code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
import warnings from typing import Dict, List, Optional, Tuple from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __snake_case :int = logging.get_logger(__name__) class _A ( __UpperCAmelCase ): UpperCamelCase__ : int = ['''input_ids''', '''attention_mask'''] def __init__( self : List[Any] , __SCREAMING_SNAKE_CASE : Union[str, Any]="</s>" , __SCREAMING_SNAKE_CASE : str="<unk>" , __SCREAMING_SNAKE_CASE : Optional[int]="<pad>" , __SCREAMING_SNAKE_CASE : str=125 , __SCREAMING_SNAKE_CASE : Dict=None , **__SCREAMING_SNAKE_CASE : int , ): '''simple docstring''' if extra_ids > 0 and additional_special_tokens is None: __a = [F'<extra_id_{i}>' for i in range(__SCREAMING_SNAKE_CASE)] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra_id special tokens __a = len(set(filter(lambda __SCREAMING_SNAKE_CASE: bool('''extra_id''' in str(__SCREAMING_SNAKE_CASE)) , __SCREAMING_SNAKE_CASE))) if extra_tokens != extra_ids: raise ValueError( F'Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are' ''' provided to ByT5Tokenizer. In this case the additional_special_tokens must include the''' ''' extra_ids tokens''') __a = AddedToken(__SCREAMING_SNAKE_CASE , lstrip=__SCREAMING_SNAKE_CASE , rstrip=__SCREAMING_SNAKE_CASE) if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) else pad_token __a = AddedToken(__SCREAMING_SNAKE_CASE , lstrip=__SCREAMING_SNAKE_CASE , rstrip=__SCREAMING_SNAKE_CASE) if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) else eos_token __a = AddedToken(__SCREAMING_SNAKE_CASE , lstrip=__SCREAMING_SNAKE_CASE , rstrip=__SCREAMING_SNAKE_CASE) if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) else unk_token super().__init__( eos_token=__SCREAMING_SNAKE_CASE , unk_token=__SCREAMING_SNAKE_CASE , pad_token=__SCREAMING_SNAKE_CASE , extra_ids=__SCREAMING_SNAKE_CASE , additional_special_tokens=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , ) __a = extra_ids __a = 2**8 # utf is 8 bits # define special tokens dict __a = { self.pad_token: 0, self.eos_token: 1, self.unk_token: 2, } __a = len(self.special_tokens_encoder) __a = len(__SCREAMING_SNAKE_CASE) for i, token in enumerate(__SCREAMING_SNAKE_CASE): __a = self.vocab_size + i - n __a = {v: k for k, v in self.special_tokens_encoder.items()} @property def _lowerCamelCase ( self : Optional[Any]): '''simple docstring''' return self._utf_vocab_size + self._num_special_tokens + self._extra_ids def _lowerCamelCase ( self : str , __SCREAMING_SNAKE_CASE : List[int] , __SCREAMING_SNAKE_CASE : Optional[List[int]] = None , __SCREAMING_SNAKE_CASE : bool = False): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__SCREAMING_SNAKE_CASE , token_ids_a=__SCREAMING_SNAKE_CASE , already_has_special_tokens=__SCREAMING_SNAKE_CASE) # normal case: some special tokens if token_ids_a is None: return ([0] * len(__SCREAMING_SNAKE_CASE)) + [1] return ([0] * len(__SCREAMING_SNAKE_CASE)) + [1] + ([0] * len(__SCREAMING_SNAKE_CASE)) + [1] def _lowerCamelCase ( self : str , __SCREAMING_SNAKE_CASE : List[int]): '''simple docstring''' if len(__SCREAMING_SNAKE_CASE) > 0 and token_ids[-1] == self.eos_token_id: warnings.warn( F'This sequence already has {self.eos_token}. In future versions this behavior may lead to duplicated' ''' eos tokens being added.''') return token_ids else: return token_ids + [self.eos_token_id] def _lowerCamelCase ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : List[int] , __SCREAMING_SNAKE_CASE : Optional[List[int]] = None): '''simple docstring''' __a = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos) * [0] return len(token_ids_a + eos + token_ids_a + eos) * [0] def _lowerCamelCase ( self : str , __SCREAMING_SNAKE_CASE : List[int] , __SCREAMING_SNAKE_CASE : Optional[List[int]] = None): '''simple docstring''' __a = self._add_eos_if_not_present(__SCREAMING_SNAKE_CASE) if token_ids_a is None: return token_ids_a else: __a = self._add_eos_if_not_present(__SCREAMING_SNAKE_CASE) return token_ids_a + token_ids_a def _lowerCamelCase ( self : Any , __SCREAMING_SNAKE_CASE : str): '''simple docstring''' __a = [chr(__SCREAMING_SNAKE_CASE) for i in text.encode('''utf-8''')] return tokens def _lowerCamelCase ( self : List[Any] , __SCREAMING_SNAKE_CASE : int): '''simple docstring''' if token in self.special_tokens_encoder: __a = self.special_tokens_encoder[token] elif token in self.added_tokens_encoder: __a = self.added_tokens_encoder[token] elif len(__SCREAMING_SNAKE_CASE) != 1: __a = self.unk_token_id else: __a = ord(__SCREAMING_SNAKE_CASE) + self._num_special_tokens return token_id def _lowerCamelCase ( self : Any , __SCREAMING_SNAKE_CASE : int): '''simple docstring''' if index in self.special_tokens_decoder: __a = self.special_tokens_decoder[index] else: __a = chr(index - self._num_special_tokens) return token def _lowerCamelCase ( self : List[Any] , __SCREAMING_SNAKE_CASE : str): '''simple docstring''' __a = B'''''' for token in tokens: if token in self.special_tokens_decoder: __a = self.special_tokens_decoder[token].encode('''utf-8''') elif token in self.added_tokens_decoder: __a = self.special_tokens_decoder[token].encode('''utf-8''') elif token in self.special_tokens_encoder: __a = token.encode('''utf-8''') elif token in self.added_tokens_encoder: __a = token.encode('''utf-8''') else: __a = bytes([ord(__SCREAMING_SNAKE_CASE)]) bstring += tok_string __a = bstring.decode('''utf-8''' , errors='''ignore''') return string def _lowerCamelCase ( self : List[str] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Optional[str] = None): '''simple docstring''' return ()
49
import argparse import json import os import numpy as np import PIL import requests import tensorflow.keras.applications.efficientnet as efficientnet import torch from huggingface_hub import hf_hub_download from PIL import Image from tensorflow.keras.preprocessing import image from transformers import ( EfficientNetConfig, EfficientNetForImageClassification, EfficientNetImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() __snake_case :Any = logging.get_logger(__name__) __snake_case :Optional[Any] = { '''b0''': efficientnet.EfficientNetBa, '''b1''': efficientnet.EfficientNetBa, '''b2''': efficientnet.EfficientNetBa, '''b3''': efficientnet.EfficientNetBa, '''b4''': efficientnet.EfficientNetBa, '''b5''': efficientnet.EfficientNetBa, '''b6''': efficientnet.EfficientNetBa, '''b7''': efficientnet.EfficientNetBa, } __snake_case :List[Any] = { '''b0''': { '''hidden_dim''': 1280, '''width_coef''': 1.0, '''depth_coef''': 1.0, '''image_size''': 224, '''dropout_rate''': 0.2, '''dw_padding''': [], }, '''b1''': { '''hidden_dim''': 1280, '''width_coef''': 1.0, '''depth_coef''': 1.1, '''image_size''': 240, '''dropout_rate''': 0.2, '''dw_padding''': [16], }, '''b2''': { '''hidden_dim''': 1408, '''width_coef''': 1.1, '''depth_coef''': 1.2, '''image_size''': 260, '''dropout_rate''': 0.3, '''dw_padding''': [5, 8, 16], }, '''b3''': { '''hidden_dim''': 1536, '''width_coef''': 1.2, '''depth_coef''': 1.4, '''image_size''': 300, '''dropout_rate''': 0.3, '''dw_padding''': [5, 18], }, '''b4''': { '''hidden_dim''': 1792, '''width_coef''': 1.4, '''depth_coef''': 1.8, '''image_size''': 380, '''dropout_rate''': 0.4, '''dw_padding''': [6], }, '''b5''': { '''hidden_dim''': 2048, '''width_coef''': 1.6, '''depth_coef''': 2.2, '''image_size''': 456, '''dropout_rate''': 0.4, '''dw_padding''': [13, 27], }, '''b6''': { '''hidden_dim''': 2304, '''width_coef''': 1.8, '''depth_coef''': 2.6, '''image_size''': 528, '''dropout_rate''': 0.5, '''dw_padding''': [31], }, '''b7''': { '''hidden_dim''': 2560, '''width_coef''': 2.0, '''depth_coef''': 3.1, '''image_size''': 600, '''dropout_rate''': 0.5, '''dw_padding''': [18], }, } def __snake_case ( _UpperCAmelCase ): __a = EfficientNetConfig() __a = CONFIG_MAP[model_name]['''hidden_dim'''] __a = CONFIG_MAP[model_name]['''width_coef'''] __a = CONFIG_MAP[model_name]['''depth_coef'''] __a = CONFIG_MAP[model_name]['''image_size'''] __a = CONFIG_MAP[model_name]['''dropout_rate'''] __a = CONFIG_MAP[model_name]['''dw_padding'''] __a = '''huggingface/label-files''' __a = '''imagenet-1k-id2label.json''' __a = 1000 __a = json.load(open(hf_hub_download(_UpperCAmelCase , _UpperCAmelCase , repo_type='''dataset''' ) , '''r''' ) ) __a = {int(_UpperCAmelCase ): v for k, v in idalabel.items()} __a = idalabel __a = {v: k for k, v in idalabel.items()} return config def __snake_case ( ): __a = '''http://images.cocodataset.org/val2017/000000039769.jpg''' __a = Image.open(requests.get(_UpperCAmelCase , stream=_UpperCAmelCase ).raw ) return im def __snake_case ( _UpperCAmelCase ): __a = CONFIG_MAP[model_name]['''image_size'''] __a = EfficientNetImageProcessor( size={'''height''': size, '''width''': size} , image_mean=[0.4_85, 0.4_56, 0.4_06] , image_std=[0.47_85_39_44, 0.4_73_28_64, 0.47_43_41_63] , do_center_crop=_UpperCAmelCase , ) return preprocessor def __snake_case ( _UpperCAmelCase ): __a = [v.split('''_''' )[0].split('''block''' )[1] for v in original_param_names if v.startswith('''block''' )] __a = sorted(set(_UpperCAmelCase ) ) __a = len(_UpperCAmelCase ) __a = {b: str(_UpperCAmelCase ) for b, i in zip(_UpperCAmelCase , range(_UpperCAmelCase ) )} __a = [] rename_keys.append(('''stem_conv/kernel:0''', '''embeddings.convolution.weight''') ) rename_keys.append(('''stem_bn/gamma:0''', '''embeddings.batchnorm.weight''') ) rename_keys.append(('''stem_bn/beta:0''', '''embeddings.batchnorm.bias''') ) rename_keys.append(('''stem_bn/moving_mean:0''', '''embeddings.batchnorm.running_mean''') ) rename_keys.append(('''stem_bn/moving_variance:0''', '''embeddings.batchnorm.running_var''') ) for b in block_names: __a = block_name_mapping[b] rename_keys.append((f'block{b}_expand_conv/kernel:0', f'encoder.blocks.{hf_b}.expansion.expand_conv.weight') ) rename_keys.append((f'block{b}_expand_bn/gamma:0', f'encoder.blocks.{hf_b}.expansion.expand_bn.weight') ) rename_keys.append((f'block{b}_expand_bn/beta:0', f'encoder.blocks.{hf_b}.expansion.expand_bn.bias') ) rename_keys.append( (f'block{b}_expand_bn/moving_mean:0', f'encoder.blocks.{hf_b}.expansion.expand_bn.running_mean') ) rename_keys.append( (f'block{b}_expand_bn/moving_variance:0', f'encoder.blocks.{hf_b}.expansion.expand_bn.running_var') ) rename_keys.append( (f'block{b}_dwconv/depthwise_kernel:0', f'encoder.blocks.{hf_b}.depthwise_conv.depthwise_conv.weight') ) rename_keys.append((f'block{b}_bn/gamma:0', f'encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.weight') ) rename_keys.append((f'block{b}_bn/beta:0', f'encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.bias') ) rename_keys.append( (f'block{b}_bn/moving_mean:0', f'encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_mean') ) rename_keys.append( (f'block{b}_bn/moving_variance:0', f'encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_var') ) rename_keys.append((f'block{b}_se_reduce/kernel:0', f'encoder.blocks.{hf_b}.squeeze_excite.reduce.weight') ) rename_keys.append((f'block{b}_se_reduce/bias:0', f'encoder.blocks.{hf_b}.squeeze_excite.reduce.bias') ) rename_keys.append((f'block{b}_se_expand/kernel:0', f'encoder.blocks.{hf_b}.squeeze_excite.expand.weight') ) rename_keys.append((f'block{b}_se_expand/bias:0', f'encoder.blocks.{hf_b}.squeeze_excite.expand.bias') ) rename_keys.append( (f'block{b}_project_conv/kernel:0', f'encoder.blocks.{hf_b}.projection.project_conv.weight') ) rename_keys.append((f'block{b}_project_bn/gamma:0', f'encoder.blocks.{hf_b}.projection.project_bn.weight') ) rename_keys.append((f'block{b}_project_bn/beta:0', f'encoder.blocks.{hf_b}.projection.project_bn.bias') ) rename_keys.append( (f'block{b}_project_bn/moving_mean:0', f'encoder.blocks.{hf_b}.projection.project_bn.running_mean') ) rename_keys.append( (f'block{b}_project_bn/moving_variance:0', f'encoder.blocks.{hf_b}.projection.project_bn.running_var') ) rename_keys.append(('''top_conv/kernel:0''', '''encoder.top_conv.weight''') ) rename_keys.append(('''top_bn/gamma:0''', '''encoder.top_bn.weight''') ) rename_keys.append(('''top_bn/beta:0''', '''encoder.top_bn.bias''') ) rename_keys.append(('''top_bn/moving_mean:0''', '''encoder.top_bn.running_mean''') ) rename_keys.append(('''top_bn/moving_variance:0''', '''encoder.top_bn.running_var''') ) __a = {} for item in rename_keys: if item[0] in original_param_names: __a = '''efficientnet.''' + item[1] __a = '''classifier.weight''' __a = '''classifier.bias''' return key_mapping def __snake_case ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): for key, value in tf_params.items(): if "normalization" in key: continue __a = key_mapping[key] if "_conv" in key and "kernel" in key: __a = torch.from_numpy(_UpperCAmelCase ).permute(3 , 2 , 0 , 1 ) elif "depthwise_kernel" in key: __a = torch.from_numpy(_UpperCAmelCase ).permute(2 , 3 , 0 , 1 ) elif "kernel" in key: __a = torch.from_numpy(np.transpose(_UpperCAmelCase ) ) else: __a = torch.from_numpy(_UpperCAmelCase ) # Replace HF parameters with original TF model parameters assert hf_params[hf_key].shape == new_hf_value.shape hf_params[hf_key].copy_(_UpperCAmelCase ) @torch.no_grad() def __snake_case ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __a = model_classes[model_name]( include_top=_UpperCAmelCase , weights='''imagenet''' , input_tensor=_UpperCAmelCase , input_shape=_UpperCAmelCase , pooling=_UpperCAmelCase , classes=1000 , classifier_activation='''softmax''' , ) __a = original_model.trainable_variables __a = original_model.non_trainable_variables __a = {param.name: param.numpy() for param in tf_params} for param in tf_non_train_params: __a = param.numpy() __a = list(tf_params.keys() ) # Load HuggingFace model __a = get_efficientnet_config(_UpperCAmelCase ) __a = EfficientNetForImageClassification(_UpperCAmelCase ).eval() __a = hf_model.state_dict() # Create src-to-dst parameter name mapping dictionary print('''Converting parameters...''' ) __a = rename_keys(_UpperCAmelCase ) replace_params(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # Initialize preprocessor and preprocess input image __a = convert_image_processor(_UpperCAmelCase ) __a = preprocessor(images=prepare_img() , return_tensors='''pt''' ) # HF model inference hf_model.eval() with torch.no_grad(): __a = hf_model(**_UpperCAmelCase ) __a = outputs.logits.detach().numpy() # Original model inference __a = False __a = CONFIG_MAP[model_name]['''image_size'''] __a = prepare_img().resize((image_size, image_size) , resample=PIL.Image.NEAREST ) __a = image.img_to_array(_UpperCAmelCase ) __a = np.expand_dims(_UpperCAmelCase , axis=0 ) __a = original_model.predict(_UpperCAmelCase ) # Check whether original and HF model outputs match -> np.allclose assert np.allclose(_UpperCAmelCase , _UpperCAmelCase , atol=1E-3 ), "The predicted logits are not the same." print('''Model outputs match!''' ) if save_model: # Create folder to save model if not os.path.isdir(_UpperCAmelCase ): os.mkdir(_UpperCAmelCase ) # Save converted model and image processor hf_model.save_pretrained(_UpperCAmelCase ) preprocessor.save_pretrained(_UpperCAmelCase ) if push_to_hub: # Push model and image processor to hub print(f'Pushing converted {model_name} to the hub...' ) __a = f'efficientnet-{model_name}' preprocessor.push_to_hub(_UpperCAmelCase ) hf_model.push_to_hub(_UpperCAmelCase ) if __name__ == "__main__": __snake_case :int = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''b0''', type=str, help='''Version name of the EfficientNet model you want to convert, select from [b0, b1, b2, b3, b4, b5, b6, b7].''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default='''hf_model''', type=str, help='''Path to the output PyTorch model directory.''', ) parser.add_argument('''--save_model''', action='''store_true''', help='''Save model to local''') parser.add_argument('''--push_to_hub''', action='''store_true''', help='''Push model and image processor to the hub''') __snake_case :Optional[int] = parser.parse_args() convert_efficientnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.save_model, args.push_to_hub)
49
1
import unittest from transformers import BigBirdTokenizer, BigBirdTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin UpperCamelCase__ = """▁""" UpperCamelCase__ = get_tests_dir("""fixtures/test_sentencepiece.model""") @require_sentencepiece @require_tokenizers class a__ ( snake_case__ , unittest.TestCase ): _a : List[str] = BigBirdTokenizer _a : int = BigBirdTokenizerFast _a : Optional[int] = True _a : Any = True def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" super().setUp() __lowerCAmelCase = self.tokenizer_class(_A , keep_accents=_A ) tokenizer.save_pretrained(self.tmpdirname ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = "<s>" __lowerCAmelCase = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_A ) , _A ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_A ) , _A ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<unk>" ) self.assertEqual(vocab_keys[1] , "<s>" ) self.assertEqual(vocab_keys[-1] , "[MASK]" ) self.assertEqual(len(_A ) , 1_0_0_4 ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1_0_0_0 ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" if not self.test_rust_tokenizer: return __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = self.get_rust_tokenizer() __lowerCAmelCase = "I was born in 92000, and this is falsé." __lowerCAmelCase = tokenizer.tokenize(_A ) __lowerCAmelCase = rust_tokenizer.tokenize(_A ) self.assertListEqual(_A , _A ) __lowerCAmelCase = tokenizer.encode(_A , add_special_tokens=_A ) __lowerCAmelCase = rust_tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) __lowerCAmelCase = self.get_rust_tokenizer() __lowerCAmelCase = tokenizer.encode(_A ) __lowerCAmelCase = rust_tokenizer.encode(_A ) self.assertListEqual(_A , _A ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = BigBirdTokenizer(_A , keep_accents=_A ) __lowerCAmelCase = tokenizer.tokenize("This is a test" ) self.assertListEqual(_A , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_A ) , [2_8_5, 4_6, 1_0, 1_7_0, 3_8_2] , ) __lowerCAmelCase = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( _A , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) __lowerCAmelCase = tokenizer.convert_tokens_to_ids(_A ) self.assertListEqual( _A , [8, 2_1, 8_4, 5_5, 2_4, 1_9, 7, 0, 6_0_2, 3_4_7, 3_4_7, 3_4_7, 3, 1_2, 6_6, 4_6, 7_2, 8_0, 6, 0, 4] , ) __lowerCAmelCase = tokenizer.convert_ids_to_tokens(_A ) self.assertListEqual( _A , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) @cached_property def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" return BigBirdTokenizer.from_pretrained("google/bigbird-roberta-base" ) @slow def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = "Hello World!" __lowerCAmelCase = [6_5, 1_8_5_3_6, 2_2_6_0, 1_0_1, 6_6] self.assertListEqual(_A , self.big_tokenizer.encode(_A ) ) @slow def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = ( "This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will" " add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth" ) # fmt: off __lowerCAmelCase = [6_5, 8_7_1, 4_1_9, 3_5_8, 9_4_6, 9_9_1, 2_5_2_1, 4_5_2, 3_5_8, 1_3_5_7, 3_8_7, 7_7_5_1, 3_5_3_6, 1_1_2, 9_8_5, 4_5_6, 1_2_6, 8_6_5, 9_3_8, 5_4_0_0, 5_7_3_4, 4_5_8, 1_3_6_8, 4_6_7, 7_8_6, 2_4_6_2, 5_2_4_6, 1_1_5_9, 6_3_3, 8_6_5, 4_5_1_9, 4_5_7, 5_8_2, 8_5_2, 2_5_5_7, 4_2_7, 9_1_6, 5_0_8, 4_0_5, 3_4_3_2_4, 4_9_7, 3_9_1, 4_0_8, 1_1_3_4_2, 1_2_4_4, 3_8_5, 1_0_0, 9_3_8, 9_8_5, 4_5_6, 5_7_4, 3_6_2, 1_2_5_9_7, 3_2_0_0, 3_1_2_9, 1_1_7_2, 6_6] # noqa: E231 # fmt: on self.assertListEqual(_A , self.big_tokenizer.encode(_A ) ) @require_torch @slow def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" import torch from transformers import BigBirdConfig, BigBirdModel # Build sequence __lowerCAmelCase = list(self.big_tokenizer.get_vocab().keys() )[:1_0] __lowerCAmelCase = " ".join(_A ) __lowerCAmelCase = self.big_tokenizer.encode_plus(_A , return_tensors="pt" , return_token_type_ids=_A ) __lowerCAmelCase = self.big_tokenizer.batch_encode_plus( [sequence + " " + sequence] , return_tensors="pt" , return_token_type_ids=_A ) __lowerCAmelCase = BigBirdConfig(attention_type="original_full" ) __lowerCAmelCase = BigBirdModel(_A ) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**_A ) model(**_A ) @slow def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = BigBirdTokenizer.from_pretrained("google/bigbird-roberta-base" ) __lowerCAmelCase = tokenizer.decode(tokenizer("Paris is the [MASK]." ).input_ids ) self.assertTrue(decoded_text == "[CLS] Paris is the[MASK].[SEP]" ) @slow def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = {"input_ids": [[6_5, 3_9_2_8_6, 4_5_8, 3_6_3_3_5, 2_0_0_1, 4_5_6, 1_3_0_7_3, 1_3_2_6_6, 4_5_5, 1_1_3, 7_7_4_6, 1_7_4_1, 1_1_1_5_7, 3_9_1, 1_3_0_7_3, 1_3_2_6_6, 4_5_5, 1_1_3, 3_9_6_7, 3_5_4_1_2, 1_1_3, 4_9_3_6, 1_0_9, 3_8_7_0, 2_3_7_7, 1_1_3, 3_0_0_8_4, 4_5_7_2_0, 4_5_8, 1_3_4, 1_7_4_9_6, 1_1_2, 5_0_3, 1_1_6_7_2, 1_1_3, 1_1_8, 1_1_2, 5_6_6_5, 1_3_3_4_7, 3_8_6_8_7, 1_1_2, 1_4_9_6, 3_1_3_8_9, 1_1_2, 3_2_6_8, 4_7_2_6_4, 1_3_4, 9_6_2, 1_1_2, 1_6_3_7_7, 8_0_3_5, 2_3_1_3_0, 4_3_0, 1_2_1_6_9, 1_5_5_1_8, 2_8_5_9_2, 4_5_8, 1_4_6, 4_1_6_9_7, 1_0_9, 3_9_1, 1_2_1_6_9, 1_5_5_1_8, 1_6_6_8_9, 4_5_8, 1_4_6, 4_1_3_5_8, 1_0_9, 4_5_2, 7_2_6, 4_0_3_4, 1_1_1, 7_6_3, 3_5_4_1_2, 5_0_8_2, 3_8_8, 1_9_0_3, 1_1_1, 9_0_5_1, 3_9_1, 2_8_7_0, 4_8_9_1_8, 1_9_0_0, 1_1_2_3, 5_5_0, 9_9_8, 1_1_2, 9_5_8_6, 1_5_9_8_5, 4_5_5, 3_9_1, 4_1_0, 2_2_9_5_5, 3_7_6_3_6, 1_1_4, 6_6], [6_5, 4_4_8, 1_7_4_9_6, 4_1_9, 3_6_6_3, 3_8_5, 7_6_3, 1_1_3, 2_7_5_3_3, 2_8_7_0, 3_2_8_3, 1_3_0_4_3, 1_6_3_9, 2_4_7_1_3, 5_2_3, 6_5_6, 2_4_0_1_3, 1_8_5_5_0, 2_5_2_1, 5_1_7, 2_7_0_1_4, 2_1_2_4_4, 4_2_0, 1_2_1_2, 1_4_6_5, 3_9_1, 9_2_7, 4_8_3_3, 3_8_8, 5_7_8, 1_1_7_8_6, 1_1_4, 6_6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [6_5, 4_8_4, 2_1_6_9, 7_6_8_7, 2_1_9_3_2, 1_8_1_4_6, 7_2_6, 3_6_3, 1_7_0_3_2, 3_3_9_1, 1_1_4, 6_6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_A , model_name="google/bigbird-roberta-base" , revision="215c99f1600e06f83acce68422f2035b2b5c3510" , )
102
import hashlib import unittest from transformers import MODEL_FOR_DEPTH_ESTIMATION_MAPPING, is_torch_available, is_vision_available from transformers.pipelines import DepthEstimationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_torch_available(): import torch if is_vision_available(): from PIL import Image else: class a__ : @staticmethod def __SCREAMING_SNAKE_CASE( *_A , **_A ): """simple docstring""" pass def _a ( SCREAMING_SNAKE_CASE_ : Image ): __lowerCAmelCase = hashlib.mda(image.tobytes() ) return m.hexdigest() @is_pipeline_test @require_vision @require_timm @require_torch class a__ ( unittest.TestCase ): _a : Tuple = MODEL_FOR_DEPTH_ESTIMATION_MAPPING def __SCREAMING_SNAKE_CASE( self , _A , _A , _A ): """simple docstring""" __lowerCAmelCase = DepthEstimationPipeline(model=_A , image_processor=_A ) return depth_estimator, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def __SCREAMING_SNAKE_CASE( self , _A , _A ): """simple docstring""" __lowerCAmelCase = depth_estimator("./tests/fixtures/tests_samples/COCO/000000039769.png" ) self.assertEqual({"predicted_depth": ANY(torch.Tensor ), "depth": ANY(Image.Image )} , _A ) import datasets __lowerCAmelCase = datasets.load_dataset("hf-internal-testing/fixtures_image_utils" , "image" , split="test" ) __lowerCAmelCase = depth_estimator( [ Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ), "http://images.cocodataset.org/val2017/000000039769.jpg", # RGBA dataset[0]["file"], # LA dataset[1]["file"], # L dataset[2]["file"], ] ) self.assertEqual( [ {"predicted_depth": ANY(torch.Tensor ), "depth": ANY(Image.Image )}, {"predicted_depth": ANY(torch.Tensor ), "depth": ANY(Image.Image )}, {"predicted_depth": ANY(torch.Tensor ), "depth": ANY(Image.Image )}, {"predicted_depth": ANY(torch.Tensor ), "depth": ANY(Image.Image )}, {"predicted_depth": ANY(torch.Tensor ), "depth": ANY(Image.Image )}, ] , _A , ) @require_tf @unittest.skip("Depth estimation is not implemented in TF" ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" pass @slow @require_torch def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = "Intel/dpt-large" __lowerCAmelCase = pipeline("depth-estimation" , model=_A ) __lowerCAmelCase = depth_estimator("http://images.cocodataset.org/val2017/000000039769.jpg" ) __lowerCAmelCase = hashimage(outputs["depth"] ) # This seems flaky. # self.assertEqual(outputs["depth"], "1a39394e282e9f3b0741a90b9f108977") self.assertEqual(nested_simplify(outputs["predicted_depth"].max().item() ) , 29.3_04 ) self.assertEqual(nested_simplify(outputs["predicted_depth"].min().item() ) , 2.6_62 ) @require_torch def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" self.skipTest("There is not hf-internal-testing tiny model for either GLPN nor DPT" )
102
1
from __future__ import annotations _lowerCamelCase : Union[str, Any] = 10 def SCREAMING_SNAKE_CASE ( lowercase_ ) -> list[int]: """simple docstring""" A__ = 1 A__ = max(lowercase_ ) while placement <= max_digit: # declare and initialize empty buckets A__ = [[] for _ in range(lowercase_ )] # split list_of_ints between the buckets for i in list_of_ints: A__ = int((i / placement) % RADIX ) buckets[tmp].append(lowercase_ ) # put each buckets' contents into list_of_ints A__ = 0 for b in range(lowercase_ ): for i in buckets[b]: A__ = i a += 1 # move to next placement *= RADIX return list_of_ints if __name__ == "__main__": import doctest doctest.testmod()
14
'''simple docstring''' import re from filelock import FileLock try: import nltk __UpperCAmelCase =True except (ImportError, ModuleNotFoundError): __UpperCAmelCase =False if NLTK_AVAILABLE: with FileLock(".lock") as lock: nltk.download("punkt", quiet=True) def __lowerCAmelCase ( UpperCamelCase__ ) -> str: re.sub('''<n>''' , '''''' , UpperCamelCase__ ) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(UpperCamelCase__ ) )
67
0
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging SCREAMING_SNAKE_CASE_ : Any = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ : List[Any] = { 'microsoft/beit-base-patch16-224-pt22k': ( 'https://huggingface.co/microsoft/beit-base-patch16-224-pt22k/resolve/main/config.json' ), # See all BEiT models at https://huggingface.co/models?filter=beit } class a ( _lowerCamelCase ): """simple docstring""" UpperCAmelCase = "beit" def __init__( self: str , UpperCamelCase: Tuple=81_92 , UpperCamelCase: Tuple=7_68 , UpperCamelCase: Tuple=12 , UpperCamelCase: Optional[int]=12 , UpperCamelCase: Optional[Any]=30_72 , UpperCamelCase: Optional[Any]="gelu" , UpperCamelCase: str=0.0 , UpperCamelCase: List[Any]=0.0 , UpperCamelCase: Union[str, Any]=0.02 , UpperCamelCase: int=1e-1_2 , UpperCamelCase: Any=2_24 , UpperCamelCase: Dict=16 , UpperCamelCase: List[Any]=3 , UpperCamelCase: Tuple=False , UpperCamelCase: Tuple=False , UpperCamelCase: Optional[Any]=False , UpperCamelCase: Optional[int]=False , UpperCamelCase: Optional[Any]=0.1 , UpperCamelCase: Tuple=0.1 , UpperCamelCase: List[Any]=True , UpperCamelCase: List[str]=[3, 5, 7, 11] , UpperCamelCase: Optional[Any]=[1, 2, 3, 6] , UpperCamelCase: Union[str, Any]=True , UpperCamelCase: Optional[int]=0.4 , UpperCamelCase: Tuple=2_56 , UpperCamelCase: List[str]=1 , UpperCamelCase: Union[str, Any]=False , UpperCamelCase: int=2_55 , **UpperCamelCase: Tuple , ): """simple docstring""" super().__init__(**UpperCamelCase ) A__ = vocab_size A__ = hidden_size A__ = num_hidden_layers A__ = num_attention_heads A__ = intermediate_size A__ = hidden_act A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = initializer_range A__ = layer_norm_eps A__ = image_size A__ = patch_size A__ = num_channels A__ = use_mask_token A__ = use_absolute_position_embeddings A__ = use_relative_position_bias A__ = use_shared_relative_position_bias A__ = layer_scale_init_value A__ = drop_path_rate A__ = use_mean_pooling # decode head attributes (semantic segmentation) A__ = out_indices A__ = pool_scales # auxiliary head attributes (semantic segmentation) A__ = use_auxiliary_head A__ = auxiliary_loss_weight A__ = auxiliary_channels A__ = auxiliary_num_convs A__ = auxiliary_concat_input A__ = semantic_loss_ignore_index class a ( _lowerCamelCase ): """simple docstring""" UpperCAmelCase = version.parse("1.11" ) @property def UpperCamelCase ( self: Dict ): """simple docstring""" return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def UpperCamelCase ( self: int ): """simple docstring""" return 1e-4
69
"""simple docstring""" from collections import UserDict from typing import Union import numpy as np import requests from ..utils import ( add_end_docstrings, logging, ) from .audio_classification import ffmpeg_read from .base import PIPELINE_INIT_ARGS, Pipeline SCREAMING_SNAKE_CASE_ : Tuple = logging.get_logger(__name__) @add_end_docstrings(_lowerCamelCase ) class a ( _lowerCamelCase ): """simple docstring""" def __init__( self: Any , **UpperCamelCase: int ): """simple docstring""" super().__init__(**UpperCamelCase ) if self.framework != "pt": raise ValueError(f"""The {self.__class__} is only available in PyTorch.""" ) # No specific FOR_XXX available yet def __call__( self: Tuple , UpperCamelCase: Union[np.ndarray, bytes, str] , **UpperCamelCase: Tuple ): """simple docstring""" return super().__call__(UpperCamelCase , **UpperCamelCase ) def UpperCamelCase ( self: Tuple , **UpperCamelCase: Union[str, Any] ): """simple docstring""" A__ = {} if "candidate_labels" in kwargs: A__ = kwargs["""candidate_labels"""] if "hypothesis_template" in kwargs: A__ = kwargs["""hypothesis_template"""] return preprocess_params, {}, {} def UpperCamelCase ( self: Optional[int] , UpperCamelCase: Tuple , UpperCamelCase: Tuple=None , UpperCamelCase: Optional[Any]="This is a sound of {}." ): """simple docstring""" if isinstance(UpperCamelCase , UpperCamelCase ): if audio.startswith("""http://""" ) or audio.startswith("""https://""" ): # We need to actually check for a real protocol, otherwise it's impossible to use a local file # like http_huggingface_co.png A__ = requests.get(UpperCamelCase ).content else: with open(UpperCamelCase , """rb""" ) as f: A__ = f.read() if isinstance(UpperCamelCase , UpperCamelCase ): A__ = ffmpeg_read(UpperCamelCase , self.feature_extractor.sampling_rate ) if not isinstance(UpperCamelCase , np.ndarray ): raise ValueError("""We expect a numpy ndarray as input""" ) if len(audio.shape ) != 1: raise ValueError("""We expect a single channel audio input for ZeroShotAudioClassificationPipeline""" ) A__ = self.feature_extractor( [audio] , sampling_rate=self.feature_extractor.sampling_rate , return_tensors="""pt""" ) A__ = candidate_labels A__ = [hypothesis_template.format(UpperCamelCase ) for x in candidate_labels] A__ = self.tokenizer(UpperCamelCase , return_tensors=self.framework , padding=UpperCamelCase ) A__ = [text_inputs] return inputs def UpperCamelCase ( self: Any , UpperCamelCase: Union[str, Any] ): """simple docstring""" A__ = model_inputs.pop("""candidate_labels""" ) A__ = model_inputs.pop("""text_inputs""" ) if isinstance(text_inputs[0] , UpperCamelCase ): A__ = text_inputs[0] else: # Batching case. A__ = text_inputs[0][0] A__ = self.model(**UpperCamelCase , **UpperCamelCase ) A__ = { """candidate_labels""": candidate_labels, """logits""": outputs.logits_per_audio, } return model_outputs def UpperCamelCase ( self: Any , UpperCamelCase: Optional[int] ): """simple docstring""" A__ = model_outputs.pop("""candidate_labels""" ) A__ = model_outputs["""logits"""][0] if self.framework == "pt": A__ = logits.softmax(dim=0 ) A__ = probs.tolist() else: raise ValueError("""`tf` framework not supported.""" ) A__ = [ {"""score""": score, """label""": candidate_label} for score, candidate_label in sorted(zip(UpperCamelCase , UpperCamelCase ) , key=lambda UpperCamelCase : -x[0] ) ] return result
69
1
import copy import os import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np import pyarrow as pa import pyarrow.parquet as pq import pytest from datasets.arrow_writer import ArrowWriter, OptimizedTypedSequence, ParquetWriter, TypedSequence from datasets.features import ArrayaD, ClassLabel, Features, Image, Value from datasets.features.features import ArrayaDExtensionType, cast_to_python_objects from datasets.keyhash import DuplicatedKeysError, InvalidKeyError from .utils import require_pil class __lowercase ( UpperCAmelCase_ ): """simple docstring""" def _SCREAMING_SNAKE_CASE ( self : int): SCREAMING_SNAKE_CASE_: Optional[Any] = pa.array(TypedSequence([1, 2, 3])) self.assertEqual(arr.type , pa.intaa()) def _SCREAMING_SNAKE_CASE ( self : str): with self.assertRaises(lowerCAmelCase__): SCREAMING_SNAKE_CASE_: Optional[int] = pa.array(TypedSequence([1, 2, 3]) , type=pa.intaa()) def _SCREAMING_SNAKE_CASE ( self : Dict): with self.assertRaises(lowerCAmelCase__): SCREAMING_SNAKE_CASE_: Dict = pa.array(TypedSequence([1, 2, 3] , try_type=Value("bool") , type=Value("int64"))) def _SCREAMING_SNAKE_CASE ( self : str): SCREAMING_SNAKE_CASE_: Dict = pa.array(TypedSequence([1, 2, 3] , type=Value("int32"))) self.assertEqual(arr.type , pa.intaa()) def _SCREAMING_SNAKE_CASE ( self : str): with self.assertRaises((TypeError, pa.lib.ArrowInvalid)): SCREAMING_SNAKE_CASE_: List[str] = pa.array(TypedSequence(["foo", "bar"] , type=Value("int64"))) def _SCREAMING_SNAKE_CASE ( self : List[str]): SCREAMING_SNAKE_CASE_: Optional[int] = pa.array(TypedSequence([1, 2, 3] , try_type=Value("int32"))) self.assertEqual(arr.type , pa.intaa()) def _SCREAMING_SNAKE_CASE ( self : Optional[int]): SCREAMING_SNAKE_CASE_: Dict = pa.array(TypedSequence(["foo", "bar"] , try_type=Value("int64"))) self.assertEqual(arr.type , pa.string()) def _SCREAMING_SNAKE_CASE ( self : str): SCREAMING_SNAKE_CASE_: int = pa.array(TypedSequence([[[1, 2, 3]]] , type=ArrayaD((1, 3) , "int64"))) self.assertEqual(arr.type , ArrayaDExtensionType((1, 3) , "int64")) def _SCREAMING_SNAKE_CASE ( self : str): with self.assertRaises((TypeError, pa.lib.ArrowInvalid)): SCREAMING_SNAKE_CASE_: List[str] = pa.array(TypedSequence(["foo", "bar"] , type=ArrayaD((1, 3) , "int64"))) def _SCREAMING_SNAKE_CASE ( self : Any): SCREAMING_SNAKE_CASE_: Optional[int] = pa.array(TypedSequence([[[1, 2, 3]]] , try_type=ArrayaD((1, 3) , "int64"))) self.assertEqual(arr.type , ArrayaDExtensionType((1, 3) , "int64")) def _SCREAMING_SNAKE_CASE ( self : Any): SCREAMING_SNAKE_CASE_: List[Any] = pa.array(TypedSequence(["foo", "bar"] , try_type=ArrayaD((1, 3) , "int64"))) self.assertEqual(arr.type , pa.string()) @require_pil def _SCREAMING_SNAKE_CASE ( self : str): import PIL.Image SCREAMING_SNAKE_CASE_: Tuple = PIL.Image.fromarray(np.arange(10 , dtype=np.uinta).reshape(2 , 5)) with patch( "datasets.arrow_writer.cast_to_python_objects" , side_effect=lowerCAmelCase__) as mock_cast_to_python_objects: SCREAMING_SNAKE_CASE_: Tuple = pa.array(TypedSequence([{"path": None, "bytes": b"image_bytes"}, pil_image] , type=Image())) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Optional[int] = mock_cast_to_python_objects.call_args_list[-1] self.assertIn("optimize_list_casting" , lowerCAmelCase__) self.assertFalse(kwargs["optimize_list_casting"]) def A_ ( _UpperCAmelCase , _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: Dict = pa.BufferReader(_UpperCAmelCase ) if isinstance(_UpperCAmelCase , pa.Buffer ) else pa.memory_map(_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: Optional[int] = pa.ipc.open_stream(_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: pa.Table = f.read_all() assert len(pa_table.to_batches() ) == expected_num_chunks assert pa_table.to_pydict() == {"col_1": ["foo", "bar"], "col_2": [1, 2]} del pa_table @pytest.mark.parametrize("writer_batch_size" , [None, 1, 10] ) @pytest.mark.parametrize( "fields" , [None, {"col_1": pa.string(), "col_2": pa.intaa()}, {"col_1": pa.string(), "col_2": pa.intaa()}] ) def A_ ( _UpperCAmelCase , _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: Optional[int] = pa.BufferOutputStream() SCREAMING_SNAKE_CASE_: Optional[Any] = pa.schema(_UpperCAmelCase ) if fields else None with ArrowWriter(stream=_UpperCAmelCase , schema=_UpperCAmelCase , writer_batch_size=_UpperCAmelCase ) as writer: writer.write({"col_1": "foo", "col_2": 1} ) writer.write({"col_1": "bar", "col_2": 2} ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Union[str, Any] = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: SCREAMING_SNAKE_CASE_: str = {"col_1": pa.string(), "col_2": pa.intaa()} assert writer._schema == pa.schema(_UpperCAmelCase , metadata=writer._schema.metadata ) _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) def A_ ( ): SCREAMING_SNAKE_CASE_: Optional[Any] = pa.BufferOutputStream() SCREAMING_SNAKE_CASE_: int = Features({"labels": ClassLabel(names=["neg", "pos"] )} ) with ArrowWriter(stream=_UpperCAmelCase , features=_UpperCAmelCase ) as writer: writer.write({"labels": 0} ) writer.write({"labels": 1} ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Optional[Any] = writer.finalize() assert num_examples == 2 assert num_bytes > 0 assert writer._schema == features.arrow_schema assert writer._schema.metadata == features.arrow_schema.metadata SCREAMING_SNAKE_CASE_: Any = pa.BufferReader(output.getvalue() ) SCREAMING_SNAKE_CASE_: Optional[int] = pa.ipc.open_stream(_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: pa.Table = f.read_all() SCREAMING_SNAKE_CASE_: str = pa_table.schema assert pa_table.num_rows == 2 assert schema == features.arrow_schema assert schema.metadata == features.arrow_schema.metadata assert features == Features.from_arrow_schema(_UpperCAmelCase ) @pytest.mark.parametrize("writer_batch_size" , [None, 1, 10] ) def A_ ( _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: str = pa.BufferOutputStream() with ArrowWriter( stream=_UpperCAmelCase , writer_batch_size=_UpperCAmelCase , hash_salt="split_name" , check_duplicates=_UpperCAmelCase , ) as writer: with pytest.raises(_UpperCAmelCase ): writer.write({"col_1": "foo", "col_2": 1} , key=[1, 2] ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Union[str, Any] = writer.finalize() @pytest.mark.parametrize("writer_batch_size" , [None, 2, 10] ) def A_ ( _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: Tuple = pa.BufferOutputStream() with ArrowWriter( stream=_UpperCAmelCase , writer_batch_size=_UpperCAmelCase , hash_salt="split_name" , check_duplicates=_UpperCAmelCase , ) as writer: with pytest.raises(_UpperCAmelCase ): writer.write({"col_1": "foo", "col_2": 1} , key=10 ) writer.write({"col_1": "bar", "col_2": 2} , key=10 ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Tuple = writer.finalize() @pytest.mark.parametrize("writer_batch_size" , [None, 2, 10] ) def A_ ( _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: int = pa.BufferOutputStream() with ArrowWriter( stream=_UpperCAmelCase , writer_batch_size=_UpperCAmelCase , hash_salt="split_name" , check_duplicates=_UpperCAmelCase , ) as writer: writer.write({"col_1": "foo", "col_2": 1} , key=1 ) writer.write({"col_1": "bar", "col_2": 2} , key=2 ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Optional[Any] = writer.finalize() assert num_examples == 2 assert num_bytes > 0 _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) @pytest.mark.parametrize("writer_batch_size" , [None, 1, 10] ) @pytest.mark.parametrize( "fields" , [None, {"col_1": pa.string(), "col_2": pa.intaa()}, {"col_1": pa.string(), "col_2": pa.intaa()}] ) def A_ ( _UpperCAmelCase , _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: Tuple = pa.BufferOutputStream() SCREAMING_SNAKE_CASE_: List[Any] = pa.schema(_UpperCAmelCase ) if fields else None with ArrowWriter(stream=_UpperCAmelCase , schema=_UpperCAmelCase , writer_batch_size=_UpperCAmelCase ) as writer: writer.write_batch({"col_1": ["foo", "bar"], "col_2": [1, 2]} ) writer.write_batch({"col_1": [], "col_2": []} ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Union[str, Any] = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: SCREAMING_SNAKE_CASE_: List[str] = {"col_1": pa.string(), "col_2": pa.intaa()} assert writer._schema == pa.schema(_UpperCAmelCase , metadata=writer._schema.metadata ) _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) @pytest.mark.parametrize("writer_batch_size" , [None, 1, 10] ) @pytest.mark.parametrize( "fields" , [None, {"col_1": pa.string(), "col_2": pa.intaa()}, {"col_1": pa.string(), "col_2": pa.intaa()}] ) def A_ ( _UpperCAmelCase , _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: Any = pa.BufferOutputStream() SCREAMING_SNAKE_CASE_: str = pa.schema(_UpperCAmelCase ) if fields else None with ArrowWriter(stream=_UpperCAmelCase , schema=_UpperCAmelCase , writer_batch_size=_UpperCAmelCase ) as writer: writer.write_table(pa.Table.from_pydict({"col_1": ["foo", "bar"], "col_2": [1, 2]} ) ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Optional[Any] = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: SCREAMING_SNAKE_CASE_: Dict = {"col_1": pa.string(), "col_2": pa.intaa()} assert writer._schema == pa.schema(_UpperCAmelCase , metadata=writer._schema.metadata ) _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) @pytest.mark.parametrize("writer_batch_size" , [None, 1, 10] ) @pytest.mark.parametrize( "fields" , [None, {"col_1": pa.string(), "col_2": pa.intaa()}, {"col_1": pa.string(), "col_2": pa.intaa()}] ) def A_ ( _UpperCAmelCase , _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: Tuple = pa.BufferOutputStream() SCREAMING_SNAKE_CASE_: Any = pa.schema(_UpperCAmelCase ) if fields else None with ArrowWriter(stream=_UpperCAmelCase , schema=_UpperCAmelCase , writer_batch_size=_UpperCAmelCase ) as writer: writer.write_row(pa.Table.from_pydict({"col_1": ["foo"], "col_2": [1]} ) ) writer.write_row(pa.Table.from_pydict({"col_1": ["bar"], "col_2": [2]} ) ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Union[str, Any] = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: SCREAMING_SNAKE_CASE_: List[str] = {"col_1": pa.string(), "col_2": pa.intaa()} assert writer._schema == pa.schema(_UpperCAmelCase , metadata=writer._schema.metadata ) _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) def A_ ( ): with tempfile.TemporaryDirectory() as tmp_dir: SCREAMING_SNAKE_CASE_: Optional[int] = {"col_1": pa.string(), "col_2": pa.intaa()} SCREAMING_SNAKE_CASE_: Any = os.path.join(_UpperCAmelCase , "test.arrow" ) with ArrowWriter(path=_UpperCAmelCase , schema=pa.schema(_UpperCAmelCase ) ) as writer: writer.write_batch({"col_1": ["foo", "bar"], "col_2": [1, 2]} ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[Any] = writer.finalize() assert num_examples == 2 assert num_bytes > 0 assert writer._schema == pa.schema(_UpperCAmelCase , metadata=writer._schema.metadata ) _check_output(_UpperCAmelCase , 1 ) def A_ ( _UpperCAmelCase ): if pa.types.is_list(_UpperCAmelCase ): return get_base_dtype(arr_type.value_type ) else: return arr_type def A_ ( _UpperCAmelCase , _UpperCAmelCase ): if isinstance(lst[0] , _UpperCAmelCase ): change_first_primitive_element_in_list(lst[0] , _UpperCAmelCase ) else: SCREAMING_SNAKE_CASE_: Optional[int] = value @pytest.mark.parametrize("optimized_int_type, expected_dtype" , [(None, pa.intaa()), (Value("int32" ), pa.intaa())] ) @pytest.mark.parametrize("sequence" , [[1, 2, 3], [[1, 2, 3]], [[[1, 2, 3]]]] ) def A_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: Tuple = pa.array(TypedSequence(_UpperCAmelCase , optimized_int_type=_UpperCAmelCase ) ) assert get_base_dtype(arr.type ) == expected_dtype @pytest.mark.parametrize( "col, expected_dtype" , [ ("attention_mask", pa.inta()), ("special_tokens_mask", pa.inta()), ("token_type_ids", pa.inta()), ("input_ids", pa.intaa()), ("other", pa.intaa()), ] , ) @pytest.mark.parametrize("sequence" , [[1, 2, 3], [[1, 2, 3]], [[[1, 2, 3]]]] ) def A_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): # in range SCREAMING_SNAKE_CASE_: List[str] = pa.array(OptimizedTypedSequence(_UpperCAmelCase , col=_UpperCAmelCase ) ) assert get_base_dtype(arr.type ) == expected_dtype # not in range if col != "other": # avoids errors due to in-place modifications SCREAMING_SNAKE_CASE_: Optional[int] = copy.deepcopy(_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: str = np.iinfo(expected_dtype.to_pandas_dtype() ).max + 1 change_first_primitive_element_in_list(_UpperCAmelCase , _UpperCAmelCase ) SCREAMING_SNAKE_CASE_: int = pa.array(OptimizedTypedSequence(_UpperCAmelCase , col=_UpperCAmelCase ) ) assert get_base_dtype(arr.type ) == pa.intaa() @pytest.mark.parametrize("raise_exception" , [False, True] ) def A_ ( _UpperCAmelCase , _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: Any = str(tmp_path / "dataset-train.arrow" ) try: with ArrowWriter(path=_UpperCAmelCase ) as writer: if raise_exception: raise pa.lib.ArrowInvalid() else: writer.stream.close() except pa.lib.ArrowInvalid: pass finally: assert writer.stream.closed def A_ ( _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: str = "mock://dataset-train.arrow" with ArrowWriter(path=_UpperCAmelCase , storage_options=mockfs.storage_options ) as writer: assert isinstance(writer._fs , type(_UpperCAmelCase ) ) assert writer._fs.storage_options == mockfs.storage_options writer.write({"col_1": "foo", "col_2": 1} ) writer.write({"col_1": "bar", "col_2": 2} ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Any = writer.finalize() assert num_examples == 2 assert num_bytes > 0 assert mockfs.exists(_UpperCAmelCase ) def A_ ( ): SCREAMING_SNAKE_CASE_: List[str] = pa.BufferOutputStream() with ParquetWriter(stream=_UpperCAmelCase ) as writer: writer.write({"col_1": "foo", "col_2": 1} ) writer.write({"col_1": "bar", "col_2": 2} ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Dict = writer.finalize() assert num_examples == 2 assert num_bytes > 0 SCREAMING_SNAKE_CASE_: int = pa.BufferReader(output.getvalue() ) SCREAMING_SNAKE_CASE_: pa.Table = pq.read_table(_UpperCAmelCase ) assert pa_table.to_pydict() == {"col_1": ["foo", "bar"], "col_2": [1, 2]} @require_pil @pytest.mark.parametrize("embed_local_files" , [False, True] ) def A_ ( _UpperCAmelCase , _UpperCAmelCase ): import PIL.Image SCREAMING_SNAKE_CASE_: Any = str(tmp_path / "test_image_rgb.jpg" ) PIL.Image.fromarray(np.zeros((5, 5) , dtype=np.uinta ) ).save(_UpperCAmelCase , format="png" ) SCREAMING_SNAKE_CASE_: Any = pa.BufferOutputStream() with ParquetWriter( stream=_UpperCAmelCase , features=Features({"image": Image()} ) , embed_local_files=_UpperCAmelCase ) as writer: writer.write({"image": image_path} ) writer.finalize() SCREAMING_SNAKE_CASE_: Union[str, Any] = pa.BufferReader(output.getvalue() ) SCREAMING_SNAKE_CASE_: pa.Table = pq.read_table(_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: int = pa_table.to_pydict() if embed_local_files: assert isinstance(out["image"][0]["path"] , _UpperCAmelCase ) with open(_UpperCAmelCase , "rb" ) as f: assert out["image"][0]["bytes"] == f.read() else: assert out["image"][0]["path"] == image_path assert out["image"][0]["bytes"] is None def A_ ( ): SCREAMING_SNAKE_CASE_: Dict = pa.schema([pa.field("col_1" , pa.string() , nullable=_UpperCAmelCase )] ) SCREAMING_SNAKE_CASE_: int = pa.BufferOutputStream() with ArrowWriter(stream=_UpperCAmelCase ) as writer: writer._build_writer(inferred_schema=_UpperCAmelCase ) assert writer._schema == pa.schema([pa.field("col_1" , pa.string() )] )
13
import unittest from transformers import AlbertTokenizer, AlbertTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin lowercase_ = get_tests_dir("fixtures/spiece.model") @require_sentencepiece @require_tokenizers class A ( _UpperCAmelCase , unittest.TestCase ): """simple docstring""" lowerCamelCase = AlbertTokenizer lowerCamelCase = AlbertTokenizerFast lowerCamelCase = True lowerCamelCase = True lowerCamelCase = True def snake_case__ ( self : Dict )-> Any: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing A__ = AlbertTokenizer(lowercase_ ) tokenizer.save_pretrained(self.tmpdirname ) def snake_case__ ( self : List[str],lowercase_ : str )-> Any: '''simple docstring''' A__ = 'this is a test' A__ = 'this is a test' return input_text, output_text def snake_case__ ( self : List[Any] )-> Optional[int]: '''simple docstring''' A__ = '<pad>' A__ = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowercase_ ),lowercase_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowercase_ ),lowercase_ ) def snake_case__ ( self : List[str] )-> str: '''simple docstring''' A__ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0],'<pad>' ) self.assertEqual(vocab_keys[1],'<unk>' ) self.assertEqual(vocab_keys[-1],'▁eloquent' ) self.assertEqual(len(lowercase_ ),3_0_0_0_0 ) def snake_case__ ( self : int )-> List[Any]: '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size,3_0_0_0_0 ) def snake_case__ ( self : Union[str, Any] )-> List[Any]: '''simple docstring''' if not self.test_rust_tokenizer: return A__ = self.get_tokenizer() A__ = self.get_rust_tokenizer() A__ = 'I was born in 92000, and this is falsé.' A__ = tokenizer.tokenize(lowercase_ ) A__ = rust_tokenizer.tokenize(lowercase_ ) self.assertListEqual(lowercase_,lowercase_ ) A__ = tokenizer.encode(lowercase_,add_special_tokens=lowercase_ ) A__ = rust_tokenizer.encode(lowercase_,add_special_tokens=lowercase_ ) self.assertListEqual(lowercase_,lowercase_ ) A__ = self.get_rust_tokenizer() A__ = tokenizer.encode(lowercase_ ) A__ = rust_tokenizer.encode(lowercase_ ) self.assertListEqual(lowercase_,lowercase_ ) def snake_case__ ( self : int )-> int: '''simple docstring''' A__ = AlbertTokenizer(lowercase_,keep_accents=lowercase_ ) A__ = tokenizer.tokenize('This is a test' ) self.assertListEqual(lowercase_,['▁this', '▁is', '▁a', '▁test'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowercase_ ),[4_8, 2_5, 2_1, 1_2_8_9] ) A__ = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( lowercase_,['▁i', '▁was', '▁born', '▁in', '▁9', '2000', ',', '▁and', '▁this', '▁is', '▁fal', 's', 'é', '.'] ) A__ = tokenizer.convert_tokens_to_ids(lowercase_ ) self.assertListEqual(lowercase_,[3_1, 2_3, 3_8_6, 1_9, 5_6_1, 3_0_5_0, 1_5, 1_7, 4_8, 2_5, 8_2_5_6, 1_8, 1, 9] ) A__ = tokenizer.convert_ids_to_tokens(lowercase_ ) self.assertListEqual( lowercase_,['▁i', '▁was', '▁born', '▁in', '▁9', '2000', ',', '▁and', '▁this', '▁is', '▁fal', 's', '<unk>', '.'],) def snake_case__ ( self : Union[str, Any] )-> str: '''simple docstring''' A__ = AlbertTokenizer(lowercase_ ) A__ = tokenizer.encode('sequence builders' ) A__ = tokenizer.encode('multi-sequence build' ) A__ = tokenizer.build_inputs_with_special_tokens(lowercase_ ) A__ = tokenizer.build_inputs_with_special_tokens(lowercase_,lowercase_ ) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ] @slow def snake_case__ ( self : Any )-> Tuple: '''simple docstring''' A__ = {'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'input_ids': [[2, 2_1_9_7_0, 1_3, 5, 6_0_9_2, 1_6_7, 2_8, 7_1_0_3, 2_1_5_3, 6_7_3, 8, 7_0_2_8, 1_2_0_5_1, 1_8, 1_7, 7_1_0_3, 2_1_5_3, 6_7_3, 8, 3_5_1_5, 1_8_6_8_4, 8, 4_4_6_1, 6, 1_9_2_7, 2_9_7, 8, 1_2_0_6_0, 2_6_0_7, 1_8, 1_3, 5, 4_4_6_1, 1_5, 1_0_5_3_8, 3_8, 8, 1_3_5, 1_5, 8_2_2, 5_8, 1_5, 9_9_3, 1_0_3_6_3, 1_5, 1_4_6_0, 8_0_0_5, 4_4_6_1, 1_5, 9_9_3, 2_5_5, 2_3_2_8, 9, 9, 9, 6, 2_6, 1_1_1_2, 8_1_6, 3_2_6_0, 1_3, 5, 1_0_3, 2_3_7_7, 6, 1_7, 1_1_1_2, 8_1_6, 2_7_8_2, 1_3, 5, 1_0_3, 1_0_6_4_1, 6, 2_9, 8_4, 2_5_1_2, 2_4_3_0, 7_8_2, 1_8_6_8_4, 2_7_6_1, 1_9, 8_0_8, 2_4_3_0, 2_5_5_6, 1_7, 8_5_5, 1_4_8_0, 9_4_7_7, 4_0_9_1, 1_2_8, 1_1_7_1_2, 1_5, 7_1_0_3, 2_1_5_3, 6_7_3, 1_7, 2_4_8_8_3, 9_9_9_0, 9, 3], [2, 1_1_5_0_2, 2_5, 1_0_0_6, 2_0, 7_8_2, 8, 1_1_8_0_9, 8_5_5, 1_7_3_2, 1_9_3_9_3, 1_8_6_6_7, 3_7, 3_6_7, 2_1_0_1_8, 6_9, 1_8_5_4, 3_4, 1_1_8_6_0, 1_9_1_2_4, 2_7, 1_5_6, 2_2_5, 1_7, 1_9_3, 4_1_4_1, 1_9, 6_5, 9_1_2_4, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2, 1_4, 2_2_3_1, 8_8_6, 2_3_8_5, 1_7_6_5_9, 8_4, 1_4, 1_6_7_9_2, 1_9_5_2, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'token_type_ids': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowercase_,model_name='albert-base-v2',revision='6b6560eaf5ff2e250b00c50f380c5389a9c2d82e',)
7
0
import doctest import glob import importlib import inspect import os import re from contextlib import contextmanager from functools import wraps from unittest.mock import patch import numpy as np import pytest from absl.testing import parameterized import datasets from datasets import load_metric from .utils import for_all_test_methods, local, slow # mark all tests as integration SCREAMING_SNAKE_CASE_:Optional[int] = pytest.mark.integration SCREAMING_SNAKE_CASE_:Tuple = {"""comet"""} SCREAMING_SNAKE_CASE_:List[Any] = importlib.util.find_spec("""fairseq""") is not None SCREAMING_SNAKE_CASE_:List[str] = {"""code_eval"""} SCREAMING_SNAKE_CASE_:Tuple = os.name == """nt""" SCREAMING_SNAKE_CASE_:str = {"""bertscore""", """frugalscore""", """perplexity"""} SCREAMING_SNAKE_CASE_:Any = importlib.util.find_spec("""transformers""") is not None def __UpperCamelCase ( _lowerCAmelCase ) -> Tuple: """simple docstring""" @wraps(_lowerCAmelCase ) def wrapper(self , _lowerCAmelCase ): if not _has_fairseq and metric_name in REQUIRE_FAIRSEQ: self.skipTest("""\"test requires Fairseq\"""" ) else: test_case(self , _lowerCAmelCase ) return wrapper def __UpperCamelCase ( _lowerCAmelCase ) -> List[Any]: """simple docstring""" @wraps(_lowerCAmelCase ) def wrapper(self , _lowerCAmelCase ): if not _has_transformers and metric_name in REQUIRE_TRANSFORMERS: self.skipTest("""\"test requires transformers\"""" ) else: test_case(self , _lowerCAmelCase ) return wrapper def __UpperCamelCase ( _lowerCAmelCase ) -> Any: """simple docstring""" @wraps(_lowerCAmelCase ) def wrapper(self , _lowerCAmelCase ): if _on_windows and metric_name in UNSUPPORTED_ON_WINDOWS: self.skipTest("""\"test not supported on Windows\"""" ) else: test_case(self , _lowerCAmelCase ) return wrapper def __UpperCamelCase ( ) -> Optional[int]: """simple docstring""" A : int = [metric_dir.split(os.sep )[-2] for metric_dir in glob.glob("""./metrics/*/""" )] return [{"testcase_name": x, "metric_name": x} for x in metrics if x != "gleu"] # gleu is unfinished @parameterized.named_parameters(get_local_metric_names() ) @for_all_test_methods( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) @local class SCREAMING_SNAKE_CASE__ ( parameterized.TestCase ): '''simple docstring''' __lowerCamelCase : Any = {} __lowerCamelCase : Any = None @pytest.mark.filterwarnings("""ignore:metric_module_factory is deprecated:FutureWarning""" ) @pytest.mark.filterwarnings("""ignore:load_metric is deprecated:FutureWarning""" ) def _lowerCAmelCase ( self, lowerCamelCase__ ): A : List[str] = """[...]""" A : Optional[int] = importlib.import_module( datasets.load.metric_module_factory(os.path.join("""metrics""", lowerCamelCase__ ) ).module_path ) A : Tuple = datasets.load.import_main_class(metric_module.__name__, dataset=lowerCamelCase__ ) # check parameters A : str = inspect.signature(metric._compute ).parameters self.assertTrue(all(p.kind != p.VAR_KEYWORD for p in parameters.values() ) ) # no **kwargs # run doctest with self.patch_intensive_calls(lowerCamelCase__, metric_module.__name__ ): with self.use_local_metrics(): try: A : int = doctest.testmod(lowerCamelCase__, verbose=lowerCamelCase__, raise_on_error=lowerCamelCase__ ) except doctest.UnexpectedException as e: raise e.exc_info[1] # raise the exception that doctest caught self.assertEqual(results.failed, 0 ) self.assertGreater(results.attempted, 1 ) @slow def _lowerCAmelCase ( self, lowerCamelCase__ ): A : str = """[...]""" A : Optional[int] = importlib.import_module( datasets.load.metric_module_factory(os.path.join("""metrics""", lowerCamelCase__ ) ).module_path ) # run doctest with self.use_local_metrics(): A : Tuple = doctest.testmod(lowerCamelCase__, verbose=lowerCamelCase__, raise_on_error=lowerCamelCase__ ) self.assertEqual(results.failed, 0 ) self.assertGreater(results.attempted, 1 ) @contextmanager def _lowerCAmelCase ( self, lowerCamelCase__, lowerCamelCase__ ): if metric_name in self.INTENSIVE_CALLS_PATCHER: with self.INTENSIVE_CALLS_PATCHER[metric_name](lowerCamelCase__ ): yield else: yield @contextmanager def _lowerCAmelCase ( self ): def load_local_metric(lowerCamelCase__, *lowerCamelCase__, **lowerCamelCase__ ): return load_metric(os.path.join("""metrics""", lowerCamelCase__ ), *lowerCamelCase__, **lowerCamelCase__ ) with patch("""datasets.load_metric""" ) as mock_load_metric: A : Any = load_local_metric yield @classmethod def _lowerCAmelCase ( cls, lowerCamelCase__ ): def wrapper(lowerCamelCase__ ): A : Any = contextmanager(lowerCamelCase__ ) A : Dict = patcher return patcher return wrapper @LocalMetricTest.register_intensive_calls_patcher("""bleurt""" ) def __UpperCamelCase ( _lowerCAmelCase ) -> int: """simple docstring""" import tensorflow.compat.va as tf from bleurt.score import Predictor tf.flags.DEFINE_string("""sv""" , """""" , """""" ) # handle pytest cli flags class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' def _lowerCAmelCase ( self, lowerCamelCase__ ): assert len(input_dict["""input_ids"""] ) == 2 return np.array([1.03, 1.04] ) # mock predict_fn which is supposed to do a forward pass with a bleurt model with patch("""bleurt.score._create_predictor""" ) as mock_create_predictor: A : Tuple = MockedPredictor() yield @LocalMetricTest.register_intensive_calls_patcher("""bertscore""" ) def __UpperCamelCase ( _lowerCAmelCase ) -> Any: """simple docstring""" import torch def bert_cos_score_idf(_lowerCAmelCase , _lowerCAmelCase , *_lowerCAmelCase , **_lowerCAmelCase ): return torch.tensor([[1.0, 1.0, 1.0]] * len(_lowerCAmelCase ) ) # mock get_model which is supposed to do download a bert model # mock bert_cos_score_idf which is supposed to do a forward pass with a bert model with patch("""bert_score.scorer.get_model""" ), patch( """bert_score.scorer.bert_cos_score_idf""" ) as mock_bert_cos_score_idf: A : Optional[int] = bert_cos_score_idf yield @LocalMetricTest.register_intensive_calls_patcher("""comet""" ) def __UpperCamelCase ( _lowerCAmelCase ) -> Dict: """simple docstring""" def load_from_checkpoint(_lowerCAmelCase ): class SCREAMING_SNAKE_CASE__ : '''simple docstring''' def _lowerCAmelCase ( self, lowerCamelCase__, *lowerCamelCase__, **lowerCamelCase__ ): assert len(lowerCamelCase__ ) == 2 A : List[str] = [0.19, 0.92] return scores, sum(lowerCamelCase__ ) / len(lowerCamelCase__ ) return Model() # mock load_from_checkpoint which is supposed to do download a bert model # mock load_from_checkpoint which is supposed to do download a bert model with patch("""comet.download_model""" ) as mock_download_model: A : Dict = None with patch("""comet.load_from_checkpoint""" ) as mock_load_from_checkpoint: A : List[Any] = load_from_checkpoint yield def __UpperCamelCase ( ) -> str: """simple docstring""" A : Union[str, Any] = load_metric(os.path.join("""metrics""" , """seqeval""" ) ) A : List[str] = """ERROR""" A : List[Any] = f'''Scheme should be one of [IOB1, IOB2, IOE1, IOE2, IOBES, BILOU], got {wrong_scheme}''' with pytest.raises(_lowerCAmelCase , match=re.escape(_lowerCAmelCase ) ): metric.compute(predictions=[] , references=[] , scheme=_lowerCAmelCase )
362
import copy from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING SCREAMING_SNAKE_CASE_:Optional[Any] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_:Union[str, Any] = { """microsoft/conditional-detr-resnet-50""": ( """https://huggingface.co/microsoft/conditional-detr-resnet-50/resolve/main/config.json""" ), } class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __lowerCamelCase : Dict = "conditional_detr" __lowerCamelCase : str = ["past_key_values"] __lowerCamelCase : str = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", } def __init__( self, lowerCamelCase__=True, lowerCamelCase__=None, lowerCamelCase__=3, lowerCamelCase__=300, lowerCamelCase__=6, lowerCamelCase__=2048, lowerCamelCase__=8, lowerCamelCase__=6, lowerCamelCase__=2048, lowerCamelCase__=8, lowerCamelCase__=0.0, lowerCamelCase__=0.0, lowerCamelCase__=True, lowerCamelCase__="relu", lowerCamelCase__=256, lowerCamelCase__=0.1, lowerCamelCase__=0.0, lowerCamelCase__=0.0, lowerCamelCase__=0.02, lowerCamelCase__=1.0, lowerCamelCase__=False, lowerCamelCase__="sine", lowerCamelCase__="resnet50", lowerCamelCase__=True, lowerCamelCase__=False, lowerCamelCase__=2, lowerCamelCase__=5, lowerCamelCase__=2, lowerCamelCase__=1, lowerCamelCase__=1, lowerCamelCase__=2, lowerCamelCase__=5, lowerCamelCase__=2, lowerCamelCase__=0.25, **lowerCamelCase__, ): if backbone_config is not None and use_timm_backbone: raise ValueError("""You can't specify both `backbone_config` and `use_timm_backbone`.""" ) if not use_timm_backbone: if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) A : List[Any] = CONFIG_MAPPING["""resnet"""](out_features=["""stage4"""] ) elif isinstance(lowerCamelCase__, lowerCamelCase__ ): A : Any = backbone_config.get("""model_type""" ) A : Optional[Any] = CONFIG_MAPPING[backbone_model_type] A : Tuple = config_class.from_dict(lowerCamelCase__ ) A : Dict = use_timm_backbone A : int = backbone_config A : Union[str, Any] = num_channels A : Optional[Any] = num_queries A : Union[str, Any] = d_model A : str = encoder_ffn_dim A : List[Any] = encoder_layers A : Tuple = encoder_attention_heads A : Union[str, Any] = decoder_ffn_dim A : Tuple = decoder_layers A : int = decoder_attention_heads A : Union[str, Any] = dropout A : List[str] = attention_dropout A : Optional[int] = activation_dropout A : Optional[Any] = activation_function A : Any = init_std A : List[Any] = init_xavier_std A : Any = encoder_layerdrop A : List[str] = decoder_layerdrop A : int = encoder_layers A : Union[str, Any] = auxiliary_loss A : Union[str, Any] = position_embedding_type A : Tuple = backbone A : Dict = use_pretrained_backbone A : int = dilation # Hungarian matcher A : List[Any] = class_cost A : List[Any] = bbox_cost A : int = giou_cost # Loss coefficients A : List[Any] = mask_loss_coefficient A : Any = dice_loss_coefficient A : int = cls_loss_coefficient A : Tuple = bbox_loss_coefficient A : List[Any] = giou_loss_coefficient A : int = focal_alpha super().__init__(is_encoder_decoder=lowerCamelCase__, **lowerCamelCase__ ) @property def _lowerCAmelCase ( self ): return self.encoder_attention_heads @property def _lowerCAmelCase ( self ): return self.d_model def _lowerCAmelCase ( self ): A : Dict = copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: A : List[Any] = self.backbone_config.to_dict() A : List[str] = self.__class__.model_type return output class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __lowerCamelCase : Tuple = version.parse("1.11" ) @property def _lowerCAmelCase ( self ): return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ("""pixel_mask""", {0: """batch"""}), ] ) @property def _lowerCAmelCase ( self ): return 1e-5 @property def _lowerCAmelCase ( self ): return 12
115
0
"""simple docstring""" import copy import tempfile import unittest from huggingface_hub import HfFolder, delete_repo from parameterized import parameterized from requests.exceptions import HTTPError from transformers import AutoConfig, GenerationConfig from transformers.testing_utils import TOKEN, USER, is_staging_test class snake_case ( unittest.TestCase ): """simple docstring""" @parameterized.expand([(None,), ('foo.json',)] ) def __lowerCAmelCase ( self : Dict ,lowerCamelCase__ : str ): UpperCAmelCase__ = GenerationConfig( do_sample=__lowerCAmelCase ,temperature=0.7 ,length_penalty=1.0 ,bad_words_ids=[[1, 2, 3], [4, 5]] ,) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(__lowerCAmelCase ,config_name=__lowerCAmelCase ) UpperCAmelCase__ = GenerationConfig.from_pretrained(__lowerCAmelCase ,config_name=__lowerCAmelCase ) # Checks parameters that were specified self.assertEqual(loaded_config.do_sample ,__lowerCAmelCase ) self.assertEqual(loaded_config.temperature ,0.7 ) self.assertEqual(loaded_config.length_penalty ,1.0 ) self.assertEqual(loaded_config.bad_words_ids ,[[1, 2, 3], [4, 5]] ) # Checks parameters that were not specified (defaults) self.assertEqual(loaded_config.top_k ,50 ) self.assertEqual(loaded_config.max_length ,20 ) self.assertEqual(loaded_config.max_time ,__lowerCAmelCase ) def __lowerCAmelCase ( self : Optional[Any] ): UpperCAmelCase__ = AutoConfig.from_pretrained('gpt2' ) UpperCAmelCase__ = GenerationConfig.from_model_config(__lowerCAmelCase ) UpperCAmelCase__ = GenerationConfig() # The generation config has loaded a few non-default parameters from the model config self.assertNotEqual(__lowerCAmelCase ,__lowerCAmelCase ) # One of those parameters is eos_token_id -- check if it matches self.assertNotEqual(generation_config_from_model.eos_token_id ,default_generation_config.eos_token_id ) self.assertEqual(generation_config_from_model.eos_token_id ,model_config.eos_token_id ) def __lowerCAmelCase ( self : List[str] ): UpperCAmelCase__ = GenerationConfig() UpperCAmelCase__ = { 'max_new_tokens': 1_024, 'foo': 'bar', } UpperCAmelCase__ = copy.deepcopy(__lowerCAmelCase ) UpperCAmelCase__ = generation_config.update(**__lowerCAmelCase ) # update_kwargs was not modified (no side effects) self.assertEqual(__lowerCAmelCase ,__lowerCAmelCase ) # update_kwargs was used to update the config on valid attributes self.assertEqual(generation_config.max_new_tokens ,1_024 ) # `.update()` returns a dictionary of unused kwargs self.assertEqual(__lowerCAmelCase ,{'foo': 'bar'} ) def __lowerCAmelCase ( self : Dict ): UpperCAmelCase__ = GenerationConfig() UpperCAmelCase__ = 'bar' with tempfile.TemporaryDirectory('test-generation-config' ) as tmp_dir: generation_config.save_pretrained(__lowerCAmelCase ) UpperCAmelCase__ = GenerationConfig.from_pretrained(__lowerCAmelCase ) # update_kwargs was used to update the config on valid attributes self.assertEqual(new_config.foo ,'bar' ) UpperCAmelCase__ = GenerationConfig.from_model_config(__lowerCAmelCase ) assert not hasattr(__lowerCAmelCase ,'foo' ) # no new kwargs should be initialized if from config def __lowerCAmelCase ( self : int ): UpperCAmelCase__ = GenerationConfig() self.assertEqual(default_config.temperature ,1.0 ) self.assertEqual(default_config.do_sample ,__lowerCAmelCase ) self.assertEqual(default_config.num_beams ,1 ) UpperCAmelCase__ = GenerationConfig( do_sample=__lowerCAmelCase ,temperature=0.7 ,length_penalty=1.0 ,bad_words_ids=[[1, 2, 3], [4, 5]] ,) self.assertEqual(config.temperature ,0.7 ) self.assertEqual(config.do_sample ,__lowerCAmelCase ) self.assertEqual(config.num_beams ,1 ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(__lowerCAmelCase ) UpperCAmelCase__ = GenerationConfig.from_pretrained(__lowerCAmelCase ,temperature=1.0 ) self.assertEqual(loaded_config.temperature ,1.0 ) self.assertEqual(loaded_config.do_sample ,__lowerCAmelCase ) self.assertEqual(loaded_config.num_beams ,1 ) # default value @is_staging_test class snake_case ( unittest.TestCase ): """simple docstring""" @classmethod def __lowerCAmelCase ( cls : List[str] ): UpperCAmelCase__ = TOKEN HfFolder.save_token(__lowerCAmelCase ) @classmethod def __lowerCAmelCase ( cls : int ): try: delete_repo(token=cls._token ,repo_id='test-generation-config' ) except HTTPError: pass try: delete_repo(token=cls._token ,repo_id='valid_org/test-generation-config-org' ) except HTTPError: pass def __lowerCAmelCase ( self : List[Any] ): UpperCAmelCase__ = GenerationConfig( do_sample=__lowerCAmelCase ,temperature=0.7 ,length_penalty=1.0 ,) config.push_to_hub('test-generation-config' ,use_auth_token=self._token ) UpperCAmelCase__ = GenerationConfig.from_pretrained(f'''{USER}/test-generation-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__lowerCAmelCase ,getattr(__lowerCAmelCase ,__lowerCAmelCase ) ) # Reset repo delete_repo(token=self._token ,repo_id='test-generation-config' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( __lowerCAmelCase ,repo_id='test-generation-config' ,push_to_hub=__lowerCAmelCase ,use_auth_token=self._token ) UpperCAmelCase__ = GenerationConfig.from_pretrained(f'''{USER}/test-generation-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__lowerCAmelCase ,getattr(__lowerCAmelCase ,__lowerCAmelCase ) ) def __lowerCAmelCase ( self : Any ): UpperCAmelCase__ = GenerationConfig( do_sample=__lowerCAmelCase ,temperature=0.7 ,length_penalty=1.0 ,) config.push_to_hub('valid_org/test-generation-config-org' ,use_auth_token=self._token ) UpperCAmelCase__ = GenerationConfig.from_pretrained('valid_org/test-generation-config-org' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__lowerCAmelCase ,getattr(__lowerCAmelCase ,__lowerCAmelCase ) ) # Reset repo delete_repo(token=self._token ,repo_id='valid_org/test-generation-config-org' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( __lowerCAmelCase ,repo_id='valid_org/test-generation-config-org' ,push_to_hub=__lowerCAmelCase ,use_auth_token=self._token ) UpperCAmelCase__ = GenerationConfig.from_pretrained('valid_org/test-generation-config-org' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__lowerCAmelCase ,getattr(__lowerCAmelCase ,__lowerCAmelCase ) )
98
"""simple docstring""" import unittest from transformers import AlbertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForPreTraining, AlbertForQuestionAnswering, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertModel, ) from transformers.models.albert.modeling_albert import ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST class a : def __init__( self : Optional[int] , __lowerCAmelCase : int , __lowerCAmelCase : Union[str, Any]=13 , __lowerCAmelCase : str=7 , __lowerCAmelCase : Optional[int]=True , __lowerCAmelCase : int=True , __lowerCAmelCase : List[Any]=True , __lowerCAmelCase : int=True , __lowerCAmelCase : List[Any]=99 , __lowerCAmelCase : Optional[int]=16 , __lowerCAmelCase : Dict=36 , __lowerCAmelCase : Optional[Any]=6 , __lowerCAmelCase : List[str]=6 , __lowerCAmelCase : Union[str, Any]=6 , __lowerCAmelCase : str=37 , __lowerCAmelCase : Optional[int]="gelu" , __lowerCAmelCase : Union[str, Any]=0.1 , __lowerCAmelCase : Dict=0.1 , __lowerCAmelCase : List[str]=512 , __lowerCAmelCase : Optional[Any]=16 , __lowerCAmelCase : int=2 , __lowerCAmelCase : List[str]=0.02 , __lowerCAmelCase : Optional[int]=3 , __lowerCAmelCase : List[str]=4 , __lowerCAmelCase : Any=None , ): _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = seq_length _UpperCAmelCase = is_training _UpperCAmelCase = use_input_mask _UpperCAmelCase = use_token_type_ids _UpperCAmelCase = use_labels _UpperCAmelCase = vocab_size _UpperCAmelCase = embedding_size _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_hidden_groups _UpperCAmelCase = num_attention_heads _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_act _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = type_vocab_size _UpperCAmelCase = type_sequence_label_size _UpperCAmelCase = initializer_range _UpperCAmelCase = num_labels _UpperCAmelCase = num_choices _UpperCAmelCase = scope def lowerCAmelCase_ ( self : Union[str, Any] ): _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCAmelCase = None if self.use_input_mask: _UpperCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) _UpperCAmelCase = None if self.use_token_type_ids: _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = None if self.use_labels: _UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _UpperCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) _UpperCAmelCase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCAmelCase_ ( self : Union[str, Any] ): return AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , num_hidden_groups=self.num_hidden_groups , ) def lowerCAmelCase_ ( self : List[Any] , __lowerCAmelCase : Tuple , __lowerCAmelCase : Tuple , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : List[str] , __lowerCAmelCase : str , __lowerCAmelCase : Any ): _UpperCAmelCase = AlbertModel(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() _UpperCAmelCase = model(__lowerCAmelCase , attention_mask=__lowerCAmelCase , token_type_ids=__lowerCAmelCase ) _UpperCAmelCase = model(__lowerCAmelCase , token_type_ids=__lowerCAmelCase ) _UpperCAmelCase = model(__lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def lowerCAmelCase_ ( self : Any , __lowerCAmelCase : List[str] , __lowerCAmelCase : Any , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : str , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : int ): _UpperCAmelCase = AlbertForPreTraining(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() _UpperCAmelCase = model( __lowerCAmelCase , attention_mask=__lowerCAmelCase , token_type_ids=__lowerCAmelCase , labels=__lowerCAmelCase , sentence_order_label=__lowerCAmelCase , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.sop_logits.shape , (self.batch_size, config.num_labels) ) def lowerCAmelCase_ ( self : List[str] , __lowerCAmelCase : str , __lowerCAmelCase : int , __lowerCAmelCase : int , __lowerCAmelCase : Tuple , __lowerCAmelCase : List[Any] , __lowerCAmelCase : int , __lowerCAmelCase : Tuple ): _UpperCAmelCase = AlbertForMaskedLM(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() _UpperCAmelCase = model(__lowerCAmelCase , attention_mask=__lowerCAmelCase , token_type_ids=__lowerCAmelCase , labels=__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase_ ( self : str , __lowerCAmelCase : str , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Any , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Dict , __lowerCAmelCase : Tuple ): _UpperCAmelCase = AlbertForQuestionAnswering(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() _UpperCAmelCase = model( __lowerCAmelCase , attention_mask=__lowerCAmelCase , token_type_ids=__lowerCAmelCase , start_positions=__lowerCAmelCase , end_positions=__lowerCAmelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCAmelCase_ ( self : str , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Any , __lowerCAmelCase : List[Any] , __lowerCAmelCase : List[str] , __lowerCAmelCase : Tuple , __lowerCAmelCase : Any ): _UpperCAmelCase = self.num_labels _UpperCAmelCase = AlbertForSequenceClassification(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() _UpperCAmelCase = model(__lowerCAmelCase , attention_mask=__lowerCAmelCase , token_type_ids=__lowerCAmelCase , labels=__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase_ ( self : Optional[int] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : List[str] , __lowerCAmelCase : Tuple , __lowerCAmelCase : Optional[Any] ): _UpperCAmelCase = self.num_labels _UpperCAmelCase = AlbertForTokenClassification(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() _UpperCAmelCase = model(__lowerCAmelCase , attention_mask=__lowerCAmelCase , token_type_ids=__lowerCAmelCase , labels=__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCAmelCase_ ( self : Any , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : int , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Tuple , __lowerCAmelCase : List[Any] , __lowerCAmelCase : str , __lowerCAmelCase : Dict ): _UpperCAmelCase = self.num_choices _UpperCAmelCase = AlbertForMultipleChoice(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() _UpperCAmelCase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _UpperCAmelCase = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _UpperCAmelCase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _UpperCAmelCase = model( __lowerCAmelCase , attention_mask=__lowerCAmelCase , token_type_ids=__lowerCAmelCase , labels=__lowerCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowerCAmelCase_ ( self : List[str] ): _UpperCAmelCase = self.prepare_config_and_inputs() ( ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ) = config_and_inputs _UpperCAmelCase = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class a ( lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ): _snake_case : str = ( ( AlbertModel, AlbertForPreTraining, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertForQuestionAnswering, ) if is_torch_available() else () ) _snake_case : Tuple = ( { 'feature-extraction': AlbertModel, 'fill-mask': AlbertForMaskedLM, 'question-answering': AlbertForQuestionAnswering, 'text-classification': AlbertForSequenceClassification, 'token-classification': AlbertForTokenClassification, 'zero-shot': AlbertForSequenceClassification, } if is_torch_available() else {} ) _snake_case : Dict = True def lowerCAmelCase_ ( self : str , __lowerCAmelCase : int , __lowerCAmelCase : List[Any] , __lowerCAmelCase : List[Any]=False ): _UpperCAmelCase = super()._prepare_for_class(__lowerCAmelCase , __lowerCAmelCase , return_labels=__lowerCAmelCase ) if return_labels: if model_class in get_values(__lowerCAmelCase ): _UpperCAmelCase = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=__lowerCAmelCase ) _UpperCAmelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__lowerCAmelCase ) return inputs_dict def lowerCAmelCase_ ( self : Optional[Any] ): _UpperCAmelCase = AlbertModelTester(self ) _UpperCAmelCase = ConfigTester(self , config_class=__lowerCAmelCase , hidden_size=37 ) def lowerCAmelCase_ ( self : Optional[int] ): self.config_tester.run_common_tests() def lowerCAmelCase_ ( self : int ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCAmelCase ) def lowerCAmelCase_ ( self : Union[str, Any] ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*__lowerCAmelCase ) def lowerCAmelCase_ ( self : Optional[Any] ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__lowerCAmelCase ) def lowerCAmelCase_ ( self : Dict ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*__lowerCAmelCase ) def lowerCAmelCase_ ( self : str ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__lowerCAmelCase ) def lowerCAmelCase_ ( self : List[Any] ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__lowerCAmelCase ) def lowerCAmelCase_ ( self : Optional[int] ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _UpperCAmelCase = type self.model_tester.create_and_check_model(*__lowerCAmelCase ) @slow def lowerCAmelCase_ ( self : Dict ): for model_name in ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase = AlbertModel.from_pretrained(__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) @require_torch class a ( unittest.TestCase ): @slow def lowerCAmelCase_ ( self : Tuple ): _UpperCAmelCase = AlbertModel.from_pretrained("""albert-base-v2""" ) _UpperCAmelCase = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) _UpperCAmelCase = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): _UpperCAmelCase = model(__lowerCAmelCase , attention_mask=__lowerCAmelCase )[0] _UpperCAmelCase = torch.Size((1, 11, 768) ) self.assertEqual(output.shape , __lowerCAmelCase ) _UpperCAmelCase = torch.tensor( [[[-0.6_513, 1.5_035, -0.2_766], [-0.6_515, 1.5_046, -0.2_780], [-0.6_512, 1.5_049, -0.2_784]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , __lowerCAmelCase , atol=1e-4 ) )
289
0
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.test_utils import execute_subprocess_async def UpperCAmelCase ( lowerCamelCase_ :Dict=None ): '''simple docstring''' if subparsers is not None: snake_case_ : Union[str, Any] = subparsers.add_parser("""test""" ) else: snake_case_ : List[str] = argparse.ArgumentParser("""Accelerate test command""" ) parser.add_argument( """--config_file""" , default=__a , help=( """The path to use to store the config file. Will default to a file named default_config.yaml in the cache """ """location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have """ """such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed """ """with \'huggingface\'.""" ) , ) if subparsers is not None: parser.set_defaults(func=__a ) return parser def UpperCAmelCase ( lowerCamelCase_ :List[Any] ): '''simple docstring''' snake_case_ : Dict = os.path.sep.join(__file__.split(os.path.sep )[:-2] + ["""test_utils""", """scripts""", """test_script.py"""] ) if args.config_file is None: snake_case_ : List[Any] = script_name else: snake_case_ : Union[str, Any] = F'''--config_file={args.config_file} {script_name}''' snake_case_ : str = ['''accelerate-launch'''] + test_args.split() snake_case_ : str = execute_subprocess_async(__a , env=os.environ.copy() ) if result.returncode == 0: print("""Test is a success! You are ready for your distributed training!""" ) def UpperCAmelCase ( ): '''simple docstring''' snake_case_ : Optional[int] = test_command_parser() snake_case_ : List[Any] = parser.parse_args() test_command(__a ) if __name__ == "__main__": main()
364
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __A : int = { 'configuration_whisper': ['WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'WhisperConfig', 'WhisperOnnxConfig'], 'feature_extraction_whisper': ['WhisperFeatureExtractor'], 'processing_whisper': ['WhisperProcessor'], 'tokenization_whisper': ['WhisperTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Union[str, Any] = ['WhisperTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Any = [ 'WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST', 'WhisperForConditionalGeneration', 'WhisperModel', 'WhisperPreTrainedModel', 'WhisperForAudioClassification', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : List[Any] = [ 'TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFWhisperForConditionalGeneration', 'TFWhisperModel', 'TFWhisperPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Union[str, Any] = [ 'FlaxWhisperForConditionalGeneration', 'FlaxWhisperModel', 'FlaxWhisperPreTrainedModel', 'FlaxWhisperForAudioClassification', ] if TYPE_CHECKING: from .configuration_whisper import WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP, WhisperConfig, WhisperOnnxConfig from .feature_extraction_whisper import WhisperFeatureExtractor from .processing_whisper import WhisperProcessor from .tokenization_whisper import WhisperTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_whisper_fast import WhisperTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_whisper import ( WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST, WhisperForAudioClassification, WhisperForConditionalGeneration, WhisperModel, WhisperPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_whisper import ( TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST, TFWhisperForConditionalGeneration, TFWhisperModel, TFWhisperPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_whisper import ( FlaxWhisperForAudioClassification, FlaxWhisperForConditionalGeneration, FlaxWhisperModel, FlaxWhisperPreTrainedModel, ) else: import sys __A : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
8
0
from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=__lowerCamelCase ) class a ( __lowerCamelCase ): __lowerCAmelCase : str = field(default="""language-modeling""" , metadata={"""include_in_asdict_even_if_is_default""": True} ) __lowerCAmelCase : ClassVar[Features] = Features({"""text""": Value("""string""" )} ) __lowerCAmelCase : ClassVar[Features] = Features({} ) __lowerCAmelCase : str = "text" @property def __lowerCamelCase ( self :Any ): return {self.text_column: "text"}
230
