase , __lowerCamelCase ): _snake_case = [filename] elif issubclass(__lowerCamelCase , __lowerCamelCase ): _snake_case = {'''train''': filename} _snake_case = '''dummy''' _snake_case = xz_file.parent _snake_case = '''extracted''' _snake_case = DownloadConfig( cache_dir=__lowerCamelCase , use_etag=__lowerCamelCase , ) _snake_case = DownloadManager(dataset_name=__lowerCamelCase , download_config=__lowerCamelCase ) _snake_case = dl_manager.extract(__lowerCamelCase ) _snake_case = paths for extracted_paths in [extracted_paths]: if isinstance(__lowerCamelCase , __lowerCamelCase ): _snake_case = [extracted_paths] _snake_case = [paths] elif isinstance(__lowerCamelCase , __lowerCamelCase ): assert "train" in extracted_paths.keys() _snake_case = extracted_paths.values() _snake_case = paths.values() assert extracted_paths for extracted_path, input_path in zip(__lowerCamelCase , __lowerCamelCase ): assert extracted_path == dl_manager.extracted_paths[input_path] _snake_case = Path(__lowerCamelCase ) _snake_case = extracted_path.parts assert parts[-1] == hash_url_to_filename(__lowerCamelCase , etag=__lowerCamelCase ) assert parts[-2] == extracted_subdir assert extracted_path.exists() _snake_case = extracted_path.read_text() _snake_case = text_file.read_text() assert extracted_file_content == expected_file_content def _UpperCAmelCase ( __lowerCamelCase : Tuple , __lowerCamelCase : List[Any] ) -> Dict: assert path.endswith('''.jsonl''' ) for num_items, line in enumerate(__lowerCamelCase , start=1 ): _snake_case = json.loads(line.decode('''utf-8''' ) ) assert item.keys() == {"col_1", "col_2", "col_3"} assert num_items == 4 @pytest.mark.parametrize('''archive_jsonl''' , ['''tar_jsonl_path''', '''zip_jsonl_path'''] ) def _UpperCAmelCase ( __lowerCamelCase : Dict , __lowerCamelCase : str ) -> Dict: _snake_case = request.getfixturevalue(__lowerCamelCase ) _snake_case = DownloadManager() for num_jsonl, (path, file) in enumerate(dl_manager.iter_archive(__lowerCamelCase ) , start=1 ): _test_jsonl(__lowerCamelCase , __lowerCamelCase ) assert num_jsonl == 2 @pytest.mark.parametrize('''archive_nested_jsonl''' , ['''tar_nested_jsonl_path''', '''zip_nested_jsonl_path'''] ) def _UpperCAmelCase ( __lowerCamelCase : str , __lowerCamelCase : List[Any] ) -> Tuple: _snake_case = request.getfixturevalue(__lowerCamelCase ) _snake_case = DownloadManager() for num_tar, (path, file) in enumerate(dl_manager.iter_archive(__lowerCamelCase ) , start=1 ): for num_jsonl, (subpath, subfile) in enumerate(dl_manager.iter_archive(__lowerCamelCase ) , start=1 ): _test_jsonl(__lowerCamelCase , __lowerCamelCase ) assert num_tar == 1 assert num_jsonl == 2 def _UpperCAmelCase ( __lowerCamelCase : Tuple ) -> List[Any]: _snake_case = DownloadManager() for num_file, file in enumerate(dl_manager.iter_files(__lowerCamelCase ) , start=1 ): assert os.path.basename(__lowerCamelCase ) == ("test.txt" if num_file == 1 else "train.txt") assert num_file == 2
288
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __snake_case = {'''configuration_glpn''': ['''GLPN_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GLPNConfig''']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = ['''GLPNFeatureExtractor'''] __snake_case = ['''GLPNImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ '''GLPN_PRETRAINED_MODEL_ARCHIVE_LIST''', '''GLPNForDepthEstimation''', '''GLPNLayer''', '''GLPNModel''', '''GLPNPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_glpn import GLPN_PRETRAINED_CONFIG_ARCHIVE_MAP, GLPNConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_glpn import GLPNFeatureExtractor from .image_processing_glpn import GLPNImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_glpn import ( GLPN_PRETRAINED_MODEL_ARCHIVE_LIST, GLPNForDepthEstimation, GLPNLayer, GLPNModel, GLPNPreTrainedModel, ) else: import sys __snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
153
"""simple docstring""" import itertools import json import os import unittest from transformers import AddedToken, RobertaTokenizer, RobertaTokenizerFast from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __lowerCamelCase ( a__ , unittest.TestCase ): '''simple docstring''' A_ : Optional[int] = RobertaTokenizer A_ : Any = RobertaTokenizerFast A_ : Dict = True A_ : Tuple = {'cls_token': '<s>'} def _UpperCAmelCase ( self ) -> Dict: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _a = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''<unk>''', ] _a = dict(zip(__UpperCAmelCase , range(len(__UpperCAmelCase ) ) ) ) _a = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] _a = {'''unk_token''': '''<unk>'''} _a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) _a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__UpperCAmelCase ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(__UpperCAmelCase ) ) def _UpperCAmelCase ( self , **__UpperCAmelCase ) -> List[str]: kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **__UpperCAmelCase ) def _UpperCAmelCase ( self , **__UpperCAmelCase ) -> Union[str, Any]: kwargs.update(self.special_tokens_map ) return RobertaTokenizerFast.from_pretrained(self.tmpdirname , **__UpperCAmelCase ) def _UpperCAmelCase ( self , __UpperCAmelCase ) -> Optional[int]: _a = '''lower newer''' _a = '''lower newer''' return input_text, output_text def _UpperCAmelCase ( self ) -> Tuple: _a = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map ) _a = '''lower newer''' _a = ['''l''', '''o''', '''w''', '''er''', '''\u0120''', '''n''', '''e''', '''w''', '''er'''] _a = tokenizer.tokenize(__UpperCAmelCase ) # , add_prefix_space=True) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) _a = tokens + [tokenizer.unk_token] _a = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(__UpperCAmelCase ) , __UpperCAmelCase ) def _UpperCAmelCase ( self ) -> Union[str, Any]: _a = self.get_tokenizer() self.assertListEqual(tokenizer.encode('''Hello world!''' , add_special_tokens=__UpperCAmelCase ) , [0, 31414, 232, 328, 2] ) self.assertListEqual( tokenizer.encode('''Hello world! cécé herlolip 418''' , add_special_tokens=__UpperCAmelCase ) , [0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2] , ) @slow def _UpperCAmelCase ( self ) -> Tuple: _a = self.tokenizer_class.from_pretrained('''roberta-base''' ) _a = tokenizer.encode('''sequence builders''' , add_special_tokens=__UpperCAmelCase ) _a = tokenizer.encode('''multi-sequence build''' , add_special_tokens=__UpperCAmelCase ) _a = tokenizer.encode( '''sequence builders''' , add_special_tokens=__UpperCAmelCase , add_prefix_space=__UpperCAmelCase ) _a = tokenizer.encode( '''sequence builders''' , '''multi-sequence build''' , add_special_tokens=__UpperCAmelCase , add_prefix_space=__UpperCAmelCase ) _a = tokenizer.build_inputs_with_special_tokens(__UpperCAmelCase ) _a = tokenizer.build_inputs_with_special_tokens(__UpperCAmelCase , __UpperCAmelCase ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def _UpperCAmelCase ( self ) -> Union[str, Any]: _a = self.get_tokenizer() _a = '''Encode this sequence.''' _a = tokenizer.byte_encoder[''' '''.encode('''utf-8''' )[0]] # Testing encoder arguments _a = tokenizer.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase , add_prefix_space=__UpperCAmelCase ) _a = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(__UpperCAmelCase , __UpperCAmelCase ) _a = tokenizer.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase , add_prefix_space=__UpperCAmelCase ) _a = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(__UpperCAmelCase , __UpperCAmelCase ) tokenizer.add_special_tokens({'''bos_token''': '''<s>'''} ) _a = tokenizer.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) _a = tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(__UpperCAmelCase , __UpperCAmelCase ) # Testing spaces after special tokens _a = '''<mask>''' tokenizer.add_special_tokens( {'''mask_token''': AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase )} ) # mask token has a left space _a = tokenizer.convert_tokens_to_ids(__UpperCAmelCase ) _a = '''Encode <mask> sequence''' _a = '''Encode <mask>sequence''' _a = tokenizer.encode(__UpperCAmelCase ) _a = encoded.index(__UpperCAmelCase ) _a = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(__UpperCAmelCase , __UpperCAmelCase ) _a = tokenizer.encode(__UpperCAmelCase ) _a = encoded.index(__UpperCAmelCase ) _a = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(__UpperCAmelCase , __UpperCAmelCase ) def _UpperCAmelCase ( self ) -> Any: pass def _UpperCAmelCase ( self ) -> Optional[int]: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ): _a = self.rust_tokenizer_class.from_pretrained(__UpperCAmelCase , **__UpperCAmelCase ) _a = self.tokenizer_class.from_pretrained(__UpperCAmelCase , **__UpperCAmelCase ) _a = '''A, <mask> AllenNLP sentence.''' _a = tokenizer_r.encode_plus(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase , return_token_type_ids=__UpperCAmelCase ) _a = tokenizer_p.encode_plus(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase , return_token_type_ids=__UpperCAmelCase ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r['''token_type_ids'''] ) , sum(tokens_p['''token_type_ids'''] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r['''attention_mask'''] ) / len(tokens_r['''attention_mask'''] ) , sum(tokens_p['''attention_mask'''] ) / len(tokens_p['''attention_mask'''] ) , ) _a = tokenizer_r.convert_ids_to_tokens(tokens_r['''input_ids'''] ) _a = tokenizer_p.convert_ids_to_tokens(tokens_p['''input_ids'''] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p['''input_ids'''] , [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2] ) self.assertSequenceEqual(tokens_r['''input_ids'''] , [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2] ) self.assertSequenceEqual( __UpperCAmelCase , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] ) self.assertSequenceEqual( __UpperCAmelCase , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] ) def _UpperCAmelCase ( self ) -> Any: for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ): _a = self.rust_tokenizer_class.from_pretrained( self.tmpdirname , use_fast=__UpperCAmelCase , add_prefix_space=__UpperCAmelCase , trim_offsets=__UpperCAmelCase ) _a = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) _a = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state['''add_prefix_space'''] , __UpperCAmelCase ) self.assertEqual(post_processor_state['''add_prefix_space'''] , __UpperCAmelCase ) self.assertEqual(post_processor_state['''trim_offsets'''] , __UpperCAmelCase ) def _UpperCAmelCase ( self ) -> Union[str, Any]: # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` and # `trim_offsets` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ): _a = '''hello''' # `hello` is a token in the vocabulary of `pretrained_name` _a = F'{text_of_1_token} {text_of_1_token}' _a = self.rust_tokenizer_class.from_pretrained( __UpperCAmelCase , use_fast=__UpperCAmelCase , add_prefix_space=__UpperCAmelCase , trim_offsets=__UpperCAmelCase ) _a = tokenizer_r(__UpperCAmelCase , return_offsets_mapping=__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__UpperCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__UpperCAmelCase ) + 1, len(__UpperCAmelCase ) + 1 + len(__UpperCAmelCase )) , ) _a = self.rust_tokenizer_class.from_pretrained( __UpperCAmelCase , use_fast=__UpperCAmelCase , add_prefix_space=__UpperCAmelCase , trim_offsets=__UpperCAmelCase ) _a = tokenizer_r(__UpperCAmelCase , return_offsets_mapping=__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__UpperCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__UpperCAmelCase ) + 1, len(__UpperCAmelCase ) + 1 + len(__UpperCAmelCase )) , ) _a = self.rust_tokenizer_class.from_pretrained( __UpperCAmelCase , use_fast=__UpperCAmelCase , add_prefix_space=__UpperCAmelCase , trim_offsets=__UpperCAmelCase ) _a = tokenizer_r(__UpperCAmelCase , return_offsets_mapping=__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__UpperCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__UpperCAmelCase ), len(__UpperCAmelCase ) + 1 + len(__UpperCAmelCase )) , ) _a = self.rust_tokenizer_class.from_pretrained( __UpperCAmelCase , use_fast=__UpperCAmelCase , add_prefix_space=__UpperCAmelCase , trim_offsets=__UpperCAmelCase ) _a = tokenizer_r(__UpperCAmelCase , return_offsets_mapping=__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__UpperCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__UpperCAmelCase ), len(__UpperCAmelCase ) + 1 + len(__UpperCAmelCase )) , ) _a = F' {text}' # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) _a = self.rust_tokenizer_class.from_pretrained( __UpperCAmelCase , use_fast=__UpperCAmelCase , add_prefix_space=__UpperCAmelCase , trim_offsets=__UpperCAmelCase ) _a = tokenizer_r(__UpperCAmelCase , return_offsets_mapping=__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(__UpperCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__UpperCAmelCase ) + 1, 1 + len(__UpperCAmelCase ) + 1 + len(__UpperCAmelCase )) , ) _a = self.rust_tokenizer_class.from_pretrained( __UpperCAmelCase , use_fast=__UpperCAmelCase , add_prefix_space=__UpperCAmelCase , trim_offsets=__UpperCAmelCase ) _a = tokenizer_r(__UpperCAmelCase , return_offsets_mapping=__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(__UpperCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__UpperCAmelCase ), 1 + len(__UpperCAmelCase ) + 1 + len(__UpperCAmelCase )) , ) _a = self.rust_tokenizer_class.from_pretrained( __UpperCAmelCase , use_fast=__UpperCAmelCase , add_prefix_space=__UpperCAmelCase , trim_offsets=__UpperCAmelCase ) _a = tokenizer_r(__UpperCAmelCase , return_offsets_mapping=__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(__UpperCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__UpperCAmelCase ), 1 + len(__UpperCAmelCase ) + 1 + len(__UpperCAmelCase )) , )
153
1
import torch from diffusers import DDIMParallelScheduler from .test_schedulers import SchedulerCommonTest class a ( __lowerCAmelCase ): """simple docstring""" lowerCamelCase :Optional[int] = (DDIMParallelScheduler,) lowerCamelCase :Dict = (('''eta''', 0.0), ('''num_inference_steps''', 50)) def UpperCAmelCase ( self , **lowerCAmelCase_ ) -> Tuple: _A = { """num_train_timesteps""": 10_00, """beta_start""": 0.0001, """beta_end""": 0.02, """beta_schedule""": """linear""", """clip_sample""": True, } config.update(**lowerCAmelCase_ ) return config def UpperCAmelCase ( self , **lowerCAmelCase_ ) -> int: _A = self.scheduler_classes[0] _A = self.get_scheduler_config(**lowerCAmelCase_ ) _A = scheduler_class(**lowerCAmelCase_ ) _A , _A = 10, 0.0 _A = self.dummy_model() _A = self.dummy_sample_deter scheduler.set_timesteps(lowerCAmelCase_ ) for t in scheduler.timesteps: _A = model(lowerCAmelCase_ , lowerCAmelCase_ ) _A = scheduler.step(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ).prev_sample return sample def UpperCAmelCase ( self ) -> Optional[Any]: for timesteps in [1_00, 5_00, 10_00]: self.check_over_configs(num_train_timesteps=lowerCAmelCase_ ) def UpperCAmelCase ( self ) -> List[Any]: for steps_offset in [0, 1]: self.check_over_configs(steps_offset=lowerCAmelCase_ ) _A = self.scheduler_classes[0] _A = self.get_scheduler_config(steps_offset=1 ) _A = scheduler_class(**lowerCAmelCase_ ) scheduler.set_timesteps(5 ) assert torch.equal(scheduler.timesteps , torch.LongTensor([8_01, 6_01, 4_01, 2_01, 1] ) ) def UpperCAmelCase ( self ) -> Optional[int]: for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=lowerCAmelCase_ , beta_end=lowerCAmelCase_ ) def UpperCAmelCase ( self ) -> Dict: for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=lowerCAmelCase_ ) def UpperCAmelCase ( self ) -> List[str]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowerCAmelCase_ ) def UpperCAmelCase ( self ) -> Tuple: for clip_sample in [True, False]: self.check_over_configs(clip_sample=lowerCAmelCase_ ) def UpperCAmelCase ( self ) -> List[Any]: for timestep_spacing in ["trailing", "leading"]: self.check_over_configs(timestep_spacing=lowerCAmelCase_ ) def UpperCAmelCase ( self ) -> List[str]: for rescale_betas_zero_snr in [True, False]: self.check_over_configs(rescale_betas_zero_snr=lowerCAmelCase_ ) def UpperCAmelCase ( self ) -> Any: self.check_over_configs(thresholding=lowerCAmelCase_ ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs( thresholding=lowerCAmelCase_ , prediction_type=lowerCAmelCase_ , sample_max_value=lowerCAmelCase_ , ) def UpperCAmelCase ( self ) -> List[Any]: for t in [1, 10, 49]: self.check_over_forward(time_step=lowerCAmelCase_ ) def UpperCAmelCase ( self ) -> List[str]: for t, num_inference_steps in zip([1, 10, 50] , [10, 50, 5_00] ): self.check_over_forward(time_step=lowerCAmelCase_ , num_inference_steps=lowerCAmelCase_ ) def UpperCAmelCase ( self ) -> Tuple: for t, eta in zip([1, 10, 49] , [0.0, 0.5, 1.0] ): self.check_over_forward(time_step=lowerCAmelCase_ , eta=lowerCAmelCase_ ) def UpperCAmelCase ( self ) -> Optional[Any]: _A = self.scheduler_classes[0] _A = self.get_scheduler_config() _A = scheduler_class(**lowerCAmelCase_ ) assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(4_20 , 4_00 ) - 0.1_4771 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(9_80 , 9_60 ) - 0.3_2460 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(4_87 , 4_86 ) - 0.0_0979 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(9_99 , 9_98 ) - 0.02 ) ) < 1E-5 def UpperCAmelCase ( self ) -> Optional[Any]: _A = self.scheduler_classes[0] _A = self.get_scheduler_config() _A = scheduler_class(**lowerCAmelCase_ ) _A , _A = 10, 0.0 scheduler.set_timesteps(lowerCAmelCase_ ) _A = self.dummy_model() _A = self.dummy_sample_deter _A = self.dummy_sample_deter + 0.1 _A = self.dummy_sample_deter - 0.1 _A = samplea.shape[0] _A = torch.stack([samplea, samplea, samplea] , dim=0 ) _A = torch.arange(lowerCAmelCase_ )[0:3, None].repeat(1 , lowerCAmelCase_ ) _A = model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) ) _A = scheduler.batch_step_no_noise(lowerCAmelCase_ , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) , lowerCAmelCase_ ) _A = torch.sum(torch.abs(lowerCAmelCase_ ) ) _A = torch.mean(torch.abs(lowerCAmelCase_ ) ) assert abs(result_sum.item() - 1147.7904 ) < 1E-2 assert abs(result_mean.item() - 0.4982 ) < 1E-3 def UpperCAmelCase ( self ) -> Any: _A = self.full_loop() _A = torch.sum(torch.abs(lowerCAmelCase_ ) ) _A = torch.mean(torch.abs(lowerCAmelCase_ ) ) assert abs(result_sum.item() - 172.0067 ) < 1E-2 assert abs(result_mean.item() - 0.22_3967 ) < 1E-3 def UpperCAmelCase ( self ) -> Any: _A = self.full_loop(prediction_type="""v_prediction""" ) _A = torch.sum(torch.abs(lowerCAmelCase_ ) ) _A = torch.mean(torch.abs(lowerCAmelCase_ ) ) assert abs(result_sum.item() - 52.5302 ) < 1E-2 assert abs(result_mean.item() - 0.0684 ) < 1E-3 def UpperCAmelCase ( self ) -> Tuple: # We specify different beta, so that the first alpha is 0.99 _A = self.full_loop(set_alpha_to_one=lowerCAmelCase_ , beta_start=0.01 ) _A = torch.sum(torch.abs(lowerCAmelCase_ ) ) _A = torch.mean(torch.abs(lowerCAmelCase_ ) ) assert abs(result_sum.item() - 149.8295 ) < 1E-2 assert abs(result_mean.item() - 0.1951 ) < 1E-3 def UpperCAmelCase ( self ) -> Optional[Any]: # We specify different beta, so that the first alpha is 0.99 _A = self.full_loop(set_alpha_to_one=lowerCAmelCase_ , beta_start=0.01 ) _A = torch.sum(torch.abs(lowerCAmelCase_ ) ) _A = torch.mean(torch.abs(lowerCAmelCase_ ) ) assert abs(result_sum.item() - 149.0784 ) < 1E-2 assert abs(result_mean.item() - 0.1941 ) < 1E-3
180
import inspect import math import tempfile import unittest import numpy as np from transformers import ViTMAEConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMAEForPreTraining, ViTMAEModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class a : """simple docstring""" def __init__( self , lowerCAmelCase_ , lowerCAmelCase_=13 , lowerCAmelCase_=30 , lowerCAmelCase_=2 , lowerCAmelCase_=3 , lowerCAmelCase_=True , lowerCAmelCase_=True , lowerCAmelCase_=32 , lowerCAmelCase_=5 , lowerCAmelCase_=4 , lowerCAmelCase_=37 , lowerCAmelCase_="gelu" , lowerCAmelCase_=0.1 , lowerCAmelCase_=0.1 , lowerCAmelCase_=10 , lowerCAmelCase_=0.02 , lowerCAmelCase_=3 , lowerCAmelCase_=0.6 , lowerCAmelCase_=None , ) -> int: _A = parent _A = batch_size _A = image_size _A = patch_size _A = num_channels _A = is_training _A = use_labels _A = hidden_size _A = num_hidden_layers _A = num_attention_heads _A = intermediate_size _A = hidden_act _A = hidden_dropout_prob _A = attention_probs_dropout_prob _A = type_sequence_label_size _A = initializer_range _A = mask_ratio _A = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) _A = (image_size // patch_size) ** 2 _A = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) ) def UpperCAmelCase ( self ) -> Union[str, Any]: _A = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _A = None if self.use_labels: _A = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _A = self.get_config() return config, pixel_values, labels def UpperCAmelCase ( self ) -> str: return ViTMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowerCAmelCase_ , initializer_range=self.initializer_range , mask_ratio=self.mask_ratio , ) def UpperCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> Any: _A = ViTMAEModel(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() _A = model(lowerCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> List[Any]: _A = ViTMAEForPreTraining(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() _A = model(lowerCAmelCase_ ) _A = (self.image_size // self.patch_size) ** 2 _A = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) # test greyscale images _A = 1 _A = ViTMAEForPreTraining(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() _A = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _A = model(lowerCAmelCase_ ) _A = self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) def UpperCAmelCase ( self ) -> Dict: _A = self.prepare_config_and_inputs() _A , _A , _A = config_and_inputs _A = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class a ( __lowerCAmelCase , __lowerCAmelCase , unittest.TestCase ): """simple docstring""" lowerCamelCase :Union[str, Any] = (ViTMAEModel, ViTMAEForPreTraining) if is_torch_available() else () lowerCamelCase :List[Any] = {'''feature-extraction''': ViTMAEModel} if is_torch_available() else {} lowerCamelCase :List[Any] = False lowerCamelCase :Tuple = False lowerCamelCase :int = False lowerCamelCase :Any = False def UpperCAmelCase ( self ) -> str: _A = ViTMAEModelTester(self ) _A = ConfigTester(self , config_class=lowerCAmelCase_ , has_text_modality=lowerCAmelCase_ , hidden_size=37 ) def UpperCAmelCase ( self ) -> str: self.config_tester.run_common_tests() @unittest.skip(reason="""ViTMAE does not use inputs_embeds""" ) def UpperCAmelCase ( self ) -> Optional[Any]: pass def UpperCAmelCase ( self ) -> str: _A , _A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A = model_class(lowerCAmelCase_ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _A = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCAmelCase_ , nn.Linear ) ) def UpperCAmelCase ( self ) -> Union[str, Any]: _A , _A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A = model_class(lowerCAmelCase_ ) _A = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _A = [*signature.parameters.keys()] _A = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , lowerCAmelCase_ ) def UpperCAmelCase ( self ) -> Union[str, Any]: _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase_ ) def UpperCAmelCase ( self ) -> Dict: _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*lowerCAmelCase_ ) def UpperCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> Any: # make masks reproducible np.random.seed(2 ) _A = int((pt_model.config.image_size // pt_model.config.patch_size) ** 2 ) _A = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) _A = torch.from_numpy(lowerCAmelCase_ ) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument _A = pt_noise super().check_pt_tf_models(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) def UpperCAmelCase ( self ) -> Any: _A , _A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A = model_class(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): _A = model(**self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) ) _A = outputs[0].cpu().numpy() _A = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(lowerCAmelCase_ ) _A = model_class.from_pretrained(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): _A = model(**self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) ) # Make sure we don't have nans _A = after_outputs[0].cpu().numpy() _A = 0 _A = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(lowerCAmelCase_ , 1E-5 ) @unittest.skip( reason="""ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.""" ) def UpperCAmelCase ( self ) -> Tuple: pass @unittest.skip( reason="""ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.""" ) def UpperCAmelCase ( self ) -> str: pass @unittest.skip( reason="""ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.""" ) def UpperCAmelCase ( self ) -> str: pass @unittest.skip(reason="""ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load""" ) def UpperCAmelCase ( self ) -> Dict: pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def UpperCAmelCase ( self ) -> str: pass @slow def UpperCAmelCase ( self ) -> Optional[Any]: for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _A = ViTMAEModel.from_pretrained(lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) def snake_case ( ) -> List[str]: _A = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""") return image @require_torch @require_vision class a ( unittest.TestCase ): """simple docstring""" @cached_property def UpperCAmelCase ( self ) -> int: return ViTImageProcessor.from_pretrained("""facebook/vit-mae-base""" ) if is_vision_available() else None @slow def UpperCAmelCase ( self ) -> Any: # make random mask reproducible across the PT and TF model np.random.seed(2 ) _A = ViTMAEForPreTraining.from_pretrained("""facebook/vit-mae-base""" ).to(lowerCAmelCase_ ) _A = self.default_image_processor _A = prepare_img() _A = image_processor(images=lowerCAmelCase_ , return_tensors="""pt""" ).to(lowerCAmelCase_ ) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) _A = ViTMAEConfig() _A = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 ) _A = np.random.uniform(size=(1, num_patches) ) # forward pass with torch.no_grad(): _A = model(**lowerCAmelCase_ , noise=torch.from_numpy(lowerCAmelCase_ ).to(device=lowerCAmelCase_ ) ) # verify the logits _A = torch.Size((1, 1_96, 7_68) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase_ ) _A = torch.tensor( [[-0.0548, -1.7023, -0.9325], [0.3721, -0.5670, -0.2233], [0.8235, -1.3878, -0.3524]] ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , expected_slice.to(lowerCAmelCase_ ) , atol=1E-4 ) )
180
1
"""simple docstring""" class _a : def __init__( self : Union[str, Any], lowerCAmelCase__ : Optional[int] ) -> int: '''simple docstring''' _UpperCamelCase : str = arr.split(''',''' ) def snake_case ( self : List[Any] ) -> Tuple: '''simple docstring''' _UpperCamelCase : List[Any] = [int(self.array[0] )] * len(self.array ) _UpperCamelCase : Tuple = [int(self.array[0] )] * len(self.array ) for i in range(1, len(self.array ) ): _UpperCamelCase : str = max( int(self.array[i] ) + sum_value[i - 1], int(self.array[i] ) ) _UpperCamelCase : str = max(sum_value[i], rear[i - 1] ) return rear[len(self.array ) - 1] if __name__ == "__main__": UpperCamelCase_ =input("""please input some numbers:""") UpperCamelCase_ =SubArray(whole_array) UpperCamelCase_ =array.solve_sub_array() print(("""the results is:""", re))
128
"""simple docstring""" import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import FEATURE_EXTRACTOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import ChineseCLIPImageProcessor, ChineseCLIPProcessor @require_vision class _a ( unittest.TestCase ): def snake_case ( self : Tuple ) -> Dict: '''simple docstring''' _UpperCamelCase : int = tempfile.mkdtemp() _UpperCamelCase : List[str] = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''的''', '''价''', '''格''', '''是''', '''15''', '''便''', '''alex''', '''##andra''', ''',''', '''。''', '''-''', '''t''', '''shirt''', ] _UpperCamelCase : Optional[Any] = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file, '''w''', encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) _UpperCamelCase : Dict = { '''do_resize''': True, '''size''': {'''height''': 2_2_4, '''width''': 2_2_4}, '''do_center_crop''': True, '''crop_size''': {'''height''': 1_8, '''width''': 1_8}, '''do_normalize''': True, '''image_mean''': [0.48_145_466, 0.4_578_275, 0.40_821_073], '''image_std''': [0.26_862_954, 0.26_130_258, 0.27_577_711], '''do_convert_rgb''': True, } _UpperCamelCase : Optional[Any] = os.path.join(self.tmpdirname, lowerCAmelCase__ ) with open(self.image_processor_file, '''w''', encoding='''utf-8''' ) as fp: json.dump(lowerCAmelCase__, lowerCAmelCase__ ) def snake_case ( self : str, **lowerCAmelCase__ : List[Any] ) -> Optional[int]: '''simple docstring''' return BertTokenizer.from_pretrained(self.tmpdirname, **lowerCAmelCase__ ) def snake_case ( self : Union[str, Any], **lowerCAmelCase__ : Tuple ) -> str: '''simple docstring''' return BertTokenizerFast.from_pretrained(self.tmpdirname, **lowerCAmelCase__ ) def snake_case ( self : Any, **lowerCAmelCase__ : Optional[int] ) -> Optional[Any]: '''simple docstring''' return ChineseCLIPImageProcessor.from_pretrained(self.tmpdirname, **lowerCAmelCase__ ) def snake_case ( self : str ) -> Optional[int]: '''simple docstring''' shutil.rmtree(self.tmpdirname ) def snake_case ( self : Any ) -> int: '''simple docstring''' _UpperCamelCase : List[str] = [np.random.randint(2_5_5, size=(3, 3_0, 4_0_0), dtype=np.uinta )] _UpperCamelCase : List[Any] = [Image.fromarray(np.moveaxis(lowerCAmelCase__, 0, -1 ) ) for x in image_inputs] return image_inputs def snake_case ( self : str ) -> Any: '''simple docstring''' _UpperCamelCase : Any = self.get_tokenizer() _UpperCamelCase : int = self.get_rust_tokenizer() _UpperCamelCase : int = self.get_image_processor() _UpperCamelCase : Tuple = ChineseCLIPProcessor(tokenizer=lowerCAmelCase__, image_processor=lowerCAmelCase__ ) processor_slow.save_pretrained(self.tmpdirname ) _UpperCamelCase : List[Any] = ChineseCLIPProcessor.from_pretrained(self.tmpdirname, use_fast=lowerCAmelCase__ ) _UpperCamelCase : List[Any] = ChineseCLIPProcessor(tokenizer=lowerCAmelCase__, image_processor=lowerCAmelCase__ ) processor_fast.save_pretrained(self.tmpdirname ) _UpperCamelCase : List[Any] = ChineseCLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab(), tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab(), tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab(), tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer, lowerCAmelCase__ ) self.assertIsInstance(processor_fast.tokenizer, lowerCAmelCase__ ) self.assertEqual(processor_slow.image_processor.to_json_string(), image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string(), image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor, lowerCAmelCase__ ) self.assertIsInstance(processor_fast.image_processor, lowerCAmelCase__ ) def snake_case ( self : int ) -> Tuple: '''simple docstring''' _UpperCamelCase : List[Any] = ChineseCLIPProcessor(tokenizer=self.get_tokenizer(), image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) _UpperCamelCase : Dict = self.get_tokenizer(cls_token='''(CLS)''', sep_token='''(SEP)''' ) _UpperCamelCase : List[str] = self.get_image_processor(do_normalize=lowerCAmelCase__ ) _UpperCamelCase : Optional[Any] = ChineseCLIPProcessor.from_pretrained( self.tmpdirname, cls_token='''(CLS)''', sep_token='''(SEP)''', do_normalize=lowerCAmelCase__ ) self.assertEqual(processor.tokenizer.get_vocab(), tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer, lowerCAmelCase__ ) self.assertEqual(processor.image_processor.to_json_string(), image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor, lowerCAmelCase__ ) def snake_case ( self : Optional[int] ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase : List[str] = self.get_image_processor() _UpperCamelCase : str = self.get_tokenizer() _UpperCamelCase : Optional[Any] = ChineseCLIPProcessor(tokenizer=lowerCAmelCase__, image_processor=lowerCAmelCase__ ) _UpperCamelCase : List[str] = self.prepare_image_inputs() _UpperCamelCase : Any = image_processor(lowerCAmelCase__, return_tensors='''np''' ) _UpperCamelCase : Any = processor(images=lowerCAmelCase__, return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum(), input_processor[key].sum(), delta=1e-2 ) def snake_case ( self : Optional[Any] ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase : Tuple = self.get_image_processor() _UpperCamelCase : Optional[Any] = self.get_tokenizer() _UpperCamelCase : Any = ChineseCLIPProcessor(tokenizer=lowerCAmelCase__, image_processor=lowerCAmelCase__ ) _UpperCamelCase : Tuple = '''Alexandra,T-shirt的价格是15便士。''' _UpperCamelCase : List[str] = processor(text=lowerCAmelCase__ ) _UpperCamelCase : Any = tokenizer(lowerCAmelCase__ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key], encoded_processor[key] ) def snake_case ( self : Dict ) -> Tuple: '''simple docstring''' _UpperCamelCase : Tuple = self.get_image_processor() _UpperCamelCase : Optional[Any] = self.get_tokenizer() _UpperCamelCase : Dict = ChineseCLIPProcessor(tokenizer=lowerCAmelCase__, image_processor=lowerCAmelCase__ ) _UpperCamelCase : Any = '''Alexandra,T-shirt的价格是15便士。''' _UpperCamelCase : Union[str, Any] = self.prepare_image_inputs() _UpperCamelCase : str = processor(text=lowerCAmelCase__, images=lowerCAmelCase__ ) self.assertListEqual(list(inputs.keys() ), ['''input_ids''', '''token_type_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(lowerCAmelCase__ ): processor() def snake_case ( self : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase : int = self.get_image_processor() _UpperCamelCase : int = self.get_tokenizer() _UpperCamelCase : Optional[Any] = ChineseCLIPProcessor(tokenizer=lowerCAmelCase__, image_processor=lowerCAmelCase__ ) _UpperCamelCase : List[Any] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] _UpperCamelCase : List[Any] = processor.batch_decode(lowerCAmelCase__ ) _UpperCamelCase : Dict = tokenizer.batch_decode(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__ ) def snake_case ( self : Union[str, Any] ) -> Dict: '''simple docstring''' _UpperCamelCase : Any = self.get_image_processor() _UpperCamelCase : Optional[int] = self.get_tokenizer() _UpperCamelCase : Optional[Any] = ChineseCLIPProcessor(tokenizer=lowerCAmelCase__, image_processor=lowerCAmelCase__ ) _UpperCamelCase : Any = '''Alexandra,T-shirt的价格是15便士。''' _UpperCamelCase : int = self.prepare_image_inputs() _UpperCamelCase : Dict = processor(text=lowerCAmelCase__, images=lowerCAmelCase__ ) self.assertListEqual(list(inputs.keys() ), processor.model_input_names )
