code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
"""simple docstring""" import os import socket from contextlib import contextmanager import torch from ..commands.config.default import write_basic_config # noqa: F401 from ..state import PartialState from .dataclasses import DistributedType from .imports import is_deepspeed_available, is_tpu_available from .transformer_engine import convert_model from .versions import is_torch_version if is_deepspeed_available(): from deepspeed import DeepSpeedEngine if is_tpu_available(check_device=False): import torch_xla.core.xla_model as xm def __lowerCAmelCase (_UpperCamelCase ): if is_torch_version('<' , '2.0.0' ) or not hasattr(_UpperCamelCase , '_dynamo' ): return False return isinstance(_UpperCamelCase , torch._dynamo.eval_frame.OptimizedModule ) def __lowerCAmelCase (_UpperCamelCase , _UpperCamelCase = True ): __lowerCAmelCase : List[str] = (torch.nn.parallel.DistributedDataParallel, torch.nn.DataParallel) __lowerCAmelCase : str = is_compiled_module(_UpperCamelCase ) if is_compiled: __lowerCAmelCase : List[str] = model __lowerCAmelCase : Optional[int] = model._orig_mod if is_deepspeed_available(): options += (DeepSpeedEngine,) while isinstance(_UpperCamelCase , _UpperCamelCase ): __lowerCAmelCase : List[Any] = model.module if not keep_fpaa_wrapper: __lowerCAmelCase : Optional[Any] = getattr(_UpperCamelCase , 'forward' ) __lowerCAmelCase : List[str] = model.__dict__.pop('_original_forward' , _UpperCamelCase ) if original_forward is not None: while hasattr(_UpperCamelCase , '__wrapped__' ): __lowerCAmelCase : List[str] = forward.__wrapped__ if forward == original_forward: break __lowerCAmelCase : Dict = forward if getattr(_UpperCamelCase , '_converted_to_transformer_engine' , _UpperCamelCase ): convert_model(_UpperCamelCase , to_transformer_engine=_UpperCamelCase ) if is_compiled: __lowerCAmelCase : Dict = model __lowerCAmelCase : Tuple = compiled_model return model def __lowerCAmelCase (): PartialState().wait_for_everyone() def __lowerCAmelCase (_UpperCamelCase , _UpperCamelCase ): if PartialState().distributed_type == DistributedType.TPU: xm.save(_UpperCamelCase , _UpperCamelCase ) elif PartialState().local_process_index == 0: torch.save(_UpperCamelCase , _UpperCamelCase ) @contextmanager def __lowerCAmelCase (**_UpperCamelCase ): for key, value in kwargs.items(): __lowerCAmelCase : List[str] = str(_UpperCamelCase ) yield for key in kwargs: if key.upper() in os.environ: del os.environ[key.upper()] def __lowerCAmelCase (_UpperCamelCase ): if not hasattr(_UpperCamelCase , '__qualname__' ) and not hasattr(_UpperCamelCase , '__name__' ): __lowerCAmelCase : Optional[Any] = getattr(_UpperCamelCase , '__class__' , _UpperCamelCase ) if hasattr(_UpperCamelCase , '__qualname__' ): return obj.__qualname__ if hasattr(_UpperCamelCase , '__name__' ): return obj.__name__ return str(_UpperCamelCase ) def __lowerCAmelCase (_UpperCamelCase , _UpperCamelCase ): for key, value in source.items(): if isinstance(_UpperCamelCase , _UpperCamelCase ): __lowerCAmelCase : Optional[Any] = destination.setdefault(_UpperCamelCase , {} ) merge_dicts(_UpperCamelCase , _UpperCamelCase ) else: __lowerCAmelCase : Optional[Any] = value return destination def __lowerCAmelCase (_UpperCamelCase = None ): if port is None: __lowerCAmelCase : Tuple = 2_9500 with socket.socket(socket.AF_INET , socket.SOCK_STREAM ) as s: return s.connect_ex(('localhost', port) ) == 0
86
"""simple docstring""" import os from argparse import ArgumentParser, Namespace from ..data import SingleSentenceClassificationProcessor as Processor from ..pipelines import TextClassificationPipeline from ..utils import is_tf_available, is_torch_available, logging from . import BaseTransformersCLICommand if not is_tf_available() and not is_torch_available(): raise RuntimeError("At least one of PyTorch or TensorFlow 2.0+ should be installed to use CLI training") # TF training parameters _a : Optional[int]= False _a : int= False def __UpperCAmelCase ( UpperCAmelCase_ : Namespace ) -> Optional[Any]: '''simple docstring''' return TrainCommand(UpperCAmelCase_ ) class UpperCamelCase ( lowercase ): @staticmethod def _lowercase (_A : ArgumentParser) -> Any: __snake_case : Any = parser.add_parser('train' , help='CLI tool to train a model on a task.') train_parser.add_argument( '--train_data' , type=_A , required=_A , help='path to train (and optionally evaluation) dataset as a csv with tab separated labels and sentences.' , ) train_parser.add_argument( '--column_label' , type=_A , default=0 , help='Column of the dataset csv file with example labels.') train_parser.add_argument( '--column_text' , type=_A , default=1 , help='Column of the dataset csv file with example texts.') train_parser.add_argument( '--column_id' , type=_A , default=2 , help='Column of the dataset csv file with example ids.') train_parser.add_argument( '--skip_first_row' , action='store_true' , help='Skip the first row of the csv file (headers).') train_parser.add_argument('--validation_data' , type=_A , default='' , help='path to validation dataset.') train_parser.add_argument( '--validation_split' , type=_A , default=0.1 , help='if validation dataset is not provided, fraction of train dataset to use as validation dataset.' , ) train_parser.add_argument('--output' , type=_A , default='./' , help='path to saved the trained model.') train_parser.add_argument( '--task' , type=_A , default='text_classification' , help='Task to train the model on.') train_parser.add_argument( '--model' , type=_A , default='bert-base-uncased' , help='Model\'s name or path to stored model.') train_parser.add_argument('--train_batch_size' , type=_A , default=32 , help='Batch size for training.') train_parser.add_argument('--valid_batch_size' , type=_A , default=64 , help='Batch size for validation.') train_parser.add_argument('--learning_rate' , type=_A , default=3E-5 , help='Learning rate.') train_parser.add_argument('--adam_epsilon' , type=_A , default=1E-08 , help='Epsilon for Adam optimizer.') train_parser.set_defaults(func=_A) def __init__(self : int , _A : Namespace) -> Tuple: __snake_case : Optional[int] = logging.get_logger('transformers-cli/training') __snake_case : Optional[int] = 'tf' if is_tf_available() else 'torch' os.makedirs(args.output , exist_ok=_A) __snake_case : List[Any] = args.output __snake_case : Any = args.column_label __snake_case : str = args.column_text __snake_case : Any = args.column_id self.logger.info(f"Loading {args.task} pipeline for {args.model}") if args.task == "text_classification": __snake_case : List[str] = TextClassificationPipeline.from_pretrained(args.model) elif args.task == "token_classification": raise NotImplementedError elif args.task == "question_answering": raise NotImplementedError self.logger.info(f"Loading dataset from {args.train_data}") __snake_case : List[Any] = Processor.create_from_csv( args.train_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , ) __snake_case : List[str] = None if args.validation_data: self.logger.info(f"Loading validation dataset from {args.validation_data}") __snake_case : Dict = Processor.create_from_csv( args.validation_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , ) __snake_case : List[str] = args.validation_split __snake_case : str = args.train_batch_size __snake_case : Any = args.valid_batch_size __snake_case : Union[str, Any] = args.learning_rate __snake_case : str = args.adam_epsilon def _lowercase (self : List[str]) -> str: if self.framework == "tf": return self.run_tf() return self.run_torch() def _lowercase (self : str) -> int: raise NotImplementedError def _lowercase (self : Union[str, Any]) -> Optional[Any]: self.pipeline.fit( self.train_dataset , validation_data=self.valid_dataset , validation_split=self.validation_split , learning_rate=self.learning_rate , adam_epsilon=self.adam_epsilon , train_batch_size=self.train_batch_size , valid_batch_size=self.valid_batch_size , ) # Save trained pipeline self.pipeline.save_pretrained(self.output)
172
0
'''simple docstring''' import argparse import collections import json from pathlib import Path import requests import torch import yaml from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileViTImageProcessor, MobileViTVaConfig, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, ) from transformers.utils import logging logging.set_verbosity_info() __a = logging.get_logger(__name__) def __snake_case( _lowerCAmelCase ) -> List[str]: print("""Loading config file...""" ) def flatten_yaml_as_dict(_lowerCAmelCase , _lowerCAmelCase="" , _lowerCAmelCase="." ): snake_case__ : Dict = [] for k, v in d.items(): snake_case__ : Optional[int] = parent_key + sep + k if parent_key else k if isinstance(_snake_case , collections.abc.MutableMapping ): items.extend(flatten_yaml_as_dict(_snake_case , _snake_case , sep=_snake_case ).items() ) else: items.append((new_key, v) ) return dict(_snake_case ) snake_case__ : Dict = argparse.Namespace() with open(_snake_case , """r""" ) as yaml_file: try: snake_case__ : Dict = yaml.load(_snake_case , Loader=yaml.FullLoader ) snake_case__ : List[Any] = flatten_yaml_as_dict(_snake_case ) for k, v in flat_cfg.items(): setattr(_snake_case , _snake_case , _snake_case ) except yaml.YAMLError as exc: logger.error("""Error while loading config file: {}. Error message: {}""".format(_snake_case , str(_snake_case ) ) ) return config def __snake_case( _lowerCAmelCase , _lowerCAmelCase ) -> List[str]: snake_case__ : Tuple = MobileViTVaConfig() snake_case__ : Any = False # dataset if task_name.startswith("""imagenet1k_""" ): snake_case__ : str = 1_000 if int(task_name.strip().split("""_""" )[-1] ) == 384: snake_case__ : Optional[Any] = 384 else: snake_case__ : Optional[int] = 256 snake_case__ : Optional[int] = '''imagenet-1k-id2label.json''' elif task_name.startswith("""imagenet21k_to_1k_""" ): snake_case__ : Any = 21_000 if int(task_name.strip().split("""_""" )[-1] ) == 384: snake_case__ : Dict = 384 else: snake_case__ : Tuple = 256 snake_case__ : str = '''imagenet-22k-id2label.json''' elif task_name.startswith("""ade20k_""" ): snake_case__ : int = 151 snake_case__ : List[str] = 512 snake_case__ : int = '''ade20k-id2label.json''' snake_case__ : Optional[Any] = True elif task_name.startswith("""voc_""" ): snake_case__ : Optional[Any] = 21 snake_case__ : Union[str, Any] = 512 snake_case__ : Union[str, Any] = '''pascal-voc-id2label.json''' snake_case__ : Dict = True # orig_config snake_case__ : Union[str, Any] = load_orig_config_file(_snake_case ) assert getattr(_snake_case , """model.classification.name""" , -1 ) == "mobilevit_v2", "Invalid model" snake_case__ : Any = getattr(_snake_case , """model.classification.mitv2.width_multiplier""" , 1.0 ) assert ( getattr(_snake_case , """model.classification.mitv2.attn_norm_layer""" , -1 ) == "layer_norm_2d" ), "Norm layers other than layer_norm_2d is not supported" snake_case__ : List[Any] = getattr(_snake_case , """model.classification.activation.name""" , """swish""" ) # config.image_size == getattr(orig_config, 'sampler.bs.crop_size_width', 256) if is_segmentation_model: snake_case__ : Tuple = getattr(_snake_case , """model.segmentation.output_stride""" , 16 ) if "_deeplabv3" in task_name: snake_case__ : Dict = getattr(_snake_case , """model.segmentation.deeplabv3.aspp_rates""" , [12, 24, 36] ) snake_case__ : Tuple = getattr(_snake_case , """model.segmentation.deeplabv3.aspp_out_channels""" , 512 ) snake_case__ : Dict = getattr(_snake_case , """model.segmentation.deeplabv3.aspp_dropout""" , 0.1 ) # id2label snake_case__ : Any = '''huggingface/label-files''' snake_case__ : Optional[Any] = json.load(open(hf_hub_download(_snake_case , _snake_case , repo_type="""dataset""" ) , """r""" ) ) snake_case__ : str = {int(_snake_case ): v for k, v in idalabel.items()} snake_case__ : Optional[int] = idalabel snake_case__ : Optional[int] = {v: k for k, v in idalabel.items()} return config def __snake_case( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> int: snake_case__ : Dict = dct.pop(_snake_case ) snake_case__ : str = val def __snake_case( _lowerCAmelCase , _lowerCAmelCase=False ) -> Tuple: if base_model: snake_case__ : int = '''''' else: snake_case__ : Optional[Any] = '''mobilevitv2.''' snake_case__ : Any = [] for k in state_dict.keys(): if k[:8] == "encoder.": snake_case__ : int = k[8:] else: snake_case__ : Optional[Any] = k if ".block." in k: snake_case__ : Optional[int] = k_new.replace(""".block.""" , """.""" ) if ".conv." in k: snake_case__ : List[Any] = k_new.replace(""".conv.""" , """.convolution.""" ) if ".norm." in k: snake_case__ : Optional[Any] = k_new.replace(""".norm.""" , """.normalization.""" ) if "conv_1." in k: snake_case__ : str = k_new.replace("""conv_1.""" , f"{model_prefix}conv_stem." ) for i in [1, 2]: if f"layer_{i}." in k: snake_case__ : List[Any] = k_new.replace(f"layer_{i}." , f"{model_prefix}encoder.layer.{i-1}.layer." ) if ".exp_1x1." in k: snake_case__ : Optional[int] = k_new.replace(""".exp_1x1.""" , """.expand_1x1.""" ) if ".red_1x1." in k: snake_case__ : Any = k_new.replace(""".red_1x1.""" , """.reduce_1x1.""" ) for i in [3, 4, 5]: if f"layer_{i}.0." in k: snake_case__ : Dict = k_new.replace(f"layer_{i}.0." , f"{model_prefix}encoder.layer.{i-1}.downsampling_layer." ) if f"layer_{i}.1.local_rep.0." in k: snake_case__ : Optional[int] = k_new.replace(f"layer_{i}.1.local_rep.0." , f"{model_prefix}encoder.layer.{i-1}.conv_kxk." ) if f"layer_{i}.1.local_rep.1." in k: snake_case__ : Union[str, Any] = k_new.replace(f"layer_{i}.1.local_rep.1." , f"{model_prefix}encoder.layer.{i-1}.conv_1x1." ) for i in [3, 4, 5]: if i == 3: snake_case__ : List[str] = [0, 1] elif i == 4: snake_case__ : Optional[int] = [0, 1, 2, 3] elif i == 5: snake_case__ : Dict = [0, 1, 2] for j in j_in: if f"layer_{i}.1.global_rep.{j}." in k: snake_case__ : Any = k_new.replace( f"layer_{i}.1.global_rep.{j}." , f"{model_prefix}encoder.layer.{i-1}.transformer.layer.{j}." ) if f"layer_{i}.1.global_rep.{j+1}." in k: snake_case__ : Optional[int] = k_new.replace( f"layer_{i}.1.global_rep.{j+1}." , f"{model_prefix}encoder.layer.{i-1}.layernorm." ) if f"layer_{i}.1.conv_proj." in k: snake_case__ : int = k_new.replace(f"layer_{i}.1.conv_proj." , f"{model_prefix}encoder.layer.{i-1}.conv_projection." ) if "pre_norm_attn.0." in k: snake_case__ : Any = k_new.replace("""pre_norm_attn.0.""" , """layernorm_before.""" ) if "pre_norm_attn.1." in k: snake_case__ : str = k_new.replace("""pre_norm_attn.1.""" , """attention.""" ) if "pre_norm_ffn.0." in k: snake_case__ : Dict = k_new.replace("""pre_norm_ffn.0.""" , """layernorm_after.""" ) if "pre_norm_ffn.1." in k: snake_case__ : Optional[int] = k_new.replace("""pre_norm_ffn.1.""" , """ffn.conv1.""" ) if "pre_norm_ffn.3." in k: snake_case__ : Optional[int] = k_new.replace("""pre_norm_ffn.3.""" , """ffn.conv2.""" ) if "classifier.1." in k: snake_case__ : Any = k_new.replace("""classifier.1.""" , """classifier.""" ) if "seg_head." in k: snake_case__ : List[Any] = k_new.replace("""seg_head.""" , """segmentation_head.""" ) if ".aspp_layer." in k: snake_case__ : Dict = k_new.replace(""".aspp_layer.""" , """.""" ) if ".aspp_pool." in k: snake_case__ : Optional[Any] = k_new.replace(""".aspp_pool.""" , """.""" ) rename_keys.append((k, k_new) ) return rename_keys def __snake_case( _lowerCAmelCase ) -> List[str]: snake_case__ : Union[str, Any] = [] for k in state_dict.keys(): if k.startswith("""seg_head.aux_head.""" ): keys_to_ignore.append(_snake_case ) for k in keys_to_ignore: state_dict.pop(_snake_case , _snake_case ) def __snake_case( ) -> str: snake_case__ : str = '''http://images.cocodataset.org/val2017/000000039769.jpg''' # url = "https://cdn.britannica.com/86/141086-050-9D7C75EE/Gulfstream-G450-business-jet-passengers.jpg" snake_case__ : List[Any] = Image.open(requests.get(_snake_case , stream=_snake_case ).raw ) return im @torch.no_grad() def __snake_case( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> List[str]: snake_case__ : List[Any] = get_mobilevitva_config(_snake_case , _snake_case ) # load original state_dict snake_case__ : Tuple = torch.load(_snake_case , map_location="""cpu""" ) # load huggingface model if task_name.startswith("""ade20k_""" ) or task_name.startswith("""voc_""" ): snake_case__ : Dict = MobileViTVaForSemanticSegmentation(_snake_case ).eval() snake_case__ : str = False else: snake_case__ : Optional[int] = MobileViTVaForImageClassification(_snake_case ).eval() snake_case__ : int = False # remove and rename some keys of load the original model snake_case__ : str = checkpoint remove_unused_keys(_snake_case ) snake_case__ : List[str] = create_rename_keys(_snake_case , base_model=_snake_case ) for rename_key_src, rename_key_dest in rename_keys: rename_key(_snake_case , _snake_case , _snake_case ) # load modified state_dict model.load_state_dict(_snake_case ) # Check outputs on an image, prepared by MobileViTImageProcessor snake_case__ : Dict = MobileViTImageProcessor(crop_size=config.image_size , size=config.image_size + 32 ) snake_case__ : Dict = image_processor(images=prepare_img() , return_tensors="""pt""" ) snake_case__ : Union[str, Any] = model(**_snake_case ) # verify classification model if task_name.startswith("""imagenet""" ): snake_case__ : Optional[Any] = outputs.logits snake_case__ : Dict = logits.argmax(-1 ).item() print("""Predicted class:""" , model.config.idalabel[predicted_class_idx] ) if task_name.startswith("""imagenet1k_256""" ) and config.width_multiplier == 1.0: # expected_logits for base variant snake_case__ : List[str] = torch.tensor([-1.6336e00, -7.3204e-02, -5.1883e-01] ) assert torch.allclose(logits[0, :3] , _snake_case , atol=1e-4 ) Path(_snake_case ).mkdir(exist_ok=_snake_case ) print(f"Saving model {task_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(_snake_case ) print(f"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(_snake_case ) if __name__ == "__main__": __a = argparse.ArgumentParser() # Required parameters parser.add_argument( "--task", default="imagenet1k_256", type=str, help=( "Name of the task for which the MobileViTV2 model you'd like to convert is trained on . " "\n Classification (ImageNet-1k)\n - MobileViTV2 (256x256) : imagenet1k_256\n - MobileViTV2 (Trained on 256x256 and Finetuned on 384x384) : imagenet1k_384\n - MobileViTV2 (Trained on ImageNet-21k and Finetuned on ImageNet-1k 256x256) :\n imagenet21k_to_1k_256\n - MobileViTV2 (Trained on ImageNet-21k, Finetuned on ImageNet-1k 256x256, and Finetuned on\n ImageNet-1k 384x384) : imagenet21k_to_1k_384\n Segmentation\n - ADE20K Dataset : ade20k_deeplabv3\n - Pascal VOC 2012 Dataset: voc_deeplabv3\n " ), choices=[ "imagenet1k_256", "imagenet1k_384", "imagenet21k_to_1k_256", "imagenet21k_to_1k_384", "ade20k_deeplabv3", "voc_deeplabv3", ], ) parser.add_argument( "--orig_checkpoint_path", required=True, type=str, help="Path to the original state dict (.pt file)." ) parser.add_argument("--orig_config_path", required=True, type=str, help="Path to the original config file.") parser.add_argument( "--pytorch_dump_folder_path", required=True, type=str, help="Path to the output PyTorch model directory." ) __a = parser.parse_args() convert_mobilevitva_checkpoint( args.task, args.orig_checkpoint_path, args.orig_config_path, args.pytorch_dump_folder_path )
352
'''simple docstring''' def __snake_case( _lowerCAmelCase ) -> int: if not isinstance(_lowerCAmelCase , _lowerCAmelCase ): raise TypeError("""Input value must be an 'int' type""" ) snake_case__ : List[str] = 0 while number: position += 1 number >>= 1 return position if __name__ == "__main__": import doctest doctest.testmod()
43
0
"""simple docstring""" import sys snake_case__ : str = ( '''73167176531330624919225119674426574742355349194934''' '''96983520312774506326239578318016984801869478851843''' '''85861560789112949495459501737958331952853208805511''' '''12540698747158523863050715693290963295227443043557''' '''66896648950445244523161731856403098711121722383113''' '''62229893423380308135336276614282806444486645238749''' '''30358907296290491560440772390713810515859307960866''' '''70172427121883998797908792274921901699720888093776''' '''65727333001053367881220235421809751254540594752243''' '''52584907711670556013604839586446706324415722155397''' '''53697817977846174064955149290862569321978468622482''' '''83972241375657056057490261407972968652414535100474''' '''82166370484403199890008895243450658541227588666881''' '''16427171479924442928230863465674813919123162824586''' '''17866458359124566529476545682848912883142607690042''' '''24219022671055626321111109370544217506941658960408''' '''07198403850962455444362981230987879927244284909188''' '''84580156166097919133875499200524063689912560717606''' '''05886116467109405077541002256983155200055935729725''' '''71636269561882670428252483600823257530420752963450''' ) def _snake_case ( _snake_case : str = N ): lowerCAmelCase : int = -sys.maxsize - 1 for i in range(len(_snake_case ) - 12 ): lowerCAmelCase : Optional[Any] = 1 for j in range(13 ): product *= int(n[i + j] ) if product > largest_product: lowerCAmelCase : Any = product return largest_product if __name__ == "__main__": print(f"""{solution() = }""")
60
from pathlib import Path from typing import List from transformers import is_torch_available, is_vision_available from transformers.testing_utils import get_tests_dir, is_tool_test from transformers.tools.agent_types import AGENT_TYPE_MAPPING, AgentAudio, AgentImage, AgentText if is_torch_available(): import torch if is_vision_available(): from PIL import Image lowerCAmelCase : Optional[int] = ['text', 'image', 'audio'] def A_ ( a ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = [] for input_type in input_types: if input_type == "text": inputs.append('Text input' ) elif input_type == "image": inputs.append( Image.open(Path(get_tests_dir('fixtures/tests_samples/COCO' ) ) / '000000039769.png' ).resize((5_1_2, 5_1_2) ) ) elif input_type == "audio": inputs.append(torch.ones(3_0_0_0 ) ) elif isinstance(a , a ): inputs.append(create_inputs(a ) ) else: raise ValueError(f"Invalid type requested: {input_type}" ) return inputs def A_ ( a ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = [] for output in outputs: if isinstance(a , (str, AgentText) ): output_types.append('text' ) elif isinstance(a , (Image.Image, AgentImage) ): output_types.append('image' ) elif isinstance(a , (torch.Tensor, AgentAudio) ): output_types.append('audio' ) else: raise ValueError(f"Invalid output: {output}" ) return output_types @is_tool_test class _A : def UpperCAmelCase ( self ): """simple docstring""" self.assertTrue(hasattr(self.tool , 'inputs' ) ) self.assertTrue(hasattr(self.tool , 'outputs' ) ) SCREAMING_SNAKE_CASE_ : Optional[int] = self.tool.inputs for _input in inputs: if isinstance(_input , _SCREAMING_SNAKE_CASE ): for __input in _input: self.assertTrue(__input in authorized_types ) else: self.assertTrue(_input in authorized_types ) SCREAMING_SNAKE_CASE_ : int = self.tool.outputs for _output in outputs: self.assertTrue(_output in authorized_types ) def UpperCAmelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = create_inputs(self.tool.inputs ) SCREAMING_SNAKE_CASE_ : Optional[int] = self.tool(*_SCREAMING_SNAKE_CASE ) # There is a single output if len(self.tool.outputs ) == 1: SCREAMING_SNAKE_CASE_ : List[Any] = [outputs] self.assertListEqual(output_types(_SCREAMING_SNAKE_CASE ) , self.tool.outputs ) def UpperCAmelCase ( self ): """simple docstring""" self.assertTrue(hasattr(self.tool , 'description' ) ) self.assertTrue(hasattr(self.tool , 'default_checkpoint' ) ) self.assertTrue(self.tool.description.startswith('This is a tool that' ) ) def UpperCAmelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = create_inputs(self.tool.inputs ) SCREAMING_SNAKE_CASE_ : List[str] = self.tool(*_SCREAMING_SNAKE_CASE ) if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE_ : str = [outputs] self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , len(self.tool.outputs ) ) for output, output_type in zip(_SCREAMING_SNAKE_CASE , self.tool.outputs ): SCREAMING_SNAKE_CASE_ : Tuple = AGENT_TYPE_MAPPING[output_type] self.assertTrue(isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) def UpperCAmelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = create_inputs(self.tool.inputs ) SCREAMING_SNAKE_CASE_ : Tuple = [] for _input, input_type in zip(_SCREAMING_SNAKE_CASE , self.tool.inputs ): if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _inputs.append([AGENT_TYPE_MAPPING[_input_type](_input ) for _input_type in input_type] ) else: _inputs.append(AGENT_TYPE_MAPPING[input_type](_input ) ) # Should not raise an error SCREAMING_SNAKE_CASE_ : Optional[Any] = self.tool(*_SCREAMING_SNAKE_CASE ) if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE_ : Optional[int] = [outputs] self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , len(self.tool.outputs ) )
253
0
'''simple docstring''' from __future__ import annotations def lowercase (_A , _A , _A , _A , _A , ): """simple docstring""" _lowerCAmelCase : str = len(_A ) # If row is equal to the size of the board it means there are a queen in each row in # the current board (possible_board) if row == n: # We convert the variable possible_board that looks like this: [1, 3, 0, 2] to # this: ['. Q . . ', '. . . Q ', 'Q . . . ', '. . Q . '] boards.append(['. ' * i + 'Q ' + '. ' * (n - 1 - i) for i in possible_board] ) return # We iterate each column in the row to find all possible results in each row for col in range(_A ): # We apply that we learned previously. First we check that in the current board # (possible_board) there are not other same value because if there is it means # that there are a collision in vertical. Then we apply the two formulas we # learned before: # # 45º: y - x = b or 45: row - col = b # 135º: y + x = b or row + col = b. # # And we verify if the results of this two formulas not exist in their variables # respectively. (diagonal_right_collisions, diagonal_left_collisions) # # If any or these are True it means there is a collision so we continue to the # next value in the for loop. if ( col in possible_board or row - col in diagonal_right_collisions or row + col in diagonal_left_collisions ): continue # If it is False we call dfs function again and we update the inputs depth_first_search( [*possible_board, col] , [*diagonal_right_collisions, row - col] , [*diagonal_left_collisions, row + col] , _A , _A , ) def lowercase (_A ): """simple docstring""" _lowerCAmelCase : list[list[str]] = [] depth_first_search([] , [] , [] , _A , _A ) # Print all the boards for board in boards: for column in board: print(_A ) print('' ) print(len(_A ) , 'solutions were found.' ) if __name__ == "__main__": import doctest doctest.testmod() n_queens_solution(4)
25
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaInpaintPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): """simple docstring""" __magic_name__ = KandinskyVaaInpaintPipeline __magic_name__ = ["image_embeds", "negative_image_embeds", "image", "mask_image"] __magic_name__ = [ "image_embeds", "negative_image_embeds", "image", "mask_image", ] __magic_name__ = [ "generator", "height", "width", "latents", "guidance_scale", "num_inference_steps", "return_dict", "guidance_scale", "num_images_per_prompt", "output_type", "return_dict", ] __magic_name__ = False @property def a ( self ): '''simple docstring''' return 32 @property def a ( self ): '''simple docstring''' return 32 @property def a ( self ): '''simple docstring''' return self.time_input_dim @property def a ( self ): '''simple docstring''' return self.time_input_dim * 4 @property def a ( self ): '''simple docstring''' return 100 @property def a ( self ): '''simple docstring''' torch.manual_seed(0 ) _lowerCAmelCase : Optional[int] = { 'in_channels': 9, # Out channels is double in channels because predicts mean and variance 'out_channels': 8, 'addition_embed_type': 'image', 'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'), 'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'), 'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn', 'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2), 'layers_per_block': 1, 'encoder_hid_dim': self.text_embedder_hidden_size, 'encoder_hid_dim_type': 'image_proj', 'cross_attention_dim': self.cross_attention_dim, 'attention_head_dim': 4, 'resnet_time_scale_shift': 'scale_shift', 'class_embed_type': None, } _lowerCAmelCase : Union[str, Any] = UNetaDConditionModel(**snake_case__ ) return model @property def a ( self ): '''simple docstring''' return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def a ( self ): '''simple docstring''' torch.manual_seed(0 ) _lowerCAmelCase : Dict = VQModel(**self.dummy_movq_kwargs ) return model def a ( self ): '''simple docstring''' _lowerCAmelCase : Optional[int] = self.dummy_unet _lowerCAmelCase : List[Any] = self.dummy_movq _lowerCAmelCase : Union[str, Any] = DDIMScheduler( num_train_timesteps=1000 , beta_schedule='linear' , beta_start=0.0_0085 , beta_end=0.012 , clip_sample=snake_case__ , set_alpha_to_one=snake_case__ , steps_offset=1 , prediction_type='epsilon' , thresholding=snake_case__ , ) _lowerCAmelCase : Any = { 'unet': unet, 'scheduler': scheduler, 'movq': movq, } return components def a ( self , snake_case__ , snake_case__=0 ): '''simple docstring''' _lowerCAmelCase : List[Any] = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(snake_case__ ) ).to(snake_case__ ) _lowerCAmelCase : Optional[Any] = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( snake_case__ ) # create init_image _lowerCAmelCase : Tuple = floats_tensor((1, 3, 64, 64) , rng=random.Random(snake_case__ ) ).to(snake_case__ ) _lowerCAmelCase : int = image.cpu().permute(0 , 2 , 3 , 1 )[0] _lowerCAmelCase : Union[str, Any] = Image.fromarray(np.uinta(snake_case__ ) ).convert('RGB' ).resize((256, 256) ) # create mask _lowerCAmelCase : List[str] = np.ones((64, 64) , dtype=np.floataa ) _lowerCAmelCase : Dict = 0 if str(snake_case__ ).startswith('mps' ): _lowerCAmelCase : Optional[Any] = torch.manual_seed(snake_case__ ) else: _lowerCAmelCase : List[Any] = torch.Generator(device=snake_case__ ).manual_seed(snake_case__ ) _lowerCAmelCase : Optional[int] = { 'image': init_image, 'mask_image': mask, 'image_embeds': image_embeds, 'negative_image_embeds': negative_image_embeds, 'generator': generator, 'height': 64, 'width': 64, 'num_inference_steps': 2, 'guidance_scale': 4.0, 'output_type': 'np', } return inputs def a ( self ): '''simple docstring''' _lowerCAmelCase : Dict = 'cpu' _lowerCAmelCase : int = self.get_dummy_components() _lowerCAmelCase : Dict = self.pipeline_class(**snake_case__ ) _lowerCAmelCase : Optional[int] = pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) _lowerCAmelCase : Union[str, Any] = pipe(**self.get_dummy_inputs(snake_case__ ) ) _lowerCAmelCase : int = output.images _lowerCAmelCase : int = pipe( **self.get_dummy_inputs(snake_case__ ) , return_dict=snake_case__ , )[0] _lowerCAmelCase : Optional[int] = image[0, -3:, -3:, -1] _lowerCAmelCase : Optional[int] = image_from_tuple[0, -3:, -3:, -1] print(F'image.shape {image.shape}' ) assert image.shape == (1, 64, 64, 3) _lowerCAmelCase : List[str] = np.array( [0.5077_5903, 0.4952_7195, 0.4882_4543, 0.5019_2237, 0.4864_4906, 0.4937_3814, 0.478_0598, 0.4723_4827, 0.4832_7848] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), F' expected_slice {expected_slice}, but got {image_slice.flatten()}' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), F' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}' def a ( self ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" def a ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def a ( self ): '''simple docstring''' _lowerCAmelCase : Tuple = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinskyv22/kandinskyv22_inpaint_cat_with_hat_fp16.npy' ) _lowerCAmelCase : List[str] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinsky/cat.png' ) _lowerCAmelCase : Dict = np.ones((768, 768) , dtype=np.floataa ) _lowerCAmelCase : Tuple = 0 _lowerCAmelCase : List[str] = 'a hat' _lowerCAmelCase : Any = KandinskyVaaPriorPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-prior' , torch_dtype=torch.floataa ) pipe_prior.to(snake_case__ ) _lowerCAmelCase : Union[str, Any] = KandinskyVaaInpaintPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-decoder-inpaint' , torch_dtype=torch.floataa ) _lowerCAmelCase : Optional[Any] = pipeline.to(snake_case__ ) pipeline.set_progress_bar_config(disable=snake_case__ ) _lowerCAmelCase : Optional[Any] = torch.Generator(device='cpu' ).manual_seed(0 ) _lowerCAmelCase , _lowerCAmelCase : Dict = pipe_prior( snake_case__ , generator=snake_case__ , num_inference_steps=5 , negative_prompt='' , ).to_tuple() _lowerCAmelCase : Optional[Any] = pipeline( image=snake_case__ , mask_image=snake_case__ , image_embeds=snake_case__ , negative_image_embeds=snake_case__ , generator=snake_case__ , num_inference_steps=100 , height=768 , width=768 , output_type='np' , ) _lowerCAmelCase : Union[str, Any] = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(snake_case__ , snake_case__ )
25
1
"""simple docstring""" import math def __a ( __lowerCamelCase, __lowerCamelCase ): if ( not isinstance(__lowerCamelCase, (int, float) ) or power_factor < -1 or power_factor > 1 ): raise ValueError("power_factor must be a valid float value between -1 and 1." ) return apparent_power * power_factor def __a ( __lowerCamelCase, __lowerCamelCase ): if ( not isinstance(__lowerCamelCase, (int, float) ) or power_factor < -1 or power_factor > 1 ): raise ValueError("power_factor must be a valid float value between -1 and 1." ) return apparent_power * math.sqrt(1 - power_factor**2 ) if __name__ == "__main__": import doctest doctest.testmod()
61
"""simple docstring""" import inspect import unittest import warnings from transformers import DeiTConfig from transformers.models.auto import get_values from transformers.testing_utils import ( require_accelerate, require_torch, require_torch_gpu, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_MAPPING, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, ) from transformers.models.deit.modeling_deit import DEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DeiTImageProcessor class A_ : '''simple docstring''' def __init__( self , lowercase_ , lowercase_=13 , lowercase_=30 , lowercase_=2 , lowercase_=3 , lowercase_=True , lowercase_=True , lowercase_=32 , lowercase_=5 , lowercase_=4 , lowercase_=37 , lowercase_="gelu" , lowercase_=0.1 , lowercase_=0.1 , lowercase_=10 , lowercase_=0.02 , lowercase_=3 , lowercase_=None , lowercase_=2 , ): """simple docstring""" UpperCAmelCase_ : List[str] = parent UpperCAmelCase_ : int = batch_size UpperCAmelCase_ : int = image_size UpperCAmelCase_ : List[Any] = patch_size UpperCAmelCase_ : Any = num_channels UpperCAmelCase_ : Optional[int] = is_training UpperCAmelCase_ : Union[str, Any] = use_labels UpperCAmelCase_ : Union[str, Any] = hidden_size UpperCAmelCase_ : str = num_hidden_layers UpperCAmelCase_ : List[str] = num_attention_heads UpperCAmelCase_ : str = intermediate_size UpperCAmelCase_ : str = hidden_act UpperCAmelCase_ : List[Any] = hidden_dropout_prob UpperCAmelCase_ : Union[str, Any] = attention_probs_dropout_prob UpperCAmelCase_ : str = type_sequence_label_size UpperCAmelCase_ : str = initializer_range UpperCAmelCase_ : Union[str, Any] = scope UpperCAmelCase_ : str = encoder_stride # in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens) UpperCAmelCase_ : int = (image_size // patch_size) ** 2 UpperCAmelCase_ : Optional[Any] = num_patches + 2 def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase_ : Tuple = None if self.use_labels: UpperCAmelCase_ : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase_ : Union[str, Any] = self.get_config() return config, pixel_values, labels def UpperCamelCase__ ( self ): """simple docstring""" return DeiTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowercase_ , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def UpperCamelCase__ ( self , lowercase_ , lowercase_ , lowercase_ ): """simple docstring""" UpperCAmelCase_ : Optional[int] = DeiTModel(config=lowercase_ ) model.to(lowercase_ ) model.eval() UpperCAmelCase_ : List[Any] = model(lowercase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase__ ( self , lowercase_ , lowercase_ , lowercase_ ): """simple docstring""" UpperCAmelCase_ : Optional[int] = DeiTForMaskedImageModeling(config=lowercase_ ) model.to(lowercase_ ) model.eval() UpperCAmelCase_ : List[Any] = model(lowercase_ ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images UpperCAmelCase_ : List[str] = 1 UpperCAmelCase_ : Optional[Any] = DeiTForMaskedImageModeling(lowercase_ ) model.to(lowercase_ ) model.eval() UpperCAmelCase_ : Dict = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCAmelCase_ : Optional[int] = model(lowercase_ ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def UpperCamelCase__ ( self , lowercase_ , lowercase_ , lowercase_ ): """simple docstring""" UpperCAmelCase_ : Tuple = self.type_sequence_label_size UpperCAmelCase_ : Union[str, Any] = DeiTForImageClassification(lowercase_ ) model.to(lowercase_ ) model.eval() UpperCAmelCase_ : List[str] = model(lowercase_ , labels=lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images UpperCAmelCase_ : Union[str, Any] = 1 UpperCAmelCase_ : Optional[int] = DeiTForImageClassification(lowercase_ ) model.to(lowercase_ ) model.eval() UpperCAmelCase_ : Dict = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCAmelCase_ : List[Any] = model(lowercase_ , labels=lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : List[str] = self.prepare_config_and_inputs() ( ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ) : Dict = config_and_inputs UpperCAmelCase_ : Optional[int] = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class A_ (lowercase__ ,lowercase__ ,unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Any = ( ( DeiTModel, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, ) if is_torch_available() else () ) SCREAMING_SNAKE_CASE__ : Tuple = ( { """feature-extraction""": DeiTModel, """image-classification""": (DeiTForImageClassification, DeiTForImageClassificationWithTeacher), } if is_torch_available() else {} ) SCREAMING_SNAKE_CASE__ : List[Any] = False SCREAMING_SNAKE_CASE__ : Optional[Any] = False SCREAMING_SNAKE_CASE__ : List[str] = False def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Any = DeiTModelTester(self ) UpperCAmelCase_ : Optional[int] = ConfigTester(self , config_class=lowercase_ , has_text_modality=lowercase_ , hidden_size=37 ) def UpperCamelCase__ ( self ): """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="DeiT does not use inputs_embeds" ) def UpperCamelCase__ ( self ): """simple docstring""" pass def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ : List[Any] = model_class(lowercase_ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) UpperCAmelCase_ : Any = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowercase_ , nn.Linear ) ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ : Dict = model_class(lowercase_ ) UpperCAmelCase_ : Optional[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase_ : str = [*signature.parameters.keys()] UpperCAmelCase_ : Optional[int] = ["pixel_values"] self.assertListEqual(arg_names[:1] , lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowercase_ ) def UpperCamelCase__ ( self , lowercase_ , lowercase_ , lowercase_=False ): """simple docstring""" UpperCAmelCase_ : Tuple = super()._prepare_for_class(lowercase_ , lowercase_ , return_labels=lowercase_ ) if return_labels: if model_class.__name__ == "DeiTForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def UpperCamelCase__ ( self ): """simple docstring""" if not self.model_tester.is_training: return UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_ : Union[str, Any] = True for model_class in self.all_model_classes: # DeiTForImageClassificationWithTeacher supports inference-only if ( model_class in get_values(lowercase_ ) or model_class.__name__ == "DeiTForImageClassificationWithTeacher" ): continue UpperCAmelCase_ : Optional[int] = model_class(lowercase_ ) model.to(lowercase_ ) model.train() UpperCAmelCase_ : List[Any] = self._prepare_for_class(lowercase_ , lowercase_ , return_labels=lowercase_ ) UpperCAmelCase_ : Dict = model(**lowercase_ ).loss loss.backward() def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ : int = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return UpperCAmelCase_ : Dict = False UpperCAmelCase_ : Optional[int] = True for model_class in self.all_model_classes: if model_class in get_values(lowercase_ ) or not model_class.supports_gradient_checkpointing: continue # DeiTForImageClassificationWithTeacher supports inference-only if model_class.__name__ == "DeiTForImageClassificationWithTeacher": continue UpperCAmelCase_ : List[str] = model_class(lowercase_ ) model.gradient_checkpointing_enable() model.to(lowercase_ ) model.train() UpperCAmelCase_ : Optional[int] = self._prepare_for_class(lowercase_ , lowercase_ , return_labels=lowercase_ ) UpperCAmelCase_ : Any = model(**lowercase_ ).loss loss.backward() def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_ : Dict = [ {"title": "multi_label_classification", "num_labels": 2, "dtype": torch.float}, {"title": "single_label_classification", "num_labels": 1, "dtype": torch.long}, {"title": "regression", "num_labels": 1, "dtype": torch.float}, ] for model_class in self.all_model_classes: if ( model_class not in [ *get_values(lowercase_ ), *get_values(lowercase_ ), ] or model_class.__name__ == "DeiTForImageClassificationWithTeacher" ): continue for problem_type in problem_types: with self.subTest(msg=F"""Testing {model_class} with {problem_type["title"]}""" ): UpperCAmelCase_ : str = problem_type["title"] UpperCAmelCase_ : List[Any] = problem_type["num_labels"] UpperCAmelCase_ : Union[str, Any] = model_class(lowercase_ ) model.to(lowercase_ ) model.train() UpperCAmelCase_ : int = self._prepare_for_class(lowercase_ , lowercase_ , return_labels=lowercase_ ) if problem_type["num_labels"] > 1: UpperCAmelCase_ : List[Any] = inputs["labels"].unsqueeze(1 ).repeat(1 , problem_type["num_labels"] ) UpperCAmelCase_ : Tuple = inputs["labels"].to(problem_type["dtype"] ) # This tests that we do not trigger the warning form PyTorch "Using a target size that is different # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure # they have the same size." which is a symptom something in wrong for the regression problem. # See https://github.com/huggingface/transformers/issues/11780 with warnings.catch_warnings(record=lowercase_ ) as warning_list: UpperCAmelCase_ : List[str] = model(**lowercase_ ).loss for w in warning_list: if "Using a target size that is different to the input size" in str(w.message ): raise ValueError( F"""Something is going wrong in the regression problem: intercepted {w.message}""" ) loss.backward() @slow def UpperCamelCase__ ( self ): """simple docstring""" for model_name in DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ : Union[str, Any] = DeiTModel.from_pretrained(lowercase_ ) self.assertIsNotNone(lowercase_ ) def __a ( ): UpperCAmelCase_ : Any = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class A_ (unittest.TestCase ): '''simple docstring''' @cached_property def UpperCamelCase__ ( self ): """simple docstring""" return ( DeiTImageProcessor.from_pretrained("facebook/deit-base-distilled-patch16-224" ) if is_vision_available() else None ) @slow def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Tuple = DeiTForImageClassificationWithTeacher.from_pretrained("facebook/deit-base-distilled-patch16-224" ).to( lowercase_ ) UpperCAmelCase_ : List[str] = self.default_image_processor UpperCAmelCase_ : List[str] = prepare_img() UpperCAmelCase_ : int = image_processor(images=lowercase_ , return_tensors="pt" ).to(lowercase_ ) # forward pass with torch.no_grad(): UpperCAmelCase_ : Dict = model(**lowercase_ ) # verify the logits UpperCAmelCase_ : List[str] = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , lowercase_ ) UpperCAmelCase_ : str = torch.tensor([-1.02_66, 0.19_12, -1.28_61] ).to(lowercase_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowercase_ , atol=1E-4 ) ) @slow @require_accelerate @require_torch_gpu def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : List[str] = DeiTModel.from_pretrained( "facebook/deit-base-distilled-patch16-224" , torch_dtype=torch.floataa , device_map="auto" ) UpperCAmelCase_ : str = self.default_image_processor UpperCAmelCase_ : Union[str, Any] = prepare_img() UpperCAmelCase_ : List[Any] = image_processor(images=lowercase_ , return_tensors="pt" ) UpperCAmelCase_ : List[str] = inputs.pixel_values.to(lowercase_ ) # forward pass to make sure inference works in fp16 with torch.no_grad(): UpperCAmelCase_ : int = model(lowercase_ )
61
1
"""simple docstring""" import gc import unittest from diffusers import FlaxDPMSolverMultistepScheduler, FlaxStableDiffusionPipeline from diffusers.utils import is_flax_available, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class lowerCamelCase__ ( unittest.TestCase ): """simple docstring""" def lowerCamelCase__ ( self : int ): '''simple docstring''' super().tearDown() gc.collect() def lowerCamelCase__ ( self : Union[str, Any] ): '''simple docstring''' __UpperCAmelCase : int = FlaxStableDiffusionPipeline.from_pretrained( """stabilityai/stable-diffusion-2""" , revision="""bf16""" , dtype=jnp.bfloataa , ) __UpperCAmelCase : Dict = """A painting of a squirrel eating a burger""" __UpperCAmelCase : Any = jax.device_count() __UpperCAmelCase : List[str] = num_samples * [prompt] __UpperCAmelCase : Tuple = sd_pipe.prepare_inputs(UpperCamelCase ) __UpperCAmelCase : int = replicate(UpperCamelCase ) __UpperCAmelCase : Optional[Any] = shard(UpperCamelCase ) __UpperCAmelCase : List[str] = jax.random.PRNGKey(0 ) __UpperCAmelCase : Tuple = jax.random.split(UpperCamelCase , jax.device_count() ) __UpperCAmelCase : Tuple = sd_pipe(UpperCamelCase , UpperCamelCase , UpperCamelCase , num_inference_steps=25 , jit=UpperCamelCase )[0] assert images.shape == (jax.device_count(), 1, 768, 768, 3) __UpperCAmelCase : Tuple = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) __UpperCAmelCase : Optional[int] = images[0, 253:256, 253:256, -1] __UpperCAmelCase : str = jnp.asarray(jax.device_get(image_slice.flatten() ) ) __UpperCAmelCase : Optional[int] = jnp.array([0.4238, 0.4414, 0.4395, 0.4453, 0.4629, 0.4590, 0.4531, 0.45508, 0.4512] ) print(f'''output_slice: {output_slice}''' ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2 def lowerCamelCase__ ( self : Tuple ): '''simple docstring''' __UpperCAmelCase : Dict = """stabilityai/stable-diffusion-2""" __UpperCAmelCase : Any = FlaxDPMSolverMultistepScheduler.from_pretrained(UpperCamelCase , subfolder="""scheduler""" ) __UpperCAmelCase : List[str] = FlaxStableDiffusionPipeline.from_pretrained( UpperCamelCase , scheduler=UpperCamelCase , revision="""bf16""" , dtype=jnp.bfloataa , ) __UpperCAmelCase : List[Any] = scheduler_params __UpperCAmelCase : Optional[int] = """A painting of a squirrel eating a burger""" __UpperCAmelCase : Tuple = jax.device_count() __UpperCAmelCase : Optional[int] = num_samples * [prompt] __UpperCAmelCase : Optional[int] = sd_pipe.prepare_inputs(UpperCamelCase ) __UpperCAmelCase : List[Any] = replicate(UpperCamelCase ) __UpperCAmelCase : str = shard(UpperCamelCase ) __UpperCAmelCase : str = jax.random.PRNGKey(0 ) __UpperCAmelCase : Tuple = jax.random.split(UpperCamelCase , jax.device_count() ) __UpperCAmelCase : Any = sd_pipe(UpperCamelCase , UpperCamelCase , UpperCamelCase , num_inference_steps=25 , jit=UpperCamelCase )[0] assert images.shape == (jax.device_count(), 1, 768, 768, 3) __UpperCAmelCase : Union[str, Any] = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) __UpperCAmelCase : Dict = images[0, 253:256, 253:256, -1] __UpperCAmelCase : Any = jnp.asarray(jax.device_get(image_slice.flatten() ) ) __UpperCAmelCase : List[Any] = jnp.array([0.4336, 0.42969, 0.4453, 0.4199, 0.4297, 0.4531, 0.4434, 0.4434, 0.4297] ) print(f'''output_slice: {output_slice}''' ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2
368
"""simple docstring""" import warnings from ...utils import logging from .image_processing_chinese_clip import ChineseCLIPImageProcessor UpperCAmelCase : str = logging.get_logger(__name__) class lowerCamelCase__ ( A ): """simple docstring""" def __init__( self : Optional[Any] , *UpperCamelCase : str , **UpperCamelCase : List[str] ): '''simple docstring''' warnings.warn( """The class ChineseCLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use ChineseCLIPImageProcessor instead.""" , UpperCamelCase , ) super().__init__(*UpperCamelCase , **UpperCamelCase )
320
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available __A = { "configuration_data2vec_audio": ["DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP", "Data2VecAudioConfig"], "configuration_data2vec_text": [ "DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP", "Data2VecTextConfig", "Data2VecTextOnnxConfig", ], "configuration_data2vec_vision": [ "DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP", "Data2VecVisionConfig", "Data2VecVisionOnnxConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ "DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST", "Data2VecAudioForAudioFrameClassification", "Data2VecAudioForCTC", "Data2VecAudioForSequenceClassification", "Data2VecAudioForXVector", "Data2VecAudioModel", "Data2VecAudioPreTrainedModel", ] __A = [ "DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST", "Data2VecTextForCausalLM", "Data2VecTextForMaskedLM", "Data2VecTextForMultipleChoice", "Data2VecTextForQuestionAnswering", "Data2VecTextForSequenceClassification", "Data2VecTextForTokenClassification", "Data2VecTextModel", "Data2VecTextPreTrainedModel", ] __A = [ "DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST", "Data2VecVisionForImageClassification", "Data2VecVisionForMaskedImageModeling", "Data2VecVisionForSemanticSegmentation", "Data2VecVisionModel", "Data2VecVisionPreTrainedModel", ] if is_tf_available(): __A = [ "TFData2VecVisionForImageClassification", "TFData2VecVisionForSemanticSegmentation", "TFData2VecVisionModel", "TFData2VecVisionPreTrainedModel", ] if TYPE_CHECKING: from .configuration_dataavec_audio import DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecAudioConfig from .configuration_dataavec_text import ( DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecTextConfig, DataaVecTextOnnxConfig, ) from .configuration_dataavec_vision import ( DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecVisionConfig, DataaVecVisionOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dataavec_audio import ( DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecAudioForAudioFrameClassification, DataaVecAudioForCTC, DataaVecAudioForSequenceClassification, DataaVecAudioForXVector, DataaVecAudioModel, DataaVecAudioPreTrainedModel, ) from .modeling_dataavec_text import ( DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecTextForCausalLM, DataaVecTextForMaskedLM, DataaVecTextForMultipleChoice, DataaVecTextForQuestionAnswering, DataaVecTextForSequenceClassification, DataaVecTextForTokenClassification, DataaVecTextModel, DataaVecTextPreTrainedModel, ) from .modeling_dataavec_vision import ( DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecVisionForImageClassification, DataaVecVisionForMaskedImageModeling, DataaVecVisionForSemanticSegmentation, DataaVecVisionModel, DataaVecVisionPreTrainedModel, ) if is_tf_available(): from .modeling_tf_dataavec_vision import ( TFDataaVecVisionForImageClassification, TFDataaVecVisionForSemanticSegmentation, TFDataaVecVisionModel, TFDataaVecVisionPreTrainedModel, ) else: import sys __A = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
90