from __future__ import annotations import copy import inspect import json import math import os import tempfile import unittest from importlib import import_module import numpy as np from transformers import ViTMAEConfig from transformers.file_utils import cached_property, is_tf_available, is_vision_available from transformers.testing_utils import require_tf, require_vision, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFViTMAEForPreTraining, TFViTMAEModel if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class a : def __init__( self :List[Any] ,__lowercase :List[Any] ,__lowercase :Union[str, Any]=1_3 ,__lowercase :str=3_0 ,__lowercase :Optional[Any]=2 ,__lowercase :int=3 ,__lowercase :List[Any]=True ,__lowercase :Tuple=True ,__lowercase :List[Any]=3_2 ,__lowercase :str=2 ,__lowercase :Union[str, Any]=4 ,__lowercase :Dict=3_7 ,__lowercase :List[Any]="gelu" ,__lowercase :Optional[int]=0.1 ,__lowercase :str=0.1 ,__lowercase :Union[str, Any]=1_0 ,__lowercase :Optional[Any]=0.02 ,__lowercase :Union[str, Any]=3 ,__lowercase :Any=0.6 ,__lowercase :List[str]=None ,): snake_case__ : str = parent snake_case__ : int = batch_size snake_case__ : Dict = image_size snake_case__ : List[str] = patch_size snake_case__ : str = num_channels snake_case__ : int = is_training snake_case__ : List[str] = use_labels snake_case__ : List[str] = hidden_size snake_case__ : List[Any] = num_hidden_layers snake_case__ : str = num_attention_heads snake_case__ : Any = intermediate_size snake_case__ : Optional[Any] = hidden_act snake_case__ : List[str] = hidden_dropout_prob snake_case__ : Union[str, Any] = attention_probs_dropout_prob snake_case__ : Optional[Any] = type_sequence_label_size snake_case__ : List[str] = initializer_range snake_case__ : Optional[Any] = mask_ratio snake_case__ : List[str] = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) snake_case__ : str = (image_size // patch_size) ** 2 snake_case__ : List[str] = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) ) def __lowerCamelCase ( self :int ): snake_case__ : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) snake_case__ : Any = None if self.use_labels: snake_case__ : Tuple = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) snake_case__ : List[Any] = self.get_config() return config, pixel_values, labels def __lowerCamelCase ( self :List[Any] ): return ViTMAEConfig( image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,decoder_hidden_size=self.hidden_size ,decoder_num_hidden_layers=self.num_hidden_layers ,decoder_num_attention_heads=self.num_attention_heads ,decoder_intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,is_decoder=__lowercase ,initializer_range=self.initializer_range ,mask_ratio=self.mask_ratio ,) def __lowerCamelCase ( self :List[str] ,__lowercase :Union[str, Any] ,__lowercase :Dict ,__lowercase :List[str] ): snake_case__ : Optional[int] = TFViTMAEModel(config=__lowercase ) snake_case__ : int = model(__lowercase ,training=__lowercase ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def __lowerCamelCase ( self :Optional[int] ,__lowercase :List[str] ,__lowercase :Optional[int] ,__lowercase :int ): snake_case__ : Dict = TFViTMAEForPreTraining(__lowercase ) snake_case__ : Optional[int] = model(__lowercase ,training=__lowercase ) # expected sequence length = num_patches snake_case__ : Optional[Any] = (self.image_size // self.patch_size) ** 2 snake_case__ : int = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape ,(self.batch_size, num_patches, expected_num_channels) ) # test greyscale images snake_case__ : Tuple = 1 snake_case__ : List[Any] = TFViTMAEForPreTraining(__lowercase ) snake_case__ : Any = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) snake_case__ : Any = model(__lowercase ,training=__lowercase ) snake_case__ : Any = self.patch_size**2 self.parent.assertEqual(result.logits.shape ,(self.batch_size, num_patches, expected_num_channels) ) def __lowerCamelCase ( self :str ): snake_case__ : Union[str, Any] = self.prepare_config_and_inputs() ((snake_case__) , (snake_case__) , (snake_case__)) : Optional[Any] = config_and_inputs snake_case__ : List[Any] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_tf class a ( __lowerCamelCase , __lowerCamelCase , unittest.TestCase ): __lowerCAmelCase : Union[str, Any] = (TFViTMAEModel, TFViTMAEForPreTraining) if is_tf_available() else () __lowerCAmelCase : Union[str, Any] = {"""feature-extraction""": TFViTMAEModel} if is_tf_available() else {} __lowerCAmelCase : Tuple = False __lowerCAmelCase : List[Any] = False __lowerCAmelCase : Dict = False __lowerCAmelCase : List[str] = False def __lowerCamelCase ( self :Any ): snake_case__ : Union[str, Any] = TFViTMAEModelTester(self ) snake_case__ : Dict = ConfigTester(self ,config_class=__lowercase ,has_text_modality=__lowercase ,hidden_size=3_7 ) def __lowerCamelCase ( self :Optional[int] ): self.config_tester.run_common_tests() @unittest.skip(reason='''ViTMAE does not use inputs_embeds''' ) def __lowerCamelCase ( self :Dict ): pass def __lowerCamelCase ( self :Tuple ): snake_case__ , snake_case__ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case__ : Union[str, Any] = model_class(__lowercase ) self.assertIsInstance(model.get_input_embeddings() ,(tf.keras.layers.Layer) ) snake_case__ : List[Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__lowercase ,tf.keras.layers.Layer ) ) def __lowerCamelCase ( self :Union[str, Any] ): snake_case__ , snake_case__ : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case__ : str = model_class(__lowercase ) snake_case__ : Any = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case__ : Tuple = [*signature.parameters.keys()] snake_case__ : Dict = ['''pixel_values'''] self.assertListEqual(arg_names[:1] ,__lowercase ) def __lowerCamelCase ( self :str ): snake_case__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowercase ) def __lowerCamelCase ( self :List[Any] ): snake_case__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*__lowercase ) def __lowerCamelCase ( self :int ): # make the mask reproducible np.random.seed(2 ) snake_case__ , snake_case__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() snake_case__ : Any = int((config.image_size // config.patch_size) ** 2 ) snake_case__ : Optional[Any] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: snake_case__ : List[str] = model_class(__lowercase ) snake_case__ : Union[str, Any] = self._prepare_for_class(__lowercase ,__lowercase ) snake_case__ : Any = model(__lowercase ,noise=__lowercase ) snake_case__ : Optional[int] = copy.deepcopy(self._prepare_for_class(__lowercase ,__lowercase ) ) snake_case__ : List[Any] = model(**__lowercase ,noise=__lowercase ) snake_case__ : Optional[Any] = outputs_dict[0].numpy() snake_case__ : Optional[Any] = outputs_keywords[0].numpy() self.assertLess(np.sum(np.abs(output_dict - output_keywords ) ) ,1e-6 ) def __lowerCamelCase ( self :Optional[Any] ): # make the mask reproducible np.random.seed(2 ) snake_case__ , snake_case__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() snake_case__ : List[str] = int((config.image_size // config.patch_size) ** 2 ) snake_case__ : int = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) def prepare_numpy_arrays(__lowercase :Dict ): snake_case__ : Any = {} for k, v in inputs_dict.items(): if tf.is_tensor(__lowercase ): snake_case__ : Dict = v.numpy() else: snake_case__ : str = np.array(__lowercase ) return inputs_np_dict for model_class in self.all_model_classes: snake_case__ : str = model_class(__lowercase ) snake_case__ : List[Any] = self._prepare_for_class(__lowercase ,__lowercase ) snake_case__ : Dict = prepare_numpy_arrays(__lowercase ) snake_case__ : Tuple = model(__lowercase ,noise=__lowercase ) snake_case__ : Dict = model(**__lowercase ,noise=__lowercase ) self.assert_outputs_same(__lowercase ,__lowercase ) def __lowerCamelCase ( self :Optional[Any] ,__lowercase :str ,__lowercase :Optional[Any] ,__lowercase :List[str] ): # make masks reproducible np.random.seed(2 ) snake_case__ : Union[str, Any] = int((tf_model.config.image_size // tf_model.config.patch_size) ** 2 ) snake_case__ : int = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) snake_case__ : Any = tf.constant(__lowercase ) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument snake_case__ : Optional[Any] = tf_noise super().check_pt_tf_models(__lowercase ,__lowercase ,__lowercase ) def __lowerCamelCase ( self :Dict ): # make mask reproducible np.random.seed(2 ) snake_case__ , snake_case__ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() snake_case__ : List[str] = { module_member for model_class in self.all_model_classes for module in (import_module(model_class.__module__ ),) for module_member_name in dir(__lowercase ) if module_member_name.endswith('''MainLayer''' ) # This condition is required, since `modeling_tf_clip.py` has 3 classes whose names end with `MainLayer`. and module_member_name[: -len('''MainLayer''' )] == model_class.__name__[: -len('''Model''' )] for module_member in (getattr(__lowercase ,__lowercase ),) if isinstance(__lowercase ,__lowercase ) and tf.keras.layers.Layer in module_member.__bases__ and getattr(__lowercase ,'''_keras_serializable''' ,__lowercase ) } snake_case__ : Optional[Any] = int((config.image_size // config.patch_size) ** 2 ) snake_case__ : List[Any] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) snake_case__ : Any = tf.convert_to_tensor(__lowercase ) inputs_dict.update({'''noise''': noise} ) for main_layer_class in tf_main_layer_classes: snake_case__ : List[Any] = main_layer_class(__lowercase ) snake_case__ : Union[str, Any] = { name: tf.keras.Input(tensor.shape[1:] ,dtype=tensor.dtype ) for name, tensor in inputs_dict.items() } snake_case__ : Optional[Any] = tf.keras.Model(__lowercase ,outputs=main_layer(__lowercase ) ) snake_case__ : List[str] = model(__lowercase ) with tempfile.TemporaryDirectory() as tmpdirname: snake_case__ : List[str] = os.path.join(__lowercase ,'''keras_model.h5''' ) model.save(__lowercase ) snake_case__ : List[str] = tf.keras.models.load_model( __lowercase ,custom_objects={main_layer_class.__name__: main_layer_class} ) assert isinstance(__lowercase ,tf.keras.Model ) snake_case__ : Union[str, Any] = model(__lowercase ) self.assert_outputs_same(__lowercase ,__lowercase ) @slow def __lowerCamelCase ( self :Any ): # make mask reproducible np.random.seed(2 ) snake_case__ , snake_case__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() snake_case__ : str = int((config.image_size // config.patch_size) ** 2 ) snake_case__ : Tuple = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: snake_case__ : Optional[int] = model_class(__lowercase ) snake_case__ : str = self._prepare_for_class(__lowercase ,__lowercase ) snake_case__ : List[Any] = model(__lowercase ,noise=__lowercase ) if model_class.__name__ == "TFViTMAEModel": snake_case__ : List[Any] = outputs.last_hidden_state.numpy() snake_case__ : List[Any] = 0 else: snake_case__ : Any = outputs.logits.numpy() snake_case__ : Tuple = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__lowercase ,saved_model=__lowercase ) snake_case__ : Optional[Any] = model_class.from_pretrained(__lowercase ) snake_case__ : Any = model(__lowercase ,noise=__lowercase ) if model_class.__name__ == "TFViTMAEModel": snake_case__ : Dict = after_outputs['''last_hidden_state'''].numpy() snake_case__ : List[Any] = 0 else: snake_case__ : Any = after_outputs['''logits'''].numpy() snake_case__ : Optional[Any] = 0 snake_case__ : int = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(__lowercase ,1e-5 ) def __lowerCamelCase ( self :int ): # make mask reproducible np.random.seed(2 ) snake_case__ , snake_case__ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() snake_case__ : Dict = int((config.image_size // config.patch_size) ** 2 ) snake_case__ : List[str] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: snake_case__ : int = model_class(__lowercase ) snake_case__ : int = self._prepare_for_class(__lowercase ,__lowercase ) snake_case__ : List[Any] = model(__lowercase ,noise=__lowercase ) snake_case__ : int = model.get_config() # make sure that returned config is jsonifiable, which is required by keras json.dumps(__lowercase ) snake_case__ : Any = model_class.from_config(model.get_config() ) # make sure it also accepts a normal config snake_case__ : Optional[int] = model_class.from_config(model.config ) snake_case__ : Tuple = new_model(__lowercase ) # Build model new_model.set_weights(model.get_weights() ) snake_case__ : List[Any] = new_model(__lowercase ,noise=__lowercase ) self.assert_outputs_same(__lowercase ,__lowercase ) @unittest.skip( reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.''' ) def __lowerCamelCase ( self :List[Any] ): pass @unittest.skip(reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load''' ) def __lowerCamelCase ( self :Tuple ): pass @slow def __lowerCamelCase ( self :Optional[Any] ): snake_case__ : List[Any] = TFViTMAEModel.from_pretrained('''google/vit-base-patch16-224''' ) self.assertIsNotNone(__lowercase ) def _lowerCAmelCase ( ) -> Dict: """simple docstring""" snake_case__ : str = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_tf @require_vision class a ( unittest.TestCase ): @cached_property def __lowerCamelCase ( self :List[str] ): return ViTImageProcessor.from_pretrained('''facebook/vit-mae-base''' ) if is_vision_available() else None @slow def __lowerCamelCase ( self :Any ): # make random mask reproducible across the PT and TF model np.random.seed(2 ) snake_case__ : Tuple = TFViTMAEForPreTraining.from_pretrained('''facebook/vit-mae-base''' ) snake_case__ : int = self.default_image_processor snake_case__ : int = prepare_img() snake_case__ : Tuple = image_processor(images=__lowercase ,return_tensors='''tf''' ) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) snake_case__ : str = ViTMAEConfig() snake_case__ : List[str] = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 ) snake_case__ : Dict = np.random.uniform(size=(1, num_patches) ) # forward pass snake_case__ : List[str] = model(**__lowercase ,noise=__lowercase ) # verify the logits snake_case__ : Optional[Any] = tf.convert_to_tensor([1, 1_9_6, 7_6_8] ) self.assertEqual(outputs.logits.shape ,__lowercase ) snake_case__ : Tuple = tf.convert_to_tensor( [[-0.0548, -1.7023, -0.9325], [0.3721, -0.5670, -0.2233], [0.8235, -1.3878, -0.3524]] ) tf.debugging.assert_near(outputs.logits[0, :3, :3] ,__lowercase ,atol=1e-4 )
230
1
import argparse import os import torch from transformers import ( XLNetConfig, XLNetForQuestionAnswering, XLNetForSequenceClassification, XLNetLMHeadModel, load_tf_weights_in_xlnet, ) from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging lowerCamelCase = { '''cola''': 2, '''mnli''': 3, '''mrpc''': 2, '''sst-2''': 2, '''sts-b''': 1, '''qqp''': 2, '''qnli''': 2, '''rte''': 2, '''wnli''': 2, } logging.set_verbosity_info() def lowerCamelCase_ ( _a , _a , _a , _a=None ): """simple docstring""" lowerCAmelCase__ : List[str] = XLNetConfig.from_json_file(_a ) lowerCAmelCase__ : Optional[Any] = finetuning_task.lower() if finetuning_task is not None else '''''' if finetuning_task in GLUE_TASKS_NUM_LABELS: print(f'Building PyTorch XLNetForSequenceClassification model from configuration: {config}' ) lowerCAmelCase__ : int = finetuning_task lowerCAmelCase__ : Tuple = GLUE_TASKS_NUM_LABELS[finetuning_task] lowerCAmelCase__ : str = XLNetForSequenceClassification(_a ) elif "squad" in finetuning_task: lowerCAmelCase__ : Any = finetuning_task lowerCAmelCase__ : Tuple = XLNetForQuestionAnswering(_a ) else: lowerCAmelCase__ : List[Any] = XLNetLMHeadModel(_a ) # Load weights from tf checkpoint load_tf_weights_in_xlnet(_a , _a , _a ) # Save pytorch-model lowerCAmelCase__ : int = os.path.join(_a , _a ) lowerCAmelCase__ : Union[str, Any] = os.path.join(_a , _a ) print(f'Save PyTorch model to {os.path.abspath(_a )}' ) torch.save(model.state_dict() , _a ) print(f'Save configuration file to {os.path.abspath(_a )}' ) with open(_a , '''w''' , encoding='''utf-8''' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--xlnet_config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained XLNet model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the folder to store the PyTorch model or dataset/vocab.''', ) parser.add_argument( '''--finetuning_task''', default=None, type=str, help='''Name of a task on which the XLNet TensorFlow model was fine-tuned''', ) lowerCamelCase = parser.parse_args() print(args) convert_xlnet_checkpoint_to_pytorch( args.tf_checkpoint_path, args.xlnet_config_file, args.pytorch_dump_folder_path, args.finetuning_task )
211
from __future__ import annotations def lowerCamelCase_ ( _a , _a , _a , _a ): # noqa: E741 """simple docstring""" while r - l > 1: lowerCAmelCase__ : Any = (l + r) // 2 if v[m] >= key: lowerCAmelCase__ : int = m else: lowerCAmelCase__ : Tuple = m # noqa: E741 return r def lowerCamelCase_ ( _a ): """simple docstring""" if len(_a ) == 0: return 0 lowerCAmelCase__ : Optional[int] = [0] * len(_a ) lowerCAmelCase__ : List[Any] = 1 lowerCAmelCase__ : int = v[0] for i in range(1 , len(_a ) ): if v[i] < tail[0]: lowerCAmelCase__ : str = v[i] elif v[i] > tail[length - 1]: lowerCAmelCase__ : Any = v[i] length += 1 else: lowerCAmelCase__ : int = v[i] return length if __name__ == "__main__": import doctest doctest.testmod()
211
1
from .imports import is_tqdm_available if is_tqdm_available(): from tqdm.auto import tqdm as _tqdm from ..state import PartialState def lowerCamelCase ( SCREAMING_SNAKE_CASE = True , *SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ): '''simple docstring''' if not is_tqdm_available(): raise ImportError('''Accelerate\'s `tqdm` module requires `tqdm` to be installed. Please run `pip install tqdm`.''' ) __UpperCamelCase :int = False if main_process_only: __UpperCamelCase :Union[str, Any] = PartialState().local_process_index == 0 return _tqdm(*SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE , disable=SCREAMING_SNAKE_CASE )
43
import argparse import os from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_task_guides.py A : Tuple = "src/transformers" A : Optional[Any] = "docs/source/en/tasks" def a__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): with open(__UpperCamelCase , "r" , encoding="utf-8" , newline="\n" ) as f: SCREAMING_SNAKE_CASE_ = f.readlines() # Find the start prompt. SCREAMING_SNAKE_CASE_ = 0 while not lines[start_index].startswith(__UpperCamelCase ): start_index += 1 start_index += 1 SCREAMING_SNAKE_CASE_ = start_index while not lines[end_index].startswith(__UpperCamelCase ): end_index += 1 end_index -= 1 while len(lines[start_index] ) <= 1: start_index += 1 while len(lines[end_index] ) <= 1: end_index -= 1 end_index += 1 return "".join(lines[start_index:end_index] ), start_index, end_index, lines # This is to make sure the transformers module imported is the one in the repo. A : List[str] = direct_transformers_import(TRANSFORMERS_PATH) A : List[Any] = { "asr.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_CTC_MAPPING_NAMES, "audio_classification.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES, "language_modeling.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_CAUSAL_LM_MAPPING_NAMES, "image_classification.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES, "masked_language_modeling.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_MASKED_LM_MAPPING_NAMES, "multiple_choice.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES, "object_detection.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES, "question_answering.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES, "semantic_segmentation.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING_NAMES, "sequence_classification.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES, "summarization.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, "token_classification.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES, "translation.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, "video_classification.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES, "document_question_answering.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES, "monocular_depth_estimation.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES, } # This list contains model types used in some task guides that are not in `CONFIG_MAPPING_NAMES` (therefore not in any # `MODEL_MAPPING_NAMES` or any `MODEL_FOR_XXX_MAPPING_NAMES`). A : Any = { "summarization.md": ("nllb",), "translation.md": ("nllb",), } def a__ ( __UpperCamelCase ): SCREAMING_SNAKE_CASE_ = TASK_GUIDE_TO_MODELS[task_guide] SCREAMING_SNAKE_CASE_ = SPECIAL_TASK_GUIDE_TO_MODEL_TYPES.get(__UpperCamelCase , set() ) SCREAMING_SNAKE_CASE_ = { code: name for code, name in transformers_module.MODEL_NAMES_MAPPING.items() if (code in model_maping_names or code in special_model_types) } return ", ".join([F'''[{name}](../model_doc/{code})''' for code, name in model_names.items()] ) + "\n" def a__ ( __UpperCamelCase , __UpperCamelCase=False ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = _find_text_in_file( filename=os.path.join(__UpperCamelCase , __UpperCamelCase ) , start_prompt="<!--This tip is automatically generated by `make fix-copies`, do not fill manually!-->" , end_prompt="<!--End of the generated tip-->" , ) SCREAMING_SNAKE_CASE_ = get_model_list_for_task(__UpperCamelCase ) if current_list != new_list: if overwrite: with open(os.path.join(__UpperCamelCase , __UpperCamelCase ) , "w" , encoding="utf-8" , newline="\n" ) as f: f.writelines(lines[:start_index] + [new_list] + lines[end_index:] ) else: raise ValueError( F'''The list of models that can be used in the {task_guide} guide needs an update. Run `make fix-copies`''' " to fix this." ) if __name__ == "__main__": A : Tuple = argparse.ArgumentParser() parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.") A : Dict = parser.parse_args() for task_guide in TASK_GUIDE_TO_MODELS.keys(): check_model_list_for_task(task_guide, args.fix_and_overwrite)
118
0
"""simple docstring""" def UpperCAmelCase ( UpperCAmelCase ) -> bool: snake_case_ = n ** (1 / 3) return (val * val * val) == n if __name__ == "__main__": print(perfect_cube(27)) print(perfect_cube(4))
312
"""simple docstring""" import os import numpy import onnx def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> List[str]: snake_case_ = a.name snake_case_ = b.name snake_case_ = '' snake_case_ = '' snake_case_ = a == b snake_case_ = name_a snake_case_ = name_b return res def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> int: for i, input_name in enumerate(node_proto.input ): if input_name == name: node_proto.input.insert(UpperCAmelCase , UpperCAmelCase ) node_proto.input.pop(i + 1 ) if node_proto.op_type == "If": _graph_replace_input_with(node_proto.attribute[0].g , UpperCAmelCase , UpperCAmelCase ) _graph_replace_input_with(node_proto.attribute[1].g , UpperCAmelCase , UpperCAmelCase ) if node_proto.op_type == "Loop": _graph_replace_input_with(node_proto.attribute[0].g , UpperCAmelCase , UpperCAmelCase ) def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Union[str, Any]: for n in graph_proto.node: _node_replace_input_with(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Any: snake_case_ = list(model.graph.initializer ) snake_case_ = list(model_without_ext.graph.initializer ) for i, ref_i in ind_to_replace: assert inits_with_data[i].name == inits[i].name assert inits_with_data[ref_i].name == inits[ref_i].name assert i > ref_i snake_case_ = inits[i].name snake_case_ = inits[ref_i].name model_without_ext.graph.initializer.remove(inits[i] ) # for n in model.graph.node: _graph_replace_input_with(model_without_ext.graph , UpperCAmelCase , UpperCAmelCase ) def UpperCAmelCase ( UpperCAmelCase ) -> Optional[Any]: snake_case_ = os.path.dirname(UpperCAmelCase ) snake_case_ = os.path.basename(UpperCAmelCase ) snake_case_ = onnx.load(os.path.join(UpperCAmelCase , UpperCAmelCase ) ) snake_case_ = list(model.graph.initializer ) snake_case_ = set() snake_case_ = {} snake_case_ = [] snake_case_ = 0 for i in range(len(UpperCAmelCase ) ): if i in dup_set: continue for j in range(i + 1 , len(UpperCAmelCase ) ): if j in dup_set: continue if _is_equal_tensor_proto(inits[i] , inits[j] ): dup_set.add(UpperCAmelCase ) dup_set.add(UpperCAmelCase ) snake_case_ = inits[j].data_type snake_case_ = numpy.prod(inits[j].dims ) if dtype == 1: mem_size *= 4 elif dtype == 6: mem_size *= 4 elif dtype == 7 or dtype == 11: mem_size *= 8 else: print('unexpected data type: ' , UpperCAmelCase ) total_reduced_size += mem_size snake_case_ = inits[i].name snake_case_ = inits[j].name if name_i in dup_map: dup_map[name_i].append(UpperCAmelCase ) else: snake_case_ = [name_j] ind_to_replace.append((j, i) ) print('total reduced size: ' , total_reduced_size / 1024 / 1024 / 1024 , 'GB' ) snake_case_ = sorted(UpperCAmelCase ) _remove_dup_initializers_from_model(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) snake_case_ = 'optimized_' + model_file_name snake_case_ = os.path.join(UpperCAmelCase , UpperCAmelCase ) onnx.save(UpperCAmelCase , UpperCAmelCase ) return new_model
312
1
from __future__ import annotations from scipy.special import comb # type: ignore class lowercase_ : '''simple docstring''' def __init__( self : Tuple , __UpperCAmelCase : list[tuple[float, float]] ) ->Optional[Any]: """simple docstring""" a = list_of_points # Degree determines the flexibility of the curve. # Degree = 1 will produce a straight line. a = len(__UpperCAmelCase ) - 1 def __lowerCAmelCase ( self : List[str] , __UpperCAmelCase : float ) ->list[float]: """simple docstring""" assert 0 <= t <= 1, "Time t must be between 0 and 1." a = [] for i in range(len(self.list_of_points ) ): # basis function for each i output_values.append( comb(self.degree , __UpperCAmelCase ) * ((1 - t) ** (self.degree - i)) * (t**i) ) # the basis must sum up to 1 for it to produce a valid Bezier curve. assert round(sum(__UpperCAmelCase ) , 5 ) == 1 return output_values def __lowerCAmelCase ( self : Optional[int] , __UpperCAmelCase : float ) ->tuple[float, float]: """simple docstring""" assert 0 <= t <= 1, "Time t must be between 0 and 1." a = self.basis_function(__UpperCAmelCase ) a = 0.0 a = 0.0 for i in range(len(self.list_of_points ) ): # For all points, sum up the product of i-th basis function and i-th point. x += basis_function[i] * self.list_of_points[i][0] y += basis_function[i] * self.list_of_points[i][1] return (x, y) def __lowerCAmelCase ( self : int , __UpperCAmelCase : float = 0.01 ) ->Optional[int]: """simple docstring""" from matplotlib import pyplot as plt # type: ignore a = [] # x coordinates of points to plot a = [] # y coordinates of points to plot a = 0.0 while t <= 1: a = self.bezier_curve_function(__UpperCAmelCase ) to_plot_x.append(value[0] ) to_plot_y.append(value[1] ) t += step_size a = [i[0] for i in self.list_of_points] a = [i[1] for i in self.list_of_points] plt.plot( __UpperCAmelCase , __UpperCAmelCase , color='''blue''' , label='''Curve of Degree ''' + str(self.degree ) , ) plt.scatter(__UpperCAmelCase , __UpperCAmelCase , color='''red''' , label='''Control Points''' ) plt.legend() plt.show() if __name__ == "__main__": import doctest doctest.testmod() BezierCurve([(1, 2), (3, 5)]).plot_curve() # degree 1 BezierCurve([(0, 0), (5, 5), (5, 0)]).plot_curve() # degree 2 BezierCurve([(0, 0), (5, 5), (5, 0), (2.5, -2.5)]).plot_curve() # degree 3
0
from typing import List, Optional from tokenizers import ByteLevelBPETokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot_small import BlenderbotSmallTokenizer lowerCamelCase = logging.get_logger(__name__) lowerCamelCase = { '''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_config_file''': '''tokenizer_config.json''', } lowerCamelCase = { '''vocab_file''': { '''facebook/blenderbot_small-90M''': '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json''' }, '''merges_file''': { '''facebook/blenderbot_small-90M''': '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt''' }, '''tokenizer_config_file''': { '''facebook/blenderbot_small-90M''': ( '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json''' ) }, } lowerCamelCase = { '''facebook/blenderbot_small-90M''': 512, } class _a ( _lowercase): _a : Dict = VOCAB_FILES_NAMES _a : Optional[int] = PRETRAINED_VOCAB_FILES_MAP _a : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _a : Dict = BlenderbotSmallTokenizer def __init__( self : Tuple , _SCREAMING_SNAKE_CASE : int=None , _SCREAMING_SNAKE_CASE : Any=None , _SCREAMING_SNAKE_CASE : Tuple="<|endoftext|>" , _SCREAMING_SNAKE_CASE : Any="<|endoftext|>" , _SCREAMING_SNAKE_CASE : Union[str, Any]="<|endoftext|>" , _SCREAMING_SNAKE_CASE : Tuple=False , _SCREAMING_SNAKE_CASE : List[Any]=True , **_SCREAMING_SNAKE_CASE : Optional[Any] , )-> Union[str, Any]: super().__init__( ByteLevelBPETokenizer( vocab=_SCREAMING_SNAKE_CASE , merges=_SCREAMING_SNAKE_CASE , add_prefix_space=_SCREAMING_SNAKE_CASE , trim_offsets=_SCREAMING_SNAKE_CASE , ) , bos_token=_SCREAMING_SNAKE_CASE , eos_token=_SCREAMING_SNAKE_CASE , unk_token=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) lowerCAmelCase__ : List[str] = add_prefix_space def UpperCAmelCase__( self : Tuple , _SCREAMING_SNAKE_CASE : Dict , _SCREAMING_SNAKE_CASE : Any=None )-> Optional[int]: lowerCAmelCase__ : str = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def UpperCAmelCase__( self : int , _SCREAMING_SNAKE_CASE : List[int] , _SCREAMING_SNAKE_CASE : Optional[List[int]] = None )-> List[int]: lowerCAmelCase__ : List[str] = [self.sep_token_id] lowerCAmelCase__ : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
131
0
__lowerCamelCase : Any = """2.13.1""" import platform import pyarrow from packaging import version if version.parse(platform.python_version()) < version.parse("""3.7"""): raise ImportWarning( """To use `datasets`, Python>=3.7 is required, and the current version of Python doesn\'t match this condition.""" ) if version.parse(pyarrow.__version__).major < 8: raise ImportWarning( """To use `datasets`, the module `pyarrow>=8.0.0` is required, and the current version of `pyarrow` doesn\'t match this condition.\n""" """If you are running this in a Google Colab, you should probably just restart the runtime to use the right version of `pyarrow`.""" ) del platform del pyarrow del version from .arrow_dataset import Dataset from .arrow_reader import ReadInstruction from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder from .combine import concatenate_datasets, interleave_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .download import * from .features import * from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled from .info import DatasetInfo, MetricInfo from .inspect import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, list_datasets, list_metrics, ) from .iterable_dataset import IterableDataset from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric from .metric import Metric from .splits import ( NamedSplit, NamedSplitAll, Split, SplitBase, SplitDict, SplitGenerator, SplitInfo, SubSplitInfo, percent, ) from .tasks import * from .utils import * from .utils import logging # deprecated modules from datasets import arrow_dataset as _arrow_dataset # isort:skip from datasets import utils as _utils # isort:skip from datasets.utils import download_manager as _deprecated_download_manager # isort:skip __lowerCamelCase : Optional[Any] = concatenate_datasets __lowerCamelCase : int = DownloadConfig __lowerCamelCase : Dict = DownloadManager __lowerCamelCase : Optional[Any] = DownloadMode __lowerCamelCase : Optional[int] = DownloadConfig __lowerCamelCase : Tuple = DownloadMode __lowerCamelCase : int = DownloadManager del _arrow_dataset, _utils, _deprecated_download_manager
363
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowerCamelCase : Union[str, Any] = { """configuration_time_series_transformer""": [ """TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """TimeSeriesTransformerConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Tuple = [ """TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """TimeSeriesTransformerForPrediction""", """TimeSeriesTransformerModel""", """TimeSeriesTransformerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimeSeriesTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimeSeriesTransformerForPrediction, TimeSeriesTransformerModel, TimeSeriesTransformerPreTrainedModel, ) else: import sys __lowerCamelCase : Tuple = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
286
0
import collections import tempfile import unittest import numpy as np from transformers.testing_utils import ( is_pt_flax_cross_test, require_flax, require_torch, require_vision, slow, torch_device, ) from transformers.utils import is_flax_available, is_torch_available, is_vision_available from ...test_modeling_flax_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_flax_bert import FlaxBertModelTester from ..clip.test_modeling_flax_clip import FlaxCLIPVisionModelTester from ..vit.test_modeling_flax_vit import FlaxViTModelTester if is_flax_available(): from transformers import ( FlaxBertModel, FlaxCLIPVisionModel, FlaxVisionTextDualEncoderModel, FlaxViTModel, VisionTextDualEncoderConfig, VisionTextDualEncoderProcessor, ) from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) if is_torch_available(): import torch from transformers import VisionTextDualEncoderModel if is_vision_available(): from PIL import Image def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" if isinstance(_UpperCamelCase , collections.abc.Iterable ): return x return (x, x) @require_flax class _a : def lowerCamelCase_ ( self: int , UpperCamelCase_: str , UpperCamelCase_: Optional[int] ) -> Union[str, Any]: """simple docstring""" pass def lowerCamelCase_ ( self: Optional[int] ) -> Optional[int]: """simple docstring""" pass def lowerCamelCase_ ( self: int ) -> Any: """simple docstring""" pass def lowerCamelCase_ ( self: Optional[Any] , UpperCamelCase_: Dict , UpperCamelCase_: List[str] , UpperCamelCase_: Tuple ) -> int: """simple docstring""" lowercase__ = np.abs((a - b) ).max() self.assertLessEqual(__UpperCAmelCase , __UpperCAmelCase , f'Difference between torch and flax is {diff} (>= {tol}).' ) def lowerCamelCase_ ( self: Tuple , UpperCamelCase_: Tuple , UpperCamelCase_: Dict , UpperCamelCase_: Any , UpperCamelCase_: List[str] , UpperCamelCase_: int=None , **UpperCamelCase_: Any ) -> Optional[int]: """simple docstring""" lowercase__ = VisionTextDualEncoderConfig.from_vision_text_configs(__UpperCAmelCase , __UpperCAmelCase ) lowercase__ = FlaxVisionTextDualEncoderModel(__UpperCAmelCase ) lowercase__ = model(input_ids=__UpperCAmelCase , pixel_values=__UpperCAmelCase , attention_mask=__UpperCAmelCase ) self.assertEqual(output['''text_embeds'''].shape , (input_ids.shape[0], config.projection_dim) ) self.assertEqual(output['''image_embeds'''].shape , (pixel_values.shape[0], config.projection_dim) ) def lowerCamelCase_ ( self: Any , UpperCamelCase_: Tuple , UpperCamelCase_: Dict , UpperCamelCase_: str , UpperCamelCase_: Any , UpperCamelCase_: Any=None , **UpperCamelCase_: List[Any] ) -> int: """simple docstring""" lowercase__ , lowercase__ = self.get_vision_text_model(__UpperCAmelCase , __UpperCAmelCase ) lowercase__ = {'''vision_model''': vision_model, '''text_model''': text_model} lowercase__ = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**__UpperCAmelCase ) lowercase__ = model(input_ids=__UpperCAmelCase , pixel_values=__UpperCAmelCase , attention_mask=__UpperCAmelCase ) self.assertEqual(output['''text_embeds'''].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output['''image_embeds'''].shape , (pixel_values.shape[0], model.config.projection_dim) ) def lowerCamelCase_ ( self: List[Any] , UpperCamelCase_: int , UpperCamelCase_: Optional[Any] , UpperCamelCase_: List[Any] , UpperCamelCase_: int , UpperCamelCase_: Union[str, Any]=None , **UpperCamelCase_: Dict ) -> List[str]: """simple docstring""" lowercase__ , lowercase__ = self.get_vision_text_model(__UpperCAmelCase , __UpperCAmelCase ) lowercase__ = {'''vision_model''': vision_model, '''text_model''': text_model} lowercase__ = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**__UpperCAmelCase ) lowercase__ = model(input_ids=__UpperCAmelCase , pixel_values=__UpperCAmelCase , attention_mask=__UpperCAmelCase ) lowercase__ = output[0] with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__UpperCAmelCase ) lowercase__ = FlaxVisionTextDualEncoderModel.from_pretrained(__UpperCAmelCase ) lowercase__ = model(input_ids=__UpperCAmelCase , pixel_values=__UpperCAmelCase , attention_mask=__UpperCAmelCase ) lowercase__ = after_output[0] lowercase__ = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(__UpperCAmelCase , 1E-3 ) def lowerCamelCase_ ( self: str , UpperCamelCase_: Any , UpperCamelCase_: str , UpperCamelCase_: str , UpperCamelCase_: List[str] , UpperCamelCase_: Dict=None , **UpperCamelCase_: Optional[Any] ) -> Tuple: """simple docstring""" lowercase__ , lowercase__ = self.get_vision_text_model(__UpperCAmelCase , __UpperCAmelCase ) lowercase__ = {'''vision_model''': vision_model, '''text_model''': text_model} lowercase__ = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**__UpperCAmelCase ) lowercase__ = model( input_ids=__UpperCAmelCase , pixel_values=__UpperCAmelCase , attention_mask=__UpperCAmelCase , output_attentions=__UpperCAmelCase ) lowercase__ = output.vision_model_output.attentions self.assertEqual(len(__UpperCAmelCase ) , vision_config.num_hidden_layers ) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) lowercase__ = to_atuple(vision_model.config.image_size ) lowercase__ = to_atuple(vision_model.config.patch_size ) lowercase__ = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) lowercase__ = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) lowercase__ = output.text_model_output.attentions self.assertEqual(len(__UpperCAmelCase ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def lowerCamelCase_ ( self: Any , UpperCamelCase_: Optional[int] , UpperCamelCase_: int , UpperCamelCase_: Optional[Any] ) -> Dict: """simple docstring""" pt_model.to(__UpperCAmelCase ) pt_model.eval() # prepare inputs lowercase__ = inputs_dict lowercase__ = {k: torch.tensor(v.tolist() ) for k, v in flax_inputs.items()} with torch.no_grad(): lowercase__ = pt_model(**__UpperCAmelCase ).to_tuple() lowercase__ = fx_model(**__UpperCAmelCase ).to_tuple() self.assertEqual(len(__UpperCAmelCase ) , len(__UpperCAmelCase ) , '''Output lengths differ between Flax and PyTorch''' ) for fx_output, pt_output in zip(fx_outputs[:4] , pt_outputs[:4] ): self.assert_almost_equals(__UpperCAmelCase , pt_output.numpy() , 4E-2 ) # PT -> Flax with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(__UpperCAmelCase ) lowercase__ = FlaxVisionTextDualEncoderModel.from_pretrained(__UpperCAmelCase , from_pt=__UpperCAmelCase ) lowercase__ = fx_model_loaded(**__UpperCAmelCase ).to_tuple() self.assertEqual(len(__UpperCAmelCase ) , len(__UpperCAmelCase ) , '''Output lengths differ between Flax and PyTorch''' ) for fx_output_loaded, pt_output in zip(fx_outputs_loaded[:4] , pt_outputs[:4] ): self.assert_almost_equals(__UpperCAmelCase , pt_output.numpy() , 4E-2 ) # Flax -> PT with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(__UpperCAmelCase ) lowercase__ = VisionTextDualEncoderModel.from_pretrained(__UpperCAmelCase , from_flax=__UpperCAmelCase ) pt_model_loaded.to(__UpperCAmelCase ) pt_model_loaded.eval() with torch.no_grad(): lowercase__ = pt_model_loaded(**__UpperCAmelCase ).to_tuple() self.assertEqual(len(__UpperCAmelCase ) , len(__UpperCAmelCase ) , '''Output lengths differ between Flax and PyTorch''' ) for fx_output, pt_output_loaded in zip(fx_outputs[:4] , pt_outputs_loaded[:4] ): self.assert_almost_equals(__UpperCAmelCase , pt_output_loaded.numpy() , 4E-2 ) def lowerCamelCase_ ( self: List[Any] , UpperCamelCase_: Tuple , UpperCamelCase_: Optional[Any] , UpperCamelCase_: Optional[int] ) -> Optional[Any]: """simple docstring""" lowercase__ = VisionTextDualEncoderConfig.from_vision_text_configs(__UpperCAmelCase , __UpperCAmelCase ) lowercase__ = VisionTextDualEncoderModel(__UpperCAmelCase ) lowercase__ = FlaxVisionTextDualEncoderModel(__UpperCAmelCase ) lowercase__ = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , __UpperCAmelCase ) lowercase__ = fx_state self.check_pt_flax_equivalence(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) def lowerCamelCase_ ( self: Optional[int] , UpperCamelCase_: Optional[int] , UpperCamelCase_: Tuple , UpperCamelCase_: List[Any] ) -> Any: """simple docstring""" lowercase__ = VisionTextDualEncoderConfig.from_vision_text_configs(__UpperCAmelCase , __UpperCAmelCase ) lowercase__ = VisionTextDualEncoderModel(__UpperCAmelCase ) lowercase__ = FlaxVisionTextDualEncoderModel(__UpperCAmelCase ) lowercase__ = load_flax_weights_in_pytorch_model(__UpperCAmelCase , fx_model.params ) self.check_pt_flax_equivalence(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) def lowerCamelCase_ ( self: Union[str, Any] ) -> Tuple: """simple docstring""" lowercase__ = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**__UpperCAmelCase ) def lowerCamelCase_ ( self: Union[str, Any] ) -> Any: """simple docstring""" lowercase__ = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**__UpperCAmelCase ) def lowerCamelCase_ ( self: Dict ) -> Any: """simple docstring""" lowercase__ = self.prepare_config_and_inputs() self.check_save_load(**__UpperCAmelCase ) def lowerCamelCase_ ( self: Any ) -> Any: """simple docstring""" lowercase__ = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**__UpperCAmelCase ) @is_pt_flax_cross_test def lowerCamelCase_ ( self: Any ) -> Optional[int]: """simple docstring""" lowercase__ = self.prepare_config_and_inputs() lowercase__ = config_inputs_dict.pop('''vision_config''' ) lowercase__ = config_inputs_dict.pop('''text_config''' ) lowercase__ = config_inputs_dict self.check_equivalence_pt_to_flax(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) self.check_equivalence_flax_to_pt(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) @slow def lowerCamelCase_ ( self: Optional[int] ) -> Any: """simple docstring""" lowercase__ , lowercase__ = self.get_pretrained_model_and_inputs() lowercase__ = model_a(**__UpperCAmelCase ) lowercase__ = outputs[0] with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(__UpperCAmelCase ) lowercase__ = FlaxVisionTextDualEncoderModel.from_pretrained(__UpperCAmelCase ) lowercase__ = model_a(**__UpperCAmelCase ) lowercase__ = after_outputs[0] lowercase__ = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(__UpperCAmelCase , 1E-5 ) @require_flax class _a ( lowerCAmelCase__ , unittest.TestCase ): def lowerCamelCase_ ( self: Optional[int] ) -> Tuple: """simple docstring""" lowercase__ = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( '''hf-internal-testing/tiny-random-vit''' , '''hf-internal-testing/tiny-bert''' , vision_from_pt=__UpperCAmelCase , text_from_pt=__UpperCAmelCase , ) lowercase__ = 13 lowercase__ = floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ] ) lowercase__ = ids_tensor([batch_size, 4] , model.config.text_config.vocab_size ) lowercase__ = random_attention_mask([batch_size, 4] ) lowercase__ = {'''pixel_values''': pixel_values, '''input_ids''': input_ids, '''attention_mask''': attention_mask} return model, inputs def lowerCamelCase_ ( self: Optional[Any] , UpperCamelCase_: int , UpperCamelCase_: str ) -> Optional[Any]: """simple docstring""" lowercase__ = FlaxViTModel(__UpperCAmelCase ) lowercase__ = FlaxBertModel(__UpperCAmelCase ) return vision_model, text_model def lowerCamelCase_ ( self: Dict ) -> List[Any]: """simple docstring""" lowercase__ = FlaxViTModelTester(self ) lowercase__ = FlaxBertModelTester(self ) lowercase__ = vit_model_tester.prepare_config_and_inputs() lowercase__ = bert_model_tester.prepare_config_and_inputs() lowercase__ , lowercase__ = vision_config_and_inputs lowercase__ , lowercase__ , lowercase__ , lowercase__ = text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_torch class _a ( lowerCAmelCase__ , unittest.TestCase ): def lowerCamelCase_ ( self: Optional[Any] ) -> Union[str, Any]: """simple docstring""" lowercase__ = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( '''hf-internal-testing/tiny-random-clip''' , '''hf-internal-testing/tiny-bert''' , vision_from_pt=__UpperCAmelCase , text_from_pt=__UpperCAmelCase , ) lowercase__ = 13 lowercase__ = floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ] ) lowercase__ = ids_tensor([batch_size, 4] , model.config.text_config.vocab_size ) lowercase__ = random_attention_mask([batch_size, 4] ) lowercase__ = {'''pixel_values''': pixel_values, '''input_ids''': input_ids, '''attention_mask''': attention_mask} return model, inputs def lowerCamelCase_ ( self: Union[str, Any] , UpperCamelCase_: str , UpperCamelCase_: str ) -> str: """simple docstring""" lowercase__ = FlaxCLIPVisionModel(__UpperCAmelCase ) lowercase__ = FlaxBertModel(__UpperCAmelCase ) return vision_model, text_model def lowerCamelCase_ ( self: List[Any] ) -> Union[str, Any]: """simple docstring""" lowercase__ = FlaxCLIPVisionModelTester(self ) lowercase__ = FlaxBertModelTester(self ) lowercase__ = clip_model_tester.prepare_config_and_inputs() lowercase__ = bert_model_tester.prepare_config_and_inputs() lowercase__ , lowercase__ = vision_config_and_inputs lowercase__ , lowercase__ , lowercase__ , lowercase__ = text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_flax @require_vision class _a ( unittest.TestCase ): @slow def lowerCamelCase_ ( self: Tuple ) -> Optional[Any]: """simple docstring""" lowercase__ = FlaxVisionTextDualEncoderModel.from_pretrained('''clip-italian/clip-italian''' , logit_scale_init_value=1.0 ) lowercase__ = VisionTextDualEncoderProcessor.from_pretrained('''clip-italian/clip-italian''' ) lowercase__ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) lowercase__ = processor( text=['''una foto di un gatto''', '''una foto di un cane'''] , images=__UpperCAmelCase , padding=__UpperCAmelCase , return_tensors='''np''' ) lowercase__ = model(**__UpperCAmelCase ) # verify the logits self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) ) self.assertEqual( outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , ) lowercase__ = np.array([[1.2284727, 0.3104122]] ) self.assertTrue(np.allclose(outputs.logits_per_image , __UpperCAmelCase , atol=1E-3 ) )
110
import argparse import os from pathlib import Path from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import PegasusConfig, PegasusForConditionalGeneration, PegasusTokenizer from transformers.models.pegasus.configuration_pegasus import DEFAULTS, task_specific_params a_ = [ # replace left string with right string to get the relevant state_dict key (identical state dict to bart) ["""memory_attention""", """encoder_attn"""], ["""attention""", """attn"""], ["""/""", """."""], [""".LayerNorm.gamma""", """_layer_norm.weight"""], [""".LayerNorm.beta""", """_layer_norm.bias"""], ["""r.layer_""", """r.layers."""], ["""output_proj""", """out_proj"""], ["""ffn.dense_1.""", """fc2."""], ["""ffn.dense.""", """fc1."""], ["""ffn_layer_norm""", """final_layer_norm"""], ["""kernel""", """weight"""], ["""encoder_layer_norm.""", """encoder.layer_norm."""], ["""decoder_layer_norm.""", """decoder.layer_norm."""], ["""embeddings.weights""", """shared.weight"""], ] def a__ ( _UpperCamelCase : int ): for pegasus_name, hf_name in PATTERNS: __lowerCamelCase = k.replace(_UpperCamelCase ,_UpperCamelCase ) return k def a__ ( _UpperCamelCase : dict ,_UpperCamelCase : dict ): __lowerCamelCase = DEFAULTS.copy() cfg_kwargs.update(_UpperCamelCase ) __lowerCamelCase = PegasusConfig(**_UpperCamelCase ) __lowerCamelCase = PegasusForConditionalGeneration(_UpperCamelCase ) __lowerCamelCase = torch_model.model.state_dict() __lowerCamelCase = {} for k, v in tf_weights.items(): __lowerCamelCase = rename_state_dict_key(_UpperCamelCase ) if new_k not in sd: raise ValueError(F"""could not find new key {new_k} in state dict. (converted from {k})""" ) if "dense" in k or "proj" in new_k: __lowerCamelCase = v.T __lowerCamelCase = torch.tensor(_UpperCamelCase ,dtype=sd[new_k].dtype ) assert v.shape == sd[new_k].shape, F"""{new_k}, {k}, {v.shape}, {sd[new_k].shape}""" # make sure embedding.padding_idx is respected __lowerCamelCase = torch.zeros_like(mapping['''shared.weight'''][cfg.pad_token_id + 1] ) __lowerCamelCase = mapping['''shared.weight'''] __lowerCamelCase = mapping['''shared.weight'''] __lowerCamelCase = {k: torch.zeros_like(_UpperCamelCase ) for k, v in sd.items() if k.endswith('''bias''' ) and k not in mapping} mapping.update(**_UpperCamelCase ) __lowerCamelCase ,__lowerCamelCase = torch_model.model.load_state_dict(_UpperCamelCase ,strict=_UpperCamelCase ) __lowerCamelCase = [ k for k in missing if k not in ['''encoder.embed_positions.weight''', '''decoder.embed_positions.weight'''] ] assert unexpected_missing == [], F"""no matches found for the following torch keys {unexpected_missing}""" assert extra == [], F"""no matches found for the following tf keys {extra}""" return torch_model def a__ ( _UpperCamelCase : str="./ckpt/aeslc/model.ckpt-32000" ): __lowerCamelCase = tf.train.list_variables(_UpperCamelCase ) __lowerCamelCase = {} __lowerCamelCase = ['''Adafactor''', '''global_step'''] for name, shape in tqdm(_UpperCamelCase ,desc='''converting tf checkpoint to dict''' ): __lowerCamelCase = any(pat in name for pat in ignore_name ) if skip_key: continue __lowerCamelCase = tf.train.load_variable(_UpperCamelCase ,_UpperCamelCase ) __lowerCamelCase = array return tf_weights def a__ ( _UpperCamelCase : str ,_UpperCamelCase : str ): # save tokenizer first __lowerCamelCase = Path(_UpperCamelCase ).parent.name __lowerCamelCase = task_specific_params[F"""summarization_{dataset}"""]['''max_position_embeddings'''] __lowerCamelCase = PegasusTokenizer.from_pretrained('''sshleifer/pegasus''' ,model_max_length=_UpperCamelCase ) assert tok.model_max_length == desired_max_model_length tok.save_pretrained(_UpperCamelCase ) # convert model __lowerCamelCase = get_tf_weights_as_numpy(_UpperCamelCase ) __lowerCamelCase = task_specific_params[F"""summarization_{dataset}"""] if dataset == "large": __lowerCamelCase = task_specific_params __lowerCamelCase = convert_pegasus(_UpperCamelCase ,_UpperCamelCase ) torch_model.save_pretrained(_UpperCamelCase ) __lowerCamelCase = torch_model.state_dict() sd.pop('''model.decoder.embed_positions.weight''' ) sd.pop('''model.encoder.embed_positions.weight''' ) torch.save(_UpperCamelCase ,Path(_UpperCamelCase ) / '''pytorch_model.bin''' ) if __name__ == "__main__": a_ = argparse.ArgumentParser() # Required parameters parser.add_argument("""tf_ckpt_path""", type=str, help="""passed to tf.train.list_variables""") parser.add_argument("""save_dir""", default=None, type=str, help="""Path to the output PyTorch model.""") a_ = parser.parse_args() if args.save_dir is None: a_ = Path(args.tf_ckpt_path).parent.name a_ = os.path.join("""pegasus""", dataset) convert_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir)
330
0
def __A ( _lowercase ): '''simple docstring''' _A = [[0 for _ in range(_lowercase )] for _ in range(m + 1 )] for i in range(m + 1 ): _A = 1 for n in range(m + 1 ): for k in range(1 , _lowercase ): memo[n][k] += memo[n][k - 1] if n - k > 0: memo[n][k] += memo[n - k - 1][k] return memo[m][m - 1] if __name__ == "__main__": import sys if len(sys.argv) == 1: try: __A = int(input('Enter a number: ').strip()) print(partition(n)) except ValueError: print('Please enter a number.') else: try: __A = int(sys.argv[1]) print(partition(n)) except ValueError: print('Please pass a number.')
75
from __future__ import annotations import math def __A ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ): '''simple docstring''' if depth < 0: raise ValueError('''Depth cannot be less than 0''' ) if not scores: raise ValueError('''Scores cannot be empty''' ) if depth == height: return scores[node_index] return ( max( minimax(depth + 1 , node_index * 2 , _lowercase , _lowercase , _lowercase ) , minimax(depth + 1 , node_index * 2 + 1 , _lowercase , _lowercase , _lowercase ) , ) if is_max else min( minimax(depth + 1 , node_index * 2 , _lowercase , _lowercase , _lowercase ) , minimax(depth + 1 , node_index * 2 + 1 , _lowercase , _lowercase , _lowercase ) , ) ) def __A ( ): '''simple docstring''' _A = [90, 23, 6, 33, 21, 65, 1_23, 3_44_23] _A = math.log(len(_lowercase ) , 2 ) print(f"""Optimal value : {minimax(0 , 0 , _lowercase , _lowercase , _lowercase )}""" ) if __name__ == "__main__": import doctest doctest.testmod() main()
75
1
def __UpperCamelCase ( _A ): lowerCAmelCase_ = [0] * len(_lowercase ) lowerCAmelCase_ = [] lowerCAmelCase_ = [1] * len(_lowercase ) for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(_lowercase ) ): if indegree[i] == 0: queue.append(_lowercase ) while queue: lowerCAmelCase_ = queue.pop(0 ) for x in graph[vertex]: indegree[x] -= 1 if long_dist[vertex] + 1 > long_dist[x]: lowerCAmelCase_ = long_dist[vertex] + 1 if indegree[x] == 0: queue.append(_lowercase ) print(max(_lowercase ) ) # Adjacency list of Graph _A = {0: [2, 3, 4], 1: [2, 7], 2: [5], 3: [5, 7], 4: [7], 5: [6], 6: [7], 7: []} longest_distance(graph)
278
def _A ( _lowercase ) -> list[int]: """simple docstring""" if length <= 0 or not isinstance(_lowercase , _lowercase ): raise ValueError('Length must be a positive integer.' ) return [n * (2 * n - 1) for n in range(_lowercase )] if __name__ == "__main__": print(hexagonal_numbers(length=5)) print(hexagonal_numbers(length=1_0))
310
0
"""simple docstring""" from math import sqrt def _A ( UpperCamelCase_ : int) -> bool: '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5, int(sqrt(UpperCamelCase_) + 1), 6): if number % i == 0 or number % (i + 2) == 0: return False return True def _A ( UpperCamelCase_ : int = 10001) -> int: '''simple docstring''' __lowercase = 0 __lowercase = 1 while count != nth and number < 3: number += 1 if is_prime(UpperCamelCase_): count += 1 while count != nth: number += 2 if is_prime(UpperCamelCase_): count += 1 return number if __name__ == "__main__": print(F"{solution() = }")
144
"""simple docstring""" from unittest import TestCase from datasets import Dataset from minhash_deduplication import deduplicate_dataset, make_duplicate_clusters def _A ( ) -> Dict: '''simple docstring''' __lowercase = { "repo_name": ["test_repo1", "test_repo2", "test_repo3"], "path": ["test_1.py", "test_2.py", "unit_test.py"], "content": ["a " * 20, "a " * 30, "b " * 7], } __lowercase = Dataset.from_dict(UpperCamelCase_) return dataset class _lowerCAmelCase ( lowercase ): """simple docstring""" def _lowercase ( self : int ): __lowercase = get_dataset() __lowercase = make_duplicate_clusters(UpperCAmelCase__, 0.85 ) self.assertEqual(len(duplicate_clusters[0] ), 2 ) def _lowercase ( self : Any ): __lowercase = get_dataset() __lowercase ,__lowercase = deduplicate_dataset(UpperCAmelCase__ ) self.assertEqual(len(UpperCAmelCase__ ), 2 ) print(UpperCAmelCase__ ) self.assertEqual(duplicate_clusters[0][0]["copies"], 2 ) self.assertEqual(duplicate_clusters[0][0]["is_extreme"], UpperCAmelCase__ )
144
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) _snake_case = { 'configuration_vision_encoder_decoder': ['VisionEncoderDecoderConfig', 'VisionEncoderDecoderOnnxConfig'] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = ['VisionEncoderDecoderModel'] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = ['TFVisionEncoderDecoderModel'] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = ['FlaxVisionEncoderDecoderModel'] if TYPE_CHECKING: from .configuration_vision_encoder_decoder import VisionEncoderDecoderConfig, VisionEncoderDecoderOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vision_encoder_decoder import VisionEncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vision_encoder_decoder import TFVisionEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vision_encoder_decoder import FlaxVisionEncoderDecoderModel else: import sys _snake_case = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
294
"""simple docstring""" import json import os from typing import Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = {'vocab_file': 'vocab.json'} _snake_case = { 'vocab_file': { 'mgp-str': 'https://huggingface.co/alibaba-damo/mgp-str-base/blob/main/vocab.json', } } _snake_case = {'mgp-str': 27} class UpperCamelCase ( snake_case_ ): UpperCamelCase : List[str] = VOCAB_FILES_NAMES UpperCamelCase : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : Optional[int] , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : List[Any]="[GO]" , UpperCAmelCase__ : Tuple="[GO]" , UpperCAmelCase__ : Optional[int]="[s]" , UpperCAmelCase__ : int="[GO]" , **UpperCAmelCase__ : Dict ) -> int: super().__init__( unk_token=UpperCAmelCase__ , bos_token=UpperCAmelCase__ , eos_token=UpperCAmelCase__ , pad_token=UpperCAmelCase__ , **UpperCAmelCase__ , ) with open(UpperCAmelCase__ , encoding="""utf-8""" ) as vocab_handle: _a : int = json.load(UpperCAmelCase__ ) _a : Optional[int] = {v: k for k, v in self.vocab.items()} @property def _lowercase ( self : Dict ) -> Union[str, Any]: return len(self.vocab ) def _lowercase ( self : Union[str, Any] ) -> str: return dict(self.vocab , **self.added_tokens_encoder ) def _lowercase ( self : Dict , UpperCAmelCase__ : str ) -> Union[str, Any]: _a : Tuple = [] for s in text: char_tokens.extend(UpperCAmelCase__ ) return char_tokens def _lowercase ( self : List[Any] , UpperCAmelCase__ : str ) -> Dict: return self.vocab.get(UpperCAmelCase__ , self.vocab.get(self.unk_token ) ) def _lowercase ( self : Optional[int] , UpperCAmelCase__ : Tuple ) -> List[Any]: return self.decoder.get(UpperCAmelCase__ ) def _lowercase ( self : Optional[int] , UpperCAmelCase__ : str , UpperCAmelCase__ : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(UpperCAmelCase__ ): logger.error("""Vocabulary path ({}) should be a directory""".format(UpperCAmelCase__ ) ) return _a : Tuple = os.path.join( UpperCAmelCase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) with open(UpperCAmelCase__ , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.vocab , indent=2 , sort_keys=UpperCAmelCase__ , ensure_ascii=UpperCAmelCase__ ) + """\n""" ) return (vocab_file,)
294
1
from argparse import ArgumentParser from datasets.commands.convert import ConvertCommand from datasets.commands.dummy_data import DummyDataCommand from datasets.commands.env import EnvironmentCommand from datasets.commands.run_beam import RunBeamCommand from datasets.commands.test import TestCommand from datasets.utils.logging import set_verbosity_info def SCREAMING_SNAKE_CASE ( snake_case_ : str ): return {key.lstrip("-" ): value for key, value in zip(unknown_args[::2] , unknown_args[1::2] )} def SCREAMING_SNAKE_CASE ( ): snake_case__ : Optional[Any] = ArgumentParser( "HuggingFace Datasets CLI tool" , usage="datasets-cli <command> [<args>]" , allow_abbrev=snake_case_ ) snake_case__ : Any = parser.add_subparsers(help="datasets-cli command helpers" ) set_verbosity_info() # Register commands ConvertCommand.register_subcommand(snake_case_ ) EnvironmentCommand.register_subcommand(snake_case_ ) TestCommand.register_subcommand(snake_case_ ) RunBeamCommand.register_subcommand(snake_case_ ) DummyDataCommand.register_subcommand(snake_case_ ) # Parse args snake_case__ : str = parser.parse_known_args() if not hasattr(snake_case_ , "func" ): parser.print_help() exit(1 ) snake_case__ : str = parse_unknown_args(snake_case_ ) # Run snake_case__ : int = args.func(snake_case_ , **snake_case_ ) service.run() if __name__ == "__main__": main()
361
import os import pytest from attr import dataclass __lowerCamelCase : Any = """us-east-1""" # defaults region @dataclass class SCREAMING_SNAKE_CASE__ : """simple docstring""" a_ = 42 a_ = "arn:aws:iam::558105141721:role/sagemaker_execution_role" a_ = { "task_name": "mnli", "per_device_train_batch_size": 1_6, "per_device_eval_batch_size": 1_6, "do_train": True, "do_eval": True, "do_predict": True, "output_dir": "/opt/ml/model", "overwrite_output_dir": True, "max_steps": 5_0_0, "save_steps": 5_5_0_0, } a_ = {**hyperparameters, "max_steps": 1_0_0_0} @property def _lowercase ( self : List[Any] ): if self.framework == "pytorch": return [ {"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"}, {"Name": "eval_accuracy", "Regex": r"eval_accuracy.*=\D*(.*?)$"}, {"Name": "eval_loss", "Regex": r"eval_loss.*=\D*(.*?)$"}, ] else: return [ {"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"}, {"Name": "eval_accuracy", "Regex": r"loss.*=\D*(.*?)]?$"}, {"Name": "eval_loss", "Regex": r"sparse_categorical_accuracy.*=\D*(.*?)]?$"}, ] @property def _lowercase ( self : Any ): return f'''{self.framework}-transfromers-test''' @property def _lowercase ( self : Optional[Any] ): return f'''./tests/sagemaker/scripts/{self.framework}''' @property def _lowercase ( self : Union[str, Any] ): if self.framework == "pytorch": return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-pytorch-training:1.7.1-transformers4.6.1-gpu-py36-cu110-ubuntu18.04" else: return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-tensorflow-training:2.4.1-transformers4.6.1-gpu-py37-cu110-ubuntu18.04" @pytest.fixture(scope="class" ) def SCREAMING_SNAKE_CASE ( snake_case_ : Optional[Any] ): snake_case__ : Optional[int] = SageMakerTestEnvironment(framework=request.cls.framework )
286
0
SCREAMING_SNAKE_CASE :int = {0: [2, 3], 1: [0], 2: [1], 3: [4], 4: []} SCREAMING_SNAKE_CASE :Optional[Any] = {0: [1, 2, 3], 1: [2], 2: [0], 3: [4], 4: [5], 5: [3]} def UpperCAmelCase ( a_ , a_ , a_ ) -> list[int]: """simple docstring""" __A = True __A = [] for neighbour in graph[vert]: if not visited[neighbour]: order += topology_sort(a_ , a_ , a_ ) order.append(a_ ) return order def UpperCAmelCase ( a_ , a_ , a_ ) -> list[int]: """simple docstring""" __A = True __A = [vert] for neighbour in reversed_graph[vert]: if not visited[neighbour]: component += find_components(a_ , a_ , a_ ) return component def UpperCAmelCase ( a_ ) -> list[list[int]]: """simple docstring""" __A = len(a_ ) * [False] __A = {vert: [] for vert in range(len(a_ ) )} for vert, neighbours in graph.items(): for neighbour in neighbours: reversed_graph[neighbour].append(a_ ) __A = [] for i, was_visited in enumerate(a_ ): if not was_visited: order += topology_sort(a_ , a_ , a_ ) __A = [] __A = len(a_ ) * [False] for i in range(len(a_ ) ): __A = order[len(a_ ) - i - 1] if not visited[vert]: __A = find_components(a_ , a_ , a_ ) components_list.append(a_ ) return components_list
15
from __future__ import annotations def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): return [ord(SCREAMING_SNAKE_CASE__ ) - 96 for elem in plain] def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): return "".join(chr(elem + 96 ) for elem in encoded ) def __SCREAMING_SNAKE_CASE (): snake_case_ = encode(input('''-> ''' ).strip().lower() ) print('''Encoded: ''' , SCREAMING_SNAKE_CASE__ ) print('''Decoded:''' , decode(SCREAMING_SNAKE_CASE__ ) ) if __name__ == "__main__": main()
8
0
"""simple docstring""" from __future__ import annotations import typing from collections import Counter def a_ ( _lowercase ): _UpperCamelCase : typing.Counter[int] = Counter() for base in range(1 , max_perimeter + 1 ): for perpendicular in range(_lowercase , max_perimeter + 1 ): _UpperCamelCase : int = (base * base + perpendicular * perpendicular) ** 0.5 if hypotenuse == int(_lowercase ): _UpperCamelCase : Optional[Any] = int(base + perpendicular + hypotenuse ) if perimeter > max_perimeter: continue triplets[perimeter] += 1 return triplets def a_ ( _lowercase = 1000 ): _UpperCamelCase : Dict = pythagorean_triple(_lowercase ) return triplets.most_common(1 )[0][0] if __name__ == "__main__": print(F"Perimeter {solution()} has maximum solutions")
128
"""simple docstring""" from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class _a ( _lowerCAmelCase ): UpperCamelCase = ['''image_processor''', '''tokenizer'''] UpperCamelCase = '''BlipImageProcessor''' UpperCamelCase = '''AutoTokenizer''' def __init__( self : List[str], lowerCAmelCase__ : Optional[int], lowerCAmelCase__ : Optional[int] ) -> int: '''simple docstring''' _UpperCamelCase : Any = False super().__init__(lowerCAmelCase__, lowerCAmelCase__ ) _UpperCamelCase : Tuple = self.image_processor def __call__( self : str, lowerCAmelCase__ : ImageInput = None, lowerCAmelCase__ : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None, lowerCAmelCase__ : bool = True, lowerCAmelCase__ : Union[bool, str, PaddingStrategy] = False, lowerCAmelCase__ : Union[bool, str, TruncationStrategy] = None, lowerCAmelCase__ : Optional[int] = None, lowerCAmelCase__ : int = 0, lowerCAmelCase__ : Optional[int] = None, lowerCAmelCase__ : Optional[bool] = None, lowerCAmelCase__ : bool = False, lowerCAmelCase__ : bool = False, lowerCAmelCase__ : bool = False, lowerCAmelCase__ : bool = False, lowerCAmelCase__ : bool = False, lowerCAmelCase__ : bool = True, lowerCAmelCase__ : Optional[Union[str, TensorType]] = None, **lowerCAmelCase__ : Optional[Any], ) -> BatchEncoding: '''simple docstring''' if images is None and text is None: raise ValueError('''You have to specify either images or text.''' ) # Get only text if images is None: _UpperCamelCase : int = self.tokenizer _UpperCamelCase : List[str] = self.tokenizer( text=lowerCAmelCase__, add_special_tokens=lowerCAmelCase__, padding=lowerCAmelCase__, truncation=lowerCAmelCase__, max_length=lowerCAmelCase__, stride=lowerCAmelCase__, pad_to_multiple_of=lowerCAmelCase__, return_attention_mask=lowerCAmelCase__, return_overflowing_tokens=lowerCAmelCase__, return_special_tokens_mask=lowerCAmelCase__, return_offsets_mapping=lowerCAmelCase__, return_token_type_ids=lowerCAmelCase__, return_length=lowerCAmelCase__, verbose=lowerCAmelCase__, return_tensors=lowerCAmelCase__, **lowerCAmelCase__, ) return text_encoding # add pixel_values _UpperCamelCase : List[str] = self.image_processor(lowerCAmelCase__, return_tensors=lowerCAmelCase__ ) if text is not None: _UpperCamelCase : Any = self.tokenizer( text=lowerCAmelCase__, add_special_tokens=lowerCAmelCase__, padding=lowerCAmelCase__, truncation=lowerCAmelCase__, max_length=lowerCAmelCase__, stride=lowerCAmelCase__, pad_to_multiple_of=lowerCAmelCase__, return_attention_mask=lowerCAmelCase__, return_overflowing_tokens=lowerCAmelCase__, return_special_tokens_mask=lowerCAmelCase__, return_offsets_mapping=lowerCAmelCase__, return_token_type_ids=lowerCAmelCase__, return_length=lowerCAmelCase__, verbose=lowerCAmelCase__, return_tensors=lowerCAmelCase__, **lowerCAmelCase__, ) else: _UpperCamelCase : List[Any] = None if text_encoding is not None: encoding_image_processor.update(lowerCAmelCase__ ) return encoding_image_processor def snake_case ( self : List[Any], *lowerCAmelCase__ : List[str], **lowerCAmelCase__ : str ) -> Optional[int]: '''simple docstring''' return self.tokenizer.batch_decode(*lowerCAmelCase__, **lowerCAmelCase__ ) def snake_case ( self : List[Any], *lowerCAmelCase__ : Dict, **lowerCAmelCase__ : Any ) -> List[str]: '''simple docstring''' return self.tokenizer.decode(*lowerCAmelCase__, **lowerCAmelCase__ ) @property # Copied from transformers.models.blip.processing_blip.BlipProcessor.model_input_names def snake_case ( self : Any ) -> str: '''simple docstring''' _UpperCamelCase : List[str] = self.tokenizer.model_input_names _UpperCamelCase : Union[str, Any] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
128
1
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, PNDMScheduler, StableDiffusionLDMaDPipeline, UNetaDConditionModel, ) from diffusers.utils import nightly, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS enable_full_determinism() class __UpperCAmelCase ( unittest.TestCase ): __lowercase = StableDiffusionLDMaDPipeline __lowercase = TEXT_TO_IMAGE_PARAMS __lowercase = TEXT_TO_IMAGE_BATCH_PARAMS __lowercase = TEXT_TO_IMAGE_IMAGE_PARAMS def lowerCamelCase ( self ): """simple docstring""" torch.manual_seed(0 ) _snake_case = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) _snake_case = DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule='scaled_linear' , clip_sample=lowerCAmelCase_ , set_alpha_to_one=lowerCAmelCase_ , ) torch.manual_seed(0 ) _snake_case = AutoencoderKL( block_out_channels=[32, 64] , in_channels=6 , out_channels=6 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) torch.manual_seed(0 ) _snake_case = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) _snake_case = CLIPTextModel(lowerCAmelCase_ ) _snake_case = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) _snake_case = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_=0 ): """simple docstring""" if str(lowerCAmelCase_ ).startswith('mps' ): _snake_case = torch.manual_seed(lowerCAmelCase_ ) else: _snake_case = torch.Generator(device=lowerCAmelCase_ ).manual_seed(lowerCAmelCase_ ) _snake_case = { 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def lowerCamelCase ( self ): """simple docstring""" _snake_case = 'cpu' # ensure determinism for the device-dependent torch.Generator _snake_case = self.get_dummy_components() _snake_case = StableDiffusionLDMaDPipeline(**lowerCAmelCase_ ) _snake_case = ldmad_pipe.to(lowerCAmelCase_ ) ldmad_pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) _snake_case = self.get_dummy_inputs(lowerCAmelCase_ ) _snake_case = ldmad_pipe(**lowerCAmelCase_ ) _snake_case , _snake_case = output.rgb, output.depth _snake_case = rgb[0, -3:, -3:, -1] _snake_case = depth[0, -3:, -1] assert rgb.shape == (1, 64, 64, 3) assert depth.shape == (1, 64, 64) _snake_case = np.array( [0.37338176, 0.70247, 0.74203193, 0.51643604, 0.58256793, 0.60932136, 0.4181095, 0.48355877, 0.46535262] ) _snake_case = np.array([103.46727, 85.812004, 87.849236] ) assert np.abs(image_slice_rgb.flatten() - expected_slice_rgb ).max() < 1E-2 assert np.abs(image_slice_depth.flatten() - expected_slice_depth ).max() < 1E-2 def lowerCamelCase ( self ): """simple docstring""" _snake_case = self.get_dummy_components() _snake_case = StableDiffusionLDMaDPipeline(**lowerCAmelCase_ ) _snake_case = ldmad_pipe.to(lowerCAmelCase_ ) ldmad_pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) _snake_case = self.get_dummy_inputs(lowerCAmelCase_ ) _snake_case = 3 * [inputs['prompt']] # forward _snake_case = ldmad_pipe(**lowerCAmelCase_ ) _snake_case , _snake_case = output.rgb, output.depth _snake_case = rgb_slice_a[0, -3:, -3:, -1] _snake_case = depth_slice_a[0, -3:, -1] _snake_case = self.get_dummy_inputs(lowerCAmelCase_ ) _snake_case = 3 * [inputs.pop('prompt' )] _snake_case = ldmad_pipe.tokenizer( lowerCAmelCase_ , padding='max_length' , max_length=ldmad_pipe.tokenizer.model_max_length , truncation=lowerCAmelCase_ , return_tensors='pt' , ) _snake_case = text_inputs['input_ids'].to(lowerCAmelCase_ ) _snake_case = ldmad_pipe.text_encoder(lowerCAmelCase_ )[0] _snake_case = prompt_embeds # forward _snake_case = ldmad_pipe(**lowerCAmelCase_ ) _snake_case , _snake_case = output.rgb, output.depth _snake_case = rgb_slice_a[0, -3:, -3:, -1] _snake_case = depth_slice_a[0, -3:, -1] assert np.abs(rgb_slice_a.flatten() - rgb_slice_a.flatten() ).max() < 1E-4 assert np.abs(depth_slice_a.flatten() - depth_slice_a.flatten() ).max() < 1E-4 def lowerCamelCase ( self ): """simple docstring""" _snake_case = 'cpu' # ensure determinism for the device-dependent torch.Generator _snake_case = self.get_dummy_components() _snake_case = PNDMScheduler(skip_prk_steps=lowerCAmelCase_ ) _snake_case = StableDiffusionLDMaDPipeline(**lowerCAmelCase_ ) _snake_case = ldmad_pipe.to(lowerCAmelCase_ ) ldmad_pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) _snake_case = self.get_dummy_inputs(lowerCAmelCase_ ) _snake_case = 'french fries' _snake_case = ldmad_pipe(**lowerCAmelCase_ , negative_prompt=lowerCAmelCase_ ) _snake_case , _snake_case = output.rgb, output.depth _snake_case = rgb[0, -3:, -3:, -1] _snake_case = depth[0, -3:, -1] assert rgb.shape == (1, 64, 64, 3) assert depth.shape == (1, 64, 64) _snake_case = np.array( [0.37044, 0.71811503, 0.7223251, 0.48603675, 0.5638391, 0.6364948, 0.42833704, 0.4901315, 0.47926217] ) _snake_case = np.array([107.84738, 84.62802, 89.962135] ) assert np.abs(rgb_slice.flatten() - expected_slice_rgb ).max() < 1E-2 assert np.abs(depth_slice.flatten() - expected_slice_depth ).max() < 1E-2 @slow @require_torch_gpu class __UpperCAmelCase ( unittest.TestCase ): def lowerCamelCase ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_="cpu" , lowerCAmelCase_=torch.floataa , lowerCAmelCase_=0 ): """simple docstring""" _snake_case = torch.Generator(device=lowerCAmelCase_ ).manual_seed(lowerCAmelCase_ ) _snake_case = np.random.RandomState(lowerCAmelCase_ ).standard_normal((1, 4, 64, 64) ) _snake_case = torch.from_numpy(lowerCAmelCase_ ).to(device=lowerCAmelCase_ , dtype=lowerCAmelCase_ ) _snake_case = { 'prompt': 'a photograph of an astronaut riding a horse', 'latents': latents, 'generator': generator, 'num_inference_steps': 3, 'guidance_scale': 7.5, 'output_type': 'numpy', } return inputs def lowerCamelCase ( self ): """simple docstring""" _snake_case = StableDiffusionLDMaDPipeline.from_pretrained('Intel/ldm3d' ) _snake_case = ldmad_pipe.to(lowerCAmelCase_ ) ldmad_pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) _snake_case = self.get_inputs(lowerCAmelCase_ ) _snake_case = ldmad_pipe(**lowerCAmelCase_ ) _snake_case , _snake_case = output.rgb, output.depth _snake_case = rgb[0, -3:, -3:, -1].flatten() _snake_case = rgb[0, -3:, -1].flatten() assert rgb.shape == (1, 5_12, 5_12, 3) assert depth.shape == (1, 5_12, 5_12) _snake_case = np.array( [0.53805465, 0.56707305, 0.5486515, 0.57012236, 0.5814511, 0.56253487, 0.54843014, 0.55092263, 0.6459706] ) _snake_case = np.array( [0.9263781, 0.6678672, 0.5486515, 0.92202145, 0.67831135, 0.56253487, 0.9241694, 0.7551478, 0.6459706] ) assert np.abs(rgb_slice - expected_slice_rgb ).max() < 3E-3 assert np.abs(depth_slice - expected_slice_depth ).max() < 3E-3 @nightly @require_torch_gpu class __UpperCAmelCase ( unittest.TestCase ): def lowerCamelCase ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_="cpu" , lowerCAmelCase_=torch.floataa , lowerCAmelCase_=0 ): """simple docstring""" _snake_case = torch.Generator(device=lowerCAmelCase_ ).manual_seed(lowerCAmelCase_ ) _snake_case = np.random.RandomState(lowerCAmelCase_ ).standard_normal((1, 4, 64, 64) ) _snake_case = torch.from_numpy(lowerCAmelCase_ ).to(device=lowerCAmelCase_ , dtype=lowerCAmelCase_ ) _snake_case = { 'prompt': 'a photograph of an astronaut riding a horse', 'latents': latents, 'generator': generator, 'num_inference_steps': 50, 'guidance_scale': 7.5, 'output_type': 'numpy', } return inputs def lowerCamelCase ( self ): """simple docstring""" _snake_case = StableDiffusionLDMaDPipeline.from_pretrained('Intel/ldm3d' ).to(lowerCAmelCase_ ) ldmad_pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) _snake_case = self.get_inputs(lowerCAmelCase_ ) _snake_case = ldmad_pipe(**lowerCAmelCase_ ) _snake_case , _snake_case = output.rgb, output.depth _snake_case = 0.495586 _snake_case = 0.33795515 _snake_case = 112.48518 _snake_case = 98.489746 assert np.abs(expected_rgb_mean - rgb.mean() ) < 1E-3 assert np.abs(expected_rgb_std - rgb.std() ) < 1E-3 assert np.abs(expected_depth_mean - depth.mean() ) < 1E-3 assert np.abs(expected_depth_std - depth.std() ) < 1E-3 def lowerCamelCase ( self ): """simple docstring""" _snake_case = StableDiffusionLDMaDPipeline.from_pretrained('Intel/ldm3d-4c' ).to(lowerCAmelCase_ ) ldmad_pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) _snake_case = self.get_inputs(lowerCAmelCase_ ) _snake_case = ldmad_pipe(**lowerCAmelCase_ ) _snake_case , _snake_case = output.rgb, output.depth _snake_case = 0.4194127 _snake_case = 0.35375586 _snake_case = 0.5638502 _snake_case = 0.34686103 assert rgb.shape == (1, 5_12, 5_12, 3) assert depth.shape == (1, 5_12, 5_12, 1) assert np.abs(expected_rgb_mean - rgb.mean() ) < 1E-3 assert np.abs(expected_rgb_std - rgb.std() ) < 1E-3 assert np.abs(expected_depth_mean - depth.mean() ) < 1E-3 assert np.abs(expected_depth_std - depth.std() ) < 1E-3
42
'''simple docstring''' import argparse import numpy as np import torch from transformers import SpeechTaHifiGan, SpeechTaHifiGanConfig, logging logging.set_verbosity_info() lowercase : List[str] = logging.get_logger("transformers.models.speecht5") def SCREAMING_SNAKE_CASE__ ( __A , __A , __A ) -> Dict: hf_model.apply_weight_norm() _snake_case = checkpoint['input_conv.weight_g'] _snake_case = checkpoint['input_conv.weight_v'] _snake_case = checkpoint['input_conv.bias'] for i in range(len(config.upsample_rates ) ): _snake_case = checkpoint[F'upsamples.{i}.1.weight_g'] _snake_case = checkpoint[F'upsamples.{i}.1.weight_v'] _snake_case = checkpoint[F'upsamples.{i}.1.bias'] for i in range(len(config.upsample_rates ) * len(config.resblock_kernel_sizes ) ): for j in range(len(config.resblock_dilation_sizes ) ): _snake_case = checkpoint[F'blocks.{i}.convs1.{j}.1.weight_g'] _snake_case = checkpoint[F'blocks.{i}.convs1.{j}.1.weight_v'] _snake_case = checkpoint[F'blocks.{i}.convs1.{j}.1.bias'] _snake_case = checkpoint[F'blocks.{i}.convs2.{j}.1.weight_g'] _snake_case = checkpoint[F'blocks.{i}.convs2.{j}.1.weight_v'] _snake_case = checkpoint[F'blocks.{i}.convs2.{j}.1.bias'] _snake_case = checkpoint['output_conv.1.weight_g'] _snake_case = checkpoint['output_conv.1.weight_v'] _snake_case = checkpoint['output_conv.1.bias'] hf_model.remove_weight_norm() @torch.no_grad() def SCREAMING_SNAKE_CASE__ ( __A , __A , __A , __A=None , __A=None , ) -> List[Any]: if config_path is not None: _snake_case = SpeechTaHifiGanConfig.from_pretrained(__A ) else: _snake_case = SpeechTaHifiGanConfig() _snake_case = SpeechTaHifiGan(__A ) _snake_case = torch.load(__A ) load_weights(orig_checkpoint['model']['generator'] , __A , __A ) _snake_case = np.load(__A ) _snake_case = stats[0].reshape(-1 ) _snake_case = stats[1].reshape(-1 ) _snake_case = torch.from_numpy(__A ).float() _snake_case = torch.from_numpy(__A ).float() model.save_pretrained(__A ) if repo_id: print('Pushing to the hub...' ) model.push_to_hub(__A ) if __name__ == "__main__": lowercase : Dict = argparse.ArgumentParser() parser.add_argument("--checkpoint_path", required=True, default=None, type=str, help="Path to original checkpoint") parser.add_argument("--stats_path", required=True, default=None, type=str, help="Path to stats.npy file") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--pytorch_dump_folder_path", required=True, default=None, type=str, help="Path to the output PyTorch model." ) parser.add_argument( "--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub." ) lowercase : List[Any] = parser.parse_args() convert_hifigan_checkpoint( args.checkpoint_path, args.stats_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
42
1
'''simple docstring''' from __future__ import annotations def a ( lowerCamelCase__ ): '''simple docstring''' if not nums: raise ValueError("""List is empty""" ) return sum(lowerCamelCase__ ) / len(lowerCamelCase__ ) if __name__ == "__main__": import doctest doctest.testmod()
354
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase :Any = logging.get_logger(__name__) lowerCamelCase :List[Any] = { '''camembert-base''': '''https://huggingface.co/camembert-base/resolve/main/config.json''', '''umberto-commoncrawl-cased-v1''': ( '''https://huggingface.co/Musixmatch/umberto-commoncrawl-cased-v1/resolve/main/config.json''' ), '''umberto-wikipedia-uncased-v1''': ( '''https://huggingface.co/Musixmatch/umberto-wikipedia-uncased-v1/resolve/main/config.json''' ), } class _lowerCAmelCase ( __UpperCAmelCase ): __SCREAMING_SNAKE_CASE : Optional[int] = 'camembert' def __init__(self , lowercase=30522 , lowercase=768 , lowercase=12 , lowercase=12 , lowercase=3072 , lowercase="gelu" , lowercase=0.1 , lowercase=0.1 , lowercase=512 , lowercase=2 , lowercase=0.02 , lowercase=1E-12 , lowercase=1 , lowercase=0 , lowercase=2 , lowercase="absolute" , lowercase=True , lowercase=None , **lowercase , ): super().__init__(pad_token_id=lowercase , bos_token_id=lowercase , eos_token_id=lowercase , **lowercase ) A_ : List[Any] = vocab_size A_ : int = hidden_size A_ : Dict = num_hidden_layers A_ : Dict = num_attention_heads A_ : Optional[Any] = hidden_act A_ : str = intermediate_size A_ : int = hidden_dropout_prob A_ : List[Any] = attention_probs_dropout_prob A_ : Optional[Any] = max_position_embeddings A_ : Optional[int] = type_vocab_size A_ : int = initializer_range A_ : str = layer_norm_eps A_ : int = position_embedding_type A_ : Dict = use_cache A_ : Any = classifier_dropout class _lowerCAmelCase ( __UpperCAmelCase ): @property def _a (self ): if self.task == "multiple-choice": A_ : Optional[Any] = {0: """batch""", 1: """choice""", 2: """sequence"""} else: A_ : int = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
135
0
def __snake_case ( __UpperCamelCase : int ): """simple docstring""" A_ = n ** (1 / 3) return (val * val * val) == n if __name__ == "__main__": print(perfect_cube(27)) print(perfect_cube(4))
312
import os import re import sys import traceback import warnings from pathlib import Path from typing import Dict, Optional, Union from uuid import uuida from huggingface_hub import HfFolder, ModelCard, ModelCardData, hf_hub_download, whoami from huggingface_hub.file_download import REGEX_COMMIT_HASH from huggingface_hub.utils import ( EntryNotFoundError, RepositoryNotFoundError, RevisionNotFoundError, is_jinja_available, ) from packaging import version from requests import HTTPError from .. import __version__ from .constants import ( DEPRECATED_REVISION_ARGS, DIFFUSERS_CACHE, HUGGINGFACE_CO_RESOLVE_ENDPOINT, SAFETENSORS_WEIGHTS_NAME, WEIGHTS_NAME, ) from .import_utils import ( ENV_VARS_TRUE_VALUES, _flax_version, _jax_version, _onnxruntime_version, _torch_version, is_flax_available, is_onnx_available, is_torch_available, ) from .logging import get_logger __a :Dict = get_logger(__name__) __a :Union[str, Any] = Path(__file__).parent / 'model_card_template.md' __a :Tuple = uuida().hex __a :List[Any] = os.getenv('HF_HUB_OFFLINE', '').upper() in ENV_VARS_TRUE_VALUES __a :Union[str, Any] = os.getenv('DISABLE_TELEMETRY', '').upper() in ENV_VARS_TRUE_VALUES __a :Tuple = HUGGINGFACE_CO_RESOLVE_ENDPOINT + '/api/telemetry/' def __snake_case ( __UpperCamelCase : Union[Dict, str, None] = None ): """simple docstring""" A_ = f'''diffusers/{__version__}; python/{sys.version.split()[0]}; session_id/{SESSION_ID}''' if DISABLE_TELEMETRY or HF_HUB_OFFLINE: return ua + "; telemetry/off" if is_torch_available(): ua += f'''; torch/{_torch_version}''' if is_flax_available(): ua += f'''; jax/{_jax_version}''' ua += f'''; flax/{_flax_version}''' if is_onnx_available(): ua += f'''; onnxruntime/{_onnxruntime_version}''' # CI will set this value to True if os.environ.get("DIFFUSERS_IS_CI" ,"" ).upper() in ENV_VARS_TRUE_VALUES: ua += "; is_ci/true" if isinstance(__UpperCamelCase ,__UpperCamelCase ): ua += "; " + "; ".join(f'''{k}/{v}''' for k, v in user_agent.items() ) elif isinstance(__UpperCamelCase ,__UpperCamelCase ): ua += "; " + user_agent return ua def __snake_case ( __UpperCamelCase : str ,__UpperCamelCase : Optional[str] = None ,__UpperCamelCase : Optional[str] = None ): """simple docstring""" if token is None: A_ = HfFolder.get_token() if organization is None: A_ = whoami(__UpperCamelCase )["name"] return f'''{username}/{model_id}''' else: return f'''{organization}/{model_id}''' def __snake_case ( __UpperCamelCase : Tuple ,__UpperCamelCase : Union[str, Any] ): """simple docstring""" if not is_jinja_available(): raise ValueError( "Modelcard rendering is based on Jinja templates." " Please make sure to have `jinja` installed before using `create_model_card`." " To install it, please run `pip install Jinja2`." ) if hasattr(__UpperCamelCase ,"local_rank" ) and args.local_rank not in [-1, 0]: return A_ = args.hub_token if hasattr(__UpperCamelCase ,"hub_token" ) else None A_ = get_full_repo_name(__UpperCamelCase ,token=__UpperCamelCase ) A_ = ModelCard.from_template( card_data=ModelCardData( # Card metadata object that will be converted to YAML block language="en" ,license="apache-2.0" ,library_name="diffusers" ,tags=[] ,datasets=args.dataset_name ,metrics=[] ,) ,template_path=__UpperCamelCase ,model_name=__UpperCamelCase ,repo_name=__UpperCamelCase ,dataset_name=args.dataset_name if hasattr(__UpperCamelCase ,"dataset_name" ) else None ,learning_rate=args.learning_rate ,train_batch_size=args.train_batch_size ,eval_batch_size=args.eval_batch_size ,gradient_accumulation_steps=( args.gradient_accumulation_steps if hasattr(__UpperCamelCase ,"gradient_accumulation_steps" ) else None ) ,adam_betaa=args.adam_betaa if hasattr(__UpperCamelCase ,"adam_beta1" ) else None ,adam_betaa=args.adam_betaa if hasattr(__UpperCamelCase ,"adam_beta2" ) else None ,adam_weight_decay=args.adam_weight_decay if hasattr(__UpperCamelCase ,"adam_weight_decay" ) else None ,adam_epsilon=args.adam_epsilon if hasattr(__UpperCamelCase ,"adam_epsilon" ) else None ,lr_scheduler=args.lr_scheduler if hasattr(__UpperCamelCase ,"lr_scheduler" ) else None ,lr_warmup_steps=args.lr_warmup_steps if hasattr(__UpperCamelCase ,"lr_warmup_steps" ) else None ,ema_inv_gamma=args.ema_inv_gamma if hasattr(__UpperCamelCase ,"ema_inv_gamma" ) else None ,ema_power=args.ema_power if hasattr(__UpperCamelCase ,"ema_power" ) else None ,ema_max_decay=args.ema_max_decay if hasattr(__UpperCamelCase ,"ema_max_decay" ) else None ,mixed_precision=args.mixed_precision ,) A_ = os.path.join(args.output_dir ,"README.md" ) model_card.save(__UpperCamelCase ) def __snake_case ( __UpperCamelCase : Optional[str] ,__UpperCamelCase : Optional[str] = None ): """simple docstring""" if resolved_file is None or commit_hash is not None: return commit_hash A_ = str(Path(__UpperCamelCase ).as_posix() ) A_ = re.search(R"snapshots/([^/]+)/" ,__UpperCamelCase ) if search is None: return None A_ = search.groups()[0] return commit_hash if REGEX_COMMIT_HASH.match(__UpperCamelCase ) else None # Old default cache path, potentially to be migrated. # This logic was more or less taken from `transformers`, with the following differences: # - Diffusers doesn't use custom environment variables to specify the cache path. # - There is no need to migrate the cache format, just move the files to the new location. __a :str = os.path.expanduser( os.getenv('HF_HOME', os.path.join(os.getenv('XDG_CACHE_HOME', '~/.cache'), 'huggingface')) ) __a :List[Any] = os.path.join(hf_cache_home, 'diffusers') def __snake_case ( __UpperCamelCase : Optional[str] = None ,__UpperCamelCase : Optional[str] = None ): """simple docstring""" if new_cache_dir is None: A_ = DIFFUSERS_CACHE if old_cache_dir is None: A_ = old_diffusers_cache A_ = Path(__UpperCamelCase ).expanduser() A_ = Path(__UpperCamelCase ).expanduser() for old_blob_path in old_cache_dir.glob("**/blobs/*" ): if old_blob_path.is_file() and not old_blob_path.is_symlink(): A_ = new_cache_dir / old_blob_path.relative_to(__UpperCamelCase ) new_blob_path.parent.mkdir(parents=__UpperCamelCase ,exist_ok=__UpperCamelCase ) os.replace(__UpperCamelCase ,__UpperCamelCase ) try: os.symlink(__UpperCamelCase ,__UpperCamelCase ) except OSError: logger.warning( "Could not create symlink between old cache and new cache. If you use an older version of diffusers again, files will be re-downloaded." ) # At this point, old_cache_dir contains symlinks to the new cache (it can still be used). __a :Dict = os.path.join(DIFFUSERS_CACHE, 'version_diffusers_cache.txt') if not os.path.isfile(cache_version_file): __a :Optional[int] = 0 else: with open(cache_version_file) as f: try: __a :Dict = int(f.read()) except ValueError: __a :str = 0 if cache_version < 1: __a :Optional[Any] = os.path.isdir(old_diffusers_cache) and len(os.listdir(old_diffusers_cache)) > 0 if old_cache_is_not_empty: logger.warning( 'The cache for model files in Diffusers v0.14.0 has moved to a new location. Moving your ' 'existing cached models. This is a one-time operation, you can interrupt it or run it ' 'later by calling `diffusers.utils.hub_utils.move_cache()`.' ) try: move_cache() except Exception as e: __a :Optional[Any] = '\n'.join(traceback.format_tb(e.__traceback__)) logger.error( F"There was a problem when trying to move your cache:\n\n{trace}\n{e.__class__.__name__}: {e}\n\nPlease " 'file an issue at https://github.com/huggingface/diffusers/issues/new/choose, copy paste this whole ' 'message and we will do our best to help.' ) if cache_version < 1: try: os.makedirs(DIFFUSERS_CACHE, exist_ok=True) with open(cache_version_file, 'w') as f: f.write('1') except Exception: logger.warning( F"There was a problem when trying to write in your cache folder ({DIFFUSERS_CACHE}). Please, ensure " 'the directory exists and can be written to.' ) def __snake_case ( __UpperCamelCase : str ,__UpperCamelCase : Optional[str] = None ): """simple docstring""" if variant is not None: A_ = weights_name.split("." ) A_ = splits[:-1] + [variant] + splits[-1:] A_ = ".".join(__UpperCamelCase ) return weights_name def __snake_case ( __UpperCamelCase : Optional[Any] ,*, __UpperCamelCase : Union[str, Any] ,__UpperCamelCase : Any ,__UpperCamelCase : Tuple ,__UpperCamelCase : Union[str, Any] ,__UpperCamelCase : str ,__UpperCamelCase : int ,__UpperCamelCase : Union[str, Any] ,__UpperCamelCase : int ,__UpperCamelCase : Optional[int] ,__UpperCamelCase : Tuple ,__UpperCamelCase : Optional[int]=None ,): """simple docstring""" A_ = str(__UpperCamelCase ) if os.path.isfile(__UpperCamelCase ): return pretrained_model_name_or_path elif os.path.isdir(__UpperCamelCase ): if os.path.isfile(os.path.join(__UpperCamelCase ,__UpperCamelCase ) ): # Load from a PyTorch checkpoint A_ = os.path.join(__UpperCamelCase ,__UpperCamelCase ) return model_file elif subfolder is not None and os.path.isfile( os.path.join(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) ): A_ = os.path.join(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) return model_file else: raise EnvironmentError( f'''Error no file named {weights_name} found in directory {pretrained_model_name_or_path}.''' ) else: # 1. First check if deprecated way of loading from branches is used if ( revision in DEPRECATED_REVISION_ARGS and (weights_name == WEIGHTS_NAME or weights_name == SAFETENSORS_WEIGHTS_NAME) and version.parse(version.parse(__UpperCamelCase ).base_version ) >= version.parse("0.20.0" ) ): try: A_ = hf_hub_download( __UpperCamelCase ,filename=_add_variant(__UpperCamelCase ,__UpperCamelCase ) ,cache_dir=__UpperCamelCase ,force_download=__UpperCamelCase ,proxies=__UpperCamelCase ,resume_download=__UpperCamelCase ,local_files_only=__UpperCamelCase ,use_auth_token=__UpperCamelCase ,user_agent=__UpperCamelCase ,subfolder=__UpperCamelCase ,revision=revision or commit_hash ,) warnings.warn( f'''Loading the variant {revision} from {pretrained_model_name_or_path} via `revision=\'{revision}\'` is deprecated. Loading instead from `revision=\'main\'` with `variant={revision}`. Loading model variants via `revision=\'{revision}\'` will be removed in diffusers v1. Please use `variant=\'{revision}\'` instead.''' ,__UpperCamelCase ,) return model_file except: # noqa: E722 warnings.warn( f'''You are loading the variant {revision} from {pretrained_model_name_or_path} via `revision=\'{revision}\'`. This behavior is deprecated and will be removed in diffusers v1. One should use `variant=\'{revision}\'` instead. However, it appears that {pretrained_model_name_or_path} currently does not have a {_add_variant(__UpperCamelCase ,__UpperCamelCase )} file in the \'main\' branch of {pretrained_model_name_or_path}. \n The Diffusers team and community would be very grateful if you could open an issue: https://github.com/huggingface/diffusers/issues/new with the title \'{pretrained_model_name_or_path} is missing {_add_variant(__UpperCamelCase ,__UpperCamelCase )}\' so that the correct variant file can be added.''' ,__UpperCamelCase ,) try: # 2. Load model file as usual A_ = hf_hub_download( __UpperCamelCase ,filename=__UpperCamelCase ,cache_dir=__UpperCamelCase ,force_download=__UpperCamelCase ,proxies=__UpperCamelCase ,resume_download=__UpperCamelCase ,local_files_only=__UpperCamelCase ,use_auth_token=__UpperCamelCase ,user_agent=__UpperCamelCase ,subfolder=__UpperCamelCase ,revision=revision or commit_hash ,) return model_file except RepositoryNotFoundError: raise EnvironmentError( f'''{pretrained_model_name_or_path} is not a local folder and is not a valid model identifier ''' "listed on 'https://huggingface.co/models'\nIf this is a private repository, make sure to pass a " "token having permission to this repo with `use_auth_token` or log in with `huggingface-cli " "login`." ) except RevisionNotFoundError: raise EnvironmentError( f'''{revision} is not a valid git identifier (branch name, tag name or commit id) that exists for ''' "this model name. Check the model page at " f'''\'https://huggingface.co/{pretrained_model_name_or_path}\' for available revisions.''' ) except EntryNotFoundError: raise EnvironmentError( f'''{pretrained_model_name_or_path} does not appear to have a file named {weights_name}.''' ) except HTTPError as err: raise EnvironmentError( f'''There was a specific connection error when trying to load {pretrained_model_name_or_path}:\n{err}''' ) except ValueError: raise EnvironmentError( f'''We couldn\'t connect to \'{HUGGINGFACE_CO_RESOLVE_ENDPOINT}\' to load this model, couldn\'t find it''' f''' in the cached files and it looks like {pretrained_model_name_or_path} is not the path to a''' f''' directory containing a file named {weights_name} or''' " \nCheckout your internet connection or see how to run the library in" " offline mode at 'https://huggingface.co/docs/diffusers/installation#offline-mode'." ) except EnvironmentError: raise EnvironmentError( f'''Can\'t load the model for \'{pretrained_model_name_or_path}\'. If you were trying to load it from ''' "'https://huggingface.co/models', make sure you don't have a local directory with the same name. " f'''Otherwise, make sure \'{pretrained_model_name_or_path}\' is the correct path to a directory ''' f'''containing a file named {weights_name}''' )
312
1
from io import BytesIO from typing import List, Union import requests from ..utils import add_end_docstrings, is_decord_available, is_torch_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_decord_available(): import numpy as np from decord import VideoReader if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING __snake_case :int = logging.get_logger(__name__) @add_end_docstrings(SCREAMING_SNAKE_CASE__ ) class _A ( SCREAMING_SNAKE_CASE__ ): def __init__( self : Any , *__SCREAMING_SNAKE_CASE : Tuple , **__SCREAMING_SNAKE_CASE : List[str]): '''simple docstring''' super().__init__(*a_ , **a_) requires_backends(self , '''decord''') self.check_model_type(a_) def _lowerCamelCase ( self : Optional[Any] , __SCREAMING_SNAKE_CASE : str=None , __SCREAMING_SNAKE_CASE : Optional[Any]=None , __SCREAMING_SNAKE_CASE : Dict=None): '''simple docstring''' __a = {} if frame_sampling_rate is not None: __a = frame_sampling_rate if num_frames is not None: __a = num_frames __a = {} if top_k is not None: __a = top_k return preprocess_params, {}, postprocess_params def __call__( self : Optional[Any] , __SCREAMING_SNAKE_CASE : Union[str, List[str]] , **__SCREAMING_SNAKE_CASE : str): '''simple docstring''' return super().__call__(a_ , **a_) def _lowerCamelCase ( self : List[Any] , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : Union[str, Any]=None , __SCREAMING_SNAKE_CASE : Optional[Any]=1): '''simple docstring''' if num_frames is None: __a = self.model.config.num_frames if video.startswith('''http://''') or video.startswith('''https://'''): __a = BytesIO(requests.get(a_).content) __a = VideoReader(a_) videoreader.seek(0) __a = 0 __a = num_frames * frame_sampling_rate - 1 __a = np.linspace(a_ , a_ , num=a_ , dtype=np.intaa) __a = videoreader.get_batch(a_).asnumpy() __a = list(a_) __a = self.image_processor(a_ , return_tensors=self.framework) return model_inputs def _lowerCamelCase ( self : str , __SCREAMING_SNAKE_CASE : Optional[int]): '''simple docstring''' __a = self.model(**a_) return model_outputs def _lowerCamelCase ( self : Tuple , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Dict=5): '''simple docstring''' if top_k > self.model.config.num_labels: __a = self.model.config.num_labels if self.framework == "pt": __a = model_outputs.logits.softmax(-1)[0] __a , __a = probs.topk(a_) else: raise ValueError(F'Unsupported framework: {self.framework}') __a = scores.tolist() __a = ids.tolist() return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(a_ , a_)]
359