128
1
# flake8: noqa # Lint as: python3 from typing import Dict, List, Optional, Type from .. import config from ..utils import logging from .formatting import ( ArrowFormatter, CustomFormatter, Formatter, PandasFormatter, PythonFormatter, TensorFormatter, format_table, query_table, ) from .np_formatter import NumpyFormatter lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = {} lowerCAmelCase__ = {} lowerCAmelCase__ = {} def _UpperCAmelCase (UpperCamelCase__ : type , UpperCamelCase__ : Optional[str] , UpperCamelCase__ : Optional[List[str]] = None , ): _A : Union[str, Any] = aliases if aliases is not None else [] if format_type in _FORMAT_TYPES: logger.warning( f"Overwriting format type '{format_type}' ({_FORMAT_TYPES[format_type].__name__} -> {formatter_cls.__name__})" ) _A : Dict = formatter_cls for alias in set(aliases + [format_type] ): if alias in _FORMAT_TYPES_ALIASES: logger.warning( f"Overwriting format type alias '{alias}' ({_FORMAT_TYPES_ALIASES[alias]} -> {format_type})" ) _A : Dict = format_type def _UpperCAmelCase (UpperCamelCase__ : Exception , UpperCamelCase__ : Optional[str] , UpperCamelCase__ : Optional[List[str]] = None ): _A : Union[str, Any] = aliases if aliases is not None else [] for alias in set(aliases + [format_type] ): _A : Union[str, Any] = unavailable_error # Here we define all the available formatting functions that can be used by `Dataset.set_format` _register_formatter(PythonFormatter, None, aliases=['python']) _register_formatter(ArrowFormatter, 'arrow', aliases=['pa', 'pyarrow']) _register_formatter(NumpyFormatter, 'numpy', aliases=['np']) _register_formatter(PandasFormatter, 'pandas', aliases=['pd']) _register_formatter(CustomFormatter, 'custom') if config.TORCH_AVAILABLE: from .torch_formatter import TorchFormatter _register_formatter(TorchFormatter, 'torch', aliases=['pt', 'pytorch']) else: lowerCAmelCase__ = ValueError('PyTorch needs to be installed to be able to return PyTorch tensors.') _register_unavailable_formatter(_torch_error, 'torch', aliases=['pt', 'pytorch']) if config.TF_AVAILABLE: from .tf_formatter import TFFormatter _register_formatter(TFFormatter, 'tensorflow', aliases=['tf']) else: lowerCAmelCase__ = ValueError('Tensorflow needs to be installed to be able to return Tensorflow tensors.') _register_unavailable_formatter(_tf_error, 'tensorflow', aliases=['tf']) if config.JAX_AVAILABLE: from .jax_formatter import JaxFormatter _register_formatter(JaxFormatter, 'jax', aliases=[]) else: lowerCAmelCase__ = ValueError('JAX needs to be installed to be able to return JAX arrays.') _register_unavailable_formatter(_jax_error, 'jax', aliases=[]) def _UpperCAmelCase (UpperCamelCase__ : Optional[str] ): if format_type in _FORMAT_TYPES_ALIASES: return _FORMAT_TYPES_ALIASES[format_type] else: return format_type def _UpperCAmelCase (UpperCamelCase__ : Optional[str] , **UpperCamelCase__ : List[Any] ): _A : List[str] = get_format_type_from_alias(UpperCamelCase__ ) if format_type in _FORMAT_TYPES: return _FORMAT_TYPES[format_type](**UpperCamelCase__ ) if format_type in _FORMAT_TYPES_ALIASES_UNAVAILABLE: raise _FORMAT_TYPES_ALIASES_UNAVAILABLE[format_type] else: raise ValueError( f"Return type should be None or selected in {list(type for type in _FORMAT_TYPES.keys() if type != None )}, but got '{format_type}'" )
11
"""simple docstring""" import os import pytest from datasets import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, ) SCREAMING_SNAKE_CASE_ = pytest.mark.integration @pytest.mark.parametrize("""path""" , ["""paws""", """csv"""] ) def lowercase (_lowerCAmelCase , _lowerCAmelCase ): inspect_dataset(_lowerCAmelCase , _lowerCAmelCase ) __lowerCAmelCase = path + """.py""" assert script_name in os.listdir(_lowerCAmelCase ) assert "__pycache__" not in os.listdir(_lowerCAmelCase ) @pytest.mark.filterwarnings("""ignore:inspect_metric is deprecated:FutureWarning""" ) @pytest.mark.filterwarnings("""ignore:metric_module_factory is deprecated:FutureWarning""" ) @pytest.mark.parametrize("""path""" , ["""accuracy"""] ) def lowercase (_lowerCAmelCase , _lowerCAmelCase ): inspect_metric(_lowerCAmelCase , _lowerCAmelCase ) __lowerCAmelCase = path + """.py""" assert script_name in os.listdir(_lowerCAmelCase ) assert "__pycache__" not in os.listdir(_lowerCAmelCase ) @pytest.mark.parametrize( """path, config_name, expected_splits""" , [ ("""squad""", """plain_text""", ["""train""", """validation"""]), ("""dalle-mini/wit""", """dalle-mini--wit""", ["""train"""]), ("""paws""", """labeled_final""", ["""train""", """test""", """validation"""]), ] , ) def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): __lowerCAmelCase = get_dataset_config_info(_lowerCAmelCase , config_name=_lowerCAmelCase ) assert info.config_name == config_name assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( """path, config_name, expected_exception""" , [ ("""paws""", None, ValueError), ] , ) def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): with pytest.raises(_lowerCAmelCase ): get_dataset_config_info(_lowerCAmelCase , config_name=_lowerCAmelCase ) @pytest.mark.parametrize( """path, expected""" , [ ("""squad""", """plain_text"""), ("""acronym_identification""", """default"""), ("""lhoestq/squad""", """plain_text"""), ("""lhoestq/test""", """default"""), ("""lhoestq/demo1""", """lhoestq--demo1"""), ("""dalle-mini/wit""", """dalle-mini--wit"""), ] , ) def lowercase (_lowerCAmelCase , _lowerCAmelCase ): __lowerCAmelCase = get_dataset_config_names(_lowerCAmelCase ) assert expected in config_names @pytest.mark.parametrize( """path, expected_configs, expected_splits_in_first_config""" , [ ("""squad""", ["""plain_text"""], ["""train""", """validation"""]), ("""dalle-mini/wit""", ["""dalle-mini--wit"""], ["""train"""]), ("""paws""", ["""labeled_final""", """labeled_swap""", """unlabeled_final"""], ["""train""", """test""", """validation"""]), ] , ) def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): __lowerCAmelCase = get_dataset_infos(_lowerCAmelCase ) assert list(infos.keys() ) == expected_configs __lowerCAmelCase = expected_configs[0] assert expected_config in infos __lowerCAmelCase = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits_in_first_config @pytest.mark.parametrize( """path, expected_config, expected_splits""" , [ ("""squad""", """plain_text""", ["""train""", """validation"""]), ("""dalle-mini/wit""", """dalle-mini--wit""", ["""train"""]), ("""paws""", """labeled_final""", ["""train""", """test""", """validation"""]), ] , ) def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): __lowerCAmelCase = get_dataset_infos(_lowerCAmelCase ) assert expected_config in infos __lowerCAmelCase = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( """path, config_name, expected_exception""" , [ ("""paws""", None, ValueError), ] , ) def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): with pytest.raises(_lowerCAmelCase ): get_dataset_split_names(_lowerCAmelCase , config_name=_lowerCAmelCase )
301
0
"""simple docstring""" import argparse import torch from transformers import ( SpeechTaConfig, SpeechTaFeatureExtractor, SpeechTaForSpeechToSpeech, SpeechTaForSpeechToText, SpeechTaForTextToSpeech, SpeechTaProcessor, SpeechTaTokenizer, logging, ) from transformers.tokenization_utils import AddedToken logging.set_verbosity_info() __A : List[str] = logging.get_logger("transformers.models.speecht5") __A : Any = { 'speech_encoder_prenet.layer_norm': 'speecht5.encoder.prenet.feature_projection.layer_norm', 'speech_encoder_prenet.post_extract_proj': 'speecht5.encoder.prenet.feature_projection.projection', 'speech_encoder_prenet.pos_conv.0': 'speecht5.encoder.prenet.pos_conv_embed.conv', 'speech_encoder_prenet.mask_emb': 'speecht5.encoder.prenet.masked_spec_embed', } __A : Dict = { 'text_encoder_prenet.encoder_prenet.0': 'speecht5.encoder.prenet.embed_tokens', 'text_encoder_prenet.encoder_prenet.1.alpha': 'speecht5.encoder.prenet.encode_positions.alpha', } __A : int = { 'speech_decoder_prenet.decoder_prenet.0.0.prenet.0.0': 'speecht5.decoder.prenet.layers.0', 'speech_decoder_prenet.decoder_prenet.0.0.prenet.1.0': 'speecht5.decoder.prenet.layers.1', 'speech_decoder_prenet.decoder_prenet.0.1': 'speecht5.decoder.prenet.final_layer', 'speech_decoder_prenet.decoder_prenet.1.alpha': 'speecht5.decoder.prenet.encode_positions.alpha', 'speech_decoder_prenet.spkembs_layer.0': 'speecht5.decoder.prenet.speaker_embeds_layer', } __A : List[str] = { 'speech_decoder_postnet.feat_out': 'speech_decoder_postnet.feat_out', 'speech_decoder_postnet.prob_out': 'speech_decoder_postnet.prob_out', 'speech_decoder_postnet.postnet.postnet.0.0': 'speech_decoder_postnet.layers.0.conv', 'speech_decoder_postnet.postnet.postnet.0.1': 'speech_decoder_postnet.layers.0.batch_norm', 'speech_decoder_postnet.postnet.postnet.1.0': 'speech_decoder_postnet.layers.1.conv', 'speech_decoder_postnet.postnet.postnet.1.1': 'speech_decoder_postnet.layers.1.batch_norm', 'speech_decoder_postnet.postnet.postnet.2.0': 'speech_decoder_postnet.layers.2.conv', 'speech_decoder_postnet.postnet.postnet.2.1': 'speech_decoder_postnet.layers.2.batch_norm', 'speech_decoder_postnet.postnet.postnet.3.0': 'speech_decoder_postnet.layers.3.conv', 'speech_decoder_postnet.postnet.postnet.3.1': 'speech_decoder_postnet.layers.3.batch_norm', 'speech_decoder_postnet.postnet.postnet.4.0': 'speech_decoder_postnet.layers.4.conv', 'speech_decoder_postnet.postnet.postnet.4.1': 'speech_decoder_postnet.layers.4.batch_norm', } __A : List[str] = { 'text_decoder_prenet.embed_tokens': 'speecht5.decoder.prenet.embed_tokens', } __A : Any = { 'text_decoder_postnet.output_projection': 'text_decoder_postnet.lm_head', } __A : Any = { 'encoder.layers.*.self_attn.k_proj': 'speecht5.encoder.wrapped_encoder.layers.*.attention.k_proj', 'encoder.layers.*.self_attn.v_proj': 'speecht5.encoder.wrapped_encoder.layers.*.attention.v_proj', 'encoder.layers.*.self_attn.q_proj': 'speecht5.encoder.wrapped_encoder.layers.*.attention.q_proj', 'encoder.layers.*.self_attn.out_proj': 'speecht5.encoder.wrapped_encoder.layers.*.attention.out_proj', 'encoder.layers.*.self_attn_layer_norm': 'speecht5.encoder.wrapped_encoder.layers.*.layer_norm', 'encoder.layers.*.fc1': 'speecht5.encoder.wrapped_encoder.layers.*.feed_forward.intermediate_dense', 'encoder.layers.*.fc2': 'speecht5.encoder.wrapped_encoder.layers.*.feed_forward.output_dense', 'encoder.layers.*.final_layer_norm': 'speecht5.encoder.wrapped_encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'speecht5.encoder.wrapped_encoder.layer_norm', 'encoder.pos_emb.pe_k': 'speecht5.encoder.wrapped_encoder.embed_positions.pe_k', } __A : Any = { 'decoder.layers.*.self_attn.k_proj': 'speecht5.decoder.wrapped_decoder.layers.*.self_attn.k_proj', 'decoder.layers.*.self_attn.v_proj': 'speecht5.decoder.wrapped_decoder.layers.*.self_attn.v_proj', 'decoder.layers.*.self_attn.q_proj': 'speecht5.decoder.wrapped_decoder.layers.*.self_attn.q_proj', 'decoder.layers.*.self_attn.out_proj': 'speecht5.decoder.wrapped_decoder.layers.*.self_attn.out_proj', 'decoder.layers.*.self_attn_layer_norm': 'speecht5.decoder.wrapped_decoder.layers.*.self_attn_layer_norm', 'decoder.layers.*.encoder_attn.k_proj': 'speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.k_proj', 'decoder.layers.*.encoder_attn.v_proj': 'speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.v_proj', 'decoder.layers.*.encoder_attn.q_proj': 'speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.q_proj', 'decoder.layers.*.encoder_attn.out_proj': 'speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.out_proj', 'decoder.layers.*.encoder_attn_layer_norm': 'speecht5.decoder.wrapped_decoder.layers.*.encoder_attn_layer_norm', 'decoder.layers.*.fc1': 'speecht5.decoder.wrapped_decoder.layers.*.feed_forward.intermediate_dense', 'decoder.layers.*.fc2': 'speecht5.decoder.wrapped_decoder.layers.*.feed_forward.output_dense', 'decoder.layers.*.final_layer_norm': 'speecht5.decoder.wrapped_decoder.layers.*.final_layer_norm', } __A : Optional[Any] = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_TEXT_DECODER_PRENET, **MAPPING_TEXT_DECODER_POSTNET, } __A : Any = { **MAPPING_TEXT_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } __A : Union[str, Any] = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } __A : Union[str, Any] = [] __A : Union[str, Any] = [ 'encoder.version', 'encoder.layers.*.norm_k.weight', 'encoder.layers.*.norm_k.bias', 'decoder.version', 'decoder.layers.*.norm_k.weight', 'decoder.layers.*.norm_k.bias', 'decoder.pos_emb.pe_k', 'speech_encoder_prenet.embed_positions._float_tensor', 'text_decoder_prenet.embed_positions._float_tensor', ] __A : Any = IGNORE_KEYS + [ 'encoder.proj', 'text_encoder_prenet.*', 'speech_decoder_prenet.*', 'speech_decoder_postnet.*', ] __A : List[Any] = IGNORE_KEYS + [ 'encoder.proj', 'speech_encoder_prenet.*', 'text_decoder_prenet.*', 'text_decoder_postnet.*', ] __A : str = IGNORE_KEYS + [ 'encoder.proj', 'text_encoder_prenet.*', 'text_decoder_prenet.*', 'text_decoder_postnet.*', ] def lowercase ( _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : Union[str, Any] ): '''simple docstring''' for attribute in key.split('''.''' ): _UpperCAmelCase = getattr(lowerCamelCase_ , lowerCamelCase_ ) if weight_type is not None: _UpperCAmelCase = getattr(lowerCamelCase_ , lowerCamelCase_ ).shape else: _UpperCAmelCase = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' f' {value.shape} for {full_name}' ) if weight_type == "weight": _UpperCAmelCase = value elif weight_type == "weight_g": _UpperCAmelCase = value elif weight_type == "weight_v": _UpperCAmelCase = value elif weight_type == "bias": _UpperCAmelCase = value elif weight_type == "running_mean": _UpperCAmelCase = value elif weight_type == "running_var": _UpperCAmelCase = value elif weight_type == "num_batches_tracked": _UpperCAmelCase = value else: _UpperCAmelCase = value logger.info(f'{key + ("." + weight_type if weight_type is not None else "")} was initialized from {full_name}.' ) def lowercase ( _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : Optional[int] ): '''simple docstring''' for key in ignore_keys: if key.endswith('''.*''' ): if name.startswith(key[:-1] ): return True elif ".*." in key: _UpperCAmelCase = key.split('''.*.''' ) if prefix in name and suffix in name: return True elif key in name: return True return False def lowercase ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : Dict , _SCREAMING_SNAKE_CASE : str ): '''simple docstring''' _UpperCAmelCase = [] if task == "s2t": _UpperCAmelCase = hf_model.speechta.encoder.prenet.feature_encoder _UpperCAmelCase = MAPPING_S2T _UpperCAmelCase = IGNORE_KEYS_S2T elif task == "t2s": _UpperCAmelCase = None _UpperCAmelCase = MAPPING_T2S _UpperCAmelCase = IGNORE_KEYS_T2S elif task == "s2s": _UpperCAmelCase = hf_model.speechta.encoder.prenet.feature_encoder _UpperCAmelCase = MAPPING_S2S _UpperCAmelCase = IGNORE_KEYS_S2S else: raise ValueError(f'Unsupported task: {task}' ) for name, value in fairseq_dict.items(): if should_ignore(lowerCamelCase_ , lowerCamelCase_ ): logger.info(f'{name} was ignored' ) continue _UpperCAmelCase = False if "conv_layers" in name: load_conv_layer( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , hf_model.config.feat_extract_norm == '''group''' , ) _UpperCAmelCase = True else: for key, mapped_key in MAPPING.items(): # mapped_key = "speecht5." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if "*" in key: _UpperCAmelCase = key.split('''.*.''' ) if prefix in name and suffix in name: _UpperCAmelCase = suffix # if key in name or key.split("w2v_model.")[-1] == name.split(".")[0]: if key in name: _UpperCAmelCase = True if "*" in mapped_key: _UpperCAmelCase = name.split(lowerCamelCase_ )[0].split('''.''' )[-2] _UpperCAmelCase = mapped_key.replace('''*''' , lowerCamelCase_ ) if "weight_g" in name: _UpperCAmelCase = """weight_g""" elif "weight_v" in name: _UpperCAmelCase = """weight_v""" elif "bias" in name: _UpperCAmelCase = """bias""" elif "weight" in name: _UpperCAmelCase = """weight""" elif "running_mean" in name: _UpperCAmelCase = """running_mean""" elif "running_var" in name: _UpperCAmelCase = """running_var""" elif "num_batches_tracked" in name: _UpperCAmelCase = """num_batches_tracked""" else: _UpperCAmelCase = None set_recursively(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) continue if not is_used: unused_weights.append(lowerCamelCase_ ) logger.warning(f'Unused weights: {unused_weights}' ) def lowercase ( _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : Optional[Any] ): '''simple docstring''' _UpperCAmelCase = full_name.split('''conv_layers.''' )[-1] _UpperCAmelCase = name.split('''.''' ) _UpperCAmelCase = int(items[0] ) _UpperCAmelCase = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) _UpperCAmelCase = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) _UpperCAmelCase = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.' ) _UpperCAmelCase = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.' ) _UpperCAmelCase = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(lowerCamelCase_ ) @torch.no_grad() def lowercase ( _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : Any=None , _SCREAMING_SNAKE_CASE : Any=None , _SCREAMING_SNAKE_CASE : Optional[Any]=None , ): '''simple docstring''' if config_path is not None: _UpperCAmelCase = SpeechTaConfig.from_pretrained(lowerCamelCase_ ) else: _UpperCAmelCase = SpeechTaConfig() if task == "s2t": _UpperCAmelCase = config.max_text_positions _UpperCAmelCase = SpeechTaForSpeechToText(lowerCamelCase_ ) elif task == "t2s": _UpperCAmelCase = 1876 _UpperCAmelCase = 600 _UpperCAmelCase = config.max_speech_positions _UpperCAmelCase = SpeechTaForTextToSpeech(lowerCamelCase_ ) elif task == "s2s": _UpperCAmelCase = 1876 _UpperCAmelCase = config.max_speech_positions _UpperCAmelCase = SpeechTaForSpeechToSpeech(lowerCamelCase_ ) else: raise ValueError(f'Unknown task name: {task}' ) if vocab_path: _UpperCAmelCase = SpeechTaTokenizer(lowerCamelCase_ , model_max_length=config.max_text_positions ) # Mask token behaves like a normal word, i.e. include the space before it _UpperCAmelCase = AddedToken('''<mask>''' , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_ ) _UpperCAmelCase = mask_token tokenizer.add_special_tokens({'''mask_token''': mask_token} ) tokenizer.add_tokens(['''<ctc_blank>'''] ) _UpperCAmelCase = SpeechTaFeatureExtractor() _UpperCAmelCase = SpeechTaProcessor(tokenizer=lowerCamelCase_ , feature_extractor=lowerCamelCase_ ) processor.save_pretrained(lowerCamelCase_ ) _UpperCAmelCase = torch.load(lowerCamelCase_ ) recursively_load_weights(fairseq_checkpoint['''model'''] , lowerCamelCase_ , lowerCamelCase_ ) model.save_pretrained(lowerCamelCase_ ) if repo_id: print('''Pushing to the hub...''' ) processor.push_to_hub(lowerCamelCase_ ) model.push_to_hub(lowerCamelCase_ ) if __name__ == "__main__": __A : Union[str, Any] = argparse.ArgumentParser() parser.add_argument( "--task", default="s2t", type=str, help="Type of the SpeechT5 model you\'d like to convert. Should be one of \'s2t\', \'t2s\', \'s2s\'.", ) parser.add_argument("--checkpoint_path", required=True, default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--vocab_path", default=None, type=str, help="Path to SentencePiece model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--pytorch_dump_folder_path", required=True, default=None, type=str, help="Path to the output PyTorch model." ) parser.add_argument( "--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub." ) __A : Any = parser.parse_args() convert_speechta_checkpoint( args.task, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.vocab_path, args.push_to_hub, )
358
"""simple docstring""" import argparse from copy import deepcopy import numpy as np from datasets import ClassLabel, DatasetDict, load_dataset from evaluate import load from transformers import ( AutoModelForSequenceClassification, AutoTokenizer, DataCollatorWithPadding, Trainer, TrainerCallback, TrainingArguments, set_seed, ) def lowercase ( ): '''simple docstring''' _UpperCAmelCase = argparse.ArgumentParser() parser.add_argument('''--model_ckpt''' , type=_SCREAMING_SNAKE_CASE , default='''microsoft/unixcoder-base-nine''' ) parser.add_argument('''--num_epochs''' , type=_SCREAMING_SNAKE_CASE , default=5 ) parser.add_argument('''--batch_size''' , type=_SCREAMING_SNAKE_CASE , default=6 ) parser.add_argument('''--gradient_accumulation_steps''' , type=_SCREAMING_SNAKE_CASE , default=1 ) parser.add_argument('''--freeze''' , type=_SCREAMING_SNAKE_CASE , default=_SCREAMING_SNAKE_CASE ) parser.add_argument('''--learning_rate''' , type=_SCREAMING_SNAKE_CASE , default=5E-4 ) parser.add_argument('''--seed''' , type=_SCREAMING_SNAKE_CASE , default=0 ) parser.add_argument('''--lr_scheduler_type''' , type=_SCREAMING_SNAKE_CASE , default='''cosine''' ) parser.add_argument('''--num_warmup_steps''' , type=_SCREAMING_SNAKE_CASE , default=10 ) parser.add_argument('''--weight_decay''' , type=_SCREAMING_SNAKE_CASE , default=0.01 ) parser.add_argument('''--output_dir''' , type=_SCREAMING_SNAKE_CASE , default='''./results''' ) return parser.parse_args() __A : Union[str, Any] = load("accuracy") def lowercase ( _SCREAMING_SNAKE_CASE : Optional[int] ): '''simple docstring''' _UpperCAmelCase , _UpperCAmelCase = eval_pred _UpperCAmelCase = np.argmax(_SCREAMING_SNAKE_CASE , axis=1 ) return metric.compute(predictions=_SCREAMING_SNAKE_CASE , references=_SCREAMING_SNAKE_CASE ) class _a ( lowerCAmelCase): """simple docstring""" def __init__( self : str , __UpperCamelCase : Union[str, Any] )->None: super().__init__() _UpperCAmelCase = trainer def lowercase__ ( self : str , __UpperCamelCase : str , __UpperCamelCase : List[str] , __UpperCamelCase : Union[str, Any] , **__UpperCamelCase : List[str] )->Any: if control.should_evaluate: _UpperCAmelCase = deepcopy(__UpperCamelCase ) self._trainer.evaluate(eval_dataset=self._trainer.train_dataset , metric_key_prefix='''train''' ) return control_copy def lowercase ( ): '''simple docstring''' _UpperCAmelCase = get_args() set_seed(args.seed ) _UpperCAmelCase = load_dataset('''codeparrot/codecomplex''' , split='''train''' ) _UpperCAmelCase = dataset.train_test_split(test_size=0.2 ) _UpperCAmelCase = train_test['''test'''].train_test_split(test_size=0.5 ) _UpperCAmelCase = DatasetDict( { '''train''': train_test['''train'''], '''test''': test_validation['''train'''], '''valid''': test_validation['''test'''], } ) print('''Loading tokenizer and model''' ) _UpperCAmelCase = AutoTokenizer.from_pretrained(args.model_ckpt ) _UpperCAmelCase = tokenizer.eos_token _UpperCAmelCase = AutoModelForSequenceClassification.from_pretrained(args.model_ckpt , num_labels=7 ) _UpperCAmelCase = model.config.eos_token_id if args.freeze: for param in model.roberta.parameters(): _UpperCAmelCase = False _UpperCAmelCase = ClassLabel(num_classes=7 , names=list(set(train_test_validation['''train''']['''complexity'''] ) ) ) def tokenize(_SCREAMING_SNAKE_CASE : Any ): _UpperCAmelCase = tokenizer(example['''src'''] , truncation=_SCREAMING_SNAKE_CASE , max_length=1024 ) _UpperCAmelCase = labels.straint(example['''complexity'''] ) return { "input_ids": inputs["input_ids"], "attention_mask": inputs["attention_mask"], "label": label, } _UpperCAmelCase = train_test_validation.map( _SCREAMING_SNAKE_CASE , batched=_SCREAMING_SNAKE_CASE , remove_columns=train_test_validation['''train'''].column_names , ) _UpperCAmelCase = DataCollatorWithPadding(tokenizer=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = TrainingArguments( output_dir=args.output_dir , learning_rate=args.learning_rate , lr_scheduler_type=args.lr_scheduler_type , evaluation_strategy='''epoch''' , save_strategy='''epoch''' , logging_strategy='''epoch''' , per_device_train_batch_size=args.batch_size , per_device_eval_batch_size=args.batch_size , num_train_epochs=args.num_epochs , gradient_accumulation_steps=args.gradient_accumulation_steps , weight_decay=0.01 , metric_for_best_model='''accuracy''' , run_name='''complexity-java''' , report_to='''wandb''' , ) _UpperCAmelCase = Trainer( model=_SCREAMING_SNAKE_CASE , args=_SCREAMING_SNAKE_CASE , train_dataset=tokenized_datasets['''train'''] , eval_dataset=tokenized_datasets['''valid'''] , tokenizer=_SCREAMING_SNAKE_CASE , data_collator=_SCREAMING_SNAKE_CASE , compute_metrics=_SCREAMING_SNAKE_CASE , ) print('''Training...''' ) trainer.add_callback(CustomCallback(_SCREAMING_SNAKE_CASE ) ) trainer.train() if __name__ == "__main__": main()
326
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) UpperCAmelCase : Tuple ={ """configuration_encodec""": [ """ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP""", """EncodecConfig""", ], """feature_extraction_encodec""": ["""EncodecFeatureExtractor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : str =[ """ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST""", """EncodecModel""", """EncodecPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_encodec import ( ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP, EncodecConfig, ) from .feature_extraction_encodec import EncodecFeatureExtractor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encodec import ( ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST, EncodecModel, EncodecPreTrainedModel, ) else: import sys UpperCAmelCase : int =_LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
128
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, XLMRobertaTokenizer from diffusers import AltDiffusionPipeline, AutoencoderKL, DDIMScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class _lowercase (a_ , a_ , a_ , unittest.TestCase ): '''simple docstring''' lowercase__ = AltDiffusionPipeline lowercase__ = TEXT_TO_IMAGE_PARAMS lowercase__ = TEXT_TO_IMAGE_BATCH_PARAMS lowercase__ = TEXT_TO_IMAGE_IMAGE_PARAMS lowercase__ = TEXT_TO_IMAGE_IMAGE_PARAMS def _lowerCamelCase ( self ): '''simple docstring''' torch.manual_seed(0 ) UpperCamelCase_ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , ) UpperCamelCase_ = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule="scaled_linear" , clip_sample=snake_case__ , set_alpha_to_one=snake_case__ , ) torch.manual_seed(0 ) UpperCamelCase_ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) # TODO: address the non-deterministic text encoder (fails for save-load tests) # torch.manual_seed(0) # text_encoder_config = RobertaSeriesConfig( # hidden_size=32, # project_dim=32, # intermediate_size=37, # layer_norm_eps=1e-05, # num_attention_heads=4, # num_hidden_layers=5, # vocab_size=5002, # ) # text_encoder = RobertaSeriesModelWithTransformation(text_encoder_config) torch.manual_seed(0 ) UpperCamelCase_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5002 , ) UpperCamelCase_ = CLIPTextModel(snake_case__ ) UpperCamelCase_ = XLMRobertaTokenizer.from_pretrained("hf-internal-testing/tiny-xlm-roberta" ) UpperCamelCase_ = 77 UpperCamelCase_ = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "safety_checker": None, "feature_extractor": None, } return components def _lowerCamelCase ( self , snake_case__ , snake_case__=0 ): '''simple docstring''' if str(snake_case__ ).startswith("mps" ): UpperCamelCase_ = torch.manual_seed(snake_case__ ) else: UpperCamelCase_ = torch.Generator(device=snake_case__ ).manual_seed(snake_case__ ) UpperCamelCase_ = { "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "guidance_scale": 6.0, "output_type": "numpy", } return inputs def _lowerCamelCase ( self ): '''simple docstring''' super().test_attention_slicing_forward_pass(expected_max_diff=3e-3 ) def _lowerCamelCase ( self ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) def _lowerCamelCase ( self ): '''simple docstring''' UpperCamelCase_ = "cpu" # ensure determinism for the device-dependent torch.Generator UpperCamelCase_ = self.get_dummy_components() torch.manual_seed(0 ) UpperCamelCase_ = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=5002 , ) # TODO: remove after fixing the non-deterministic text encoder UpperCamelCase_ = RobertaSeriesModelWithTransformation(snake_case__ ) UpperCamelCase_ = text_encoder UpperCamelCase_ = AltDiffusionPipeline(**snake_case__ ) UpperCamelCase_ = alt_pipe.to(snake_case__ ) alt_pipe.set_progress_bar_config(disable=snake_case__ ) UpperCamelCase_ = self.get_dummy_inputs(snake_case__ ) UpperCamelCase_ = "A photo of an astronaut" UpperCamelCase_ = alt_pipe(**snake_case__ ) UpperCamelCase_ = output.images UpperCamelCase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCamelCase_ = np.array( [0.5_748_162, 0.60_447_145, 0.48_821_217, 0.50_100_636, 0.5_431_185, 0.45_763_683, 0.49_657_696, 0.48_132_733, 0.47_573_093] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _lowerCamelCase ( self ): '''simple docstring''' UpperCamelCase_ = "cpu" # ensure determinism for the device-dependent torch.Generator UpperCamelCase_ = self.get_dummy_components() UpperCamelCase_ = PNDMScheduler(skip_prk_steps=snake_case__ ) torch.manual_seed(0 ) UpperCamelCase_ = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=5002 , ) # TODO: remove after fixing the non-deterministic text encoder UpperCamelCase_ = RobertaSeriesModelWithTransformation(snake_case__ ) UpperCamelCase_ = text_encoder UpperCamelCase_ = AltDiffusionPipeline(**snake_case__ ) UpperCamelCase_ = alt_pipe.to(snake_case__ ) alt_pipe.set_progress_bar_config(disable=snake_case__ ) UpperCamelCase_ = self.get_dummy_inputs(snake_case__ ) UpperCamelCase_ = alt_pipe(**snake_case__ ) UpperCamelCase_ = output.images UpperCamelCase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCamelCase_ = np.array( [0.51_605_093, 0.5_707_241, 0.47_365_507, 0.50_578_886, 0.5_633_877, 0.4_642_503, 0.5_182_081, 0.48_763_484, 0.49_084_237] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch_gpu class _lowercase (unittest.TestCase ): '''simple docstring''' def _lowerCamelCase ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowerCamelCase ( self ): '''simple docstring''' UpperCamelCase_ = AltDiffusionPipeline.from_pretrained("BAAI/AltDiffusion" , safety_checker=snake_case__ ) UpperCamelCase_ = alt_pipe.to(snake_case__ ) alt_pipe.set_progress_bar_config(disable=snake_case__ ) UpperCamelCase_ = "A painting of a squirrel eating a burger" UpperCamelCase_ = torch.manual_seed(0 ) UpperCamelCase_ = alt_pipe([prompt] , generator=snake_case__ , guidance_scale=6.0 , num_inference_steps=20 , output_type="np" ) UpperCamelCase_ = output.images UpperCamelCase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) UpperCamelCase_ = np.array([0.1_010, 0.0_800, 0.0_794, 0.0_885, 0.0_843, 0.0_762, 0.0_769, 0.0_729, 0.0_586] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _lowerCamelCase ( self ): '''simple docstring''' UpperCamelCase_ = DDIMScheduler.from_pretrained("BAAI/AltDiffusion" , subfolder="scheduler" ) UpperCamelCase_ = AltDiffusionPipeline.from_pretrained("BAAI/AltDiffusion" , scheduler=snake_case__ , safety_checker=snake_case__ ) UpperCamelCase_ = alt_pipe.to(snake_case__ ) alt_pipe.set_progress_bar_config(disable=snake_case__ ) UpperCamelCase_ = "A painting of a squirrel eating a burger" UpperCamelCase_ = torch.manual_seed(0 ) UpperCamelCase_ = alt_pipe([prompt] , generator=snake_case__ , num_inference_steps=2 , output_type="numpy" ) UpperCamelCase_ = output.images UpperCamelCase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) UpperCamelCase_ = np.array([0.4_019, 0.4_052, 0.3_810, 0.4_119, 0.3_916, 0.3_982, 0.4_651, 0.4_195, 0.5_323] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