import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XLMRobertaTokenizer, XLMRobertaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin __lowerCAmelCase : str = get_tests_dir('fixtures/test_sentencepiece.model') @require_sentencepiece @require_tokenizers class snake_case__ (_UpperCamelCase , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = XLMRobertaTokenizer SCREAMING_SNAKE_CASE_ : int = XLMRobertaTokenizerFast SCREAMING_SNAKE_CASE_ : str = True SCREAMING_SNAKE_CASE_ : Optional[Any] = True def __UpperCAmelCase ( self : int ) -> List[str]: super().setUp() # We have a SentencePiece fixture for testing a = XLMRobertaTokenizer(__lowerCamelCase , keep_accents=__lowerCamelCase ) tokenizer.save_pretrained(self.tmpdirname ) def __UpperCAmelCase ( self : List[str] ) -> Any: a = "<pad>" a = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__lowerCamelCase ) , __lowerCamelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__lowerCamelCase ) , __lowerCamelCase ) def __UpperCAmelCase ( self : Dict ) -> Optional[Any]: a = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<s>" ) self.assertEqual(vocab_keys[1] , "<pad>" ) self.assertEqual(vocab_keys[-1] , "<mask>" ) self.assertEqual(len(__lowerCamelCase ) , 10_02 ) def __UpperCAmelCase ( self : List[Any] ) -> Any: self.assertEqual(self.get_tokenizer().vocab_size , 10_02 ) def __UpperCAmelCase ( self : Dict ) -> List[str]: a = XLMRobertaTokenizer(__lowerCamelCase , keep_accents=__lowerCamelCase ) a = tokenizer.tokenize("This is a test" ) self.assertListEqual(__lowerCamelCase , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__lowerCamelCase ) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , ) a = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( __lowerCamelCase , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) a = tokenizer.convert_tokens_to_ids(__lowerCamelCase ) self.assertListEqual( __lowerCamelCase , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4] # ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^ ] , ) a = tokenizer.convert_ids_to_tokens(__lowerCamelCase ) self.assertListEqual( __lowerCamelCase , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) def __UpperCAmelCase ( self : Optional[Any] ) -> List[str]: if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return a = (self.rust_tokenizer_class, "hf-internal-testing/tiny-xlm-roberta", {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): a = self.rust_tokenizer_class.from_pretrained(__lowerCamelCase , **__lowerCamelCase ) a = self.tokenizer_class.from_pretrained(__lowerCamelCase , **__lowerCamelCase ) a = tempfile.mkdtemp() a = tokenizer_r.save_pretrained(__lowerCamelCase ) a = tokenizer_p.save_pretrained(__lowerCamelCase ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any("tokenizer.json" in f for f in tokenizer_r_files ) ) a = tuple(f for f in tokenizer_r_files if "tokenizer.json" not in f ) self.assertSequenceEqual(__lowerCamelCase , __lowerCamelCase ) # Checks everything loads correctly in the same way a = tokenizer_r.from_pretrained(__lowerCamelCase ) a = tokenizer_p.from_pretrained(__lowerCamelCase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__lowerCamelCase , __lowerCamelCase ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(__lowerCamelCase ) # Save tokenizer rust, legacy_format=True a = tempfile.mkdtemp() a = tokenizer_r.save_pretrained(__lowerCamelCase , legacy_format=__lowerCamelCase ) a = tokenizer_p.save_pretrained(__lowerCamelCase ) # Checks it save with the same files self.assertSequenceEqual(__lowerCamelCase , __lowerCamelCase ) # Checks everything loads correctly in the same way a = tokenizer_r.from_pretrained(__lowerCamelCase ) a = tokenizer_p.from_pretrained(__lowerCamelCase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__lowerCamelCase , __lowerCamelCase ) ) shutil.rmtree(__lowerCamelCase ) # Save tokenizer rust, legacy_format=False a = tempfile.mkdtemp() a = tokenizer_r.save_pretrained(__lowerCamelCase , legacy_format=__lowerCamelCase ) a = tokenizer_p.save_pretrained(__lowerCamelCase ) # Checks it saved the tokenizer.json file self.assertTrue(any("tokenizer.json" in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way a = tokenizer_r.from_pretrained(__lowerCamelCase ) a = tokenizer_p.from_pretrained(__lowerCamelCase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__lowerCamelCase , __lowerCamelCase ) ) shutil.rmtree(__lowerCamelCase ) @cached_property def __UpperCAmelCase ( self : List[str] ) -> Union[str, Any]: return XLMRobertaTokenizer.from_pretrained("xlm-roberta-base" ) def __UpperCAmelCase ( self : List[Any] ) -> List[Any]: with tempfile.NamedTemporaryFile() as f: shutil.copyfile(__lowerCamelCase , f.name ) a = XLMRobertaTokenizer(f.name , keep_accents=__lowerCamelCase ) a = pickle.dumps(__lowerCamelCase ) pickle.loads(__lowerCamelCase ) def __UpperCAmelCase ( self : int ) -> str: if not self.test_rust_tokenizer: return a = self.get_tokenizer() a = self.get_rust_tokenizer() a = "I was born in 92000, and this is falsé." a = tokenizer.tokenize(__lowerCamelCase ) a = rust_tokenizer.tokenize(__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) a = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) a = rust_tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) a = self.get_rust_tokenizer() a = tokenizer.encode(__lowerCamelCase ) a = rust_tokenizer.encode(__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) @slow def __UpperCAmelCase ( self : Dict ) -> Any: a = "Hello World!" a = [0, 3_53_78, 66_61, 38, 2] # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer # xlmr.eval() # xlmr.encode(symbols) self.assertListEqual(__lowerCamelCase , self.big_tokenizer.encode(__lowerCamelCase ) ) @slow def __UpperCAmelCase ( self : Tuple ) -> int: a = ( "This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will" " add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth" ) a = [ 0, 32_93, 83, 10, 45_52, 49_89, 79_86, 6_78, 10, 59_15, 1_11, 17_94_59, 12_48_50, 4, 60_44, 2_37, 12, 6, 5, 6, 4, 67_80, 7_05, 15, 13_88, 44, 3_78, 1_01_14, 7_11, 1_52, 20, 6, 5, 2_23_76, 6_42, 12_21, 1_51_90, 3_41_53, 4_50, 56_08, 9_59, 11_19, 5_77_02, 1_36, 1_86, 47, 10_98, 2_93_67, 47, # 4426, # What fairseq tokenizes from "<unk>": "_<" # 3678, # What fairseq tokenizes from "<unk>": "unk" # 2740, # What fairseq tokenizes from "<unk>": ">" 3, # What we tokenize from "<unk>": "<unk>" 6, # Residue from the tokenization: an extra sentencepiece underline 4, 60_44, 2_37, 62_84, 5_09_01, 5_28, 31, 90, 34, 9_27, 2, ] # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer # xlmr.eval() # xlmr.encode(symbols) self.assertListEqual(__lowerCamelCase , self.big_tokenizer.encode(__lowerCamelCase ) ) @slow def __UpperCAmelCase ( self : Optional[Any] ) -> List[Any]: # fmt: off a = {"input_ids": [[0, 1_10_62, 8_27_72, 7, 15, 8_27_72, 5_38, 5_15_29, 2_37, 1_71_98, 12_90, 2_06, 9, 21_51_75, 13_14, 1_36, 1_71_98, 12_90, 2_06, 9, 5_63_59, 42, 12_20_09, 9, 1_64_66, 16, 8_73_44, 45_37, 9, 47_17, 7_83_81, 6, 15_99_58, 7, 15, 2_44_80, 6_18, 4, 5_27, 2_26_93, 54_28, 4, 27_77, 2_44_80, 98_74, 4, 4_35_23, 5_94, 4, 8_03, 1_83_92, 3_31_89, 18, 4, 4_35_23, 2_44_47, 1_23_99, 1_00, 2_49_55, 8_36_58, 96_26, 14_40_57, 15, 8_39, 2_23_35, 16, 1_36, 2_49_55, 8_36_58, 8_34_79, 15, 3_91_02, 7_24, 16, 6_78, 6_45, 27_89, 13_28, 45_89, 42, 12_20_09, 11_57_74, 23, 8_05, 13_28, 4_68_76, 7, 1_36, 5_38_94, 19_40, 4_22_27, 4_11_59, 1_77_21, 8_23, 4_25, 4, 2_75_12, 9_87_22, 2_06, 1_36, 55_31, 49_70, 9_19, 1_73_36, 5, 2], [0, 2_00_80, 6_18, 83, 8_27_75, 47, 4_79, 9, 15_17, 73, 5_38_94, 3_33, 8_05_81, 11_01_17, 1_88_11, 52_56, 12_95, 51, 15_25_26, 2_97, 79_86, 3_90, 12_44_16, 5_38, 3_54_31, 2_14, 98, 1_50_44, 2_57_37, 1_36, 71_08, 4_37_01, 23, 7_56, 13_53_55, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 5_81, 6_37_73, 11_94_55, 6, 14_77_97, 8_82_03, 7, 6_45, 70, 21, 32_85, 1_02_69, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__lowerCamelCase , model_name="xlm-roberta-base" , revision="d9d8a8ea5eb94b1c6654ae9249df7793cd2933d3" , )
107
0
"""simple docstring""" def UpperCAmelCase__ ( lowerCAmelCase__ :int = 1_0_0_0 ) -> int: '''simple docstring''' lowercase = 2**power lowercase = str(lowerCAmelCase__ ) lowercase = list(lowerCAmelCase__ ) lowercase = 0 for i in list_num: sum_of_num += int(lowerCAmelCase__ ) return sum_of_num if __name__ == "__main__": __lowerCAmelCase : Optional[Any] =int(input("""Enter the power of 2: """).strip()) print("""2 ^ """, power, """ = """, 2**power) __lowerCAmelCase : Dict =solution(power) print("""Sum of the digits is: """, result)
351
"""simple docstring""" import json import os import unittest from transformers.models.gptsan_japanese.tokenization_gptsan_japanese import ( VOCAB_FILES_NAMES, GPTSanJapaneseTokenizer, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _A ( lowerCAmelCase , unittest.TestCase ): snake_case__ : Optional[int] = GPTSanJapaneseTokenizer snake_case__ : int = False snake_case__ : Tuple = {'do_clean_text': False, 'add_prefix_space': False} def A__ ( self ): """simple docstring""" super().setUp() # fmt: off lowercase = ["""こん""", """こんに""", """にちは""", """ばんは""", """世界,㔺界""", """、""", """。""", """<BR>""", """<SP>""", """<TAB>""", """<URL>""", """<EMAIL>""", """<TEL>""", """<DATE>""", """<PRICE>""", """<BLOCK>""", """<KIGOU>""", """<U2000U2BFF>""", """<|emoji1|>""", """<unk>""", """<|bagoftoken|>""", """<|endoftext|>"""] # fmt: on lowercase = {"""emoji""": {"""\ud83d\ude00""": """<|emoji1|>"""}, """emoji_inv""": {"""<|emoji1|>""": """\ud83d\ude00"""}} # 😀 lowercase = {"""unk_token""": """<unk>"""} lowercase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) lowercase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""emoji_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) with open(self.emoji_file , """w""" ) as emoji_writer: emoji_writer.write(json.dumps(__lowerCAmelCase ) ) def A__ ( self , **__lowerCAmelCase ): """simple docstring""" kwargs.update(self.special_tokens_map ) return GPTSanJapaneseTokenizer.from_pretrained(self.tmpdirname , **__lowerCAmelCase ) def A__ ( self , __lowerCAmelCase ): """simple docstring""" lowercase = """こんにちは、世界。 \nこんばんは、㔺界。😀""" lowercase = """こんにちは、世界。 \nこんばんは、世界。😀""" return input_text, output_text def A__ ( self , __lowerCAmelCase ): """simple docstring""" lowercase , lowercase = self.get_input_output_texts(__lowerCAmelCase ) lowercase = tokenizer.encode(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase ) lowercase = tokenizer.decode(__lowerCAmelCase , clean_up_tokenization_spaces=__lowerCAmelCase ) return text, ids def A__ ( self ): """simple docstring""" pass # TODO add if relevant def A__ ( self ): """simple docstring""" pass # TODO add if relevant def A__ ( self ): """simple docstring""" pass # TODO add if relevant def A__ ( self ): """simple docstring""" lowercase = self.get_tokenizer() # Testing tokenization lowercase = """こんにちは、世界。 こんばんは、㔺界。""" lowercase = ["""こん""", """にちは""", """、""", """世界""", """。""", """<SP>""", """こん""", """ばんは""", """、""", """㔺界""", """。"""] lowercase = tokenizer.tokenize(__lowerCAmelCase ) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) # Testing conversion to ids without special tokens lowercase = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6] lowercase = tokenizer.convert_tokens_to_ids(__lowerCAmelCase ) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) # Testing conversion to ids with special tokens lowercase = tokens + [tokenizer.unk_token] lowercase = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6, 19] lowercase = tokenizer.convert_tokens_to_ids(__lowerCAmelCase ) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) def A__ ( self ): """simple docstring""" lowercase = self.get_tokenizer() # Testing tokenization lowercase = """こんにちは、<|bagoftoken|>世界。こんばんは、<|bagoftoken|>㔺界。""" lowercase = """こんにちは、、、、世界。こんばんは、、、、世界。""" lowercase = tokenizer.encode(__lowerCAmelCase ) lowercase = tokenizer.decode(__lowerCAmelCase ) self.assertEqual(__lowerCAmelCase , __lowerCAmelCase ) @slow def A__ ( self ): """simple docstring""" lowercase = self.tokenizer_class.from_pretrained("""Tanrei/GPTSAN-japanese""" ) # Testing tokenization lowercase = """こんにちは、世界。""" lowercase = """こんばんは、㔺界。😀""" lowercase = """こんにちは、世界。こんばんは、世界。😀""" lowercase = tokenizer.encode(prefix_text + input_text ) lowercase = tokenizer.encode("""""" , prefix_text=prefix_text + input_text ) lowercase = tokenizer.encode(__lowerCAmelCase , prefix_text=__lowerCAmelCase ) lowercase = tokenizer.decode(__lowerCAmelCase ) lowercase = tokenizer.decode(__lowerCAmelCase ) lowercase = tokenizer.decode(__lowerCAmelCase ) self.assertEqual(__lowerCAmelCase , __lowerCAmelCase ) self.assertEqual(__lowerCAmelCase , __lowerCAmelCase ) self.assertEqual(__lowerCAmelCase , __lowerCAmelCase ) @slow def A__ ( self ): """simple docstring""" lowercase = self.tokenizer_class.from_pretrained("""Tanrei/GPTSAN-japanese""" ) # Testing tokenization lowercase = """こんにちは、世界。""" lowercase = """こんばんは、㔺界。😀""" lowercase = len(tokenizer.encode(__lowerCAmelCase ) ) - 2 lowercase = len(tokenizer.encode(__lowerCAmelCase ) ) - 2 lowercase = [1] + [0] * (len_prefix + len_text + 1) lowercase = [1] * (len_prefix + len_text + 1) + [0] lowercase = [1] + [1] * (len_prefix) + [0] * (len_text + 1) lowercase = tokenizer(prefix_text + input_text ).token_type_ids lowercase = tokenizer("""""" , prefix_text=prefix_text + input_text ).token_type_ids lowercase = tokenizer(__lowerCAmelCase , prefix_text=__lowerCAmelCase ).token_type_ids self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) @slow def A__ ( self ): """simple docstring""" lowercase = self.tokenizer_class.from_pretrained("""Tanrei/GPTSAN-japanese""" ) lowercase = tokenizer.encode("""あンいワ""" ) lowercase = tokenizer.encode("""""" , prefix_text="""あンいワ""" ) lowercase = tokenizer.encode("""いワ""" , prefix_text="""あン""" ) self.assertEqual(tokenizer.decode(__lowerCAmelCase ) , tokenizer.decode(__lowerCAmelCase ) ) self.assertEqual(tokenizer.decode(__lowerCAmelCase ) , tokenizer.decode(__lowerCAmelCase ) ) self.assertNotEqual(__lowerCAmelCase , __lowerCAmelCase ) self.assertNotEqual(__lowerCAmelCase , __lowerCAmelCase ) self.assertEqual(x_token_a[1] , x_token_a[-1] ) # SEG token self.assertEqual(x_token_a[1] , x_token_a[3] ) # SEG token @slow def A__ ( self ): """simple docstring""" lowercase = self.tokenizer_class.from_pretrained("""Tanrei/GPTSAN-japanese""" ) lowercase = [["""武田信玄""", """は、"""], ["""織田信長""", """の配下の、"""]] lowercase = tokenizer(__lowerCAmelCase , padding=__lowerCAmelCase ) lowercase = tokenizer.batch_encode_plus(__lowerCAmelCase , padding=__lowerCAmelCase ) # fmt: off lowercase = [[3_5993, 8640, 2_5948, 3_5998, 3_0647, 3_5675, 3_5999, 3_5999], [3_5993, 1_0382, 9868, 3_5998, 3_0646, 9459, 3_0646, 3_5675]] lowercase = [[1, 1, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0]] lowercase = [[1, 1, 1, 1, 1, 1, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1]] # fmt: on self.assertListEqual(x_token.input_ids , __lowerCAmelCase ) self.assertListEqual(x_token.token_type_ids , __lowerCAmelCase ) self.assertListEqual(x_token.attention_mask , __lowerCAmelCase ) self.assertListEqual(x_token_a.input_ids , __lowerCAmelCase ) self.assertListEqual(x_token_a.token_type_ids , __lowerCAmelCase ) self.assertListEqual(x_token_a.attention_mask , __lowerCAmelCase ) def A__ ( self ): """simple docstring""" pass def A__ ( self ): """simple docstring""" pass
32
0
'''simple docstring''' from __future__ import annotations import math def _UpperCamelCase ( __A ) -> bool: '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(__A ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def _UpperCamelCase ( __A ) -> list[int]: '''simple docstring''' UpperCamelCase__ = str(__A ) UpperCamelCase__ = [n] for i in range(1 , len(__A ) ): list_nums.append(int(str_num[i:] ) ) list_nums.append(int(str_num[:-i] ) ) return list_nums def _UpperCamelCase ( __A ) -> bool: '''simple docstring''' if len(str(__A ) ) > 3: if not is_prime(int(str(__A )[-3:] ) ) or not is_prime(int(str(__A )[:3] ) ): return False return True def _UpperCamelCase ( __A = 11 ) -> list[int]: '''simple docstring''' UpperCamelCase__ = [] UpperCamelCase__ = 13 while len(__A ) != count: if validate(__A ): UpperCamelCase__ = list_truncated_nums(__A ) if all(is_prime(__A ) for i in list_nums ): list_truncated_primes.append(__A ) num += 2 return list_truncated_primes def _UpperCamelCase ( ) -> int: '''simple docstring''' return sum(compute_truncated_primes(11 ) ) if __name__ == "__main__": print(F"""{sum(compute_truncated_primes(1_1)) = }""")
80
__lowerCAmelCase = range(2, 20 + 1) __lowerCAmelCase = [10**k for k in range(ks[-1] + 1)] __lowerCAmelCase = {} def snake_case_ ( snake_case , snake_case , snake_case , snake_case ) -> Optional[int]: lowercase__: str = sum(a_i[j] for j in range(snake_case , len(snake_case ) ) ) lowercase__: Optional[int] = sum(a_i[j] * base[j] for j in range(min(len(snake_case ) , snake_case ) ) ) lowercase__ , lowercase__: str = 0, 0 lowercase__: Tuple = n - i lowercase__: Dict = memo.get(snake_case ) if sub_memo is not None: lowercase__: Optional[Any] = sub_memo.get(snake_case ) if jumps is not None and len(snake_case ) > 0: # find and make the largest jump without going over lowercase__: int = -1 for _k in range(len(snake_case ) - 1 , -1 , -1 ): if jumps[_k][2] <= k and jumps[_k][1] <= max_dn: lowercase__: Union[str, Any] = _k break if max_jump >= 0: lowercase__ , lowercase__ , lowercase__: Any = jumps[max_jump] # since the difference between jumps is cached, add c lowercase__: str = diff + c for j in range(min(snake_case , len(snake_case ) ) ): lowercase__ , lowercase__: Dict = divmod(snake_case , 10 ) if new_c > 0: add(snake_case , snake_case , snake_case ) else: lowercase__: List[Any] = [] else: lowercase__: Optional[Any] = {c: []} lowercase__: Union[str, Any] = sub_memo if dn >= max_dn or c + diff >= base[k]: return diff, dn if k > ks[0]: while True: # keep doing smaller jumps lowercase__ , lowercase__: Union[str, Any] = next_term(snake_case , k - 1 , i + dn , snake_case ) diff += _diff dn += terms_jumped if dn >= max_dn or c + diff >= base[k]: break else: # would be too small a jump, just compute sequential terms instead lowercase__ , lowercase__: Dict = compute(snake_case , snake_case , i + dn , snake_case ) diff += _diff dn += terms_jumped lowercase__: Any = sub_memo[c] # keep jumps sorted by # of terms skipped lowercase__: str = 0 while j < len(snake_case ): if jumps[j][1] > dn: break j += 1 # cache the jump for this value digitsum(b) and c sub_memo[c].insert(snake_case , (diff, dn, k) ) return (diff, dn) def snake_case_ ( snake_case , snake_case , snake_case , snake_case ) -> str: if i >= n: return 0, i if k > len(snake_case ): a_i.extend([0 for _ in range(k - len(snake_case ) )] ) # note: a_i -> b * 10^k + c # ds_b -> digitsum(b) # ds_c -> digitsum(c) lowercase__: List[Any] = i lowercase__ , lowercase__ , lowercase__: Any = 0, 0, 0 for j in range(len(snake_case ) ): if j >= k: ds_b += a_i[j] else: ds_c += a_i[j] while i < n: i += 1 lowercase__: str = ds_c + ds_b diff += addend lowercase__: List[str] = 0 for j in range(snake_case ): lowercase__: Any = a_i[j] + addend lowercase__ , lowercase__: List[Any] = divmod(snake_case , 10 ) ds_c += a_i[j] if addend > 0: break if addend > 0: add(snake_case , snake_case , snake_case ) return diff, i - start_i def snake_case_ ( snake_case , snake_case , snake_case ) -> int: for j in range(snake_case , len(snake_case ) ): lowercase__: str = digits[j] + addend if s >= 10: lowercase__ , lowercase__: Any = divmod(snake_case , 10 ) lowercase__: Any = addend // 10 + quotient else: lowercase__: Union[str, Any] = s lowercase__: Union[str, Any] = addend // 10 if addend == 0: break while addend > 0: lowercase__ , lowercase__: Union[str, Any] = divmod(snake_case , 10 ) digits.append(snake_case ) def snake_case_ ( snake_case = 10**15 ) -> int: lowercase__: Optional[Any] = [1] lowercase__: int = 1 lowercase__: Tuple = 0 while True: lowercase__ , lowercase__: str = next_term(snake_case , 20 , i + dn , snake_case ) dn += terms_jumped if dn == n - i: break lowercase__: Dict = 0 for j in range(len(snake_case ) ): a_n += digits[j] * 10**j return a_n if __name__ == "__main__": print(F'''{solution() = }''')
196
0
'''simple docstring''' import inspect import unittest from transformers import RegNetConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import RegNetForImageClassification, RegNetModel from transformers.models.regnet.modeling_regnet import REGNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __magic_name__ : def __init__( self : Optional[Any] ,_UpperCAmelCase : Optional[Any] ,_UpperCAmelCase : Optional[int]=3 ,_UpperCAmelCase : Any=32 ,_UpperCAmelCase : List[str]=3 ,_UpperCAmelCase : Tuple=10 ,_UpperCAmelCase : List[str]=[10, 20, 30, 40] ,_UpperCAmelCase : Dict=[1, 1, 2, 1] ,_UpperCAmelCase : Any=True ,_UpperCAmelCase : List[str]=True ,_UpperCAmelCase : Optional[Any]="relu" ,_UpperCAmelCase : Any=3 ,_UpperCAmelCase : List[str]=None ,): _a : List[Any] = parent _a : Tuple = batch_size _a : Optional[Any] = image_size _a : Tuple = num_channels _a : Optional[Any] = embeddings_size _a : Any = hidden_sizes _a : str = depths _a : Optional[int] = is_training _a : List[str] = use_labels _a : List[Any] = hidden_act _a : str = num_labels _a : Union[str, Any] = scope _a : int = len(_UpperCAmelCase ) def __lowercase ( self : Optional[int] ): _a : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _a : Optional[Any] = None if self.use_labels: _a : int = ids_tensor([self.batch_size] ,self.num_labels ) _a : str = self.get_config() return config, pixel_values, labels def __lowercase ( self : List[str] ): return RegNetConfig( num_channels=self.num_channels ,embeddings_size=self.embeddings_size ,hidden_sizes=self.hidden_sizes ,depths=self.depths ,hidden_act=self.hidden_act ,num_labels=self.num_labels ,) def __lowercase ( self : List[Any] ,_UpperCAmelCase : int ,_UpperCAmelCase : Optional[int] ,_UpperCAmelCase : Any ): _a : List[str] = RegNetModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _a : List[str] = model(_UpperCAmelCase ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape ,(self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) ,) def __lowercase ( self : Optional[int] ,_UpperCAmelCase : Any ,_UpperCAmelCase : str ,_UpperCAmelCase : List[Any] ): _a : Any = self.num_labels _a : int = RegNetForImageClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _a : Union[str, Any] = model(_UpperCAmelCase ,labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def __lowercase ( self : List[str] ): _a : Dict = self.prepare_config_and_inputs() _a : Union[str, Any] = config_and_inputs _a : Tuple = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class __magic_name__ ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): lowerCAmelCase : Optional[int] = (RegNetModel, RegNetForImageClassification) if is_torch_available() else () lowerCAmelCase : Optional[int] = ( {'feature-extraction': RegNetModel, 'image-classification': RegNetForImageClassification} if is_torch_available() else {} ) lowerCAmelCase : Tuple = False lowerCAmelCase : int = False lowerCAmelCase : Optional[Any] = False lowerCAmelCase : List[Any] = False def __lowercase ( self : str ): _a : Tuple = RegNetModelTester(self ) _a : Any = ConfigTester(self ,config_class=_UpperCAmelCase ,has_text_modality=_UpperCAmelCase ) def __lowercase ( self : Optional[Any] ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __lowercase ( self : Optional[Any] ): return @unittest.skip(reason='RegNet does not use inputs_embeds' ) def __lowercase ( self : Dict ): pass @unittest.skip(reason='RegNet does not support input and output embeddings' ) def __lowercase ( self : Optional[Any] ): pass def __lowercase ( self : Dict ): _a : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a : Dict = model_class(_UpperCAmelCase ) _a : List[str] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _a : List[str] = [*signature.parameters.keys()] _a : List[Any] = ['pixel_values'] self.assertListEqual(arg_names[:1] ,_UpperCAmelCase ) def __lowercase ( self : Union[str, Any] ): _a : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase ) def __lowercase ( self : Optional[Any] ): _a : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a : int = model_class(config=_UpperCAmelCase ) for name, module in model.named_modules(): if isinstance(_UpperCAmelCase ,(nn.BatchNormad, nn.GroupNorm) ): self.assertTrue( torch.all(module.weight == 1 ) ,msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" ,) self.assertTrue( torch.all(module.bias == 0 ) ,msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" ,) def __lowercase ( self : Union[str, Any] ): def check_hidden_states_output(_UpperCAmelCase : Optional[int] ,_UpperCAmelCase : Optional[int] ,_UpperCAmelCase : str ): _a : List[Any] = model_class(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() with torch.no_grad(): _a : List[Any] = model(**self._prepare_for_class(_UpperCAmelCase ,_UpperCAmelCase ) ) _a : Optional[Any] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _a : Union[str, Any] = self.model_tester.num_stages self.assertEqual(len(_UpperCAmelCase ) ,expected_num_stages + 1 ) # RegNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) ,[self.model_tester.image_size // 2, self.model_tester.image_size // 2] ,) _a : Tuple = self.model_tester.prepare_config_and_inputs_for_common() _a : Dict = ['basic', 'bottleneck'] for model_class in self.all_model_classes: for layer_type in layers_type: _a : Optional[int] = layer_type _a : Optional[Any] = True check_hidden_states_output(_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _a : List[str] = True check_hidden_states_output(_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ) def __lowercase ( self : Union[str, Any] ): _a : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_UpperCAmelCase ) @slow def __lowercase ( self : Optional[int] ): for model_name in REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _a : int = RegNetModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) def __lowerCamelCase ( ) -> str: _a : str = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class __magic_name__ ( unittest.TestCase ): @cached_property def __lowercase ( self : List[Any] ): return ( AutoImageProcessor.from_pretrained(REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def __lowercase ( self : Any ): _a : Union[str, Any] = RegNetForImageClassification.from_pretrained(REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(_UpperCAmelCase ) _a : Optional[Any] = self.default_image_processor _a : Optional[int] = prepare_img() _a : List[str] = image_processor(images=_UpperCAmelCase ,return_tensors='pt' ).to(_UpperCAmelCase ) # forward pass with torch.no_grad(): _a : Any = model(**_UpperCAmelCase ) # verify the logits _a : Dict = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape ,_UpperCAmelCase ) _a : List[str] = torch.tensor([-0.41_80, -1.50_51, -3.48_36] ).to(_UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] ,_UpperCAmelCase ,atol=1E-4 ) )
371
'''simple docstring''' import argparse import os from pathlib import Path import torch from bark.generation import _load_model as _bark_load_model from huggingface_hub import hf_hub_download from transformers import EncodecConfig, EncodecModel, set_seed from transformers.models.bark.configuration_bark import ( BarkCoarseConfig, BarkConfig, BarkFineConfig, BarkSemanticConfig, ) from transformers.models.bark.generation_configuration_bark import ( BarkCoarseGenerationConfig, BarkFineGenerationConfig, BarkGenerationConfig, BarkSemanticGenerationConfig, ) from transformers.models.bark.modeling_bark import BarkCoarseModel, BarkFineModel, BarkModel, BarkSemanticModel from transformers.utils import logging logging.set_verbosity_info() __lowerCAmelCase = logging.get_logger(__name__) set_seed(770) __lowerCAmelCase = { '''c_attn''': '''att_proj''', '''c_proj''': '''out_proj''', '''c_fc''': '''in_proj''', '''transformer.''': '''''', '''h.''': '''layers.''', '''ln_1''': '''layernorm_1''', '''ln_2''': '''layernorm_2''', '''ln_f''': '''layernorm_final''', '''wpe''': '''position_embeds_layer''', '''wte''': '''input_embeds_layer''', } __lowerCAmelCase = { '''text_small''': { '''repo_id''': '''suno/bark''', '''file_name''': '''text.pt''', }, '''coarse_small''': { '''repo_id''': '''suno/bark''', '''file_name''': '''coarse.pt''', }, '''fine_small''': { '''repo_id''': '''suno/bark''', '''file_name''': '''fine.pt''', }, '''text''': { '''repo_id''': '''suno/bark''', '''file_name''': '''text_2.pt''', }, '''coarse''': { '''repo_id''': '''suno/bark''', '''file_name''': '''coarse_2.pt''', }, '''fine''': { '''repo_id''': '''suno/bark''', '''file_name''': '''fine_2.pt''', }, } __lowerCAmelCase = os.path.dirname(os.path.abspath(__file__)) __lowerCAmelCase = os.path.join(os.path.expanduser('''~'''), '''.cache''') __lowerCAmelCase = os.path.join(os.getenv('''XDG_CACHE_HOME''', default_cache_dir), '''suno''', '''bark_v0''') def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_=False ) -> Optional[int]: _a : int = model_type if use_small: key += "_small" return os.path.join(lowerCAmelCase_ , REMOTE_MODEL_PATHS[key]['file_name'] ) def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ ) -> int: os.makedirs(lowerCAmelCase_ , exist_ok=lowerCAmelCase_ ) hf_hub_download(repo_id=lowerCAmelCase_ , filename=lowerCAmelCase_ , local_dir=lowerCAmelCase_ ) def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=False , lowerCAmelCase_="text" ) -> List[str]: if model_type == "text": _a : List[str] = BarkSemanticModel _a : Optional[Any] = BarkSemanticConfig _a : Any = BarkSemanticGenerationConfig elif model_type == "coarse": _a : Tuple = BarkCoarseModel _a : str = BarkCoarseConfig _a : str = BarkCoarseGenerationConfig elif model_type == "fine": _a : List[str] = BarkFineModel _a : Optional[Any] = BarkFineConfig _a : str = BarkFineGenerationConfig else: raise NotImplementedError() _a : Dict = f"""{model_type}_small""" if use_small else model_type _a : Union[str, Any] = REMOTE_MODEL_PATHS[model_key] if not os.path.exists(lowerCAmelCase_ ): logger.info(f"""{model_type} model not found, downloading into `{CACHE_DIR}`.""" ) _download(model_info['repo_id'] , model_info['file_name'] ) _a : int = torch.load(lowerCAmelCase_ , map_location=lowerCAmelCase_ ) # this is a hack _a : List[Any] = checkpoint['model_args'] if "input_vocab_size" not in model_args: _a : Dict = model_args['vocab_size'] _a : Dict = model_args['vocab_size'] del model_args["vocab_size"] # convert Bark model arguments to HF Bark model arguments _a : List[Any] = model_args.pop('n_head' ) _a : Any = model_args.pop('n_embd' ) _a : List[Any] = model_args.pop('n_layer' ) _a : Optional[int] = ConfigClass(**checkpoint['model_args'] ) _a : List[str] = ModelClass(config=lowerCAmelCase_ ) _a : Tuple = GenerationConfigClass() _a : Optional[Any] = model_generation_config _a : Optional[Any] = checkpoint['model'] # fixup checkpoint _a : int = '_orig_mod.' for k, v in list(state_dict.items() ): if k.startswith(lowerCAmelCase_ ): # replace part of the key with corresponding layer name in HF implementation _a : str = k[len(lowerCAmelCase_ ) :] for old_layer_name in new_layer_name_dict: _a : List[Any] = new_k.replace(lowerCAmelCase_ , new_layer_name_dict[old_layer_name] ) _a : List[Any] = state_dict.pop(lowerCAmelCase_ ) _a : List[Any] = set(state_dict.keys() ) - set(model.state_dict().keys() ) _a : Tuple = {k for k in extra_keys if not k.endswith('.attn.bias' )} _a : Tuple = set(model.state_dict().keys() ) - set(state_dict.keys() ) _a : Optional[Any] = {k for k in missing_keys if not k.endswith('.attn.bias' )} if len(lowerCAmelCase_ ) != 0: raise ValueError(f"""extra keys found: {extra_keys}""" ) if len(lowerCAmelCase_ ) != 0: raise ValueError(f"""missing keys: {missing_keys}""" ) model.load_state_dict(lowerCAmelCase_ , strict=lowerCAmelCase_ ) _a : Dict = model.num_parameters(exclude_embeddings=lowerCAmelCase_ ) _a : Tuple = checkpoint['best_val_loss'].item() logger.info(f"""model loaded: {round(n_params/1E6 , 1 )}M params, {round(lowerCAmelCase_ , 3 )} loss""" ) model.eval() model.to(lowerCAmelCase_ ) del checkpoint, state_dict return model def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_=False , lowerCAmelCase_="text" ) -> List[Any]: if model_type not in ("text", "coarse", "fine"): raise NotImplementedError() _a : Optional[int] = 'cpu' # do conversion on cpu _a : Tuple = _get_ckpt_path(lowerCAmelCase_ , use_small=lowerCAmelCase_ ) _a : List[Any] = _load_model(lowerCAmelCase_ , lowerCAmelCase_ , model_type=lowerCAmelCase_ , use_small=lowerCAmelCase_ ) # load bark initial model _a : Any = _bark_load_model(lowerCAmelCase_ , 'cpu' , model_type=lowerCAmelCase_ , use_small=lowerCAmelCase_ ) if model_type == "text": _a : int = bark_model['model'] if model.num_parameters(exclude_embeddings=lowerCAmelCase_ ) != bark_model.get_num_params(): raise ValueError('initial and new models don\'t have the same number of parameters' ) # check if same output as the bark model _a : Any = 5 _a : List[str] = 10 if model_type in ["text", "coarse"]: _a : Dict = torch.randint(256 , (batch_size, sequence_length) , dtype=torch.int ) _a : Dict = bark_model(lowerCAmelCase_ )[0] _a : Tuple = model(lowerCAmelCase_ ) # take last logits _a : Optional[int] = output_new_model_total.logits[:, [-1], :] else: _a : List[str] = 3 _a : List[Any] = 8 _a : Tuple = torch.randint(256 , (batch_size, sequence_length, n_codes_total) , dtype=torch.int ) _a : Union[str, Any] = model(lowerCAmelCase_ , lowerCAmelCase_ ) _a : int = bark_model(lowerCAmelCase_ , lowerCAmelCase_ ) _a : List[str] = output_new_model_total.logits # output difference should come from the difference of self-attention implementation design if output_new_model.shape != output_old_model.shape: raise ValueError('initial and new outputs don\'t have the same shape' ) if (output_new_model - output_old_model).abs().max().item() > 1E-3: raise ValueError('initial and new outputs are not equal' ) Path(lowerCAmelCase_ ).mkdir(exist_ok=lowerCAmelCase_ ) model.save_pretrained(lowerCAmelCase_ ) def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , ) -> Any: _a : Any = os.path.join(lowerCAmelCase_ , lowerCAmelCase_ ) _a : int = BarkSemanticConfig.from_pretrained(os.path.join(lowerCAmelCase_ , 'config.json' ) ) _a : Any = BarkCoarseConfig.from_pretrained(os.path.join(lowerCAmelCase_ , 'config.json' ) ) _a : List[Any] = BarkFineConfig.from_pretrained(os.path.join(lowerCAmelCase_ , 'config.json' ) ) _a : List[str] = EncodecConfig.from_pretrained('facebook/encodec_24khz' ) _a : str = BarkSemanticModel.from_pretrained(lowerCAmelCase_ ) _a : Dict = BarkCoarseModel.from_pretrained(lowerCAmelCase_ ) _a : int = BarkFineModel.from_pretrained(lowerCAmelCase_ ) _a : List[Any] = EncodecModel.from_pretrained('facebook/encodec_24khz' ) _a : Any = BarkConfig.from_sub_model_configs( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) _a : List[str] = BarkGenerationConfig.from_sub_model_configs( semantic.generation_config , coarseAcoustic.generation_config , fineAcoustic.generation_config ) _a : Optional[Any] = BarkModel(lowerCAmelCase_ ) _a : List[str] = semantic _a : Union[str, Any] = coarseAcoustic _a : Optional[int] = fineAcoustic _a : Optional[Any] = codec _a : List[Any] = bark_generation_config Path(lowerCAmelCase_ ).mkdir(exist_ok=lowerCAmelCase_ ) bark.save_pretrained(lowerCAmelCase_ , repo_id=lowerCAmelCase_ , push_to_hub=lowerCAmelCase_ ) if __name__ == "__main__": __lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument('''model_type''', type=str, help='''text, coarse or fine.''') parser.add_argument('''pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--is_small''', action='''store_true''', help='''convert the small version instead of the large.''') __lowerCAmelCase = parser.parse_args() load_model(args.pytorch_dump_folder_path, model_type=args.model_type, use_small=args.is_small)
107
0
"""simple docstring""" from .glue import GlueDataset, GlueDataTrainingArguments from .language_modeling import ( LineByLineTextDataset, LineByLineWithRefDataset, LineByLineWithSOPTextDataset, TextDataset, TextDatasetForNextSentencePrediction, ) from .squad import SquadDataset, SquadDataTrainingArguments
74
import collections import inspect import unittest from transformers import SwinvaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel from transformers.models.swinva.modeling_swinva import SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class snake_case__ : """simple docstring""" def __init__( self : Tuple, _snake_case : Any, _snake_case : int=1_3, _snake_case : Optional[int]=3_2, _snake_case : Tuple=2, _snake_case : Any=3, _snake_case : Tuple=1_6, _snake_case : Tuple=[1, 2, 1], _snake_case : Dict=[2, 2, 4], _snake_case : str=2, _snake_case : Union[str, Any]=2.0, _snake_case : Dict=True, _snake_case : Dict=0.0, _snake_case : str=0.0, _snake_case : str=0.1, _snake_case : List[str]="gelu", _snake_case : int=False, _snake_case : Optional[Any]=True, _snake_case : List[Any]=0.0_2, _snake_case : Union[str, Any]=1e-5, _snake_case : Union[str, Any]=True, _snake_case : List[Any]=None, _snake_case : Any=True, _snake_case : List[Any]=1_0, _snake_case : str=8, ) ->Union[str, Any]: snake_case__ : Any = parent snake_case__ : Tuple = batch_size snake_case__ : Tuple = image_size snake_case__ : Any = patch_size snake_case__ : Optional[int] = num_channels snake_case__ : Tuple = embed_dim snake_case__ : Any = depths snake_case__ : Any = num_heads snake_case__ : List[str] = window_size snake_case__ : Dict = mlp_ratio snake_case__ : Optional[int] = qkv_bias snake_case__ : Optional[Any] = hidden_dropout_prob snake_case__ : List[str] = attention_probs_dropout_prob snake_case__ : Union[str, Any] = drop_path_rate snake_case__ : str = hidden_act snake_case__ : Union[str, Any] = use_absolute_embeddings snake_case__ : Union[str, Any] = patch_norm snake_case__ : Any = layer_norm_eps snake_case__ : Tuple = initializer_range snake_case__ : Dict = is_training snake_case__ : Any = scope snake_case__ : Optional[Any] = use_labels snake_case__ : str = type_sequence_label_size snake_case__ : List[Any] = encoder_stride def lowercase_ ( self : Tuple ) ->str: snake_case__ : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) snake_case__ : List[Any] = None if self.use_labels: snake_case__ : Optional[Any] = ids_tensor([self.batch_size], self.type_sequence_label_size ) snake_case__ : Any = self.get_config() return config, pixel_values, labels def lowercase_ ( self : Optional[int] ) ->Optional[int]: return SwinvaConfig( image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, embed_dim=self.embed_dim, depths=self.depths, num_heads=self.num_heads, window_size=self.window_size, mlp_ratio=self.mlp_ratio, qkv_bias=self.qkv_bias, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, drop_path_rate=self.drop_path_rate, hidden_act=self.hidden_act, use_absolute_embeddings=self.use_absolute_embeddings, path_norm=self.patch_norm, layer_norm_eps=self.layer_norm_eps, initializer_range=self.initializer_range, encoder_stride=self.encoder_stride, ) def lowercase_ ( self : Optional[int], _snake_case : str, _snake_case : List[str], _snake_case : int ) ->Dict: snake_case__ : List[Any] = SwinvaModel(config=_snake_case ) model.to(_snake_case ) model.eval() snake_case__ : Optional[int] = model(_snake_case ) snake_case__ : List[Any] = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) snake_case__ : List[Any] = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, expected_seq_len, expected_dim) ) def lowercase_ ( self : Optional[Any], _snake_case : Any, _snake_case : List[str], _snake_case : Dict ) ->List[Any]: snake_case__ : List[str] = SwinvaForMaskedImageModeling(config=_snake_case ) model.to(_snake_case ) model.eval() snake_case__ : Union[str, Any] = model(_snake_case ) self.parent.assertEqual( result.logits.shape, (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images snake_case__ : Optional[Any] = 1 snake_case__ : Optional[int] = SwinvaForMaskedImageModeling(_snake_case ) model.to(_snake_case ) model.eval() snake_case__ : Tuple = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) snake_case__ : Any = model(_snake_case ) self.parent.assertEqual(result.logits.shape, (self.batch_size, 1, self.image_size, self.image_size) ) def lowercase_ ( self : List[str], _snake_case : int, _snake_case : List[Any], _snake_case : Optional[int] ) ->Any: snake_case__ : Tuple = self.type_sequence_label_size snake_case__ : int = SwinvaForImageClassification(_snake_case ) model.to(_snake_case ) model.eval() snake_case__ : Tuple = model(_snake_case, labels=_snake_case ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size) ) def lowercase_ ( self : Any ) ->Dict: snake_case__ : str = self.prepare_config_and_inputs() snake_case__ , snake_case__ , snake_case__ : List[str] = config_and_inputs snake_case__ : Union[str, Any] = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class snake_case__ ( lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ): """simple docstring""" _SCREAMING_SNAKE_CASE = ( (SwinvaModel, SwinvaForImageClassification, SwinvaForMaskedImageModeling) if is_torch_available() else () ) _SCREAMING_SNAKE_CASE = ( {"""feature-extraction""": SwinvaModel, """image-classification""": SwinvaForImageClassification} if is_torch_available() else {} ) _SCREAMING_SNAKE_CASE = False _SCREAMING_SNAKE_CASE = False _SCREAMING_SNAKE_CASE = False _SCREAMING_SNAKE_CASE = False def lowercase_ ( self : Union[str, Any] ) ->Dict: snake_case__ : Optional[int] = SwinvaModelTester(self ) snake_case__ : int = ConfigTester(self, config_class=_snake_case, embed_dim=3_7 ) def lowercase_ ( self : Tuple ) ->int: self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowercase_ ( self : Any ) ->str: snake_case__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_snake_case ) @unittest.skip(reason='Got `CUDA error: misaligned address` with PyTorch 2.0.0.' ) def lowercase_ ( self : Any ) ->Union[str, Any]: pass @unittest.skip(reason='Swinv2 does not use inputs_embeds' ) def lowercase_ ( self : str ) ->Union[str, Any]: pass def lowercase_ ( self : Optional[Any] ) ->Union[str, Any]: snake_case__ , snake_case__ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case__ : Union[str, Any] = model_class(_snake_case ) self.assertIsInstance(model.get_input_embeddings(), (nn.Module) ) snake_case__ : Union[str, Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_snake_case, nn.Linear ) ) def lowercase_ ( self : List[str] ) ->Optional[int]: snake_case__ , snake_case__ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case__ : Any = model_class(_snake_case ) snake_case__ : Dict = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case__ : Optional[Any] = [*signature.parameters.keys()] snake_case__ : List[Any] = ['pixel_values'] self.assertListEqual(arg_names[:1], _snake_case ) def lowercase_ ( self : str ) ->Union[str, Any]: snake_case__ , snake_case__ : Any = self.model_tester.prepare_config_and_inputs_for_common() snake_case__ : int = True for model_class in self.all_model_classes: snake_case__ : str = True snake_case__ : Union[str, Any] = False snake_case__ : Tuple = True snake_case__ : int = model_class(_snake_case ) model.to(_snake_case ) model.eval() with torch.no_grad(): snake_case__ : Optional[int] = model(**self._prepare_for_class(_snake_case, _snake_case ) ) snake_case__ : List[str] = outputs.attentions snake_case__ : List[Any] = len(self.model_tester.depths ) self.assertEqual(len(_snake_case ), _snake_case ) # check that output_attentions also work using config del inputs_dict["output_attentions"] snake_case__ : str = True snake_case__ : Tuple = config.window_size**2 snake_case__ : Optional[int] = model_class(_snake_case ) model.to(_snake_case ) model.eval() with torch.no_grad(): snake_case__ : str = model(**self._prepare_for_class(_snake_case, _snake_case ) ) snake_case__ : Tuple = outputs.attentions self.assertEqual(len(_snake_case ), _snake_case ) self.assertListEqual( list(attentions[0].shape[-3:] ), [self.model_tester.num_heads[0], window_size_squared, window_size_squared], ) snake_case__ : Optional[Any] = len(_snake_case ) # Check attention is always last and order is fine snake_case__ : Optional[int] = True snake_case__ : Dict = True snake_case__ : List[Any] = model_class(_snake_case ) model.to(_snake_case ) model.eval() with torch.no_grad(): snake_case__ : Optional[int] = model(**self._prepare_for_class(_snake_case, _snake_case ) ) if hasattr(self.model_tester, 'num_hidden_states_types' ): snake_case__ : str = self.model_tester.num_hidden_states_types else: # also another +1 for reshaped_hidden_states snake_case__ : Dict = 2 self.assertEqual(out_len + added_hidden_states, len(_snake_case ) ) snake_case__ : Any = outputs.attentions self.assertEqual(len(_snake_case ), _snake_case ) self.assertListEqual( list(self_attentions[0].shape[-3:] ), [self.model_tester.num_heads[0], window_size_squared, window_size_squared], ) def lowercase_ ( self : Dict, _snake_case : Tuple, _snake_case : Any, _snake_case : int, _snake_case : Optional[int] ) ->str: snake_case__ : Dict = model_class(_snake_case ) model.to(_snake_case ) model.eval() with torch.no_grad(): snake_case__ : List[Any] = model(**self._prepare_for_class(_snake_case, _snake_case ) ) snake_case__ : Dict = outputs.hidden_states snake_case__ : int = getattr( self.model_tester, 'expected_num_hidden_layers', len(self.model_tester.depths ) + 1 ) self.assertEqual(len(_snake_case ), _snake_case ) # Swinv2 has a different seq_length snake_case__ : int = ( config.patch_size if isinstance(config.patch_size, collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) snake_case__ : Optional[Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ), [num_patches, self.model_tester.embed_dim], ) snake_case__ : Union[str, Any] = outputs.reshaped_hidden_states self.assertEqual(len(_snake_case ), _snake_case ) snake_case__ , snake_case__ , snake_case__ , snake_case__ : str = reshaped_hidden_states[0].shape snake_case__ : Any = ( reshaped_hidden_states[0].view(_snake_case, _snake_case, height * width ).permute(0, 2, 1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ), [num_patches, self.model_tester.embed_dim], ) def lowercase_ ( self : str ) ->List[Any]: snake_case__ , snake_case__ : Any = self.model_tester.prepare_config_and_inputs_for_common() snake_case__ : List[Any] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size, collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: snake_case__ : Optional[int] = True self.check_hidden_states_output(_snake_case, _snake_case, _snake_case, _snake_case ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] snake_case__ : Dict = True self.check_hidden_states_output(_snake_case, _snake_case, _snake_case, _snake_case ) def lowercase_ ( self : List[str] ) ->str: snake_case__ , snake_case__ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() snake_case__ : List[str] = 3 snake_case__ : Union[str, Any] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size, collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) snake_case__ : str = ( config.patch_size if isinstance(config.patch_size, collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) snake_case__ : Tuple = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) snake_case__ : Optional[Any] = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: snake_case__ : int = True self.check_hidden_states_output(_snake_case, _snake_case, _snake_case, (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] snake_case__ : List[str] = True self.check_hidden_states_output(_snake_case, _snake_case, _snake_case, (padded_height, padded_width) ) def lowercase_ ( self : List[str] ) ->Optional[int]: snake_case__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*_snake_case ) def lowercase_ ( self : List[Any] ) ->str: snake_case__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_snake_case ) @slow def lowercase_ ( self : str ) ->Union[str, Any]: for model_name in SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case__ : Dict = SwinvaModel.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) def lowercase_ ( self : Optional[int] ) ->List[str]: snake_case__ , snake_case__ : Any = self.model_tester.prepare_config_and_inputs_for_common() snake_case__ : List[Any] = _config_zero_init(_snake_case ) for model_class in self.all_model_classes: snake_case__ : List[str] = model_class(config=_snake_case ) for name, param in model.named_parameters(): if "embeddings" not in name and "logit_scale" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item(), [0.0, 1.0], msg=F'''Parameter {name} of model {model_class} seems not properly initialized''', ) @require_vision @require_torch class snake_case__ ( unittest.TestCase ): """simple docstring""" @cached_property def lowercase_ ( self : Union[str, Any] ) ->List[str]: return ( AutoImageProcessor.from_pretrained('microsoft/swinv2-tiny-patch4-window8-256' ) if is_vision_available() else None ) @slow def lowercase_ ( self : int ) ->List[Any]: snake_case__ : Any = SwinvaForImageClassification.from_pretrained('microsoft/swinv2-tiny-patch4-window8-256' ).to( _snake_case ) snake_case__ : int = self.default_image_processor snake_case__ : Union[str, Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) snake_case__ : Optional[Any] = image_processor(images=_snake_case, return_tensors='pt' ).to(_snake_case ) # forward pass with torch.no_grad(): snake_case__ : List[str] = model(**_snake_case ) # verify the logits snake_case__ : int = torch.Size((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape, _snake_case ) snake_case__ : Optional[int] = torch.tensor([-0.3_9_4_7, -0.4_3_0_6, 0.0_0_2_6] ).to(_snake_case ) self.assertTrue(torch.allclose(outputs.logits[0, :3], _snake_case, atol=1e-4 ) )
277
0