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __snake_case :Tuple = { '''configuration_luke''': ['''LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''LukeConfig'''], '''tokenization_luke''': ['''LukeTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case :Optional[int] = [ '''LUKE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''LukeForEntityClassification''', '''LukeForEntityPairClassification''', '''LukeForEntitySpanClassification''', '''LukeForMultipleChoice''', '''LukeForQuestionAnswering''', '''LukeForSequenceClassification''', '''LukeForTokenClassification''', '''LukeForMaskedLM''', '''LukeModel''', '''LukePreTrainedModel''', ] if TYPE_CHECKING: from .configuration_luke import LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP, LukeConfig from .tokenization_luke import LukeTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_luke import ( LUKE_PRETRAINED_MODEL_ARCHIVE_LIST, LukeForEntityClassification, LukeForEntityPairClassification, LukeForEntitySpanClassification, LukeForMaskedLM, LukeForMultipleChoice, LukeForQuestionAnswering, LukeForSequenceClassification, LukeForTokenClassification, LukeModel, LukePreTrainedModel, ) else: import sys __snake_case :Dict = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
131
0
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_electra import ElectraTokenizer SCREAMING_SNAKE_CASE : str = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} SCREAMING_SNAKE_CASE : List[str] = { "vocab_file": { "google/electra-small-generator": ( "https://huggingface.co/google/electra-small-generator/resolve/main/vocab.txt" ), "google/electra-base-generator": "https://huggingface.co/google/electra-base-generator/resolve/main/vocab.txt", "google/electra-large-generator": ( "https://huggingface.co/google/electra-large-generator/resolve/main/vocab.txt" ), "google/electra-small-discriminator": ( "https://huggingface.co/google/electra-small-discriminator/resolve/main/vocab.txt" ), "google/electra-base-discriminator": ( "https://huggingface.co/google/electra-base-discriminator/resolve/main/vocab.txt" ), "google/electra-large-discriminator": ( "https://huggingface.co/google/electra-large-discriminator/resolve/main/vocab.txt" ), }, "tokenizer_file": { "google/electra-small-generator": ( "https://huggingface.co/google/electra-small-generator/resolve/main/tokenizer.json" ), "google/electra-base-generator": ( "https://huggingface.co/google/electra-base-generator/resolve/main/tokenizer.json" ), "google/electra-large-generator": ( "https://huggingface.co/google/electra-large-generator/resolve/main/tokenizer.json" ), "google/electra-small-discriminator": ( "https://huggingface.co/google/electra-small-discriminator/resolve/main/tokenizer.json" ), "google/electra-base-discriminator": ( "https://huggingface.co/google/electra-base-discriminator/resolve/main/tokenizer.json" ), "google/electra-large-discriminator": ( "https://huggingface.co/google/electra-large-discriminator/resolve/main/tokenizer.json" ), }, } SCREAMING_SNAKE_CASE : List[str] = { "google/electra-small-generator": 512, "google/electra-base-generator": 512, "google/electra-large-generator": 512, "google/electra-small-discriminator": 512, "google/electra-base-discriminator": 512, "google/electra-large-discriminator": 512, } SCREAMING_SNAKE_CASE : Tuple = { "google/electra-small-generator": {"do_lower_case": True}, "google/electra-base-generator": {"do_lower_case": True}, "google/electra-large-generator": {"do_lower_case": True}, "google/electra-small-discriminator": {"do_lower_case": True}, "google/electra-base-discriminator": {"do_lower_case": True}, "google/electra-large-discriminator": {"do_lower_case": True}, } class _lowerCamelCase( _a ): lowercase_ : int = VOCAB_FILES_NAMES lowercase_ : List[Any] = PRETRAINED_VOCAB_FILES_MAP lowercase_ : Any = PRETRAINED_INIT_CONFIGURATION lowercase_ : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase_ : str = ElectraTokenizer def __init__( self, lowerCamelCase=None, lowerCamelCase=None, lowerCamelCase=True, lowerCamelCase="[UNK]", lowerCamelCase="[SEP]", lowerCamelCase="[PAD]", lowerCamelCase="[CLS]", lowerCamelCase="[MASK]", lowerCamelCase=True, lowerCamelCase=None, **lowerCamelCase, ) -> Union[str, Any]: """simple docstring""" super().__init__( lowerCamelCase, tokenizer_file=lowerCamelCase, do_lower_case=lowerCamelCase, unk_token=lowerCamelCase, sep_token=lowerCamelCase, pad_token=lowerCamelCase, cls_token=lowerCamelCase, mask_token=lowerCamelCase, tokenize_chinese_chars=lowerCamelCase, strip_accents=lowerCamelCase, **lowerCamelCase, ) _lowercase : Union[str, Any] = json.loads(self.backend_tokenizer.normalizer.__getstate__()) if ( normalizer_state.get('lowercase', lowerCamelCase) != do_lower_case or normalizer_state.get('strip_accents', lowerCamelCase) != strip_accents or normalizer_state.get('handle_chinese_chars', lowerCamelCase) != tokenize_chinese_chars ): _lowercase : Dict = getattr(lowerCamelCase, normalizer_state.pop('type')) _lowercase : Optional[int] = do_lower_case _lowercase : Tuple = strip_accents _lowercase : str = tokenize_chinese_chars _lowercase : Optional[Any] = normalizer_class(**lowerCamelCase) _lowercase : Any = do_lower_case def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase=None) -> Optional[Any]: """simple docstring""" _lowercase : List[str] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase = None) -> List[int]: """simple docstring""" _lowercase : Dict = [self.sep_token_id] _lowercase : Any = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase = None) -> Tuple[str]: """simple docstring""" _lowercase : Optional[int] = self._tokenizer.model.save(lowerCamelCase, name=lowerCamelCase) return tuple(lowerCamelCase)
21
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ :Dict = logging.get_logger(__name__) lowerCAmelCase__ :Optional[int] = {'''openai-gpt''': '''https://huggingface.co/openai-gpt/resolve/main/config.json'''} class __a ( UpperCAmelCase ): _a : List[str] = 'openai-gpt' _a : int = { 'max_position_embeddings': 'n_positions', 'hidden_size': 'n_embd', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self , _SCREAMING_SNAKE_CASE=40478 , _SCREAMING_SNAKE_CASE=512 , _SCREAMING_SNAKE_CASE=768 , _SCREAMING_SNAKE_CASE=12 , _SCREAMING_SNAKE_CASE=12 , _SCREAMING_SNAKE_CASE="gelu" , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=1e-5 , _SCREAMING_SNAKE_CASE=0.02 , _SCREAMING_SNAKE_CASE="cls_index" , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=0.1 , **_SCREAMING_SNAKE_CASE , ) -> str: """simple docstring""" _UpperCAmelCase = vocab_size _UpperCAmelCase = n_positions _UpperCAmelCase = n_embd _UpperCAmelCase = n_layer _UpperCAmelCase = n_head _UpperCAmelCase = afn _UpperCAmelCase = resid_pdrop _UpperCAmelCase = embd_pdrop _UpperCAmelCase = attn_pdrop _UpperCAmelCase = layer_norm_epsilon _UpperCAmelCase = initializer_range _UpperCAmelCase = summary_type _UpperCAmelCase = summary_use_proj _UpperCAmelCase = summary_activation _UpperCAmelCase = summary_first_dropout _UpperCAmelCase = summary_proj_to_labels super().__init__(**_SCREAMING_SNAKE_CASE )
329
0
import comet # From: unbabel-comet import torch import datasets lowercase__ :Optional[Any] = datasets.logging.get_logger(__name__) lowercase__ :int = """\ @inproceedings{rei-EtAl:2020:WMT, author = {Rei, Ricardo and Stewart, Craig and Farinha, Ana C and Lavie, Alon}, title = {Unbabel's Participation in the WMT20 Metrics Shared Task}, booktitle = {Proceedings of the Fifth Conference on Machine Translation}, month = {November}, year = {2020}, address = {Online}, publisher = {Association for Computational Linguistics}, pages = {909--918}, } @inproceedings{rei-etal-2020-comet, title = \"{COMET}: A Neural Framework for {MT} Evaluation\", author = \"Rei, Ricardo and Stewart, Craig and Farinha, Ana C and Lavie, Alon\", booktitle = \"Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)\", month = nov, year = \"2020\", address = \"Online\", publisher = \"Association for Computational Linguistics\", url = \"https://www.aclweb.org/anthology/2020.emnlp-main.213\", pages = \"2685--2702\", } """ lowercase__ :Dict = """\ Crosslingual Optimized Metric for Evaluation of Translation (COMET) is an open-source framework used to train Machine Translation metrics that achieve high levels of correlation with different types of human judgments (HTER, DA's or MQM). With the release of the framework the authors also released fully trained models that were used to compete in the WMT20 Metrics Shared Task achieving SOTA in that years competition. See the [README.md] file at https://unbabel.github.io/COMET/html/models.html for more information. """ lowercase__ :Optional[int] = """ COMET score. Args: `sources` (list of str): Source sentences `predictions` (list of str): candidate translations `references` (list of str): reference translations `cuda` (bool): If set to True, runs COMET using GPU `show_progress` (bool): Shows progress `model`: COMET model to be used. Will default to `wmt-large-da-estimator-1719` if None. Returns: `samples`: List of dictionaries with `src`, `mt`, `ref` and `score`. `scores`: List of scores. Examples: >>> comet_metric = datasets.load_metric('comet') >>> # comet_metric = load_metric('comet', 'wmt20-comet-da') # you can also choose which model to use >>> source = [\"Dem Feuer konnte Einhalt geboten werden\", \"Schulen und Kindergärten wurden eröffnet.\"] >>> hypothesis = [\"The fire could be stopped\", \"Schools and kindergartens were open\"] >>> reference = [\"They were able to control the fire.\", \"Schools and kindergartens opened\"] >>> results = comet_metric.compute(predictions=hypothesis, references=reference, sources=source) >>> print([round(v, 2) for v in results[\"scores\"]]) [0.19, 0.92] """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowercase ( datasets.Metric ): def A__ ( self): return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,homepage='''https://unbabel.github.io/COMET/html/index.html''' ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { '''sources''': datasets.Value('''string''' ,id='''sequence'''), '''predictions''': datasets.Value('''string''' ,id='''sequence'''), '''references''': datasets.Value('''string''' ,id='''sequence'''), }) ,codebase_urls=['''https://github.com/Unbabel/COMET'''] ,reference_urls=[ '''https://github.com/Unbabel/COMET''', '''https://www.aclweb.org/anthology/2020.emnlp-main.213/''', '''http://www.statmt.org/wmt20/pdf/2020.wmt-1.101.pdf6''', ] ,) def A__ ( self ,A__): if self.config_name == "default": lowercase = comet.load_from_checkpoint(comet.download_model('''wmt20-comet-da''')) else: lowercase = comet.load_from_checkpoint(comet.download_model(self.config_name)) def A__ ( self ,A__ ,A__ ,A__ ,A__=None ,A__=False): if gpus is None: lowercase = 1 if torch.cuda.is_available() else 0 lowercase = {'''src''': sources, '''mt''': predictions, '''ref''': references} lowercase = [dict(zip(_lowercase ,_lowercase)) for t in zip(*data.values())] lowercase , lowercase = self.scorer.predict(_lowercase ,gpus=_lowercase ,progress_bar=_lowercase) return {"mean_score": mean_score, "scores": scores}
366
from statistics import mean import numpy as np def UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): '''simple docstring''' lowercase = 0 # Number of processes finished lowercase = 0 # Displays the finished process. # If it is 0, the performance is completed if it is 1, before the performance. lowercase = [0] * no_of_process # List to include calculation results lowercase = [0] * no_of_process # Sort by arrival time. lowercase = [burst_time[i] for i in np.argsort(lowerCAmelCase__ )] lowercase = [process_name[i] for i in np.argsort(lowerCAmelCase__ )] arrival_time.sort() while no_of_process > finished_process_count: lowercase = 0 while finished_process[i] == 1: i += 1 if current_time < arrival_time[i]: lowercase = arrival_time[i] lowercase = 0 # Index showing the location of the process being performed lowercase = 0 # Saves the current response ratio. lowercase = 0 for i in range(0 , lowerCAmelCase__ ): if finished_process[i] == 0 and arrival_time[i] <= current_time: lowercase = (burst_time[i] + (current_time - arrival_time[i])) / burst_time[ i ] if response_ratio < temp: lowercase = temp lowercase = i # Calculate the turn around time lowercase = current_time + burst_time[loc] - arrival_time[loc] current_time += burst_time[loc] # Indicates that the process has been performed. lowercase = 1 # Increase finished_process_count by 1 finished_process_count += 1 return turn_around_time def UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): '''simple docstring''' lowercase = [0] * no_of_process for i in range(0 , lowerCAmelCase__ ): lowercase = turn_around_time[i] - burst_time[i] return waiting_time if __name__ == "__main__": lowercase__ :Dict = 5 lowercase__ :str = ["A", "B", "C", "D", "E"] lowercase__ :Optional[int] = [1, 2, 3, 4, 5] lowercase__ :List[Any] = [1, 2, 3, 4, 5] lowercase__ :List[str] = calculate_turn_around_time( process_name, arrival_time, burst_time, no_of_process ) lowercase__ :List[Any] = calculate_waiting_time( process_name, turn_around_time, burst_time, no_of_process ) print("Process name \tArrival time \tBurst time \tTurn around time \tWaiting time") for i in range(0, no_of_process): print( F'{process_name[i]}\t\t{arrival_time[i]}\t\t{burst_time[i]}\t\t' F'{turn_around_time[i]}\t\t\t{waiting_time[i]}' ) print(F'average waiting time : {mean(waiting_time):.5f}') print(F'average turn around time : {mean(turn_around_time):.5f}')
97
0
from typing import List, Optional, Union import numpy as np import tensorflow as tf from .utils import logging SCREAMING_SNAKE_CASE : Optional[int] = logging.get_logger(__name__) def UpperCamelCase_( lowerCamelCase_ ) -> List[int]: if isinstance(lowerCamelCase_ , np.ndarray ): return list(tensor.shape ) _lowercase : Optional[Any] = tf.shape(lowerCamelCase_ ) if tensor.shape == tf.TensorShape(lowerCamelCase_ ): return dynamic _lowercase : List[Any] = tensor.shape.as_list() return [dynamic[i] if s is None else s for i, s in enumerate(lowerCamelCase_ )] def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ = None , lowerCamelCase_ = None ) -> tf.Tensor: return tf.nn.softmax(logits=logits + 1e-9 , axis=lowerCamelCase_ , name=lowerCamelCase_ ) def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_=1e-5 , lowerCamelCase_=-1 ) -> Tuple: # This is a very simplified functional layernorm, designed to duplicate # the functionality of PyTorch nn.functional.layer_norm when this is needed to port # models in Transformers. if weight.shape.rank != 1 or bias.shape.rank != 1 or not isinstance(lowerCamelCase_ , lowerCamelCase_ ): raise NotImplementedError('Only 1D weight and bias tensors are supported for now, with only a single axis.' ) # Get mean and variance on the axis to be normalized _lowercase , _lowercase : Tuple = tf.nn.moments(lowerCamelCase_ , axes=[axis] , keepdims=lowerCamelCase_ ) if axis != -1: # Reshape scale and weight to have the same rank as inputs, but with 1 dimensions # on every dimension except axis _lowercase : Optional[Any] = [1] * inputs.shape.rank _lowercase : Any = shape_list(lowerCamelCase_ )[axis] _lowercase : List[str] = tf.reshape(lowerCamelCase_ , lowerCamelCase_ ) _lowercase : Optional[Any] = tf.reshape(lowerCamelCase_ , lowerCamelCase_ ) # Compute layer normalization using the batch_normalization # function. _lowercase : List[str] = tf.nn.batch_normalization( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , offset=lowerCamelCase_ , scale=lowerCamelCase_ , variance_epsilon=lowerCamelCase_ , ) return outputs def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_=0 , lowerCamelCase_=-1 ) -> Optional[Any]: # Replicates the behavior of torch.flatten in TF # If end_dim or start_dim is negative, count them from the end if end_dim < 0: end_dim += input.shape.rank if start_dim < 0: start_dim += input.shape.rank if start_dim == end_dim: return input _lowercase : Optional[int] = tf.shape(lowerCamelCase_ ) _lowercase : Optional[int] = tf.math.reduce_prod(in_shape[start_dim : end_dim + 1] ) _lowercase : Any = tf.concat([in_shape[:start_dim], [flattened_dim], in_shape[end_dim + 1 :]] , axis=0 ) return tf.reshape(lowerCamelCase_ , lowerCamelCase_ ) def UpperCamelCase_( lowerCamelCase_ ) -> tf.Tensor: if not isinstance(lowerCamelCase_ , tf.Tensor ): _lowercase : List[str] = tf.convert_to_tensor(lowerCamelCase_ ) # Catches stray NumPy inputs if encoder_attention_mask.shape.rank == 3: _lowercase : List[Any] = encoder_attention_mask[:, None, :, :] if encoder_attention_mask.shape.rank == 2: _lowercase : int = encoder_attention_mask[:, None, None, :] # T5 has a mask that can compare sequence ids, we can simulate this here with this transposition # Cf. https://github.com/tensorflow/mesh/blob/8d2465e9bc93129b913b5ccc6a59aa97abd96ec6/mesh_tensorflow # /transformer/transformer_layers.py#L270 # encoder_extended_attention_mask = (encoder_extended_attention_mask == # encoder_extended_attention_mask.transpose(-1, -2)) _lowercase : Any = ( tf.cast(1 , encoder_attention_mask.dtype ) - encoder_extended_attention_mask ) * encoder_extended_attention_mask.dtype.min return encoder_extended_attention_mask def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = "input_ids" ) -> None: tf.debugging.assert_less( lowerCamelCase_ , tf.cast(lowerCamelCase_ , dtype=tensor.dtype ) , message=( F'''The maximum value of {tensor_name} ({tf.math.reduce_max(lowerCamelCase_ )}) must be smaller than the embedding ''' F'''layer\'s input dimension ({embed_dim}). The likely cause is some problem at tokenization time.''' ) , ) def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> Optional[int]: _lowercase : List[str] = 6_4512 # Check that no item in `data` is larger than `HDF5_OBJECT_HEADER_LIMIT` # because in that case even chunking the array would not make the saving # possible. _lowercase : Union[str, Any] = [x for x in data if len(lowerCamelCase_ ) > HDF5_OBJECT_HEADER_LIMIT] # Expecting this to never be true. if bad_attributes: raise RuntimeError( 'The following attributes cannot be saved to HDF5 file because ' F'''they are larger than {HDF5_OBJECT_HEADER_LIMIT} ''' F'''bytes: {bad_attributes}''' ) _lowercase : int = np.asarray(lowerCamelCase_ ) _lowercase : Optional[int] = 1 _lowercase : str = np.array_split(lowerCamelCase_ , lowerCamelCase_ ) # This will never loop forever thanks to the test above. while any(x.nbytes > HDF5_OBJECT_HEADER_LIMIT for x in chunked_data ): num_chunks += 1 _lowercase : Tuple = np.array_split(lowerCamelCase_ , lowerCamelCase_ ) if num_chunks > 1: for chunk_id, chunk_data in enumerate(lowerCamelCase_ ): _lowercase : Optional[int] = chunk_data else: _lowercase : int = data def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ ) -> List[Any]: if name in group.attrs: _lowercase : Optional[int] = [n.decode('utf8' ) if hasattr(lowerCamelCase_ , 'decode' ) else n for n in group.attrs[name]] else: _lowercase : List[str] = [] _lowercase : Optional[int] = 0 while "%s%d" % (name, chunk_id) in group.attrs: data.extend( [n.decode('utf8' ) if hasattr(lowerCamelCase_ , 'decode' ) else n for n in group.attrs['%s%d' % (name, chunk_id)]] ) chunk_id += 1 return data def UpperCamelCase_( lowerCamelCase_ ) -> Optional[Any]: def _expand_single_ad_tensor(lowerCamelCase_ ): if isinstance(lowerCamelCase_ , tf.Tensor ) and t.shape.rank == 1: return tf.expand_dims(lowerCamelCase_ , axis=-1 ) return t return tf.nest.map_structure(_expand_single_ad_tensor , lowerCamelCase_ )
21
import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized, parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv("""TEST_SAGEMAKER""" , """False""" ) ) is not True , reason="""Skipping test because should only be run when releasing minor transformers version""" , ) @pytest.mark.usefixtures("""sm_env""" ) @parameterized_class( [ { """framework""": """pytorch""", """script""": """run_glue_model_parallelism.py""", """model_name_or_path""": """roberta-large""", """instance_type""": """ml.p3dn.24xlarge""", """results""": {"""train_runtime""": 1_600, """eval_accuracy""": 0.3, """eval_loss""": 1.2}, }, { """framework""": """pytorch""", """script""": """run_glue.py""", """model_name_or_path""": """roberta-large""", """instance_type""": """ml.p3dn.24xlarge""", """results""": {"""train_runtime""": 1_600, """eval_accuracy""": 0.3, """eval_loss""": 1.2}, }, ] ) class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): def lowerCamelCase_ ( self : Tuple ): """simple docstring""" if self.framework == "pytorch": subprocess.run( f"""cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py""".split() , encoding="""utf-8""" , check=lowerCamelCase_ , ) assert hasattr(self , """env""" ) def lowerCamelCase_ ( self : Any , lowerCamelCase_ : List[str] ): """simple docstring""" UpperCamelCase = { """enabled""": True, """processes_per_host""": 8, } UpperCamelCase = { """enabled""": True, """parameters""": { """microbatches""": 4, """placement_strategy""": """spread""", """pipeline""": """interleaved""", """optimize""": """speed""", """partitions""": 4, """ddp""": True, }, } UpperCamelCase = {"""smdistributed""": {"""modelparallel""": smp_options}, """mpi""": mpi_options} UpperCamelCase = """trainer""" if self.script == """run_glue.py""" else """smtrainer""" # creates estimator return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=f"""{self.env.base_job_name}-{instance_count}-smp-{name_extension}""" , instance_count=lowerCamelCase_ , instance_type=self.instance_type , debugger_hook_config=lowerCamelCase_ , hyperparameters={ **self.env.hyperparameters, """model_name_or_path""": self.model_name_or_path, """max_steps""": 500, } , metric_definitions=self.env.metric_definitions , distribution=lowerCamelCase_ , py_version="""py36""" , ) def lowerCamelCase_ ( self : List[str] , lowerCamelCase_ : List[Any] ): """simple docstring""" TrainingJobAnalytics(lowerCamelCase_ ).export_csv(f"""{self.env.test_path}/{job_name}_metrics.csv""" ) @parameterized.expand([(1,)] ) def lowerCamelCase_ ( self : Union[str, Any] , lowerCamelCase_ : int ): """simple docstring""" UpperCamelCase = self.create_estimator(lowerCamelCase_ ) # run training estimator.fit() # result dataframe UpperCamelCase = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis UpperCamelCase = list(result_metrics_df[result_metrics_df.metric_name == """eval_accuracy"""]["""value"""] ) UpperCamelCase = list(result_metrics_df[result_metrics_df.metric_name == """eval_loss"""]["""value"""] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping UpperCamelCase = ( Session().describe_training_job(estimator.latest_training_job.name ).get("""TrainingTimeInSeconds""" , 99_9999 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results["""eval_accuracy"""] for t in eval_accuracy ) assert all(t <= self.results["""eval_loss"""] for t in eval_loss ) # dump tests result into json file to share in PR with open(f"""{estimator.latest_training_job.name}.json""" , """w""" ) as outfile: json.dump({"""train_time""": train_runtime, """eval_accuracy""": eval_accuracy, """eval_loss""": eval_loss} , lowerCamelCase_ )
343
0
'''simple docstring''' import argparse import os import shutil import torch from emmental.modules import MagnitudeBinarizer, ThresholdBinarizer, TopKBinarizer def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : int ): '''simple docstring''' UpperCAmelCase__ = args.pruning_method UpperCAmelCase__ = args.threshold UpperCAmelCase__ = args.model_name_or_path.rstrip("""/""" ) UpperCAmelCase__ = args.target_model_path print(F'''Load fine-pruned model from {model_name_or_path}''' ) UpperCAmelCase__ = torch.load(os.path.join(SCREAMING_SNAKE_CASE__ , """pytorch_model.bin""" ) ) UpperCAmelCase__ = {} for name, tensor in model.items(): if "embeddings" in name or "LayerNorm" in name or "pooler" in name: UpperCAmelCase__ = tensor print(F'''Copied layer {name}''' ) elif "classifier" in name or "qa_output" in name: UpperCAmelCase__ = tensor print(F'''Copied layer {name}''' ) elif "bias" in name: UpperCAmelCase__ = tensor print(F'''Copied layer {name}''' ) else: if pruning_method == "magnitude": UpperCAmelCase__ = MagnitudeBinarizer.apply(inputs=SCREAMING_SNAKE_CASE__ , threshold=SCREAMING_SNAKE_CASE__ ) UpperCAmelCase__ = tensor * mask print(F'''Pruned layer {name}''' ) elif pruning_method == "topK": if "mask_scores" in name: continue UpperCAmelCase__ = name[:-6] UpperCAmelCase__ = model[F'''{prefix_}mask_scores'''] UpperCAmelCase__ = TopKBinarizer.apply(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) UpperCAmelCase__ = tensor * mask print(F'''Pruned layer {name}''' ) elif pruning_method == "sigmoied_threshold": if "mask_scores" in name: continue UpperCAmelCase__ = name[:-6] UpperCAmelCase__ = model[F'''{prefix_}mask_scores'''] UpperCAmelCase__ = ThresholdBinarizer.apply(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) UpperCAmelCase__ = tensor * mask print(F'''Pruned layer {name}''' ) elif pruning_method == "l0": if "mask_scores" in name: continue UpperCAmelCase__ = name[:-6] UpperCAmelCase__ = model[F'''{prefix_}mask_scores'''] UpperCAmelCase__ , UpperCAmelCase__ = -0.1, 1.1 UpperCAmelCase__ = torch.sigmoid(SCREAMING_SNAKE_CASE__ ) UpperCAmelCase__ = s * (r - l) + l UpperCAmelCase__ = s_bar.clamp(min=0.0 , max=1.0 ) UpperCAmelCase__ = tensor * mask print(F'''Pruned layer {name}''' ) else: raise ValueError("""Unknown pruning method""" ) if target_model_path is None: UpperCAmelCase__ = os.path.join( os.path.dirname(SCREAMING_SNAKE_CASE__ ) , F'''bertarized_{os.path.basename(SCREAMING_SNAKE_CASE__ )}''' ) if not os.path.isdir(SCREAMING_SNAKE_CASE__ ): shutil.copytree(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) print(F'''\nCreated folder {target_model_path}''' ) torch.save(SCREAMING_SNAKE_CASE__ , os.path.join(SCREAMING_SNAKE_CASE__ , """pytorch_model.bin""" ) ) print("""\nPruned model saved! See you later!""" ) if __name__ == "__main__": UpperCAmelCase_ = argparse.ArgumentParser() parser.add_argument( '--pruning_method', choices=['l0', 'magnitude', 'topK', 'sigmoied_threshold'], type=str, required=True, help=( 'Pruning Method (l0 = L0 regularization, magnitude = Magnitude pruning, topK = Movement pruning,' ' sigmoied_threshold = Soft movement pruning)' ), ) parser.add_argument( '--threshold', type=float, required=False, help=( 'For `magnitude` and `topK`, it is the level of remaining weights (in %) in the fine-pruned model.' 'For `sigmoied_threshold`, it is the threshold \tau against which the (sigmoied) scores are compared.' 'Not needed for `l0`' ), ) parser.add_argument( '--model_name_or_path', type=str, required=True, help='Folder containing the model that was previously fine-pruned', ) parser.add_argument( '--target_model_path', default=None, type=str, required=False, help='Folder containing the model that was previously fine-pruned', ) UpperCAmelCase_ = parser.parse_args() main(args)
61
'''simple docstring''' def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : list[list[int]] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : set ): '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ = len(SCREAMING_SNAKE_CASE__ ), len(grid[0] ) if ( min(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) < 0 or row == row_length or col == col_length or (row, col) in visit or grid[row][col] == 1 ): return 0 if row == row_length - 1 and col == col_length - 1: return 1 visit.add((row, col) ) UpperCAmelCase__ = 0 count += depth_first_search(SCREAMING_SNAKE_CASE__ , row + 1 , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) count += depth_first_search(SCREAMING_SNAKE_CASE__ , row - 1 , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) count += depth_first_search(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , col + 1 , SCREAMING_SNAKE_CASE__ ) count += depth_first_search(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , col - 1 , SCREAMING_SNAKE_CASE__ ) visit.remove((row, col) ) return count if __name__ == "__main__": import doctest doctest.testmod()
61
1
import numpy class UpperCAmelCase : '''simple docstring''' def __init__( self : Union[str, Any] , __lowercase : numpy.ndarray , __lowercase : numpy.ndarray ): """simple docstring""" snake_case_ = input_array # Random initial weights are assigned where first argument is the # number of nodes in previous layer and second argument is the # number of nodes in the next layer. # Random initial weights are assigned. # self.input_array.shape[1] is used to represent number of nodes in input layer. # First hidden layer consists of 4 nodes. snake_case_ = numpy.random.rand( self.input_array.shape[1] , 4 ) # Random initial values for the first hidden layer. # First hidden layer has 4 nodes. # Second hidden layer has 3 nodes. snake_case_ = numpy.random.rand( 4 , 3 ) # Random initial values for the second hidden layer. # Second hidden layer has 3 nodes. # Output layer has 1 node. snake_case_ = numpy.random.rand(3 , 1 ) # Real output values provided. snake_case_ = output_array # Predicted output values by the neural network. # Predicted_output array initially consists of zeroes. snake_case_ = numpy.zeros(output_array.shape ) def snake_case__ ( self : Optional[Any] ): """simple docstring""" snake_case_ = sigmoid( numpy.dot(self.input_array , self.input_layer_and_first_hidden_layer_weights ) ) # layer_between_first_hidden_layer_and_second_hidden_layer is the layer # connecting the first hidden set of nodes with the second hidden set of nodes. snake_case_ = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) ) # layer_between_second_hidden_layer_and_output is the layer connecting # second hidden layer with the output node. snake_case_ = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) ) return self.layer_between_second_hidden_layer_and_output def snake_case__ ( self : Any ): """simple docstring""" snake_case_ = numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer.T , 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , ) snake_case_ = numpy.dot( self.layer_between_input_and_first_hidden_layer.T , numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer ) , ) snake_case_ = numpy.dot( self.input_array.T , numpy.dot( numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer ) , self.first_hidden_layer_and_second_hidden_layer_weights.T , ) * sigmoid_derivative(self.layer_between_input_and_first_hidden_layer ) , ) self.input_layer_and_first_hidden_layer_weights += ( updated_input_layer_and_first_hidden_layer_weights ) self.first_hidden_layer_and_second_hidden_layer_weights += ( updated_first_hidden_layer_and_second_hidden_layer_weights ) self.second_hidden_layer_and_output_layer_weights += ( updated_second_hidden_layer_and_output_layer_weights ) def snake_case__ ( self : Optional[Any] , __lowercase : numpy.ndarray , __lowercase : int , __lowercase : bool ): """simple docstring""" for iteration in range(1 , iterations + 1 ): snake_case_ = self.feedforward() self.back_propagation() if give_loss: snake_case_ = numpy.mean(numpy.square(output - self.feedforward() ) ) print(f"Iteration {iteration} Loss: {loss}" ) def snake_case__ ( self : Union[str, Any] , __lowercase : numpy.ndarray ): """simple docstring""" snake_case_ = input_arr snake_case_ = sigmoid( numpy.dot(self.array , self.input_layer_and_first_hidden_layer_weights ) ) snake_case_ = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) ) snake_case_ = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) ) return int(self.layer_between_second_hidden_layer_and_output > 0.6 ) def lowerCamelCase__ ( _A ): '''simple docstring''' return 1 / (1 + numpy.exp(-value )) def lowerCamelCase__ ( _A ): '''simple docstring''' return (value) * (1 - (value)) def lowerCamelCase__ ( ): '''simple docstring''' snake_case_ = numpy.array( ( [0, 0, 0], [0, 0, 1], [0, 1, 0], [0, 1, 1], [1, 0, 0], [1, 0, 1], [1, 1, 0], [1, 1, 1], ) , dtype=numpy.floataa , ) # True output values for the given input values. snake_case_ = numpy.array(([0], [1], [1], [0], [1], [0], [0], [1]) , dtype=numpy.floataa ) # Calling neural network class. snake_case_ = TwoHiddenLayerNeuralNetwork( input_array=_A , output_array=_A ) # Calling training function. # Set give_loss to True if you want to see loss in every iteration. neural_network.train(output=_A , iterations=10 , give_loss=_A ) return neural_network.predict(numpy.array(([1, 1, 1]) , dtype=numpy.floataa ) ) if __name__ == "__main__": example()
187
from __future__ import annotations lowercase__ : str = [ [-1, 0], # left [0, -1], # down [1, 0], # right [0, 1], # up ] def lowerCamelCase__ ( _A , _A , _A , _A , _A , ): '''simple docstring''' snake_case_ = [ [0 for col in range(len(grid[0] ) )] for row in range(len(_A ) ) ] # the reference grid snake_case_ = 1 snake_case_ = [ [0 for col in range(len(grid[0] ) )] for row in range(len(_A ) ) ] # the action grid snake_case_ = init[0] snake_case_ = init[1] snake_case_ = 0 snake_case_ = g + heuristic[x][y] # cost from starting cell to destination cell snake_case_ = [[f, g, x, y]] snake_case_ = False # flag that is set when search is complete snake_case_ = False # flag set if we can't find expand while not found and not resign: if len(_A ) == 0: raise ValueError("Algorithm is unable to find solution" ) else: # to choose the least costliest action so as to move closer to the goal cell.sort() cell.reverse() snake_case_ = cell.pop() snake_case_ = next_cell[2] snake_case_ = next_cell[3] snake_case_ = next_cell[1] if x == goal[0] and y == goal[1]: snake_case_ = True else: for i in range(len(_A ) ): # to try out different valid actions snake_case_ = x + DIRECTIONS[i][0] snake_case_ = y + DIRECTIONS[i][1] if xa >= 0 and xa < len(_A ) and ya >= 0 and ya < len(grid[0] ): if closed[xa][ya] == 0 and grid[xa][ya] == 0: snake_case_ = g + cost snake_case_ = ga + heuristic[xa][ya] cell.append([fa, ga, xa, ya] ) snake_case_ = 1 snake_case_ = i snake_case_ = [] snake_case_ = goal[0] snake_case_ = goal[1] invpath.append([x, y] ) # we get the reverse path from here while x != init[0] or y != init[1]: snake_case_ = x - DIRECTIONS[action[x][y]][0] snake_case_ = y - DIRECTIONS[action[x][y]][1] snake_case_ = xa snake_case_ = ya invpath.append([x, y] ) snake_case_ = [] for i in range(len(_A ) ): path.append(invpath[len(_A ) - 1 - i] ) return path, action if __name__ == "__main__": lowercase__ : Union[str, Any] = [ [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 1, 0], [0, 0, 0, 0, 1, 0], ] lowercase__ : Optional[Any] = [0, 0] # all coordinates are given in format [y,x] lowercase__ : Tuple = [len(grid) - 1, len(grid[0]) - 1] lowercase__ : Dict = 1 # the cost map which pushes the path closer to the goal lowercase__ : Any = [[0 for row in range(len(grid[0]))] for col in range(len(grid))] for i in range(len(grid)): for j in range(len(grid[0])): lowercase__ : Union[str, Any] = abs(i - goal[0]) + abs(j - goal[1]) if grid[i][j] == 1: # added extra penalty in the heuristic map lowercase__ : int = 99 lowercase__ , lowercase__ : Tuple = search(grid, init, goal, cost, heuristic) print("ACTION MAP") for i in range(len(action)): print(action[i]) for i in range(len(path)): print(path[i])
187
1
"""simple docstring""" import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Value from .base import TaskTemplate @dataclass(frozen=__snake_case) class __a (__snake_case): '''simple docstring''' # `task` is not a ClassVar since we want it to be part of the `asdict` output for JSON serialization _SCREAMING_SNAKE_CASE :str = field(default="""text-classification""" , metadata={"""include_in_asdict_even_if_is_default""": True}) _SCREAMING_SNAKE_CASE :ClassVar[Features] = Features({"""text""": Value("""string""")}) _SCREAMING_SNAKE_CASE :ClassVar[Features] = Features({"""labels""": ClassLabel}) _SCREAMING_SNAKE_CASE :str = "text" _SCREAMING_SNAKE_CASE :str = "labels" def _a ( self , _a ) -> Tuple: """simple docstring""" if self.label_column not in features: raise ValueError(f'''Column {self.label_column} is not present in features.''' ) if not isinstance(features[self.label_column] , UpperCamelCase__ ): raise ValueError(f'''Column {self.label_column} is not a ClassLabel.''' ) SCREAMING_SNAKE_CASE__ : List[str] = copy.deepcopy(self ) SCREAMING_SNAKE_CASE__ : Tuple = self.label_schema.copy() SCREAMING_SNAKE_CASE__ : Optional[Any] = features[self.label_column] SCREAMING_SNAKE_CASE__ : List[str] = label_schema return task_template @property def _a ( self ) -> Dict[str, str]: """simple docstring""" return { self.text_column: "text", self.label_column: "labels", }
369
"""simple docstring""" from math import loga def _lowercase ( __lowerCAmelCase ) -> int: if a < 0: raise ValueError("""Input value must be a positive integer""" ) elif isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise TypeError("""Input value must be a 'int' type""" ) return 0 if (a == 0) else int(loga(a & -a ) ) if __name__ == "__main__": import doctest doctest.testmod()
56
0
import importlib import os import fsspec import pytest from fsspec import register_implementation from fsspec.registry import _registry as _fsspec_registry from datasets.filesystems import COMPRESSION_FILESYSTEMS, HfFileSystem, extract_path_from_uri, is_remote_filesystem from .utils import require_lza, require_zstandard def _snake_case( SCREAMING_SNAKE_CASE__ : int ) -> Optional[Any]: '''simple docstring''' assert "mock" in _fsspec_registry assert "bz2" in _fsspec_registry def _snake_case( ) -> List[str]: '''simple docstring''' assert "mock" not in _fsspec_registry assert "bz2" in _fsspec_registry def _snake_case( ) -> Dict: '''simple docstring''' A__ = 'mock-s3-bucket' A__ = f's3://{mock_bucket}' A__ = extract_path_from_uri(SCREAMING_SNAKE_CASE__ ) assert dataset_path.startswith('s3://' ) is False A__ = './local/path' A__ = extract_path_from_uri(SCREAMING_SNAKE_CASE__ ) assert dataset_path == new_dataset_path def _snake_case( SCREAMING_SNAKE_CASE__ : List[str] ) -> int: '''simple docstring''' A__ = is_remote_filesystem(SCREAMING_SNAKE_CASE__ ) assert is_remote is True A__ = fsspec.filesystem('file' ) A__ = is_remote_filesystem(SCREAMING_SNAKE_CASE__ ) assert is_remote is False @pytest.mark.parametrize('compression_fs_class' , SCREAMING_SNAKE_CASE__ ) def _snake_case( SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Optional[int] ) -> Optional[int]: '''simple docstring''' A__ = {'gzip': gz_file, 'xz': xz_file, 'zstd': zstd_file, 'bz2': bza_file, 'lz4': lza_file} A__ = input_paths[compression_fs_class.protocol] if input_path is None: A__ = f'for \'{compression_fs_class.protocol}\' compression protocol, ' if compression_fs_class.protocol == "lz4": reason += require_lza.kwargs["reason"] elif compression_fs_class.protocol == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(SCREAMING_SNAKE_CASE__ ) A__ = fsspec.filesystem(compression_fs_class.protocol , fo=SCREAMING_SNAKE_CASE__ ) assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) A__ = os.path.basename(SCREAMING_SNAKE_CASE__ ) A__ = expected_filename[: expected_filename.rindex('.' )] assert fs.glob('*' ) == [expected_filename] with fs.open(SCREAMING_SNAKE_CASE__ , 'r' , encoding='utf-8' ) as f, open(SCREAMING_SNAKE_CASE__ , encoding='utf-8' ) as expected_file: assert f.read() == expected_file.read() @pytest.mark.parametrize('protocol' , ['zip', 'gzip'] ) def _snake_case( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Optional[int]: '''simple docstring''' A__ = {'zip': zip_jsonl_path, 'gzip': jsonl_gz_path} A__ = compressed_file_paths[protocol] A__ = 'dataset.jsonl' A__ = f'{protocol}://{member_file_path}::{compressed_file_path}' A__ , *A__ = fsspec.get_fs_token_paths(SCREAMING_SNAKE_CASE__ ) assert fs.isfile(SCREAMING_SNAKE_CASE__ ) assert not fs.isfile('non_existing_' + member_file_path ) @pytest.mark.integration def _snake_case( SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Dict ) -> Optional[int]: '''simple docstring''' A__ = hf_api.dataset_info(SCREAMING_SNAKE_CASE__ , token=SCREAMING_SNAKE_CASE__ ) A__ = HfFileSystem(repo_info=SCREAMING_SNAKE_CASE__ , token=SCREAMING_SNAKE_CASE__ ) assert sorted(hffs.glob('*' ) ) == [".gitattributes", "data"] assert hffs.isdir('data' ) assert hffs.isfile('.gitattributes' ) and hffs.isfile('data/text_data.txt' ) with open(SCREAMING_SNAKE_CASE__ ) as f: assert hffs.open('data/text_data.txt' , 'r' ).read() == f.read() def _snake_case( ) -> str: '''simple docstring''' A__ = 'bz2' # Import module import datasets.filesystems # Overwrite protocol and reload register_implementation(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , clobber=SCREAMING_SNAKE_CASE__ ) with pytest.warns(SCREAMING_SNAKE_CASE__ ) as warning_info: importlib.reload(datasets.filesystems ) assert len(SCREAMING_SNAKE_CASE__ ) == 1 assert ( str(warning_info[0].message ) == f'A filesystem protocol was already set for {protocol} and will be overwritten.' )
7
class A : '''simple docstring''' def __init__(self : List[str] ) -> Tuple: """simple docstring""" lowercase__ = 0 lowercase__ = 0 lowercase__ = {} def lowerCamelCase__ (self : Dict , _UpperCAmelCase : Tuple ) -> Optional[int]: """simple docstring""" if vertex not in self.adjacency: lowercase__ = {} self.num_vertices += 1 def lowerCamelCase__ (self : List[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : int , _UpperCAmelCase : List[str] ) -> Tuple: """simple docstring""" self.add_vertex(_UpperCAmelCase ) self.add_vertex(_UpperCAmelCase ) if head == tail: return lowercase__ = weight lowercase__ = weight def lowerCamelCase__ (self : List[str] ) -> Optional[int]: """simple docstring""" lowercase__ = self.get_edges() for edge in edges: lowercase__ , lowercase__ , lowercase__ = edge edges.remove((tail, head, weight) ) for i in range(len(_UpperCAmelCase ) ): lowercase__ = list(edges[i] ) edges.sort(key=lambda _UpperCAmelCase : e[2] ) for i in range(len(_UpperCAmelCase ) - 1 ): if edges[i][2] >= edges[i + 1][2]: lowercase__ = edges[i][2] + 1 for edge in edges: lowercase__ , lowercase__ , lowercase__ = edge lowercase__ = weight lowercase__ = weight def __str__(self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" lowercase__ = """""" for tail in self.adjacency: for head in self.adjacency[tail]: lowercase__ = self.adjacency[head][tail] string += f'''{head} -> {tail} == {weight}\n''' return string.rstrip("""\n""" ) def lowerCamelCase__ (self : Any ) -> str: """simple docstring""" lowercase__ = [] for tail in self.adjacency: for head in self.adjacency[tail]: output.append((tail, head, self.adjacency[head][tail]) ) return output def lowerCamelCase__ (self : Optional[int] ) -> Optional[int]: """simple docstring""" return self.adjacency.keys() @staticmethod def lowerCamelCase__ (_UpperCAmelCase : List[str]=None , _UpperCAmelCase : Any=None ) -> Union[str, Any]: """simple docstring""" lowercase__ = Graph() if vertices is None: lowercase__ = [] if edges is None: lowercase__ = [] for vertex in vertices: g.add_vertex(_UpperCAmelCase ) for edge in edges: g.add_edge(*_UpperCAmelCase ) return g class A : '''simple docstring''' def __init__(self : Optional[Any] ) -> str: """simple docstring""" lowercase__ = {} lowercase__ = {} def __len__(self : Optional[Any] ) -> Dict: """simple docstring""" return len(self.parent ) def lowerCamelCase__ (self : str , _UpperCAmelCase : Dict ) -> Any: """simple docstring""" if item in self.parent: return self.find(_UpperCAmelCase ) lowercase__ = item lowercase__ = 0 return item def lowerCamelCase__ (self : List[str] , _UpperCAmelCase : Dict ) -> Any: """simple docstring""" if item not in self.parent: return self.make_set(_UpperCAmelCase ) if item != self.parent[item]: lowercase__ = self.find(self.parent[item] ) return self.parent[item] def lowerCamelCase__ (self : List[Any] , _UpperCAmelCase : Any , _UpperCAmelCase : List[Any] ) -> Optional[int]: """simple docstring""" lowercase__ = self.find(_UpperCAmelCase ) lowercase__ = self.find(_UpperCAmelCase ) if roota == roota: return roota if self.rank[roota] > self.rank[roota]: lowercase__ = roota return roota if self.rank[roota] < self.rank[roota]: lowercase__ = roota return roota if self.rank[roota] == self.rank[roota]: self.rank[roota] += 1 lowercase__ = roota return roota return None @staticmethod def lowerCamelCase__ (_UpperCAmelCase : str ) -> Optional[int]: """simple docstring""" lowercase__ = graph.num_vertices lowercase__ = Graph.UnionFind() lowercase__ = [] while num_components > 1: lowercase__ = {} for vertex in graph.get_vertices(): lowercase__ = -1 lowercase__ = graph.get_edges() for edge in edges: lowercase__ , lowercase__ , lowercase__ = edge edges.remove((tail, head, weight) ) for edge in edges: lowercase__ , lowercase__ , lowercase__ = edge lowercase__ = union_find.find(_UpperCAmelCase ) lowercase__ = union_find.find(_UpperCAmelCase ) if seta != seta: if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: lowercase__ = [head, tail, weight] if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: lowercase__ = [head, tail, weight] for vertex in cheap_edge: if cheap_edge[vertex] != -1: lowercase__ , lowercase__ , lowercase__ = cheap_edge[vertex] if union_find.find(_UpperCAmelCase ) != union_find.find(_UpperCAmelCase ): union_find.union(_UpperCAmelCase , _UpperCAmelCase ) mst_edges.append(cheap_edge[vertex] ) lowercase__ = num_components - 1 lowercase__ = Graph.build(edges=_UpperCAmelCase ) return mst
305
0
import numpy as np def __snake_case ( _UpperCAmelCase ): return (2 / (1 + np.exp(-2 * vector ))) - 1 if __name__ == "__main__": import doctest doctest.testmod()
360
from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_VISION_2_SEQ_MAPPING if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_VISION_2_SEQ_MAPPING __snake_case :Dict = logging.get_logger(__name__) @add_end_docstrings(__UpperCAmelCase ) class _A ( __UpperCAmelCase ): def __init__( self : int , *__SCREAMING_SNAKE_CASE : Optional[int] , **__SCREAMING_SNAKE_CASE : str): '''simple docstring''' super().__init__(*__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) requires_backends(self , '''vision''') self.check_model_type( TF_MODEL_FOR_VISION_2_SEQ_MAPPING if self.framework == '''tf''' else MODEL_FOR_VISION_2_SEQ_MAPPING) def _lowerCamelCase ( self : int , __SCREAMING_SNAKE_CASE : int=None , __SCREAMING_SNAKE_CASE : int=None , __SCREAMING_SNAKE_CASE : Tuple=None): '''simple docstring''' __a = {} __a = {} if prompt is not None: __a = prompt if generate_kwargs is not None: __a = generate_kwargs if max_new_tokens is not None: if "generate_kwargs" not in forward_kwargs: __a = {} if "max_new_tokens" in forward_kwargs["generate_kwargs"]: raise ValueError( '''\'max_new_tokens\' is defined twice, once in \'generate_kwargs\' and once as a direct parameter,''' ''' please use only one''') __a = max_new_tokens return preprocess_params, forward_kwargs, {} def __call__( self : Any , __SCREAMING_SNAKE_CASE : Union[str, List[str], "Image.Image", List["Image.Image"]] , **__SCREAMING_SNAKE_CASE : Any): '''simple docstring''' return super().__call__(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) def _lowerCamelCase ( self : Optional[int] , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Optional[Any]=None): '''simple docstring''' __a = load_image(__SCREAMING_SNAKE_CASE) if prompt is not None: if not isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE): raise ValueError( F'Received an invalid text input, got - {type(__SCREAMING_SNAKE_CASE)} - but expected a single string. ' '''Note also that one single text can be provided for conditional image to text generation.''') __a = self.model.config.model_type if model_type == "git": __a = self.image_processor(images=__SCREAMING_SNAKE_CASE , return_tensors=self.framework) __a = self.tokenizer(text=__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE).input_ids __a = [self.tokenizer.cls_token_id] + input_ids __a = torch.tensor(__SCREAMING_SNAKE_CASE).unsqueeze(0) model_inputs.update({'''input_ids''': input_ids}) elif model_type == "pix2struct": __a = self.image_processor(images=__SCREAMING_SNAKE_CASE , header_text=__SCREAMING_SNAKE_CASE , return_tensors=self.framework) elif model_type != "vision-encoder-decoder": # vision-encoder-decoder does not support conditional generation __a = self.image_processor(images=__SCREAMING_SNAKE_CASE , return_tensors=self.framework) __a = self.tokenizer(__SCREAMING_SNAKE_CASE , return_tensors=self.framework) model_inputs.update(__SCREAMING_SNAKE_CASE) else: raise ValueError(F'Model type {model_type} does not support conditional text generation') else: __a = self.image_processor(images=__SCREAMING_SNAKE_CASE , return_tensors=self.framework) if self.model.config.model_type == "git" and prompt is None: __a = None return model_inputs def _lowerCamelCase ( self : List[Any] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Tuple=None): '''simple docstring''' if ( "input_ids" in model_inputs and isinstance(model_inputs['''input_ids'''] , __SCREAMING_SNAKE_CASE) and all(x is None for x in model_inputs['''input_ids''']) ): __a = None if generate_kwargs is None: __a = {} # FIXME: We need to pop here due to a difference in how `generation.py` and `generation.tf_utils.py` # parse inputs. In the Tensorflow version, `generate` raises an error if we don't use `input_ids` whereas # the PyTorch version matches it with `self.model.main_input_name` or `self.model.encoder.main_input_name` # in the `_prepare_model_inputs` method. __a = model_inputs.pop(self.model.main_input_name) __a = self.model.generate(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) return model_outputs def _lowerCamelCase ( self : str , __SCREAMING_SNAKE_CASE : Union[str, Any]): '''simple docstring''' __a = [] for output_ids in model_outputs: __a = { '''generated_text''': self.tokenizer.decode( __SCREAMING_SNAKE_CASE , skip_special_tokens=__SCREAMING_SNAKE_CASE , ) } records.append(__SCREAMING_SNAKE_CASE) return records
131
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) SCREAMING_SNAKE_CASE :Optional[int] = { "configuration_electra": ["ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP", "ElectraConfig", "ElectraOnnxConfig"], "tokenization_electra": ["ElectraTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE :Optional[Any] = ["ElectraTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE :int = [ "ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST", "ElectraForCausalLM", "ElectraForMaskedLM", "ElectraForMultipleChoice", "ElectraForPreTraining", "ElectraForQuestionAnswering", "ElectraForSequenceClassification", "ElectraForTokenClassification", "ElectraModel", "ElectraPreTrainedModel", "load_tf_weights_in_electra", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE :int = [ "TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST", "TFElectraForMaskedLM", "TFElectraForMultipleChoice", "TFElectraForPreTraining", "TFElectraForQuestionAnswering", "TFElectraForSequenceClassification", "TFElectraForTokenClassification", "TFElectraModel", "TFElectraPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE :Tuple = [ "FlaxElectraForCausalLM", "FlaxElectraForMaskedLM", "FlaxElectraForMultipleChoice", "FlaxElectraForPreTraining", "FlaxElectraForQuestionAnswering", "FlaxElectraForSequenceClassification", "FlaxElectraForTokenClassification", "FlaxElectraModel", "FlaxElectraPreTrainedModel", ] if TYPE_CHECKING: from .configuration_electra import ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, ElectraConfig, ElectraOnnxConfig from .tokenization_electra import ElectraTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_electra_fast import ElectraTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_electra import ( ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, ElectraForCausalLM, ElectraForMaskedLM, ElectraForMultipleChoice, ElectraForPreTraining, ElectraForQuestionAnswering, ElectraForSequenceClassification, ElectraForTokenClassification, ElectraModel, ElectraPreTrainedModel, load_tf_weights_in_electra, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_electra import ( TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, TFElectraForMaskedLM, TFElectraForMultipleChoice, TFElectraForPreTraining, TFElectraForQuestionAnswering, TFElectraForSequenceClassification, TFElectraForTokenClassification, TFElectraModel, TFElectraPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_electra import ( FlaxElectraForCausalLM, FlaxElectraForMaskedLM, FlaxElectraForMultipleChoice, FlaxElectraForPreTraining, FlaxElectraForQuestionAnswering, FlaxElectraForSequenceClassification, FlaxElectraForTokenClassification, FlaxElectraModel, FlaxElectraPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE :Any = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
159
from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging _lowerCamelCase : str = logging.get_logger(__name__) _lowerCamelCase : Optional[int] = { "Salesforce/codegen-350M-nl": "https://huggingface.co/Salesforce/codegen-350M-nl/resolve/main/config.json", "Salesforce/codegen-350M-multi": "https://huggingface.co/Salesforce/codegen-350M-multi/resolve/main/config.json", "Salesforce/codegen-350M-mono": "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/config.json", "Salesforce/codegen-2B-nl": "https://huggingface.co/Salesforce/codegen-2B-nl/resolve/main/config.json", "Salesforce/codegen-2B-multi": "https://huggingface.co/Salesforce/codegen-2B-multi/resolve/main/config.json", "Salesforce/codegen-2B-mono": "https://huggingface.co/Salesforce/codegen-2B-mono/resolve/main/config.json", "Salesforce/codegen-6B-nl": "https://huggingface.co/Salesforce/codegen-6B-nl/resolve/main/config.json", "Salesforce/codegen-6B-multi": "https://huggingface.co/Salesforce/codegen-6B-multi/resolve/main/config.json", "Salesforce/codegen-6B-mono": "https://huggingface.co/Salesforce/codegen-6B-mono/resolve/main/config.json", "Salesforce/codegen-16B-nl": "https://huggingface.co/Salesforce/codegen-16B-nl/resolve/main/config.json", "Salesforce/codegen-16B-multi": "https://huggingface.co/Salesforce/codegen-16B-multi/resolve/main/config.json", "Salesforce/codegen-16B-mono": "https://huggingface.co/Salesforce/codegen-16B-mono/resolve/main/config.json", } class __UpperCAmelCase ( lowerCamelCase__ ): UpperCamelCase = """codegen""" UpperCamelCase = { """max_position_embeddings""": """n_positions""", """hidden_size""": """n_embd""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self : Any, __A : Optional[int]=5_0_4_0_0, __A : Tuple=2_0_4_8, __A : Optional[int]=2_0_4_8, __A : List[str]=4_0_9_6, __A : List[str]=2_8, __A : Union[str, Any]=1_6, __A : Tuple=6_4, __A : Union[str, Any]=None, __A : Union[str, Any]="gelu_new", __A : Any=0.0, __A : Dict=0.0, __A : str=0.0, __A : Optional[int]=1E-5, __A : Any=0.0_2, __A : Any=True, __A : Union[str, Any]=5_0_2_5_6, __A : List[str]=5_0_2_5_6, __A : int=False, **__A : List[Any], ): UpperCAmelCase : int = vocab_size UpperCAmelCase : Tuple = n_ctx UpperCAmelCase : Tuple = n_positions UpperCAmelCase : Optional[int] = n_embd UpperCAmelCase : Union[str, Any] = n_layer UpperCAmelCase : List[str] = n_head UpperCAmelCase : Tuple = n_inner UpperCAmelCase : int = rotary_dim UpperCAmelCase : List[Any] = activation_function UpperCAmelCase : List[str] = resid_pdrop UpperCAmelCase : Optional[Any] = embd_pdrop UpperCAmelCase : str = attn_pdrop UpperCAmelCase : Tuple = layer_norm_epsilon UpperCAmelCase : Dict = initializer_range UpperCAmelCase : Union[str, Any] = use_cache UpperCAmelCase : Any = bos_token_id UpperCAmelCase : List[str] = eos_token_id super().__init__( bos_token_id=__A, eos_token_id=__A, tie_word_embeddings=__A, **__A ) class __UpperCAmelCase ( lowerCamelCase__ ): def __init__( self : Any, __A : PretrainedConfig, __A : str = "default", __A : List[PatchingSpec] = None, __A : bool = False, ): super().__init__(__A, task=__A, patching_specs=__A, use_past=__A ) if not getattr(self._config, '''pad_token_id''', __A ): # TODO: how to do that better? UpperCAmelCase : Union[str, Any] = 0 @property def __magic_name__ ( self : str ): UpperCAmelCase : Union[str, Any] = OrderedDict({'''input_ids''': {0: '''batch''', 1: '''sequence'''}} ) if self.use_past: self.fill_with_past_key_values_(__A, direction='''inputs''' ) UpperCAmelCase : int = {0: '''batch''', 1: '''past_sequence + sequence'''} else: UpperCAmelCase : List[Any] = {0: '''batch''', 1: '''sequence'''} return common_inputs @property def __magic_name__ ( self : Dict ): return self._config.n_layer @property def __magic_name__ ( self : List[str] ): return self._config.n_head def __magic_name__ ( self : str, __A : PreTrainedTokenizer, __A : int = -1, __A : int = -1, __A : bool = False, __A : Optional[TensorType] = None, ): UpperCAmelCase : Union[str, Any] = super(__A, self ).generate_dummy_inputs( __A, batch_size=__A, seq_length=__A, is_pair=__A, framework=__A ) # We need to order the input in the way they appears in the forward() UpperCAmelCase : Union[str, Any] = OrderedDict({'''input_ids''': common_inputs['''input_ids''']} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch UpperCAmelCase , UpperCAmelCase : str = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values UpperCAmelCase : str = seqlen + 2 UpperCAmelCase : Optional[int] = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) UpperCAmelCase : Optional[int] = [ (torch.zeros(__A ), torch.zeros(__A )) for _ in range(self.num_layers ) ] UpperCAmelCase : Union[str, Any] = common_inputs['''attention_mask'''] if self.use_past: UpperCAmelCase : Optional[Any] = ordered_inputs['''attention_mask'''].dtype UpperCAmelCase : Dict = torch.cat( [ordered_inputs['''attention_mask'''], torch.ones(__A, __A, dtype=__A )], dim=1 ) return ordered_inputs @property def __magic_name__ ( self : Tuple ): return 1_3
336
0
"""simple docstring""" import argparse import hashlib import os import urllib import warnings import torch from torch import nn from tqdm import tqdm from transformers import WhisperConfig, WhisperForConditionalGeneration _a = { 'tiny.en': 'https://openaipublic.azureedge.net/main/whisper/models/d3dd57d32accea0b295c96e26691aa14d8822fac7d9d27d5dc00b4ca2826dd03/tiny.en.pt', 'tiny': 'https://openaipublic.azureedge.net/main/whisper/models/65147644a518d12f04e32d6f3b26facc3f8dd46e5390956a9424a650c0ce22b9/tiny.pt', 'base.en': 'https://openaipublic.azureedge.net/main/whisper/models/25a8566e1d0c1e2231d1c762132cd20e0f96a85d16145c3a00adf5d1ac670ead/base.en.pt', 'base': 'https://openaipublic.azureedge.net/main/whisper/models/ed3a0b6b1c0edf879ad9b11b1af5a0e6ab5db9205f891f668f8b0e6c6326e34e/base.pt', 'small.en': 'https://openaipublic.azureedge.net/main/whisper/models/f953ad0fd29cacd07d5a9eda5624af0f6bcf2258be67c92b79389873d91e0872/small.en.pt', 'small': 'https://openaipublic.azureedge.net/main/whisper/models/9ecf779972d90ba49c06d968637d720dd632c55bbf19d441fb42bf17a411e794/small.pt', 'medium.en': 'https://openaipublic.azureedge.net/main/whisper/models/d7440d1dc186f76616474e0ff0b3b6b879abc9d1a4926b7adfa41db2d497ab4f/medium.en.pt', 'medium': 'https://openaipublic.azureedge.net/main/whisper/models/345ae4da62f9b3d59415adc60127b97c714f32e89e936602e85993674d08dcb1/medium.pt', 'large': 'https://openaipublic.azureedge.net/main/whisper/models/e4b87e7e0bf463eb8e6956e646f1e277e901512310def2c24bf0e11bd3c28e9a/large.pt', 'large-v2': 'https://openaipublic.azureedge.net/main/whisper/models/81f7c96c852ee8fc832187b0132e569d6c3065a3252ed18e56effd0b6a73e524/large-v2.pt', } def _A ( UpperCamelCase_ : Optional[int]) -> Tuple: '''simple docstring''' __lowercase = ["layers", "blocks"] for k in ignore_keys: state_dict.pop(UpperCamelCase_, UpperCamelCase_) _a = { 'blocks': 'layers', 'mlp.0': 'fc1', 'mlp.2': 'fc2', 'mlp_ln': 'final_layer_norm', '.attn.query': '.self_attn.q_proj', '.attn.key': '.self_attn.k_proj', '.attn.value': '.self_attn.v_proj', '.attn_ln': '.self_attn_layer_norm', '.attn.out': '.self_attn.out_proj', '.cross_attn.query': '.encoder_attn.q_proj', '.cross_attn.key': '.encoder_attn.k_proj', '.cross_attn.value': '.encoder_attn.v_proj', '.cross_attn_ln': '.encoder_attn_layer_norm', '.cross_attn.out': '.encoder_attn.out_proj', 'decoder.ln.': 'decoder.layer_norm.', 'encoder.ln.': 'encoder.layer_norm.', 'token_embedding': 'embed_tokens', 'encoder.positional_embedding': 'encoder.embed_positions.weight', 'decoder.positional_embedding': 'decoder.embed_positions.weight', 'ln_post': 'layer_norm', } def _A ( UpperCamelCase_ : List[Any]) -> Union[str, Any]: '''simple docstring''' __lowercase = list(s_dict.keys()) for key in keys: __lowercase = key for k, v in WHISPER_MAPPING.items(): if k in key: __lowercase = new_key.replace(UpperCamelCase_, UpperCamelCase_) print(F"""{key} -> {new_key}""") __lowercase = s_dict.pop(UpperCamelCase_) return s_dict def _A ( UpperCamelCase_ : Dict) -> List[Any]: '''simple docstring''' __lowercase ,__lowercase = emb.weight.shape __lowercase = nn.Linear(UpperCamelCase_, UpperCamelCase_, bias=UpperCamelCase_) __lowercase = emb.weight.data return lin_layer def _A ( UpperCamelCase_ : str, UpperCamelCase_ : str) -> bytes: '''simple docstring''' os.makedirs(UpperCamelCase_, exist_ok=UpperCamelCase_) __lowercase = os.path.basename(UpperCamelCase_) __lowercase = url.split("/")[-2] __lowercase = os.path.join(UpperCamelCase_, UpperCamelCase_) if os.path.exists(UpperCamelCase_) and not os.path.isfile(UpperCamelCase_): raise RuntimeError(F"""{download_target} exists and is not a regular file""") if os.path.isfile(UpperCamelCase_): __lowercase = open(UpperCamelCase_, "rb").read() if hashlib.shaaaa(UpperCamelCase_).hexdigest() == expected_shaaaa: return model_bytes else: warnings.warn(F"""{download_target} exists, but the SHA256 checksum does not match; re-downloading the file""") with urllib.request.urlopen(UpperCamelCase_) as source, open(UpperCamelCase_, "wb") as output: with tqdm( total=int(source.info().get("Content-Length")), ncols=80, unit="iB", unit_scale=UpperCamelCase_, unit_divisor=1024) as loop: while True: __lowercase = source.read(8192) if not buffer: break output.write(UpperCamelCase_) loop.update(len(UpperCamelCase_)) __lowercase = open(UpperCamelCase_, "rb").read() if hashlib.shaaaa(UpperCamelCase_).hexdigest() != expected_shaaaa: raise RuntimeError( "Model has been downloaded but the SHA256 checksum does not not match. Please retry loading the model.") return model_bytes def _A ( UpperCamelCase_ : List[Any], UpperCamelCase_ : str) -> Union[str, Any]: '''simple docstring''' if ".pt" not in checkpoint_path: __lowercase = _download(_MODELS[checkpoint_path]) else: __lowercase = torch.load(UpperCamelCase_, map_location="cpu") __lowercase = original_checkpoint["dims"] __lowercase = original_checkpoint["model_state_dict"] __lowercase = state_dict["decoder.token_embedding.weight"] remove_ignore_keys_(UpperCamelCase_) rename_keys(UpperCamelCase_) __lowercase = True __lowercase = state_dict["decoder.layers.0.fc1.weight"].shape[0] __lowercase = WhisperConfig( vocab_size=dimensions["n_vocab"], encoder_ffn_dim=UpperCamelCase_, decoder_ffn_dim=UpperCamelCase_, num_mel_bins=dimensions["n_mels"], d_model=dimensions["n_audio_state"], max_target_positions=dimensions["n_text_ctx"], encoder_layers=dimensions["n_audio_layer"], encoder_attention_heads=dimensions["n_audio_head"], decoder_layers=dimensions["n_text_layer"], decoder_attention_heads=dimensions["n_text_state"], max_source_positions=dimensions["n_audio_ctx"], ) __lowercase = WhisperForConditionalGeneration(UpperCamelCase_) __lowercase ,__lowercase = model.model.load_state_dict(UpperCamelCase_, strict=UpperCamelCase_) if len(UpperCamelCase_) > 0 and not set(UpperCamelCase_) <= { "encoder.embed_positions.weights", "decoder.embed_positions.weights", }: raise ValueError( "Only `encoder.embed_positions.weights` and `decoder.embed_positions.weights` are allowed to be missing," F""" but all the following weights are missing {missing}""") if tie_embeds: __lowercase = make_linear_from_emb(model.model.decoder.embed_tokens) else: __lowercase = proj_out_weights model.save_pretrained(UpperCamelCase_) if __name__ == "__main__": _a = argparse.ArgumentParser() # # Required parameters parser.add_argument('--checkpoint_path', type=str, help='Patht to the downloaded checkpoints') parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') _a = parser.parse_args() convert_openai_whisper_to_tfms(args.checkpoint_path, args.pytorch_dump_folder_path)
144
"""simple docstring""" from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFCamembertModel @require_tf @require_sentencepiece @require_tokenizers class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def _lowercase ( self : Optional[Any] ): __lowercase = TFCamembertModel.from_pretrained("jplu/tf-camembert-base" ) __lowercase = tf.convert_to_tensor( [[5, 1_2_1, 1_1, 6_6_0, 1_6, 7_3_0, 2_5_5_4_3, 1_1_0, 8_3, 6]], dtype=tf.intaa, ) # J'aime le camembert !" __lowercase = model(UpperCAmelCase__ )["last_hidden_state"] __lowercase = tf.TensorShape((1, 1_0, 7_6_8) ) self.assertEqual(output.shape, UpperCAmelCase__ ) # compare the actual values for a slice. __lowercase = tf.convert_to_tensor( [[[-0.0_254, 0.0_235, 0.1_027], [0.0_606, -0.1_811, -0.0_418], [-0.1_561, -0.1_127, 0.2_687]]], dtype=tf.floataa, ) # camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0') # camembert.eval() # expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach() self.assertTrue(np.allclose(output[:, :3, :3].numpy(), expected_slice.numpy(), atol=1E-4 ) )
144
1
'''simple docstring''' from __future__ import annotations def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , ): _UpperCAmelCase : Tuple = len(__SCREAMING_SNAKE_CASE ) # If row is equal to the size of the board it means there are a queen in each row in # the current board (possible_board) if row == n: # We convert the variable possible_board that looks like this: [1, 3, 0, 2] to # this: ['. Q . . ', '. . . Q ', 'Q . . . ', '. . Q . '] boards.append([". " * i + "Q " + ". " * (n - 1 - i) for i in possible_board] ) return # We iterate each column in the row to find all possible results in each row for col in range(__SCREAMING_SNAKE_CASE ): # We apply that we learned previously. First we check that in the current board # (possible_board) there are not other same value because if there is it means # that there are a collision in vertical. Then we apply the two formulas we # learned before: # # 45º: y - x = b or 45: row - col = b # 135º: y + x = b or row + col = b. # # And we verify if the results of this two formulas not exist in their variables # respectively. (diagonal_right_collisions, diagonal_left_collisions) # # If any or these are True it means there is a collision so we continue to the # next value in the for loop. if ( col in possible_board or row - col in diagonal_right_collisions or row + col in diagonal_left_collisions ): continue # If it is False we call dfs function again and we update the inputs depth_first_search( [*possible_board, col] , [*diagonal_right_collisions, row - col] , [*diagonal_left_collisions, row + col] , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , ) def __lowerCAmelCase (__lowerCAmelCase ): _UpperCAmelCase : list[list[str]] = [] depth_first_search([] , [] , [] , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # Print all the boards for board in boards: for column in board: print(__SCREAMING_SNAKE_CASE ) print("" ) print(len(__SCREAMING_SNAKE_CASE ) , "solutions were found." ) if __name__ == "__main__": import doctest doctest.testmod() n_queens_solution(4)
234
'''simple docstring''' import argparse import copy def snake_case_ ( __SCREAMING_SNAKE_CASE : Optional[int] ): """simple docstring""" lowercase_ : List[Any] = {} with open(__SCREAMING_SNAKE_CASE ) as f: for line in f: if line.split()[0] not in dict_of_neighbours: lowercase_ : Union[str, Any] = [] _list.append([line.split()[1], line.split()[2]] ) lowercase_ : str = _list else: dict_of_neighbours[line.split()[0]].append( [line.split()[1], line.split()[2]] ) if line.split()[1] not in dict_of_neighbours: lowercase_ : Optional[int] = [] _list.append([line.split()[0], line.split()[2]] ) lowercase_ : Dict = _list else: dict_of_neighbours[line.split()[1]].append( [line.split()[0], line.split()[2]] ) return dict_of_neighbours def snake_case_ ( __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Tuple ): """simple docstring""" with open(__SCREAMING_SNAKE_CASE ) as f: lowercase_ : List[str] = f.read(1 ) lowercase_ : Optional[int] = start_node lowercase_ : Any = [] lowercase_ : List[str] = start_node lowercase_ : Optional[Any] = 0 while visiting not in first_solution: lowercase_ : Any = 10000 for k in dict_of_neighbours[visiting]: if int(k[1] ) < int(__SCREAMING_SNAKE_CASE ) and k[0] not in first_solution: lowercase_ : List[Any] = k[1] lowercase_ : List[Any] = k[0] first_solution.append(__SCREAMING_SNAKE_CASE ) lowercase_ : Optional[Any] = distance_of_first_solution + int(__SCREAMING_SNAKE_CASE ) lowercase_ : int = best_node first_solution.append(__SCREAMING_SNAKE_CASE ) lowercase_ : Tuple = 0 for k in dict_of_neighbours[first_solution[-2]]: if k[0] == start_node: break position += 1 lowercase_ : Optional[Any] = ( distance_of_first_solution + int(dict_of_neighbours[first_solution[-2]][position][1] ) - 10000 ) return first_solution, distance_of_first_solution def snake_case_ ( __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Union[str, Any] ): """simple docstring""" lowercase_ : Tuple = [] for n in solution[1:-1]: lowercase_ : List[str] = solution.index(__SCREAMING_SNAKE_CASE ) for kn in solution[1:-1]: lowercase_ : Any = solution.index(__SCREAMING_SNAKE_CASE ) if n == kn: continue lowercase_ : Dict = copy.deepcopy(__SCREAMING_SNAKE_CASE ) lowercase_ : Dict = kn lowercase_ : List[Any] = n lowercase_ : str = 0 for k in _tmp[:-1]: lowercase_ : Tuple = _tmp[_tmp.index(__SCREAMING_SNAKE_CASE ) + 1] for i in dict_of_neighbours[k]: if i[0] == next_node: lowercase_ : Optional[Any] = distance + int(i[1] ) _tmp.append(__SCREAMING_SNAKE_CASE ) if _tmp not in neighborhood_of_solution: neighborhood_of_solution.append(_tmp ) lowercase_ : Union[str, Any] = len(neighborhood_of_solution[0] ) - 1 neighborhood_of_solution.sort(key=lambda __SCREAMING_SNAKE_CASE : x[index_of_last_item_in_the_list] ) return neighborhood_of_solution def snake_case_ ( __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Optional[Any] ): """simple docstring""" lowercase_ : Optional[int] = 1 lowercase_ : List[str] = first_solution lowercase_ : Dict = [] lowercase_ : List[str] = distance_of_first_solution lowercase_ : Optional[Any] = solution while count <= iters: lowercase_ : int = find_neighborhood(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) lowercase_ : Any = 0 lowercase_ : Dict = neighborhood[index_of_best_solution] lowercase_ : Optional[Any] = len(__SCREAMING_SNAKE_CASE ) - 1 lowercase_ : Tuple = False while not found: lowercase_ : Optional[int] = 0 while i < len(__SCREAMING_SNAKE_CASE ): if best_solution[i] != solution[i]: lowercase_ : Tuple = best_solution[i] lowercase_ : Optional[int] = solution[i] break lowercase_ : int = i + 1 if [first_exchange_node, second_exchange_node] not in tabu_list and [ second_exchange_node, first_exchange_node, ] not in tabu_list: tabu_list.append([first_exchange_node, second_exchange_node] ) lowercase_ : Tuple = True lowercase_ : Optional[int] = best_solution[:-1] lowercase_ : Optional[Any] = neighborhood[index_of_best_solution][best_cost_index] if cost < best_cost: lowercase_ : Optional[Any] = cost lowercase_ : int = solution else: lowercase_ : Any = index_of_best_solution + 1 lowercase_ : Any = neighborhood[index_of_best_solution] if len(__SCREAMING_SNAKE_CASE ) >= size: tabu_list.pop(0 ) lowercase_ : List[Any] = count + 1 return best_solution_ever, best_cost def snake_case_ ( __SCREAMING_SNAKE_CASE : List[str]=None ): """simple docstring""" lowercase_ : Any = generate_neighbours(args.File ) lowercase_ , lowercase_ : Union[str, Any] = generate_first_solution( args.File , __SCREAMING_SNAKE_CASE ) lowercase_ , lowercase_ : Optional[int] = tabu_search( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , args.Iterations , args.Size , ) print(F'''Best solution: {best_sol}, with total distance: {best_cost}.''' ) if __name__ == "__main__": _lowercase : Any = argparse.ArgumentParser(description="Tabu Search") parser.add_argument( "-f", "--File", type=str, help="Path to the file containing the data", required=True, ) parser.add_argument( "-i", "--Iterations", type=int, help="How many iterations the algorithm should perform", required=True, ) parser.add_argument( "-s", "--Size", type=int, help="Size of the tabu list", required=True ) # Pass the arguments to main method main(parser.parse_args())
93
0
from __future__ import annotations _SCREAMING_SNAKE_CASE : Optional[Any] = [] def UpperCAmelCase__ (UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_ ): """simple docstring""" for i in range(len(UpperCamelCase_ ) ): if board[row][i] == 1: return False for i in range(len(UpperCamelCase_ ) ): if board[i][column] == 1: return False for i, j in zip(range(UpperCamelCase_ ,-1 ,-1 ) ,range(UpperCamelCase_ ,-1 ,-1 ) ): if board[i][j] == 1: return False for i, j in zip(range(UpperCamelCase_ ,-1 ,-1 ) ,range(UpperCamelCase_ ,len(UpperCamelCase_ ) ) ): if board[i][j] == 1: return False return True def UpperCAmelCase__ (UpperCamelCase_ ,UpperCamelCase_ ): """simple docstring""" if row >= len(UpperCamelCase_ ): solution.append(UpperCamelCase_ ) printboard(UpperCamelCase_ ) print() return True for i in range(len(UpperCamelCase_ ) ): if is_safe(UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_ ): snake_case = 1 solve(UpperCamelCase_ ,row + 1 ) snake_case = 0 return False def UpperCAmelCase__ (UpperCamelCase_ ): """simple docstring""" for i in range(len(UpperCamelCase_ ) ): for j in range(len(UpperCamelCase_ ) ): if board[i][j] == 1: print('''Q''' ,end=''' ''' ) else: print('''.''' ,end=''' ''' ) print() # n=int(input("The no. of queens")) _SCREAMING_SNAKE_CASE : List[Any] = 8 _SCREAMING_SNAKE_CASE : List[str] = [[0 for i in range(n)] for j in range(n)] solve(board, 0) print("The total no. of solutions are :", len(solution))
213
import enum import warnings from ..tokenization_utils import TruncationStrategy from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING _SCREAMING_SNAKE_CASE : Tuple = logging.get_logger(__name__) class A__ ( enum.Enum ): """simple docstring""" __magic_name__ = 0 __magic_name__ = 1 @add_end_docstrings(snake_case__ ) class A__ ( snake_case__ ): """simple docstring""" __magic_name__ = 'generated' def __init__( self , *__snake_case , **__snake_case ): super().__init__(*__snake_case , **__snake_case ) self.check_model_type( TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING if self.framework == '''tf''' else MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING ) def a_ ( self , __snake_case=None , __snake_case=None , __snake_case=None , __snake_case=None , __snake_case=None , __snake_case=None , **__snake_case , ): snake_case = {} if truncation is not None: snake_case = truncation snake_case = generate_kwargs snake_case = {} if return_tensors is not None and return_type is None: snake_case = ReturnType.TENSORS if return_tensors else ReturnType.TEXT if return_type is not None: snake_case = return_type if clean_up_tokenization_spaces is not None: snake_case = clean_up_tokenization_spaces if stop_sequence is not None: snake_case = self.tokenizer.encode(__snake_case , add_special_tokens=__snake_case ) if len(__snake_case ) > 1: warnings.warn( '''Stopping on a multiple token sequence is not yet supported on transformers. The first token of''' ''' the stop sequence will be used as the stop sequence string in the interim.''' ) snake_case = stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def a_ ( self , __snake_case , __snake_case , __snake_case ): return True def a_ ( self , *__snake_case , __snake_case ): snake_case = self.model.config.prefix if self.model.config.prefix is not None else '''''' if isinstance(args[0] , __snake_case ): if self.tokenizer.pad_token_id is None: raise ValueError('''Please make sure that the tokenizer has a pad_token_id when using a batch input''' ) snake_case = ([prefix + arg for arg in args[0]],) snake_case = True elif isinstance(args[0] , __snake_case ): snake_case = (prefix + args[0],) snake_case = False else: raise ValueError( F''' `args[0]`: {args[0]} have the wrong format. The should be either of type `str` or type `list`''' ) snake_case = self.tokenizer(*__snake_case , padding=__snake_case , truncation=__snake_case , return_tensors=self.framework ) # This is produced by tokenizers but is an invalid generate kwargs if "token_type_ids" in inputs: del inputs["token_type_ids"] return inputs def __call__( self , *__snake_case , **__snake_case ): snake_case = super().__call__(*__snake_case , **__snake_case ) if ( isinstance(args[0] , __snake_case ) and all(isinstance(__snake_case , __snake_case ) for el in args[0] ) and all(len(__snake_case ) == 1 for res in result ) ): return [res[0] for res in result] return result def a_ ( self , __snake_case , __snake_case=TruncationStrategy.DO_NOT_TRUNCATE , **__snake_case ): snake_case = self._parse_and_tokenize(__snake_case , truncation=__snake_case , **__snake_case ) return inputs def a_ ( self , __snake_case , **__snake_case ): if self.framework == "pt": snake_case , snake_case = model_inputs['''input_ids'''].shape elif self.framework == "tf": snake_case , snake_case = tf.shape(model_inputs['''input_ids'''] ).numpy() snake_case = generate_kwargs.get('''min_length''' , self.model.config.min_length ) snake_case = generate_kwargs.get('''max_length''' , self.model.config.max_length ) self.check_inputs(__snake_case , generate_kwargs['''min_length'''] , generate_kwargs['''max_length'''] ) snake_case = self.model.generate(**__snake_case , **__snake_case ) snake_case = output_ids.shape[0] if self.framework == "pt": snake_case = output_ids.reshape(__snake_case , out_b // in_b , *output_ids.shape[1:] ) elif self.framework == "tf": snake_case = tf.reshape(__snake_case , (in_b, out_b // in_b, *output_ids.shape[1:]) ) return {"output_ids": output_ids} def a_ ( self , __snake_case , __snake_case=ReturnType.TEXT , __snake_case=False ): snake_case = [] for output_ids in model_outputs["output_ids"][0]: if return_type == ReturnType.TENSORS: snake_case = {F'''{self.return_name}_token_ids''': output_ids} elif return_type == ReturnType.TEXT: snake_case = { F'''{self.return_name}_text''': self.tokenizer.decode( __snake_case , skip_special_tokens=__snake_case , clean_up_tokenization_spaces=__snake_case , ) } records.append(__snake_case ) return records @add_end_docstrings(snake_case__ ) class A__ ( snake_case__ ): """simple docstring""" __magic_name__ = 'summary' def __call__( self , *__snake_case , **__snake_case ): return super().__call__(*__snake_case , **__snake_case ) def a_ ( self , __snake_case , __snake_case , __snake_case ): if max_length < min_length: logger.warning(F'''Your min_length={min_length} must be inferior than your max_length={max_length}.''' ) if input_length < max_length: logger.warning( F'''Your max_length is set to {max_length}, but your input_length is only {input_length}. Since this is ''' '''a summarization task, where outputs shorter than the input are typically wanted, you might ''' F'''consider decreasing max_length manually, e.g. summarizer(\'...\', max_length={input_length//2})''' ) @add_end_docstrings(snake_case__ ) class A__ ( snake_case__ ): """simple docstring""" __magic_name__ = 'translation' def a_ ( self , __snake_case , __snake_case , __snake_case ): if input_length > 0.9 * max_length: logger.warning( F'''Your input_length: {input_length} is bigger than 0.9 * max_length: {max_length}. You might consider ''' '''increasing your max_length manually, e.g. translator(\'...\', max_length=400)''' ) return True def a_ ( self , *__snake_case , __snake_case=TruncationStrategy.DO_NOT_TRUNCATE , __snake_case=None , __snake_case=None ): if getattr(self.tokenizer , '''_build_translation_inputs''' , __snake_case ): return self.tokenizer._build_translation_inputs( *__snake_case , return_tensors=self.framework , truncation=__snake_case , src_lang=__snake_case , tgt_lang=__snake_case ) else: return super()._parse_and_tokenize(*__snake_case , truncation=__snake_case ) def a_ ( self , __snake_case=None , __snake_case=None , **__snake_case ): snake_case , snake_case , snake_case = super()._sanitize_parameters(**__snake_case ) if src_lang is not None: snake_case = src_lang if tgt_lang is not None: snake_case = tgt_lang if src_lang is None and tgt_lang is None: # Backward compatibility, direct arguments use is preferred. snake_case = kwargs.get('''task''' , self.task ) snake_case = task.split('''_''' ) if task and len(__snake_case ) == 4: # translation, XX, to YY snake_case = items[1] snake_case = items[3] return preprocess_params, forward_params, postprocess_params def __call__( self , *__snake_case , **__snake_case ): return super().__call__(*__snake_case , **__snake_case )
213
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_torch_available, ) A_ :int = { '''configuration_trocr''': ['''TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''TrOCRConfig'''], '''processing_trocr''': ['''TrOCRProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ :Tuple = [ '''TROCR_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TrOCRForCausalLM''', '''TrOCRPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_trocr import TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP, TrOCRConfig from .processing_trocr import TrOCRProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trocr import TROCR_PRETRAINED_MODEL_ARCHIVE_LIST, TrOCRForCausalLM, TrOCRPreTrainedModel else: import sys A_ :Union[str, Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
71
import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionTextToImagePipeline from diffusers.utils.testing_utils import nightly, require_torch_gpu, torch_device a__: List[str] = False class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): pass @nightly @require_torch_gpu class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def UpperCamelCase ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase ( self ): A__ = VersatileDiffusionTextToImagePipeline.from_pretrained('''shi-labs/versatile-diffusion''' ) # remove text_unet pipe.remove_unused_weights() pipe.to(__lowerCamelCase ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) A__ = '''A painting of a squirrel eating a burger ''' A__ = torch.manual_seed(0 ) A__ = pipe( prompt=__lowerCamelCase,generator=__lowerCamelCase,guidance_scale=7.5,num_inference_steps=2,output_type='''numpy''' ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(__lowerCamelCase ) A__ = VersatileDiffusionTextToImagePipeline.from_pretrained(__lowerCamelCase ) pipe.to(__lowerCamelCase ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) A__ = generator.manual_seed(0 ) A__ = pipe( prompt=__lowerCamelCase,generator=__lowerCamelCase,guidance_scale=7.5,num_inference_steps=2,output_type='''numpy''' ).images assert np.abs(image - new_image ).sum() < 1E-5, "Models don't have the same forward pass" def UpperCamelCase ( self ): A__ = VersatileDiffusionTextToImagePipeline.from_pretrained( '''shi-labs/versatile-diffusion''',torch_dtype=torch.floataa ) pipe.to(__lowerCamelCase ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) A__ = '''A painting of a squirrel eating a burger ''' A__ = torch.manual_seed(0 ) A__ = pipe( prompt=__lowerCamelCase,generator=__lowerCamelCase,guidance_scale=7.5,num_inference_steps=50,output_type='''numpy''' ).images A__ = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) A__ = np.array([0.3367, 0.3169, 0.2656, 0.3870, 0.4790, 0.3796, 0.4009, 0.4878, 0.4778] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
193
0
import random import unittest import torch from diffusers import IFImgaImgSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class __a( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): """simple docstring""" lowerCAmelCase = IFImgaImgSuperResolutionPipeline lowerCAmelCase = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'width', 'height'} lowerCAmelCase = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({'''original_image'''} ) lowerCAmelCase = PipelineTesterMixin.required_optional_params - {'latents'} def a__ ( self ) -> str: return self._get_superresolution_dummy_components() def a__ ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE=0 ) -> Union[str, Any]: if str(lowercase__ ).startswith('''mps''' ): UpperCAmelCase_ : Any = torch.manual_seed(lowercase__ ) else: UpperCAmelCase_ : int = torch.Generator(device=lowercase__ ).manual_seed(lowercase__ ) UpperCAmelCase_ : Union[str, Any] = floats_tensor((1, 3, 32, 32) ,rng=random.Random(lowercase__ ) ).to(lowercase__ ) UpperCAmelCase_ : Tuple = floats_tensor((1, 3, 16, 16) ,rng=random.Random(lowercase__ ) ).to(lowercase__ ) UpperCAmelCase_ : List[str] = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': image, '''original_image''': original_image, '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() ,reason='''XFormers attention is only available with CUDA and `xformers` installed''' ,) def a__ ( self ) -> Tuple: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) def a__ ( self ) -> Optional[Any]: self._test_save_load_optional_components() @unittest.skipIf(torch_device != '''cuda''' ,reason='''float16 requires CUDA''' ) def a__ ( self ) -> Optional[int]: # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1e-1 ) def a__ ( self ) -> Tuple: self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def a__ ( self ) -> Optional[int]: self._test_save_load_local() def a__ ( self ) -> Union[str, Any]: self._test_inference_batch_single_identical( expected_max_diff=1e-2 ,)
358