128
1
from transformers import DistilBertTokenizer, DistilBertTokenizerFast from transformers.testing_utils import require_tokenizers, slow from ..bert.test_tokenization_bert import BertTokenizationTest @require_tokenizers class lowercase__ ( _lowerCamelCase): UpperCamelCase_ = DistilBertTokenizer UpperCamelCase_ = DistilBertTokenizerFast UpperCamelCase_ = True @slow def __A ( self : Union[str, Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = DistilBertTokenizer.from_pretrained('''distilbert-base-uncased''' ) SCREAMING_SNAKE_CASE : Dict = tokenizer.encode('''sequence builders''' , add_special_tokens=lowercase_ ) SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer.encode('''multi-sequence build''' , add_special_tokens=lowercase_ ) SCREAMING_SNAKE_CASE : int = tokenizer.build_inputs_with_special_tokens(lowercase_ ) SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer.build_inputs_with_special_tokens(lowercase_ , lowercase_ ) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ]
356
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyInpaintPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class lowercase__ ( UpperCamelCase_ , unittest.TestCase): UpperCamelCase_ = KandinskyInpaintPipeline UpperCamelCase_ = ["""prompt""", """image_embeds""", """negative_image_embeds""", """image""", """mask_image"""] UpperCamelCase_ = [ """prompt""", """negative_prompt""", """image_embeds""", """negative_image_embeds""", """image""", """mask_image""", ] UpperCamelCase_ = [ """generator""", """height""", """width""", """latents""", """guidance_scale""", """negative_prompt""", """num_inference_steps""", """return_dict""", """guidance_scale""", """num_images_per_prompt""", """output_type""", """return_dict""", ] UpperCamelCase_ = False @property def __A ( self : Tuple ): '''simple docstring''' return 32 @property def __A ( self : List[str] ): '''simple docstring''' return 32 @property def __A ( self : List[Any] ): '''simple docstring''' return self.time_input_dim @property def __A ( self : List[Any] ): '''simple docstring''' return self.time_input_dim * 4 @property def __A ( self : List[Any] ): '''simple docstring''' return 100 @property def __A ( self : Optional[Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = XLMRobertaTokenizerFast.from_pretrained('''YiYiXu/tiny-random-mclip-base''' ) return tokenizer @property def __A ( self : int ): '''simple docstring''' torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : List[str] = MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=1005 , ) SCREAMING_SNAKE_CASE : Any = MultilingualCLIP(UpperCamelCase__ ) SCREAMING_SNAKE_CASE : Optional[Any] = text_encoder.eval() return text_encoder @property def __A ( self : Optional[Any] ): '''simple docstring''' torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : int = { '''in_channels''': 9, # Out channels is double in channels because predicts mean and variance '''out_channels''': 8, '''addition_embed_type''': '''text_image''', '''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''), '''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''), '''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''', '''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2), '''layers_per_block''': 1, '''encoder_hid_dim''': self.text_embedder_hidden_size, '''encoder_hid_dim_type''': '''text_image_proj''', '''cross_attention_dim''': self.cross_attention_dim, '''attention_head_dim''': 4, '''resnet_time_scale_shift''': '''scale_shift''', '''class_embed_type''': None, } SCREAMING_SNAKE_CASE : str = UNetaDConditionModel(**UpperCamelCase__ ) return model @property def __A ( self : int ): '''simple docstring''' return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def __A ( self : Any ): '''simple docstring''' torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Union[str, Any] = VQModel(**self.dummy_movq_kwargs ) return model def __A ( self : str ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = self.dummy_text_encoder SCREAMING_SNAKE_CASE : Dict = self.dummy_tokenizer SCREAMING_SNAKE_CASE : List[str] = self.dummy_unet SCREAMING_SNAKE_CASE : int = self.dummy_movq SCREAMING_SNAKE_CASE : List[str] = DDIMScheduler( num_train_timesteps=1000 , beta_schedule='''linear''' , beta_start=0.0_0085 , beta_end=0.012 , clip_sample=UpperCamelCase__ , set_alpha_to_one=UpperCamelCase__ , steps_offset=1 , prediction_type='''epsilon''' , thresholding=UpperCamelCase__ , ) SCREAMING_SNAKE_CASE : Any = { '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''unet''': unet, '''scheduler''': scheduler, '''movq''': movq, } return components def __A ( self : str , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : List[Any]=0 ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(UpperCamelCase__ ) ).to(UpperCamelCase__ ) SCREAMING_SNAKE_CASE : int = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(UpperCamelCase__ ) # create init_image SCREAMING_SNAKE_CASE : Optional[int] = floats_tensor((1, 3, 64, 64) , rng=random.Random(UpperCamelCase__ ) ).to(UpperCamelCase__ ) SCREAMING_SNAKE_CASE : Optional[Any] = image.cpu().permute(0 , 2 , 3 , 1 )[0] SCREAMING_SNAKE_CASE : Optional[int] = Image.fromarray(np.uinta(UpperCamelCase__ ) ).convert('''RGB''' ).resize((256, 256) ) # create mask SCREAMING_SNAKE_CASE : Tuple = np.ones((64, 64) , dtype=np.floataa ) SCREAMING_SNAKE_CASE : List[Any] = 0 if str(UpperCamelCase__ ).startswith('''mps''' ): SCREAMING_SNAKE_CASE : Dict = torch.manual_seed(UpperCamelCase__ ) else: SCREAMING_SNAKE_CASE : Dict = torch.Generator(device=UpperCamelCase__ ).manual_seed(UpperCamelCase__ ) SCREAMING_SNAKE_CASE : Dict = { '''prompt''': '''horse''', '''image''': init_image, '''mask_image''': mask, '''image_embeds''': image_embeds, '''negative_image_embeds''': negative_image_embeds, '''generator''': generator, '''height''': 64, '''width''': 64, '''num_inference_steps''': 2, '''guidance_scale''': 4.0, '''output_type''': '''np''', } return inputs def __A ( self : Tuple ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = '''cpu''' SCREAMING_SNAKE_CASE : Any = self.get_dummy_components() SCREAMING_SNAKE_CASE : str = self.pipeline_class(**UpperCamelCase__ ) SCREAMING_SNAKE_CASE : List[Any] = pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) SCREAMING_SNAKE_CASE : Optional[Any] = pipe(**self.get_dummy_inputs(UpperCamelCase__ ) ) SCREAMING_SNAKE_CASE : Union[str, Any] = output.images SCREAMING_SNAKE_CASE : Any = pipe( **self.get_dummy_inputs(UpperCamelCase__ ) , return_dict=UpperCamelCase__ , )[0] SCREAMING_SNAKE_CASE : Optional[Any] = image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE : int = image_from_tuple[0, -3:, -3:, -1] print(f"""image.shape {image.shape}""" ) assert image.shape == (1, 64, 64, 3) SCREAMING_SNAKE_CASE : str = np.array( [0.832_6919, 0.7379_0467, 0.2091_8581, 0.930_9612, 0.551_1791, 0.4371_3328, 0.551_3321, 0.4992_2934, 0.5949_7786] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), f""" expected_slice {expected_slice}, but got {image_slice.flatten()}""" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), f""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}""" def __A ( self : str ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class lowercase__ ( unittest.TestCase): def __A ( self : str ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __A ( self : Any ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/kandinsky_inpaint_cat_with_hat_fp16.npy''' ) SCREAMING_SNAKE_CASE : Optional[Any] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/cat.png''' ) SCREAMING_SNAKE_CASE : int = np.ones((768, 768) , dtype=np.floataa ) SCREAMING_SNAKE_CASE : Optional[int] = 0 SCREAMING_SNAKE_CASE : Optional[Any] = '''a hat''' SCREAMING_SNAKE_CASE : Dict = KandinskyPriorPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-1-prior''' , torch_dtype=torch.floataa ) pipe_prior.to(UpperCamelCase__ ) SCREAMING_SNAKE_CASE : Union[str, Any] = KandinskyInpaintPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-1-inpaint''' , torch_dtype=torch.floataa ) SCREAMING_SNAKE_CASE : Optional[Any] = pipeline.to(UpperCamelCase__ ) pipeline.set_progress_bar_config(disable=UpperCamelCase__ ) SCREAMING_SNAKE_CASE : Union[str, Any] = torch.Generator(device='''cpu''' ).manual_seed(0 ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = pipe_prior( UpperCamelCase__ , generator=UpperCamelCase__ , num_inference_steps=5 , negative_prompt='''''' , ).to_tuple() SCREAMING_SNAKE_CASE : Optional[Any] = pipeline( UpperCamelCase__ , image=UpperCamelCase__ , mask_image=UpperCamelCase__ , image_embeds=UpperCamelCase__ , negative_image_embeds=UpperCamelCase__ , generator=UpperCamelCase__ , num_inference_steps=100 , height=768 , width=768 , output_type='''np''' , ) SCREAMING_SNAKE_CASE : Any = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(UpperCamelCase__ , UpperCamelCase__ )
258
0
"""simple docstring""" import os import re import warnings from shutil import copyfile from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer if TYPE_CHECKING: from ...tokenization_utils_base import TextInput from ...utils import logging __A = logging.get_logger(__name__) __A = {'''vocab_file''': '''spiece.model'''} __A = { '''vocab_file''': { '''t5-small''': '''https://huggingface.co/t5-small/resolve/main/spiece.model''', '''t5-base''': '''https://huggingface.co/t5-base/resolve/main/spiece.model''', '''t5-large''': '''https://huggingface.co/t5-large/resolve/main/spiece.model''', '''t5-3b''': '''https://huggingface.co/t5-3b/resolve/main/spiece.model''', '''t5-11b''': '''https://huggingface.co/t5-11b/resolve/main/spiece.model''', } } # TODO(PVP) - this should be removed in Transformers v5 __A = { '''t5-small''': 512, '''t5-base''': 512, '''t5-large''': 512, '''t5-3b''': 512, '''t5-11b''': 512, } __A = '''▁''' class _snake_case ( a__ ): snake_case__ = VOCAB_FILES_NAMES snake_case__ = PRETRAINED_VOCAB_FILES_MAP snake_case__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case__ = ["input_ids", "attention_mask"] def __init__( self : Union[str, Any] , UpperCAmelCase : Dict , UpperCAmelCase : Tuple="</s>" , UpperCAmelCase : List[Any]="<unk>" , UpperCAmelCase : Union[str, Any]="<pad>" , UpperCAmelCase : Dict=100 , UpperCAmelCase : Optional[int]=None , UpperCAmelCase : Optional[Dict[str, Any]] = None , UpperCAmelCase : Optional[int]=True , **UpperCAmelCase : Union[str, Any] , ): # Add extra_ids to the special token list if extra_ids > 0 and additional_special_tokens is None: __lowerCamelCase : Optional[Any] = [F"""<extra_id_{i}>""" for i in range(UpperCAmelCase )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra_id special tokens __lowerCamelCase : Dict = len(set(filter(lambda UpperCAmelCase : bool("extra_id" in str(UpperCAmelCase ) ) , UpperCAmelCase ) ) ) if extra_tokens != extra_ids: raise ValueError( F"""Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are""" " provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids" " tokens" ) if legacy: logger.warning_once( F"""You are using the legacy behaviour of the {self.__class__}. This means that tokens that come after special tokens will not be properly handled. We recommend you to""" " read the related pull request available at https://github.com/huggingface/transformers/pull/24565" ) __lowerCamelCase : Optional[int] = legacy __lowerCamelCase : str = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=UpperCAmelCase , unk_token=UpperCAmelCase , pad_token=UpperCAmelCase , extra_ids=UpperCAmelCase , additional_special_tokens=UpperCAmelCase , sp_model_kwargs=self.sp_model_kwargs , legacy=UpperCAmelCase , **UpperCAmelCase , ) __lowerCamelCase : Dict = vocab_file __lowerCamelCase : Dict = extra_ids __lowerCamelCase : int = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(UpperCAmelCase ) @staticmethod def lowerCamelCase__ ( UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Dict , UpperCAmelCase : Optional[int] ): if pretrained_model_name_or_path in TaTokenizer.max_model_input_sizes: __lowerCamelCase : Optional[Any] = TaTokenizer.max_model_input_sizes[pretrained_model_name_or_path] if init_max_model_length is not None and init_max_model_length != max_model_length: return init_max_model_length elif init_max_model_length is None: warnings.warn( "This tokenizer was incorrectly instantiated with a model max length of" F""" {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this""" " behavior is kept to avoid breaking backwards compatibility when padding/encoding with" " `truncation is True`.\n- Be aware that you SHOULD NOT rely on" F""" {pretrained_model_name_or_path} automatically truncating your input to""" F""" {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences""" F""" longer than {deprecated_max_model_length} you can either instantiate this tokenizer with""" " `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please" " instantiate this tokenizer with `model_max_length` set to your preferred value." , UpperCAmelCase , ) return max_model_length @property def lowerCamelCase__ ( self : Any ): return self.sp_model.get_piece_size() + self._extra_ids def lowerCamelCase__ ( self : Tuple ): __lowerCamelCase : str = {self.convert_ids_to_tokens(UpperCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def lowerCamelCase__ ( self : str , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None , UpperCAmelCase : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCAmelCase , token_ids_a=UpperCAmelCase , already_has_special_tokens=UpperCAmelCase ) # normal case: some special tokens if token_ids_a is None: return ([0] * len(UpperCAmelCase )) + [1] return ([0] * len(UpperCAmelCase )) + [1] + ([0] * len(UpperCAmelCase )) + [1] def lowerCamelCase__ ( self : Any ): return list( set(filter(lambda UpperCAmelCase : bool(re.search(r"<extra_id_\d+>" , UpperCAmelCase ) ) is not None , self.additional_special_tokens ) ) ) def lowerCamelCase__ ( self : Dict ): return [self._convert_token_to_id(UpperCAmelCase ) for token in self.get_sentinel_tokens()] def lowerCamelCase__ ( self : List[str] , UpperCAmelCase : List[int] ): if len(UpperCAmelCase ) > 0 and token_ids[-1] == self.eos_token_id: warnings.warn( F"""This sequence already has {self.eos_token}. In future versions this behavior may lead to duplicated""" " eos tokens being added." ) return token_ids else: return token_ids + [self.eos_token_id] def lowerCamelCase__ ( self : Optional[int] , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ): __lowerCamelCase : str = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def lowerCamelCase__ ( self : Any , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ): __lowerCamelCase : Union[str, Any] = self._add_eos_if_not_present(UpperCAmelCase ) if token_ids_a is None: return token_ids_a else: __lowerCamelCase : Optional[int] = self._add_eos_if_not_present(UpperCAmelCase ) return token_ids_a + token_ids_a def __getstate__( self : List[Any] ): __lowerCamelCase : List[str] = self.__dict__.copy() __lowerCamelCase : Tuple = None return state def __setstate__( self : int , UpperCAmelCase : Any ): __lowerCamelCase : Optional[int] = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): __lowerCamelCase : str = {} __lowerCamelCase : Any = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def lowerCamelCase__ ( self : Any , UpperCAmelCase : "TextInput" , **UpperCAmelCase : Optional[Any] ): # Replace the SPIECE_UNDERLINE with a space to make sure SPIECE_UNDERLINE is only used at # the beginning of the text if not self.legacy: __lowerCamelCase : List[Any] = SPIECE_UNDERLINE + text.replace(UpperCAmelCase , " " ) return super().tokenize(UpperCAmelCase , **UpperCAmelCase ) def lowerCamelCase__ ( self : int , UpperCAmelCase : str , **UpperCAmelCase : Any ): if not self.legacy: __lowerCamelCase : int = text.startswith(UpperCAmelCase ) if is_first: __lowerCamelCase : str = text[1:] __lowerCamelCase : Dict = self.sp_model.encode(UpperCAmelCase , out_type=UpperCAmelCase ) if not self.legacy and not is_first and not text.startswith(" " ) and tokens[0].startswith(UpperCAmelCase ): __lowerCamelCase : List[Any] = ([tokens[0][1:]] if len(tokens[0] ) > 1 else []) + tokens[1:] return tokens def lowerCamelCase__ ( self : int , UpperCAmelCase : Optional[int] ): if token.startswith("<extra_id_" ): __lowerCamelCase : Tuple = re.match(r"<extra_id_(\d+)>" , UpperCAmelCase ) __lowerCamelCase : Optional[Any] = int(match.group(1 ) ) return self.vocab_size - num - 1 return self.sp_model.piece_to_id(UpperCAmelCase ) def lowerCamelCase__ ( self : List[Any] , UpperCAmelCase : Optional[int] ): if index < self.sp_model.get_piece_size(): __lowerCamelCase : List[str] = self.sp_model.IdToPiece(UpperCAmelCase ) else: __lowerCamelCase : Optional[int] = F"""<extra_id_{self.vocab_size - 1 - index}>""" return token def lowerCamelCase__ ( self : Optional[int] , UpperCAmelCase : Dict ): __lowerCamelCase : List[Any] = [] __lowerCamelCase : List[Any] = "" __lowerCamelCase : Optional[int] = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(UpperCAmelCase ) + token __lowerCamelCase : Optional[int] = True __lowerCamelCase : List[str] = [] else: current_sub_tokens.append(UpperCAmelCase ) __lowerCamelCase : Optional[int] = False out_string += self.sp_model.decode(UpperCAmelCase ) return out_string.strip() def lowerCamelCase__ ( self : Dict , UpperCAmelCase : str , UpperCAmelCase : Optional[str] = None ): if not os.path.isdir(UpperCAmelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return __lowerCamelCase : List[str] = os.path.join( UpperCAmelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , UpperCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(UpperCAmelCase , "wb" ) as fi: __lowerCamelCase : List[Any] = self.sp_model.serialized_model_proto() fi.write(UpperCAmelCase ) return (out_vocab_file,)
135
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_realm import RealmTokenizer __A = logging.get_logger(__name__) __A = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} __A = { '''vocab_file''': { '''google/realm-cc-news-pretrained-embedder''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/vocab.txt''' ), '''google/realm-cc-news-pretrained-encoder''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/vocab.txt''' ), '''google/realm-cc-news-pretrained-scorer''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/vocab.txt''' ), '''google/realm-cc-news-pretrained-openqa''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/vocab.txt''' ), '''google/realm-orqa-nq-openqa''': '''https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/vocab.txt''', '''google/realm-orqa-nq-reader''': '''https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/vocab.txt''', '''google/realm-orqa-wq-openqa''': '''https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/vocab.txt''', '''google/realm-orqa-wq-reader''': '''https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/vocab.txt''', }, '''tokenizer_file''': { '''google/realm-cc-news-pretrained-embedder''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/tokenizer.jsont''' ), '''google/realm-cc-news-pretrained-encoder''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/tokenizer.json''' ), '''google/realm-cc-news-pretrained-scorer''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/tokenizer.json''' ), '''google/realm-cc-news-pretrained-openqa''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/tokenizer.json''' ), '''google/realm-orqa-nq-openqa''': ( '''https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/tokenizer.json''' ), '''google/realm-orqa-nq-reader''': ( '''https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/tokenizer.json''' ), '''google/realm-orqa-wq-openqa''': ( '''https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/tokenizer.json''' ), '''google/realm-orqa-wq-reader''': ( '''https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/tokenizer.json''' ), }, } __A = { '''google/realm-cc-news-pretrained-embedder''': 512, '''google/realm-cc-news-pretrained-encoder''': 512, '''google/realm-cc-news-pretrained-scorer''': 512, '''google/realm-cc-news-pretrained-openqa''': 512, '''google/realm-orqa-nq-openqa''': 512, '''google/realm-orqa-nq-reader''': 512, '''google/realm-orqa-wq-openqa''': 512, '''google/realm-orqa-wq-reader''': 512, } __A = { '''google/realm-cc-news-pretrained-embedder''': {'''do_lower_case''': True}, '''google/realm-cc-news-pretrained-encoder''': {'''do_lower_case''': True}, '''google/realm-cc-news-pretrained-scorer''': {'''do_lower_case''': True}, '''google/realm-cc-news-pretrained-openqa''': {'''do_lower_case''': True}, '''google/realm-orqa-nq-openqa''': {'''do_lower_case''': True}, '''google/realm-orqa-nq-reader''': {'''do_lower_case''': True}, '''google/realm-orqa-wq-openqa''': {'''do_lower_case''': True}, '''google/realm-orqa-wq-reader''': {'''do_lower_case''': True}, } class _snake_case ( a__ ): snake_case__ = VOCAB_FILES_NAMES snake_case__ = PRETRAINED_VOCAB_FILES_MAP snake_case__ = PRETRAINED_INIT_CONFIGURATION snake_case__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case__ = RealmTokenizer def __init__( self : Optional[int] , UpperCAmelCase : Any=None , UpperCAmelCase : List[str]=None , UpperCAmelCase : int=True , UpperCAmelCase : List[Any]="[UNK]" , UpperCAmelCase : Tuple="[SEP]" , UpperCAmelCase : List[str]="[PAD]" , UpperCAmelCase : Tuple="[CLS]" , UpperCAmelCase : List[Any]="[MASK]" , UpperCAmelCase : str=True , UpperCAmelCase : Union[str, Any]=None , **UpperCAmelCase : Any , ): super().__init__( UpperCAmelCase , tokenizer_file=UpperCAmelCase , do_lower_case=UpperCAmelCase , unk_token=UpperCAmelCase , sep_token=UpperCAmelCase , pad_token=UpperCAmelCase , cls_token=UpperCAmelCase , mask_token=UpperCAmelCase , tokenize_chinese_chars=UpperCAmelCase , strip_accents=UpperCAmelCase , **UpperCAmelCase , ) __lowerCamelCase : str = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("lowercase" , UpperCAmelCase ) != do_lower_case or normalizer_state.get("strip_accents" , UpperCAmelCase ) != strip_accents or normalizer_state.get("handle_chinese_chars" , UpperCAmelCase ) != tokenize_chinese_chars ): __lowerCamelCase : str = getattr(UpperCAmelCase , normalizer_state.pop("type" ) ) __lowerCamelCase : Any = do_lower_case __lowerCamelCase : List[Any] = strip_accents __lowerCamelCase : Optional[Any] = tokenize_chinese_chars __lowerCamelCase : int = normalizer_class(**UpperCAmelCase ) __lowerCamelCase : List[Any] = do_lower_case def lowerCamelCase__ ( self : Union[str, Any] , UpperCAmelCase : Dict , **UpperCAmelCase : int ): __lowerCamelCase : Optional[int] = PaddingStrategy.MAX_LENGTH __lowerCamelCase : List[Any] = text __lowerCamelCase : Optional[int] = kwargs.pop("text_pair" , UpperCAmelCase ) __lowerCamelCase : List[Any] = kwargs.pop("return_tensors" , UpperCAmelCase ) __lowerCamelCase : Dict = { "input_ids": [], "attention_mask": [], "token_type_ids": [], } for idx, candidate_text in enumerate(UpperCAmelCase ): if batch_text_pair is not None: __lowerCamelCase : List[str] = batch_text_pair[idx] else: __lowerCamelCase : Optional[int] = None __lowerCamelCase : List[str] = super().__call__(UpperCAmelCase , UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase ) __lowerCamelCase : Union[str, Any] = encoded_candidates.get("input_ids" ) __lowerCamelCase : Optional[int] = encoded_candidates.get("attention_mask" ) __lowerCamelCase : int = encoded_candidates.get("token_type_ids" ) if encoded_input_ids is not None: output_data["input_ids"].append(UpperCAmelCase ) if encoded_attention_mask is not None: output_data["attention_mask"].append(UpperCAmelCase ) if encoded_token_type_ids is not None: output_data["token_type_ids"].append(UpperCAmelCase ) __lowerCamelCase : Union[str, Any] = {key: item for key, item in output_data.items() if len(UpperCAmelCase ) != 0} return BatchEncoding(UpperCAmelCase , tensor_type=UpperCAmelCase ) def lowerCamelCase__ ( self : Optional[Any] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Optional[int]=None ): __lowerCamelCase : List[Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowerCamelCase__ ( self : Optional[Any] , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ): __lowerCamelCase : Tuple = [self.sep_token_id] __lowerCamelCase : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCamelCase__ ( self : int , UpperCAmelCase : str , UpperCAmelCase : Optional[str] = None ): __lowerCamelCase : Any = self._tokenizer.model.save(UpperCAmelCase , name=UpperCAmelCase ) return tuple(UpperCAmelCase )
135
1
'''simple docstring''' from __future__ import annotations import sys from collections import deque from typing import Generic, TypeVar UpperCAmelCase = TypeVar('T') class __snake_case( Generic[T] ): '''simple docstring''' UpperCAmelCase : Optional[int] = 42 # Cache store of keys UpperCAmelCase : Optional[Any] = 42 # References of the keys in cache UpperCAmelCase : Dict = 10 # Maximum capacity of cache def __init__( self , A_ ) -> None: lowerCAmelCase = deque() lowerCAmelCase = set() if not n: lowerCAmelCase = sys.maxsize elif n < 0: raise ValueError("""n should be an integer greater than 0.""" ) else: lowerCAmelCase = n def __snake_case ( self , A_ ) -> None: if x not in self.key_reference: if len(self.dq_store ) == LRUCache._MAX_CAPACITY: lowerCAmelCase = self.dq_store.pop() self.key_reference.remove(__lowerCamelCase ) else: self.dq_store.remove(__lowerCamelCase ) self.dq_store.appendleft(__lowerCamelCase ) self.key_reference.add(__lowerCamelCase ) def __snake_case ( self ) -> None: for k in self.dq_store: print(__lowerCamelCase ) def __repr__( self ) -> str: return f'LRUCache({self._MAX_CAPACITY}) => {list(self.dq_store )}' if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase = LRUCache(4) lru_cache.refer('A') lru_cache.refer(2) lru_cache.refer(3) lru_cache.refer('A') lru_cache.refer(4) lru_cache.refer(5) lru_cache.display() print(lru_cache) assert str(lru_cache) == "LRUCache(4) => [5, 4, 'A', 3]"
356
'''simple docstring''' import argparse import ast import logging import os import sys import pandas as pd import torch from tqdm import tqdm from transformers import BartForConditionalGeneration, RagRetriever, RagSequenceForGeneration, RagTokenForGeneration from transformers import logging as transformers_logging sys.path.append(os.path.join(os.getcwd())) # noqa: E402 # isort:skip from utils_rag import exact_match_score, fa_score # noqa: E402 # isort:skip UpperCAmelCase = logging.getLogger(__name__) logging.basicConfig(level=logging.INFO) transformers_logging.set_verbosity_info() def _snake_case ( _SCREAMING_SNAKE_CASE : Tuple ) -> List[Any]: """simple docstring""" if "token" in model_name_or_path: return "rag_token" if "sequence" in model_name_or_path: return "rag_sequence" if "bart" in model_name_or_path: return "bart" return None def _snake_case ( _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : str ) -> Dict: """simple docstring""" return max(metric_fn(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for gt in ground_truths ) def _snake_case ( _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : Union[str, Any] ) -> Tuple: """simple docstring""" lowerCAmelCase = [line.strip() for line in open(_SCREAMING_SNAKE_CASE , """r""" ).readlines()] lowerCAmelCase = [] if args.gold_data_mode == "qa": lowerCAmelCase = pd.read_csv(_SCREAMING_SNAKE_CASE , sep="""\t""" , header=_SCREAMING_SNAKE_CASE ) for answer_list in data[1]: lowerCAmelCase = ast.literal_eval(_SCREAMING_SNAKE_CASE ) answers.append(_SCREAMING_SNAKE_CASE ) else: lowerCAmelCase = [line.strip() for line in open(_SCREAMING_SNAKE_CASE , """r""" ).readlines()] lowerCAmelCase = [[reference] for reference in references] lowerCAmelCase = lowerCAmelCase = lowerCAmelCase = 0 for prediction, ground_truths in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): total += 1 em += metric_max_over_ground_truths(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) fa += metric_max_over_ground_truths(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) lowerCAmelCase = 100.0 * em / total lowerCAmelCase = 100.0 * fa / total logger.info(f'F1: {fa:.2f}' ) logger.info(f'EM: {em:.2f}' ) def _snake_case ( _SCREAMING_SNAKE_CASE : Dict , _SCREAMING_SNAKE_CASE : Dict , _SCREAMING_SNAKE_CASE : Dict ) -> Optional[Any]: """simple docstring""" lowerCAmelCase = args.k lowerCAmelCase = [line.strip() for line in open(_SCREAMING_SNAKE_CASE , """r""" ).readlines()] lowerCAmelCase = [line.strip() for line in open(_SCREAMING_SNAKE_CASE , """r""" ).readlines()] lowerCAmelCase = lowerCAmelCase = 0 for hypo, reference in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): lowerCAmelCase = set(hypo.split("""\t""" )[:k] ) lowerCAmelCase = set(reference.split("""\t""" ) ) total += 1 em += len(hypo_provenance & ref_provenance ) / k lowerCAmelCase = 100.0 * em / total logger.info(f'Precision@{k}: {em: .2f}' ) def _snake_case ( _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : List[Any] ) -> Any: """simple docstring""" def strip_title(_SCREAMING_SNAKE_CASE : Union[str, Any] ): if title.startswith("""\"""" ): lowerCAmelCase = title[1:] if title.endswith("""\"""" ): lowerCAmelCase = title[:-1] return title lowerCAmelCase = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( _SCREAMING_SNAKE_CASE , return_tensors="""pt""" , padding=_SCREAMING_SNAKE_CASE , truncation=_SCREAMING_SNAKE_CASE , )["""input_ids"""].to(args.device ) lowerCAmelCase = rag_model.rag.question_encoder(_SCREAMING_SNAKE_CASE ) lowerCAmelCase = question_enc_outputs[0] lowerCAmelCase = rag_model.retriever( _SCREAMING_SNAKE_CASE , question_enc_pool_output.cpu().detach().to(torch.floataa ).numpy() , prefix=rag_model.rag.generator.config.prefix , n_docs=rag_model.config.n_docs , return_tensors="""pt""" , ) lowerCAmelCase = rag_model.retriever.index.get_doc_dicts(result.doc_ids ) lowerCAmelCase = [] for docs in all_docs: lowerCAmelCase = [strip_title(_SCREAMING_SNAKE_CASE ) for title in docs["""title"""]] provenance_strings.append("""\t""".join(_SCREAMING_SNAKE_CASE ) ) return provenance_strings def _snake_case ( _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : str ) -> Tuple: """simple docstring""" with torch.no_grad(): lowerCAmelCase = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( _SCREAMING_SNAKE_CASE , return_tensors="""pt""" , padding=_SCREAMING_SNAKE_CASE , truncation=_SCREAMING_SNAKE_CASE ) lowerCAmelCase = inputs_dict.input_ids.to(args.device ) lowerCAmelCase = inputs_dict.attention_mask.to(args.device ) lowerCAmelCase = rag_model.generate( # rag_model overwrites generate _SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , num_beams=args.num_beams , min_length=args.min_length , max_length=args.max_length , early_stopping=_SCREAMING_SNAKE_CASE , num_return_sequences=1 , bad_words_ids=[[0, 0]] , ) lowerCAmelCase = rag_model.retriever.generator_tokenizer.batch_decode(_SCREAMING_SNAKE_CASE , skip_special_tokens=_SCREAMING_SNAKE_CASE ) if args.print_predictions: for q, a in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): logger.info("""Q: {} - A: {}""".format(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) return answers def _snake_case ( ) -> Dict: """simple docstring""" lowerCAmelCase = argparse.ArgumentParser() parser.add_argument( """--model_type""" , choices=["""rag_sequence""", """rag_token""", """bart"""] , type=_SCREAMING_SNAKE_CASE , help=( """RAG model type: rag_sequence, rag_token or bart, if none specified, the type is inferred from the""" """ model_name_or_path""" ) , ) parser.add_argument( """--index_name""" , default=_SCREAMING_SNAKE_CASE , choices=["""exact""", """compressed""", """legacy"""] , type=_SCREAMING_SNAKE_CASE , help="""RAG model retriever type""" , ) parser.add_argument( """--index_path""" , default=_SCREAMING_SNAKE_CASE , type=_SCREAMING_SNAKE_CASE , help="""Path to the retrieval index""" , ) parser.add_argument("""--n_docs""" , default=5 , type=_SCREAMING_SNAKE_CASE , help="""Number of retrieved docs""" ) parser.add_argument( """--model_name_or_path""" , default=_SCREAMING_SNAKE_CASE , type=_SCREAMING_SNAKE_CASE , required=_SCREAMING_SNAKE_CASE , help="""Path to pretrained checkpoints or model identifier from huggingface.co/models""" , ) parser.add_argument( """--eval_mode""" , choices=["""e2e""", """retrieval"""] , default="""e2e""" , type=_SCREAMING_SNAKE_CASE , help=( """Evaluation mode, e2e calculates exact match and F1 of the downstream task, retrieval calculates""" """ precision@k.""" ) , ) parser.add_argument("""--k""" , default=1 , type=_SCREAMING_SNAKE_CASE , help="""k for the precision@k calculation""" ) parser.add_argument( """--evaluation_set""" , default=_SCREAMING_SNAKE_CASE , type=_SCREAMING_SNAKE_CASE , required=_SCREAMING_SNAKE_CASE , help="""Path to a file containing evaluation samples""" , ) parser.add_argument( """--gold_data_path""" , default=_SCREAMING_SNAKE_CASE , type=_SCREAMING_SNAKE_CASE , required=_SCREAMING_SNAKE_CASE , help="""Path to a tab-separated file with gold samples""" , ) parser.add_argument( """--gold_data_mode""" , default="""qa""" , type=_SCREAMING_SNAKE_CASE , choices=["""qa""", """ans"""] , help=( """Format of the gold data file""" """qa - a single line in the following format: question [tab] answer_list""" """ans - a single line of the gold file contains the expected answer string""" ) , ) parser.add_argument( """--predictions_path""" , type=_SCREAMING_SNAKE_CASE , default="""predictions.txt""" , help="""Name of the predictions file, to be stored in the checkpoints directory""" , ) parser.add_argument( """--eval_all_checkpoints""" , action="""store_true""" , help="""Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number""" , ) parser.add_argument( """--eval_batch_size""" , default=8 , type=_SCREAMING_SNAKE_CASE , help="""Batch size per GPU/CPU for evaluation.""" , ) parser.add_argument( """--recalculate""" , help="""Recalculate predictions even if the prediction file exists""" , action="""store_true""" , ) parser.add_argument( """--num_beams""" , default=4 , type=_SCREAMING_SNAKE_CASE , help="""Number of beams to be used when generating answers""" , ) parser.add_argument("""--min_length""" , default=1 , type=_SCREAMING_SNAKE_CASE , help="""Min length of the generated answers""" ) parser.add_argument("""--max_length""" , default=50 , type=_SCREAMING_SNAKE_CASE , help="""Max length of the generated answers""" ) parser.add_argument( """--print_predictions""" , action="""store_true""" , help="""If True, prints predictions while evaluating.""" , ) parser.add_argument( """--print_docs""" , action="""store_true""" , help="""If True, prints docs retried while generating.""" , ) lowerCAmelCase = parser.parse_args() lowerCAmelCase = torch.device("""cuda""" if torch.cuda.is_available() else """cpu""" ) return args def _snake_case ( _SCREAMING_SNAKE_CASE : Union[str, Any] ) -> Optional[Any]: """simple docstring""" lowerCAmelCase = {} if args.model_type is None: lowerCAmelCase = infer_model_type(args.model_name_or_path ) assert args.model_type is not None if args.model_type.startswith("""rag""" ): lowerCAmelCase = RagTokenForGeneration if args.model_type == """rag_token""" else RagSequenceForGeneration lowerCAmelCase = args.n_docs if args.index_name is not None: lowerCAmelCase = args.index_name if args.index_path is not None: lowerCAmelCase = args.index_path else: lowerCAmelCase = BartForConditionalGeneration lowerCAmelCase = ( [f.path for f in os.scandir(args.model_name_or_path ) if f.is_dir()] if args.eval_all_checkpoints else [args.model_name_or_path] ) logger.info("""Evaluate the following checkpoints: %s""" , _SCREAMING_SNAKE_CASE ) lowerCAmelCase = get_scores if args.eval_mode == """e2e""" else get_precision_at_k lowerCAmelCase = evaluate_batch_eae if args.eval_mode == """e2e""" else evaluate_batch_retrieval for checkpoint in checkpoints: if os.path.exists(args.predictions_path ) and (not args.recalculate): logger.info("""Calculating metrics based on an existing predictions file: {}""".format(args.predictions_path ) ) score_fn(_SCREAMING_SNAKE_CASE , args.predictions_path , args.gold_data_path ) continue logger.info("""***** Running evaluation for {} *****""".format(_SCREAMING_SNAKE_CASE ) ) logger.info(""" Batch size = %d""" , args.eval_batch_size ) logger.info(""" Predictions will be stored under {}""".format(args.predictions_path ) ) if args.model_type.startswith("""rag""" ): lowerCAmelCase = RagRetriever.from_pretrained(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) lowerCAmelCase = model_class.from_pretrained(_SCREAMING_SNAKE_CASE , retriever=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) model.retriever.init_retrieval() else: lowerCAmelCase = model_class.from_pretrained(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) model.to(args.device ) with open(args.evaluation_set , """r""" ) as eval_file, open(args.predictions_path , """w""" ) as preds_file: lowerCAmelCase = [] for line in tqdm(_SCREAMING_SNAKE_CASE ): questions.append(line.strip() ) if len(_SCREAMING_SNAKE_CASE ) == args.eval_batch_size: lowerCAmelCase = evaluate_batch_fn(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) preds_file.write("""\n""".join(_SCREAMING_SNAKE_CASE ) + """\n""" ) preds_file.flush() lowerCAmelCase = [] if len(_SCREAMING_SNAKE_CASE ) > 0: lowerCAmelCase = evaluate_batch_fn(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) preds_file.write("""\n""".join(_SCREAMING_SNAKE_CASE ) ) preds_file.flush() score_fn(_SCREAMING_SNAKE_CASE , args.predictions_path , args.gold_data_path ) if __name__ == "__main__": UpperCAmelCase = get_args() main(args)
187
0
from copy import deepcopy class __UpperCAmelCase : def __init__( self: Tuple , UpperCAmelCase_: list[int] | None = None , UpperCAmelCase_: int | None = None ): '''simple docstring''' if arr is None and size is not None: _SCREAMING_SNAKE_CASE = size _SCREAMING_SNAKE_CASE = [0] * size elif arr is not None: self.init(SCREAMING_SNAKE_CASE__ ) else: raise ValueError("""Either arr or size must be specified""" ) def UpperCamelCase ( self: Union[str, Any] , UpperCAmelCase_: list[int] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = len(SCREAMING_SNAKE_CASE__ ) _SCREAMING_SNAKE_CASE = deepcopy(SCREAMING_SNAKE_CASE__ ) for i in range(1 , self.size ): _SCREAMING_SNAKE_CASE = self.next_(SCREAMING_SNAKE_CASE__ ) if j < self.size: self.tree[j] += self.tree[i] def UpperCamelCase ( self: Optional[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.tree[:] for i in range(self.size - 1 , 0 , -1 ): _SCREAMING_SNAKE_CASE = self.next_(SCREAMING_SNAKE_CASE__ ) if j < self.size: arr[j] -= arr[i] return arr @staticmethod def UpperCamelCase ( UpperCAmelCase_: int ): '''simple docstring''' return index + (index & (-index)) @staticmethod def UpperCamelCase ( UpperCAmelCase_: int ): '''simple docstring''' return index - (index & (-index)) def UpperCamelCase ( self: str , UpperCAmelCase_: int , UpperCAmelCase_: int ): '''simple docstring''' if index == 0: self.tree[0] += value return while index < self.size: self.tree[index] += value _SCREAMING_SNAKE_CASE = self.next_(SCREAMING_SNAKE_CASE__ ) def UpperCamelCase ( self: Dict , UpperCAmelCase_: int , UpperCAmelCase_: int ): '''simple docstring''' self.add(SCREAMING_SNAKE_CASE__ , value - self.get(SCREAMING_SNAKE_CASE__ ) ) def UpperCamelCase ( self: Union[str, Any] , UpperCAmelCase_: int ): '''simple docstring''' if right == 0: return 0 _SCREAMING_SNAKE_CASE = self.tree[0] right -= 1 # make right inclusive while right > 0: result += self.tree[right] _SCREAMING_SNAKE_CASE = self.prev(SCREAMING_SNAKE_CASE__ ) return result def UpperCamelCase ( self: Optional[int] , UpperCAmelCase_: int , UpperCAmelCase_: int ): '''simple docstring''' return self.prefix(SCREAMING_SNAKE_CASE__ ) - self.prefix(SCREAMING_SNAKE_CASE__ ) def UpperCamelCase ( self: Tuple , UpperCAmelCase_: int ): '''simple docstring''' return self.query(SCREAMING_SNAKE_CASE__ , index + 1 ) def UpperCamelCase ( self: Optional[Any] , UpperCAmelCase_: int ): '''simple docstring''' value -= self.tree[0] if value < 0: return -1 _SCREAMING_SNAKE_CASE = 1 # Largest power of 2 <= size while j * 2 < self.size: j *= 2 _SCREAMING_SNAKE_CASE = 0 while j > 0: if i + j < self.size and self.tree[i + j] <= value: value -= self.tree[i + j] i += j j //= 2 return i if __name__ == "__main__": import doctest doctest.testmod()
306
import math import os import re import sys import unittest from pathlib import Path from typing import Tuple from unittest.mock import patch from parameterized import parameterized from transformers.testing_utils import ( CaptureStderr, ExtendSysPath, TestCasePlus, execute_subprocess_async, get_gpu_count, get_torch_dist_unique_port, require_apex, require_bitsandbytes, require_fairscale, require_torch, require_torch_gpu, require_torch_multi_gpu, require_torch_non_multi_gpu, slow, ) from transformers.trainer_callback import TrainerState from transformers.trainer_utils import set_seed SCREAMING_SNAKE_CASE__ : Optional[int] = os.path.abspath(os.path.dirname(__file__)) with ExtendSysPath(F'{bindir}/../../examples/pytorch/translation'): from run_translation import main # noqa set_seed(42) SCREAMING_SNAKE_CASE__ : Any = "sshleifer/student_marian_en_ro_6_1" SCREAMING_SNAKE_CASE__ : Tuple = "sshleifer/tiny-mbart" @require_torch class lowerCAmelCase__ ( __lowercase ): def __A ( self : List[Any] , SCREAMING_SNAKE_CASE__ : Tuple=False , SCREAMING_SNAKE_CASE__ : Optional[Any]=None , SCREAMING_SNAKE_CASE__ : Optional[Any]=True , SCREAMING_SNAKE_CASE__ : str=True , SCREAMING_SNAKE_CASE__ : Optional[Any]=True , SCREAMING_SNAKE_CASE__ : Optional[int]=True , ) -> Optional[int]: __lowerCamelCase = self.run_trainer( eval_steps=1 , max_len=12 , model_name=SCREAMING_SNAKE_CASE__ , num_train_epochs=1 , distributed=SCREAMING_SNAKE_CASE__ , extra_args_str=SCREAMING_SNAKE_CASE__ , predict_with_generate=SCREAMING_SNAKE_CASE__ , do_train=SCREAMING_SNAKE_CASE__ , do_eval=SCREAMING_SNAKE_CASE__ , do_predict=SCREAMING_SNAKE_CASE__ , ) __lowerCamelCase = TrainerState.load_from_json(os.path.join(SCREAMING_SNAKE_CASE__ , '''trainer_state.json''' ) ).log_history if not do_eval: return __lowerCamelCase = [log for log in logs if '''eval_loss''' in log.keys()] __lowerCamelCase = eval_metrics[0] if predict_with_generate: assert "eval_bleu" in first_step_stats __lowerCamelCase = eval_metrics[-1] assert isinstance(last_step_stats['''eval_bleu'''] , SCREAMING_SNAKE_CASE__ ) assert not math.isnan(float(last_step_stats['''eval_loss'''] ) ), "eval_loss must not be `nan`" @require_torch_non_multi_gpu def __A ( self : Optional[int] ) -> int: self.run_seqaseq_quick() @require_torch_multi_gpu def __A ( self : int ) -> List[str]: self.run_seqaseq_quick(distributed=SCREAMING_SNAKE_CASE__ ) @require_torch_multi_gpu def __A ( self : Optional[Any] ) -> Tuple: self.run_seqaseq_quick(distributed=SCREAMING_SNAKE_CASE__ ) @unittest.skip('''Requires an update of the env running those tests''' ) @require_torch_multi_gpu @require_fairscale def __A ( self : Dict ) -> Tuple: self.run_seqaseq_quick(distributed=SCREAMING_SNAKE_CASE__ , extra_args_str='''--sharded_ddp simple''' ) @unittest.skip('''Requires an update of the env running those tests''' ) @require_torch_multi_gpu @require_fairscale def __A ( self : Optional[int] ) -> List[str]: self.run_seqaseq_quick(distributed=SCREAMING_SNAKE_CASE__ , extra_args_str='''--sharded_ddp simple --fp16''' ) @unittest.skip('''Requires an update of the env running those tests''' ) @require_torch_multi_gpu @require_fairscale def __A ( self : Tuple ) -> Any: self.run_seqaseq_quick(distributed=SCREAMING_SNAKE_CASE__ , extra_args_str='''--sharded_ddp zero_dp_2''' , predict_with_generate=SCREAMING_SNAKE_CASE__ ) @unittest.skip('''Requires an update of the env running those tests''' ) @require_torch_multi_gpu @require_fairscale def __A ( self : Dict ) -> Tuple: self.run_seqaseq_quick( distributed=SCREAMING_SNAKE_CASE__ , extra_args_str='''--sharded_ddp zero_dp_2 --fp16''' , predict_with_generate=SCREAMING_SNAKE_CASE__ ) @require_apex @require_torch_gpu def __A ( self : Union[str, Any] ) -> List[str]: # XXX: apex breaks the trainer if it's run twice e.g. run_seq2seq.main() from the same # program and it breaks other tests that run from the same pytest worker, therefore until this is # sorted out it must be run only in an external program, that is distributed=True in this # test and only under one or more gpus - if we want cpu will need to make a special test # # specifically to the problem traced it to self.optimizer.step() - if it's run 2nd time via # 2nd main() call it botches the future eval. # self.run_seqaseq_quick(distributed=SCREAMING_SNAKE_CASE__ , extra_args_str='''--fp16 --fp16_backend=apex''' ) # test 2nd time - was getting eval_loss': nan' # to reproduce the problem set distributed=False self.run_seqaseq_quick(distributed=SCREAMING_SNAKE_CASE__ , extra_args_str='''--fp16 --fp16_backend=apex''' ) @parameterized.expand(['''base''', '''low''', '''high''', '''mixed'''] ) @require_torch_multi_gpu def __A ( self : Any , SCREAMING_SNAKE_CASE__ : List[str] ) -> Optional[Any]: # as each sub-test is slow-ish split into multiple sub-tests to avoid CI timeout __lowerCamelCase = { # test with the default log_level - should be info and thus log info once '''base''': {'''extra_args_str''': '''''', '''n_matches''': 1}, # test with low log_level and log_level_replica - should be noisy on all processes # now the info string should appear twice on 2 processes '''low''': {'''extra_args_str''': '''--log_level debug --log_level_replica debug''', '''n_matches''': 2}, # test with high log_level and low log_level_replica # now the info string should appear once only on the replica '''high''': {'''extra_args_str''': '''--log_level error --log_level_replica debug''', '''n_matches''': 1}, # test with high log_level and log_level_replica - should be quiet on all processes '''mixed''': {'''extra_args_str''': '''--log_level error --log_level_replica error''', '''n_matches''': 0}, } __lowerCamelCase = experiments[experiment_id] __lowerCamelCase = {'''distributed''': True, '''predict_with_generate''': False, '''do_eval''': False, '''do_predict''': False} __lowerCamelCase = '''Running training''' with CaptureStderr() as cl: self.run_seqaseq_quick(**SCREAMING_SNAKE_CASE__ , extra_args_str=data['''extra_args_str'''] ) __lowerCamelCase = len(re.findall(SCREAMING_SNAKE_CASE__ , cl.err ) ) self.assertEqual(SCREAMING_SNAKE_CASE__ , data['''n_matches'''] ) @slow def __A ( self : Any ) -> Optional[Any]: __lowerCamelCase = self.run_trainer( eval_steps=2 , max_len=1_28 , model_name=SCREAMING_SNAKE_CASE__ , learning_rate=3e-4 , num_train_epochs=10 , distributed=SCREAMING_SNAKE_CASE__ , ) # Check metrics __lowerCamelCase = TrainerState.load_from_json(os.path.join(SCREAMING_SNAKE_CASE__ , '''trainer_state.json''' ) ).log_history __lowerCamelCase = [log for log in logs if '''eval_loss''' in log.keys()] __lowerCamelCase = eval_metrics[0] __lowerCamelCase = eval_metrics[-1] assert first_step_stats["eval_loss"] > last_step_stats["eval_loss"], "model learned nothing" assert isinstance(last_step_stats['''eval_bleu'''] , SCREAMING_SNAKE_CASE__ ) # test if do_predict saves generations and metrics __lowerCamelCase = os.listdir(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = {os.path.basename(SCREAMING_SNAKE_CASE__ ) for p in contents} assert "generated_predictions.txt" in contents assert "predict_results.json" in contents @slow @require_bitsandbytes def __A ( self : Optional[int] ) -> str: from transformers.training_args import OptimizerNames def train_and_return_metrics(SCREAMING_SNAKE_CASE__ : str ) -> Tuple[int, float]: __lowerCamelCase = '''--skip_memory_metrics 0''' __lowerCamelCase = self.run_trainer( max_len=1_28 , model_name=SCREAMING_SNAKE_CASE__ , learning_rate=3e-4 , num_train_epochs=1 , optim=SCREAMING_SNAKE_CASE__ , distributed=SCREAMING_SNAKE_CASE__ , extra_args_str=SCREAMING_SNAKE_CASE__ , do_eval=SCREAMING_SNAKE_CASE__ , do_predict=SCREAMING_SNAKE_CASE__ , n_gpus_to_use=1 , ) # Check metrics __lowerCamelCase = TrainerState.load_from_json(Path(SCREAMING_SNAKE_CASE__ , '''trainer_state.json''' ) ).log_history __lowerCamelCase = int(logs[0]['''train_mem_gpu_peaked_delta'''] / 2**20 ) __lowerCamelCase = int(logs[0]['''train_mem_gpu_alloc_delta'''] / 2**20 ) __lowerCamelCase = logs[0]['''train_loss'''] return gpu_peak_mem_mb, gpu_alloc_mem_mb, loss __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = train_and_return_metrics(OptimizerNames.ADAMW_TORCH.value ) __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = train_and_return_metrics(OptimizerNames.ADAMW_BNB.value ) __lowerCamelCase = gpu_alloc_mem_orig - gpu_alloc_mem_bnb __lowerCamelCase = gpu_peak_mem_orig + gpu_alloc_mem_orig __lowerCamelCase = gpu_peak_mem_bnb + gpu_alloc_mem_bnb __lowerCamelCase = gpu_total_mem_orig - gpu_total_mem_bnb # sshleifer/student_marian_en_ro_6_1 has 54M parameter, 29M of which is `nn.Embedding` which # doesn't get quantized and remains in fp32. Therefore we only have 25M parameters quantized # in 2 bytes and the diff in optim memory usage is derived as so: # # - normal 25*8=~200MB (8 bytes per param) # - bnb 25*2= ~50MB (2 bytes per param) # # Thus we should expect ~150MB total memory saved. # # Peak memory should be the same - the total should be different by about that same margin # # After leaving a small margin to accommodate for differences between gpus let's check # that we have at least 120MB in savings __lowerCamelCase = 1_20 # uncomment the following if this test starts failing - requires py38 for a new print feature # gpu_peak_mem_diff = gpu_peak_mem_orig - gpu_peak_mem_bnb # print(f"{gpu_alloc_mem_orig=}MB {gpu_peak_mem_orig=}MB {gpu_alloc_mem_orig+gpu_peak_mem_orig=}MB") # print(f" {gpu_alloc_mem_bnb=}MB {gpu_peak_mem_bnb=}MB {gpu_alloc_mem_bnb+gpu_peak_mem_bnb=}MB") # print(f"{gpu_alloc_mem_diff=}MB") # print(f"{gpu_peak_mem_diff=}MB") # print(f"{gpu_total_mem_orig=}MB, {gpu_total_mem_bnb=}MB") # print(f"{gpu_total_mem_diff=}MB, {gpu_total_mem_diff=}MB") self.assertGreater( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , '''should use ~150MB less alloc gpu memory with BNB, compared to without it for this model but got''' f''' a difference of {gpu_alloc_mem_diff}MB, with gpu_alloc_mem_orig={gpu_alloc_mem_orig}MB and''' f''' gpu_alloc_mem_bnb={gpu_alloc_mem_bnb}MB''' , ) self.assertGreater( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , '''should use ~150MB less total gpu memory with BNB, compared to without it for this model but got''' f''' a difference of {gpu_total_mem_diff}MB, with gpu_total_mem_orig={gpu_total_mem_orig}MB and''' f''' gpu_total_mem_bnb={gpu_total_mem_bnb}MB''' , ) self.assertEqual( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , f'''loss should be the same, but got loss_orig={loss_orig}, loss_bnb={loss_bnb}''' ) def __A ( self : Dict , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : float = 3e-3 , SCREAMING_SNAKE_CASE__ : str = "adafactor" , SCREAMING_SNAKE_CASE__ : bool = False , SCREAMING_SNAKE_CASE__ : str = None , SCREAMING_SNAKE_CASE__ : int = 0 , SCREAMING_SNAKE_CASE__ : bool = True , SCREAMING_SNAKE_CASE__ : bool = True , SCREAMING_SNAKE_CASE__ : bool = True , SCREAMING_SNAKE_CASE__ : bool = True , SCREAMING_SNAKE_CASE__ : int = None , ) -> List[Any]: __lowerCamelCase = self.test_file_dir / '''../fixtures/tests_samples/wmt_en_ro''' __lowerCamelCase = self.get_auto_remove_tmp_dir() __lowerCamelCase = f''' --model_name_or_path {model_name} --train_file {data_dir}/train.json --validation_file {data_dir}/val.json --test_file {data_dir}/test.json --output_dir {output_dir} --overwrite_output_dir --max_train_samples 8 --max_source_length {max_len} --max_target_length {max_len} --do_train --num_train_epochs {str(SCREAMING_SNAKE_CASE__ )} --per_device_train_batch_size 4 --learning_rate {learning_rate} --warmup_steps 8 --logging_steps 0 --logging_strategy no --save_steps {str(SCREAMING_SNAKE_CASE__ )} --group_by_length --label_smoothing_factor 0.1 --target_lang ro_RO --source_lang en_XX '''.split() __lowerCamelCase = f''' --do_eval --per_device_eval_batch_size 4 --max_eval_samples 8 --val_max_target_length {max_len} --evaluation_strategy steps --eval_steps {str(SCREAMING_SNAKE_CASE__ )} '''.split() __lowerCamelCase = ''' --do_predict '''.split() __lowerCamelCase = [] if do_train: args += args_train if do_eval: args += args_eval if do_predict: args += args_predict if predict_with_generate: args += "--predict_with_generate".split() if do_train: if optim == "adafactor": args += "--adafactor".split() else: args += f'''--optim {optim}'''.split() if extra_args_str is not None: args += extra_args_str.split() if distributed: if n_gpus_to_use is None: __lowerCamelCase = get_gpu_count() __lowerCamelCase = get_torch_dist_unique_port() __lowerCamelCase = f''' -m torch.distributed.run --nproc_per_node={n_gpus_to_use} --master_port={master_port} {self.examples_dir_str}/pytorch/translation/run_translation.py '''.split() __lowerCamelCase = [sys.executable] + distributed_args + args # keep for quick debug # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die execute_subprocess_async(SCREAMING_SNAKE_CASE__ , env=self.get_env() ) else: __lowerCamelCase = ['''run_translation.py'''] + args with patch.object(SCREAMING_SNAKE_CASE__ , '''argv''' , SCREAMING_SNAKE_CASE__ ): main() return output_dir
270
0
"""simple docstring""" # HF Trainer benchmarking tool # # This tool can be used to run and compare multiple dimensions of the HF Trainers args. # # It then prints a report once in github format with all the information that needs to be shared # with others and second time in a console-friendly format, so it's easier to use for tuning things up. # # The main idea is: # # ./trainer-benchmark.py --base-cmd '<cmd args that don't change>' \ # --variations '--tf32 0|--tf32 1' '--fp16 0|--fp16 1|--bf16 1' \ # --target-metric-key train_samples_per_second # # The variations can be any command line argument that you want to compare and not just dtype as in # the example. # # --variations allows you to compare variations in multiple dimensions. # # as the first dimention has 2 options and the second 3 in our example, this will run the trainer 6 # times adding one of: # # 1. --tf32 0 --fp16 0 # 2. --tf32 0 --fp16 1 # 3. --tf32 0 --bf16 1 # 4. --tf32 1 --fp16 0 # 5. --tf32 1 --fp16 1 # 6. --tf32 1 --bf16 1 # # and print the results. This is just a cartesian product - and more than 2 dimensions can be used. # # If you want to rely on defaults, this: # --variations '--tf32 0|--tf32 1' '--fp16 0|--fp16 1|--bf16 1' # is identical to this: # --variations '--tf32 0|--tf32 1' '|--fp16|--bf16' # # the leading empty variation in the 2nd dimension is a valid variation. # # So here we get the following 6 variations: # # 1. --tf32 0 # 2. --tf32 0 --fp16 # 3. --tf32 0 --bf16 # 4. --tf32 1 # 5. --tf32 1 --fp16 # 6. --tf32 1 --bf16 # # In this particular case we don't know what the default tf32 setting is as it's normally # pytorch-version dependent). That's why it's best to do an explicit setting of each variation: # `--tf32 0|--tf32 1` # # Here is a full example of a train: # # CUDA_VISIBLE_DEVICES=0 python ./scripts/benchmark/trainer-benchmark.py \ # --base-cmd \ # ' examples/pytorch/translation/run_translation.py --model_name_or_path t5-small \ # --output_dir output_dir --do_train --label_smoothing 0.1 --logging_strategy no \ # --save_strategy no --per_device_train_batch_size 32 --max_source_length 512 \ # --max_target_length 512 --num_train_epochs 1 --overwrite_output_dir \ # --source_lang en --target_lang ro --dataset_name wmt16 --dataset_config "ro-en" \ # --source_prefix "translate English to Romanian: " --warmup_steps 50 \ # --max_train_samples 20000 --dataloader_num_workers 2 ' \ # --target-metric-key train_samples_per_second --repeat-times 1 --variations \ # '|--fp16|--bf16' '--tf32 0|--tf32 1' --report-metric-keys train_loss \ # --repeat-times 1 --base-variation '--tf32 0' # # and here is a possible output: # # # | Variation | Train | Diff | Train | # | | samples | % | loss | # | | per | | | # | | second | | | # |:----------------|----------:|-------:|--------:| # | --tf32 0 | 285.11 | 0 | 2.51 | # | --tf32 1 | 342.09 | 20 | 2.51 | # | --fp16 --tf32 0 | 423.49 | 49 | 2.51 | # | --fp16 --tf32 1 | 423.13 | 48 | 2.51 | # | --bf16 --tf32 0 | 416.80 | 46 | 2.52 | # | --bf16 --tf32 1 | 415.87 | 46 | 2.52 | # # # So you can quickly compare the different outcomes. # # Typically running each experiment once is enough, but if the environment is unstable you can # re-run each multiple times, e.g., 3 using --repeat-times 3 and it will report the averaged results. # # By default it'll use the lowest result as the base line to use as 100% and then compare the rest to # it as can be seen from the table above, but you can also specify which combination is the one to use as # the baseline, e.g., to change to another entry use: --base-variation '--tf32 1 --fp16 0' # # --target-metric-key is there to tell the program which metrics to compare - the different metric keys are # inside output_dir/all_results.json. e.g., to measure eval performance instead of train use: # --target-metric-key eval_samples_per_second # but of course you will need to adjust the --base-cmd value in the example to perform evaluation as # well (as currently it doesn't) # import argparse import datetime import io import itertools import json import math import os import platform import re import shlex import subprocess import sys from pathlib import Path from statistics import fmean import pandas as pd import torch from tqdm import tqdm import transformers A = float('''nan''') class __lowercase : '''simple docstring''' def __init__( self , _UpperCAmelCase ): __a : Dict = sys.stdout __a : List[Any] = open(_UpperCAmelCase , '''a''' ) def __getattr__( self , _UpperCAmelCase ): return getattr(self.stdout , _UpperCAmelCase ) def _lowerCamelCase ( self , _UpperCAmelCase ): self.stdout.write(_UpperCAmelCase ) # strip tqdm codes self.file.write(re.sub(R'''^.*\r''' , '''''' , _UpperCAmelCase , 0 , re.M ) ) def __A ( a_ :Dict=80 , a_ :List[str]=False) -> Union[str, Any]: __a : int = [] # deal with critical env vars __a : Tuple = ['''CUDA_VISIBLE_DEVICES'''] for key in env_keys: __a : Union[str, Any] = os.environ.get(a_ , a_) if val is not None: cmd.append(F"""{key}={val}""") # python executable (not always needed if the script is executable) __a : Optional[int] = sys.executable if full_python_path else sys.executable.split('''/''')[-1] cmd.append(a_) # now the normal args cmd += list(map(shlex.quote , sys.argv)) # split up into up to MAX_WIDTH lines with shell multi-line escapes __a : List[str] = [] __a : int = '''''' while len(a_) > 0: current_line += F"""{cmd.pop(0)} """ if len(a_) == 0 or len(a_) + len(cmd[0]) + 1 > max_width - 1: lines.append(a_) __a : Optional[Any] = '''''' return "\\\n".join(a_) def __A ( a_ :Optional[int] , a_ :Optional[int]) -> Optional[int]: # unwrap multi-line input __a : Optional[Any] = re.sub(R'''[\\\n]+''' , ''' ''' , args.base_cmd) # remove --output_dir if any and set our own __a : Any = re.sub('''--output_dir\s+[^\s]+''' , '''''' , args.base_cmd) args.base_cmd += F""" --output_dir {output_dir}""" # ensure we have --overwrite_output_dir __a : Optional[Any] = re.sub('''--overwrite_output_dir\s+''' , '''''' , args.base_cmd) args.base_cmd += " --overwrite_output_dir" return [sys.executable] + shlex.split(args.base_cmd) def __A ( a_ :Union[str, Any] , a_ :List[Any] , a_ :int , a_ :List[str] , a_ :Tuple , a_ :int , a_ :List[str]) -> str: # Enable to debug everything but the run itself, to do it fast and see the progress. # This is useful for debugging the output formatting quickly - we can remove it later once # everybody is happy with the output if 0: import random from time import sleep sleep(0) return dict( {k: random.uniform(0 , 1_00) for k in metric_keys} , **{target_metric_key: random.choice([nan, 1_0.3_1, 1_0_0.2, 5_5.6_6_6_6, 2_2_2.2_2_2_2_2_2_2_2])} , ) __a : Tuple = subprocess.run(a_ , capture_output=a_ , text=a_) if verbose: print('''STDOUT''' , result.stdout) print('''STDERR''' , result.stderr) # save the streams __a : Union[str, Any] = variation.replace(''' ''' , '''-''') with open(Path(a_) / F"""log.{prefix}.stdout.txt""" , '''w''') as f: f.write(result.stdout) with open(Path(a_) / F"""log.{prefix}.stderr.txt""" , '''w''') as f: f.write(result.stderr) if result.returncode != 0: if verbose: print('''failed''') return {target_metric_key: nan} with io.open(F"""{output_dir}/all_results.json""" , '''r''' , encoding='''utf-8''') as f: __a : int = json.load(a_) # filter out just the keys we want return {k: v for k, v in metrics.items() if k in metric_keys} def __A ( a_ :str , a_ :Dict , a_ :Dict , a_ :Optional[Any] , a_ :Optional[Any] , a_ :Optional[int] , a_ :Any , a_ :str , a_ :Optional[int] , a_ :List[Any] , ) -> Optional[int]: __a : Optional[int] = [] __a : List[str] = [] __a : Union[str, Any] = F"""{id}: {variation:<{longest_variation_len}}""" __a : Any = F"""{preamble}: """ __a : str = set(report_metric_keys + [target_metric_key]) for i in tqdm(range(a_) , desc=a_ , leave=a_): __a : Optional[Any] = process_run_single( a_ , a_ , a_ , a_ , a_ , a_ , a_) __a : Dict = single_run_metrics[target_metric_key] if not math.isnan(a_): metrics.append(a_) results.append(a_) outcome += "✓" else: outcome += "✘" __a : int = F"""\33[2K\r{outcome}""" if len(a_) > 0: __a : Optional[int] = {k: fmean([x[k] for x in metrics]) for k in metrics[0].keys()} __a : Any = round(mean_metrics[target_metric_key] , 2) __a : Optional[int] = F"""{outcome} {mean_target}""" if len(a_) > 1: results_str += F""" {tuple(round(a_ , 2) for x in results)}""" print(a_) __a : Optional[Any] = variation return mean_metrics else: print(a_) return {variation_key: variation, target_metric_key: nan} def __A ( ) -> Optional[int]: __a : Union[str, Any] = torch.cuda.get_device_properties(torch.device('''cuda''')) return F""" Datetime : {datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S")} Software: transformers: {transformers.__version__} torch : {torch.__version__} cuda : {torch.version.cuda} python : {platform.python_version()} Hardware: {torch.cuda.device_count()} GPUs : {properties.name}, {properties.total_memory/2**30:0.2f}GB """ def __A ( a_ :Optional[Any] , a_ :int , a_ :Dict , a_ :int , a_ :Union[str, Any]) -> Union[str, Any]: __a : str = pd.DataFrame(a_) __a : Optional[Any] = '''variation''' __a : List[str] = '''diff_%''' __a : List[str] = nan if base_variation is not None and len(df[df[variation_key] == base_variation]): # this may still return nan __a : Optional[Any] = df.loc[df[variation_key] == base_variation][target_metric_key].item() if math.isnan(a_): # as a fallback, use the minimal value as the sentinel __a : Dict = df.loc[df[target_metric_key] != nan][target_metric_key].min() # create diff column if possible if not math.isnan(a_): __a : List[str] = df.apply( lambda a_: round(1_00 * (r[target_metric_key] - sentinel_value) / sentinel_value) if not math.isnan(r[target_metric_key]) else 0 , axis='''columns''' , ) # re-order columns __a : str = [variation_key, target_metric_key, diff_key, *report_metric_keys] __a : Dict = df.reindex(a_ , axis='''columns''') # reorder cols # capitalize __a : List[Any] = df.rename(str.capitalize , axis='''columns''') # make the cols as narrow as possible __a : List[str] = df.rename(lambda a_: c.replace('''_''' , '''<br>''') , axis='''columns''') __a : Dict = df.rename(lambda a_: c.replace('''_''' , '''\n''') , axis='''columns''') __a : Tuple = ['''''', '''Copy between the cut-here-lines and paste as is to github or a forum'''] report += ["----------8<-----------------8<--------"] report += ["*** Results:", df_github.to_markdown(index=a_ , floatfmt='''.2f''')] report += ["```"] report += ["*** Setup:", get_versions()] report += ["*** The benchmark command line was:", get_original_command()] report += ["```"] report += ["----------8<-----------------8<--------"] report += ["*** Results (console):", df_console.to_markdown(index=a_ , floatfmt='''.2f''')] print('''\n\n'''.join(a_)) def __A ( ) -> Union[str, Any]: __a : int = argparse.ArgumentParser() parser.add_argument( '''--base-cmd''' , default=a_ , type=a_ , required=a_ , help='''Base cmd''' , ) parser.add_argument( '''--variations''' , default=a_ , type=a_ , nargs='''+''' , required=a_ , help='''Multi-dimensional variations, example: \'|--fp16|--bf16\' \'|--tf32\'''' , ) parser.add_argument( '''--base-variation''' , default=a_ , type=a_ , help='''Baseline variation to compare to. if None the minimal target value will be used to compare against''' , ) parser.add_argument( '''--target-metric-key''' , default=a_ , type=a_ , required=a_ , help='''Target metric key in output_dir/all_results.json, e.g., train_samples_per_second''' , ) parser.add_argument( '''--report-metric-keys''' , default='''''' , type=a_ , help='''Report metric keys - other metric keys from output_dir/all_results.json to report, e.g., train_loss. Use a single argument e.g., \'train_loss train_samples''' , ) parser.add_argument( '''--repeat-times''' , default=1 , type=a_ , help='''How many times to re-run each variation - an average will be reported''' , ) parser.add_argument( '''--output_dir''' , default='''output_benchmark''' , type=a_ , help='''The output directory where all the benchmark reports will go to and additionally this directory will be used to override --output_dir in the script that is being benchmarked''' , ) parser.add_argument( '''--verbose''' , default=a_ , action='''store_true''' , help='''Whether to show the outputs of each run or just the benchmark progress''' , ) __a : Tuple = parser.parse_args() __a : Dict = args.output_dir Path(a_).mkdir(exist_ok=a_) __a : str = get_base_command(a_ , a_) # split each dimension into its --foo variations __a : List[Any] = [list(map(str.strip , re.split(R'''\|''' , a_))) for x in args.variations] # build a cartesian product of dimensions and convert those back into cmd-line arg strings, # while stripping white space for inputs that were empty __a : Optional[Any] = list(map(str.strip , map(''' '''.join , itertools.product(*a_)))) __a : Optional[int] = max(len(a_) for x in variations) # split wanted keys __a : Optional[Any] = args.report_metric_keys.split() # capture prints into a log file for convenience __a : str = F"""benchmark-report-{datetime.datetime.now().strftime("%Y-%m-%d-%H-%M-%S")}.txt""" print(F"""\nNote: each run's output is also logged under {output_dir}/log.*.std*.txt""") print(F"""and this script's output is also piped into {report_fn}""") __a : Any = Tee(a_) print(F"""\n*** Running {len(a_)} benchmarks:""") print(F"""Base command: {" ".join(a_)}""") __a : int = '''variation''' __a : Optional[Any] = [] for id, variation in enumerate(tqdm(a_ , desc='''Total completion: ''' , leave=a_)): __a : Tuple = base_cmd + variation.split() results.append( process_run( id + 1 , a_ , a_ , a_ , a_ , args.target_metric_key , a_ , args.repeat_times , a_ , args.verbose , )) process_results(a_ , args.target_metric_key , a_ , args.base_variation , a_) if __name__ == "__main__": main()