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_download, hf_hub_url from PIL import Image from transformers import DetaConfig, DetaForObjectDetection, DetaImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() __UpperCAmelCase = logging.get_logger(__name__) def UpperCamelCase ( snake_case__ : Optional[Any] ) -> Optional[int]: UpperCamelCase : List[str] = SwinConfig( embed_dim=192 , depths=(2, 2, 18, 2) , num_heads=(6, 12, 24, 48) , window_size=12 , out_features=['stage2', 'stage3', 'stage4'] , ) UpperCamelCase : List[str] = DetaConfig( backbone_config=snake_case__ , num_queries=900 , encoder_ffn_dim=2048 , decoder_ffn_dim=2048 , num_feature_levels=5 , assign_first_stage=snake_case__ , with_box_refine=snake_case__ , two_stage=snake_case__ , ) # set labels UpperCamelCase : Dict = 'huggingface/label-files' if "o365" in model_name: UpperCamelCase : Union[str, Any] = 366 UpperCamelCase : Optional[int] = 'object365-id2label.json' else: UpperCamelCase : Tuple = 91 UpperCamelCase : Optional[int] = 'coco-detection-id2label.json' UpperCamelCase : List[Any] = num_labels UpperCamelCase : Any = json.load(open(cached_download(hf_hub_url(snake_case__ , snake_case__ , repo_type='dataset' ) ) , 'r' ) ) UpperCamelCase : Optional[int] = {int(snake_case__ ): v for k, v in idalabel.items()} UpperCamelCase : List[str] = idalabel UpperCamelCase : Any = {v: k for k, v in idalabel.items()} return config def UpperCamelCase ( snake_case__ : Any ) -> Any: UpperCamelCase : List[str] = [] # stem # fmt: off rename_keys.append(('backbone.0.body.patch_embed.proj.weight', 'model.backbone.model.embeddings.patch_embeddings.projection.weight') ) rename_keys.append(('backbone.0.body.patch_embed.proj.bias', 'model.backbone.model.embeddings.patch_embeddings.projection.bias') ) rename_keys.append(('backbone.0.body.patch_embed.norm.weight', 'model.backbone.model.embeddings.norm.weight') ) rename_keys.append(('backbone.0.body.patch_embed.norm.bias', 'model.backbone.model.embeddings.norm.bias') ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((F"""backbone.0.body.layers.{i}.blocks.{j}.norm1.weight""", F"""model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight""") ) rename_keys.append((F"""backbone.0.body.layers.{i}.blocks.{j}.norm1.bias""", F"""model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias""") ) rename_keys.append((F"""backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_bias_table""", F"""model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table""") ) rename_keys.append((F"""backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_index""", F"""model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index""") ) rename_keys.append((F"""backbone.0.body.layers.{i}.blocks.{j}.attn.proj.weight""", F"""model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight""") ) rename_keys.append((F"""backbone.0.body.layers.{i}.blocks.{j}.attn.proj.bias""", F"""model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias""") ) rename_keys.append((F"""backbone.0.body.layers.{i}.blocks.{j}.norm2.weight""", F"""model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight""") ) rename_keys.append((F"""backbone.0.body.layers.{i}.blocks.{j}.norm2.bias""", F"""model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias""") ) rename_keys.append((F"""backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.weight""", F"""model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight""") ) rename_keys.append((F"""backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.bias""", F"""model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias""") ) rename_keys.append((F"""backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.weight""", F"""model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.weight""") ) rename_keys.append((F"""backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.bias""", F"""model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.bias""") ) if i < 3: rename_keys.append((F"""backbone.0.body.layers.{i}.downsample.reduction.weight""", F"""model.backbone.model.encoder.layers.{i}.downsample.reduction.weight""") ) rename_keys.append((F"""backbone.0.body.layers.{i}.downsample.norm.weight""", F"""model.backbone.model.encoder.layers.{i}.downsample.norm.weight""") ) rename_keys.append((F"""backbone.0.body.layers.{i}.downsample.norm.bias""", F"""model.backbone.model.encoder.layers.{i}.downsample.norm.bias""") ) rename_keys.append(('backbone.0.body.norm1.weight', 'model.backbone.model.hidden_states_norms.stage2.weight') ) rename_keys.append(('backbone.0.body.norm1.bias', 'model.backbone.model.hidden_states_norms.stage2.bias') ) rename_keys.append(('backbone.0.body.norm2.weight', 'model.backbone.model.hidden_states_norms.stage3.weight') ) rename_keys.append(('backbone.0.body.norm2.bias', 'model.backbone.model.hidden_states_norms.stage3.bias') ) rename_keys.append(('backbone.0.body.norm3.weight', 'model.backbone.model.hidden_states_norms.stage4.weight') ) rename_keys.append(('backbone.0.body.norm3.bias', 'model.backbone.model.hidden_states_norms.stage4.bias') ) # transformer encoder for i in range(config.encoder_layers ): rename_keys.append((F"""transformer.encoder.layers.{i}.self_attn.sampling_offsets.weight""", F"""model.encoder.layers.{i}.self_attn.sampling_offsets.weight""") ) rename_keys.append((F"""transformer.encoder.layers.{i}.self_attn.sampling_offsets.bias""", F"""model.encoder.layers.{i}.self_attn.sampling_offsets.bias""") ) rename_keys.append((F"""transformer.encoder.layers.{i}.self_attn.attention_weights.weight""", F"""model.encoder.layers.{i}.self_attn.attention_weights.weight""") ) rename_keys.append((F"""transformer.encoder.layers.{i}.self_attn.attention_weights.bias""", F"""model.encoder.layers.{i}.self_attn.attention_weights.bias""") ) rename_keys.append((F"""transformer.encoder.layers.{i}.self_attn.value_proj.weight""", F"""model.encoder.layers.{i}.self_attn.value_proj.weight""") ) rename_keys.append((F"""transformer.encoder.layers.{i}.self_attn.value_proj.bias""", F"""model.encoder.layers.{i}.self_attn.value_proj.bias""") ) rename_keys.append((F"""transformer.encoder.layers.{i}.self_attn.output_proj.weight""", F"""model.encoder.layers.{i}.self_attn.output_proj.weight""") ) rename_keys.append((F"""transformer.encoder.layers.{i}.self_attn.output_proj.bias""", F"""model.encoder.layers.{i}.self_attn.output_proj.bias""") ) rename_keys.append((F"""transformer.encoder.layers.{i}.norm1.weight""", F"""model.encoder.layers.{i}.self_attn_layer_norm.weight""") ) rename_keys.append((F"""transformer.encoder.layers.{i}.norm1.bias""", F"""model.encoder.layers.{i}.self_attn_layer_norm.bias""") ) rename_keys.append((F"""transformer.encoder.layers.{i}.linear1.weight""", F"""model.encoder.layers.{i}.fc1.weight""") ) rename_keys.append((F"""transformer.encoder.layers.{i}.linear1.bias""", F"""model.encoder.layers.{i}.fc1.bias""") ) rename_keys.append((F"""transformer.encoder.layers.{i}.linear2.weight""", F"""model.encoder.layers.{i}.fc2.weight""") ) rename_keys.append((F"""transformer.encoder.layers.{i}.linear2.bias""", F"""model.encoder.layers.{i}.fc2.bias""") ) rename_keys.append((F"""transformer.encoder.layers.{i}.norm2.weight""", F"""model.encoder.layers.{i}.final_layer_norm.weight""") ) rename_keys.append((F"""transformer.encoder.layers.{i}.norm2.bias""", F"""model.encoder.layers.{i}.final_layer_norm.bias""") ) # transformer decoder for i in range(config.decoder_layers ): rename_keys.append((F"""transformer.decoder.layers.{i}.cross_attn.sampling_offsets.weight""", F"""model.decoder.layers.{i}.encoder_attn.sampling_offsets.weight""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.cross_attn.sampling_offsets.bias""", F"""model.decoder.layers.{i}.encoder_attn.sampling_offsets.bias""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.cross_attn.attention_weights.weight""", F"""model.decoder.layers.{i}.encoder_attn.attention_weights.weight""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.cross_attn.attention_weights.bias""", F"""model.decoder.layers.{i}.encoder_attn.attention_weights.bias""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.cross_attn.value_proj.weight""", F"""model.decoder.layers.{i}.encoder_attn.value_proj.weight""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.cross_attn.value_proj.bias""", F"""model.decoder.layers.{i}.encoder_attn.value_proj.bias""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.cross_attn.output_proj.weight""", F"""model.decoder.layers.{i}.encoder_attn.output_proj.weight""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.cross_attn.output_proj.bias""", F"""model.decoder.layers.{i}.encoder_attn.output_proj.bias""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.norm1.weight""", F"""model.decoder.layers.{i}.encoder_attn_layer_norm.weight""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.norm1.bias""", F"""model.decoder.layers.{i}.encoder_attn_layer_norm.bias""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.self_attn.out_proj.weight""", F"""model.decoder.layers.{i}.self_attn.out_proj.weight""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.self_attn.out_proj.bias""", F"""model.decoder.layers.{i}.self_attn.out_proj.bias""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.norm2.weight""", F"""model.decoder.layers.{i}.self_attn_layer_norm.weight""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.norm2.bias""", F"""model.decoder.layers.{i}.self_attn_layer_norm.bias""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.linear1.weight""", F"""model.decoder.layers.{i}.fc1.weight""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.linear1.bias""", F"""model.decoder.layers.{i}.fc1.bias""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.linear2.weight""", F"""model.decoder.layers.{i}.fc2.weight""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.linear2.bias""", F"""model.decoder.layers.{i}.fc2.bias""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.norm3.weight""", F"""model.decoder.layers.{i}.final_layer_norm.weight""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.norm3.bias""", F"""model.decoder.layers.{i}.final_layer_norm.bias""") ) # fmt: on return rename_keys def UpperCamelCase ( snake_case__ : Tuple , snake_case__ : Optional[int] , snake_case__ : str ) -> Optional[int]: UpperCamelCase : Tuple = dct.pop(snake_case__ ) UpperCamelCase : Any = val def UpperCamelCase ( snake_case__ : int , snake_case__ : str ) -> Union[str, Any]: UpperCamelCase : Any = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): UpperCamelCase : Union[str, Any] = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) UpperCamelCase : Optional[Any] = state_dict.pop(F"""backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.weight""" ) UpperCamelCase : List[Any] = state_dict.pop(F"""backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict UpperCamelCase : Optional[Any] = in_proj_weight[:dim, :] UpperCamelCase : int = in_proj_bias[: dim] UpperCamelCase : Tuple = in_proj_weight[ dim : dim * 2, : ] UpperCamelCase : List[str] = in_proj_bias[ dim : dim * 2 ] UpperCamelCase : List[Any] = in_proj_weight[ -dim :, : ] UpperCamelCase : List[Any] = in_proj_bias[-dim :] # fmt: on def UpperCamelCase ( snake_case__ : Optional[Any] , snake_case__ : int ) -> Optional[Any]: # transformer decoder self-attention layers UpperCamelCase : Tuple = config.d_model for i in range(config.decoder_layers ): # read in weights + bias of input projection layer of self-attention UpperCamelCase : List[Any] = state_dict.pop(F"""transformer.decoder.layers.{i}.self_attn.in_proj_weight""" ) UpperCamelCase : Optional[int] = state_dict.pop(F"""transformer.decoder.layers.{i}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict UpperCamelCase : Optional[Any] = in_proj_weight[:hidden_size, :] UpperCamelCase : Any = in_proj_bias[:hidden_size] UpperCamelCase : Union[str, Any] = in_proj_weight[ hidden_size : hidden_size * 2, : ] UpperCamelCase : Dict = in_proj_bias[hidden_size : hidden_size * 2] UpperCamelCase : Tuple = in_proj_weight[-hidden_size:, :] UpperCamelCase : List[Any] = in_proj_bias[-hidden_size:] def UpperCamelCase ( ) -> Optional[int]: UpperCamelCase : int = 'http://images.cocodataset.org/val2017/000000039769.jpg' UpperCamelCase : int = Image.open(requests.get(snake_case__ , stream=snake_case__ ).raw ) return im @torch.no_grad() def UpperCamelCase ( snake_case__ : List[Any] , snake_case__ : Dict , snake_case__ : Tuple ) -> str: UpperCamelCase : Any = get_deta_config(snake_case__ ) # load original state dict if model_name == "deta-swin-large": UpperCamelCase : Optional[Any] = hf_hub_download(repo_id='nielsr/deta-checkpoints' , filename='adet_swin_ft.pth' ) elif model_name == "deta-swin-large-o365": UpperCamelCase : List[Any] = hf_hub_download(repo_id='jozhang97/deta-swin-l-o365' , filename='deta_swin_pt_o365.pth' ) else: raise ValueError(F"""Model name {model_name} not supported""" ) UpperCamelCase : Union[str, Any] = torch.load(snake_case__ , map_location='cpu' )['model'] # original state dict for name, param in state_dict.items(): print(snake_case__ , param.shape ) # rename keys UpperCamelCase : List[str] = create_rename_keys(snake_case__ ) for src, dest in rename_keys: rename_key(snake_case__ , snake_case__ , snake_case__ ) read_in_swin_q_k_v(snake_case__ , config.backbone_config ) read_in_decoder_q_k_v(snake_case__ , snake_case__ ) # fix some prefixes for key in state_dict.copy().keys(): if "transformer.decoder.class_embed" in key or "transformer.decoder.bbox_embed" in key: UpperCamelCase : Dict = state_dict.pop(snake_case__ ) UpperCamelCase : Any = val if "input_proj" in key: UpperCamelCase : Optional[Any] = state_dict.pop(snake_case__ ) UpperCamelCase : Tuple = val if "level_embed" in key or "pos_trans" in key or "pix_trans" in key or "enc_output" in key: UpperCamelCase : str = state_dict.pop(snake_case__ ) UpperCamelCase : str = val # finally, create HuggingFace model and load state dict UpperCamelCase : Tuple = DetaForObjectDetection(snake_case__ ) model.load_state_dict(snake_case__ ) model.eval() UpperCamelCase : Optional[int] = 'cuda' if torch.cuda.is_available() else 'cpu' model.to(snake_case__ ) # load image processor UpperCamelCase : Union[str, Any] = DetaImageProcessor(format='coco_detection' ) # verify our conversion on image UpperCamelCase : str = prepare_img() UpperCamelCase : Any = processor(images=snake_case__ , return_tensors='pt' ) UpperCamelCase : Any = encoding['pixel_values'] UpperCamelCase : Any = model(pixel_values.to(snake_case__ ) ) # verify logits print('Logits:' , outputs.logits[0, :3, :3] ) print('Boxes:' , outputs.pred_boxes[0, :3, :3] ) if model_name == "deta-swin-large": UpperCamelCase : Dict = torch.tensor( [[-7.6308, -2.8485, -5.3737], [-7.2037, -4.5505, -4.8027], [-7.2943, -4.2611, -4.6617]] ) UpperCamelCase : str = torch.tensor([[0.4987, 0.4969, 0.9999], [0.2549, 0.5498, 0.4805], [0.5498, 0.2757, 0.0569]] ) elif model_name == "deta-swin-large-o365": UpperCamelCase : Union[str, Any] = torch.tensor( [[-8.0122, -3.5720, -4.9717], [-8.1547, -3.6886, -4.6389], [-7.6610, -3.6194, -5.0134]] ) UpperCamelCase : Union[str, Any] = torch.tensor([[0.2523, 0.5549, 0.4881], [0.7715, 0.4149, 0.4601], [0.5503, 0.2753, 0.0575]] ) assert torch.allclose(outputs.logits[0, :3, :3] , expected_logits.to(snake_case__ ) , atol=1E-4 ) assert torch.allclose(outputs.pred_boxes[0, :3, :3] , expected_boxes.to(snake_case__ ) , atol=1E-4 ) print('Everything ok!' ) if pytorch_dump_folder_path: # Save model and processor logger.info(F"""Saving PyTorch model and processor to {pytorch_dump_folder_path}...""" ) Path(snake_case__ ).mkdir(exist_ok=snake_case__ ) model.save_pretrained(snake_case__ ) processor.save_pretrained(snake_case__ ) # Push to hub if push_to_hub: print('Pushing model and processor to hub...' ) model.push_to_hub(F"""jozhang97/{model_name}""" ) processor.push_to_hub(F"""jozhang97/{model_name}""" ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() parser.add_argument( '''--model_name''', type=str, default='''deta-swin-large''', choices=['''deta-swin-large''', '''deta-swin-large-o365'''], help='''Name of the model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''', ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) __UpperCAmelCase = parser.parse_args() convert_deta_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
103
import unittest from transformers import EsmConfig, is_torch_available from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers.models.esm.modeling_esmfold import EsmForProteinFolding class lowerCAmelCase_ : def __init__( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_=13, SCREAMING_SNAKE_CASE_=7, SCREAMING_SNAKE_CASE_=False, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=False, SCREAMING_SNAKE_CASE_=False, SCREAMING_SNAKE_CASE_=19, SCREAMING_SNAKE_CASE_=32, SCREAMING_SNAKE_CASE_=5, SCREAMING_SNAKE_CASE_=4, SCREAMING_SNAKE_CASE_=37, SCREAMING_SNAKE_CASE_="gelu", SCREAMING_SNAKE_CASE_=0.1, SCREAMING_SNAKE_CASE_=0.1, SCREAMING_SNAKE_CASE_=512, SCREAMING_SNAKE_CASE_=16, SCREAMING_SNAKE_CASE_=2, SCREAMING_SNAKE_CASE_=0.02, SCREAMING_SNAKE_CASE_=3, SCREAMING_SNAKE_CASE_=4, SCREAMING_SNAKE_CASE_=None, ) -> Optional[int]: UpperCamelCase : Any = parent UpperCamelCase : Optional[Any] = batch_size UpperCamelCase : Optional[Any] = seq_length UpperCamelCase : Tuple = is_training UpperCamelCase : List[str] = use_input_mask UpperCamelCase : Optional[int] = use_token_type_ids UpperCamelCase : Any = use_labels UpperCamelCase : Union[str, Any] = vocab_size UpperCamelCase : int = hidden_size UpperCamelCase : List[Any] = num_hidden_layers UpperCamelCase : Dict = num_attention_heads UpperCamelCase : List[Any] = intermediate_size UpperCamelCase : str = hidden_act UpperCamelCase : List[Any] = hidden_dropout_prob UpperCamelCase : List[str] = attention_probs_dropout_prob UpperCamelCase : List[str] = max_position_embeddings UpperCamelCase : Union[str, Any] = type_vocab_size UpperCamelCase : str = type_sequence_label_size UpperCamelCase : List[str] = initializer_range UpperCamelCase : List[Any] = num_labels UpperCamelCase : Any = num_choices UpperCamelCase : Tuple = scope def snake_case_ ( self ) -> Optional[int]: UpperCamelCase : str = ids_tensor([self.batch_size, self.seq_length], self.vocab_size ) UpperCamelCase : Optional[Any] = None if self.use_input_mask: UpperCamelCase : Dict = random_attention_mask([self.batch_size, self.seq_length] ) UpperCamelCase : Union[str, Any] = None UpperCamelCase : Optional[int] = None UpperCamelCase : Optional[int] = None if self.use_labels: UpperCamelCase : int = ids_tensor([self.batch_size], self.type_sequence_label_size ) UpperCamelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length], self.num_labels ) UpperCamelCase : Tuple = ids_tensor([self.batch_size], self.num_choices ) UpperCamelCase : Union[str, Any] = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def snake_case_ ( self ) -> Optional[int]: UpperCamelCase : List[str] = EsmConfig( vocab_size=33, hidden_size=self.hidden_size, pad_token_id=1, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, initializer_range=self.initializer_range, is_folding_model=SCREAMING_SNAKE_CASE_, esmfold_config={'trunk': {'num_blocks': 2}, 'fp16_esm': False}, ) return config def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> Tuple: UpperCamelCase : Union[str, Any] = EsmForProteinFolding(config=SCREAMING_SNAKE_CASE_ ).float() model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCamelCase : int = model(SCREAMING_SNAKE_CASE_, attention_mask=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[Any] = model(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[Any] = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.positions.shape, (8, self.batch_size, self.seq_length, 14, 3) ) self.parent.assertEqual(result.angles.shape, (8, self.batch_size, self.seq_length, 7, 2) ) def snake_case_ ( self ) -> Optional[int]: UpperCamelCase : Union[str, Any] = self.prepare_config_and_inputs() ( ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ) : Tuple = config_and_inputs UpperCamelCase : Optional[Any] = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class lowerCAmelCase_ ( a__ , a__ , unittest.TestCase ): UpperCAmelCase__ : Dict = False UpperCAmelCase__ : Optional[int] = (EsmForProteinFolding,) if is_torch_available() else () UpperCAmelCase__ : int = () UpperCAmelCase__ : List[str] = {} if is_torch_available() else {} UpperCAmelCase__ : Optional[int] = False def snake_case_ ( self ) -> Dict: UpperCamelCase : Tuple = EsmFoldModelTester(self ) UpperCamelCase : List[str] = ConfigTester(self, config_class=SCREAMING_SNAKE_CASE_, hidden_size=37 ) def snake_case_ ( self ) -> int: self.config_tester.run_common_tests() def snake_case_ ( self ) -> Union[str, Any]: UpperCamelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE_ ) @unittest.skip('Does not support attention outputs' ) def snake_case_ ( self ) -> Tuple: pass @unittest.skip def snake_case_ ( self ) -> List[Any]: pass @unittest.skip('Esm does not support embedding resizing' ) def snake_case_ ( self ) -> Any: pass @unittest.skip('Esm does not support embedding resizing' ) def snake_case_ ( self ) -> Optional[Any]: pass @unittest.skip('ESMFold does not support passing input embeds!' ) def snake_case_ ( self ) -> Optional[Any]: pass @unittest.skip('ESMFold does not support head pruning.' ) def snake_case_ ( self ) -> Any: pass @unittest.skip('ESMFold does not support head pruning.' ) def snake_case_ ( self ) -> int: pass @unittest.skip('ESMFold does not support head pruning.' ) def snake_case_ ( self ) -> Dict: pass @unittest.skip('ESMFold does not support head pruning.' ) def snake_case_ ( self ) -> Union[str, Any]: pass @unittest.skip('ESMFold does not support head pruning.' ) def snake_case_ ( self ) -> Any: pass @unittest.skip('ESMFold does not output hidden states in the normal way.' ) def snake_case_ ( self ) -> str: pass @unittest.skip('ESMfold does not output hidden states in the normal way.' ) def snake_case_ ( self ) -> List[str]: pass @unittest.skip('ESMFold only has one output format.' ) def snake_case_ ( self ) -> int: pass @unittest.skip('This test doesn\'t work for ESMFold and doesn\'t test core functionality' ) def snake_case_ ( self ) -> Any: pass @unittest.skip('ESMFold does not support input chunking.' ) def snake_case_ ( self ) -> Any: pass @unittest.skip('ESMFold doesn\'t respect you and it certainly doesn\'t respect your initialization arguments.' ) def snake_case_ ( self ) -> Tuple: pass @unittest.skip('ESMFold doesn\'t support torchscript compilation.' ) def snake_case_ ( self ) -> Any: pass @unittest.skip('ESMFold doesn\'t support torchscript compilation.' ) def snake_case_ ( self ) -> str: pass @unittest.skip('ESMFold doesn\'t support torchscript compilation.' ) def snake_case_ ( self ) -> List[Any]: pass @unittest.skip('ESMFold doesn\'t support data parallel.' ) def snake_case_ ( self ) -> List[str]: pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def snake_case_ ( self ) -> Optional[Any]: pass @require_torch class lowerCAmelCase_ ( a__ ): @slow def snake_case_ ( self ) -> str: UpperCamelCase : Union[str, Any] = EsmForProteinFolding.from_pretrained('facebook/esmfold_v1' ).float() model.eval() UpperCamelCase : Tuple = torch.tensor([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) UpperCamelCase : List[str] = model(SCREAMING_SNAKE_CASE_ )['positions'] UpperCamelCase : int = torch.tensor([2.58_28, 0.79_93, -10.93_34], dtype=torch.floataa ) self.assertTrue(torch.allclose(position_outputs[0, 0, 0, 0], SCREAMING_SNAKE_CASE_, atol=1e-4 ) )
103
1
"""simple docstring""" from math import factorial def lowercase__ ( snake_case_ :Union[str, Any] = 100 ): return sum(int(A__ ) for x in str(factorial(A__ ) ) ) if __name__ == "__main__": print(solution(int(input('Enter the Number: ').strip())))
332
'''simple docstring''' import pytest import requests from datasets.utils.file_utils import http_head from .utils import OfflineSimulationMode, RequestWouldHangIndefinitelyError, offline @pytest.mark.integration def _A ( ): """simple docstring""" with offline(OfflineSimulationMode.CONNECTION_TIMES_OUT ): with pytest.raises(A__ ): requests.request('''GET''' , '''https://huggingface.co''' ) with pytest.raises(requests.exceptions.ConnectTimeout ): requests.request('''GET''' , '''https://huggingface.co''' , timeout=1.0 ) @pytest.mark.integration def _A ( ): """simple docstring""" with offline(OfflineSimulationMode.CONNECTION_FAILS ): with pytest.raises(requests.exceptions.ConnectionError ): requests.request('''GET''' , '''https://huggingface.co''' ) def _A ( ): """simple docstring""" with offline(OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1 ): with pytest.raises(A__ ): http_head('''https://huggingface.co''' )
104
0
"""simple docstring""" def __SCREAMING_SNAKE_CASE ( A_ ): if not isinstance(A_ , A_ ): lowerCAmelCase__ : int = f'Input value of [number={number}] must be an integer' raise TypeError(A_ ) if number < 0: return False lowerCAmelCase__ : List[Any] = number * number while number > 0: if number % 10 != number_square % 10: return False number //= 10 number_square //= 10 return True if __name__ == "__main__": import doctest doctest.testmod()
74
"""simple docstring""" import inspect import re from hashlib import shaaaa from typing import Dict, List from .arrow import arrow from .audiofolder import audiofolder from .csv import csv from .imagefolder import imagefolder from .json import json from .pandas import pandas from .parquet import parquet from .sql import sql # noqa F401 from .text import text def __SCREAMING_SNAKE_CASE ( A_ ): lowerCAmelCase__ : Any = [] for line in lines: lowerCAmelCase__ : int = re.sub(r'''#.*''' , '''''' , A_ ) # remove comments if line: filtered_lines.append(A_ ) lowerCAmelCase__ : Optional[int] = '''\n'''.join(A_ ) # Make a hash from all this code lowerCAmelCase__ : int = full_str.encode('''utf-8''' ) return shaaaa(A_ ).hexdigest() # get importable module names and hash for caching __UpperCamelCase : Any = { '''csv''': (csv.__name__, _hash_python_lines(inspect.getsource(csv).splitlines())), '''json''': (json.__name__, _hash_python_lines(inspect.getsource(json).splitlines())), '''pandas''': (pandas.__name__, _hash_python_lines(inspect.getsource(pandas).splitlines())), '''parquet''': (parquet.__name__, _hash_python_lines(inspect.getsource(parquet).splitlines())), '''arrow''': (arrow.__name__, _hash_python_lines(inspect.getsource(arrow).splitlines())), '''text''': (text.__name__, _hash_python_lines(inspect.getsource(text).splitlines())), '''imagefolder''': (imagefolder.__name__, _hash_python_lines(inspect.getsource(imagefolder).splitlines())), '''audiofolder''': (audiofolder.__name__, _hash_python_lines(inspect.getsource(audiofolder).splitlines())), } # Used to infer the module to use based on the data files extensions __UpperCamelCase : Optional[Any] = { '''.csv''': ('''csv''', {}), '''.tsv''': ('''csv''', {'''sep''': '''\t'''}), '''.json''': ('''json''', {}), '''.jsonl''': ('''json''', {}), '''.parquet''': ('''parquet''', {}), '''.arrow''': ('''arrow''', {}), '''.txt''': ('''text''', {}), } _EXTENSION_TO_MODULE.update({ext: ('''imagefolder''', {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ('''imagefolder''', {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext: ('''audiofolder''', {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ('''audiofolder''', {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) __UpperCamelCase : Union[str, Any] = {'''imagefolder''', '''audiofolder'''} # Used to filter data files based on extensions given a module name __UpperCamelCase : Dict[str, List[str]] = {} for _ext, (_module, _) in _EXTENSION_TO_MODULE.items(): _MODULE_TO_EXTENSIONS.setdefault(_module, []).append(_ext) _MODULE_TO_EXTENSIONS["imagefolder"].append('''.zip''') _MODULE_TO_EXTENSIONS["audiofolder"].append('''.zip''')
74
1
'''simple docstring''' import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import DetrConfig, MaskFormerConfig, SwinConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskFormerForInstanceSegmentation, MaskFormerModel if is_vision_available(): from transformers import MaskFormerImageProcessor if is_vision_available(): from PIL import Image class lowerCAmelCase_: '''simple docstring''' def __init__( self ,__UpperCAmelCase ,__UpperCAmelCase=2 ,__UpperCAmelCase=True ,__UpperCAmelCase=False ,__UpperCAmelCase=10 ,__UpperCAmelCase=3 ,__UpperCAmelCase=32 * 4 ,__UpperCAmelCase=32 * 6 ,__UpperCAmelCase=4 ,__UpperCAmelCase=32 ,) -> str: lowerCAmelCase__ : Optional[int] = parent lowerCAmelCase__ : Optional[int] = batch_size lowerCAmelCase__ : Optional[int] = is_training lowerCAmelCase__ : Dict = use_auxiliary_loss lowerCAmelCase__ : Union[str, Any] = num_queries lowerCAmelCase__ : str = num_channels lowerCAmelCase__ : List[str] = min_size lowerCAmelCase__ : int = max_size lowerCAmelCase__ : Optional[Any] = num_labels lowerCAmelCase__ : List[Any] = mask_feature_size def UpperCAmelCase_ ( self ) -> Tuple: lowerCAmelCase__ : str = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( __UpperCAmelCase ) lowerCAmelCase__ : str = torch.ones([self.batch_size, self.min_size, self.max_size] ,device=__UpperCAmelCase ) lowerCAmelCase__ : Any = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] ,device=__UpperCAmelCase ) > 0.5 ).float() lowerCAmelCase__ : Optional[int] = (torch.rand((self.batch_size, self.num_labels) ,device=__UpperCAmelCase ) > 0.5).long() lowerCAmelCase__ : Any = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def UpperCAmelCase_ ( self ) -> Dict: return MaskFormerConfig.from_backbone_and_decoder_configs( backbone_config=SwinConfig( depths=[1, 1, 1, 1] ,) ,decoder_config=DetrConfig( decoder_ffn_dim=128 ,num_queries=self.num_queries ,decoder_attention_heads=2 ,d_model=self.mask_feature_size ,) ,mask_feature_size=self.mask_feature_size ,fpn_feature_size=self.mask_feature_size ,num_channels=self.num_channels ,num_labels=self.num_labels ,) def UpperCAmelCase_ ( self ) -> Optional[int]: lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : List[str] = self.prepare_config_and_inputs() lowerCAmelCase__ : List[str] = {"""pixel_values""": pixel_values, """pixel_mask""": pixel_mask} return config, inputs_dict def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase ) -> Any: lowerCAmelCase__ : Optional[int] = output.encoder_hidden_states lowerCAmelCase__ : Optional[int] = output.pixel_decoder_hidden_states lowerCAmelCase__ : Dict = output.transformer_decoder_hidden_states self.parent.assertTrue(len(__UpperCAmelCase ) ,len(config.backbone_config.depths ) ) self.parent.assertTrue(len(__UpperCAmelCase ) ,len(config.backbone_config.depths ) ) self.parent.assertTrue(len(__UpperCAmelCase ) ,config.decoder_config.decoder_layers ) def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase=False ) -> Optional[Any]: with torch.no_grad(): lowerCAmelCase__ : int = MaskFormerModel(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() lowerCAmelCase__ : str = model(pixel_values=__UpperCAmelCase ,pixel_mask=__UpperCAmelCase ) lowerCAmelCase__ : int = model(__UpperCAmelCase ,output_hidden_states=__UpperCAmelCase ) # the correct shape of output.transformer_decoder_hidden_states ensure the correcteness of the # encoder and pixel decoder self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape ,(self.batch_size, self.num_queries, self.mask_feature_size) ,) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(__UpperCAmelCase ,__UpperCAmelCase ) def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ) -> Optional[int]: lowerCAmelCase__ : Dict = MaskFormerForInstanceSegmentation(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() def comm_check_on_output(__UpperCAmelCase ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape ,(self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) ,) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape ,(self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): lowerCAmelCase__ : List[Any] = model(pixel_values=__UpperCAmelCase ,pixel_mask=__UpperCAmelCase ) lowerCAmelCase__ : Dict = model(__UpperCAmelCase ) comm_check_on_output(__UpperCAmelCase ) lowerCAmelCase__ : Optional[int] = model( pixel_values=__UpperCAmelCase ,pixel_mask=__UpperCAmelCase ,mask_labels=__UpperCAmelCase ,class_labels=__UpperCAmelCase ) comm_check_on_output(__UpperCAmelCase ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape ,torch.Size([1] ) ) @require_torch class lowerCAmelCase_( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ): '''simple docstring''' __lowercase : Optional[Any] = (MaskFormerModel, MaskFormerForInstanceSegmentation) if is_torch_available() else () __lowercase : int = ( {'''feature-extraction''': MaskFormerModel, '''image-segmentation''': MaskFormerForInstanceSegmentation} if is_torch_available() else {} ) __lowercase : Union[str, Any] = False __lowercase : Dict = False __lowercase : Tuple = False __lowercase : List[Any] = False def UpperCAmelCase_ ( self ) -> Optional[int]: lowerCAmelCase__ : str = MaskFormerModelTester(self ) lowerCAmelCase__ : List[Any] = ConfigTester(self ,config_class=__UpperCAmelCase ,has_text_modality=__UpperCAmelCase ) def UpperCAmelCase_ ( self ) -> List[str]: self.config_tester.run_common_tests() def UpperCAmelCase_ ( self ) -> Union[str, Any]: lowerCAmelCase__ , lowerCAmelCase__ : str = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskformer_model(__UpperCAmelCase ,**__UpperCAmelCase ,output_hidden_states=__UpperCAmelCase ) def UpperCAmelCase_ ( self ) -> Optional[int]: lowerCAmelCase__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskformer_instance_segmentation_head_model(*__UpperCAmelCase ) @unittest.skip(reason="""MaskFormer does not use inputs_embeds""" ) def UpperCAmelCase_ ( self ) -> List[Any]: pass @unittest.skip(reason="""MaskFormer does not have a get_input_embeddings method""" ) def UpperCAmelCase_ ( self ) -> str: pass @unittest.skip(reason="""MaskFormer is not a generative model""" ) def UpperCAmelCase_ ( self ) -> Any: pass @unittest.skip(reason="""MaskFormer does not use token embeddings""" ) def UpperCAmelCase_ ( self ) -> List[str]: pass @require_torch_multi_gpu @unittest.skip( reason="""MaskFormer has some layers using `add_module` which doesn't work well with `nn.DataParallel`""" ) def UpperCAmelCase_ ( self ) -> Union[str, Any]: pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def UpperCAmelCase_ ( self ) -> List[str]: pass def UpperCAmelCase_ ( self ) -> Tuple: lowerCAmelCase__ , lowerCAmelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase__ : str = model_class(__UpperCAmelCase ) lowerCAmelCase__ : Dict = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase__ : Dict = [*signature.parameters.keys()] lowerCAmelCase__ : Tuple = ["""pixel_values"""] self.assertListEqual(arg_names[:1] ,__UpperCAmelCase ) @slow def UpperCAmelCase_ ( self ) -> Union[str, Any]: for model_name in ["facebook/maskformer-swin-small-coco"]: lowerCAmelCase__ : List[str] = MaskFormerModel.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) def UpperCAmelCase_ ( self ) -> str: lowerCAmelCase__ : List[Any] = (self.model_tester.min_size,) * 2 lowerCAmelCase__ : Any = { """pixel_values""": torch.randn((2, 3, *size) ,device=__UpperCAmelCase ), """mask_labels""": torch.randn((2, 10, *size) ,device=__UpperCAmelCase ), """class_labels""": torch.zeros(2 ,10 ,device=__UpperCAmelCase ).long(), } lowerCAmelCase__ : Tuple = MaskFormerForInstanceSegmentation(MaskFormerConfig() ).to(__UpperCAmelCase ) lowerCAmelCase__ : Union[str, Any] = model(**__UpperCAmelCase ) self.assertTrue(outputs.loss is not None ) def UpperCAmelCase_ ( self ) -> str: lowerCAmelCase__ , lowerCAmelCase__ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskformer_model(__UpperCAmelCase ,**__UpperCAmelCase ,output_hidden_states=__UpperCAmelCase ) def UpperCAmelCase_ ( self ) -> Tuple: lowerCAmelCase__ , lowerCAmelCase__ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase__ : int = model_class(__UpperCAmelCase ).to(__UpperCAmelCase ) lowerCAmelCase__ : List[Any] = model(**__UpperCAmelCase ,output_attentions=__UpperCAmelCase ) self.assertTrue(outputs.attentions is not None ) def UpperCAmelCase_ ( self ) -> int: if not self.model_tester.is_training: return # only MaskFormerForInstanceSegmentation has the loss lowerCAmelCase__ : Dict = self.all_model_classes[1] lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs() lowerCAmelCase__ : List[Any] = model_class(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.train() lowerCAmelCase__ : List[str] = model(__UpperCAmelCase ,mask_labels=__UpperCAmelCase ,class_labels=__UpperCAmelCase ).loss loss.backward() def UpperCAmelCase_ ( self ) -> List[str]: # only MaskFormerForInstanceSegmentation has the loss lowerCAmelCase__ : Tuple = self.all_model_classes[1] lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs() lowerCAmelCase__ : Union[str, Any] = True lowerCAmelCase__ : Tuple = True lowerCAmelCase__ : Optional[Any] = model_class(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.train() lowerCAmelCase__ : Dict = model(__UpperCAmelCase ,mask_labels=__UpperCAmelCase ,class_labels=__UpperCAmelCase ) lowerCAmelCase__ : Optional[Any] = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() lowerCAmelCase__ : str = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() # we requires_grad=True in inputs_embeds (line 2152), the original implementation don't lowerCAmelCase__ : Union[str, Any] = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() lowerCAmelCase__ : List[Any] = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=__UpperCAmelCase ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) _lowerCAmelCase = 1e-4 def _SCREAMING_SNAKE_CASE ( ): """simple docstring""" lowerCAmelCase__ : Union[str, Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_vision @slow class lowerCAmelCase_( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCAmelCase_ ( self ) -> List[Any]: return ( MaskFormerImageProcessor.from_pretrained("""facebook/maskformer-swin-small-coco""" ) if is_vision_available() else None ) def UpperCAmelCase_ ( self ) -> Any: lowerCAmelCase__ : Any = MaskFormerModel.from_pretrained("""facebook/maskformer-swin-small-coco""" ).to(__UpperCAmelCase ) lowerCAmelCase__ : str = self.default_image_processor lowerCAmelCase__ : str = prepare_img() lowerCAmelCase__ : Optional[int] = image_processor(__UpperCAmelCase ,return_tensors="""pt""" ).to(__UpperCAmelCase ) lowerCAmelCase__ : Dict = inputs["""pixel_values"""].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(__UpperCAmelCase ,(1, 3, 800, 1088) ) with torch.no_grad(): lowerCAmelCase__ : Union[str, Any] = model(**__UpperCAmelCase ) lowerCAmelCase__ : Optional[Any] = torch.tensor( [[-0.0_4_8_2, 0.9_2_2_8, 0.4_9_5_1], [-0.2_5_4_7, 0.8_0_1_7, 0.8_5_2_7], [-0.0_0_6_9, 0.3_3_8_5, -0.0_0_8_9]] ).to(__UpperCAmelCase ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] ,__UpperCAmelCase ,atol=__UpperCAmelCase ) ) lowerCAmelCase__ : Dict = torch.tensor( [[-0.8_4_2_2, -0.8_4_3_4, -0.9_7_1_8], [-1.0_1_4_4, -0.5_5_6_5, -0.4_1_9_5], [-1.0_0_3_8, -0.4_4_8_4, -0.1_9_6_1]] ).to(__UpperCAmelCase ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] ,__UpperCAmelCase ,atol=__UpperCAmelCase ) ) lowerCAmelCase__ : Optional[int] = torch.tensor( [[0.2_8_5_2, -0.0_1_5_9, 0.9_7_3_5], [0.6_2_5_4, 0.1_8_5_8, 0.8_5_2_9], [-0.0_6_8_0, -0.4_1_1_6, 1.8_4_1_3]] ).to(__UpperCAmelCase ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] ,__UpperCAmelCase ,atol=__UpperCAmelCase ) ) def UpperCAmelCase_ ( self ) -> Optional[Any]: lowerCAmelCase__ : List[Any] = ( MaskFormerForInstanceSegmentation.from_pretrained("""facebook/maskformer-swin-small-coco""" ) .to(__UpperCAmelCase ) .eval() ) lowerCAmelCase__ : Optional[Any] = self.default_image_processor lowerCAmelCase__ : List[str] = prepare_img() lowerCAmelCase__ : str = image_processor(__UpperCAmelCase ,return_tensors="""pt""" ).to(__UpperCAmelCase ) lowerCAmelCase__ : Optional[int] = inputs["""pixel_values"""].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(__UpperCAmelCase ,(1, 3, 800, 1088) ) with torch.no_grad(): lowerCAmelCase__ : List[Any] = model(**__UpperCAmelCase ) # masks_queries_logits lowerCAmelCase__ : Optional[int] = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape ,(1, model.config.decoder_config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) ,) lowerCAmelCase__ : Optional[int] = [ [-1.3_7_3_7_1_2_4, -1.7_7_2_4_9_3_7, -1.9_3_6_4_2_3_3], [-1.5_9_7_7_2_8_1, -1.9_8_6_7_9_3_9, -2.1_5_2_3_6_9_5], [-1.5_7_9_5_3_9_8, -1.9_2_6_9_8_3_2, -2.0_9_3_9_4_2], ] lowerCAmelCase__ : Optional[int] = torch.tensor(__UpperCAmelCase ).to(__UpperCAmelCase ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] ,__UpperCAmelCase ,atol=__UpperCAmelCase ) ) # class_queries_logits lowerCAmelCase__ : Tuple = outputs.class_queries_logits self.assertEqual( class_queries_logits.shape ,(1, model.config.decoder_config.num_queries, model.config.num_labels + 1) ) lowerCAmelCase__ : Union[str, Any] = torch.tensor( [ [1.65_12E00, -5.25_72E00, -3.35_19E00], [3.61_69E-02, -5.90_25E00, -2.93_13E00], [1.07_66E-04, -7.76_30E00, -5.12_63E00], ] ).to(__UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] ,__UpperCAmelCase ,atol=__UpperCAmelCase ) ) def UpperCAmelCase_ ( self ) -> str: lowerCAmelCase__ : List[Any] = ( MaskFormerForInstanceSegmentation.from_pretrained("""facebook/maskformer-resnet101-coco-stuff""" ) .to(__UpperCAmelCase ) .eval() ) lowerCAmelCase__ : Optional[Any] = self.default_image_processor lowerCAmelCase__ : int = prepare_img() lowerCAmelCase__ : Optional[Any] = image_processor(__UpperCAmelCase ,return_tensors="""pt""" ).to(__UpperCAmelCase ) lowerCAmelCase__ : str = inputs["""pixel_values"""].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(__UpperCAmelCase ,(1, 3, 800, 1088) ) with torch.no_grad(): lowerCAmelCase__ : str = model(**__UpperCAmelCase ) # masks_queries_logits lowerCAmelCase__ : Optional[Any] = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape ,(1, model.config.decoder_config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) ,) lowerCAmelCase__ : int = [[-0.9_0_4_6, -2.6_3_6_6, -4.6_0_6_2], [-3.4_1_7_9, -5.7_8_9_0, -8.8_0_5_7], [-4.9_1_7_9, -7.6_5_6_0, -1_0.7_7_1_1]] lowerCAmelCase__ : List[str] = torch.tensor(__UpperCAmelCase ).to(__UpperCAmelCase ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] ,__UpperCAmelCase ,atol=__UpperCAmelCase ) ) # class_queries_logits lowerCAmelCase__ : Optional[Any] = outputs.class_queries_logits self.assertEqual( class_queries_logits.shape ,(1, model.config.decoder_config.num_queries, model.config.num_labels + 1) ) lowerCAmelCase__ : Tuple = torch.tensor( [[4.7_1_8_8, -3.2_5_8_5, -2.8_8_5_7], [6.6_8_7_1, -2.9_1_8_1, -1.2_4_8_7], [7.2_4_4_9, -2.2_7_6_4, -2.1_8_7_4]] ).to(__UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] ,__UpperCAmelCase ,atol=__UpperCAmelCase ) ) def UpperCAmelCase_ ( self ) -> Optional[Any]: lowerCAmelCase__ : str = ( MaskFormerForInstanceSegmentation.from_pretrained("""facebook/maskformer-swin-small-coco""" ) .to(__UpperCAmelCase ) .eval() ) lowerCAmelCase__ : Dict = self.default_image_processor lowerCAmelCase__ : Union[str, Any] = image_processor( [np.zeros((3, 800, 1333) ), np.zeros((3, 800, 1333) )] ,segmentation_maps=[np.zeros((384, 384) ).astype(np.floataa ), np.zeros((384, 384) ).astype(np.floataa )] ,return_tensors="""pt""" ,) lowerCAmelCase__ : Tuple = inputs["""pixel_values"""].to(__UpperCAmelCase ) lowerCAmelCase__ : Union[str, Any] = [el.to(__UpperCAmelCase ) for el in inputs["""mask_labels"""]] lowerCAmelCase__ : Union[str, Any] = [el.to(__UpperCAmelCase ) for el in inputs["""class_labels"""]] with torch.no_grad(): lowerCAmelCase__ : Any = model(**__UpperCAmelCase ) self.assertTrue(outputs.loss is not None )
37
import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler __lowercase = 16 __lowercase = 32 def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = 16 , SCREAMING_SNAKE_CASE = "bert-base-cased" ): '''simple docstring''' __UpperCamelCase :List[str] = AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE ) __UpperCamelCase :Any = load_dataset('''glue''' , '''mrpc''' ) def tokenize_function(SCREAMING_SNAKE_CASE ): # max_length=None => use the model max length (it's actually the default) __UpperCamelCase :int = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=SCREAMING_SNAKE_CASE , max_length=SCREAMING_SNAKE_CASE ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset __UpperCamelCase :Tuple = datasets.map( SCREAMING_SNAKE_CASE , batched=SCREAMING_SNAKE_CASE , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , load_from_cache_file=SCREAMING_SNAKE_CASE ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library __UpperCamelCase :List[str] = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(SCREAMING_SNAKE_CASE ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(SCREAMING_SNAKE_CASE , padding='''max_length''' , max_length=128 , return_tensors='''pt''' ) return tokenizer.pad(SCREAMING_SNAKE_CASE , padding='''longest''' , return_tensors='''pt''' ) # Instantiate dataloaders. __UpperCamelCase :Union[str, Any] = DataLoader( tokenized_datasets['''train'''] , shuffle=SCREAMING_SNAKE_CASE , collate_fn=SCREAMING_SNAKE_CASE , batch_size=SCREAMING_SNAKE_CASE ) __UpperCamelCase :Dict = DataLoader( tokenized_datasets['''validation'''] , shuffle=SCREAMING_SNAKE_CASE , collate_fn=SCREAMING_SNAKE_CASE , batch_size=SCREAMING_SNAKE_CASE ) return train_dataloader, eval_dataloader def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCamelCase :List[Any] = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs __UpperCamelCase :int = config['''lr'''] __UpperCamelCase :str = int(config['''num_epochs'''] ) __UpperCamelCase :Any = int(config['''seed'''] ) __UpperCamelCase :Dict = int(config['''batch_size'''] ) __UpperCamelCase :Optional[Any] = args.model_name_or_path set_seed(SCREAMING_SNAKE_CASE ) __UpperCamelCase , __UpperCamelCase :Dict = get_dataloaders(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) __UpperCamelCase :Any = AutoModelForSequenceClassification.from_pretrained(SCREAMING_SNAKE_CASE , return_dict=SCREAMING_SNAKE_CASE ) # Instantiate optimizer __UpperCamelCase :List[str] = ( AdamW if accelerator.state.deepspeed_plugin is None or '''optimizer''' not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) __UpperCamelCase :Optional[Any] = optimizer_cls(params=model.parameters() , lr=SCREAMING_SNAKE_CASE ) if accelerator.state.deepspeed_plugin is not None: __UpperCamelCase :Dict = accelerator.state.deepspeed_plugin.deepspeed_config[ '''gradient_accumulation_steps''' ] else: __UpperCamelCase :Dict = 1 __UpperCamelCase :Tuple = (len(SCREAMING_SNAKE_CASE ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): __UpperCamelCase :str = get_linear_schedule_with_warmup( optimizer=SCREAMING_SNAKE_CASE , num_warmup_steps=0 , num_training_steps=SCREAMING_SNAKE_CASE , ) else: __UpperCamelCase :Dict = DummyScheduler(SCREAMING_SNAKE_CASE , total_num_steps=SCREAMING_SNAKE_CASE , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase :int = accelerator.prepare( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # We need to keep track of how many total steps we have iterated over __UpperCamelCase :List[Any] = 0 # We also need to keep track of the stating epoch so files are named properly __UpperCamelCase :Dict = 0 # Now we train the model __UpperCamelCase :Any = evaluate.load('''glue''' , '''mrpc''' ) __UpperCamelCase :Union[str, Any] = 0 __UpperCamelCase :Optional[int] = {} for epoch in range(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): model.train() for step, batch in enumerate(SCREAMING_SNAKE_CASE ): __UpperCamelCase :Optional[Any] = model(**SCREAMING_SNAKE_CASE ) __UpperCamelCase :Tuple = outputs.loss __UpperCamelCase :str = loss / gradient_accumulation_steps accelerator.backward(SCREAMING_SNAKE_CASE ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 model.eval() __UpperCamelCase :Any = 0 for step, batch in enumerate(SCREAMING_SNAKE_CASE ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): __UpperCamelCase :Any = model(**SCREAMING_SNAKE_CASE ) __UpperCamelCase :Optional[int] = outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times __UpperCamelCase , __UpperCamelCase :List[Any] = accelerator.gather( (predictions, batch['''labels''']) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(SCREAMING_SNAKE_CASE ) - 1: __UpperCamelCase :List[str] = predictions[: len(eval_dataloader.dataset ) - samples_seen] __UpperCamelCase :Optional[int] = references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=SCREAMING_SNAKE_CASE , references=SCREAMING_SNAKE_CASE , ) __UpperCamelCase :Dict = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"""epoch {epoch}:""" , SCREAMING_SNAKE_CASE ) __UpperCamelCase :str = eval_metric['''accuracy'''] if best_performance < eval_metric["accuracy"]: __UpperCamelCase :int = eval_metric['''accuracy'''] if args.performance_lower_bound is not None: assert ( args.performance_lower_bound <= best_performance ), f"""Best performance metric {best_performance} is lower than the lower bound {args.performance_lower_bound}""" accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , '''all_results.json''' ) , '''w''' ) as f: json.dump(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def lowerCamelCase ( ): '''simple docstring''' __UpperCamelCase :Tuple = argparse.ArgumentParser(description='''Simple example of training script tracking peak GPU memory usage.''' ) parser.add_argument( '''--model_name_or_path''' , type=SCREAMING_SNAKE_CASE , default='''bert-base-cased''' , help='''Path to pretrained model or model identifier from huggingface.co/models.''' , required=SCREAMING_SNAKE_CASE , ) parser.add_argument( '''--output_dir''' , type=SCREAMING_SNAKE_CASE , default='''.''' , help='''Optional save directory where all checkpoint folders will be stored. Default is the current working directory.''' , ) parser.add_argument( '''--performance_lower_bound''' , type=SCREAMING_SNAKE_CASE , default=SCREAMING_SNAKE_CASE , help='''Optional lower bound for the performance metric. If set, the training will throw error when the performance metric drops below this value.''' , ) parser.add_argument( '''--num_epochs''' , type=SCREAMING_SNAKE_CASE , default=3 , help='''Number of train epochs.''' , ) __UpperCamelCase :List[str] = parser.parse_args() __UpperCamelCase :Tuple = {'''lr''': 2e-5, '''num_epochs''': args.num_epochs, '''seed''': 42, '''batch_size''': 16} training_function(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if __name__ == "__main__": main()
43
0
'''simple docstring''' import string import numpy def lowerCAmelCase__ ( lowerCamelCase : int ,lowerCamelCase : int ): return b if a == 0 else greatest_common_divisor(b % a ,lowerCamelCase ) class __lowerCamelCase : """simple docstring""" a = string.ascii_uppercase + string.digits # This cipher takes alphanumerics into account # i.e. a total of 36 characters # take x and return x % len(key_string) a = numpy.vectorize(lambda a_ : x % 36 ) a = numpy.vectorize(a_ ) def __init__( self : List[Any] , SCREAMING_SNAKE_CASE : numpy.ndarray): _A : Union[str, Any] = self.modulus(SCREAMING_SNAKE_CASE) # mod36 calc's on the encrypt key self.check_determinant() # validate the determinant of the encryption key _A : Optional[int] = encrypt_key.shape[0] def A ( self : List[str] , SCREAMING_SNAKE_CASE : str): return self.key_string.index(SCREAMING_SNAKE_CASE) def A ( self : Union[str, Any] , SCREAMING_SNAKE_CASE : int): return self.key_string[round(SCREAMING_SNAKE_CASE)] def A ( self : List[Any]): _A : Optional[Any] = round(numpy.linalg.det(self.encrypt_key)) if det < 0: _A : int = det % len(self.key_string) _A : str = len(self.key_string) if greatest_common_divisor(SCREAMING_SNAKE_CASE , len(self.key_string)) != 1: _A : Optional[int] = ( F'determinant modular {req_l} of encryption key({det}) ' F'is not co prime w.r.t {req_l}.\nTry another key.' ) raise ValueError(SCREAMING_SNAKE_CASE) def A ( self : int , SCREAMING_SNAKE_CASE : str): _A : List[Any] = [char for char in text.upper() if char in self.key_string] _A : List[str] = chars[-1] while len(SCREAMING_SNAKE_CASE) % self.break_key != 0: chars.append(SCREAMING_SNAKE_CASE) return "".join(SCREAMING_SNAKE_CASE) def A ( self : Optional[int] , SCREAMING_SNAKE_CASE : str): _A : Optional[int] = self.process_text(text.upper()) _A : List[str] = '' for i in range(0 , len(SCREAMING_SNAKE_CASE) - self.break_key + 1 , self.break_key): _A : Optional[Any] = text[i : i + self.break_key] _A : Optional[int] = [self.replace_letters(SCREAMING_SNAKE_CASE) for char in batch] _A : Tuple = numpy.array([vec]).T _A : List[str] = self.modulus(self.encrypt_key.dot(SCREAMING_SNAKE_CASE)).T.tolist()[ 0 ] _A : str = ''.join( self.replace_digits(SCREAMING_SNAKE_CASE) for num in batch_encrypted) encrypted += encrypted_batch return encrypted def A ( self : Union[str, Any]): _A : List[Any] = round(numpy.linalg.det(self.encrypt_key)) if det < 0: _A : Optional[int] = det % len(self.key_string) _A : List[str] = None for i in range(len(self.key_string)): if (det * i) % len(self.key_string) == 1: _A : Union[str, Any] = i break _A : Dict = ( det_inv * numpy.linalg.det(self.encrypt_key) * numpy.linalg.inv(self.encrypt_key) ) return self.to_int(self.modulus(SCREAMING_SNAKE_CASE)) def A ( self : Any , SCREAMING_SNAKE_CASE : str): _A : List[str] = self.make_decrypt_key() _A : Dict = self.process_text(text.upper()) _A : str = '' for i in range(0 , len(SCREAMING_SNAKE_CASE) - self.break_key + 1 , self.break_key): _A : Optional[int] = text[i : i + self.break_key] _A : Union[str, Any] = [self.replace_letters(SCREAMING_SNAKE_CASE) for char in batch] _A : Tuple = numpy.array([vec]).T _A : Optional[int] = self.modulus(decrypt_key.dot(SCREAMING_SNAKE_CASE)).T.tolist()[0] _A : Tuple = ''.join( self.replace_digits(SCREAMING_SNAKE_CASE) for num in batch_decrypted) decrypted += decrypted_batch return decrypted def lowerCAmelCase__ ( ): _A : List[Any] = int(input('Enter the order of the encryption key: ' ) ) _A : List[str] = [] print('Enter each row of the encryption key with space separated integers' ) for _ in range(lowerCamelCase ): _A : str = [int(lowerCamelCase ) for x in input().split()] hill_matrix.append(lowerCamelCase ) _A : Dict = HillCipher(numpy.array(lowerCamelCase ) ) print('Would you like to encrypt or decrypt some text? (1 or 2)' ) _A : List[str] = input('\n1. Encrypt\n2. Decrypt\n' ) if option == "1": _A : int = input('What text would you like to encrypt?: ' ) print('Your encrypted text is:' ) print(hc.encrypt(lowerCamelCase ) ) elif option == "2": _A : int = input('What text would you like to decrypt?: ' ) print('Your decrypted text is:' ) print(hc.decrypt(lowerCamelCase ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
227