import os import sys import warnings from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen from ..table import array_cast from ..utils.file_utils import is_local_path from ..utils.py_utils import first_non_null_value, no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: import PIL.Image from .features import FeatureType __a = None __a = '<' if sys.byteorder == 'little' else '>' # Origin: https://github.com/python-pillow/Pillow/blob/698951e19e19972aeed56df686868f1329981c12/src/PIL/Image.py#L3126 minus "|i1" which values are not preserved correctly when saving and loading an image __a = [ np.dtype('|b1'), np.dtype('|u1'), np.dtype('<u2'), np.dtype('>u2'), np.dtype('<i2'), np.dtype('>i2'), np.dtype('<u4'), np.dtype('>u4'), np.dtype('<i4'), np.dtype('>i4'), np.dtype('<f4'), np.dtype('>f4'), np.dtype('<f8'), np.dtype('>f8'), ] @dataclass class __a: """simple docstring""" lowerCAmelCase = True lowerCAmelCase = None # Automatically constructed lowerCAmelCase = "PIL.Image.Image" lowerCAmelCase = pa.struct({'''bytes''': pa.binary(), '''path''': pa.string()} ) lowerCAmelCase = field(default='''Image''' , init=_a , repr=_a ) def __call__( self ) -> Optional[Any]: return self.pa_type def a__ ( self ,_SCREAMING_SNAKE_CASE ) -> dict: if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('''To support encoding images, please install \'Pillow\'.''' ) if isinstance(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ): UpperCAmelCase_ : Optional[int] = np.array(_SCREAMING_SNAKE_CASE ) if isinstance(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ): return {"path": value, "bytes": None} elif isinstance(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ): return {"path": None, "bytes": value} elif isinstance(_SCREAMING_SNAKE_CASE ,np.ndarray ): # convert the image array to PNG/TIFF bytes return encode_np_array(_SCREAMING_SNAKE_CASE ) elif isinstance(_SCREAMING_SNAKE_CASE ,PIL.Image.Image ): # convert the PIL image to bytes (default format is PNG/TIFF) return encode_pil_image(_SCREAMING_SNAKE_CASE ) elif value.get('''path''' ) is not None and os.path.isfile(value['''path'''] ): # we set "bytes": None to not duplicate the data if they're already available locally return {"bytes": None, "path": value.get('''path''' )} elif value.get('''bytes''' ) is not None or value.get('''path''' ) is not None: # store the image bytes, and path is used to infer the image format using the file extension return {"bytes": value.get('''bytes''' ), "path": value.get('''path''' )} else: raise ValueError( f'''An image sample should have one of \'path\' or \'bytes\' but they are missing or None in {value}.''' ) def a__ ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE=None ) -> "PIL.Image.Image": if not self.decode: raise RuntimeError('''Decoding is disabled for this feature. Please use Image(decode=True) instead.''' ) if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('''To support decoding images, please install \'Pillow\'.''' ) if token_per_repo_id is None: UpperCAmelCase_ : str = {} UpperCAmelCase_, UpperCAmelCase_ : List[str] = value['''path'''], value['''bytes'''] if bytes_ is None: if path is None: raise ValueError(f'''An image should have one of \'path\' or \'bytes\' but both are None in {value}.''' ) else: if is_local_path(_SCREAMING_SNAKE_CASE ): UpperCAmelCase_ : int = PIL.Image.open(_SCREAMING_SNAKE_CASE ) else: UpperCAmelCase_ : int = path.split('''::''' )[-1] try: UpperCAmelCase_ : str = string_to_dict(_SCREAMING_SNAKE_CASE ,config.HUB_DATASETS_URL )['''repo_id'''] UpperCAmelCase_ : Optional[Any] = token_per_repo_id.get(_SCREAMING_SNAKE_CASE ) except ValueError: UpperCAmelCase_ : Any = None with xopen(_SCREAMING_SNAKE_CASE ,'''rb''' ,use_auth_token=_SCREAMING_SNAKE_CASE ) as f: UpperCAmelCase_ : List[str] = BytesIO(f.read() ) UpperCAmelCase_ : Optional[int] = PIL.Image.open(bytes_ ) else: UpperCAmelCase_ : Dict = PIL.Image.open(BytesIO(bytes_ ) ) image.load() # to avoid "Too many open files" errors return image def a__ ( self ) -> Union["FeatureType", Dict[str, "FeatureType"]]: from .features import Value return ( self if self.decode else { "bytes": Value('''binary''' ), "path": Value('''string''' ), } ) def a__ ( self ,_SCREAMING_SNAKE_CASE ) -> pa.StructArray: if pa.types.is_string(storage.type ): UpperCAmelCase_ : Union[str, Any] = pa.array([None] * len(_SCREAMING_SNAKE_CASE ) ,type=pa.binary() ) UpperCAmelCase_ : int = pa.StructArray.from_arrays([bytes_array, storage] ,['''bytes''', '''path'''] ,mask=storage.is_null() ) elif pa.types.is_binary(storage.type ): UpperCAmelCase_ : Tuple = pa.array([None] * len(_SCREAMING_SNAKE_CASE ) ,type=pa.string() ) UpperCAmelCase_ : int = pa.StructArray.from_arrays([storage, path_array] ,['''bytes''', '''path'''] ,mask=storage.is_null() ) elif pa.types.is_struct(storage.type ): if storage.type.get_field_index('''bytes''' ) >= 0: UpperCAmelCase_ : str = storage.field('''bytes''' ) else: UpperCAmelCase_ : Union[str, Any] = pa.array([None] * len(_SCREAMING_SNAKE_CASE ) ,type=pa.binary() ) if storage.type.get_field_index('''path''' ) >= 0: UpperCAmelCase_ : List[str] = storage.field('''path''' ) else: UpperCAmelCase_ : List[Any] = pa.array([None] * len(_SCREAMING_SNAKE_CASE ) ,type=pa.string() ) UpperCAmelCase_ : Any = pa.StructArray.from_arrays([bytes_array, path_array] ,['''bytes''', '''path'''] ,mask=storage.is_null() ) elif pa.types.is_list(storage.type ): UpperCAmelCase_ : Optional[Any] = pa.array( [encode_np_array(np.array(_SCREAMING_SNAKE_CASE ) )['''bytes'''] if arr is not None else None for arr in storage.to_pylist()] ,type=pa.binary() ,) UpperCAmelCase_ : Any = pa.array([None] * len(_SCREAMING_SNAKE_CASE ) ,type=pa.string() ) UpperCAmelCase_ : Any = pa.StructArray.from_arrays( [bytes_array, path_array] ,['''bytes''', '''path'''] ,mask=bytes_array.is_null() ) return array_cast(_SCREAMING_SNAKE_CASE ,self.pa_type ) def a__ ( self ,_SCREAMING_SNAKE_CASE ) -> pa.StructArray: @no_op_if_value_is_null def path_to_bytes(_SCREAMING_SNAKE_CASE ): with xopen(_SCREAMING_SNAKE_CASE ,'''rb''' ) as f: UpperCAmelCase_ : List[Any] = f.read() return bytes_ UpperCAmelCase_ : Dict = pa.array( [ (path_to_bytes(x['''path'''] ) if x['''bytes'''] is None else x['''bytes''']) if x is not None else None for x in storage.to_pylist() ] ,type=pa.binary() ,) UpperCAmelCase_ : Union[str, Any] = pa.array( [os.path.basename(_SCREAMING_SNAKE_CASE ) if path is not None else None for path in storage.field('''path''' ).to_pylist()] ,type=pa.string() ,) UpperCAmelCase_ : Tuple = pa.StructArray.from_arrays([bytes_array, path_array] ,['''bytes''', '''path'''] ,mask=bytes_array.is_null() ) return array_cast(_SCREAMING_SNAKE_CASE ,self.pa_type ) def lowerCamelCase__ ( ): '''simple docstring''' if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('''To support encoding images, please install \'Pillow\'.''' ) global _IMAGE_COMPRESSION_FORMATS if _IMAGE_COMPRESSION_FORMATS is None: PIL.Image.init() UpperCAmelCase_ : Optional[Any] = list(set(PIL.Image.OPEN.keys() ) & set(PIL.Image.SAVE.keys() ) ) return _IMAGE_COMPRESSION_FORMATS def lowerCamelCase__ ( _lowercase ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = BytesIO() if image.format in list_image_compression_formats(): UpperCAmelCase_ : List[str] = image.format else: UpperCAmelCase_ : int = '''PNG''' if image.mode in ['''1''', '''L''', '''LA''', '''RGB''', '''RGBA'''] else '''TIFF''' image.save(_lowercase , format=_lowercase ) return buffer.getvalue() def lowerCamelCase__ ( _lowercase ): '''simple docstring''' if hasattr(_lowercase , '''filename''' ) and image.filename != "": return {"path": image.filename, "bytes": None} else: return {"path": None, "bytes": image_to_bytes(_lowercase )} def lowerCamelCase__ ( _lowercase ): '''simple docstring''' if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('''To support encoding images, please install \'Pillow\'.''' ) UpperCAmelCase_ : int = array.dtype UpperCAmelCase_ : Optional[Any] = dtype.byteorder if dtype.byteorder != '''=''' else _NATIVE_BYTEORDER UpperCAmelCase_ : str = dtype.kind UpperCAmelCase_ : int = dtype.itemsize UpperCAmelCase_ : Optional[int] = None # Multi-channel array case (only np.dtype("|u1") is allowed) if array.shape[2:]: UpperCAmelCase_ : str = np.dtype('''|u1''' ) if dtype_kind not in ["u", "i"]: raise TypeError( f'''Unsupported array dtype {dtype} for image encoding. Only {dest_dtype} is supported for multi-channel arrays.''' ) if dtype is not dest_dtype: warnings.warn(f'''Downcasting array dtype {dtype} to {dest_dtype} to be compatible with \'Pillow\'''' ) # Exact match elif dtype in _VALID_IMAGE_ARRAY_DTPYES: UpperCAmelCase_ : Dict = dtype else: # Downcast the type within the kind (np.can_cast(from_type, to_type, casting="same_kind") doesn't behave as expected, so do it manually) while dtype_itemsize >= 1: UpperCAmelCase_ : Optional[int] = dtype_byteorder + dtype_kind + str(_lowercase ) UpperCAmelCase_ : Dict = np.dtype(_lowercase ) if dest_dtype in _VALID_IMAGE_ARRAY_DTPYES: warnings.warn(f'''Downcasting array dtype {dtype} to {dest_dtype} to be compatible with \'Pillow\'''' ) break else: dtype_itemsize //= 2 if dest_dtype is None: raise TypeError( f'''Cannot convert dtype {dtype} to a valid image dtype. Valid image dtypes: {_VALID_IMAGE_ARRAY_DTPYES}''' ) UpperCAmelCase_ : Dict = PIL.Image.fromarray(array.astype(_lowercase ) ) return {"path": None, "bytes": image_to_bytes(_lowercase )} def lowerCamelCase__ ( _lowercase ): '''simple docstring''' if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('''To support encoding images, please install \'Pillow\'.''' ) if objs: UpperCAmelCase_, UpperCAmelCase_ : List[Any] = first_non_null_value(_lowercase ) if isinstance(_lowercase , _lowercase ): return [{"path": obj, "bytes": None} if obj is not None else None for obj in objs] if isinstance(_lowercase , np.ndarray ): UpperCAmelCase_ : List[str] = no_op_if_value_is_null(_lowercase ) return [obj_to_image_dict_func(_lowercase ) for obj in objs] elif isinstance(_lowercase , PIL.Image.Image ): UpperCAmelCase_ : Union[str, Any] = no_op_if_value_is_null(_lowercase ) return [obj_to_image_dict_func(_lowercase ) for obj in objs] else: return objs else: return objs
235
0
'''simple docstring''' import os import torch from ..logging import get_logger from .constants import FSDP_PYTORCH_VERSION, MODEL_NAME, OPTIMIZER_NAME from .versions import is_torch_version if is_torch_version('>=', FSDP_PYTORCH_VERSION): import torch.distributed.checkpoint as dist_cp from torch.distributed.checkpoint.default_planner import DefaultLoadPlanner, DefaultSavePlanner from torch.distributed.checkpoint.optimizer import load_sharded_optimizer_state_dict from torch.distributed.fsdp.fully_sharded_data_parallel import FullyShardedDataParallel as FSDP from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType _UpperCamelCase : int = get_logger(__name__) def __UpperCAmelCase ( A : Tuple , A : Optional[int] , A : Dict , A : Dict , A : str=0 ) -> List[str]: os.makedirs(A , exist_ok=A ) with FSDP.state_dict_type( A , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): UpperCAmelCase_ : List[str] = model.state_dict() if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: UpperCAmelCase_ : List[Any] = F"{MODEL_NAME}.bin" if model_index == 0 else F"{MODEL_NAME}_{model_index}.bin" UpperCAmelCase_ : Optional[Any] = os.path.join(A , A ) if accelerator.process_index == 0: logger.info(F"Saving model to {output_model_file}" ) torch.save(A , A ) logger.info(F"Model saved to {output_model_file}" ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: UpperCAmelCase_ : str = ( F"{MODEL_NAME}_rank{accelerator.process_index}.bin" if model_index == 0 else F"{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin" ) UpperCAmelCase_ : str = os.path.join(A , A ) logger.info(F"Saving model to {output_model_file}" ) torch.save(A , A ) logger.info(F"Model saved to {output_model_file}" ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: UpperCAmelCase_ : Tuple = os.path.join(A , F"{MODEL_NAME}_{model_index}" ) os.makedirs(A , exist_ok=A ) logger.info(F"Saving model to {ckpt_dir}" ) UpperCAmelCase_ : str = {'''model''': state_dict} dist_cp.save_state_dict( state_dict=A , storage_writer=dist_cp.FileSystemWriter(A ) , planner=DefaultSavePlanner() , ) logger.info(F"Model saved to {ckpt_dir}" ) def __UpperCAmelCase ( A : Any , A : int , A : str , A : Dict , A : Dict=0 ) -> Tuple: accelerator.wait_for_everyone() with FSDP.state_dict_type( A , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if type(A ) != FSDP and accelerator.process_index != 0: if not fsdp_plugin.sync_module_states: raise ValueError( '''Set the `sync_module_states` flag to `True` so that model states are synced across processes when ''' '''initializing FSDP object''' ) return UpperCAmelCase_ : Optional[int] = F"{MODEL_NAME}.bin" if model_index == 0 else F"{MODEL_NAME}_{model_index}.bin" UpperCAmelCase_ : str = os.path.join(A , A ) logger.info(F"Loading model from {input_model_file}" ) UpperCAmelCase_ : Union[str, Any] = torch.load(A ) logger.info(F"Model loaded from {input_model_file}" ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: UpperCAmelCase_ : List[Any] = ( F"{MODEL_NAME}_rank{accelerator.process_index}.bin" if model_index == 0 else F"{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin" ) UpperCAmelCase_ : int = os.path.join(A , A ) logger.info(F"Loading model from {input_model_file}" ) UpperCAmelCase_ : Optional[Any] = torch.load(A ) logger.info(F"Model loaded from {input_model_file}" ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: UpperCAmelCase_ : Optional[int] = ( os.path.join(A , F"{MODEL_NAME}_{model_index}" ) if F"{MODEL_NAME}" not in input_dir else input_dir ) logger.info(F"Loading model from {ckpt_dir}" ) UpperCAmelCase_ : str = {'''model''': model.state_dict()} dist_cp.load_state_dict( state_dict=A , storage_reader=dist_cp.FileSystemReader(A ) , planner=DefaultLoadPlanner() , ) UpperCAmelCase_ : str = state_dict['''model'''] logger.info(F"Model loaded from {ckpt_dir}" ) model.load_state_dict(A ) def __UpperCAmelCase ( A : str , A : Tuple , A : Optional[int] , A : List[str] , A : Optional[int] , A : List[Any]=0 ) -> int: os.makedirs(A , exist_ok=A ) with FSDP.state_dict_type( A , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): UpperCAmelCase_ : Any = FSDP.optim_state_dict(A , A ) if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if accelerator.process_index == 0: UpperCAmelCase_ : Optional[Any] = ( F"{OPTIMIZER_NAME}.bin" if optimizer_index == 0 else F"{OPTIMIZER_NAME}_{optimizer_index}.bin" ) UpperCAmelCase_ : Tuple = os.path.join(A , A ) logger.info(F"Saving Optimizer state to {output_optimizer_file}" ) torch.save(A , A ) logger.info(F"Optimizer state saved in {output_optimizer_file}" ) else: UpperCAmelCase_ : Union[str, Any] = os.path.join(A , F"{OPTIMIZER_NAME}_{optimizer_index}" ) os.makedirs(A , exist_ok=A ) logger.info(F"Saving Optimizer state to {ckpt_dir}" ) dist_cp.save_state_dict( state_dict={'''optimizer''': optim_state} , storage_writer=dist_cp.FileSystemWriter(A ) , planner=DefaultSavePlanner() , ) logger.info(F"Optimizer state saved in {ckpt_dir}" ) def __UpperCAmelCase ( A : Dict , A : List[Any] , A : str , A : List[Any] , A : Optional[int] , A : Union[str, Any]=0 ) -> List[str]: accelerator.wait_for_everyone() with FSDP.state_dict_type( A , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: UpperCAmelCase_ : Optional[int] = None # below check should work but currently it isn't working (mostly opytorch issue), # in the meantime disabling it at the cost of excess memory usage # if accelerator.process_index == 0 or not fsdp_plugin.optim_state_dict_config.rank0_only: UpperCAmelCase_ : List[Any] = ( F"{OPTIMIZER_NAME}.bin" if optimizer_index == 0 else F"{OPTIMIZER_NAME}_{optimizer_index}.bin" ) UpperCAmelCase_ : Optional[Any] = os.path.join(A , A ) logger.info(F"Loading Optimizer state from {input_optimizer_file}" ) UpperCAmelCase_ : List[Any] = torch.load(A ) logger.info(F"Optimizer state loaded from {input_optimizer_file}" ) else: UpperCAmelCase_ : str = ( os.path.join(A , F"{OPTIMIZER_NAME}_{optimizer_index}" ) if F"{OPTIMIZER_NAME}" not in input_dir else input_dir ) logger.info(F"Loading Optimizer from {ckpt_dir}" ) UpperCAmelCase_ : List[Any] = load_sharded_optimizer_state_dict( model_state_dict=model.state_dict() , optimizer_key='''optimizer''' , storage_reader=dist_cp.FileSystemReader(A ) , ) UpperCAmelCase_ : Dict = optim_state['''optimizer'''] logger.info(F"Optimizer loaded from {ckpt_dir}" ) UpperCAmelCase_ : Tuple = FSDP.optim_state_dict_to_load(A , A , A ) optimizer.load_state_dict(A )
304
'''simple docstring''' import inspect import unittest from math import floor from transformers import CvtConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import CvtForImageClassification, CvtModel from transformers.models.cvt.modeling_cvt import CVT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class snake_case__ ( UpperCamelCase): def A ( self : List[str] ) -> List[Any]: UpperCAmelCase_ : int = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(_A , '''embed_dim''' ) ) self.parent.assertTrue(hasattr(_A , '''num_heads''' ) ) class snake_case__ : def __init__( self : List[Any] , _A : List[str] , _A : Optional[Any]=13 , _A : List[str]=64 , _A : Tuple=3 , _A : int=[16, 48, 96] , _A : int=[1, 3, 6] , _A : Union[str, Any]=[1, 2, 10] , _A : List[Any]=[7, 3, 3] , _A : Optional[Any]=[4, 2, 2] , _A : List[Any]=[2, 1, 1] , _A : Union[str, Any]=[2, 2, 2] , _A : Tuple=[False, False, True] , _A : str=[0.0, 0.0, 0.0] , _A : List[Any]=0.02 , _A : int=1e-12 , _A : Optional[int]=True , _A : List[str]=True , _A : Union[str, Any]=2 , ) -> List[Any]: UpperCAmelCase_ : int = parent UpperCAmelCase_ : List[Any] = batch_size UpperCAmelCase_ : Any = image_size UpperCAmelCase_ : Tuple = patch_sizes UpperCAmelCase_ : int = patch_stride UpperCAmelCase_ : Any = patch_padding UpperCAmelCase_ : List[Any] = is_training UpperCAmelCase_ : Union[str, Any] = use_labels UpperCAmelCase_ : Union[str, Any] = num_labels UpperCAmelCase_ : List[str] = num_channels UpperCAmelCase_ : int = embed_dim UpperCAmelCase_ : Optional[int] = num_heads UpperCAmelCase_ : Tuple = stride_kv UpperCAmelCase_ : Optional[Any] = depth UpperCAmelCase_ : Dict = cls_token UpperCAmelCase_ : Dict = attention_drop_rate UpperCAmelCase_ : Any = initializer_range UpperCAmelCase_ : List[str] = layer_norm_eps def A ( self : int ) -> List[str]: UpperCAmelCase_ : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase_ : Union[str, Any] = None if self.use_labels: UpperCAmelCase_ : Optional[int] = ids_tensor([self.batch_size] , self.num_labels ) UpperCAmelCase_ : List[str] = self.get_config() return config, pixel_values, labels def A ( self : List[str] ) -> int: return CvtConfig( image_size=self.image_size , num_labels=self.num_labels , num_channels=self.num_channels , embed_dim=self.embed_dim , num_heads=self.num_heads , patch_sizes=self.patch_sizes , patch_padding=self.patch_padding , patch_stride=self.patch_stride , stride_kv=self.stride_kv , depth=self.depth , cls_token=self.cls_token , attention_drop_rate=self.attention_drop_rate , initializer_range=self.initializer_range , ) def A ( self : Dict , _A : List[Any] , _A : Tuple , _A : Optional[Any] ) -> List[str]: UpperCAmelCase_ : List[Any] = CvtModel(config=_A ) model.to(_A ) model.eval() UpperCAmelCase_ : Tuple = model(_A ) UpperCAmelCase_ : List[str] = (self.image_size, self.image_size) UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = image_size[0], image_size[1] for i in range(len(self.depth ) ): UpperCAmelCase_ : int = floor(((height + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) UpperCAmelCase_ : Optional[Any] = floor(((width + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dim[-1], height, width) ) def A ( self : Any , _A : int , _A : str , _A : Union[str, Any] ) -> Optional[int]: UpperCAmelCase_ : str = self.num_labels UpperCAmelCase_ : str = CvtForImageClassification(_A ) model.to(_A ) model.eval() UpperCAmelCase_ : int = model(_A , labels=_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A ( self : Dict ) -> Any: UpperCAmelCase_ : Union[str, Any] = self.prepare_config_and_inputs() UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Tuple = config_and_inputs UpperCAmelCase_ : Optional[int] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class snake_case__ ( UpperCamelCase , UpperCamelCase , unittest.TestCase): a_ = (CvtModel, CvtForImageClassification) if is_torch_available() else () a_ = ( {"feature-extraction": CvtModel, "image-classification": CvtForImageClassification} if is_torch_available() else {} ) a_ = False a_ = False a_ = False a_ = False a_ = False def A ( self : int ) -> List[str]: UpperCAmelCase_ : Optional[int] = CvtModelTester(self ) UpperCAmelCase_ : List[Any] = ConfigTester(self , config_class=_A , has_text_modality=_A , hidden_size=37 ) def A ( self : Any ) -> Dict: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def A ( self : int ) -> List[str]: return @unittest.skip(reason='''Cvt does not output attentions''' ) def A ( self : Optional[int] ) -> Optional[int]: pass @unittest.skip(reason='''Cvt does not use inputs_embeds''' ) def A ( self : Any ) -> Optional[Any]: pass @unittest.skip(reason='''Cvt does not support input and output embeddings''' ) def A ( self : List[Any] ) -> Any: pass def A ( self : int ) -> str: UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ : Tuple = model_class(_A ) UpperCAmelCase_ : Union[str, Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase_ : Tuple = [*signature.parameters.keys()] UpperCAmelCase_ : str = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _A ) def A ( self : Tuple ) -> int: UpperCAmelCase_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A ) def A ( self : Dict ) -> List[str]: def check_hidden_states_output(_A : Dict , _A : str , _A : int ): UpperCAmelCase_ : str = model_class(_A ) model.to(_A ) model.eval() with torch.no_grad(): UpperCAmelCase_ : Union[str, Any] = model(**self._prepare_for_class(_A , _A ) ) UpperCAmelCase_ : Optional[Any] = outputs.hidden_states UpperCAmelCase_ : Any = len(self.model_tester.depth ) self.assertEqual(len(_A ) , _A ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:] ) , [ self.model_tester.embed_dim[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] , ) UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ : Optional[Any] = True check_hidden_states_output(_A , _A , _A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase_ : Dict = True check_hidden_states_output(_A , _A , _A ) def A ( self : Union[str, Any] ) -> List[str]: UpperCAmelCase_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_A ) @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def A ( self : List[Any] ) -> Optional[Any]: pass @slow def A ( self : Optional[int] ) -> int: for model_name in CVT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ : Optional[Any] = CvtModel.from_pretrained(_A ) self.assertIsNotNone(_A ) def __UpperCAmelCase ( ) -> str: UpperCAmelCase_ : List[Any] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class snake_case__ ( unittest.TestCase): @cached_property def A ( self : Union[str, Any] ) -> Union[str, Any]: return AutoImageProcessor.from_pretrained(CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def A ( self : str ) -> str: UpperCAmelCase_ : str = CvtForImageClassification.from_pretrained(CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(_A ) UpperCAmelCase_ : Optional[int] = self.default_image_processor UpperCAmelCase_ : List[str] = prepare_img() UpperCAmelCase_ : List[Any] = image_processor(images=_A , return_tensors='''pt''' ).to(_A ) # forward pass with torch.no_grad(): UpperCAmelCase_ : Any = model(**_A ) # verify the logits UpperCAmelCase_ : Tuple = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , _A ) UpperCAmelCase_ : Union[str, Any] = torch.tensor([0.9_285, 0.9_015, -0.3_150] ).to(_A ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _A , atol=1e-4 ) )
304
1
from typing import Tuple, Union from ...modeling_outputs import BackboneOutput from ...modeling_utils import PreTrainedModel from ...utils import is_timm_available, is_torch_available, requires_backends from ...utils.backbone_utils import BackboneMixin from .configuration_timm_backbone import TimmBackboneConfig if is_timm_available(): import timm if is_torch_available(): from torch import Tensor class A ( A_ , A_ ): UpperCamelCase_ : str ='''pixel_values''' UpperCamelCase_ : Optional[int] =False UpperCamelCase_ : List[Any] =TimmBackboneConfig def __init__(self , lowerCAmelCase , **lowerCAmelCase ): requires_backends(self , 'timm' ) super().__init__(lowerCAmelCase ) __lowercase= config if config.backbone is None: raise ValueError('backbone is not set in the config. Please set it to a timm model name.' ) if config.backbone not in timm.list_models(): raise ValueError(f'backbone {config.backbone} is not supported by timm.' ) if hasattr(lowerCAmelCase , 'out_features' ) and config.out_features is not None: raise ValueError('out_features is not supported by TimmBackbone. Please use out_indices instead.' ) __lowercase= getattr(lowerCAmelCase , 'use_pretrained_backbone' , lowerCAmelCase ) if pretrained is None: raise ValueError('use_pretrained_backbone is not set in the config. Please set it to True or False.' ) # We just take the final layer by default. This matches the default for the transformers models. __lowercase= config.out_indices if getattr(lowerCAmelCase , 'out_indices' , lowerCAmelCase ) is not None else (-1,) __lowercase= timm.create_model( config.backbone , pretrained=lowerCAmelCase , features_only=config.features_only , in_chans=config.num_channels , out_indices=lowerCAmelCase , **lowerCAmelCase , ) # These are used to control the output of the model when called. If output_hidden_states is True, then # return_layers is modified to include all layers. __lowercase= self._backbone.return_layers __lowercase= {layer['module']: str(lowerCAmelCase ) for i, layer in enumerate(self._backbone.feature_info.info )} super()._init_backbone(lowerCAmelCase ) @classmethod def _A (cls , lowerCAmelCase , *lowerCAmelCase , **lowerCAmelCase ): requires_backends(cls , ['vision', 'timm'] ) from ...models.timm_backbone import TimmBackboneConfig __lowercase= kwargs.pop('config' , TimmBackboneConfig() ) __lowercase= kwargs.pop('use_timm_backbone' , lowerCAmelCase ) if not use_timm: raise ValueError('use_timm_backbone must be True for timm backbones' ) __lowercase= kwargs.pop('num_channels' , config.num_channels ) __lowercase= kwargs.pop('features_only' , config.features_only ) __lowercase= kwargs.pop('use_pretrained_backbone' , config.use_pretrained_backbone ) __lowercase= kwargs.pop('out_indices' , config.out_indices ) __lowercase= TimmBackboneConfig( backbone=lowerCAmelCase , num_channels=lowerCAmelCase , features_only=lowerCAmelCase , use_pretrained_backbone=lowerCAmelCase , out_indices=lowerCAmelCase , ) return super()._from_config(lowerCAmelCase , **lowerCAmelCase ) def _A (self , lowerCAmelCase ): pass def _A (self , lowerCAmelCase , lowerCAmelCase=None , lowerCAmelCase=None , lowerCAmelCase=None , **lowerCAmelCase ): __lowercase= return_dict if return_dict is not None else self.config.use_return_dict __lowercase= ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __lowercase= output_attentions if output_attentions is not None else self.config.output_attentions if output_attentions: raise ValueError('Cannot output attentions for timm backbones at the moment' ) if output_hidden_states: # We modify the return layers to include all the stages of the backbone __lowercase= self._all_layers __lowercase= self._backbone(lowerCAmelCase , **lowerCAmelCase ) __lowercase= self._return_layers __lowercase= tuple(hidden_states[i] for i in self.out_indices ) else: __lowercase= self._backbone(lowerCAmelCase , **lowerCAmelCase ) __lowercase= None __lowercase= tuple(lowerCAmelCase ) __lowercase= tuple(lowerCAmelCase ) if hidden_states is not None else None if not return_dict: __lowercase= (feature_maps,) if output_hidden_states: __lowercase= output + (hidden_states,) return output return BackboneOutput(feature_maps=lowerCAmelCase , hidden_states=lowerCAmelCase , attentions=lowerCAmelCase )
304
from __future__ import annotations import numpy as np def _lowerCamelCase( lowercase__ ) -> str: '''simple docstring''' return np.maximum(0 , lowercase__ ) if __name__ == "__main__": print(np.array(relu([-1, 0, 5]))) # --> [0, 0, 5]
304
1
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging a_ : Union[str, Any] = logging.get_logger(__name__) if is_vision_available(): import PIL class __UpperCamelCase ( lowerCamelCase__ ): lowercase : Tuple =['pixel_values'] def __init__( self, lowerCAmelCase = True, lowerCAmelCase = None, lowerCAmelCase = PILImageResampling.BICUBIC, lowerCAmelCase = True, lowerCAmelCase = None, lowerCAmelCase = True, lowerCAmelCase = 1 / 255, lowerCAmelCase = True, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = True, **lowerCAmelCase, ): """simple docstring""" super().__init__(**lowerCAmelCase ) lowerCamelCase_ =size if size is not None else {'''shortest_edge''': 224} lowerCamelCase_ =get_size_dict(lowerCAmelCase, default_to_square=lowerCAmelCase ) lowerCamelCase_ =crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} lowerCamelCase_ =get_size_dict(lowerCAmelCase, default_to_square=lowerCAmelCase, param_name='''crop_size''' ) lowerCamelCase_ =do_resize lowerCamelCase_ =size lowerCamelCase_ =resample lowerCamelCase_ =do_center_crop lowerCamelCase_ =crop_size lowerCamelCase_ =do_rescale lowerCamelCase_ =rescale_factor lowerCamelCase_ =do_normalize lowerCamelCase_ =image_mean if image_mean is not None else OPENAI_CLIP_MEAN lowerCamelCase_ =image_std if image_std is not None else OPENAI_CLIP_STD lowerCamelCase_ =do_convert_rgb def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase = PILImageResampling.BICUBIC, lowerCAmelCase = None, **lowerCAmelCase, ): """simple docstring""" lowerCamelCase_ =get_size_dict(lowerCAmelCase, default_to_square=lowerCAmelCase ) if "shortest_edge" not in size: raise ValueError(f'''The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}''' ) lowerCamelCase_ =get_resize_output_image_size(lowerCAmelCase, size=size['''shortest_edge'''], default_to_square=lowerCAmelCase ) return resize(lowerCAmelCase, size=lowerCAmelCase, resample=lowerCAmelCase, data_format=lowerCAmelCase, **lowerCAmelCase ) def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase = None, **lowerCAmelCase, ): """simple docstring""" lowerCamelCase_ =get_size_dict(lowerCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(f'''The `size` parameter must contain the keys (height, width). Got {size.keys()}''' ) return center_crop(lowerCAmelCase, size=(size['''height'''], size['''width''']), data_format=lowerCAmelCase, **lowerCAmelCase ) def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase = None, **lowerCAmelCase, ): """simple docstring""" return rescale(lowerCAmelCase, scale=lowerCAmelCase, data_format=lowerCAmelCase, **lowerCAmelCase ) def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase = None, **lowerCAmelCase, ): """simple docstring""" return normalize(lowerCAmelCase, mean=lowerCAmelCase, std=lowerCAmelCase, data_format=lowerCAmelCase, **lowerCAmelCase ) def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = ChannelDimension.FIRST, **lowerCAmelCase, ): """simple docstring""" lowerCamelCase_ =do_resize if do_resize is not None else self.do_resize lowerCamelCase_ =size if size is not None else self.size lowerCamelCase_ =get_size_dict(lowerCAmelCase, param_name='''size''', default_to_square=lowerCAmelCase ) lowerCamelCase_ =resample if resample is not None else self.resample lowerCamelCase_ =do_center_crop if do_center_crop is not None else self.do_center_crop lowerCamelCase_ =crop_size if crop_size is not None else self.crop_size lowerCamelCase_ =get_size_dict(lowerCAmelCase, param_name='''crop_size''', default_to_square=lowerCAmelCase ) lowerCamelCase_ =do_rescale if do_rescale is not None else self.do_rescale lowerCamelCase_ =rescale_factor if rescale_factor is not None else self.rescale_factor lowerCamelCase_ =do_normalize if do_normalize is not None else self.do_normalize lowerCamelCase_ =image_mean if image_mean is not None else self.image_mean lowerCamelCase_ =image_std if image_std is not None else self.image_std lowerCamelCase_ =do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb lowerCamelCase_ =make_list_of_images(lowerCAmelCase ) if not valid_images(lowerCAmelCase ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # PIL RGBA images are converted to RGB if do_convert_rgb: lowerCamelCase_ =[convert_to_rgb(lowerCAmelCase ) for image in images] # All transformations expect numpy arrays. lowerCamelCase_ =[to_numpy_array(lowerCAmelCase ) for image in images] if do_resize: lowerCamelCase_ =[self.resize(image=lowerCAmelCase, size=lowerCAmelCase, resample=lowerCAmelCase ) for image in images] if do_center_crop: lowerCamelCase_ =[self.center_crop(image=lowerCAmelCase, size=lowerCAmelCase ) for image in images] if do_rescale: lowerCamelCase_ =[self.rescale(image=lowerCAmelCase, scale=lowerCAmelCase ) for image in images] if do_normalize: lowerCamelCase_ =[self.normalize(image=lowerCAmelCase, mean=lowerCAmelCase, std=lowerCAmelCase ) for image in images] lowerCamelCase_ =[to_channel_dimension_format(lowerCAmelCase, lowerCAmelCase ) for image in images] lowerCamelCase_ ={'''pixel_values''': images} return BatchFeature(data=lowerCAmelCase, tensor_type=lowerCAmelCase )
75
"""simple docstring""" from dataclasses import dataclass from typing import Dict, Optional, Union import torch import torch.nn.functional as F from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .attention_processor import AttentionProcessor, AttnProcessor from .embeddings import TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin @dataclass class UpperCamelCase ( lowercase_ ): lowercase = 42 class UpperCamelCase ( lowercase_ , lowercase_ ): @register_to_config def __init__( self ,__UpperCamelCase = 32 ,__UpperCamelCase = 64 ,__UpperCamelCase = 20 ,__UpperCamelCase = 768 ,__UpperCamelCase=77 ,__UpperCamelCase=4 ,__UpperCamelCase = 0.0 ,__UpperCamelCase = "silu" ,__UpperCamelCase = None ,__UpperCamelCase = None ,__UpperCamelCase = "linear" ,__UpperCamelCase = "prd" ,__UpperCamelCase = None ,__UpperCamelCase = None ,__UpperCamelCase = None ,) -> List[str]: '''simple docstring''' super().__init__() lowercase_ : Dict = num_attention_heads lowercase_ : Dict = attention_head_dim lowercase_ : Any = num_attention_heads * attention_head_dim lowercase_ : Optional[Any] = additional_embeddings lowercase_ : int = time_embed_dim or inner_dim lowercase_ : Optional[Any] = embedding_proj_dim or embedding_dim lowercase_ : List[str] = clip_embed_dim or embedding_dim lowercase_ : Union[str, Any] = Timesteps(__UpperCamelCase ,__UpperCamelCase ,0 ) lowercase_ : Tuple = TimestepEmbedding(__UpperCamelCase ,__UpperCamelCase ,out_dim=__UpperCamelCase ,act_fn=__UpperCamelCase ) lowercase_ : Optional[Any] = nn.Linear(__UpperCamelCase ,__UpperCamelCase ) if embedding_proj_norm_type is None: lowercase_ : Dict = None elif embedding_proj_norm_type == "layer": lowercase_ : str = nn.LayerNorm(__UpperCamelCase ) else: raise ValueError(f'''unsupported embedding_proj_norm_type: {embedding_proj_norm_type}''' ) lowercase_ : Tuple = nn.Linear(__UpperCamelCase ,__UpperCamelCase ) if encoder_hid_proj_type is None: lowercase_ : str = None elif encoder_hid_proj_type == "linear": lowercase_ : Optional[int] = nn.Linear(__UpperCamelCase ,__UpperCamelCase ) else: raise ValueError(f'''unsupported encoder_hid_proj_type: {encoder_hid_proj_type}''' ) lowercase_ : List[Any] = nn.Parameter(torch.zeros(1 ,num_embeddings + additional_embeddings ,__UpperCamelCase ) ) if added_emb_type == "prd": lowercase_ : Union[str, Any] = nn.Parameter(torch.zeros(1 ,1 ,__UpperCamelCase ) ) elif added_emb_type is None: lowercase_ : List[Any] = None else: raise ValueError( f'''`added_emb_type`: {added_emb_type} is not supported. Make sure to choose one of `\'prd\'` or `None`.''' ) lowercase_ : Dict = nn.ModuleList( [ BasicTransformerBlock( __UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,dropout=__UpperCamelCase ,activation_fn='gelu' ,attention_bias=__UpperCamelCase ,) for d in range(__UpperCamelCase ) ] ) if norm_in_type == "layer": lowercase_ : Optional[int] = nn.LayerNorm(__UpperCamelCase ) elif norm_in_type is None: lowercase_ : Dict = None else: raise ValueError(f'''Unsupported norm_in_type: {norm_in_type}.''' ) lowercase_ : List[Any] = nn.LayerNorm(__UpperCamelCase ) lowercase_ : Optional[int] = nn.Linear(__UpperCamelCase ,__UpperCamelCase ) lowercase_ : Dict = torch.full( [num_embeddings + additional_embeddings, num_embeddings + additional_embeddings] ,-1_0000.0 ) causal_attention_mask.triu_(1 ) lowercase_ : int = causal_attention_mask[None, ...] self.register_buffer('causal_attention_mask' ,__UpperCamelCase ,persistent=__UpperCamelCase ) lowercase_ : List[Any] = nn.Parameter(torch.zeros(1 ,__UpperCamelCase ) ) lowercase_ : Optional[int] = nn.Parameter(torch.zeros(1 ,__UpperCamelCase ) ) @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def _UpperCAmelCase ( self ) -> Dict[str, AttentionProcessor]: '''simple docstring''' lowercase_ : Tuple = {} def fn_recursive_add_processors(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ): if hasattr(__UpperCamelCase ,'set_processor' ): lowercase_ : List[str] = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(f'''{name}.{sub_name}''' ,__UpperCamelCase ,__UpperCamelCase ) return processors for name, module in self.named_children(): fn_recursive_add_processors(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) return processors def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Optional[Any]: '''simple docstring''' lowercase_ : Dict = len(self.attn_processors.keys() ) if isinstance(__UpperCamelCase ,__UpperCamelCase ) and len(__UpperCamelCase ) != count: raise ValueError( f'''A dict of processors was passed, but the number of processors {len(__UpperCamelCase )} does not match the''' f''' number of attention layers: {count}. Please make sure to pass {count} processor classes.''' ) def fn_recursive_attn_processor(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ): if hasattr(__UpperCamelCase ,'set_processor' ): if not isinstance(__UpperCamelCase ,__UpperCamelCase ): module.set_processor(__UpperCamelCase ) else: module.set_processor(processor.pop(f'''{name}.processor''' ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(f'''{name}.{sub_name}''' ,__UpperCamelCase ,__UpperCamelCase ) for name, module in self.named_children(): fn_recursive_attn_processor(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) def _UpperCAmelCase ( self ) -> List[str]: '''simple docstring''' self.set_attn_processor(AttnProcessor() ) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase = None ,__UpperCamelCase = None ,__UpperCamelCase = True ,) -> Any: '''simple docstring''' lowercase_ : Any = hidden_states.shape[0] lowercase_ : str = timestep if not torch.is_tensor(__UpperCamelCase ): lowercase_ : Any = torch.tensor([timesteps] ,dtype=torch.long ,device=hidden_states.device ) elif torch.is_tensor(__UpperCamelCase ) and len(timesteps.shape ) == 0: lowercase_ : List[str] = timesteps[None].to(hidden_states.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML lowercase_ : Optional[int] = timesteps * torch.ones(__UpperCamelCase ,dtype=timesteps.dtype ,device=timesteps.device ) lowercase_ : Any = self.time_proj(__UpperCamelCase ) # timesteps does not contain any weights and will always return f32 tensors # but time_embedding might be fp16, so we need to cast here. lowercase_ : List[Any] = timesteps_projected.to(dtype=self.dtype ) lowercase_ : Any = self.time_embedding(__UpperCamelCase ) if self.embedding_proj_norm is not None: lowercase_ : List[str] = self.embedding_proj_norm(__UpperCamelCase ) lowercase_ : Any = self.embedding_proj(__UpperCamelCase ) if self.encoder_hidden_states_proj is not None and encoder_hidden_states is not None: lowercase_ : Optional[int] = self.encoder_hidden_states_proj(__UpperCamelCase ) elif self.encoder_hidden_states_proj is not None and encoder_hidden_states is None: raise ValueError('`encoder_hidden_states_proj` requires `encoder_hidden_states` to be set' ) lowercase_ : List[Any] = self.proj_in(__UpperCamelCase ) lowercase_ : List[str] = self.positional_embedding.to(hidden_states.dtype ) lowercase_ : Dict = [] lowercase_ : Tuple = 0 if encoder_hidden_states is not None: additional_embeds.append(__UpperCamelCase ) additional_embeddings_len += encoder_hidden_states.shape[1] if len(proj_embeddings.shape ) == 2: lowercase_ : List[Any] = proj_embeddings[:, None, :] if len(hidden_states.shape ) == 2: lowercase_ : List[Any] = hidden_states[:, None, :] lowercase_ : str = additional_embeds + [ proj_embeddings, time_embeddings[:, None, :], hidden_states, ] if self.prd_embedding is not None: lowercase_ : int = self.prd_embedding.to(hidden_states.dtype ).expand(__UpperCamelCase ,-1 ,-1 ) additional_embeds.append(__UpperCamelCase ) lowercase_ : int = torch.cat( __UpperCamelCase ,dim=1 ,) # Allow positional_embedding to not include the `addtional_embeddings` and instead pad it with zeros for these additional tokens lowercase_ : Optional[Any] = additional_embeddings_len + proj_embeddings.shape[1] + 1 if positional_embeddings.shape[1] < hidden_states.shape[1]: lowercase_ : Any = F.pad( __UpperCamelCase ,( 0, 0, additional_embeddings_len, self.prd_embedding.shape[1] if self.prd_embedding is not None else 0, ) ,value=0.0 ,) lowercase_ : Dict = hidden_states + positional_embeddings if attention_mask is not None: lowercase_ : Any = (1 - attention_mask.to(hidden_states.dtype )) * -1_0000.0 lowercase_ : str = F.pad(__UpperCamelCase ,(0, self.additional_embeddings) ,value=0.0 ) lowercase_ : Optional[Any] = (attention_mask[:, None, :] + self.causal_attention_mask).to(hidden_states.dtype ) lowercase_ : Tuple = attention_mask.repeat_interleave(self.config.num_attention_heads ,dim=0 ) if self.norm_in is not None: lowercase_ : Optional[Any] = self.norm_in(__UpperCamelCase ) for block in self.transformer_blocks: lowercase_ : int = block(__UpperCamelCase ,attention_mask=__UpperCamelCase ) lowercase_ : str = self.norm_out(__UpperCamelCase ) if self.prd_embedding is not None: lowercase_ : Tuple = hidden_states[:, -1] else: lowercase_ : List[Any] = hidden_states[:, additional_embeddings_len:] lowercase_ : str = self.proj_to_clip_embeddings(__UpperCamelCase ) if not return_dict: return (predicted_image_embedding,) return PriorTransformerOutput(predicted_image_embedding=__UpperCamelCase ) def _UpperCAmelCase ( self ,__UpperCamelCase ) -> int: '''simple docstring''' lowercase_ : Optional[Any] = (prior_latents * self.clip_std) + self.clip_mean return prior_latents
213
0
'''simple docstring''' import logging import os from dataclasses import dataclass from enum import Enum from typing import List, Optional, Union from filelock import FileLock from transformers import PreTrainedTokenizer, is_tf_available, is_torch_available __snake_case : Optional[int] = logging.getLogger(__name__) @dataclass class lowerCamelCase : '''simple docstring''' __snake_case = 42 __snake_case = 42 __snake_case = 42 @dataclass class lowerCamelCase : '''simple docstring''' __snake_case = 42 __snake_case = 42 __snake_case = None __snake_case = None class lowerCamelCase ( A_ ): '''simple docstring''' __snake_case = 'train' __snake_case = 'dev' __snake_case = 'test' class lowerCamelCase : '''simple docstring''' @staticmethod def lowercase__ ( lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Union[Split, str] ) -> str: '''simple docstring''' raise NotImplementedError @staticmethod def lowercase__ ( lowerCAmelCase_ : str ) -> Dict: '''simple docstring''' raise NotImplementedError @staticmethod def lowercase__ ( lowerCAmelCase_ : List[InputExample] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : int , lowerCAmelCase_ : PreTrainedTokenizer , lowerCAmelCase_ : str=False , lowerCAmelCase_ : List[Any]="[CLS]" , lowerCAmelCase_ : Optional[int]=1 , lowerCAmelCase_ : List[str]="[SEP]" , lowerCAmelCase_ : int=False , lowerCAmelCase_ : List[Any]=False , lowerCAmelCase_ : List[Any]=0 , lowerCAmelCase_ : Dict=0 , lowerCAmelCase_ : List[str]=-1_00 , lowerCAmelCase_ : Optional[Any]=0 , lowerCAmelCase_ : Any=True , ) -> Dict: '''simple docstring''' A__ : List[str] ={label: i for i, label in enumerate(_lowerCamelCase )} A__ : Union[str, Any] =[] for ex_index, example in enumerate(_lowerCamelCase ): if ex_index % 1_00_00 == 0: logger.info("""Writing example %d of %d""" , _lowerCamelCase , len(_lowerCamelCase ) ) A__ : Union[str, Any] =[] A__ : Optional[int] =[] for word, label in zip(example.words , example.labels ): A__ : int =tokenizer.tokenize(_lowerCamelCase ) # bert-base-multilingual-cased sometimes output "nothing ([]) when calling tokenize with just a space. if len(_lowerCamelCase ) > 0: tokens.extend(_lowerCamelCase ) # Use the real label id for the first token of the word, and padding ids for the remaining tokens label_ids.extend([label_map[label]] + [pad_token_label_id] * (len(_lowerCamelCase ) - 1) ) # Account for [CLS] and [SEP] with "- 2" and with "- 3" for RoBERTa. A__ : Optional[int] =tokenizer.num_special_tokens_to_add() if len(_lowerCamelCase ) > max_seq_length - special_tokens_count: A__ : List[Any] =tokens[: (max_seq_length - special_tokens_count)] A__ : Dict =label_ids[: (max_seq_length - special_tokens_count)] # The convention in BERT is: # (a) For sequence pairs: # tokens: [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP] # type_ids: 0 0 0 0 0 0 0 0 1 1 1 1 1 1 # (b) For single sequences: # tokens: [CLS] the dog is hairy . [SEP] # type_ids: 0 0 0 0 0 0 0 # # Where "type_ids" are used to indicate whether this is the first # sequence or the second sequence. The embedding vectors for `type=0` and # `type=1` were learned during pre-training and are added to the wordpiece # embedding vector (and position vector). This is not *strictly* necessary # since the [SEP] token unambiguously separates the sequences, but it makes # it easier for the model to learn the concept of sequences. # # For classification tasks, the first vector (corresponding to [CLS]) is # used as the "sentence vector". Note that this only makes sense because # the entire model is fine-tuned. tokens += [sep_token] label_ids += [pad_token_label_id] if sep_token_extra: # roberta uses an extra separator b/w pairs of sentences tokens += [sep_token] label_ids += [pad_token_label_id] A__ : Optional[int] =[sequence_a_segment_id] * len(_lowerCamelCase ) if cls_token_at_end: tokens += [cls_token] label_ids += [pad_token_label_id] segment_ids += [cls_token_segment_id] else: A__ : Union[str, Any] =[cls_token] + tokens A__ : str =[pad_token_label_id] + label_ids A__ : Optional[int] =[cls_token_segment_id] + segment_ids A__ : Optional[Any] =tokenizer.convert_tokens_to_ids(_lowerCamelCase ) # The mask has 1 for real tokens and 0 for padding tokens. Only real # tokens are attended to. A__ : Any =[1 if mask_padding_with_zero else 0] * len(_lowerCamelCase ) # Zero-pad up to the sequence length. A__ : Optional[Any] =max_seq_length - len(_lowerCamelCase ) if pad_on_left: A__ : Any =([pad_token] * padding_length) + input_ids A__ : List[Any] =([0 if mask_padding_with_zero else 1] * padding_length) + input_mask A__ : int =([pad_token_segment_id] * padding_length) + segment_ids A__ : Optional[Any] =([pad_token_label_id] * padding_length) + label_ids else: input_ids += [pad_token] * padding_length input_mask += [0 if mask_padding_with_zero else 1] * padding_length segment_ids += [pad_token_segment_id] * padding_length label_ids += [pad_token_label_id] * padding_length assert len(_lowerCamelCase ) == max_seq_length assert len(_lowerCamelCase ) == max_seq_length assert len(_lowerCamelCase ) == max_seq_length assert len(_lowerCamelCase ) == max_seq_length if ex_index < 5: logger.info("""*** Example ***""" ) logger.info("""guid: %s""" , example.guid ) logger.info("""tokens: %s""" , """ """.join([str(_lowerCamelCase ) for x in tokens] ) ) logger.info("""input_ids: %s""" , """ """.join([str(_lowerCamelCase ) for x in input_ids] ) ) logger.info("""input_mask: %s""" , """ """.join([str(_lowerCamelCase ) for x in input_mask] ) ) logger.info("""segment_ids: %s""" , """ """.join([str(_lowerCamelCase ) for x in segment_ids] ) ) logger.info("""label_ids: %s""" , """ """.join([str(_lowerCamelCase ) for x in label_ids] ) ) if "token_type_ids" not in tokenizer.model_input_names: A__ : int =None features.append( InputFeatures( input_ids=_lowerCamelCase , attention_mask=_lowerCamelCase , token_type_ids=_lowerCamelCase , label_ids=_lowerCamelCase ) ) return features if is_torch_available(): import torch from torch import nn from torch.utils.data import Dataset class lowerCamelCase ( A_ ): '''simple docstring''' __snake_case = 42 __snake_case = nn.CrossEntropyLoss().ignore_index def __init__( self : Tuple , lowerCAmelCase_ : TokenClassificationTask , lowerCAmelCase_ : str , lowerCAmelCase_ : PreTrainedTokenizer , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[int] = None , lowerCAmelCase_ : Tuple=False , lowerCAmelCase_ : Split = Split.train , ) -> Tuple: '''simple docstring''' # Load data features from cache or dataset file A__ : List[str] =os.path.join( _lowerCamelCase , """cached_{}_{}_{}""".format(mode.value , tokenizer.__class__.__name__ , str(_lowerCamelCase ) ) , ) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. A__ : Optional[Any] =cached_features_file + """.lock""" with FileLock(_lowerCamelCase ): if os.path.exists(_lowerCamelCase ) and not overwrite_cache: logger.info(f"Loading features from cached file {cached_features_file}" ) A__ : Union[str, Any] =torch.load(_lowerCamelCase ) else: logger.info(f"Creating features from dataset file at {data_dir}" ) A__ : Any =token_classification_task.read_examples_from_file(_lowerCamelCase , _lowerCamelCase ) # TODO clean up all this to leverage built-in features of tokenizers A__ : Dict =token_classification_task.convert_examples_to_features( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , cls_token_at_end=bool(model_type in ["""xlnet"""] ) , cls_token=tokenizer.cls_token , cls_token_segment_id=2 if model_type in ["""xlnet"""] else 0 , sep_token=tokenizer.sep_token , sep_token_extra=_lowerCamelCase , pad_on_left=bool(tokenizer.padding_side == """left""" ) , pad_token=tokenizer.pad_token_id , pad_token_segment_id=tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , ) logger.info(f"Saving features into cached file {cached_features_file}" ) torch.save(self.features , _lowerCamelCase ) def __len__( self : Any ) -> Union[str, Any]: '''simple docstring''' return len(self.features ) def __getitem__( self : List[Any] , lowerCAmelCase_ : List[Any] ) -> Union[str, Any]: '''simple docstring''' return self.features[i] if is_tf_available(): import tensorflow as tf class lowerCamelCase : '''simple docstring''' __snake_case = 42 __snake_case = -100 def __init__( self : str , lowerCAmelCase_ : TokenClassificationTask , lowerCAmelCase_ : str , lowerCAmelCase_ : PreTrainedTokenizer , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[int] = None , lowerCAmelCase_ : Union[str, Any]=False , lowerCAmelCase_ : Split = Split.train , ) -> Optional[Any]: '''simple docstring''' A__ : Tuple =token_classification_task.read_examples_from_file(_lowerCamelCase , _lowerCamelCase ) # TODO clean up all this to leverage built-in features of tokenizers A__ : str =token_classification_task.convert_examples_to_features( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , cls_token_at_end=bool(model_type in ["""xlnet"""] ) , cls_token=tokenizer.cls_token , cls_token_segment_id=2 if model_type in ["""xlnet"""] else 0 , sep_token=tokenizer.sep_token , sep_token_extra=_lowerCamelCase , pad_on_left=bool(tokenizer.padding_side == """left""" ) , pad_token=tokenizer.pad_token_id , pad_token_segment_id=tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , ) def gen(): for ex in self.features: if ex.token_type_ids is None: yield ( {"input_ids": ex.input_ids, "attention_mask": ex.attention_mask}, ex.label_ids, ) else: yield ( { "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label_ids, ) if "token_type_ids" not in tokenizer.model_input_names: A__ : Union[str, Any] =tf.data.Dataset.from_generator( _lowerCamelCase , ({"""input_ids""": tf.intaa, """attention_mask""": tf.intaa}, tf.intaa) , ( {"""input_ids""": tf.TensorShape([None] ), """attention_mask""": tf.TensorShape([None] )}, tf.TensorShape([None] ), ) , ) else: A__ : int =tf.data.Dataset.from_generator( _lowerCamelCase , ({"""input_ids""": tf.intaa, """attention_mask""": tf.intaa, """token_type_ids""": tf.intaa}, tf.intaa) , ( { """input_ids""": tf.TensorShape([None] ), """attention_mask""": tf.TensorShape([None] ), """token_type_ids""": tf.TensorShape([None] ), }, tf.TensorShape([None] ), ) , ) def lowercase__ ( self : Optional[int] ) -> int: '''simple docstring''' A__ : Any =self.dataset.apply(tf.data.experimental.assert_cardinality(len(self.features ) ) ) return self.dataset def __len__( self : Any ) -> Optional[Any]: '''simple docstring''' return len(self.features ) def __getitem__( self : List[Any] , lowerCAmelCase_ : Tuple ) -> Any: '''simple docstring''' return self.features[i]
368
'''simple docstring''' from argparse import ArgumentParser from .add_new_model import AddNewModelCommand from .add_new_model_like import AddNewModelLikeCommand from .convert import ConvertCommand from .download import DownloadCommand from .env import EnvironmentCommand from .lfs import LfsCommands from .pt_to_tf import PTtoTFCommand from .run import RunCommand from .serving import ServeCommand from .user import UserCommands def __lowerCamelCase ( ) -> List[Any]: """simple docstring""" A__ : List[Any] =ArgumentParser("""Transformers CLI tool""", usage="""transformers-cli <command> [<args>]""" ) A__ : List[Any] =parser.add_subparsers(help="""transformers-cli command helpers""" ) # Register commands ConvertCommand.register_subcommand(__snake_case ) DownloadCommand.register_subcommand(__snake_case ) EnvironmentCommand.register_subcommand(__snake_case ) RunCommand.register_subcommand(__snake_case ) ServeCommand.register_subcommand(__snake_case ) UserCommands.register_subcommand(__snake_case ) AddNewModelCommand.register_subcommand(__snake_case ) AddNewModelLikeCommand.register_subcommand(__snake_case ) LfsCommands.register_subcommand(__snake_case ) PTtoTFCommand.register_subcommand(__snake_case ) # Let's go A__ : List[str] =parser.parse_args() if not hasattr(__snake_case, """func""" ): parser.print_help() exit(1 ) # Run A__ : Optional[Any] =args.func(__snake_case ) service.run() if __name__ == "__main__": main()
136
0
import json import os from datetime import date from pathlib import Path from tabulate import DataRow, TableFormat, tabulate __lowerCamelCase = TableFormat( lineabove=None, linebelowheader=None, linebetweenrows=None, linebelow=None, headerrow=DataRow("""""", """|""", """|"""), datarow=DataRow("""""", """|""", """|"""), padding=1, with_header_hide=None, ) __lowerCamelCase = [] __lowerCamelCase = [] __lowerCamelCase = {'type': 'section', 'text': {'type': 'plain_text', 'text': 'No failed tests! 🤗', 'emoji': True}} __lowerCamelCase = [ { 'type': 'header', 'text': { 'type': 'plain_text', 'text': F'🤗 Accelerate nightly {os.environ.get("TEST_TYPE", "")} test results', 'emoji': True, }, } ] __lowerCamelCase = 0 for log in Path().glob("""*.log"""): __lowerCamelCase = 0 with open(log, """r""") as f: for line in f: __lowerCamelCase = json.loads(line) if line.get("""nodeid""", """""") != "": __lowerCamelCase = line['nodeid'] if line.get("""duration""", None) is not None: __lowerCamelCase = F'{line["duration"]:.4f}' if line.get("""outcome""", """""") == "failed": section_num_failed += 1 failed.append([test, duration, log.name.split("""_""")[0]]) total_num_failed += 1 group_info.append([str(log), section_num_failed, failed]) __lowerCamelCase = [] log.unlink() __lowerCamelCase = '' __lowerCamelCase = [] if total_num_failed > 0: for name, num_failed, failed_tests in group_info: if num_failed > 0: if num_failed == 1: message += F"*{name[1:]}: {num_failed} failed test*\n" else: message += F"*{name[1:]}: {num_failed} failed tests*\n" __lowerCamelCase = [] __lowerCamelCase = {} for test in failed_tests: __lowerCamelCase = test[0].split("""::""") __lowerCamelCase = data[0].split("""/""")[-1] if data[0] not in filesafailed: __lowerCamelCase = [data[1:]] else: filesafailed[data[0]] += [data[1:]] failed_table.append(data) __lowerCamelCase = [test[0] for test in failed_table] __lowerCamelCase = list(set(files)) # Count number of instances in failed_tests __lowerCamelCase = [] for file in individual_files: table.append([file, len(filesafailed[file])]) __lowerCamelCase = tabulate( table, headers=["""Test Location""", """Num Failed"""], tablefmt=hf_table_format, stralign="""right""", ) message += F"\n```\n{failed_table}\n```" all_filesafailed.append(filesafailed) if len(message) > 30_00: __lowerCamelCase = 'Too many failed tests, please see the full report in the Action results.' __lowerCamelCase = len(err) + 10 __lowerCamelCase = message[: 30_00 - offset] + F'\n...\n```\n{err}' print(F'### {message}') else: __lowerCamelCase = 'No failed tests! 🤗' print(F'## {message}') payload.append(no_error_payload) if os.environ.get("""TEST_TYPE""", """""") != "": from slack_sdk import WebClient __lowerCamelCase = WebClient(token=os.environ["""SLACK_API_TOKEN"""]) if message != "No failed tests! 🤗": __lowerCamelCase = { 'type': 'section', 'text': { 'type': 'mrkdwn', 'text': message, }, } payload.append(md_report) __lowerCamelCase = { 'type': 'section', 'text': { 'type': 'mrkdwn', 'text': '*For more details:*', }, 'accessory': { 'type': 'button', 'text': { 'type': 'plain_text', 'text': 'Check Action results', 'emoji': True, }, 'url': F'https://github.com/{os.environ["GITHUB_REPOSITORY"]}/actions/runs/{os.environ["GITHUB_RUN_ID"]}', }, } payload.append(action_button) __lowerCamelCase = { 'type': 'context', 'elements': [ { 'type': 'plain_text', 'text': F'Nightly {os.environ.get("TEST_TYPE")} test results for {date.today()}', } ], } payload.append(date_report) __lowerCamelCase = client.chat_postMessage(channel="""#accelerate-ci-daily""", text=message, blocks=payload) __lowerCamelCase = response.data['ts'] for failed_file in all_filesafailed: for test_location, test_failures in failed_file.items(): # Keep only the first instance of the test name __lowerCamelCase = '' for i, row in enumerate(test_failures): if row[0] != test_class: __lowerCamelCase = row[0] else: __lowerCamelCase = '' __lowerCamelCase = { 'type': 'section', 'text': { 'type': 'mrkdwn', 'text': F'Test location: {test_location}\n```\n{tabulate(test_failures, headers=["Class", "Test"], tablefmt=hf_table_format, stralign="right")}\n```', }, } client.chat_postMessage( channel="""#accelerate-ci-daily""", thread_ts=ts, blocks=[payload], )
59
'''simple docstring''' from typing import Optional, Tuple, Union import flax import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict from ..configuration_utils import ConfigMixin, flax_register_to_config from ..utils import BaseOutput from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps from .modeling_flax_utils import FlaxModelMixin from .unet_ad_blocks_flax import ( FlaxCrossAttnDownBlockaD, FlaxCrossAttnUpBlockaD, FlaxDownBlockaD, FlaxUNetMidBlockaDCrossAttn, FlaxUpBlockaD, ) @flax.struct.dataclass class a ( _lowerCamelCase ): snake_case_ = 42 @flax_register_to_config class a ( nn.Module , _lowerCamelCase , _lowerCamelCase ): snake_case_ = 32 snake_case_ = 4 snake_case_ = 4 snake_case_ = ( "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D", ) snake_case_ = ("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D") snake_case_ = False snake_case_ = (320, 640, 1_280, 1_280) snake_case_ = 2 snake_case_ = 8 snake_case_ = None snake_case_ = 1_280 snake_case_ = 0.0 snake_case_ = False snake_case_ = jnp.floataa snake_case_ = True snake_case_ = 0 snake_case_ = False def A_ ( self : Optional[int] , lowercase_ : jax.random.KeyArray ): # init input tensors snake_case_ = (1, self.in_channels, self.sample_size, self.sample_size) snake_case_ = jnp.zeros(lowercase_ , dtype=jnp.floataa ) snake_case_ = jnp.ones((1,) , dtype=jnp.intaa ) snake_case_ = jnp.zeros((1, 1, self.cross_attention_dim) , dtype=jnp.floataa ) snake_case_ ,snake_case_ = jax.random.split(lowercase_ ) snake_case_ = {'''params''': params_rng, '''dropout''': dropout_rng} return self.init(lowercase_ , lowercase_ , lowercase_ , lowercase_ )["params"] def A_ ( self : List[str] ): snake_case_ = self.block_out_channels snake_case_ = block_out_channels[0] * 4 if self.num_attention_heads is not None: raise ValueError( '''At the moment it is not possible to define the number of attention heads via `num_attention_heads` because of a naming issue as described in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131. Passing `num_attention_heads` will only be supported in diffusers v0.19.''' ) # If `num_attention_heads` is not defined (which is the case for most models) # it will default to `attention_head_dim`. This looks weird upon first reading it and it is. # The reason for this behavior is to correct for incorrectly named variables that were introduced # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking # which is why we correct for the naming here. snake_case_ = self.num_attention_heads or self.attention_head_dim # input snake_case_ = nn.Conv( block_out_channels[0] , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) # time snake_case_ = FlaxTimesteps( block_out_channels[0] , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.config.freq_shift ) snake_case_ = FlaxTimestepEmbedding(lowercase_ , dtype=self.dtype ) snake_case_ = self.only_cross_attention if isinstance(lowercase_ , lowercase_ ): snake_case_ = (only_cross_attention,) * len(self.down_block_types ) if isinstance(lowercase_ , lowercase_ ): snake_case_ = (num_attention_heads,) * len(self.down_block_types ) # down snake_case_ = [] snake_case_ = block_out_channels[0] for i, down_block_type in enumerate(self.down_block_types ): snake_case_ = output_channel snake_case_ = block_out_channels[i] snake_case_ = i == len(lowercase_ ) - 1 if down_block_type == "CrossAttnDownBlock2D": snake_case_ = FlaxCrossAttnDownBlockaD( in_channels=lowercase_ , out_channels=lowercase_ , dropout=self.dropout , num_layers=self.layers_per_block , num_attention_heads=num_attention_heads[i] , add_downsample=not is_final_block , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) else: snake_case_ = FlaxDownBlockaD( in_channels=lowercase_ , out_channels=lowercase_ , dropout=self.dropout , num_layers=self.layers_per_block , add_downsample=not is_final_block , dtype=self.dtype , ) down_blocks.append(lowercase_ ) snake_case_ = down_blocks # mid snake_case_ = FlaxUNetMidBlockaDCrossAttn( in_channels=block_out_channels[-1] , dropout=self.dropout , num_attention_heads=num_attention_heads[-1] , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) # up snake_case_ = [] snake_case_ = list(reversed(lowercase_ ) ) snake_case_ = list(reversed(lowercase_ ) ) snake_case_ = list(reversed(lowercase_ ) ) snake_case_ = reversed_block_out_channels[0] for i, up_block_type in enumerate(self.up_block_types ): snake_case_ = output_channel snake_case_ = reversed_block_out_channels[i] snake_case_ = reversed_block_out_channels[min(i + 1 , len(lowercase_ ) - 1 )] snake_case_ = i == len(lowercase_ ) - 1 if up_block_type == "CrossAttnUpBlock2D": snake_case_ = FlaxCrossAttnUpBlockaD( in_channels=lowercase_ , out_channels=lowercase_ , prev_output_channel=lowercase_ , num_layers=self.layers_per_block + 1 , num_attention_heads=reversed_num_attention_heads[i] , add_upsample=not is_final_block , dropout=self.dropout , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) else: snake_case_ = FlaxUpBlockaD( in_channels=lowercase_ , out_channels=lowercase_ , prev_output_channel=lowercase_ , num_layers=self.layers_per_block + 1 , add_upsample=not is_final_block , dropout=self.dropout , dtype=self.dtype , ) up_blocks.append(lowercase_ ) snake_case_ = output_channel snake_case_ = up_blocks # out snake_case_ = nn.GroupNorm(num_groups=32 , epsilon=1e-5 ) snake_case_ = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self : Union[str, Any] , lowercase_ : Union[str, Any] , lowercase_ : int , lowercase_ : Any , lowercase_ : int=None , lowercase_ : Any=None , lowercase_ : bool = True , lowercase_ : bool = False , ): # 1. time if not isinstance(lowercase_ , jnp.ndarray ): snake_case_ = jnp.array([timesteps] , dtype=jnp.intaa ) elif isinstance(lowercase_ , jnp.ndarray ) and len(timesteps.shape ) == 0: snake_case_ = timesteps.astype(dtype=jnp.floataa ) snake_case_ = jnp.expand_dims(lowercase_ , 0 ) snake_case_ = self.time_proj(lowercase_ ) snake_case_ = self.time_embedding(lowercase_ ) # 2. pre-process snake_case_ = jnp.transpose(lowercase_ , (0, 2, 3, 1) ) snake_case_ = self.conv_in(lowercase_ ) # 3. down snake_case_ = (sample,) for down_block in self.down_blocks: if isinstance(lowercase_ , lowercase_ ): snake_case_ ,snake_case_ = down_block(lowercase_ , lowercase_ , lowercase_ , deterministic=not train ) else: snake_case_ ,snake_case_ = down_block(lowercase_ , lowercase_ , deterministic=not train ) down_block_res_samples += res_samples if down_block_additional_residuals is not None: snake_case_ = () for down_block_res_sample, down_block_additional_residual in zip( lowercase_ , lowercase_ ): down_block_res_sample += down_block_additional_residual new_down_block_res_samples += (down_block_res_sample,) snake_case_ = new_down_block_res_samples # 4. mid snake_case_ = self.mid_block(lowercase_ , lowercase_ , lowercase_ , deterministic=not train ) if mid_block_additional_residual is not None: sample += mid_block_additional_residual # 5. up for up_block in self.up_blocks: snake_case_ = down_block_res_samples[-(self.layers_per_block + 1) :] snake_case_ = down_block_res_samples[: -(self.layers_per_block + 1)] if isinstance(lowercase_ , lowercase_ ): snake_case_ = up_block( lowercase_ , temb=lowercase_ , encoder_hidden_states=lowercase_ , res_hidden_states_tuple=lowercase_ , deterministic=not train , ) else: snake_case_ = up_block(lowercase_ , temb=lowercase_ , res_hidden_states_tuple=lowercase_ , deterministic=not train ) # 6. post-process snake_case_ = self.conv_norm_out(lowercase_ ) snake_case_ = nn.silu(lowercase_ ) snake_case_ = self.conv_out(lowercase_ ) snake_case_ = jnp.transpose(lowercase_ , (0, 3, 1, 2) ) if not return_dict: return (sample,) return FlaxUNetaDConditionOutput(sample=lowercase_ )
56
0
import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import ( AutoProcessor, BertTokenizerFast, BlipImageProcessor, GPTaTokenizer, InstructBlipProcessor, PreTrainedTokenizerFast, ) @require_vision class __A ( unittest.TestCase ): """simple docstring""" def __lowercase ( self ): """simple docstring""" __UpperCamelCase : List[Any] =tempfile.mkdtemp() __UpperCamelCase : List[str] =BlipImageProcessor() __UpperCamelCase : Tuple =GPTaTokenizer.from_pretrained('hf-internal-testing/tiny-random-GPT2Model' ) __UpperCamelCase : List[str] =BertTokenizerFast.from_pretrained('hf-internal-testing/tiny-random-bert' ) __UpperCamelCase : List[str] =InstructBlipProcessor(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) processor.save_pretrained(self.tmpdirname ) def __lowercase ( self , **lowerCamelCase__ ): """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **lowerCamelCase__ ).tokenizer def __lowercase ( self , **lowerCamelCase__ ): """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **lowerCamelCase__ ).image_processor def __lowercase ( self , **lowerCamelCase__ ): """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **lowerCamelCase__ ).qformer_tokenizer def __lowercase ( self ): """simple docstring""" shutil.rmtree(self.tmpdirname ) def __lowercase ( self ): """simple docstring""" __UpperCamelCase : str =[np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] __UpperCamelCase : str =[Image.fromarray(np.moveaxis(lowerCamelCase__ , 0 , -1 ) ) for x in image_inputs] return image_inputs def __lowercase ( self ): """simple docstring""" __UpperCamelCase : List[str] =InstructBlipProcessor( tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() , qformer_tokenizer=self.get_qformer_tokenizer() , ) processor.save_pretrained(self.tmpdirname ) __UpperCamelCase : Dict =self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' ) __UpperCamelCase : List[Any] =self.get_image_processor(do_normalize=lowerCamelCase__ , padding_value=1.0 ) __UpperCamelCase : List[str] =InstructBlipProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=lowerCamelCase__ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , lowerCamelCase__ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , lowerCamelCase__ ) self.assertIsInstance(processor.qformer_tokenizer , lowerCamelCase__ ) def __lowercase ( self ): """simple docstring""" __UpperCamelCase : Dict =self.get_image_processor() __UpperCamelCase : Any =self.get_tokenizer() __UpperCamelCase : int =self.get_qformer_tokenizer() __UpperCamelCase : List[str] =InstructBlipProcessor( tokenizer=lowerCamelCase__ , image_processor=lowerCamelCase__ , qformer_tokenizer=lowerCamelCase__ ) __UpperCamelCase : Optional[Any] =self.prepare_image_inputs() __UpperCamelCase : List[Any] =image_processor(lowerCamelCase__ , return_tensors='np' ) __UpperCamelCase : Any =processor(images=lowerCamelCase__ , return_tensors='np' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def __lowercase ( self ): """simple docstring""" __UpperCamelCase : Optional[int] =self.get_image_processor() __UpperCamelCase : List[Any] =self.get_tokenizer() __UpperCamelCase : List[Any] =self.get_qformer_tokenizer() __UpperCamelCase : List[str] =InstructBlipProcessor( tokenizer=lowerCamelCase__ , image_processor=lowerCamelCase__ , qformer_tokenizer=lowerCamelCase__ ) __UpperCamelCase : int ='lower newer' __UpperCamelCase : int =processor(text=lowerCamelCase__ ) __UpperCamelCase : List[str] =tokenizer(lowerCamelCase__ , return_token_type_ids=lowerCamelCase__ ) __UpperCamelCase : Any =qformer_tokenizer(lowerCamelCase__ , return_token_type_ids=lowerCamelCase__ ) for key in encoded_tokens.keys(): self.assertListEqual(encoded_tokens[key] , encoded_processor[key] ) for key in encoded_tokens_qformer.keys(): self.assertListEqual(encoded_tokens_qformer[key] , encoded_processor['qformer_' + key] ) def __lowercase ( self ): """simple docstring""" __UpperCamelCase : Dict =self.get_image_processor() __UpperCamelCase : Optional[Any] =self.get_tokenizer() __UpperCamelCase : Any =self.get_qformer_tokenizer() __UpperCamelCase : List[str] =InstructBlipProcessor( tokenizer=lowerCamelCase__ , image_processor=lowerCamelCase__ , qformer_tokenizer=lowerCamelCase__ ) __UpperCamelCase : Optional[Any] ='lower newer' __UpperCamelCase : Any =self.prepare_image_inputs() __UpperCamelCase : Optional[Any] =processor(text=lowerCamelCase__ , images=lowerCamelCase__ ) self.assertListEqual( list(inputs.keys() ) , ['input_ids', 'attention_mask', 'qformer_input_ids', 'qformer_attention_mask', 'pixel_values'] , ) # test if it raises when no input is passed with pytest.raises(lowerCamelCase__ ): processor() def __lowercase ( self ): """simple docstring""" __UpperCamelCase : str =self.get_image_processor() __UpperCamelCase : Tuple =self.get_tokenizer() __UpperCamelCase : Any =self.get_qformer_tokenizer() __UpperCamelCase : Optional[int] =InstructBlipProcessor( tokenizer=lowerCamelCase__ , image_processor=lowerCamelCase__ , qformer_tokenizer=lowerCamelCase__ ) __UpperCamelCase : Optional[Any] =[[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __UpperCamelCase : Tuple =processor.batch_decode(lowerCamelCase__ ) __UpperCamelCase : Optional[int] =tokenizer.batch_decode(lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) def __lowercase ( self ): """simple docstring""" __UpperCamelCase : Union[str, Any] =self.get_image_processor() __UpperCamelCase : int =self.get_tokenizer() __UpperCamelCase : List[Any] =self.get_qformer_tokenizer() __UpperCamelCase : int =InstructBlipProcessor( tokenizer=lowerCamelCase__ , image_processor=lowerCamelCase__ , qformer_tokenizer=lowerCamelCase__ ) __UpperCamelCase : Union[str, Any] ='lower newer' __UpperCamelCase : Optional[int] =self.prepare_image_inputs() __UpperCamelCase : str =processor(text=lowerCamelCase__ , images=lowerCamelCase__ ) self.assertListEqual( list(inputs.keys() ) , ['input_ids', 'attention_mask', 'qformer_input_ids', 'qformer_attention_mask', 'pixel_values'] , )
245
import math import numpy as np import qiskit from qiskit import Aer, ClassicalRegister, QuantumCircuit, QuantumRegister, execute def A ( a_ = 3 ) -> qiskit.result.counts.Counts: if isinstance(a_ ,a_ ): raise TypeError('number of qubits must be a integer.' ) if number_of_qubits <= 0: raise ValueError('number of qubits must be > 0.' ) if math.floor(a_ ) != number_of_qubits: raise ValueError('number of qubits must be exact integer.' ) if number_of_qubits > 10: raise ValueError('number of qubits too large to simulate(>10).' ) __UpperCamelCase : str =QuantumRegister(a_ ,'qr' ) __UpperCamelCase : Optional[int] =ClassicalRegister(a_ ,'cr' ) __UpperCamelCase : Optional[Any] =QuantumCircuit(a_ ,a_ ) __UpperCamelCase : Any =number_of_qubits for i in range(a_ ): quantum_circuit.h(number_of_qubits - i - 1 ) counter -= 1 for j in range(a_ ): quantum_circuit.cp(np.pi / 2 ** (counter - j) ,a_ ,a_ ) for k in range(number_of_qubits // 2 ): quantum_circuit.swap(a_ ,number_of_qubits - k - 1 ) # measure all the qubits quantum_circuit.measure(a_ ,a_ ) # simulate with 10000 shots __UpperCamelCase : Any =Aer.get_backend('qasm_simulator' ) __UpperCamelCase : Tuple =execute(a_ ,a_ ,shots=10_000 ) return job.result().get_counts(a_ ) if __name__ == "__main__": print( f"Total count for quantum fourier transform state is: \ {quantum_fourier_transform(3)}" )
245
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A__ : Dict ={ '''configuration_clipseg''': [ '''CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''CLIPSegConfig''', '''CLIPSegTextConfig''', '''CLIPSegVisionConfig''', ], '''processing_clipseg''': ['''CLIPSegProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : Any =[ '''CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST''', '''CLIPSegModel''', '''CLIPSegPreTrainedModel''', '''CLIPSegTextModel''', '''CLIPSegVisionModel''', '''CLIPSegForImageSegmentation''', ] if TYPE_CHECKING: from .configuration_clipseg import ( CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPSegConfig, CLIPSegTextConfig, CLIPSegVisionConfig, ) from .processing_clipseg import CLIPSegProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clipseg import ( CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPSegForImageSegmentation, CLIPSegModel, CLIPSegPreTrainedModel, CLIPSegTextModel, CLIPSegVisionModel, ) else: import sys A__ : Any =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
70
'''simple docstring''' # This model implementation is heavily inspired by https://github.com/haofanwang/ControlNet-for-Diffusers/ import gc import random import tempfile import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, ControlNetModel, DDIMScheduler, StableDiffusionControlNetImgaImgPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet import MultiControlNetModel from diffusers.utils import floats_tensor, load_image, load_numpy, randn_tensor, slow, torch_device from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, ) enable_full_determinism() class UpperCAmelCase ( snake_case_ , snake_case_ , snake_case_ , unittest.TestCase ): _lowercase: Optional[int] = StableDiffusionControlNetImgaImgPipeline _lowercase: Tuple = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'''height''', '''width'''} _lowercase: str = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS _lowercase: Tuple = IMAGE_TO_IMAGE_IMAGE_PARAMS.union({'''control_image'''} ) _lowercase: Union[str, Any] = IMAGE_TO_IMAGE_IMAGE_PARAMS def lowercase__ ( self : List[str] ) -> List[str]: torch.manual_seed(0 ) _lowerCAmelCase = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) torch.manual_seed(0 ) _lowerCAmelCase = ControlNetModel( block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , ) torch.manual_seed(0 ) _lowerCAmelCase = DDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule="""scaled_linear""" , clip_sample=__snake_case , set_alpha_to_one=__snake_case , ) torch.manual_seed(0 ) _lowerCAmelCase = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) torch.manual_seed(0 ) _lowerCAmelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) _lowerCAmelCase = CLIPTextModel(__snake_case ) _lowerCAmelCase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) _lowerCAmelCase = { """unet""": unet, """controlnet""": controlnet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def lowercase__ ( self : Any , __snake_case : str , __snake_case : Any=0 ) -> str: if str(__snake_case ).startswith("""mps""" ): _lowerCAmelCase = torch.manual_seed(__snake_case ) else: _lowerCAmelCase = torch.Generator(device=__snake_case ).manual_seed(__snake_case ) _lowerCAmelCase = 2 _lowerCAmelCase = randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=__snake_case , device=torch.device(__snake_case ) , ) _lowerCAmelCase = floats_tensor(control_image.shape , rng=random.Random(__snake_case ) ).to(__snake_case ) _lowerCAmelCase = image.cpu().permute(0 , 2 , 3 , 1 )[0] _lowerCAmelCase = Image.fromarray(np.uinta(__snake_case ) ).convert("""RGB""" ).resize((64, 64) ) _lowerCAmelCase = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """output_type""": """numpy""", """image""": image, """control_image""": control_image, } return inputs def lowercase__ ( self : Optional[int] ) -> List[Any]: return self._test_attention_slicing_forward_pass(expected_max_diff=2E-3 ) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def lowercase__ ( self : Tuple ) -> Optional[int]: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2E-3 ) def lowercase__ ( self : Tuple ) -> Optional[int]: self._test_inference_batch_single_identical(expected_max_diff=2E-3 ) class UpperCAmelCase ( snake_case_ , snake_case_ , unittest.TestCase ): _lowercase: Any = StableDiffusionControlNetImgaImgPipeline _lowercase: Dict = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'''height''', '''width'''} _lowercase: List[Any] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS _lowercase: Any = frozenset([] ) # TO_DO: add image_params once refactored VaeImageProcessor.preprocess def lowercase__ ( self : Optional[Any] ) -> Union[str, Any]: torch.manual_seed(0 ) _lowerCAmelCase = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) torch.manual_seed(0 ) def init_weights(__snake_case : Optional[Any] ): if isinstance(__snake_case , torch.nn.Convad ): torch.nn.init.normal(m.weight ) m.bias.data.fill_(1.0 ) _lowerCAmelCase = ControlNetModel( block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , ) controlneta.controlnet_down_blocks.apply(__snake_case ) torch.manual_seed(0 ) _lowerCAmelCase = ControlNetModel( block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , ) controlneta.controlnet_down_blocks.apply(__snake_case ) torch.manual_seed(0 ) _lowerCAmelCase = DDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule="""scaled_linear""" , clip_sample=__snake_case , set_alpha_to_one=__snake_case , ) torch.manual_seed(0 ) _lowerCAmelCase = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) torch.manual_seed(0 ) _lowerCAmelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) _lowerCAmelCase = CLIPTextModel(__snake_case ) _lowerCAmelCase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) _lowerCAmelCase = MultiControlNetModel([controlneta, controlneta] ) _lowerCAmelCase = { """unet""": unet, """controlnet""": controlnet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def lowercase__ ( self : Tuple , __snake_case : int , __snake_case : List[str]=0 ) -> Union[str, Any]: if str(__snake_case ).startswith("""mps""" ): _lowerCAmelCase = torch.manual_seed(__snake_case ) else: _lowerCAmelCase = torch.Generator(device=__snake_case ).manual_seed(__snake_case ) _lowerCAmelCase = 2 _lowerCAmelCase = [ randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=__snake_case , device=torch.device(__snake_case ) , ), randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=__snake_case , device=torch.device(__snake_case ) , ), ] _lowerCAmelCase = floats_tensor(control_image[0].shape , rng=random.Random(__snake_case ) ).to(__snake_case ) _lowerCAmelCase = image.cpu().permute(0 , 2 , 3 , 1 )[0] _lowerCAmelCase = Image.fromarray(np.uinta(__snake_case ) ).convert("""RGB""" ).resize((64, 64) ) _lowerCAmelCase = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """output_type""": """numpy""", """image""": image, """control_image""": control_image, } return inputs def lowercase__ ( self : List[str] ) -> Dict: _lowerCAmelCase = self.get_dummy_components() _lowerCAmelCase = self.pipeline_class(**__snake_case ) pipe.to(__snake_case ) _lowerCAmelCase = 10.0 _lowerCAmelCase = 4 _lowerCAmelCase = self.get_dummy_inputs(__snake_case ) _lowerCAmelCase = steps _lowerCAmelCase = scale _lowerCAmelCase = pipe(**__snake_case )[0] _lowerCAmelCase = self.get_dummy_inputs(__snake_case ) _lowerCAmelCase = steps _lowerCAmelCase = scale _lowerCAmelCase = pipe(**__snake_case , control_guidance_start=0.1 , control_guidance_end=0.2 )[0] _lowerCAmelCase = self.get_dummy_inputs(__snake_case ) _lowerCAmelCase = steps _lowerCAmelCase = scale _lowerCAmelCase = pipe(**__snake_case , control_guidance_start=[0.1, 0.3] , control_guidance_end=[0.2, 0.7] )[0] _lowerCAmelCase = self.get_dummy_inputs(__snake_case ) _lowerCAmelCase = steps _lowerCAmelCase = scale _lowerCAmelCase = pipe(**__snake_case , control_guidance_start=0.4 , control_guidance_end=[0.5, 0.8] )[0] # make sure that all outputs are different assert np.sum(np.abs(output_a - output_a ) ) > 1E-3 assert np.sum(np.abs(output_a - output_a ) ) > 1E-3 assert np.sum(np.abs(output_a - output_a ) ) > 1E-3 def lowercase__ ( self : int ) -> str: return self._test_attention_slicing_forward_pass(expected_max_diff=2E-3 ) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def lowercase__ ( self : Optional[Any] ) -> Dict: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2E-3 ) def lowercase__ ( self : int ) -> str: self._test_inference_batch_single_identical(expected_max_diff=2E-3 ) def lowercase__ ( self : Union[str, Any] ) -> Optional[Any]: _lowerCAmelCase = self.get_dummy_components() _lowerCAmelCase = self.pipeline_class(**__snake_case ) pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) with tempfile.TemporaryDirectory() as tmpdir: try: # save_pretrained is not implemented for Multi-ControlNet pipe.save_pretrained(__snake_case ) except NotImplementedError: pass @slow @require_torch_gpu class UpperCAmelCase ( unittest.TestCase ): def lowercase__ ( self : Union[str, Any] ) -> int: super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase__ ( self : List[str] ) -> Any: _lowerCAmelCase = ControlNetModel.from_pretrained("""lllyasviel/sd-controlnet-canny""" ) _lowerCAmelCase = StableDiffusionControlNetImgaImgPipeline.from_pretrained( """runwayml/stable-diffusion-v1-5""" , safety_checker=__snake_case , controlnet=__snake_case ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=__snake_case ) _lowerCAmelCase = torch.Generator(device="""cpu""" ).manual_seed(0 ) _lowerCAmelCase = """evil space-punk bird""" _lowerCAmelCase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png""" ).resize((5_12, 5_12) ) _lowerCAmelCase = load_image( """https://huggingface.co/lllyasviel/sd-controlnet-canny/resolve/main/images/bird.png""" ).resize((5_12, 5_12) ) _lowerCAmelCase = pipe( __snake_case , __snake_case , control_image=__snake_case , generator=__snake_case , output_type="""np""" , num_inference_steps=50 , strength=0.6 , ) _lowerCAmelCase = output.images[0] assert image.shape == (5_12, 5_12, 3) _lowerCAmelCase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/img2img.npy""" ) assert np.abs(expected_image - image ).max() < 9E-2
70
1
from __future__ import annotations from collections.abc import Callable _UpperCAmelCase : Union[str, Any] = list[list[float | int]] def UpperCAmelCase__ ( lowerCamelCase, lowerCamelCase ): lowercase :int = len(lowerCamelCase ) lowercase :Matrix = [[0 for _ in range(size + 1 )] for _ in range(lowerCamelCase )] lowercase :int lowercase :int lowercase :int lowercase :int lowercase :int lowercase :float for row in range(lowerCamelCase ): for col in range(lowerCamelCase ): lowercase :Optional[Any] = matrix[row][col] lowercase :Optional[int] = vector[row][0] lowercase :int = 0 lowercase :Union[str, Any] = 0 while row < size and col < size: # pivoting lowercase :str = max((abs(augmented[rowa][col] ), rowa) for rowa in range(lowerCamelCase, lowerCamelCase ) )[ 1 ] if augmented[pivot_row][col] == 0: col += 1 continue else: lowercase :List[Any] = augmented[pivot_row], augmented[row] for rowa in range(row + 1, lowerCamelCase ): lowercase :str = augmented[rowa][col] / augmented[row][col] lowercase :str = 0 for cola in range(col + 1, size + 1 ): augmented[rowa][cola] -= augmented[row][cola] * ratio row += 1 col += 1 # back substitution for col in range(1, lowerCamelCase ): for row in range(lowerCamelCase ): lowercase :List[str] = augmented[row][col] / augmented[col][col] for cola in range(lowerCamelCase, size + 1 ): augmented[row][cola] -= augmented[col][cola] * ratio # round to get rid of numbers like 2.000000000000004 return [ [round(augmented[row][size] / augmented[row][row], 10 )] for row in range(lowerCamelCase ) ] def UpperCAmelCase__ ( lowerCamelCase ): lowercase :int = len(lowerCamelCase ) lowercase :Matrix = [[0 for _ in range(lowerCamelCase )] for _ in range(lowerCamelCase )] lowercase :Matrix = [[0] for _ in range(lowerCamelCase )] lowercase :Matrix lowercase :int lowercase :int lowercase :int for x_val, y_val in enumerate(lowerCamelCase ): for col in range(lowerCamelCase ): lowercase :Optional[Any] = (x_val + 1) ** (size - col - 1) lowercase :Optional[Any] = y_val lowercase :Any = solve(lowerCamelCase, lowerCamelCase ) def interpolated_func(lowerCamelCase ) -> int: return sum( round(coeffs[x_val][0] ) * (var ** (size - x_val - 1)) for x_val in range(lowerCamelCase ) ) return interpolated_func def UpperCAmelCase__ ( lowerCamelCase ): return ( 1 - variable + variable**2 - variable**3 + variable**4 - variable**5 + variable**6 - variable**7 + variable**8 - variable**9 + variable**10 ) def UpperCAmelCase__ ( lowerCamelCase = question_function, lowerCamelCase = 10 ): lowercase :list[int] = [func(lowerCamelCase ) for x_val in range(1, order + 1 )] lowercase :list[Callable[[int], int]] = [ interpolate(data_points[:max_coeff] ) for max_coeff in range(1, order + 1 ) ] lowercase :int = 0 lowercase :Callable[[int], int] lowercase :int for poly in polynomials: lowercase :Union[str, Any] = 1 while func(lowerCamelCase ) == poly(lowerCamelCase ): x_val += 1 ret += poly(lowerCamelCase ) return ret if __name__ == "__main__": print(f'''{solution() = }''')
360
# DISCLAIMER: This code is strongly influenced by https://github.com/pesser/pytorch_diffusion # and https://github.com/hojonathanho/diffusion import math from dataclasses import dataclass from typing import List, Optional, Tuple, Union import numpy as np import torch from diffusers.configuration_utils import ConfigMixin, register_to_config from diffusers.schedulers.scheduling_utils import SchedulerMixin from diffusers.utils import BaseOutput, deprecate @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->DDIM class __lowerCAmelCase ( lowerCAmelCase): _a = 42 _a = None def UpperCAmelCase__ ( lowerCamelCase, lowerCamelCase=0.999, lowerCamelCase="cosine", ): if alpha_transform_type == "cosine": def alpha_bar_fn(lowerCamelCase ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(lowerCamelCase ): return math.exp(t * -12.0 ) else: raise ValueError(F"Unsupported alpha_tranform_type: {alpha_transform_type}" ) lowercase :Optional[int] = [] for i in range(lowerCamelCase ): lowercase :Any = i / num_diffusion_timesteps lowercase :str = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(lowerCamelCase ) / alpha_bar_fn(lowerCamelCase ), lowerCamelCase ) ) return torch.tensor(lowerCamelCase, dtype=torch.floataa ) class __lowerCAmelCase ( lowerCAmelCase , lowerCAmelCase): _a = 1 @register_to_config def __init__( self: Any , _lowerCAmelCase: int = 10_00 , _lowerCAmelCase: float = 0.00_01 , _lowerCAmelCase: float = 0.02 , _lowerCAmelCase: str = "linear" , _lowerCAmelCase: Optional[Union[np.ndarray, List[float]]] = None , _lowerCAmelCase: bool = True , _lowerCAmelCase: bool = True , _lowerCAmelCase: int = 0 , _lowerCAmelCase: str = "epsilon" , _lowerCAmelCase: float = 1.0 , **_lowerCAmelCase: Union[str, Any] , ): if kwargs.get("set_alpha_to_one" , _lowerCAmelCase ) is not None: lowercase :Optional[int] = ( "The `set_alpha_to_one` argument is deprecated. Please use `set_alpha_to_zero` instead." ) deprecate("set_alpha_to_one" , "1.0.0" , _lowerCAmelCase , standard_warn=_lowerCAmelCase ) lowercase :str = kwargs["set_alpha_to_one"] if trained_betas is not None: lowercase :int = torch.tensor(_lowerCAmelCase , dtype=torch.floataa ) elif beta_schedule == "linear": lowercase :List[Any] = torch.linspace(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. lowercase :Tuple = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , _lowerCAmelCase , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule lowercase :Any = betas_for_alpha_bar(_lowerCAmelCase ) else: raise NotImplementedError(F"{beta_schedule} does is not implemented for {self.__class__}" ) lowercase :Dict = 1.0 - self.betas lowercase :Dict = torch.cumprod(self.alphas , dim=0 ) # At every step in inverted ddim, we are looking into the next alphas_cumprod # For the final step, there is no next alphas_cumprod, and the index is out of bounds # `set_alpha_to_zero` decides whether we set this parameter simply to zero # in this case, self.step() just output the predicted noise # or whether we use the final alpha of the "non-previous" one. lowercase :Any = torch.tensor(0.0 ) if set_alpha_to_zero else self.alphas_cumprod[-1] # standard deviation of the initial noise distribution lowercase :Union[str, Any] = 1.0 # setable values lowercase :str = None lowercase :List[Any] = torch.from_numpy(np.arange(0 , _lowerCAmelCase ).copy().astype(np.intaa ) ) def SCREAMING_SNAKE_CASE ( self: Optional[Any] , _lowerCAmelCase: torch.FloatTensor , _lowerCAmelCase: Optional[int] = None ): return sample def SCREAMING_SNAKE_CASE ( self: Union[str, Any] , _lowerCAmelCase: int , _lowerCAmelCase: Union[str, torch.device] = None ): if num_inference_steps > self.config.num_train_timesteps: raise ValueError( F"`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`:" F" {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle" F" maximal {self.config.num_train_timesteps} timesteps." ) lowercase :List[Any] = num_inference_steps lowercase :Optional[Any] = self.config.num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 lowercase :str = (np.arange(0 , _lowerCAmelCase ) * step_ratio).round().copy().astype(np.intaa ) lowercase :str = torch.from_numpy(_lowerCAmelCase ).to(_lowerCAmelCase ) self.timesteps += self.config.steps_offset def SCREAMING_SNAKE_CASE ( self: List[str] , _lowerCAmelCase: torch.FloatTensor , _lowerCAmelCase: int , _lowerCAmelCase: torch.FloatTensor , _lowerCAmelCase: float = 0.0 , _lowerCAmelCase: bool = False , _lowerCAmelCase: Optional[torch.FloatTensor] = None , _lowerCAmelCase: bool = True , ): # 1. get previous step value (=t+1) lowercase :int = timestep + self.config.num_train_timesteps // self.num_inference_steps # 2. compute alphas, betas # change original implementation to exactly match noise levels for analogous forward process lowercase :List[Any] = self.alphas_cumprod[timestep] lowercase :Dict = ( self.alphas_cumprod[prev_timestep] if prev_timestep < self.config.num_train_timesteps else self.final_alpha_cumprod ) lowercase :Optional[Any] = 1 - alpha_prod_t # 3. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf if self.config.prediction_type == "epsilon": lowercase :int = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 lowercase :Optional[Any] = model_output elif self.config.prediction_type == "sample": lowercase :Union[str, Any] = model_output lowercase :List[str] = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5 elif self.config.prediction_type == "v_prediction": lowercase :Dict = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output lowercase :str = (alpha_prod_t**0.5) * model_output + (beta_prod_t**0.5) * sample else: raise ValueError( F"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or" " `v_prediction`" ) # 4. Clip or threshold "predicted x_0" if self.config.clip_sample: lowercase :Optional[Any] = pred_original_sample.clamp( -self.config.clip_sample_range , self.config.clip_sample_range ) # 5. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf lowercase :List[Any] = (1 - alpha_prod_t_prev) ** 0.5 * pred_epsilon # 6. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf lowercase :Tuple = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction if not return_dict: return (prev_sample, pred_original_sample) return DDIMSchedulerOutput(prev_sample=_lowerCAmelCase , pred_original_sample=_lowerCAmelCase ) def __len__( self: List[str] ): return self.config.num_train_timesteps
158
0
'''simple docstring''' # Function to print upper half of diamond (pyramid) def UpperCamelCase_( snake_case : List[Any] ): '''simple docstring''' for i in range(0 , lowercase_ ): for _ in range(0 , n - i - 1 ): # printing spaces print(" " , end="" ) for _ in range(0 , i + 1 ): # printing stars print("* " , end="" ) print() def UpperCamelCase_( snake_case : Tuple ): '''simple docstring''' for i in range(lowercase_ , 0 , -1 ): for _ in range(lowercase_ , 0 , -1 ): # printing stars print("* " , end="" ) print() for _ in range(n - i + 1 , 0 , -1 ): # printing spaces print(" " , end="" ) def UpperCamelCase_( snake_case : Optional[Any] ): '''simple docstring''' if n <= 0: print(" ... .... nothing printing :(" ) return floyd(lowercase_ ) # upper half reverse_floyd(lowercase_ ) # lower half if __name__ == "__main__": print(r"| /\ | |- | |- |--| |\ /| |-") print(r"|/ \| |- |_ |_ |__| | \/ | |_") _SCREAMING_SNAKE_CASE : Optional[Any] = 1 while K: _SCREAMING_SNAKE_CASE : int = int(input("enter the number and , and see the magic : ")) print() pretty_print(user_number) _SCREAMING_SNAKE_CASE : str = int(input("press 0 to exit... and 1 to continue...")) print("Good Bye...")