188
"""simple docstring""" from __future__ import annotations import sys from collections import deque from typing import Generic, TypeVar A = TypeVar('''T''') class __lowercase ( Generic[T] ): '''simple docstring''' __lowerCAmelCase = 42 # Cache store of keys __lowerCAmelCase = 42 # References of the keys in cache __lowerCAmelCase = 10 # Maximum capacity of cache def __init__( self , _UpperCAmelCase ): __a : Optional[int] = deque() __a : Dict = set() if not n: __a : List[Any] = sys.maxsize elif n < 0: raise ValueError('''n should be an integer greater than 0.''' ) else: __a : str = n def _lowerCamelCase ( self , _UpperCAmelCase ): if x not in self.key_reference: if len(self.dq_store ) == LRUCache._MAX_CAPACITY: __a : int = self.dq_store.pop() self.key_reference.remove(_UpperCAmelCase ) else: self.dq_store.remove(_UpperCAmelCase ) self.dq_store.appendleft(_UpperCAmelCase ) self.key_reference.add(_UpperCAmelCase ) def _lowerCamelCase ( self ): for k in self.dq_store: print(_UpperCAmelCase ) def __repr__( self ): return f"""LRUCache({self._MAX_CAPACITY}) => {list(self.dq_store )}""" if __name__ == "__main__": import doctest doctest.testmod() A = LRUCache(4) lru_cache.refer('''A''') lru_cache.refer(2) lru_cache.refer(3) lru_cache.refer('''A''') lru_cache.refer(4) lru_cache.refer(5) lru_cache.display() print(lru_cache) assert str(lru_cache) == "LRUCache(4) => [5, 4, 'A', 3]"
188
1
"""simple docstring""" import gc import unittest from transformers import CTRLConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, CTRLForSequenceClassification, CTRLLMHeadModel, CTRLModel, ) class a : def __init__( self : Dict , __lowerCAmelCase : int , __lowerCAmelCase : Any=14 , __lowerCAmelCase : int=7 , __lowerCAmelCase : Tuple=True , __lowerCAmelCase : Tuple=True , __lowerCAmelCase : Optional[Any]=True , __lowerCAmelCase : Dict=True , __lowerCAmelCase : Union[str, Any]=True , __lowerCAmelCase : Dict=99 , __lowerCAmelCase : Any=32 , __lowerCAmelCase : str=5 , __lowerCAmelCase : Optional[int]=4 , __lowerCAmelCase : str=37 , __lowerCAmelCase : Union[str, Any]="gelu" , __lowerCAmelCase : List[str]=0.1 , __lowerCAmelCase : List[Any]=0.1 , __lowerCAmelCase : List[str]=512 , __lowerCAmelCase : int=16 , __lowerCAmelCase : Optional[int]=2 , __lowerCAmelCase : str=0.02 , __lowerCAmelCase : Any=3 , __lowerCAmelCase : List[Any]=4 , __lowerCAmelCase : Optional[Any]=None , ): _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = seq_length _UpperCAmelCase = is_training _UpperCAmelCase = use_token_type_ids _UpperCAmelCase = use_input_mask _UpperCAmelCase = use_labels _UpperCAmelCase = use_mc_token_ids _UpperCAmelCase = vocab_size _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_act _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = type_vocab_size _UpperCAmelCase = type_sequence_label_size _UpperCAmelCase = initializer_range _UpperCAmelCase = num_labels _UpperCAmelCase = num_choices _UpperCAmelCase = scope _UpperCAmelCase = self.vocab_size - 1 def lowerCAmelCase_ ( self : Tuple ): _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCAmelCase = None if self.use_input_mask: _UpperCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) _UpperCAmelCase = None if self.use_token_type_ids: _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _UpperCAmelCase = None if self.use_mc_token_ids: _UpperCAmelCase = ids_tensor([self.batch_size, self.num_choices] , self.seq_length ) _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = None if self.use_labels: _UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _UpperCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) _UpperCAmelCase = self.get_config() _UpperCAmelCase = ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, input_mask, head_mask, token_type_ids, mc_token_ids, sequence_labels, token_labels, choice_labels, ) def lowerCAmelCase_ ( self : str ): return CTRLConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , ) def lowerCAmelCase_ ( self : Optional[int] , __lowerCAmelCase : int , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : str , __lowerCAmelCase : Optional[Any] , *__lowerCAmelCase : Union[str, Any] ): _UpperCAmelCase = CTRLModel(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() model(__lowerCAmelCase , token_type_ids=__lowerCAmelCase , head_mask=__lowerCAmelCase ) model(__lowerCAmelCase , token_type_ids=__lowerCAmelCase ) _UpperCAmelCase = model(__lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(len(result.past_key_values ) , config.n_layer ) def lowerCAmelCase_ ( self : Any , __lowerCAmelCase : List[Any] , __lowerCAmelCase : int , __lowerCAmelCase : List[str] , __lowerCAmelCase : Dict , __lowerCAmelCase : Dict , *__lowerCAmelCase : List[str] ): _UpperCAmelCase = CTRLLMHeadModel(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() _UpperCAmelCase = model(__lowerCAmelCase , token_type_ids=__lowerCAmelCase , labels=__lowerCAmelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase_ ( self : Optional[int] ): _UpperCAmelCase = self.prepare_config_and_inputs() ( _UpperCAmelCase ) = config_and_inputs _UpperCAmelCase = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'head_mask': head_mask} return config, inputs_dict def lowerCAmelCase_ ( self : Tuple , __lowerCAmelCase : List[Any] , __lowerCAmelCase : int , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Union[str, Any] , *__lowerCAmelCase : List[Any] ): _UpperCAmelCase = self.num_labels _UpperCAmelCase = CTRLForSequenceClassification(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() _UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCAmelCase = model(__lowerCAmelCase , token_type_ids=__lowerCAmelCase , labels=__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) @require_torch class a ( __snake_case , __snake_case , __snake_case , unittest.TestCase ): _snake_case : str = (CTRLModel, CTRLLMHeadModel, CTRLForSequenceClassification) if is_torch_available() else () _snake_case : Optional[int] = (CTRLLMHeadModel,) if is_torch_available() else () _snake_case : List[Any] = ( { """feature-extraction""": CTRLModel, """text-classification""": CTRLForSequenceClassification, """text-generation""": CTRLLMHeadModel, """zero-shot""": CTRLForSequenceClassification, } if is_torch_available() else {} ) _snake_case : int = True _snake_case : List[Any] = False _snake_case : Optional[int] = False def lowerCAmelCase_ ( self : List[str] , __lowerCAmelCase : Tuple , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : str , __lowerCAmelCase : str ): if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `CTRLConfig` was never used in pipeline tests, either because of a missing checkpoint or because a tiny # config could not be created. return True return False def lowerCAmelCase_ ( self : List[Any] ): _UpperCAmelCase = CTRLModelTester(self ) _UpperCAmelCase = ConfigTester(self , config_class=__lowerCAmelCase , n_embd=37 ) def lowerCAmelCase_ ( self : List[Any] ): super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() torch.cuda.empty_cache() def lowerCAmelCase_ ( self : Optional[int] ): self.config_tester.run_common_tests() def lowerCAmelCase_ ( self : Optional[int] ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_ctrl_model(*__lowerCAmelCase ) def lowerCAmelCase_ ( self : Tuple ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*__lowerCAmelCase ) @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def lowerCAmelCase_ ( self : int ): pass @slow def lowerCAmelCase_ ( self : Optional[Any] ): for model_name in CTRL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase = CTRLModel.from_pretrained(__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) @unittest.skip("""The model doesn\'t support left padding""" ) # and it's not used enough to be worth fixing :) def lowerCAmelCase_ ( self : Optional[int] ): pass @require_torch class a ( unittest.TestCase ): def lowerCAmelCase_ ( self : List[Any] ): super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() torch.cuda.empty_cache() @slow def lowerCAmelCase_ ( self : Optional[Any] ): _UpperCAmelCase = CTRLLMHeadModel.from_pretrained("""ctrl""" ) model.to(__lowerCAmelCase ) _UpperCAmelCase = torch.tensor( [[1_1859, 0, 1611, 8]] , dtype=torch.long , device=__lowerCAmelCase ) # Legal the president is _UpperCAmelCase = [ 1_1859, 0, 1611, 8, 5, 150, 2_6449, 2, 19, 348, 469, 3, 2595, 48, 2_0740, 24_6533, 24_6533, 19, 30, 5, ] # Legal the president is a good guy and I don't want to lose my job. \n \n I have a _UpperCAmelCase = model.generate(__lowerCAmelCase , do_sample=__lowerCAmelCase ) self.assertListEqual(output_ids[0].tolist() , __lowerCAmelCase )
289
import warnings from ...utils import logging from .image_processing_flava import FlavaImageProcessor snake_case_ = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE__ (__snake_case ): def __init__( self , *a , **a): warnings.warn( 'The class FlavaFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use FlavaImageProcessor instead.' , a , ) super().__init__(*a , **a)
214
0
'''simple docstring''' import argparse import datetime def __magic_name__( lowerCamelCase): __lowerCAmelCase = { '''0''': '''Sunday''', '''1''': '''Monday''', '''2''': '''Tuesday''', '''3''': '''Wednesday''', '''4''': '''Thursday''', '''5''': '''Friday''', '''6''': '''Saturday''', } __lowerCAmelCase = {0: 1, 1: 2, 2: 3, 3: 4, 4: 5, 5: 6, 6: 0} # Validate if not 0 < len(lowerCamelCase) < 1_1: raise ValueError('''Must be 10 characters long''') # Get month __lowerCAmelCase = int(date_input[0] + date_input[1]) # Validate if not 0 < m < 1_3: raise ValueError('''Month must be between 1 - 12''') __lowerCAmelCase = date_input[2] # Validate if sep_a not in ["-", "/"]: raise ValueError('''Date separator must be \'-\' or \'/\'''') # Get day __lowerCAmelCase = int(date_input[3] + date_input[4]) # Validate if not 0 < d < 3_2: raise ValueError('''Date must be between 1 - 31''') # Get second separator __lowerCAmelCase = date_input[5] # Validate if sep_a not in ["-", "/"]: raise ValueError('''Date separator must be \'-\' or \'/\'''') # Get year __lowerCAmelCase = int(date_input[6] + date_input[7] + date_input[8] + date_input[9]) # Arbitrary year range if not 4_5 < y < 8_5_0_0: raise ValueError( '''Year out of range. There has to be some sort of limit...right?''') # Get datetime obj for validation __lowerCAmelCase = datetime.date(int(lowerCamelCase), int(lowerCamelCase), int(lowerCamelCase)) # Start math if m <= 2: __lowerCAmelCase = y - 1 __lowerCAmelCase = m + 1_2 # maths var __lowerCAmelCase = int(str(lowerCamelCase)[:2]) __lowerCAmelCase = int(str(lowerCamelCase)[2:]) __lowerCAmelCase = int(2.6 * m - 5.39) __lowerCAmelCase = int(c / 4) __lowerCAmelCase = int(k / 4) __lowerCAmelCase = int(d + k) __lowerCAmelCase = int(t + u + v + x) __lowerCAmelCase = int(z - (2 * c)) __lowerCAmelCase = round(w % 7) # End math # Validate math if f != convert_datetime_days[dt_ck.weekday()]: raise AssertionError('''The date was evaluated incorrectly. Contact developer.''') # Response __lowerCAmelCase = F"""Your date {date_input}, is a {days[str(lowerCamelCase)]}!""" return response if __name__ == "__main__": import doctest doctest.testmod() _UpperCAmelCase : List[str] = argparse.ArgumentParser( description=( """Find out what day of the week nearly any date is or was. Enter """ """date as a string in the mm-dd-yyyy or mm/dd/yyyy format""" ) ) parser.add_argument( """date_input""", type=str, help="""Date as a string (mm-dd-yyyy or mm/dd/yyyy)""" ) _UpperCAmelCase : Dict = parser.parse_args() zeller(args.date_input)
9
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPImageProcessor, CLIPProcessor @require_vision class a__ ( unittest.TestCase ): """simple docstring""" def _snake_case (self ): __lowerCAmelCase = tempfile.mkdtemp() # fmt: off __lowerCAmelCase = ['''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''lo''', '''l</w>''', '''w</w>''', '''r</w>''', '''t</w>''', '''low</w>''', '''er</w>''', '''lowest</w>''', '''newer</w>''', '''wider''', '''<unk>''', '''<|startoftext|>''', '''<|endoftext|>'''] # fmt: on __lowerCAmelCase = dict(zip(__lowercase , range(len(__lowercase ) ) ) ) __lowerCAmelCase = ['''#version: 0.2''', '''l o''', '''lo w</w>''', '''e r</w>''', ''''''] __lowerCAmelCase = {'''unk_token''': '''<unk>'''} __lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) __lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__lowercase ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(__lowercase ) ) __lowerCAmelCase = { '''do_resize''': True, '''size''': 20, '''do_center_crop''': True, '''crop_size''': 18, '''do_normalize''': True, '''image_mean''': [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3], '''image_std''': [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1], } __lowerCAmelCase = os.path.join(self.tmpdirname , __lowercase ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(__lowercase , __lowercase ) def _snake_case (self , **__lowercase ): return CLIPTokenizer.from_pretrained(self.tmpdirname , **__lowercase ) def _snake_case (self , **__lowercase ): return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **__lowercase ) def _snake_case (self , **__lowercase ): return CLIPImageProcessor.from_pretrained(self.tmpdirname , **__lowercase ) def _snake_case (self ): shutil.rmtree(self.tmpdirname ) def _snake_case (self ): __lowerCAmelCase = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] __lowerCAmelCase = [Image.fromarray(np.moveaxis(__lowercase , 0 , -1 ) ) for x in image_inputs] return image_inputs def _snake_case (self ): __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = self.get_rust_tokenizer() __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = CLIPProcessor(tokenizer=__lowercase , image_processor=__lowercase ) processor_slow.save_pretrained(self.tmpdirname ) __lowerCAmelCase = CLIPProcessor.from_pretrained(self.tmpdirname , use_fast=__lowercase ) __lowerCAmelCase = CLIPProcessor(tokenizer=__lowercase , image_processor=__lowercase ) processor_fast.save_pretrained(self.tmpdirname ) __lowerCAmelCase = CLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , __lowercase ) self.assertIsInstance(processor_fast.tokenizer , __lowercase ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , __lowercase ) self.assertIsInstance(processor_fast.image_processor , __lowercase ) def _snake_case (self ): __lowerCAmelCase = CLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __lowerCAmelCase = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) __lowerCAmelCase = self.get_image_processor(do_normalize=__lowercase , padding_value=1.0 ) __lowerCAmelCase = CLIPProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=__lowercase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , __lowercase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __lowercase ) def _snake_case (self ): __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = CLIPProcessor(tokenizer=__lowercase , image_processor=__lowercase ) __lowerCAmelCase = self.prepare_image_inputs() __lowerCAmelCase = image_processor(__lowercase , return_tensors='''np''' ) __lowerCAmelCase = processor(images=__lowercase , return_tensors='''np''' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 ) def _snake_case (self ): __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = CLIPProcessor(tokenizer=__lowercase , image_processor=__lowercase ) __lowerCAmelCase = '''lower newer''' __lowerCAmelCase = processor(text=__lowercase ) __lowerCAmelCase = tokenizer(__lowercase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def _snake_case (self ): __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = CLIPProcessor(tokenizer=__lowercase , image_processor=__lowercase ) __lowerCAmelCase = '''lower newer''' __lowerCAmelCase = self.prepare_image_inputs() __lowerCAmelCase = processor(text=__lowercase , images=__lowercase ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(__lowercase ): processor() def _snake_case (self ): __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = CLIPProcessor(tokenizer=__lowercase , image_processor=__lowercase ) __lowerCAmelCase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __lowerCAmelCase = processor.batch_decode(__lowercase ) __lowerCAmelCase = tokenizer.batch_decode(__lowercase ) self.assertListEqual(__lowercase , __lowercase ) def _snake_case (self ): __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = CLIPProcessor(tokenizer=__lowercase , image_processor=__lowercase ) __lowerCAmelCase = '''lower newer''' __lowerCAmelCase = self.prepare_image_inputs() __lowerCAmelCase = processor(text=__lowercase , images=__lowercase ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
9
1
from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=__lowercase ) class UpperCamelCase__ ( __lowercase ): # `task` is not a ClassVar since we want it to be part of the `asdict` output for JSON serialization _SCREAMING_SNAKE_CASE : str = field(default="summarization" ,metadata={"include_in_asdict_even_if_is_default": True} ) _SCREAMING_SNAKE_CASE : ClassVar[Features] = Features({"text": Value("string" )} ) _SCREAMING_SNAKE_CASE : ClassVar[Features] = Features({"summary": Value("string" )} ) _SCREAMING_SNAKE_CASE : str = "text" _SCREAMING_SNAKE_CASE : str = "summary" @property def lowerCAmelCase (self : Tuple ): return {self.text_column: "text", self.summary_column: "summary"}
216
import argparse import shutil import time from json import JSONDecodeError from logging import getLogger from pathlib import Path from typing import Dict, List import torch from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from utils import ( SeqaSeqDataset, calculate_bleu, calculate_rouge, chunks, lmap, load_json, parse_numeric_n_bool_cl_kwargs, save_json, use_task_specific_params, write_txt_file, ) lowercase__ =getLogger(__name__) def __UpperCamelCase ( lowerCAmelCase__ : Tuple , lowerCAmelCase__ : str , lowerCAmelCase__ : str , lowerCAmelCase__ : int = 8 , lowerCAmelCase__ : int = 1_0_2_4 , lowerCAmelCase__ : Union[str, Any]="val" , lowerCAmelCase__ : int=None , lowerCAmelCase__ : Any=False , lowerCAmelCase__ : Union[str, Any]="summarization" , lowerCAmelCase__ : Tuple=None , lowerCAmelCase__ : Optional[int]=1 , lowerCAmelCase__ : Dict = None , lowerCAmelCase__ : int="" , **lowerCAmelCase__ : int , ): __a : List[Any] = str(lowerCAmelCase__ ) assert local_rank is not None torch.distributed.init_process_group(backend='''nccl''' , rank=lowerCAmelCase__ ) __a : Tuple = Path(lowerCAmelCase__ ) __a : Dict = save_dir.joinpath(f"rank_{local_rank}_output.json" ) torch.cuda.set_device(lowerCAmelCase__ ) __a : Dict = AutoModelForSeqaSeqLM.from_pretrained(lowerCAmelCase__ ).cuda() if fpaa: __a : str = model.half() # determine if we need to increase num_beams use_task_specific_params(lowerCAmelCase__ , lowerCAmelCase__ ) # update config with task specific params __a : List[str] = generate_kwargs.pop('''num_beams''' , model.config.num_beams ) # AttributeError risk? if num_return_sequences > num_beams: __a : Dict = num_return_sequences __a : Optional[Any] = AutoTokenizer.from_pretrained(lowerCAmelCase__ ) logger.info(f"Inferred tokenizer type: {tokenizer.__class__}" ) # if this is wrong, check config.model_type. if max_source_length is None: __a : Dict = tokenizer.model_max_length if prefix is None: __a : Dict = prefix or getattr(model.config , '''prefix''' , '''''' ) or '''''' __a : List[Any] = SeqaSeqDataset( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , max_target_length=1_0_2_4 , type_path=lowerCAmelCase__ , n_obs=lowerCAmelCase__ , prefix=lowerCAmelCase__ , **lowerCAmelCase__ , ) # I set shuffle=True for a more accurate progress bar. # If all the longest samples are first, the prog bar estimate is too high at the beginning. __a : Tuple = ds.make_sortish_sampler(lowerCAmelCase__ , distributed=lowerCAmelCase__ , add_extra_examples=lowerCAmelCase__ , shuffle=lowerCAmelCase__ ) __a : List[Any] = DataLoader(lowerCAmelCase__ , sampler=lowerCAmelCase__ , batch_size=lowerCAmelCase__ , collate_fn=ds.collate_fn ) __a : List[Any] = [] for batch in tqdm(lowerCAmelCase__ ): __a : Any = model.generate( input_ids=batch['''input_ids'''].to(model.device ) , attention_mask=batch['''attention_mask'''].to(model.device ) , num_return_sequences=lowerCAmelCase__ , num_beams=lowerCAmelCase__ , **lowerCAmelCase__ , ) __a : List[Any] = tokenizer.batch_decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ , clean_up_tokenization_spaces=lowerCAmelCase__ ) __a : int = batch['''ids'''] if num_return_sequences > 1: __a : List[str] = chunks(lowerCAmelCase__ , lowerCAmelCase__ ) # batch size chunks, each of size num_return_seq for i, pred in enumerate(lowerCAmelCase__ ): results.append({'''pred''': pred, '''id''': ids[i].item()} ) save_json(lowerCAmelCase__ , lowerCAmelCase__ ) return results, sampler.num_replicas def __UpperCamelCase ( ): __a : str = argparse.ArgumentParser( epilog='''Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate''' ) parser.add_argument('''--data_dir''' , type=lowerCAmelCase__ , help='''like cnn_dm/test.source''' ) parser.add_argument( '''--model_name''' , type=lowerCAmelCase__ , help='''like facebook/bart-large-cnn,t5-base, etc.''' , default='''sshleifer/distilbart-xsum-12-3''' , ) parser.add_argument('''--save_dir''' , type=lowerCAmelCase__ , help='''where to save''' , default='''tmp_gen''' ) parser.add_argument('''--max_source_length''' , type=lowerCAmelCase__ , default=lowerCAmelCase__ ) parser.add_argument( '''--type_path''' , type=lowerCAmelCase__ , default='''test''' , help='''which subset to evaluate typically train/val/test''' ) parser.add_argument('''--task''' , type=lowerCAmelCase__ , default='''summarization''' , help='''used for task_specific_params + metrics''' ) parser.add_argument('''--bs''' , type=lowerCAmelCase__ , default=8 , required=lowerCAmelCase__ , help='''batch size''' ) parser.add_argument( '''--local_rank''' , type=lowerCAmelCase__ , default=-1 , required=lowerCAmelCase__ , help='''should be passed by distributed.launch''' ) parser.add_argument( '''--n_obs''' , type=lowerCAmelCase__ , default=lowerCAmelCase__ , required=lowerCAmelCase__ , help='''How many observations. Defaults to all.''' ) parser.add_argument( '''--num_return_sequences''' , type=lowerCAmelCase__ , default=1 , required=lowerCAmelCase__ , help='''How many sequences to return''' ) parser.add_argument( '''--sync_timeout''' , type=lowerCAmelCase__ , default=6_0_0 , required=lowerCAmelCase__ , help='''How long should master process wait for other processes to finish.''' , ) parser.add_argument('''--src_lang''' , type=lowerCAmelCase__ , default=lowerCAmelCase__ , required=lowerCAmelCase__ ) parser.add_argument('''--tgt_lang''' , type=lowerCAmelCase__ , default=lowerCAmelCase__ , required=lowerCAmelCase__ ) parser.add_argument( '''--prefix''' , type=lowerCAmelCase__ , required=lowerCAmelCase__ , default=lowerCAmelCase__ , help='''will be added to the begininng of src examples''' ) parser.add_argument('''--fp16''' , action='''store_true''' ) parser.add_argument('''--debug''' , action='''store_true''' ) __a : int = time.time() __a , __a : Tuple = parser.parse_known_args() __a : Optional[int] = parse_numeric_n_bool_cl_kwargs(lowerCAmelCase__ ) if generate_kwargs and args.local_rank <= 0: print(f"parsed the following generate kwargs: {generate_kwargs}" ) __a : Union[str, Any] = Path(args.save_dir + '''_tmp''' ) Path(lowerCAmelCase__ ).mkdir(exist_ok=lowerCAmelCase__ ) # this handles locking. __a : Dict = list(json_save_dir.glob('''rank_*.json''' ) ) if intermediate_files: raise ValueError(f"Found files at {json_save_dir} please move or remove them." ) # In theory, a node could finish and save before another node hits this. If this happens, we can address later. __a : Optional[Any] = {} if args.src_lang is not None: __a : int = args.src_lang if args.tgt_lang is not None: __a : Optional[Any] = args.tgt_lang Path(args.save_dir ).mkdir(exist_ok=lowerCAmelCase__ ) __a , __a : Tuple = eval_data_dir( args.data_dir , lowerCAmelCase__ , args.model_name , type_path=args.type_path , bs=args.bs , fpaa=args.fpaa , task=args.task , local_rank=args.local_rank , n_obs=args.n_obs , max_source_length=args.max_source_length , num_return_sequences=args.num_return_sequences , prefix=args.prefix , dataset_kwargs=lowerCAmelCase__ , **lowerCAmelCase__ , ) if args.local_rank <= 0: __a : int = Path(args.save_dir ) save_dir.mkdir(exist_ok=lowerCAmelCase__ ) __a : List[str] = gather_results_from_each_node(lowerCAmelCase__ , lowerCAmelCase__ , args.sync_timeout ) __a : int = combine_partial_results(lowerCAmelCase__ ) if args.num_return_sequences > 1: __a : List[Any] = save_dir.joinpath('''pseudolabel_results.json''' ) print(f"Saving aggregated results at {save_path}, intermediate in {json_save_dir}/" ) save_json(lowerCAmelCase__ , lowerCAmelCase__ ) return __a : Any = Path(args.data_dir ).joinpath(args.type_path + '''.target''' ) with open(lowerCAmelCase__ ) as f: __a : Optional[int] = [x.rstrip() for x in f.readlines()][: len(lowerCAmelCase__ )] # Calculate metrics, save metrics, and save _generations.txt __a : str = '''translation''' in args.task __a : List[str] = calculate_bleu if calc_bleu else calculate_rouge __a : Any = '''bleu''' if calc_bleu else '''rouge''' __a : Dict = score_fn(lowerCAmelCase__ , lowerCAmelCase__ ) __a : Dict = len(lowerCAmelCase__ ) __a : str = time.time() - start_time __a : List[str] = round(runtime / metrics['''n_obs'''] , 4 ) __a : Tuple = num_replicas # TODO(@stas00): add whatever metadata to metrics __a : Optional[int] = save_dir.joinpath(f"{args.type_path}_{metric_name}.json" ) save_json(lowerCAmelCase__ , lowerCAmelCase__ , indent=lowerCAmelCase__ ) print(lowerCAmelCase__ ) write_txt_file(lowerCAmelCase__ , save_dir.joinpath(f"{args.type_path}_generations.txt" ) ) if args.debug: write_txt_file(lowerCAmelCase__ , save_dir.joinpath(f"{args.type_path}.target" ) ) else: shutil.rmtree(lowerCAmelCase__ ) def __UpperCamelCase ( lowerCAmelCase__ : Optional[int] ): __a : Optional[int] = [] for partial_result in partial_results: records.extend(lowerCAmelCase__ ) __a : Tuple = sorted(lowerCAmelCase__ , key=lambda lowerCAmelCase__ : x["id"] ) __a : Tuple = [x['''pred'''] for x in records] return preds def __UpperCamelCase ( lowerCAmelCase__ : Any , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Dict ): # WAIT FOR lots of .json files __a : Tuple = time.time() logger.info('''waiting for all nodes to finish''' ) __a : Optional[int] = None while (time.time() - start_wait) < timeout: __a : Optional[int] = list(save_dir.glob('''rank_*.json''' ) ) if len(lowerCAmelCase__ ) < num_replicas: continue try: # make sure all json files are fully saved __a : Tuple = lmap(lowerCAmelCase__ , lowerCAmelCase__ ) return json_data except JSONDecodeError: continue else: raise TimeoutError('''Rank 0 gave up on waiting for other processes''' ) # Unreachable if __name__ == "__main__": # Usage for MT: run_generate()
216
1
'''simple docstring''' from __future__ import annotations import unittest from transformers import DebertaVaConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFDebertaVaForMaskedLM, TFDebertaVaForQuestionAnswering, TFDebertaVaForSequenceClassification, TFDebertaVaForTokenClassification, TFDebertaVaModel, ) class UpperCAmelCase : def __init__( self : List[Any], a_ : Dict, a_ : Dict=13, a_ : Optional[int]=7, a_ : int=True, a_ : Tuple=True, a_ : Any=True, a_ : str=True, a_ : Tuple=99, a_ : Dict=32, a_ : int=2, a_ : Tuple=4, a_ : List[Any]=37, a_ : Tuple="gelu", a_ : List[str]=0.1, a_ : Optional[int]=0.1, a_ : Dict=512, a_ : Optional[int]=16, a_ : int=2, a_ : str=0.02, a_ : Dict=False, a_ : Any=True, a_ : List[Any]="None", a_ : int=3, a_ : Optional[Any]=4, a_ : List[str]=None, ): """simple docstring""" UpperCamelCase__ = parent UpperCamelCase__ = batch_size UpperCamelCase__ = seq_length UpperCamelCase__ = is_training UpperCamelCase__ = use_input_mask UpperCamelCase__ = use_token_type_ids UpperCamelCase__ = use_labels UpperCamelCase__ = vocab_size UpperCamelCase__ = hidden_size UpperCamelCase__ = num_hidden_layers UpperCamelCase__ = num_attention_heads UpperCamelCase__ = intermediate_size UpperCamelCase__ = hidden_act UpperCamelCase__ = hidden_dropout_prob UpperCamelCase__ = attention_probs_dropout_prob UpperCamelCase__ = max_position_embeddings UpperCamelCase__ = type_vocab_size UpperCamelCase__ = type_sequence_label_size UpperCamelCase__ = initializer_range UpperCamelCase__ = num_labels UpperCamelCase__ = num_choices UpperCamelCase__ = relative_attention UpperCamelCase__ = position_biased_input UpperCamelCase__ = pos_att_type UpperCamelCase__ = scope def lowercase_ ( self : Dict ): """simple docstring""" UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length], self.vocab_size ) UpperCamelCase__ = None if self.use_input_mask: UpperCamelCase__ = random_attention_mask([self.batch_size, self.seq_length] ) UpperCamelCase__ = None if self.use_token_type_ids: UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size ) UpperCamelCase__ = None UpperCamelCase__ = None UpperCamelCase__ = None if self.use_labels: UpperCamelCase__ = ids_tensor([self.batch_size], self.type_sequence_label_size ) UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length], self.num_labels ) UpperCamelCase__ = DebertaVaConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, relative_attention=self.relative_attention, position_biased_input=self.position_biased_input, initializer_range=self.initializer_range, return_dict=_SCREAMING_SNAKE_CASE, ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowercase_ ( self : Any, a_ : Dict, a_ : Optional[Any], a_ : Tuple, a_ : Optional[int], a_ : Dict, a_ : Optional[Any], a_ : str ): """simple docstring""" UpperCamelCase__ = TFDebertaVaModel(config=_SCREAMING_SNAKE_CASE ) UpperCamelCase__ = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} UpperCamelCase__ = [input_ids, input_mask] UpperCamelCase__ = model(_SCREAMING_SNAKE_CASE ) UpperCamelCase__ = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase_ ( self : Union[str, Any], a_ : Optional[Any], a_ : Tuple, a_ : List[Any], a_ : Dict, a_ : Tuple, a_ : Union[str, Any], a_ : str ): """simple docstring""" UpperCamelCase__ = TFDebertaVaForMaskedLM(config=_SCREAMING_SNAKE_CASE ) UpperCamelCase__ = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } UpperCamelCase__ = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase_ ( self : Optional[int], a_ : List[str], a_ : int, a_ : Optional[Any], a_ : Optional[int], a_ : int, a_ : Tuple, a_ : List[str] ): """simple docstring""" UpperCamelCase__ = self.num_labels UpperCamelCase__ = TFDebertaVaForSequenceClassification(config=_SCREAMING_SNAKE_CASE ) UpperCamelCase__ = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } UpperCamelCase__ = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) ) def lowercase_ ( self : Union[str, Any], a_ : Tuple, a_ : Optional[int], a_ : Dict, a_ : List[Any], a_ : Any, a_ : Dict, a_ : List[Any] ): """simple docstring""" UpperCamelCase__ = self.num_labels UpperCamelCase__ = TFDebertaVaForTokenClassification(config=_SCREAMING_SNAKE_CASE ) UpperCamelCase__ = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } UpperCamelCase__ = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels) ) def lowercase_ ( self : str, a_ : str, a_ : List[str], a_ : Optional[Any], a_ : int, a_ : List[Any], a_ : Optional[Any], a_ : int ): """simple docstring""" UpperCamelCase__ = TFDebertaVaForQuestionAnswering(config=_SCREAMING_SNAKE_CASE ) UpperCamelCase__ = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } UpperCamelCase__ = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length) ) def lowercase_ ( self : List[str] ): """simple docstring""" UpperCamelCase__ = self.prepare_config_and_inputs() ( UpperCamelCase__ ) = config_and_inputs UpperCamelCase__ = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_tf class UpperCAmelCase ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase): _lowerCamelCase : Dict = ( ( TFDebertaVaModel, TFDebertaVaForMaskedLM, TFDebertaVaForQuestionAnswering, TFDebertaVaForSequenceClassification, TFDebertaVaForTokenClassification, ) if is_tf_available() else () ) _lowerCamelCase : int = ( { 'feature-extraction': TFDebertaVaModel, 'fill-mask': TFDebertaVaForMaskedLM, 'question-answering': TFDebertaVaForQuestionAnswering, 'text-classification': TFDebertaVaForSequenceClassification, 'token-classification': TFDebertaVaForTokenClassification, 'zero-shot': TFDebertaVaForSequenceClassification, } if is_tf_available() else {} ) _lowerCamelCase : Dict = False _lowerCamelCase : Union[str, Any] = False def lowercase_ ( self : Dict ): """simple docstring""" UpperCamelCase__ = TFDebertaVaModelTester(self ) UpperCamelCase__ = ConfigTester(self, config_class=_SCREAMING_SNAKE_CASE, hidden_size=37 ) def lowercase_ ( self : Optional[Any] ): """simple docstring""" self.config_tester.run_common_tests() def lowercase_ ( self : str ): """simple docstring""" UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_SCREAMING_SNAKE_CASE ) def lowercase_ ( self : int ): """simple docstring""" UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_SCREAMING_SNAKE_CASE ) def lowercase_ ( self : int ): """simple docstring""" UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_SCREAMING_SNAKE_CASE ) def lowercase_ ( self : str ): """simple docstring""" UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_SCREAMING_SNAKE_CASE ) def lowercase_ ( self : List[Any] ): """simple docstring""" UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_SCREAMING_SNAKE_CASE ) @slow def lowercase_ ( self : str ): """simple docstring""" UpperCamelCase__ = TFDebertaVaModel.from_pretrained("kamalkraj/deberta-v2-xlarge" ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) @require_tf class UpperCAmelCase ( unittest.TestCase): @unittest.skip(reason="Model not available yet" ) def lowercase_ ( self : int ): """simple docstring""" pass @slow def lowercase_ ( self : Dict ): """simple docstring""" UpperCamelCase__ = TFDebertaVaModel.from_pretrained("kamalkraj/deberta-v2-xlarge" ) UpperCamelCase__ = tf.constant([[0, 3_1414, 232, 328, 740, 1140, 1_2695, 69, 4_6078, 1588, 2]] ) UpperCamelCase__ = tf.constant([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) UpperCamelCase__ = model(_SCREAMING_SNAKE_CASE, attention_mask=_SCREAMING_SNAKE_CASE )[0] UpperCamelCase__ = tf.constant( [[[0.2_356, 0.1_948, 0.0_369], [-0.1_063, 0.3_586, -0.5_152], [-0.6_399, -0.0_259, -0.2_525]]] ) tf.debugging.assert_near(output[:, 1:4, 1:4], _SCREAMING_SNAKE_CASE, atol=1e-4 )