'''simple docstring''' import string import numpy def lowerCAmelCase__ ( lowerCamelCase : int ,lowerCamelCase : int ): return b if a == 0 else greatest_common_divisor(b % a ,lowerCamelCase ) class __lowerCamelCase : """simple docstring""" a = string.ascii_uppercase + string.digits # This cipher takes alphanumerics into account # i.e. a total of 36 characters # take x and return x % len(key_string) a = numpy.vectorize(lambda a_ : x % 36 ) a = numpy.vectorize(a_ ) def __init__( self : List[Any] , SCREAMING_SNAKE_CASE : numpy.ndarray): _A : Union[str, Any] = self.modulus(SCREAMING_SNAKE_CASE) # mod36 calc's on the encrypt key self.check_determinant() # validate the determinant of the encryption key _A : Optional[int] = encrypt_key.shape[0] def A ( self : List[str] , SCREAMING_SNAKE_CASE : str): return self.key_string.index(SCREAMING_SNAKE_CASE) def A ( self : Union[str, Any] , SCREAMING_SNAKE_CASE : int): return self.key_string[round(SCREAMING_SNAKE_CASE)] def A ( self : List[Any]): _A : Optional[Any] = round(numpy.linalg.det(self.encrypt_key)) if det < 0: _A : int = det % len(self.key_string) _A : str = len(self.key_string) if greatest_common_divisor(SCREAMING_SNAKE_CASE , len(self.key_string)) != 1: _A : Optional[int] = ( F'determinant modular {req_l} of encryption key({det}) ' F'is not co prime w.r.t {req_l}.\nTry another key.' ) raise ValueError(SCREAMING_SNAKE_CASE) def A ( self : int , SCREAMING_SNAKE_CASE : str): _A : List[Any] = [char for char in text.upper() if char in self.key_string] _A : List[str] = chars[-1] while len(SCREAMING_SNAKE_CASE) % self.break_key != 0: chars.append(SCREAMING_SNAKE_CASE) return "".join(SCREAMING_SNAKE_CASE) def A ( self : Optional[int] , SCREAMING_SNAKE_CASE : str): _A : Optional[int] = self.process_text(text.upper()) _A : List[str] = '' for i in range(0 , len(SCREAMING_SNAKE_CASE) - self.break_key + 1 , self.break_key): _A : Optional[Any] = text[i : i + self.break_key] _A : Optional[int] = [self.replace_letters(SCREAMING_SNAKE_CASE) for char in batch] _A : Tuple = numpy.array([vec]).T _A : List[str] = self.modulus(self.encrypt_key.dot(SCREAMING_SNAKE_CASE)).T.tolist()[ 0 ] _A : str = ''.join( self.replace_digits(SCREAMING_SNAKE_CASE) for num in batch_encrypted) encrypted += encrypted_batch return encrypted def A ( self : Union[str, Any]): _A : List[Any] = round(numpy.linalg.det(self.encrypt_key)) if det < 0: _A : Optional[int] = det % len(self.key_string) _A : List[str] = None for i in range(len(self.key_string)): if (det * i) % len(self.key_string) == 1: _A : Union[str, Any] = i break _A : Dict = ( det_inv * numpy.linalg.det(self.encrypt_key) * numpy.linalg.inv(self.encrypt_key) ) return self.to_int(self.modulus(SCREAMING_SNAKE_CASE)) def A ( self : Any , SCREAMING_SNAKE_CASE : str): _A : List[str] = self.make_decrypt_key() _A : Dict = self.process_text(text.upper()) _A : str = '' for i in range(0 , len(SCREAMING_SNAKE_CASE) - self.break_key + 1 , self.break_key): _A : Optional[int] = text[i : i + self.break_key] _A : Union[str, Any] = [self.replace_letters(SCREAMING_SNAKE_CASE) for char in batch] _A : Tuple = numpy.array([vec]).T _A : Optional[int] = self.modulus(decrypt_key.dot(SCREAMING_SNAKE_CASE)).T.tolist()[0] _A : Tuple = ''.join( self.replace_digits(SCREAMING_SNAKE_CASE) for num in batch_decrypted) decrypted += decrypted_batch return decrypted def lowerCAmelCase__ ( ): _A : List[Any] = int(input('Enter the order of the encryption key: ' ) ) _A : List[str] = [] print('Enter each row of the encryption key with space separated integers' ) for _ in range(lowerCamelCase ): _A : str = [int(lowerCamelCase ) for x in input().split()] hill_matrix.append(lowerCamelCase ) _A : Dict = HillCipher(numpy.array(lowerCamelCase ) ) print('Would you like to encrypt or decrypt some text? (1 or 2)' ) _A : List[str] = input('\n1. Encrypt\n2. Decrypt\n' ) if option == "1": _A : int = input('What text would you like to encrypt?: ' ) print('Your encrypted text is:' ) print(hc.encrypt(lowerCamelCase ) ) elif option == "2": _A : int = input('What text would you like to decrypt?: ' ) print('Your decrypted text is:' ) print(hc.decrypt(lowerCamelCase ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
227
1
"""simple docstring""" def lowercase_ ( _snake_case ,_snake_case ): return int((input_a, input_a).count(0 ) != 0 ) def lowercase_ ( ): assert nand_gate(0 ,0 ) == 1 assert nand_gate(0 ,1 ) == 1 assert nand_gate(1 ,0 ) == 1 assert nand_gate(1 ,1 ) == 0 if __name__ == "__main__": print(nand_gate(0, 0)) print(nand_gate(0, 1)) print(nand_gate(1, 0)) print(nand_gate(1, 1))
25
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCAmelCase__ : str = logging.get_logger(__name__) UpperCAmelCase__ : Optional[int] = { 'hustvl/yolos-small': 'https://huggingface.co/hustvl/yolos-small/resolve/main/config.json', # See all YOLOS models at https://huggingface.co/models?filter=yolos } class lowerCAmelCase_ (a__ ): """simple docstring""" __UpperCamelCase : int = '''yolos''' def __init__(self , SCREAMING_SNAKE_CASE__=7_68 , SCREAMING_SNAKE_CASE__=12 , SCREAMING_SNAKE_CASE__=12 , SCREAMING_SNAKE_CASE__=30_72 , SCREAMING_SNAKE_CASE__="gelu" , SCREAMING_SNAKE_CASE__=0.0 , SCREAMING_SNAKE_CASE__=0.0 , SCREAMING_SNAKE_CASE__=0.02 , SCREAMING_SNAKE_CASE__=1E-12 , SCREAMING_SNAKE_CASE__=[5_12, 8_64] , SCREAMING_SNAKE_CASE__=16 , SCREAMING_SNAKE_CASE__=3 , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=1_00 , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=False , SCREAMING_SNAKE_CASE__=1 , SCREAMING_SNAKE_CASE__=5 , SCREAMING_SNAKE_CASE__=2 , SCREAMING_SNAKE_CASE__=5 , SCREAMING_SNAKE_CASE__=2 , SCREAMING_SNAKE_CASE__=0.1 , **SCREAMING_SNAKE_CASE__ , ) -> Optional[Any]: """simple docstring""" super().__init__(**SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Optional[int] = hidden_size SCREAMING_SNAKE_CASE__ : int = num_hidden_layers SCREAMING_SNAKE_CASE__ : str = num_attention_heads SCREAMING_SNAKE_CASE__ : List[str] = intermediate_size SCREAMING_SNAKE_CASE__ : Optional[Any] = hidden_act SCREAMING_SNAKE_CASE__ : List[Any] = hidden_dropout_prob SCREAMING_SNAKE_CASE__ : Optional[Any] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ : Optional[int] = initializer_range SCREAMING_SNAKE_CASE__ : Dict = layer_norm_eps SCREAMING_SNAKE_CASE__ : List[str] = image_size SCREAMING_SNAKE_CASE__ : Optional[Any] = patch_size SCREAMING_SNAKE_CASE__ : List[str] = num_channels SCREAMING_SNAKE_CASE__ : List[str] = qkv_bias SCREAMING_SNAKE_CASE__ : Optional[int] = num_detection_tokens SCREAMING_SNAKE_CASE__ : Optional[Any] = use_mid_position_embeddings SCREAMING_SNAKE_CASE__ : List[str] = auxiliary_loss # Hungarian matcher SCREAMING_SNAKE_CASE__ : Optional[Any] = class_cost SCREAMING_SNAKE_CASE__ : List[str] = bbox_cost SCREAMING_SNAKE_CASE__ : List[Any] = giou_cost # Loss coefficients SCREAMING_SNAKE_CASE__ : Optional[Any] = bbox_loss_coefficient SCREAMING_SNAKE_CASE__ : List[str] = giou_loss_coefficient SCREAMING_SNAKE_CASE__ : int = eos_coefficient class lowerCAmelCase_ (a__ ): """simple docstring""" __UpperCamelCase : Dict = version.parse('''1.11''' ) @property def __magic_name__ (self ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def __magic_name__ (self ) -> float: """simple docstring""" return 1E-4 @property def __magic_name__ (self ) -> int: """simple docstring""" return 12
25
1
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase_ : str = logging.get_logger(__name__) lowerCamelCase_ : Optional[int] = { """xlm-roberta-base""": """https://huggingface.co/xlm-roberta-base/resolve/main/config.json""", """xlm-roberta-large""": """https://huggingface.co/xlm-roberta-large/resolve/main/config.json""", """xlm-roberta-large-finetuned-conll02-dutch""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/config.json""" ), """xlm-roberta-large-finetuned-conll02-spanish""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/config.json""" ), """xlm-roberta-large-finetuned-conll03-english""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/config.json""" ), """xlm-roberta-large-finetuned-conll03-german""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/config.json""" ), } class __A ( _SCREAMING_SNAKE_CASE ): """simple docstring""" __lowerCAmelCase = "xlm-roberta" def __init__( self , __A=3_0522 , __A=768 , __A=12 , __A=12 , __A=3072 , __A="gelu" , __A=0.1 , __A=0.1 , __A=512 , __A=2 , __A=0.02 , __A=1E-1_2 , __A=1 , __A=0 , __A=2 , __A="absolute" , __A=True , __A=None , **__A , ) -> str: super().__init__(pad_token_id=__A , bos_token_id=__A , eos_token_id=__A , **__A ) a =vocab_size a =hidden_size a =num_hidden_layers a =num_attention_heads a =hidden_act a =intermediate_size a =hidden_dropout_prob a =attention_probs_dropout_prob a =max_position_embeddings a =type_vocab_size a =initializer_range a =layer_norm_eps a =position_embedding_type a =use_cache a =classifier_dropout class __A ( _SCREAMING_SNAKE_CASE ): """simple docstring""" @property def SCREAMING_SNAKE_CASE ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": a ={0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: a ={0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
215
"""simple docstring""" import logging import os import sys from dataclasses import dataclass, field from typing import Optional import evaluate import numpy as np import torch from datasets import load_dataset from PIL import Image from torchvision.transforms import ( CenterCrop, Compose, Normalize, RandomHorizontalFlip, RandomResizedCrop, Resize, ToTensor, ) import transformers from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, AutoConfig, AutoImageProcessor, AutoModelForImageClassification, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version lowerCamelCase_ : Any = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("""4.31.0""") require_version("""datasets>=1.8.0""", """To fix: pip install -r examples/pytorch/image-classification/requirements.txt""") lowerCamelCase_ : Any = list(MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING.keys()) lowerCamelCase_ : Dict = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) def _A ( lowercase ): """simple docstring""" with open(lowercase , '''rb''' ) as f: a =Image.open(lowercase ) return im.convert('''RGB''' ) @dataclass class __A : """simple docstring""" __lowerCAmelCase = field( default=_SCREAMING_SNAKE_CASE, metadata={ "help": "Name of a dataset from the hub (could be your own, possibly private dataset hosted on the hub)." }, ) __lowerCAmelCase = field( default=_SCREAMING_SNAKE_CASE, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} ) __lowerCAmelCase = field(default=_SCREAMING_SNAKE_CASE, metadata={"help": "A folder containing the training data."} ) __lowerCAmelCase = field(default=_SCREAMING_SNAKE_CASE, metadata={"help": "A folder containing the validation data."} ) __lowerCAmelCase = field( default=0.1_5, metadata={"help": "Percent to split off of train for validation."} ) __lowerCAmelCase = field( default=_SCREAMING_SNAKE_CASE, metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) }, ) __lowerCAmelCase = field( default=_SCREAMING_SNAKE_CASE, metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) }, ) def SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: if self.dataset_name is None and (self.train_dir is None and self.validation_dir is None): raise ValueError( '''You must specify either a dataset name from the hub or a train and/or validation directory.''' ) @dataclass class __A : """simple docstring""" __lowerCAmelCase = field( default="google/vit-base-patch16-224-in21k", metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}, ) __lowerCAmelCase = field( default=_SCREAMING_SNAKE_CASE, metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(_SCREAMING_SNAKE_CASE )}, ) __lowerCAmelCase = field( default=_SCREAMING_SNAKE_CASE, metadata={"help": "Pretrained config name or path if not the same as model_name"} ) __lowerCAmelCase = field( default=_SCREAMING_SNAKE_CASE, metadata={"help": "Where do you want to store the pretrained models downloaded from s3"} ) __lowerCAmelCase = field( default="main", metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."}, ) __lowerCAmelCase = field(default=_SCREAMING_SNAKE_CASE, metadata={"help": "Name or path of preprocessor config."} ) __lowerCAmelCase = field( default=_SCREAMING_SNAKE_CASE, metadata={ "help": ( "Will use the token generated when running `huggingface-cli login` (necessary to use this script " "with private models)." ) }, ) __lowerCAmelCase = field( default=_SCREAMING_SNAKE_CASE, metadata={"help": "Will enable to load a pretrained model whose head dimensions are different."}, ) def _A ( lowercase ): """simple docstring""" a =torch.stack([example['''pixel_values'''] for example in examples] ) a =torch.tensor([example['''labels'''] for example in examples] ) return {"pixel_values": pixel_values, "labels": labels} def _A ( ): """simple docstring""" # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. a =HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. a , a , a =parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: a , a , a =parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('''run_image_classification''' , lowercase , lowercase ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() a =training_args.get_process_log_level() logger.setLevel(lowercase ) transformers.utils.logging.set_verbosity(lowercase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}''' + f'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) logger.info(f'''Training/evaluation parameters {training_args}''' ) # Detecting last checkpoint. a =None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: a =get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' '''Use --overwrite_output_dir to overcome.''' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Set seed before initializing model. set_seed(training_args.seed ) # Initialize our dataset and prepare it for the 'image-classification' task. if data_args.dataset_name is not None: a =load_dataset( data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir , task='''image-classification''' , use_auth_token=True if model_args.use_auth_token else None , ) else: a ={} if data_args.train_dir is not None: a =os.path.join(data_args.train_dir , '''**''' ) if data_args.validation_dir is not None: a =os.path.join(data_args.validation_dir , '''**''' ) a =load_dataset( '''imagefolder''' , data_files=lowercase , cache_dir=model_args.cache_dir , task='''image-classification''' , ) # If we don't have a validation split, split off a percentage of train as validation. a =None if '''validation''' in dataset.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , lowercase ) and data_args.train_val_split > 0.0: a =dataset['''train'''].train_test_split(data_args.train_val_split ) a =split['''train'''] a =split['''test'''] # Prepare label mappings. # We'll include these in the model's config to get human readable labels in the Inference API. a =dataset['''train'''].features['''labels'''].names a , a ={}, {} for i, label in enumerate(lowercase ): a =str(lowercase ) a =label # Load the accuracy metric from the datasets package a =evaluate.load('''accuracy''' ) # Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(lowercase ): return metric.compute(predictions=np.argmax(p.predictions , axis=1 ) , references=p.label_ids ) a =AutoConfig.from_pretrained( model_args.config_name or model_args.model_name_or_path , num_labels=len(lowercase ) , labelaid=lowercase , idalabel=lowercase , finetuning_task='''image-classification''' , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) a =AutoModelForImageClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=lowercase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , ) a =AutoImageProcessor.from_pretrained( model_args.image_processor_name or model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # Define torchvision transforms to be applied to each image. if "shortest_edge" in image_processor.size: a =image_processor.size['''shortest_edge'''] else: a =(image_processor.size['''height'''], image_processor.size['''width''']) a =Normalize(mean=image_processor.image_mean , std=image_processor.image_std ) a =Compose( [ RandomResizedCrop(lowercase ), RandomHorizontalFlip(), ToTensor(), normalize, ] ) a =Compose( [ Resize(lowercase ), CenterCrop(lowercase ), ToTensor(), normalize, ] ) def train_transforms(lowercase ): a =[ _train_transforms(pil_img.convert('''RGB''' ) ) for pil_img in example_batch['''image'''] ] return example_batch def val_transforms(lowercase ): a =[_val_transforms(pil_img.convert('''RGB''' ) ) for pil_img in example_batch['''image''']] return example_batch if training_args.do_train: if "train" not in dataset: raise ValueError('''--do_train requires a train dataset''' ) if data_args.max_train_samples is not None: a =( dataset['''train'''].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) ) # Set the training transforms dataset["train"].set_transform(lowercase ) if training_args.do_eval: if "validation" not in dataset: raise ValueError('''--do_eval requires a validation dataset''' ) if data_args.max_eval_samples is not None: a =( dataset['''validation'''].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms dataset["validation"].set_transform(lowercase ) # Initalize our trainer a =Trainer( model=lowercase , args=lowercase , train_dataset=dataset['''train'''] if training_args.do_train else None , eval_dataset=dataset['''validation'''] if training_args.do_eval else None , compute_metrics=lowercase , tokenizer=lowercase , data_collator=lowercase , ) # Training if training_args.do_train: a =None if training_args.resume_from_checkpoint is not None: a =training_args.resume_from_checkpoint elif last_checkpoint is not None: a =last_checkpoint a =trainer.train(resume_from_checkpoint=lowercase ) trainer.save_model() trainer.log_metrics('''train''' , train_result.metrics ) trainer.save_metrics('''train''' , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: a =trainer.evaluate() trainer.log_metrics('''eval''' , lowercase ) trainer.save_metrics('''eval''' , lowercase ) # Write model card and (optionally) push to hub a ={ '''finetuned_from''': model_args.model_name_or_path, '''tasks''': '''image-classification''', '''dataset''': data_args.dataset_name, '''tags''': ['''image-classification''', '''vision'''], } if training_args.push_to_hub: trainer.push_to_hub(**lowercase ) else: trainer.create_model_card(**lowercase ) if __name__ == "__main__": main()
215
1
'''simple docstring''' import argparse import intel_extension_for_pytorch as ipex import torch from diffusers import DPMSolverMultistepScheduler, StableDiffusionPipeline _snake_case = argparse.ArgumentParser('Stable Diffusion script with intel optimization', add_help=False) parser.add_argument('--dpm', action='store_true', help='Enable DPMSolver or not') parser.add_argument('--steps', default=None, type=int, help='Num inference steps') _snake_case = parser.parse_args() _snake_case = 'cpu' _snake_case = 'a lovely <dicoo> in red dress and hat, in the snowly and brightly night, with many brighly buildings' _snake_case = 'path-to-your-trained-model' _snake_case = StableDiffusionPipeline.from_pretrained(model_id) if args.dpm: _snake_case = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) _snake_case = pipe.to(device) # to channels last _snake_case = pipe.unet.to(memory_format=torch.channels_last) _snake_case = pipe.vae.to(memory_format=torch.channels_last) _snake_case = pipe.text_encoder.to(memory_format=torch.channels_last) if pipe.requires_safety_checker: _snake_case = pipe.safety_checker.to(memory_format=torch.channels_last) # optimize with ipex _snake_case = torch.randn(2, 4, 64, 64) _snake_case = torch.rand(1) * 999 _snake_case = torch.randn(2, 77, 768) _snake_case = (sample, timestep, encoder_hidden_status) try: _snake_case = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True, sample_input=input_example) except Exception: _snake_case = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True) _snake_case = ipex.optimize(pipe.vae.eval(), dtype=torch.bfloataa, inplace=True) _snake_case = ipex.optimize(pipe.text_encoder.eval(), dtype=torch.bfloataa, inplace=True) if pipe.requires_safety_checker: _snake_case = ipex.optimize(pipe.safety_checker.eval(), dtype=torch.bfloataa, inplace=True) # compute _snake_case = 666 _snake_case = torch.Generator(device).manual_seed(seed) _snake_case = {'generator': generator} if args.steps is not None: _snake_case = args.steps with torch.cpu.amp.autocast(enabled=True, dtype=torch.bfloataa): _snake_case = pipe(prompt, **generate_kwargs).images[0] # save image image.save('generated.png')
250
'''simple docstring''' import unittest import numpy as np import torch from diffusers import KarrasVePipeline, KarrasVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class a__ ( unittest.TestCase ): @property def _lowerCamelCase ( self ): """simple docstring""" torch.manual_seed(0 ) _lowercase : List[str] = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=("DownBlock2D", "AttnDownBlock2D") , up_block_types=("AttnUpBlock2D", "UpBlock2D") , ) return model def _lowerCamelCase ( self ): """simple docstring""" _lowercase : Union[str, Any] = self.dummy_uncond_unet _lowercase : Dict = KarrasVeScheduler() _lowercase : Any = KarrasVePipeline(unet=_UpperCamelCase , scheduler=_UpperCamelCase ) pipe.to(_UpperCamelCase ) pipe.set_progress_bar_config(disable=_UpperCamelCase ) _lowercase : Any = torch.manual_seed(0 ) _lowercase : List[Any] = pipe(num_inference_steps=2 , generator=_UpperCamelCase , output_type="numpy" ).images _lowercase : Optional[Any] = torch.manual_seed(0 ) _lowercase : List[str] = pipe(num_inference_steps=2 , generator=_UpperCamelCase , output_type="numpy" , return_dict=_UpperCamelCase )[0] _lowercase : Any = image[0, -3:, -3:, -1] _lowercase : str = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) _lowercase : int = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch class a__ ( unittest.TestCase ): def _lowerCamelCase ( self ): """simple docstring""" _lowercase : List[str] = "google/ncsnpp-celebahq-256" _lowercase : Any = UNetaDModel.from_pretrained(_UpperCamelCase ) _lowercase : List[Any] = KarrasVeScheduler() _lowercase : int = KarrasVePipeline(unet=_UpperCamelCase , scheduler=_UpperCamelCase ) pipe.to(_UpperCamelCase ) pipe.set_progress_bar_config(disable=_UpperCamelCase ) _lowercase : Optional[Any] = torch.manual_seed(0 ) _lowercase : Tuple = pipe(num_inference_steps=20 , generator=_UpperCamelCase , output_type="numpy" ).images _lowercase : List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) _lowercase : Tuple = np.array([0.5_7_8, 0.5_8_1_1, 0.5_9_2_4, 0.5_8_0_9, 0.5_8_7, 0.5_8_8_6, 0.5_8_6_1, 0.5_8_0_2, 0.5_8_6] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
250
1
'''simple docstring''' import argparse import tensorflow as tf import torch from transformers import BertConfig, BertForMaskedLM from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertPooler, BertSelfAttention, BertSelfOutput, ) from transformers.utils import logging logging.set_verbosity_info() def UpperCamelCase__ ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): """simple docstring""" def get_masked_lm_array(lowerCAmelCase ): _lowerCAmelCase = f"masked_lm/{name}/.ATTRIBUTES/VARIABLE_VALUE" _lowerCAmelCase = tf.train.load_variable(lowerCAmelCase , lowerCAmelCase ) if "kernel" in name: _lowerCAmelCase = array.transpose() return torch.from_numpy(lowerCAmelCase ) def get_encoder_array(lowerCAmelCase ): _lowerCAmelCase = f"encoder/{name}/.ATTRIBUTES/VARIABLE_VALUE" _lowerCAmelCase = tf.train.load_variable(lowerCAmelCase , lowerCAmelCase ) if "kernel" in name: _lowerCAmelCase = array.transpose() return torch.from_numpy(lowerCAmelCase ) def get_encoder_layer_array(lowerCAmelCase , lowerCAmelCase ): _lowerCAmelCase = f"encoder/_transformer_layers/{layer_index}/{name}/.ATTRIBUTES/VARIABLE_VALUE" _lowerCAmelCase = tf.train.load_variable(lowerCAmelCase , lowerCAmelCase ) if "kernel" in name: _lowerCAmelCase = array.transpose() return torch.from_numpy(lowerCAmelCase ) def get_encoder_attention_layer_array(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): _lowerCAmelCase = f"encoder/_transformer_layers/{layer_index}/_attention_layer/{name}/.ATTRIBUTES/VARIABLE_VALUE" _lowerCAmelCase = tf.train.load_variable(lowerCAmelCase , lowerCAmelCase ) _lowerCAmelCase = array.reshape(lowerCAmelCase ) if "kernel" in name: _lowerCAmelCase = array.transpose() return torch.from_numpy(lowerCAmelCase ) print(f"Loading model based on config from {config_path}..." ) _lowerCAmelCase = BertConfig.from_json_file(lowerCAmelCase ) _lowerCAmelCase = BertForMaskedLM(lowerCAmelCase ) # Layers for layer_index in range(0 , config.num_hidden_layers ): _lowerCAmelCase = model.bert.encoder.layer[layer_index] # Self-attention _lowerCAmelCase = layer.attention.self _lowerCAmelCase = get_encoder_attention_layer_array( lowerCAmelCase , """_query_dense/kernel""" , self_attn.query.weight.data.shape ) _lowerCAmelCase = get_encoder_attention_layer_array( lowerCAmelCase , """_query_dense/bias""" , self_attn.query.bias.data.shape ) _lowerCAmelCase = get_encoder_attention_layer_array( lowerCAmelCase , """_key_dense/kernel""" , self_attn.key.weight.data.shape ) _lowerCAmelCase = get_encoder_attention_layer_array( lowerCAmelCase , """_key_dense/bias""" , self_attn.key.bias.data.shape ) _lowerCAmelCase = get_encoder_attention_layer_array( lowerCAmelCase , """_value_dense/kernel""" , self_attn.value.weight.data.shape ) _lowerCAmelCase = get_encoder_attention_layer_array( lowerCAmelCase , """_value_dense/bias""" , self_attn.value.bias.data.shape ) # Self-attention Output _lowerCAmelCase = layer.attention.output _lowerCAmelCase = get_encoder_attention_layer_array( lowerCAmelCase , """_output_dense/kernel""" , self_output.dense.weight.data.shape ) _lowerCAmelCase = get_encoder_attention_layer_array( lowerCAmelCase , """_output_dense/bias""" , self_output.dense.bias.data.shape ) _lowerCAmelCase = get_encoder_layer_array(lowerCAmelCase , """_attention_layer_norm/gamma""" ) _lowerCAmelCase = get_encoder_layer_array(lowerCAmelCase , """_attention_layer_norm/beta""" ) # Intermediate _lowerCAmelCase = layer.intermediate _lowerCAmelCase = get_encoder_layer_array(lowerCAmelCase , """_intermediate_dense/kernel""" ) _lowerCAmelCase = get_encoder_layer_array(lowerCAmelCase , """_intermediate_dense/bias""" ) # Output _lowerCAmelCase = layer.output _lowerCAmelCase = get_encoder_layer_array(lowerCAmelCase , """_output_dense/kernel""" ) _lowerCAmelCase = get_encoder_layer_array(lowerCAmelCase , """_output_dense/bias""" ) _lowerCAmelCase = get_encoder_layer_array(lowerCAmelCase , """_output_layer_norm/gamma""" ) _lowerCAmelCase = get_encoder_layer_array(lowerCAmelCase , """_output_layer_norm/beta""" ) # Embeddings _lowerCAmelCase = get_encoder_array("""_position_embedding_layer/embeddings""" ) _lowerCAmelCase = get_encoder_array("""_type_embedding_layer/embeddings""" ) _lowerCAmelCase = get_encoder_array("""_embedding_norm_layer/gamma""" ) _lowerCAmelCase = get_encoder_array("""_embedding_norm_layer/beta""" ) # LM Head _lowerCAmelCase = model.cls.predictions.transform _lowerCAmelCase = get_masked_lm_array("""dense/kernel""" ) _lowerCAmelCase = get_masked_lm_array("""dense/bias""" ) _lowerCAmelCase = get_masked_lm_array("""layer_norm/gamma""" ) _lowerCAmelCase = get_masked_lm_array("""layer_norm/beta""" ) _lowerCAmelCase = get_masked_lm_array("""embedding_table""" ) # Pooling _lowerCAmelCase = BertPooler(config=lowerCAmelCase ) _lowerCAmelCase = get_encoder_array("""_pooler_layer/kernel""" ) _lowerCAmelCase = get_encoder_array("""_pooler_layer/bias""" ) # Export final model model.save_pretrained(lowerCAmelCase ) # Integration test - should load without any errors ;) _lowerCAmelCase = BertForMaskedLM.from_pretrained(lowerCAmelCase ) print(new_model.eval() ) print("""Model conversion was done sucessfully!""" ) if __name__ == "__main__": A__ : str =argparse.ArgumentParser() parser.add_argument( '''--tf_checkpoint_path''', type=str, required=True, help='''Path to the TensorFlow Token Dropping checkpoint path.''' ) parser.add_argument( '''--bert_config_file''', type=str, required=True, help='''The config json file corresponding to the BERT model. This specifies the model architecture.''', ) parser.add_argument( '''--pytorch_dump_path''', type=str, required=True, help='''Path to the output PyTorch model.''', ) A__ : Dict =parser.parse_args() convert_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
220
'''simple docstring''' # Author: OMKAR PATHAK, Nwachukwu Chidiebere # Use a Python dictionary to construct the graph. from __future__ import annotations from pprint import pformat from typing import Generic, TypeVar A__ : List[str] =TypeVar('''T''') class UpperCAmelCase ( Generic[T] ): def __init__( self : Tuple , __snake_case : bool = True ) -> None: _lowerCAmelCase = {} # dictionary of lists _lowerCAmelCase = directed def lowercase__ ( self : Union[str, Any] , __snake_case : T , __snake_case : T ) -> GraphAdjacencyList[T]: if not self.directed: # For undirected graphs # if both source vertex and destination vertex are both present in the # adjacency list, add destination vertex to source vertex list of adjacent # vertices and add source vertex to destination vertex list of adjacent # vertices. if source_vertex in self.adj_list and destination_vertex in self.adj_list: self.adj_list[source_vertex].append(__snake_case ) self.adj_list[destination_vertex].append(__snake_case ) # if only source vertex is present in adjacency list, add destination vertex # to source vertex list of adjacent vertices, then create a new vertex with # destination vertex as key and assign a list containing the source vertex # as it's first adjacent vertex. elif source_vertex in self.adj_list: self.adj_list[source_vertex].append(__snake_case ) _lowerCAmelCase = [source_vertex] # if only destination vertex is present in adjacency list, add source vertex # to destination vertex list of adjacent vertices, then create a new vertex # with source vertex as key and assign a list containing the source vertex # as it's first adjacent vertex. elif destination_vertex in self.adj_list: self.adj_list[destination_vertex].append(__snake_case ) _lowerCAmelCase = [destination_vertex] # if both source vertex and destination vertex are not present in adjacency # list, create a new vertex with source vertex as key and assign a list # containing the destination vertex as it's first adjacent vertex also # create a new vertex with destination vertex as key and assign a list # containing the source vertex as it's first adjacent vertex. else: _lowerCAmelCase = [destination_vertex] _lowerCAmelCase = [source_vertex] else: # For directed graphs # if both source vertex and destination vertex are present in adjacency # list, add destination vertex to source vertex list of adjacent vertices. if source_vertex in self.adj_list and destination_vertex in self.adj_list: self.adj_list[source_vertex].append(__snake_case ) # if only source vertex is present in adjacency list, add destination # vertex to source vertex list of adjacent vertices and create a new vertex # with destination vertex as key, which has no adjacent vertex elif source_vertex in self.adj_list: self.adj_list[source_vertex].append(__snake_case ) _lowerCAmelCase = [] # if only destination vertex is present in adjacency list, create a new # vertex with source vertex as key and assign a list containing destination # vertex as first adjacent vertex elif destination_vertex in self.adj_list: _lowerCAmelCase = [destination_vertex] # if both source vertex and destination vertex are not present in adjacency # list, create a new vertex with source vertex as key and a list containing # destination vertex as it's first adjacent vertex. Then create a new vertex # with destination vertex as key, which has no adjacent vertex else: _lowerCAmelCase = [destination_vertex] _lowerCAmelCase = [] return self def __repr__( self : int ) -> str: return pformat(self.adj_list )
220
1
from ...configuration_utils import PretrainedConfig from ...utils import logging _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = { 'microsoft/markuplm-base': 'https://huggingface.co/microsoft/markuplm-base/resolve/main/config.json', 'microsoft/markuplm-large': 'https://huggingface.co/microsoft/markuplm-large/resolve/main/config.json', } class _lowerCamelCase ( lowercase__ ): """simple docstring""" UpperCAmelCase_ : str ='''markuplm''' def __init__( self , UpperCAmelCase=30522 , UpperCAmelCase=768 , UpperCAmelCase=12 , UpperCAmelCase=12 , UpperCAmelCase=3072 , UpperCAmelCase="gelu" , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=512 , UpperCAmelCase=2 , UpperCAmelCase=0.02 , UpperCAmelCase=1E-12 , UpperCAmelCase=0 , UpperCAmelCase=0 , UpperCAmelCase=2 , UpperCAmelCase=256 , UpperCAmelCase=1024 , UpperCAmelCase=216 , UpperCAmelCase=1001 , UpperCAmelCase=32 , UpperCAmelCase=50 , UpperCAmelCase="absolute" , UpperCAmelCase=True , UpperCAmelCase=None , **UpperCAmelCase , ) -> Optional[Any]: '''simple docstring''' super().__init__( pad_token_id=SCREAMING_SNAKE_CASE__ , bos_token_id=SCREAMING_SNAKE_CASE__ , eos_token_id=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) __snake_case : List[Any] = vocab_size __snake_case : List[Any] = hidden_size __snake_case : List[str] = num_hidden_layers __snake_case : Dict = num_attention_heads __snake_case : Tuple = hidden_act __snake_case : Dict = intermediate_size __snake_case : Dict = hidden_dropout_prob __snake_case : Optional[Any] = attention_probs_dropout_prob __snake_case : Any = max_position_embeddings __snake_case : Union[str, Any] = type_vocab_size __snake_case : int = initializer_range __snake_case : Dict = layer_norm_eps __snake_case : int = position_embedding_type __snake_case : Optional[Any] = use_cache __snake_case : Optional[int] = classifier_dropout # additional properties __snake_case : Tuple = max_depth __snake_case : Union[str, Any] = max_xpath_tag_unit_embeddings __snake_case : List[Any] = max_xpath_subs_unit_embeddings __snake_case : str = tag_pad_id __snake_case : Optional[int] = subs_pad_id __snake_case : Optional[int] = xpath_unit_hidden_size
326
import inspect import re from hashlib import shaaaa from typing import Dict, List from .arrow import arrow from .audiofolder import audiofolder from .csv import csv from .imagefolder import imagefolder from .json import json from .pandas import pandas from .parquet import parquet from .sql import sql # noqa F401 from .text import text def SCREAMING_SNAKE_CASE_ ( __A : List[str] ) -> str: """simple docstring""" a_ : Tuple = [] for line in lines: a_ : Any = re.sub(R'#.*' , '' , __A ) # remove comments if line: filtered_lines.append(__A ) a_ : Tuple = '\n'.join(__A ) # Make a hash from all this code a_ : Tuple = full_str.encode('utf-8' ) return shaaaa(__A ).hexdigest() # get importable module names and hash for caching UpperCAmelCase_ : List[Any] = { 'csv': (csv.__name__, _hash_python_lines(inspect.getsource(csv).splitlines())), 'json': (json.__name__, _hash_python_lines(inspect.getsource(json).splitlines())), 'pandas': (pandas.__name__, _hash_python_lines(inspect.getsource(pandas).splitlines())), 'parquet': (parquet.__name__, _hash_python_lines(inspect.getsource(parquet).splitlines())), 'arrow': (arrow.__name__, _hash_python_lines(inspect.getsource(arrow).splitlines())), 'text': (text.__name__, _hash_python_lines(inspect.getsource(text).splitlines())), 'imagefolder': (imagefolder.__name__, _hash_python_lines(inspect.getsource(imagefolder).splitlines())), 'audiofolder': (audiofolder.__name__, _hash_python_lines(inspect.getsource(audiofolder).splitlines())), } # Used to infer the module to use based on the data files extensions UpperCAmelCase_ : Dict = { '.csv': ('csv', {}), '.tsv': ('csv', {'sep': '\t'}), '.json': ('json', {}), '.jsonl': ('json', {}), '.parquet': ('parquet', {}), '.arrow': ('arrow', {}), '.txt': ('text', {}), } _EXTENSION_TO_MODULE.update({ext: ('imagefolder', {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ('imagefolder', {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext: ('audiofolder', {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ('audiofolder', {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) UpperCAmelCase_ : Optional[int] = {'imagefolder', 'audiofolder'} # Used to filter data files based on extensions given a module name UpperCAmelCase_ : Dict[str, List[str]] = {} for _ext, (_module, _) in _EXTENSION_TO_MODULE.items(): _MODULE_TO_EXTENSIONS.setdefault(_module, []).append(_ext) _MODULE_TO_EXTENSIONS["imagefolder"].append('.zip') _MODULE_TO_EXTENSIONS["audiofolder"].append('.zip')
32
0
"""simple docstring""" import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase_ =logging.get_logger(__name__) UpperCamelCase_ ={ """microsoft/unispeech-large-1500h-cv""": ( """https://huggingface.co/microsoft/unispeech-large-1500h-cv/resolve/main/config.json""" ), # See all UniSpeech models at https://huggingface.co/models?filter=unispeech } class _a ( _lowerCAmelCase ): UpperCamelCase = '''unispeech''' def __init__( self : Optional[Any], lowerCAmelCase__ : List[Any]=3_2, lowerCAmelCase__ : List[Any]=7_6_8, lowerCAmelCase__ : List[str]=1_2, lowerCAmelCase__ : List[str]=1_2, lowerCAmelCase__ : Any=3_0_7_2, lowerCAmelCase__ : Any="gelu", lowerCAmelCase__ : Union[str, Any]=0.1, lowerCAmelCase__ : List[Any]=0.1, lowerCAmelCase__ : Optional[int]=0.1, lowerCAmelCase__ : Optional[Any]=0.0, lowerCAmelCase__ : str=0.0, lowerCAmelCase__ : Union[str, Any]=0.1, lowerCAmelCase__ : Optional[int]=0.1, lowerCAmelCase__ : Optional[Any]=0.02, lowerCAmelCase__ : Tuple=1e-5, lowerCAmelCase__ : Tuple="group", lowerCAmelCase__ : List[str]="gelu", lowerCAmelCase__ : List[str]=(5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2), lowerCAmelCase__ : List[Any]=(5, 2, 2, 2, 2, 2, 2), lowerCAmelCase__ : Optional[int]=(1_0, 3, 3, 3, 3, 2, 2), lowerCAmelCase__ : str=False, lowerCAmelCase__ : Optional[Any]=1_2_8, lowerCAmelCase__ : List[Any]=1_6, lowerCAmelCase__ : Union[str, Any]=False, lowerCAmelCase__ : Any=True, lowerCAmelCase__ : Dict=0.05, lowerCAmelCase__ : Any=1_0, lowerCAmelCase__ : Optional[int]=2, lowerCAmelCase__ : Optional[Any]=0.0, lowerCAmelCase__ : Dict=1_0, lowerCAmelCase__ : Dict=0, lowerCAmelCase__ : List[Any]=3_2_0, lowerCAmelCase__ : List[Any]=2, lowerCAmelCase__ : List[str]=0.1, lowerCAmelCase__ : str=1_0_0, lowerCAmelCase__ : int=2_5_6, lowerCAmelCase__ : str=2_5_6, lowerCAmelCase__ : Optional[Any]=0.1, lowerCAmelCase__ : Union[str, Any]="mean", lowerCAmelCase__ : Any=False, lowerCAmelCase__ : List[str]=False, lowerCAmelCase__ : Union[str, Any]=2_5_6, lowerCAmelCase__ : Dict=8_0, lowerCAmelCase__ : Any=0, lowerCAmelCase__ : Dict=1, lowerCAmelCase__ : Optional[Any]=2, lowerCAmelCase__ : Union[str, Any]=0.5, **lowerCAmelCase__ : Any, ) -> Tuple: '''simple docstring''' super().__init__(**lowerCAmelCase__, pad_token_id=lowerCAmelCase__, bos_token_id=lowerCAmelCase__, eos_token_id=lowerCAmelCase__ ) _UpperCamelCase : Dict = hidden_size _UpperCamelCase : List[Any] = feat_extract_norm _UpperCamelCase : List[str] = feat_extract_activation _UpperCamelCase : Optional[int] = list(lowerCAmelCase__ ) _UpperCamelCase : Tuple = list(lowerCAmelCase__ ) _UpperCamelCase : Any = list(lowerCAmelCase__ ) _UpperCamelCase : Union[str, Any] = conv_bias _UpperCamelCase : Optional[Any] = num_conv_pos_embeddings _UpperCamelCase : Dict = num_conv_pos_embedding_groups _UpperCamelCase : str = len(self.conv_dim ) _UpperCamelCase : Tuple = num_hidden_layers _UpperCamelCase : List[str] = intermediate_size _UpperCamelCase : int = hidden_act _UpperCamelCase : List[Any] = num_attention_heads _UpperCamelCase : int = hidden_dropout _UpperCamelCase : Tuple = attention_dropout _UpperCamelCase : str = activation_dropout _UpperCamelCase : Optional[int] = feat_proj_dropout _UpperCamelCase : Optional[Any] = final_dropout _UpperCamelCase : Optional[int] = layerdrop _UpperCamelCase : Tuple = layer_norm_eps _UpperCamelCase : Union[str, Any] = initializer_range _UpperCamelCase : str = num_ctc_classes _UpperCamelCase : Tuple = vocab_size _UpperCamelCase : Tuple = do_stable_layer_norm _UpperCamelCase : List[Any] = use_weighted_layer_sum _UpperCamelCase : Tuple = classifier_proj_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==''' ''' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =''' f""" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,""" f""" `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 _UpperCamelCase : Optional[Any] = apply_spec_augment _UpperCamelCase : str = mask_time_prob _UpperCamelCase : List[str] = mask_time_length _UpperCamelCase : Tuple = mask_time_min_masks _UpperCamelCase : List[Any] = mask_feature_prob _UpperCamelCase : int = mask_feature_length _UpperCamelCase : int = mask_feature_min_masks # parameters for pretraining with codevector quantized representations _UpperCamelCase : List[Any] = num_codevectors_per_group _UpperCamelCase : List[str] = num_codevector_groups _UpperCamelCase : List[Any] = contrastive_logits_temperature _UpperCamelCase : Union[str, Any] = feat_quantizer_dropout _UpperCamelCase : Dict = num_negatives _UpperCamelCase : Tuple = codevector_dim _UpperCamelCase : str = proj_codevector_dim _UpperCamelCase : Optional[int] = diversity_loss_weight # ctc loss _UpperCamelCase : List[str] = ctc_loss_reduction _UpperCamelCase : Optional[Any] = ctc_zero_infinity # pretraining loss _UpperCamelCase : List[Any] = replace_prob @property def snake_case ( self : List[Any] ) -> str: '''simple docstring''' return functools.reduce(operator.mul, self.conv_stride, 1 )
128
"""simple docstring""" from ...processing_utils import ProcessorMixin class _a ( _lowerCAmelCase ): UpperCamelCase = ['''image_processor''', '''feature_extractor'''] UpperCamelCase = '''TvltImageProcessor''' UpperCamelCase = '''TvltFeatureExtractor''' def __init__( self : Union[str, Any], lowerCAmelCase__ : str, lowerCAmelCase__ : List[str] ) -> Optional[Any]: '''simple docstring''' super().__init__(image_processor=lowerCAmelCase__, feature_extractor=lowerCAmelCase__ ) _UpperCamelCase : List[str] = image_processor _UpperCamelCase : int = feature_extractor def __call__( self : List[str], lowerCAmelCase__ : Optional[int]=None, lowerCAmelCase__ : str=None, lowerCAmelCase__ : Dict=None, lowerCAmelCase__ : str=None, lowerCAmelCase__ : Optional[int]=False, lowerCAmelCase__ : str=False, *lowerCAmelCase__ : List[str], **lowerCAmelCase__ : Optional[int], ) -> Dict: '''simple docstring''' if images is None and audio is None: raise ValueError('''You need to specify either an `images` or `audio` input to process.''' ) _UpperCamelCase : Optional[int] = None if images is not None: _UpperCamelCase : Optional[int] = self.image_processor(lowerCAmelCase__, mask_pixel=lowerCAmelCase__, *lowerCAmelCase__, **lowerCAmelCase__ ) if images_mixed is not None: _UpperCamelCase : str = self.image_processor(lowerCAmelCase__, is_mixed=lowerCAmelCase__, *lowerCAmelCase__, **lowerCAmelCase__ ) if audio is not None: _UpperCamelCase : Union[str, Any] = self.feature_extractor( lowerCAmelCase__, *lowerCAmelCase__, sampling_rate=lowerCAmelCase__, mask_audio=lowerCAmelCase__, **lowerCAmelCase__ ) _UpperCamelCase : str = {} if audio is not None: output_dict.update(lowerCAmelCase__ ) if images is not None: output_dict.update(lowerCAmelCase__ ) if images_mixed_dict is not None: output_dict.update(lowerCAmelCase__ ) return output_dict @property def snake_case ( self : List[str] ) -> Tuple: '''simple docstring''' _UpperCamelCase : List[str] = self.image_processor.model_input_names _UpperCamelCase : List[Any] = self.feature_extractor.model_input_names return list(dict.fromkeys(image_processor_input_names + feature_extractor_input_names ) )
128
1
import math from typing import Optional import numpy as np from ...configuration_utils import PretrainedConfig from ...utils import logging A : Any = logging.get_logger(__name__) A : Union[str, Any] = { "facebook/encodec_24khz": "https://huggingface.co/facebook/encodec_24khz/resolve/main/config.json", "facebook/encodec_48khz": "https://huggingface.co/facebook/encodec_48khz/resolve/main/config.json", } class __A( SCREAMING_SNAKE_CASE__ ): snake_case_ = '''encodec''' def __init__( self , _snake_case=[1.5, 3.0, 6.0, 12.0, 24.0] , _snake_case=24_000 , _snake_case=1 , _snake_case=False , _snake_case=None , _snake_case=None , _snake_case=128 , _snake_case=32 , _snake_case=1 , _snake_case=[8, 5, 4, 2] , _snake_case="weight_norm" , _snake_case=7 , _snake_case=7 , _snake_case=3 , _snake_case=2 , _snake_case=True , _snake_case="reflect" , _snake_case=2 , _snake_case=2 , _snake_case=1.0 , _snake_case=1_024 , _snake_case=None , _snake_case=True , **_snake_case , ) -> int: '''simple docstring''' __a = target_bandwidths __a = sampling_rate __a = audio_channels __a = normalize __a = chunk_length_s __a = overlap __a = hidden_size __a = num_filters __a = num_residual_layers __a = upsampling_ratios __a = norm_type __a = kernel_size __a = last_kernel_size __a = residual_kernel_size __a = dilation_growth_rate __a = use_causal_conv __a = pad_mode __a = compress __a = num_lstm_layers __a = trim_right_ratio __a = codebook_size __a = codebook_dim if codebook_dim is not None else hidden_size __a = use_conv_shortcut if self.norm_type not in ["weight_norm", "time_group_norm"]: raise ValueError( F"""self.norm_type must be one of `\"weight_norm\"`, `\"time_group_norm\"`), got {self.norm_type}""" ) super().__init__(**A__ ) @property def SCREAMING_SNAKE_CASE_ ( self ) -> List[Any]: '''simple docstring''' if self.chunk_length_s is None: return None else: return int(self.chunk_length_s * self.sampling_rate ) @property def SCREAMING_SNAKE_CASE_ ( self ) -> Optional[Any]: '''simple docstring''' if self.chunk_length_s is None or self.overlap is None: return None else: return max(1 , int((1.0 - self.overlap) * self.chunk_length ) ) @property def SCREAMING_SNAKE_CASE_ ( self ) -> List[str]: '''simple docstring''' __a = np.prod(self.upsampling_ratios ) return math.ceil(self.sampling_rate / hop_length ) @property def SCREAMING_SNAKE_CASE_ ( self ) -> int: '''simple docstring''' return int(1_000 * self.target_bandwidths[-1] // (self.frame_rate * 10) )
6
import random import unittest import torch from diffusers import IFInpaintingPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class lowercase ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , unittest.TestCase ): lowercase_ : List[Any] =IFInpaintingPipeline lowercase_ : Optional[int] =TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'''width''', '''height'''} lowercase_ : Any =TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS lowercase_ : str =PipelineTesterMixin.required_optional_params - {'''latents'''} def A__ ( self): return self._get_dummy_components() def A__ ( self ,A__ ,A__=0): if str(A__).startswith('''mps'''): lowercase = torch.manual_seed(A__) else: lowercase = torch.Generator(device=A__).manual_seed(A__) lowercase = floats_tensor((1, 3, 3_2, 3_2) ,rng=random.Random(A__)).to(A__) lowercase = floats_tensor((1, 3, 3_2, 3_2) ,rng=random.Random(A__)).to(A__) lowercase = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': image, '''mask_image''': mask_image, '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() ,reason='''XFormers attention is only available with CUDA and `xformers` installed''' ,) def A__ ( self): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3) def A__ ( self): self._test_save_load_optional_components() @unittest.skipIf(torch_device != '''cuda''' ,reason='''float16 requires CUDA''') def A__ ( self): # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1E-1) def A__ ( self): self._test_attention_slicing_forward_pass(expected_max_diff=1E-2) def A__ ( self): self._test_save_load_local() def A__ ( self): self._test_inference_batch_single_identical( expected_max_diff=1E-2 ,)
101
0
"""simple docstring""" from collections import defaultdict from math import gcd def SCREAMING_SNAKE_CASE_ ( snake_case : int = 1_500_000 )-> int: _lowerCamelCase = defaultdict(snake_case ) _lowerCamelCase = 2 while 2 * euclid_m * (euclid_m + 1) <= limit: for euclid_n in range((euclid_m % 2) + 1 , snake_case , 2 ): if gcd(snake_case , snake_case ) > 1: continue _lowerCamelCase = 2 * euclid_m * (euclid_m + euclid_n) for perimeter in range(snake_case , limit + 1 , snake_case ): frequencies[perimeter] += 1 euclid_m += 1 return sum(1 for frequency in frequencies.values() if frequency == 1 ) if __name__ == "__main__": print(f'{solution() = }')
80
"""simple docstring""" import importlib import json import os from collections import OrderedDict from typing import Dict, Optional, Union # Build the list of all image processors from ...configuration_utils import PretrainedConfig from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code from ...image_processing_utils import ImageProcessingMixin from ...utils import CONFIG_NAME, IMAGE_PROCESSOR_NAME, get_file_from_repo, logging from .auto_factory import _LazyAutoMapping from .configuration_auto import ( CONFIG_MAPPING_NAMES, AutoConfig, model_type_to_module_name, replace_list_option_in_docstrings, ) A_ : str =logging.get_logger(__name__) A_ : int =OrderedDict( [ ("""align""", """EfficientNetImageProcessor"""), ("""beit""", """BeitImageProcessor"""), ("""bit""", """BitImageProcessor"""), ("""blip""", """BlipImageProcessor"""), ("""blip-2""", """BlipImageProcessor"""), ("""bridgetower""", """BridgeTowerImageProcessor"""), ("""chinese_clip""", """ChineseCLIPImageProcessor"""), ("""clip""", """CLIPImageProcessor"""), ("""clipseg""", """ViTImageProcessor"""), ("""conditional_detr""", """ConditionalDetrImageProcessor"""), ("""convnext""", """ConvNextImageProcessor"""), ("""convnextv2""", """ConvNextImageProcessor"""), ("""cvt""", """ConvNextImageProcessor"""), ("""data2vec-vision""", """BeitImageProcessor"""), ("""deformable_detr""", """DeformableDetrImageProcessor"""), ("""deit""", """DeiTImageProcessor"""), ("""deta""", """DetaImageProcessor"""), ("""detr""", """DetrImageProcessor"""), ("""dinat""", """ViTImageProcessor"""), ("""donut-swin""", """DonutImageProcessor"""), ("""dpt""", """DPTImageProcessor"""), ("""efficientformer""", """EfficientFormerImageProcessor"""), ("""efficientnet""", """EfficientNetImageProcessor"""), ("""flava""", """FlavaImageProcessor"""), ("""focalnet""", """BitImageProcessor"""), ("""git""", """CLIPImageProcessor"""), ("""glpn""", """GLPNImageProcessor"""), ("""groupvit""", """CLIPImageProcessor"""), ("""imagegpt""", """ImageGPTImageProcessor"""), ("""instructblip""", """BlipImageProcessor"""), ("""layoutlmv2""", """LayoutLMv2ImageProcessor"""), ("""layoutlmv3""", """LayoutLMv3ImageProcessor"""), ("""levit""", """LevitImageProcessor"""), ("""mask2former""", """Mask2FormerImageProcessor"""), ("""maskformer""", """MaskFormerImageProcessor"""), ("""mgp-str""", """ViTImageProcessor"""), ("""mobilenet_v1""", """MobileNetV1ImageProcessor"""), ("""mobilenet_v2""", """MobileNetV2ImageProcessor"""), ("""mobilevit""", """MobileViTImageProcessor"""), ("""mobilevit""", """MobileViTImageProcessor"""), ("""mobilevitv2""", """MobileViTImageProcessor"""), ("""nat""", """ViTImageProcessor"""), ("""oneformer""", """OneFormerImageProcessor"""), ("""owlvit""", """OwlViTImageProcessor"""), ("""perceiver""", """PerceiverImageProcessor"""), ("""pix2struct""", """Pix2StructImageProcessor"""), ("""poolformer""", """PoolFormerImageProcessor"""), ("""regnet""", """ConvNextImageProcessor"""), ("""resnet""", """ConvNextImageProcessor"""), ("""sam""", """SamImageProcessor"""), ("""segformer""", """SegformerImageProcessor"""), ("""swiftformer""", """ViTImageProcessor"""), ("""swin""", """ViTImageProcessor"""), ("""swin2sr""", """Swin2SRImageProcessor"""), ("""swinv2""", """ViTImageProcessor"""), ("""table-transformer""", """DetrImageProcessor"""), ("""timesformer""", """VideoMAEImageProcessor"""), ("""tvlt""", """TvltImageProcessor"""), ("""upernet""", """SegformerImageProcessor"""), ("""van""", """ConvNextImageProcessor"""), ("""videomae""", """VideoMAEImageProcessor"""), ("""vilt""", """ViltImageProcessor"""), ("""vit""", """ViTImageProcessor"""), ("""vit_hybrid""", """ViTHybridImageProcessor"""), ("""vit_mae""", """ViTImageProcessor"""), ("""vit_msn""", """ViTImageProcessor"""), ("""xclip""", """CLIPImageProcessor"""), ("""yolos""", """YolosImageProcessor"""), ] ) A_ : Optional[int] =_LazyAutoMapping(CONFIG_MAPPING_NAMES, IMAGE_PROCESSOR_MAPPING_NAMES) def SCREAMING_SNAKE_CASE_ ( snake_case : str )-> Any: for module_name, extractors in IMAGE_PROCESSOR_MAPPING_NAMES.items(): if class_name in extractors: _lowerCamelCase = model_type_to_module_name(snake_case ) _lowerCamelCase = importlib.import_module(f'.{module_name}' , 'transformers.models' ) try: return getattr(snake_case , snake_case ) except AttributeError: continue for _, extractor in IMAGE_PROCESSOR_MAPPING._extra_content.items(): if getattr(snake_case , '__name__' , snake_case ) == class_name: return extractor # We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main # init and we return the proper dummy to get an appropriate error message. _lowerCamelCase = importlib.import_module('transformers' ) if hasattr(snake_case , snake_case ): return getattr(snake_case , snake_case ) return None def SCREAMING_SNAKE_CASE_ ( snake_case : Union[str, os.PathLike] , snake_case : Optional[Union[str, os.PathLike]] = None , snake_case : bool = False , snake_case : bool = False , snake_case : Optional[Dict[str, str]] = None , snake_case : Optional[Union[bool, str]] = None , snake_case : Optional[str] = None , snake_case : bool = False , **snake_case : List[str] , )-> Optional[int]: _lowerCamelCase = get_file_from_repo( snake_case , snake_case , cache_dir=snake_case , force_download=snake_case , resume_download=snake_case , proxies=snake_case , use_auth_token=snake_case , revision=snake_case , local_files_only=snake_case , ) if resolved_config_file is None: logger.info( 'Could not locate the image processor configuration file, will try to use the model config instead.' ) return {} with open(snake_case , encoding='utf-8' ) as reader: return json.load(snake_case ) class __a : def __init__( self ): raise EnvironmentError( 'AutoImageProcessor is designed to be instantiated ' 'using the `AutoImageProcessor.from_pretrained(pretrained_model_name_or_path)` method.' ) @classmethod @replace_list_option_in_docstrings(a__ ) def snake_case_ ( cls , a__ , **a__ ): _lowerCamelCase = kwargs.pop('config' , a__ ) _lowerCamelCase = kwargs.pop('trust_remote_code' , a__ ) _lowerCamelCase = True _lowerCamelCase , _lowerCamelCase = ImageProcessingMixin.get_image_processor_dict(a__ , **a__ ) _lowerCamelCase = config_dict.get('image_processor_type' , a__ ) _lowerCamelCase = None if "AutoImageProcessor" in config_dict.get('auto_map' , {} ): _lowerCamelCase = config_dict['auto_map']['AutoImageProcessor'] # If we still don't have the image processor class, check if we're loading from a previous feature extractor config # and if so, infer the image processor class from there. if image_processor_class is None and image_processor_auto_map is None: _lowerCamelCase = config_dict.pop('feature_extractor_type' , a__ ) if feature_extractor_class is not None: logger.warning( 'Could not find image processor class in the image processor config or the model config. Loading' ' based on pattern matching with the model\'s feature extractor configuration.' ) _lowerCamelCase = feature_extractor_class.replace('FeatureExtractor' , 'ImageProcessor' ) if "AutoFeatureExtractor" in config_dict.get('auto_map' , {} ): _lowerCamelCase = config_dict['auto_map']['AutoFeatureExtractor'] _lowerCamelCase = feature_extractor_auto_map.replace('FeatureExtractor' , 'ImageProcessor' ) logger.warning( 'Could not find image processor auto map in the image processor config or the model config.' ' Loading based on pattern matching with the model\'s feature extractor configuration.' ) # If we don't find the image processor class in the image processor config, let's try the model config. if image_processor_class is None and image_processor_auto_map is None: if not isinstance(a__ , a__ ): _lowerCamelCase = AutoConfig.from_pretrained(a__ , **a__ ) # It could be in `config.image_processor_type`` _lowerCamelCase = getattr(a__ , 'image_processor_type' , a__ ) if hasattr(a__ , 'auto_map' ) and "AutoImageProcessor" in config.auto_map: _lowerCamelCase = config.auto_map['AutoImageProcessor'] if image_processor_class is not None: _lowerCamelCase = image_processor_class_from_name(a__ ) _lowerCamelCase = image_processor_auto_map is not None _lowerCamelCase = image_processor_class is not None or type(a__ ) in IMAGE_PROCESSOR_MAPPING _lowerCamelCase = resolve_trust_remote_code( a__ , a__ , a__ , a__ ) if has_remote_code and trust_remote_code: _lowerCamelCase = get_class_from_dynamic_module( a__ , a__ , **a__ ) _lowerCamelCase = kwargs.pop('code_revision' , a__ ) if os.path.isdir(a__ ): image_processor_class.register_for_auto_class() return image_processor_class.from_dict(a__ , **a__ ) elif image_processor_class is not None: return image_processor_class.from_dict(a__ , **a__ ) # Last try: we use the IMAGE_PROCESSOR_MAPPING. elif type(a__ ) in IMAGE_PROCESSOR_MAPPING: _lowerCamelCase = IMAGE_PROCESSOR_MAPPING[type(a__ )] return image_processor_class.from_dict(a__ , **a__ ) raise ValueError( F'Unrecognized image processor in {pretrained_model_name_or_path}. Should have a ' F'`image_processor_type` key in its {IMAGE_PROCESSOR_NAME} of {CONFIG_NAME}, or one of the following ' F'`model_type` keys in its {CONFIG_NAME}: {", ".join(c for c in IMAGE_PROCESSOR_MAPPING_NAMES.keys() )}' ) @staticmethod def snake_case_ ( a__ , a__ ): IMAGE_PROCESSOR_MAPPING.register(a__ , a__ )