85
from ...configuration_utils import PretrainedConfig from ...utils import logging A_ : int = logging.get_logger(__name__) A_ : Optional[Any] = { 'alibaba-damo/mgp-str-base': 'https://huggingface.co/alibaba-damo/mgp-str-base/resolve/main/config.json', } class _a (__magic_name__ ): '''simple docstring''' UpperCAmelCase__: List[Any] = '''mgp-str''' def __init__( self , A__=[32, 128] , A__=4 , A__=3 , A__=27 , A__=38 , A__=5_0257 , A__=3_0522 , A__=768 , A__=12 , A__=12 , A__=4.0 , A__=True , A__=False , A__=1e-5 , A__=0.0 , A__=0.0 , A__=0.0 , A__=False , A__=0.0_2 , **A__ , ): super().__init__(**A__ ) A__ : Dict = image_size A__ : int = patch_size A__ : Dict = num_channels A__ : List[Any] = max_token_length A__ : str = num_character_labels A__ : Tuple = num_bpe_labels A__ : Optional[Any] = num_wordpiece_labels A__ : Optional[int] = hidden_size A__ : Tuple = num_hidden_layers A__ : Any = num_attention_heads A__ : List[Any] = mlp_ratio A__ : Tuple = distilled A__ : Union[str, Any] = layer_norm_eps A__ : Tuple = drop_rate A__ : List[str] = qkv_bias A__ : Optional[Any] = attn_drop_rate A__ : Union[str, Any] = drop_path_rate A__ : Optional[Any] = output_aa_attentions A__ : Optional[int] = initializer_range
192
0
def snake_case_ ( lowerCAmelCase_ : int ): if num <= 0: raise ValueError("""Input must be a positive integer""" ) __lowercase : str = [True] * (num + 1) __lowercase : Optional[int] = 2 while p * p <= num: if primes[p]: for i in range(p * p , num + 1 , lowerCAmelCase_ ): __lowercase : Optional[Any] = False p += 1 return [prime for prime in range(2 , num + 1 ) if primes[prime]] if __name__ == "__main__": import doctest doctest.testmod() lowerCamelCase : Any = int(input('''Enter a positive integer: ''').strip()) print(prime_sieve_eratosthenes(user_num))
363
import collections import tempfile import unittest import numpy as np from transformers.testing_utils import ( is_pt_flax_cross_test, require_flax, require_torch, require_vision, slow, torch_device, ) from transformers.utils import is_flax_available, is_torch_available, is_vision_available from ...test_modeling_flax_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_flax_bert import FlaxBertModelTester from ..clip.test_modeling_flax_clip import FlaxCLIPVisionModelTester from ..vit.test_modeling_flax_vit import FlaxViTModelTester if is_flax_available(): from transformers import ( FlaxBertModel, FlaxCLIPVisionModel, FlaxVisionTextDualEncoderModel, FlaxViTModel, VisionTextDualEncoderConfig, VisionTextDualEncoderProcessor, ) from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) if is_torch_available(): import torch from transformers import VisionTextDualEncoderModel if is_vision_available(): from PIL import Image def snake_case_ ( lowerCAmelCase_ : Tuple ): if isinstance(lowerCAmelCase_ , collections.abc.Iterable ): return x return (x, x) @require_flax class lowerCAmelCase : '''simple docstring''' def lowerCAmelCase ( self : Any , __a : Any , __a : List[Any] ) -> Optional[Any]: """simple docstring""" pass def lowerCAmelCase ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" pass def lowerCAmelCase ( self : Union[str, Any] ) -> Tuple: """simple docstring""" pass def lowerCAmelCase ( self : Tuple , __a : np.ndarray , __a : np.ndarray , __a : float ) -> List[Any]: """simple docstring""" __lowercase : List[str] = np.abs((a - b) ).max() self.assertLessEqual(__a , __a , F"Difference between torch and flax is {diff} (>= {tol})." ) def lowerCAmelCase ( self : Tuple , __a : int , __a : str , __a : Union[str, Any] , __a : Optional[Any] , __a : Optional[Any]=None , **__a : Tuple ) -> Optional[Any]: """simple docstring""" __lowercase : str = VisionTextDualEncoderConfig.from_vision_text_configs(__a , __a ) __lowercase : str = FlaxVisionTextDualEncoderModel(__a ) __lowercase : Optional[Any] = model(input_ids=__a , pixel_values=__a , attention_mask=__a ) self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], config.projection_dim) ) self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], config.projection_dim) ) def lowerCAmelCase ( self : Optional[int] , __a : Optional[int] , __a : Dict , __a : Dict , __a : List[str] , __a : Optional[Any]=None , **__a : str ) -> str: """simple docstring""" __lowercase , __lowercase : List[str] = self.get_vision_text_model(__a , __a ) __lowercase : Union[str, Any] = {"""vision_model""": vision_model, """text_model""": text_model} __lowercase : str = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**__a ) __lowercase : Any = model(input_ids=__a , pixel_values=__a , attention_mask=__a ) self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], model.config.projection_dim) ) def lowerCAmelCase ( self : Tuple , __a : Union[str, Any] , __a : Union[str, Any] , __a : Union[str, Any] , __a : Dict , __a : int=None , **__a : int ) -> List[Any]: """simple docstring""" __lowercase , __lowercase : Tuple = self.get_vision_text_model(__a , __a ) __lowercase : Union[str, Any] = {"""vision_model""": vision_model, """text_model""": text_model} __lowercase : List[str] = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**__a ) __lowercase : List[Any] = model(input_ids=__a , pixel_values=__a , attention_mask=__a ) __lowercase : int = output[0] with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__a ) __lowercase : int = FlaxVisionTextDualEncoderModel.from_pretrained(__a ) __lowercase : Tuple = model(input_ids=__a , pixel_values=__a , attention_mask=__a ) __lowercase : int = after_output[0] __lowercase : int = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(__a , 1E-3 ) def lowerCAmelCase ( self : List[Any] , __a : Any , __a : Tuple , __a : Optional[int] , __a : str , __a : Optional[Any]=None , **__a : Optional[Any] ) -> List[Any]: """simple docstring""" __lowercase , __lowercase : str = self.get_vision_text_model(__a , __a ) __lowercase : Optional[Any] = {"""vision_model""": vision_model, """text_model""": text_model} __lowercase : Dict = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**__a ) __lowercase : Union[str, Any] = model( input_ids=__a , pixel_values=__a , attention_mask=__a , output_attentions=__a ) __lowercase : Optional[int] = output.vision_model_output.attentions self.assertEqual(len(__a ) , vision_config.num_hidden_layers ) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) __lowercase : Optional[int] = to_atuple(vision_model.config.image_size ) __lowercase : List[str] = to_atuple(vision_model.config.patch_size ) __lowercase : Optional[Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) __lowercase : int = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) __lowercase : Dict = output.text_model_output.attentions self.assertEqual(len(__a ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def lowerCAmelCase ( self : Optional[int] , __a : List[str] , __a : List[Any] , __a : Optional[Any] ) -> Optional[int]: """simple docstring""" pt_model.to(__a ) pt_model.eval() # prepare inputs __lowercase : Union[str, Any] = inputs_dict __lowercase : List[Any] = {k: torch.tensor(v.tolist() ) for k, v in flax_inputs.items()} with torch.no_grad(): __lowercase : Union[str, Any] = pt_model(**__a ).to_tuple() __lowercase : Tuple = fx_model(**__a ).to_tuple() self.assertEqual(len(__a ) , len(__a ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output, pt_output in zip(fx_outputs[:4] , pt_outputs[:4] ): self.assert_almost_equals(__a , pt_output.numpy() , 4E-2 ) # PT -> Flax with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(__a ) __lowercase : Any = FlaxVisionTextDualEncoderModel.from_pretrained(__a , from_pt=__a ) __lowercase : Dict = fx_model_loaded(**__a ).to_tuple() self.assertEqual(len(__a ) , len(__a ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output_loaded, pt_output in zip(fx_outputs_loaded[:4] , pt_outputs[:4] ): self.assert_almost_equals(__a , pt_output.numpy() , 4E-2 ) # Flax -> PT with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(__a ) __lowercase : str = VisionTextDualEncoderModel.from_pretrained(__a , from_flax=__a ) pt_model_loaded.to(__a ) pt_model_loaded.eval() with torch.no_grad(): __lowercase : List[Any] = pt_model_loaded(**__a ).to_tuple() self.assertEqual(len(__a ) , len(__a ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output, pt_output_loaded in zip(fx_outputs[:4] , pt_outputs_loaded[:4] ): self.assert_almost_equals(__a , pt_output_loaded.numpy() , 4E-2 ) def lowerCAmelCase ( self : Optional[int] , __a : List[Any] , __a : int , __a : Optional[int] ) -> Optional[int]: """simple docstring""" __lowercase : Union[str, Any] = VisionTextDualEncoderConfig.from_vision_text_configs(__a , __a ) __lowercase : str = VisionTextDualEncoderModel(__a ) __lowercase : Union[str, Any] = FlaxVisionTextDualEncoderModel(__a ) __lowercase : List[str] = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , __a ) __lowercase : Any = fx_state self.check_pt_flax_equivalence(__a , __a , __a ) def lowerCAmelCase ( self : Any , __a : Any , __a : Dict , __a : Tuple ) -> str: """simple docstring""" __lowercase : int = VisionTextDualEncoderConfig.from_vision_text_configs(__a , __a ) __lowercase : Union[str, Any] = VisionTextDualEncoderModel(__a ) __lowercase : Dict = FlaxVisionTextDualEncoderModel(__a ) __lowercase : Tuple = load_flax_weights_in_pytorch_model(__a , fx_model.params ) self.check_pt_flax_equivalence(__a , __a , __a ) def lowerCAmelCase ( self : str ) -> Optional[Any]: """simple docstring""" __lowercase : Optional[Any] = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**__a ) def lowerCAmelCase ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" __lowercase : int = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**__a ) def lowerCAmelCase ( self : List[Any] ) -> Dict: """simple docstring""" __lowercase : List[str] = self.prepare_config_and_inputs() self.check_save_load(**__a ) def lowerCAmelCase ( self : Any ) -> Dict: """simple docstring""" __lowercase : str = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**__a ) @is_pt_flax_cross_test def lowerCAmelCase ( self : List[str] ) -> Tuple: """simple docstring""" __lowercase : Optional[Any] = self.prepare_config_and_inputs() __lowercase : Optional[int] = config_inputs_dict.pop("""vision_config""" ) __lowercase : Optional[int] = config_inputs_dict.pop("""text_config""" ) __lowercase : Dict = config_inputs_dict self.check_equivalence_pt_to_flax(__a , __a , __a ) self.check_equivalence_flax_to_pt(__a , __a , __a ) @slow def lowerCAmelCase ( self : Union[str, Any] ) -> str: """simple docstring""" __lowercase , __lowercase : List[Any] = self.get_pretrained_model_and_inputs() __lowercase : Dict = model_a(**__a ) __lowercase : Any = outputs[0] with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(__a ) __lowercase : Tuple = FlaxVisionTextDualEncoderModel.from_pretrained(__a ) __lowercase : Optional[int] = model_a(**__a ) __lowercase : Tuple = after_outputs[0] __lowercase : Union[str, Any] = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(__a , 1E-5 ) @require_flax class lowerCAmelCase ( __a , unittest.TestCase ): '''simple docstring''' def lowerCAmelCase ( self : Dict ) -> Dict: """simple docstring""" __lowercase : int = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( """hf-internal-testing/tiny-random-vit""" , """hf-internal-testing/tiny-bert""" , vision_from_pt=__a , text_from_pt=__a , ) __lowercase : int = 13 __lowercase : Union[str, Any] = floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ] ) __lowercase : Dict = ids_tensor([batch_size, 4] , model.config.text_config.vocab_size ) __lowercase : Tuple = random_attention_mask([batch_size, 4] ) __lowercase : str = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask} return model, inputs def lowerCAmelCase ( self : Optional[Any] , __a : Union[str, Any] , __a : int ) -> Dict: """simple docstring""" __lowercase : int = FlaxViTModel(__a ) __lowercase : List[Any] = FlaxBertModel(__a ) return vision_model, text_model def lowerCAmelCase ( self : Tuple ) -> Optional[Any]: """simple docstring""" __lowercase : Tuple = FlaxViTModelTester(self ) __lowercase : str = FlaxBertModelTester(self ) __lowercase : List[str] = vit_model_tester.prepare_config_and_inputs() __lowercase : Union[str, Any] = bert_model_tester.prepare_config_and_inputs() __lowercase , __lowercase : Optional[int] = vision_config_and_inputs __lowercase , __lowercase , __lowercase , __lowercase : Any = text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_torch class lowerCAmelCase ( __a , unittest.TestCase ): '''simple docstring''' def lowerCAmelCase ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" __lowercase : List[Any] = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( """hf-internal-testing/tiny-random-clip""" , """hf-internal-testing/tiny-bert""" , vision_from_pt=__a , text_from_pt=__a , ) __lowercase : Tuple = 13 __lowercase : Optional[Any] = floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ] ) __lowercase : Tuple = ids_tensor([batch_size, 4] , model.config.text_config.vocab_size ) __lowercase : List[Any] = random_attention_mask([batch_size, 4] ) __lowercase : int = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask} return model, inputs def lowerCAmelCase ( self : str , __a : str , __a : Union[str, Any] ) -> Any: """simple docstring""" __lowercase : Dict = FlaxCLIPVisionModel(__a ) __lowercase : Optional[Any] = FlaxBertModel(__a ) return vision_model, text_model def lowerCAmelCase ( self : List[Any] ) -> List[str]: """simple docstring""" __lowercase : List[Any] = FlaxCLIPVisionModelTester(self ) __lowercase : Optional[Any] = FlaxBertModelTester(self ) __lowercase : Any = clip_model_tester.prepare_config_and_inputs() __lowercase : Optional[Any] = bert_model_tester.prepare_config_and_inputs() __lowercase , __lowercase : Dict = vision_config_and_inputs __lowercase , __lowercase , __lowercase , __lowercase : Optional[int] = text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_flax @require_vision class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @slow def lowerCAmelCase ( self : List[str] ) -> Optional[Any]: """simple docstring""" __lowercase : Any = FlaxVisionTextDualEncoderModel.from_pretrained("""clip-italian/clip-italian""" , logit_scale_init_value=1.0 ) __lowercase : int = VisionTextDualEncoderProcessor.from_pretrained("""clip-italian/clip-italian""" ) __lowercase : Union[str, Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) __lowercase : Tuple = processor( text=["""una foto di un gatto""", """una foto di un cane"""] , images=__a , padding=__a , return_tensors="""np""" ) __lowercase : Optional[int] = model(**__a ) # verify the logits self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) ) self.assertEqual( outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , ) __lowercase : Optional[Any] = np.array([[1.2284727, 0.3104122]] ) self.assertTrue(np.allclose(outputs.logits_per_image , __a , atol=1E-3 ) )
306
0
'''simple docstring''' import unittest from parameterized import parameterized from transformers import OpenLlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import OpenLlamaForCausalLM, OpenLlamaForSequenceClassification, OpenLlamaModel class SCREAMING_SNAKE_CASE: """simple docstring""" def __init__( self : int , __snake_case : Union[str, Any] , __snake_case : Optional[int]=13 , __snake_case : str=7 , __snake_case : int=True , __snake_case : List[Any]=True , __snake_case : Any=False , __snake_case : Union[str, Any]=True , __snake_case : Dict=99 , __snake_case : Optional[int]=32 , __snake_case : Any=5 , __snake_case : Any=4 , __snake_case : List[Any]=37 , __snake_case : Dict="gelu" , __snake_case : Optional[int]=0.1 , __snake_case : int=0.1 , __snake_case : Union[str, Any]=512 , __snake_case : Optional[int]=16 , __snake_case : Any=2 , __snake_case : Optional[Any]=0.02 , __snake_case : List[str]=3 , __snake_case : str=4 , __snake_case : Optional[int]=None , ) -> Optional[int]: UpperCAmelCase : Dict = parent UpperCAmelCase : List[str] = batch_size UpperCAmelCase : List[str] = seq_length UpperCAmelCase : Optional[Any] = is_training UpperCAmelCase : int = use_input_mask UpperCAmelCase : Any = use_token_type_ids UpperCAmelCase : Optional[Any] = use_labels UpperCAmelCase : Dict = vocab_size UpperCAmelCase : List[str] = hidden_size UpperCAmelCase : Any = num_hidden_layers UpperCAmelCase : Union[str, Any] = num_attention_heads UpperCAmelCase : int = intermediate_size UpperCAmelCase : Tuple = hidden_act UpperCAmelCase : str = hidden_dropout_prob UpperCAmelCase : int = attention_probs_dropout_prob UpperCAmelCase : Optional[int] = max_position_embeddings UpperCAmelCase : Dict = type_vocab_size UpperCAmelCase : Optional[int] = type_sequence_label_size UpperCAmelCase : Any = initializer_range UpperCAmelCase : int = num_labels UpperCAmelCase : Tuple = num_choices UpperCAmelCase : List[str] = scope def A ( self : Any ) -> str: UpperCAmelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase : Optional[int] = None if self.use_input_mask: UpperCAmelCase : str = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase : Optional[int] = None if self.use_token_type_ids: UpperCAmelCase : str = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase : Tuple = None UpperCAmelCase : Optional[int] = None UpperCAmelCase : List[Any] = None if self.use_labels: UpperCAmelCase : Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase : Any = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase : Tuple = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase : Dict = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def A ( self : Optional[Any] ) -> Optional[int]: return OpenLlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__snake_case , initializer_range=self.initializer_range , use_stable_embedding=__snake_case , ) def A ( self : Dict , __snake_case : Any , __snake_case : int , __snake_case : Dict , __snake_case : Optional[Any] , __snake_case : Dict , __snake_case : Any , __snake_case : int ) -> int: UpperCAmelCase : Optional[Any] = OpenLlamaModel(config=__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase : Optional[int] = model(__snake_case , attention_mask=__snake_case ) UpperCAmelCase : Dict = model(__snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A ( self : Union[str, Any] , __snake_case : int , __snake_case : int , __snake_case : Dict , __snake_case : Optional[int] , __snake_case : List[Any] , __snake_case : Union[str, Any] , __snake_case : Dict , __snake_case : Optional[int] , __snake_case : str , ) -> Tuple: UpperCAmelCase : Optional[int] = True UpperCAmelCase : Optional[Any] = OpenLlamaModel(__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase : Union[str, Any] = model( __snake_case , attention_mask=__snake_case , encoder_hidden_states=__snake_case , encoder_attention_mask=__snake_case , ) UpperCAmelCase : List[str] = model( __snake_case , attention_mask=__snake_case , encoder_hidden_states=__snake_case , ) UpperCAmelCase : Optional[int] = model(__snake_case , attention_mask=__snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A ( self : Dict , __snake_case : int , __snake_case : Optional[Any] , __snake_case : str , __snake_case : Optional[Any] , __snake_case : Dict , __snake_case : int , __snake_case : Dict , __snake_case : Union[str, Any] , __snake_case : Dict , ) -> Optional[int]: UpperCAmelCase : int = OpenLlamaForCausalLM(config=__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase : Dict = model(__snake_case , attention_mask=__snake_case , labels=__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def A ( self : Optional[Any] , __snake_case : Any , __snake_case : List[str] , __snake_case : List[Any] , __snake_case : str , __snake_case : List[str] , __snake_case : Dict , __snake_case : Optional[int] , __snake_case : Any , __snake_case : Optional[int] , ) -> List[Any]: UpperCAmelCase : List[str] = True UpperCAmelCase : Union[str, Any] = True UpperCAmelCase : Union[str, Any] = OpenLlamaForCausalLM(config=__snake_case ) model.to(__snake_case ) model.eval() # first forward pass UpperCAmelCase : Any = model( __snake_case , attention_mask=__snake_case , encoder_hidden_states=__snake_case , encoder_attention_mask=__snake_case , use_cache=__snake_case , ) UpperCAmelCase : Optional[int] = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids UpperCAmelCase : str = ids_tensor((self.batch_size, 3) , config.vocab_size ) UpperCAmelCase : Optional[Any] = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and UpperCAmelCase : List[str] = torch.cat([input_ids, next_tokens] , dim=-1 ) UpperCAmelCase : Tuple = torch.cat([input_mask, next_mask] , dim=-1 ) UpperCAmelCase : Dict = model( __snake_case , attention_mask=__snake_case , encoder_hidden_states=__snake_case , encoder_attention_mask=__snake_case , output_hidden_states=__snake_case , )['''hidden_states'''][0] UpperCAmelCase : Union[str, Any] = model( __snake_case , attention_mask=__snake_case , encoder_hidden_states=__snake_case , encoder_attention_mask=__snake_case , past_key_values=__snake_case , output_hidden_states=__snake_case , )['''hidden_states'''][0] # select random slice UpperCAmelCase : Union[str, Any] = ids_tensor((1,) , output_from_past.shape[-1] ).item() UpperCAmelCase : List[Any] = output_from_no_past[:, -3:, random_slice_idx].detach() UpperCAmelCase : Tuple = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__snake_case , __snake_case , atol=1E-3 ) ) def A ( self : Dict ) -> Optional[Any]: UpperCAmelCase : Optional[int] = self.prepare_config_and_inputs() ( ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ) : List[str] = config_and_inputs UpperCAmelCase : Optional[int] = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE( A__ , A__ , A__ , unittest.TestCase ): """simple docstring""" lowerCamelCase__ = ( (OpenLlamaModel, OpenLlamaForCausalLM, OpenLlamaForSequenceClassification) if is_torch_available() else () ) lowerCamelCase__ = (OpenLlamaForCausalLM,) if is_torch_available() else () lowerCamelCase__ = ( { """feature-extraction""": OpenLlamaModel, """text-classification""": OpenLlamaForSequenceClassification, """text-generation""": OpenLlamaForCausalLM, """zero-shot""": OpenLlamaForSequenceClassification, } if is_torch_available() else {} ) lowerCamelCase__ = False lowerCamelCase__ = False def A ( self : Union[str, Any] ) -> int: UpperCAmelCase : Optional[int] = OpenLlamaModelTester(self ) UpperCAmelCase : Any = ConfigTester(self , config_class=__snake_case , hidden_size=37 ) def A ( self : Dict ) -> Union[str, Any]: self.config_tester.run_common_tests() def A ( self : Dict ) -> str: UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__snake_case ) def A ( self : Union[str, Any] ) -> Optional[int]: UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: UpperCAmelCase : Union[str, Any] = type self.model_tester.create_and_check_model(*__snake_case ) def A ( self : Dict ) -> Union[str, Any]: UpperCAmelCase , UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase : Tuple = 3 UpperCAmelCase : Optional[int] = input_dict['''input_ids'''] UpperCAmelCase : Optional[Any] = input_ids.ne(1 ).to(__snake_case ) UpperCAmelCase : Optional[Any] = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) UpperCAmelCase : Any = OpenLlamaForSequenceClassification(__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase : Any = model(__snake_case , attention_mask=__snake_case , labels=__snake_case ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def A ( self : List[str] ) -> str: UpperCAmelCase , UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase : List[str] = 3 UpperCAmelCase : Dict = '''single_label_classification''' UpperCAmelCase : int = input_dict['''input_ids'''] UpperCAmelCase : List[Any] = input_ids.ne(1 ).to(__snake_case ) UpperCAmelCase : str = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) UpperCAmelCase : Optional[Any] = OpenLlamaForSequenceClassification(__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase : List[Any] = model(__snake_case , attention_mask=__snake_case , labels=__snake_case ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def A ( self : Union[str, Any] ) -> Optional[int]: UpperCAmelCase , UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase : str = 3 UpperCAmelCase : List[str] = '''multi_label_classification''' UpperCAmelCase : Union[str, Any] = input_dict['''input_ids'''] UpperCAmelCase : Optional[int] = input_ids.ne(1 ).to(__snake_case ) UpperCAmelCase : Union[str, Any] = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) UpperCAmelCase : Any = OpenLlamaForSequenceClassification(__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase : Tuple = model(__snake_case , attention_mask=__snake_case , labels=__snake_case ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip('''Open-Llama buffers include complex numbers, which breaks this test''' ) def A ( self : List[str] ) -> Optional[int]: pass @parameterized.expand([('''linear''',), ('''dynamic''',)] ) def A ( self : Any , __snake_case : Any ) -> List[Any]: UpperCAmelCase , UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase : Optional[Any] = ids_tensor([1, 10] , config.vocab_size ) UpperCAmelCase : Tuple = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights UpperCAmelCase : List[str] = OpenLlamaModel(__snake_case ) original_model.to(__snake_case ) original_model.eval() UpperCAmelCase : int = original_model(__snake_case ).last_hidden_state UpperCAmelCase : Optional[int] = original_model(__snake_case ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights UpperCAmelCase : str = {'''type''': scaling_type, '''factor''': 10.0} UpperCAmelCase : List[str] = OpenLlamaModel(__snake_case ) scaled_model.to(__snake_case ) scaled_model.eval() UpperCAmelCase : List[str] = scaled_model(__snake_case ).last_hidden_state UpperCAmelCase : List[str] = scaled_model(__snake_case ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(__snake_case , __snake_case , atol=1E-5 ) ) else: self.assertFalse(torch.allclose(__snake_case , __snake_case , atol=1E-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(__snake_case , __snake_case , atol=1E-5 ) )
23
import tempfile import unittest from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from transformers.testing_utils import ( is_torch_available, require_optimum, require_torch, slow, ) if is_torch_available(): import torch @require_torch @require_optimum @slow class SCREAMING_SNAKE_CASE ( unittest.TestCase ): def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' __a = """hf-internal-testing/tiny-random-t5""" __a = AutoTokenizer.from_pretrained(__lowercase ) __a = AutoModelForSeqaSeqLM.from_pretrained(__lowercase ) __a = tokenizer("""This is me""" , return_tensors="""pt""" ) __a = model.to_bettertransformer() self.assertTrue(any("""BetterTransformer""" in mod.__class__.__name__ for _, mod in model.named_modules() ) ) __a = model.generate(**__lowercase ) __a = model.reverse_bettertransformer() self.assertFalse(any("""BetterTransformer""" in mod.__class__.__name__ for _, mod in model.named_modules() ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__lowercase ) __a = AutoModelForSeqaSeqLM.from_pretrained(__lowercase ) self.assertFalse( any("""BetterTransformer""" in mod.__class__.__name__ for _, mod in model_reloaded.named_modules() ) ) __a = model_reloaded.generate(**__lowercase ) self.assertTrue(torch.allclose(__lowercase , __lowercase ) ) def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' __a = """hf-internal-testing/tiny-random-t5""" __a = AutoModelForSeqaSeqLM.from_pretrained(__lowercase ) __a = model.to_bettertransformer() with tempfile.TemporaryDirectory() as tmpdirname: with self.assertRaises(__lowercase ): model.save_pretrained(__lowercase ) __a = model.reverse_bettertransformer() model.save_pretrained(__lowercase )
302
0
"""simple docstring""" from .glue import GlueDataset, GlueDataTrainingArguments from .language_modeling import ( LineByLineTextDataset, LineByLineWithRefDataset, LineByLineWithSOPTextDataset, TextDataset, TextDatasetForNextSentencePrediction, ) from .squad import SquadDataset, SquadDataTrainingArguments
296
"""simple docstring""" from collections import defaultdict from math import gcd def _lowerCAmelCase ( UpperCAmelCase__ : int = 1_5_0_0_0_0_0 ) ->int: A__ : defaultdict = defaultdict(UpperCAmelCase__ ) A__ : Any = 2 while 2 * euclid_m * (euclid_m + 1) <= limit: for euclid_n in range((euclid_m % 2) + 1, UpperCAmelCase__, 2 ): if gcd(UpperCAmelCase__, UpperCAmelCase__ ) > 1: continue A__ : str = 2 * euclid_m * (euclid_m + euclid_n) for perimeter in range(UpperCAmelCase__, limit + 1, UpperCAmelCase__ ): frequencies[perimeter] += 1 euclid_m += 1 return sum(1 for frequency in frequencies.values() if frequency == 1 ) if __name__ == "__main__": print(F'{solution() = }')
296
1
'''simple docstring''' from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL import torch from transformers import CLIPImageProcessor, CLIPVisionModel from ...models import PriorTransformer from ...pipelines import DiffusionPipeline from ...schedulers import HeunDiscreteScheduler from ...utils import ( BaseOutput, is_accelerate_available, logging, randn_tensor, replace_example_docstring, ) from .renderer import ShapERenderer lowercase : Optional[int] = logging.get_logger(__name__) # pylint: disable=invalid-name lowercase : Optional[Any] = "\n Examples:\n ```py\n >>> from PIL import Image\n >>> import torch\n >>> from diffusers import DiffusionPipeline\n >>> from diffusers.utils import export_to_gif, load_image\n\n >>> device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\")\n\n >>> repo = \"openai/shap-e-img2img\"\n >>> pipe = DiffusionPipeline.from_pretrained(repo, torch_dtype=torch.float16)\n >>> pipe = pipe.to(device)\n\n >>> guidance_scale = 3.0\n >>> image_url = \"https://hf.co/datasets/diffusers/docs-images/resolve/main/shap-e/corgi.png\"\n >>> image = load_image(image_url).convert(\"RGB\")\n\n >>> images = pipe(\n ... image,\n ... guidance_scale=guidance_scale,\n ... num_inference_steps=64,\n ... frame_size=256,\n ... ).images\n\n >>> gif_path = export_to_gif(images[0], \"corgi_3d.gif\")\n ```\n" @dataclass class __UpperCAmelCase ( _lowerCamelCase ): __lowercase = 42 class __UpperCAmelCase ( _lowerCamelCase ): def __init__( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , ): """simple docstring""" super().__init__() self.register_modules( prior=lowerCAmelCase_ , image_encoder=lowerCAmelCase_ , image_processor=lowerCAmelCase_ , scheduler=lowerCAmelCase_ , renderer=lowerCAmelCase_ , ) def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" if latents is None: _snake_case = randn_tensor(lowerCAmelCase_ , generator=lowerCAmelCase_ , device=lowerCAmelCase_ , dtype=lowerCAmelCase_ ) else: if latents.shape != shape: raise ValueError(F'Unexpected latents shape, got {latents.shape}, expected {shape}' ) _snake_case = latents.to(lowerCAmelCase_ ) _snake_case = latents * scheduler.init_noise_sigma return latents def lowerCamelCase ( self , lowerCAmelCase_=0 ): """simple docstring""" if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('Please install accelerate via `pip install accelerate`' ) _snake_case = torch.device(F'cuda:{gpu_id}' ) _snake_case = [self.image_encoder, self.prior] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(lowerCAmelCase_ , lowerCAmelCase_ ) @property def lowerCamelCase ( self ): """simple docstring""" if self.device != torch.device('meta' ) or not hasattr(self.image_encoder , '_hf_hook' ): return self.device for module in self.image_encoder.modules(): if ( hasattr(lowerCAmelCase_ , '_hf_hook' ) and hasattr(module._hf_hook , 'execution_device' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , ): """simple docstring""" if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and isinstance(image[0] , torch.Tensor ): _snake_case = torch.cat(lowerCAmelCase_ , axis=0 ) if image[0].ndim == 4 else torch.stack(lowerCAmelCase_ , axis=0 ) if not isinstance(lowerCAmelCase_ , torch.Tensor ): _snake_case = self.image_processor(lowerCAmelCase_ , return_tensors='pt' ).pixel_values[0].unsqueeze(0 ) _snake_case = image.to(dtype=self.image_encoder.dtype , device=lowerCAmelCase_ ) _snake_case = self.image_encoder(lowerCAmelCase_ )['last_hidden_state'] _snake_case = image_embeds[:, 1:, :].contiguous() # batch_size, dim, 256 _snake_case = image_embeds.repeat_interleave(lowerCAmelCase_ , dim=0 ) if do_classifier_free_guidance: _snake_case = torch.zeros_like(lowerCAmelCase_ ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes _snake_case = torch.cat([negative_image_embeds, image_embeds] ) return image_embeds @torch.no_grad() @replace_example_docstring(lowerCAmelCase_ ) def __call__( self , lowerCAmelCase_ , lowerCAmelCase_ = 1 , lowerCAmelCase_ = 25 , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = 4.0 , lowerCAmelCase_ = 64 , lowerCAmelCase_ = "pil" , lowerCAmelCase_ = True , ): """simple docstring""" if isinstance(lowerCAmelCase_ , PIL.Image.Image ): _snake_case = 1 elif isinstance(lowerCAmelCase_ , torch.Tensor ): _snake_case = image.shape[0] elif isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and isinstance(image[0] , (torch.Tensor, PIL.Image.Image) ): _snake_case = len(lowerCAmelCase_ ) else: raise ValueError( F'`image` has to be of type `PIL.Image.Image`, `torch.Tensor`, `List[PIL.Image.Image]` or `List[torch.Tensor]` but is {type(lowerCAmelCase_ )}' ) _snake_case = self._execution_device _snake_case = batch_size * num_images_per_prompt _snake_case = guidance_scale > 1.0 _snake_case = self._encode_image(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # prior self.scheduler.set_timesteps(lowerCAmelCase_ , device=lowerCAmelCase_ ) _snake_case = self.scheduler.timesteps _snake_case = self.prior.config.num_embeddings _snake_case = self.prior.config.embedding_dim _snake_case = self.prepare_latents( (batch_size, num_embeddings * embedding_dim) , image_embeds.dtype , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , self.scheduler , ) # YiYi notes: for testing only to match ldm, we can directly create a latents with desired shape: batch_size, num_embeddings, embedding_dim _snake_case = latents.reshape(latents.shape[0] , lowerCAmelCase_ , lowerCAmelCase_ ) for i, t in enumerate(self.progress_bar(lowerCAmelCase_ ) ): # expand the latents if we are doing classifier free guidance _snake_case = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents _snake_case = self.scheduler.scale_model_input(lowerCAmelCase_ , lowerCAmelCase_ ) _snake_case = self.prior( lowerCAmelCase_ , timestep=lowerCAmelCase_ , proj_embedding=lowerCAmelCase_ , ).predicted_image_embedding # remove the variance _snake_case , _snake_case = noise_pred.split( scaled_model_input.shape[2] , dim=2 ) # batch_size, num_embeddings, embedding_dim if do_classifier_free_guidance is not None: _snake_case , _snake_case = noise_pred.chunk(2 ) _snake_case = noise_pred_uncond + guidance_scale * (noise_pred - noise_pred_uncond) _snake_case = self.scheduler.step( lowerCAmelCase_ , timestep=lowerCAmelCase_ , sample=lowerCAmelCase_ , ).prev_sample if output_type == "latent": return ShapEPipelineOutput(images=lowerCAmelCase_ ) _snake_case = [] for i, latent in enumerate(lowerCAmelCase_ ): print() _snake_case = self.renderer.decode( latent[None, :] , lowerCAmelCase_ , size=lowerCAmelCase_ , ray_batch_size=40_96 , n_coarse_samples=64 , n_fine_samples=1_28 , ) images.append(lowerCAmelCase_ ) _snake_case = torch.stack(lowerCAmelCase_ ) if output_type not in ["np", "pil"]: raise ValueError(F'Only the output types `pil` and `np` are supported not output_type={output_type}' ) _snake_case = images.cpu().numpy() if output_type == "pil": _snake_case = [self.numpy_to_pil(lowerCAmelCase_ ) for image in images] # Offload last model to CPU if hasattr(self , 'final_offload_hook' ) and self.final_offload_hook is not None: self.final_offload_hook.offload() if not return_dict: return (images,) return ShapEPipelineOutput(images=lowerCAmelCase_ )
42
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowercase : Any = { "configuration_chinese_clip": [ "CHINESE_CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP", "ChineseCLIPConfig", "ChineseCLIPOnnxConfig", "ChineseCLIPTextConfig", "ChineseCLIPVisionConfig", ], "processing_chinese_clip": ["ChineseCLIPProcessor"], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Optional[Any] = ["ChineseCLIPFeatureExtractor"] lowercase : List[Any] = ["ChineseCLIPImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Any = [ "CHINESE_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "ChineseCLIPModel", "ChineseCLIPPreTrainedModel", "ChineseCLIPTextModel", "ChineseCLIPVisionModel", ] if TYPE_CHECKING: from .configuration_chinese_clip import ( CHINESE_CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, ChineseCLIPConfig, ChineseCLIPOnnxConfig, ChineseCLIPTextConfig, ChineseCLIPVisionConfig, ) from .processing_chinese_clip import ChineseCLIPProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_chinese_clip import ChineseCLIPFeatureExtractor, ChineseCLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_chinese_clip import ( CHINESE_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, ChineseCLIPModel, ChineseCLIPPreTrainedModel, ChineseCLIPTextModel, ChineseCLIPVisionModel, ) else: import sys lowercase : List[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
42
1
from __future__ import annotations def SCREAMING_SNAKE_CASE_ ( __A : int | float | str , __A : int | float | str ) -> list[str]: """simple docstring""" if nth_term == "": return [""] a_ : List[Any] = int(__A ) a_ : Optional[Any] = int(__A ) a_ : list[str] = [] for temp in range(int(__A ) ): series.append(F"""1 / {pow(temp + 1 , int(__A ) )}""" if series else '1' ) return series if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase_ : Any = int(input('Enter the last number (nth term) of the P-Series')) UpperCAmelCase_ : Any = int(input('Enter the power for P-Series')) print('Formula of P-Series => 1+1/2^p+1/3^p ..... 1/n^p') print(p_series(nth_term, power))
120
from string import ascii_uppercase UpperCAmelCase_ : Dict = {char: i for i, char in enumerate(ascii_uppercase)} UpperCAmelCase_ : Optional[int] = dict(enumerate(ascii_uppercase)) def SCREAMING_SNAKE_CASE_ ( __A : str , __A : str ) -> str: """simple docstring""" a_ : Tuple = len(__A ) a_ : int = 0 while True: if x == i: a_ : Tuple = 0 if len(__A ) == len(__A ): break key += key[i] i += 1 return key def SCREAMING_SNAKE_CASE_ ( __A : str , __A : str ) -> str: """simple docstring""" a_ : Optional[int] = '' a_ : Any = 0 for letter in message: if letter == " ": cipher_text += " " else: a_ : Optional[Any] = (dicta[letter] - dicta[key_new[i]]) % 26 i += 1 cipher_text += dicta[x] return cipher_text def SCREAMING_SNAKE_CASE_ ( __A : str , __A : str ) -> str: """simple docstring""" a_ : Any = '' a_ : Optional[Any] = 0 for letter in cipher_text: if letter == " ": or_txt += " " else: a_ : Union[str, Any] = (dicta[letter] + dicta[key_new[i]] + 26) % 26 i += 1 or_txt += dicta[x] return or_txt def SCREAMING_SNAKE_CASE_ ( ) -> None: """simple docstring""" a_ : Tuple = 'THE GERMAN ATTACK' a_ : Dict = 'SECRET' a_ : Optional[Any] = generate_key(__A , __A ) a_ : Union[str, Any] = cipher_text(__A , __A ) print(F"""Encrypted Text = {s}""" ) print(F"""Original Text = {original_text(__A , __A )}""" ) if __name__ == "__main__": import doctest doctest.testmod() main()
120
1
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse from .config import config_command_parser from .config_args import default_config_file, load_config_from_file # noqa: F401 from .default import default_command_parser from .update import update_command_parser def lowerCamelCase__ ( snake_case_ : Tuple=None ) -> Optional[int]: __snake_case = argparse.ArgumentParser(add_help=snake_case_ , allow_abbrev=snake_case_ ) # The main config parser __snake_case = config_command_parser(snake_case_ ) # The subparser to add commands to __snake_case = config_parser.add_subparsers(title='''subcommands''' , dest='''subcommand''' ) # Then add other parsers with the parent parser default_command_parser(snake_case_ , parents=[parent_parser] ) update_command_parser(snake_case_ , parents=[parent_parser] ) return config_parser def lowerCamelCase__ ( ) -> Optional[int]: __snake_case = get_config_parser() __snake_case = config_parser.parse_args() if not hasattr(snake_case_ , '''func''' ): config_parser.print_help() exit(1 ) # Run args.func(snake_case_ ) if __name__ == "__main__": main()
24
"""simple docstring""" from typing import Dict, List, Optional, Tuple, Union import torch from ...models import AutoencoderKL, TransformeraDModel from ...schedulers import KarrasDiffusionSchedulers from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class _UpperCAmelCase ( lowerCAmelCase__): def __init__( self : Any , lowercase_ : TransformeraDModel , lowercase_ : AutoencoderKL , lowercase_ : KarrasDiffusionSchedulers , lowercase_ : Optional[Dict[int, str]] = None , ): super().__init__() self.register_modules(transformer=lowercase_ , vae=lowercase_ , scheduler=lowercase_ ) # create a imagenet -> id dictionary for easier use snake_case_ : Tuple = {} if idalabel is not None: for key, value in idalabel.items(): for label in value.split(''',''' ): snake_case_ : str = int(lowercase_ ) snake_case_ : Any = dict(sorted(self.labels.items() ) ) def _snake_case ( self : List[Any] , lowercase_ : Union[str, List[str]] ): if not isinstance(lowercase_ , lowercase_ ): snake_case_ : Tuple = list(lowercase_ ) for l in label: if l not in self.labels: raise ValueError( f"{l} does not exist. Please make sure to select one of the following labels: \n {self.labels}." ) return [self.labels[l] for l in label] @torch.no_grad() def __call__( self : Optional[int] , lowercase_ : List[int] , lowercase_ : float = 4.0 , lowercase_ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , lowercase_ : int = 50 , lowercase_ : Optional[str] = "pil" , lowercase_ : bool = True , ): snake_case_ : Any = len(lowercase_ ) snake_case_ : List[str] = self.transformer.config.sample_size snake_case_ : Union[str, Any] = self.transformer.config.in_channels snake_case_ : str = randn_tensor( shape=(batch_size, latent_channels, latent_size, latent_size) , generator=lowercase_ , device=self.device , dtype=self.transformer.dtype , ) snake_case_ : Optional[Any] = torch.cat([latents] * 2 ) if guidance_scale > 1 else latents snake_case_ : Optional[int] = torch.tensor(lowercase_ , device=self.device ).reshape(-1 ) snake_case_ : Dict = torch.tensor([1000] * batch_size , device=self.device ) snake_case_ : Tuple = torch.cat([class_labels, class_null] , 0 ) if guidance_scale > 1 else class_labels # set step values self.scheduler.set_timesteps(lowercase_ ) for t in self.progress_bar(self.scheduler.timesteps ): if guidance_scale > 1: snake_case_ : List[Any] = latent_model_input[: len(lowercase_ ) // 2] snake_case_ : Union[str, Any] = torch.cat([half, half] , dim=0 ) snake_case_ : Optional[Any] = self.scheduler.scale_model_input(lowercase_ , lowercase_ ) snake_case_ : int = t if not torch.is_tensor(lowercase_ ): # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can # This would be a good case for the `match` statement (Python 3.10+) snake_case_ : Tuple = latent_model_input.device.type == '''mps''' if isinstance(lowercase_ , lowercase_ ): snake_case_ : List[str] = torch.floataa if is_mps else torch.floataa else: snake_case_ : Optional[int] = torch.intaa if is_mps else torch.intaa snake_case_ : List[Any] = torch.tensor([timesteps] , dtype=lowercase_ , device=latent_model_input.device ) elif len(timesteps.shape ) == 0: snake_case_ : str = timesteps[None].to(latent_model_input.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML snake_case_ : Tuple = timesteps.expand(latent_model_input.shape[0] ) # predict noise model_output snake_case_ : List[Any] = self.transformer( lowercase_ , timestep=lowercase_ , class_labels=lowercase_ ).sample # perform guidance if guidance_scale > 1: snake_case_, snake_case_ : Dict = noise_pred[:, :latent_channels], noise_pred[:, latent_channels:] snake_case_, snake_case_ : Any = torch.split(lowercase_ , len(lowercase_ ) // 2 , dim=0 ) snake_case_ : int = uncond_eps + guidance_scale * (cond_eps - uncond_eps) snake_case_ : str = torch.cat([half_eps, half_eps] , dim=0 ) snake_case_ : List[Any] = torch.cat([eps, rest] , dim=1 ) # learned sigma if self.transformer.config.out_channels // 2 == latent_channels: snake_case_, snake_case_ : Optional[Any] = torch.split(lowercase_ , lowercase_ , dim=1 ) else: snake_case_ : List[str] = noise_pred # compute previous image: x_t -> x_t-1 snake_case_ : int = self.scheduler.step(lowercase_ , lowercase_ , lowercase_ ).prev_sample if guidance_scale > 1: snake_case_, snake_case_ : Optional[Any] = latent_model_input.chunk(2 , dim=0 ) else: snake_case_ : Dict = latent_model_input snake_case_ : Union[str, Any] = 1 / self.vae.config.scaling_factor * latents snake_case_ : Tuple = self.vae.decode(lowercase_ ).sample snake_case_ : str = (samples / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 snake_case_ : Union[str, Any] = samples.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": snake_case_ : Union[str, Any] = self.numpy_to_pil(lowercase_ ) if not return_dict: return (samples,) return ImagePipelineOutput(images=lowercase_ )
264
0
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import tensorflow as tf from transformers import AutoTokenizer, TFAutoModelForSeqaSeqLM @require_tf @require_sentencepiece @require_tokenizers class A__ ( unittest.TestCase): @slow def __lowerCamelCase ( self ): __lowerCAmelCase : List[str] = TFAutoModelForSeqaSeqLM.from_pretrained('google/mt5-small' ) __lowerCAmelCase : Any = AutoTokenizer.from_pretrained('google/mt5-small' ) __lowerCAmelCase : Any = tokenizer('Hello there' , return_tensors='tf' ).input_ids __lowerCAmelCase : str = tokenizer('Hi I am' , return_tensors='tf' ).input_ids __lowerCAmelCase : Optional[Any] = model(_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE ).loss __lowerCAmelCase : Optional[Any] = -tf.math.reduce_mean(_SCREAMING_SNAKE_CASE ).numpy() __lowerCAmelCase : str = -21.22_8168 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 2E-4 )
369
"""simple docstring""" import unittest from transformers import AlbertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForPreTraining, AlbertForQuestionAnswering, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertModel, ) from transformers.models.albert.modeling_albert import ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST class A__ : def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=13 , _SCREAMING_SNAKE_CASE=7 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=99 , _SCREAMING_SNAKE_CASE=16 , _SCREAMING_SNAKE_CASE=36 , _SCREAMING_SNAKE_CASE=6 , _SCREAMING_SNAKE_CASE=6 , _SCREAMING_SNAKE_CASE=6 , _SCREAMING_SNAKE_CASE=37 , _SCREAMING_SNAKE_CASE="gelu" , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=5_12 , _SCREAMING_SNAKE_CASE=16 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=0.02 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=None , ): __lowerCAmelCase : List[str] = parent __lowerCAmelCase : Optional[int] = batch_size __lowerCAmelCase : List[Any] = seq_length __lowerCAmelCase : List[Any] = is_training __lowerCAmelCase : Tuple = use_input_mask __lowerCAmelCase : Tuple = use_token_type_ids __lowerCAmelCase : Optional[int] = use_labels __lowerCAmelCase : Tuple = vocab_size __lowerCAmelCase : List[Any] = embedding_size __lowerCAmelCase : List[Any] = hidden_size __lowerCAmelCase : Union[str, Any] = num_hidden_layers __lowerCAmelCase : int = num_hidden_groups __lowerCAmelCase : List[Any] = num_attention_heads __lowerCAmelCase : Dict = intermediate_size __lowerCAmelCase : List[str] = hidden_act __lowerCAmelCase : Optional[Any] = hidden_dropout_prob __lowerCAmelCase : List[Any] = attention_probs_dropout_prob __lowerCAmelCase : Any = max_position_embeddings __lowerCAmelCase : str = type_vocab_size __lowerCAmelCase : List[Any] = type_sequence_label_size __lowerCAmelCase : List[Any] = initializer_range __lowerCAmelCase : Tuple = num_labels __lowerCAmelCase : int = num_choices __lowerCAmelCase : Dict = scope def __lowerCamelCase ( self ): __lowerCAmelCase : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowerCAmelCase : Union[str, Any] = None if self.use_input_mask: __lowerCAmelCase : List[Any] = random_attention_mask([self.batch_size, self.seq_length] ) __lowerCAmelCase : Any = None if self.use_token_type_ids: __lowerCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowerCAmelCase : Optional[int] = None __lowerCAmelCase : Optional[Any] = None __lowerCAmelCase : Any = None if self.use_labels: __lowerCAmelCase : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowerCAmelCase : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowerCAmelCase : int = ids_tensor([self.batch_size] , self.num_choices ) __lowerCAmelCase : Any = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __lowerCamelCase ( self ): return AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , num_hidden_groups=self.num_hidden_groups , ) def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowerCAmelCase : List[str] = AlbertModel(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() __lowerCAmelCase : Dict = model(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Optional[Any] = model(_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : List[Any] = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowerCAmelCase : str = AlbertForPreTraining(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() __lowerCAmelCase : Any = model( _SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE , sentence_order_label=_SCREAMING_SNAKE_CASE , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.sop_logits.shape , (self.batch_size, config.num_labels) ) def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowerCAmelCase : Optional[int] = AlbertForMaskedLM(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() __lowerCAmelCase : Any = model(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowerCAmelCase : Optional[int] = AlbertForQuestionAnswering(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() __lowerCAmelCase : List[str] = model( _SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE , start_positions=_SCREAMING_SNAKE_CASE , end_positions=_SCREAMING_SNAKE_CASE , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowerCAmelCase : Optional[int] = self.num_labels __lowerCAmelCase : str = AlbertForSequenceClassification(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() __lowerCAmelCase : str = model(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowerCAmelCase : Optional[Any] = self.num_labels __lowerCAmelCase : List[str] = AlbertForTokenClassification(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() __lowerCAmelCase : Dict = model(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowerCAmelCase : str = self.num_choices __lowerCAmelCase : Dict = AlbertForMultipleChoice(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() __lowerCAmelCase : Union[str, Any] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowerCAmelCase : Dict = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowerCAmelCase : List[str] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowerCAmelCase : Dict = model( _SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __lowerCamelCase ( self ): __lowerCAmelCase : List[Any] = self.prepare_config_and_inputs() ( ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ) : int = config_and_inputs __lowerCAmelCase : Tuple = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class A__ ( _lowerCamelCase , _lowerCamelCase , unittest.TestCase): A_ : List[str] = ( ( AlbertModel, AlbertForPreTraining, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertForQuestionAnswering, ) if is_torch_available() else () ) A_ : str = ( { 'feature-extraction': AlbertModel, 'fill-mask': AlbertForMaskedLM, 'question-answering': AlbertForQuestionAnswering, 'text-classification': AlbertForSequenceClassification, 'token-classification': AlbertForTokenClassification, 'zero-shot': AlbertForSequenceClassification, } if is_torch_available() else {} ) A_ : Union[str, Any] = True def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False ): __lowerCAmelCase : Optional[Any] = super()._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , return_labels=_SCREAMING_SNAKE_CASE ) if return_labels: if model_class in get_values(_SCREAMING_SNAKE_CASE ): __lowerCAmelCase : List[Any] = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : List[Any] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_SCREAMING_SNAKE_CASE ) return inputs_dict def __lowerCamelCase ( self ): __lowerCAmelCase : List[str] = AlbertModelTester(self ) __lowerCAmelCase : List[str] = ConfigTester(self , config_class=_SCREAMING_SNAKE_CASE , hidden_size=37 ) def __lowerCamelCase ( self ): self.config_tester.run_common_tests() def __lowerCamelCase ( self ): __lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_SCREAMING_SNAKE_CASE ) def __lowerCamelCase ( self ): __lowerCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*_SCREAMING_SNAKE_CASE ) def __lowerCamelCase ( self ): __lowerCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_SCREAMING_SNAKE_CASE ) def __lowerCamelCase ( self ): __lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*_SCREAMING_SNAKE_CASE ) def __lowerCamelCase ( self ): __lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_SCREAMING_SNAKE_CASE ) def __lowerCamelCase ( self ): __lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_SCREAMING_SNAKE_CASE ) def __lowerCamelCase ( self ): __lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __lowerCAmelCase : Optional[Any] = type self.model_tester.create_and_check_model(*_SCREAMING_SNAKE_CASE ) @slow def __lowerCamelCase ( self ): for model_name in ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCAmelCase : Optional[int] = AlbertModel.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) @require_torch class A__ ( unittest.TestCase): @slow def __lowerCamelCase ( self ): __lowerCAmelCase : str = AlbertModel.from_pretrained('albert-base-v2' ) __lowerCAmelCase : List[str] = torch.tensor([[0, 3_45, 2_32, 3_28, 7_40, 1_40, 16_95, 69, 60_78, 15_88, 2]] ) __lowerCAmelCase : Optional[Any] = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): __lowerCAmelCase : Dict = model(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE )[0] __lowerCAmelCase : Dict = torch.Size((1, 11, 7_68) ) self.assertEqual(output.shape , _SCREAMING_SNAKE_CASE ) __lowerCAmelCase : List[Any] = torch.tensor( [[[-0.6513, 1.5035, -0.2766], [-0.6515, 1.5046, -0.2780], [-0.6512, 1.5049, -0.2784]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , _SCREAMING_SNAKE_CASE , atol=1E-4 ) )
182
0
"""simple docstring""" # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.utils import ComputeEnvironment from .cluster import get_cluster_input from .config_args import cache_dir, default_config_file, default_yaml_config_file, load_config_from_file # noqa: F401 from .config_utils import _ask_field, _ask_options, _convert_compute_environment # noqa: F401 from .sagemaker import get_sagemaker_input lowercase__ = 'Launches a series of prompts to create and save a `default_config.yaml` configuration file for your training system. Should always be ran first on your machine' def _snake_case ( ): _lowerCamelCase : Optional[int] = _ask_options( 'In which compute environment are you running?' , ['This machine', 'AWS (Amazon SageMaker)'] , _convert_compute_environment , ) if compute_environment == ComputeEnvironment.AMAZON_SAGEMAKER: _lowerCamelCase : Tuple = get_sagemaker_input() else: _lowerCamelCase : Tuple = get_cluster_input() return config def _snake_case ( lowercase__=None ): if subparsers is not None: _lowerCamelCase : List[str] = subparsers.add_parser('config' , description=lowerCamelCase_ ) else: _lowerCamelCase : List[Any] = argparse.ArgumentParser('Accelerate config command' , description=lowerCamelCase_ ) parser.add_argument( '--config_file' , default=lowerCamelCase_ , help=( 'The path to use to store the config file. Will default to a file named default_config.yaml in the cache ' 'location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ' 'such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ' 'with \'huggingface\'.' ) , ) if subparsers is not None: parser.set_defaults(func=lowerCamelCase_ ) return parser def _snake_case ( lowercase__ ): _lowerCamelCase : str = get_user_input() if args.config_file is not None: _lowerCamelCase : int = args.config_file else: if not os.path.isdir(lowerCamelCase_ ): os.makedirs(lowerCamelCase_ ) _lowerCamelCase : int = default_yaml_config_file if config_file.endswith('.json' ): config.to_json_file(lowerCamelCase_ ) else: config.to_yaml_file(lowerCamelCase_ ) print(f'''accelerate configuration saved at {config_file}''' ) def _snake_case ( ): _lowerCamelCase : Any = config_command_parser() _lowerCamelCase : int = parser.parse_args() config_command(lowerCamelCase_ ) if __name__ == "__main__": main()
96
def a ( lowerCamelCase_ ): '''simple docstring''' lowercase__ = [1] lowercase__ , lowercase__ , lowercase__ = 0, 0, 0 lowercase__ = ugly_nums[ia] * 2 lowercase__ = ugly_nums[ia] * 3 lowercase__ = ugly_nums[ia] * 5 for _ in range(1 , lowerCamelCase_ ): lowercase__ = min(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) ugly_nums.append(lowerCamelCase_ ) if next_num == next_a: ia += 1 lowercase__ = ugly_nums[ia] * 2 if next_num == next_a: ia += 1 lowercase__ = ugly_nums[ia] * 3 if next_num == next_a: ia += 1 lowercase__ = ugly_nums[ia] * 5 return ugly_nums[-1] if __name__ == "__main__": from doctest import testmod testmod(verbose=True) print(F"{ugly_numbers(2_00) = }")
207
0
'''simple docstring''' import os from pathlib import Path def _lowerCAmelCase ( lowercase , lowercase , lowercase ) -> Tuple: __lowerCAmelCase = { """en""": """Machine learning is great, isn\'t it?""", """ru""": """Машинное обучение - это здорово, не так ли?""", """de""": """Maschinelles Lernen ist großartig, oder?""", } # BLUE scores as follows: # "pair": [fairseq, transformers] __lowerCAmelCase = { """ru-en""": ["""[41.3](http://matrix.statmt.org/matrix/output/1907?run_id=6937)""", """39.20"""], """en-ru""": ["""[36.4](http://matrix.statmt.org/matrix/output/1914?run_id=6724)""", """33.47"""], """en-de""": ["""[43.1](http://matrix.statmt.org/matrix/output/1909?run_id=6862)""", """42.83"""], """de-en""": ["""[42.3](http://matrix.statmt.org/matrix/output/1902?run_id=6750)""", """41.35"""], } __lowerCAmelCase = f'{src_lang}-{tgt_lang}' __lowerCAmelCase = f'\n---\nlanguage: \n- {src_lang}\n- {tgt_lang}\nthumbnail:\ntags:\n- translation\n- wmt19\n- facebook\nlicense: apache-2.0\ndatasets:\n- wmt19\nmetrics:\n- bleu\n---\n\n# FSMT\n\n## Model description\n\nThis is a ported version of [fairseq wmt19 transformer](https://github.com/pytorch/fairseq/blob/master/examples/wmt19/README.md) for {src_lang}-{tgt_lang}.\n\nFor more details, please see, [Facebook FAIR\'s WMT19 News Translation Task Submission](https://arxiv.org/abs/1907.06616).\n\nThe abbreviation FSMT stands for FairSeqMachineTranslation\n\nAll four models are available:\n\n* [wmt19-en-ru](https://huggingface.co/facebook/wmt19-en-ru)\n* [wmt19-ru-en](https://huggingface.co/facebook/wmt19-ru-en)\n* [wmt19-en-de](https://huggingface.co/facebook/wmt19-en-de)\n* [wmt19-de-en](https://huggingface.co/facebook/wmt19-de-en)\n\n## Intended uses & limitations\n\n#### How to use\n\n```python\nfrom transformers import FSMTForConditionalGeneration, FSMTTokenizer\nmname = \"facebook/wmt19-{src_lang}-{tgt_lang}\"\ntokenizer = FSMTTokenizer.from_pretrained(mname)\nmodel = FSMTForConditionalGeneration.from_pretrained(mname)\n\ninput = \"{texts[src_lang]}\"\ninput_ids = tokenizer.encode(input, return_tensors=\"pt\")\noutputs = model.generate(input_ids)\ndecoded = tokenizer.decode(outputs[0], skip_special_tokens=True)\nprint(decoded) # {texts[tgt_lang]}\n\n```\n\n#### Limitations and bias\n\n- The original (and this ported model) doesn\'t seem to handle well inputs with repeated sub-phrases, [content gets truncated](https://discuss.huggingface.co/t/issues-with-translating-inputs-containing-repeated-phrases/981)\n\n## Training data\n\nPretrained weights were left identical to the original model released by fairseq. For more details, please, see the [paper](https://arxiv.org/abs/1907.06616).\n\n## Eval results\n\npair | fairseq | transformers\n-------|---------|----------\n{pair} | {scores[pair][0]} | {scores[pair][1]}\n\nThe score is slightly below the score reported by `fairseq`, since `transformers`` currently doesn\'t support:\n- model ensemble, therefore the best performing checkpoint was ported (``model4.pt``).\n- re-ranking\n\nThe score was calculated using this code:\n\n```bash\ngit clone https://github.com/huggingface/transformers\ncd transformers\nexport PAIR={pair}\nexport DATA_DIR=data/$PAIR\nexport SAVE_DIR=data/$PAIR\nexport BS=8\nexport NUM_BEAMS=15\nmkdir -p $DATA_DIR\nsacrebleu -t wmt19 -l $PAIR --echo src > $DATA_DIR/val.source\nsacrebleu -t wmt19 -l $PAIR --echo ref > $DATA_DIR/val.target\necho $PAIR\nPYTHONPATH=\"src:examples/seq2seq\" python examples/seq2seq/run_eval.py facebook/wmt19-$PAIR $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS\n```\nnote: fairseq reports using a beam of 50, so you should get a slightly higher score if re-run with `--num_beams 50`.\n\n## Data Sources\n\n- [training, etc.](http://www.statmt.org/wmt19/)\n- [test set](http://matrix.statmt.org/test_sets/newstest2019.tgz?1556572561)\n\n\n### BibTeX entry and citation info\n\n```bibtex\n@inproceedings{{...,\n year={{2020}},\n title={{Facebook FAIR\'s WMT19 News Translation Task Submission}},\n author={{Ng, Nathan and Yee, Kyra and Baevski, Alexei and Ott, Myle and Auli, Michael and Edunov, Sergey}},\n booktitle={{Proc. of WMT}},\n}}\n```\n\n\n## TODO\n\n- port model ensemble (fairseq uses 4 model checkpoints)\n\n' os.makedirs(__UpperCamelCase , exist_ok=__UpperCamelCase ) __lowerCAmelCase = os.path.join(__UpperCamelCase , """README.md""" ) print(f'Generating {path}' ) with open(__UpperCamelCase , """w""" , encoding="""utf-8""" ) as f: f.write(__UpperCamelCase ) # make sure we are under the root of the project _a : str = Path(__file__).resolve().parent.parent.parent _a : Union[str, Any] = repo_dir / """model_cards""" for model_name in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: _a ,_a ,_a : int = model_name.split("""-""") _a : Optional[Any] = model_cards_dir / """facebook""" / model_name write_model_card(model_card_dir, src_lang=src_lang, tgt_lang=tgt_lang)
368
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available _a : Union[str, Any] = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : str = ["""BartphoTokenizer"""] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bartpho import BartphoTokenizer else: import sys _a : Any = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
46
0
'''simple docstring''' import argparse from collections import defaultdict import yaml __snake_case ="""docs/source/en/_toctree.yml""" def a_ ( lowerCamelCase : Any ): lowerCAmelCase = defaultdict(lowerCamelCase ) for doc in model_doc: counts[doc["local"]] += 1 lowerCAmelCase = [key for key, value in counts.items() if value > 1] lowerCAmelCase = [] for duplicate_key in duplicates: lowerCAmelCase = list({doc['title'] for doc in model_doc if doc['local'] == duplicate_key} ) if len(lowerCamelCase ) > 1: raise ValueError( f'''{duplicate_key} is present several times in the documentation table of content at ''' '`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the ' 'others.' ) # Only add this once new_doc.append({'local': duplicate_key, 'title': titles[0]} ) # Add none duplicate-keys new_doc.extend([doc for doc in model_doc if counts[doc['local']] == 1] ) # Sort return sorted(lowerCamelCase , key=lambda lowerCamelCase : s["title"].lower() ) def a_ ( lowerCamelCase : List[Any]=False ): with open(lowerCamelCase , encoding='utf-8' ) as f: lowerCAmelCase = yaml.safe_load(f.read() ) # Get to the API doc lowerCAmelCase = 0 while content[api_idx]["title"] != "API": api_idx += 1 lowerCAmelCase = content[api_idx]['sections'] # Then to the model doc lowerCAmelCase = 0 while api_doc[model_idx]["title"] != "Models": model_idx += 1 lowerCAmelCase = api_doc[model_idx]['sections'] lowerCAmelCase = [(idx, section) for idx, section in enumerate(lowerCamelCase ) if 'sections' in section] lowerCAmelCase = False for idx, modality_doc in modalities_docs: lowerCAmelCase = modality_doc['sections'] lowerCAmelCase = clean_model_doc_toc(lowerCamelCase ) if old_modality_doc != new_modality_doc: lowerCAmelCase = True if overwrite: lowerCAmelCase = new_modality_doc if diff: if overwrite: lowerCAmelCase = model_doc lowerCAmelCase = api_doc with open(lowerCamelCase , 'w' , encoding='utf-8' ) as f: f.write(yaml.dump(lowerCamelCase , allow_unicode=lowerCamelCase ) ) else: raise ValueError( 'The model doc part of the table of content is not properly sorted, run `make style` to fix this.' ) if __name__ == "__main__": __snake_case =argparse.ArgumentParser() parser.add_argument("""--fix_and_overwrite""", action="""store_true""", help="""Whether to fix inconsistencies.""") __snake_case =parser.parse_args() check_model_doc(args.fix_and_overwrite)
4
import unittest from huggingface_hub import hf_hub_download from transformers import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEFeatureExtractor from transformers.pipelines import VideoClassificationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_decord, require_tf, require_torch, require_torch_or_tf, require_vision, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf @require_vision @require_decord class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): __SCREAMING_SNAKE_CASE = MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase,__lowerCamelCase ): A__ = hf_hub_download( repo_id='''nateraw/video-demo''',filename='''archery.mp4''',repo_type='''dataset''' ) A__ = VideoClassificationPipeline(model=__lowerCamelCase,image_processor=__lowerCamelCase,top_k=2 ) A__ = [ example_video_filepath, '''https://huggingface.co/datasets/nateraw/video-demo/resolve/main/archery.mp4''', ] return video_classifier, examples def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase ): for example in examples: A__ = video_classifier(__lowerCamelCase ) self.assertEqual( __lowerCamelCase,[ {'''score''': ANY(__lowerCamelCase ), '''label''': ANY(__lowerCamelCase )}, {'''score''': ANY(__lowerCamelCase ), '''label''': ANY(__lowerCamelCase )}, ],) @require_torch def UpperCamelCase ( self ): A__ = '''hf-internal-testing/tiny-random-VideoMAEForVideoClassification''' A__ = VideoMAEFeatureExtractor( size={'''shortest_edge''': 10},crop_size={'''height''': 10, '''width''': 10} ) A__ = pipeline( '''video-classification''',model=__lowerCamelCase,feature_extractor=__lowerCamelCase,frame_sampling_rate=4 ) A__ = hf_hub_download(repo_id='''nateraw/video-demo''',filename='''archery.mp4''',repo_type='''dataset''' ) A__ = video_classifier(__lowerCamelCase,top_k=2 ) self.assertEqual( nested_simplify(__lowerCamelCase,decimals=4 ),[{'''score''': 0.5199, '''label''': '''LABEL_0'''}, {'''score''': 0.4801, '''label''': '''LABEL_1'''}],) A__ = video_classifier( [ video_file_path, video_file_path, ],top_k=2,) self.assertEqual( nested_simplify(__lowerCamelCase,decimals=4 ),[ [{'''score''': 0.5199, '''label''': '''LABEL_0'''}, {'''score''': 0.4801, '''label''': '''LABEL_1'''}], [{'''score''': 0.5199, '''label''': '''LABEL_0'''}, {'''score''': 0.4801, '''label''': '''LABEL_1'''}], ],) @require_tf def UpperCamelCase ( self ): pass
193
0
"""simple docstring""" import os import pytest import yaml from datasets.features.features import Features, Value from datasets.info import DatasetInfo, DatasetInfosDict @pytest.mark.parametrize( """files""" , [ ["""full:README.md""", """dataset_infos.json"""], ["""empty:README.md""", """dataset_infos.json"""], ["""dataset_infos.json"""], ["""full:README.md"""], ] , ) def __UpperCAmelCase ( snake_case_ : Any , snake_case_ : Optional[Any] ): """simple docstring""" _lowerCAmelCase = tmp_path_factory.mktemp("""dset_infos_dir""" ) if "full:README.md" in files: with open(dataset_infos_dir / """README.md""" , """w""" ) as f: f.write("""---\ndataset_info:\n dataset_size: 42\n---""" ) if "empty:README.md" in files: with open(dataset_infos_dir / """README.md""" , """w""" ) as f: f.write("""""" ) # we want to support dataset_infos.json for backward compatibility if "dataset_infos.json" in files: with open(dataset_infos_dir / """dataset_infos.json""" , """w""" ) as f: f.write("""{\"default\": {\"dataset_size\": 42}}""" ) _lowerCAmelCase = DatasetInfosDict.from_directory(snake_case_ ) assert dataset_infos assert dataset_infos["default"].dataset_size == 42 @pytest.mark.parametrize( """dataset_info""" , [ DatasetInfo(), DatasetInfo( description="""foo""" , features=Features({"""a""": Value("""int32""" )} ) , builder_name="""builder""" , config_name="""config""" , version="""1.0.0""" , splits=[{"""name""": """train"""}] , download_size=42 , ), ] , ) def __UpperCAmelCase ( snake_case_ : Optional[int] , snake_case_ : DatasetInfo ): """simple docstring""" _lowerCAmelCase = str(snake_case_ ) dataset_info.write_to_directory(snake_case_ ) _lowerCAmelCase = DatasetInfo.from_directory(snake_case_ ) assert dataset_info == reloaded assert os.path.exists(os.path.join(snake_case_ , """dataset_info.json""" ) ) def __UpperCAmelCase ( ): """simple docstring""" _lowerCAmelCase = DatasetInfo( description="""foo""" , citation="""bar""" , homepage="""https://foo.bar""" , license="""CC0""" , features=Features({"""a""": Value("""int32""" )} ) , post_processed={} , supervised_keys=() , task_templates=[] , builder_name="""builder""" , config_name="""config""" , version="""1.0.0""" , splits=[{"""name""": """train""", """num_examples""": 42}] , download_checksums={} , download_size=1337 , post_processing_size=442 , dataset_size=1234 , size_in_bytes=1337 + 442 + 1234 , ) _lowerCAmelCase = dataset_info._to_yaml_dict() assert sorted(snake_case_ ) == sorted(DatasetInfo._INCLUDED_INFO_IN_YAML ) for key in DatasetInfo._INCLUDED_INFO_IN_YAML: assert key in dataset_info_yaml_dict assert isinstance(dataset_info_yaml_dict[key] , (list, dict, int, str) ) _lowerCAmelCase = yaml.safe_dump(snake_case_ ) _lowerCAmelCase = yaml.safe_load(snake_case_ ) assert dataset_info_yaml_dict == reloaded def __UpperCAmelCase ( ): """simple docstring""" _lowerCAmelCase = DatasetInfo() _lowerCAmelCase = dataset_info._to_yaml_dict() assert dataset_info_yaml_dict == {} @pytest.mark.parametrize( """dataset_infos_dict""" , [ DatasetInfosDict(), DatasetInfosDict({"""default""": DatasetInfo()} ), DatasetInfosDict({"""my_config_name""": DatasetInfo()} ), DatasetInfosDict( { """default""": DatasetInfo( description="""foo""" , features=Features({"""a""": Value("""int32""" )} ) , builder_name="""builder""" , config_name="""config""" , version="""1.0.0""" , splits=[{"""name""": """train"""}] , download_size=42 , ) } ), DatasetInfosDict( { """v1""": DatasetInfo(dataset_size=42 ), """v2""": DatasetInfo(dataset_size=1337 ), } ), ] , ) def __UpperCAmelCase ( snake_case_ : Dict , snake_case_ : DatasetInfosDict ): """simple docstring""" _lowerCAmelCase = str(snake_case_ ) dataset_infos_dict.write_to_directory(snake_case_ ) _lowerCAmelCase = DatasetInfosDict.from_directory(snake_case_ ) # the config_name of the dataset_infos_dict take over the attribute for config_name, dataset_info in dataset_infos_dict.items(): _lowerCAmelCase = config_name # the yaml representation doesn't include fields like description or citation # so we just test that we can recover what we can from the yaml _lowerCAmelCase = DatasetInfo._from_yaml_dict(dataset_info._to_yaml_dict() ) assert dataset_infos_dict == reloaded if dataset_infos_dict: assert os.path.exists(os.path.join(snake_case_ , """README.md""" ) )
366
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import torch from ..models.clipseg import CLIPSegForImageSegmentation from ..utils import is_vision_available, requires_backends from .base import PipelineTool if is_vision_available(): from PIL import Image class __lowerCamelCase ( __lowercase ): __UpperCamelCase = ( 'This is a tool that creates a segmentation mask of an image according to a label. It cannot create an image.' 'It takes two arguments named `image` which should be the original image, and `label` which should be a text ' 'describing the elements what should be identified in the segmentation mask. The tool returns the mask.' ) __UpperCamelCase = 'CIDAS/clipseg-rd64-refined' __UpperCamelCase = 'image_segmenter' __UpperCamelCase = CLIPSegForImageSegmentation __UpperCamelCase = ['image', 'text'] __UpperCamelCase = ['image'] def __init__(self , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(self , ["""vision"""] ) super().__init__(*lowerCamelCase , **lowerCamelCase ) def A__ (self , lowerCamelCase , lowerCamelCase ): '''simple docstring''' return self.pre_processor(text=[label] , images=[image] , padding=lowerCamelCase , return_tensors="""pt""" ) def A__ (self , lowerCamelCase ): '''simple docstring''' with torch.no_grad(): _lowerCAmelCase = self.model(**lowerCamelCase ).logits return logits def A__ (self , lowerCamelCase ): '''simple docstring''' _lowerCAmelCase = outputs.cpu().detach().numpy() _lowerCAmelCase = 0 _lowerCAmelCase = 1 return Image.fromarray((array * 255).astype(np.uinta ) )
317
0
"""simple docstring""" from dataclasses import dataclass, field from typing import Tuple from ..utils import cached_property, is_tf_available, logging, requires_backends from .benchmark_args_utils import BenchmarkArguments if is_tf_available(): import tensorflow as tf _a = logging.get_logger(__name__) @dataclass class A_ (lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[Any] = [ """no_inference""", """no_cuda""", """no_tpu""", """no_speed""", """no_memory""", """no_env_print""", """no_multi_process""", ] def __init__( self , **lowercase_ ): """simple docstring""" for deprecated_arg in self.deprecated_args: if deprecated_arg in kwargs: UpperCAmelCase_ : Tuple = deprecated_arg[3:] UpperCAmelCase_ : Any = not kwargs.pop(lowercase_ ) logger.warning( F"""{deprecated_arg} is depreciated. Please use --no-{positive_arg} or""" F""" {positive_arg}={kwargs[positive_arg]}""" ) UpperCAmelCase_ : List[Any] = kwargs.pop("tpu_name" , self.tpu_name ) UpperCAmelCase_ : Dict = kwargs.pop("device_idx" , self.device_idx ) UpperCAmelCase_ : Optional[int] = kwargs.pop("eager_mode" , self.eager_mode ) UpperCAmelCase_ : str = kwargs.pop("use_xla" , self.use_xla ) super().__init__(**lowercase_ ) SCREAMING_SNAKE_CASE__ : str = field( default=lowercase__ ,metadata={"""help""": """Name of TPU"""} ,) SCREAMING_SNAKE_CASE__ : int = field( default=0 ,metadata={"""help""": """CPU / GPU device index. Defaults to 0."""} ,) SCREAMING_SNAKE_CASE__ : bool = field(default=lowercase__ ,metadata={"""help""": """Benchmark models in eager model."""} ) SCREAMING_SNAKE_CASE__ : bool = field( default=lowercase__ ,metadata={ """help""": """Benchmark models using XLA JIT compilation. Note that `eager_model` has to be set to `False`.""" } ,) @cached_property def UpperCamelCase__ ( self ): """simple docstring""" requires_backends(self , ["tf"] ) UpperCAmelCase_ : Optional[int] = None if self.tpu: try: if self.tpu_name: UpperCAmelCase_ : Optional[int] = tf.distribute.cluster_resolver.TPUClusterResolver(self.tpu_name ) else: UpperCAmelCase_ : str = tf.distribute.cluster_resolver.TPUClusterResolver() except ValueError: UpperCAmelCase_ : Dict = None return tpu @cached_property def UpperCamelCase__ ( self ): """simple docstring""" requires_backends(self , ["tf"] ) if self.is_tpu: tf.config.experimental_connect_to_cluster(self._setup_tpu ) tf.tpu.experimental.initialize_tpu_system(self._setup_tpu ) UpperCAmelCase_ : List[Any] = tf.distribute.TPUStrategy(self._setup_tpu ) else: # currently no multi gpu is allowed if self.is_gpu: # TODO: Currently only single GPU is supported tf.config.set_visible_devices(self.gpu_list[self.device_idx] , "GPU" ) UpperCAmelCase_ : str = tf.distribute.OneDeviceStrategy(device=F"""/gpu:{self.device_idx}""" ) else: tf.config.set_visible_devices([] , "GPU" ) # disable GPU UpperCAmelCase_ : Union[str, Any] = tf.distribute.OneDeviceStrategy(device=F"""/cpu:{self.device_idx}""" ) return strategy @property def UpperCamelCase__ ( self ): """simple docstring""" requires_backends(self , ["tf"] ) return self._setup_tpu is not None @property def UpperCamelCase__ ( self ): """simple docstring""" requires_backends(self , ["tf"] ) return self._setup_strategy @property def UpperCamelCase__ ( self ): """simple docstring""" requires_backends(self , ["tf"] ) return tf.config.list_physical_devices("GPU" ) @property def UpperCamelCase__ ( self ): """simple docstring""" requires_backends(self , ["tf"] ) if self.cuda: return len(self.gpu_list ) return 0 @property def UpperCamelCase__ ( self ): """simple docstring""" return self.n_gpu > 0
61
"""simple docstring""" from __future__ import annotations import math def __a ( __lowerCamelCase, __lowerCamelCase ): UpperCAmelCase_ : Any = u for i in range(1, __lowerCamelCase ): UpperCAmelCase_ : int = temp * (u - i) return temp def __a ( ): UpperCAmelCase_ : str = int(input("enter the numbers of values: " ) ) UpperCAmelCase_ : list[list[float]] = [] for _ in range(__lowerCamelCase ): y.append([] ) for i in range(__lowerCamelCase ): for j in range(__lowerCamelCase ): y[i].append(__lowerCamelCase ) UpperCAmelCase_ : Tuple = 0 print("enter the values of parameters in a list: " ) UpperCAmelCase_ : Union[str, Any] = list(map(__lowerCamelCase, input().split() ) ) print("enter the values of corresponding parameters: " ) for i in range(__lowerCamelCase ): UpperCAmelCase_ : int = float(input() ) UpperCAmelCase_ : Tuple = int(input("enter the value to interpolate: " ) ) UpperCAmelCase_ : Tuple = (value - x[0]) / (x[1] - x[0]) # for calculating forward difference table for i in range(1, __lowerCamelCase ): for j in range(n - i ): UpperCAmelCase_ : Union[str, Any] = y[j + 1][i - 1] - y[j][i - 1] UpperCAmelCase_ : Optional[int] = y[0][0] for i in range(1, __lowerCamelCase ): summ += (ucal(__lowerCamelCase, __lowerCamelCase ) * y[0][i]) / math.factorial(__lowerCamelCase ) print(f"""the value at {value} is {summ}""" ) if __name__ == "__main__": main()
61
1
import argparse from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection from diffusers import UnCLIPImageVariationPipeline, UnCLIPPipeline if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.') parser.add_argument( '--txt2img_unclip', default='kakaobrain/karlo-v1-alpha', type=str, required=False, help='The pretrained txt2img unclip.', ) _SCREAMING_SNAKE_CASE = parser.parse_args() _SCREAMING_SNAKE_CASE = UnCLIPPipeline.from_pretrained(args.txtaimg_unclip) _SCREAMING_SNAKE_CASE = CLIPImageProcessor() _SCREAMING_SNAKE_CASE = CLIPVisionModelWithProjection.from_pretrained('openai/clip-vit-large-patch14') _SCREAMING_SNAKE_CASE = UnCLIPImageVariationPipeline( decoder=txtaimg.decoder, text_encoder=txtaimg.text_encoder, tokenizer=txtaimg.tokenizer, text_proj=txtaimg.text_proj, feature_extractor=feature_extractor, image_encoder=image_encoder, super_res_first=txtaimg.super_res_first, super_res_last=txtaimg.super_res_last, decoder_scheduler=txtaimg.decoder_scheduler, super_res_scheduler=txtaimg.super_res_scheduler, ) imgaimg.save_pretrained(args.dump_path)
81
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..models.auto import AutoProcessor from ..models.vision_encoder_decoder import VisionEncoderDecoderModel from ..utils import is_vision_available from .base import PipelineTool if is_vision_available(): from PIL import Image class a ( __lowerCAmelCase ): """simple docstring""" lowerCamelCase :Tuple = '''naver-clova-ix/donut-base-finetuned-docvqa''' lowerCamelCase :Union[str, Any] = ( '''This is a tool that answers a question about an document (pdf). It takes an input named `document` which ''' '''should be the document containing the information, as well as a `question` that is the question about the ''' '''document. It returns a text that contains the answer to the question.''' ) lowerCamelCase :List[str] = '''document_qa''' lowerCamelCase :Union[str, Any] = AutoProcessor lowerCamelCase :str = VisionEncoderDecoderModel lowerCamelCase :str = ['''image''', '''text'''] lowerCamelCase :List[str] = ['''text'''] def __init__( self , *lowerCAmelCase_ , **lowerCAmelCase_ ) -> Optional[Any]: if not is_vision_available(): raise ValueError("""Pillow must be installed to use the DocumentQuestionAnsweringTool.""" ) super().__init__(*lowerCAmelCase_ , **lowerCAmelCase_ ) def UpperCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ ) -> Any: _A = """<s_docvqa><s_question>{user_input}</s_question><s_answer>""" _A = task_prompt.replace("""{user_input}""" , lowerCAmelCase_ ) _A = self.pre_processor.tokenizer( lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ , return_tensors="""pt""" ).input_ids _A = self.pre_processor(lowerCAmelCase_ , return_tensors="""pt""" ).pixel_values return {"decoder_input_ids": decoder_input_ids, "pixel_values": pixel_values} def UpperCAmelCase ( self , lowerCAmelCase_ ) -> Union[str, Any]: return self.model.generate( inputs["""pixel_values"""].to(self.device ) , decoder_input_ids=inputs["""decoder_input_ids"""].to(self.device ) , max_length=self.model.decoder.config.max_position_embeddings , early_stopping=lowerCAmelCase_ , pad_token_id=self.pre_processor.tokenizer.pad_token_id , eos_token_id=self.pre_processor.tokenizer.eos_token_id , use_cache=lowerCAmelCase_ , num_beams=1 , bad_words_ids=[[self.pre_processor.tokenizer.unk_token_id]] , return_dict_in_generate=lowerCAmelCase_ , ).sequences def UpperCAmelCase ( self , lowerCAmelCase_ ) -> Dict: _A = self.pre_processor.batch_decode(lowerCAmelCase_ )[0] _A = sequence.replace(self.pre_processor.tokenizer.eos_token , """""" ) _A = sequence.replace(self.pre_processor.tokenizer.pad_token , """""" ) _A = re.sub(r"""<.*?>""" , """""" , lowerCAmelCase_ , count=1 ).strip() # remove first task start token _A = self.pre_processor.tokenajson(lowerCAmelCase_ ) return sequence["answer"]
81
1
from __future__ import annotations from scipy.special import comb # type: ignore class A__ : def __init__( self , __magic_name__ ): lowerCamelCase : str = list_of_points # Degree determines the flexibility of the curve. # Degree = 1 will produce a straight line. lowerCamelCase : int = len(__magic_name__ ) - 1 def UpperCamelCase__ ( self , __magic_name__ ): assert 0 <= t <= 1, "Time t must be between 0 and 1." lowerCamelCase : list[float] = [] for i in range(len(self.list_of_points ) ): # basis function for each i output_values.append( comb(self.degree , __magic_name__ ) * ((1 - t) ** (self.degree - i)) * (t**i) ) # the basis must sum up to 1 for it to produce a valid Bezier curve. assert round(sum(__magic_name__ ) , 5 ) == 1 return output_values def UpperCamelCase__ ( self , __magic_name__ ): assert 0 <= t <= 1, "Time t must be between 0 and 1." lowerCamelCase : Optional[int] = self.basis_function(__magic_name__ ) lowerCamelCase : int = 0.0 lowerCamelCase : List[Any] = 0.0 for i in range(len(self.list_of_points ) ): # For all points, sum up the product of i-th basis function and i-th point. x += basis_function[i] * self.list_of_points[i][0] y += basis_function[i] * self.list_of_points[i][1] return (x, y) def UpperCamelCase__ ( self , __magic_name__ = 0.01 ): from matplotlib import pyplot as plt # type: ignore lowerCamelCase : list[float] = [] # x coordinates of points to plot lowerCamelCase : list[float] = [] # y coordinates of points to plot lowerCamelCase : List[Any] = 0.0 while t <= 1: lowerCamelCase : Union[str, Any] = self.bezier_curve_function(__magic_name__ ) to_plot_x.append(value[0] ) to_plot_y.append(value[1] ) t += step_size lowerCamelCase : List[str] = [i[0] for i in self.list_of_points] lowerCamelCase : Optional[Any] = [i[1] for i in self.list_of_points] plt.plot( __magic_name__ , __magic_name__ , color="""blue""" , label="""Curve of Degree """ + str(self.degree ) , ) plt.scatter(__magic_name__ , __magic_name__ , color="""red""" , label="""Control Points""" ) plt.legend() plt.show() if __name__ == "__main__": import doctest doctest.testmod() BezierCurve([(1, 2), (3, 5)]).plot_curve() # degree 1 BezierCurve([(0, 0), (5, 5), (5, 0)]).plot_curve() # degree 2 BezierCurve([(0, 0), (5, 5), (5, 0), (2.5, -2.5)]).plot_curve() # degree 3
287
import warnings from ...utils import logging from .image_processing_owlvit import OwlViTImageProcessor _lowerCamelCase =logging.get_logger(__name__) class A__ ( __SCREAMING_SNAKE_CASE): def __init__( self , *__magic_name__ , **__magic_name__ ): warnings.warn( """The class OwlViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use OwlViTImageProcessor instead.""" , __magic_name__ , ) super().__init__(*__magic_name__ , **__magic_name__ )
287
1
'''simple docstring''' import argparse from copy import deepcopy import numpy as np from datasets import ClassLabel, DatasetDict, load_dataset from evaluate import load from transformers import ( AutoModelForSequenceClassification, AutoTokenizer, DataCollatorWithPadding, Trainer, TrainerCallback, TrainingArguments, set_seed, ) def __magic_name__( ): __lowerCAmelCase = argparse.ArgumentParser() parser.add_argument('''--model_ckpt''', type=lowerCamelCase, default='''microsoft/unixcoder-base-nine''') parser.add_argument('''--num_epochs''', type=lowerCamelCase, default=5) parser.add_argument('''--batch_size''', type=lowerCamelCase, default=6) parser.add_argument('''--gradient_accumulation_steps''', type=lowerCamelCase, default=1) parser.add_argument('''--freeze''', type=lowerCamelCase, default=lowerCamelCase) parser.add_argument('''--learning_rate''', type=lowerCamelCase, default=5E-4) parser.add_argument('''--seed''', type=lowerCamelCase, default=0) parser.add_argument('''--lr_scheduler_type''', type=lowerCamelCase, default='''cosine''') parser.add_argument('''--num_warmup_steps''', type=lowerCamelCase, default=1_0) parser.add_argument('''--weight_decay''', type=lowerCamelCase, default=0.01) parser.add_argument('''--output_dir''', type=lowerCamelCase, default='''./results''') return parser.parse_args() _UpperCAmelCase : List[Any] = load("""accuracy""") def __magic_name__( lowerCamelCase): __lowerCAmelCase , __lowerCAmelCase = eval_pred __lowerCAmelCase = np.argmax(lowerCamelCase, axis=1) return metric.compute(predictions=lowerCamelCase, references=lowerCamelCase) class a__ ( __A ): def __init__(self , __lowercase ): super().__init__() __lowerCAmelCase = trainer def _snake_case (self , __lowercase , __lowercase , __lowercase , **__lowercase ): if control.should_evaluate: __lowerCAmelCase = deepcopy(__lowercase ) self._trainer.evaluate(eval_dataset=self._trainer.train_dataset , metric_key_prefix='''train''' ) return control_copy def __magic_name__( ): __lowerCAmelCase = get_args() set_seed(args.seed) __lowerCAmelCase = load_dataset('''codeparrot/codecomplex''', split='''train''') __lowerCAmelCase = dataset.train_test_split(test_size=0.2) __lowerCAmelCase = train_test['''test'''].train_test_split(test_size=0.5) __lowerCAmelCase = DatasetDict( { '''train''': train_test['''train'''], '''test''': test_validation['''train'''], '''valid''': test_validation['''test'''], }) print('''Loading tokenizer and model''') __lowerCAmelCase = AutoTokenizer.from_pretrained(args.model_ckpt) __lowerCAmelCase = tokenizer.eos_token __lowerCAmelCase = AutoModelForSequenceClassification.from_pretrained(args.model_ckpt, num_labels=7) __lowerCAmelCase = model.config.eos_token_id if args.freeze: for param in model.roberta.parameters(): __lowerCAmelCase = False __lowerCAmelCase = ClassLabel(num_classes=7, names=list(set(train_test_validation['''train''']['''complexity''']))) def tokenize(lowerCamelCase): __lowerCAmelCase = tokenizer(example['''src'''], truncation=lowerCamelCase, max_length=1_0_2_4) __lowerCAmelCase = labels.straint(example['''complexity''']) return { "input_ids": inputs["input_ids"], "attention_mask": inputs["attention_mask"], "label": label, } __lowerCAmelCase = train_test_validation.map( lowerCamelCase, batched=lowerCamelCase, remove_columns=train_test_validation['''train'''].column_names, ) __lowerCAmelCase = DataCollatorWithPadding(tokenizer=lowerCamelCase) __lowerCAmelCase = TrainingArguments( output_dir=args.output_dir, learning_rate=args.learning_rate, lr_scheduler_type=args.lr_scheduler_type, evaluation_strategy='''epoch''', save_strategy='''epoch''', logging_strategy='''epoch''', per_device_train_batch_size=args.batch_size, per_device_eval_batch_size=args.batch_size, num_train_epochs=args.num_epochs, gradient_accumulation_steps=args.gradient_accumulation_steps, weight_decay=0.01, metric_for_best_model='''accuracy''', run_name='''complexity-java''', report_to='''wandb''', ) __lowerCAmelCase = Trainer( model=lowerCamelCase, args=lowerCamelCase, train_dataset=tokenized_datasets['''train'''], eval_dataset=tokenized_datasets['''valid'''], tokenizer=lowerCamelCase, data_collator=lowerCamelCase, compute_metrics=lowerCamelCase, ) print('''Training...''') trainer.add_callback(CustomCallback(lowerCamelCase)) trainer.train() if __name__ == "__main__": main()
367
'''simple docstring''' import unittest from typing import Dict, List, Optional, Union import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BridgeTowerImageProcessor class a__ ( unittest.TestCase ): """simple docstring""" def __init__(self , __lowercase , __lowercase = True , __lowercase = None , __lowercase = 32 , __lowercase = True , __lowercase = 1 / 2_55 , __lowercase = True , __lowercase = True , __lowercase = [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3] , __lowercase = [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1] , __lowercase = True , __lowercase=7 , __lowercase=30 , __lowercase=4_00 , __lowercase=3 , ): __lowerCAmelCase = parent __lowerCAmelCase = do_resize __lowerCAmelCase = size if size is not None else {'''shortest_edge''': 2_88} __lowerCAmelCase = size_divisor __lowerCAmelCase = do_rescale __lowerCAmelCase = rescale_factor __lowerCAmelCase = do_normalize __lowerCAmelCase = do_center_crop __lowerCAmelCase = image_mean __lowerCAmelCase = image_std __lowerCAmelCase = do_pad __lowerCAmelCase = batch_size __lowerCAmelCase = num_channels __lowerCAmelCase = min_resolution __lowerCAmelCase = max_resolution def _snake_case (self ): return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "size_divisor": self.size_divisor, } def _snake_case (self , __lowercase , __lowercase=False ): if not batched: __lowerCAmelCase = self.size['''shortest_edge'''] __lowerCAmelCase = image_inputs[0] if isinstance(__lowercase , Image.Image ): __lowerCAmelCase , __lowerCAmelCase = image.size else: __lowerCAmelCase , __lowerCAmelCase = image.shape[1], image.shape[2] __lowerCAmelCase = size / min(__lowercase , __lowercase ) if h < w: __lowerCAmelCase , __lowerCAmelCase = size, scale * w else: __lowerCAmelCase , __lowerCAmelCase = scale * h, size __lowerCAmelCase = int((13_33 / 8_00) * size ) if max(__lowercase , __lowercase ) > max_size: __lowerCAmelCase = max_size / max(__lowercase , __lowercase ) __lowerCAmelCase = newh * scale __lowerCAmelCase = neww * scale __lowerCAmelCase , __lowerCAmelCase = int(newh + 0.5 ), int(neww + 0.5 ) __lowerCAmelCase , __lowerCAmelCase = ( newh // self.size_divisor * self.size_divisor, neww // self.size_divisor * self.size_divisor, ) else: __lowerCAmelCase = [] for image in image_inputs: __lowerCAmelCase , __lowerCAmelCase = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) __lowerCAmelCase = max(__lowercase , key=lambda __lowercase : item[0] )[0] __lowerCAmelCase = max(__lowercase , key=lambda __lowercase : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class a__ ( __A , unittest.TestCase ): """simple docstring""" __UpperCamelCase : Any = BridgeTowerImageProcessor if is_vision_available() else None def _snake_case (self ): __lowerCAmelCase = BridgeTowerImageProcessingTester(self ) @property def _snake_case (self ): return self.image_processor_tester.prepare_image_processor_dict() def _snake_case (self ): __lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__lowercase , '''image_mean''' ) ) self.assertTrue(hasattr(__lowercase , '''image_std''' ) ) self.assertTrue(hasattr(__lowercase , '''do_normalize''' ) ) self.assertTrue(hasattr(__lowercase , '''do_resize''' ) ) self.assertTrue(hasattr(__lowercase , '''size''' ) ) self.assertTrue(hasattr(__lowercase , '''size_divisor''' ) ) def _snake_case (self ): pass def _snake_case (self ): # Initialize image processor __lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowercase ) for image in image_inputs: self.assertIsInstance(__lowercase , Image.Image ) # Test not batched input __lowerCAmelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values __lowerCAmelCase , __lowerCAmelCase = self.image_processor_tester.get_expected_values(__lowercase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __lowerCAmelCase = image_processing(__lowercase , return_tensors='''pt''' ).pixel_values __lowerCAmelCase , __lowerCAmelCase = self.image_processor_tester.get_expected_values(__lowercase , batched=__lowercase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _snake_case (self ): # Initialize image processor __lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowercase , numpify=__lowercase ) for image in image_inputs: self.assertIsInstance(__lowercase , np.ndarray ) # Test not batched input __lowerCAmelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values __lowerCAmelCase , __lowerCAmelCase = self.image_processor_tester.get_expected_values(__lowercase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __lowerCAmelCase = image_processing(__lowercase , return_tensors='''pt''' ).pixel_values __lowerCAmelCase , __lowerCAmelCase = self.image_processor_tester.get_expected_values(__lowercase , batched=__lowercase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _snake_case (self ): # Initialize image processor __lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowercase , torchify=__lowercase ) for image in image_inputs: self.assertIsInstance(__lowercase , torch.Tensor ) # Test not batched input __lowerCAmelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values __lowerCAmelCase , __lowerCAmelCase = self.image_processor_tester.get_expected_values(__lowercase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __lowerCAmelCase = image_processing(__lowercase , return_tensors='''pt''' ).pixel_values __lowerCAmelCase , __lowerCAmelCase = self.image_processor_tester.get_expected_values(__lowercase , batched=__lowercase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , )
9
0
def __lowercase ( _SCREAMING_SNAKE_CASE = 1_00_00_00 ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = {1: 1} for inputa in range(2 , _SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE = 0 SCREAMING_SNAKE_CASE = inputa while True: if number in counters: counter += counters[number] break if number % 2 == 0: number //= 2 counter += 1 else: SCREAMING_SNAKE_CASE = (3 * number) + 1 counter += 1 if inputa not in counters: SCREAMING_SNAKE_CASE = counter if counter > pre_counter: SCREAMING_SNAKE_CASE = inputa SCREAMING_SNAKE_CASE = counter return largest_number if __name__ == "__main__": print(solution(int(input().strip())))
296
from pathlib import Path import fire def __lowercase ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE = Path(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE = Path(_SCREAMING_SNAKE_CASE ) dest_dir.mkdir(exist_ok=_SCREAMING_SNAKE_CASE ) for path in src_dir.iterdir(): SCREAMING_SNAKE_CASE = [x.rstrip() for x in list(path.open().readlines() )][:n] SCREAMING_SNAKE_CASE = dest_dir.joinpath(path.name ) print(_SCREAMING_SNAKE_CASE ) dest_path.open("""w""" ).write("""\n""".join(_SCREAMING_SNAKE_CASE ) ) if __name__ == "__main__": fire.Fire(minify)
296
1
def UpperCamelCase( lowercase_ , lowercase_ = False ) -> str: '''simple docstring''' if not isinstance(lowercase_ , lowercase_ ): snake_case_ = f'''Expected string as input, found {type(lowercase_ )}''' raise ValueError(lowercase_ ) if not isinstance(lowercase_ , lowercase_ ): snake_case_ = f'''Expected boolean as use_pascal parameter, found {type(lowercase_ )}''' raise ValueError(lowercase_ ) snake_case_ = input_str.split("""_""" ) snake_case_ = 0 if use_pascal else 1 snake_case_ = words[start_index:] snake_case_ = [word[0].upper() + word[1:] for word in words_to_capitalize] snake_case_ = """""" if use_pascal else words[0] return "".join([initial_word, *capitalized_words] ) if __name__ == "__main__": from doctest import testmod testmod()
360
from argparse import ArgumentParser from datasets.commands.convert import ConvertCommand from datasets.commands.dummy_data import DummyDataCommand from datasets.commands.env import EnvironmentCommand from datasets.commands.run_beam import RunBeamCommand from datasets.commands.test import TestCommand from datasets.utils.logging import set_verbosity_info def UpperCamelCase( lowercase_ ) -> Any: '''simple docstring''' return {key.lstrip("""-""" ): value for key, value in zip(unknown_args[::2] , unknown_args[1::2] )} def UpperCamelCase( ) -> str: '''simple docstring''' snake_case_ = ArgumentParser( """HuggingFace Datasets CLI tool""" , usage="""datasets-cli <command> [<args>]""" , allow_abbrev=lowercase_ ) snake_case_ = parser.add_subparsers(help="""datasets-cli command helpers""" ) set_verbosity_info() # Register commands ConvertCommand.register_subcommand(lowercase_ ) EnvironmentCommand.register_subcommand(lowercase_ ) TestCommand.register_subcommand(lowercase_ ) RunBeamCommand.register_subcommand(lowercase_ ) DummyDataCommand.register_subcommand(lowercase_ ) # Parse args snake_case_ , snake_case_ = parser.parse_known_args() if not hasattr(lowercase_ , """func""" ): parser.print_help() exit(1 ) snake_case_ = parse_unknown_args(lowercase_ ) # Run snake_case_ = args.func(lowercase_ , **lowercase_ ) service.run() if __name__ == "__main__": main()
34
0
"""simple docstring""" from typing import List from .keymap import KEYMAP, get_character def lowercase__( __SCREAMING_SNAKE_CASE : str ): def decorator(__SCREAMING_SNAKE_CASE : List[Any] ): lowercase_ : Tuple = getattr(__SCREAMING_SNAKE_CASE , 'handle_key' , [] ) handle += [key] setattr(__SCREAMING_SNAKE_CASE , 'handle_key' , __SCREAMING_SNAKE_CASE ) return func return decorator def lowercase__( *__SCREAMING_SNAKE_CASE : List[str] ): def decorator(__SCREAMING_SNAKE_CASE : Any ): lowercase_ : List[str] = getattr(__SCREAMING_SNAKE_CASE , 'handle_key' , [] ) handle += keys setattr(__SCREAMING_SNAKE_CASE , 'handle_key' , __SCREAMING_SNAKE_CASE ) return func return decorator class UpperCamelCase ( lowercase_ ): def __new__( cls ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> List[str]: '''simple docstring''' lowercase_ : Optional[Any] = super().__new__(cls ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) if not hasattr(__UpperCamelCase ,'key_handler' ): setattr(__UpperCamelCase ,'key_handler' ,{} ) setattr(__UpperCamelCase ,'handle_input' ,KeyHandler.handle_input ) for value in attrs.values(): lowercase_ : Dict = getattr(__UpperCamelCase ,'handle_key' ,[] ) for key in handled_keys: lowercase_ : Optional[Any] = value return new_cls @staticmethod def _UpperCAmelCase ( cls ) -> Any: '''simple docstring''' lowercase_ : Any = get_character() if char != KEYMAP["undefined"]: lowercase_ : str = ord(__UpperCamelCase ) lowercase_ : Tuple = cls.key_handler.get(__UpperCamelCase ) if handler: lowercase_ : Union[str, Any] = char return handler(cls ) else: return None def lowercase__( cls : List[str] ): return KeyHandler(cls.__name__ , cls.__bases__ , cls.__dict__.copy() )
213
"""simple docstring""" import argparse import json import os import fairseq import torch from fairseq.data import Dictionary # Register SEW's fairseq modules from sew_asapp import tasks # noqa: F401 from transformers import ( SEWConfig, SEWForCTC, SEWModel, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() __SCREAMING_SNAKE_CASE =logging.get_logger(__name__) __SCREAMING_SNAKE_CASE ={ "post_extract_proj": "feature_projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.upsample.0": "encoder.upsample.projection", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "layer_norm", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", } def lowercase__( __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : List[str] ): for attribute in key.split('.' ): lowercase_ : Tuple = getattr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if weight_type is not None: lowercase_ : List[Any] = getattr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ).shape else: lowercase_ : str = hf_pointer.shape assert hf_shape == value.shape, ( F'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": lowercase_ : Optional[Any] = value elif weight_type == "weight_g": lowercase_ : Optional[Any] = value elif weight_type == "weight_v": lowercase_ : Optional[Any] = value elif weight_type == "bias": lowercase_ : Union[str, Any] = value else: lowercase_ : Any = value logger.info(F'''{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.''' ) def lowercase__( __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Union[str, Any] ): lowercase_ : Optional[int] = [] lowercase_ : Optional[int] = fairseq_model.state_dict() lowercase_ : List[str] = hf_model.sew.feature_extractor if is_finetuned else hf_model.feature_extractor for name, value in fairseq_dict.items(): lowercase_ : List[str] = False if "conv_layers" in name: load_conv_layer( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , hf_model.config.feat_extract_norm == 'group' , ) lowercase_ : str = True else: for key, mapped_key in MAPPING.items(): lowercase_ : int = 'sew.' + mapped_key if (is_finetuned and mapped_key != 'lm_head') else mapped_key if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]: lowercase_ : str = True if "*" in mapped_key: lowercase_ : int = name.split(__SCREAMING_SNAKE_CASE )[0].split('.' )[-2] lowercase_ : Optional[Any] = mapped_key.replace('*' , __SCREAMING_SNAKE_CASE ) if "weight_g" in name: lowercase_ : Any = 'weight_g' elif "weight_v" in name: lowercase_ : Tuple = 'weight_v' elif "weight" in name: lowercase_ : int = 'weight' elif "bias" in name: lowercase_ : List[Any] = 'bias' else: lowercase_ : Optional[Any] = None set_recursively(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) continue if not is_used: unused_weights.append(__SCREAMING_SNAKE_CASE ) logger.warning(F'''Unused weights: {unused_weights}''' ) def lowercase__( __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : str ): lowercase_ : Dict = full_name.split('conv_layers.' )[-1] lowercase_ : int = name.split('.' ) lowercase_ : Any = int(items[0] ) lowercase_ : Tuple = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) lowercase_ : List[str] = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) lowercase_ : List[Any] = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was''' " found." ) lowercase_ : Optional[Any] = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) lowercase_ : List[str] = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(__SCREAMING_SNAKE_CASE ) def lowercase__( __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : int ): lowercase_ : str = SEWConfig() if is_finetuned: lowercase_ : List[Any] = model.wav_encoder.wav_model.cfg else: lowercase_ : Tuple = model.cfg lowercase_ : Any = fs_config.conv_bias lowercase_ : Optional[Any] = eval(fs_config.conv_feature_layers ) lowercase_ : int = [x[0] for x in conv_layers] lowercase_ : Any = [x[1] for x in conv_layers] lowercase_ : Optional[Any] = [x[2] for x in conv_layers] lowercase_ : Tuple = 'gelu' lowercase_ : str = 'layer' if fs_config.extractor_mode == 'layer_norm' else 'group' lowercase_ : int = 0.0 lowercase_ : Any = fs_config.activation_fn.name lowercase_ : Tuple = fs_config.encoder_embed_dim lowercase_ : int = 0.02 lowercase_ : Union[str, Any] = fs_config.encoder_ffn_embed_dim lowercase_ : Tuple = 1E-5 lowercase_ : Union[str, Any] = fs_config.encoder_layerdrop lowercase_ : Tuple = fs_config.encoder_attention_heads lowercase_ : List[str] = fs_config.conv_pos_groups lowercase_ : Union[str, Any] = fs_config.conv_pos lowercase_ : str = len(__SCREAMING_SNAKE_CASE ) lowercase_ : Optional[Any] = fs_config.encoder_layers lowercase_ : str = fs_config.squeeze_factor # take care of any params that are overridden by the Wav2VecCtc model if is_finetuned: lowercase_ : Dict = model.cfg lowercase_ : Dict = fs_config.final_dropout lowercase_ : Dict = fs_config.layerdrop lowercase_ : Optional[int] = fs_config.activation_dropout lowercase_ : Any = fs_config.mask_prob > 0 or fs_config.mask_channel_prob > 0 lowercase_ : List[Any] = fs_config.attention_dropout lowercase_ : Tuple = fs_config.dropout_input lowercase_ : List[Any] = fs_config.dropout lowercase_ : Any = fs_config.mask_channel_length lowercase_ : str = fs_config.mask_channel_prob lowercase_ : Optional[Any] = fs_config.mask_length lowercase_ : Tuple = fs_config.mask_prob lowercase_ : List[Any] = 'Wav2Vec2FeatureExtractor' lowercase_ : Union[str, Any] = 'Wav2Vec2CTCTokenizer' return config @torch.no_grad() def lowercase__( __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : int=None , __SCREAMING_SNAKE_CASE : Any=None , __SCREAMING_SNAKE_CASE : Tuple=True ): if is_finetuned: lowercase_ , lowercase_ , lowercase_ : Optional[int] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/' )[:-1] )} ) else: lowercase_ , lowercase_ , lowercase_ : Union[str, Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) if config_path is not None: lowercase_ : List[str] = SEWConfig.from_pretrained(__SCREAMING_SNAKE_CASE ) else: lowercase_ : Tuple = convert_config(model[0] , __SCREAMING_SNAKE_CASE ) lowercase_ : Optional[Any] = model[0].eval() lowercase_ : List[Any] = True if config.feat_extract_norm == 'layer' else False lowercase_ : Optional[Any] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_60_00 , padding_value=0 , do_normalize=__SCREAMING_SNAKE_CASE , return_attention_mask=__SCREAMING_SNAKE_CASE , ) if is_finetuned: if dict_path: lowercase_ : Dict = Dictionary.load(__SCREAMING_SNAKE_CASE ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq lowercase_ : str = target_dict.pad_index lowercase_ : Union[str, Any] = target_dict.bos_index lowercase_ : Tuple = target_dict.pad_index lowercase_ : List[Any] = target_dict.bos_index lowercase_ : Any = target_dict.eos_index lowercase_ : str = len(target_dict.symbols ) lowercase_ : Optional[Any] = os.path.join(__SCREAMING_SNAKE_CASE , 'vocab.json' ) if not os.path.isdir(__SCREAMING_SNAKE_CASE ): logger.error('--pytorch_dump_folder_path ({}) should be a directory'.format(__SCREAMING_SNAKE_CASE ) ) return os.makedirs(__SCREAMING_SNAKE_CASE , exist_ok=__SCREAMING_SNAKE_CASE ) with open(__SCREAMING_SNAKE_CASE , 'w' , encoding='utf-8' ) as vocab_handle: json.dump(target_dict.indices , __SCREAMING_SNAKE_CASE ) lowercase_ : Union[str, Any] = WavaVecaCTCTokenizer( __SCREAMING_SNAKE_CASE , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='|' , do_lower_case=__SCREAMING_SNAKE_CASE , ) lowercase_ : Tuple = WavaVecaProcessor(feature_extractor=__SCREAMING_SNAKE_CASE , tokenizer=__SCREAMING_SNAKE_CASE ) processor.save_pretrained(__SCREAMING_SNAKE_CASE ) lowercase_ : List[str] = SEWForCTC(__SCREAMING_SNAKE_CASE ) else: lowercase_ : Any = SEWModel(__SCREAMING_SNAKE_CASE ) feature_extractor.save_pretrained(__SCREAMING_SNAKE_CASE ) recursively_load_weights(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) hf_model.save_pretrained(__SCREAMING_SNAKE_CASE ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE =argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--is_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) __SCREAMING_SNAKE_CASE =parser.parse_args() convert_sew_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, args.is_finetuned )
213
1
import logging import os import sys from dataclasses import dataclass, field from typing import Optional import evaluate import numpy as np import torch from datasets import load_dataset from PIL import Image from torchvision.transforms import ( CenterCrop, Compose, Normalize, RandomHorizontalFlip, RandomResizedCrop, Resize, ToTensor, ) import transformers from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, AutoConfig, AutoImageProcessor, AutoModelForImageClassification, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version snake_case = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("""4.31.0""") require_version("""datasets>=1.8.0""", """To fix: pip install -r examples/pytorch/image-classification/requirements.txt""") snake_case = list(MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING.keys()) snake_case = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) def lowerCamelCase__ ( lowercase ): """simple docstring""" with open(lowercase , "rb" ) as f: SCREAMING_SNAKE_CASE : Union[str, Any] = Image.open(lowercase ) return im.convert("RGB" ) @dataclass class SCREAMING_SNAKE_CASE : '''simple docstring''' UpperCamelCase_ : Optional[str] = field( default=lowerCAmelCase , metadata={ '''help''': '''Name of a dataset from the hub (could be your own, possibly private dataset hosted on the hub).''' } , ) UpperCamelCase_ : Optional[str] = field( default=lowerCAmelCase , metadata={'''help''': '''The configuration name of the dataset to use (via the datasets library).'''} ) UpperCamelCase_ : Optional[str] = field(default=lowerCAmelCase , metadata={'''help''': '''A folder containing the training data.'''} ) UpperCamelCase_ : Optional[str] = field(default=lowerCAmelCase , metadata={'''help''': '''A folder containing the validation data.'''} ) UpperCamelCase_ : Optional[float] = field( default=0.15 , metadata={'''help''': '''Percent to split off of train for validation.'''} ) UpperCamelCase_ : Optional[int] = field( default=lowerCAmelCase , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of training examples to this ''' '''value if set.''' ) } , ) UpperCamelCase_ : Optional[int] = field( default=lowerCAmelCase , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of evaluation examples to this ''' '''value if set.''' ) } , ) def _A ( self : List[str] ): if self.dataset_name is None and (self.train_dir is None and self.validation_dir is None): raise ValueError( "You must specify either a dataset name from the hub or a train and/or validation directory." ) @dataclass class SCREAMING_SNAKE_CASE : '''simple docstring''' UpperCamelCase_ : str = field( default='''google/vit-base-patch16-224-in21k''' , metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} , ) UpperCamelCase_ : Optional[str] = field( default=lowerCAmelCase , metadata={'''help''': '''If training from scratch, pass a model type from the list: ''' + ''', '''.join(lowerCAmelCase )} , ) UpperCamelCase_ : Optional[str] = field( default=lowerCAmelCase , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) UpperCamelCase_ : Optional[str] = field( default=lowerCAmelCase , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from s3'''} ) UpperCamelCase_ : str = field( default='''main''' , metadata={'''help''': '''The specific model version to use (can be a branch name, tag name or commit id).'''} , ) UpperCamelCase_ : str = field(default=lowerCAmelCase , metadata={'''help''': '''Name or path of preprocessor config.'''} ) UpperCamelCase_ : bool = field( default=lowerCAmelCase , metadata={ '''help''': ( '''Will use the token generated when running `huggingface-cli login` (necessary to use this script ''' '''with private models).''' ) } , ) UpperCamelCase_ : bool = field( default=lowerCAmelCase , metadata={'''help''': '''Will enable to load a pretrained model whose head dimensions are different.'''} , ) def lowerCamelCase__ ( lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = torch.stack([example["pixel_values"] for example in examples] ) SCREAMING_SNAKE_CASE : Optional[int] = torch.tensor([example["labels"] for example in examples] ) return {"pixel_values": pixel_values, "labels": labels} def lowerCamelCase__ ( ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[Any] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Dict = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("run_image_classification" , lowercase , lowercase ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() SCREAMING_SNAKE_CASE : Union[str, Any] = training_args.get_process_log_level() logger.setLevel(lowercase ) transformers.utils.logging.set_verbosity(lowercase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}''' + F'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) logger.info(F'''Training/evaluation parameters {training_args}''' ) # Detecting last checkpoint. SCREAMING_SNAKE_CASE : List[Any] = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: SCREAMING_SNAKE_CASE : Any = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' "Use --overwrite_output_dir to overcome." ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # Set seed before initializing model. set_seed(training_args.seed ) # Initialize our dataset and prepare it for the 'image-classification' task. if data_args.dataset_name is not None: SCREAMING_SNAKE_CASE : Any = load_dataset( data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir , task="image-classification" , use_auth_token=True if model_args.use_auth_token else None , ) else: SCREAMING_SNAKE_CASE : Optional[Any] = {} if data_args.train_dir is not None: SCREAMING_SNAKE_CASE : Any = os.path.join(data_args.train_dir , "**" ) if data_args.validation_dir is not None: SCREAMING_SNAKE_CASE : Optional[int] = os.path.join(data_args.validation_dir , "**" ) SCREAMING_SNAKE_CASE : str = load_dataset( "imagefolder" , data_files=lowercase , cache_dir=model_args.cache_dir , task="image-classification" , ) # If we don't have a validation split, split off a percentage of train as validation. SCREAMING_SNAKE_CASE : Optional[int] = None if "validation" in dataset.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , lowercase ) and data_args.train_val_split > 0.0: SCREAMING_SNAKE_CASE : int = dataset["train"].train_test_split(data_args.train_val_split ) SCREAMING_SNAKE_CASE : Union[str, Any] = split["train"] SCREAMING_SNAKE_CASE : Dict = split["test"] # Prepare label mappings. # We'll include these in the model's config to get human readable labels in the Inference API. SCREAMING_SNAKE_CASE : Union[str, Any] = dataset["train"].features["labels"].names SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = {}, {} for i, label in enumerate(lowercase ): SCREAMING_SNAKE_CASE : Tuple = str(lowercase ) SCREAMING_SNAKE_CASE : Union[str, Any] = label # Load the accuracy metric from the datasets package SCREAMING_SNAKE_CASE : List[Any] = evaluate.load("accuracy" ) # Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(lowercase ): return metric.compute(predictions=np.argmax(p.predictions , axis=1 ) , references=p.label_ids ) SCREAMING_SNAKE_CASE : Any = AutoConfig.from_pretrained( model_args.config_name or model_args.model_name_or_path , num_labels=len(lowercase ) , labelaid=lowercase , idalabel=lowercase , finetuning_task="image-classification" , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) SCREAMING_SNAKE_CASE : Tuple = AutoModelForImageClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool(".ckpt" in model_args.model_name_or_path ) , config=lowercase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , ) SCREAMING_SNAKE_CASE : Optional[Any] = AutoImageProcessor.from_pretrained( model_args.image_processor_name or model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # Define torchvision transforms to be applied to each image. if "shortest_edge" in image_processor.size: SCREAMING_SNAKE_CASE : Optional[Any] = image_processor.size["shortest_edge"] else: SCREAMING_SNAKE_CASE : Optional[int] = (image_processor.size["height"], image_processor.size["width"]) SCREAMING_SNAKE_CASE : Tuple = Normalize(mean=image_processor.image_mean , std=image_processor.image_std ) SCREAMING_SNAKE_CASE : str = Compose( [ RandomResizedCrop(lowercase ), RandomHorizontalFlip(), ToTensor(), normalize, ] ) SCREAMING_SNAKE_CASE : str = Compose( [ Resize(lowercase ), CenterCrop(lowercase ), ToTensor(), normalize, ] ) def train_transforms(lowercase ): SCREAMING_SNAKE_CASE : Tuple = [ _train_transforms(pil_img.convert("RGB" ) ) for pil_img in example_batch["image"] ] return example_batch def val_transforms(lowercase ): SCREAMING_SNAKE_CASE : Dict = [_val_transforms(pil_img.convert("RGB" ) ) for pil_img in example_batch["image"]] return example_batch if training_args.do_train: if "train" not in dataset: raise ValueError("--do_train requires a train dataset" ) if data_args.max_train_samples is not None: SCREAMING_SNAKE_CASE : Any = ( dataset["train"].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) ) # Set the training transforms dataset["train"].set_transform(lowercase ) if training_args.do_eval: if "validation" not in dataset: raise ValueError("--do_eval requires a validation dataset" ) if data_args.max_eval_samples is not None: SCREAMING_SNAKE_CASE : Union[str, Any] = ( dataset["validation"].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms dataset["validation"].set_transform(lowercase ) # Initalize our trainer SCREAMING_SNAKE_CASE : Union[str, Any] = Trainer( model=lowercase , args=lowercase , train_dataset=dataset["train"] if training_args.do_train else None , eval_dataset=dataset["validation"] if training_args.do_eval else None , compute_metrics=lowercase , tokenizer=lowercase , data_collator=lowercase , ) # Training if training_args.do_train: SCREAMING_SNAKE_CASE : Optional[Any] = None if training_args.resume_from_checkpoint is not None: SCREAMING_SNAKE_CASE : Optional[Any] = training_args.resume_from_checkpoint elif last_checkpoint is not None: SCREAMING_SNAKE_CASE : List[Any] = last_checkpoint SCREAMING_SNAKE_CASE : Dict = trainer.train(resume_from_checkpoint=lowercase ) trainer.save_model() trainer.log_metrics("train" , train_result.metrics ) trainer.save_metrics("train" , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: SCREAMING_SNAKE_CASE : Optional[int] = trainer.evaluate() trainer.log_metrics("eval" , lowercase ) trainer.save_metrics("eval" , lowercase ) # Write model card and (optionally) push to hub SCREAMING_SNAKE_CASE : List[str] = { "finetuned_from": model_args.model_name_or_path, "tasks": "image-classification", "dataset": data_args.dataset_name, "tags": ["image-classification", "vision"], } if training_args.push_to_hub: trainer.push_to_hub(**lowercase ) else: trainer.create_model_card(**lowercase ) if __name__ == "__main__": main()
319
import argparse from collections import OrderedDict from pathlib import Path import torch from transformers import ( VisualBertConfig, VisualBertForMultipleChoice, VisualBertForPreTraining, VisualBertForQuestionAnswering, VisualBertForVisualReasoning, ) from transformers.utils import logging logging.set_verbosity_info() snake_case = logging.get_logger(__name__) snake_case = [ ("""bert.bert""", """visual_bert"""), ("""bert.cls""", """cls"""), ("""bert.classifier""", """cls"""), ("""token_type_embeddings_visual""", """visual_token_type_embeddings"""), ("""position_embeddings_visual""", """visual_position_embeddings"""), ("""projection""", """visual_projection"""), ] snake_case = [ """nlvr2_coco_pre_trained.th""", """nlvr2_fine_tuned.th""", """nlvr2_pre_trained.th""", """vcr_coco_pre_train.th""", """vcr_fine_tune.th""", """vcr_pre_train.th""", """vqa_coco_pre_trained.th""", """vqa_fine_tuned.th""", """vqa_pre_trained.th""", ] def lowerCamelCase__ ( lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : int = torch.load(lowercase , map_location="cpu" ) return sd def lowerCamelCase__ ( lowercase , lowercase , lowercase=rename_keys_prefix ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = OrderedDict() SCREAMING_SNAKE_CASE : Union[str, Any] = torch.arange(config.max_position_embeddings ).expand((1, -1) ) # detector_d = OrderedDict() for key in d: if "detector" in key: # detector_d[key.replace('detector.','')] = d[key] continue SCREAMING_SNAKE_CASE : Optional[Any] = key for name_pair in rename_keys_prefix: SCREAMING_SNAKE_CASE : Tuple = new_key.replace(name_pair[0] , name_pair[1] ) SCREAMING_SNAKE_CASE : Union[str, Any] = d[key] if key == "bert.cls.predictions.decoder.weight": # Old bert code didn't have `decoder.bias`, but was added separately SCREAMING_SNAKE_CASE : Union[str, Any] = new_d["cls.predictions.bias"] return new_d @torch.no_grad() def lowerCamelCase__ ( lowercase , lowercase ): """simple docstring""" assert ( checkpoint_path.split("/" )[-1] in ACCEPTABLE_CHECKPOINTS ), F'''The checkpoint provided must be in {ACCEPTABLE_CHECKPOINTS}.''' # Get Config if "pre" in checkpoint_path: SCREAMING_SNAKE_CASE : str = "pretraining" if "vcr" in checkpoint_path: SCREAMING_SNAKE_CASE : str = {"visual_embedding_dim": 512} elif "vqa_advanced" in checkpoint_path: SCREAMING_SNAKE_CASE : Union[str, Any] = {"visual_embedding_dim": 2048} elif "vqa" in checkpoint_path: SCREAMING_SNAKE_CASE : Optional[int] = {"visual_embedding_dim": 2048} elif "nlvr" in checkpoint_path: SCREAMING_SNAKE_CASE : Union[str, Any] = {"visual_embedding_dim": 1024} else: raise NotImplementedError(F'''No implementation found for `{checkpoint_path}`.''' ) else: if "vcr" in checkpoint_path: SCREAMING_SNAKE_CASE : Optional[Any] = {"visual_embedding_dim": 512} SCREAMING_SNAKE_CASE : Union[str, Any] = "multichoice" elif "vqa_advanced" in checkpoint_path: SCREAMING_SNAKE_CASE : int = {"visual_embedding_dim": 2048} SCREAMING_SNAKE_CASE : Any = "vqa_advanced" elif "vqa" in checkpoint_path: SCREAMING_SNAKE_CASE : Any = {"visual_embedding_dim": 2048, "num_labels": 3129} SCREAMING_SNAKE_CASE : Tuple = "vqa" elif "nlvr" in checkpoint_path: SCREAMING_SNAKE_CASE : int = { "visual_embedding_dim": 1024, "num_labels": 2, } SCREAMING_SNAKE_CASE : Union[str, Any] = "nlvr" SCREAMING_SNAKE_CASE : List[Any] = VisualBertConfig(**lowercase ) # Load State Dict SCREAMING_SNAKE_CASE : Union[str, Any] = load_state_dict(lowercase ) SCREAMING_SNAKE_CASE : Union[str, Any] = get_new_dict(lowercase , lowercase ) if model_type == "pretraining": SCREAMING_SNAKE_CASE : Union[str, Any] = VisualBertForPreTraining(lowercase ) elif model_type == "vqa": SCREAMING_SNAKE_CASE : Optional[Any] = VisualBertForQuestionAnswering(lowercase ) elif model_type == "nlvr": SCREAMING_SNAKE_CASE : Optional[Any] = VisualBertForVisualReasoning(lowercase ) elif model_type == "multichoice": SCREAMING_SNAKE_CASE : List[Any] = VisualBertForMultipleChoice(lowercase ) model.load_state_dict(lowercase ) # Save Checkpoints Path(lowercase ).mkdir(exist_ok=lowercase ) model.save_pretrained(lowercase ) if __name__ == "__main__": snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument("""orig_checkpoint_path""", type=str, help="""A path to .th on local filesystem.""") parser.add_argument("""pytorch_dump_folder_path""", type=str, help="""Path to the output PyTorch model.""") snake_case = parser.parse_args() convert_visual_bert_checkpoint(args.orig_checkpoint_path, args.pytorch_dump_folder_path)
319
1
"""simple docstring""" def UpperCAmelCase__ ( lowerCAmelCase__ :str ) -> str: '''simple docstring''' if not all(char in """01""" for char in bin_string ): raise ValueError("""Non-binary value was passed to the function""" ) if not bin_string: raise ValueError("""Empty string was passed to the function""" ) lowercase = """""" while len(lowerCAmelCase__ ) % 3 != 0: lowercase = """0""" + bin_string lowercase = [ bin_string[index : index + 3] for index in range(len(lowerCAmelCase__ ) ) if index % 3 == 0 ] for bin_group in bin_string_in_3_list: lowercase = 0 for index, val in enumerate(lowerCAmelCase__ ): oct_val += int(2 ** (2 - index) * int(lowerCAmelCase__ ) ) oct_string += str(lowerCAmelCase__ ) return oct_string if __name__ == "__main__": from doctest import testmod testmod()
197
"""simple docstring""" from __future__ import annotations from typing import Any class _A : def __init__( self , __lowerCAmelCase = 6 ): """simple docstring""" lowercase = None lowercase = None self.create_linked_list(__lowerCAmelCase ) def A__ ( self , __lowerCAmelCase ): """simple docstring""" lowercase = Node() lowercase = current_node lowercase = current_node lowercase = current_node for _ in range(1 , __lowerCAmelCase ): lowercase = Node() lowercase = current_node lowercase = previous_node lowercase = current_node lowercase = self.front lowercase = previous_node def A__ ( self ): """simple docstring""" return ( self.front == self.rear and self.front is not None and self.front.data is None ) def A__ ( self ): """simple docstring""" self.check_can_perform_operation() return self.front.data if self.front else None def A__ ( self , __lowerCAmelCase ): """simple docstring""" if self.rear is None: return self.check_is_full() if not self.is_empty(): lowercase = self.rear.next if self.rear: lowercase = data def A__ ( self ): """simple docstring""" self.check_can_perform_operation() if self.rear is None or self.front is None: return None if self.front == self.rear: lowercase = self.front.data lowercase = None return data lowercase = self.front lowercase = old_front.next lowercase = old_front.data lowercase = None return data def A__ ( self ): """simple docstring""" if self.is_empty(): raise Exception("""Empty Queue""" ) def A__ ( self ): """simple docstring""" if self.rear and self.rear.next == self.front: raise Exception("""Full Queue""" ) class _A : def __init__( self ): """simple docstring""" lowercase = None lowercase = None lowercase = None if __name__ == "__main__": import doctest doctest.testmod()
197
1
def A_ ( A__ = 100 ) -> int: a__ : Optional[Any] = (n * (n + 1) // 2) ** 2 a__ : Dict = n * (n + 1) * (2 * n + 1) // 6 return sum_cubes - sum_squares if __name__ == "__main__": print(F"""{solution() = }""")
225
import enum import shutil import sys lowercase , lowercase : List[Any] = shutil.get_terminal_size() lowercase : Union[str, Any] = {"""UP""": """A""", """DOWN""": """B""", """RIGHT""": """C""", """LEFT""": """D"""} class A__ ( enum.Enum ): """simple docstring""" __A : List[str] = 0 __A : str = 1 def A_ ( A__ , A__="" ) -> int: sys.stdout.write(str(A__ ) + end ) sys.stdout.flush() def A_ ( A__ , A__ , A__="" ) -> int: forceWrite(F'\u001b[{color}m{content}\u001b[0m' , A__ ) def A_ ( ) -> Any: forceWrite('\r' ) def A_ ( A__ , A__ ) -> List[str]: forceWrite(F'\033[{num_lines}{CURSOR_TO_CHAR[direction.upper()]}' ) def A_ ( ) -> Any: forceWrite(' ' * TERMINAL_WIDTH ) reset_cursor() def A_ ( ) -> Any: reset_cursor() forceWrite('-' * TERMINAL_WIDTH )
225
1
import numpy as np from sklearn.datasets import fetch_california_housing from sklearn.metrics import mean_absolute_error, mean_squared_error from sklearn.model_selection import train_test_split from xgboost import XGBRegressor def A_ ( A__ ) -> tuple: return (data["data"], data["target"]) def A_ ( A__ , A__ , A__ ) -> np.ndarray: a__ : int = XGBRegressor(verbosity=0 , random_state=42 ) xgb.fit(A__ , A__ ) # Predict target for test data a__ : Union[str, Any] = xgb.predict(A__ ) a__ : Optional[Any] = predictions.reshape(len(A__ ) , 1 ) return predictions def A_ ( ) -> None: a__ : List[str] = fetch_california_housing() a__ , a__ : int = data_handling(A__ ) a__ , a__ , a__ , a__ : Optional[int] = train_test_split( A__ , A__ , test_size=0.25 , random_state=1 ) a__ : Optional[Any] = xgboost(A__ , A__ , A__ ) # Error printing print(F'Mean Absolute Error : {mean_absolute_error(A__ , A__ )}' ) print(F'Mean Square Error : {mean_squared_error(A__ , A__ )}' ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
99
import inspect import unittest from transformers import SegformerConfig, is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_MAPPING, SegformerForImageClassification, SegformerForSemanticSegmentation, SegformerModel, ) from transformers.models.segformer.modeling_segformer import SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import SegformerImageProcessor class A__ ( __UpperCAmelCase ): """simple docstring""" def __lowercase ( self) -> Tuple: '''simple docstring''' a__ : Dict = self.config_class(**self.inputs_dict) self.parent.assertTrue(hasattr(lowercase , 'hidden_sizes')) self.parent.assertTrue(hasattr(lowercase , 'num_attention_heads')) self.parent.assertTrue(hasattr(lowercase , 'num_encoder_blocks')) class A__ : """simple docstring""" def __init__( self , lowercase , lowercase=13 , lowercase=64 , lowercase=3 , lowercase=4 , lowercase=[2, 2, 2, 2] , lowercase=[8, 4, 2, 1] , lowercase=[16, 32, 64, 128] , lowercase=[1, 4, 8, 16] , lowercase=[1, 2, 4, 8] , lowercase=True , lowercase=True , lowercase="gelu" , lowercase=0.1 , lowercase=0.1 , lowercase=0.02 , lowercase=3 , lowercase=None , ) -> Tuple: '''simple docstring''' a__ : Optional[Any] = parent a__ : int = batch_size a__ : Tuple = image_size a__ : Union[str, Any] = num_channels a__ : str = num_encoder_blocks a__ : Dict = sr_ratios a__ : Dict = depths a__ : Union[str, Any] = hidden_sizes a__ : str = downsampling_rates a__ : Tuple = num_attention_heads a__ : Optional[Any] = is_training a__ : Union[str, Any] = use_labels a__ : Any = hidden_act a__ : Optional[int] = hidden_dropout_prob a__ : int = attention_probs_dropout_prob a__ : Optional[Any] = initializer_range a__ : Tuple = num_labels a__ : Union[str, Any] = scope def __lowercase ( self) -> Any: '''simple docstring''' a__ : Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) a__ : str = None if self.use_labels: a__ : Dict = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels) a__ : Any = self.get_config() return config, pixel_values, labels def __lowercase ( self) -> Any: '''simple docstring''' return SegformerConfig( image_size=self.image_size , num_channels=self.num_channels , num_encoder_blocks=self.num_encoder_blocks , depths=self.depths , hidden_sizes=self.hidden_sizes , num_attention_heads=self.num_attention_heads , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , ) def __lowercase ( self , lowercase , lowercase , lowercase) -> Dict: '''simple docstring''' a__ : Dict = SegformerModel(config=lowercase) model.to(lowercase) model.eval() a__ : Optional[Any] = model(lowercase) a__ : Optional[Any] = self.image_size // (self.downsampling_rates[-1] * 2) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], expected_height, expected_width)) def __lowercase ( self , lowercase , lowercase , lowercase) -> str: '''simple docstring''' a__ : Optional[Any] = self.num_labels a__ : List[str] = SegformerForSemanticSegmentation(lowercase) model.to(lowercase) model.eval() a__ : List[str] = model(lowercase) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size // 4, self.image_size // 4)) a__ : int = model(lowercase , labels=lowercase) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size // 4, self.image_size // 4)) self.parent.assertGreater(result.loss , 0.0) def __lowercase ( self , lowercase , lowercase , lowercase) -> Optional[int]: '''simple docstring''' a__ : Union[str, Any] = 1 a__ : Optional[int] = SegformerForSemanticSegmentation(config=lowercase) model.to(lowercase) model.eval() a__ : Union[str, Any] = torch.randint(0 , 1 , (self.batch_size, self.image_size, self.image_size)).to(lowercase) a__ : Optional[Any] = model(lowercase , labels=lowercase) self.parent.assertGreater(result.loss , 0.0) def __lowercase ( self) -> int: '''simple docstring''' a__ : Any = self.prepare_config_and_inputs() a__ , a__ , a__ : str = config_and_inputs a__ : Optional[int] = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class A__ ( __UpperCAmelCase , __UpperCAmelCase , unittest.TestCase ): """simple docstring""" __A : Any = ( ( SegformerModel, SegformerForSemanticSegmentation, SegformerForImageClassification, ) if is_torch_available() else () ) __A : List[str] = ( { '''feature-extraction''': SegformerModel, '''image-classification''': SegformerForImageClassification, '''image-segmentation''': SegformerForSemanticSegmentation, } if is_torch_available() else {} ) __A : List[str] = True __A : Any = False __A : Any = False __A : str = False def __lowercase ( self) -> Tuple: '''simple docstring''' a__ : Union[str, Any] = SegformerModelTester(self) a__ : Optional[Any] = SegformerConfigTester(self , config_class=lowercase) def __lowercase ( self) -> List[Any]: '''simple docstring''' self.config_tester.run_common_tests() def __lowercase ( self) -> Tuple: '''simple docstring''' a__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase) def __lowercase ( self) -> Dict: '''simple docstring''' a__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_binary_image_segmentation(*lowercase) def __lowercase ( self) -> Dict: '''simple docstring''' a__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_segmentation(*lowercase) @unittest.skip('SegFormer does not use inputs_embeds') def __lowercase ( self) -> Tuple: '''simple docstring''' pass @unittest.skip('SegFormer does not have get_input_embeddings method and get_output_embeddings methods') def __lowercase ( self) -> str: '''simple docstring''' pass def __lowercase ( self) -> Union[str, Any]: '''simple docstring''' a__ , a__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a__ : List[str] = model_class(lowercase) a__ : Dict = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic a__ : Optional[int] = [*signature.parameters.keys()] a__ : Union[str, Any] = ['pixel_values'] self.assertListEqual(arg_names[:1] , lowercase) def __lowercase ( self) -> str: '''simple docstring''' a__ , a__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() a__ : Tuple = True for model_class in self.all_model_classes: a__ : str = True a__ : List[str] = False a__ : int = True a__ : List[Any] = model_class(lowercase) model.to(lowercase) model.eval() with torch.no_grad(): a__ : Optional[Any] = model(**self._prepare_for_class(lowercase , lowercase)) a__ : Optional[Any] = outputs.attentions a__ : Dict = sum(self.model_tester.depths) self.assertEqual(len(lowercase) , lowercase) # check that output_attentions also work using config del inputs_dict["output_attentions"] a__ : Dict = True a__ : int = model_class(lowercase) model.to(lowercase) model.eval() with torch.no_grad(): a__ : Optional[int] = model(**self._prepare_for_class(lowercase , lowercase)) a__ : Optional[Any] = outputs.attentions self.assertEqual(len(lowercase) , lowercase) # verify the first attentions (first block, first layer) a__ : Tuple = (self.model_tester.image_size // 4) ** 2 a__ : List[str] = (self.model_tester.image_size // (4 * self.model_tester.sr_ratios[0])) ** 2 self.assertListEqual( list(attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads[0], expected_seq_len, expected_reduced_seq_len] , ) # verify the last attentions (last block, last layer) a__ : str = (self.model_tester.image_size // 32) ** 2 a__ : Optional[int] = (self.model_tester.image_size // (32 * self.model_tester.sr_ratios[-1])) ** 2 self.assertListEqual( list(attentions[-1].shape[-3:]) , [self.model_tester.num_attention_heads[-1], expected_seq_len, expected_reduced_seq_len] , ) a__ : Dict = len(lowercase) # Check attention is always last and order is fine a__ : List[Any] = True a__ : Any = True a__ : Dict = model_class(lowercase) model.to(lowercase) model.eval() with torch.no_grad(): a__ : int = model(**self._prepare_for_class(lowercase , lowercase)) self.assertEqual(out_len + 1 , len(lowercase)) a__ : int = outputs.attentions self.assertEqual(len(lowercase) , lowercase) # verify the first attentions (first block, first layer) a__ : List[Any] = (self.model_tester.image_size // 4) ** 2 a__ : Union[str, Any] = (self.model_tester.image_size // (4 * self.model_tester.sr_ratios[0])) ** 2 self.assertListEqual( list(self_attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads[0], expected_seq_len, expected_reduced_seq_len] , ) def __lowercase ( self) -> List[Any]: '''simple docstring''' def check_hidden_states_output(lowercase , lowercase , lowercase): a__ : Optional[Any] = model_class(lowercase) model.to(lowercase) model.eval() with torch.no_grad(): a__ : int = model(**self._prepare_for_class(lowercase , lowercase)) a__ : Union[str, Any] = outputs.hidden_states a__ : Any = self.model_tester.num_encoder_blocks self.assertEqual(len(lowercase) , lowercase) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:]) , [ self.model_tester.hidden_sizes[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] , ) a__ , a__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a__ : List[str] = True check_hidden_states_output(lowercase , lowercase , lowercase) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] a__ : int = True check_hidden_states_output(lowercase , lowercase , lowercase) def __lowercase ( self) -> Any: '''simple docstring''' if not self.model_tester.is_training: return a__ , a__ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() a__ : Tuple = True for model_class in self.all_model_classes: if model_class in get_values(lowercase): continue a__ : Dict = model_class(lowercase) model.to(lowercase) model.train() a__ : str = self._prepare_for_class(lowercase , lowercase , return_labels=lowercase) a__ : Optional[int] = model(**lowercase).loss loss.backward() @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.') def __lowercase ( self) -> Union[str, Any]: '''simple docstring''' pass @slow def __lowercase ( self) -> Tuple: '''simple docstring''' for model_name in SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a__ : Optional[Any] = SegformerModel.from_pretrained(lowercase) self.assertIsNotNone(lowercase) def A_ ( ) -> int: a__ : str = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch class A__ ( unittest.TestCase ): """simple docstring""" @slow def __lowercase ( self) -> Any: '''simple docstring''' a__ : Dict = SegformerImageProcessor( image_scale=(512, 512) , keep_ratio=lowercase , align=lowercase , do_random_crop=lowercase) a__ : int = SegformerForSemanticSegmentation.from_pretrained('nvidia/segformer-b0-finetuned-ade-512-512').to( lowercase) a__ : Optional[int] = prepare_img() a__ : Optional[int] = image_processor(images=lowercase , return_tensors='pt') a__ : List[str] = encoded_inputs.pixel_values.to(lowercase) with torch.no_grad(): a__ : Optional[int] = model(lowercase) a__ : Union[str, Any] = torch.Size((1, model.config.num_labels, 128, 128)) self.assertEqual(outputs.logits.shape , lowercase) a__ : Dict = torch.tensor( [ [[-4.63_10, -5.52_32, -6.23_56], [-5.19_21, -6.14_44, -6.59_96], [-5.44_24, -6.27_90, -6.75_74]], [[-12.13_91, -13.31_22, -13.95_54], [-12.87_32, -13.93_52, -14.35_63], [-12.94_38, -13.82_26, -14.25_13]], [[-12.51_34, -13.46_86, -14.49_15], [-12.86_69, -14.43_43, -14.77_58], [-13.25_23, -14.58_19, -15.06_94]], ]).to(lowercase) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3, :3] , lowercase , atol=1e-4)) @slow def __lowercase ( self) -> Union[str, Any]: '''simple docstring''' a__ : Dict = SegformerImageProcessor( image_scale=(512, 512) , keep_ratio=lowercase , align=lowercase , do_random_crop=lowercase) a__ : List[str] = SegformerForSemanticSegmentation.from_pretrained( 'nvidia/segformer-b1-finetuned-cityscapes-1024-1024').to(lowercase) a__ : Dict = prepare_img() a__ : Optional[int] = image_processor(images=lowercase , return_tensors='pt') a__ : List[str] = encoded_inputs.pixel_values.to(lowercase) with torch.no_grad(): a__ : Optional[Any] = model(lowercase) a__ : List[Any] = torch.Size((1, model.config.num_labels, 128, 128)) self.assertEqual(outputs.logits.shape , lowercase) a__ : Optional[Any] = torch.tensor( [ [[-13.57_48, -13.91_11, -12.65_00], [-14.35_00, -15.36_83, -14.23_28], [-14.75_32, -16.04_24, -15.60_87]], [[-17.16_51, -15.87_25, -12.96_53], [-17.25_80, -17.37_18, -14.82_23], [-16.60_58, -16.87_83, -16.74_52]], [[-3.64_56, -3.02_09, -1.42_03], [-3.07_97, -3.19_59, -2.00_00], [-1.87_57, -1.92_17, -1.69_97]], ]).to(lowercase) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3, :3] , lowercase , atol=1e-1)) @slow def __lowercase ( self) -> Dict: '''simple docstring''' a__ : List[str] = SegformerImageProcessor( image_scale=(512, 512) , keep_ratio=lowercase , align=lowercase , do_random_crop=lowercase) a__ : List[str] = SegformerForSemanticSegmentation.from_pretrained('nvidia/segformer-b0-finetuned-ade-512-512').to( lowercase) a__ : Any = prepare_img() a__ : Optional[Any] = image_processor(images=lowercase , return_tensors='pt') a__ : Optional[int] = encoded_inputs.pixel_values.to(lowercase) with torch.no_grad(): a__ : Union[str, Any] = model(lowercase) a__ : int = outputs.logits.detach().cpu() a__ : List[str] = image_processor.post_process_semantic_segmentation(outputs=lowercase , target_sizes=[(500, 300)]) a__ : Optional[Any] = torch.Size((500, 300)) self.assertEqual(segmentation[0].shape , lowercase) a__ : Any = image_processor.post_process_semantic_segmentation(outputs=lowercase) a__ : Union[str, Any] = torch.Size((128, 128)) self.assertEqual(segmentation[0].shape , lowercase)
99
1
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __lowercase : Optional[Any] = logging.get_logger(__name__) __lowercase : int = { 'microsoft/beit-base-patch16-224-pt22k': ( 'https://huggingface.co/microsoft/beit-base-patch16-224-pt22k/resolve/main/config.json' ), # See all BEiT models at https://huggingface.co/models?filter=beit } class __UpperCamelCase ( lowerCAmelCase_ ): A_ = "beit" def __init__( self , __a=8192 , __a=768 , __a=12 , __a=12 , __a=3072 , __a="gelu" , __a=0.0 , __a=0.0 , __a=0.02 , __a=1E-1_2 , __a=224 , __a=16 , __a=3 , __a=False , __a=False , __a=False , __a=False , __a=0.1 , __a=0.1 , __a=True , __a=[3, 5, 7, 11] , __a=[1, 2, 3, 6] , __a=True , __a=0.4 , __a=256 , __a=1 , __a=False , __a=255 , **__a , ): '''simple docstring''' super().__init__(**__a ) __a : Any = vocab_size __a : Optional[Any] = hidden_size __a : Union[str, Any] = num_hidden_layers __a : Tuple = num_attention_heads __a : Tuple = intermediate_size __a : str = hidden_act __a : List[str] = hidden_dropout_prob __a : Tuple = attention_probs_dropout_prob __a : List[Any] = initializer_range __a : Optional[int] = layer_norm_eps __a : Any = image_size __a : Optional[Any] = patch_size __a : Dict = num_channels __a : List[str] = use_mask_token __a : Any = use_absolute_position_embeddings __a : List[str] = use_relative_position_bias __a : int = use_shared_relative_position_bias __a : int = layer_scale_init_value __a : Union[str, Any] = drop_path_rate __a : List[Any] = use_mean_pooling # decode head attributes (semantic segmentation) __a : List[str] = out_indices __a : Tuple = pool_scales # auxiliary head attributes (semantic segmentation) __a : Any = use_auxiliary_head __a : Union[str, Any] = auxiliary_loss_weight __a : List[Any] = auxiliary_channels __a : Union[str, Any] = auxiliary_num_convs __a : Dict = auxiliary_concat_input __a : Tuple = semantic_loss_ignore_index class __UpperCamelCase ( lowerCAmelCase_ ): A_ = version.parse("1.11" ) @property def __UpperCAmelCase ( self ): '''simple docstring''' return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def __UpperCAmelCase ( self ): '''simple docstring''' return 1E-4
360
'''simple docstring''' import shutil import tempfile import unittest from transformers import ClapFeatureExtractor, ClapProcessor, RobertaTokenizer, RobertaTokenizerFast from transformers.testing_utils import require_sentencepiece, require_torchaudio from .test_feature_extraction_clap import floats_list @require_torchaudio @require_sentencepiece class __UpperCamelCase ( unittest.TestCase ): def __UpperCAmelCase ( self ): '''simple docstring''' __a : Optional[Any] = 'laion/clap-htsat-unfused' __a : Optional[Any] = tempfile.mkdtemp() def __UpperCAmelCase ( self , **__a ): '''simple docstring''' return RobertaTokenizer.from_pretrained(self.checkpoint , **__a ) def __UpperCAmelCase ( self , **__a ): '''simple docstring''' return ClapFeatureExtractor.from_pretrained(self.checkpoint , **__a ) def __UpperCAmelCase ( self ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) def __UpperCAmelCase ( self ): '''simple docstring''' __a : Any = self.get_tokenizer() __a : List[str] = self.get_feature_extractor() __a : Any = ClapProcessor(tokenizer=__a , feature_extractor=__a ) processor.save_pretrained(self.tmpdirname ) __a : Tuple = ClapProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , __a ) self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , __a ) def __UpperCAmelCase ( self ): '''simple docstring''' __a : str = ClapProcessor(tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() ) processor.save_pretrained(self.tmpdirname ) __a : int = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' ) __a : List[str] = self.get_feature_extractor(do_normalize=__a , padding_value=1.0 ) __a : Tuple = ClapProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=__a , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , __a ) self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.feature_extractor , __a ) def __UpperCAmelCase ( self ): '''simple docstring''' __a : str = self.get_feature_extractor() __a : int = self.get_tokenizer() __a : str = ClapProcessor(tokenizer=__a , feature_extractor=__a ) __a : int = floats_list((3, 1000) ) __a : str = feature_extractor(__a , return_tensors='np' ) __a : int = processor(audios=__a , return_tensors='np' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def __UpperCAmelCase ( self ): '''simple docstring''' __a : Union[str, Any] = self.get_feature_extractor() __a : Any = self.get_tokenizer() __a : Any = ClapProcessor(tokenizer=__a , feature_extractor=__a ) __a : Union[str, Any] = 'This is a test string' __a : Union[str, Any] = processor(text=__a ) __a : Tuple = tokenizer(__a ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def __UpperCAmelCase ( self ): '''simple docstring''' __a : str = self.get_feature_extractor() __a : str = self.get_tokenizer() __a : List[str] = ClapProcessor(tokenizer=__a , feature_extractor=__a ) __a : Dict = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __a : Optional[int] = processor.batch_decode(__a ) __a : Optional[Any] = tokenizer.batch_decode(__a ) self.assertListEqual(__a , __a ) def __UpperCAmelCase ( self ): '''simple docstring''' __a : Optional[Any] = self.get_feature_extractor() __a : Optional[int] = self.get_tokenizer() __a : int = ClapProcessor(tokenizer=__a , feature_extractor=__a ) self.assertListEqual( processor.model_input_names[2:] , feature_extractor.model_input_names , msg='`processor` and `feature_extractor` model input names do not match' , )
294
0
"""simple docstring""" import argparse import requests import torch # pip3 install salesforce-lavis # I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis_float32 (there's also the fix_lavis branch) # also note: to convert Vicuna checkpoints, we had to include /home/niels/python_projects/checkpoints/FastChat/vicuna-7b in lavis/configs/models/blip2/blip2_instruct_vicuna7b.yaml # same for Vicuna-13b from lavis.models import load_model_and_preprocess from PIL import Image from transformers import ( AutoTokenizer, BlipImageProcessor, InstructBlipConfig, InstructBlipForConditionalGeneration, InstructBlipProcessor, InstructBlipQFormerConfig, InstructBlipVisionConfig, LlamaConfig, LlamaTokenizerFast, TaConfig, TaTokenizerFast, ) from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD def A ( ) -> Optional[int]: __UpperCamelCase = 'https://raw.githubusercontent.com/salesforce/LAVIS/main/docs/_static/Confusing-Pictures.jpg' __UpperCamelCase = Image.open(requests.get(snake_case , stream=snake_case ).raw ).convert('RGB' ) return image def A ( snake_case :List[Any] ) -> Dict: __UpperCamelCase = [] # fmt: off # vision encoder rename_keys.append(('visual_encoder.cls_token', 'vision_model.embeddings.class_embedding') ) rename_keys.append(('visual_encoder.pos_embed', 'vision_model.embeddings.position_embedding') ) rename_keys.append(('visual_encoder.patch_embed.proj.weight', 'vision_model.embeddings.patch_embedding.weight') ) rename_keys.append(('visual_encoder.patch_embed.proj.bias', 'vision_model.embeddings.patch_embedding.bias') ) rename_keys.append(('ln_vision.weight', 'vision_model.post_layernorm.weight') ) rename_keys.append(('ln_vision.bias', 'vision_model.post_layernorm.bias') ) for i in range(config.vision_config.num_hidden_layers ): rename_keys.append((f'visual_encoder.blocks.{i}.norm1.weight', f'vision_model.encoder.layers.{i}.layer_norm1.weight') ) rename_keys.append((f'visual_encoder.blocks.{i}.norm1.bias', f'vision_model.encoder.layers.{i}.layer_norm1.bias') ) rename_keys.append((f'visual_encoder.blocks.{i}.norm2.weight', f'vision_model.encoder.layers.{i}.layer_norm2.weight') ) rename_keys.append((f'visual_encoder.blocks.{i}.norm2.bias', f'vision_model.encoder.layers.{i}.layer_norm2.bias') ) rename_keys.append((f'visual_encoder.blocks.{i}.attn.qkv.weight', f'vision_model.encoder.layers.{i}.self_attn.qkv.weight') ) rename_keys.append((f'visual_encoder.blocks.{i}.attn.proj.weight', f'vision_model.encoder.layers.{i}.self_attn.projection.weight',) ) rename_keys.append((f'visual_encoder.blocks.{i}.attn.proj.bias', f'vision_model.encoder.layers.{i}.self_attn.projection.bias') ) rename_keys.append((f'visual_encoder.blocks.{i}.mlp.fc1.weight', f'vision_model.encoder.layers.{i}.mlp.fc1.weight') ) rename_keys.append((f'visual_encoder.blocks.{i}.mlp.fc1.bias', f'vision_model.encoder.layers.{i}.mlp.fc1.bias') ) rename_keys.append((f'visual_encoder.blocks.{i}.mlp.fc2.weight', f'vision_model.encoder.layers.{i}.mlp.fc2.weight') ) rename_keys.append((f'visual_encoder.blocks.{i}.mlp.fc2.bias', f'vision_model.encoder.layers.{i}.mlp.fc2.bias') ) # QFormer rename_keys.append(('Qformer.bert.embeddings.LayerNorm.weight', 'qformer.embeddings.layernorm.weight') ) rename_keys.append(('Qformer.bert.embeddings.LayerNorm.bias', 'qformer.embeddings.layernorm.bias') ) # fmt: on return rename_keys def A ( snake_case :Optional[Any] , snake_case :str , snake_case :Tuple ) -> Any: __UpperCamelCase = dct.pop(snake_case ) __UpperCamelCase = val def A ( snake_case :List[str] , snake_case :int ) -> Optional[Any]: for i in range(config.vision_config.num_hidden_layers ): # read in original q and v biases __UpperCamelCase = state_dict.pop(f'visual_encoder.blocks.{i}.attn.q_bias' ) __UpperCamelCase = state_dict.pop(f'visual_encoder.blocks.{i}.attn.v_bias' ) # next, set bias in the state dict __UpperCamelCase = torch.cat((q_bias, torch.zeros_like(snake_case , requires_grad=snake_case ), v_bias) ) __UpperCamelCase = qkv_bias def A ( snake_case :Optional[int] ) -> Tuple: __UpperCamelCase = 3_6_4 if 'coco' in model_name else 2_2_4 __UpperCamelCase = InstructBlipVisionConfig(image_size=snake_case ).to_dict() # make sure the models have proper bos_token_id and eos_token_id set (important for generation) # seems like flan-T5 models don't have bos_token_id properly set? if "t5-xl" in model_name: __UpperCamelCase = TaConfig.from_pretrained('google/flan-t5-xl' , dense_act_fn='gelu' , bos_token_id=1 ).to_dict() elif "t5-xxl" in model_name: __UpperCamelCase = TaConfig.from_pretrained('google/flan-t5-xxl' , dense_act_fn='gelu' , bos_token_id=1 ).to_dict() elif "vicuna-7b" in model_name: __UpperCamelCase = LlamaConfig.from_pretrained('decapoda-research/llama-7b-hf' , vocab_size=3_2_0_0_1 ).to_dict() elif "vicuna-13b" in model_name: __UpperCamelCase = LlamaConfig.from_pretrained('decapoda-research/llama-13b-hf' , vocab_size=3_2_0_0_1 ).to_dict() else: raise ValueError('Model name not supported' ) # the authors add one special "[DEC]" token to the vocab of Q-Former, hence vocab size = 30522 + 1 __UpperCamelCase = InstructBlipQFormerConfig(vocab_size=3_0_5_2_3 ).to_dict() __UpperCamelCase = InstructBlipConfig(vision_config=snake_case , text_config=snake_case , qformer_config=snake_case ) return config, image_size @torch.no_grad() def A ( snake_case :Any , snake_case :str=None , snake_case :Optional[int]=False ) -> List[str]: __UpperCamelCase = AutoTokenizer.from_pretrained('bert-base-uncased' , truncation_side='left' ) qformer_tokenizer.add_special_tokens({'bos_token': '[DEC]'} ) if "t5" in model_name: __UpperCamelCase = TaTokenizerFast.from_pretrained('google/flan-t5-xl' , truncation_side='left' ) elif "vicuna" in model_name: # the following was used in the original implementation: # tokenizer = LlamaTokenizer.from_pretrained("huggyllama/llama-7b", use_fast=False, truncation_side="left") # tokenizer.add_special_tokens({"pad_token": "[PAD]"}) # tokenizer.add_special_tokens({"bos_token": "</s>"}) # tokenizer.add_special_tokens({"eos_token": "</s>"}) # tokenizer.add_special_tokens({"unk_token": "</s>"}) __UpperCamelCase = LlamaTokenizerFast.from_pretrained( 'huggyllama/llama-7b' , truncation_side='left' , bos_token='</s>' , unk_token='</s>' ) tokenizer.add_special_tokens({'pad_token': '[PAD]'} ) __UpperCamelCase , __UpperCamelCase = get_blipa_config(snake_case ) __UpperCamelCase = InstructBlipForConditionalGeneration(snake_case ).eval() __UpperCamelCase = { 'instructblip-vicuna-7b': ('blip2_vicuna_instruct', 'vicuna7b'), 'instructblip-vicuna-13b': ('blip2_vicuna_instruct', 'vicuna13b'), 'instructblip-flan-t5-xl': ('blip2_t5_instruct', 'flant5xl'), 'instructblip-flan-t5-xxl': ('blip2_t5_instruct', 'flant5xxl'), } __UpperCamelCase , __UpperCamelCase = model_name_to_original[model_name] # load original model print('Loading original model...' ) __UpperCamelCase = 'cuda:1' if torch.cuda.is_available() else 'cpu' __UpperCamelCase = 'cuda:2' if torch.cuda.is_available() else 'cpu' __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = load_model_and_preprocess( name=snake_case , model_type=snake_case , is_eval=snake_case , device=snake_case ) original_model.eval() print('Done!' ) # update state dict keys __UpperCamelCase = original_model.state_dict() __UpperCamelCase = create_rename_keys(snake_case ) for src, dest in rename_keys: rename_key(snake_case , snake_case , snake_case ) # some keys can be renamed efficiently for key, val in state_dict.copy().items(): __UpperCamelCase = state_dict.pop(snake_case ) if key.startswith('Qformer.bert' ): __UpperCamelCase = key.replace('Qformer.bert' , 'qformer' ) if "attention.self" in key: __UpperCamelCase = key.replace('self' , 'attention' ) if "llm_proj" in key: __UpperCamelCase = key.replace('llm_proj' , 'language_projection' ) if "t5_proj" in key: __UpperCamelCase = key.replace('t5_proj' , 'language_projection' ) if key.startswith('llm_model' ): __UpperCamelCase = key.replace('llm_model' , 'language_model' ) if key.startswith('t5' ): __UpperCamelCase = key.replace('t5' , 'language' ) __UpperCamelCase = val # read in qv biases read_in_q_v_bias(snake_case , snake_case ) # note: weights get loaded in torch.float32 by default hf_model.load_state_dict(snake_case , strict=snake_case ) __UpperCamelCase = load_demo_image() __UpperCamelCase = 'What is unusual about this image?' # create processor __UpperCamelCase = BlipImageProcessor( size={'height': image_size, 'width': image_size} , image_mean=snake_case , image_std=snake_case ) __UpperCamelCase = InstructBlipProcessor( image_processor=snake_case , tokenizer=snake_case , qformer_tokenizer=snake_case , ) __UpperCamelCase = processor(images=snake_case , text=snake_case , return_tensors='pt' ).to(snake_case ) # make sure processor creates exact same pixel values __UpperCamelCase = vis_processors['eval'](snake_case ).unsqueeze(0 ).to(snake_case ) __UpperCamelCase = inputs.pixel_values assert torch.allclose(original_pixel_values.to(pixel_values.device ) , snake_case ) original_model.to(snake_case ) hf_model.to(snake_case ) with torch.no_grad(): if "vicuna" in model_name: __UpperCamelCase = original_model({'image': original_pixel_values, 'text_input': [prompt]} ).logits __UpperCamelCase = hf_model(**snake_case ).logits else: __UpperCamelCase = original_model( {'image': original_pixel_values, 'text_input': [prompt], 'text_output': ['\n']} ).logits __UpperCamelCase = tokenizer('\n' , return_tensors='pt' ).input_ids.to(snake_case ) __UpperCamelCase = label_input_ids.masked_fill(label_input_ids == tokenizer.pad_token_id , -1_0_0 ) __UpperCamelCase = hf_model(**snake_case , labels=snake_case ).logits print('First values of original logits:' , original_logits[0, :3, :3] ) print('First values of HF logits:' , logits[0, :3, :3] ) # assert values assert original_logits.shape == logits.shape __UpperCamelCase = 1e-4 if 'vicuna' in model_name else 1e-5 assert torch.allclose(original_logits.to(logits.device ) , snake_case , atol=snake_case ) print('Looks ok!' ) print('Generating with original model...' ) __UpperCamelCase = original_model.generate({'image': original_pixel_values, 'prompt': prompt} , num_beams=5 ) # important: we need to cast the weights of the HF model to the appropriate type print('Generating with HF model...' ) __UpperCamelCase = hf_model.generate( **snake_case , do_sample=snake_case , num_beams=5 , max_length=2_5_6 , min_length=1 , top_p=0.9 , repetition_penalty=1.5 , length_penalty=1.0 , temperature=1 , ) if "vicuna" in model_name: # convert output id 0 to 2 (eos_token_id) # TODO add this in the generate method? __UpperCamelCase = 2 print('Original generation:' , snake_case ) __UpperCamelCase = processor.batch_decode(snake_case , skip_special_tokens=snake_case ) __UpperCamelCase = [text.strip() for text in output_text] print('HF generation:' , snake_case ) if pytorch_dump_folder_path is not None: processor.save_pretrained(snake_case ) hf_model.save_pretrained(snake_case ) if push_to_hub: processor.push_to_hub(f'Salesforce/{model_name}' ) hf_model.push_to_hub(f'Salesforce/{model_name}' ) if __name__ == "__main__": UpperCamelCase : List[str] = argparse.ArgumentParser() UpperCamelCase : List[Any] = [ "instructblip-vicuna-7b", "instructblip-vicuna-13b", "instructblip-flan-t5-xl", "instructblip-flan-t5-xxl", ] parser.add_argument( "--model_name", default="instructblip-flan-t5-xl", choices=choices, type=str, help="Path to hf config.json of model to convert", ) parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument( "--push_to_hub", action="store_true", help="Whether to push the model and processor to the hub after converting", ) UpperCamelCase : Dict = parser.parse_args() convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
316
"""simple docstring""" import argparse from pathlib import Path import torch from packaging import version from torch.onnx import export from diffusers import AutoencoderKL UpperCamelCase : Union[str, Any] = version.parse(version.parse(torch.__version__).base_version) < version.parse("1.11") def A ( snake_case :str , snake_case :tuple , snake_case :Path , snake_case :Dict , snake_case :int , snake_case :List[str] , snake_case :Union[str, Any] , snake_case :Union[str, Any]=False , ) -> str: output_path.parent.mkdir(parents=snake_case , exist_ok=snake_case ) # PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11, # so we check the torch version for backwards compatibility if is_torch_less_than_1_11: export( snake_case , snake_case , f=output_path.as_posix() , input_names=snake_case , output_names=snake_case , dynamic_axes=snake_case , do_constant_folding=snake_case , use_external_data_format=snake_case , enable_onnx_checker=snake_case , opset_version=snake_case , ) else: export( snake_case , snake_case , f=output_path.as_posix() , input_names=snake_case , output_names=snake_case , dynamic_axes=snake_case , do_constant_folding=snake_case , opset_version=snake_case , ) @torch.no_grad() def A ( snake_case :str , snake_case :str , snake_case :int , snake_case :bool = False ) -> List[str]: __UpperCamelCase = torch.floataa if fpaa else torch.floataa if fpaa and torch.cuda.is_available(): __UpperCamelCase = 'cuda' elif fpaa and not torch.cuda.is_available(): raise ValueError('`float16` model export is only supported on GPUs with CUDA' ) else: __UpperCamelCase = 'cpu' __UpperCamelCase = Path(snake_case ) # VAE DECODER __UpperCamelCase = AutoencoderKL.from_pretrained(model_path + '/vae' ) __UpperCamelCase = vae_decoder.config.latent_channels # forward only through the decoder part __UpperCamelCase = vae_decoder.decode onnx_export( snake_case , model_args=( torch.randn(1 , snake_case , 2_5 , 2_5 ).to(device=snake_case , dtype=snake_case ), False, ) , output_path=output_path / 'vae_decoder' / 'model.onnx' , ordered_input_names=['latent_sample', 'return_dict'] , output_names=['sample'] , dynamic_axes={ 'latent_sample': {0: 'batch', 1: 'channels', 2: 'height', 3: 'width'}, } , opset=snake_case , ) del vae_decoder if __name__ == "__main__": UpperCamelCase : Dict = argparse.ArgumentParser() parser.add_argument( "--model_path", type=str, required=True, help="Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).", ) parser.add_argument("--output_path", type=str, required=True, help="Path to the output model.") parser.add_argument( "--opset", default=1_4, type=int, help="The version of the ONNX operator set to use.", ) parser.add_argument("--fp16", action="store_true", default=False, help="Export the models in `float16` mode") UpperCamelCase : List[Any] = parser.parse_args() print(args.output_path) convert_models(args.model_path, args.output_path, args.opset, args.fpaa) print("SD: Done: ONNX")
316
1
from __future__ import annotations from collections.abc import Iterator from typing import Generic, TypeVar SCREAMING_SNAKE_CASE :Any = TypeVar('T') class UpperCAmelCase ( Generic[T] ): '''simple docstring''' def __init__( self : Optional[Any] ,A : T ): __A = data __A = None def __str__( self : Optional[int] ): return f'''{self.data}''' class UpperCAmelCase ( Generic[T] ): '''simple docstring''' def __init__( self : List[str] ): __A = None def __iter__( self : str ): __A = self.top while node: yield node.data __A = node.next def __str__( self : Optional[int] ): return "->".join([str(__UpperCAmelCase ) for item in self] ) def __len__( self : Any ): return len(tuple(iter(self ) ) ) def UpperCamelCase_ ( self : Optional[int] ): return self.top is None def UpperCamelCase_ ( self : List[Any] ,A : T ): __A = Node(__UpperCAmelCase ) if not self.is_empty(): __A = self.top __A = node def UpperCamelCase_ ( self : str ): if self.is_empty(): raise IndexError("pop from empty stack" ) assert isinstance(self.top ,__UpperCAmelCase ) __A = self.top __A = self.top.next return pop_node.data def UpperCamelCase_ ( self : Optional[int] ): if self.is_empty(): raise IndexError("peek from empty stack" ) assert self.top is not None return self.top.data def UpperCamelCase_ ( self : Tuple ): __A = None if __name__ == "__main__": from doctest import testmod testmod()
354
from math import log from scipy.constants import Boltzmann, physical_constants SCREAMING_SNAKE_CASE :Dict = 300 # TEMPERATURE (unit = K) def UpperCAmelCase ( a_ , a_ , a_ , ) -> float: """simple docstring""" if donor_conc <= 0: raise ValueError("Donor concentration should be positive" ) elif acceptor_conc <= 0: raise ValueError("Acceptor concentration should be positive" ) elif intrinsic_conc <= 0: raise ValueError("Intrinsic concentration should be positive" ) elif donor_conc <= intrinsic_conc: raise ValueError( "Donor concentration should be greater than intrinsic concentration" ) elif acceptor_conc <= intrinsic_conc: raise ValueError( "Acceptor concentration should be greater than intrinsic concentration" ) else: return ( Boltzmann * T * log((donor_conc * acceptor_conc) / intrinsic_conc**2 ) / physical_constants["electron volt"][0] ) if __name__ == "__main__": import doctest doctest.testmod()
124
0
import argparse import json from tqdm import tqdm def lowerCAmelCase_ ( ): _A : str = argparse.ArgumentParser() # Required parameters parser.add_argument( """--src_path""",type=snake_case_,default="""biencoder-nq-dev.json""",help="""Path to raw DPR training data""",) parser.add_argument( """--evaluation_set""",type=snake_case_,help="""where to store parsed evaluation_set file""",) parser.add_argument( """--gold_data_path""",type=snake_case_,help="""where to store parsed gold_data_path file""",) _A : str = parser.parse_args() with open(args.src_path,"""r""" ) as src_file, open(args.evaluation_set,"""w""" ) as eval_file, open( args.gold_data_path,"""w""" ) as gold_file: _A : List[Any] = json.load(snake_case_ ) for dpr_record in tqdm(snake_case_ ): _A : Union[str, Any] = dpr_record["""question"""] _A : List[str] = [context["""title"""] for context in dpr_record["""positive_ctxs"""]] eval_file.write(question + """\n""" ) gold_file.write("""\t""".join(snake_case_ ) + """\n""" ) if __name__ == "__main__": main()
26
import argparse import collections import json from pathlib import Path import requests import torch import yaml from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileViTImageProcessor, MobileViTVaConfig, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, ) from transformers.utils import logging logging.set_verbosity_info() _lowerCamelCase : Optional[int] = logging.get_logger(__name__) def a__ ( UpperCAmelCase : Union[str, Any] ) -> Optional[Any]: print('''Loading config file...''' ) def flatten_yaml_as_dict(UpperCAmelCase : Tuple , UpperCAmelCase : Any="" , UpperCAmelCase : Dict="." ): UpperCAmelCase : List[str] = [] for k, v in d.items(): UpperCAmelCase : List[Any] = parent_key + sep + k if parent_key else k if isinstance(UpperCAmelCase , collections.abc.MutableMapping ): items.extend(flatten_yaml_as_dict(UpperCAmelCase , UpperCAmelCase , sep=UpperCAmelCase ).items() ) else: items.append((new_key, v) ) return dict(UpperCAmelCase ) UpperCAmelCase : List[str] = argparse.Namespace() with open(UpperCAmelCase , '''r''' ) as yaml_file: try: UpperCAmelCase : List[str] = yaml.load(UpperCAmelCase , Loader=yaml.FullLoader ) UpperCAmelCase : Optional[int] = flatten_yaml_as_dict(UpperCAmelCase ) for k, v in flat_cfg.items(): setattr(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) except yaml.YAMLError as exc: logger.error('''Error while loading config file: {}. Error message: {}'''.format(UpperCAmelCase , str(UpperCAmelCase ) ) ) return config def a__ ( UpperCAmelCase : List[str] , UpperCAmelCase : int ) -> List[Any]: UpperCAmelCase : int = MobileViTVaConfig() UpperCAmelCase : str = False # dataset if task_name.startswith('''imagenet1k_''' ): UpperCAmelCase : Any = 1_000 if int(task_name.strip().split('''_''' )[-1] ) == 384: UpperCAmelCase : Any = 384 else: UpperCAmelCase : Tuple = 256 UpperCAmelCase : int = '''imagenet-1k-id2label.json''' elif task_name.startswith('''imagenet21k_to_1k_''' ): UpperCAmelCase : Optional[Any] = 21_000 if int(task_name.strip().split('''_''' )[-1] ) == 384: UpperCAmelCase : str = 384 else: UpperCAmelCase : Dict = 256 UpperCAmelCase : List[Any] = '''imagenet-22k-id2label.json''' elif task_name.startswith('''ade20k_''' ): UpperCAmelCase : Optional[Any] = 151 UpperCAmelCase : Tuple = 512 UpperCAmelCase : Tuple = '''ade20k-id2label.json''' UpperCAmelCase : Tuple = True elif task_name.startswith('''voc_''' ): UpperCAmelCase : Dict = 21 UpperCAmelCase : str = 512 UpperCAmelCase : Union[str, Any] = '''pascal-voc-id2label.json''' UpperCAmelCase : Dict = True # orig_config UpperCAmelCase : List[Any] = load_orig_config_file(UpperCAmelCase ) assert getattr(UpperCAmelCase , '''model.classification.name''' , -1 ) == "mobilevit_v2", "Invalid model" UpperCAmelCase : Tuple = getattr(UpperCAmelCase , '''model.classification.mitv2.width_multiplier''' , 1.0 ) assert ( getattr(UpperCAmelCase , '''model.classification.mitv2.attn_norm_layer''' , -1 ) == "layer_norm_2d" ), "Norm layers other than layer_norm_2d is not supported" UpperCAmelCase : int = getattr(UpperCAmelCase , '''model.classification.activation.name''' , '''swish''' ) # config.image_size == getattr(orig_config, 'sampler.bs.crop_size_width', 256) if is_segmentation_model: UpperCAmelCase : str = getattr(UpperCAmelCase , '''model.segmentation.output_stride''' , 16 ) if "_deeplabv3" in task_name: UpperCAmelCase : int = getattr(UpperCAmelCase , '''model.segmentation.deeplabv3.aspp_rates''' , [12, 24, 36] ) UpperCAmelCase : Any = getattr(UpperCAmelCase , '''model.segmentation.deeplabv3.aspp_out_channels''' , 512 ) UpperCAmelCase : Optional[Any] = getattr(UpperCAmelCase , '''model.segmentation.deeplabv3.aspp_dropout''' , 0.1 ) # id2label UpperCAmelCase : Union[str, Any] = '''huggingface/label-files''' UpperCAmelCase : List[Any] = json.load(open(hf_hub_download(UpperCAmelCase , UpperCAmelCase , repo_type='''dataset''' ) , '''r''' ) ) UpperCAmelCase : Any = {int(UpperCAmelCase ): v for k, v in idalabel.items()} UpperCAmelCase : int = idalabel UpperCAmelCase : Optional[int] = {v: k for k, v in idalabel.items()} return config def a__ ( UpperCAmelCase : Dict , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Optional[int] ) -> List[str]: UpperCAmelCase : Union[str, Any] = dct.pop(UpperCAmelCase ) UpperCAmelCase : List[str] = val def a__ ( UpperCAmelCase : Union[str, Any] , UpperCAmelCase : int=False ) -> Union[str, Any]: if base_model: UpperCAmelCase : Dict = '''''' else: UpperCAmelCase : Dict = '''mobilevitv2.''' UpperCAmelCase : Optional[int] = [] for k in state_dict.keys(): if k[:8] == "encoder.": UpperCAmelCase : List[str] = k[8:] else: UpperCAmelCase : Dict = k if ".block." in k: UpperCAmelCase : List[Any] = k_new.replace('''.block.''' , '''.''' ) if ".conv." in k: UpperCAmelCase : Optional[int] = k_new.replace('''.conv.''' , '''.convolution.''' ) if ".norm." in k: UpperCAmelCase : List[str] = k_new.replace('''.norm.''' , '''.normalization.''' ) if "conv_1." in k: UpperCAmelCase : Union[str, Any] = k_new.replace('''conv_1.''' , f'''{model_prefix}conv_stem.''' ) for i in [1, 2]: if f'''layer_{i}.''' in k: UpperCAmelCase : Union[str, Any] = k_new.replace(f'''layer_{i}.''' , f'''{model_prefix}encoder.layer.{i-1}.layer.''' ) if ".exp_1x1." in k: UpperCAmelCase : Optional[Any] = k_new.replace('''.exp_1x1.''' , '''.expand_1x1.''' ) if ".red_1x1." in k: UpperCAmelCase : int = k_new.replace('''.red_1x1.''' , '''.reduce_1x1.''' ) for i in [3, 4, 5]: if f'''layer_{i}.0.''' in k: UpperCAmelCase : Any = k_new.replace(f'''layer_{i}.0.''' , f'''{model_prefix}encoder.layer.{i-1}.downsampling_layer.''' ) if f'''layer_{i}.1.local_rep.0.''' in k: UpperCAmelCase : str = k_new.replace(f'''layer_{i}.1.local_rep.0.''' , f'''{model_prefix}encoder.layer.{i-1}.conv_kxk.''' ) if f'''layer_{i}.1.local_rep.1.''' in k: UpperCAmelCase : int = k_new.replace(f'''layer_{i}.1.local_rep.1.''' , f'''{model_prefix}encoder.layer.{i-1}.conv_1x1.''' ) for i in [3, 4, 5]: if i == 3: UpperCAmelCase : Dict = [0, 1] elif i == 4: UpperCAmelCase : Dict = [0, 1, 2, 3] elif i == 5: UpperCAmelCase : int = [0, 1, 2] for j in j_in: if f'''layer_{i}.1.global_rep.{j}.''' in k: UpperCAmelCase : Optional[Any] = k_new.replace( f'''layer_{i}.1.global_rep.{j}.''' , f'''{model_prefix}encoder.layer.{i-1}.transformer.layer.{j}.''' ) if f'''layer_{i}.1.global_rep.{j+1}.''' in k: UpperCAmelCase : Any = k_new.replace( f'''layer_{i}.1.global_rep.{j+1}.''' , f'''{model_prefix}encoder.layer.{i-1}.layernorm.''' ) if f'''layer_{i}.1.conv_proj.''' in k: UpperCAmelCase : Union[str, Any] = k_new.replace(f'''layer_{i}.1.conv_proj.''' , f'''{model_prefix}encoder.layer.{i-1}.conv_projection.''' ) if "pre_norm_attn.0." in k: UpperCAmelCase : Optional[int] = k_new.replace('''pre_norm_attn.0.''' , '''layernorm_before.''' ) if "pre_norm_attn.1." in k: UpperCAmelCase : Optional[Any] = k_new.replace('''pre_norm_attn.1.''' , '''attention.''' ) if "pre_norm_ffn.0." in k: UpperCAmelCase : List[Any] = k_new.replace('''pre_norm_ffn.0.''' , '''layernorm_after.''' ) if "pre_norm_ffn.1." in k: UpperCAmelCase : List[Any] = k_new.replace('''pre_norm_ffn.1.''' , '''ffn.conv1.''' ) if "pre_norm_ffn.3." in k: UpperCAmelCase : Any = k_new.replace('''pre_norm_ffn.3.''' , '''ffn.conv2.''' ) if "classifier.1." in k: UpperCAmelCase : Optional[int] = k_new.replace('''classifier.1.''' , '''classifier.''' ) if "seg_head." in k: UpperCAmelCase : Union[str, Any] = k_new.replace('''seg_head.''' , '''segmentation_head.''' ) if ".aspp_layer." in k: UpperCAmelCase : Tuple = k_new.replace('''.aspp_layer.''' , '''.''' ) if ".aspp_pool." in k: UpperCAmelCase : Optional[int] = k_new.replace('''.aspp_pool.''' , '''.''' ) rename_keys.append((k, k_new) ) return rename_keys def a__ ( UpperCAmelCase : Union[str, Any] ) -> Any: UpperCAmelCase : str = [] for k in state_dict.keys(): if k.startswith('''seg_head.aux_head.''' ): keys_to_ignore.append(UpperCAmelCase ) for k in keys_to_ignore: state_dict.pop(UpperCAmelCase , UpperCAmelCase ) def a__ ( ) -> Union[str, Any]: UpperCAmelCase : int = '''http://images.cocodataset.org/val2017/000000039769.jpg''' # url = "https://cdn.britannica.com/86/141086-050-9D7C75EE/Gulfstream-G450-business-jet-passengers.jpg" UpperCAmelCase : List[str] = Image.open(requests.get(UpperCAmelCase , stream=UpperCAmelCase ).raw ) return im @torch.no_grad() def a__ ( UpperCAmelCase : int , UpperCAmelCase : int , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : List[Any] ) -> Union[str, Any]: UpperCAmelCase : Union[str, Any] = get_mobilevitva_config(UpperCAmelCase , UpperCAmelCase ) # load original state_dict UpperCAmelCase : List[str] = torch.load(UpperCAmelCase , map_location='''cpu''' ) # load huggingface model if task_name.startswith('''ade20k_''' ) or task_name.startswith('''voc_''' ): UpperCAmelCase : str = MobileViTVaForSemanticSegmentation(UpperCAmelCase ).eval() UpperCAmelCase : str = False else: UpperCAmelCase : Union[str, Any] = MobileViTVaForImageClassification(UpperCAmelCase ).eval() UpperCAmelCase : Any = False # remove and rename some keys of load the original model UpperCAmelCase : Optional[Any] = checkpoint remove_unused_keys(UpperCAmelCase ) UpperCAmelCase : Optional[Any] = create_rename_keys(UpperCAmelCase , base_model=UpperCAmelCase ) for rename_key_src, rename_key_dest in rename_keys: rename_key(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) # load modified state_dict model.load_state_dict(UpperCAmelCase ) # Check outputs on an image, prepared by MobileViTImageProcessor UpperCAmelCase : Dict = MobileViTImageProcessor(crop_size=config.image_size , size=config.image_size + 32 ) UpperCAmelCase : Any = image_processor(images=prepare_img() , return_tensors='''pt''' ) UpperCAmelCase : Union[str, Any] = model(**UpperCAmelCase ) # verify classification model if task_name.startswith('''imagenet''' ): UpperCAmelCase : Optional[Any] = outputs.logits UpperCAmelCase : int = logits.argmax(-1 ).item() print('''Predicted class:''' , model.config.idalabel[predicted_class_idx] ) if task_name.startswith('''imagenet1k_256''' ) and config.width_multiplier == 1.0: # expected_logits for base variant UpperCAmelCase : str = torch.tensor([-1.6_336E00, -7.3_204E-02, -5.1_883E-01] ) assert torch.allclose(logits[0, :3] , UpperCAmelCase , atol=1E-4 ) Path(UpperCAmelCase ).mkdir(exist_ok=UpperCAmelCase ) print(f'''Saving model {task_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(UpperCAmelCase ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(UpperCAmelCase ) if __name__ == "__main__": _lowerCamelCase : str = argparse.ArgumentParser() # Required parameters parser.add_argument( "--task", default="imagenet1k_256", type=str, help=( "Name of the task for which the MobileViTV2 model you'd like to convert is trained on . " "\n Classification (ImageNet-1k)\n - MobileViTV2 (256x256) : imagenet1k_256\n - MobileViTV2 (Trained on 256x256 and Finetuned on 384x384) : imagenet1k_384\n - MobileViTV2 (Trained on ImageNet-21k and Finetuned on ImageNet-1k 256x256) :\n imagenet21k_to_1k_256\n - MobileViTV2 (Trained on ImageNet-21k, Finetuned on ImageNet-1k 256x256, and Finetuned on\n ImageNet-1k 384x384) : imagenet21k_to_1k_384\n Segmentation\n - ADE20K Dataset : ade20k_deeplabv3\n - Pascal VOC 2012 Dataset: voc_deeplabv3\n " ), choices=[ "imagenet1k_256", "imagenet1k_384", "imagenet21k_to_1k_256", "imagenet21k_to_1k_384", "ade20k_deeplabv3", "voc_deeplabv3", ], ) parser.add_argument( "--orig_checkpoint_path", required=True, type=str, help="Path to the original state dict (.pt file)." ) parser.add_argument("--orig_config_path", required=True, type=str, help="Path to the original config file.") parser.add_argument( "--pytorch_dump_folder_path", required=True, type=str, help="Path to the output PyTorch model directory." ) _lowerCamelCase : Optional[int] = parser.parse_args() convert_mobilevitva_checkpoint( args.task, args.orig_checkpoint_path, args.orig_config_path, args.pytorch_dump_folder_path )
336
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE = logging.get_logger(__name__) SCREAMING_SNAKE_CASE = { "caidas/swin2sr-classicalsr-x2-64": ( "https://huggingface.co/caidas/swin2sr-classicalsr-x2-64/resolve/main/config.json" ), } class UpperCAmelCase_ ( A_ ): lowercase__ = '''swin2sr''' lowercase__ = { '''hidden_size''': '''embed_dim''', '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self : Optional[Any] , snake_case_ : List[str]=64 , snake_case_ : str=1 , snake_case_ : Optional[Any]=3 , snake_case_ : int=180 , snake_case_ : List[Any]=[6, 6, 6, 6, 6, 6] , snake_case_ : List[str]=[6, 6, 6, 6, 6, 6] , snake_case_ : Dict=8 , snake_case_ : Optional[Any]=2.0 , snake_case_ : str=True , snake_case_ : Dict=0.0 , snake_case_ : Optional[Any]=0.0 , snake_case_ : Union[str, Any]=0.1 , snake_case_ : Optional[Any]="gelu" , snake_case_ : Optional[int]=False , snake_case_ : Tuple=0.02 , snake_case_ : Any=1e-5 , snake_case_ : Tuple=2 , snake_case_ : Optional[Any]=1.0 , snake_case_ : int="1conv" , snake_case_ : Any="pixelshuffle" , **snake_case_ : int , ) -> Dict: '''simple docstring''' super().__init__(**snake_case_ ) A__ = image_size A__ = patch_size A__ = num_channels A__ = embed_dim A__ = depths A__ = len(snake_case_ ) A__ = num_heads A__ = window_size A__ = mlp_ratio A__ = qkv_bias A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = drop_path_rate A__ = hidden_act A__ = use_absolute_embeddings A__ = layer_norm_eps A__ = initializer_range A__ = upscale A__ = img_range A__ = resi_connection A__ = upsampler
362
"""simple docstring""" import shutil import tempfile import unittest import numpy as np import pytest from transformers import is_speech_available, is_vision_available from transformers.testing_utils import require_torch if is_vision_available(): from transformers import TvltImageProcessor if is_speech_available(): from transformers import TvltFeatureExtractor from transformers import TvltProcessor @require_torch class UpperCAmelCase_ ( unittest.TestCase ): def __magic_name__ ( self : str ) -> Dict: '''simple docstring''' A__ = "ZinengTang/tvlt-base" A__ = tempfile.mkdtemp() def __magic_name__ ( self : int , **snake_case_ : Dict ) -> Union[str, Any]: '''simple docstring''' return TvltImageProcessor.from_pretrained(self.checkpoint , **snake_case_ ) def __magic_name__ ( self : Optional[int] , **snake_case_ : str ) -> List[str]: '''simple docstring''' return TvltFeatureExtractor.from_pretrained(self.checkpoint , **snake_case_ ) def __magic_name__ ( self : Optional[int] ) -> str: '''simple docstring''' shutil.rmtree(self.tmpdirname ) def __magic_name__ ( self : Tuple ) -> Any: '''simple docstring''' A__ = self.get_image_processor() A__ = self.get_feature_extractor() A__ = TvltProcessor(image_processor=snake_case_ , feature_extractor=snake_case_ ) processor.save_pretrained(self.tmpdirname ) A__ = TvltProcessor.from_pretrained(self.tmpdirname ) self.assertIsInstance(processor.feature_extractor , snake_case_ ) self.assertIsInstance(processor.image_processor , snake_case_ ) def __magic_name__ ( self : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' A__ = self.get_image_processor() A__ = self.get_feature_extractor() A__ = TvltProcessor(image_processor=snake_case_ , feature_extractor=snake_case_ ) A__ = np.ones([12_000] ) A__ = feature_extractor(snake_case_ , return_tensors="np" ) A__ = processor(audio=snake_case_ , return_tensors="np" ) for key in audio_dict.keys(): self.assertAlmostEqual(audio_dict[key].sum() , input_processor[key].sum() , delta=1e-2 ) def __magic_name__ ( self : Tuple ) -> Tuple: '''simple docstring''' A__ = self.get_image_processor() A__ = self.get_feature_extractor() A__ = TvltProcessor(image_processor=snake_case_ , feature_extractor=snake_case_ ) A__ = np.ones([3, 224, 224] ) A__ = image_processor(snake_case_ , return_tensors="np" ) A__ = processor(images=snake_case_ , return_tensors="np" ) for key in image_dict.keys(): self.assertAlmostEqual(image_dict[key].sum() , input_processor[key].sum() , delta=1e-2 ) def __magic_name__ ( self : Tuple ) -> Optional[int]: '''simple docstring''' A__ = self.get_image_processor() A__ = self.get_feature_extractor() A__ = TvltProcessor(image_processor=snake_case_ , feature_extractor=snake_case_ ) A__ = np.ones([12_000] ) A__ = np.ones([3, 224, 224] ) A__ = processor(audio=snake_case_ , images=snake_case_ ) self.assertListEqual(list(inputs.keys() ) , ["audio_values", "audio_mask", "pixel_values", "pixel_mask"] ) # test if it raises when no input is passed with pytest.raises(snake_case_ ): processor() def __magic_name__ ( self : Optional[Any] ) -> Tuple: '''simple docstring''' A__ = self.get_image_processor() A__ = self.get_feature_extractor() A__ = TvltProcessor(image_processor=snake_case_ , feature_extractor=snake_case_ ) self.assertListEqual( processor.model_input_names , image_processor.model_input_names + feature_extractor.model_input_names , msg="`processor` and `image_processor`+`feature_extractor` model input names do not match" , )
230
0