359
'''simple docstring''' import math import sys def SCREAMING_SNAKE_CASE__( _UpperCamelCase : str ) -> str: '''simple docstring''' UpperCamelCase__ = "" try: with open(_UpperCamelCase , "rb" ) as binary_file: UpperCamelCase__ = binary_file.read() for dat in data: UpperCamelCase__ = F'{dat:08b}' result += curr_byte return result except OSError: print("File not accessible" ) sys.exit() def SCREAMING_SNAKE_CASE__( _UpperCamelCase : str ) -> str: '''simple docstring''' UpperCamelCase__ = {"0": "0", "1": "1"} UpperCamelCase__ , UpperCamelCase__ = "", "" UpperCamelCase__ = len(_UpperCamelCase ) for i in range(len(_UpperCamelCase ) ): curr_string += data_bits[i] if curr_string not in lexicon: continue UpperCamelCase__ = lexicon[curr_string] result += last_match_id UpperCamelCase__ = last_match_id + "0" if math.loga(_UpperCamelCase ).is_integer(): UpperCamelCase__ = {} for curr_key in list(_UpperCamelCase ): UpperCamelCase__ = lexicon.pop(_UpperCamelCase ) UpperCamelCase__ = new_lex UpperCamelCase__ = last_match_id + "1" index += 1 UpperCamelCase__ = "" return result def SCREAMING_SNAKE_CASE__( _UpperCamelCase : str , _UpperCamelCase : str ) -> None: '''simple docstring''' UpperCamelCase__ = 8 try: with open(_UpperCamelCase , "wb" ) as opened_file: UpperCamelCase__ = [ to_write[i : i + byte_length] for i in range(0 , len(_UpperCamelCase ) , _UpperCamelCase ) ] if len(result_byte_array[-1] ) % byte_length == 0: result_byte_array.append("10000000" ) else: result_byte_array[-1] += "1" + "0" * ( byte_length - len(result_byte_array[-1] ) - 1 ) for elem in result_byte_array[:-1]: opened_file.write(int(_UpperCamelCase , 2 ).to_bytes(1 , byteorder="big" ) ) except OSError: print("File not accessible" ) sys.exit() def SCREAMING_SNAKE_CASE__( _UpperCamelCase : str ) -> str: '''simple docstring''' UpperCamelCase__ = 0 for letter in data_bits: if letter == "1": break counter += 1 UpperCamelCase__ = data_bits[counter:] UpperCamelCase__ = data_bits[counter + 1 :] return data_bits def SCREAMING_SNAKE_CASE__( _UpperCamelCase : str , _UpperCamelCase : str ) -> None: '''simple docstring''' UpperCamelCase__ = read_file_binary(_UpperCamelCase ) UpperCamelCase__ = remove_prefix(_UpperCamelCase ) UpperCamelCase__ = decompress_data(_UpperCamelCase ) write_file_binary(_UpperCamelCase , _UpperCamelCase ) if __name__ == "__main__": compress(sys.argv[1], sys.argv[2])
31
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) snake_case_ : Optional[Any] = { "configuration_gpt_bigcode": ["GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP", "GPTBigCodeConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : Dict = [ "GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST", "GPTBigCodeForSequenceClassification", "GPTBigCodeForTokenClassification", "GPTBigCodeForCausalLM", "GPTBigCodeModel", "GPTBigCodePreTrainedModel", ] if TYPE_CHECKING: from .configuration_gpt_bigcode import GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTBigCodeConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_bigcode import ( GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTBigCodeForCausalLM, GPTBigCodeForSequenceClassification, GPTBigCodeForTokenClassification, GPTBigCodeModel, GPTBigCodePreTrainedModel, ) else: import sys snake_case_ : Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
51
"""simple docstring""" def __UpperCAmelCase ( UpperCAmelCase_ : Tuple ) -> Optional[int]: '''simple docstring''' __snake_case : List[str] = [] __snake_case : Optional[Any] = set({'(', '[', '{'} ) __snake_case : Union[str, Any] = set({')', ']', '}'} ) __snake_case : Tuple = {'{': '}', '[': ']', '(': ')'} for i in range(len(UpperCAmelCase_ ) ): if s[i] in open_brackets: stack.append(s[i] ) elif s[i] in closed_brackets and ( len(UpperCAmelCase_ ) == 0 or (len(UpperCAmelCase_ ) > 0 and open_to_closed[stack.pop()] != s[i]) ): return False return len(UpperCAmelCase_ ) == 0 def __UpperCAmelCase ( ) -> Any: '''simple docstring''' __snake_case : Optional[Any] = input('Enter sequence of brackets: ' ) if is_balanced(UpperCAmelCase_ ): print(UpperCAmelCase_ , 'is balanced' ) else: print(UpperCAmelCase_ , 'is not balanced' ) if __name__ == "__main__": main()
172
0
"""simple docstring""" import pytest import requests from datasets.utils.file_utils import http_head from .utils import OfflineSimulationMode, RequestWouldHangIndefinitelyError, offline @pytest.mark.integration def _lowerCamelCase( ): with offline(OfflineSimulationMode.CONNECTION_TIMES_OUT ): with pytest.raises(a ): requests.request("GET" , "https://huggingface.co" ) with pytest.raises(requests.exceptions.ConnectTimeout ): requests.request("GET" , "https://huggingface.co" , timeout=1.0 ) @pytest.mark.integration def _lowerCamelCase( ): with offline(OfflineSimulationMode.CONNECTION_FAILS ): with pytest.raises(requests.exceptions.ConnectionError ): requests.request("GET" , "https://huggingface.co" ) def _lowerCamelCase( ): with offline(OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1 ): with pytest.raises(a ): http_head("https://huggingface.co" )
268
"""simple docstring""" def _lowerCamelCase( a ): __a = len(a ) for i in range(1 , a ): __a = collection[i] __a = 0 __a = i - 1 while low <= high: __a = (low + high) // 2 if val < collection[mid]: __a = mid - 1 else: __a = mid + 1 for j in range(a , a , -1 ): __a = collection[j - 1] __a = val return collection if __name__ == "__main__": SCREAMING_SNAKE_CASE__:str = input("""Enter numbers separated by a comma:\n""").strip() SCREAMING_SNAKE_CASE__:Any = [int(item) for item in user_input.split(""",""")] print(binary_insertion_sort(unsorted))
268
1
from sklearn.metrics import fa_score import datasets lowerCAmelCase_ = ''' The F1 score is the harmonic mean of the precision and recall. It can be computed with the equation: F1 = 2 * (precision * recall) / (precision + recall) ''' lowerCAmelCase_ = ''' Args: predictions (`list` of `int`): Predicted labels. references (`list` of `int`): Ground truth labels. labels (`list` of `int`): The set of labels to include when `average` is not set to `\'binary\'`, and the order of the labels if `average` is `None`. Labels present in the data can be excluded, for example to calculate a multiclass average ignoring a majority negative class. Labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in `predictions` and `references` are used in sorted order. Defaults to None. pos_label (`int`): The class to be considered the positive class, in the case where `average` is set to `binary`. Defaults to 1. average (`string`): This parameter is required for multiclass/multilabel targets. If set to `None`, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `\'binary\'`. - \'binary\': Only report results for the class specified by `pos_label`. This is applicable only if the classes found in `predictions` and `references` are binary. - \'micro\': Calculate metrics globally by counting the total true positives, false negatives and false positives. - \'macro\': Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account. - \'weighted\': Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `\'macro\'` to account for label imbalance. This option can result in an F-score that is not between precision and recall. - \'samples\': Calculate metrics for each instance, and find their average (only meaningful for multilabel classification). sample_weight (`list` of `float`): Sample weights Defaults to None. Returns: f1 (`float` or `array` of `float`): F1 score or list of f1 scores, depending on the value passed to `average`. Minimum possible value is 0. Maximum possible value is 1. Higher f1 scores are better. Examples: Example 1-A simple binary example >>> f1_metric = datasets.load_metric("f1") >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0]) >>> print(results) {\'f1\': 0.5} Example 2-The same simple binary example as in Example 1, but with `pos_label` set to `0`. >>> f1_metric = datasets.load_metric("f1") >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], pos_label=0) >>> print(round(results[\'f1\'], 2)) 0.67 Example 3-The same simple binary example as in Example 1, but with `sample_weight` included. >>> f1_metric = datasets.load_metric("f1") >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], sample_weight=[0.9, 0.5, 3.9, 1.2, 0.3]) >>> print(round(results[\'f1\'], 2)) 0.35 Example 4-A multiclass example, with different values for the `average` input. >>> predictions = [0, 2, 1, 0, 0, 1] >>> references = [0, 1, 2, 0, 1, 2] >>> results = f1_metric.compute(predictions=predictions, references=references, average="macro") >>> print(round(results[\'f1\'], 2)) 0.27 >>> results = f1_metric.compute(predictions=predictions, references=references, average="micro") >>> print(round(results[\'f1\'], 2)) 0.33 >>> results = f1_metric.compute(predictions=predictions, references=references, average="weighted") >>> print(round(results[\'f1\'], 2)) 0.27 >>> results = f1_metric.compute(predictions=predictions, references=references, average=None) >>> print(results) {\'f1\': array([0.8, 0. , 0. ])} ''' lowerCAmelCase_ = ''' @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class snake_case_ ( datasets.Metric ): '''simple docstring''' def snake_case__( self : Tuple ) ->Optional[Any]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Sequence(datasets.Value('''int32''' ) ), '''references''': datasets.Sequence(datasets.Value('''int32''' ) ), } if self.config_name == '''multilabel''' else { '''predictions''': datasets.Value('''int32''' ), '''references''': datasets.Value('''int32''' ), } ) , reference_urls=['''https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html'''] , ) def snake_case__( self : List[str] , _UpperCamelCase : str , _UpperCamelCase : Optional[Any] , _UpperCamelCase : List[Any]=None , _UpperCamelCase : Optional[int]=1 , _UpperCamelCase : List[str]="binary" , _UpperCamelCase : Tuple=None ) ->Optional[Any]: snake_case_ = fa_score( _UpperCamelCase , _UpperCamelCase , labels=_UpperCamelCase , pos_label=_UpperCamelCase , average=_UpperCamelCase , sample_weight=_UpperCamelCase ) return {"f1": float(_UpperCamelCase ) if score.size == 1 else score}
8
import pytest from datasets.parallel import ParallelBackendConfig, parallel_backend from datasets.utils.py_utils import map_nested from .utils import require_dill_gt_0_3_2, require_joblibspark, require_not_windows def lowerCAmelCase__( lowercase : Dict ) -> str: # picklable for multiprocessing return i + 1 @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows def lowerCAmelCase__( ) -> List[Any]: with parallel_backend("spark" ): assert ParallelBackendConfig.backend_name == "spark" __snake_case : Any = [1, 2, 3] with pytest.raises(lowercase ): with parallel_backend("unsupported backend" ): map_nested(lowercase , lowercase , num_proc=2 ) with pytest.raises(lowercase ): with parallel_backend("unsupported backend" ): map_nested(lowercase , lowercase , num_proc=-1 ) @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows @pytest.mark.parametrize("num_proc" , [2, -1] ) def lowerCAmelCase__( lowercase : Dict ) -> Dict: __snake_case : Any = [1, 2] __snake_case : Dict = {"a": 1, "b": 2} __snake_case : Optional[int] = {"a": [1, 2], "b": [3, 4]} __snake_case : int = {"a": {"1": 1}, "b": 2} __snake_case : str = {"a": 1, "b": 2, "c": 3, "d": 4} __snake_case : Dict = [2, 3] __snake_case : Tuple = {"a": 2, "b": 3} __snake_case : int = {"a": [2, 3], "b": [4, 5]} __snake_case : Dict = {"a": {"1": 2}, "b": 3} __snake_case : str = {"a": 2, "b": 3, "c": 4, "d": 5} with parallel_backend("spark" ): assert map_nested(lowercase , lowercase , num_proc=lowercase ) == expected_map_nested_sa assert map_nested(lowercase , lowercase , num_proc=lowercase ) == expected_map_nested_sa assert map_nested(lowercase , lowercase , num_proc=lowercase ) == expected_map_nested_sa assert map_nested(lowercase , lowercase , num_proc=lowercase ) == expected_map_nested_sa assert map_nested(lowercase , lowercase , num_proc=lowercase ) == expected_map_nested_sa
326
0
"""simple docstring""" from PIL import Image def _a ( _snake_case , _snake_case ): """simple docstring""" def brightness(_snake_case ) -> float: return 128 + level + (c - 128) if not -255.0 <= level <= 255.0: raise ValueError("""level must be between -255.0 (black) and 255.0 (white)""" ) return img.point(_snake_case ) if __name__ == "__main__": # Load image with Image.open("""image_data/lena.jpg""") as img: # Change brightness to 100 _UpperCamelCase = change_brightness(img, 100) brigt_img.save("""image_data/lena_brightness.png""", format="""png""")
234
"""simple docstring""" import hashlib import unittest from typing import Dict import numpy as np from transformers import ( MODEL_FOR_MASK_GENERATION_MAPPING, TF_MODEL_FOR_MASK_GENERATION_MAPPING, is_vision_available, pipeline, ) from transformers.pipelines import MaskGenerationPipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) if is_vision_available(): from PIL import Image else: class lowerCamelCase__ : @staticmethod def _UpperCamelCase ( *A ,**A ): pass def _a ( _snake_case ): """simple docstring""" UpperCAmelCase = hashlib.mda(image.tobytes() ) return m.hexdigest()[:10] def _a ( _snake_case ): """simple docstring""" UpperCAmelCase = np.array(_snake_case ) UpperCAmelCase = npimg.shape return {"hash": hashimage(_snake_case ), "shape": shape} @is_pipeline_test @require_vision @require_torch class lowerCamelCase__ ( unittest.TestCase ): SCREAMING_SNAKE_CASE = dict( (list(MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if MODEL_FOR_MASK_GENERATION_MAPPING else []) ) SCREAMING_SNAKE_CASE = dict( (list(TF_MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if TF_MODEL_FOR_MASK_GENERATION_MAPPING else []) ) def _UpperCamelCase ( self ,A ,A ,A ): UpperCAmelCase = MaskGenerationPipeline(model=A ,image_processor=A ) return image_segmenter, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def _UpperCamelCase ( self ,A ,A ): pass @require_tf @unittest.skip("""Image segmentation not implemented in TF""" ) def _UpperCamelCase ( self ): pass @slow @require_torch def _UpperCamelCase ( self ): UpperCAmelCase = pipeline("""mask-generation""" ,model="""facebook/sam-vit-huge""" ) UpperCAmelCase = image_segmenter("""http://images.cocodataset.org/val2017/000000039769.jpg""" ,points_per_batch=256 ) # Shortening by hashing UpperCAmelCase = [] for i, o in enumerate(outputs["""masks"""] ): new_outupt += [{"mask": mask_to_test_readable(A ), "scores": outputs["scores"][i]}] # fmt: off self.assertEqual( nested_simplify(A ,decimals=4 ) ,[ {"""mask""": {"""hash""": """115ad19f5f""", """shape""": (480, 640)}, """scores""": 1.0444}, {"""mask""": {"""hash""": """6affa964c6""", """shape""": (480, 640)}, """scores""": 1.021}, {"""mask""": {"""hash""": """dfe28a0388""", """shape""": (480, 640)}, """scores""": 1.0167}, {"""mask""": {"""hash""": """c0a5f4a318""", """shape""": (480, 640)}, """scores""": 1.0132}, {"""mask""": {"""hash""": """fe8065c197""", """shape""": (480, 640)}, """scores""": 1.0053}, {"""mask""": {"""hash""": """e2d0b7a0b7""", """shape""": (480, 640)}, """scores""": 0.9967}, {"""mask""": {"""hash""": """453c7844bd""", """shape""": (480, 640)}, """scores""": 0.993}, {"""mask""": {"""hash""": """3d44f2926d""", """shape""": (480, 640)}, """scores""": 0.9909}, {"""mask""": {"""hash""": """64033ddc3f""", """shape""": (480, 640)}, """scores""": 0.9879}, {"""mask""": {"""hash""": """801064ff79""", """shape""": (480, 640)}, """scores""": 0.9834}, {"""mask""": {"""hash""": """6172f276ef""", """shape""": (480, 640)}, """scores""": 0.9716}, {"""mask""": {"""hash""": """b49e60e084""", """shape""": (480, 640)}, """scores""": 0.9612}, {"""mask""": {"""hash""": """a811e775fd""", """shape""": (480, 640)}, """scores""": 0.9599}, {"""mask""": {"""hash""": """a6a8ebcf4b""", """shape""": (480, 640)}, """scores""": 0.9552}, {"""mask""": {"""hash""": """9d8257e080""", """shape""": (480, 640)}, """scores""": 0.9532}, {"""mask""": {"""hash""": """32de6454a8""", """shape""": (480, 640)}, """scores""": 0.9516}, {"""mask""": {"""hash""": """af3d4af2c8""", """shape""": (480, 640)}, """scores""": 0.9499}, {"""mask""": {"""hash""": """3c6db475fb""", """shape""": (480, 640)}, """scores""": 0.9483}, {"""mask""": {"""hash""": """c290813fb9""", """shape""": (480, 640)}, """scores""": 0.9464}, {"""mask""": {"""hash""": """b6f0b8f606""", """shape""": (480, 640)}, """scores""": 0.943}, {"""mask""": {"""hash""": """92ce16bfdf""", """shape""": (480, 640)}, """scores""": 0.943}, {"""mask""": {"""hash""": """c749b25868""", """shape""": (480, 640)}, """scores""": 0.9408}, {"""mask""": {"""hash""": """efb6cab859""", """shape""": (480, 640)}, """scores""": 0.9335}, {"""mask""": {"""hash""": """1ff2eafb30""", """shape""": (480, 640)}, """scores""": 0.9326}, {"""mask""": {"""hash""": """788b798e24""", """shape""": (480, 640)}, """scores""": 0.9262}, {"""mask""": {"""hash""": """abea804f0e""", """shape""": (480, 640)}, """scores""": 0.8999}, {"""mask""": {"""hash""": """7b9e8ddb73""", """shape""": (480, 640)}, """scores""": 0.8986}, {"""mask""": {"""hash""": """cd24047c8a""", """shape""": (480, 640)}, """scores""": 0.8984}, {"""mask""": {"""hash""": """6943e6bcbd""", """shape""": (480, 640)}, """scores""": 0.8873}, {"""mask""": {"""hash""": """b5f47c9191""", """shape""": (480, 640)}, """scores""": 0.8871} ] ,) # fmt: on @require_torch @slow def _UpperCamelCase ( self ): UpperCAmelCase = """facebook/sam-vit-huge""" UpperCAmelCase = pipeline("""mask-generation""" ,model=A ) UpperCAmelCase = image_segmenter( """http://images.cocodataset.org/val2017/000000039769.jpg""" ,pred_iou_thresh=1 ,points_per_batch=256 ) # Shortening by hashing UpperCAmelCase = [] for i, o in enumerate(outputs["""masks"""] ): new_outupt += [{"mask": mask_to_test_readable(A ), "scores": outputs["scores"][i]}] self.assertEqual( nested_simplify(A ,decimals=4 ) ,[ {"""mask""": {"""hash""": """115ad19f5f""", """shape""": (480, 640)}, """scores""": 1.0444}, {"""mask""": {"""hash""": """6affa964c6""", """shape""": (480, 640)}, """scores""": 1.0210}, {"""mask""": {"""hash""": """dfe28a0388""", """shape""": (480, 640)}, """scores""": 1.0167}, {"""mask""": {"""hash""": """c0a5f4a318""", """shape""": (480, 640)}, """scores""": 1.0132}, {"""mask""": {"""hash""": """fe8065c197""", """shape""": (480, 640)}, """scores""": 1.0053}, ] ,)
234
1
'''simple docstring''' from unittest import TestCase from datasets import Sequence, Value from datasets.arrow_dataset import Dataset class a__( lowerCamelCase__ ): def lowercase_ ( self : Optional[int] ): return [ {"col_1": 3, "col_2": "a"}, {"col_1": 2, "col_2": "b"}, {"col_1": 1, "col_2": "c"}, {"col_1": 0, "col_2": "d"}, ] def lowercase_ ( self : Optional[Any] ): a : Any = {'col_1': [3, 2, 1, 0], 'col_2': ['a', 'b', 'c', 'd']} return Dataset.from_dict(__snake_case ) def lowercase_ ( self : str ): a : Optional[Any] = self._create_example_records() a : str = Dataset.from_list(__snake_case ) self.assertListEqual(dset.column_names , ['col_1', 'col_2'] ) for i, r in enumerate(__snake_case ): self.assertDictEqual(__snake_case , example_records[i] ) def lowercase_ ( self : str ): a : Any = self._create_example_records() a : Dict = Dataset.from_list(__snake_case ) a : Tuple = Dataset.from_dict({k: [r[k] for r in example_records] for k in example_records[0]} ) self.assertEqual(dset.info , dset_from_dict.info ) def lowercase_ ( self : Tuple ): # checks what happens with missing columns a : str = [{'col_1': 1}, {'col_2': 'x'}] a : int = Dataset.from_list(__snake_case ) self.assertDictEqual(dset[0] , {'col_1': 1} ) self.assertDictEqual(dset[1] , {'col_1': None} ) # NB: first record is used for columns def lowercase_ ( self : Optional[Any] ): # checks if the type can be inferred from the second record a : Tuple = [{'col_1': []}, {'col_1': [1, 2]}] a : List[Any] = Dataset.from_list(__snake_case ) self.assertEqual(dset.info.features['col_1'] , Sequence(Value('int64' ) ) ) def lowercase_ ( self : Union[str, Any] ): a : Dict = Dataset.from_list([] ) self.assertEqual(len(__snake_case ) , 0 ) self.assertListEqual(dset.column_names , [] )
297
'''simple docstring''' import json from typing import Dict, List, Optional, Tuple, Union from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding, EncodedInput from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_led import LEDTokenizer lowerCAmelCase: Dict = logging.get_logger(__name__) lowerCAmelCase: str = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} lowerCAmelCase: List[Any] = { 'vocab_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json', }, 'merges_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt', }, 'tokenizer_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json', }, } lowerCAmelCase: str = { 'allenai/led-base-16384': 1_6_3_8_4, } class a__( lowerCamelCase__ ): lowercase__ = VOCAB_FILES_NAMES lowercase__ = PRETRAINED_VOCAB_FILES_MAP lowercase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__ = LEDTokenizer lowercase__ = ["""input_ids""", """attention_mask"""] def __init__( self : List[Any] , __snake_case : Optional[Any]=None , __snake_case : List[str]=None , __snake_case : Tuple=None , __snake_case : Dict="replace" , __snake_case : int="<s>" , __snake_case : Any="</s>" , __snake_case : Optional[Any]="</s>" , __snake_case : Optional[Any]="<s>" , __snake_case : Optional[Any]="<unk>" , __snake_case : List[str]="<pad>" , __snake_case : int="<mask>" , __snake_case : int=False , __snake_case : str=True , **__snake_case : Tuple , ): super().__init__( __snake_case , __snake_case , tokenizer_file=__snake_case , errors=__snake_case , bos_token=__snake_case , eos_token=__snake_case , sep_token=__snake_case , cls_token=__snake_case , unk_token=__snake_case , pad_token=__snake_case , mask_token=__snake_case , add_prefix_space=__snake_case , trim_offsets=__snake_case , **__snake_case , ) a : str = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space' , __snake_case ) != add_prefix_space: a : List[Any] = getattr(__snake_case , pre_tok_state.pop('type' ) ) a : Optional[Any] = add_prefix_space a : Optional[Any] = pre_tok_class(**__snake_case ) a : Optional[int] = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` a : Dict = 'post_processor' a : int = getattr(self.backend_tokenizer , __snake_case , __snake_case ) if tokenizer_component_instance: a : Tuple = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: a : Any = tuple(state['sep'] ) if "cls" in state: a : Any = tuple(state['cls'] ) a : Optional[Any] = False if state.get('add_prefix_space' , __snake_case ) != add_prefix_space: a : Any = add_prefix_space a : Optional[Any] = True if state.get('trim_offsets' , __snake_case ) != trim_offsets: a : List[Any] = trim_offsets a : Union[str, Any] = True if changes_to_apply: a : int = getattr(__snake_case , state.pop('type' ) ) a : List[Any] = component_class(**__snake_case ) setattr(self.backend_tokenizer , __snake_case , __snake_case ) @property # Copied from transformers.models.bart.tokenization_bart_fast.BartTokenizerFast.mask_token with BART->LED def lowercase_ ( self : Dict ): if self._mask_token is None: if self.verbose: logger.error('Using mask_token, but it is not set yet.' ) return None return str(self._mask_token ) @mask_token.setter def lowercase_ ( self : Dict , __snake_case : List[str] ): a : Tuple = AddedToken(__snake_case , lstrip=__snake_case , rstrip=__snake_case ) if isinstance(__snake_case , __snake_case ) else value a : Optional[int] = value def lowercase_ ( self : Optional[Any] , *__snake_case : Any , **__snake_case : Union[str, Any] ): a : Dict = kwargs.get('is_split_into_words' , __snake_case ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ 'to use it with pretokenized inputs.' ) return super()._batch_encode_plus(*__snake_case , **__snake_case ) def lowercase_ ( self : Union[str, Any] , *__snake_case : Optional[int] , **__snake_case : List[str] ): a : Optional[int] = kwargs.get('is_split_into_words' , __snake_case ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ 'to use it with pretokenized inputs.' ) return super()._encode_plus(*__snake_case , **__snake_case ) def lowercase_ ( self : Dict , __snake_case : str , __snake_case : Optional[str] = None ): a : Union[str, Any] = self._tokenizer.model.save(__snake_case , name=__snake_case ) return tuple(__snake_case ) def lowercase_ ( self : Union[str, Any] , __snake_case : str , __snake_case : int=None ): a : List[Any] = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def lowercase_ ( self : Optional[int] , __snake_case : List[int] , __snake_case : Optional[List[int]] = None ): a : int = [self.sep_token_id] a : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowercase_ ( self : List[str] , __snake_case : Union[Dict[str, EncodedInput], BatchEncoding] , __snake_case : Optional[int] = None , __snake_case : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , __snake_case : Optional[int] = None , __snake_case : Optional[bool] = None , ): a : Optional[Any] = super()._pad( encoded_inputs=__snake_case , max_length=__snake_case , padding_strategy=__snake_case , pad_to_multiple_of=__snake_case , return_attention_mask=__snake_case , ) # Load from model defaults if return_attention_mask is None: a : str = 'attention_mask' in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: a : Any = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. a : Union[str, Any] = len(encoded_inputs['global_attention_mask'] ) != len(__snake_case ) if needs_to_be_padded: a : str = len(__snake_case ) - len(encoded_inputs['global_attention_mask'] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` a : Dict = ( encoded_inputs['global_attention_mask'] + [-1] * difference ) elif self.padding_side == "left": a : Union[str, Any] = [-1] * difference + encoded_inputs[ 'global_attention_mask' ] else: raise ValueError('Invalid padding strategy:' + str(self.padding_side ) ) return encoded_inputs
297
1
"""simple docstring""" def _a ( ) -> list[list[int]]: return [list(range(1_000 - i , -1_000 - i , -1 ) ) for i in range(1_000 )] __SCREAMING_SNAKE_CASE : Optional[Any] = generate_large_matrix() __SCREAMING_SNAKE_CASE : Optional[Any] = ( [[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]], [[3, 2], [1, 0]], [[7, 7, 6]], [[7, 7, 6], [-1, -2, -3]], grid, ) def _a ( _SCREAMING_SNAKE_CASE ) -> None: assert all(row == sorted(_SCREAMING_SNAKE_CASE , reverse=_SCREAMING_SNAKE_CASE ) for row in grid ) assert all(list(_SCREAMING_SNAKE_CASE ) == sorted(_SCREAMING_SNAKE_CASE , reverse=_SCREAMING_SNAKE_CASE ) for col in zip(*_SCREAMING_SNAKE_CASE ) ) def _a ( _SCREAMING_SNAKE_CASE ) -> int: snake_case_ = 0 snake_case_ = len(_SCREAMING_SNAKE_CASE ) - 1 # Edge cases such as no values or all numbers are negative. if not array or array[0] < 0: return 0 while right + 1 > left: snake_case_ = (left + right) // 2 snake_case_ = array[mid] # Num must be negative and the index must be greater than or equal to 0. if num < 0 and array[mid - 1] >= 0: return mid if num >= 0: snake_case_ = mid + 1 else: snake_case_ = mid - 1 # No negative numbers so return the last index of the array + 1 which is the length. return len(_SCREAMING_SNAKE_CASE ) def _a ( _SCREAMING_SNAKE_CASE ) -> int: snake_case_ = 0 snake_case_ = len(grid[0] ) for i in range(len(_SCREAMING_SNAKE_CASE ) ): snake_case_ = find_negative_index(grid[i][:bound] ) total += bound return (len(_SCREAMING_SNAKE_CASE ) * len(grid[0] )) - total def _a ( _SCREAMING_SNAKE_CASE ) -> int: return len([number for row in grid for number in row if number < 0] ) def _a ( _SCREAMING_SNAKE_CASE ) -> int: snake_case_ = 0 for row in grid: for i, number in enumerate(_SCREAMING_SNAKE_CASE ): if number < 0: total += len(_SCREAMING_SNAKE_CASE ) - i break return total def _a ( ) -> None: from timeit import timeit print("""Running benchmarks""" ) snake_case_ = ( """from __main__ import count_negatives_binary_search, """ """count_negatives_brute_force, count_negatives_brute_force_with_break, grid""" ) for func in ( "count_negatives_binary_search", # took 0.7727 seconds "count_negatives_brute_force_with_break", # took 4.6505 seconds "count_negatives_brute_force", # took 12.8160 seconds ): snake_case_ = timeit(f"""{func}(grid=grid)""" , setup=_SCREAMING_SNAKE_CASE , number=500 ) print(f"""{func}() took {time:0.4f} seconds""" ) if __name__ == "__main__": import doctest doctest.testmod() benchmark()
363
"""simple docstring""" from collections import namedtuple import requests from lxml import html # type: ignore __SCREAMING_SNAKE_CASE : List[str] = namedtuple('covid_data', 'cases deaths recovered') def _a ( _SCREAMING_SNAKE_CASE = "https://www.worldometers.info/coronavirus/" ) -> covid_data: snake_case_ = """//div[@class = \"maincounter-number\"]/span/text()""" return covid_data(*html.fromstring(requests.get(_SCREAMING_SNAKE_CASE ).content ).xpath(_SCREAMING_SNAKE_CASE ) ) __SCREAMING_SNAKE_CASE : List[str] = 'Total COVID-19 cases in the world: {}\nTotal deaths due to COVID-19 in the world: {}\nTotal COVID-19 patients recovered in the world: {}' print(fmt.format(*covid_stats()))
233
0
"""simple docstring""" def lowercase ( _snake_case : str ) ->bool: """simple docstring""" if not all(x.isalpha() for x in string ): raise ValueError('''String must only contain alphabetic characters.''' ) __snake_case : Union[str, Any] = sorted(string.lower() ) return len(_snake_case ) == len(set(_snake_case ) ) if __name__ == "__main__": SCREAMING_SNAKE_CASE : int = input("""Enter a string """).strip() SCREAMING_SNAKE_CASE : Optional[int] = is_isogram(input_str) print(F'{input_str} is {"an" if isogram else "not an"} isogram.')