80
1
'''simple docstring''' def __lowercase ( __lowercase ) -> int: '''simple docstring''' assert isinstance(__lowercase , __lowercase ), F'''The input value of [n={number}] is not an integer''' if number == 1: return 2 elif number < 1: _A = F'''The input value of [n={number}] has to be > 0''' raise ValueError(__lowercase ) else: _A = sylvester(number - 1 ) _A = num - 1 _A = num return lower * upper + 1 if __name__ == "__main__": print(F"""The 8th number in Sylvester's sequence: {sylvester(8)}""")
79
'''simple docstring''' class _UpperCAmelCase : """simple docstring""" def __init__( self : List[str] , __UpperCAmelCase : list[int] ): '''simple docstring''' _A = len(__UpperCAmelCase ) _A = [0] * len_array if len_array > 0: _A = array[0] for i in range(1 , __UpperCAmelCase ): _A = self.prefix_sum[i - 1] + array[i] def lowerCAmelCase ( self : Dict , __UpperCAmelCase : int , __UpperCAmelCase : int ): '''simple docstring''' if start == 0: return self.prefix_sum[end] return self.prefix_sum[end] - self.prefix_sum[start - 1] def lowerCAmelCase ( self : List[str] , __UpperCAmelCase : int ): '''simple docstring''' _A = {0} for sum_item in self.prefix_sum: if sum_item - target_sum in sums: return True sums.add(__UpperCAmelCase ) return False if __name__ == "__main__": import doctest doctest.testmod()
79
1
'''simple docstring''' import uuid from typing import Any, Dict, List, Optional, Union from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch a_ : Optional[int] = logging.get_logger(__name__) class a : def __init__( self , __magic_name__ = None , __magic_name__ = None , __magic_name__=None , __magic_name__=None ) -> List[str]: if not conversation_id: _a = uuid.uuida() if past_user_inputs is None: _a = [] if generated_responses is None: _a = [] _a = conversation_id _a = past_user_inputs _a = generated_responses _a = text def __eq__( self , __magic_name__ ) -> int: if not isinstance(__magic_name__ , __magic_name__ ): return False if self.uuid == other.uuid: return True return ( self.new_user_input == other.new_user_input and self.past_user_inputs == other.past_user_inputs and self.generated_responses == other.generated_responses ) def __UpperCAmelCase ( self , __magic_name__ , __magic_name__ = False ) -> Tuple: if self.new_user_input: if overwrite: logger.warning( f'User input added while unprocessed input was existing: "{self.new_user_input}" was overwritten ' f'with: "{text}".' ) _a = text else: logger.warning( f'User input added while unprocessed input was existing: "{self.new_user_input}" new input ' f'ignored: "{text}". Set `overwrite` to True to overwrite unprocessed user input' ) else: _a = text def __UpperCAmelCase ( self ) -> int: if self.new_user_input: self.past_user_inputs.append(self.new_user_input ) _a = None def __UpperCAmelCase ( self , __magic_name__ ) -> str: self.generated_responses.append(__magic_name__ ) def __UpperCAmelCase ( self ) -> List[str]: for user_input, generated_response in zip(self.past_user_inputs , self.generated_responses ): yield True, user_input yield False, generated_response if self.new_user_input: yield True, self.new_user_input def __repr__( self ) -> Dict: _a = f'Conversation id: {self.uuid} \n' for is_user, text in self.iter_texts(): _a = 'user' if is_user else 'bot' output += f'{name} >> {text} \n' return output @add_end_docstrings( _SCREAMING_SNAKE_CASE , r""" min_length_for_response (`int`, *optional*, defaults to 32): The minimum length (in number of tokens) for a response. minimum_tokens (`int`, *optional*, defaults to 10): The minimum length of tokens to leave for a response. """ , ) class a ( _SCREAMING_SNAKE_CASE ): def __init__( self , *__magic_name__ , **__magic_name__ ) -> Any: super().__init__(*__magic_name__ , **__magic_name__ ) if self.tokenizer.pad_token_id is None: _a = self.tokenizer.eos_token def __UpperCAmelCase ( self , __magic_name__=None , __magic_name__=None , __magic_name__=None , **__magic_name__ ) -> List[Any]: _a = {} _a = {} _a = {} if min_length_for_response is not None: _a = min_length_for_response if minimum_tokens is not None: _a = minimum_tokens if "max_length" in generate_kwargs: _a = generate_kwargs['max_length'] # self.max_length = generate_kwargs.get("max_length", self.model.config.max_length) if clean_up_tokenization_spaces is not None: _a = clean_up_tokenization_spaces if generate_kwargs: forward_params.update(__magic_name__ ) return preprocess_params, forward_params, postprocess_params def __call__( self , __magic_name__ , __magic_name__=0 , **__magic_name__ ) -> int: _a = super().__call__(__magic_name__ , num_workers=__magic_name__ , **__magic_name__ ) if isinstance(__magic_name__ , __magic_name__ ) and len(__magic_name__ ) == 1: return outputs[0] return outputs def __UpperCAmelCase ( self , __magic_name__ , __magic_name__=32 ) -> Dict[str, Any]: if not isinstance(__magic_name__ , __magic_name__ ): raise ValueError('ConversationalPipeline, expects Conversation as inputs' ) if conversation.new_user_input is None: raise ValueError( f'Conversation with UUID {type(conversation.uuid )} does not contain new user input to process. ' 'Add user inputs with the conversation\'s `add_user_input` method' ) if hasattr(self.tokenizer , '_build_conversation_input_ids' ): _a = self.tokenizer._build_conversation_input_ids(__magic_name__ ) else: # If the tokenizer cannot handle conversations, we default to only the old version _a = self._legacy_parse_and_tokenize(__magic_name__ ) if self.framework == "pt": _a = torch.LongTensor([input_ids] ) elif self.framework == "tf": _a = tf.constant([input_ids] ) return {"input_ids": input_ids, "conversation": conversation} def __UpperCAmelCase ( self , __magic_name__ , __magic_name__=10 , **__magic_name__ ) -> List[str]: _a = generate_kwargs.get('max_length' , self.model.config.max_length ) _a = model_inputs['input_ids'].shape[1] if max_length - minimum_tokens < n: logger.warning(f'Conversation input is to long ({n}), trimming it to ({max_length} - {minimum_tokens})' ) _a = max_length - minimum_tokens _a = model_inputs['input_ids'][:, -trim:] if "attention_mask" in model_inputs: _a = model_inputs['attention_mask'][:, -trim:] _a = model_inputs.pop('conversation' ) _a = max_length _a = self.model.generate(**__magic_name__ , **__magic_name__ ) if self.model.config.is_encoder_decoder: _a = 1 else: _a = n return {"output_ids": output_ids[:, start_position:], "conversation": conversation} def __UpperCAmelCase ( self , __magic_name__ , __magic_name__=True ) -> Optional[int]: _a = model_outputs['output_ids'] _a = self.tokenizer.decode( output_ids[0] , skip_special_tokens=__magic_name__ , clean_up_tokenization_spaces=__magic_name__ , ) _a = model_outputs['conversation'] conversation.mark_processed() conversation.append_response(__magic_name__ ) return conversation def __UpperCAmelCase ( self , __magic_name__ ) -> Dict: _a = self.tokenizer.eos_token_id _a = [] for is_user, text in conversation.iter_texts(): if eos_token_id is not None: input_ids.extend(self.tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ ) + [eos_token_id] ) else: input_ids.extend(self.tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ ) ) if len(__magic_name__ ) > self.tokenizer.model_max_length: _a = input_ids[-self.tokenizer.model_max_length :] return input_ids
104
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) a_ : Optional[int] = {"configuration_deit": ["DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "DeiTConfig", "DeiTOnnxConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : Dict = ["DeiTFeatureExtractor"] a_ : List[Any] = ["DeiTImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : Tuple = [ "DEIT_PRETRAINED_MODEL_ARCHIVE_LIST", "DeiTForImageClassification", "DeiTForImageClassificationWithTeacher", "DeiTForMaskedImageModeling", "DeiTModel", "DeiTPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : Optional[Any] = [ "TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFDeiTForImageClassification", "TFDeiTForImageClassificationWithTeacher", "TFDeiTForMaskedImageModeling", "TFDeiTModel", "TFDeiTPreTrainedModel", ] if TYPE_CHECKING: from .configuration_deit import DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, DeiTConfig, DeiTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_deit import DeiTFeatureExtractor from .image_processing_deit import DeiTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deit import ( DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, DeiTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deit import ( TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, TFDeiTPreTrainedModel, ) else: import sys a_ : List[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
104
1
def a ( snake_case__: float , snake_case__: int ): '''simple docstring''' if digit_amount > 0: return round(number - int(snake_case__ ) , snake_case__ ) return number - int(snake_case__ ) if __name__ == "__main__": print(decimal_isolate(1.53, 0)) print(decimal_isolate(35.345, 1)) print(decimal_isolate(35.345, 2)) print(decimal_isolate(35.345, 3)) print(decimal_isolate(-14.789, 3)) print(decimal_isolate(0, 2)) print(decimal_isolate(-14.123, 1)) print(decimal_isolate(-14.123, 2)) print(decimal_isolate(-14.123, 3))
30
import requests snake_case__ : int = 'https://newsapi.org/v1/articles?source=bbc-news&sortBy=top&apiKey=' def _a ( lowerCamelCase: str ) -> None: '''simple docstring''' __A = requests.get(_NEWS_API + bbc_news_api_key ).json() # each article in the list is a dict for i, article in enumerate(bbc_news_page['''articles'''] , 1 ): print(F"""{i}.) {article['title']}""" ) if __name__ == "__main__": fetch_bbc_news(bbc_news_api_key='<Your BBC News API key goes here>')
117
0
from ..utils import DummyObject, requires_backends class lowerCamelCase ( metaclass=lowerCAmelCase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE = ['torch', 'torchsde'] def __init__(self , *_lowerCamelCase , **_lowerCamelCase ): """simple docstring""" requires_backends(self , ["""torch""", """torchsde"""] ) @classmethod def _a (cls , *_lowerCamelCase , **_lowerCamelCase ): """simple docstring""" requires_backends(cls , ["""torch""", """torchsde"""] ) @classmethod def _a (cls , *_lowerCamelCase , **_lowerCamelCase ): """simple docstring""" requires_backends(cls , ["""torch""", """torchsde"""] )
352
"""simple docstring""" import os from typing import Dict, List, Union import tensorflow as tf from keras_nlp.tokenizers import BytePairTokenizer from tensorflow_text import pad_model_inputs from .tokenization_gpta import GPTaTokenizer class lowerCamelCase ( tf.keras.layers.Layer ): '''simple docstring''' def __init__(self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = None ): """simple docstring""" super().__init__() UpperCAmelCase__ : Tuple = pad_token_id UpperCAmelCase__ : Any = max_length UpperCAmelCase__ : str = vocab UpperCAmelCase__ : Union[str, Any] = merges UpperCAmelCase__ : Tuple = BytePairTokenizer(_lowerCamelCase , _lowerCamelCase , sequence_length=_lowerCamelCase ) @classmethod def _a (cls , _lowerCamelCase , *_lowerCamelCase , **_lowerCamelCase ): """simple docstring""" UpperCAmelCase__ : Any = [""" """.join(_lowerCamelCase ) for m in tokenizer.bpe_ranks.keys()] UpperCAmelCase__ : Tuple = tokenizer.get_vocab() return cls(_lowerCamelCase , _lowerCamelCase , *_lowerCamelCase , **_lowerCamelCase ) @classmethod def _a (cls , _lowerCamelCase , *_lowerCamelCase , **_lowerCamelCase ): """simple docstring""" UpperCAmelCase__ : Optional[Any] = GPTaTokenizer.from_pretrained(_lowerCamelCase , *_lowerCamelCase , **_lowerCamelCase ) return cls.from_tokenizer(_lowerCamelCase , *_lowerCamelCase , **_lowerCamelCase ) @classmethod def _a (cls , _lowerCamelCase ): """simple docstring""" return cls(**_lowerCamelCase ) def _a (self ): """simple docstring""" return { "vocab": self.vocab, "merges": self.merges, "max_length": self.max_length, "pad_token_id": self.pad_token_id, } def _a (self , _lowerCamelCase , _lowerCamelCase = None ): """simple docstring""" UpperCAmelCase__ : List[str] = self.tf_tokenizer(_lowerCamelCase ) UpperCAmelCase__ : Optional[Any] = tf.ones_like(_lowerCamelCase ) if self.pad_token_id is not None: # pad the tokens up to max length UpperCAmelCase__ : Optional[Any] = max_length if max_length is not None else self.max_length if max_length is not None: UpperCAmelCase__ , UpperCAmelCase__ : str = pad_model_inputs( _lowerCamelCase , max_seq_length=_lowerCamelCase , pad_value=self.pad_token_id ) return {"attention_mask": attention_mask, "input_ids": input_ids}
166
0
'''simple docstring''' import inspect from typing import Callable, List, Optional, Union import torch from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer from diffusers import DiffusionPipeline from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler from diffusers.utils import logging lowercase_ = logging.get_logger(__name__) # pylint: disable=invalid-name class a_ ( snake_case_ ): '''simple docstring''' def __init__( self , A , A , A , A , A , A , A , ) -> str: super().__init__() self.register_modules( vae=A , text_encoder=A , tokenizer=A , unet=A , scheduler=A , safety_checker=A , feature_extractor=A , ) def snake_case_( self , A = "auto" ) -> Optional[Any]: if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory _SCREAMING_SNAKE_CASE = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(A ) def snake_case_( self ) -> List[Any]: self.enable_attention_slicing(A ) @torch.no_grad() def __call__( self , A , A = 512 , A = 512 , A = 50 , A = 7.5 , A = None , A = 1 , A = 0.0 , A = None , A = None , A = "pil" , A = True , A = None , A = 1 , A = None , **A , ) -> List[str]: if isinstance(A , A ): _SCREAMING_SNAKE_CASE = 1 elif isinstance(A , A ): _SCREAMING_SNAKE_CASE = len(A ) else: raise ValueError(f'`prompt` has to be of type `str` or `list` but is {type(A )}' ) if height % 8 != 0 or width % 8 != 0: raise ValueError(f'`height` and `width` have to be divisible by 8 but are {height} and {width}.' ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(A , A ) or callback_steps <= 0) ): raise ValueError( f'`callback_steps` has to be a positive integer but is {callback_steps} of type' f' {type(A )}.' ) # get prompt text embeddings _SCREAMING_SNAKE_CASE = self.tokenizer( A , padding="""max_length""" , max_length=self.tokenizer.model_max_length , return_tensors="""pt""" , ) _SCREAMING_SNAKE_CASE = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: _SCREAMING_SNAKE_CASE = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( """The following part of your input was truncated because CLIP can only handle sequences up to""" f' {self.tokenizer.model_max_length} tokens: {removed_text}' ) _SCREAMING_SNAKE_CASE = text_input_ids[:, : self.tokenizer.model_max_length] if text_embeddings is None: _SCREAMING_SNAKE_CASE = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = text_embeddings.shape _SCREAMING_SNAKE_CASE = text_embeddings.repeat(1 , A , 1 ) _SCREAMING_SNAKE_CASE = text_embeddings.view(bs_embed * num_images_per_prompt , A , -1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. _SCREAMING_SNAKE_CASE = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: _SCREAMING_SNAKE_CASE = 42 if negative_prompt is None: _SCREAMING_SNAKE_CASE = [""""""] elif type(A ) is not type(A ): raise TypeError( f'`negative_prompt` should be the same type to `prompt`, but got {type(A )} !=' f' {type(A )}.' ) elif isinstance(A , A ): _SCREAMING_SNAKE_CASE = [negative_prompt] elif batch_size != len(A ): raise ValueError( f'`negative_prompt`: {negative_prompt} has batch size {len(A )}, but `prompt`:' f' {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches' """ the batch size of `prompt`.""" ) else: _SCREAMING_SNAKE_CASE = negative_prompt _SCREAMING_SNAKE_CASE = text_input_ids.shape[-1] _SCREAMING_SNAKE_CASE = self.tokenizer( A , padding="""max_length""" , max_length=A , truncation=A , return_tensors="""pt""" , ) _SCREAMING_SNAKE_CASE = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method _SCREAMING_SNAKE_CASE = uncond_embeddings.shape[1] _SCREAMING_SNAKE_CASE = uncond_embeddings.repeat(A , A , 1 ) _SCREAMING_SNAKE_CASE = uncond_embeddings.view(batch_size * num_images_per_prompt , A , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes _SCREAMING_SNAKE_CASE = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. _SCREAMING_SNAKE_CASE = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) _SCREAMING_SNAKE_CASE = (batch_size * num_images_per_prompt, self.unet.config.in_channels, 64, 64) _SCREAMING_SNAKE_CASE = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps _SCREAMING_SNAKE_CASE = torch.randn( A , generator=A , device="""cpu""" , dtype=A ).to(self.device ) _SCREAMING_SNAKE_CASE = torch.randn(A , generator=A , device="""cpu""" , dtype=A ).to( self.device ) else: _SCREAMING_SNAKE_CASE = torch.randn( A , generator=A , device=self.device , dtype=A ) _SCREAMING_SNAKE_CASE = torch.randn(A , generator=A , device=self.device , dtype=A ) else: if latents_reference.shape != latents_shape: raise ValueError(f'Unexpected latents shape, got {latents.shape}, expected {latents_shape}' ) _SCREAMING_SNAKE_CASE = latents_reference.to(self.device ) _SCREAMING_SNAKE_CASE = latents.to(self.device ) # This is the key part of the pipeline where we # try to ensure that the generated images w/ the same seed # but different sizes actually result in similar images _SCREAMING_SNAKE_CASE = (latents_shape[3] - latents_shape_reference[3]) // 2 _SCREAMING_SNAKE_CASE = (latents_shape[2] - latents_shape_reference[2]) // 2 _SCREAMING_SNAKE_CASE = latents_shape_reference[3] if dx >= 0 else latents_shape_reference[3] + 2 * dx _SCREAMING_SNAKE_CASE = latents_shape_reference[2] if dy >= 0 else latents_shape_reference[2] + 2 * dy _SCREAMING_SNAKE_CASE = 0 if dx < 0 else dx _SCREAMING_SNAKE_CASE = 0 if dy < 0 else dy _SCREAMING_SNAKE_CASE = max(-dx , 0 ) _SCREAMING_SNAKE_CASE = max(-dy , 0 ) # import pdb # pdb.set_trace() _SCREAMING_SNAKE_CASE = latents_reference[:, :, dy : dy + h, dx : dx + w] # set timesteps self.scheduler.set_timesteps(A ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand _SCREAMING_SNAKE_CASE = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler _SCREAMING_SNAKE_CASE = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] _SCREAMING_SNAKE_CASE = """eta""" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) _SCREAMING_SNAKE_CASE = {} if accepts_eta: _SCREAMING_SNAKE_CASE = eta for i, t in enumerate(self.progress_bar(A ) ): # expand the latents if we are doing classifier free guidance _SCREAMING_SNAKE_CASE = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents _SCREAMING_SNAKE_CASE = self.scheduler.scale_model_input(A , A ) # predict the noise residual _SCREAMING_SNAKE_CASE = self.unet(A , A , encoder_hidden_states=A ).sample # perform guidance if do_classifier_free_guidance: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = noise_pred.chunk(2 ) _SCREAMING_SNAKE_CASE = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 _SCREAMING_SNAKE_CASE = self.scheduler.step(A , A , A , **A ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(A , A , A ) _SCREAMING_SNAKE_CASE = 1 / 0.1_8215 * latents _SCREAMING_SNAKE_CASE = self.vae.decode(A ).sample _SCREAMING_SNAKE_CASE = (image / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 _SCREAMING_SNAKE_CASE = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if self.safety_checker is not None: _SCREAMING_SNAKE_CASE = self.feature_extractor(self.numpy_to_pil(A ) , return_tensors="""pt""" ).to( self.device ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self.safety_checker( images=A , clip_input=safety_checker_input.pixel_values.to(text_embeddings.dtype ) ) else: _SCREAMING_SNAKE_CASE = None if output_type == "pil": _SCREAMING_SNAKE_CASE = self.numpy_to_pil(A ) if not return_dict: return (image, has_nsfw_concept) return StableDiffusionPipelineOutput(images=A , nsfw_content_detected=A )
58
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import YolosConfig, YolosForObjectDetection, YolosImageProcessor from transformers.utils import logging logging.set_verbosity_info() _A = logging.get_logger(__name__) def __UpperCamelCase ( _A ): lowerCAmelCase_ = YolosConfig() # size of the architecture if "yolos_ti" in yolos_name: lowerCAmelCase_ = 192 lowerCAmelCase_ = 768 lowerCAmelCase_ = 12 lowerCAmelCase_ = 3 lowerCAmelCase_ = [800, 1333] lowerCAmelCase_ = False elif yolos_name == "yolos_s_dWr": lowerCAmelCase_ = 330 lowerCAmelCase_ = 14 lowerCAmelCase_ = 6 lowerCAmelCase_ = 1320 elif "yolos_s" in yolos_name: lowerCAmelCase_ = 384 lowerCAmelCase_ = 1536 lowerCAmelCase_ = 12 lowerCAmelCase_ = 6 elif "yolos_b" in yolos_name: lowerCAmelCase_ = [800, 1344] lowerCAmelCase_ = 91 lowerCAmelCase_ = '''huggingface/label-files''' lowerCAmelCase_ = '''coco-detection-id2label.json''' lowerCAmelCase_ = json.load(open(hf_hub_download(_A , _A , repo_type='''dataset''' ) , '''r''' ) ) lowerCAmelCase_ = {int(_A ): v for k, v in idalabel.items()} lowerCAmelCase_ = idalabel lowerCAmelCase_ = {v: k for k, v in idalabel.items()} return config def __UpperCamelCase ( _A , _A , _A = False ): for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowerCAmelCase_ = state_dict.pop(f"blocks.{i}.attn.qkv.weight" ) lowerCAmelCase_ = state_dict.pop(f"blocks.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict lowerCAmelCase_ = in_proj_weight[: config.hidden_size, :] lowerCAmelCase_ = in_proj_bias[: config.hidden_size] lowerCAmelCase_ = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowerCAmelCase_ = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowerCAmelCase_ = in_proj_weight[-config.hidden_size :, :] lowerCAmelCase_ = in_proj_bias[-config.hidden_size :] def __UpperCamelCase ( _A ): if "backbone" in name: lowerCAmelCase_ = name.replace('''backbone''' , '''vit''' ) if "cls_token" in name: lowerCAmelCase_ = name.replace('''cls_token''' , '''embeddings.cls_token''' ) if "det_token" in name: lowerCAmelCase_ = name.replace('''det_token''' , '''embeddings.detection_tokens''' ) if "mid_pos_embed" in name: lowerCAmelCase_ = name.replace('''mid_pos_embed''' , '''encoder.mid_position_embeddings''' ) if "pos_embed" in name: lowerCAmelCase_ = name.replace('''pos_embed''' , '''embeddings.position_embeddings''' ) if "patch_embed.proj" in name: lowerCAmelCase_ = name.replace('''patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' ) if "blocks" in name: lowerCAmelCase_ = name.replace('''blocks''' , '''encoder.layer''' ) if "attn.proj" in name: lowerCAmelCase_ = name.replace('''attn.proj''' , '''attention.output.dense''' ) if "attn" in name: lowerCAmelCase_ = name.replace('''attn''' , '''attention.self''' ) if "norm1" in name: lowerCAmelCase_ = name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name: lowerCAmelCase_ = name.replace('''norm2''' , '''layernorm_after''' ) if "mlp.fc1" in name: lowerCAmelCase_ = name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: lowerCAmelCase_ = name.replace('''mlp.fc2''' , '''output.dense''' ) if "class_embed" in name: lowerCAmelCase_ = name.replace('''class_embed''' , '''class_labels_classifier''' ) if "bbox_embed" in name: lowerCAmelCase_ = name.replace('''bbox_embed''' , '''bbox_predictor''' ) if "vit.norm" in name: lowerCAmelCase_ = name.replace('''vit.norm''' , '''vit.layernorm''' ) return name def __UpperCamelCase ( _A , _A ): for key in orig_state_dict.copy().keys(): lowerCAmelCase_ = orig_state_dict.pop(_A ) if "qkv" in key: lowerCAmelCase_ = key.split('''.''' ) lowerCAmelCase_ = int(key_split[2] ) lowerCAmelCase_ = model.vit.encoder.layer[layer_num].attention.attention.all_head_size if "weight" in key: lowerCAmelCase_ = val[:dim, :] lowerCAmelCase_ = val[ dim : dim * 2, : ] lowerCAmelCase_ = val[-dim:, :] else: lowerCAmelCase_ = val[:dim] lowerCAmelCase_ = val[dim : dim * 2] lowerCAmelCase_ = val[-dim:] else: lowerCAmelCase_ = val return orig_state_dict def __UpperCamelCase ( ): lowerCAmelCase_ = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowerCAmelCase_ = Image.open(requests.get(_A , stream=_A ).raw ) return im @torch.no_grad() def __UpperCamelCase ( _A , _A , _A , _A = False ): lowerCAmelCase_ = get_yolos_config(_A ) # load original state_dict lowerCAmelCase_ = torch.load(_A , map_location='''cpu''' )['''model'''] # load 🤗 model lowerCAmelCase_ = YolosForObjectDetection(_A ) model.eval() lowerCAmelCase_ = convert_state_dict(_A , _A ) model.load_state_dict(_A ) # Check outputs on an image, prepared by YolosImageProcessor lowerCAmelCase_ = 800 if yolos_name != '''yolos_ti''' else 512 lowerCAmelCase_ = YolosImageProcessor(format='''coco_detection''' , size=_A ) lowerCAmelCase_ = image_processor(images=prepare_img() , return_tensors='''pt''' ) lowerCAmelCase_ = model(**_A ) lowerCAmelCase_ , lowerCAmelCase_ = outputs.logits, outputs.pred_boxes lowerCAmelCase_ , lowerCAmelCase_ = None, None if yolos_name == "yolos_ti": lowerCAmelCase_ = torch.tensor( [[-3_9.5_0_2_2, -1_1.9_8_2_0, -1_7.6_8_8_8], [-2_9.9_5_7_4, -9.9_7_6_9, -1_7.7_6_9_1], [-4_2.3_2_8_1, -2_0.7_2_0_0, -3_0.6_2_9_4]] ) lowerCAmelCase_ = torch.tensor( [[0.4_0_2_1, 0.0_8_3_6, 0.7_9_7_9], [0.0_1_8_4, 0.2_6_0_9, 0.0_3_6_4], [0.1_7_8_1, 0.2_0_0_4, 0.2_0_9_5]] ) elif yolos_name == "yolos_s_200_pre": lowerCAmelCase_ = torch.tensor( [[-2_4.0_2_4_8, -1_0.3_0_2_4, -1_4.8_2_9_0], [-4_2.0_3_9_2, -1_6.8_2_0_0, -2_7.4_3_3_4], [-2_7.2_7_4_3, -1_1.8_1_5_4, -1_8.7_1_4_8]] ) lowerCAmelCase_ = torch.tensor( [[0.2_5_5_9, 0.5_4_5_5, 0.4_7_0_6], [0.2_9_8_9, 0.7_2_7_9, 0.1_8_7_5], [0.7_7_3_2, 0.4_0_1_7, 0.4_4_6_2]] ) elif yolos_name == "yolos_s_300_pre": lowerCAmelCase_ = torch.tensor( [[-3_6.2_2_2_0, -1_4.4_3_8_5, -2_3.5_4_5_7], [-3_5.6_9_7_0, -1_4.7_5_8_3, -2_1.3_9_3_5], [-3_1.5_9_3_9, -1_3.6_0_4_2, -1_6.8_0_4_9]] ) lowerCAmelCase_ = torch.tensor( [[0.7_6_1_4, 0.2_3_1_6, 0.4_7_2_8], [0.7_1_6_8, 0.4_4_9_5, 0.3_8_5_5], [0.4_9_9_6, 0.1_4_6_6, 0.9_9_9_6]] ) elif yolos_name == "yolos_s_dWr": lowerCAmelCase_ = torch.tensor( [[-4_2.8_6_6_8, -2_4.1_0_4_9, -4_1.1_6_9_0], [-3_4.7_4_5_6, -1_4.1_2_7_4, -2_4.9_1_9_4], [-3_3.7_8_9_8, -1_2.1_9_4_6, -2_5.6_4_9_5]] ) lowerCAmelCase_ = torch.tensor( [[0.5_5_8_7, 0.2_7_7_3, 0.0_6_0_5], [0.5_0_0_4, 0.3_0_1_4, 0.9_9_9_4], [0.4_9_9_9, 0.1_5_4_8, 0.9_9_9_4]] ) elif yolos_name == "yolos_base": lowerCAmelCase_ = torch.tensor( [[-4_0.6_0_6_4, -2_4.3_0_8_4, -3_2.6_4_4_7], [-5_5.1_9_9_0, -3_0.7_7_1_9, -3_5.5_8_7_7], [-5_1.4_3_1_1, -3_3.3_5_0_7, -3_5.6_4_6_2]] ) lowerCAmelCase_ = torch.tensor( [[0.5_5_5_5, 0.2_7_9_4, 0.0_6_5_5], [0.9_0_4_9, 0.2_6_6_4, 0.1_8_9_4], [0.9_1_8_3, 0.1_9_8_4, 0.1_6_3_5]] ) else: raise ValueError(f"Unknown yolos_name: {yolos_name}" ) assert torch.allclose(logits[0, :3, :3] , _A , atol=1E-4 ) assert torch.allclose(pred_boxes[0, :3, :3] , _A , atol=1E-4 ) Path(_A ).mkdir(exist_ok=_A ) print(f"Saving model {yolos_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(_A ) print(f"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(_A ) if push_to_hub: lowerCAmelCase_ = { '''yolos_ti''': '''yolos-tiny''', '''yolos_s_200_pre''': '''yolos-small''', '''yolos_s_300_pre''': '''yolos-small-300''', '''yolos_s_dWr''': '''yolos-small-dwr''', '''yolos_base''': '''yolos-base''', } print('''Pushing to the hub...''' ) lowerCAmelCase_ = model_mapping[yolos_name] image_processor.push_to_hub(_A , organization='''hustvl''' ) model.push_to_hub(_A , organization='''hustvl''' ) if __name__ == "__main__": _A = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--yolos_name''', default='''yolos_s_200_pre''', type=str, help=( '''Name of the YOLOS model you\'d like to convert. Should be one of \'yolos_ti\', \'yolos_s_200_pre\',''' ''' \'yolos_s_300_pre\', \'yolos_s_dWr\', \'yolos_base\'.''' ), ) parser.add_argument( '''--checkpoint_path''', default=None, type=str, help='''Path to the original state dict (.pth file).''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) _A = parser.parse_args() convert_yolos_checkpoint(args.yolos_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
278
0
'''simple docstring''' from __future__ import annotations from decimal import Decimal from numpy import array def _A (lowerCAmelCase__ :list[list[float]] ) -> list[list[float]]: '''simple docstring''' _a = Decimal # Check if the provided matrix has 2 rows and 2 columns # since this implementation only works for 2x2 matrices if len(lowerCAmelCase__ ) == 2 and len(matrix[0] ) == 2 and len(matrix[1] ) == 2: # Calculate the determinant of the matrix _a = float( d(matrix[0][0] ) * d(matrix[1][1] ) - d(matrix[1][0] ) * d(matrix[0][1] ) ) if determinant == 0: raise ValueError('This matrix has no inverse.' ) # Creates a copy of the matrix with swapped positions of the elements _a = [[0.0, 0.0], [0.0, 0.0]] _a , _a = matrix[1][1], matrix[0][0] _a , _a = -matrix[1][0], -matrix[0][1] # Calculate the inverse of the matrix return [ [(float(d(lowerCAmelCase__ ) ) / determinant) or 0.0 for n in row] for row in swapped_matrix ] elif ( len(lowerCAmelCase__ ) == 3 and len(matrix[0] ) == 3 and len(matrix[1] ) == 3 and len(matrix[2] ) == 3 ): # Calculate the determinant of the matrix using Sarrus rule _a = float( ( (d(matrix[0][0] ) * d(matrix[1][1] ) * d(matrix[2][2] )) + (d(matrix[0][1] ) * d(matrix[1][2] ) * d(matrix[2][0] )) + (d(matrix[0][2] ) * d(matrix[1][0] ) * d(matrix[2][1] )) ) - ( (d(matrix[0][2] ) * d(matrix[1][1] ) * d(matrix[2][0] )) + (d(matrix[0][1] ) * d(matrix[1][0] ) * d(matrix[2][2] )) + (d(matrix[0][0] ) * d(matrix[1][2] ) * d(matrix[2][1] )) ) ) if determinant == 0: raise ValueError('This matrix has no inverse.' ) # Creating cofactor matrix _a = [ [d(0.0 ), d(0.0 ), d(0.0 )], [d(0.0 ), d(0.0 ), d(0.0 )], [d(0.0 ), d(0.0 ), d(0.0 )], ] _a = (d(matrix[1][1] ) * d(matrix[2][2] )) - ( d(matrix[1][2] ) * d(matrix[2][1] ) ) _a = -( (d(matrix[1][0] ) * d(matrix[2][2] )) - (d(matrix[1][2] ) * d(matrix[2][0] )) ) _a = (d(matrix[1][0] ) * d(matrix[2][1] )) - ( d(matrix[1][1] ) * d(matrix[2][0] ) ) _a = -( (d(matrix[0][1] ) * d(matrix[2][2] )) - (d(matrix[0][2] ) * d(matrix[2][1] )) ) _a = (d(matrix[0][0] ) * d(matrix[2][2] )) - ( d(matrix[0][2] ) * d(matrix[2][0] ) ) _a = -( (d(matrix[0][0] ) * d(matrix[2][1] )) - (d(matrix[0][1] ) * d(matrix[2][0] )) ) _a = (d(matrix[0][1] ) * d(matrix[1][2] )) - ( d(matrix[0][2] ) * d(matrix[1][1] ) ) _a = -( (d(matrix[0][0] ) * d(matrix[1][2] )) - (d(matrix[0][2] ) * d(matrix[1][0] )) ) _a = (d(matrix[0][0] ) * d(matrix[1][1] )) - ( d(matrix[0][1] ) * d(matrix[1][0] ) ) # Transpose the cofactor matrix (Adjoint matrix) _a = array(lowerCAmelCase__ ) for i in range(3 ): for j in range(3 ): _a = cofactor_matrix[j][i] # Inverse of the matrix using the formula (1/determinant) * adjoint matrix _a = array(lowerCAmelCase__ ) for i in range(3 ): for j in range(3 ): inverse_matrix[i][j] /= d(lowerCAmelCase__ ) # Calculate the inverse of the matrix return [[float(d(lowerCAmelCase__ ) ) or 0.0 for n in row] for row in inverse_matrix] raise ValueError('Please provide a matrix of size 2x2 or 3x3.' )
104
'''simple docstring''' import unittest from diffusers.pipelines.pipeline_utils import is_safetensors_compatible class a ( unittest.TestCase ): def __UpperCAmelCase ( self ) -> int: _a = [ 'safety_checker/pytorch_model.bin', 'safety_checker/model.safetensors', 'vae/diffusion_pytorch_model.bin', 'vae/diffusion_pytorch_model.safetensors', 'text_encoder/pytorch_model.bin', 'text_encoder/model.safetensors', 'unet/diffusion_pytorch_model.bin', 'unet/diffusion_pytorch_model.safetensors', ] self.assertTrue(is_safetensors_compatible(__magic_name__ ) ) def __UpperCAmelCase ( self ) -> Dict: _a = [ 'unet/diffusion_pytorch_model.bin', 'unet/diffusion_pytorch_model.safetensors', ] self.assertTrue(is_safetensors_compatible(__magic_name__ ) ) def __UpperCAmelCase ( self ) -> Optional[int]: _a = [ 'safety_checker/pytorch_model.bin', 'safety_checker/model.safetensors', 'vae/diffusion_pytorch_model.bin', 'vae/diffusion_pytorch_model.safetensors', 'text_encoder/pytorch_model.bin', 'text_encoder/model.safetensors', 'unet/diffusion_pytorch_model.bin', # Removed: 'unet/diffusion_pytorch_model.safetensors', ] self.assertFalse(is_safetensors_compatible(__magic_name__ ) ) def __UpperCAmelCase ( self ) -> Optional[Any]: _a = [ 'text_encoder/pytorch_model.bin', 'text_encoder/model.safetensors', ] self.assertTrue(is_safetensors_compatible(__magic_name__ ) ) def __UpperCAmelCase ( self ) -> str: _a = [ 'safety_checker/pytorch_model.bin', 'safety_checker/model.safetensors', 'vae/diffusion_pytorch_model.bin', 'vae/diffusion_pytorch_model.safetensors', 'text_encoder/pytorch_model.bin', # Removed: 'text_encoder/model.safetensors', 'unet/diffusion_pytorch_model.bin', 'unet/diffusion_pytorch_model.safetensors', ] self.assertFalse(is_safetensors_compatible(__magic_name__ ) ) def __UpperCAmelCase ( self ) -> List[Any]: _a = [ 'safety_checker/pytorch_model.fp16.bin', 'safety_checker/model.fp16.safetensors', 'vae/diffusion_pytorch_model.fp16.bin', 'vae/diffusion_pytorch_model.fp16.safetensors', 'text_encoder/pytorch_model.fp16.bin', 'text_encoder/model.fp16.safetensors', 'unet/diffusion_pytorch_model.fp16.bin', 'unet/diffusion_pytorch_model.fp16.safetensors', ] _a = 'fp16' self.assertTrue(is_safetensors_compatible(__magic_name__ , variant=__magic_name__ ) ) def __UpperCAmelCase ( self ) -> Any: _a = [ 'unet/diffusion_pytorch_model.fp16.bin', 'unet/diffusion_pytorch_model.fp16.safetensors', ] _a = 'fp16' self.assertTrue(is_safetensors_compatible(__magic_name__ , variant=__magic_name__ ) ) def __UpperCAmelCase ( self ) -> int: # pass variant but use the non-variant filenames _a = [ 'unet/diffusion_pytorch_model.bin', 'unet/diffusion_pytorch_model.safetensors', ] _a = 'fp16' self.assertTrue(is_safetensors_compatible(__magic_name__ , variant=__magic_name__ ) ) def __UpperCAmelCase ( self ) -> List[str]: _a = [ 'safety_checker/pytorch_model.fp16.bin', 'safety_checker/model.fp16.safetensors', 'vae/diffusion_pytorch_model.fp16.bin', 'vae/diffusion_pytorch_model.fp16.safetensors', 'text_encoder/pytorch_model.fp16.bin', 'text_encoder/model.fp16.safetensors', 'unet/diffusion_pytorch_model.fp16.bin', # Removed: 'unet/diffusion_pytorch_model.fp16.safetensors', ] _a = 'fp16' self.assertFalse(is_safetensors_compatible(__magic_name__ , variant=__magic_name__ ) ) def __UpperCAmelCase ( self ) -> Union[str, Any]: _a = [ 'text_encoder/pytorch_model.fp16.bin', 'text_encoder/model.fp16.safetensors', ] _a = 'fp16' self.assertTrue(is_safetensors_compatible(__magic_name__ , variant=__magic_name__ ) ) def __UpperCAmelCase ( self ) -> List[Any]: # pass variant but use the non-variant filenames _a = [ 'text_encoder/pytorch_model.bin', 'text_encoder/model.safetensors', ] _a = 'fp16' self.assertTrue(is_safetensors_compatible(__magic_name__ , variant=__magic_name__ ) ) def __UpperCAmelCase ( self ) -> List[Any]: _a = [ 'safety_checker/pytorch_model.fp16.bin', 'safety_checker/model.fp16.safetensors', 'vae/diffusion_pytorch_model.fp16.bin', 'vae/diffusion_pytorch_model.fp16.safetensors', 'text_encoder/pytorch_model.fp16.bin', # 'text_encoder/model.fp16.safetensors', 'unet/diffusion_pytorch_model.fp16.bin', 'unet/diffusion_pytorch_model.fp16.safetensors', ] _a = 'fp16' self.assertFalse(is_safetensors_compatible(__magic_name__ , variant=__magic_name__ ) )
104
1
'''simple docstring''' import argparse import torch from transformers import FunnelBaseModel, FunnelConfig, FunnelModel, load_tf_weights_in_funnel from transformers.utils import logging logging.set_verbosity_info() def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )-> List[Any]: '''simple docstring''' _UpperCAmelCase : Tuple = FunnelConfig.from_json_file(lowerCAmelCase_ ) print(F'''Building PyTorch model from configuration: {config}''' ) _UpperCAmelCase : Optional[Any] = FunnelBaseModel(lowerCAmelCase_ ) if base_model else FunnelModel(lowerCAmelCase_ ) # Load weights from tf checkpoint load_tf_weights_in_funnel(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # Save pytorch-model print(F'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict() , lowerCAmelCase_ ) if __name__ == "__main__": A_ : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--config_file""", default=None, type=str, required=True, help="""The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.""", ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--base_model""", action="""store_true""", help="""Whether you want just the base model (no decoder) or not.""" ) A_ : Union[str, Any] = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path, args.base_model )
215
'''simple docstring''' import shutil import tempfile import unittest from transformers import ClapFeatureExtractor, ClapProcessor, RobertaTokenizer, RobertaTokenizerFast from transformers.testing_utils import require_sentencepiece, require_torchaudio from .test_feature_extraction_clap import floats_list @require_torchaudio @require_sentencepiece class lowercase ( unittest.TestCase ): """simple docstring""" def _snake_case ( self ) -> Optional[Any]: _UpperCAmelCase : str = """laion/clap-htsat-unfused""" _UpperCAmelCase : int = tempfile.mkdtemp() def _snake_case ( self ,**a_ ) -> str: return RobertaTokenizer.from_pretrained(self.checkpoint ,**a_ ) def _snake_case ( self ,**a_ ) -> Tuple: return ClapFeatureExtractor.from_pretrained(self.checkpoint ,**a_ ) def _snake_case ( self ) -> int: shutil.rmtree(self.tmpdirname ) def _snake_case ( self ) -> Optional[int]: _UpperCAmelCase : str = self.get_tokenizer() _UpperCAmelCase : Any = self.get_feature_extractor() _UpperCAmelCase : int = ClapProcessor(tokenizer=a_ ,feature_extractor=a_ ) processor.save_pretrained(self.tmpdirname ) _UpperCAmelCase : List[Any] = ClapProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() ,tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer ,a_ ) self.assertEqual(processor.feature_extractor.to_json_string() ,feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor ,a_ ) def _snake_case ( self ) -> List[Any]: _UpperCAmelCase : int = ClapProcessor(tokenizer=self.get_tokenizer() ,feature_extractor=self.get_feature_extractor() ) processor.save_pretrained(self.tmpdirname ) _UpperCAmelCase : List[str] = self.get_tokenizer(bos_token="""(BOS)""" ,eos_token="""(EOS)""" ) _UpperCAmelCase : List[Any] = self.get_feature_extractor(do_normalize=a_ ,padding_value=1.0 ) _UpperCAmelCase : Optional[Any] = ClapProcessor.from_pretrained( self.tmpdirname ,bos_token="""(BOS)""" ,eos_token="""(EOS)""" ,do_normalize=a_ ,padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() ,tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer ,a_ ) self.assertEqual(processor.feature_extractor.to_json_string() ,feature_extractor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.feature_extractor ,a_ ) def _snake_case ( self ) -> str: _UpperCAmelCase : Tuple = self.get_feature_extractor() _UpperCAmelCase : Dict = self.get_tokenizer() _UpperCAmelCase : str = ClapProcessor(tokenizer=a_ ,feature_extractor=a_ ) _UpperCAmelCase : Tuple = floats_list((3, 1_000) ) _UpperCAmelCase : int = feature_extractor(a_ ,return_tensors="""np""" ) _UpperCAmelCase : Union[str, Any] = processor(audios=a_ ,return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() ,input_processor[key].sum() ,delta=1E-2 ) def _snake_case ( self ) -> Tuple: _UpperCAmelCase : List[Any] = self.get_feature_extractor() _UpperCAmelCase : Any = self.get_tokenizer() _UpperCAmelCase : Optional[int] = ClapProcessor(tokenizer=a_ ,feature_extractor=a_ ) _UpperCAmelCase : Union[str, Any] = """This is a test string""" _UpperCAmelCase : Optional[Any] = processor(text=a_ ) _UpperCAmelCase : Any = tokenizer(a_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] ,encoded_processor[key] ) def _snake_case ( self ) -> List[Any]: _UpperCAmelCase : str = self.get_feature_extractor() _UpperCAmelCase : List[str] = self.get_tokenizer() _UpperCAmelCase : Any = ClapProcessor(tokenizer=a_ ,feature_extractor=a_ ) _UpperCAmelCase : List[str] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] _UpperCAmelCase : Dict = processor.batch_decode(a_ ) _UpperCAmelCase : Any = tokenizer.batch_decode(a_ ) self.assertListEqual(a_ ,a_ ) def _snake_case ( self ) -> Dict: _UpperCAmelCase : List[str] = self.get_feature_extractor() _UpperCAmelCase : int = self.get_tokenizer() _UpperCAmelCase : Dict = ClapProcessor(tokenizer=a_ ,feature_extractor=a_ ) self.assertListEqual( processor.model_input_names[2:] ,feature_extractor.model_input_names ,msg="""`processor` and `feature_extractor` model input names do not match""" ,)
215
1
'''simple docstring''' from math import loga def __lowercase ( __lowercase ) -> int: '''simple docstring''' if a < 0: raise ValueError("Input value must be a positive integer" ) elif isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): raise TypeError("Input value must be a 'int' type" ) return 0 if (a == 0) else int(loga(a & -a ) ) if __name__ == "__main__": import doctest doctest.testmod()
371
'''simple docstring''' lowerCamelCase_ = ''' # Transformers installation ! pip install transformers datasets # To install from source instead of the last release, comment the command above and uncomment the following one. # ! pip install git+https://github.com/huggingface/transformers.git ''' lowerCamelCase_ = [{'''type''': '''code''', '''content''': INSTALL_CONTENT}] lowerCamelCase_ = { '''{processor_class}''': '''FakeProcessorClass''', '''{model_class}''': '''FakeModelClass''', '''{object_class}''': '''FakeObjectClass''', }
174
0
from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxSeqaSeqConfigWithPast from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { "t5-small": "https://huggingface.co/t5-small/resolve/main/config.json", "t5-base": "https://huggingface.co/t5-base/resolve/main/config.json", "t5-large": "https://huggingface.co/t5-large/resolve/main/config.json", "t5-3b": "https://huggingface.co/t5-3b/resolve/main/config.json", "t5-11b": "https://huggingface.co/t5-11b/resolve/main/config.json", } class A ( _UpperCAmelCase ): """simple docstring""" lowerCamelCase = 't5' lowerCamelCase = ['past_key_values'] lowerCamelCase = {'hidden_size': 'd_model', 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers'} def __init__( self : Union[str, Any],lowercase_ : int=3_2_1_2_8,lowercase_ : int=5_1_2,lowercase_ : List[str]=6_4,lowercase_ : Tuple=2_0_4_8,lowercase_ : Any=6,lowercase_ : List[str]=None,lowercase_ : Union[str, Any]=8,lowercase_ : int=3_2,lowercase_ : Dict=1_2_8,lowercase_ : Optional[int]=0.1,lowercase_ : List[str]=1E-6,lowercase_ : Tuple=1.0,lowercase_ : Any="relu",lowercase_ : Union[str, Any]=True,lowercase_ : Optional[Any]=True,lowercase_ : int=0,lowercase_ : str=1,**lowercase_ : str,)-> Any: '''simple docstring''' A__ = vocab_size A__ = d_model A__ = d_kv A__ = d_ff A__ = num_layers A__ = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry A__ = num_heads A__ = relative_attention_num_buckets A__ = relative_attention_max_distance A__ = dropout_rate A__ = layer_norm_epsilon A__ = initializer_factor A__ = feed_forward_proj A__ = use_cache A__ = self.feed_forward_proj.split('-' ) A__ = act_info[-1] A__ = act_info[0] == 'gated' if len(lowercase_ ) > 1 and act_info[0] != "gated" or len(lowercase_ ) > 2: raise ValueError( F'`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.' 'Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. ' '\'gated-gelu\' or \'relu\'' ) # for backwards compatibility if feed_forward_proj == "gated-gelu": A__ = 'gelu_new' super().__init__( pad_token_id=lowercase_,eos_token_id=lowercase_,is_encoder_decoder=lowercase_,**lowercase_,) class A ( _UpperCAmelCase ): """simple docstring""" @property def snake_case__ ( self : Tuple )-> Mapping[str, Mapping[int, str]]: '''simple docstring''' A__ = { 'input_ids': {0: 'batch', 1: 'encoder_sequence'}, 'attention_mask': {0: 'batch', 1: 'encoder_sequence'}, } if self.use_past: A__ = 'past_encoder_sequence + sequence' A__ = {0: 'batch'} A__ = {0: 'batch', 1: 'past_decoder_sequence + sequence'} else: A__ = {0: 'batch', 1: 'decoder_sequence'} A__ = {0: 'batch', 1: 'decoder_sequence'} if self.use_past: self.fill_with_past_key_values_(lowercase_,direction='inputs' ) return common_inputs @property def snake_case__ ( self : Any )-> int: '''simple docstring''' return 1_3
7
import argparse import datetime import json import time import warnings from logging import getLogger from pathlib import Path from typing import Dict, List import torch from tqdm import tqdm from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from utils import calculate_bleu, calculate_rouge, chunks, parse_numeric_n_bool_cl_kwargs, use_task_specific_params __A =getLogger(__name__) __A ="cuda" if torch.cuda.is_available() else "cpu" def a ( _UpperCAmelCase : List[str] , _UpperCAmelCase : str , _UpperCAmelCase : str , _UpperCAmelCase : int = 8 , _UpperCAmelCase : str = DEFAULT_DEVICE , _UpperCAmelCase : Optional[Any]=False , _UpperCAmelCase : Optional[int]="summarization" , _UpperCAmelCase : Dict=None , **_UpperCAmelCase : List[str] , ): '''simple docstring''' __UpperCAmelCase : Dict = Path(_UpperCAmelCase ).open('''w''' , encoding='''utf-8''' ) __UpperCAmelCase : Optional[int] = str(_UpperCAmelCase ) __UpperCAmelCase : List[Any] = AutoModelForSeqaSeqLM.from_pretrained(_UpperCAmelCase ).to(_UpperCAmelCase ) if fpaa: __UpperCAmelCase : Dict = model.half() __UpperCAmelCase : Tuple = AutoTokenizer.from_pretrained(_UpperCAmelCase ) logger.info(f'Inferred tokenizer type: {tokenizer.__class__}' ) # if this is wrong, check config.model_type. __UpperCAmelCase : Dict = time.time() # update config with task specific params use_task_specific_params(_UpperCAmelCase , _UpperCAmelCase ) if prefix is None: __UpperCAmelCase : List[Any] = prefix or getattr(model.config , '''prefix''' , '''''' ) or '''''' for examples_chunk in tqdm(list(chunks(_UpperCAmelCase , _UpperCAmelCase ) ) ): __UpperCAmelCase : Any = [prefix + text for text in examples_chunk] __UpperCAmelCase : Union[str, Any] = tokenizer(_UpperCAmelCase , return_tensors='''pt''' , truncation=_UpperCAmelCase , padding='''longest''' ).to(_UpperCAmelCase ) __UpperCAmelCase : Dict = model.generate( input_ids=batch.input_ids , attention_mask=batch.attention_mask , **_UpperCAmelCase , ) __UpperCAmelCase : List[Any] = tokenizer.batch_decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase , clean_up_tokenization_spaces=_UpperCAmelCase ) for hypothesis in dec: fout.write(hypothesis + '''\n''' ) fout.flush() fout.close() __UpperCAmelCase : Dict = int(time.time() - start_time ) # seconds __UpperCAmelCase : Union[str, Any] = len(_UpperCAmelCase ) return {"n_obs": n_obs, "runtime": runtime, "seconds_per_sample": round(runtime / n_obs , 4 )} def a ( ): '''simple docstring''' return datetime.datetime.now().strftime('''%Y-%m-%d %H:%M:%S''' ) def a ( _UpperCAmelCase : Any=True ): '''simple docstring''' __UpperCAmelCase : Dict = argparse.ArgumentParser() parser.add_argument('''model_name''' , type=_UpperCAmelCase , help='''like facebook/bart-large-cnn,t5-base, etc.''' ) parser.add_argument('''input_path''' , type=_UpperCAmelCase , help='''like cnn_dm/test.source''' ) parser.add_argument('''save_path''' , type=_UpperCAmelCase , help='''where to save summaries''' ) parser.add_argument('''--reference_path''' , type=_UpperCAmelCase , required=_UpperCAmelCase , help='''like cnn_dm/test.target''' ) parser.add_argument('''--score_path''' , type=_UpperCAmelCase , required=_UpperCAmelCase , default='''metrics.json''' , help='''where to save metrics''' ) parser.add_argument('''--device''' , type=_UpperCAmelCase , required=_UpperCAmelCase , default=_UpperCAmelCase , help='''cuda, cuda:1, cpu etc.''' ) parser.add_argument( '''--prefix''' , type=_UpperCAmelCase , required=_UpperCAmelCase , default=_UpperCAmelCase , help='''will be added to the begininng of src examples''' ) parser.add_argument('''--task''' , type=_UpperCAmelCase , default='''summarization''' , help='''used for task_specific_params + metrics''' ) parser.add_argument('''--bs''' , type=_UpperCAmelCase , default=8 , required=_UpperCAmelCase , help='''batch size''' ) parser.add_argument( '''--n_obs''' , type=_UpperCAmelCase , default=-1 , required=_UpperCAmelCase , help='''How many observations. Defaults to all.''' ) parser.add_argument('''--fp16''' , action='''store_true''' ) parser.add_argument('''--dump-args''' , action='''store_true''' , help='''print the custom hparams with the results''' ) parser.add_argument( '''--info''' , nargs='''?''' , type=_UpperCAmelCase , const=datetime_now() , help=( '''use in conjunction w/ --dump-args to print with the results whatever other info you\'d like, e.g.''' ''' lang=en-ru. If no value is passed, the current datetime string will be used.''' ) , ) # Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate __UpperCAmelCase , __UpperCAmelCase : Dict = parser.parse_known_args() __UpperCAmelCase : Optional[Any] = parse_numeric_n_bool_cl_kwargs(_UpperCAmelCase ) if parsed_args and verbose: print(f'parsed the following generate kwargs: {parsed_args}' ) __UpperCAmelCase : Optional[int] = [''' ''' + x.rstrip() if '''t5''' in args.model_name else x.rstrip() for x in open(args.input_path ).readlines()] if args.n_obs > 0: __UpperCAmelCase : Optional[int] = examples[: args.n_obs] Path(args.save_path ).parent.mkdir(exist_ok=_UpperCAmelCase ) if args.reference_path is None and Path(args.score_path ).exists(): warnings.warn(f'score_path {args.score_path} will be overwritten unless you type ctrl-c.' ) if args.device == "cpu" and args.fpaa: # this mix leads to RuntimeError: "threshold_cpu" not implemented for 'Half' raise ValueError('''Can\'t mix --fp16 and --device cpu''' ) __UpperCAmelCase : int = generate_summaries_or_translations( _UpperCAmelCase , args.save_path , args.model_name , batch_size=args.bs , device=args.device , fpaa=args.fpaa , task=args.task , prefix=args.prefix , **_UpperCAmelCase , ) if args.reference_path is None: return {} # Compute scores __UpperCAmelCase : str = calculate_bleu if '''translation''' in args.task else calculate_rouge __UpperCAmelCase : Tuple = [x.rstrip() for x in open(args.save_path ).readlines()] __UpperCAmelCase : int = [x.rstrip() for x in open(args.reference_path ).readlines()][: len(_UpperCAmelCase )] __UpperCAmelCase : dict = score_fn(_UpperCAmelCase , _UpperCAmelCase ) scores.update(_UpperCAmelCase ) if args.dump_args: scores.update(_UpperCAmelCase ) if args.info: __UpperCAmelCase : Dict = args.info if verbose: print(_UpperCAmelCase ) if args.score_path is not None: json.dump(_UpperCAmelCase , open(args.score_path , '''w''' ) ) return scores if __name__ == "__main__": # Usage for MT: # python run_eval.py MODEL_NAME $DATA_DIR/test.source $save_dir/test_translations.txt --reference_path $DATA_DIR/test.target --score_path $save_dir/test_bleu.json --task translation $@ run_generate(verbose=True)