"""simple docstring""" import json import os from functools import lru_cache from typing import TYPE_CHECKING, List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = { 'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_config_file': 'tokenizer_config.json', } UpperCAmelCase__ = { 'vocab_file': {'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json'}, 'merges_file': {'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt'}, 'tokenizer_config_file': { 'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json' }, } UpperCAmelCase__ = {'facebook/blenderbot-3B': 128} @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def _UpperCAmelCase ( ) -> List[str]: _snake_case = ( list(range(ord('''!''' ) , ord('''~''' ) + 1 ) ) + list(range(ord('''¡''' ) , ord('''¬''' ) + 1 ) ) + list(range(ord('''®''' ) , ord('''ÿ''' ) + 1 ) ) ) _snake_case = bs[:] _snake_case = 0 for b in range(2**8 ): if b not in bs: bs.append(lowercase__ ) cs.append(2**8 + n ) n += 1 _snake_case = [chr(lowercase__ ) for n in cs] return dict(zip(lowercase__ , lowercase__ ) ) def _UpperCAmelCase ( __lowerCamelCase : int ) -> List[Any]: _snake_case = set() _snake_case = word[0] for char in word[1:]: pairs.add((prev_char, char) ) _snake_case = char return pairs class lowerCAmelCase__ ( A__ ): __a = VOCAB_FILES_NAMES __a = PRETRAINED_VOCAB_FILES_MAP __a = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __a = ['''input_ids''', '''attention_mask'''] def __init__( self : List[Any] , _lowerCamelCase : str , _lowerCamelCase : str , _lowerCamelCase : Optional[Any]="replace" , _lowerCamelCase : List[str]="<s>" , _lowerCamelCase : Union[str, Any]="</s>" , _lowerCamelCase : Optional[Any]="</s>" , _lowerCamelCase : Optional[Any]="<s>" , _lowerCamelCase : str="<unk>" , _lowerCamelCase : int="<pad>" , _lowerCamelCase : Tuple="<mask>" , _lowerCamelCase : int=False , **_lowerCamelCase : int , ): _snake_case = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else bos_token _snake_case = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else eos_token _snake_case = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else sep_token _snake_case = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else cls_token _snake_case = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else unk_token _snake_case = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it _snake_case = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else mask_token super().__init__( errors=lowerCAmelCase__ , bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , add_prefix_space=lowerCAmelCase__ , **lowerCAmelCase__ , ) with open(lowerCAmelCase__ , encoding='''utf-8''' ) as vocab_handle: _snake_case = json.load(lowerCAmelCase__ ) _snake_case = {v: k for k, v in self.encoder.items()} _snake_case = errors # how to handle errors in decoding _snake_case = bytes_to_unicode() _snake_case = {v: k for k, v in self.byte_encoder.items()} with open(lowerCAmelCase__ , encoding='''utf-8''' ) as merges_handle: _snake_case = merges_handle.read().split('''\n''' )[1:-1] _snake_case = [tuple(merge.split() ) for merge in bpe_merges] _snake_case = dict(zip(lowerCAmelCase__ , range(len(lowerCAmelCase__ ) ) ) ) _snake_case = {} _snake_case = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions _snake_case = re.compile(R'''\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+''' ) @property # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.vocab_size with Roberta->Blenderbot, RoBERTa->Blenderbot def lowercase ( self : Optional[int] ): return len(self.encoder ) def lowercase ( self : Optional[Any] ): return dict(self.encoder , **self.added_tokens_encoder ) def lowercase ( self : Dict , _lowerCamelCase : Optional[Any] ): if token in self.cache: return self.cache[token] _snake_case = tuple(lowerCAmelCase__ ) _snake_case = get_pairs(lowerCAmelCase__ ) if not pairs: return token while True: _snake_case = min(lowerCAmelCase__ , key=lambda _lowerCamelCase : self.bpe_ranks.get(lowerCAmelCase__ , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break _snake_case = bigram _snake_case = [] _snake_case = 0 while i < len(lowerCAmelCase__ ): try: _snake_case = word.index(lowerCAmelCase__ , lowerCAmelCase__ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) _snake_case = j if word[i] == first and i < len(lowerCAmelCase__ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 _snake_case = tuple(lowerCAmelCase__ ) _snake_case = new_word if len(lowerCAmelCase__ ) == 1: break else: _snake_case = get_pairs(lowerCAmelCase__ ) _snake_case = ''' '''.join(lowerCAmelCase__ ) _snake_case = word return word def lowercase ( self : Any , _lowerCamelCase : Union[str, Any] ): _snake_case = [] for token in re.findall(self.pat , lowerCAmelCase__ ): _snake_case = ''''''.join( self.byte_encoder[b] for b in token.encode('''utf-8''' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(lowerCAmelCase__ ).split(''' ''' ) ) return bpe_tokens def lowercase ( self : str , _lowerCamelCase : List[str] ): return self.encoder.get(lowerCAmelCase__ , self.encoder.get(self.unk_token ) ) def lowercase ( self : Any , _lowerCamelCase : Optional[int] ): return self.decoder.get(lowerCAmelCase__ ) def lowercase ( self : Union[str, Any] , _lowerCamelCase : List[Any] ): _snake_case = ''''''.join(lowerCAmelCase__ ) _snake_case = bytearray([self.byte_decoder[c] for c in text] ).decode('''utf-8''' , errors=self.errors ) return text def lowercase ( self : Union[str, Any] , _lowerCamelCase : str , _lowerCamelCase : Optional[str] = None ): if not os.path.isdir(lowerCAmelCase__ ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return _snake_case = os.path.join( lowerCAmelCase__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) _snake_case = os.path.join( lowerCAmelCase__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(lowerCAmelCase__ , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowerCAmelCase__ , ensure_ascii=lowerCAmelCase__ ) + '''\n''' ) _snake_case = 0 with open(lowerCAmelCase__ , '''w''' , encoding='''utf-8''' ) as writer: writer.write('''#version: 0.2\n''' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda _lowerCamelCase : kv[1] ): if index != token_index: logger.warning( f'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' ''' Please check that the tokenizer is not corrupted!''' ) _snake_case = token_index writer.write(''' '''.join(lowerCAmelCase__ ) + '''\n''' ) index += 1 return vocab_file, merge_file def lowercase ( self : Optional[int] , _lowerCamelCase : List[int] , _lowerCamelCase : Optional[List[int]] = None , _lowerCamelCase : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase__ , token_ids_a=lowerCAmelCase__ , already_has_special_tokens=lowerCAmelCase__ ) if token_ids_a is None: return [1] + ([0] * len(lowerCAmelCase__ )) + [1] return [1] + ([0] * len(lowerCAmelCase__ )) + [1, 1] + ([0] * len(lowerCAmelCase__ )) + [1] def lowercase ( self : Any , _lowerCamelCase : List[int] , _lowerCamelCase : Optional[List[int]] = None ): _snake_case = [self.sep_token_id] _snake_case = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowercase ( self : Optional[Any] , _lowerCamelCase : Union[str, Any] , _lowerCamelCase : Tuple=False , **_lowerCamelCase : int ): _snake_case = kwargs.pop('''add_prefix_space''' , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(lowerCAmelCase__ ) > 0 and not text[0].isspace()): _snake_case = ''' ''' + text return (text, kwargs) def lowercase ( self : List[str] , _lowerCamelCase : List[int] , _lowerCamelCase : Optional[List[int]] = None ): return token_ids_a + [self.eos_token_id] def lowercase ( self : Any , _lowerCamelCase : "Conversation" ): _snake_case = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(''' ''' + text ) else: # Generated responses should contain them already. inputs.append(lowerCAmelCase__ ) _snake_case = ''' '''.join(lowerCAmelCase__ ) _snake_case = self.encode(lowerCAmelCase__ ) if len(lowerCAmelCase__ ) > self.model_max_length: _snake_case = input_ids[-self.model_max_length :] logger.warning(f'''Trimmed input from conversation as it was longer than {self.model_max_length} tokens.''' ) return input_ids
288
from importlib import import_module from .logging import get_logger __lowerCAmelCase : str =get_logger(__name__) class _lowercase : '''simple docstring''' def __init__( self :List[Any] , lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :str=None ) -> int: __SCREAMING_SNAKE_CASE : List[str] = attrs or [] if module is not None: for key in module.__dict__: if key in attrs or not key.startswith('''__''' ): setattr(self , lowerCAmelCase__ , getattr(lowerCAmelCase__ , lowerCAmelCase__ ) ) __SCREAMING_SNAKE_CASE : Optional[Any] = module._original_module if isinstance(lowerCAmelCase__ , _PatchedModuleObj ) else module class _lowercase : '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[int] = [] def __init__( self :Tuple , lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :str , lowerCAmelCase__ :Any , lowerCAmelCase__ :Dict=None ) -> List[Any]: __SCREAMING_SNAKE_CASE : Optional[int] = obj __SCREAMING_SNAKE_CASE : str = target __SCREAMING_SNAKE_CASE : Dict = new __SCREAMING_SNAKE_CASE : Union[str, Any] = target.split('''.''' )[0] __SCREAMING_SNAKE_CASE : List[str] = {} __SCREAMING_SNAKE_CASE : Tuple = attrs or [] def __enter__( self :int ) -> Dict: *__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Optional[Any] = self.target.split('''.''' ) # Patch modules: # it's used to patch attributes of submodules like "os.path.join"; # in this case we need to patch "os" and "os.path" for i in range(len(lowerCAmelCase__ ) ): try: __SCREAMING_SNAKE_CASE : Any = import_module('''.'''.join(submodules[: i + 1] ) ) except ModuleNotFoundError: continue # We iterate over all the globals in self.obj in case we find "os" or "os.path" for attr in self.obj.__dir__(): __SCREAMING_SNAKE_CASE : Union[str, Any] = getattr(self.obj , lowerCAmelCase__ ) # We don't check for the name of the global, but rather if its value *is* "os" or "os.path". # This allows to patch renamed modules like "from os import path as ospath". if obj_attr is submodule or ( (isinstance(lowerCAmelCase__ , _PatchedModuleObj ) and obj_attr._original_module is submodule) ): __SCREAMING_SNAKE_CASE : int = obj_attr # patch at top level setattr(self.obj , lowerCAmelCase__ , _PatchedModuleObj(lowerCAmelCase__ , attrs=self.attrs ) ) __SCREAMING_SNAKE_CASE : List[str] = getattr(self.obj , lowerCAmelCase__ ) # construct lower levels patches for key in submodules[i + 1 :]: setattr(lowerCAmelCase__ , lowerCAmelCase__ , _PatchedModuleObj(getattr(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) , attrs=self.attrs ) ) __SCREAMING_SNAKE_CASE : Tuple = getattr(lowerCAmelCase__ , lowerCAmelCase__ ) # finally set the target attribute setattr(lowerCAmelCase__ , lowerCAmelCase__ , self.new ) # Patch attribute itself: # it's used for builtins like "open", # and also to patch "os.path.join" we may also need to patch "join" # itself if it was imported as "from os.path import join". if submodules: # if it's an attribute of a submodule like "os.path.join" try: __SCREAMING_SNAKE_CASE : Union[str, Any] = getattr(import_module('''.'''.join(lowerCAmelCase__ ) ) , lowerCAmelCase__ ) except (AttributeError, ModuleNotFoundError): return # We iterate over all the globals in self.obj in case we find "os.path.join" for attr in self.obj.__dir__(): # We don't check for the name of the global, but rather if its value *is* "os.path.join". # This allows to patch renamed attributes like "from os.path import join as pjoin". if getattr(self.obj , lowerCAmelCase__ ) is attr_value: __SCREAMING_SNAKE_CASE : Any = getattr(self.obj , lowerCAmelCase__ ) setattr(self.obj , lowerCAmelCase__ , self.new ) elif target_attr in globals()["__builtins__"]: # if it'a s builtin like "open" __SCREAMING_SNAKE_CASE : Union[str, Any] = globals()['''__builtins__'''][target_attr] setattr(self.obj , lowerCAmelCase__ , self.new ) else: raise RuntimeError(f'''Tried to patch attribute {target_attr} instead of a submodule.''' ) def __exit__( self :str , *lowerCAmelCase__ :Union[str, Any] ) -> Optional[int]: for attr in list(self.original ): setattr(self.obj , lowerCAmelCase__ , self.original.pop(lowerCAmelCase__ ) ) def __magic_name__( self :List[Any] ) -> List[Any]: self.__enter__() self._active_patches.append(self ) def __magic_name__( self :Optional[int] ) -> int: try: self._active_patches.remove(self ) except ValueError: # If the patch hasn't been started this will fail return None return self.__exit__()
9
0
"""simple docstring""" import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform from transformers import ( BitConfig, ViTHybridConfig, ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel, ) from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase__ = logging.get_logger(__name__) def a__ ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Optional[Any]=False ): '''simple docstring''' lowerCAmelCase : Dict = [] # fmt: off # stem: rename_keys.append(("cls_token", "vit.embeddings.cls_token") ) rename_keys.append(("pos_embed", "vit.embeddings.position_embeddings") ) rename_keys.append(("patch_embed.proj.weight", "vit.embeddings.patch_embeddings.projection.weight") ) rename_keys.append(("patch_embed.proj.bias", "vit.embeddings.patch_embeddings.projection.bias") ) # backbone rename_keys.append(("patch_embed.backbone.stem.conv.weight", "vit.embeddings.patch_embeddings.backbone.bit.embedder.convolution.weight") ) rename_keys.append(("patch_embed.backbone.stem.norm.weight", "vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.weight") ) rename_keys.append(("patch_embed.backbone.stem.norm.bias", "vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.bias") ) for stage_idx in range(len(config.backbone_config.depths ) ): for layer_idx in range(config.backbone_config.depths[stage_idx] ): rename_keys.append((f"""patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv1.weight""", f"""vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv1.weight""") ) rename_keys.append((f"""patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.weight""", f"""vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.weight""") ) rename_keys.append((f"""patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.bias""", f"""vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.bias""") ) rename_keys.append((f"""patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv2.weight""", f"""vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv2.weight""") ) rename_keys.append((f"""patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.weight""", f"""vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.weight""") ) rename_keys.append((f"""patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.bias""", f"""vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.bias""") ) rename_keys.append((f"""patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv3.weight""", f"""vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv3.weight""") ) rename_keys.append((f"""patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.weight""", f"""vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.weight""") ) rename_keys.append((f"""patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.bias""", f"""vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.bias""") ) rename_keys.append((f"""patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.conv.weight""", f"""vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.conv.weight""") ) rename_keys.append((f"""patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.weight""", f"""vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.weight""") ) rename_keys.append((f"""patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.bias""", f"""vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.bias""") ) # transformer encoder for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f"""blocks.{i}.norm1.weight""", f"""vit.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((f"""blocks.{i}.norm1.bias""", f"""vit.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append((f"""blocks.{i}.attn.proj.weight""", f"""vit.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append((f"""blocks.{i}.attn.proj.bias""", f"""vit.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((f"""blocks.{i}.norm2.weight""", f"""vit.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((f"""blocks.{i}.norm2.bias""", f"""vit.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append((f"""blocks.{i}.mlp.fc1.weight""", f"""vit.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((f"""blocks.{i}.mlp.fc1.bias""", f"""vit.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((f"""blocks.{i}.mlp.fc2.weight""", f"""vit.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((f"""blocks.{i}.mlp.fc2.bias""", f"""vit.encoder.layer.{i}.output.dense.bias""") ) if base_model: # layernorm + pooler rename_keys.extend( [ ("norm.weight", "layernorm.weight"), ("norm.bias", "layernorm.bias"), ("pre_logits.fc.weight", "pooler.dense.weight"), ("pre_logits.fc.bias", "pooler.dense.bias"), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" lowerCAmelCase : Any = [(pair[0], pair[1][4:]) if pair[1].startswith("vit" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("norm.weight", "vit.layernorm.weight"), ("norm.bias", "vit.layernorm.bias"), ("head.weight", "classifier.weight"), ("head.bias", "classifier.bias"), ] ) # fmt: on return rename_keys def a__ ( SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : Union[str, Any]=False ): '''simple docstring''' for i in range(config.num_hidden_layers ): if base_model: lowerCAmelCase : str = "" else: lowerCAmelCase : Any = "vit." # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowerCAmelCase : Optional[int] = state_dict.pop(f"""blocks.{i}.attn.qkv.weight""" ) lowerCAmelCase : Dict = state_dict.pop(f"""blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict lowerCAmelCase : Optional[Any] = in_proj_weight[ : config.hidden_size, : ] lowerCAmelCase : Dict = in_proj_bias[: config.hidden_size] lowerCAmelCase : Union[str, Any] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowerCAmelCase : Optional[int] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowerCAmelCase : Union[str, Any] = in_proj_weight[ -config.hidden_size :, : ] lowerCAmelCase : int = in_proj_bias[-config.hidden_size :] def a__ ( SCREAMING_SNAKE_CASE : Tuple ): '''simple docstring''' lowerCAmelCase : Optional[int] = ["head.weight", "head.bias"] for k in ignore_keys: state_dict.pop(_lowercase , _lowercase ) def a__ ( SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : Dict ): '''simple docstring''' lowerCAmelCase : List[str] = dct.pop(_lowercase ) lowerCAmelCase : List[Any] = val def a__ ( ): '''simple docstring''' lowerCAmelCase : Dict = "http://images.cocodataset.org/val2017/000000039769.jpg" lowerCAmelCase : int = Image.open(requests.get(_lowercase , stream=_lowercase ).raw ) return im @torch.no_grad() def a__ ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Tuple=False ): '''simple docstring''' lowerCAmelCase : Optional[Any] = BitConfig( global_padding="same" , layer_type="bottleneck" , depths=(3, 4, 9) , out_features=["stage3"] , embedding_dynamic_padding=_lowercase , ) lowerCAmelCase : int = ViTHybridConfig(backbone_config=_lowercase , image_size=3_8_4 , num_labels=1_0_0_0 ) lowerCAmelCase : Union[str, Any] = False # load original model from timm lowerCAmelCase : Any = timm.create_model(_lowercase , pretrained=_lowercase ) timm_model.eval() # load state_dict of original model, remove and rename some keys lowerCAmelCase : Union[str, Any] = timm_model.state_dict() if base_model: remove_classification_head_(_lowercase ) lowerCAmelCase : Any = create_rename_keys(_lowercase , _lowercase ) for src, dest in rename_keys: rename_key(_lowercase , _lowercase , _lowercase ) read_in_q_k_v(_lowercase , _lowercase , _lowercase ) lowerCAmelCase : Dict = "huggingface/label-files" lowerCAmelCase : Optional[int] = "imagenet-1k-id2label.json" lowerCAmelCase : Tuple = json.load(open(hf_hub_download(_lowercase , _lowercase , repo_type="dataset" ) , "r" ) ) lowerCAmelCase : int = {int(_lowercase ): v for k, v in idalabel.items()} lowerCAmelCase : Dict = idalabel lowerCAmelCase : Optional[Any] = {v: k for k, v in idalabel.items()} # load HuggingFace model if vit_name[-5:] == "in21k": lowerCAmelCase : Tuple = ViTHybridModel(_lowercase ).eval() else: lowerCAmelCase : Optional[int] = ViTHybridForImageClassification(_lowercase ).eval() model.load_state_dict(_lowercase ) # create image processor lowerCAmelCase : Union[str, Any] = create_transform(**resolve_data_config({} , model=_lowercase ) ) lowerCAmelCase : Union[str, Any] = transform.transforms lowerCAmelCase : Optional[Any] = { "bilinear": PILImageResampling.BILINEAR, "bicubic": PILImageResampling.BICUBIC, "nearest": PILImageResampling.NEAREST, } lowerCAmelCase : List[Any] = ViTHybridImageProcessor( do_resize=_lowercase , size={"shortest_edge": timm_transforms[0].size} , resample=pillow_resamplings[timm_transforms[0].interpolation.value] , do_center_crop=_lowercase , crop_size={"height": timm_transforms[1].size[0], "width": timm_transforms[1].size[1]} , do_normalize=_lowercase , image_mean=timm_transforms[-1].mean.tolist() , image_std=timm_transforms[-1].std.tolist() , ) lowerCAmelCase : Optional[int] = prepare_img() lowerCAmelCase : List[Any] = transform(_lowercase ).unsqueeze(0 ) lowerCAmelCase : List[Any] = processor(_lowercase , return_tensors="pt" ).pixel_values # verify pixel values assert torch.allclose(_lowercase , _lowercase ) # verify logits with torch.no_grad(): lowerCAmelCase : List[str] = model(_lowercase ) lowerCAmelCase : Union[str, Any] = outputs.logits print("Predicted class:" , logits.argmax(-1 ).item() ) if base_model: lowerCAmelCase : str = timm_model.forward_features(_lowercase ) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(_lowercase , outputs.pooler_output , atol=1E-3 ) else: lowerCAmelCase : int = timm_model(_lowercase ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(_lowercase , outputs.logits , atol=1E-3 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: Path(_lowercase ).mkdir(exist_ok=_lowercase ) print(f"""Saving model {vit_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(_lowercase ) print(f"""Saving processor to {pytorch_dump_folder_path}""" ) processor.save_pretrained(_lowercase ) if push_to_hub: print(f"""Pushing model and processor to the hub {vit_name}""" ) model.push_to_hub(f"""ybelkada/{vit_name}""" ) processor.push_to_hub(f"""ybelkada/{vit_name}""" ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--vit_name''', default='''vit_base_r50_s16_384''', type=str, help='''Name of the hybrid ViT timm model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether to upload the model to the HuggingFace hub.''' ) lowerCAmelCase__ = parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path, args.push_to_hub)
363
"""simple docstring""" import baseaa def a__ ( SCREAMING_SNAKE_CASE : str ): '''simple docstring''' return baseaa.baaencode(string.encode("utf-8" ) ) def a__ ( SCREAMING_SNAKE_CASE : bytes ): '''simple docstring''' return baseaa.baadecode(SCREAMING_SNAKE_CASE ).decode("utf-8" ) if __name__ == "__main__": lowerCAmelCase__ = '''Hello World!''' lowerCAmelCase__ = baseaa_encode(test) print(encoded) lowerCAmelCase__ = baseaa_decode(encoded) print(decoded)
133
0
"""simple docstring""" def __lowerCAmelCase (_UpperCamelCase ): if number < 0: raise ValueError('number must not be negative' ) return number & (number - 1) == 0 if __name__ == "__main__": import doctest doctest.testmod()
86
'''simple docstring''' import argparse import json import logging import os import sys from unittest.mock import patch from transformers.testing_utils import TestCasePlus, get_gpu_count, slow A =[ os.path.join(os.path.dirname(__file__), dirname) for dirname in [ 'text-classification', 'language-modeling', 'summarization', 'token-classification', 'question-answering', ] ] sys.path.extend(SRC_DIRS) if SRC_DIRS is not None: import run_clm_flax import run_flax_glue import run_flax_ner import run_mlm_flax import run_qa import run_summarization_flax import run_ta_mlm_flax logging.basicConfig(level=logging.DEBUG) A =logging.getLogger() def snake_case_ (): UpperCAmelCase = argparse.ArgumentParser() parser.add_argument('''-f''' ) UpperCAmelCase = parser.parse_args() return args.f def snake_case_ (_a : List[str] , _a : Union[str, Any]="eval" ): UpperCAmelCase = os.path.join(_a , F"{split}_results.json" ) if os.path.exists(_a ): with open(_a , '''r''' ) as f: return json.load(_a ) raise ValueError(F"can't find {path}" ) A =logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class _a ( __a ): def A ( self : Any ): '''simple docstring''' UpperCAmelCase = self.get_auto_remove_tmp_dir() UpperCAmelCase = f"\n run_glue.py\n --model_name_or_path distilbert-base-uncased\n --output_dir {tmp_dir}\n --train_file ./tests/fixtures/tests_samples/MRPC/train.csv\n --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --learning_rate=1e-4\n --eval_steps=2\n --warmup_steps=2\n --seed=42\n --max_seq_length=128\n ".split() with patch.object(lowercase , '''argv''' , lowercase ): run_flax_glue.main() UpperCAmelCase = get_results(lowercase ) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.75 ) @slow def A ( self : Any ): '''simple docstring''' UpperCAmelCase = self.get_auto_remove_tmp_dir() UpperCAmelCase = f"\n run_clm_flax.py\n --model_name_or_path distilgpt2\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --do_train\n --do_eval\n --block_size 128\n --per_device_train_batch_size 4\n --per_device_eval_batch_size 4\n --num_train_epochs 2\n --logging_steps 2 --eval_steps 2\n --output_dir {tmp_dir}\n --overwrite_output_dir\n ".split() with patch.object(lowercase , '''argv''' , lowercase ): run_clm_flax.main() UpperCAmelCase = get_results(lowercase ) self.assertLess(result['''eval_perplexity'''] , 100 ) @slow def A ( self : str ): '''simple docstring''' UpperCAmelCase = self.get_auto_remove_tmp_dir() UpperCAmelCase = f"\n run_summarization.py\n --model_name_or_path t5-small\n --train_file tests/fixtures/tests_samples/xsum/sample.json\n --validation_file tests/fixtures/tests_samples/xsum/sample.json\n --test_file tests/fixtures/tests_samples/xsum/sample.json\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --num_train_epochs=3\n --warmup_steps=8\n --do_train\n --do_eval\n --do_predict\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --predict_with_generate\n ".split() with patch.object(lowercase , '''argv''' , lowercase ): run_summarization_flax.main() UpperCAmelCase = get_results(lowercase , split='''test''' ) self.assertGreaterEqual(result['''test_rouge1'''] , 10 ) self.assertGreaterEqual(result['''test_rouge2'''] , 2 ) self.assertGreaterEqual(result['''test_rougeL'''] , 7 ) self.assertGreaterEqual(result['''test_rougeLsum'''] , 7 ) @slow def A ( self : int ): '''simple docstring''' UpperCAmelCase = self.get_auto_remove_tmp_dir() UpperCAmelCase = f"\n run_mlm.py\n --model_name_or_path distilroberta-base\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --max_seq_length 128\n --per_device_train_batch_size 4\n --per_device_eval_batch_size 4\n --logging_steps 2 --eval_steps 2\n --do_train\n --do_eval\n --num_train_epochs=1\n ".split() with patch.object(lowercase , '''argv''' , lowercase ): run_mlm_flax.main() UpperCAmelCase = get_results(lowercase ) self.assertLess(result['''eval_perplexity'''] , 42 ) @slow def A ( self : Tuple ): '''simple docstring''' UpperCAmelCase = self.get_auto_remove_tmp_dir() UpperCAmelCase = f"\n run_t5_mlm_flax.py\n --model_name_or_path t5-small\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --do_train\n --do_eval\n --max_seq_length 128\n --per_device_train_batch_size 4\n --per_device_eval_batch_size 4\n --num_train_epochs 2\n --logging_steps 2 --eval_steps 2\n --output_dir {tmp_dir}\n --overwrite_output_dir\n ".split() with patch.object(lowercase , '''argv''' , lowercase ): run_ta_mlm_flax.main() UpperCAmelCase = get_results(lowercase ) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.42 ) @slow def A ( self : Tuple ): '''simple docstring''' UpperCAmelCase = 7 if get_gpu_count() > 1 else 2 UpperCAmelCase = self.get_auto_remove_tmp_dir() UpperCAmelCase = f"\n run_flax_ner.py\n --model_name_or_path bert-base-uncased\n --train_file tests/fixtures/tests_samples/conll/sample.json\n --validation_file tests/fixtures/tests_samples/conll/sample.json\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --do_train\n --do_eval\n --warmup_steps=2\n --learning_rate=2e-4\n --logging_steps 2 --eval_steps 2\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=2\n --num_train_epochs={epochs}\n --seed 7\n ".split() with patch.object(lowercase , '''argv''' , lowercase ): run_flax_ner.main() UpperCAmelCase = get_results(lowercase ) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.75 ) self.assertGreaterEqual(result['''eval_f1'''] , 0.3 ) @slow def A ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase = self.get_auto_remove_tmp_dir() UpperCAmelCase = f"\n run_qa.py\n --model_name_or_path bert-base-uncased\n --version_2_with_negative\n --train_file tests/fixtures/tests_samples/SQUAD/sample.json\n --validation_file tests/fixtures/tests_samples/SQUAD/sample.json\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --num_train_epochs=3\n --warmup_steps=2\n --do_train\n --do_eval\n --logging_steps 2 --eval_steps 2\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n ".split() with patch.object(lowercase , '''argv''' , lowercase ): run_qa.main() UpperCAmelCase = get_results(lowercase ) self.assertGreaterEqual(result['''eval_f1'''] , 30 ) self.assertGreaterEqual(result['''eval_exact'''] , 30 )
34
0
'''simple docstring''' from __future__ import annotations def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , )-> Union[str, Any]: '''simple docstring''' if (electron_conc, hole_conc, intrinsic_conc).count(0 ) != 1: raise ValueError("""You cannot supply more or less than 2 values""" ) elif electron_conc < 0: raise ValueError("""Electron concentration cannot be negative in a semiconductor""" ) elif hole_conc < 0: raise ValueError("""Hole concentration cannot be negative in a semiconductor""" ) elif intrinsic_conc < 0: raise ValueError( """Intrinsic concentration cannot be negative in a semiconductor""" ) elif electron_conc == 0: return ( "electron_conc", intrinsic_conc**2 / hole_conc, ) elif hole_conc == 0: return ( "hole_conc", intrinsic_conc**2 / electron_conc, ) elif intrinsic_conc == 0: return ( "intrinsic_conc", (electron_conc * hole_conc) ** 0.5, ) else: return (-1, -1) if __name__ == "__main__": import doctest doctest.testmod()
355
'''simple docstring''' import gc import random import tempfile import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.stable_diffusion_safe import StableDiffusionPipelineSafe as StableDiffusionPipeline from diffusers.utils import floats_tensor, nightly, torch_device from diffusers.utils.testing_utils import require_torch_gpu class lowercase ( unittest.TestCase ): """simple docstring""" def _snake_case ( self ) -> Dict: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def _snake_case ( self ) -> Optional[int]: _UpperCAmelCase : List[str] = 1 _UpperCAmelCase : List[str] = 3 _UpperCAmelCase : Union[str, Any] = (32, 32) _UpperCAmelCase : str = floats_tensor((batch_size, num_channels) + sizes ,rng=random.Random(0 ) ).to(a_ ) return image @property def _snake_case ( self ) -> List[Any]: torch.manual_seed(0 ) _UpperCAmelCase : List[str] = UNetaDConditionModel( block_out_channels=(32, 64) ,layers_per_block=2 ,sample_size=32 ,in_channels=4 ,out_channels=4 ,down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") ,up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") ,cross_attention_dim=32 ,) return model @property def _snake_case ( self ) -> Optional[int]: torch.manual_seed(0 ) _UpperCAmelCase : str = AutoencoderKL( block_out_channels=[32, 64] ,in_channels=3 ,out_channels=3 ,down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] ,up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] ,latent_channels=4 ,) return model @property def _snake_case ( self ) -> Dict: torch.manual_seed(0 ) _UpperCAmelCase : Any = CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=32 ,intermediate_size=37 ,layer_norm_eps=1E-0_5 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1_000 ,) return CLIPTextModel(a_ ) @property def _snake_case ( self ) -> Union[str, Any]: def extract(*a_ ,**a_ ): class lowercase : """simple docstring""" def __init__( self ) -> Any: _UpperCAmelCase : str = torch.ones([0] ) def _snake_case ( self ,a_ ) -> Any: self.pixel_values.to(a_ ) return self return Out() return extract def _snake_case ( self ) -> List[str]: _UpperCAmelCase : List[str] = """cpu""" # ensure determinism for the device-dependent torch.Generator _UpperCAmelCase : Union[str, Any] = self.dummy_cond_unet _UpperCAmelCase : int = DDIMScheduler( beta_start=0.0_0085 ,beta_end=0.012 ,beta_schedule="""scaled_linear""" ,clip_sample=a_ ,set_alpha_to_one=a_ ,) _UpperCAmelCase : Optional[int] = self.dummy_vae _UpperCAmelCase : Optional[int] = self.dummy_text_encoder _UpperCAmelCase : str = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) # make sure here that pndm scheduler skips prk _UpperCAmelCase : int = StableDiffusionPipeline( unet=a_ ,scheduler=a_ ,vae=a_ ,text_encoder=a_ ,tokenizer=a_ ,safety_checker=a_ ,feature_extractor=self.dummy_extractor ,) _UpperCAmelCase : Optional[Any] = sd_pipe.to(a_ ) sd_pipe.set_progress_bar_config(disable=a_ ) _UpperCAmelCase : Union[str, Any] = """A painting of a squirrel eating a burger""" _UpperCAmelCase : Optional[int] = torch.Generator(device=a_ ).manual_seed(0 ) _UpperCAmelCase : str = sd_pipe([prompt] ,generator=a_ ,guidance_scale=6.0 ,num_inference_steps=2 ,output_type="""np""" ) _UpperCAmelCase : int = output.images _UpperCAmelCase : Union[str, Any] = torch.Generator(device=a_ ).manual_seed(0 ) _UpperCAmelCase : str = sd_pipe( [prompt] ,generator=a_ ,guidance_scale=6.0 ,num_inference_steps=2 ,output_type="""np""" ,return_dict=a_ ,)[0] _UpperCAmelCase : str = image[0, -3:, -3:, -1] _UpperCAmelCase : Dict = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _UpperCAmelCase : Optional[int] = np.array([0.5756, 0.6118, 0.5005, 0.5041, 0.5471, 0.4726, 0.4976, 0.4865, 0.4864] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def _snake_case ( self ) -> Any: _UpperCAmelCase : Any = """cpu""" # ensure determinism for the device-dependent torch.Generator _UpperCAmelCase : Tuple = self.dummy_cond_unet _UpperCAmelCase : Optional[int] = PNDMScheduler(skip_prk_steps=a_ ) _UpperCAmelCase : int = self.dummy_vae _UpperCAmelCase : int = self.dummy_text_encoder _UpperCAmelCase : Union[str, Any] = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) # make sure here that pndm scheduler skips prk _UpperCAmelCase : str = StableDiffusionPipeline( unet=a_ ,scheduler=a_ ,vae=a_ ,text_encoder=a_ ,tokenizer=a_ ,safety_checker=a_ ,feature_extractor=self.dummy_extractor ,) _UpperCAmelCase : str = sd_pipe.to(a_ ) sd_pipe.set_progress_bar_config(disable=a_ ) _UpperCAmelCase : int = """A painting of a squirrel eating a burger""" _UpperCAmelCase : Any = torch.Generator(device=a_ ).manual_seed(0 ) _UpperCAmelCase : List[Any] = sd_pipe([prompt] ,generator=a_ ,guidance_scale=6.0 ,num_inference_steps=2 ,output_type="""np""" ) _UpperCAmelCase : Dict = output.images _UpperCAmelCase : List[Any] = torch.Generator(device=a_ ).manual_seed(0 ) _UpperCAmelCase : Any = sd_pipe( [prompt] ,generator=a_ ,guidance_scale=6.0 ,num_inference_steps=2 ,output_type="""np""" ,return_dict=a_ ,)[0] _UpperCAmelCase : Optional[int] = image[0, -3:, -3:, -1] _UpperCAmelCase : int = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _UpperCAmelCase : Union[str, Any] = np.array([0.5125, 0.5716, 0.4828, 0.5060, 0.5650, 0.4768, 0.5185, 0.4895, 0.4993] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def _snake_case ( self ) -> Optional[int]: _UpperCAmelCase : Optional[int] = StableDiffusionPipeline.from_pretrained( """hf-internal-testing/tiny-stable-diffusion-lms-pipe""" ,safety_checker=a_ ) assert isinstance(a_ ,a_ ) assert isinstance(pipe.scheduler ,a_ ) assert pipe.safety_checker is None _UpperCAmelCase : Dict = pipe("""example prompt""" ,num_inference_steps=2 ).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(a_ ) _UpperCAmelCase : Any = StableDiffusionPipeline.from_pretrained(a_ ) # sanity check that the pipeline still works assert pipe.safety_checker is None _UpperCAmelCase : Union[str, Any] = pipe("""example prompt""" ,num_inference_steps=2 ).images[0] assert image is not None @unittest.skipIf(torch_device != """cuda""" ,"""This test requires a GPU""" ) def _snake_case ( self ) -> str: _UpperCAmelCase : Optional[int] = self.dummy_cond_unet _UpperCAmelCase : str = PNDMScheduler(skip_prk_steps=a_ ) _UpperCAmelCase : List[str] = self.dummy_vae _UpperCAmelCase : int = self.dummy_text_encoder _UpperCAmelCase : str = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) # put models in fp16 _UpperCAmelCase : str = unet.half() _UpperCAmelCase : List[str] = vae.half() _UpperCAmelCase : Dict = bert.half() # make sure here that pndm scheduler skips prk _UpperCAmelCase : Dict = StableDiffusionPipeline( unet=a_ ,scheduler=a_ ,vae=a_ ,text_encoder=a_ ,tokenizer=a_ ,safety_checker=a_ ,feature_extractor=self.dummy_extractor ,) _UpperCAmelCase : List[str] = sd_pipe.to(a_ ) sd_pipe.set_progress_bar_config(disable=a_ ) _UpperCAmelCase : str = """A painting of a squirrel eating a burger""" _UpperCAmelCase : int = sd_pipe([prompt] ,num_inference_steps=2 ,output_type="""np""" ).images assert image.shape == (1, 64, 64, 3) @nightly @require_torch_gpu class lowercase ( unittest.TestCase ): """simple docstring""" def _snake_case ( self ) -> Any: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _snake_case ( self ) -> str: _UpperCAmelCase : List[str] = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" ,safety_checker=a_ ) _UpperCAmelCase : Dict = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) _UpperCAmelCase : int = sd_pipe.to(a_ ) sd_pipe.set_progress_bar_config(disable=a_ ) _UpperCAmelCase : List[Any] = ( """portrait of girl with smokey eyes makeup in abandoned hotel, grange clothes, redshift, wide high angle""" """ coloured polaroid photograph with flash, kodak film, hyper real, stunning moody cinematography, with""" """ anamorphic lenses, by maripol, fallen angels by wong kar - wai, style of suspiria and neon demon and""" """ children from bahnhof zoo, detailed """ ) _UpperCAmelCase : Any = 4_003_660_346 _UpperCAmelCase : List[Any] = 7 # without safety guidance (sld_guidance_scale = 0) _UpperCAmelCase : int = torch.manual_seed(a_ ) _UpperCAmelCase : str = sd_pipe( [prompt] ,generator=a_ ,guidance_scale=a_ ,num_inference_steps=50 ,output_type="""np""" ,width=512 ,height=512 ,sld_guidance_scale=0 ,) _UpperCAmelCase : str = output.images _UpperCAmelCase : Optional[int] = image[0, -3:, -3:, -1] _UpperCAmelCase : List[str] = [0.2278, 0.2231, 0.2249, 0.2333, 0.2303, 0.1885, 0.2273, 0.2144, 0.2176] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 # without safety guidance (strong configuration) _UpperCAmelCase : List[str] = torch.manual_seed(a_ ) _UpperCAmelCase : Optional[Any] = sd_pipe( [prompt] ,generator=a_ ,guidance_scale=a_ ,num_inference_steps=50 ,output_type="""np""" ,width=512 ,height=512 ,sld_guidance_scale=2_000 ,sld_warmup_steps=7 ,sld_threshold=0.025 ,sld_momentum_scale=0.5 ,sld_mom_beta=0.7 ,) _UpperCAmelCase : List[str] = output.images _UpperCAmelCase : List[str] = image[0, -3:, -3:, -1] _UpperCAmelCase : List[str] = [0.2383, 0.2276, 0.236, 0.2192, 0.2186, 0.2053, 0.1971, 0.1901, 0.1719] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _snake_case ( self ) -> int: _UpperCAmelCase : Any = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" ,safety_checker=a_ ) _UpperCAmelCase : Union[str, Any] = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) _UpperCAmelCase : Union[str, Any] = sd_pipe.to(a_ ) sd_pipe.set_progress_bar_config(disable=a_ ) _UpperCAmelCase : Any = """padme amidala taking a bath artwork, safe for work, no nudity""" _UpperCAmelCase : Optional[Any] = 2_734_971_755 _UpperCAmelCase : Optional[int] = 7 _UpperCAmelCase : int = torch.manual_seed(a_ ) _UpperCAmelCase : int = sd_pipe( [prompt] ,generator=a_ ,guidance_scale=a_ ,num_inference_steps=50 ,output_type="""np""" ,width=512 ,height=512 ,sld_guidance_scale=0 ,) _UpperCAmelCase : Optional[int] = output.images _UpperCAmelCase : List[Any] = image[0, -3:, -3:, -1] _UpperCAmelCase : Optional[int] = [0.3502, 0.3622, 0.3396, 0.3642, 0.3478, 0.3318, 0.35, 0.3348, 0.3297] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 _UpperCAmelCase : Optional[int] = torch.manual_seed(a_ ) _UpperCAmelCase : int = sd_pipe( [prompt] ,generator=a_ ,guidance_scale=a_ ,num_inference_steps=50 ,output_type="""np""" ,width=512 ,height=512 ,sld_guidance_scale=2_000 ,sld_warmup_steps=7 ,sld_threshold=0.025 ,sld_momentum_scale=0.5 ,sld_mom_beta=0.7 ,) _UpperCAmelCase : Union[str, Any] = output.images _UpperCAmelCase : Any = image[0, -3:, -3:, -1] _UpperCAmelCase : List[Any] = [0.5531, 0.5206, 0.4895, 0.5156, 0.5182, 0.4751, 0.4802, 0.4803, 0.4443] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _snake_case ( self ) -> Any: _UpperCAmelCase : Any = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" ) _UpperCAmelCase : List[str] = sd_pipe.to(a_ ) sd_pipe.set_progress_bar_config(disable=a_ ) _UpperCAmelCase : Optional[int] = ( """the four horsewomen of the apocalypse, painting by tom of finland, gaston bussiere, craig mullins, j. c.""" """ leyendecker""" ) _UpperCAmelCase : Dict = 1_044_355_234 _UpperCAmelCase : int = 12 _UpperCAmelCase : Optional[Any] = torch.manual_seed(a_ ) _UpperCAmelCase : List[str] = sd_pipe( [prompt] ,generator=a_ ,guidance_scale=a_ ,num_inference_steps=50 ,output_type="""np""" ,width=512 ,height=512 ,sld_guidance_scale=0 ,) _UpperCAmelCase : List[str] = output.images _UpperCAmelCase : Union[str, Any] = image[0, -3:, -3:, -1] _UpperCAmelCase : Dict = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] ) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-7 _UpperCAmelCase : Tuple = torch.manual_seed(a_ ) _UpperCAmelCase : Dict = sd_pipe( [prompt] ,generator=a_ ,guidance_scale=a_ ,num_inference_steps=50 ,output_type="""np""" ,width=512 ,height=512 ,sld_guidance_scale=2_000 ,sld_warmup_steps=7 ,sld_threshold=0.025 ,sld_momentum_scale=0.5 ,sld_mom_beta=0.7 ,) _UpperCAmelCase : Optional[Any] = output.images _UpperCAmelCase : Dict = image[0, -3:, -3:, -1] _UpperCAmelCase : int = np.array([0.5818, 0.6285, 0.6835, 0.6019, 0.625, 0.6754, 0.6096, 0.6334, 0.6561] ) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
349
0
import os def __lowercase ( _SCREAMING_SNAKE_CASE ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE = len(grid[0] ) SCREAMING_SNAKE_CASE = len(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE = 0 SCREAMING_SNAKE_CASE = 0 SCREAMING_SNAKE_CASE = 0 # Check vertically, horizontally, diagonally at the same time (only works # for nxn grid) for i in range(_SCREAMING_SNAKE_CASE ): for j in range(n_rows - 3 ): SCREAMING_SNAKE_CASE = grid[j][i] * grid[j + 1][i] * grid[j + 2][i] * grid[j + 3][i] SCREAMING_SNAKE_CASE = grid[i][j] * grid[i][j + 1] * grid[i][j + 2] * grid[i][j + 3] # Left-to-right diagonal (\) product if i < n_columns - 3: SCREAMING_SNAKE_CASE = ( grid[i][j] * grid[i + 1][j + 1] * grid[i + 2][j + 2] * grid[i + 3][j + 3] ) # Right-to-left diagonal(/) product if i > 2: SCREAMING_SNAKE_CASE = ( grid[i][j] * grid[i - 1][j + 1] * grid[i - 2][j + 2] * grid[i - 3][j + 3] ) SCREAMING_SNAKE_CASE = max( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if max_product > largest: SCREAMING_SNAKE_CASE = max_product return largest def __lowercase ( ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = [] with open(os.path.dirname(_SCREAMING_SNAKE_CASE ) + """/grid.txt""" ) as file: for line in file: grid.append(line.strip("""\n""" ).split(""" """ ) ) SCREAMING_SNAKE_CASE = [[int(_SCREAMING_SNAKE_CASE ) for i in grid[j]] for j in range(len(_SCREAMING_SNAKE_CASE ) )] return largest_product(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": print(solution())
296
def __lowercase ( _SCREAMING_SNAKE_CASE = 10 ) -> str: '''simple docstring''' if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) or n < 0: raise ValueError("""Invalid input""" ) SCREAMING_SNAKE_CASE = 10**n SCREAMING_SNAKE_CASE = 2_84_33 * (pow(2 , 7_83_04_57 , _SCREAMING_SNAKE_CASE )) + 1 return str(number % modulus ) if __name__ == "__main__": from doctest import testmod testmod() print(F'''{solution(1_0) = }''')
296
1
def __lowercase ( _UpperCamelCase, _UpperCamelCase ) ->str: """simple docstring""" lowercase : Dict = '''''' for word_or_phrase in separated: if not isinstance(_UpperCamelCase, _UpperCamelCase ): raise Exception('''join() accepts only strings to be joined''' ) joined += word_or_phrase + separator return joined.strip(_UpperCamelCase ) if __name__ == "__main__": from doctest import testmod testmod()
173
import os import shutil import sys import tempfile import unittest from pathlib import Path import pytest import transformers from transformers import ( BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoTokenizer, BertConfig, BertTokenizer, BertTokenizerFast, CTRLTokenizer, GPTaTokenizer, GPTaTokenizerFast, PreTrainedTokenizerFast, RobertaTokenizer, RobertaTokenizerFast, is_tokenizers_available, ) from transformers.models.auto.configuration_auto import CONFIG_MAPPING, AutoConfig from transformers.models.auto.tokenization_auto import ( TOKENIZER_MAPPING, get_tokenizer_config, tokenizer_class_from_name, ) from transformers.models.roberta.configuration_roberta import RobertaConfig from transformers.testing_utils import ( DUMMY_DIFF_TOKENIZER_IDENTIFIER, DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, RequestCounter, require_tokenizers, slow, ) sys.path.append(str(Path(__file__).parent.parent.parent.parent / '''utils''')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_tokenization import CustomTokenizer # noqa E402 if is_tokenizers_available(): from test_module.custom_tokenization_fast import CustomTokenizerFast class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): def __lowerCamelCase ( self ): lowercase : int = 0 @slow def __lowerCamelCase ( self ): for model_name in (x for x in BERT_PRETRAINED_CONFIG_ARCHIVE_MAP.keys() if "japanese" not in x): lowercase : Optional[Any] = AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE__ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE__ ) self.assertIsInstance(SCREAMING_SNAKE_CASE__ , (BertTokenizer, BertTokenizerFast) ) self.assertGreater(len(SCREAMING_SNAKE_CASE__ ) , 0 ) for model_name in GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP.keys(): lowercase : str = AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE__ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE__ ) self.assertIsInstance(SCREAMING_SNAKE_CASE__ , (GPTaTokenizer, GPTaTokenizerFast) ) self.assertGreater(len(SCREAMING_SNAKE_CASE__ ) , 0 ) def __lowerCamelCase ( self ): lowercase : Tuple = AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE__ ) self.assertIsInstance(SCREAMING_SNAKE_CASE__ , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(tokenizer.vocab_size , 12 ) def __lowerCamelCase ( self ): lowercase : Any = AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE__ ) self.assertIsInstance(SCREAMING_SNAKE_CASE__ , (RobertaTokenizer, RobertaTokenizerFast) ) self.assertEqual(tokenizer.vocab_size , 20 ) def __lowerCamelCase ( self ): lowercase : Union[str, Any] = AutoConfig.from_pretrained(SCREAMING_SNAKE_CASE__ ) self.assertIsInstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Check that tokenizer_type ≠ model_type lowercase : Optional[int] = AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE__ , config=SCREAMING_SNAKE_CASE__ ) self.assertIsInstance(SCREAMING_SNAKE_CASE__ , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(tokenizer.vocab_size , 12 ) def __lowerCamelCase ( self ): with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('''./tests/fixtures/vocab.txt''' , os.path.join(SCREAMING_SNAKE_CASE__ , '''vocab.txt''' ) ) lowercase : Tuple = AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE__ , tokenizer_type='''bert''' , use_fast=SCREAMING_SNAKE_CASE__ ) self.assertIsInstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('''./tests/fixtures/vocab.json''' , os.path.join(SCREAMING_SNAKE_CASE__ , '''vocab.json''' ) ) shutil.copy('''./tests/fixtures/merges.txt''' , os.path.join(SCREAMING_SNAKE_CASE__ , '''merges.txt''' ) ) lowercase : Any = AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE__ , tokenizer_type='''gpt2''' , use_fast=SCREAMING_SNAKE_CASE__ ) self.assertIsInstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) @require_tokenizers def __lowerCamelCase ( self ): with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('''./tests/fixtures/vocab.txt''' , os.path.join(SCREAMING_SNAKE_CASE__ , '''vocab.txt''' ) ) lowercase : Dict = AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE__ , tokenizer_type='''bert''' ) self.assertIsInstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('''./tests/fixtures/vocab.json''' , os.path.join(SCREAMING_SNAKE_CASE__ , '''vocab.json''' ) ) shutil.copy('''./tests/fixtures/merges.txt''' , os.path.join(SCREAMING_SNAKE_CASE__ , '''merges.txt''' ) ) lowercase : int = AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE__ , tokenizer_type='''gpt2''' ) self.assertIsInstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def __lowerCamelCase ( self ): with pytest.raises(SCREAMING_SNAKE_CASE__ ): AutoTokenizer.from_pretrained('''./''' , tokenizer_type='''xxx''' ) @require_tokenizers def __lowerCamelCase ( self ): for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]: lowercase : Union[str, Any] = tokenizer_class.from_pretrained('''wietsedv/bert-base-dutch-cased''' ) self.assertIsInstance(SCREAMING_SNAKE_CASE__ , (BertTokenizer, BertTokenizerFast) ) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): self.assertEqual(tokenizer.basic_tokenizer.do_lower_case , SCREAMING_SNAKE_CASE__ ) else: self.assertEqual(tokenizer.do_lower_case , SCREAMING_SNAKE_CASE__ ) self.assertEqual(tokenizer.model_max_length , 512 ) @require_tokenizers def __lowerCamelCase ( self ): for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]: with self.assertRaisesRegex( SCREAMING_SNAKE_CASE__ , '''julien-c/herlolip-not-exists is not a local folder and is not a valid model identifier''' , ): lowercase : str = tokenizer_class.from_pretrained('''julien-c/herlolip-not-exists''' ) def __lowerCamelCase ( self ): # tests: https://github.com/huggingface/transformers/pull/13251 # 1. models with `-`, e.g. xlm-roberta -> xlm_roberta # 2. models that don't remap 1-1 from model-name to model file, e.g., openai-gpt -> openai lowercase : Any = TOKENIZER_MAPPING.values() lowercase : Tuple = [] for slow_tok, fast_tok in tokenizers: if slow_tok is not None: tokenizer_names.append(slow_tok.__name__ ) if fast_tok is not None: tokenizer_names.append(fast_tok.__name__ ) for tokenizer_name in tokenizer_names: # must find the right class tokenizer_class_from_name(SCREAMING_SNAKE_CASE__ ) @require_tokenizers def __lowerCamelCase ( self ): self.assertIsInstance(AutoTokenizer.from_pretrained('''bert-base-cased''' , use_fast=SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ ) self.assertIsInstance(AutoTokenizer.from_pretrained('''bert-base-cased''' ) , SCREAMING_SNAKE_CASE__ ) @require_tokenizers def __lowerCamelCase ( self ): lowercase : Optional[Any] = AutoTokenizer.from_pretrained('''distilbert-base-uncased''' , do_lower_case=SCREAMING_SNAKE_CASE__ ) lowercase : List[Any] = '''Hello, world. How are you?''' lowercase : Any = tokenizer.tokenize(SCREAMING_SNAKE_CASE__ ) self.assertEqual('''[UNK]''' , tokens[0] ) lowercase : Optional[Any] = AutoTokenizer.from_pretrained('''microsoft/mpnet-base''' , do_lower_case=SCREAMING_SNAKE_CASE__ ) lowercase : List[str] = tokenizer.tokenize(SCREAMING_SNAKE_CASE__ ) self.assertEqual('''[UNK]''' , tokens[0] ) @require_tokenizers def __lowerCamelCase ( self ): lowercase : int = AutoTokenizer.from_pretrained('''robot-test/dummy-tokenizer-fast-with-model-config''' ) self.assertEqual(type(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ ) self.assertEqual(tokenizer.model_max_length , 512 ) self.assertEqual(tokenizer.vocab_size , 30000 ) self.assertEqual(tokenizer.unk_token , '''[UNK]''' ) self.assertEqual(tokenizer.padding_side , '''right''' ) self.assertEqual(tokenizer.truncation_side , '''right''' ) def __lowerCamelCase ( self ): lowercase : Tuple = AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE__ ) self.assertIsInstance(SCREAMING_SNAKE_CASE__ , (BertTokenizer, BertTokenizerFast) ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(SCREAMING_SNAKE_CASE__ ) lowercase : Any = AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE__ ) self.assertIsInstance(SCREAMING_SNAKE_CASE__ , tokenizer.__class__ ) self.assertEqual(tokenizera.vocab_size , 12 ) def __lowerCamelCase ( self ): lowercase : Union[str, Any] = AutoTokenizer.from_pretrained('''ctrl''' ) # There is no fast CTRL so this always gives us a slow tokenizer. self.assertIsInstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def __lowerCamelCase ( self ): # Check we can load the tokenizer config of an online model. lowercase : Optional[Any] = get_tokenizer_config('''bert-base-cased''' ) lowercase : str = config.pop('''_commit_hash''' , SCREAMING_SNAKE_CASE__ ) # If we ever update bert-base-cased tokenizer config, this dict here will need to be updated. self.assertEqual(SCREAMING_SNAKE_CASE__ , {'''do_lower_case''': False} ) # This model does not have a tokenizer_config so we get back an empty dict. lowercase : Union[str, Any] = get_tokenizer_config(SCREAMING_SNAKE_CASE__ ) self.assertDictEqual(SCREAMING_SNAKE_CASE__ , {} ) # A tokenizer saved with `save_pretrained` always creates a tokenizer config. lowercase : str = AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE__ ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(SCREAMING_SNAKE_CASE__ ) lowercase : Tuple = get_tokenizer_config(SCREAMING_SNAKE_CASE__ ) # Check the class of the tokenizer was properly saved (note that it always saves the slow class). self.assertEqual(config['''tokenizer_class'''] , '''BertTokenizer''' ) def __lowerCamelCase ( self ): try: AutoConfig.register('''custom''' , SCREAMING_SNAKE_CASE__ ) AutoTokenizer.register(SCREAMING_SNAKE_CASE__ , slow_tokenizer_class=SCREAMING_SNAKE_CASE__ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(SCREAMING_SNAKE_CASE__ ): AutoTokenizer.register(SCREAMING_SNAKE_CASE__ , slow_tokenizer_class=SCREAMING_SNAKE_CASE__ ) lowercase : int = CustomTokenizer.from_pretrained(SCREAMING_SNAKE_CASE__ ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(SCREAMING_SNAKE_CASE__ ) lowercase : str = AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE__ ) self.assertIsInstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] @require_tokenizers def __lowerCamelCase ( self ): try: AutoConfig.register('''custom''' , SCREAMING_SNAKE_CASE__ ) # Can register in two steps AutoTokenizer.register(SCREAMING_SNAKE_CASE__ , slow_tokenizer_class=SCREAMING_SNAKE_CASE__ ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, None) ) AutoTokenizer.register(SCREAMING_SNAKE_CASE__ , fast_tokenizer_class=SCREAMING_SNAKE_CASE__ ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, CustomTokenizerFast) ) del TOKENIZER_MAPPING._extra_content[CustomConfig] # Can register in one step AutoTokenizer.register( SCREAMING_SNAKE_CASE__ , slow_tokenizer_class=SCREAMING_SNAKE_CASE__ , fast_tokenizer_class=SCREAMING_SNAKE_CASE__ ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, CustomTokenizerFast) ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(SCREAMING_SNAKE_CASE__ ): AutoTokenizer.register(SCREAMING_SNAKE_CASE__ , fast_tokenizer_class=SCREAMING_SNAKE_CASE__ ) # We pass through a bert tokenizer fast cause there is no converter slow to fast for our new toknizer # and that model does not have a tokenizer.json with tempfile.TemporaryDirectory() as tmp_dir: lowercase : Union[str, Any] = BertTokenizerFast.from_pretrained(SCREAMING_SNAKE_CASE__ ) bert_tokenizer.save_pretrained(SCREAMING_SNAKE_CASE__ ) lowercase : List[Any] = CustomTokenizerFast.from_pretrained(SCREAMING_SNAKE_CASE__ ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(SCREAMING_SNAKE_CASE__ ) lowercase : Tuple = AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE__ ) self.assertIsInstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowercase : Optional[int] = AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE__ , use_fast=SCREAMING_SNAKE_CASE__ ) self.assertIsInstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] def __lowerCamelCase ( self ): # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(SCREAMING_SNAKE_CASE__ ): lowercase : List[Any] = AutoTokenizer.from_pretrained('''hf-internal-testing/test_dynamic_tokenizer''' ) # If remote code is disabled, we can't load this config. with self.assertRaises(SCREAMING_SNAKE_CASE__ ): lowercase : str = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=SCREAMING_SNAKE_CASE__ ) lowercase : Dict = AutoTokenizer.from_pretrained('''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=SCREAMING_SNAKE_CASE__ ) self.assertTrue(tokenizer.special_attribute_present ) # Test tokenizer can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(SCREAMING_SNAKE_CASE__ ) lowercase : List[str] = AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE__ , trust_remote_code=SCREAMING_SNAKE_CASE__ ) self.assertTrue(reloaded_tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) self.assertEqual(reloaded_tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) # Test we can also load the slow version lowercase : int = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=SCREAMING_SNAKE_CASE__ , use_fast=SCREAMING_SNAKE_CASE__ ) self.assertTrue(tokenizer.special_attribute_present ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) # Test tokenizer can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(SCREAMING_SNAKE_CASE__ ) lowercase : Tuple = AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE__ , trust_remote_code=SCREAMING_SNAKE_CASE__ , use_fast=SCREAMING_SNAKE_CASE__ ) self.assertEqual(reloaded_tokenizer.__class__.__name__ , '''NewTokenizer''' ) self.assertTrue(reloaded_tokenizer.special_attribute_present ) else: self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) self.assertEqual(reloaded_tokenizer.__class__.__name__ , '''NewTokenizer''' ) @require_tokenizers def __lowerCamelCase ( self ): class __SCREAMING_SNAKE_CASE ( A__ ): A : str = False class __SCREAMING_SNAKE_CASE ( A__ ): A : Dict = NewTokenizer A : Optional[int] = False try: AutoConfig.register('''custom''' , SCREAMING_SNAKE_CASE__ ) AutoTokenizer.register(SCREAMING_SNAKE_CASE__ , slow_tokenizer_class=SCREAMING_SNAKE_CASE__ ) AutoTokenizer.register(SCREAMING_SNAKE_CASE__ , fast_tokenizer_class=SCREAMING_SNAKE_CASE__ ) # If remote code is not set, the default is to use local lowercase : Union[str, Any] = AutoTokenizer.from_pretrained('''hf-internal-testing/test_dynamic_tokenizer''' ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) self.assertFalse(tokenizer.special_attribute_present ) lowercase : Union[str, Any] = AutoTokenizer.from_pretrained('''hf-internal-testing/test_dynamic_tokenizer''' , use_fast=SCREAMING_SNAKE_CASE__ ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) self.assertFalse(tokenizer.special_attribute_present ) # If remote code is disabled, we load the local one. lowercase : Tuple = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=SCREAMING_SNAKE_CASE__ ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) self.assertFalse(tokenizer.special_attribute_present ) lowercase : List[str] = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=SCREAMING_SNAKE_CASE__ , use_fast=SCREAMING_SNAKE_CASE__ ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) self.assertFalse(tokenizer.special_attribute_present ) # If remote is enabled, we load from the Hub lowercase : Any = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=SCREAMING_SNAKE_CASE__ ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) self.assertTrue(tokenizer.special_attribute_present ) lowercase : List[Any] = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=SCREAMING_SNAKE_CASE__ , use_fast=SCREAMING_SNAKE_CASE__ ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) self.assertTrue(tokenizer.special_attribute_present ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] def __lowerCamelCase ( self ): lowercase : Dict = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer_legacy''' , trust_remote_code=SCREAMING_SNAKE_CASE__ ) self.assertTrue(tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) # Test we can also load the slow version lowercase : int = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer_legacy''' , trust_remote_code=SCREAMING_SNAKE_CASE__ , use_fast=SCREAMING_SNAKE_CASE__ ) self.assertTrue(tokenizer.special_attribute_present ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) else: self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) def __lowerCamelCase ( self ): with self.assertRaisesRegex( SCREAMING_SNAKE_CASE__ , '''bert-base is not a local folder and is not a valid model identifier''' ): lowercase : List[Any] = AutoTokenizer.from_pretrained('''bert-base''' ) def __lowerCamelCase ( self ): with self.assertRaisesRegex( SCREAMING_SNAKE_CASE__ , r'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ): lowercase : Optional[int] = AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE__ , revision='''aaaaaa''' ) def __lowerCamelCase ( self ): # Make sure we have cached the tokenizer. lowercase : Optional[Any] = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) with RequestCounter() as counter: lowercase : List[Any] = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 )
173
1
"""simple docstring""" import math UpperCAmelCase__ = 1_0 UpperCAmelCase__ = 7 UpperCAmelCase__ = BALLS_PER_COLOUR * NUM_COLOURS def __UpperCAmelCase ( lowercase = 20 ): """simple docstring""" _UpperCAmelCase = math.comb(lowercase ,lowercase ) _UpperCAmelCase = math.comb(NUM_BALLS - BALLS_PER_COLOUR ,lowercase ) _UpperCAmelCase = NUM_COLOURS * (1 - missing_colour / total) return f'''{result:.9f}''' if __name__ == "__main__": print(solution(2_0))
289
"""simple docstring""" import gc import unittest import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DDPMScheduler, PriorTransformer, StableUnCLIPPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.testing_utils import enable_full_determinism, load_numpy, require_torch_gpu, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ): _snake_case : int = StableUnCLIPPipeline _snake_case : str = TEXT_TO_IMAGE_PARAMS _snake_case : Any = TEXT_TO_IMAGE_BATCH_PARAMS _snake_case : Optional[Any] = TEXT_TO_IMAGE_IMAGE_PARAMS _snake_case : str = TEXT_TO_IMAGE_IMAGE_PARAMS # TODO(will) Expected attn_bias.stride(1) == 0 to be true, but got false _snake_case : str = False def lowerCAmelCase_ ( self : Optional[int] ): _UpperCAmelCase = 32 _UpperCAmelCase = embedder_hidden_size # prior components torch.manual_seed(0 ) _UpperCAmelCase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) torch.manual_seed(0 ) _UpperCAmelCase = CLIPTextModelWithProjection( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=__lowerCAmelCase , projection_dim=__lowerCAmelCase , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) ) torch.manual_seed(0 ) _UpperCAmelCase = PriorTransformer( num_attention_heads=2 , attention_head_dim=12 , embedding_dim=__lowerCAmelCase , num_layers=1 , ) torch.manual_seed(0 ) _UpperCAmelCase = DDPMScheduler( variance_type="""fixed_small_log""" , prediction_type="""sample""" , num_train_timesteps=1000 , clip_sample=__lowerCAmelCase , clip_sample_range=5.0 , beta_schedule="""squaredcos_cap_v2""" , ) # regular denoising components torch.manual_seed(0 ) _UpperCAmelCase = StableUnCLIPImageNormalizer(embedding_dim=__lowerCAmelCase ) _UpperCAmelCase = DDPMScheduler(beta_schedule="""squaredcos_cap_v2""" ) torch.manual_seed(0 ) _UpperCAmelCase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) torch.manual_seed(0 ) _UpperCAmelCase = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=__lowerCAmelCase , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) ) torch.manual_seed(0 ) _UpperCAmelCase = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""CrossAttnDownBlock2D""", """DownBlock2D""") , up_block_types=("""UpBlock2D""", """CrossAttnUpBlock2D""") , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type="""projection""" , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=__lowerCAmelCase , layers_per_block=1 , upcast_attention=__lowerCAmelCase , use_linear_projection=__lowerCAmelCase , ) torch.manual_seed(0 ) _UpperCAmelCase = DDIMScheduler( beta_schedule="""scaled_linear""" , beta_start=0.00_085 , beta_end=0.012 , prediction_type="""v_prediction""" , set_alpha_to_one=__lowerCAmelCase , steps_offset=1 , ) torch.manual_seed(0 ) _UpperCAmelCase = AutoencoderKL() _UpperCAmelCase = { # prior components """prior_tokenizer""": prior_tokenizer, """prior_text_encoder""": prior_text_encoder, """prior""": prior, """prior_scheduler""": prior_scheduler, # image noising components """image_normalizer""": image_normalizer, """image_noising_scheduler""": image_noising_scheduler, # regular denoising components """tokenizer""": tokenizer, """text_encoder""": text_encoder, """unet""": unet, """scheduler""": scheduler, """vae""": vae, } return components def lowerCAmelCase_ ( self : Optional[int] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : str=0 ): if str(__lowerCAmelCase ).startswith("""mps""" ): _UpperCAmelCase = torch.manual_seed(__lowerCAmelCase ) else: _UpperCAmelCase = torch.Generator(device=__lowerCAmelCase ).manual_seed(__lowerCAmelCase ) _UpperCAmelCase = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """prior_num_inference_steps""": 2, """output_type""": """numpy""", } return inputs def lowerCAmelCase_ ( self : Optional[int] ): _UpperCAmelCase = torch_device == """cpu""" self._test_attention_slicing_forward_pass(test_max_difference=__lowerCAmelCase ) def lowerCAmelCase_ ( self : List[str] ): _UpperCAmelCase = torch_device in ["""cpu""", """mps"""] self._test_inference_batch_single_identical(test_max_difference=__lowerCAmelCase ) @slow @require_torch_gpu class a ( unittest.TestCase ): def lowerCAmelCase_ ( self : str ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase_ ( self : List[Any] ): _UpperCAmelCase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_anime_turtle_fp16.npy""" ) _UpperCAmelCase = StableUnCLIPPipeline.from_pretrained("""fusing/stable-unclip-2-1-l""" , torch_dtype=torch.floataa ) pipe.to(__lowerCAmelCase ) pipe.set_progress_bar_config(disable=__lowerCAmelCase ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() _UpperCAmelCase = torch.Generator(device="""cpu""" ).manual_seed(0 ) _UpperCAmelCase = pipe("""anime turle""" , generator=__lowerCAmelCase , output_type="""np""" ) _UpperCAmelCase = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(__lowerCAmelCase , __lowerCAmelCase ) def lowerCAmelCase_ ( self : Any ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() _UpperCAmelCase = StableUnCLIPPipeline.from_pretrained("""fusing/stable-unclip-2-1-l""" , torch_dtype=torch.floataa ) _UpperCAmelCase = pipe.to(__lowerCAmelCase ) pipe.set_progress_bar_config(disable=__lowerCAmelCase ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() _UpperCAmelCase = pipe( """anime turtle""" , prior_num_inference_steps=2 , num_inference_steps=2 , output_type="""np""" , ) _UpperCAmelCase = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
289
1
"""simple docstring""" from typing import Optional, Tuple, Union import torch from einops import rearrange, reduce from diffusers import DDIMScheduler, DDPMScheduler, DiffusionPipeline, ImagePipelineOutput, UNetaDConditionModel from diffusers.schedulers.scheduling_ddim import DDIMSchedulerOutput from diffusers.schedulers.scheduling_ddpm import DDPMSchedulerOutput _a : str = 8 def SCREAMING_SNAKE_CASE ( _lowerCamelCase : int ,_lowerCamelCase : Tuple=BITS ) -> List[Any]: _lowerCAmelCase : Optional[int] = x.device _lowerCAmelCase : Tuple = (x * 255).int().clamp(0 ,255 ) _lowerCAmelCase : Optional[int] = 2 ** torch.arange(bits - 1 ,-1 ,-1 ,device=_lowerCamelCase ) _lowerCAmelCase : Optional[int] = rearrange(_lowerCamelCase ,"""d -> d 1 1""" ) _lowerCAmelCase : List[str] = rearrange(_lowerCamelCase ,"""b c h w -> b c 1 h w""" ) _lowerCAmelCase : Union[str, Any] = ((x & mask) != 0).float() _lowerCAmelCase : List[Any] = rearrange(_lowerCamelCase ,"""b c d h w -> b (c d) h w""" ) _lowerCAmelCase : Optional[Any] = bits * 2 - 1 return bits def SCREAMING_SNAKE_CASE ( _lowerCamelCase : List[str] ,_lowerCamelCase : Optional[Any]=BITS ) -> Optional[int]: _lowerCAmelCase : List[Any] = x.device _lowerCAmelCase : int = (x > 0).int() _lowerCAmelCase : Union[str, Any] = 2 ** torch.arange(bits - 1 ,-1 ,-1 ,device=_lowerCamelCase ,dtype=torch.intaa ) _lowerCAmelCase : Optional[Any] = rearrange(_lowerCamelCase ,"""d -> d 1 1""" ) _lowerCAmelCase : int = rearrange(_lowerCamelCase ,"""b (c d) h w -> b c d h w""" ,d=8 ) _lowerCAmelCase : Any = reduce(x * mask ,"""b c d h w -> b c h w""" ,"""sum""" ) return (dec / 255).clamp(0.0 ,1.0 ) def SCREAMING_SNAKE_CASE ( self : Tuple ,_lowerCamelCase : torch.FloatTensor ,_lowerCamelCase : int ,_lowerCamelCase : torch.FloatTensor ,_lowerCamelCase : float = 0.0 ,_lowerCamelCase : bool = True ,_lowerCamelCase : List[str]=None ,_lowerCamelCase : bool = True ,) -> Union[DDIMSchedulerOutput, Tuple]: if self.num_inference_steps is None: raise ValueError( """Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler""" ) # See formulas (12) and (16) of DDIM paper https://arxiv.org/pdf/2010.02502.pdf # Ideally, read DDIM paper in-detail understanding # Notation (<variable name> -> <name in paper> # - pred_noise_t -> e_theta(x_t, t) # - pred_original_sample -> f_theta(x_t, t) or x_0 # - std_dev_t -> sigma_t # - eta -> η # - pred_sample_direction -> "direction pointing to x_t" # - pred_prev_sample -> "x_t-1" # 1. get previous step value (=t-1) _lowerCAmelCase : Dict = timestep - self.config.num_train_timesteps // self.num_inference_steps # 2. compute alphas, betas _lowerCAmelCase : int = self.alphas_cumprod[timestep] _lowerCAmelCase : str = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod _lowerCAmelCase : int = 1 - alpha_prod_t # 3. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf _lowerCAmelCase : Dict = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 # 4. Clip "predicted x_0" _lowerCAmelCase : Tuple = self.bit_scale if self.config.clip_sample: _lowerCAmelCase : Union[str, Any] = torch.clamp(_lowerCamelCase ,-scale ,_lowerCamelCase ) # 5. compute variance: "sigma_t(η)" -> see formula (16) # σ_t = sqrt((1 − α_t−1)/(1 − α_t)) * sqrt(1 − α_t/α_t−1) _lowerCAmelCase : List[Any] = self._get_variance(_lowerCamelCase ,_lowerCamelCase ) _lowerCAmelCase : Tuple = eta * variance ** 0.5 if use_clipped_model_output: # the model_output is always re-derived from the clipped x_0 in Glide _lowerCAmelCase : Dict = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5 # 6. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf _lowerCAmelCase : Dict = (1 - alpha_prod_t_prev - std_dev_t**2) ** 0.5 * model_output # 7. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf _lowerCAmelCase : Optional[int] = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction if eta > 0: # randn_like does not support generator https://github.com/pytorch/pytorch/issues/27072 _lowerCAmelCase : Optional[Any] = model_output.device if torch.is_tensor(_lowerCamelCase ) else """cpu""" _lowerCAmelCase : int = torch.randn(model_output.shape ,dtype=model_output.dtype ,generator=_lowerCamelCase ).to(_lowerCamelCase ) _lowerCAmelCase : int = self._get_variance(_lowerCamelCase ,_lowerCamelCase ) ** 0.5 * eta * noise _lowerCAmelCase : Dict = prev_sample + variance if not return_dict: return (prev_sample,) return DDIMSchedulerOutput(prev_sample=_lowerCamelCase ,pred_original_sample=_lowerCamelCase ) def SCREAMING_SNAKE_CASE ( self : str ,_lowerCamelCase : torch.FloatTensor ,_lowerCamelCase : int ,_lowerCamelCase : torch.FloatTensor ,_lowerCamelCase : Dict="epsilon" ,_lowerCamelCase : Tuple=None ,_lowerCamelCase : bool = True ,) -> Union[DDPMSchedulerOutput, Tuple]: _lowerCAmelCase : Dict = timestep if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type in ["learned", "learned_range"]: _lowerCAmelCase : List[str] = torch.split(_lowerCamelCase ,sample.shape[1] ,dim=1 ) else: _lowerCAmelCase : Optional[Any] = None # 1. compute alphas, betas _lowerCAmelCase : str = self.alphas_cumprod[t] _lowerCAmelCase : List[Any] = self.alphas_cumprod[t - 1] if t > 0 else self.one _lowerCAmelCase : Optional[Any] = 1 - alpha_prod_t _lowerCAmelCase : Optional[int] = 1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if prediction_type == "epsilon": _lowerCAmelCase : Tuple = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif prediction_type == "sample": _lowerCAmelCase : str = model_output else: raise ValueError(f"Unsupported prediction_type {prediction_type}." ) # 3. Clip "predicted x_0" _lowerCAmelCase : List[str] = self.bit_scale if self.config.clip_sample: _lowerCAmelCase : Union[str, Any] = torch.clamp(_lowerCamelCase ,-scale ,_lowerCamelCase ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf _lowerCAmelCase : Optional[Any] = (alpha_prod_t_prev ** 0.5 * self.betas[t]) / beta_prod_t _lowerCAmelCase : Any = self.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf _lowerCAmelCase : List[str] = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise _lowerCAmelCase : Optional[Any] = 0 if t > 0: _lowerCAmelCase : Dict = torch.randn( model_output.size() ,dtype=model_output.dtype ,layout=model_output.layout ,generator=_lowerCamelCase ).to(model_output.device ) _lowerCAmelCase : Dict = (self._get_variance(_lowerCamelCase ,predicted_variance=_lowerCamelCase ) ** 0.5) * noise _lowerCAmelCase : Union[str, Any] = pred_prev_sample + variance if not return_dict: return (pred_prev_sample,) return DDPMSchedulerOutput(prev_sample=_lowerCamelCase ,pred_original_sample=_lowerCamelCase ) class __A ( SCREAMING_SNAKE_CASE_ ): def __init__( self , a__ , a__ , a__ = 1.0 , ): super().__init__() _lowerCAmelCase : Any = bit_scale _lowerCAmelCase : int = ( ddim_bit_scheduler_step if isinstance(a__ , a__ ) else ddpm_bit_scheduler_step ) self.register_modules(unet=a__ , scheduler=a__ ) @torch.no_grad() def __call__( self , a__ = 256 , a__ = 256 , a__ = 50 , a__ = None , a__ = 1 , a__ = "pil" , a__ = True , **a__ , ): _lowerCAmelCase : Tuple = torch.randn( (batch_size, self.unet.config.in_channels, height, width) , generator=a__ , ) _lowerCAmelCase : Optional[int] = decimal_to_bits(a__ ) * self.bit_scale _lowerCAmelCase : List[str] = latents.to(self.device ) self.scheduler.set_timesteps(a__ ) for t in self.progress_bar(self.scheduler.timesteps ): # predict the noise residual _lowerCAmelCase : List[Any] = self.unet(a__ , a__ ).sample # compute the previous noisy sample x_t -> x_t-1 _lowerCAmelCase : List[str] = self.scheduler.step(a__ , a__ , a__ ).prev_sample _lowerCAmelCase : Dict = bits_to_decimal(a__ ) if output_type == "pil": _lowerCAmelCase : Tuple = self.numpy_to_pil(a__ ) if not return_dict: return (image,) return ImagePipelineOutput(images=a__ )
361
"""simple docstring""" import contextlib from multiprocessing import Pool, RLock from tqdm.auto import tqdm from ..utils import experimental, logging _a : List[Any] = logging.get_logger(__name__) class __A : _UpperCamelCase : str = None @experimental def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Optional[int] ,_lowerCamelCase : Any ,_lowerCamelCase : Optional[int] ,_lowerCamelCase : List[str] ,_lowerCamelCase : List[Any] ,_lowerCamelCase : Tuple ,_lowerCamelCase : Optional[int] ) -> List[Any]: if ParallelBackendConfig.backend_name is None: return _map_with_multiprocessing_pool( _lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) return _map_with_joblib(_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) def SCREAMING_SNAKE_CASE ( _lowerCamelCase : List[str] ,_lowerCamelCase : Optional[Any] ,_lowerCamelCase : str ,_lowerCamelCase : Tuple ,_lowerCamelCase : Any ,_lowerCamelCase : Optional[int] ,_lowerCamelCase : Tuple ) -> Union[str, Any]: _lowerCAmelCase : int = num_proc if num_proc <= len(_lowerCamelCase ) else len(_lowerCamelCase ) _lowerCAmelCase : Union[str, Any] = [] # We organize the splits ourselve (contiguous splits) for index in range(_lowerCamelCase ): _lowerCAmelCase : List[str] = len(_lowerCamelCase ) // num_proc _lowerCAmelCase : str = len(_lowerCamelCase ) % num_proc _lowerCAmelCase : Tuple = div * index + min(_lowerCamelCase ,_lowerCamelCase ) _lowerCAmelCase : int = start + div + (1 if index < mod else 0) split_kwds.append((function, iterable[start:end], types, index, disable_tqdm, desc) ) if len(_lowerCamelCase ) != sum(len(i[1] ) for i in split_kwds ): raise ValueError( f"Error dividing inputs iterable among processes. " f"Total number of objects {len(_lowerCamelCase )}, " f"length: {sum(len(i[1] ) for i in split_kwds )}" ) logger.info( f"Spawning {num_proc} processes for {len(_lowerCamelCase )} objects in slices of {[len(i[1] ) for i in split_kwds]}" ) _lowerCAmelCase , _lowerCAmelCase : List[str] = None, None if not disable_tqdm: _lowerCAmelCase , _lowerCAmelCase : Optional[Any] = (RLock(),), tqdm.set_lock with Pool(_lowerCamelCase ,initargs=_lowerCamelCase ,initializer=_lowerCamelCase ) as pool: _lowerCAmelCase : str = pool.map(_lowerCamelCase ,_lowerCamelCase ) logger.info(f"Finished {num_proc} processes" ) _lowerCAmelCase : int = [obj for proc_res in mapped for obj in proc_res] logger.info(f"Unpacked {len(_lowerCamelCase )} objects" ) return mapped def SCREAMING_SNAKE_CASE ( _lowerCamelCase : List[str] ,_lowerCamelCase : Union[str, Any] ,_lowerCamelCase : int ,_lowerCamelCase : Dict ,_lowerCamelCase : Tuple ,_lowerCamelCase : Any ,_lowerCamelCase : str ) -> Optional[Any]: # progress bar is not yet supported for _map_with_joblib, because tqdm couldn't accurately be applied to joblib, # and it requires monkey-patching joblib internal classes which is subject to change import joblib with joblib.parallel_backend(ParallelBackendConfig.backend_name ,n_jobs=_lowerCamelCase ): return joblib.Parallel()( joblib.delayed(_lowerCamelCase )((function, obj, types, None, True, None) ) for obj in iterable ) @experimental @contextlib.contextmanager def SCREAMING_SNAKE_CASE ( _lowerCamelCase : str ) -> Any: _lowerCAmelCase : List[Any] = backend_name if backend_name == "spark": from joblibspark import register_spark register_spark() # TODO: call create_cache_and_write_probe if "download" in steps # TODO: raise NotImplementedError when Dataset.map etc is called try: yield finally: _lowerCAmelCase : Optional[Any] = None
126
0
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import torch from ..models.clipseg import CLIPSegForImageSegmentation from ..utils import is_vision_available, requires_backends from .base import PipelineTool if is_vision_available(): from PIL import Image class A ( UpperCAmelCase_ ): __UpperCAmelCase : List[str] = ( 'This is a tool that creates a segmentation mask of an image according to a label. It cannot create an image.' 'It takes two arguments named `image` which should be the original image, and `label` which should be a text ' 'describing the elements what should be identified in the segmentation mask. The tool returns the mask.' ) __UpperCAmelCase : Tuple = 'CIDAS/clipseg-rd64-refined' __UpperCAmelCase : str = 'image_segmenter' __UpperCAmelCase : Any = CLIPSegForImageSegmentation __UpperCAmelCase : str = ['image', 'text'] __UpperCAmelCase : Tuple = ['image'] def __init__(self : Union[str, Any] , *__UpperCAmelCase : int , **__UpperCAmelCase : Dict ) -> Optional[int]: """simple docstring""" requires_backends(self , ["vision"] ) super().__init__(*__UpperCAmelCase , **__UpperCAmelCase ) def lowercase_ (self : List[str] , __UpperCAmelCase : "Image" , __UpperCAmelCase : str ) -> Tuple: """simple docstring""" return self.pre_processor(text=[label] , images=[image] , padding=__UpperCAmelCase , return_tensors="pt" ) def lowercase_ (self : Optional[int] , __UpperCAmelCase : str ) -> int: """simple docstring""" with torch.no_grad(): UpperCAmelCase__ = self.model(**__UpperCAmelCase ).logits return logits def lowercase_ (self : Union[str, Any] , __UpperCAmelCase : int ) -> int: """simple docstring""" UpperCAmelCase__ = outputs.cpu().detach().numpy() UpperCAmelCase__ = 0 UpperCAmelCase__ = 1 return Image.fromarray((array * 2_5_5).astype(np.uinta ) )
65
from manim import * class A ( UpperCAmelCase_ ): def lowercase_ (self : Union[str, Any] ) -> List[str]: """simple docstring""" UpperCAmelCase__ = Rectangle(height=0.5 , width=0.5 ) UpperCAmelCase__ = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) UpperCAmelCase__ = Rectangle(height=0.25 , width=0.25 ) UpperCAmelCase__ = [mem.copy() for i in range(6 )] UpperCAmelCase__ = [mem.copy() for i in range(6 )] UpperCAmelCase__ = VGroup(*__UpperCAmelCase ).arrange(__UpperCAmelCase , buff=0 ) UpperCAmelCase__ = VGroup(*__UpperCAmelCase ).arrange(__UpperCAmelCase , buff=0 ) UpperCAmelCase__ = VGroup(__UpperCAmelCase , __UpperCAmelCase ).arrange(__UpperCAmelCase , buff=0 ) UpperCAmelCase__ = Text("CPU" , font_size=2_4 ) UpperCAmelCase__ = Group(__UpperCAmelCase , __UpperCAmelCase ).arrange(__UpperCAmelCase , buff=0.5 , aligned_edge=__UpperCAmelCase ) cpu.move_to([-2.5, -0.5, 0] ) self.add(__UpperCAmelCase ) UpperCAmelCase__ = [mem.copy() for i in range(4 )] UpperCAmelCase__ = VGroup(*__UpperCAmelCase ).arrange(__UpperCAmelCase , buff=0 ) UpperCAmelCase__ = Text("GPU" , font_size=2_4 ) UpperCAmelCase__ = Group(__UpperCAmelCase , __UpperCAmelCase ).arrange(__UpperCAmelCase , buff=0.5 , aligned_edge=__UpperCAmelCase ) gpu.move_to([-1, -1, 0] ) self.add(__UpperCAmelCase ) UpperCAmelCase__ = [mem.copy() for i in range(6 )] UpperCAmelCase__ = VGroup(*__UpperCAmelCase ).arrange(__UpperCAmelCase , buff=0 ) UpperCAmelCase__ = Text("Model" , font_size=2_4 ) UpperCAmelCase__ = Group(__UpperCAmelCase , __UpperCAmelCase ).arrange(__UpperCAmelCase , buff=0.5 , aligned_edge=__UpperCAmelCase ) model.move_to([3, -1.0, 0] ) self.add(__UpperCAmelCase ) UpperCAmelCase__ = [] UpperCAmelCase__ = [] for i, rect in enumerate(__UpperCAmelCase ): UpperCAmelCase__ = fill.copy().set_fill(__UpperCAmelCase , opacity=0.8 ) target.move_to(__UpperCAmelCase ) model_arr.append(__UpperCAmelCase ) UpperCAmelCase__ = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0.0 ).set_fill(__UpperCAmelCase , opacity=0.8 ) cpu_target.move_to(cpu_left_col_base[i] ) model_cpu_arr.append(__UpperCAmelCase ) self.add(*__UpperCAmelCase , *__UpperCAmelCase ) UpperCAmelCase__ = [meta_mem.copy() for i in range(6 )] UpperCAmelCase__ = [meta_mem.copy() for i in range(6 )] UpperCAmelCase__ = VGroup(*__UpperCAmelCase ).arrange(__UpperCAmelCase , buff=0 ) UpperCAmelCase__ = VGroup(*__UpperCAmelCase ).arrange(__UpperCAmelCase , buff=0 ) UpperCAmelCase__ = VGroup(__UpperCAmelCase , __UpperCAmelCase ).arrange(__UpperCAmelCase , buff=0 ) UpperCAmelCase__ = Text("Disk" , font_size=2_4 ) UpperCAmelCase__ = Group(__UpperCAmelCase , __UpperCAmelCase ).arrange(__UpperCAmelCase , buff=0.5 , aligned_edge=__UpperCAmelCase ) disk.move_to([-4, -1.25, 0] ) self.add(__UpperCAmelCase , __UpperCAmelCase ) UpperCAmelCase__ = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) UpperCAmelCase__ = MarkupText( f"""<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model""" , font_size=1_8 , ) key_text.move_to([-5, 2.4, 0] ) self.add(__UpperCAmelCase , __UpperCAmelCase ) UpperCAmelCase__ = MarkupText( f"""<span fgcolor='{BLUE}'>●</span> Checkpoint""" , font_size=1_8 , ) blue_text.next_to(__UpperCAmelCase , DOWN * 2.4 , aligned_edge=key_text.get_left() ) self.add(__UpperCAmelCase ) UpperCAmelCase__ = MarkupText( f"""Now watch as an input is passed through the model\nand how the memory is utilized and handled.""" , font_size=2_4 , ) step_a.move_to([2, 2, 0] ) self.play(Write(__UpperCAmelCase ) ) UpperCAmelCase__ = Square(0.3 ) input.set_fill(__UpperCAmelCase , opacity=1.0 ) input.set_stroke(width=0.0 ) input.next_to(model_base[0] , __UpperCAmelCase , buff=0.5 ) self.play(Write(__UpperCAmelCase ) ) input.generate_target() input.target.next_to(model_arr[0] , direction=__UpperCAmelCase , buff=0.02 ) self.play(MoveToTarget(__UpperCAmelCase ) ) self.play(FadeOut(__UpperCAmelCase ) ) UpperCAmelCase__ = Arrow(start=__UpperCAmelCase , end=__UpperCAmelCase , color=__UpperCAmelCase , buff=0.5 ) a.next_to(model_arr[0].get_left() , __UpperCAmelCase , buff=0.2 ) model_cpu_arr[0].generate_target() model_cpu_arr[0].target.move_to(gpu_rect[0] ) UpperCAmelCase__ = MarkupText( f"""As the input reaches a layer, the hook triggers\nand weights are moved from the CPU\nto the GPU and back.""" , font_size=2_4 , ) step_a.move_to([2, 2, 0] ) self.play(Write(__UpperCAmelCase , run_time=3 ) ) UpperCAmelCase__ = {"run_time": 1, "fade_in": True, "fade_out": True, "buff": 0.02} self.play( Write(__UpperCAmelCase ) , Circumscribe(model_arr[0] , color=__UpperCAmelCase , **__UpperCAmelCase ) , Circumscribe(model_cpu_arr[0] , color=__UpperCAmelCase , **__UpperCAmelCase ) , Circumscribe(gpu_rect[0] , color=__UpperCAmelCase , **__UpperCAmelCase ) , ) self.play(MoveToTarget(model_cpu_arr[0] ) ) UpperCAmelCase__ = a.copy() for i in range(6 ): a_c.next_to(model_arr[i].get_right() + 0.02 , __UpperCAmelCase , buff=0.2 ) input.generate_target() input.target.move_to(model_arr[i].get_right() + 0.02 ) UpperCAmelCase__ = AnimationGroup( FadeOut(__UpperCAmelCase , run_time=0.5 ) , MoveToTarget(__UpperCAmelCase , run_time=0.5 ) , FadeIn(__UpperCAmelCase , run_time=0.5 ) , lag_ratio=0.2 ) self.play(__UpperCAmelCase ) model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[i] ) if i < 5: model_cpu_arr[i + 1].generate_target() model_cpu_arr[i + 1].target.move_to(gpu_rect[0] ) if i >= 1: UpperCAmelCase__ = 0.7 self.play( Circumscribe(model_arr[i] , **__UpperCAmelCase ) , Circumscribe(cpu_left_col_base[i] , **__UpperCAmelCase ) , Circumscribe(cpu_left_col_base[i + 1] , color=__UpperCAmelCase , **__UpperCAmelCase ) , Circumscribe(gpu_rect[0] , color=__UpperCAmelCase , **__UpperCAmelCase ) , Circumscribe(model_arr[i + 1] , color=__UpperCAmelCase , **__UpperCAmelCase ) , ) if i < 1: self.play( MoveToTarget(model_cpu_arr[i] ) , MoveToTarget(model_cpu_arr[i + 1] ) , ) else: self.play( MoveToTarget(model_cpu_arr[i] , run_time=0.7 ) , MoveToTarget(model_cpu_arr[i + 1] , run_time=0.7 ) , ) else: model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[-1] ) input.generate_target() input.target.next_to(model_arr[-1].get_right() , RIGHT + 0.02 , buff=0.2 ) self.play( Circumscribe(model_arr[-1] , color=__UpperCAmelCase , **__UpperCAmelCase ) , Circumscribe(cpu_left_col_base[-1] , color=__UpperCAmelCase , **__UpperCAmelCase ) , Circumscribe(gpu_rect[0] , color=__UpperCAmelCase , **__UpperCAmelCase ) , ) self.play(MoveToTarget(model_cpu_arr[i] ) ) UpperCAmelCase__ = a_c UpperCAmelCase__ = a_c.copy() input.generate_target() input.target.next_to(model_base[-1] , RIGHT + 0.02 , buff=0.5 ) self.play( FadeOut(__UpperCAmelCase ) , FadeOut(__UpperCAmelCase , run_time=0.5 ) , ) UpperCAmelCase__ = MarkupText(f"""Inference on a model too large for GPU memory\nis successfully completed.""" , font_size=2_4 ) step_a.move_to([2, 2, 0] ) self.play(Write(__UpperCAmelCase , run_time=3 ) , MoveToTarget(__UpperCAmelCase ) ) self.wait()
65
1
'''simple docstring''' import argparse import os import platform import numpy as np import psutil import torch from accelerate import __version__ as version from accelerate.commands.config import default_config_file, load_config_from_file from ..utils import is_npu_available, is_xpu_available def a__ ( a__=None ): """simple docstring""" if subparsers is not None: __SCREAMING_SNAKE_CASE = subparsers.add_parser("""env""" ) else: __SCREAMING_SNAKE_CASE = argparse.ArgumentParser("""Accelerate env command""" ) parser.add_argument( """--config_file""" , default=_SCREAMING_SNAKE_CASE , help="""The config file to use for the default values in the launching script.""" ) if subparsers is not None: parser.set_defaults(func=_SCREAMING_SNAKE_CASE ) return parser def a__ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE = torch.__version__ __SCREAMING_SNAKE_CASE = torch.cuda.is_available() __SCREAMING_SNAKE_CASE = is_xpu_available() __SCREAMING_SNAKE_CASE = is_npu_available() __SCREAMING_SNAKE_CASE = "Not found" # Get the default from the config file. if args.config_file is not None or os.path.isfile(_SCREAMING_SNAKE_CASE ): __SCREAMING_SNAKE_CASE = load_config_from_file(args.config_file ).to_dict() __SCREAMING_SNAKE_CASE = { "`Accelerate` version": version, "Platform": platform.platform(), "Python version": platform.python_version(), "Numpy version": np.__version__, "PyTorch version (GPU?)": F'{pt_version} ({pt_cuda_available})', "PyTorch XPU available": str(_SCREAMING_SNAKE_CASE ), "PyTorch NPU available": str(_SCREAMING_SNAKE_CASE ), "System RAM": F'{psutil.virtual_memory().total / 10_24 ** 3:.2f} GB', } if pt_cuda_available: __SCREAMING_SNAKE_CASE = torch.cuda.get_device_name() print("""\nCopy-and-paste the text below in your GitHub issue\n""" ) print("""\n""".join([F'- {prop}: {val}' for prop, val in info.items()] ) ) print("""- `Accelerate` default config:""" if args.config_file is None else """- `Accelerate` config passed:""" ) __SCREAMING_SNAKE_CASE = ( "\n".join([F'\t- {prop}: {val}' for prop, val in accelerate_config.items()] ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else F'\t{accelerate_config}' ) print(_SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = accelerate_config return info def a__ ( ): """simple docstring""" __SCREAMING_SNAKE_CASE = env_command_parser() __SCREAMING_SNAKE_CASE = parser.parse_args() env_command(_SCREAMING_SNAKE_CASE ) return 0 if __name__ == "__main__": raise SystemExit(main())
351
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) UpperCAmelCase : Tuple = {'configuration_reformer': ['REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ReformerConfig']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : List[str] = ['ReformerTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : Tuple = ['ReformerTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : List[Any] = [ 'REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'ReformerAttention', 'ReformerForMaskedLM', 'ReformerForQuestionAnswering', 'ReformerForSequenceClassification', 'ReformerLayer', 'ReformerModel', 'ReformerModelWithLMHead', 'ReformerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_reformer import REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ReformerConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer import ReformerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer_fast import ReformerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_reformer import ( REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ReformerAttention, ReformerForMaskedLM, ReformerForQuestionAnswering, ReformerForSequenceClassification, ReformerLayer, ReformerModel, ReformerModelWithLMHead, ReformerPreTrainedModel, ) else: import sys UpperCAmelCase : Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
331
0
"""simple docstring""" import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to properly calculate the metrics on the # validation dataset when in a distributed system, and builds off the # `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## lowerCAmelCase__ = 16 lowerCAmelCase__ = 32 def a__ ( SCREAMING_SNAKE_CASE : Accelerator , SCREAMING_SNAKE_CASE : int = 1_6 ): '''simple docstring''' lowerCAmelCase : List[Any] = AutoTokenizer.from_pretrained("bert-base-cased" ) lowerCAmelCase : Union[str, Any] = load_dataset("glue" , "mrpc" ) def tokenize_function(SCREAMING_SNAKE_CASE : List[str] ): # max_length=None => use the model max length (it's actually the default) lowerCAmelCase : str = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=SCREAMING_SNAKE_CASE , max_length=SCREAMING_SNAKE_CASE ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): lowerCAmelCase : Optional[int] = datasets.map( SCREAMING_SNAKE_CASE , batched=SCREAMING_SNAKE_CASE , remove_columns=["idx", "sentence1", "sentence2"] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowerCAmelCase : Any = tokenized_datasets.rename_column("label" , "labels" ) def collate_fn(SCREAMING_SNAKE_CASE : Dict ): # On TPU it's best to pad everything to the same length or training will be very slow. lowerCAmelCase : Tuple = 1_2_8 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": lowerCAmelCase : List[Any] = 1_6 elif accelerator.mixed_precision != "no": lowerCAmelCase : int = 8 else: lowerCAmelCase : Optional[int] = None return tokenizer.pad( SCREAMING_SNAKE_CASE , padding="longest" , max_length=SCREAMING_SNAKE_CASE , pad_to_multiple_of=SCREAMING_SNAKE_CASE , return_tensors="pt" , ) # Instantiate dataloaders. lowerCAmelCase : Any = DataLoader( tokenized_datasets["train"] , shuffle=SCREAMING_SNAKE_CASE , collate_fn=SCREAMING_SNAKE_CASE , batch_size=SCREAMING_SNAKE_CASE ) lowerCAmelCase : Dict = DataLoader( tokenized_datasets["validation"] , shuffle=SCREAMING_SNAKE_CASE , collate_fn=SCREAMING_SNAKE_CASE , batch_size=SCREAMING_SNAKE_CASE ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('''TESTING_MOCKED_DATALOADERS''', None) == "1": from accelerate.test_utils.training import mocked_dataloaders lowerCAmelCase__ = mocked_dataloaders # noqa: F811 def a__ ( SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : Any ): '''simple docstring''' if os.environ.get("TESTING_MOCKED_DATALOADERS" , SCREAMING_SNAKE_CASE ) == "1": lowerCAmelCase : Optional[Any] = 2 # Initialize accelerator lowerCAmelCase : List[str] = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowerCAmelCase : Optional[Any] = config["lr"] lowerCAmelCase : List[Any] = int(config["num_epochs"] ) lowerCAmelCase : str = int(config["seed"] ) lowerCAmelCase : Any = int(config["batch_size"] ) lowerCAmelCase : Any = evaluate.load("glue" , "mrpc" ) # If the batch size is too big we use gradient accumulation lowerCAmelCase : Tuple = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: lowerCAmelCase : int = batch_size // MAX_GPU_BATCH_SIZE lowerCAmelCase : Any = MAX_GPU_BATCH_SIZE set_seed(SCREAMING_SNAKE_CASE ) lowerCAmelCase , lowerCAmelCase : Optional[int] = get_dataloaders(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowerCAmelCase : str = AutoModelForSequenceClassification.from_pretrained("bert-base-cased" , return_dict=SCREAMING_SNAKE_CASE ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). lowerCAmelCase : Dict = model.to(accelerator.device ) # Instantiate optimizer lowerCAmelCase : str = AdamW(params=model.parameters() , lr=SCREAMING_SNAKE_CASE ) # Instantiate scheduler lowerCAmelCase : Tuple = get_linear_schedule_with_warmup( optimizer=SCREAMING_SNAKE_CASE , num_warmup_steps=1_0_0 , num_training_steps=(len(SCREAMING_SNAKE_CASE ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Optional[int] = accelerator.prepare( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Now we train the model for epoch in range(SCREAMING_SNAKE_CASE ): model.train() for step, batch in enumerate(SCREAMING_SNAKE_CASE ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) lowerCAmelCase : int = model(**SCREAMING_SNAKE_CASE ) lowerCAmelCase : Optional[Any] = outputs.loss lowerCAmelCase : List[str] = loss / gradient_accumulation_steps accelerator.backward(SCREAMING_SNAKE_CASE ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() lowerCAmelCase : Any = 0 for step, batch in enumerate(SCREAMING_SNAKE_CASE ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): lowerCAmelCase : str = model(**SCREAMING_SNAKE_CASE ) lowerCAmelCase : List[str] = outputs.logits.argmax(dim=-1 ) lowerCAmelCase , lowerCAmelCase : Dict = accelerator.gather((predictions, batch["labels"]) ) # New Code # # First we check if it's a distributed system if accelerator.use_distributed: # Then see if we're on the last batch of our eval dataloader if step == len(SCREAMING_SNAKE_CASE ) - 1: # Last batch needs to be truncated on distributed systems as it contains additional samples lowerCAmelCase : str = predictions[: len(eval_dataloader.dataset ) - samples_seen] lowerCAmelCase : Union[str, Any] = references[: len(eval_dataloader.dataset ) - samples_seen] else: # Otherwise we add the number of samples seen samples_seen += references.shape[0] # All of this can be avoided if you use `Accelerator.gather_for_metrics` instead of `Accelerator.gather`: # accelerator.gather_for_metrics((predictions, batch["labels"])) metric.add_batch( predictions=SCREAMING_SNAKE_CASE , references=SCREAMING_SNAKE_CASE , ) lowerCAmelCase : Tuple = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"""epoch {epoch}:""" , SCREAMING_SNAKE_CASE ) def a__ ( ): '''simple docstring''' lowerCAmelCase : Optional[Any] = argparse.ArgumentParser(description="Simple example of training script." ) parser.add_argument( "--mixed_precision" , type=SCREAMING_SNAKE_CASE , default=SCREAMING_SNAKE_CASE , choices=["no", "fp16", "bf16", "fp8"] , help="Whether to use mixed precision. Choose" "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." "and an Nvidia Ampere GPU." , ) parser.add_argument("--cpu" , action="store_true" , help="If passed, will train on the CPU." ) lowerCAmelCase : Any = parser.parse_args() lowerCAmelCase : Optional[int] = {"lr": 2E-5, "num_epochs": 3, "seed": 4_2, "batch_size": 1_6} training_function(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if __name__ == "__main__": main()