102
"""simple docstring""" def lowercase ( _snake_case : int , _snake_case : int ) ->str: """simple docstring""" if a < 0 or b < 0: raise ValueError('''the value of both inputs must be positive''' ) __snake_case : Tuple = str(bin(_snake_case ) )[2:] # remove the leading "0b" __snake_case : List[Any] = str(bin(_snake_case ) )[2:] __snake_case : Any = max(len(_snake_case ) , len(_snake_case ) ) return "0b" + "".join( str(int('''1''' in (char_a, char_b) ) ) for char_a, char_b in zip(a_binary.zfill(_snake_case ) , b_binary.zfill(_snake_case ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
102
1
'''simple docstring''' from ...utils import is_note_seq_available, is_transformers_available, is_torch_available from ...utils import OptionalDependencyNotAvailable try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .notes_encoder import SpectrogramNotesEncoder from .continous_encoder import SpectrogramContEncoder from .pipeline_spectrogram_diffusion import ( SpectrogramContEncoder, SpectrogramDiffusionPipeline, TaFilmDecoder, ) try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .midi_utils import MidiProcessor
362
'''simple docstring''' import unittest from datasets import load_dataset from transformers.pipelines import pipeline from transformers.testing_utils import is_pipeline_test, nested_simplify, require_torch, slow @is_pipeline_test @require_torch class __UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @require_torch def A (self : Any ): A = pipeline( task="""zero-shot-audio-classification""" , model="""hf-internal-testing/tiny-clap-htsat-unfused""" ) A = load_dataset("""ashraq/esc50""" ) A = dataset["""train"""]["""audio"""][-1]["""array"""] A = audio_classifier(_lowerCAmelCase , candidate_labels=["""Sound of a dog""", """Sound of vaccum cleaner"""] ) self.assertEqual( nested_simplify(_lowerCAmelCase ) , [{"""score""": 0.501, """label""": """Sound of a dog"""}, {"""score""": 0.499, """label""": """Sound of vaccum cleaner"""}] , ) @unittest.skip("""No models are available in TF""" ) def A (self : List[str] ): pass @slow @require_torch def A (self : int ): A = pipeline( task="""zero-shot-audio-classification""" , model="""laion/clap-htsat-unfused""" , ) # This is an audio of a dog A = load_dataset("""ashraq/esc50""" ) A = dataset["""train"""]["""audio"""][-1]["""array"""] A = audio_classifier(_lowerCAmelCase , candidate_labels=["""Sound of a dog""", """Sound of vaccum cleaner"""] ) self.assertEqual( nested_simplify(_lowerCAmelCase ) , [ {"""score""": 0.999, """label""": """Sound of a dog"""}, {"""score""": 0.001, """label""": """Sound of vaccum cleaner"""}, ] , ) A = audio_classifier([audio] * 5 , candidate_labels=["""Sound of a dog""", """Sound of vaccum cleaner"""] ) self.assertEqual( nested_simplify(_lowerCAmelCase ) , [ [ {"""score""": 0.999, """label""": """Sound of a dog"""}, {"""score""": 0.001, """label""": """Sound of vaccum cleaner"""}, ], ] * 5 , ) A = audio_classifier( [audio] * 5 , candidate_labels=["""Sound of a dog""", """Sound of vaccum cleaner"""] , batch_size=5 ) self.assertEqual( nested_simplify(_lowerCAmelCase ) , [ [ {"""score""": 0.999, """label""": """Sound of a dog"""}, {"""score""": 0.001, """label""": """Sound of vaccum cleaner"""}, ], ] * 5 , ) @unittest.skip("""No models are available in TF""" ) def A (self : Tuple ): pass
337
0
"""simple docstring""" from __future__ import annotations def lowercase__ ( snake_case_ :list[int | float] , snake_case_ :int , snake_case_ :int ): if len(snake_case_ ) == 0: raise ValueError('''find_max() arg is an empty sequence''' ) if ( left >= len(snake_case_ ) or left < -len(snake_case_ ) or right >= len(snake_case_ ) or right < -len(snake_case_ ) ): raise IndexError('''list index out of range''' ) if left == right: return nums[left] __UpperCAmelCase = (left + right) >> 1 # the middle __UpperCAmelCase = find_max(snake_case_ , snake_case_ , snake_case_ ) # find max in range[left, mid] __UpperCAmelCase = find_max(snake_case_ , mid + 1 , snake_case_ ) # find max in range[mid + 1, right] return left_max if left_max >= right_max else right_max if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
332
"""simple docstring""" # Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import platform import numpy as np import psutil import torch from accelerate import __version__ as version from accelerate.commands.config import default_config_file, load_config_from_file from ..utils import is_npu_available, is_xpu_available def lowercase__ ( snake_case_ :Union[str, Any]=None ): if subparsers is not None: __UpperCAmelCase = subparsers.add_parser('''env''' ) else: __UpperCAmelCase = argparse.ArgumentParser('''Accelerate env command''' ) parser.add_argument( '''--config_file''' , default=snake_case_ , help='''The config file to use for the default values in the launching script.''' ) if subparsers is not None: parser.set_defaults(func=snake_case_ ) return parser def lowercase__ ( snake_case_ :List[Any] ): __UpperCAmelCase = torch.__version__ __UpperCAmelCase = torch.cuda.is_available() __UpperCAmelCase = is_xpu_available() __UpperCAmelCase = is_npu_available() __UpperCAmelCase = '''Not found''' # Get the default from the config file. if args.config_file is not None or os.path.isfile(snake_case_ ): __UpperCAmelCase = load_config_from_file(args.config_file ).to_dict() __UpperCAmelCase = { '''`Accelerate` version''': version, '''Platform''': platform.platform(), '''Python version''': platform.python_version(), '''Numpy version''': np.__version__, '''PyTorch version (GPU?)''': F'''{pt_version} ({pt_cuda_available})''', '''PyTorch XPU available''': str(snake_case_ ), '''PyTorch NPU available''': str(snake_case_ ), '''System RAM''': F'''{psutil.virtual_memory().total / 1_024 ** 3:.2f} GB''', } if pt_cuda_available: __UpperCAmelCase = torch.cuda.get_device_name() print('''\nCopy-and-paste the text below in your GitHub issue\n''' ) print('''\n'''.join([F'''- {prop}: {val}''' for prop, val in info.items()] ) ) print('''- `Accelerate` default config:''' if args.config_file is None else '''- `Accelerate` config passed:''' ) __UpperCAmelCase = ( '''\n'''.join([F'''\t- {prop}: {val}''' for prop, val in accelerate_config.items()] ) if isinstance(snake_case_ , snake_case_ ) else F'''\t{accelerate_config}''' ) print(snake_case_ ) __UpperCAmelCase = accelerate_config return info def lowercase__ ( ): __UpperCAmelCase = env_command_parser() __UpperCAmelCase = parser.parse_args() env_command(snake_case_ ) return 0 if __name__ == "__main__": raise SystemExit(main())
332
1
'''simple docstring''' def SCREAMING_SNAKE_CASE_ ( __A : list ) -> bool: if not isinstance(__A , __A ): raise ValueError("Input series is not valid, valid series - [2, 4, 6]" ) if len(__A ) == 0: raise ValueError("Input list must be a non empty list" ) if len(__A ) == 1: return True _SCREAMING_SNAKE_CASE = series[1] - series[0] for index in range(len(__A ) - 1 ): if series[index + 1] - series[index] != common_diff: return False return True def SCREAMING_SNAKE_CASE_ ( __A : list ) -> float: if not isinstance(__A , __A ): raise ValueError("Input series is not valid, valid series - [2, 4, 6]" ) if len(__A ) == 0: raise ValueError("Input list must be a non empty list" ) _SCREAMING_SNAKE_CASE = 0 for val in series: answer += val return answer / len(__A ) if __name__ == "__main__": import doctest doctest.testmod()
111
'''simple docstring''' from collections.abc import Sequence def SCREAMING_SNAKE_CASE_ ( __A : Sequence[int] | None = None ) -> int: if nums is None or not nums: raise ValueError("Input sequence should not be empty" ) _SCREAMING_SNAKE_CASE = nums[0] for i in range(1 , len(__A ) ): _SCREAMING_SNAKE_CASE = nums[i] _SCREAMING_SNAKE_CASE = max(__A , ans + num , __A ) return ans if __name__ == "__main__": import doctest doctest.testmod() # Try on a sample input from the user lowerCamelCase_ = int(input('Enter number of elements : ').strip()) lowerCamelCase_ = list(map(int, input('\nEnter the numbers : ').strip().split()))[:n] print(max_subsequence_sum(array))
111
1
import argparse import datetime def _UpperCamelCase ( lowercase__ ): __SCREAMING_SNAKE_CASE : Union[str, Any] = { '''0''': '''Sunday''', '''1''': '''Monday''', '''2''': '''Tuesday''', '''3''': '''Wednesday''', '''4''': '''Thursday''', '''5''': '''Friday''', '''6''': '''Saturday''', } __SCREAMING_SNAKE_CASE : Dict = {0: 1, 1: 2, 2: 3, 3: 4, 4: 5, 5: 6, 6: 0} # Validate if not 0 < len(lowercase__ ) < 11: raise ValueError('''Must be 10 characters long''' ) # Get month __SCREAMING_SNAKE_CASE : int = int(date_input[0] + date_input[1] ) # Validate if not 0 < m < 13: raise ValueError('''Month must be between 1 - 12''' ) __SCREAMING_SNAKE_CASE : str = date_input[2] # Validate if sep_a not in ["-", "/"]: raise ValueError('''Date separator must be \'-\' or \'/\'''' ) # Get day __SCREAMING_SNAKE_CASE : int = int(date_input[3] + date_input[4] ) # Validate if not 0 < d < 32: raise ValueError('''Date must be between 1 - 31''' ) # Get second separator __SCREAMING_SNAKE_CASE : str = date_input[5] # Validate if sep_a not in ["-", "/"]: raise ValueError('''Date separator must be \'-\' or \'/\'''' ) # Get year __SCREAMING_SNAKE_CASE : int = int(date_input[6] + date_input[7] + date_input[8] + date_input[9] ) # Arbitrary year range if not 45 < y < 8500: raise ValueError( '''Year out of range. There has to be some sort of limit...right?''' ) # Get datetime obj for validation __SCREAMING_SNAKE_CASE : List[str] = datetime.date(int(lowercase__ ) , int(lowercase__ ) , int(lowercase__ ) ) # Start math if m <= 2: __SCREAMING_SNAKE_CASE : Dict = y - 1 __SCREAMING_SNAKE_CASE : List[str] = m + 12 # maths var __SCREAMING_SNAKE_CASE : int = int(str(lowercase__ )[:2] ) __SCREAMING_SNAKE_CASE : int = int(str(lowercase__ )[2:] ) __SCREAMING_SNAKE_CASE : int = int(2.6 * m - 5.39 ) __SCREAMING_SNAKE_CASE : int = int(c / 4 ) __SCREAMING_SNAKE_CASE : int = int(k / 4 ) __SCREAMING_SNAKE_CASE : int = int(d + k ) __SCREAMING_SNAKE_CASE : int = int(t + u + v + x ) __SCREAMING_SNAKE_CASE : int = int(z - (2 * c) ) __SCREAMING_SNAKE_CASE : int = round(w % 7 ) # End math # Validate math if f != convert_datetime_days[dt_ck.weekday()]: raise AssertionError('''The date was evaluated incorrectly. Contact developer.''' ) # Response __SCREAMING_SNAKE_CASE : str = F'''Your date {date_input}, is a {days[str(lowercase__ )]}!''' return response if __name__ == "__main__": import doctest doctest.testmod() __lowerCAmelCase : int =argparse.ArgumentParser( description=( 'Find out what day of the week nearly any date is or was. Enter ' 'date as a string in the mm-dd-yyyy or mm/dd/yyyy format' ) ) parser.add_argument( 'date_input', type=str, help='Date as a string (mm-dd-yyyy or mm/dd/yyyy)' ) __lowerCAmelCase : int =parser.parse_args() zeller(args.date_input)
9
import os import unittest from transformers.models.transfo_xl.tokenization_transfo_xl import VOCAB_FILES_NAMES, TransfoXLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class _lowercase ( A__ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[int] = TransfoXLTokenizer SCREAMING_SNAKE_CASE__ : int = False SCREAMING_SNAKE_CASE__ : Optional[Any] = False def __magic_name__( self :str ) -> Dict: super().setUp() __SCREAMING_SNAKE_CASE : List[str] = [ '''<unk>''', '''[CLS]''', '''[SEP]''', '''want''', '''unwanted''', '''wa''', '''un''', '''running''', ''',''', '''low''', '''l''', ] __SCREAMING_SNAKE_CASE : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def __magic_name__( self :Any , **lowerCAmelCase__ :int ) -> str: __SCREAMING_SNAKE_CASE : Optional[Any] = True return TransfoXLTokenizer.from_pretrained(self.tmpdirname , **lowerCAmelCase__ ) def __magic_name__( self :Union[str, Any] , lowerCAmelCase__ :List[Any] ) -> Tuple: __SCREAMING_SNAKE_CASE : Dict = '''<unk> UNwanted , running''' __SCREAMING_SNAKE_CASE : List[str] = '''<unk> unwanted, running''' return input_text, output_text def __magic_name__( self :Any ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE : int = TransfoXLTokenizer(vocab_file=self.vocab_file , lower_case=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : int = tokenizer.tokenize('''<unk> UNwanted , running''' ) self.assertListEqual(lowerCAmelCase__ , ['''<unk>''', '''unwanted''', ''',''', '''running'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ) , [0, 4, 8, 7] ) def __magic_name__( self :Tuple ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE : Optional[int] = TransfoXLTokenizer(lower_case=lowerCAmelCase__ ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo ! how \n Are yoU ? ''' ) , ['''hello''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) def __magic_name__( self :Tuple ) -> List[Any]: __SCREAMING_SNAKE_CASE : Union[str, Any] = TransfoXLTokenizer(lower_case=lowerCAmelCase__ ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo ! how \n Are yoU ? ''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def __magic_name__( self :Dict ) -> List[Any]: __SCREAMING_SNAKE_CASE : List[str] = TransfoXLTokenizer(lower_case=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[Any] = '''Hello (bracket) and side-scrolled [and] Henry\'s $5,000 with 3.34 m. What\'s up!?''' __SCREAMING_SNAKE_CASE : Optional[int] = [ '''Hello''', '''(''', '''bracket''', ''')''', '''and''', '''side''', '''@-@''', '''scrolled''', '''[''', '''and''', ''']''', '''Henry''', '''\'s''', '''$''', '''5''', '''@,@''', '''000''', '''with''', '''3''', '''@.@''', '''34''', '''m''', '''.''', '''What''', '''\'s''', '''up''', '''!''', '''?''', ] self.assertListEqual(tokenizer.tokenize(lowerCAmelCase__ ) , lowerCAmelCase__ ) self.assertEqual(tokenizer.convert_tokens_to_string(lowerCAmelCase__ ) , lowerCAmelCase__ ) def __magic_name__( self :str ) -> int: __SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_tokenizer() __SCREAMING_SNAKE_CASE : Any = len(lowerCAmelCase__ ) tokenizer.add_tokens(['''new1''', '''new2'''] ) tokenizer.move_added_token('''new1''' , 1 ) # Check that moved token is not copied (duplicate) self.assertEqual(len(lowerCAmelCase__ ) , original_len + 2 ) # Check that token is moved to specified id self.assertEqual(tokenizer.encode('''new1''' ) , [1] ) self.assertEqual(tokenizer.decode([1] ) , '''new1''' )
9
1
'''simple docstring''' import math import time from transformers import Trainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class _UpperCamelCase ( A ): '''simple docstring''' def __init__( self : Dict , *_lowerCAmelCase : Optional[Any] , _lowerCAmelCase : List[Any]=None , _lowerCAmelCase : Tuple=None , **_lowerCAmelCase : int): '''simple docstring''' super().__init__(*_lowerCAmelCase , **_lowerCAmelCase) __lowercase =eval_examples __lowercase =post_process_function def __lowerCamelCase ( self : Union[str, Any] , _lowerCAmelCase : Tuple=None , _lowerCAmelCase : Tuple=None , _lowerCAmelCase : List[str]=None , _lowerCAmelCase : str = "eval"): '''simple docstring''' __lowercase =self.eval_dataset if eval_dataset is None else eval_dataset __lowercase =self.get_eval_dataloader(_lowerCAmelCase) __lowercase =self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. __lowercase =self.compute_metrics __lowercase =None __lowercase =self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop __lowercase =time.time() try: __lowercase =eval_loop( _lowerCAmelCase , description='Evaluation' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=_lowerCAmelCase , metric_key_prefix=_lowerCAmelCase , ) finally: __lowercase =compute_metrics __lowercase =self.args.eval_batch_size * self.args.world_size if f"""{metric_key_prefix}_jit_compilation_time""" in output.metrics: start_time += output.metrics[f"""{metric_key_prefix}_jit_compilation_time"""] output.metrics.update( speed_metrics( _lowerCAmelCase , _lowerCAmelCase , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size) , )) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default __lowercase =self.post_process_function(_lowerCAmelCase , _lowerCAmelCase , output.predictions) __lowercase =self.compute_metrics(_lowerCAmelCase) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys()): if not key.startswith(f"""{metric_key_prefix}_"""): __lowercase =metrics.pop(_lowerCAmelCase) metrics.update(output.metrics) else: __lowercase =output.metrics if self.args.should_log: # Only the main node log the results by default self.log(_lowerCAmelCase) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report()) __lowercase =self.callback_handler.on_evaluate(self.args , self.state , self.control , _lowerCAmelCase) return metrics def __lowerCamelCase ( self : Union[str, Any] , _lowerCAmelCase : str , _lowerCAmelCase : Any , _lowerCAmelCase : str=None , _lowerCAmelCase : str = "test"): '''simple docstring''' __lowercase =self.get_test_dataloader(_lowerCAmelCase) # Temporarily disable metric computation, we will do it in the loop here. __lowercase =self.compute_metrics __lowercase =None __lowercase =self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop __lowercase =time.time() try: __lowercase =eval_loop( _lowerCAmelCase , description='Prediction' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=_lowerCAmelCase , metric_key_prefix=_lowerCAmelCase , ) finally: __lowercase =compute_metrics __lowercase =self.args.eval_batch_size * self.args.world_size if f"""{metric_key_prefix}_jit_compilation_time""" in output.metrics: start_time += output.metrics[f"""{metric_key_prefix}_jit_compilation_time"""] output.metrics.update( speed_metrics( _lowerCAmelCase , _lowerCAmelCase , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size) , )) if self.post_process_function is None or self.compute_metrics is None: return output __lowercase =self.post_process_function(_lowerCAmelCase , _lowerCAmelCase , output.predictions , 'predict') __lowercase =self.compute_metrics(_lowerCAmelCase) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys()): if not key.startswith(f"""{metric_key_prefix}_"""): __lowercase =metrics.pop(_lowerCAmelCase) metrics.update(output.metrics) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=_lowerCAmelCase)
48
'''simple docstring''' from sklearn.metrics import fa_score import datasets lowerCamelCase = """ The F1 score is the harmonic mean of the precision and recall. It can be computed with the equation: F1 = 2 * (precision * recall) / (precision + recall) """ lowerCamelCase = """ Args: predictions (`list` of `int`): Predicted labels. references (`list` of `int`): Ground truth labels. labels (`list` of `int`): The set of labels to include when `average` is not set to `'binary'`, and the order of the labels if `average` is `None`. Labels present in the data can be excluded, for example to calculate a multiclass average ignoring a majority negative class. Labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in `predictions` and `references` are used in sorted order. Defaults to None. pos_label (`int`): The class to be considered the positive class, in the case where `average` is set to `binary`. Defaults to 1. average (`string`): This parameter is required for multiclass/multilabel targets. If set to `None`, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `'binary'`. - 'binary': Only report results for the class specified by `pos_label`. This is applicable only if the classes found in `predictions` and `references` are binary. - 'micro': Calculate metrics globally by counting the total true positives, false negatives and false positives. - 'macro': Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account. - 'weighted': Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `'macro'` to account for label imbalance. This option can result in an F-score that is not between precision and recall. - 'samples': Calculate metrics for each instance, and find their average (only meaningful for multilabel classification). sample_weight (`list` of `float`): Sample weights Defaults to None. Returns: f1 (`float` or `array` of `float`): F1 score or list of f1 scores, depending on the value passed to `average`. Minimum possible value is 0. Maximum possible value is 1. Higher f1 scores are better. Examples: Example 1-A simple binary example >>> f1_metric = datasets.load_metric(\"f1\") >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0]) >>> print(results) {'f1': 0.5} Example 2-The same simple binary example as in Example 1, but with `pos_label` set to `0`. >>> f1_metric = datasets.load_metric(\"f1\") >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], pos_label=0) >>> print(round(results['f1'], 2)) 0.67 Example 3-The same simple binary example as in Example 1, but with `sample_weight` included. >>> f1_metric = datasets.load_metric(\"f1\") >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], sample_weight=[0.9, 0.5, 3.9, 1.2, 0.3]) >>> print(round(results['f1'], 2)) 0.35 Example 4-A multiclass example, with different values for the `average` input. >>> predictions = [0, 2, 1, 0, 0, 1] >>> references = [0, 1, 2, 0, 1, 2] >>> results = f1_metric.compute(predictions=predictions, references=references, average=\"macro\") >>> print(round(results['f1'], 2)) 0.27 >>> results = f1_metric.compute(predictions=predictions, references=references, average=\"micro\") >>> print(round(results['f1'], 2)) 0.33 >>> results = f1_metric.compute(predictions=predictions, references=references, average=\"weighted\") >>> print(round(results['f1'], 2)) 0.27 >>> results = f1_metric.compute(predictions=predictions, references=references, average=None) >>> print(results) {'f1': array([0.8, 0. , 0. ])} """ lowerCamelCase = """ @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _UpperCamelCase ( datasets.Metric ): '''simple docstring''' def __lowerCamelCase ( self : Any): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Sequence(datasets.Value('int32')), 'references': datasets.Sequence(datasets.Value('int32')), } if self.config_name == 'multilabel' else { 'predictions': datasets.Value('int32'), 'references': datasets.Value('int32'), }) , reference_urls=['https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html'] , ) def __lowerCamelCase ( self : int , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : int , _lowerCAmelCase : Tuple=None , _lowerCAmelCase : Optional[int]=1 , _lowerCAmelCase : List[Any]="binary" , _lowerCAmelCase : Tuple=None): '''simple docstring''' __lowercase =fa_score( _lowerCAmelCase , _lowerCAmelCase , labels=_lowerCAmelCase , pos_label=_lowerCAmelCase , average=_lowerCAmelCase , sample_weight=_lowerCAmelCase) return {"f1": float(_lowerCAmelCase) if score.size == 1 else score}
48
1
'''simple docstring''' import os def a_ ( ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ =os.path.join(os.path.dirname(__snake_case ) , '''num.txt''' ) with open(__snake_case ) as file_hand: return str(sum(int(__snake_case ) for line in file_hand ) )[:10] if __name__ == "__main__": print(solution())
75
'''simple docstring''' import argparse import json import pickle from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation, MaskFormerImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() __SCREAMING_SNAKE_CASE : Union[str, Any] = logging.get_logger(__name__) def UpperCamelCase_ ( _UpperCAmelCase : str ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase : int = SwinConfig.from_pretrained( "microsoft/swin-tiny-patch4-window7-224" , out_features=["stage1", "stage2", "stage3", "stage4"] ) _UpperCAmelCase : List[Any] = MaskFormerConfig(backbone_config=_UpperCAmelCase ) _UpperCAmelCase : Tuple = "huggingface/label-files" if "ade20k-full" in model_name: # this should be ok _UpperCAmelCase : Dict = 847 _UpperCAmelCase : Any = "maskformer-ade20k-full-id2label.json" elif "ade" in model_name: # this should be ok _UpperCAmelCase : Any = 150 _UpperCAmelCase : Any = "ade20k-id2label.json" elif "coco-stuff" in model_name: # this should be ok _UpperCAmelCase : Tuple = 171 _UpperCAmelCase : Union[str, Any] = "maskformer-coco-stuff-id2label.json" elif "coco" in model_name: # TODO _UpperCAmelCase : Any = 133 _UpperCAmelCase : int = "coco-panoptic-id2label.json" elif "cityscapes" in model_name: # this should be ok _UpperCAmelCase : Optional[int] = 19 _UpperCAmelCase : str = "cityscapes-id2label.json" elif "vistas" in model_name: # this should be ok _UpperCAmelCase : Optional[int] = 65 _UpperCAmelCase : Tuple = "mapillary-vistas-id2label.json" _UpperCAmelCase : List[Any] = json.load(open(hf_hub_download(_UpperCAmelCase , _UpperCAmelCase , repo_type="dataset" ) , "r" ) ) _UpperCAmelCase : Tuple = {int(_UpperCAmelCase ): v for k, v in idalabel.items()} return config def UpperCamelCase_ ( _UpperCAmelCase : Optional[int] ) -> List[Any]: """simple docstring""" _UpperCAmelCase : Dict = [] # stem # fmt: off rename_keys.append(("backbone.patch_embed.proj.weight", "model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.weight") ) rename_keys.append(("backbone.patch_embed.proj.bias", "model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.bias") ) rename_keys.append(("backbone.patch_embed.norm.weight", "model.pixel_level_module.encoder.model.embeddings.norm.weight") ) rename_keys.append(("backbone.patch_embed.norm.bias", "model.pixel_level_module.encoder.model.embeddings.norm.bias") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.norm1.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.norm1.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.attn.relative_position_bias_table""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.attn.relative_position_index""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.attn.proj.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.attn.proj.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.norm2.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.norm2.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.mlp.fc1.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.mlp.fc1.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.mlp.fc2.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.weight""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.mlp.fc2.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.bias""") ) if i < 3: rename_keys.append((F"""backbone.layers.{i}.downsample.reduction.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.reduction.weight""") ) rename_keys.append((F"""backbone.layers.{i}.downsample.norm.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.weight""") ) rename_keys.append((F"""backbone.layers.{i}.downsample.norm.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.bias""") ) rename_keys.append((F"""backbone.norm{i}.weight""", F"""model.pixel_level_module.encoder.hidden_states_norms.{i}.weight""") ) rename_keys.append((F"""backbone.norm{i}.bias""", F"""model.pixel_level_module.encoder.hidden_states_norms.{i}.bias""") ) # FPN rename_keys.append(("sem_seg_head.layer_4.weight", "model.pixel_level_module.decoder.fpn.stem.0.weight") ) rename_keys.append(("sem_seg_head.layer_4.norm.weight", "model.pixel_level_module.decoder.fpn.stem.1.weight") ) rename_keys.append(("sem_seg_head.layer_4.norm.bias", "model.pixel_level_module.decoder.fpn.stem.1.bias") ) for source_index, target_index in zip(range(3 , 0 , -1 ) , range(0 , 3 ) ): rename_keys.append((F"""sem_seg_head.adapter_{source_index}.weight""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.0.weight""") ) rename_keys.append((F"""sem_seg_head.adapter_{source_index}.norm.weight""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.weight""") ) rename_keys.append((F"""sem_seg_head.adapter_{source_index}.norm.bias""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.bias""") ) rename_keys.append((F"""sem_seg_head.layer_{source_index}.weight""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.0.weight""") ) rename_keys.append((F"""sem_seg_head.layer_{source_index}.norm.weight""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.weight""") ) rename_keys.append((F"""sem_seg_head.layer_{source_index}.norm.bias""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.bias""") ) rename_keys.append(("sem_seg_head.mask_features.weight", "model.pixel_level_module.decoder.mask_projection.weight") ) rename_keys.append(("sem_seg_head.mask_features.bias", "model.pixel_level_module.decoder.mask_projection.bias") ) # Transformer decoder for idx in range(config.decoder_config.decoder_layers ): # self-attention out projection rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.weight""", F"""model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.bias""", F"""model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.bias""") ) # cross-attention out projection rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.weight""", F"""model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.bias""", F"""model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.bias""") ) # MLP 1 rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.weight""", F"""model.transformer_module.decoder.layers.{idx}.fc1.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.bias""", F"""model.transformer_module.decoder.layers.{idx}.fc1.bias""") ) # MLP 2 rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.weight""", F"""model.transformer_module.decoder.layers.{idx}.fc2.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.bias""", F"""model.transformer_module.decoder.layers.{idx}.fc2.bias""") ) # layernorm 1 (self-attention layernorm) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.weight""", F"""model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.bias""", F"""model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.bias""") ) # layernorm 2 (cross-attention layernorm) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.weight""", F"""model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.bias""", F"""model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.bias""") ) # layernorm 3 (final layernorm) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.weight""", F"""model.transformer_module.decoder.layers.{idx}.final_layer_norm.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.bias""", F"""model.transformer_module.decoder.layers.{idx}.final_layer_norm.bias""") ) rename_keys.append(("sem_seg_head.predictor.transformer.decoder.norm.weight", "model.transformer_module.decoder.layernorm.weight") ) rename_keys.append(("sem_seg_head.predictor.transformer.decoder.norm.bias", "model.transformer_module.decoder.layernorm.bias") ) # heads on top rename_keys.append(("sem_seg_head.predictor.query_embed.weight", "model.transformer_module.queries_embedder.weight") ) rename_keys.append(("sem_seg_head.predictor.input_proj.weight", "model.transformer_module.input_projection.weight") ) rename_keys.append(("sem_seg_head.predictor.input_proj.bias", "model.transformer_module.input_projection.bias") ) rename_keys.append(("sem_seg_head.predictor.class_embed.weight", "class_predictor.weight") ) rename_keys.append(("sem_seg_head.predictor.class_embed.bias", "class_predictor.bias") ) for i in range(3 ): rename_keys.append((F"""sem_seg_head.predictor.mask_embed.layers.{i}.weight""", F"""mask_embedder.{i}.0.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.mask_embed.layers.{i}.bias""", F"""mask_embedder.{i}.0.bias""") ) # fmt: on return rename_keys def UpperCamelCase_ ( _UpperCAmelCase : int , _UpperCAmelCase : Tuple , _UpperCAmelCase : List[Any] ) -> List[str]: """simple docstring""" _UpperCAmelCase : Optional[int] = dct.pop(_UpperCAmelCase ) _UpperCAmelCase : List[str] = val def UpperCamelCase_ ( _UpperCAmelCase : List[Any] , _UpperCAmelCase : Tuple ) -> Optional[int]: """simple docstring""" _UpperCAmelCase : List[str] = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): _UpperCAmelCase : Optional[int] = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) _UpperCAmelCase : Any = state_dict.pop(F"""backbone.layers.{i}.blocks.{j}.attn.qkv.weight""" ) _UpperCAmelCase : Optional[int] = state_dict.pop(F"""backbone.layers.{i}.blocks.{j}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict _UpperCAmelCase : List[str] = in_proj_weight[:dim, :] _UpperCAmelCase : Tuple = in_proj_bias[: dim] _UpperCAmelCase : List[Any] = in_proj_weight[ dim : dim * 2, : ] _UpperCAmelCase : List[str] = in_proj_bias[ dim : dim * 2 ] _UpperCAmelCase : Optional[Any] = in_proj_weight[ -dim :, : ] _UpperCAmelCase : Dict = in_proj_bias[-dim :] # fmt: on def UpperCamelCase_ ( _UpperCAmelCase : Dict , _UpperCAmelCase : str ) -> Dict: """simple docstring""" _UpperCAmelCase : Union[str, Any] = config.decoder_config.hidden_size for idx in range(config.decoder_config.decoder_layers ): # read in weights + bias of self-attention input projection layer (in the original implementation, this is a single matrix + bias) _UpperCAmelCase : Dict = state_dict.pop(F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_weight""" ) _UpperCAmelCase : Dict = state_dict.pop(F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict _UpperCAmelCase : int = in_proj_weight[: hidden_size, :] _UpperCAmelCase : Union[str, Any] = in_proj_bias[:config.hidden_size] _UpperCAmelCase : List[str] = in_proj_weight[hidden_size : hidden_size * 2, :] _UpperCAmelCase : List[str] = in_proj_bias[hidden_size : hidden_size * 2] _UpperCAmelCase : int = in_proj_weight[-hidden_size :, :] _UpperCAmelCase : Optional[Any] = in_proj_bias[-hidden_size :] # read in weights + bias of cross-attention input projection layer (in the original implementation, this is a single matrix + bias) _UpperCAmelCase : Optional[Any] = state_dict.pop(F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_weight""" ) _UpperCAmelCase : Tuple = state_dict.pop(F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict _UpperCAmelCase : Any = in_proj_weight[: hidden_size, :] _UpperCAmelCase : Tuple = in_proj_bias[:config.hidden_size] _UpperCAmelCase : Dict = in_proj_weight[hidden_size : hidden_size * 2, :] _UpperCAmelCase : Dict = in_proj_bias[hidden_size : hidden_size * 2] _UpperCAmelCase : Optional[int] = in_proj_weight[-hidden_size :, :] _UpperCAmelCase : Union[str, Any] = in_proj_bias[-hidden_size :] # fmt: on def UpperCamelCase_ ( ) -> torch.Tensor: """simple docstring""" _UpperCAmelCase : int = "http://images.cocodataset.org/val2017/000000039769.jpg" _UpperCAmelCase : Any = Image.open(requests.get(_UpperCAmelCase , stream=_UpperCAmelCase ).raw ) return im @torch.no_grad() def UpperCamelCase_ ( _UpperCAmelCase : str , _UpperCAmelCase : str , _UpperCAmelCase : str , _UpperCAmelCase : bool = False ) -> List[str]: """simple docstring""" _UpperCAmelCase : Optional[int] = get_maskformer_config(_UpperCAmelCase ) # load original state_dict with open(_UpperCAmelCase , "rb" ) as f: _UpperCAmelCase : Optional[int] = pickle.load(_UpperCAmelCase ) _UpperCAmelCase : Optional[int] = data["model"] # for name, param in state_dict.items(): # print(name, param.shape) # rename keys _UpperCAmelCase : Any = create_rename_keys(_UpperCAmelCase ) for src, dest in rename_keys: rename_key(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) read_in_swin_q_k_v(_UpperCAmelCase , config.backbone_config ) read_in_decoder_q_k_v(_UpperCAmelCase , _UpperCAmelCase ) # update to torch tensors for key, value in state_dict.items(): _UpperCAmelCase : Tuple = torch.from_numpy(_UpperCAmelCase ) # load 🤗 model _UpperCAmelCase : Union[str, Any] = MaskFormerForInstanceSegmentation(_UpperCAmelCase ) model.eval() for name, param in model.named_parameters(): print(_UpperCAmelCase , param.shape ) _UpperCAmelCase , _UpperCAmelCase : Any = model.load_state_dict(_UpperCAmelCase , strict=_UpperCAmelCase ) assert missing_keys == [ "model.pixel_level_module.encoder.model.layernorm.weight", "model.pixel_level_module.encoder.model.layernorm.bias", ] assert len(_UpperCAmelCase ) == 0, F"""Unexpected keys: {unexpected_keys}""" # verify results _UpperCAmelCase : Optional[int] = prepare_img() if "vistas" in model_name: _UpperCAmelCase : int = 65 elif "cityscapes" in model_name: _UpperCAmelCase : Tuple = 65_535 else: _UpperCAmelCase : Any = 255 _UpperCAmelCase : Optional[Any] = True if "ade" in model_name else False _UpperCAmelCase : Optional[int] = MaskFormerImageProcessor(ignore_index=_UpperCAmelCase , reduce_labels=_UpperCAmelCase ) _UpperCAmelCase : Optional[int] = image_processor(_UpperCAmelCase , return_tensors="pt" ) _UpperCAmelCase : List[Any] = model(**_UpperCAmelCase ) print("Logits:" , outputs.class_queries_logits[0, :3, :3] ) if model_name == "maskformer-swin-tiny-ade": _UpperCAmelCase : Tuple = torch.tensor( [[3.6_3_5_3, -4.4_7_7_0, -2.6_0_6_5], [0.5_0_8_1, -4.2_3_9_4, -3.5_3_4_3], [2.1_9_0_9, -5.0_3_5_3, -1.9_3_2_3]] ) assert torch.allclose(outputs.class_queries_logits[0, :3, :3] , _UpperCAmelCase , atol=1e-4 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: print(F"""Saving model and image processor to {pytorch_dump_folder_path}""" ) Path(_UpperCAmelCase ).mkdir(exist_ok=_UpperCAmelCase ) model.save_pretrained(_UpperCAmelCase ) image_processor.save_pretrained(_UpperCAmelCase ) if push_to_hub: print("Pushing model and image processor to the hub..." ) model.push_to_hub(F"""nielsr/{model_name}""" ) image_processor.push_to_hub(F"""nielsr/{model_name}""" ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""maskformer-swin-tiny-ade""", type=str, help=("""Name of the MaskFormer model you'd like to convert""",), ) parser.add_argument( """--checkpoint_path""", default="""/Users/nielsrogge/Documents/MaskFormer_checkpoints/MaskFormer-Swin-tiny-ADE20k/model.pkl""", type=str, help="""Path to the original state dict (.pth file).""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) __SCREAMING_SNAKE_CASE : int = parser.parse_args() convert_maskformer_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