226
0
import warnings from diffusers import StableDiffusionImgaImgPipeline # noqa F401 warnings.warn( "The `image_to_image.py` script is outdated. Please use directly `from diffusers import" " StableDiffusionImg2ImgPipeline` instead." )
360
import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class lowercase_ ( lowercase ): '''simple docstring''' __snake_case = ['''image_processor''', '''tokenizer'''] __snake_case = '''CLIPImageProcessor''' __snake_case = ('''CLIPTokenizer''', '''CLIPTokenizerFast''') def __init__( self : Dict , __UpperCAmelCase : str=None , __UpperCAmelCase : Optional[Any]=None , **__UpperCAmelCase : Optional[Any] ) ->List[str]: """simple docstring""" a = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , __UpperCAmelCase , ) a = kwargs.pop('''feature_extractor''' ) a = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(__UpperCAmelCase , __UpperCAmelCase ) def __call__( self : List[str] , __UpperCAmelCase : Any=None , __UpperCAmelCase : Dict=None , __UpperCAmelCase : Any=None , **__UpperCAmelCase : str ) ->Optional[Any]: """simple docstring""" if text is None and images is None: raise ValueError('''You have to specify either text or images. Both cannot be none.''' ) if text is not None: a = self.tokenizer(__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase ) if images is not None: a = self.image_processor(__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase ) if text is not None and images is not None: a = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**__UpperCAmelCase ) , tensor_type=__UpperCAmelCase ) def __lowerCAmelCase ( self : Tuple , *__UpperCAmelCase : List[str] , **__UpperCAmelCase : Union[str, Any] ) ->Union[str, Any]: """simple docstring""" return self.tokenizer.batch_decode(*__UpperCAmelCase , **__UpperCAmelCase ) def __lowerCAmelCase ( self : Tuple , *__UpperCAmelCase : str , **__UpperCAmelCase : Tuple ) ->Any: """simple docstring""" return self.tokenizer.decode(*__UpperCAmelCase , **__UpperCAmelCase ) @property def __lowerCAmelCase ( self : int ) ->List[str]: """simple docstring""" a = self.tokenizer.model_input_names a = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def __lowerCAmelCase ( self : Optional[int] ) ->List[str]: """simple docstring""" warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , __UpperCAmelCase , ) return self.image_processor_class @property def __lowerCAmelCase ( self : Union[str, Any] ) ->Optional[int]: """simple docstring""" warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , __UpperCAmelCase , ) return self.image_processor
26
0
import math import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from .attention_processor import Attention from .embeddings import get_timestep_embedding from .modeling_utils import ModelMixin class _SCREAMING_SNAKE_CASE ( snake_case_ , snake_case_ ): @register_to_config def __init__( self , lowercase = 128 , lowercase = 256 , lowercase = 2_0_0_0.0 , lowercase = 768 , lowercase = 12 , lowercase = 12 , lowercase = 64 , lowercase = 2048 , lowercase = 0.1 , ) -> str: super().__init__() lowerCamelCase_ = nn.Sequential( nn.Linear(lowercase , d_model * 4 , bias=lowercase ) , nn.SiLU() , nn.Linear(d_model * 4 , d_model * 4 , bias=lowercase ) , nn.SiLU() , ) lowerCamelCase_ = nn.Embedding(lowercase , lowercase ) lowerCamelCase_ = False lowerCamelCase_ = nn.Linear(lowercase , lowercase , bias=lowercase ) lowerCamelCase_ = nn.Dropout(p=lowercase ) lowerCamelCase_ = nn.ModuleList() for lyr_num in range(lowercase ): # FiLM conditional T5 decoder lowerCamelCase_ = DecoderLayer(d_model=lowercase , d_kv=lowercase , num_heads=lowercase , d_ff=lowercase , dropout_rate=lowercase ) self.decoders.append(lowercase ) lowerCamelCase_ = TaLayerNorm(lowercase ) lowerCamelCase_ = nn.Dropout(p=lowercase ) lowerCamelCase_ = nn.Linear(lowercase , lowercase , bias=lowercase ) def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase ) -> Optional[int]: lowerCamelCase_ = torch.mul(query_input.unsqueeze(-1 ) , key_input.unsqueeze(-2 ) ) return mask.unsqueeze(-3 ) def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase , lowercase ) -> int: lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = decoder_input_tokens.shape assert decoder_noise_time.shape == (batch,) # decoder_noise_time is in [0, 1), so rescale to expected timing range. lowerCamelCase_ = get_timestep_embedding( decoder_noise_time * self.config.max_decoder_noise_time , embedding_dim=self.config.d_model , max_period=self.config.max_decoder_noise_time , ).to(dtype=self.dtype ) lowerCamelCase_ = self.conditioning_emb(lowercase ).unsqueeze(1 ) assert conditioning_emb.shape == (batch, 1, self.config.d_model * 4) lowerCamelCase_ = decoder_input_tokens.shape[1] # If we want to use relative positions for audio context, we can just offset # this sequence by the length of encodings_and_masks. lowerCamelCase_ = torch.broadcast_to( torch.arange(lowercase , device=decoder_input_tokens.device ) , (batch, seq_length) , ) lowerCamelCase_ = self.position_encoding(lowercase ) lowerCamelCase_ = self.continuous_inputs_projection(lowercase ) inputs += position_encodings lowerCamelCase_ = self.dropout(lowercase ) # decoder: No padding present. lowerCamelCase_ = torch.ones( decoder_input_tokens.shape[:2] , device=decoder_input_tokens.device , dtype=inputs.dtype ) # Translate encoding masks to encoder-decoder masks. lowerCamelCase_ = [(x, self.encoder_decoder_mask(lowercase , lowercase )) for x, y in encodings_and_masks] # cross attend style: concat encodings lowerCamelCase_ = torch.cat([x[0] for x in encodings_and_encdec_masks] , dim=1 ) lowerCamelCase_ = torch.cat([x[1] for x in encodings_and_encdec_masks] , dim=-1 ) for lyr in self.decoders: lowerCamelCase_ = lyr( lowercase , conditioning_emb=lowercase , encoder_hidden_states=lowercase , encoder_attention_mask=lowercase , )[0] lowerCamelCase_ = self.decoder_norm(lowercase ) lowerCamelCase_ = self.post_dropout(lowercase ) lowerCamelCase_ = self.spec_out(lowercase ) return spec_out class _SCREAMING_SNAKE_CASE ( nn.Module ): def __init__( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase=1e-6 ) -> Tuple: super().__init__() lowerCamelCase_ = nn.ModuleList() # cond self attention: layer 0 self.layer.append( TaLayerSelfAttentionCond(d_model=lowercase , d_kv=lowercase , num_heads=lowercase , dropout_rate=lowercase ) ) # cross attention: layer 1 self.layer.append( TaLayerCrossAttention( d_model=lowercase , d_kv=lowercase , num_heads=lowercase , dropout_rate=lowercase , layer_norm_epsilon=lowercase , ) ) # Film Cond MLP + dropout: last layer self.layer.append( TaLayerFFCond(d_model=lowercase , d_ff=lowercase , dropout_rate=lowercase , layer_norm_epsilon=lowercase ) ) def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase=None , lowercase=None , lowercase=None , lowercase=None , lowercase=None , ) -> List[Any]: lowerCamelCase_ = self.layer[0]( lowercase , conditioning_emb=lowercase , attention_mask=lowercase , ) if encoder_hidden_states is not None: lowerCamelCase_ = torch.where(encoder_attention_mask > 0 , 0 , -1e10 ).to( encoder_hidden_states.dtype ) lowerCamelCase_ = self.layer[1]( lowercase , key_value_states=lowercase , attention_mask=lowercase , ) # Apply Film Conditional Feed Forward layer lowerCamelCase_ = self.layer[-1](lowercase , lowercase ) return (hidden_states,) class _SCREAMING_SNAKE_CASE ( nn.Module ): def __init__( self , lowercase , lowercase , lowercase , lowercase ) -> Tuple: super().__init__() lowerCamelCase_ = TaLayerNorm(lowercase ) lowerCamelCase_ = TaFiLMLayer(in_features=d_model * 4 , out_features=lowercase ) lowerCamelCase_ = Attention(query_dim=lowercase , heads=lowercase , dim_head=lowercase , out_bias=lowercase , scale_qk=lowercase ) lowerCamelCase_ = nn.Dropout(lowercase ) def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase=None , lowercase=None , ) -> Optional[int]: # pre_self_attention_layer_norm lowerCamelCase_ = self.layer_norm(lowercase ) if conditioning_emb is not None: lowerCamelCase_ = self.FiLMLayer(lowercase , lowercase ) # Self-attention block lowerCamelCase_ = self.attention(lowercase ) lowerCamelCase_ = hidden_states + self.dropout(lowercase ) return hidden_states class _SCREAMING_SNAKE_CASE ( nn.Module ): def __init__( self , lowercase , lowercase , lowercase , lowercase , lowercase ) -> List[str]: super().__init__() lowerCamelCase_ = Attention(query_dim=lowercase , heads=lowercase , dim_head=lowercase , out_bias=lowercase , scale_qk=lowercase ) lowerCamelCase_ = TaLayerNorm(lowercase , eps=lowercase ) lowerCamelCase_ = nn.Dropout(lowercase ) def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase=None , lowercase=None , ) -> Dict: lowerCamelCase_ = self.layer_norm(lowercase ) lowerCamelCase_ = self.attention( lowercase , encoder_hidden_states=lowercase , attention_mask=attention_mask.squeeze(1 ) , ) lowerCamelCase_ = hidden_states + self.dropout(lowercase ) return layer_output class _SCREAMING_SNAKE_CASE ( nn.Module ): def __init__( self , lowercase , lowercase , lowercase , lowercase ) -> Tuple: super().__init__() lowerCamelCase_ = TaDenseGatedActDense(d_model=lowercase , d_ff=lowercase , dropout_rate=lowercase ) lowerCamelCase_ = TaFiLMLayer(in_features=d_model * 4 , out_features=lowercase ) lowerCamelCase_ = TaLayerNorm(lowercase , eps=lowercase ) lowerCamelCase_ = nn.Dropout(lowercase ) def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase=None ) -> Optional[Any]: lowerCamelCase_ = self.layer_norm(lowercase ) if conditioning_emb is not None: lowerCamelCase_ = self.film(lowercase , lowercase ) lowerCamelCase_ = self.DenseReluDense(lowercase ) lowerCamelCase_ = hidden_states + self.dropout(lowercase ) return hidden_states class _SCREAMING_SNAKE_CASE ( nn.Module ): def __init__( self , lowercase , lowercase , lowercase ) -> List[Any]: super().__init__() lowerCamelCase_ = nn.Linear(lowercase , lowercase , bias=lowercase ) lowerCamelCase_ = nn.Linear(lowercase , lowercase , bias=lowercase ) lowerCamelCase_ = nn.Linear(lowercase , lowercase , bias=lowercase ) lowerCamelCase_ = nn.Dropout(lowercase ) lowerCamelCase_ = NewGELUActivation() def SCREAMING_SNAKE_CASE_( self , lowercase ) -> List[Any]: lowerCamelCase_ = self.act(self.wi_a(lowercase ) ) lowerCamelCase_ = self.wi_a(lowercase ) lowerCamelCase_ = hidden_gelu * hidden_linear lowerCamelCase_ = self.dropout(lowercase ) lowerCamelCase_ = self.wo(lowercase ) return hidden_states class _SCREAMING_SNAKE_CASE ( nn.Module ): def __init__( self , lowercase , lowercase=1e-6 ) -> Tuple: super().__init__() lowerCamelCase_ = nn.Parameter(torch.ones(lowercase ) ) lowerCamelCase_ = eps def SCREAMING_SNAKE_CASE_( self , lowercase ) -> int: # T5 uses a layer_norm which only scales and doesn't shift, which is also known as Root Mean # Square Layer Normalization https://arxiv.org/abs/1910.07467 thus variance is calculated # w/o mean and there is no bias. Additionally we want to make sure that the accumulation for # half-precision inputs is done in fp32 lowerCamelCase_ = hidden_states.to(torch.floataa ).pow(2 ).mean(-1 , keepdim=lowercase ) lowerCamelCase_ = hidden_states * torch.rsqrt(variance + self.variance_epsilon ) # convert into half-precision if necessary if self.weight.dtype in [torch.floataa, torch.bfloataa]: lowerCamelCase_ = hidden_states.to(self.weight.dtype ) return self.weight * hidden_states class _SCREAMING_SNAKE_CASE ( nn.Module ): def SCREAMING_SNAKE_CASE_( self , lowercase ) -> torch.Tensor: return 0.5 * input * (1.0 + torch.tanh(math.sqrt(2.0 / math.pi ) * (input + 0.0_4_4_7_1_5 * torch.pow(lowercase , 3.0 )) )) class _SCREAMING_SNAKE_CASE ( nn.Module ): def __init__( self , lowercase , lowercase ) -> Union[str, Any]: super().__init__() lowerCamelCase_ = nn.Linear(lowercase , out_features * 2 , bias=lowercase ) def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase ) -> str: lowerCamelCase_ = self.scale_bias(lowercase ) lowerCamelCase_ , lowerCamelCase_ = torch.chunk(lowercase , 2 , -1 ) lowerCamelCase_ = x * (1 + scale) + shift return x
19
"""simple docstring""" from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __UpperCamelCase = { '''configuration_mctct''': ['''MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MCTCTConfig'''], '''feature_extraction_mctct''': ['''MCTCTFeatureExtractor'''], '''processing_mctct''': ['''MCTCTProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = [ '''MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MCTCTForCTC''', '''MCTCTModel''', '''MCTCTPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mctct import MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP, MCTCTConfig from .feature_extraction_mctct import MCTCTFeatureExtractor from .processing_mctct import MCTCTProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mctct import MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST, MCTCTForCTC, MCTCTModel, MCTCTPreTrainedModel else: import sys __UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
69
0
"""simple docstring""" from math import acos, sin from typing import List, Tuple, Union import numpy as np import torch from PIL import Image from ...models import AutoencoderKL, UNetaDConditionModel from ...schedulers import DDIMScheduler, DDPMScheduler from ...utils import randn_tensor from ..pipeline_utils import AudioPipelineOutput, BaseOutput, DiffusionPipeline, ImagePipelineOutput from .mel import Mel class snake_case ( a__ ): __magic_name__ : Dict = ['vqvae'] def __init__( self : Optional[int] , A : List[str] , A : Optional[Any] , A : List[Any] , A : str , ): '''simple docstring''' super().__init__() self.register_modules(unet=_lowerCamelCase , scheduler=_lowerCamelCase , mel=_lowerCamelCase , vqvae=_lowerCamelCase ) def lowerCamelCase__ ( self : Any ): '''simple docstring''' return 5_0 if isinstance(self.scheduler , _lowerCamelCase ) else 1_0_0_0 @torch.no_grad() def __call__( self : Optional[int] , A : Union[str, Any] = 1 , A : Union[str, Any] = None , A : Optional[Any] = None , A : List[str] = 0 , A : Optional[int] = 0 , A : List[str] = None , A : Union[str, Any] = None , A : int = 0 , A : Dict = 0 , A : Optional[int] = None , A : Tuple = 0 , A : Optional[int] = None , A : Dict = None , A : Dict=True , ): '''simple docstring''' a : Union[str, Any] = steps or self.get_default_steps() self.scheduler.set_timesteps(_lowerCamelCase ) a : List[Any] = step_generator or generator # For backwards compatibility if type(self.unet.config.sample_size ) == int: a : List[Any] = (self.unet.config.sample_size, self.unet.config.sample_size) if noise is None: a : Dict = randn_tensor( ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size[0], self.unet.config.sample_size[1], ) , generator=_lowerCamelCase , device=self.device , ) a : List[Any] = noise a : int = None if audio_file is not None or raw_audio is not None: self.mel.load_audio(_lowerCamelCase , _lowerCamelCase ) a : Optional[int] = self.mel.audio_slice_to_image(_lowerCamelCase ) a : Dict = np.frombuffer(input_image.tobytes() , dtype='uint8' ).reshape( (input_image.height, input_image.width) ) a : Dict = (input_image / 2_5_5) * 2 - 1 a : str = torch.tensor(input_image[np.newaxis, :, :] , dtype=torch.float ).to(self.device ) if self.vqvae is not None: a : List[Any] = self.vqvae.encode(torch.unsqueeze(_lowerCamelCase , 0 ) ).latent_dist.sample( generator=_lowerCamelCase )[0] a : List[str] = self.vqvae.config.scaling_factor * input_images if start_step > 0: a : Dict = self.scheduler.add_noise(_lowerCamelCase , _lowerCamelCase , self.scheduler.timesteps[start_step - 1] ) a : Dict = ( self.unet.config.sample_size[1] * self.mel.get_sample_rate() / self.mel.x_res / self.mel.hop_length ) a : Any = int(mask_start_secs * pixels_per_second ) a : int = int(mask_end_secs * pixels_per_second ) a : Dict = self.scheduler.add_noise(_lowerCamelCase , _lowerCamelCase , torch.tensor(self.scheduler.timesteps[start_step:] ) ) for step, t in enumerate(self.progress_bar(self.scheduler.timesteps[start_step:] ) ): if isinstance(self.unet , _lowerCamelCase ): a : Optional[Any] = self.unet(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase )['''sample'''] else: a : Optional[int] = self.unet(_lowerCamelCase , _lowerCamelCase )['''sample'''] if isinstance(self.scheduler , _lowerCamelCase ): a : int = self.scheduler.step( model_output=_lowerCamelCase , timestep=_lowerCamelCase , sample=_lowerCamelCase , eta=_lowerCamelCase , generator=_lowerCamelCase , )['''prev_sample'''] else: a : int = self.scheduler.step( model_output=_lowerCamelCase , timestep=_lowerCamelCase , sample=_lowerCamelCase , generator=_lowerCamelCase , )['''prev_sample'''] if mask is not None: if mask_start > 0: a : Any = mask[:, step, :, :mask_start] if mask_end > 0: a : Dict = mask[:, step, :, -mask_end:] if self.vqvae is not None: # 0.18215 was scaling factor used in training to ensure unit variance a : List[str] = 1 / self.vqvae.config.scaling_factor * images a : Dict = self.vqvae.decode(_lowerCamelCase )['''sample'''] a : Union[str, Any] = (images / 2 + 0.5).clamp(0 , 1 ) a : int = images.cpu().permute(0 , 2 , 3 , 1 ).numpy() a : str = (images * 2_5_5).round().astype('uint8' ) a : Union[str, Any] = list( (Image.fromarray(_[:, :, 0] ) for _ in images) if images.shape[3] == 1 else (Image.fromarray(_lowerCamelCase , mode='RGB' ).convert('L' ) for _ in images) ) a : Optional[int] = [self.mel.image_to_audio(_lowerCamelCase ) for _ in images] if not return_dict: return images, (self.mel.get_sample_rate(), audios) return BaseOutput(**AudioPipelineOutput(np.array(_lowerCamelCase )[:, np.newaxis, :] ) , **ImagePipelineOutput(_lowerCamelCase ) ) @torch.no_grad() def lowerCamelCase__ ( self : List[Any] , A : Optional[Any] , A : int = 5_0 ): '''simple docstring''' assert isinstance(self.scheduler , _lowerCamelCase ) self.scheduler.set_timesteps(_lowerCamelCase ) a : int = np.array( [np.frombuffer(image.tobytes() , dtype='uint8' ).reshape((1, image.height, image.width) ) for image in images] ) a : Union[str, Any] = (sample / 2_5_5) * 2 - 1 a : Any = torch.Tensor(_lowerCamelCase ).to(self.device ) for t in self.progress_bar(torch.flip(self.scheduler.timesteps , (0,) ) ): a : Tuple = t - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps a : Optional[Any] = self.scheduler.alphas_cumprod[t] a : Optional[int] = ( self.scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.scheduler.final_alpha_cumprod ) a : Union[str, Any] = 1 - alpha_prod_t a : Union[str, Any] = self.unet(_lowerCamelCase , _lowerCamelCase )['''sample'''] a : Dict = (1 - alpha_prod_t_prev) ** 0.5 * model_output a : Tuple = (sample - pred_sample_direction) * alpha_prod_t_prev ** (-0.5) a : str = sample * alpha_prod_t ** 0.5 + beta_prod_t ** 0.5 * model_output return sample @staticmethod def lowerCamelCase__ ( A : str , A : int , A : Optional[int] ): '''simple docstring''' a : str = acos(torch.dot(torch.flatten(_lowerCamelCase ) , torch.flatten(_lowerCamelCase ) ) / torch.norm(_lowerCamelCase ) / torch.norm(_lowerCamelCase ) ) return sin((1 - alpha) * theta ) * xa / sin(_lowerCamelCase ) + sin(alpha * theta ) * xa / sin(_lowerCamelCase )
369
"""simple docstring""" def snake_case (A_ :str , A_ :bool = False ): '''simple docstring''' if not isinstance(A_ , A_ ): a : Union[str, Any] = f'''Expected string as input, found {type(A_ )}''' raise ValueError(A_ ) if not isinstance(A_ , A_ ): a : Optional[int] = f'''Expected boolean as use_pascal parameter, found {type(A_ )}''' raise ValueError(A_ ) a : Tuple = input_str.split('_' ) a : Dict = 0 if use_pascal else 1 a : int = words[start_index:] a : int = [word[0].upper() + word[1:] for word in words_to_capitalize] a : List[str] = '' if use_pascal else words[0] return "".join([initial_word, *capitalized_words] ) if __name__ == "__main__": from doctest import testmod testmod()
186
0
'''simple docstring''' def __UpperCamelCase ( UpperCAmelCase ): if not isinstance(UpperCAmelCase , UpperCAmelCase ): raise ValueError('''check_bouncy() accepts only integer arguments''' ) lowercase__ : Any = str(UpperCAmelCase ) lowercase__ : int = ''''''.join(sorted(UpperCAmelCase ) ) return sorted_str_n != str_n and sorted_str_n[::-1] != str_n def __UpperCamelCase ( UpperCAmelCase = 99 ): if not 0 < percent < 100: raise ValueError('''solution() only accepts values from 0 to 100''' ) lowercase__ : Any = 0 lowercase__ : Union[str, Any] = 1 while True: if check_bouncy(UpperCAmelCase ): bouncy_num += 1 if (bouncy_num / num) * 100 >= percent: return num num += 1 if __name__ == "__main__": from doctest import testmod testmod() print(F'{solution(99)}')
198
'''simple docstring''' from math import pow def __UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , ): if current_sum == needed_sum: # If the sum of the powers is equal to needed_sum, then we have a solution. solutions_count += 1 return current_sum, solutions_count lowercase__ : Optional[Any] = int(pow(UpperCAmelCase , UpperCAmelCase ) ) if current_sum + i_to_n <= needed_sum: # If the sum of the powers is less than needed_sum, then continue adding powers. current_sum += i_to_n lowercase__ , lowercase__ : Dict = backtrack( UpperCAmelCase , UpperCAmelCase , current_number + 1 , UpperCAmelCase , UpperCAmelCase ) current_sum -= i_to_n if i_to_n < needed_sum: # If the power of i is less than needed_sum, then try with the next power. lowercase__ , lowercase__ : str = backtrack( UpperCAmelCase , UpperCAmelCase , current_number + 1 , UpperCAmelCase , UpperCAmelCase ) return current_sum, solutions_count def __UpperCamelCase ( UpperCAmelCase , UpperCAmelCase ): if not (1 <= needed_sum <= 1000 and 2 <= power <= 10): raise ValueError( '''Invalid input\n''' '''needed_sum must be between 1 and 1000, power between 2 and 10.''' ) return backtrack(UpperCAmelCase , UpperCAmelCase , 1 , 0 , 0 )[1] # Return the solutions_count if __name__ == "__main__": import doctest doctest.testmod()
198
1
"""simple docstring""" from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=SCREAMING_SNAKE_CASE ) class lowerCamelCase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowerCamelCase = field(default='''language-modeling''' , metadata={'''include_in_asdict_even_if_is_default''': True} ) _lowerCamelCase = Features({'''text''': Value('''string''' )} ) _lowerCamelCase = Features({} ) _lowerCamelCase = '''text''' @property def UpperCamelCase__ ( self ) -> Dict[str, str]: return {self.text_column: "text"}
367
"""simple docstring""" from __future__ import annotations import math from collections.abc import Callable def _A ( _a : Callable[[int | float], int | float] , _a : int | float , _a : int | float , _a : int = 1_0_0 , ): """simple docstring""" A = x_start A = fnc(_a ) A = 0.0 for _ in range(_a ): # Approximates curve as a sequence of linear lines and sums their length A = (x_end - x_start) / steps + xa A = fnc(_a ) length += math.hypot(xa - xa , fxa - fxa ) # Increment step A = xa A = fxa return length if __name__ == "__main__": def _A ( _a : Tuple ): """simple docstring""" return math.sin(1_0 * x ) print("f(x) = sin(10 * x)") print("The length of the curve from x = -10 to x = 10 is:") UpperCAmelCase =10 while i <= 100_000: print(f"""With {i} steps: {line_length(f, -10, 10, i)}""") i *= 10
77
0
"""simple docstring""" from .testing import ( are_the_same_tensors, execute_subprocess_async, require_bnb, require_cpu, require_cuda, require_huggingface_suite, require_mps, require_multi_gpu, require_multi_xpu, require_safetensors, require_single_gpu, require_single_xpu, require_torch_min_version, require_tpu, require_xpu, skip, slow, ) from .training import RegressionDataset, RegressionModel, RegressionModelaXPU from .scripts import test_script, test_sync, test_ops # isort: skip
61
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig _a = { 'albert-base-v1': 'https://huggingface.co/albert-base-v1/resolve/main/config.json', 'albert-large-v1': 'https://huggingface.co/albert-large-v1/resolve/main/config.json', 'albert-xlarge-v1': 'https://huggingface.co/albert-xlarge-v1/resolve/main/config.json', 'albert-xxlarge-v1': 'https://huggingface.co/albert-xxlarge-v1/resolve/main/config.json', 'albert-base-v2': 'https://huggingface.co/albert-base-v2/resolve/main/config.json', 'albert-large-v2': 'https://huggingface.co/albert-large-v2/resolve/main/config.json', 'albert-xlarge-v2': 'https://huggingface.co/albert-xlarge-v2/resolve/main/config.json', 'albert-xxlarge-v2': 'https://huggingface.co/albert-xxlarge-v2/resolve/main/config.json', } class A_ (lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[Any] = """albert""" def __init__( self , lowercase_=3_0000 , lowercase_=128 , lowercase_=4096 , lowercase_=12 , lowercase_=1 , lowercase_=64 , lowercase_=1_6384 , lowercase_=1 , lowercase_="gelu_new" , lowercase_=0 , lowercase_=0 , lowercase_=512 , lowercase_=2 , lowercase_=0.02 , lowercase_=1E-1_2 , lowercase_=0.1 , lowercase_="absolute" , lowercase_=0 , lowercase_=2 , lowercase_=3 , **lowercase_ , ): """simple docstring""" super().__init__(pad_token_id=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ , **lowercase_ ) UpperCAmelCase_ : int = vocab_size UpperCAmelCase_ : Optional[int] = embedding_size UpperCAmelCase_ : List[str] = hidden_size UpperCAmelCase_ : Optional[int] = num_hidden_layers UpperCAmelCase_ : Union[str, Any] = num_hidden_groups UpperCAmelCase_ : Dict = num_attention_heads UpperCAmelCase_ : Any = inner_group_num UpperCAmelCase_ : Union[str, Any] = hidden_act UpperCAmelCase_ : Union[str, Any] = intermediate_size UpperCAmelCase_ : List[str] = hidden_dropout_prob UpperCAmelCase_ : Union[str, Any] = attention_probs_dropout_prob UpperCAmelCase_ : Optional[Any] = max_position_embeddings UpperCAmelCase_ : Any = type_vocab_size UpperCAmelCase_ : List[str] = initializer_range UpperCAmelCase_ : Optional[int] = layer_norm_eps UpperCAmelCase_ : List[Any] = classifier_dropout_prob UpperCAmelCase_ : Tuple = position_embedding_type class A_ (lowercase__ ): '''simple docstring''' @property def UpperCamelCase__ ( self ): """simple docstring""" if self.task == "multiple-choice": UpperCAmelCase_ : int = {0: "batch", 1: "choice", 2: "sequence"} else: UpperCAmelCase_ : Optional[Any] = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ("token_type_ids", dynamic_axis), ] )
61
1
from __future__ import annotations def _lowerCAmelCase ( A__: list[int] , A__: int , A__: int , A__: int ): '''simple docstring''' if (direction == 1 and array[indexa] > array[indexa]) or ( direction == 0 and array[indexa] < array[indexa] ): UpperCAmelCase , UpperCAmelCase = array[indexa], array[indexa] def _lowerCAmelCase ( A__: list[int] , A__: int , A__: int , A__: int ): '''simple docstring''' if length > 1: UpperCAmelCase = int(length / 2 ) for i in range(A__ , low + middle ): comp_and_swap(A__ , A__ , i + middle , A__ ) bitonic_merge(A__ , A__ , A__ , A__ ) bitonic_merge(A__ , low + middle , A__ , A__ ) def _lowerCAmelCase ( A__: list[int] , A__: int , A__: int , A__: int ): '''simple docstring''' if length > 1: UpperCAmelCase = int(length / 2 ) bitonic_sort(A__ , A__ , A__ , 1 ) bitonic_sort(A__ , low + middle , A__ , 0 ) bitonic_merge(A__ , A__ , A__ , A__ ) if __name__ == "__main__": __magic_name__ = input("Enter numbers separated by a comma:\n").strip() __magic_name__ = [int(item.strip()) for item in user_input.split(",")] bitonic_sort(unsorted, 0, len(unsorted), 1) print("\nSorted array in ascending order is: ", end="") print(*unsorted, sep=", ") bitonic_merge(unsorted, 0, len(unsorted), 0) print("Sorted array in descending order is: ", end="") print(*unsorted, sep=", ")
152
import random import sys import numpy as np from matplotlib import pyplot as plt from matplotlib.colors import ListedColormap __magic_name__ = "Usage of script: script_name <size_of_canvas:int>" __magic_name__ = [0] * 100 + [1] * 10 random.shuffle(choice) def _lowerCAmelCase ( A__: int ): '''simple docstring''' UpperCAmelCase = [[False for i in range(A__ )] for j in range(A__ )] return canvas def _lowerCAmelCase ( A__: list[list[bool]] ): '''simple docstring''' for i, row in enumerate(A__ ): for j, _ in enumerate(A__ ): UpperCAmelCase = bool(random.getrandbits(1 ) ) def _lowerCAmelCase ( A__: list[list[bool]] ): '''simple docstring''' UpperCAmelCase = np.array(A__ ) UpperCAmelCase = np.array(create_canvas(current_canvas.shape[0] ) ) for r, row in enumerate(A__ ): for c, pt in enumerate(A__ ): UpperCAmelCase = __judge_point( A__ , current_canvas[r - 1 : r + 2, c - 1 : c + 2] ) UpperCAmelCase = next_gen_canvas del next_gen_canvas # cleaning memory as we move on. UpperCAmelCase = current_canvas.tolist() return return_canvas def _lowerCAmelCase ( A__: bool , A__: list[list[bool]] ): '''simple docstring''' UpperCAmelCase = 0 UpperCAmelCase = 0 # finding dead or alive neighbours count. for i in neighbours: for status in i: if status: alive += 1 else: dead += 1 # handling duplicate entry for focus pt. if pt: alive -= 1 else: dead -= 1 # running the rules of game here. UpperCAmelCase = pt if pt: if alive < 2: UpperCAmelCase = False elif alive == 2 or alive == 3: UpperCAmelCase = True elif alive > 3: UpperCAmelCase = False else: if alive == 3: UpperCAmelCase = True return state if __name__ == "__main__": if len(sys.argv) != 2: raise Exception(usage_doc) __magic_name__ = int(sys.argv[1]) # main working structure of this module. __magic_name__ = create_canvas(canvas_size) seed(c) __magic_name__ , __magic_name__ = plt.subplots() fig.show() __magic_name__ = ListedColormap(["w", "k"]) try: while True: __magic_name__ = run(c) ax.matshow(c, cmap=cmap) fig.canvas.draw() ax.cla() except KeyboardInterrupt: # do nothing. pass
152
1
'''simple docstring''' import argparse import os import torch from transformers import FlavaConfig, FlavaForPreTraining from transformers.models.flava.convert_dalle_to_flava_codebook import convert_dalle_checkpoint def __magic_name__ ( __UpperCAmelCase ) -> List[Any]: '''simple docstring''' return sum(param.float().sum() if '''encoder.embeddings''' not in key else 0 for key, param in state_dict.items() ) def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase ) -> Any: '''simple docstring''' snake_case_ = {} for key, value in state_dict.items(): if "text_encoder.embeddings" in key or "image_encoder.embeddings" in key: continue snake_case_ = key.replace('''heads.cmd.mim_head.cls.predictions''', '''mmm_image_head''' ) snake_case_ = key.replace('''heads.cmd.mlm_head.cls.predictions''', '''mmm_text_head''' ) snake_case_ = key.replace('''heads.cmd.itm_head.cls''', '''itm_head''' ) snake_case_ = key.replace('''heads.cmd.itm_head.pooler''', '''itm_head.pooler''' ) snake_case_ = key.replace('''heads.cmd.clip_head.logit_scale''', '''flava.logit_scale''' ) snake_case_ = key.replace('''heads.fairseq_mlm.cls.predictions''', '''mlm_head''' ) snake_case_ = key.replace('''heads.imagenet.mim_head.cls.predictions''', '''mim_head''' ) snake_case_ = key.replace('''mm_text_projection''', '''flava.text_to_mm_projection''' ) snake_case_ = key.replace('''mm_image_projection''', '''flava.image_to_mm_projection''' ) snake_case_ = key.replace('''image_encoder.module''', '''flava.image_model''' ) snake_case_ = key.replace('''text_encoder.module''', '''flava.text_model''' ) snake_case_ = key.replace('''mm_encoder.module.encoder.cls_token''', '''flava.multimodal_model.cls_token''' ) snake_case_ = key.replace('''mm_encoder.module''', '''flava.multimodal_model''' ) snake_case_ = key.replace('''text_projection''', '''flava.text_projection''' ) snake_case_ = key.replace('''image_projection''', '''flava.image_projection''' ) snake_case_ = value.float() for key, value in codebook_state_dict.items(): snake_case_ = value return upgrade @torch.no_grad() def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase=None ) -> Optional[int]: '''simple docstring''' if config_path is not None: snake_case_ = FlavaConfig.from_pretrained(lowercase_ ) else: snake_case_ = FlavaConfig() snake_case_ = FlavaForPreTraining(lowercase_ ).eval() snake_case_ = convert_dalle_checkpoint(lowercase_, lowercase_, save_checkpoint=lowercase_ ) if os.path.exists(lowercase_ ): snake_case_ = torch.load(lowercase_, map_location='''cpu''' ) else: snake_case_ = torch.hub.load_state_dict_from_url(lowercase_, map_location='''cpu''' ) snake_case_ = upgrade_state_dict(lowercase_, lowercase_ ) hf_model.load_state_dict(lowercase_ ) snake_case_ = hf_model.state_dict() snake_case_ = count_parameters(lowercase_ ) snake_case_ = count_parameters(lowercase_ ) + count_parameters(lowercase_ ) assert torch.allclose(lowercase_, lowercase_, atol=1e-3 ) hf_model.save_pretrained(lowercase_ ) if __name__ == "__main__": a : int = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to flava checkpoint') parser.add_argument('--codebook_path', default=None, type=str, help='Path to flava codebook checkpoint') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') a : Union[str, Any] = parser.parse_args() convert_flava_checkpoint(args.checkpoint_path, args.codebook_path, args.pytorch_dump_folder_path, args.config_path)
56
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging A_ : str = logging.get_logger(__name__) A_ : Optional[Any] = '▁' A_ : int = {'vocab_file': 'sentencepiece.bpe.model'} A_ : int = { 'vocab_file': { 'facebook/nllb-200-distilled-600M': ( 'https://huggingface.co/facebook/nllb-200-distilled-600M/blob/main/sentencepiece.bpe.model' ), } } A_ : Optional[int] = { 'facebook/nllb-200-distilled-600M': 1024, } # fmt: off A_ : Tuple = ['ace_Arab', 'ace_Latn', 'acm_Arab', 'acq_Arab', 'aeb_Arab', 'afr_Latn', 'ajp_Arab', 'aka_Latn', 'amh_Ethi', 'apc_Arab', 'arb_Arab', 'ars_Arab', 'ary_Arab', 'arz_Arab', 'asm_Beng', 'ast_Latn', 'awa_Deva', 'ayr_Latn', 'azb_Arab', 'azj_Latn', 'bak_Cyrl', 'bam_Latn', 'ban_Latn', 'bel_Cyrl', 'bem_Latn', 'ben_Beng', 'bho_Deva', 'bjn_Arab', 'bjn_Latn', 'bod_Tibt', 'bos_Latn', 'bug_Latn', 'bul_Cyrl', 'cat_Latn', 'ceb_Latn', 'ces_Latn', 'cjk_Latn', 'ckb_Arab', 'crh_Latn', 'cym_Latn', 'dan_Latn', 'deu_Latn', 'dik_Latn', 'dyu_Latn', 'dzo_Tibt', 'ell_Grek', 'eng_Latn', 'epo_Latn', 'est_Latn', 'eus_Latn', 'ewe_Latn', 'fao_Latn', 'pes_Arab', 'fij_Latn', 'fin_Latn', 'fon_Latn', 'fra_Latn', 'fur_Latn', 'fuv_Latn', 'gla_Latn', 'gle_Latn', 'glg_Latn', 'grn_Latn', 'guj_Gujr', 'hat_Latn', 'hau_Latn', 'heb_Hebr', 'hin_Deva', 'hne_Deva', 'hrv_Latn', 'hun_Latn', 'hye_Armn', 'ibo_Latn', 'ilo_Latn', 'ind_Latn', 'isl_Latn', 'ita_Latn', 'jav_Latn', 'jpn_Jpan', 'kab_Latn', 'kac_Latn', 'kam_Latn', 'kan_Knda', 'kas_Arab', 'kas_Deva', 'kat_Geor', 'knc_Arab', 'knc_Latn', 'kaz_Cyrl', 'kbp_Latn', 'kea_Latn', 'khm_Khmr', 'kik_Latn', 'kin_Latn', 'kir_Cyrl', 'kmb_Latn', 'kon_Latn', 'kor_Hang', 'kmr_Latn', 'lao_Laoo', 'lvs_Latn', 'lij_Latn', 'lim_Latn', 'lin_Latn', 'lit_Latn', 'lmo_Latn', 'ltg_Latn', 'ltz_Latn', 'lua_Latn', 'lug_Latn', 'luo_Latn', 'lus_Latn', 'mag_Deva', 'mai_Deva', 'mal_Mlym', 'mar_Deva', 'min_Latn', 'mkd_Cyrl', 'plt_Latn', 'mlt_Latn', 'mni_Beng', 'khk_Cyrl', 'mos_Latn', 'mri_Latn', 'zsm_Latn', 'mya_Mymr', 'nld_Latn', 'nno_Latn', 'nob_Latn', 'npi_Deva', 'nso_Latn', 'nus_Latn', 'nya_Latn', 'oci_Latn', 'gaz_Latn', 'ory_Orya', 'pag_Latn', 'pan_Guru', 'pap_Latn', 'pol_Latn', 'por_Latn', 'prs_Arab', 'pbt_Arab', 'quy_Latn', 'ron_Latn', 'run_Latn', 'rus_Cyrl', 'sag_Latn', 'san_Deva', 'sat_Beng', 'scn_Latn', 'shn_Mymr', 'sin_Sinh', 'slk_Latn', 'slv_Latn', 'smo_Latn', 'sna_Latn', 'snd_Arab', 'som_Latn', 'sot_Latn', 'spa_Latn', 'als_Latn', 'srd_Latn', 'srp_Cyrl', 'ssw_Latn', 'sun_Latn', 'swe_Latn', 'swh_Latn', 'szl_Latn', 'tam_Taml', 'tat_Cyrl', 'tel_Telu', 'tgk_Cyrl', 'tgl_Latn', 'tha_Thai', 'tir_Ethi', 'taq_Latn', 'taq_Tfng', 'tpi_Latn', 'tsn_Latn', 'tso_Latn', 'tuk_Latn', 'tum_Latn', 'tur_Latn', 'twi_Latn', 'tzm_Tfng', 'uig_Arab', 'ukr_Cyrl', 'umb_Latn', 'urd_Arab', 'uzn_Latn', 'vec_Latn', 'vie_Latn', 'war_Latn', 'wol_Latn', 'xho_Latn', 'ydd_Hebr', 'yor_Latn', 'yue_Hant', 'zho_Hans', 'zho_Hant', 'zul_Latn'] class _a (__magic_name__ ): '''simple docstring''' UpperCAmelCase__: Optional[Any] = VOCAB_FILES_NAMES UpperCAmelCase__: Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__: Optional[Any] = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__: str = ['''input_ids''', '''attention_mask'''] UpperCAmelCase__: List[int] = [] UpperCAmelCase__: List[int] = [] def __init__( self , A__ , A__="<s>" , A__="</s>" , A__="</s>" , A__="<s>" , A__="<unk>" , A__="<pad>" , A__="<mask>" , A__=None , A__=None , A__=None , A__ = None , A__=None , A__=False , **A__ , ): # Mask token behave like a normal word, i.e. include the space before it A__ : Any = AddedToken(A__ , lstrip=A__ , rstrip=A__ ) if isinstance(A__ , A__ ) else mask_token A__ : List[Any] = {} if sp_model_kwargs is None else sp_model_kwargs A__ : List[str] = legacy_behaviour super().__init__( bos_token=A__ , eos_token=A__ , unk_token=A__ , sep_token=A__ , cls_token=A__ , pad_token=A__ , mask_token=A__ , tokenizer_file=A__ , src_lang=A__ , tgt_lang=A__ , additional_special_tokens=A__ , sp_model_kwargs=self.sp_model_kwargs , legacy_behaviour=A__ , **A__ , ) A__ : List[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(A__ ) ) A__ : List[str] = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | ---- | ---- | ---- | ---- | ---- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | 'an' | '▁n' | '▁m' | '▁t' | '▁k' | '▁a' # spm | '<unk>' | '<s>' | '</s>' | 'an' | '▁n' | '▁m' | '▁t' | '▁k' | '▁a' | '▁s' # Mimic fairseq token-to-id alignment for the first 4 token A__ : str = {"""<s>""": 0, """<pad>""": 1, """</s>""": 2, """<unk>""": 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab A__ : str = 1 A__ : Optional[int] = len(self.sp_model ) A__ : List[Any] = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(A__ ) } A__ : Tuple = {v: k for k, v in self.lang_code_to_id.items()} A__ : Dict = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) A__ : Tuple = {v: k for k, v in self.fairseq_tokens_to_ids.items()} A__ : int = list(self.lang_code_to_id.keys() ) if additional_special_tokens is not None: # Only add those special tokens if they are not already there. self._additional_special_tokens.extend( [t for t in additional_special_tokens if t not in self._additional_special_tokens] ) A__ : int = src_lang if src_lang is not None else """eng_Latn""" A__ : str = self.lang_code_to_id[self._src_lang] A__ : Union[str, Any] = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__( self ): A__ : Tuple = self.__dict__.copy() A__ : List[Any] = None A__ : Tuple = self.sp_model.serialized_model_proto() return state def __setstate__( self , A__ ): A__ : str = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): A__ : Any = {} A__ : List[str] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) @property def __A ( self ): return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def __A ( self ): return self._src_lang @src_lang.setter def __A ( self , A__ ): A__ : str = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __A ( self , A__ , A__ = None , A__ = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=A__ , token_ids_a=A__ , already_has_special_tokens=A__ ) A__ : Dict = [1] * len(self.prefix_tokens ) A__ : Dict = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(A__ )) + suffix_ones return prefix_ones + ([0] * len(A__ )) + ([0] * len(A__ )) + suffix_ones def __A ( self , A__ , A__ = None ): if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def __A ( self , A__ , A__ = None ): A__ : Dict = [self.sep_token_id] A__ : Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __A ( self , A__ , A__ , A__ , A__ , **A__ ): if src_lang is None or tgt_lang is None: raise ValueError("""Translation requires a `src_lang` and a `tgt_lang` for this model""" ) A__ : Optional[int] = src_lang A__ : List[Any] = self(A__ , add_special_tokens=A__ , return_tensors=A__ , **A__ ) A__ : Optional[int] = self.convert_tokens_to_ids(A__ ) A__ : Optional[int] = tgt_lang_id return inputs def __A ( self ): A__ : List[str] = {self.convert_ids_to_tokens(A__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __A ( self , A__ ): return self.sp_model.encode(A__ , out_type=A__ ) def __A ( self , A__ ): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] A__ : List[str] = self.sp_model.PieceToId(A__ ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def __A ( self , A__ ): if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def __A ( self , A__ ): A__ : Optional[Any] = """""".join(A__ ).replace(A__ , """ """ ).strip() return out_string def __A ( self , A__ , A__ = None ): if not os.path.isdir(A__ ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return A__ : Any = os.path.join( A__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , A__ ) elif not os.path.isfile(self.vocab_file ): with open(A__ , """wb""" ) as fi: A__ : str = self.sp_model.serialized_model_proto() fi.write(A__ ) return (out_vocab_file,) def __A ( self , A__ , A__ = "eng_Latn" , A__ = None , A__ = "fra_Latn" , **A__ , ): A__ : Any = src_lang A__ : List[Any] = tgt_lang return super().prepare_seqaseq_batch(A__ , A__ , **A__ ) def __A ( self ): return self.set_src_lang_special_tokens(self.src_lang ) def __A ( self ): return self.set_tgt_lang_special_tokens(self.tgt_lang ) def __A ( self , A__ ): A__ : List[str] = self.lang_code_to_id[src_lang] if self.legacy_behaviour: A__ : Dict = [] A__ : str = [self.eos_token_id, self.cur_lang_code] else: A__ : List[str] = [self.cur_lang_code] A__ : Optional[Any] = [self.eos_token_id] def __A ( self , A__ ): A__ : Union[str, Any] = self.lang_code_to_id[lang] if self.legacy_behaviour: A__ : Union[str, Any] = [] A__ : int = [self.eos_token_id, self.cur_lang_code] else: A__ : Dict = [self.cur_lang_code] A__ : str = [self.eos_token_id]
192
0
import argparse import json import os import torch from transformers.file_utils import has_file from diffusers import UNetaDConditionModel, UNetaDModel SCREAMING_SNAKE_CASE_:Tuple = False SCREAMING_SNAKE_CASE_:Dict = True SCREAMING_SNAKE_CASE_:int = False if __name__ == "__main__": SCREAMING_SNAKE_CASE_:Optional[Any] = argparse.ArgumentParser() parser.add_argument( """--repo_path""", default=None, type=str, required=True, help="""The config json file corresponding to the architecture.""", ) parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the output model.""") SCREAMING_SNAKE_CASE_:List[Any] = parser.parse_args() SCREAMING_SNAKE_CASE_:str = { """image_size""": """sample_size""", """num_res_blocks""": """layers_per_block""", """block_channels""": """block_out_channels""", """down_blocks""": """down_block_types""", """up_blocks""": """up_block_types""", """downscale_freq_shift""": """freq_shift""", """resnet_num_groups""": """norm_num_groups""", """resnet_act_fn""": """act_fn""", """resnet_eps""": """norm_eps""", """num_head_channels""": """attention_head_dim""", } SCREAMING_SNAKE_CASE_:Dict = { """time_steps""": """time_proj""", """mid""": """mid_block""", """downsample_blocks""": """down_blocks""", """upsample_blocks""": """up_blocks""", } SCREAMING_SNAKE_CASE_:str = """""" if has_file(args.repo_path, """config.json""") else """unet""" with open(os.path.join(args.repo_path, subfolder, """config.json"""), """r""", encoding="""utf-8""") as reader: SCREAMING_SNAKE_CASE_:str = reader.read() SCREAMING_SNAKE_CASE_:Union[str, Any] = json.loads(text) if do_only_config: for key in config_parameters_to_change.keys(): config.pop(key, None) if has_file(args.repo_path, """config.json"""): SCREAMING_SNAKE_CASE_:int = UNetaDModel(**config) else: SCREAMING_SNAKE_CASE_:List[Any] = UNetaDConditionModel if """ldm-text2im-large-256""" in args.repo_path else UNetaDModel SCREAMING_SNAKE_CASE_:Tuple = class_name(**config) if do_only_config: model.save_config(os.path.join(args.repo_path, subfolder)) SCREAMING_SNAKE_CASE_:Dict = dict(model.config) if do_only_renaming: for key, value in config_parameters_to_change.items(): if key in config: SCREAMING_SNAKE_CASE_:int = config[key] del config[key] SCREAMING_SNAKE_CASE_:Dict = [k.replace("""UNetRes""", """""") for k in config["""down_block_types"""]] SCREAMING_SNAKE_CASE_:List[Any] = [k.replace("""UNetRes""", """""") for k in config["""up_block_types"""]] if do_only_weights: SCREAMING_SNAKE_CASE_:Any = torch.load(os.path.join(args.repo_path, subfolder, """diffusion_pytorch_model.bin""")) SCREAMING_SNAKE_CASE_:Any = {} for param_key, param_value in state_dict.items(): if param_key.endswith(""".op.bias""") or param_key.endswith(""".op.weight"""): continue SCREAMING_SNAKE_CASE_:int = False for key, new_key in key_parameters_to_change.items(): if not has_changed and param_key.split(""".""")[0] == key: SCREAMING_SNAKE_CASE_:Dict = param_value SCREAMING_SNAKE_CASE_:Any = True if not has_changed: SCREAMING_SNAKE_CASE_:Union[str, Any] = param_value model.load_state_dict(new_state_dict) model.save_pretrained(os.path.join(args.repo_path, subfolder))
365
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available SCREAMING_SNAKE_CASE_:Optional[int] = { """configuration_tapas""": ["""TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP""", """TapasConfig"""], """tokenization_tapas""": ["""TapasTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_:Optional[int] = [ """TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST""", """TapasForMaskedLM""", """TapasForQuestionAnswering""", """TapasForSequenceClassification""", """TapasModel""", """TapasPreTrainedModel""", """load_tf_weights_in_tapas""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_:Optional[Any] = [ """TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFTapasForMaskedLM""", """TFTapasForQuestionAnswering""", """TFTapasForSequenceClassification""", """TFTapasModel""", """TFTapasPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_tapas import TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP, TapasConfig from .tokenization_tapas import TapasTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tapas import ( TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasPreTrainedModel, load_tf_weights_in_tapas, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_tapas import ( TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TFTapasForMaskedLM, TFTapasForQuestionAnswering, TFTapasForSequenceClassification, TFTapasModel, TFTapasPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE_:str = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
115
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) _UpperCamelCase: List[str] = { 'configuration_wav2vec2': ['WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Wav2Vec2Config'], 'feature_extraction_wav2vec2': ['Wav2Vec2FeatureExtractor'], 'processing_wav2vec2': ['Wav2Vec2Processor'], 'tokenization_wav2vec2': ['Wav2Vec2CTCTokenizer', 'Wav2Vec2Tokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase: Union[str, Any] = [ 'WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST', 'Wav2Vec2ForAudioFrameClassification', 'Wav2Vec2ForCTC', 'Wav2Vec2ForMaskedLM', 'Wav2Vec2ForPreTraining', 'Wav2Vec2ForSequenceClassification', 'Wav2Vec2ForXVector', 'Wav2Vec2Model', 'Wav2Vec2PreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase: int = [ 'TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFWav2Vec2ForCTC', 'TFWav2Vec2Model', 'TFWav2Vec2PreTrainedModel', 'TFWav2Vec2ForSequenceClassification', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase: Any = [ 'FlaxWav2Vec2ForCTC', 'FlaxWav2Vec2ForPreTraining', 'FlaxWav2Vec2Model', 'FlaxWav2Vec2PreTrainedModel', ] if TYPE_CHECKING: from .configuration_wavaveca import WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, WavaVecaConfig from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .processing_wavaveca import WavaVecaProcessor from .tokenization_wavaveca import WavaVecaCTCTokenizer, WavaVecaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavaveca import ( WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, WavaVecaForAudioFrameClassification, WavaVecaForCTC, WavaVecaForMaskedLM, WavaVecaForPreTraining, WavaVecaForSequenceClassification, WavaVecaForXVector, WavaVecaModel, WavaVecaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, TFWavaVecaForCTC, TFWavaVecaForSequenceClassification, TFWavaVecaModel, TFWavaVecaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( FlaxWavaVecaForCTC, FlaxWavaVecaForPreTraining, FlaxWavaVecaModel, FlaxWavaVecaPreTrainedModel, ) else: import sys _UpperCamelCase: Optional[int] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
255
"""simple docstring""" from __future__ import annotations def lowercase__ ( _UpperCAmelCase , _UpperCAmelCase = None ) -> list[list[str]]: '''simple docstring''' lowercase : str = word_bank or [] # create a table lowercase : int = len(_UpperCAmelCase ) + 1 lowercase : list[list[list[str]]] = [] for _ in range(_UpperCAmelCase ): table.append([] ) # seed value lowercase : int = [[]] # because empty string has empty combination # iterate through the indices for i in range(_UpperCAmelCase ): # condition if table[i] != []: for word in word_bank: # slice condition if target[i : i + len(_UpperCAmelCase )] == word: lowercase : list[list[str]] = [ [word, *way] for way in table[i] ] # adds the word to every combination the current position holds # now,push that combination to the table[i+len(word)] table[i + len(_UpperCAmelCase )] += new_combinations # combinations are in reverse order so reverse for better output for combination in table[len(_UpperCAmelCase )]: combination.reverse() return table[len(_UpperCAmelCase )] if __name__ == "__main__": print(all_construct('jwajalapa', ['jwa', 'j', 'w', 'a', 'la', 'lapa'])) print(all_construct('rajamati', ['s', 'raj', 'amat', 'raja', 'ma', 'i', 't'])) print( all_construct( 'hexagonosaurus', ['h', 'ex', 'hex', 'ag', 'ago', 'ru', 'auru', 'rus', 'go', 'no', 'o', 's'], ) )
255
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __SCREAMING_SNAKE_CASE : Any = { 'configuration_conditional_detr': [ 'CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ConditionalDetrConfig', 'ConditionalDetrOnnxConfig', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE : str = ['ConditionalDetrFeatureExtractor'] __SCREAMING_SNAKE_CASE : Any = ['ConditionalDetrImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE : Optional[int] = [ 'CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST', 'ConditionalDetrForObjectDetection', 'ConditionalDetrForSegmentation', 'ConditionalDetrModel', 'ConditionalDetrPreTrainedModel', ] if TYPE_CHECKING: from .configuration_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP, ConditionalDetrConfig, ConditionalDetrOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_conditional_detr import ConditionalDetrFeatureExtractor from .image_processing_conditional_detr import ConditionalDetrImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrModel, ConditionalDetrPreTrainedModel, ) else: import sys __SCREAMING_SNAKE_CASE : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
363