108
'''simple docstring''' import contextlib from multiprocessing import Pool, RLock from tqdm.auto import tqdm from ..utils import experimental, logging lowercase__ : Any = logging.get_logger(__name__) class __lowerCAmelCase : """simple docstring""" _snake_case : List[str] = None @experimental def a__ ( lowercase : Union[str, Any], lowercase : Optional[int], lowercase : Tuple, lowercase : List[Any], lowercase : Dict, lowercase : Union[str, Any], lowercase : Optional[Any] ) -> int: """simple docstring""" if ParallelBackendConfig.backend_name is None: return _map_with_multiprocessing_pool( lowercase, lowercase, lowercase, lowercase, lowercase, lowercase, lowercase ) return _map_with_joblib(lowercase, lowercase, lowercase, lowercase, lowercase, lowercase, lowercase ) def a__ ( lowercase : Dict, lowercase : str, lowercase : Union[str, Any], lowercase : Optional[Any], lowercase : Optional[int], lowercase : Optional[Any], lowercase : Optional[int] ) -> List[str]: """simple docstring""" _UpperCamelCase = num_proc if num_proc <= len(lowercase ) else len(lowercase ) _UpperCamelCase = [] # We organize the splits ourselve (contiguous splits) for index in range(lowercase ): _UpperCamelCase = len(lowercase ) // num_proc _UpperCamelCase = len(lowercase ) % num_proc _UpperCamelCase = div * index + min(lowercase, lowercase ) _UpperCamelCase = start + div + (1 if index < mod else 0) split_kwds.append((function, iterable[start:end], types, index, disable_tqdm, desc) ) if len(lowercase ) != sum(len(i[1] ) for i in split_kwds ): raise ValueError( F"""Error dividing inputs iterable among processes. """ F"""Total number of objects {len(lowercase )}, """ F"""length: {sum(len(i[1] ) for i in split_kwds )}""" ) logger.info( F"""Spawning {num_proc} processes for {len(lowercase )} objects in slices of {[len(i[1] ) for i in split_kwds]}""" ) _UpperCamelCase , _UpperCamelCase = None, None if not disable_tqdm: _UpperCamelCase , _UpperCamelCase = (RLock(),), tqdm.set_lock with Pool(lowercase, initargs=lowercase, initializer=lowercase ) as pool: _UpperCamelCase = pool.map(lowercase, lowercase ) logger.info(F"""Finished {num_proc} processes""" ) _UpperCamelCase = [obj for proc_res in mapped for obj in proc_res] logger.info(F"""Unpacked {len(lowercase )} objects""" ) return mapped def a__ ( lowercase : str, lowercase : Tuple, lowercase : List[str], lowercase : List[str], lowercase : Any, lowercase : int, lowercase : Optional[Any] ) -> Any: """simple docstring""" import joblib with joblib.parallel_backend(ParallelBackendConfig.backend_name, n_jobs=lowercase ): return joblib.Parallel()( joblib.delayed(lowercase )((function, obj, types, None, True, None) ) for obj in iterable ) @experimental @contextlib.contextmanager def a__ ( lowercase : str ) -> Optional[int]: """simple docstring""" _UpperCamelCase = backend_name if backend_name == "spark": from joblibspark import register_spark register_spark() # TODO: call create_cache_and_write_probe if "download" in steps # TODO: raise NotImplementedError when Dataset.map etc is called try: yield finally: _UpperCamelCase = None
324
0
'''simple docstring''' class UpperCAmelCase_ : def __init__( self : int , UpperCAmelCase__ : Any , UpperCAmelCase__ : Union[str, Any] ) -> Optional[Any]: lowerCAmelCase = name lowerCAmelCase = val def __str__( self : str ) -> str: return F'''{self.__class__.__name__}({self.name}, {self.val})''' def __lt__( self : Optional[Any] , UpperCAmelCase__ : Dict ) -> int: return self.val < other.val class UpperCAmelCase_ : def __init__( self : Union[str, Any] , UpperCAmelCase__ : List[str] ) -> List[Any]: lowerCAmelCase = {} lowerCAmelCase = {} lowerCAmelCase = self.build_heap(UpperCAmelCase__ ) def __getitem__( self : Any , UpperCAmelCase__ : Union[str, Any] ) -> Optional[int]: return self.get_value(UpperCAmelCase__ ) def __UpperCAmelCase ( self : str , UpperCAmelCase__ : Optional[int] ) -> List[Any]: return (idx - 1) // 2 def __UpperCAmelCase ( self : str , UpperCAmelCase__ : Tuple ) -> Any: return idx * 2 + 1 def __UpperCAmelCase ( self : int , UpperCAmelCase__ : List[Any] ) -> List[str]: return idx * 2 + 2 def __UpperCAmelCase ( self : Any , UpperCAmelCase__ : str ) -> Tuple: return self.heap_dict[key] def __UpperCAmelCase ( self : Tuple , UpperCAmelCase__ : Any ) -> Tuple: lowerCAmelCase = len(UpperCAmelCase__ ) - 1 lowerCAmelCase = self.get_parent_idx(UpperCAmelCase__ ) for idx, i in enumerate(UpperCAmelCase__ ): lowerCAmelCase = idx lowerCAmelCase = i.val for i in range(UpperCAmelCase__ , -1 , -1 ): self.sift_down(UpperCAmelCase__ , UpperCAmelCase__ ) return array def __UpperCAmelCase ( self : List[str] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Optional[int] ) -> Any: while True: lowerCAmelCase = self.get_left_child_idx(UpperCAmelCase__ ) # noqa: E741 lowerCAmelCase = self.get_right_child_idx(UpperCAmelCase__ ) lowerCAmelCase = idx if l < len(UpperCAmelCase__ ) and array[l] < array[idx]: lowerCAmelCase = l if r < len(UpperCAmelCase__ ) and array[r] < array[smallest]: lowerCAmelCase = r if smallest != idx: lowerCAmelCase , lowerCAmelCase = array[smallest], array[idx] ( ( lowerCAmelCase ) , ( lowerCAmelCase ) , ) = ( self.idx_of_element[array[smallest]], self.idx_of_element[array[idx]], ) lowerCAmelCase = smallest else: break def __UpperCAmelCase ( self : Dict , UpperCAmelCase__ : int ) -> List[str]: lowerCAmelCase = self.get_parent_idx(UpperCAmelCase__ ) while p >= 0 and self.heap[p] > self.heap[idx]: lowerCAmelCase , lowerCAmelCase = self.heap[idx], self.heap[p] lowerCAmelCase , lowerCAmelCase = ( self.idx_of_element[self.heap[idx]], self.idx_of_element[self.heap[p]], ) lowerCAmelCase = p lowerCAmelCase = self.get_parent_idx(UpperCAmelCase__ ) def __UpperCAmelCase ( self : int ) -> Dict: return self.heap[0] def __UpperCAmelCase ( self : Tuple ) -> List[str]: lowerCAmelCase , lowerCAmelCase = self.heap[-1], self.heap[0] lowerCAmelCase , lowerCAmelCase = ( self.idx_of_element[self.heap[-1]], self.idx_of_element[self.heap[0]], ) lowerCAmelCase = self.heap.pop() del self.idx_of_element[x] self.sift_down(0 , self.heap ) return x def __UpperCAmelCase ( self : List[Any] , UpperCAmelCase__ : List[Any] ) -> Dict: self.heap.append(UpperCAmelCase__ ) lowerCAmelCase = len(self.heap ) - 1 lowerCAmelCase = node.val self.sift_up(len(self.heap ) - 1 ) def __UpperCAmelCase ( self : List[str] ) -> List[Any]: return len(self.heap ) == 0 def __UpperCAmelCase ( self : Union[str, Any] , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : List[str] ) -> Tuple: assert ( self.heap[self.idx_of_element[node]].val > new_value ), "newValue must be less that current value" lowerCAmelCase = new_value lowerCAmelCase = new_value self.sift_up(self.idx_of_element[node] ) __snake_case =Node("""R""", -1) __snake_case =Node("""B""", 6) __snake_case =Node("""A""", 3) __snake_case =Node("""X""", 1) __snake_case =Node("""E""", 4) # Use one of these two ways to generate Min-Heap # Generating Min-Heap from array __snake_case =MinHeap([r, b, a, x, e]) # Generating Min-Heap by Insert method # myMinHeap.insert(a) # myMinHeap.insert(b) # myMinHeap.insert(x) # myMinHeap.insert(r) # myMinHeap.insert(e) # Before print("""Min Heap - before decrease key""") for i in my_min_heap.heap: print(i) print("""Min Heap - After decrease key of node [B -> -17]""") my_min_heap.decrease_key(b, -17) # After for i in my_min_heap.heap: print(i) if __name__ == "__main__": import doctest doctest.testmod()
55
'''simple docstring''' def a_ ( lowerCamelCase : list[int] ): if not nums: # Makes sure that the list is not empty raise ValueError('List is empty' ) lowerCAmelCase = sum(lowerCamelCase ) / len(lowerCamelCase ) # Calculate the average return sum(abs(x - average ) for x in nums ) / len(lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod()
55
1
import copy import json import os import tempfile from transformers import is_torch_available from .test_configuration_utils import config_common_kwargs class lowercase_ ( lowerCamelCase_ ): '''simple docstring''' def __init__( self : int , __UpperCAmelCase : Dict , __UpperCAmelCase : Optional[int]=None , __UpperCAmelCase : Dict=True , __UpperCAmelCase : Optional[Any]=None , **__UpperCAmelCase : Any ) ->Dict: """simple docstring""" a = parent a = config_class a = has_text_modality a = kwargs a = common_properties def __lowerCAmelCase ( self : Optional[int] ) ->Any: """simple docstring""" a = self.config_class(**self.inputs_dict ) a = ( ["hidden_size", "num_attention_heads", "num_hidden_layers"] if self.common_properties is None else self.common_properties ) # Add common fields for text models if self.has_text_modality: common_properties.extend(['''vocab_size'''] ) # Test that config has the common properties as getters for prop in common_properties: self.parent.assertTrue(hasattr(_UpperCamelCase , _UpperCamelCase ) , msg=F"""`{prop}` does not exist""" ) # Test that config has the common properties as setter for idx, name in enumerate(_UpperCamelCase ): try: setattr(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) self.parent.assertEqual( getattr(_UpperCamelCase , _UpperCamelCase ) , _UpperCamelCase , msg=F"""`{name} value {idx} expected, but was {getattr(_UpperCamelCase , _UpperCamelCase )}""" ) except NotImplementedError: # Some models might not be able to implement setters for common_properties # In that case, a NotImplementedError is raised pass # Test if config class can be called with Config(prop_name=..) for idx, name in enumerate(_UpperCamelCase ): try: a = self.config_class(**{name: idx} ) self.parent.assertEqual( getattr(_UpperCamelCase , _UpperCamelCase ) , _UpperCamelCase , msg=F"""`{name} value {idx} expected, but was {getattr(_UpperCamelCase , _UpperCamelCase )}""" ) except NotImplementedError: # Some models might not be able to implement setters for common_properties # In that case, a NotImplementedError is raised pass def __lowerCAmelCase ( self : str ) ->str: """simple docstring""" a = self.config_class(**self.inputs_dict ) a = json.loads(config.to_json_string() ) for key, value in self.inputs_dict.items(): self.parent.assertEqual(obj[key] , _UpperCamelCase ) def __lowerCAmelCase ( self : Union[str, Any] ) ->Tuple: """simple docstring""" a = self.config_class(**self.inputs_dict ) with tempfile.TemporaryDirectory() as tmpdirname: a = os.path.join(_UpperCamelCase , '''config.json''' ) config_first.to_json_file(_UpperCamelCase ) a = self.config_class.from_json_file(_UpperCamelCase ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def __lowerCAmelCase ( self : List[Any] ) ->Any: """simple docstring""" a = self.config_class(**self.inputs_dict ) with tempfile.TemporaryDirectory() as tmpdirname: config_first.save_pretrained(_UpperCamelCase ) a = self.config_class.from_pretrained(_UpperCamelCase ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def __lowerCAmelCase ( self : Optional[int] ) ->Optional[Any]: """simple docstring""" a = self.config_class(**self.inputs_dict ) a = "test" with tempfile.TemporaryDirectory() as tmpdirname: a = os.path.join(_UpperCamelCase , _UpperCamelCase ) config_first.save_pretrained(_UpperCamelCase ) a = self.config_class.from_pretrained(_UpperCamelCase , subfolder=_UpperCamelCase ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def __lowerCAmelCase ( self : int ) ->Optional[int]: """simple docstring""" a = self.config_class(**self.inputs_dict , num_labels=5 ) self.parent.assertEqual(len(config.idalabel ) , 5 ) self.parent.assertEqual(len(config.labelaid ) , 5 ) a = 3 self.parent.assertEqual(len(config.idalabel ) , 3 ) self.parent.assertEqual(len(config.labelaid ) , 3 ) def __lowerCAmelCase ( self : Optional[int] ) ->Optional[Any]: """simple docstring""" if self.config_class.is_composition: return a = self.config_class() self.parent.assertIsNotNone(_UpperCamelCase ) def __lowerCAmelCase ( self : Optional[Any] ) ->int: """simple docstring""" a = copy.deepcopy(_UpperCamelCase ) a = self.config_class(**_UpperCamelCase ) a = [] for key, value in config_common_kwargs.items(): if key == "torch_dtype": if not is_torch_available(): continue else: import torch if config.torch_dtype != torch.floataa: wrong_values.append(('''torch_dtype''', config.torch_dtype, torch.floataa) ) elif getattr(_UpperCamelCase , _UpperCamelCase ) != value: wrong_values.append((key, getattr(_UpperCamelCase , _UpperCamelCase ), value) ) if len(_UpperCamelCase ) > 0: a = "\n".join([F"""- {v[0]}: got {v[1]} instead of {v[2]}""" for v in wrong_values] ) raise ValueError(F"""The following keys were not properly set in the config:\n{errors}""" ) def __lowerCAmelCase ( self : List[Any] ) ->Any: """simple docstring""" self.create_and_test_config_common_properties() self.create_and_test_config_to_json_string() self.create_and_test_config_to_json_file() self.create_and_test_config_from_and_save_pretrained() self.create_and_test_config_from_and_save_pretrained_subfolder() self.create_and_test_config_with_num_labels() self.check_config_can_be_init_without_params() self.check_config_arguments_init()
0
'''simple docstring''' _snake_case = 8.3_1_4_4_5_9_8 def _A ( snake_case , snake_case ) -> float: if temperature < 0: raise Exception("Temperature cannot be less than 0 K" ) if molar_mass <= 0: raise Exception("Molar mass cannot be less than or equal to 0 kg/mol" ) else: return (3 * UNIVERSAL_GAS_CONSTANT * temperature / molar_mass) ** 0.5 if __name__ == "__main__": import doctest # run doctest doctest.testmod() # example _snake_case = 300 _snake_case = 28 _snake_case = rms_speed_of_molecule(temperature, molar_mass) print(F'''Vrms of Nitrogen gas at 300 K is {vrms} m/s''')
250
0
import argparse import json from typing import List from ltp import LTP from transformers.models.bert.tokenization_bert import BertTokenizer def __lowerCAmelCase (SCREAMING_SNAKE_CASE )-> Tuple: """simple docstring""" if ( (cp >= 0X4E00 and cp <= 0X9FFF) or (cp >= 0X3400 and cp <= 0X4DBF) # or (cp >= 0X2_0000 and cp <= 0X2_A6DF) # or (cp >= 0X2_A700 and cp <= 0X2_B73F) # or (cp >= 0X2_B740 and cp <= 0X2_B81F) # or (cp >= 0X2_B820 and cp <= 0X2_CEAF) # or (cp >= 0XF900 and cp <= 0XFAFF) or (cp >= 0X2_F800 and cp <= 0X2_FA1F) # ): # return True return False def __lowerCAmelCase (SCREAMING_SNAKE_CASE )-> List[Any]: """simple docstring""" for char in word: snake_case_ = ord(SCREAMING_SNAKE_CASE ) if not _is_chinese_char(SCREAMING_SNAKE_CASE ): return 0 return 1 def __lowerCAmelCase (SCREAMING_SNAKE_CASE )-> str: """simple docstring""" snake_case_ = set() for token in tokens: snake_case_ = len(SCREAMING_SNAKE_CASE ) > 1 and is_chinese(SCREAMING_SNAKE_CASE ) if chinese_word: word_set.add(SCREAMING_SNAKE_CASE ) snake_case_ = list(SCREAMING_SNAKE_CASE ) return word_list def __lowerCAmelCase (SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )-> List[str]: """simple docstring""" if not chinese_word_set: return bert_tokens snake_case_ = max([len(SCREAMING_SNAKE_CASE ) for w in chinese_word_set] ) snake_case_ = bert_tokens snake_case_ , snake_case_ = 0, len(SCREAMING_SNAKE_CASE ) while start < end: snake_case_ = True if is_chinese(bert_word[start] ): snake_case_ = min(end - start , SCREAMING_SNAKE_CASE ) for i in range(SCREAMING_SNAKE_CASE , 1 , -1 ): snake_case_ = ''''''.join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1 , start + i ): snake_case_ = '''##''' + bert_word[j] snake_case_ = start + i snake_case_ = False break if single_word: start += 1 return bert_word def __lowerCAmelCase (SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )-> Any: """simple docstring""" snake_case_ = [] for i in range(0 , len(SCREAMING_SNAKE_CASE ) , 100 ): snake_case_ = ltp_tokenizer.pipeline(lines[i : i + 100] , tasks=['''cws'''] ).cws snake_case_ = [get_chinese_word(SCREAMING_SNAKE_CASE ) for r in res] ltp_res.extend(SCREAMING_SNAKE_CASE ) assert len(SCREAMING_SNAKE_CASE ) == len(SCREAMING_SNAKE_CASE ) snake_case_ = [] for i in range(0 , len(SCREAMING_SNAKE_CASE ) , 100 ): snake_case_ = bert_tokenizer(lines[i : i + 100] , add_special_tokens=SCREAMING_SNAKE_CASE , truncation=SCREAMING_SNAKE_CASE , max_length=512 ) bert_res.extend(res['''input_ids'''] ) assert len(SCREAMING_SNAKE_CASE ) == len(SCREAMING_SNAKE_CASE ) snake_case_ = [] for input_ids, chinese_word in zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): snake_case_ = [] for id in input_ids: snake_case_ = bert_tokenizer._convert_id_to_token(SCREAMING_SNAKE_CASE ) input_tokens.append(SCREAMING_SNAKE_CASE ) snake_case_ = add_sub_symbol(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) snake_case_ = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(SCREAMING_SNAKE_CASE ): if token[:2] == "##": snake_case_ = token[2:] # save chinese tokens' pos if len(SCREAMING_SNAKE_CASE ) == 1 and _is_chinese_char(ord(SCREAMING_SNAKE_CASE ) ): ref_id.append(SCREAMING_SNAKE_CASE ) ref_ids.append(SCREAMING_SNAKE_CASE ) assert len(SCREAMING_SNAKE_CASE ) == len(SCREAMING_SNAKE_CASE ) return ref_ids def __lowerCAmelCase (SCREAMING_SNAKE_CASE )-> Tuple: """simple docstring""" with open(args.file_name , '''r''' , encoding='''utf-8''' ) as f: snake_case_ = f.readlines() snake_case_ = [line.strip() for line in data if len(SCREAMING_SNAKE_CASE ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' snake_case_ = LTP(args.ltp ) # faster in GPU device snake_case_ = BertTokenizer.from_pretrained(args.bert ) snake_case_ = prepare_ref(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) with open(args.save_path , '''w''' , encoding='''utf-8''' ) as f: snake_case_ = [json.dumps(SCREAMING_SNAKE_CASE ) + '''\n''' for ref in ref_ids] f.writelines(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": UpperCAmelCase = argparse.ArgumentParser(description="""prepare_chinese_ref""") parser.add_argument( """--file_name""", required=False, type=str, default="""./resources/chinese-demo.txt""", help="""file need process, same as training data in lm""", ) parser.add_argument( """--ltp""", required=False, type=str, default="""./resources/ltp""", help="""resources for LTP tokenizer, usually a path""", ) parser.add_argument( """--bert""", required=False, type=str, default="""./resources/robert""", help="""resources for Bert tokenizer""", ) parser.add_argument( """--save_path""", required=False, type=str, default="""./resources/ref.txt""", help="""path to save res""", ) UpperCAmelCase = parser.parse_args() main(args)
357
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices UpperCAmelCase = logging.get_logger(__name__) UpperCAmelCase = { """facebook/convnextv2-tiny-1k-224""": """https://huggingface.co/facebook/convnextv2-tiny-1k-224/resolve/main/config.json""", } class lowerCAmelCase_ ( lowerCamelCase__ , lowerCamelCase__ ): '''simple docstring''' __snake_case = "convnextv2" def __init__( self , _UpperCAmelCase=3 , _UpperCAmelCase=4 , _UpperCAmelCase=4 , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.02 , _UpperCAmelCase=1E-12 , _UpperCAmelCase=0.0 , _UpperCAmelCase=2_24 , _UpperCAmelCase=None , _UpperCAmelCase=None , **_UpperCAmelCase , ): super().__init__(**_UpperCAmelCase ) snake_case_ = num_channels snake_case_ = patch_size snake_case_ = num_stages snake_case_ = [96, 1_92, 3_84, 7_68] if hidden_sizes is None else hidden_sizes snake_case_ = [3, 3, 9, 3] if depths is None else depths snake_case_ = hidden_act snake_case_ = initializer_range snake_case_ = layer_norm_eps snake_case_ = drop_path_rate snake_case_ = image_size snake_case_ = ['''stem'''] + [F'''stage{idx}''' for idx in range(1 , len(self.depths ) + 1 )] snake_case_ , snake_case_ = get_aligned_output_features_output_indices( out_features=_UpperCAmelCase , out_indices=_UpperCAmelCase , stage_names=self.stage_names )
267
0
import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def _A ( _lowercase , _lowercase=0.9_99 , _lowercase="cosine" , ) -> Optional[int]: """simple docstring""" if alpha_transform_type == "cosine": def alpha_bar_fn(_lowercase ): return math.cos((t + 0.0_08) / 1.0_08 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(_lowercase ): return math.exp(t * -12.0 ) else: raise ValueError(f'''Unsupported alpha_tranform_type: {alpha_transform_type}''' ) __UpperCamelCase = [] for i in range(_lowercase ): __UpperCamelCase = i / num_diffusion_timesteps __UpperCamelCase = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(_lowercase ) / alpha_bar_fn(_lowercase ) , _lowercase ) ) return torch.tensor(_lowercase , dtype=torch.floataa ) class __lowerCamelCase (_a , _a ): _lowercase = [e.name for e in KarrasDiffusionSchedulers] _lowercase = 2 @register_to_config def __init__( self: Dict,A_: int = 1000,A_: float = 0.0_0_0_8_5,A_: float = 0.0_1_2,A_: str = "linear",A_: Optional[Union[np.ndarray, List[float]]] = None,A_: str = "epsilon",A_: str = "linspace",A_: int = 0,): '''simple docstring''' if trained_betas is not None: __UpperCamelCase = torch.tensor(A_,dtype=torch.floataa ) elif beta_schedule == "linear": __UpperCamelCase = torch.linspace(A_,A_,A_,dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. __UpperCamelCase = ( torch.linspace(beta_start**0.5,beta_end**0.5,A_,dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule __UpperCamelCase = betas_for_alpha_bar(A_ ) else: raise NotImplementedError(F'''{beta_schedule} does is not implemented for {self.__class__}''' ) __UpperCamelCase = 1.0 - self.betas __UpperCamelCase = torch.cumprod(self.alphas,dim=0 ) # set all values self.set_timesteps(A_,A_,A_ ) def snake_case_ ( self: str,A_: int,A_: Optional[Any]=None ): '''simple docstring''' if schedule_timesteps is None: __UpperCamelCase = self.timesteps __UpperCamelCase = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: __UpperCamelCase = 1 if len(A_ ) > 1 else 0 else: __UpperCamelCase = timestep.cpu().item() if torch.is_tensor(A_ ) else timestep __UpperCamelCase = self._index_counter[timestep_int] return indices[pos].item() @property def snake_case_ ( self: Tuple ): '''simple docstring''' if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def snake_case_ ( self: List[str],A_: torch.FloatTensor,A_: Union[float, torch.FloatTensor],): '''simple docstring''' __UpperCamelCase = self.index_for_timestep(A_ ) if self.state_in_first_order: __UpperCamelCase = self.sigmas[step_index] else: __UpperCamelCase = self.sigmas_interpol[step_index] __UpperCamelCase = sample / ((sigma**2 + 1) ** 0.5) return sample def snake_case_ ( self: List[Any],A_: int,A_: Union[str, torch.device] = None,A_: Optional[int] = None,): '''simple docstring''' __UpperCamelCase = num_inference_steps __UpperCamelCase = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": __UpperCamelCase = np.linspace(0,num_train_timesteps - 1,A_,dtype=A_ )[::-1].copy() elif self.config.timestep_spacing == "leading": __UpperCamelCase = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 __UpperCamelCase = (np.arange(0,A_ ) * step_ratio).round()[::-1].copy().astype(A_ ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": __UpperCamelCase = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 __UpperCamelCase = (np.arange(A_,0,-step_ratio )).round().copy().astype(A_ ) timesteps -= 1 else: raise ValueError( F'''{self.config.timestep_spacing} is not supported. Please make sure to choose one of \'linspace\', \'leading\' or \'trailing\'.''' ) __UpperCamelCase = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) __UpperCamelCase = torch.from_numpy(np.log(A_ ) ).to(A_ ) __UpperCamelCase = np.interp(A_,np.arange(0,len(A_ ) ),A_ ) __UpperCamelCase = np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) __UpperCamelCase = torch.from_numpy(A_ ).to(device=A_ ) # interpolate sigmas __UpperCamelCase = sigmas.log().lerp(sigmas.roll(1 ).log(),0.5 ).exp() __UpperCamelCase = torch.cat([sigmas[:1], sigmas[1:].repeat_interleave(2 ), sigmas[-1:]] ) __UpperCamelCase = torch.cat( [sigmas_interpol[:1], sigmas_interpol[1:].repeat_interleave(2 ), sigmas_interpol[-1:]] ) if str(A_ ).startswith('mps' ): # mps does not support float64 __UpperCamelCase = torch.from_numpy(A_ ).to(A_,dtype=torch.floataa ) else: __UpperCamelCase = torch.from_numpy(A_ ).to(A_ ) # interpolate timesteps __UpperCamelCase = self.sigma_to_t(A_ ).to(A_,dtype=timesteps.dtype ) __UpperCamelCase = torch.stack((timesteps_interpol[1:-1, None], timesteps[1:, None]),dim=-1 ).flatten() __UpperCamelCase = torch.cat([timesteps[:1], interleaved_timesteps] ) __UpperCamelCase = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter __UpperCamelCase = defaultdict(A_ ) def snake_case_ ( self: str,A_: int ): '''simple docstring''' __UpperCamelCase = sigma.log() # get distribution __UpperCamelCase = log_sigma - self.log_sigmas[:, None] # get sigmas range __UpperCamelCase = dists.ge(0 ).cumsum(dim=0 ).argmax(dim=0 ).clamp(max=self.log_sigmas.shape[0] - 2 ) __UpperCamelCase = low_idx + 1 __UpperCamelCase = self.log_sigmas[low_idx] __UpperCamelCase = self.log_sigmas[high_idx] # interpolate sigmas __UpperCamelCase = (low - log_sigma) / (low - high) __UpperCamelCase = w.clamp(0,1 ) # transform interpolation to time range __UpperCamelCase = (1 - w) * low_idx + w * high_idx __UpperCamelCase = t.view(sigma.shape ) return t @property def snake_case_ ( self: Tuple ): '''simple docstring''' return self.sample is None def snake_case_ ( self: Union[str, Any],A_: Union[torch.FloatTensor, np.ndarray],A_: Union[float, torch.FloatTensor],A_: Union[torch.FloatTensor, np.ndarray],A_: bool = True,): '''simple docstring''' __UpperCamelCase = self.index_for_timestep(A_ ) # advance index counter by 1 __UpperCamelCase = timestep.cpu().item() if torch.is_tensor(A_ ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: __UpperCamelCase = self.sigmas[step_index] __UpperCamelCase = self.sigmas_interpol[step_index + 1] __UpperCamelCase = self.sigmas[step_index + 1] else: # 2nd order / KDPM2's method __UpperCamelCase = self.sigmas[step_index - 1] __UpperCamelCase = self.sigmas_interpol[step_index] __UpperCamelCase = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API __UpperCamelCase = 0 __UpperCamelCase = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": __UpperCamelCase = sigma_hat if self.state_in_first_order else sigma_interpol __UpperCamelCase = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": __UpperCamelCase = sigma_hat if self.state_in_first_order else sigma_interpol __UpperCamelCase = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": raise NotImplementedError('prediction_type not implemented yet: sample' ) else: raise ValueError( F'''prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`''' ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order __UpperCamelCase = (sample - pred_original_sample) / sigma_hat # 3. delta timestep __UpperCamelCase = sigma_interpol - sigma_hat # store for 2nd order step __UpperCamelCase = sample else: # DPM-Solver-2 # 2. Convert to an ODE derivative for 2nd order __UpperCamelCase = (sample - pred_original_sample) / sigma_interpol # 3. delta timestep __UpperCamelCase = sigma_next - sigma_hat __UpperCamelCase = self.sample __UpperCamelCase = None __UpperCamelCase = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=A_ ) def snake_case_ ( self: List[str],A_: torch.FloatTensor,A_: torch.FloatTensor,A_: torch.FloatTensor,): '''simple docstring''' __UpperCamelCase = self.sigmas.to(device=original_samples.device,dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(A_ ): # mps does not support float64 __UpperCamelCase = self.timesteps.to(original_samples.device,dtype=torch.floataa ) __UpperCamelCase = timesteps.to(original_samples.device,dtype=torch.floataa ) else: __UpperCamelCase = self.timesteps.to(original_samples.device ) __UpperCamelCase = timesteps.to(original_samples.device ) __UpperCamelCase = [self.index_for_timestep(A_,A_ ) for t in timesteps] __UpperCamelCase = sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): __UpperCamelCase = sigma.unsqueeze(-1 ) __UpperCamelCase = original_samples + noise * sigma return noisy_samples def __len__( self: Any ): '''simple docstring''' return self.config.num_train_timesteps
310
import inspect import os import unittest from dataclasses import dataclass import torch from accelerate import Accelerator, DistributedDataParallelKwargs, GradScalerKwargs from accelerate.state import AcceleratorState from accelerate.test_utils import execute_subprocess_async, require_cuda, require_multi_gpu from accelerate.utils import KwargsHandler @dataclass class __lowerCamelCase (_a ): _lowercase = 0 _lowercase = False _lowercase = 3.0 class __lowerCamelCase (unittest.TestCase ): def snake_case_ ( self: Any ): '''simple docstring''' self.assertDictEqual(MockClass().to_kwargs(),{} ) self.assertDictEqual(MockClass(a=2 ).to_kwargs(),{'a': 2} ) self.assertDictEqual(MockClass(a=2,b=A_ ).to_kwargs(),{'a': 2, 'b': True} ) self.assertDictEqual(MockClass(a=2,c=2.2_5 ).to_kwargs(),{'a': 2, 'c': 2.2_5} ) @require_cuda def snake_case_ ( self: Optional[int] ): '''simple docstring''' __UpperCamelCase = GradScalerKwargs(init_scale=1024,growth_factor=2 ) AcceleratorState._reset_state() __UpperCamelCase = Accelerator(mixed_precision='fp16',kwargs_handlers=[scaler_handler] ) print(accelerator.use_fpaa ) __UpperCamelCase = accelerator.scaler # Check the kwargs have been applied self.assertEqual(scaler._init_scale,1_0_2_4.0 ) self.assertEqual(scaler._growth_factor,2.0 ) # Check the other values are at the default self.assertEqual(scaler._backoff_factor,0.5 ) self.assertEqual(scaler._growth_interval,2000 ) self.assertEqual(scaler._enabled,A_ ) @require_multi_gpu def snake_case_ ( self: str ): '''simple docstring''' __UpperCamelCase = ['torchrun', F'''--nproc_per_node={torch.cuda.device_count()}''', inspect.getfile(self.__class__ )] execute_subprocess_async(A_,env=os.environ.copy() ) if __name__ == "__main__": __snake_case = DistributedDataParallelKwargs(bucket_cap_mb=1_5, find_unused_parameters=True) __snake_case = Accelerator(kwargs_handlers=[ddp_scaler]) __snake_case = torch.nn.Linear(1_0_0, 2_0_0) __snake_case = accelerator.prepare(model) # Check the values changed in kwargs __snake_case = '''''' __snake_case = model.bucket_bytes_cap // (1_0_2_4 * 1_0_2_4) if observed_bucket_cap_map != 1_5: error_msg += f"Kwargs badly passed, should have `15` but found {observed_bucket_cap_map}.\n" if model.find_unused_parameters is not True: error_msg += f"Kwargs badly passed, should have `True` but found {model.find_unused_parameters}.\n" # Check the values of the defaults if model.dim != 0: error_msg += f"Default value not respected, should have `0` but found {model.dim}.\n" if model.broadcast_buffers is not True: error_msg += f"Default value not respected, should have `True` but found {model.broadcast_buffers}.\n" if model.gradient_as_bucket_view is not False: error_msg += f"Default value not respected, should have `False` but found {model.gradient_as_bucket_view}.\n" # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
310
1
import unittest from transformers import ( MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TextaTextGenerationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, require_tf, require_torch from transformers.utils import is_torch_available from .test_pipelines_common import ANY if is_torch_available(): import torch @is_pipeline_test class _a ( unittest.TestCase): _a : Any = MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING _a : List[Any] = TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING def UpperCAmelCase__( self : List[Any] , _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : Optional[int] )-> Any: lowerCAmelCase__ : str = TextaTextGenerationPipeline(model=_SCREAMING_SNAKE_CASE , tokenizer=_SCREAMING_SNAKE_CASE ) return generator, ["Something to write", "Something else"] def UpperCAmelCase__( self : int , _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : List[Any] )-> str: lowerCAmelCase__ : List[Any] = generator('''Something there''' ) self.assertEqual(_SCREAMING_SNAKE_CASE , [{'''generated_text''': ANY(_SCREAMING_SNAKE_CASE )}] ) # These are encoder decoder, they don't just append to incoming string self.assertFalse(outputs[0]['''generated_text'''].startswith('''Something there''' ) ) lowerCAmelCase__ : str = generator(['''This is great !''', '''Something else'''] , num_return_sequences=2 , do_sample=_SCREAMING_SNAKE_CASE ) self.assertEqual( _SCREAMING_SNAKE_CASE , [ [{'''generated_text''': ANY(_SCREAMING_SNAKE_CASE )}, {'''generated_text''': ANY(_SCREAMING_SNAKE_CASE )}], [{'''generated_text''': ANY(_SCREAMING_SNAKE_CASE )}, {'''generated_text''': ANY(_SCREAMING_SNAKE_CASE )}], ] , ) lowerCAmelCase__ : int = generator( ['''This is great !''', '''Something else'''] , num_return_sequences=2 , batch_size=2 , do_sample=_SCREAMING_SNAKE_CASE ) self.assertEqual( _SCREAMING_SNAKE_CASE , [ [{'''generated_text''': ANY(_SCREAMING_SNAKE_CASE )}, {'''generated_text''': ANY(_SCREAMING_SNAKE_CASE )}], [{'''generated_text''': ANY(_SCREAMING_SNAKE_CASE )}, {'''generated_text''': ANY(_SCREAMING_SNAKE_CASE )}], ] , ) with self.assertRaises(_SCREAMING_SNAKE_CASE ): generator(4 ) @require_torch def UpperCAmelCase__( self : Optional[Any] )-> Tuple: lowerCAmelCase__ : List[str] = pipeline('''text2text-generation''' , model='''patrickvonplaten/t5-tiny-random''' , framework='''pt''' ) # do_sample=False necessary for reproducibility lowerCAmelCase__ : Optional[int] = generator('''Something there''' , do_sample=_SCREAMING_SNAKE_CASE ) self.assertEqual(_SCREAMING_SNAKE_CASE , [{'''generated_text''': ''''''}] ) lowerCAmelCase__ : str = 3 lowerCAmelCase__ : Tuple = generator( '''Something there''' , num_return_sequences=_SCREAMING_SNAKE_CASE , num_beams=_SCREAMING_SNAKE_CASE , ) lowerCAmelCase__ : List[str] = [ {'''generated_text''': '''Beide Beide Beide Beide Beide Beide Beide Beide Beide'''}, {'''generated_text''': '''Beide Beide Beide Beide Beide Beide Beide Beide'''}, {'''generated_text''': ''''''}, ] self.assertEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : int = generator('''This is a test''' , do_sample=_SCREAMING_SNAKE_CASE , num_return_sequences=2 , return_tensors=_SCREAMING_SNAKE_CASE ) self.assertEqual( _SCREAMING_SNAKE_CASE , [ {'''generated_token_ids''': ANY(torch.Tensor )}, {'''generated_token_ids''': ANY(torch.Tensor )}, ] , ) lowerCAmelCase__ : int = generator.model.config.eos_token_id lowerCAmelCase__ : Any = '''<pad>''' lowerCAmelCase__ : List[Any] = generator( ['''This is a test''', '''This is a second test'''] , do_sample=_SCREAMING_SNAKE_CASE , num_return_sequences=2 , batch_size=2 , return_tensors=_SCREAMING_SNAKE_CASE , ) self.assertEqual( _SCREAMING_SNAKE_CASE , [ [ {'''generated_token_ids''': ANY(torch.Tensor )}, {'''generated_token_ids''': ANY(torch.Tensor )}, ], [ {'''generated_token_ids''': ANY(torch.Tensor )}, {'''generated_token_ids''': ANY(torch.Tensor )}, ], ] , ) @require_tf def UpperCAmelCase__( self : Optional[int] )-> int: lowerCAmelCase__ : Optional[Any] = pipeline('''text2text-generation''' , model='''patrickvonplaten/t5-tiny-random''' , framework='''tf''' ) # do_sample=False necessary for reproducibility lowerCAmelCase__ : str = generator('''Something there''' , do_sample=_SCREAMING_SNAKE_CASE ) self.assertEqual(_SCREAMING_SNAKE_CASE , [{'''generated_text''': ''''''}] )
211
from collections.abc import Iterable from typing import Any class _a : def __init__( self : Union[str, Any] , _SCREAMING_SNAKE_CASE : int | None = None )-> Tuple: lowerCAmelCase__ : Union[str, Any] = value lowerCAmelCase__ : Node | None = None # Added in order to delete a node easier lowerCAmelCase__ : Node | None = None lowerCAmelCase__ : Node | None = None def __repr__( self : List[Any] )-> str: from pprint import pformat if self.left is None and self.right is None: return str(self.value ) return pformat({F'{self.value}': (self.left, self.right)} , indent=1 ) class _a : def __init__( self : Tuple , _SCREAMING_SNAKE_CASE : Node | None = None )-> int: lowerCAmelCase__ : Dict = root def __str__( self : Tuple )-> str: return str(self.root ) def UpperCAmelCase__( self : List[str] , _SCREAMING_SNAKE_CASE : Node , _SCREAMING_SNAKE_CASE : Node | None )-> None: if new_children is not None: # reset its kids lowerCAmelCase__ : Union[str, Any] = node.parent if node.parent is not None: # reset its parent if self.is_right(_SCREAMING_SNAKE_CASE ): # If it is the right children lowerCAmelCase__ : List[str] = new_children else: lowerCAmelCase__ : Any = new_children else: lowerCAmelCase__ : Optional[Any] = new_children def UpperCAmelCase__( self : List[Any] , _SCREAMING_SNAKE_CASE : Node )-> bool: if node.parent and node.parent.right: return node == node.parent.right return False def UpperCAmelCase__( self : int )-> bool: return self.root is None def UpperCAmelCase__( self : Optional[int] , _SCREAMING_SNAKE_CASE : Optional[int] )-> None: lowerCAmelCase__ : Any = Node(_SCREAMING_SNAKE_CASE ) # create a new Node if self.empty(): # if Tree is empty lowerCAmelCase__ : Optional[Any] = new_node # set its root else: # Tree is not empty lowerCAmelCase__ : str = self.root # from root if parent_node is None: return while True: # While we don't get to a leaf if value < parent_node.value: # We go left if parent_node.left is None: lowerCAmelCase__ : Dict = new_node # We insert the new node in a leaf break else: lowerCAmelCase__ : List[Any] = parent_node.left else: if parent_node.right is None: lowerCAmelCase__ : Tuple = new_node break else: lowerCAmelCase__ : Union[str, Any] = parent_node.right lowerCAmelCase__ : Dict = parent_node def UpperCAmelCase__( self : str , *_SCREAMING_SNAKE_CASE : List[Any] )-> None: for value in values: self.__insert(_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__( self : Union[str, Any] , _SCREAMING_SNAKE_CASE : Optional[int] )-> Node | None: if self.empty(): raise IndexError('''Warning: Tree is empty! please use another.''' ) else: lowerCAmelCase__ : Union[str, Any] = self.root # use lazy evaluation here to avoid NoneType Attribute error while node is not None and node.value is not value: lowerCAmelCase__ : List[str] = node.left if value < node.value else node.right return node def UpperCAmelCase__( self : Dict , _SCREAMING_SNAKE_CASE : Node | None = None )-> Node | None: if node is None: if self.root is None: return None lowerCAmelCase__ : List[Any] = self.root if not self.empty(): while node.right is not None: lowerCAmelCase__ : str = node.right return node def UpperCAmelCase__( self : List[str] , _SCREAMING_SNAKE_CASE : Node | None = None )-> Node | None: if node is None: lowerCAmelCase__ : Any = self.root if self.root is None: return None if not self.empty(): lowerCAmelCase__ : Dict = self.root while node.left is not None: lowerCAmelCase__ : Tuple = node.left return node def UpperCAmelCase__( self : Any , _SCREAMING_SNAKE_CASE : int )-> None: lowerCAmelCase__ : Optional[Any] = self.search(_SCREAMING_SNAKE_CASE ) # Look for the node with that label if node is not None: if node.left is None and node.right is None: # If it has no children self.__reassign_nodes(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) elif node.left is None: # Has only right children self.__reassign_nodes(_SCREAMING_SNAKE_CASE , node.right ) elif node.right is None: # Has only left children self.__reassign_nodes(_SCREAMING_SNAKE_CASE , node.left ) else: lowerCAmelCase__ : Tuple = self.get_max( node.left ) # Gets the max value of the left branch self.remove(tmp_node.value ) # type: ignore lowerCAmelCase__ : Optional[Any] = ( tmp_node.value # type: ignore ) # Assigns the value to the node to delete and keep tree structure def UpperCAmelCase__( self : Union[str, Any] , _SCREAMING_SNAKE_CASE : Node | None )-> Iterable: if node is not None: yield node # Preorder Traversal yield from self.preorder_traverse(node.left ) yield from self.preorder_traverse(node.right ) def UpperCAmelCase__( self : Union[str, Any] , _SCREAMING_SNAKE_CASE : Tuple=None )-> Any: if traversal_function is None: return self.preorder_traverse(self.root ) else: return traversal_function(self.root ) def UpperCAmelCase__( self : Union[str, Any] , _SCREAMING_SNAKE_CASE : list , _SCREAMING_SNAKE_CASE : Node | None )-> None: if node: self.inorder(_SCREAMING_SNAKE_CASE , node.left ) arr.append(node.value ) self.inorder(_SCREAMING_SNAKE_CASE , node.right ) def UpperCAmelCase__( self : Optional[Any] , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : Node )-> int: lowerCAmelCase__ : list[int] = [] self.inorder(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # append all values to list using inorder traversal return arr[k - 1] def lowerCamelCase_ ( _a ): """simple docstring""" lowerCAmelCase__ : List[str] = [] if curr_node is not None: lowerCAmelCase__ : Optional[int] = postorder(curr_node.left ) + postorder(curr_node.right ) + [curr_node] return node_list def lowerCamelCase_ ( ): """simple docstring""" lowerCAmelCase__ : List[Any] = (8, 3, 6, 1, 10, 14, 13, 4, 7) lowerCAmelCase__ : str = BinarySearchTree() for i in testlist: t.insert(_a ) # Prints all the elements of the list in order traversal print(_a ) if t.search(6 ) is not None: print('''The value 6 exists''' ) else: print('''The value 6 doesn\'t exist''' ) if t.search(-1 ) is not None: print('''The value -1 exists''' ) else: print('''The value -1 doesn\'t exist''' ) if not t.empty(): print('''Max Value: ''' , t.get_max().value ) # type: ignore print('''Min Value: ''' , t.get_min().value ) # type: ignore for i in testlist: t.remove(_a ) print(_a ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
211
1
import json import sys def lowerCamelCase__ ( _a , _a): with open(_a , encoding="utf-8") as f: SCREAMING_SNAKE_CASE : Any = json.load(_a) SCREAMING_SNAKE_CASE : Any = ["<details>", "<summary>Show updated benchmarks!</summary>", " "] for benchmark_name in sorted(_a): SCREAMING_SNAKE_CASE : str = results[benchmark_name] SCREAMING_SNAKE_CASE : Optional[int] = benchmark_name.split("/")[-1] output_md.append(f"### Benchmark: {benchmark_file_name}") SCREAMING_SNAKE_CASE : str = "| metric |" SCREAMING_SNAKE_CASE : str = "|--------|" SCREAMING_SNAKE_CASE : List[Any] = "| new / old (diff) |" for metric_name in sorted(_a): SCREAMING_SNAKE_CASE : Optional[int] = benchmark_res[metric_name] SCREAMING_SNAKE_CASE : Any = metric_vals["new"] SCREAMING_SNAKE_CASE : Optional[Any] = metric_vals.get("old" , _a) SCREAMING_SNAKE_CASE : Optional[Any] = metric_vals.get("diff" , _a) SCREAMING_SNAKE_CASE : int = f" {new_val:f}" if isinstance(_a , (int, float)) else "None" if old_val is not None: val_str += f" / {old_val:f}" if isinstance(_a , (int, float)) else "None" if dif_val is not None: val_str += f" ({dif_val:f})" if isinstance(_a , (int, float)) else "None" title += " " + metric_name + " |" lines += "---|" value += val_str + " |" output_md += [title, lines, value, " "] output_md.append("</details>") with open(_a , "w" , encoding="utf-8") as f: f.writelines("\n".join(_a)) if __name__ == "__main__": a_ = sys.argv[1] a_ = sys.argv[2] format_json_to_md(input_json_file, output_md_file)
76
'''simple docstring''' import json import os import unittest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowercase_ ( a__ , unittest.TestCase ): __UpperCAmelCase = CLIPTokenizer __UpperCAmelCase = CLIPTokenizerFast __UpperCAmelCase = True __UpperCAmelCase = {} __UpperCAmelCase = False def __a ( self ): super().setUp() # fmt: off UpperCamelCase__ = ["l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "lo", "l</w>", "w</w>", "r</w>", "t</w>", "low</w>", "er</w>", "lowest</w>", "newer</w>", "wider", "<unk>", "<|startoftext|>", "<|endoftext|>"] # fmt: on UpperCamelCase__ = dict(zip(a , range(len(a ) ) ) ) UpperCamelCase__ = ["#version: 0.2", "l o", "lo w</w>", "e r</w>"] UpperCamelCase__ = {"unk_token": "<unk>"} UpperCamelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) UpperCamelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(a ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(a ) ) def __a ( self , **a ): kwargs.update(self.special_tokens_map ) return CLIPTokenizer.from_pretrained(self.tmpdirname , **a ) def __a ( self , **a ): kwargs.update(self.special_tokens_map ) return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **a ) def __a ( self , a ): UpperCamelCase__ = "lower newer" UpperCamelCase__ = "lower newer" return input_text, output_text def __a ( self ): UpperCamelCase__ = CLIPTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) UpperCamelCase__ = "lower newer" UpperCamelCase__ = ["lo", "w", "er</w>", "n", "e", "w", "er</w>"] UpperCamelCase__ = tokenizer.tokenize(a ) self.assertListEqual(a , a ) UpperCamelCase__ = tokens + [tokenizer.unk_token] UpperCamelCase__ = [10, 2, 16, 9, 3, 2, 16, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(a ) , a ) @require_ftfy def __a ( self ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): UpperCamelCase__ = self.tokenizer_class.from_pretrained(a , **a ) UpperCamelCase__ = self.rust_tokenizer_class.from_pretrained(a , **a ) UpperCamelCase__ = "A\n'll 11p223RF☆ho!!to?'d'd''d of a cat to-$''d." UpperCamelCase__ = tokenizer_s.tokenize(a ) UpperCamelCase__ = tokenizer_r.tokenize(a ) self.assertListEqual(a , a ) # Test that the tokenization is identical on an example containing a character (Latin Small Letter A # with Tilde) encoded in 2 different ways UpperCamelCase__ = "xa\u0303y" + " " + "x\xe3y" UpperCamelCase__ = tokenizer_s.tokenize(a ) UpperCamelCase__ = tokenizer_r.tokenize(a ) self.assertListEqual(a , a ) # Test that the tokenization is identical on unicode of space type UpperCamelCase__ = [ "\u0009", # (horizontal tab, '\t') "\u000B", # (vertical tab) "\u000C", # (form feed) "\u0020", # (space, ' ') "\u200E", # (left-to-right mark):w "\u200F", # (right-to-left mark) ] for unicode_seq in spaces_unicodes: UpperCamelCase__ = tokenizer_s.tokenize(a ) UpperCamelCase__ = tokenizer_r.tokenize(a ) self.assertListEqual(a , a ) # Test that the tokenization is identical on unicode of line break type UpperCamelCase__ = [ "\u000A", # (line feed, '\n') "\r\n", # (carriage return and line feed, '\r\n') "\u000D", # (carriage return, '\r') "\r", # (carriage return, '\r') "\u000D", # (carriage return, '\r') "\u2028", # (line separator) "\u2029", # (paragraph separator) # "\u0085", # (next line) ] # The tokenization is not identical for the character "\u0085" (next line). The slow version using ftfy transforms # it into the Horizontal Ellipsis character "…" ("\u2026") while the fast version transforms it into a # space (and thus into an empty list). for unicode_seq in line_break_unicodes: UpperCamelCase__ = tokenizer_s.tokenize(a ) UpperCamelCase__ = tokenizer_r.tokenize(a ) self.assertListEqual(a , a ) def __a ( self ): # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): UpperCamelCase__ = "hello" # `hello` is a token in the vocabulary of `pretrained_name` UpperCamelCase__ = f'''{text_of_1_token} {text_of_1_token}''' UpperCamelCase__ = self.rust_tokenizer_class.from_pretrained( a , use_fast=a , ) UpperCamelCase__ = tokenizer_r(a , return_offsets_mapping=a , add_special_tokens=a ) self.assertEqual(encoding.offset_mapping[0] , (0, len(a )) ) self.assertEqual( encoding.offset_mapping[1] , (len(a ) + 1, len(a ) + 1 + len(a )) , ) UpperCamelCase__ = f''' {text}''' UpperCamelCase__ = self.rust_tokenizer_class.from_pretrained( a , use_fast=a , ) UpperCamelCase__ = tokenizer_r(a , return_offsets_mapping=a , add_special_tokens=a ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(a )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(a ) + 1, 1 + len(a ) + 1 + len(a )) , ) def __a ( self ): # Test related to the breaking change introduced in transformers v4.17.0 # We need to check that an error in raised when the user try to load a previous version of the tokenizer. with self.assertRaises(a ) as context: self.rust_tokenizer_class.from_pretrained("robot-test/old-clip-tokenizer" ) self.assertTrue( context.exception.args[0].startswith( "The `backend_tokenizer` provided does not match the expected format." ) ) @require_ftfy def __a ( self ): super().test_tokenization_python_rust_equals() def __a ( self ): # CLIP always lower cases letters pass
80
0
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging snake_case__ : List[Any] = logging.get_logger(__name__) if is_vision_available(): import PIL class A_ ( _lowerCamelCase ): lowerCAmelCase__ = ["""pixel_values"""] def __init__(self :Optional[int] , _UpperCamelCase :bool = True , _UpperCamelCase :Dict[str, int] = None , _UpperCamelCase :PILImageResampling = PILImageResampling.BICUBIC , _UpperCamelCase :bool = True , _UpperCamelCase :Dict[str, int] = None , _UpperCamelCase :bool = True , _UpperCamelCase :Union[int, float] = 1 / 255 , _UpperCamelCase :bool = True , _UpperCamelCase :Optional[Union[float, List[float]]] = None , _UpperCamelCase :Optional[Union[float, List[float]]] = None , _UpperCamelCase :bool = True , **_UpperCamelCase :str , )-> None: super().__init__(**_UpperCamelCase ) __A = size if size is not None else {'''shortest_edge''': 224} __A = get_size_dict(_UpperCamelCase , default_to_square=_UpperCamelCase ) __A = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} __A = get_size_dict(_UpperCamelCase , default_to_square=_UpperCamelCase , param_name='''crop_size''' ) __A = do_resize __A = size __A = resample __A = do_center_crop __A = crop_size __A = do_rescale __A = rescale_factor __A = do_normalize __A = image_mean if image_mean is not None else OPENAI_CLIP_MEAN __A = image_std if image_std is not None else OPENAI_CLIP_STD __A = do_convert_rgb def _lowerCAmelCase (self :Union[str, Any] , _UpperCamelCase :np.ndarray , _UpperCamelCase :Dict[str, int] , _UpperCamelCase :PILImageResampling = PILImageResampling.BICUBIC , _UpperCamelCase :Optional[Union[str, ChannelDimension]] = None , **_UpperCamelCase :Optional[int] , )-> np.ndarray: __A = get_size_dict(_UpperCamelCase , default_to_square=_UpperCamelCase ) if "shortest_edge" not in size: raise ValueError(f"""The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}""" ) __A = get_resize_output_image_size(_UpperCamelCase , size=size['''shortest_edge'''] , default_to_square=_UpperCamelCase ) return resize(_UpperCamelCase , size=_UpperCamelCase , resample=_UpperCamelCase , data_format=_UpperCamelCase , **_UpperCamelCase ) def _lowerCAmelCase (self :Optional[Any] , _UpperCamelCase :np.ndarray , _UpperCamelCase :Dict[str, int] , _UpperCamelCase :Optional[Union[str, ChannelDimension]] = None , **_UpperCamelCase :Tuple , )-> np.ndarray: __A = get_size_dict(_UpperCamelCase ) if "height" not in size or "width" not in size: raise ValueError(f"""The `size` parameter must contain the keys (height, width). Got {size.keys()}""" ) return center_crop(_UpperCamelCase , size=(size['''height'''], size['''width''']) , data_format=_UpperCamelCase , **_UpperCamelCase ) def _lowerCAmelCase (self :Any , _UpperCamelCase :np.ndarray , _UpperCamelCase :Union[int, float] , _UpperCamelCase :Optional[Union[str, ChannelDimension]] = None , **_UpperCamelCase :Any , )-> Optional[Any]: return rescale(_UpperCamelCase , scale=_UpperCamelCase , data_format=_UpperCamelCase , **_UpperCamelCase ) def _lowerCAmelCase (self :Tuple , _UpperCamelCase :np.ndarray , _UpperCamelCase :Union[float, List[float]] , _UpperCamelCase :Union[float, List[float]] , _UpperCamelCase :Optional[Union[str, ChannelDimension]] = None , **_UpperCamelCase :Optional[Any] , )-> np.ndarray: return normalize(_UpperCamelCase , mean=_UpperCamelCase , std=_UpperCamelCase , data_format=_UpperCamelCase , **_UpperCamelCase ) def _lowerCAmelCase (self :str , _UpperCamelCase :ImageInput , _UpperCamelCase :bool = None , _UpperCamelCase :Dict[str, int] = None , _UpperCamelCase :PILImageResampling = None , _UpperCamelCase :bool = None , _UpperCamelCase :int = None , _UpperCamelCase :bool = None , _UpperCamelCase :float = None , _UpperCamelCase :bool = None , _UpperCamelCase :Optional[Union[float, List[float]]] = None , _UpperCamelCase :Optional[Union[float, List[float]]] = None , _UpperCamelCase :bool = None , _UpperCamelCase :Optional[Union[str, TensorType]] = None , _UpperCamelCase :Optional[ChannelDimension] = ChannelDimension.FIRST , **_UpperCamelCase :Union[str, Any] , )-> PIL.Image.Image: __A = do_resize if do_resize is not None else self.do_resize __A = size if size is not None else self.size __A = get_size_dict(_UpperCamelCase , param_name='''size''' , default_to_square=_UpperCamelCase ) __A = resample if resample is not None else self.resample __A = do_center_crop if do_center_crop is not None else self.do_center_crop __A = crop_size if crop_size is not None else self.crop_size __A = get_size_dict(_UpperCamelCase , param_name='''crop_size''' , default_to_square=_UpperCamelCase ) __A = do_rescale if do_rescale is not None else self.do_rescale __A = rescale_factor if rescale_factor is not None else self.rescale_factor __A = do_normalize if do_normalize is not None else self.do_normalize __A = image_mean if image_mean is not None else self.image_mean __A = image_std if image_std is not None else self.image_std __A = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb __A = make_list_of_images(_UpperCamelCase ) if not valid_images(_UpperCamelCase ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # PIL RGBA images are converted to RGB if do_convert_rgb: __A = [convert_to_rgb(_UpperCamelCase ) for image in images] # All transformations expect numpy arrays. __A = [to_numpy_array(_UpperCamelCase ) for image in images] if do_resize: __A = [self.resize(image=_UpperCamelCase , size=_UpperCamelCase , resample=_UpperCamelCase ) for image in images] if do_center_crop: __A = [self.center_crop(image=_UpperCamelCase , size=_UpperCamelCase ) for image in images] if do_rescale: __A = [self.rescale(image=_UpperCamelCase , scale=_UpperCamelCase ) for image in images] if do_normalize: __A = [self.normalize(image=_UpperCamelCase , mean=_UpperCamelCase , std=_UpperCamelCase ) for image in images] __A = [to_channel_dimension_format(_UpperCamelCase , _UpperCamelCase ) for image in images] __A = {'''pixel_values''': images} return BatchFeature(data=_UpperCamelCase , tensor_type=_UpperCamelCase )
355
from __future__ import annotations snake_case__ : Dict = [True] * 1000001 snake_case__ : int = 2 while i * i <= 1000000: if seive[i]: for j in range(i * i, 1000001, i): snake_case__ : str = False i += 1 def _a ( lowerCamelCase: int ) -> bool: '''simple docstring''' return seive[n] def _a ( lowerCamelCase: int ) -> bool: '''simple docstring''' return any(digit in '''02468''' for digit in str(lowerCamelCase ) ) def _a ( lowerCamelCase: int = 1_00_00_00 ) -> list[int]: '''simple docstring''' __A = [2] # result already includes the number 2. for num in range(3 , limit + 1 , 2 ): if is_prime(lowerCamelCase ) and not contains_an_even_digit(lowerCamelCase ): __A = str(lowerCamelCase ) __A = [int(str_num[j:] + str_num[:j] ) for j in range(len(lowerCamelCase ) )] if all(is_prime(lowerCamelCase ) for i in list_nums ): result.append(lowerCamelCase ) return result def _a ( ) -> int: '''simple docstring''' return len(find_circular_primes() ) if __name__ == "__main__": print(f'{len(find_circular_primes()) = }')
250
0
__A : List[Any] = "Input must be a string of 8 numbers plus letter" __A : List[Any] = "TRWAGMYFPDXBNJZSQVHLCKE" def __SCREAMING_SNAKE_CASE ( UpperCamelCase__ ) -> Union[str, Any]: '''simple docstring''' if not isinstance(_lowerCAmelCase , _lowerCAmelCase ): UpperCAmelCase = F"""Expected string as input, found {type(_lowerCAmelCase ).__name__}""" raise TypeError(_lowerCAmelCase ) UpperCAmelCase = spanish_id.replace('''-''' , '''''' ).upper() if len(_lowerCAmelCase ) != 9: raise ValueError(_lowerCAmelCase ) try: UpperCAmelCase = int(spanish_id_clean[0:8] ) UpperCAmelCase = spanish_id_clean[8] except ValueError as ex: raise ValueError(_lowerCAmelCase ) from ex if letter.isdigit(): raise ValueError(_lowerCAmelCase ) return letter == LOOKUP_LETTERS[number % 23] if __name__ == "__main__": import doctest doctest.testmod()
273
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase = logging.get_logger(__name__) lowerCamelCase = { """alibaba-damo/mgp-str-base""": """https://huggingface.co/alibaba-damo/mgp-str-base/resolve/main/config.json""", } class _UpperCamelCase ( A ): '''simple docstring''' lowerCAmelCase__ = """mgp-str""" def __init__( self : int , _lowerCAmelCase : str=[3_2, 1_2_8] , _lowerCAmelCase : Dict=4 , _lowerCAmelCase : int=3 , _lowerCAmelCase : str=2_7 , _lowerCAmelCase : List[str]=3_8 , _lowerCAmelCase : Tuple=5_0_2_5_7 , _lowerCAmelCase : str=3_0_5_2_2 , _lowerCAmelCase : Optional[int]=7_6_8 , _lowerCAmelCase : Optional[int]=1_2 , _lowerCAmelCase : Optional[Any]=1_2 , _lowerCAmelCase : Optional[int]=4.0 , _lowerCAmelCase : List[Any]=True , _lowerCAmelCase : Tuple=False , _lowerCAmelCase : List[Any]=1e-5 , _lowerCAmelCase : List[Any]=0.0 , _lowerCAmelCase : str=0.0 , _lowerCAmelCase : Tuple=0.0 , _lowerCAmelCase : str=False , _lowerCAmelCase : List[Any]=0.02 , **_lowerCAmelCase : Optional[Any] , ): '''simple docstring''' super().__init__(**_lowerCAmelCase) __lowercase =image_size __lowercase =patch_size __lowercase =num_channels __lowercase =max_token_length __lowercase =num_character_labels __lowercase =num_bpe_labels __lowercase =num_wordpiece_labels __lowercase =hidden_size __lowercase =num_hidden_layers __lowercase =num_attention_heads __lowercase =mlp_ratio __lowercase =distilled __lowercase =layer_norm_eps __lowercase =drop_rate __lowercase =qkv_bias __lowercase =attn_drop_rate __lowercase =drop_path_rate __lowercase =output_aa_attentions __lowercase =initializer_range
166
0
'''simple docstring''' import unittest from transformers.utils.backbone_utils import ( BackboneMixin, get_aligned_output_features_output_indices, verify_out_features_out_indices, ) class __UpperCamelCase ( unittest.TestCase ): def __UpperCAmelCase ( self ): '''simple docstring''' __a : int = ['a', 'b', 'c'] # Defaults to last layer if both are None __a , __a : int = get_aligned_output_features_output_indices(__a , __a , __a ) self.assertEqual(__a , ['c'] ) self.assertEqual(__a , [2] ) # Out indices set to match out features __a , __a : Any = get_aligned_output_features_output_indices(['a', 'c'] , __a , __a ) self.assertEqual(__a , ['a', 'c'] ) self.assertEqual(__a , [0, 2] ) # Out features set to match out indices __a , __a : str = get_aligned_output_features_output_indices(__a , [0, 2] , __a ) self.assertEqual(__a , ['a', 'c'] ) self.assertEqual(__a , [0, 2] ) # Out features selected from negative indices __a , __a : Any = get_aligned_output_features_output_indices(__a , [-3, -1] , __a ) self.assertEqual(__a , ['a', 'c'] ) self.assertEqual(__a , [-3, -1] ) def __UpperCAmelCase ( self ): '''simple docstring''' with self.assertRaises(__a ): verify_out_features_out_indices(['a', 'b'] , (0, 1) , __a ) # Out features must be a list with self.assertRaises(__a ): verify_out_features_out_indices(('a', 'b') , (0, 1) , ['a', 'b'] ) # Out features must be a subset of stage names with self.assertRaises(__a ): verify_out_features_out_indices(['a', 'b'] , (0, 1) , ['a'] ) # Out indices must be a list or tuple with self.assertRaises(__a ): verify_out_features_out_indices(__a , 0 , ['a', 'b'] ) # Out indices must be a subset of stage names with self.assertRaises(__a ): verify_out_features_out_indices(__a , (0, 1) , ['a'] ) # Out features and out indices must be the same length with self.assertRaises(__a ): verify_out_features_out_indices(['a', 'b'] , (0,) , ['a', 'b', 'c'] ) # Out features should match out indices with self.assertRaises(__a ): verify_out_features_out_indices(['a', 'b'] , (0, 2) , ['a', 'b', 'c'] ) # Out features and out indices should be in order with self.assertRaises(__a ): verify_out_features_out_indices(['b', 'a'] , (0, 1) , ['a', 'b'] ) # Check passes with valid inputs verify_out_features_out_indices(['a', 'b', 'd'] , (0, 1, -1) , ['a', 'b', 'c', 'd'] ) def __UpperCAmelCase ( self ): '''simple docstring''' __a : str = BackboneMixin() __a : Optional[Any] = ['a', 'b', 'c'] __a : Optional[Any] = ['a', 'c'] __a : Tuple = [0, 2] # Check that the output features and indices are set correctly self.assertEqual(backbone.out_features , ['a', 'c'] ) self.assertEqual(backbone.out_indices , [0, 2] ) # Check out features and indices are updated correctly __a : Optional[Any] = ['a', 'b'] self.assertEqual(backbone.out_features , ['a', 'b'] ) self.assertEqual(backbone.out_indices , [0, 1] ) __a : List[Any] = [-3, -1] self.assertEqual(backbone.out_features , ['a', 'c'] ) self.assertEqual(backbone.out_indices , [-3, -1] )
294
'''simple docstring''' from dataclasses import dataclass from typing import Optional, Tuple import torch from torch import nn from transformers import RobertaPreTrainedModel, XLMRobertaConfig, XLMRobertaModel from transformers.utils import ModelOutput @dataclass class __UpperCamelCase ( lowerCAmelCase_ ): A_ = None A_ = None A_ = None A_ = None class __UpperCamelCase ( lowerCAmelCase_ ): def __init__( self , __a=1 , __a=0 , __a=2 , __a=512 , __a="cls" , __a=False , __a=True , **__a , ): '''simple docstring''' super().__init__(pad_token_id=__a , bos_token_id=__a , eos_token_id=__a , **__a ) __a : Any = project_dim __a : Optional[Any] = pooler_fn __a : int = learn_encoder __a : str = use_attention_mask class __UpperCamelCase ( lowerCAmelCase_ ): A_ = [r"pooler", r"logit_scale"] A_ = [r"position_ids", r"predictions.decoder.bias"] A_ = "roberta" A_ = RobertaSeriesConfig def __init__( self , __a ): '''simple docstring''' super().__init__(__a ) __a : Optional[Any] = XLMRobertaModel(__a ) __a : str = nn.Linear(config.hidden_size , config.project_dim ) __a : Optional[int] = getattr(__a , 'has_pre_transformation' , __a ) if self.has_pre_transformation: __a : int = nn.Linear(config.hidden_size , config.project_dim ) __a : List[str] = nn.LayerNorm(config.hidden_size , eps=config.layer_norm_eps ) self.post_init() def __UpperCAmelCase ( self , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , ): '''simple docstring''' __a : Optional[Any] = return_dict if return_dict is not None else self.config.use_return_dict __a : Tuple = self.base_model( input_ids=__a , attention_mask=__a , token_type_ids=__a , position_ids=__a , head_mask=__a , inputs_embeds=__a , encoder_hidden_states=__a , encoder_attention_mask=__a , output_attentions=__a , output_hidden_states=True if self.has_pre_transformation else output_hidden_states , return_dict=__a , ) if self.has_pre_transformation: __a : Optional[Any] = outputs['hidden_states'][-2] __a : Optional[int] = self.pre_LN(__a ) __a : Union[str, Any] = self.transformation_pre(__a ) return TransformationModelOutput( projection_state=__a , last_hidden_state=outputs.last_hidden_state , hidden_states=outputs.hidden_states , attentions=outputs.attentions , ) else: __a : Optional[Any] = self.transformation(outputs.last_hidden_state ) return TransformationModelOutput( projection_state=__a , last_hidden_state=outputs.last_hidden_state , hidden_states=outputs.hidden_states , attentions=outputs.attentions , )
294
1
'''simple docstring''' import os def lowerCAmelCase_ ( ): '''simple docstring''' A : List[Any] = os.path.join(os.path.dirname(snake_case__ ) , '''num.txt''' ) with open(snake_case__ ) as file_hand: return str(sum(int(snake_case__ ) for line in file_hand ) )[:10] if __name__ == "__main__": print(solution())
3
"""simple docstring""" def lowercase ( _SCREAMING_SNAKE_CASE : List[Any] ): '''simple docstring''' _UpperCAmelCase = len(_SCREAMING_SNAKE_CASE ) while cur > 1: # Find the maximum number in arr _UpperCAmelCase = arr.index(max(arr[0:cur] ) ) # Reverse from 0 to mi _UpperCAmelCase = arr[mi::-1] + arr[mi + 1 : len(_SCREAMING_SNAKE_CASE )] # Reverse whole list _UpperCAmelCase = arr[cur - 1 :: -1] + arr[cur : len(_SCREAMING_SNAKE_CASE )] cur -= 1 return arr if __name__ == "__main__": __A : List[str] = input("Enter numbers separated by a comma:\n").strip() __A : List[Any] = [int(item) for item in user_input.split(",")] print(pancake_sort(unsorted))
260
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices _lowercase : Union[str, Any] = logging.get_logger(__name__) _lowercase : int = { '''google/bit-50''': '''https://huggingface.co/google/bit-50/resolve/main/config.json''', } class __SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase ): '''simple docstring''' _a = 'bit' _a = ['preactivation', 'bottleneck'] _a = ['SAME', 'VALID'] def __init__( self : Optional[int], lowerCamelCase : Any=3, lowerCamelCase : Union[str, Any]=64, lowerCamelCase : Optional[Any]=[256, 512, 1024, 2048], lowerCamelCase : int=[3, 4, 6, 3], lowerCamelCase : Tuple="preactivation", lowerCamelCase : str="relu", lowerCamelCase : Union[str, Any]=None, lowerCamelCase : Any=32, lowerCamelCase : Tuple=0.0, lowerCamelCase : int=False, lowerCamelCase : Any=32, lowerCamelCase : List[Any]=1, lowerCamelCase : Optional[int]=None, lowerCamelCase : List[Any]=None, **lowerCamelCase : List[str], )-> Dict: super().__init__(**SCREAMING_SNAKE_CASE_ ) if layer_type not in self.layer_types: raise ValueError(F'''layer_type={layer_type} is not one of {",".join(self.layer_types )}''' ) if global_padding is not None: if global_padding.upper() in self.supported_padding: lowerCamelCase__ : str =global_padding.upper() else: raise ValueError(F'''Padding strategy {global_padding} not supported''' ) lowerCamelCase__ : Optional[int] =num_channels lowerCamelCase__ : str =embedding_size lowerCamelCase__ : List[Any] =hidden_sizes lowerCamelCase__ : Any =depths lowerCamelCase__ : Optional[int] =layer_type lowerCamelCase__ : List[str] =hidden_act lowerCamelCase__ : Any =global_padding lowerCamelCase__ : Dict =num_groups lowerCamelCase__ : Optional[int] =drop_path_rate lowerCamelCase__ : Dict =embedding_dynamic_padding lowerCamelCase__ : str =output_stride lowerCamelCase__ : str =width_factor lowerCamelCase__ : int =["""stem"""] + [F'''stage{idx}''' for idx in range(1, len(SCREAMING_SNAKE_CASE_ ) + 1 )] lowerCamelCase__ : List[str] =get_aligned_output_features_output_indices( out_features=SCREAMING_SNAKE_CASE_, out_indices=SCREAMING_SNAKE_CASE_, stage_names=self.stage_names )
355
"""simple docstring""" import unittest import numpy as np import torch from diffusers import VersatileDiffusionImageVariationPipeline from diffusers.utils.testing_utils import load_image, require_torch_gpu, slow, torch_device _lowercase : Tuple = False class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' pass @slow @require_torch_gpu class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def snake_case ( self : List[Any] )-> Dict: lowerCamelCase__ : str =VersatileDiffusionImageVariationPipeline.from_pretrained('''shi-labs/versatile-diffusion''' ) pipe.to(lowerCamelCase ) pipe.set_progress_bar_config(disable=lowerCamelCase ) lowerCamelCase__ : int =load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg''' ) lowerCamelCase__ : Dict =torch.manual_seed(0 ) lowerCamelCase__ : str =pipe( image=lowerCamelCase, generator=lowerCamelCase, guidance_scale=7.5, num_inference_steps=50, output_type='''numpy''', ).images lowerCamelCase__ : Dict =image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) lowerCamelCase__ : List[Any] =np.array([0.0_441, 0.0_469, 0.0_507, 0.0_575, 0.0_632, 0.0_650, 0.0_865, 0.0_909, 0.0_945] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
272
0
'''simple docstring''' import requests def __lowerCAmelCase ( UpperCamelCase__ , UpperCamelCase__ ) -> None: __lowerCamelCase = {'''Content-Type''': '''application/json'''} __lowerCamelCase = requests.post(UpperCamelCase__ , json={'''text''': message_body} , headers=UpperCamelCase__ ) if response.status_code != 2_00: __lowerCamelCase = ( '''Request to slack returned an error ''' f"""{response.status_code}, the response is:\n{response.text}""" ) raise ValueError(UpperCamelCase__ ) if __name__ == "__main__": # Set the slack url to the one provided by Slack when you create the webhook at # https://my.slack.com/services/new/incoming-webhook/ send_slack_message("<YOUR MESSAGE BODY>", "<SLACK CHANNEL URL>")
67
'''simple docstring''' import argparse import logging import os from pathlib import Path from typing import Any, Dict import pytorch_lightning as pl from pytorch_lightning.utilities import rank_zero_info from transformers import ( AdamW, AutoConfig, AutoModel, AutoModelForPreTraining, AutoModelForQuestionAnswering, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoModelForTokenClassification, AutoModelWithLMHead, AutoTokenizer, PretrainedConfig, PreTrainedTokenizer, ) from transformers.optimization import ( Adafactor, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.utils.versions import require_version lowerCAmelCase :Dict = logging.getLogger(__name__) require_version('''pytorch_lightning>=1.0.4''') lowerCAmelCase :str = { '''base''': AutoModel, '''sequence-classification''': AutoModelForSequenceClassification, '''question-answering''': AutoModelForQuestionAnswering, '''pretraining''': AutoModelForPreTraining, '''token-classification''': AutoModelForTokenClassification, '''language-modeling''': AutoModelWithLMHead, '''summarization''': AutoModelForSeqaSeqLM, '''translation''': AutoModelForSeqaSeqLM, } # update this and the import above to support new schedulers from transformers.optimization lowerCAmelCase :Any = { '''linear''': get_linear_schedule_with_warmup, '''cosine''': get_cosine_schedule_with_warmup, '''cosine_w_restarts''': get_cosine_with_hard_restarts_schedule_with_warmup, '''polynomial''': get_polynomial_decay_schedule_with_warmup, # '': get_constant_schedule, # not supported for now # '': get_constant_schedule_with_warmup, # not supported for now } lowerCAmelCase :Tuple = sorted(arg_to_scheduler.keys()) lowerCAmelCase :Any = '''{''' + ''', '''.join(arg_to_scheduler_choices) + '''}''' class _lowerCamelCase ( pl.LightningModule ): '''simple docstring''' def __init__( self : Union[str, Any] , _A : argparse.Namespace , _A : List[Any]=None , _A : Any="base" , _A : Tuple=None , _A : Union[str, Any]=None , _A : List[Any]=None , **_A : Optional[Any] , ) -> Optional[int]: super().__init__() # TODO: move to self.save_hyperparameters() # self.save_hyperparameters() # can also expand arguments into trainer signature for easier reading self.save_hyperparameters(_A ) __magic_name__ : List[str] = 0 __magic_name__ : Union[str, Any] = Path(self.hparams.output_dir ) __magic_name__ : str = self.hparams.cache_dir if self.hparams.cache_dir else None if config is None: __magic_name__ : Optional[Any] = AutoConfig.from_pretrained( self.hparams.config_name if self.hparams.config_name else self.hparams.model_name_or_path , **({'num_labels': num_labels} if num_labels is not None else {}) , cache_dir=_A , **_A , ) else: __magic_name__ : PretrainedConfig = config __magic_name__ : Any = ('encoder_layerdrop', 'decoder_layerdrop', 'dropout', 'attention_dropout') for p in extra_model_params: if getattr(self.hparams , _A , _A ): assert hasattr(self.config , _A ), F'model config doesn\'t have a `{p}` attribute' setattr(self.config , _A , getattr(self.hparams , _A ) ) if tokenizer is None: __magic_name__ : List[Any] = AutoTokenizer.from_pretrained( self.hparams.tokenizer_name if self.hparams.tokenizer_name else self.hparams.model_name_or_path , cache_dir=_A , ) else: __magic_name__ : PreTrainedTokenizer = tokenizer __magic_name__ : Optional[int] = MODEL_MODES[mode] if model is None: __magic_name__ : Tuple = self.model_type.from_pretrained( self.hparams.model_name_or_path , from_tf=bool('.ckpt' in self.hparams.model_name_or_path ) , config=self.config , cache_dir=_A , ) else: __magic_name__ : str = model def __lowerCAmelCase ( self : Optional[int] , *_A : Union[str, Any] , **_A : Union[str, Any] ) -> Tuple: __magic_name__ : Any = self.model_type.from_pretrained(*_A , **_A ) def __lowerCAmelCase ( self : Dict ) -> Union[str, Any]: __magic_name__ : Optional[Any] = arg_to_scheduler[self.hparams.lr_scheduler] __magic_name__ : str = get_schedule_func( self.opt , num_warmup_steps=self.hparams.warmup_steps , num_training_steps=self.total_steps() ) __magic_name__ : int = {'scheduler': scheduler, 'interval': 'step', 'frequency': 1} return scheduler def __lowerCAmelCase ( self : str ) -> Optional[Any]: __magic_name__ : Optional[Any] = self.model __magic_name__ : int = ['bias', 'LayerNorm.weight'] __magic_name__ : Dict = [ { 'params': [ p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay ) ], # check this named paramters 'weight_decay': self.hparams.weight_decay, }, { 'params': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay )], 'weight_decay': 0.0, }, ] if self.hparams.adafactor: __magic_name__ : str = Adafactor( _A , lr=self.hparams.learning_rate , scale_parameter=_A , relative_step=_A ) else: __magic_name__ : Tuple = AdamW( _A , lr=self.hparams.learning_rate , eps=self.hparams.adam_epsilon ) __magic_name__ : List[str] = optimizer __magic_name__ : int = self.get_lr_scheduler() return [optimizer], [scheduler] def __lowerCAmelCase ( self : Optional[Any] , _A : Optional[int] , _A : Tuple ) -> Optional[Any]: return self.validation_step(_A , _A ) def __lowerCAmelCase ( self : Dict , _A : List[str] ) -> Any: return self.validation_end(_A ) def __lowerCAmelCase ( self : Union[str, Any] ) -> int: __magic_name__ : int = max(1 , self.hparams.gpus ) # TODO: consider num_tpu_cores __magic_name__ : Dict = self.hparams.train_batch_size * self.hparams.accumulate_grad_batches * num_devices return (self.dataset_size / effective_batch_size) * self.hparams.max_epochs def __lowerCAmelCase ( self : str , _A : Optional[int] ) -> str: if stage == "test": __magic_name__ : Any = len(self.test_dataloader().dataset ) else: __magic_name__ : List[Any] = self.get_dataloader('train' , self.hparams.train_batch_size , shuffle=_A ) __magic_name__ : int = len(self.train_dataloader().dataset ) def __lowerCAmelCase ( self : List[str] , _A : str , _A : int , _A : bool = False ) -> Optional[int]: raise NotImplementedError('You must implement this for your task' ) def __lowerCAmelCase ( self : int ) -> List[str]: return self.train_loader def __lowerCAmelCase ( self : Tuple ) -> int: return self.get_dataloader('dev' , self.hparams.eval_batch_size , shuffle=_A ) def __lowerCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: return self.get_dataloader('test' , self.hparams.eval_batch_size , shuffle=_A ) def __lowerCAmelCase ( self : Optional[Any] , _A : Any ) -> str: return os.path.join( self.hparams.data_dir , 'cached_{}_{}_{}'.format( _A , list(filter(_A , self.hparams.model_name_or_path.split('/' ) ) ).pop() , str(self.hparams.max_seq_length ) , ) , ) @pl.utilities.rank_zero_only def __lowerCAmelCase ( self : List[str] , _A : Dict[str, Any] ) -> None: __magic_name__ : Dict = self.output_dir.joinpath('best_tfmr' ) __magic_name__ : List[Any] = self.step_count self.model.save_pretrained(_A ) self.tokenizer.save_pretrained(_A ) @staticmethod def __lowerCAmelCase ( _A : List[str] , _A : Optional[Any] ) -> Tuple: parser.add_argument( '--model_name_or_path' , default=_A , type=_A , required=_A , help='Path to pretrained model or model identifier from huggingface.co/models' , ) parser.add_argument( '--config_name' , default='' , type=_A , help='Pretrained config name or path if not the same as model_name' ) parser.add_argument( '--tokenizer_name' , default=_A , type=_A , help='Pretrained tokenizer name or path if not the same as model_name' , ) parser.add_argument( '--cache_dir' , default=str(Path(_A ).parent / 'test_run' / 'cache' ) , type=_A , help='Where do you want to store the pre-trained models downloaded from huggingface.co' , ) parser.add_argument( '--encoder_layerdrop' , type=_A , help='Encoder layer dropout probability (Optional). Goes into model.config' , ) parser.add_argument( '--decoder_layerdrop' , type=_A , help='Decoder layer dropout probability (Optional). Goes into model.config' , ) parser.add_argument( '--dropout' , type=_A , help='Dropout probability (Optional). Goes into model.config' , ) parser.add_argument( '--attention_dropout' , type=_A , help='Attention dropout probability (Optional). Goes into model.config' , ) parser.add_argument('--learning_rate' , default=5E-5 , type=_A , help='The initial learning rate for Adam.' ) parser.add_argument( '--lr_scheduler' , default='linear' , choices=_A , metavar=_A , type=_A , help='Learning rate scheduler' , ) parser.add_argument('--weight_decay' , default=0.0 , type=_A , help='Weight decay if we apply some.' ) parser.add_argument('--adam_epsilon' , default=1E-8 , type=_A , help='Epsilon for Adam optimizer.' ) parser.add_argument('--warmup_steps' , default=0 , type=_A , help='Linear warmup over warmup_steps.' ) parser.add_argument('--num_workers' , default=4 , type=_A , help='kwarg passed to DataLoader' ) parser.add_argument('--num_train_epochs' , dest='max_epochs' , default=3 , type=_A ) parser.add_argument('--train_batch_size' , default=32 , type=_A ) parser.add_argument('--eval_batch_size' , default=32 , type=_A ) parser.add_argument('--adafactor' , action='store_true' ) class _lowerCamelCase ( pl.Callback ): '''simple docstring''' def __lowerCAmelCase ( self : List[str] , _A : List[Any] , _A : List[Any] ) -> List[str]: if ( trainer.is_global_zero and trainer.global_rank == 0 ): # we initialize the retriever only on master worker with RAY. In new pytorch-lightning accelorators are removed. pl_module.model.rag.retriever.init_retrieval() # better to use hook functions. class _lowerCamelCase ( pl.Callback ): '''simple docstring''' def __lowerCAmelCase ( self : List[str] , _A : Dict , _A : str ) -> List[str]: # print(pl_module.model.rag) for name, param in pl_module.model.rag.named_parameters(): if param.grad is None: print(_A ) class _lowerCamelCase ( pl.Callback ): '''simple docstring''' def __lowerCAmelCase ( self : Optional[int] , _A : List[Any] , _A : Dict ) -> Optional[Any]: __magic_name__ : Dict = trainer.lr_schedulers[0]['scheduler'] __magic_name__ : int = {F'lr_group_{i}': lr for i, lr in enumerate(lr_scheduler.get_lr() )} pl_module.logger.log_metrics(_A ) def __lowerCAmelCase ( self : Any , _A : pl.Trainer , _A : pl.LightningModule ) -> Optional[int]: rank_zero_info('***** Validation results *****' ) __magic_name__ : str = trainer.callback_metrics # Log results for key in sorted(_A ): if key not in ["log", "progress_bar"]: rank_zero_info('{} = {}\n'.format(_A , str(metrics[key] ) ) ) def __lowerCAmelCase ( self : Union[str, Any] , _A : pl.Trainer , _A : pl.LightningModule ) -> Optional[Any]: rank_zero_info('***** Test results *****' ) __magic_name__ : Optional[int] = trainer.callback_metrics # Log and save results to file __magic_name__ : Optional[Any] = os.path.join(pl_module.hparams.output_dir , 'test_results.txt' ) with open(_A , 'w' ) as writer: for key in sorted(_A ): if key not in ["log", "progress_bar"]: rank_zero_info('{} = {}\n'.format(_A , str(metrics[key] ) ) ) writer.write('{} = {}\n'.format(_A , str(metrics[key] ) ) ) def lowerCamelCase ( lowerCAmelCase : str , lowerCAmelCase : Union[str, Any] ): """simple docstring""" parser.add_argument( '--output_dir' , default=str(Path(lowerCAmelCase ).parent / 'test_run' / 'model_checkpoints' ) , type=lowerCAmelCase , help='The output directory where the model predictions and checkpoints will be written.' , ) parser.add_argument( '--fp16' , action='store_true' , help='Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit' , ) parser.add_argument( '--fp16_opt_level' , type=lowerCAmelCase , default='O2' , help=( 'For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\'].' 'See details at https://nvidia.github.io/apex/amp.html' ) , ) parser.add_argument('--n_tpu_cores' , dest='tpu_cores' , type=lowerCAmelCase ) parser.add_argument('--max_grad_norm' , dest='gradient_clip_val' , default=1.0 , type=lowerCAmelCase , help='Max gradient norm' ) parser.add_argument('--do_train' , action='store_true' , help='Whether to run training.' ) parser.add_argument('--do_predict' , action='store_true' , help='Whether to run predictions on the test set.' ) parser.add_argument( '--gradient_accumulation_steps' , dest='accumulate_grad_batches' , type=lowerCAmelCase , default=1 , help='Number of updates steps to accumulate before performing a backward/update pass.' , ) parser.add_argument('--seed' , type=lowerCAmelCase , default=42 , help='random seed for initialization' ) parser.add_argument( '--data_dir' , default=str(Path(lowerCAmelCase ).parent / 'test_run' / 'dummy-train-data' ) , type=lowerCAmelCase , help='The input data dir. Should contain the training files for the CoNLL-2003 NER task.' , ) def lowerCamelCase ( lowerCAmelCase : BaseTransformer , lowerCAmelCase : argparse.Namespace , lowerCAmelCase : List[Any]=None , lowerCAmelCase : Optional[Any]=True , lowerCAmelCase : Optional[Any]=[] , lowerCAmelCase : Union[str, Any]=None , lowerCAmelCase : Any=None , **lowerCAmelCase : Union[str, Any] , ): """simple docstring""" pl.seed_everything(args.seed ) # init model __magic_name__ : Any = Path(model.hparams.output_dir ) odir.mkdir(exist_ok=lowerCAmelCase ) # add custom checkpoints if checkpoint_callback is None: __magic_name__ : List[Any] = pl.callbacks.ModelCheckpoint( filepath=args.output_dir , prefix='checkpoint' , monitor='val_loss' , mode='min' , save_top_k=1 ) if early_stopping_callback: extra_callbacks.append(lowerCAmelCase ) if logging_callback is None: __magic_name__ : Dict = LoggingCallback() __magic_name__ : List[str] = {} if args.fpaa: __magic_name__ : Dict = 16 if args.gpus > 1: __magic_name__ : Tuple = 'auto' __magic_name__ : int = 'ddp' __magic_name__ : str = args.accumulate_grad_batches __magic_name__ : str = None __magic_name__ : List[str] = 'auto' __magic_name__ : List[Any] = pl.Trainer.from_argparse_args( lowerCAmelCase , weights_summary=lowerCAmelCase , callbacks=[logging_callback] + extra_callbacks + [InitCallback()] + [checkpoint_callback] , logger=lowerCAmelCase , val_check_interval=1 , num_sanity_val_steps=2 , **lowerCAmelCase , ) if args.do_train: trainer.fit(lowerCAmelCase ) else: print('RAG modeling tests with new set functions successfuly executed!' ) return trainer
331
0
import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_nllb import NllbTokenizer else: lowerCAmelCase__ : List[Any] =None lowerCAmelCase__ : Tuple =logging.get_logger(__name__) lowerCAmelCase__ : Any ={'''vocab_file''': '''sentencepiece.bpe.model''', '''tokenizer_file''': '''tokenizer.json'''} lowerCAmelCase__ : List[str] ={ '''vocab_file''': { '''facebook/nllb-200-distilled-600M''': ( '''https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/sentencepiece.bpe.model''' ), }, '''tokenizer_file''': { '''facebook/nllb-200-distilled-600M''': ( '''https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/tokenizer.json''' ), }, } lowerCAmelCase__ : Dict ={ '''facebook/nllb-large-en-ro''': 1024, '''facebook/nllb-200-distilled-600M''': 1024, } # fmt: off lowerCAmelCase__ : Optional[Any] =['''ace_Arab''', '''ace_Latn''', '''acm_Arab''', '''acq_Arab''', '''aeb_Arab''', '''afr_Latn''', '''ajp_Arab''', '''aka_Latn''', '''amh_Ethi''', '''apc_Arab''', '''arb_Arab''', '''ars_Arab''', '''ary_Arab''', '''arz_Arab''', '''asm_Beng''', '''ast_Latn''', '''awa_Deva''', '''ayr_Latn''', '''azb_Arab''', '''azj_Latn''', '''bak_Cyrl''', '''bam_Latn''', '''ban_Latn''', '''bel_Cyrl''', '''bem_Latn''', '''ben_Beng''', '''bho_Deva''', '''bjn_Arab''', '''bjn_Latn''', '''bod_Tibt''', '''bos_Latn''', '''bug_Latn''', '''bul_Cyrl''', '''cat_Latn''', '''ceb_Latn''', '''ces_Latn''', '''cjk_Latn''', '''ckb_Arab''', '''crh_Latn''', '''cym_Latn''', '''dan_Latn''', '''deu_Latn''', '''dik_Latn''', '''dyu_Latn''', '''dzo_Tibt''', '''ell_Grek''', '''eng_Latn''', '''epo_Latn''', '''est_Latn''', '''eus_Latn''', '''ewe_Latn''', '''fao_Latn''', '''pes_Arab''', '''fij_Latn''', '''fin_Latn''', '''fon_Latn''', '''fra_Latn''', '''fur_Latn''', '''fuv_Latn''', '''gla_Latn''', '''gle_Latn''', '''glg_Latn''', '''grn_Latn''', '''guj_Gujr''', '''hat_Latn''', '''hau_Latn''', '''heb_Hebr''', '''hin_Deva''', '''hne_Deva''', '''hrv_Latn''', '''hun_Latn''', '''hye_Armn''', '''ibo_Latn''', '''ilo_Latn''', '''ind_Latn''', '''isl_Latn''', '''ita_Latn''', '''jav_Latn''', '''jpn_Jpan''', '''kab_Latn''', '''kac_Latn''', '''kam_Latn''', '''kan_Knda''', '''kas_Arab''', '''kas_Deva''', '''kat_Geor''', '''knc_Arab''', '''knc_Latn''', '''kaz_Cyrl''', '''kbp_Latn''', '''kea_Latn''', '''khm_Khmr''', '''kik_Latn''', '''kin_Latn''', '''kir_Cyrl''', '''kmb_Latn''', '''kon_Latn''', '''kor_Hang''', '''kmr_Latn''', '''lao_Laoo''', '''lvs_Latn''', '''lij_Latn''', '''lim_Latn''', '''lin_Latn''', '''lit_Latn''', '''lmo_Latn''', '''ltg_Latn''', '''ltz_Latn''', '''lua_Latn''', '''lug_Latn''', '''luo_Latn''', '''lus_Latn''', '''mag_Deva''', '''mai_Deva''', '''mal_Mlym''', '''mar_Deva''', '''min_Latn''', '''mkd_Cyrl''', '''plt_Latn''', '''mlt_Latn''', '''mni_Beng''', '''khk_Cyrl''', '''mos_Latn''', '''mri_Latn''', '''zsm_Latn''', '''mya_Mymr''', '''nld_Latn''', '''nno_Latn''', '''nob_Latn''', '''npi_Deva''', '''nso_Latn''', '''nus_Latn''', '''nya_Latn''', '''oci_Latn''', '''gaz_Latn''', '''ory_Orya''', '''pag_Latn''', '''pan_Guru''', '''pap_Latn''', '''pol_Latn''', '''por_Latn''', '''prs_Arab''', '''pbt_Arab''', '''quy_Latn''', '''ron_Latn''', '''run_Latn''', '''rus_Cyrl''', '''sag_Latn''', '''san_Deva''', '''sat_Beng''', '''scn_Latn''', '''shn_Mymr''', '''sin_Sinh''', '''slk_Latn''', '''slv_Latn''', '''smo_Latn''', '''sna_Latn''', '''snd_Arab''', '''som_Latn''', '''sot_Latn''', '''spa_Latn''', '''als_Latn''', '''srd_Latn''', '''srp_Cyrl''', '''ssw_Latn''', '''sun_Latn''', '''swe_Latn''', '''swh_Latn''', '''szl_Latn''', '''tam_Taml''', '''tat_Cyrl''', '''tel_Telu''', '''tgk_Cyrl''', '''tgl_Latn''', '''tha_Thai''', '''tir_Ethi''', '''taq_Latn''', '''taq_Tfng''', '''tpi_Latn''', '''tsn_Latn''', '''tso_Latn''', '''tuk_Latn''', '''tum_Latn''', '''tur_Latn''', '''twi_Latn''', '''tzm_Tfng''', '''uig_Arab''', '''ukr_Cyrl''', '''umb_Latn''', '''urd_Arab''', '''uzn_Latn''', '''vec_Latn''', '''vie_Latn''', '''war_Latn''', '''wol_Latn''', '''xho_Latn''', '''ydd_Hebr''', '''yor_Latn''', '''yue_Hant''', '''zho_Hans''', '''zho_Hant''', '''zul_Latn'''] class UpperCAmelCase_ ( UpperCamelCase_ ): '''simple docstring''' UpperCamelCase__ : Dict = VOCAB_FILES_NAMES UpperCamelCase__ : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase__ : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase__ : Optional[Any] = ['''input_ids''', '''attention_mask'''] UpperCamelCase__ : str = NllbTokenizer UpperCamelCase__ : List[int] = [] UpperCamelCase__ : List[int] = [] def __init__( self , _A=None , _A=None , _A="<s>" , _A="</s>" , _A="</s>" , _A="<s>" , _A="<unk>" , _A="<pad>" , _A="<mask>" , _A=None , _A=None , _A=None , _A=False , **_A , ): '''simple docstring''' __SCREAMING_SNAKE_CASE = AddedToken(_A , lstrip=_A , rstrip=_A ) if isinstance(_A , _A ) else mask_token __SCREAMING_SNAKE_CASE = legacy_behaviour super().__init__( vocab_file=_A , tokenizer_file=_A , bos_token=_A , eos_token=_A , sep_token=_A , cls_token=_A , unk_token=_A , pad_token=_A , mask_token=_A , src_lang=_A , tgt_lang=_A , additional_special_tokens=_A , legacy_behaviour=_A , **_A , ) __SCREAMING_SNAKE_CASE = vocab_file __SCREAMING_SNAKE_CASE = False if not self.vocab_file else True __SCREAMING_SNAKE_CASE = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({'additional_special_tokens': _additional_special_tokens} ) __SCREAMING_SNAKE_CASE = { lang_code: self.convert_tokens_to_ids(_A ) for lang_code in FAIRSEQ_LANGUAGE_CODES } __SCREAMING_SNAKE_CASE = src_lang if src_lang is not None else 'eng_Latn' __SCREAMING_SNAKE_CASE = self.convert_tokens_to_ids(self._src_lang ) __SCREAMING_SNAKE_CASE = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def _A ( self ): '''simple docstring''' return self._src_lang @src_lang.setter def _A ( self , _A ): '''simple docstring''' __SCREAMING_SNAKE_CASE = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def _A ( self , _A , _A = None ): '''simple docstring''' if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def _A ( self , _A , _A = None ): '''simple docstring''' __SCREAMING_SNAKE_CASE = [self.sep_token_id] __SCREAMING_SNAKE_CASE = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _A ( self , _A , _A , _A , _A , **_A ): '''simple docstring''' if src_lang is None or tgt_lang is None: raise ValueError('Translation requires a `src_lang` and a `tgt_lang` for this model' ) __SCREAMING_SNAKE_CASE = src_lang __SCREAMING_SNAKE_CASE = self(_A , add_special_tokens=_A , return_tensors=_A , **_A ) __SCREAMING_SNAKE_CASE = self.convert_tokens_to_ids(_A ) __SCREAMING_SNAKE_CASE = tgt_lang_id return inputs def _A ( self , _A , _A = "eng_Latn" , _A = None , _A = "fra_Latn" , **_A , ): '''simple docstring''' __SCREAMING_SNAKE_CASE = src_lang __SCREAMING_SNAKE_CASE = tgt_lang return super().prepare_seqaseq_batch(_A , _A , **_A ) def _A ( self ): '''simple docstring''' return self.set_src_lang_special_tokens(self.src_lang ) def _A ( self ): '''simple docstring''' return self.set_tgt_lang_special_tokens(self.tgt_lang ) def _A ( self , _A ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.convert_tokens_to_ids(_A ) if self.legacy_behaviour: __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = [self.eos_token_id, self.cur_lang_code] else: __SCREAMING_SNAKE_CASE = [self.cur_lang_code] __SCREAMING_SNAKE_CASE = [self.eos_token_id] __SCREAMING_SNAKE_CASE = self.convert_ids_to_tokens(self.prefix_tokens ) __SCREAMING_SNAKE_CASE = self.convert_ids_to_tokens(self.suffix_tokens ) __SCREAMING_SNAKE_CASE = processors.TemplateProcessing( single=prefix_tokens_str + ['$A'] + suffix_tokens_str , pair=prefix_tokens_str + ['$A', '$B'] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def _A ( self , _A ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.convert_tokens_to_ids(_A ) if self.legacy_behaviour: __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = [self.eos_token_id, self.cur_lang_code] else: __SCREAMING_SNAKE_CASE = [self.cur_lang_code] __SCREAMING_SNAKE_CASE = [self.eos_token_id] __SCREAMING_SNAKE_CASE = self.convert_ids_to_tokens(self.prefix_tokens ) __SCREAMING_SNAKE_CASE = self.convert_ids_to_tokens(self.suffix_tokens ) __SCREAMING_SNAKE_CASE = processors.TemplateProcessing( single=prefix_tokens_str + ['$A'] + suffix_tokens_str , pair=prefix_tokens_str + ['$A', '$B'] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def _A ( self , _A , _A = None ): '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.' ) if not os.path.isdir(_A ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory.""" ) return __SCREAMING_SNAKE_CASE = os.path.join( _A , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_A ): copyfile(self.vocab_file , _A ) return (out_vocab_file,)
118
import os def __lowercase ( a__ = "input.txt" ) -> int: with open(os.path.join(os.path.dirname(a__ ) , a__ ) ) as input_file: __SCREAMING_SNAKE_CASE = [ [int(a__ ) for element in line.split(',' )] for line in input_file.readlines() ] __SCREAMING_SNAKE_CASE = len(a__ ) __SCREAMING_SNAKE_CASE = len(matrix[0] ) __SCREAMING_SNAKE_CASE = [[-1 for _ in range(a__ )] for _ in range(a__ )] for i in range(a__ ): __SCREAMING_SNAKE_CASE = matrix[i][0] for j in range(1 , a__ ): for i in range(a__ ): __SCREAMING_SNAKE_CASE = minimal_path_sums[i][j - 1] + matrix[i][j] for i in range(1 , a__ ): __SCREAMING_SNAKE_CASE = min( minimal_path_sums[i][j] , minimal_path_sums[i - 1][j] + matrix[i][j] ) for i in range(rows - 2 , -1 , -1 ): __SCREAMING_SNAKE_CASE = min( minimal_path_sums[i][j] , minimal_path_sums[i + 1][j] + matrix[i][j] ) return min(minimal_path_sums_row[-1] for minimal_path_sums_row in minimal_path_sums ) if __name__ == "__main__": print(F'''{solution() = }''')
118
1