31
0
'''simple docstring''' from math import factorial def _a( UpperCamelCase__ : int = 1_0_0 ): '''simple docstring''' return sum(int(UpperCamelCase__ ) for x in str(factorial(UpperCamelCase__ ) ) ) if __name__ == "__main__": print(solution(int(input('Enter the Number: ').strip())))
222
'''simple docstring''' from __future__ import annotations import os from collections.abc import Mapping a_ = tuple[int, int] class __SCREAMING_SNAKE_CASE : def __init__( self : Any , __lowercase : set[int] , __lowercase : Mapping[EdgeT, int] ) -> None: SCREAMING_SNAKE_CASE__ : set[int] =vertices SCREAMING_SNAKE_CASE__ : dict[EdgeT, int] ={ (min(__lowercase ), max(__lowercase )): weight for edge, weight in edges.items() } def __magic_name__ ( self : Union[str, Any] , __lowercase : EdgeT , __lowercase : int ) -> None: self.vertices.add(edge[0] ) self.vertices.add(edge[1] ) SCREAMING_SNAKE_CASE__ : List[str] =weight def __magic_name__ ( self : Optional[Any] ) -> Graph: SCREAMING_SNAKE_CASE__ : Graph =Graph({min(self.vertices )} , {} ) SCREAMING_SNAKE_CASE__ : EdgeT SCREAMING_SNAKE_CASE__ : int SCREAMING_SNAKE_CASE__ : EdgeT SCREAMING_SNAKE_CASE__ : int while len(subgraph.vertices ) < len(self.vertices ): SCREAMING_SNAKE_CASE__ : Any =max(self.edges.values() ) + 1 for edge, weight in self.edges.items(): if (edge[0] in subgraph.vertices) ^ (edge[1] in subgraph.vertices): if weight < min_weight: SCREAMING_SNAKE_CASE__ : List[str] =edge SCREAMING_SNAKE_CASE__ : Any =weight subgraph.add_edge(__lowercase , __lowercase ) return subgraph def _a( UpperCamelCase__ : str = "p107_network.txt" ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : str =os.path.abspath(os.path.dirname(UpperCamelCase__ ) ) SCREAMING_SNAKE_CASE__ : str =os.path.join(UpperCamelCase__, UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ : dict[EdgeT, int] ={} SCREAMING_SNAKE_CASE__ : list[str] SCREAMING_SNAKE_CASE__ : int SCREAMING_SNAKE_CASE__ : int with open(UpperCamelCase__ ) as f: SCREAMING_SNAKE_CASE__ : Any =f.read().strip().split('''\n''' ) SCREAMING_SNAKE_CASE__ : Optional[Any] =[line.split(''',''' ) for line in data] for edgea in range(1, len(UpperCamelCase__ ) ): for edgea in range(UpperCamelCase__ ): if adjaceny_matrix[edgea][edgea] != "-": SCREAMING_SNAKE_CASE__ : List[Any] =int(adjaceny_matrix[edgea][edgea] ) SCREAMING_SNAKE_CASE__ : Graph =Graph(set(range(len(UpperCamelCase__ ) ) ), UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ : Graph =graph.prims_algorithm() SCREAMING_SNAKE_CASE__ : int =sum(graph.edges.values() ) SCREAMING_SNAKE_CASE__ : int =sum(subgraph.edges.values() ) return initial_total - optimal_total if __name__ == "__main__": print(F'''{solution() = }''')
222
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCAmelCase__ = {"configuration_vit_msn": ["VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP", "ViTMSNConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ "VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST", "ViTMSNModel", "ViTMSNForImageClassification", "ViTMSNPreTrainedModel", ] if TYPE_CHECKING: from .configuration_vit_msn import VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMSNConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_msn import ( VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMSNForImageClassification, ViTMSNModel, ViTMSNPreTrainedModel, ) else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
0
import unittest from transformers import DebertaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DebertaForMaskedLM, DebertaForQuestionAnswering, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaModel, ) from transformers.models.deberta.modeling_deberta import DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" def __init__( self , lowerCamelCase__ , lowerCamelCase__=13 , lowerCamelCase__=7 , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__=99 , lowerCamelCase__=32 , lowerCamelCase__=5 , lowerCamelCase__=4 , lowerCamelCase__=37 , lowerCamelCase__="gelu" , lowerCamelCase__=0.1 , lowerCamelCase__=0.1 , lowerCamelCase__=512 , lowerCamelCase__=16 , lowerCamelCase__=2 , lowerCamelCase__=0.02 , lowerCamelCase__=False , lowerCamelCase__=True , lowerCamelCase__="None" , lowerCamelCase__=3 , lowerCamelCase__=4 , lowerCamelCase__=None , ) -> int: '''simple docstring''' __lowerCamelCase = parent __lowerCamelCase = batch_size __lowerCamelCase = seq_length __lowerCamelCase = is_training __lowerCamelCase = use_input_mask __lowerCamelCase = use_token_type_ids __lowerCamelCase = use_labels __lowerCamelCase = vocab_size __lowerCamelCase = hidden_size __lowerCamelCase = num_hidden_layers __lowerCamelCase = num_attention_heads __lowerCamelCase = intermediate_size __lowerCamelCase = hidden_act __lowerCamelCase = hidden_dropout_prob __lowerCamelCase = attention_probs_dropout_prob __lowerCamelCase = max_position_embeddings __lowerCamelCase = type_vocab_size __lowerCamelCase = type_sequence_label_size __lowerCamelCase = initializer_range __lowerCamelCase = num_labels __lowerCamelCase = num_choices __lowerCamelCase = relative_attention __lowerCamelCase = position_biased_input __lowerCamelCase = pos_att_type __lowerCamelCase = scope def lowercase_ ( self ) -> str: '''simple docstring''' __lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowerCamelCase = None if self.use_input_mask: __lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) __lowerCamelCase = None if self.use_token_type_ids: __lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowerCamelCase = None __lowerCamelCase = None __lowerCamelCase = None if self.use_labels: __lowerCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowerCamelCase = ids_tensor([self.batch_size] , self.num_choices ) __lowerCamelCase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowercase_ ( self ) -> Optional[Any]: '''simple docstring''' return DebertaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , pos_att_type=self.pos_att_type , ) def lowercase_ ( self ) -> List[str]: '''simple docstring''' __lowerCamelCase = self.get_config() __lowerCamelCase = 300 return config def lowercase_ ( self , lowerCamelCase__ ) -> Optional[int]: '''simple docstring''' self.parent.assertListEqual(list(result.loss.size() ) , [] ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Any: '''simple docstring''' __lowerCamelCase = DebertaModel(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() __lowerCamelCase = model(lowerCamelCase__ , attention_mask=lowerCamelCase__ , token_type_ids=lowerCamelCase__ )[0] __lowerCamelCase = model(lowerCamelCase__ , token_type_ids=lowerCamelCase__ )[0] __lowerCamelCase = model(lowerCamelCase__ )[0] self.parent.assertListEqual(list(sequence_output.size() ) , [self.batch_size, self.seq_length, self.hidden_size] ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Tuple: '''simple docstring''' __lowerCamelCase = DebertaForMaskedLM(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() __lowerCamelCase = model(lowerCamelCase__ , attention_mask=lowerCamelCase__ , token_type_ids=lowerCamelCase__ , labels=lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Union[str, Any]: '''simple docstring''' __lowerCamelCase = self.num_labels __lowerCamelCase = DebertaForSequenceClassification(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() __lowerCamelCase = model(lowerCamelCase__ , attention_mask=lowerCamelCase__ , token_type_ids=lowerCamelCase__ , labels=lowerCamelCase__ ) self.parent.assertListEqual(list(result.logits.size() ) , [self.batch_size, self.num_labels] ) self.check_loss_output(lowerCamelCase__ ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Optional[int]: '''simple docstring''' __lowerCamelCase = self.num_labels __lowerCamelCase = DebertaForTokenClassification(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() __lowerCamelCase = model(lowerCamelCase__ , attention_mask=lowerCamelCase__ , token_type_ids=lowerCamelCase__ , labels=lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Dict: '''simple docstring''' __lowerCamelCase = DebertaForQuestionAnswering(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() __lowerCamelCase = model( lowerCamelCase__ , attention_mask=lowerCamelCase__ , token_type_ids=lowerCamelCase__ , start_positions=lowerCamelCase__ , end_positions=lowerCamelCase__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowercase_ ( self ) -> Union[str, Any]: '''simple docstring''' __lowerCamelCase = self.prepare_config_and_inputs() ( ( __lowerCamelCase ) , ( __lowerCamelCase ) , ( __lowerCamelCase ) , ( __lowerCamelCase ) , ( __lowerCamelCase ) , ( __lowerCamelCase ) , ( __lowerCamelCase ) , ) = config_and_inputs __lowerCamelCase = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class __lowerCAmelCase ( __magic_name__ , __magic_name__ , unittest.TestCase ): """simple docstring""" snake_case_ = ( ( DebertaModel, DebertaForMaskedLM, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaForQuestionAnswering, ) if is_torch_available() else () ) snake_case_ = ( { '''feature-extraction''': DebertaModel, '''fill-mask''': DebertaForMaskedLM, '''question-answering''': DebertaForQuestionAnswering, '''text-classification''': DebertaForSequenceClassification, '''token-classification''': DebertaForTokenClassification, '''zero-shot''': DebertaForSequenceClassification, } if is_torch_available() else {} ) snake_case_ = True snake_case_ = False snake_case_ = False snake_case_ = False snake_case_ = False def lowercase_ ( self ) -> List[Any]: '''simple docstring''' __lowerCamelCase = DebertaModelTester(self ) __lowerCamelCase = ConfigTester(self , config_class=lowerCamelCase__ , hidden_size=37 ) def lowercase_ ( self ) -> Optional[int]: '''simple docstring''' self.config_tester.run_common_tests() def lowercase_ ( self ) -> List[str]: '''simple docstring''' __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_model(*lowerCamelCase__ ) def lowercase_ ( self ) -> Optional[int]: '''simple docstring''' __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_sequence_classification(*lowerCamelCase__ ) def lowercase_ ( self ) -> Dict: '''simple docstring''' __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_masked_lm(*lowerCamelCase__ ) def lowercase_ ( self ) -> Optional[Any]: '''simple docstring''' __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_question_answering(*lowerCamelCase__ ) def lowercase_ ( self ) -> str: '''simple docstring''' __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_token_classification(*lowerCamelCase__ ) @slow def lowercase_ ( self ) -> Optional[int]: '''simple docstring''' for model_name in DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCamelCase = DebertaModel.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) @require_torch @require_sentencepiece @require_tokenizers class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @unittest.skip(reason='Model not available yet' ) def lowercase_ ( self ) -> Union[str, Any]: '''simple docstring''' pass @slow def lowercase_ ( self ) -> Tuple: '''simple docstring''' __lowerCamelCase = DebertaModel.from_pretrained('microsoft/deberta-base' ) __lowerCamelCase = torch.tensor([[0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2]] ) __lowerCamelCase = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): __lowerCamelCase = model(lowerCamelCase__ , attention_mask=lowerCamelCase__ )[0] # compare the actual values for a slice. __lowerCamelCase = torch.tensor( [[[-0.59_86, -0.80_55, -0.84_62], [1.44_84, -0.93_48, -0.80_59], [0.31_23, 0.00_32, -1.41_31]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , lowerCamelCase__ , atol=1e-4 ) , f"""{output[:, 1:4, 1:4]}""" )
90
0
"""simple docstring""" from __future__ import annotations __UpperCAmelCase = [] def _snake_case ( lowercase__ : list[list[int]] , lowercase__ : int , lowercase__ : int ) -> bool: '''simple docstring''' for i in range(len(lowercase__ ) ): if board[row][i] == 1: return False for i in range(len(lowercase__ ) ): if board[i][column] == 1: return False for i, j in zip(range(lowercase__ , -1 , -1 ) , range(lowercase__ , -1 , -1 ) ): if board[i][j] == 1: return False for i, j in zip(range(lowercase__ , -1 , -1 ) , range(lowercase__ , len(lowercase__ ) ) ): if board[i][j] == 1: return False return True def _snake_case ( lowercase__ : list[list[int]] , lowercase__ : int ) -> bool: '''simple docstring''' if row >= len(lowercase__ ): solution.append(lowercase__ ) printboard(lowercase__ ) print() return True for i in range(len(lowercase__ ) ): if is_safe(lowercase__ , lowercase__ , lowercase__ ): lowerCAmelCase_ :Optional[Any] = 1 solve(lowercase__ , row + 1 ) lowerCAmelCase_ :str = 0 return False def _snake_case ( lowercase__ : list[list[int]] ) -> None: '''simple docstring''' for i in range(len(lowercase__ ) ): for j in range(len(lowercase__ ) ): if board[i][j] == 1: print("""Q""" , end=""" """ ) else: print(""".""" , end=""" """ ) print() # n=int(input("The no. of queens")) __UpperCAmelCase = 8 __UpperCAmelCase = [[0 for i in range(n)] for j in range(n)] solve(board, 0) print('The total no. of solutions are :', len(solution))
1
"""simple docstring""" # This model implementation is heavily inspired by https://github.com/haofanwang/ControlNet-for-Diffusers/ import gc import random import tempfile import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, ControlNetModel, DDIMScheduler, StableDiffusionControlNetImgaImgPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet import MultiControlNetModel from diffusers.utils import floats_tensor, load_image, load_numpy, randn_tensor, slow, torch_device from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, ) enable_full_determinism() class _SCREAMING_SNAKE_CASE ( A__ , A__ , A__ , unittest.TestCase ): UpperCAmelCase_ :int = StableDiffusionControlNetImgaImgPipeline UpperCAmelCase_ :str = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"height", "width"} UpperCAmelCase_ :Tuple = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS UpperCAmelCase_ :List[str] = IMAGE_TO_IMAGE_IMAGE_PARAMS.union({"control_image"} ) UpperCAmelCase_ :Optional[Any] = IMAGE_TO_IMAGE_IMAGE_PARAMS def __lowerCAmelCase ( self ) -> List[str]: torch.manual_seed(0 ) lowerCAmelCase_ :Tuple = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) torch.manual_seed(0 ) lowerCAmelCase_ :List[Any] = ControlNetModel( block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , ) torch.manual_seed(0 ) lowerCAmelCase_ :Optional[Any] = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule="""scaled_linear""" , clip_sample=__A , set_alpha_to_one=__A , ) torch.manual_seed(0 ) lowerCAmelCase_ :List[str] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) torch.manual_seed(0 ) lowerCAmelCase_ :Union[str, Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) lowerCAmelCase_ :List[Any] = CLIPTextModel(__A ) lowerCAmelCase_ :int = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) lowerCAmelCase_ :Union[str, Any] = { """unet""": unet, """controlnet""": controlnet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def __lowerCAmelCase ( self , __A , __A=0 ) -> List[str]: if str(__A ).startswith("""mps""" ): lowerCAmelCase_ :Tuple = torch.manual_seed(__A ) else: lowerCAmelCase_ :Optional[int] = torch.Generator(device=__A ).manual_seed(__A ) lowerCAmelCase_ :List[Any] = 2 lowerCAmelCase_ :int = randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=__A , device=torch.device(__A ) , ) lowerCAmelCase_ :Optional[int] = floats_tensor(control_image.shape , rng=random.Random(__A ) ).to(__A ) lowerCAmelCase_ :Tuple = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowerCAmelCase_ :List[Any] = Image.fromarray(np.uinta(__A ) ).convert("""RGB""" ).resize((64, 64) ) lowerCAmelCase_ :Union[str, Any] = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """output_type""": """numpy""", """image""": image, """control_image""": control_image, } return inputs def __lowerCAmelCase ( self ) -> int: return self._test_attention_slicing_forward_pass(expected_max_diff=2E-3 ) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def __lowerCAmelCase ( self ) -> Union[str, Any]: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2E-3 ) def __lowerCAmelCase ( self ) -> List[str]: self._test_inference_batch_single_identical(expected_max_diff=2E-3 ) class _SCREAMING_SNAKE_CASE ( A__ , A__ , unittest.TestCase ): UpperCAmelCase_ :List[str] = StableDiffusionControlNetImgaImgPipeline UpperCAmelCase_ :int = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"height", "width"} UpperCAmelCase_ :str = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS UpperCAmelCase_ :int = frozenset([] ) # TO_DO: add image_params once refactored VaeImageProcessor.preprocess def __lowerCAmelCase ( self ) -> Optional[int]: torch.manual_seed(0 ) lowerCAmelCase_ :Dict = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) torch.manual_seed(0 ) def init_weights(__A ): if isinstance(__A , torch.nn.Convad ): torch.nn.init.normal(m.weight ) m.bias.data.fill_(1.0 ) lowerCAmelCase_ :List[Any] = ControlNetModel( block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , ) controlneta.controlnet_down_blocks.apply(__A ) torch.manual_seed(0 ) lowerCAmelCase_ :Optional[Any] = ControlNetModel( block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , ) controlneta.controlnet_down_blocks.apply(__A ) torch.manual_seed(0 ) lowerCAmelCase_ :Optional[Any] = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule="""scaled_linear""" , clip_sample=__A , set_alpha_to_one=__A , ) torch.manual_seed(0 ) lowerCAmelCase_ :Optional[int] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) torch.manual_seed(0 ) lowerCAmelCase_ :Optional[Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) lowerCAmelCase_ :str = CLIPTextModel(__A ) lowerCAmelCase_ :str = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) lowerCAmelCase_ :Optional[Any] = MultiControlNetModel([controlneta, controlneta] ) lowerCAmelCase_ :List[Any] = { """unet""": unet, """controlnet""": controlnet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def __lowerCAmelCase ( self , __A , __A=0 ) -> str: if str(__A ).startswith("""mps""" ): lowerCAmelCase_ :Optional[Any] = torch.manual_seed(__A ) else: lowerCAmelCase_ :List[Any] = torch.Generator(device=__A ).manual_seed(__A ) lowerCAmelCase_ :Optional[Any] = 2 lowerCAmelCase_ :Optional[int] = [ randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=__A , device=torch.device(__A ) , ), randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=__A , device=torch.device(__A ) , ), ] lowerCAmelCase_ :int = floats_tensor(control_image[0].shape , rng=random.Random(__A ) ).to(__A ) lowerCAmelCase_ :Optional[Any] = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowerCAmelCase_ :List[Any] = Image.fromarray(np.uinta(__A ) ).convert("""RGB""" ).resize((64, 64) ) lowerCAmelCase_ :List[str] = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """output_type""": """numpy""", """image""": image, """control_image""": control_image, } return inputs def __lowerCAmelCase ( self ) -> Optional[Any]: lowerCAmelCase_ :List[str] = self.get_dummy_components() lowerCAmelCase_ :Tuple = self.pipeline_class(**__A ) pipe.to(__A ) lowerCAmelCase_ :Union[str, Any] = 1_0.0 lowerCAmelCase_ :Union[str, Any] = 4 lowerCAmelCase_ :Tuple = self.get_dummy_inputs(__A ) lowerCAmelCase_ :List[str] = steps lowerCAmelCase_ :int = scale lowerCAmelCase_ :Union[str, Any] = pipe(**__A )[0] lowerCAmelCase_ :Any = self.get_dummy_inputs(__A ) lowerCAmelCase_ :str = steps lowerCAmelCase_ :str = scale lowerCAmelCase_ :Tuple = pipe(**__A , control_guidance_start=0.1 , control_guidance_end=0.2 )[0] lowerCAmelCase_ :Optional[Any] = self.get_dummy_inputs(__A ) lowerCAmelCase_ :Union[str, Any] = steps lowerCAmelCase_ :Union[str, Any] = scale lowerCAmelCase_ :str = pipe(**__A , control_guidance_start=[0.1, 0.3] , control_guidance_end=[0.2, 0.7] )[0] lowerCAmelCase_ :List[str] = self.get_dummy_inputs(__A ) lowerCAmelCase_ :Optional[int] = steps lowerCAmelCase_ :Tuple = scale lowerCAmelCase_ :str = pipe(**__A , control_guidance_start=0.4 , control_guidance_end=[0.5, 0.8] )[0] # make sure that all outputs are different assert np.sum(np.abs(output_a - output_a ) ) > 1E-3 assert np.sum(np.abs(output_a - output_a ) ) > 1E-3 assert np.sum(np.abs(output_a - output_a ) ) > 1E-3 def __lowerCAmelCase ( self ) -> Dict: return self._test_attention_slicing_forward_pass(expected_max_diff=2E-3 ) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def __lowerCAmelCase ( self ) -> Tuple: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2E-3 ) def __lowerCAmelCase ( self ) -> Optional[int]: self._test_inference_batch_single_identical(expected_max_diff=2E-3 ) def __lowerCAmelCase ( self ) -> List[str]: lowerCAmelCase_ :str = self.get_dummy_components() lowerCAmelCase_ :Tuple = self.pipeline_class(**__A ) pipe.to(__A ) pipe.set_progress_bar_config(disable=__A ) with tempfile.TemporaryDirectory() as tmpdir: try: # save_pretrained is not implemented for Multi-ControlNet pipe.save_pretrained(__A ) except NotImplementedError: pass @slow @require_torch_gpu class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): def __lowerCAmelCase ( self ) -> int: super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCAmelCase ( self ) -> str: lowerCAmelCase_ :Any = ControlNetModel.from_pretrained("""lllyasviel/sd-controlnet-canny""" ) lowerCAmelCase_ :int = StableDiffusionControlNetImgaImgPipeline.from_pretrained( """runwayml/stable-diffusion-v1-5""" , safety_checker=__A , controlnet=__A ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=__A ) lowerCAmelCase_ :List[str] = torch.Generator(device="""cpu""" ).manual_seed(0 ) lowerCAmelCase_ :List[Any] = """evil space-punk bird""" lowerCAmelCase_ :List[Any] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png""" ).resize((512, 512) ) lowerCAmelCase_ :int = load_image( """https://huggingface.co/lllyasviel/sd-controlnet-canny/resolve/main/images/bird.png""" ).resize((512, 512) ) lowerCAmelCase_ :Union[str, Any] = pipe( __A , __A , control_image=__A , generator=__A , output_type="""np""" , num_inference_steps=50 , strength=0.6 , ) lowerCAmelCase_ :Tuple = output.images[0] assert image.shape == (512, 512, 3) lowerCAmelCase_ :Tuple = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/img2img.npy""" ) assert np.abs(expected_image - image ).max() < 9E-2
1
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = { 'facebook/s2t-wav2vec2-large-en-de': ( 'https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/config.json' ), # See all Speech2Text models at https://huggingface.co/models?filter=speech2text2 } class _lowerCAmelCase ( __snake_case ): '''simple docstring''' lowerCAmelCase_ = "speech_to_text_2" lowerCAmelCase_ = ["past_key_values"] lowerCAmelCase_ = {"num_attention_heads": "decoder_attention_heads", "hidden_size": "d_model"} def __init__(self , UpperCAmelCase=10000 , UpperCAmelCase=6 , UpperCAmelCase=2048 , UpperCAmelCase=4 , UpperCAmelCase=0.0 , UpperCAmelCase=True , UpperCAmelCase="relu" , UpperCAmelCase=256 , UpperCAmelCase=0.1 , UpperCAmelCase=0.0 , UpperCAmelCase=0.0 , UpperCAmelCase=0.02 , UpperCAmelCase=2 , UpperCAmelCase=True , UpperCAmelCase=1 , UpperCAmelCase=0 , UpperCAmelCase=2 , UpperCAmelCase=1024 , **UpperCAmelCase , ) -> Optional[int]: _snake_case = vocab_size _snake_case = d_model _snake_case = decoder_ffn_dim _snake_case = decoder_layers _snake_case = decoder_attention_heads _snake_case = dropout _snake_case = attention_dropout _snake_case = activation_dropout _snake_case = activation_function _snake_case = init_std _snake_case = decoder_layerdrop _snake_case = use_cache _snake_case = decoder_layers _snake_case = scale_embedding # scale factor will be sqrt(d_model) if True _snake_case = max_target_positions super().__init__( pad_token_id=UpperCAmelCase , bos_token_id=UpperCAmelCase , eos_token_id=UpperCAmelCase , decoder_start_token_id=UpperCAmelCase , **UpperCAmelCase , )
341
def lowerCAmelCase__ ( ) -> Any: '''simple docstring''' for n in range(1 , 1_0_0_0_0_0_0 ): yield n * (n + 1) // 2 def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: Tuple ) -> Any: '''simple docstring''' A__ = 1 A__ = 2 while i * i <= n: A__ = 0 while n % i == 0: n //= i multiplicity += 1 divisors_count *= multiplicity + 1 i += 1 if n > 1: divisors_count *= 2 return divisors_count def lowerCAmelCase__ ( ) -> Dict: '''simple docstring''' return next(i for i in triangle_number_generator() if count_divisors(SCREAMING_SNAKE_CASE_ ) > 5_0_0 ) if __name__ == "__main__": print(solution())
68
0
"""simple docstring""" import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class lowerCamelCase (__lowercase ): """simple docstring""" UpperCAmelCase_ = ["image_processor", "tokenizer"] UpperCAmelCase_ = "LayoutLMv3ImageProcessor" UpperCAmelCase_ = ("LayoutLMv3Tokenizer", "LayoutLMv3TokenizerFast") def __init__( self : Union[str, Any], _UpperCAmelCase : List[Any]=None, _UpperCAmelCase : str=None, **_UpperCAmelCase : List[str] ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Any = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead.", _a, ) SCREAMING_SNAKE_CASE__ : Optional[int] = kwargs.pop("feature_extractor" ) SCREAMING_SNAKE_CASE__ : List[str] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(_a, _a ) def __call__( self : Optional[Any], _UpperCAmelCase : List[Any], _UpperCAmelCase : Optional[int] = None, _UpperCAmelCase : List[str] = None, _UpperCAmelCase : int = None, _UpperCAmelCase : List[str] = None, _UpperCAmelCase : Optional[Any] = True, _UpperCAmelCase : Dict = False, _UpperCAmelCase : str = None, _UpperCAmelCase : Optional[int] = None, _UpperCAmelCase : int = 0, _UpperCAmelCase : Optional[Any] = None, _UpperCAmelCase : List[str] = None, _UpperCAmelCase : Optional[Any] = None, _UpperCAmelCase : int = False, _UpperCAmelCase : Optional[Any] = False, _UpperCAmelCase : Optional[int] = False, _UpperCAmelCase : int = False, _UpperCAmelCase : List[Any] = True, _UpperCAmelCase : str = None, **_UpperCAmelCase : List[Any], ) -> BatchEncoding: """simple docstring""" # verify input if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( "You cannot provide bounding boxes if you initialized the image processor with apply_ocr set to True." ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( "You cannot provide word labels if you initialized the image processor with apply_ocr set to True." ) # first, apply the image processor SCREAMING_SNAKE_CASE__ : List[Any] = self.image_processor(images=_a, return_tensors=_a ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(_a, _a ): SCREAMING_SNAKE_CASE__ : int = [text] # add batch dimension (as the image processor always adds a batch dimension) SCREAMING_SNAKE_CASE__ : List[str] = features["words"] SCREAMING_SNAKE_CASE__ : List[str] = self.tokenizer( text=text if text is not None else features["words"], text_pair=text_pair if text_pair is not None else None, boxes=boxes if boxes is not None else features["boxes"], word_labels=_a, add_special_tokens=_a, padding=_a, truncation=_a, max_length=_a, stride=_a, pad_to_multiple_of=_a, return_token_type_ids=_a, return_attention_mask=_a, return_overflowing_tokens=_a, return_special_tokens_mask=_a, return_offsets_mapping=_a, return_length=_a, verbose=_a, return_tensors=_a, **_a, ) # add pixel values SCREAMING_SNAKE_CASE__ : Union[str, Any] = features.pop("pixel_values" ) if return_overflowing_tokens is True: SCREAMING_SNAKE_CASE__ : List[Any] = self.get_overflowing_images(_a, encoded_inputs["overflow_to_sample_mapping"] ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = images return encoded_inputs def A_ ( self : List[Any], _UpperCAmelCase : int, _UpperCAmelCase : Tuple ) -> int: """simple docstring""" # in case there's an overflow, ensure each `input_ids` sample is mapped to its corresponding image SCREAMING_SNAKE_CASE__ : Tuple = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(_a ) != len(_a ): raise ValueError( "Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got" F''' {len(_a )} and {len(_a )}''' ) return images_with_overflow def A_ ( self : str, *_UpperCAmelCase : List[str], **_UpperCAmelCase : Dict ) -> Optional[Any]: """simple docstring""" return self.tokenizer.batch_decode(*_a, **_a ) def A_ ( self : Optional[Any], *_UpperCAmelCase : Tuple, **_UpperCAmelCase : List[Any] ) -> str: """simple docstring""" return self.tokenizer.decode(*_a, **_a ) @property def A_ ( self : List[str] ) -> int: """simple docstring""" return ["input_ids", "bbox", "attention_mask", "pixel_values"] @property def A_ ( self : int ) -> List[Any]: """simple docstring""" warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.", _a, ) return self.image_processor_class @property def A_ ( self : List[str] ) -> Optional[Any]: """simple docstring""" warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.", _a, ) return self.image_processor
350
from __future__ import annotations def _a ( SCREAMING_SNAKE_CASE__ : list[float] , SCREAMING_SNAKE_CASE__ : list[float] ) -> float: '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[Any] = sorted(numsa + numsa ) SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ : Dict = divmod(len(SCREAMING_SNAKE_CASE__ ) , 2 ) if mod == 1: return all_numbers[div] else: return (all_numbers[div] + all_numbers[div - 1]) / 2 if __name__ == "__main__": import doctest doctest.testmod() _lowerCamelCase : List[str] = [float(x) for x in input('''Enter the elements of first array: ''').split()] _lowerCamelCase : Any = [float(x) for x in input('''Enter the elements of second array: ''').split()] print(f"The median of two arrays is: {median_of_two_arrays(array_a, array_a)}")
191
0
def _A ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : str ): """simple docstring""" a__ : int =len(SCREAMING_SNAKE_CASE ) a__ : int =len(SCREAMING_SNAKE_CASE ) a__ : int =( first_str_length if first_str_length > second_str_length else second_str_length ) a__ : list =[] for char_count in range(SCREAMING_SNAKE_CASE ): if char_count < first_str_length: output_list.append(first_str[char_count] ) if char_count < second_str_length: output_list.append(second_str[char_count] ) return "".join(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": print(alternative_string_arrange("""AB""", """XYZ"""), end=""" """)
95
from diffusers.utils.testing_utils import require_onnxruntime @require_onnxruntime class __lowerCAmelCase : pass
95
1
'''simple docstring''' from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class SCREAMING_SNAKE_CASE__ ( snake_case__ ): """simple docstring""" SCREAMING_SNAKE_CASE = ['''image_processor''', '''tokenizer'''] SCREAMING_SNAKE_CASE = '''BridgeTowerImageProcessor''' SCREAMING_SNAKE_CASE = ('''RobertaTokenizer''', '''RobertaTokenizerFast''') def __init__( self : List[str] , UpperCAmelCase_ : str , UpperCAmelCase_ : int ): """simple docstring""" super().__init__(UpperCAmelCase_ , UpperCAmelCase_ ) def __call__( self : Any , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : Union[bool, str, PaddingStrategy] = False , UpperCAmelCase_ : Union[bool, str, TruncationStrategy] = None , UpperCAmelCase_ : Optional[int] = None , UpperCAmelCase_ : int = 0 , UpperCAmelCase_ : Optional[int] = None , UpperCAmelCase_ : Optional[bool] = None , UpperCAmelCase_ : Optional[bool] = None , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : Optional[Union[str, TensorType]] = None , **UpperCAmelCase_ : Optional[int] , ): """simple docstring""" __UpperCAmelCase : List[Any] = self.tokenizer( text=UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ , padding=UpperCAmelCase_ , truncation=UpperCAmelCase_ , max_length=UpperCAmelCase_ , stride=UpperCAmelCase_ , pad_to_multiple_of=UpperCAmelCase_ , return_token_type_ids=UpperCAmelCase_ , return_attention_mask=UpperCAmelCase_ , return_overflowing_tokens=UpperCAmelCase_ , return_special_tokens_mask=UpperCAmelCase_ , return_offsets_mapping=UpperCAmelCase_ , return_length=UpperCAmelCase_ , verbose=UpperCAmelCase_ , return_tensors=UpperCAmelCase_ , **UpperCAmelCase_ , ) # add pixel_values + pixel_mask __UpperCAmelCase : Optional[Any] = self.image_processor( UpperCAmelCase_ , return_tensors=UpperCAmelCase_ , do_normalize=UpperCAmelCase_ , do_center_crop=UpperCAmelCase_ , **UpperCAmelCase_ ) encoding.update(UpperCAmelCase_ ) return encoding def lowerCamelCase_ ( self : Union[str, Any] , *UpperCAmelCase_ : List[str] , **UpperCAmelCase_ : str ): """simple docstring""" return self.tokenizer.batch_decode(*UpperCAmelCase_ , **UpperCAmelCase_ ) def lowerCamelCase_ ( self : Any , *UpperCAmelCase_ : Dict , **UpperCAmelCase_ : Union[str, Any] ): """simple docstring""" return self.tokenizer.decode(*UpperCAmelCase_ , **UpperCAmelCase_ ) @property def lowerCamelCase_ ( self : Any ): """simple docstring""" __UpperCAmelCase : Optional[int] = self.tokenizer.model_input_names __UpperCAmelCase : int = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
37
'''simple docstring''' # # This a `torch.distributed` diagnostics script that checks that all GPUs in the cluster (one or # many nodes) can talk to each other via nccl and allocate gpu memory. # # To run first adjust the number of processes and nodes: # # python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py # # You may need to add --master_addr $MASTER_ADDR --master_port $MASTER_PORT if using a custom addr:port # # You can also use the rdzv API: --rdzv_endpoint $MASTER_ADDR:$MASTER_PORT --rdzv_backend c10d # # use torch.distributed.launch instead of torch.distributed.run for torch < 1.9 # # If you get a hanging in `barrier` calls you have some network issues, you may try to debug this with: # # NCCL_DEBUG=INFO python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py # # which should tell you what's going on behind the scenes. # # # This script can be run via `srun` in the SLURM environment as well. Here is a SLURM script that # runs on 2 nodes of 4 gpus per node: # # #SBATCH --job-name=test-nodes # name # #SBATCH --nodes=2 # nodes # #SBATCH --ntasks-per-node=1 # crucial - only 1 task per dist per node! # #SBATCH --cpus-per-task=10 # number of cores per tasks # #SBATCH --gres=gpu:4 # number of gpus # #SBATCH --time 0:05:00 # maximum execution time (HH:MM:SS) # #SBATCH --output=%x-%j.out # output file name # # GPUS_PER_NODE=4 # MASTER_ADDR=$(scontrol show hostnames $SLURM_JOB_NODELIST | head -n 1) # MASTER_PORT=6000 # # srun --jobid $SLURM_JOBID bash -c 'python -m torch.distributed.run \ # --nproc_per_node $GPUS_PER_NODE --nnodes $SLURM_NNODES --node_rank $SLURM_PROCID \ # --master_addr $MASTER_ADDR --master_port $MASTER_PORT \ # torch-distributed-gpu-test.py' # import fcntl import os import socket import torch import torch.distributed as dist def __UpperCamelCase ( *_UpperCAmelCase ): with open(_UpperCAmelCase, "r" ) as fh: fcntl.flock(_UpperCAmelCase, fcntl.LOCK_EX ) try: print(*_UpperCAmelCase ) finally: fcntl.flock(_UpperCAmelCase, fcntl.LOCK_UN ) lowerCAmelCase__ : Dict = int(os.environ["LOCAL_RANK"]) torch.cuda.set_device(local_rank) lowerCAmelCase__ : Optional[int] = torch.device("cuda", local_rank) lowerCAmelCase__ : List[str] = socket.gethostname() lowerCAmelCase__ : Optional[Any] = f"[{hostname}-{local_rank}]" try: # test distributed dist.init_process_group("nccl") dist.all_reduce(torch.ones(1).to(device), op=dist.ReduceOp.SUM) dist.barrier() # test cuda is available and can allocate memory torch.cuda.is_available() torch.ones(1).cuda(local_rank) # global rank lowerCAmelCase__ : Tuple = dist.get_rank() lowerCAmelCase__ : Optional[int] = dist.get_world_size() printflock(f"{gpu} is OK (global rank: {rank}/{world_size})") dist.barrier() if rank == 0: printflock(f"pt={torch.__version__}, cuda={torch.version.cuda}, nccl={torch.cuda.nccl.version()}") except Exception: printflock(f"{gpu} is broken") raise
37
1