from __future__ import annotations import unittest import numpy as np from transformers import OPTConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import GPTaTokenizer, TFOPTForCausalLM, TFOPTModel def snake_case (__lowercase , __lowercase , __lowercase=None , __lowercase=None ) -> Tuple: '''simple docstring''' if attention_mask is None: _snake_case : List[Any] = tf.cast(tf.math.not_equal(__lowercase , config.pad_token_id ) , tf.inta ) return {"input_ids": input_ids, "attention_mask": attention_mask} @require_tf class lowercase_ : _lowerCamelCase = OPTConfig _lowerCamelCase = {} _lowerCamelCase = 'gelu' def __init__( self , lowercase_ , lowercase_=13 , lowercase_=7 , lowercase_=True , lowercase_=False , lowercase_=99 , lowercase_=16 , lowercase_=2 , lowercase_=4 , lowercase_=4 , lowercase_="gelu" , lowercase_=0.1 , lowercase_=0.1 , lowercase_=20 , lowercase_=2 , lowercase_=1 , lowercase_=0 , lowercase_=16 , lowercase_=16 , ): _snake_case : Dict = parent _snake_case : List[str] = batch_size _snake_case : Optional[Any] = seq_length _snake_case : Dict = is_training _snake_case : List[Any] = use_labels _snake_case : Dict = vocab_size _snake_case : Tuple = hidden_size _snake_case : Optional[int] = num_hidden_layers _snake_case : List[str] = num_attention_heads _snake_case : Tuple = intermediate_size _snake_case : Dict = hidden_act _snake_case : Any = hidden_dropout_prob _snake_case : Optional[int] = attention_probs_dropout_prob _snake_case : Tuple = max_position_embeddings _snake_case : List[Any] = eos_token_id _snake_case : Optional[int] = pad_token_id _snake_case : Dict = bos_token_id _snake_case : List[Any] = embed_dim _snake_case : Optional[int] = word_embed_proj_dim _snake_case : Union[str, Any] = False def UpperCamelCase ( self ): _snake_case : int = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) _snake_case : str = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) _snake_case : int = tf.concat([input_ids, eos_tensor] , axis=1 ) _snake_case : Optional[Any] = self.config_cls( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , embed_dim=self.embed_dim , word_embed_proj_dim=self.word_embed_proj_dim , is_encoder_decoder=lowercase_ , **self.config_updates , ) _snake_case : Any = prepare_opt_inputs_dict(lowercase_ , lowercase_ ) return config, inputs_dict def UpperCamelCase ( self , lowercase_ , lowercase_ ): _snake_case : Any = TFOPTModel(config=lowercase_ ) _snake_case : int = inputs_dict["input_ids"] _snake_case : Optional[int] = input_ids[:1, :] _snake_case : Any = inputs_dict["attention_mask"][:1, :] _snake_case : List[str] = 1 # first forward pass _snake_case : Union[str, Any] = model(lowercase_ , attention_mask=lowercase_ , use_cache=lowercase_ ) _snake_case ,_snake_case : str = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids _snake_case : Dict = ids_tensor((self.batch_size, 3) , config.vocab_size ) _snake_case : Optional[Any] = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and _snake_case : int = tf.concat([input_ids, next_tokens] , axis=-1 ) _snake_case : int = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) _snake_case : Optional[Any] = model(lowercase_ , attention_mask=lowercase_ )[0] _snake_case : Optional[int] = model(lowercase_ , attention_mask=lowercase_ , past_key_values=lowercase_ )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice _snake_case : int = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) _snake_case : List[str] = output_from_no_past[:, -3:, random_slice_idx] _snake_case : List[Any] = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(lowercase_ , lowercase_ , rtol=1e-3 ) @require_tf class lowercase_ ( __snake_case , __snake_case , unittest.TestCase ): _lowerCamelCase = (TFOPTModel, TFOPTForCausalLM) if is_tf_available() else () _lowerCamelCase = (TFOPTForCausalLM,) if is_tf_available() else () _lowerCamelCase = ( {'feature-extraction': TFOPTModel, 'text-generation': TFOPTForCausalLM} if is_tf_available() else {} ) _lowerCamelCase = False _lowerCamelCase = False _lowerCamelCase = False _lowerCamelCase = 10 def UpperCamelCase ( self ): _snake_case : Dict = TFOPTModelTester(self ) _snake_case : Optional[int] = ConfigTester(self , config_class=lowercase_ ) def UpperCamelCase ( self ): self.config_tester.run_common_tests() def UpperCamelCase ( self ): _snake_case : Dict = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*lowercase_ ) def UpperCamelCase ( self ): _snake_case ,_snake_case : str = self.model_tester.prepare_config_and_inputs_for_common() def _get_word_embedding_weight(lowercase_ , lowercase_ ): if hasattr(lowercase_ , "weight" ): return embedding_layer.weight else: # Here we build the word embeddings weights if not exists. # And then we retry to get the attribute once built. model.build() if hasattr(lowercase_ , "weight" ): return embedding_layer.weight else: return None for model_class in self.all_model_classes: for size in [config.vocab_size - 10, config.vocab_size + 10]: # build the embeddings _snake_case : Dict = model_class(config=lowercase_ ) _snake_case : Union[str, Any] = _get_word_embedding_weight(lowercase_ , model.get_input_embeddings() ) _snake_case : Optional[Any] = _get_word_embedding_weight(lowercase_ , model.get_output_embeddings() ) # reshape the embeddings model.resize_token_embeddings(lowercase_ ) _snake_case : int = _get_word_embedding_weight(lowercase_ , model.get_input_embeddings() ) _snake_case : Tuple = _get_word_embedding_weight(lowercase_ , model.get_output_embeddings() ) # check that the resized embeddings size matches the desired size. _snake_case : Any = size if size is not None else config.vocab_size self.assertEqual(new_input_embeddings.shape[0] , lowercase_ ) # check that weights remain the same after resizing _snake_case : Dict = True for pa, pa in zip(old_input_embeddings.value() , new_input_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: _snake_case : Optional[int] = False self.assertTrue(lowercase_ ) if old_output_embeddings is not None and new_output_embeddings is not None: self.assertEqual(new_output_embeddings.shape[0] , lowercase_ ) _snake_case : Optional[int] = True for pa, pa in zip(old_output_embeddings.value() , new_output_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: _snake_case : str = False self.assertTrue(lowercase_ ) def snake_case (__lowercase ) -> Dict: '''simple docstring''' return tf.constant(__lowercase , dtype=tf.intaa ) @require_tf class lowercase_ ( unittest.TestCase ): _lowerCamelCase = 99 def UpperCamelCase ( self ): _snake_case : Any = tf.ones((4, 1) , dtype=tf.intaa ) * 2 _snake_case : Optional[int] = tf.concat([ids_tensor((4, 6) , self.vocab_size - 3 ) + 3, eos_column_vector] , axis=1 ) _snake_case : List[Any] = input_ids.shape[0] _snake_case : List[str] = OPTConfig( vocab_size=self.vocab_size , hidden_size=24 , num_hidden_layers=2 , num_attention_heads=2 , ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size @require_sentencepiece @require_tf class lowercase_ ( unittest.TestCase ): @slow def UpperCamelCase ( self ): _snake_case : Optional[Any] = TFOPTModel.from_pretrained("facebook/opt-350m" ) _snake_case : Optional[Any] = _long_tensor([[0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2]] ) _snake_case : Optional[int] = tf.not_equal(lowercase_ , model.config.pad_token_id ) with tf.GradientTape(): _snake_case : List[Any] = model(input_ids=lowercase_ , attention_mask=lowercase_ ).last_hidden_state _snake_case : List[str] = (1, 11, 512) self.assertEqual(output.shape , lowercase_ ) _snake_case : Optional[int] = tf.constant( [[-0.2_873, -1.9_218, -0.3_033], [-1.2_710, -0.1_338, -0.1_902], [0.4_095, 0.1_214, -1.3_121]] ) self.assertTrue(np.allclose(output[:, :3, :3] , lowercase_ , atol=4e-3 ) ) _snake_case : List[Any] = tf.function(lowercase_ , jit_compile=lowercase_ ) _snake_case : Tuple = xla_generate(lowercase_ , lowercase_ )[0] self.assertTrue(np.allclose(output[:, :3, :3] , lowercase_ , atol=4e-2 ) ) @require_tf @slow class lowercase_ ( unittest.TestCase ): def UpperCamelCase ( self ): super().setUp() _snake_case : Optional[int] = "facebook/opt-350m" def UpperCamelCase ( self ): _snake_case : Union[str, Any] = TFOPTForCausalLM.from_pretrained(self.path_model ) _snake_case : Optional[Any] = GPTaTokenizer.from_pretrained(self.path_model ) _snake_case : List[str] = [ "Today is a beautiful day and I want to", "In the city of", "Paris is the capital of France and", "Computers and mobile phones have taken", ] # verify that prompt without BOS token is identical to Metaseq -> add_special_tokens=False _snake_case : List[Any] = tokenizer(lowercase_ , return_tensors="tf" , padding=lowercase_ , add_special_tokens=lowercase_ ) _snake_case : List[str] = tf.math.reduce_mean(model(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 ) _snake_case : Tuple = tf.constant( [ [1.3_851, -13.8_923, -10.5_229, -10.7_533, -0.2_309, -10.2_384, -0.5_365, -9.0_947, -5.1_670], [-4.7_073, -10.6_276, -3.9_415, -21.5_242, -0.2_822, -0.2_822, -0.2_822, -0.2_822, -0.2_822], [0.6_247, -3.4_229, -8.9_179, -1.4_297, -14.1_650, 1.4_146, -9.0_218, -0.2_703, -0.2_703], [6.4_783, -1.9_913, -10.7_926, -2.3_336, 1.5_092, -0.9_974, -6.8_213, 1.3_477, 1.3_477], ] ) self.assertTrue(np.allclose(lowercase_ , lowercase_ , atol=1e-4 ) ) _snake_case : List[Any] = tf.function(lowercase_ , jit_compile=lowercase_ ) _snake_case : Tuple = tf.math.reduce_mean(xla_generate(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 ) self.assertTrue(np.allclose(lowercase_ , lowercase_ , atol=1e-4 ) ) @require_tf @slow class lowercase_ ( unittest.TestCase ): @property def UpperCamelCase ( self ): return [ "Today is a beautiful day and I want", "In the city of", "Paris is the capital of France and", "Computers and mobile phones have taken", ] def UpperCamelCase ( self ): _snake_case : List[Any] = "facebook/opt-125m" _snake_case : int = [ "Today is a beautiful day and I want to", "In the city of New York, the city", "Paris is the capital of France and the capital", "Computers and mobile phones have taken over the", ] _snake_case : str = [] _snake_case : Any = GPTaTokenizer.from_pretrained(lowercase_ ) _snake_case : List[Any] = TFOPTForCausalLM.from_pretrained(lowercase_ ) for prompt in self.prompts: _snake_case : str = tokenizer(lowercase_ , return_tensors="tf" ).input_ids _snake_case : Any = model.generate(lowercase_ , max_length=10 ) _snake_case : List[str] = tokenizer.batch_decode(lowercase_ , skip_special_tokens=lowercase_ ) predicted_outputs += generated_string self.assertListEqual(lowercase_ , lowercase_ ) def UpperCamelCase ( self ): _snake_case : Optional[int] = "facebook/opt-350m" _snake_case : Dict = GPTaTokenizer.from_pretrained(lowercase_ ) _snake_case : Dict = TFOPTForCausalLM.from_pretrained(lowercase_ ) _snake_case : int = "left" # use different length sentences to test batching _snake_case : Union[str, Any] = [ "Hello, my dog is a little", "Today, I", ] _snake_case : Optional[Any] = tokenizer(lowercase_ , return_tensors="tf" , padding=lowercase_ ) _snake_case : List[Any] = inputs["input_ids"] _snake_case : Union[str, Any] = model.generate(input_ids=lowercase_ , attention_mask=inputs["attention_mask"] ) _snake_case : int = tokenizer(sentences[0] , return_tensors="tf" ).input_ids _snake_case : List[str] = model.generate(input_ids=lowercase_ ) _snake_case : Dict = inputs_non_padded.shape[-1] - tf.math.reduce_sum( tf.cast(inputs["attention_mask"][-1] , tf.intaa ) ) _snake_case : int = tokenizer(sentences[1] , return_tensors="tf" ).input_ids _snake_case : int = model.generate(input_ids=lowercase_ , max_length=model.config.max_length - num_paddings ) _snake_case : Tuple = tokenizer.batch_decode(lowercase_ , skip_special_tokens=lowercase_ ) _snake_case : Dict = tokenizer.decode(output_non_padded[0] , skip_special_tokens=lowercase_ ) _snake_case : Any = tokenizer.decode(output_padded[0] , skip_special_tokens=lowercase_ ) _snake_case : Optional[Any] = [ "Hello, my dog is a little bit of a dork.\nI'm a little bit", "Today, I was in the middle of a conversation with a friend about the", ] self.assertListEqual(lowercase_ , lowercase_ ) self.assertListEqual(lowercase_ , [non_padded_sentence, padded_sentence] ) def UpperCamelCase ( self ): _snake_case : Tuple = "facebook/opt-350m" _snake_case : Optional[int] = [ "Today is a beautiful day and I want to", "In the city of San Francisco, the city", "Paris is the capital of France and the capital", "Computers and mobile phones have taken over the", ] _snake_case : str = [] _snake_case : str = GPTaTokenizer.from_pretrained(lowercase_ ) _snake_case : List[str] = TFOPTForCausalLM.from_pretrained(lowercase_ ) for prompt in self.prompts: _snake_case : Dict = tokenizer(lowercase_ , return_tensors="tf" ).input_ids _snake_case : Any = model.generate(lowercase_ , max_length=10 ) _snake_case : Tuple = tokenizer.batch_decode(lowercase_ , skip_special_tokens=lowercase_ ) predicted_outputs += generated_string self.assertListEqual(lowercase_ , lowercase_ )
284
0
import random import unittest import numpy as np import torch from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionUpscalePipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class SCREAMING_SNAKE_CASE__ ( lowercase__ , unittest.TestCase ): # TODO: is there an appropriate internal test set? snake_case__ : Any = '''ssube/stable-diffusion-x4-upscaler-onnx''' def SCREAMING_SNAKE_CASE ( self : List[str] , SCREAMING_SNAKE_CASE__ : int=0 ) -> Tuple: a_ : Union[str, Any] = floats_tensor((1, 3, 1_2_8, 1_2_8) , rng=random.Random(SCREAMING_SNAKE_CASE__ ) ) a_ : Dict = torch.manual_seed(SCREAMING_SNAKE_CASE__ ) a_ : Union[str, Any] = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'generator': generator, 'num_inference_steps': 3, 'guidance_scale': 7.5, 'output_type': 'numpy', } return inputs def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Dict: a_ : Dict = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) a_ : Optional[int] = self.get_dummy_inputs() a_ : int = pipe(**SCREAMING_SNAKE_CASE__ ).images a_ : Tuple = image[0, -3:, -3:, -1].flatten() # started as 128, should now be 512 assert image.shape == (1, 5_1_2, 5_1_2, 3) a_ : List[Any] = np.array( [0.6974782, 0.68902093, 0.70135885, 0.7583618, 0.7804545, 0.7854912, 0.78667426, 0.78743863, 0.78070223] ) assert np.abs(image_slice - expected_slice ).max() < 1E-1 def SCREAMING_SNAKE_CASE ( self : Dict ) -> Dict: a_ : Tuple = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) a_ : int = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=SCREAMING_SNAKE_CASE__ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) a_ : List[str] = self.get_dummy_inputs() a_ : List[str] = pipe(**SCREAMING_SNAKE_CASE__ ).images a_ : Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) a_ : str = np.array( [0.6898892, 0.59240556, 0.52499527, 0.58866215, 0.52258235, 0.52572715, 0.62414473, 0.6174387, 0.6214964] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def SCREAMING_SNAKE_CASE ( self : Any ) -> Dict: a_ : Optional[Any] = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) a_ : Optional[Any] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) a_ : Optional[int] = self.get_dummy_inputs() a_ : Dict = pipe(**SCREAMING_SNAKE_CASE__ ).images a_ : str = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) a_ : Optional[Any] = np.array( [0.7659278, 0.76437664, 0.75579107, 0.7691116, 0.77666986, 0.7727672, 0.7758664, 0.7812226, 0.76942515] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> int: a_ : List[str] = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) a_ : int = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) a_ : Optional[Any] = self.get_dummy_inputs() a_ : Dict = pipe(**SCREAMING_SNAKE_CASE__ ).images a_ : List[str] = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) a_ : int = np.array( [0.6974782, 0.68902093, 0.70135885, 0.7583618, 0.7804545, 0.7854912, 0.78667426, 0.78743863, 0.78070223] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def SCREAMING_SNAKE_CASE ( self : str ) -> Optional[Any]: a_ : Tuple = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) a_ : Optional[int] = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) a_ : Union[str, Any] = self.get_dummy_inputs() a_ : List[str] = pipe(**SCREAMING_SNAKE_CASE__ ).images a_ : List[str] = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) a_ : Union[str, Any] = np.array( [0.77424496, 0.773601, 0.7645288, 0.7769598, 0.7772739, 0.7738688, 0.78187233, 0.77879584, 0.767043] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 @nightly @require_onnxruntime @require_torch_gpu class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): @property def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Union[str, Any]: return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> List[str]: a_ : List[str] = ort.SessionOptions() a_ : int = False return options def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Tuple: a_ : str = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/img2img/sketch-mountains-input.jpg' ) a_ : int = init_image.resize((1_2_8, 1_2_8) ) # using the PNDM scheduler by default a_ : Dict = OnnxStableDiffusionUpscalePipeline.from_pretrained( 'ssube/stable-diffusion-x4-upscaler-onnx' , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) a_ : Tuple = 'A fantasy landscape, trending on artstation' a_ : str = torch.manual_seed(0 ) a_ : List[str] = pipe( prompt=SCREAMING_SNAKE_CASE__ , image=SCREAMING_SNAKE_CASE__ , guidance_scale=7.5 , num_inference_steps=1_0 , generator=SCREAMING_SNAKE_CASE__ , output_type='np' , ) a_ : Dict = output.images a_ : Any = images[0, 2_5_5:2_5_8, 3_8_3:3_8_6, -1] assert images.shape == (1, 5_1_2, 5_1_2, 3) a_ : str = np.array([0.4883, 0.4947, 0.4980, 0.4975, 0.4982, 0.4980, 0.5000, 0.5006, 0.4972] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2 def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> List[str]: a_ : Dict = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/img2img/sketch-mountains-input.jpg' ) a_ : List[str] = init_image.resize((1_2_8, 1_2_8) ) a_ : Dict = LMSDiscreteScheduler.from_pretrained( 'ssube/stable-diffusion-x4-upscaler-onnx' , subfolder='scheduler' ) a_ : Union[str, Any] = OnnxStableDiffusionUpscalePipeline.from_pretrained( 'ssube/stable-diffusion-x4-upscaler-onnx' , scheduler=SCREAMING_SNAKE_CASE__ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) a_ : Any = 'A fantasy landscape, trending on artstation' a_ : Tuple = torch.manual_seed(0 ) a_ : Optional[Any] = pipe( prompt=SCREAMING_SNAKE_CASE__ , image=SCREAMING_SNAKE_CASE__ , guidance_scale=7.5 , num_inference_steps=2_0 , generator=SCREAMING_SNAKE_CASE__ , output_type='np' , ) a_ : str = output.images a_ : List[Any] = images[0, 2_5_5:2_5_8, 3_8_3:3_8_6, -1] assert images.shape == (1, 5_1_2, 5_1_2, 3) a_ : Tuple = np.array( [0.50173753, 0.50223356, 0.502039, 0.50233036, 0.5023725, 0.5022601, 0.5018758, 0.50234085, 0.50241566] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2
32
'''simple docstring''' from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, Encoder, VectorQuantizer @dataclass class a__ ( __A ): """simple docstring""" __UpperCamelCase : torch.FloatTensor class a__ ( __A , __A ): """simple docstring""" @register_to_config def __init__(self , __lowercase = 3 , __lowercase = 3 , __lowercase = ("DownEncoderBlock2D",) , __lowercase = ("UpDecoderBlock2D",) , __lowercase = (64,) , __lowercase = 1 , __lowercase = "silu" , __lowercase = 3 , __lowercase = 32 , __lowercase = 2_56 , __lowercase = 32 , __lowercase = None , __lowercase = 0.1_8_2_1_5 , __lowercase = "group" , ): super().__init__() # pass init params to Encoder __lowerCAmelCase = Encoder( in_channels=__lowercase , out_channels=__lowercase , down_block_types=__lowercase , block_out_channels=__lowercase , layers_per_block=__lowercase , act_fn=__lowercase , norm_num_groups=__lowercase , double_z=__lowercase , ) __lowerCAmelCase = vq_embed_dim if vq_embed_dim is not None else latent_channels __lowerCAmelCase = nn.Convad(__lowercase , __lowercase , 1 ) __lowerCAmelCase = VectorQuantizer(__lowercase , __lowercase , beta=0.2_5 , remap=__lowercase , sane_index_shape=__lowercase ) __lowerCAmelCase = nn.Convad(__lowercase , __lowercase , 1 ) # pass init params to Decoder __lowerCAmelCase = Decoder( in_channels=__lowercase , out_channels=__lowercase , up_block_types=__lowercase , block_out_channels=__lowercase , layers_per_block=__lowercase , act_fn=__lowercase , norm_num_groups=__lowercase , norm_type=__lowercase , ) @apply_forward_hook def _snake_case (self , __lowercase , __lowercase = True ): __lowerCAmelCase = self.encoder(__lowercase ) __lowerCAmelCase = self.quant_conv(__lowercase ) if not return_dict: return (h,) return VQEncoderOutput(latents=__lowercase ) @apply_forward_hook def _snake_case (self , __lowercase , __lowercase = False , __lowercase = True ): # also go through quantization layer if not force_not_quantize: __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = self.quantize(__lowercase ) else: __lowerCAmelCase = h __lowerCAmelCase = self.post_quant_conv(__lowercase ) __lowerCAmelCase = self.decoder(__lowercase , quant if self.config.norm_type == '''spatial''' else None ) if not return_dict: return (dec,) return DecoderOutput(sample=__lowercase ) def _snake_case (self , __lowercase , __lowercase = True ): __lowerCAmelCase = sample __lowerCAmelCase = self.encode(__lowercase ).latents __lowerCAmelCase = self.decode(__lowercase ).sample if not return_dict: return (dec,) return DecoderOutput(sample=__lowercase )
174
0
import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv('TEST_SAGEMAKER' , 'False' ) ) is not True , reason='Skipping test because should only be run when releasing minor transformers version' , ) @pytest.mark.usefixtures('sm_env' ) @parameterized_class( [ { 'framework': 'pytorch', 'script': 'run_glue.py', 'model_name_or_path': 'distilbert-base-cased', 'instance_type': 'ml.g4dn.xlarge', 'results': {'train_runtime': 6_50, 'eval_accuracy': 0.6, 'eval_loss': 0.9}, }, { 'framework': 'tensorflow', 'script': 'run_tf.py', 'model_name_or_path': 'distilbert-base-cased', 'instance_type': 'ml.g4dn.xlarge', 'results': {'train_runtime': 6_00, 'eval_accuracy': 0.3, 'eval_loss': 0.9}, }, ] ) class SCREAMING_SNAKE_CASE (unittest.TestCase ): def SCREAMING_SNAKE_CASE_ ( self : List[Any] )-> List[Any]: """simple docstring""" if self.framework == "pytorch": subprocess.run( f"""cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py""".split() , encoding='utf-8' , check=a , ) assert hasattr(self , 'env' ) def SCREAMING_SNAKE_CASE_ ( self : List[str] , a : str=1 )-> int: """simple docstring""" return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=f"""{self.env.base_job_name}-single""" , instance_count=a , instance_type=self.instance_type , debugger_hook_config=a , hyperparameters={**self.env.hyperparameters, 'model_name_or_path': self.model_name_or_path} , metric_definitions=self.env.metric_definitions , py_version='py36' , ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , a : Union[str, Any] )-> Optional[int]: """simple docstring""" TrainingJobAnalytics(a ).export_csv(f"""{self.env.test_path}/{job_name}_metrics.csv""" ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] )-> Dict: """simple docstring""" lowercase__ = self.create_estimator() # run training estimator.fit() # result dataframe lowercase__ = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis lowercase__ = list(result_metrics_df[result_metrics_df.metric_name == 'eval_accuracy']['value'] ) lowercase__ = list(result_metrics_df[result_metrics_df.metric_name == 'eval_loss']['value'] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping lowercase__ = ( Session().describe_training_job(estimator.latest_training_job.name ).get('TrainingTimeInSeconds' , 999_999 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results['eval_accuracy'] for t in eval_accuracy ) assert all(t <= self.results['eval_loss'] for t in eval_loss ) # dump tests result into json file to share in PR with open(f"""{estimator.latest_training_job.name}.json""" , 'w' ) as outfile: json.dump({'train_time': train_runtime, 'eval_accuracy': eval_accuracy, 'eval_loss': eval_loss} , a )
269
from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=UpperCAmelCase ) class SCREAMING_SNAKE_CASE (UpperCAmelCase ): _UpperCamelCase : str = field(default='language-modeling' , metadata={'include_in_asdict_even_if_is_default': True} ) _UpperCamelCase : ClassVar[Features] = Features({'text': Value('string' )} ) _UpperCamelCase : ClassVar[Features] = Features({} ) _UpperCamelCase : str = "text" @property def SCREAMING_SNAKE_CASE_ ( self : List[str] )-> Dict[str, str]: """simple docstring""" return {self.text_column: "text"}
269
1
"""simple docstring""" from unittest.mock import Mock, patch from file_transfer.send_file import send_file @patch("""socket.socket""" ) @patch("""builtins.open""" ) def lowercase_ ( __UpperCAmelCase , __UpperCAmelCase ) -> List[str]: # ===== initialization ===== lowerCAmelCase__ : List[str] = Mock() lowerCAmelCase__ : Optional[int] = conn, Mock() lowerCAmelCase__ : Union[str, Any] = iter([1, None] ) lowerCAmelCase__ : List[str] = lambda __UpperCAmelCase : next(snake_case_ ) # ===== invoke ===== send_file(filename="""mytext.txt""" , testing=snake_case_ ) # ===== ensurance ===== sock.assert_called_once() sock.return_value.bind.assert_called_once() sock.return_value.listen.assert_called_once() sock.return_value.accept.assert_called_once() conn.recv.assert_called_once() file.return_value.__enter__.assert_called_once() file.return_value.__enter__.return_value.read.assert_called() conn.send.assert_called_once() conn.close.assert_called_once() sock.return_value.shutdown.assert_called_once() sock.return_value.close.assert_called_once()
242
import argparse import torch from transformers import BlenderbotConfig, BlenderbotForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() _snake_case = logging.get_logger(__name__) _snake_case = [ ["attention", "attn"], ["encoder_attention", "encoder_attn"], ["q_lin", "q_proj"], ["k_lin", "k_proj"], ["v_lin", "v_proj"], ["out_lin", "out_proj"], ["norm_embeddings", "layernorm_embedding"], ["position_embeddings", "embed_positions"], ["embeddings", "embed_tokens"], ["ffn.lin", "fc"], ] def lowerCAmelCase_ ( snake_case_ ): if k == "embeddings.weight": return "shared.weight" for parlai_name, hf_name in PATTERNS: _A : str = k.replace(snake_case_,snake_case_ ) if k.startswith("""encoder""" ): _A : Optional[Any] = k.replace(""".attn""",""".self_attn""" ) _A : Dict = k.replace("""norm1""","""self_attn_layer_norm""" ) _A : Optional[Any] = k.replace("""norm2""","""final_layer_norm""" ) elif k.startswith("""decoder""" ): _A : str = k.replace("""norm1""","""self_attn_layer_norm""" ) _A : Any = k.replace("""norm2""","""encoder_attn_layer_norm""" ) _A : Optional[int] = k.replace("""norm3""","""final_layer_norm""" ) return k def lowerCAmelCase_ ( snake_case_ ): _A : List[Any] = [ """model.encoder.layernorm_embedding.weight""", """model.encoder.layernorm_embedding.bias""", """model.decoder.layernorm_embedding.weight""", """model.decoder.layernorm_embedding.bias""", ] for k in keys: _A : str = sd.pop(snake_case_ ) _A : Optional[int] = k.replace("""layernorm_embedding""","""layer_norm""" ) assert new_k not in sd _A : Optional[int] = v _snake_case = ["START"] @torch.no_grad() def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_ ): _A : Tuple = torch.load(snake_case_,map_location="""cpu""" ) _A : List[Any] = model["""model"""] _A : Optional[Any] = BlenderbotConfig.from_json_file(snake_case_ ) _A : List[str] = BlenderbotForConditionalGeneration(snake_case_ ) _A : Tuple = m.model.state_dict().keys() _A : Any = [] _A : Dict = {} for k, v in sd.items(): if k in IGNORE_KEYS: continue _A : Optional[int] = rename_state_dict_key(snake_case_ ) if new_k not in valid_keys: failures.append([k, new_k] ) else: _A : Dict = v if cfg.normalize_before: # Blenderbot-3B checkpoints. Rename layernorm_embedding -> layer_norm rename_layernorm_keys(snake_case_ ) m.model.load_state_dict(snake_case_,strict=snake_case_ ) m.half() m.save_pretrained(snake_case_ ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument("--src_path", type=str, help="like blenderbot-model.bin") parser.add_argument("--save_dir", default="hf_blenderbot", type=str, help="Where to save converted model.") parser.add_argument( "--hf_config_json", default="blenderbot-3b-config.json", type=str, help="Path to config to use" ) _snake_case = parser.parse_args() convert_parlai_checkpoint(args.src_path, args.save_dir, args.hf_config_json)
26
0
import unittest import numpy as np import torch from diffusers import ScoreSdeVePipeline, ScoreSdeVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class A ( unittest.TestCase ): '''simple docstring''' @property def lowerCamelCase__ (self : Optional[Any] ) -> Dict: """simple docstring""" torch.manual_seed(0 ) lowercase__ = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=("""DownBlock2D""", """AttnDownBlock2D""") , up_block_types=("""AttnUpBlock2D""", """UpBlock2D""") , ) return model def lowerCamelCase__ (self : Optional[int] ) -> Tuple: """simple docstring""" lowercase__ = self.dummy_uncond_unet lowercase__ = ScoreSdeVeScheduler() lowercase__ = ScoreSdeVePipeline(unet=_UpperCAmelCase , scheduler=_UpperCAmelCase ) sde_ve.to(_UpperCAmelCase ) sde_ve.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__ = torch.manual_seed(0 ) lowercase__ = sde_ve(num_inference_steps=2 , output_type="""numpy""" , generator=_UpperCAmelCase ).images lowercase__ = torch.manual_seed(0 ) lowercase__ = sde_ve(num_inference_steps=2 , output_type="""numpy""" , generator=_UpperCAmelCase , return_dict=_UpperCAmelCase )[ 0 ] lowercase__ = image[0, -3:, -3:, -1] lowercase__ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) lowercase__ = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch class A ( unittest.TestCase ): '''simple docstring''' def lowerCamelCase__ (self : Optional[Any] ) -> List[str]: """simple docstring""" lowercase__ = """google/ncsnpp-church-256""" lowercase__ = UNetaDModel.from_pretrained(_UpperCAmelCase ) lowercase__ = ScoreSdeVeScheduler.from_pretrained(_UpperCAmelCase ) lowercase__ = ScoreSdeVePipeline(unet=_UpperCAmelCase , scheduler=_UpperCAmelCase ) sde_ve.to(_UpperCAmelCase ) sde_ve.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__ = torch.manual_seed(0 ) lowercase__ = sde_ve(num_inference_steps=10 , output_type="""numpy""" , generator=_UpperCAmelCase ).images lowercase__ = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) lowercase__ = np.array([0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
146
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, PNDMScheduler, StableDiffusionInpaintPipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class A ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' A__ = StableDiffusionInpaintPipeline A__ = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS A__ = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS A__ = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess A__ = frozenset([] ) def lowerCamelCase__ (self : Tuple ) -> List[Any]: """simple docstring""" torch.manual_seed(0 ) lowercase__ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=9 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=_UpperCAmelCase , ) lowercase__ = PNDMScheduler(skip_prk_steps=_UpperCAmelCase ) torch.manual_seed(0 ) lowercase__ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) lowercase__ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act="""gelu""" , projection_dim=512 , ) lowercase__ = CLIPTextModel(_UpperCAmelCase ) lowercase__ = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) lowercase__ = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def lowerCamelCase__ (self : Optional[Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Optional[Any]=0 ) -> List[str]: """simple docstring""" lowercase__ = floats_tensor((1, 3, 32, 32) , rng=random.Random(_UpperCAmelCase ) ).to(_UpperCAmelCase ) lowercase__ = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowercase__ = Image.fromarray(np.uinta(_UpperCAmelCase ) ).convert("""RGB""" ).resize((64, 64) ) lowercase__ = Image.fromarray(np.uinta(image + 4 ) ).convert("""RGB""" ).resize((64, 64) ) if str(_UpperCAmelCase ).startswith("""mps""" ): lowercase__ = torch.manual_seed(_UpperCAmelCase ) else: lowercase__ = torch.Generator(device=_UpperCAmelCase ).manual_seed(_UpperCAmelCase ) lowercase__ = { """prompt""": """A painting of a squirrel eating a burger""", """image""": init_image, """mask_image""": mask_image, """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def lowerCamelCase__ (self : Optional[int] ) -> Any: """simple docstring""" lowercase__ = """cpu""" # ensure determinism for the device-dependent torch.Generator lowercase__ = self.get_dummy_components() lowercase__ = StableDiffusionInpaintPipeline(**_UpperCAmelCase ) lowercase__ = sd_pipe.to(_UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__ = self.get_dummy_inputs(_UpperCAmelCase ) lowercase__ = sd_pipe(**_UpperCAmelCase ).images lowercase__ = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowercase__ = np.array([0.4_727, 0.5_735, 0.3_941, 0.5_446, 0.5_926, 0.4_394, 0.5_062, 0.4_654, 0.4_476] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def lowerCamelCase__ (self : str ) -> int: """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class A ( unittest.TestCase ): '''simple docstring''' def lowerCamelCase__ (self : str ) -> Optional[Any]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase__ (self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" lowercase__ = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-inpaint/init_image.png""" ) lowercase__ = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png""" ) lowercase__ = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint""" """/yellow_cat_sitting_on_a_park_bench.npy""" ) lowercase__ = """stabilityai/stable-diffusion-2-inpainting""" lowercase__ = StableDiffusionInpaintPipeline.from_pretrained(_UpperCAmelCase , safety_checker=_UpperCAmelCase ) pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) pipe.enable_attention_slicing() lowercase__ = """Face of a yellow cat, high resolution, sitting on a park bench""" lowercase__ = torch.manual_seed(0 ) lowercase__ = pipe( prompt=_UpperCAmelCase , image=_UpperCAmelCase , mask_image=_UpperCAmelCase , generator=_UpperCAmelCase , output_type="""np""" , ) lowercase__ = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 9E-3 def lowerCamelCase__ (self : Optional[int] ) -> List[str]: """simple docstring""" lowercase__ = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-inpaint/init_image.png""" ) lowercase__ = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png""" ) lowercase__ = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint""" """/yellow_cat_sitting_on_a_park_bench_fp16.npy""" ) lowercase__ = """stabilityai/stable-diffusion-2-inpainting""" lowercase__ = StableDiffusionInpaintPipeline.from_pretrained( _UpperCAmelCase , torch_dtype=torch.floataa , safety_checker=_UpperCAmelCase , ) pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) pipe.enable_attention_slicing() lowercase__ = """Face of a yellow cat, high resolution, sitting on a park bench""" lowercase__ = torch.manual_seed(0 ) lowercase__ = pipe( prompt=_UpperCAmelCase , image=_UpperCAmelCase , mask_image=_UpperCAmelCase , generator=_UpperCAmelCase , output_type="""np""" , ) lowercase__ = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 5E-1 def lowerCamelCase__ (self : List[str] ) -> Optional[Any]: """simple docstring""" torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() lowercase__ = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-inpaint/init_image.png""" ) lowercase__ = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png""" ) lowercase__ = """stabilityai/stable-diffusion-2-inpainting""" lowercase__ = PNDMScheduler.from_pretrained(_UpperCAmelCase , subfolder="""scheduler""" ) lowercase__ = StableDiffusionInpaintPipeline.from_pretrained( _UpperCAmelCase , safety_checker=_UpperCAmelCase , scheduler=_UpperCAmelCase , torch_dtype=torch.floataa , ) pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() lowercase__ = """Face of a yellow cat, high resolution, sitting on a park bench""" lowercase__ = torch.manual_seed(0 ) lowercase__ = pipe( prompt=_UpperCAmelCase , image=_UpperCAmelCase , mask_image=_UpperCAmelCase , generator=_UpperCAmelCase , num_inference_steps=2 , output_type="""np""" , ) lowercase__ = torch.cuda.max_memory_allocated() # make sure that less than 2.65 GB is allocated assert mem_bytes < 2.65 * 10**9
146
1
from typing import Any, Dict, List, Optional, Tuple, Union import torch from torch import nn from torch.utils.data import DistributedSampler, RandomSampler from transformers import PreTrainedModel, Trainer, logging from transformers.integrations import is_fairscale_available from transformers.models.fsmt.configuration_fsmt import FSMTConfig from transformers.optimization import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.trainer_pt_utils import get_tpu_sampler from transformers.training_args import ParallelMode from transformers.utils import is_torch_tpu_available if is_fairscale_available(): from fairscale.optim import OSS _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = { """linear""": get_linear_schedule_with_warmup, """cosine""": get_cosine_schedule_with_warmup, """cosine_w_restarts""": get_cosine_with_hard_restarts_schedule_with_warmup, """polynomial""": get_polynomial_decay_schedule_with_warmup, """constant""": get_constant_schedule, """constant_w_warmup""": get_constant_schedule_with_warmup, } class SCREAMING_SNAKE_CASE_ ( snake_case_ ): def __init__( self : Optional[Any] , _A : Optional[int]=None , _A : Union[str, Any]=None , *_A : Tuple , **_A : Dict ) -> Optional[Any]: """simple docstring""" super().__init__(*_A , **_A ) if config is None: assert isinstance(self.model , _A ), ( "If no `config` is passed the model to be trained has to be of type `PreTrainedModel`, but is" F""" {self.model.__class__}""" ) snake_case_ : Tuple = self.model.config else: snake_case_ : Tuple = config snake_case_ : Optional[Any] = data_args snake_case_ : int = self.config.tgt_vocab_size if isinstance(self.config , _A ) else self.config.vocab_size if self.args.label_smoothing != 0 or (self.data_args is not None and self.data_args.ignore_pad_token_for_loss): assert self.config.pad_token_id is not None, ( "Make sure that `config.pad_token_id` is correcly defined when ignoring `pad_token` for loss" " calculation or doing label smoothing." ) if self.config.pad_token_id is None and self.config.eos_token_id is not None: logger.warning( F"""The `config.pad_token_id` is `None`. Using `config.eos_token_id` = {self.config.eos_token_id} for""" ' padding..' ) if self.args.label_smoothing == 0: snake_case_ : Any = torch.nn.CrossEntropyLoss(ignore_index=self.config.pad_token_id ) else: # dynamically import label_smoothed_nll_loss from utils import label_smoothed_nll_loss snake_case_ : Optional[Any] = label_smoothed_nll_loss def UpperCAmelCase_ ( self : Tuple , _A : int ) -> str: """simple docstring""" if self.optimizer is None: snake_case_ : List[Any] = ['bias', 'LayerNorm.weight'] snake_case_ : Tuple = [ { 'params': [p for n, p in self.model.named_parameters() if not any(nd in n for nd in no_decay )], 'weight_decay': self.args.weight_decay, }, { 'params': [p for n, p in self.model.named_parameters() if any(nd in n for nd in no_decay )], 'weight_decay': 0.0, }, ] snake_case_ : Optional[int] = Adafactor if self.args.adafactor else AdamW if self.args.adafactor: snake_case_ : int = Adafactor snake_case_ : List[str] = {'scale_parameter': False, 'relative_step': False} else: snake_case_ : Optional[Any] = AdamW snake_case_ : str = { 'betas': (self.args.adam_betaa, self.args.adam_betaa), 'eps': self.args.adam_epsilon, } snake_case_ : str = self.args.learning_rate if self.sharded_ddp: snake_case_ : Tuple = OSS( params=_A , optim=_A , **_A , ) else: snake_case_ : str = optimizer_cls(_A , **_A ) if self.lr_scheduler is None: snake_case_ : int = self._get_lr_scheduler(_A ) else: # ignoring --lr_scheduler logger.warning('scheduler is passed to `Seq2SeqTrainer`, `--lr_scheduler` arg is ignored.' ) def UpperCAmelCase_ ( self : Dict , _A : Optional[int] ) -> List[Any]: """simple docstring""" snake_case_ : Tuple = arg_to_scheduler[self.args.lr_scheduler] if self.args.lr_scheduler == "constant": snake_case_ : Dict = schedule_func(self.optimizer ) elif self.args.lr_scheduler == "constant_w_warmup": snake_case_ : Tuple = schedule_func(self.optimizer , num_warmup_steps=self.args.warmup_steps ) else: snake_case_ : Tuple = schedule_func( self.optimizer , num_warmup_steps=self.args.warmup_steps , num_training_steps=_A ) return scheduler def UpperCAmelCase_ ( self : str ) -> Optional[torch.utils.data.Sampler]: """simple docstring""" if isinstance(self.train_dataset , torch.utils.data.IterableDataset ): return None elif is_torch_tpu_available(): return get_tpu_sampler(self.train_dataset ) else: if self.args.sortish_sampler: self.train_dataset.make_sortish_sampler( self.args.per_device_train_batch_size , distributed=(self.args.parallel_mode == ParallelMode.DISTRIBUTED) , ) return ( RandomSampler(self.train_dataset ) if self.args.local_rank == -1 else DistributedSampler(self.train_dataset ) ) def UpperCAmelCase_ ( self : Union[str, Any] , _A : List[str] , _A : Tuple , _A : Optional[Any] ) -> List[str]: """simple docstring""" if self.args.label_smoothing == 0: if self.data_args is not None and self.data_args.ignore_pad_token_for_loss: # force training to ignore pad token snake_case_ : List[Any] = model(**_A , use_cache=_A )[0] snake_case_ : Optional[Any] = self.loss_fn(logits.view(-1 , logits.shape[-1] ) , labels.view(-1 ) ) else: # compute usual loss via models snake_case_ ,snake_case_ : Dict = model(**_A , labels=_A , use_cache=_A )[:2] else: # compute label smoothed loss snake_case_ : List[str] = model(**_A , use_cache=_A )[0] snake_case_ : str = torch.nn.functional.log_softmax(_A , dim=-1 ) snake_case_ ,snake_case_ : List[Any] = self.loss_fn(_A , _A , self.args.label_smoothing , ignore_index=self.config.pad_token_id ) return loss, logits def UpperCAmelCase_ ( self : Optional[int] , _A : Optional[Any] , _A : List[Any] ) -> str: """simple docstring""" snake_case_ : Union[str, Any] = inputs.pop('labels' ) snake_case_ ,snake_case_ : int = self._compute_loss(_A , _A , _A ) return loss def UpperCAmelCase_ ( self : Optional[int] , _A : nn.Module , _A : Dict[str, Union[torch.Tensor, Any]] , _A : bool , _A : Optional[List[str]] = None , ) -> Tuple[Optional[float], Optional[torch.Tensor], Optional[torch.Tensor]]: """simple docstring""" snake_case_ : Optional[int] = self._prepare_inputs(_A ) snake_case_ : Dict = { 'max_length': self.data_args.val_max_target_length if self.data_args is not None else self.config.max_length, 'num_beams': self.data_args.eval_beams if self.data_args is not None else self.config.num_beams, } if self.args.predict_with_generate and not self.args.prediction_loss_only: snake_case_ : Optional[int] = self.model.generate( inputs['input_ids'] , attention_mask=inputs['attention_mask'] , **_A , ) # in case the batch is shorter than max length, the output should be padded if generated_tokens.shape[-1] < gen_kwargs["max_length"]: snake_case_ : int = self._pad_tensors_to_max_len(_A , gen_kwargs['max_length'] ) snake_case_ : Tuple = inputs.pop('labels' ) with torch.no_grad(): # compute loss on predict data snake_case_ ,snake_case_ : List[Any] = self._compute_loss(_A , _A , _A ) snake_case_ : int = loss.mean().detach() if self.args.prediction_loss_only: return (loss, None, None) snake_case_ : int = generated_tokens if self.args.predict_with_generate else logits if labels.shape[-1] < gen_kwargs["max_length"]: snake_case_ : List[str] = self._pad_tensors_to_max_len(_A , gen_kwargs['max_length'] ) return (loss, logits, labels) def UpperCAmelCase_ ( self : Any , _A : List[str] , _A : Tuple ) -> List[Any]: """simple docstring""" snake_case_ : str = self.config.pad_token_id if self.config.pad_token_id is not None else self.config.eos_token_id if pad_token_id is None: raise ValueError( 'Make sure that either `config.pad_token_id` or `config.eos_token_id` is defined if tensor has to be' F""" padded to `max_length`={max_length}""" ) snake_case_ : Union[str, Any] = pad_token_id * torch.ones( (tensor.shape[0], max_length) , dtype=tensor.dtype , device=tensor.device ) snake_case_ : int = tensor return padded_tensor
327
import tempfile import unittest from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from transformers.testing_utils import ( is_torch_available, require_optimum, require_torch, slow, ) if is_torch_available(): import torch @require_torch @require_optimum @slow class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): def UpperCAmelCase_ ( self : Dict ) -> List[Any]: """simple docstring""" snake_case_ : Any = 'hf-internal-testing/tiny-random-t5' snake_case_ : Optional[Any] = AutoTokenizer.from_pretrained(_A ) snake_case_ : Optional[int] = AutoModelForSeqaSeqLM.from_pretrained(_A ) snake_case_ : List[Any] = tokenizer('This is me' , return_tensors='pt' ) snake_case_ : Any = model.to_bettertransformer() self.assertTrue(any('BetterTransformer' in mod.__class__.__name__ for _, mod in model.named_modules() ) ) snake_case_ : Optional[Any] = model.generate(**_A ) snake_case_ : int = model.reverse_bettertransformer() self.assertFalse(any('BetterTransformer' in mod.__class__.__name__ for _, mod in model.named_modules() ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_A ) snake_case_ : Tuple = AutoModelForSeqaSeqLM.from_pretrained(_A ) self.assertFalse( any('BetterTransformer' in mod.__class__.__name__ for _, mod in model_reloaded.named_modules() ) ) snake_case_ : Optional[Any] = model_reloaded.generate(**_A ) self.assertTrue(torch.allclose(_A , _A ) ) def UpperCAmelCase_ ( self : Optional[Any] ) -> Tuple: """simple docstring""" snake_case_ : Any = 'hf-internal-testing/tiny-random-t5' snake_case_ : int = AutoModelForSeqaSeqLM.from_pretrained(_A ) snake_case_ : Dict = model.to_bettertransformer() with tempfile.TemporaryDirectory() as tmpdirname: with self.assertRaises(_A ): model.save_pretrained(_A ) snake_case_ : Union[str, Any] = model.reverse_bettertransformer() model.save_pretrained(_A )
327
1
'''simple docstring''' from jiwer import compute_measures import datasets _SCREAMING_SNAKE_CASE = '\\n@inproceedings{inproceedings,\n author = {Morris, Andrew and Maier, Viktoria and Green, Phil},\n year = {2004},\n month = {01},\n pages = {},\n title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.}\n}\n' _SCREAMING_SNAKE_CASE = '\\nWord error rate (WER) is a common metric of the performance of an automatic speech recognition system.\n\nThe general difficulty of measuring performance lies in the fact that the recognized word sequence can have a different length from the reference word sequence (supposedly the correct one). The WER is derived from the Levenshtein distance, working at the word level instead of the phoneme level. The WER is a valuable tool for comparing different systems as well as for evaluating improvements within one system. This kind of measurement, however, provides no details on the nature of translation errors and further work is therefore required to identify the main source(s) of error and to focus any research effort.\n\nThis problem is solved by first aligning the recognized word sequence with the reference (spoken) word sequence using dynamic string alignment. Examination of this issue is seen through a theory called the power law that states the correlation between perplexity and word error rate.\n\nWord error rate can then be computed as:\n\nWER = (S + D + I) / N = (S + D + I) / (S + D + C)\n\nwhere\n\nS is the number of substitutions,\nD is the number of deletions,\nI is the number of insertions,\nC is the number of correct words,\nN is the number of words in the reference (N=S+D+C).\n\nThis value indicates the average number of errors per reference word. The lower the value, the better the\nperformance of the ASR system with a WER of 0 being a perfect score.\n' _SCREAMING_SNAKE_CASE = '\nCompute WER score of transcribed segments against references.\n\nArgs:\n references: List of references for each speech input.\n predictions: List of transcriptions to score.\n concatenate_texts (bool, default=False): Whether to concatenate all input texts or compute WER iteratively.\n\nReturns:\n (float): the word error rate\n\nExamples:\n\n >>> predictions = ["this is the prediction", "there is an other sample"]\n >>> references = ["this is the reference", "there is another one"]\n >>> wer = datasets.load_metric("wer")\n >>> wer_score = wer.compute(predictions=predictions, references=references)\n >>> print(wer_score)\n 0.5\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _lowerCAmelCase ( datasets.Metric ): """simple docstring""" def lowerCAmelCase ( self : Union[str, Any] )-> List[Any]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" , id="""sequence""" ), """references""": datasets.Value("""string""" , id="""sequence""" ), } ) , codebase_urls=["""https://github.com/jitsi/jiwer/"""] , reference_urls=[ """https://en.wikipedia.org/wiki/Word_error_rate""", ] , ) def lowerCAmelCase ( self : Any , __snake_case : Union[str, Any]=None , __snake_case : str=None , __snake_case : Union[str, Any]=False )-> Union[str, Any]: if concatenate_texts: return compute_measures(__snake_case , __snake_case )["wer"] else: snake_case = 0 snake_case = 0 for prediction, reference in zip(__snake_case , __snake_case ): snake_case = compute_measures(__snake_case , __snake_case ) incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"] total += measures["substitutions"] + measures["deletions"] + measures["hits"] return incorrect / total
351
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_pytesseract, require_torch from transformers.utils import is_pytesseract_available, is_torch_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_pytesseract_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self : Any , __snake_case : Optional[Any] , __snake_case : List[Any]=7 , __snake_case : Optional[Any]=3 , __snake_case : str=18 , __snake_case : Union[str, Any]=30 , __snake_case : Union[str, Any]=4_00 , __snake_case : Optional[int]=True , __snake_case : Any=None , __snake_case : List[str]=True , )-> Optional[Any]: snake_case = size if size is not None else {"""height""": 18, """width""": 18} snake_case = parent snake_case = batch_size snake_case = num_channels snake_case = image_size snake_case = min_resolution snake_case = max_resolution snake_case = do_resize snake_case = size snake_case = apply_ocr def lowerCAmelCase ( self : List[Any] )-> List[str]: return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr} @require_torch @require_pytesseract class _lowerCAmelCase ( A__ , unittest.TestCase ): """simple docstring""" snake_case_ = LayoutLMvaImageProcessor if is_pytesseract_available() else None def lowerCAmelCase ( self : int )-> Tuple: snake_case = LayoutLMvaImageProcessingTester(self ) @property def lowerCAmelCase ( self : Tuple )-> Tuple: return self.image_processor_tester.prepare_image_processor_dict() def lowerCAmelCase ( self : Union[str, Any] )-> Any: snake_case = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__snake_case , """do_resize""" ) ) self.assertTrue(hasattr(__snake_case , """size""" ) ) self.assertTrue(hasattr(__snake_case , """apply_ocr""" ) ) def lowerCAmelCase ( self : List[str] )-> List[Any]: snake_case = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""height""": 18, """width""": 18} ) snake_case = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {"""height""": 42, """width""": 42} ) def lowerCAmelCase ( self : Dict )-> Union[str, Any]: pass def lowerCAmelCase ( self : Tuple )-> Dict: # Initialize image_processing snake_case = self.image_processing_class(**self.image_processor_dict ) # create random PIL images snake_case = prepare_image_inputs(self.image_processor_tester , equal_resolution=__snake_case ) for image in image_inputs: self.assertIsInstance(__snake_case , Image.Image ) # Test not batched input snake_case = image_processing(image_inputs[0] , return_tensors="""pt""" ) self.assertEqual( encoding.pixel_values.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) self.assertIsInstance(encoding.words , __snake_case ) self.assertIsInstance(encoding.boxes , __snake_case ) # Test batched snake_case = image_processing(__snake_case , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) def lowerCAmelCase ( self : int )-> str: # Initialize image_processing snake_case = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors snake_case = prepare_image_inputs(self.image_processor_tester , equal_resolution=__snake_case , numpify=__snake_case ) for image in image_inputs: self.assertIsInstance(__snake_case , np.ndarray ) # Test not batched input snake_case = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched snake_case = image_processing(__snake_case , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) def lowerCAmelCase ( self : List[Any] )-> Optional[Any]: # Initialize image_processing snake_case = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors snake_case = prepare_image_inputs(self.image_processor_tester , equal_resolution=__snake_case , torchify=__snake_case ) for image in image_inputs: self.assertIsInstance(__snake_case , torch.Tensor ) # Test not batched input snake_case = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched snake_case = image_processing(__snake_case , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) def lowerCAmelCase ( self : int )-> List[Any]: # with apply_OCR = True snake_case = LayoutLMvaImageProcessor() from datasets import load_dataset snake_case = load_dataset("""hf-internal-testing/fixtures_docvqa""" , split="""test""" ) snake_case = Image.open(ds[0]["""file"""] ).convert("""RGB""" ) snake_case = image_processing(__snake_case , return_tensors="""pt""" ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 2_24, 2_24) ) self.assertEqual(len(encoding.words ) , len(encoding.boxes ) ) # fmt: off # the words and boxes were obtained with Tesseract 4.1.1 snake_case = [["""11:14""", """to""", """11:39""", """a.m""", """11:39""", """to""", """11:44""", """a.m.""", """11:44""", """a.m.""", """to""", """12:25""", """p.m.""", """12:25""", """to""", """12:58""", """p.m.""", """12:58""", """to""", """4:00""", """p.m.""", """2:00""", """to""", """5:00""", """p.m.""", """Coffee""", """Break""", """Coffee""", """will""", """be""", """served""", """for""", """men""", """and""", """women""", """in""", """the""", """lobby""", """adjacent""", """to""", """exhibit""", """area.""", """Please""", """move""", """into""", """exhibit""", """area.""", """(Exhibits""", """Open)""", """TRRF""", """GENERAL""", """SESSION""", """(PART""", """|)""", """Presiding:""", """Lee""", """A.""", """Waller""", """TRRF""", """Vice""", """President""", """“Introductory""", """Remarks”""", """Lee""", """A.""", """Waller,""", """TRRF""", """Vice""", """Presi-""", """dent""", """Individual""", """Interviews""", """with""", """TRRF""", """Public""", """Board""", """Members""", """and""", """Sci-""", """entific""", """Advisory""", """Council""", """Mem-""", """bers""", """Conducted""", """by""", """TRRF""", """Treasurer""", """Philip""", """G.""", """Kuehn""", """to""", """get""", """answers""", """which""", """the""", """public""", """refrigerated""", """warehousing""", """industry""", """is""", """looking""", """for.""", """Plus""", """questions""", """from""", """the""", """floor.""", """Dr.""", """Emil""", """M.""", """Mrak,""", """University""", """of""", """Cal-""", """ifornia,""", """Chairman,""", """TRRF""", """Board;""", """Sam""", """R.""", """Cecil,""", """University""", """of""", """Georgia""", """College""", """of""", """Agriculture;""", """Dr.""", """Stanley""", """Charm,""", """Tufts""", """University""", """School""", """of""", """Medicine;""", """Dr.""", """Robert""", """H.""", """Cotton,""", """ITT""", """Continental""", """Baking""", """Company;""", """Dr.""", """Owen""", """Fennema,""", """University""", """of""", """Wis-""", """consin;""", """Dr.""", """Robert""", """E.""", """Hardenburg,""", """USDA.""", """Questions""", """and""", """Answers""", """Exhibits""", """Open""", """Capt.""", """Jack""", """Stoney""", """Room""", """TRRF""", """Scientific""", """Advisory""", """Council""", """Meeting""", """Ballroom""", """Foyer"""]] # noqa: E231 snake_case = [[[1_41, 57, 2_14, 69], [2_28, 58, 2_52, 69], [1_41, 75, 2_16, 88], [2_30, 79, 2_80, 88], [1_42, 2_60, 2_18, 2_73], [2_30, 2_61, 2_55, 2_73], [1_43, 2_79, 2_18, 2_90], [2_31, 2_82, 2_90, 2_91], [1_43, 3_42, 2_18, 3_54], [2_31, 3_45, 2_89, 3_55], [2_02, 3_62, 2_27, 3_73], [1_43, 3_79, 2_20, 3_92], [2_31, 3_82, 2_91, 3_94], [1_44, 7_14, 2_20, 7_26], [2_31, 7_15, 2_56, 7_26], [1_44, 7_32, 2_20, 7_45], [2_32, 7_36, 2_91, 7_47], [1_44, 7_69, 2_18, 7_82], [2_31, 7_70, 2_56, 7_82], [1_41, 7_88, 2_02, 8_01], [2_15, 7_91, 2_74, 8_04], [1_43, 8_26, 2_04, 8_38], [2_15, 8_26, 2_40, 8_38], [1_42, 8_44, 2_02, 8_57], [2_15, 8_47, 2_74, 8_59], [3_34, 57, 4_27, 69], [4_40, 57, 5_22, 69], [3_69, 75, 4_61, 88], [4_69, 75, 5_16, 88], [5_28, 76, 5_62, 88], [5_70, 76, 6_67, 88], [6_75, 75, 7_11, 87], [7_21, 79, 7_78, 88], [7_89, 75, 8_40, 88], [3_69, 97, 4_70, 1_07], [4_84, 94, 5_07, 1_06], [5_18, 94, 5_62, 1_07], [5_76, 94, 6_55, 1_10], [6_68, 94, 7_92, 1_09], [8_04, 95, 8_29, 1_07], [3_69, 1_13, 4_65, 1_25], [4_77, 1_16, 5_47, 1_25], [5_62, 1_13, 6_58, 1_25], [6_71, 1_16, 7_48, 1_25], [7_61, 1_13, 8_11, 1_25], [3_69, 1_31, 4_65, 1_43], [4_77, 1_33, 5_48, 1_43], [5_63, 1_30, 6_98, 1_45], [7_10, 1_30, 8_02, 1_46], [3_36, 1_71, 4_12, 1_83], [4_23, 1_71, 5_72, 1_83], [5_82, 1_70, 7_16, 1_84], [7_28, 1_71, 8_17, 1_87], [8_29, 1_71, 8_44, 1_86], [3_38, 1_97, 4_82, 2_12], [5_07, 1_96, 5_57, 2_09], [5_69, 1_96, 5_95, 2_08], [6_10, 1_96, 7_02, 2_09], [5_05, 2_14, 5_83, 2_26], [5_95, 2_14, 6_56, 2_27], [6_70, 2_15, 8_07, 2_27], [3_35, 2_59, 5_43, 2_74], [5_56, 2_59, 7_08, 2_72], [3_72, 2_79, 4_22, 2_91], [4_35, 2_79, 4_60, 2_91], [4_74, 2_79, 5_74, 2_92], [5_87, 2_78, 6_64, 2_91], [6_76, 2_78, 7_38, 2_91], [7_51, 2_79, 8_34, 2_91], [3_72, 2_98, 4_34, 3_10], [3_35, 3_41, 4_83, 3_54], [4_97, 3_41, 6_55, 3_54], [6_67, 3_41, 7_28, 3_54], [7_40, 3_41, 8_25, 3_54], [3_35, 3_60, 4_30, 3_72], [4_42, 3_60, 5_34, 3_72], [5_45, 3_59, 6_87, 3_72], [6_97, 3_60, 7_54, 3_72], [7_65, 3_60, 8_23, 3_73], [3_34, 3_78, 4_28, 3_91], [4_40, 3_78, 5_77, 3_94], [5_90, 3_78, 7_05, 3_91], [7_20, 3_78, 8_01, 3_91], [3_34, 3_97, 4_00, 4_09], [3_70, 4_16, 5_29, 4_29], [5_44, 4_16, 5_76, 4_32], [5_87, 4_16, 6_65, 4_28], [6_77, 4_16, 8_14, 4_29], [3_72, 4_35, 4_52, 4_50], [4_65, 4_34, 4_95, 4_47], [5_11, 4_34, 6_00, 4_47], [6_11, 4_36, 6_37, 4_47], [6_49, 4_36, 6_94, 4_51], [7_05, 4_38, 8_24, 4_47], [3_69, 4_53, 4_52, 4_66], [4_64, 4_54, 5_09, 4_66], [5_22, 4_53, 6_11, 4_69], [6_25, 4_53, 7_92, 4_69], [3_70, 4_72, 5_56, 4_88], [5_70, 4_72, 6_84, 4_87], [6_97, 4_72, 7_18, 4_85], [7_32, 4_72, 8_35, 4_88], [3_69, 4_90, 4_11, 5_03], [4_25, 4_90, 4_84, 5_03], [4_96, 4_90, 6_35, 5_06], [6_45, 4_90, 7_07, 5_03], [7_18, 4_91, 7_61, 5_03], [7_71, 4_90, 8_40, 5_03], [3_36, 5_10, 3_74, 5_21], [3_88, 5_10, 4_47, 5_22], [4_60, 5_10, 4_89, 5_21], [5_03, 5_10, 5_80, 5_22], [5_92, 5_09, 7_36, 5_25], [7_45, 5_09, 7_70, 5_22], [7_81, 5_09, 8_40, 5_22], [3_38, 5_28, 4_34, 5_41], [4_48, 5_28, 5_96, 5_41], [6_09, 5_27, 6_87, 5_40], [7_00, 5_28, 7_92, 5_41], [3_36, 5_46, 3_97, 5_59], [4_07, 5_46, 4_31, 5_59], [4_43, 5_46, 5_25, 5_60], [5_37, 5_46, 6_80, 5_62], [6_88, 5_46, 7_14, 5_59], [7_22, 5_46, 8_37, 5_62], [3_36, 5_65, 4_49, 5_81], [4_61, 5_65, 4_85, 5_77], [4_97, 5_65, 6_65, 5_81], [6_81, 5_65, 7_18, 5_77], [7_32, 5_65, 8_37, 5_80], [3_37, 5_84, 4_38, 5_97], [4_52, 5_83, 5_21, 5_96], [5_35, 5_84, 6_77, 5_99], [6_90, 5_83, 7_87, 5_96], [8_01, 5_83, 8_25, 5_96], [3_38, 6_02, 4_78, 6_15], [4_92, 6_02, 5_30, 6_14], [5_43, 6_02, 6_38, 6_15], [6_50, 6_02, 6_76, 6_14], [6_88, 6_02, 7_88, 6_15], [8_02, 6_02, 8_43, 6_14], [3_37, 6_21, 5_02, 6_33], [5_16, 6_21, 6_15, 6_37], [6_29, 6_21, 7_74, 6_36], [7_89, 6_21, 8_27, 6_33], [3_37, 6_39, 4_18, 6_52], [4_32, 6_40, 5_71, 6_53], [5_87, 6_39, 7_31, 6_55], [7_43, 6_39, 7_69, 6_52], [7_80, 6_39, 8_41, 6_52], [3_38, 6_58, 4_40, 6_73], [4_55, 6_58, 4_91, 6_70], [5_08, 6_58, 6_02, 6_71], [6_16, 6_58, 6_38, 6_70], [6_54, 6_58, 8_35, 6_74], [3_37, 6_77, 4_29, 6_89], [3_37, 7_14, 4_82, 7_26], [4_95, 7_14, 5_48, 7_26], [5_61, 7_14, 6_83, 7_26], [3_38, 7_70, 4_61, 7_82], [4_74, 7_69, 5_54, 7_85], [4_89, 7_88, 5_62, 8_03], [5_76, 7_88, 6_43, 8_01], [6_56, 7_87, 7_51, 8_04], [7_64, 7_88, 8_44, 8_01], [3_34, 8_25, 4_21, 8_38], [4_30, 8_24, 5_74, 8_38], [5_84, 8_24, 7_23, 8_41], [3_35, 8_44, 4_50, 8_57], [4_64, 8_43, 5_83, 8_60], [6_28, 8_62, 7_55, 8_75], [7_69, 8_61, 8_48, 8_78]]] # noqa: E231 # fmt: on self.assertListEqual(encoding.words , __snake_case ) self.assertListEqual(encoding.boxes , __snake_case ) # with apply_OCR = False snake_case = LayoutLMvaImageProcessor(apply_ocr=__snake_case ) snake_case = image_processing(__snake_case , return_tensors="""pt""" ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 2_24, 2_24) )
3
0
"""simple docstring""" from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import tensorflow as tf from transformers import AutoTokenizer, TFAutoModelForSeqaSeqLM @require_tf @require_sentencepiece @require_tokenizers class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): @slow def __lowerCAmelCase ( self ) -> Dict: lowerCAmelCase_ :List[Any] = TFAutoModelForSeqaSeqLM.from_pretrained("""google/mt5-small""" ) lowerCAmelCase_ :Dict = AutoTokenizer.from_pretrained("""google/mt5-small""" ) lowerCAmelCase_ :List[str] = tokenizer("""Hello there""" , return_tensors="""tf""" ).input_ids lowerCAmelCase_ :Any = tokenizer("""Hi I am""" , return_tensors="""tf""" ).input_ids lowerCAmelCase_ :Union[str, Any] = model(__A , labels=__A ).loss lowerCAmelCase_ :Union[str, Any] = -tf.math.reduce_mean(__A ).numpy() lowerCAmelCase_ :List[str] = -2_1.2_2_8_1_6_8 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 2E-4 )
84
"""simple docstring""" def _snake_case ( lowercase__ : int = 1_0 ) -> str: '''simple docstring''' if not isinstance(lowercase__ , lowercase__ ) or n < 0: raise ValueError("""Invalid input""" ) lowerCAmelCase_ :List[str] = 1_0**n lowerCAmelCase_ :int = 2_8_4_3_3 * (pow(2 , 7_8_3_0_4_5_7 , lowercase__ )) + 1 return str(number % modulus ) if __name__ == "__main__": from doctest import testmod testmod() print(F"""{solution(10) = }""")
84
1
import os from collections import namedtuple import pytest from datasets import ClassLabel, Features, Sequence, Value from datasets.commands.test import TestCommand from datasets.info import DatasetInfo, DatasetInfosDict _snake_case : List[str] = namedtuple( "_TestCommandArgs", [ "dataset", "name", "cache_dir", "data_dir", "all_configs", "save_infos", "ignore_verifications", "force_redownload", "clear_cache", ], defaults=[None, None, None, False, False, False, False, False], ) def lowerCAmelCase_ ( __lowerCamelCase , __lowerCamelCase ): return (abs(source - target ) / target) < 0.0_1 @pytest.mark.integration def lowerCAmelCase_ ( __lowerCamelCase ): __snake_case : Tuple = _TestCommandArgs(dataset=__lowerCamelCase , all_configs=__lowerCamelCase , save_infos=__lowerCamelCase ) __snake_case : List[Any] = TestCommand(*__lowerCamelCase ) test_command.run() __snake_case : List[Any] = os.path.join(__lowerCamelCase , "README.md" ) assert os.path.exists(__lowerCamelCase ) __snake_case : Optional[Any] = DatasetInfosDict.from_directory(__lowerCamelCase ) __snake_case : List[str] = DatasetInfosDict( { "default": DatasetInfo( features=Features( { "tokens": Sequence(Value("string" ) ), "ner_tags": Sequence( ClassLabel(names=["O", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC"] ) ), "langs": Sequence(Value("string" ) ), "spans": Sequence(Value("string" ) ), } ) , splits=[ { "name": "train", "num_bytes": 2_3_5_1_5_6_3, "num_examples": 1_0_0_0_0, }, { "name": "validation", "num_bytes": 2_3_8_4_1_8, "num_examples": 1_0_0_0, }, ] , download_size=3_9_4_0_6_8_0 , dataset_size=2_5_8_9_9_8_1 , ) } ) assert dataset_infos.keys() == expected_dataset_infos.keys() for key in DatasetInfo._INCLUDED_INFO_IN_YAML: __snake_case , __snake_case : Tuple = getattr(dataset_infos["default"] , __lowerCamelCase ), getattr(expected_dataset_infos["default"] , __lowerCamelCase ) if key == "num_bytes": assert is_apercent_close(__lowerCamelCase , __lowerCamelCase ) elif key == "splits": assert list(__lowerCamelCase ) == list(__lowerCamelCase ) for split in result: assert result[split].name == expected[split].name assert result[split].num_examples == expected[split].num_examples assert is_apercent_close(result[split].num_bytes , expected[split].num_bytes ) else: result == expected
134
from __future__ import annotations _snake_case : Union[str, Any] = [] def lowerCAmelCase_ ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ): for i in range(len(__lowerCamelCase ) ): if board[row][i] == 1: return False for i in range(len(__lowerCamelCase ) ): if board[i][column] == 1: return False for i, j in zip(range(__lowerCamelCase , -1 , -1 ) , range(__lowerCamelCase , -1 , -1 ) ): if board[i][j] == 1: return False for i, j in zip(range(__lowerCamelCase , -1 , -1 ) , range(__lowerCamelCase , len(__lowerCamelCase ) ) ): if board[i][j] == 1: return False return True def lowerCAmelCase_ ( __lowerCamelCase , __lowerCamelCase ): if row >= len(__lowerCamelCase ): solution.append(__lowerCamelCase ) printboard(__lowerCamelCase ) print() return True for i in range(len(__lowerCamelCase ) ): if is_safe(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ): __snake_case : Optional[Any] = 1 solve(__lowerCamelCase , row + 1 ) __snake_case : Union[str, Any] = 0 return False def lowerCAmelCase_ ( __lowerCamelCase ): for i in range(len(__lowerCamelCase ) ): for j in range(len(__lowerCamelCase ) ): if board[i][j] == 1: print("Q" , end=" " ) else: print("." , end=" " ) print() # n=int(input("The no. of queens")) _snake_case : List[str] = 8 _snake_case : Optional[int] = [[0 for i in range(n)] for j in range(n)] solve(board, 0) print("The total no. of solutions are :", len(solution))
134
1
'''simple docstring''' import operator as op def UpperCamelCase__ ( lowerCAmelCase ): """simple docstring""" _lowerCAmelCase = [] _lowerCAmelCase = lambda lowerCAmelCase , lowerCAmelCase : int(x / y ) # noqa: E731 integer division operation _lowerCAmelCase = { """^""": op.pow, """*""": op.mul, """/""": div, """+""": op.add, """-""": op.sub, } # operators & their respective operation # print table header print("""Symbol""".center(8 ) , """Action""".center(12 ) , """Stack""" , sep=""" | """ ) print("""-""" * (30 + len(lowerCAmelCase )) ) for x in post_fix: if x.isdigit(): # if x in digit stack.append(lowerCAmelCase ) # append x to stack # output in tabular format print(x.rjust(8 ) , ("""push(""" + x + """)""").ljust(12 ) , """,""".join(lowerCAmelCase ) , sep=""" | """ ) else: _lowerCAmelCase = stack.pop() # pop stack # output in tabular format print("""""".rjust(8 ) , ("""pop(""" + b + """)""").ljust(12 ) , """,""".join(lowerCAmelCase ) , sep=""" | """ ) _lowerCAmelCase = stack.pop() # pop stack # output in tabular format print("""""".rjust(8 ) , ("""pop(""" + a + """)""").ljust(12 ) , """,""".join(lowerCAmelCase ) , sep=""" | """ ) stack.append( str(opr[x](int(lowerCAmelCase ) , int(lowerCAmelCase ) ) ) ) # evaluate the 2 values popped from stack & push result to stack # output in tabular format print( x.rjust(8 ) , ("""push(""" + a + x + b + """)""").ljust(12 ) , """,""".join(lowerCAmelCase ) , sep=""" | """ , ) return int(stack[0] ) if __name__ == "__main__": A__ : Optional[Any] =input('''\n\nEnter a Postfix Equation (space separated) = ''').split(''' ''') print('''\n\tResult = ''', solve(Postfix))
70
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SwiftFormerConfig, SwiftFormerForImageClassification, ViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() A__ : List[Any] =logging.get_logger(__name__) A__ : Any =torch.device('''cpu''') def UpperCamelCase__ ( ): """simple docstring""" _lowerCAmelCase = """http://images.cocodataset.org/val2017/000000039769.jpg""" _lowerCAmelCase = Image.open(requests.get(lowerCAmelCase , stream=lowerCAmelCase ).raw ) return im def UpperCamelCase__ ( lowerCAmelCase ): """simple docstring""" if swiftformer_name == "swiftformer_xs": return torch.tensor([-2.17_03e00, 2.11_07e00, -2.08_11e00, 8.86_85e-01, 2.43_60e-01] ) elif swiftformer_name == "swiftformer_s": return torch.tensor([3.96_36e-01, 2.34_78e-01, -1.69_63e00, -1.73_81e00, -8.63_37e-01] ) elif swiftformer_name == "swiftformer_l1": return torch.tensor([-4.27_68e-01, -4.74_29e-01, -1.08_97e00, -1.02_48e00, 3.55_23e-02] ) elif swiftformer_name == "swiftformer_l3": return torch.tensor([-2.53_30e-01, 2.42_11e-01, -6.01_85e-01, -8.27_89e-01, -6.04_46e-02] ) def UpperCamelCase__ ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): """simple docstring""" _lowerCAmelCase = dct.pop(lowerCAmelCase ) _lowerCAmelCase = val def UpperCamelCase__ ( lowerCAmelCase ): """simple docstring""" _lowerCAmelCase = [] for k in state_dict.keys(): _lowerCAmelCase = k if ".pwconv" in k: _lowerCAmelCase = k_new.replace(""".pwconv""" , """.point_wise_conv""" ) if ".dwconv" in k: _lowerCAmelCase = k_new.replace(""".dwconv""" , """.depth_wise_conv""" ) if ".Proj." in k: _lowerCAmelCase = k_new.replace(""".Proj.""" , """.proj.""" ) if "patch_embed" in k_new: _lowerCAmelCase = k_new.replace("""patch_embed""" , """swiftformer.patch_embed.patch_embedding""" ) if "network" in k_new: _lowerCAmelCase = k_new.split(""".""" ) if ls[2].isdigit(): _lowerCAmelCase = """swiftformer.encoder.network.""" + ls[1] + """.blocks.""" + ls[2] + """.""" + """.""".join(ls[3:] ) else: _lowerCAmelCase = k_new.replace("""network""" , """swiftformer.encoder.network""" ) rename_keys.append((k, k_new) ) return rename_keys @torch.no_grad() def UpperCamelCase__ ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): """simple docstring""" _lowerCAmelCase = SwiftFormerConfig() # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size _lowerCAmelCase = 10_00 _lowerCAmelCase = """huggingface/label-files""" _lowerCAmelCase = """imagenet-1k-id2label.json""" _lowerCAmelCase = json.load(open(hf_hub_download(lowerCAmelCase , lowerCAmelCase , repo_type="""dataset""" ) , """r""" ) ) _lowerCAmelCase = {int(lowerCAmelCase ): v for k, v in idalabel.items()} _lowerCAmelCase = idalabel _lowerCAmelCase = {v: k for k, v in idalabel.items()} # size of the architecture if swiftformer_name == "swiftformer_xs": _lowerCAmelCase = [3, 3, 6, 4] _lowerCAmelCase = [48, 56, 1_12, 2_20] elif swiftformer_name == "swiftformer_s": _lowerCAmelCase = [3, 3, 9, 6] _lowerCAmelCase = [48, 64, 1_68, 2_24] elif swiftformer_name == "swiftformer_l1": _lowerCAmelCase = [4, 3, 10, 5] _lowerCAmelCase = [48, 96, 1_92, 3_84] elif swiftformer_name == "swiftformer_l3": _lowerCAmelCase = [4, 4, 12, 6] _lowerCAmelCase = [64, 1_28, 3_20, 5_12] # load state_dict of original model, remove and rename some keys if original_ckpt: if original_ckpt.startswith("""https""" ): _lowerCAmelCase = torch.hub.load_state_dict_from_url(lowerCAmelCase , map_location="""cpu""" , check_hash=lowerCAmelCase ) else: _lowerCAmelCase = torch.load(lowerCAmelCase , map_location="""cpu""" ) _lowerCAmelCase = checkpoint _lowerCAmelCase = create_rename_keys(lowerCAmelCase ) for rename_key_src, rename_key_dest in rename_keys: rename_key(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) # load HuggingFace model _lowerCAmelCase = SwiftFormerForImageClassification(lowerCAmelCase ).eval() hf_model.load_state_dict(lowerCAmelCase ) # prepare test inputs _lowerCAmelCase = prepare_img() _lowerCAmelCase = ViTImageProcessor.from_pretrained("""preprocessor_config""" ) _lowerCAmelCase = processor(images=lowerCAmelCase , return_tensors="""pt""" ) # compare outputs from both models _lowerCAmelCase = get_expected_output(lowerCAmelCase ) _lowerCAmelCase = hf_model(inputs["""pixel_values"""] ).logits assert hf_logits.shape == torch.Size([1, 10_00] ) assert torch.allclose(hf_logits[0, 0:5] , lowerCAmelCase , atol=1e-3 ) Path(lowerCAmelCase ).mkdir(exist_ok=lowerCAmelCase ) print(f"Saving model {swiftformer_name} to {pytorch_dump_folder_path}" ) hf_model.save_pretrained(lowerCAmelCase ) if __name__ == "__main__": A__ : str =argparse.ArgumentParser() # Required parameters parser.add_argument( '''--swiftformer_name''', default='''swiftformer_xs''', choices=['''swiftformer_xs''', '''swiftformer_s''', '''swiftformer_l1''', '''swiftformer_l3'''], type=str, help='''Name of the SwiftFormer model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default='''./converted_outputs/''', type=str, help='''Path to the output PyTorch model directory.''', ) parser.add_argument('''--original_ckpt''', default=None, type=str, help='''Path to the original model checkpoint.''') A__ : Tuple =parser.parse_args() convert_swiftformer_checkpoint(args.swiftformer_name, args.pytorch_dump_folder_path, args.original_ckpt)
70
1
"""simple docstring""" from __future__ import annotations from collections import namedtuple def snake_case ( A__ ,A__ ,A__ ): UpperCAmelCase_ : List[Any] = namedtuple("result" ,"name value" ) if (voltage, current, power).count(0 ) != 1: raise ValueError("Only one argument must be 0" ) elif power < 0: raise ValueError( "Power cannot be negative in any electrical/electronics system" ) elif voltage == 0: return result("voltage" ,power / current ) elif current == 0: return result("current" ,power / voltage ) elif power == 0: return result("power" ,float(round(abs(voltage * current ) ,2 ) ) ) else: raise ValueError("Exactly one argument must be 0" ) if __name__ == "__main__": import doctest doctest.testmod()
253
"""simple docstring""" from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, logging if is_torch_available(): import torch lowerCamelCase_ = logging.get_logger(__name__) class UpperCamelCase_ (__A ): __magic_name__ = ['''pixel_values'''] def __init__( self : List[Any] , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Optional[Dict[str, int]] = None , lowerCAmelCase_ : PILImageResampling = PILImageResampling.BILINEAR , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Dict[str, int] = None , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Union[int, float] = 1 / 255 , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Optional[Union[float, List[float]]] = None , lowerCAmelCase_ : Optional[Union[float, List[float]]] = None , **lowerCAmelCase_ : Any , ) -> None: super().__init__(**lowerCAmelCase_ ) UpperCAmelCase_ : Any = size if size is not None else {"shortest_edge": 256} UpperCAmelCase_ : List[str] = get_size_dict(lowerCAmelCase_ , default_to_square=lowerCAmelCase_ ) UpperCAmelCase_ : Any = crop_size if crop_size is not None else {"height": 224, "width": 224} UpperCAmelCase_ : Union[str, Any] = get_size_dict(lowerCAmelCase_ , param_name="crop_size" ) UpperCAmelCase_ : Dict = do_resize UpperCAmelCase_ : int = size UpperCAmelCase_ : Optional[int] = resample UpperCAmelCase_ : Tuple = do_center_crop UpperCAmelCase_ : Any = crop_size UpperCAmelCase_ : List[str] = do_rescale UpperCAmelCase_ : Dict = rescale_factor UpperCAmelCase_ : str = do_normalize UpperCAmelCase_ : str = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN UpperCAmelCase_ : Union[str, Any] = image_std if image_std is not None else IMAGENET_STANDARD_STD def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : Dict[str, int] , lowerCAmelCase_ : PILImageResampling = PILImageResampling.BICUBIC , lowerCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase_ : Any , ) -> np.ndarray: UpperCAmelCase_ : Any = get_size_dict(lowerCAmelCase_ , default_to_square=lowerCAmelCase_ ) if "shortest_edge" not in size: raise ValueError(f"""The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}""" ) UpperCAmelCase_ : List[Any] = get_resize_output_image_size(lowerCAmelCase_ , size=size["shortest_edge"] , default_to_square=lowerCAmelCase_ ) return resize(lowerCAmelCase_ , size=lowerCAmelCase_ , resample=lowerCAmelCase_ , data_format=lowerCAmelCase_ , **lowerCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : Tuple , lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : Dict[str, int] , lowerCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase_ : Dict , ) -> np.ndarray: UpperCAmelCase_ : List[str] = get_size_dict(lowerCAmelCase_ ) if "height" not in size or "width" not in size: raise ValueError(f"""The `size` parameter must contain the keys `height` and `width`. Got {size.keys()}""" ) return center_crop(lowerCAmelCase_ , size=(size["height"], size["width"]) , data_format=lowerCAmelCase_ , **lowerCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : float , lowerCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase_ : Optional[Any] ) -> np.ndarray: return rescale(lowerCAmelCase_ , scale=lowerCAmelCase_ , data_format=lowerCAmelCase_ , **lowerCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : Union[float, List[float]] , lowerCAmelCase_ : Union[float, List[float]] , lowerCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase_ : Optional[Any] , ) -> np.ndarray: return normalize(lowerCAmelCase_ , mean=lowerCAmelCase_ , std=lowerCAmelCase_ , data_format=lowerCAmelCase_ , **lowerCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : Any , lowerCAmelCase_ : ImageInput , lowerCAmelCase_ : Optional[bool] = None , lowerCAmelCase_ : Dict[str, int] = None , lowerCAmelCase_ : PILImageResampling = None , lowerCAmelCase_ : bool = None , lowerCAmelCase_ : Dict[str, int] = None , lowerCAmelCase_ : Optional[bool] = None , lowerCAmelCase_ : Optional[float] = None , lowerCAmelCase_ : Optional[bool] = None , lowerCAmelCase_ : Optional[Union[float, List[float]]] = None , lowerCAmelCase_ : Optional[Union[float, List[float]]] = None , lowerCAmelCase_ : Optional[Union[str, TensorType]] = None , lowerCAmelCase_ : Union[str, ChannelDimension] = ChannelDimension.FIRST , **lowerCAmelCase_ : Tuple , ) -> List[str]: UpperCAmelCase_ : Union[str, Any] = do_resize if do_resize is not None else self.do_resize UpperCAmelCase_ : List[str] = size if size is not None else self.size UpperCAmelCase_ : Optional[int] = get_size_dict(lowerCAmelCase_ , default_to_square=lowerCAmelCase_ ) UpperCAmelCase_ : Union[str, Any] = resample if resample is not None else self.resample UpperCAmelCase_ : Dict = do_center_crop if do_center_crop is not None else self.do_center_crop UpperCAmelCase_ : List[Any] = crop_size if crop_size is not None else self.crop_size UpperCAmelCase_ : List[Any] = get_size_dict(lowerCAmelCase_ , param_name="crop_size" ) UpperCAmelCase_ : Union[str, Any] = do_rescale if do_rescale is not None else self.do_rescale UpperCAmelCase_ : Optional[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCAmelCase_ : Dict = do_normalize if do_normalize is not None else self.do_normalize UpperCAmelCase_ : Optional[int] = image_mean if image_mean is not None else self.image_mean UpperCAmelCase_ : List[str] = image_std if image_std is not None else self.image_std UpperCAmelCase_ : Optional[Any] = make_list_of_images(lowerCAmelCase_ ) if not valid_images(lowerCAmelCase_ ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. UpperCAmelCase_ : Optional[Any] = [to_numpy_array(lowerCAmelCase_ ) for image in images] if do_resize: UpperCAmelCase_ : Union[str, Any] = [self.resize(image=lowerCAmelCase_ , size=lowerCAmelCase_ , resample=lowerCAmelCase_ ) for image in images] if do_center_crop: UpperCAmelCase_ : Tuple = [self.center_crop(image=lowerCAmelCase_ , size=lowerCAmelCase_ ) for image in images] if do_rescale: UpperCAmelCase_ : Union[str, Any] = [self.rescale(image=lowerCAmelCase_ , scale=lowerCAmelCase_ ) for image in images] if do_normalize: UpperCAmelCase_ : Any = [self.normalize(image=lowerCAmelCase_ , mean=lowerCAmelCase_ , std=lowerCAmelCase_ ) for image in images] UpperCAmelCase_ : Any = [to_channel_dimension_format(lowerCAmelCase_ , lowerCAmelCase_ ) for image in images] UpperCAmelCase_ : int = {"pixel_values": images} return BatchFeature(data=lowerCAmelCase_ , tensor_type=lowerCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : List[Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : List[Tuple] = None ) -> Optional[int]: UpperCAmelCase_ : Dict = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(lowerCAmelCase_ ) != len(lowerCAmelCase_ ): raise ValueError( "Make sure that you pass in as many target sizes as the batch dimension of the logits" ) if is_torch_tensor(lowerCAmelCase_ ): UpperCAmelCase_ : Optional[int] = target_sizes.numpy() UpperCAmelCase_ : Dict = [] for idx in range(len(lowerCAmelCase_ ) ): UpperCAmelCase_ : List[str] = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode="bilinear" , align_corners=lowerCAmelCase_ ) UpperCAmelCase_ : Any = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(lowerCAmelCase_ ) else: UpperCAmelCase_ : Tuple = logits.argmax(dim=1 ) UpperCAmelCase_ : Optional[Any] = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
253
1
import os def __snake_case ( ): __a = os.path.dirname(os.path.realpath(_UpperCAmelCase ) ) __a = os.path.join(_UpperCAmelCase , '''triangle.txt''' ) with open(_UpperCAmelCase ) as f: __a = f.readlines() __a = [] for line in triangle: __a = [] for number in line.strip().split(''' ''' ): numbers_from_line.append(int(_UpperCAmelCase ) ) a.append(_UpperCAmelCase ) for i in range(1 , len(_UpperCAmelCase ) ): for j in range(len(a[i] ) ): __a = a[i - 1][j] if j != len(a[i - 1] ) else 0 __a = a[i - 1][j - 1] if j > 0 else 0 a[i][j] += max(_UpperCAmelCase , _UpperCAmelCase ) return max(a[-1] ) if __name__ == "__main__": print(solution())
49
"""simple docstring""" from __future__ import annotations def UpperCAmelCase__ ( lowerCAmelCase__ :list[int] ) -> int: '''simple docstring''' if not nums: return 0 lowercase = nums[0] lowercase = 0 for num in nums[1:]: lowercase , lowercase = ( max_excluding + num, max(lowerCAmelCase__ , lowerCAmelCase__ ), ) return max(lowerCAmelCase__ , lowerCAmelCase__ ) if __name__ == "__main__": import doctest doctest.testmod()
197
0
'''simple docstring''' import inspect import re from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py lowerCAmelCase__ = '''src/transformers''' # This is to make sure the transformers module imported is the one in the repo. lowerCAmelCase__ = direct_transformers_import(PATH_TO_TRANSFORMERS) lowerCAmelCase__ = transformers.models.auto.configuration_auto.CONFIG_MAPPING # Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`. # For example, `[bert-base-uncased](https://huggingface.co/bert-base-uncased)` lowerCAmelCase__ = re.compile(R'''\[(.+?)\]\((https://huggingface\.co/.+?)\)''') lowerCAmelCase__ = { '''DecisionTransformerConfig''', '''EncoderDecoderConfig''', '''MusicgenConfig''', '''RagConfig''', '''SpeechEncoderDecoderConfig''', '''TimmBackboneConfig''', '''VisionEncoderDecoderConfig''', '''VisionTextDualEncoderConfig''', '''LlamaConfig''', } def _A ( A__ ): """simple docstring""" __lowercase = None # source code of `config_class` __lowercase = inspect.getsource(A__ ) __lowercase = _re_checkpoint.findall(A__ ) # Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link. # For example, `('bert-base-uncased', 'https://huggingface.co/bert-base-uncased')` for ckpt_name, ckpt_link in checkpoints: # allow the link to end with `/` if ckpt_link.endswith('''/''' ): __lowercase = ckpt_link[:-1] # verify the checkpoint name corresponds to the checkpoint link __lowercase = F"https://huggingface.co/{ckpt_name}" if ckpt_link == ckpt_link_from_name: __lowercase = ckpt_name break return checkpoint def _A ( ): """simple docstring""" __lowercase = [] for config_class in list(CONFIG_MAPPING.values() ): # Skip deprecated models if "models.deprecated" in config_class.__module__: continue __lowercase = get_checkpoint_from_config_class(A__ ) __lowercase = config_class.__name__ if checkpoint is None and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK: configs_without_checkpoint.append(A__ ) if len(A__ ) > 0: __lowercase = '''\n'''.join(sorted(A__ ) ) raise ValueError(F"The following configurations don't contain any valid checkpoint:\n{message}" ) if __name__ == "__main__": check_config_docstrings_have_checkpoints()
52
'''simple docstring''' from __future__ import absolute_import, division, print_function, unicode_literals from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers import RobertaConfig from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.roberta.modeling_roberta import ( ROBERTA_INPUTS_DOCSTRING, ROBERTA_START_DOCSTRING, RobertaEmbeddings, ) from .modeling_highway_bert import BertPreTrainedModel, DeeBertModel, HighwayException, entropy @add_start_docstrings( 'The RoBERTa Model transformer with early exiting (DeeRoBERTa). ' , lowerCamelCase__ , ) class lowercase_ (lowerCamelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = RobertaConfig SCREAMING_SNAKE_CASE : Optional[Any] = 'roberta' def __init__( self : List[Any] ,lowercase__ : Optional[Any] ): super().__init__(lowercase__ ) __lowercase = RobertaEmbeddings(lowercase__ ) self.init_weights() @add_start_docstrings( 'RoBERTa Model (with early exiting - DeeRoBERTa) with a classifier on top,\n also takes care of multi-layer training. ' , lowerCamelCase__ , ) class lowercase_ (lowerCamelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Any = RobertaConfig SCREAMING_SNAKE_CASE : Any = 'roberta' def __init__( self : Union[str, Any] ,lowercase__ : int ): super().__init__(lowercase__ ) __lowercase = config.num_labels __lowercase = config.num_hidden_layers __lowercase = DeeRobertaModel(lowercase__ ) __lowercase = nn.Dropout(config.hidden_dropout_prob ) __lowercase = nn.Linear(config.hidden_size ,self.config.num_labels ) @add_start_docstrings_to_model_forward(lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,lowercase__ : Optional[Any]=None ,lowercase__ : Union[str, Any]=None ,lowercase__ : Optional[int]=None ,lowercase__ : int=None ,lowercase__ : Dict=None ,lowercase__ : List[Any]=None ,lowercase__ : str=None ,lowercase__ : List[Any]=-1 ,lowercase__ : Tuple=False ,): __lowercase = self.num_layers try: __lowercase = self.roberta( lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ,position_ids=lowercase__ ,head_mask=lowercase__ ,inputs_embeds=lowercase__ ,) __lowercase = outputs[1] __lowercase = self.dropout(lowercase__ ) __lowercase = self.classifier(lowercase__ ) __lowercase = (logits,) + outputs[2:] # add hidden states and attention if they are here except HighwayException as e: __lowercase = e.message __lowercase = e.exit_layer __lowercase = outputs[0] if not self.training: __lowercase = entropy(lowercase__ ) __lowercase = [] __lowercase = [] if labels is not None: if self.num_labels == 1: # We are doing regression __lowercase = MSELoss() __lowercase = loss_fct(logits.view(-1 ) ,labels.view(-1 ) ) else: __lowercase = CrossEntropyLoss() __lowercase = loss_fct(logits.view(-1 ,self.num_labels ) ,labels.view(-1 ) ) # work with highway exits __lowercase = [] for highway_exit in outputs[-1]: __lowercase = highway_exit[0] if not self.training: highway_logits_all.append(lowercase__ ) highway_entropy.append(highway_exit[2] ) if self.num_labels == 1: # We are doing regression __lowercase = MSELoss() __lowercase = loss_fct(highway_logits.view(-1 ) ,labels.view(-1 ) ) else: __lowercase = CrossEntropyLoss() __lowercase = loss_fct(highway_logits.view(-1 ,self.num_labels ) ,labels.view(-1 ) ) highway_losses.append(lowercase__ ) if train_highway: __lowercase = (sum(highway_losses[:-1] ),) + outputs # exclude the final highway, of course else: __lowercase = (loss,) + outputs if not self.training: __lowercase = outputs + ((original_entropy, highway_entropy), exit_layer) if output_layer >= 0: __lowercase = ( (outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:] ) # use the highway of the last layer return outputs # (loss), logits, (hidden_states), (attentions), entropy
52
1
from __future__ import annotations from random import random class lowercase : def __init__( self ,A__ = None): lowercase = value lowercase = random() lowercase = None lowercase = None def __repr__( self): from pprint import pformat if self.left is None and self.right is None: return f'\'{self.value}: {self.prior:.5}\'' else: return pformat( {f'{self.value}: {self.prior:.5}': (self.left, self.right)} ,indent=1) def __str__( self): lowercase = str(self.value) + ''' ''' lowercase = str(self.left or '''''') lowercase = str(self.right or '''''') return value + left + right def UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ ): '''simple docstring''' if root is None: # None tree is split into 2 Nones return None, None elif root.value is None: return None, None else: if value < root.value: lowercase , lowercase = split(root.left , lowerCAmelCase__ ) return left, root else: lowercase , lowercase = split(root.right , lowerCAmelCase__ ) return root, right def UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ ): '''simple docstring''' if (not left) or (not right): # If one node is None, return the other return left or right elif left.prior < right.prior: lowercase = merge(left.right , lowerCAmelCase__ ) return left else: lowercase = merge(lowerCAmelCase__ , right.left ) return right def UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ ): '''simple docstring''' lowercase = Node(lowerCAmelCase__ ) lowercase , lowercase = split(lowerCAmelCase__ , lowerCAmelCase__ ) return merge(merge(lowerCAmelCase__ , lowerCAmelCase__ ) , lowerCAmelCase__ ) def UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ ): '''simple docstring''' lowercase , lowercase = split(lowerCAmelCase__ , value - 1 ) lowercase , lowercase = split(lowerCAmelCase__ , lowerCAmelCase__ ) return merge(lowerCAmelCase__ , lowerCAmelCase__ ) def UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' if not root: # None return else: inorder(root.left ) print(root.value , end=''',''' ) inorder(root.right ) def UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ ): '''simple docstring''' for arg in args.split(): if arg[0] == "+": lowercase = insert(lowerCAmelCase__ , int(arg[1:] ) ) elif arg[0] == "-": lowercase = erase(lowerCAmelCase__ , int(arg[1:] ) ) else: print('''Unknown command''' ) return root def UpperCamelCase ( ): '''simple docstring''' lowercase = None print( '''enter numbers to create a tree, + value to add value into treap, ''' '''- value to erase all nodes with value. \'q\' to quit. ''' ) lowercase = input() while args != "q": lowercase = interact_treap(lowerCAmelCase__ , lowerCAmelCase__ ) print(lowerCAmelCase__ ) lowercase = input() print('''good by!''' ) if __name__ == "__main__": import doctest doctest.testmod() main()
101
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available SCREAMING_SNAKE_CASE_ : Optional[int] = { 'configuration_pegasus_x': ['PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PegasusXConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ : Any = [ 'PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST', 'PegasusXForConditionalGeneration', 'PegasusXModel', 'PegasusXPreTrainedModel', ] if TYPE_CHECKING: from .configuration_pegasus_x import PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP, PegasusXConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pegasus_x import ( PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST, PegasusXForConditionalGeneration, PegasusXModel, PegasusXPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE_ : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
335
0
'''simple docstring''' import math def lowerCamelCase (_SCREAMING_SNAKE_CASE : float , _SCREAMING_SNAKE_CASE : float ): return math.pow(_SCREAMING_SNAKE_CASE , 2 ) - a def lowerCamelCase (_SCREAMING_SNAKE_CASE : float ): return 2 * x def lowerCamelCase (_SCREAMING_SNAKE_CASE : float ): __a : Tuple = 2.0 while start <= a: __a : Optional[Any] = math.pow(_SCREAMING_SNAKE_CASE , 2 ) return start def lowerCamelCase (_SCREAMING_SNAKE_CASE : float , _SCREAMING_SNAKE_CASE : int = 9_999 , _SCREAMING_SNAKE_CASE : float = 0.0_0_0_0_0_0_0_0_0_0_0_0_0_1 ): if a < 0: raise ValueError('math domain error' ) __a : Optional[Any] = get_initial_point(_SCREAMING_SNAKE_CASE ) for _ in range(_SCREAMING_SNAKE_CASE ): __a : str = value __a : List[Any] = value - fx(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) / fx_derivative(_SCREAMING_SNAKE_CASE ) if abs(prev_value - value ) < tolerance: return value return value if __name__ == "__main__": from doctest import testmod testmod()
294
'''simple docstring''' import json import os import re import sys import urllib.request import requests from bsa import BeautifulSoup __lowercase : str = { 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36' ' (KHTML, like Gecko) Chrome/70.0.3538.102 Safari/537.36 Edge/18.19582' } def lowerCamelCase (_SCREAMING_SNAKE_CASE : str = "dhaka" , _SCREAMING_SNAKE_CASE : int = 5 ): __a : Optional[Any] = min(_SCREAMING_SNAKE_CASE , 50 ) # Prevent abuse! __a : Optional[Any] = { 'q': query, 'tbm': 'isch', 'hl': 'en', 'ijn': '0', } __a : Tuple = requests.get('https://www.google.com/search' , params=_SCREAMING_SNAKE_CASE , headers=_SCREAMING_SNAKE_CASE ) __a : Dict = BeautifulSoup(html.text , 'html.parser' ) __a : List[str] = ''.join( re.findall(r'AF_initDataCallback\(([^<]+)\);' , str(soup.select('script' ) ) ) ) __a : Optional[Any] = json.dumps(_SCREAMING_SNAKE_CASE ) __a : List[str] = json.loads(_SCREAMING_SNAKE_CASE ) __a : List[Any] = re.findall( r'\[\"GRID_STATE0\",null,\[\[1,\[0,\".*?\",(.*),\"All\",' , _SCREAMING_SNAKE_CASE , ) if not matched_google_image_data: return 0 __a : Tuple = re.sub( r'\[\"(https\:\/\/encrypted-tbn0\.gstatic\.com\/images\?.*?)\",\d+,\d+\]' , '' , str(_SCREAMING_SNAKE_CASE ) , ) __a : Optional[Any] = re.findall( r'(?:\'|,),\[\"(https:|http.*?)\",\d+,\d+\]' , _SCREAMING_SNAKE_CASE , ) for index, fixed_full_res_image in enumerate(_SCREAMING_SNAKE_CASE ): if index >= max_images: return index __a : List[str] = bytes(_SCREAMING_SNAKE_CASE , 'ascii' ).decode( 'unicode-escape' ) __a : Tuple = bytes(_SCREAMING_SNAKE_CASE , 'ascii' ).decode( 'unicode-escape' ) __a : Dict = urllib.request.build_opener() __a : Union[str, Any] = [ ( 'User-Agent', 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36' ' (KHTML, like Gecko) Chrome/70.0.3538.102 Safari/537.36 Edge/18.19582', ) ] urllib.request.install_opener(_SCREAMING_SNAKE_CASE ) __a : List[Any] = F"""query_{query.replace(" " , "_" )}""" if not os.path.exists(_SCREAMING_SNAKE_CASE ): os.makedirs(_SCREAMING_SNAKE_CASE ) urllib.request.urlretrieve( # noqa: S310 _SCREAMING_SNAKE_CASE , F"""{path_name}/original_size_img_{index}.jpg""" ) return index if __name__ == "__main__": try: __lowercase : Optional[int] = download_images_from_google_query(sys.argv[1]) print(f'''{image_count} images were downloaded to disk.''') except IndexError: print('Please provide a search term.') raise
294
1
"""simple docstring""" import copy import inspect import unittest from transformers import AutoBackbone from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import require_timm, require_torch, torch_device from transformers.utils.import_utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor if is_torch_available(): import torch from transformers import TimmBackbone, TimmBackboneConfig from ...test_pipeline_mixin import PipelineTesterMixin class SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self : List[Any] ,lowercase_ : List[str] ,lowercase_ : Any=None ,lowercase_ : Any=None ,lowercase_ : Optional[int]=None ,lowercase_ : Optional[int]="resnet50" ,lowercase_ : str=3 ,lowercase_ : List[str]=3_2 ,lowercase_ : Any=3 ,lowercase_ : Dict=True ,lowercase_ : Union[str, Any]=True ,): lowerCAmelCase__ : List[str] = parent lowerCAmelCase__ : List[str] = out_indices if out_indices is not None else [4] lowerCAmelCase__ : List[str] = stage_names lowerCAmelCase__ : Optional[int] = out_features lowerCAmelCase__ : int = backbone lowerCAmelCase__ : List[Any] = batch_size lowerCAmelCase__ : str = image_size lowerCAmelCase__ : int = num_channels lowerCAmelCase__ : Tuple = use_pretrained_backbone lowerCAmelCase__ : Dict = is_training def __lowerCAmelCase ( self : Optional[Any] ): lowerCAmelCase__ : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase__ : Dict = self.get_config() return config, pixel_values def __lowerCAmelCase ( self : List[str] ): return TimmBackboneConfig( image_size=self.image_size ,num_channels=self.num_channels ,out_features=self.out_features ,out_indices=self.out_indices ,stage_names=self.stage_names ,use_pretrained_backbone=self.use_pretrained_backbone ,backbone=self.backbone ,) def __lowerCAmelCase ( self : int ,lowercase_ : str ,lowercase_ : Dict ): lowerCAmelCase__ : int = TimmBackbone(config=lowercase_ ) model.to(lowercase_ ) model.eval() with torch.no_grad(): lowerCAmelCase__ : Union[str, Any] = model(lowercase_ ) self.parent.assertEqual( result.feature_map[-1].shape ,(self.batch_size, model.channels[-1], 1_4, 1_4) ,) def __lowerCAmelCase ( self : int ): lowerCAmelCase__ : int = self.prepare_config_and_inputs() lowerCAmelCase__ ,lowerCAmelCase__ : List[str] = config_and_inputs lowerCAmelCase__ : Dict = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch @require_timm class SCREAMING_SNAKE_CASE ( a_ , a_ , a_ , unittest.TestCase ): """simple docstring""" lowercase__ = (TimmBackbone,) if is_torch_available() else () lowercase__ = {"feature-extraction": TimmBackbone} if is_torch_available() else {} lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = False def __lowerCAmelCase ( self : str ): lowerCAmelCase__ : List[Any] = TimmBackboneModelTester(self ) lowerCAmelCase__ : str = ConfigTester(self ,config_class=lowercase_ ,has_text_modality=lowercase_ ) def __lowerCAmelCase ( self : Any ): self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __lowerCAmelCase ( self : int ): lowerCAmelCase__ : List[str] = '''resnet18''' lowerCAmelCase__ : List[str] = '''microsoft/resnet-18''' lowerCAmelCase__ : Tuple = AutoBackbone.from_pretrained(lowercase_ ,use_timm_backbone=lowercase_ ) lowerCAmelCase__ : List[Any] = AutoBackbone.from_pretrained(lowercase_ ) self.assertEqual(len(timm_model.out_features ) ,len(transformers_model.out_features ) ) self.assertEqual(len(timm_model.stage_names ) ,len(transformers_model.stage_names ) ) self.assertEqual(timm_model.channels ,transformers_model.channels ) # Out indices are set to the last layer by default. For timm models, we don't know # the number of layers in advance, so we set it to (-1,), whereas for transformers # models, we set it to [len(stage_names) - 1] (kept for backward compatibility). self.assertEqual(timm_model.out_indices ,(-1,) ) self.assertEqual(transformers_model.out_indices ,[len(timm_model.stage_names ) - 1] ) lowerCAmelCase__ : List[str] = AutoBackbone.from_pretrained(lowercase_ ,use_timm_backbone=lowercase_ ,out_indices=[1, 2, 3] ) lowerCAmelCase__ : List[str] = AutoBackbone.from_pretrained(lowercase_ ,out_indices=[1, 2, 3] ) self.assertEqual(timm_model.out_indices ,transformers_model.out_indices ) self.assertEqual(len(timm_model.out_features ) ,len(transformers_model.out_features ) ) self.assertEqual(timm_model.channels ,transformers_model.channels ) @unittest.skip('''TimmBackbone doesn\'t support feed forward chunking''' ) def __lowerCAmelCase ( self : Optional[int] ): pass @unittest.skip('''TimmBackbone doesn\'t have num_hidden_layers attribute''' ) def __lowerCAmelCase ( self : List[Any] ): pass @unittest.skip('''TimmBackbone initialization is managed on the timm side''' ) def __lowerCAmelCase ( self : List[str] ): pass @unittest.skip('''TimmBackbone models doesn\'t have inputs_embeds''' ) def __lowerCAmelCase ( self : Dict ): pass @unittest.skip('''TimmBackbone models doesn\'t have inputs_embeds''' ) def __lowerCAmelCase ( self : List[Any] ): pass @unittest.skip('''TimmBackbone model cannot be created without specifying a backbone checkpoint''' ) def __lowerCAmelCase ( self : Union[str, Any] ): pass @unittest.skip('''Only checkpoints on timm can be loaded into TimmBackbone''' ) def __lowerCAmelCase ( self : Optional[int] ): pass @unittest.skip('''model weights aren\'t tied in TimmBackbone.''' ) def __lowerCAmelCase ( self : Union[str, Any] ): pass @unittest.skip('''model weights aren\'t tied in TimmBackbone.''' ) def __lowerCAmelCase ( self : Optional[int] ): pass @unittest.skip('''Only checkpoints on timm can be loaded into TimmBackbone''' ) def __lowerCAmelCase ( self : List[str] ): pass @unittest.skip('''Only checkpoints on timm can be loaded into TimmBackbone''' ) def __lowerCAmelCase ( self : Optional[Any] ): pass @unittest.skip('''TimmBackbone doesn\'t have hidden size info in its configuration.''' ) def __lowerCAmelCase ( self : List[str] ): pass @unittest.skip('''TimmBackbone doesn\'t support output_attentions.''' ) def __lowerCAmelCase ( self : Optional[int] ): pass @unittest.skip('''Safetensors is not supported by timm.''' ) def __lowerCAmelCase ( self : List[Any] ): pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def __lowerCAmelCase ( self : List[Any] ): pass def __lowerCAmelCase ( self : Any ): lowerCAmelCase__ ,lowerCAmelCase__ : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase__ : int = model_class(lowercase_ ) lowerCAmelCase__ : Optional[int] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase__ : Optional[Any] = [*signature.parameters.keys()] lowerCAmelCase__ : Union[str, Any] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] ,lowercase_ ) def __lowerCAmelCase ( self : Any ): lowerCAmelCase__ ,lowerCAmelCase__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase__ : Optional[int] = True lowerCAmelCase__ : Union[str, Any] = self.has_attentions # no need to test all models as different heads yield the same functionality lowerCAmelCase__ : List[Any] = self.all_model_classes[0] lowerCAmelCase__ : List[str] = model_class(lowercase_ ) model.to(lowercase_ ) lowerCAmelCase__ : Optional[int] = self._prepare_for_class(lowercase_ ,lowercase_ ) lowerCAmelCase__ : Any = model(**lowercase_ ) lowerCAmelCase__ : List[Any] = outputs[0][-1] # Encoder-/Decoder-only models lowerCAmelCase__ : List[Any] = outputs.hidden_states[0] hidden_states.retain_grad() if self.has_attentions: lowerCAmelCase__ : Optional[Any] = outputs.attentions[0] attentions.retain_grad() output.flatten()[0].backward(retain_graph=lowercase_ ) self.assertIsNotNone(hidden_states.grad ) if self.has_attentions: self.assertIsNotNone(attentions.grad ) def __lowerCAmelCase ( self : Dict ): lowerCAmelCase__ ,lowerCAmelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase__ : Dict = model_class(lowercase_ ) model.to(lowercase_ ) model.eval() lowerCAmelCase__ : Tuple = model(**lowercase_ ) self.assertEqual(len(result.feature_maps ) ,len(config.out_indices ) ) self.assertEqual(len(model.channels ) ,len(config.out_indices ) ) # Check output of last stage is taken if out_features=None, out_indices=None lowerCAmelCase__ : List[str] = copy.deepcopy(lowercase_ ) lowerCAmelCase__ : Dict = None lowerCAmelCase__ : Optional[int] = model_class(lowercase_ ) model.to(lowercase_ ) model.eval() lowerCAmelCase__ : Optional[Any] = model(**lowercase_ ) self.assertEqual(len(result.feature_maps ) ,1 ) self.assertEqual(len(model.channels ) ,1 ) # Check backbone can be initialized with fresh weights lowerCAmelCase__ : List[str] = copy.deepcopy(lowercase_ ) lowerCAmelCase__ : int = False lowerCAmelCase__ : Dict = model_class(lowercase_ ) model.to(lowercase_ ) model.eval() lowerCAmelCase__ : Any = model(**lowercase_ )
106
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_lxmert import LxmertTokenizer _SCREAMING_SNAKE_CASE = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} _SCREAMING_SNAKE_CASE = { """vocab_file""": { """unc-nlp/lxmert-base-uncased""": """https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/vocab.txt""", }, """tokenizer_file""": { """unc-nlp/lxmert-base-uncased""": ( """https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/tokenizer.json""" ), }, } _SCREAMING_SNAKE_CASE = { """unc-nlp/lxmert-base-uncased""": 5_12, } _SCREAMING_SNAKE_CASE = { """unc-nlp/lxmert-base-uncased""": {"""do_lower_case""": True}, } class SCREAMING_SNAKE_CASE_ ( snake_case_ ): __magic_name__: List[Any] = VOCAB_FILES_NAMES __magic_name__: List[str] = PRETRAINED_VOCAB_FILES_MAP __magic_name__: List[str] = PRETRAINED_INIT_CONFIGURATION __magic_name__: Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __magic_name__: Union[str, Any] = LxmertTokenizer def __init__( self : List[str] , _A : Union[str, Any]=None , _A : Optional[Any]=None , _A : Dict=True , _A : Dict="[UNK]" , _A : Optional[int]="[SEP]" , _A : Dict="[PAD]" , _A : Union[str, Any]="[CLS]" , _A : str="[MASK]" , _A : Tuple=True , _A : Dict=None , **_A : List[Any] , ) -> Optional[int]: """simple docstring""" super().__init__( _A , tokenizer_file=_A , do_lower_case=_A , unk_token=_A , sep_token=_A , pad_token=_A , cls_token=_A , mask_token=_A , tokenize_chinese_chars=_A , strip_accents=_A , **_A , ) snake_case_ : Optional[int] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , _A ) != do_lower_case or normalizer_state.get('strip_accents' , _A ) != strip_accents or normalizer_state.get('handle_chinese_chars' , _A ) != tokenize_chinese_chars ): snake_case_ : Tuple = getattr(_A , normalizer_state.pop('type' ) ) snake_case_ : Union[str, Any] = do_lower_case snake_case_ : int = strip_accents snake_case_ : Optional[Any] = tokenize_chinese_chars snake_case_ : List[Any] = normalizer_class(**_A ) snake_case_ : Tuple = do_lower_case def UpperCAmelCase_ ( self : Dict , _A : Any , _A : List[Any]=None ) -> Dict: """simple docstring""" snake_case_ : Optional[Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCAmelCase_ ( self : Optional[Any] , _A : List[int] , _A : Optional[List[int]] = None ) -> List[int]: """simple docstring""" snake_case_ : str = [self.sep_token_id] snake_case_ : Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCAmelCase_ ( self : Optional[int] , _A : str , _A : Optional[str] = None ) -> Tuple[str]: """simple docstring""" snake_case_ : Union[str, Any] = self._tokenizer.model.save(_A , name=_A ) return tuple(_A )
327
0
'''simple docstring''' import pytest from datasets import inspect_metric, list_metrics, load_metric @pytest.fixture def _UpperCAmelCase ( _UpperCamelCase : Tuple ) -> Optional[int]: monkeypatch.setattr('''datasets.utils.deprecation_utils._emitted_deprecation_warnings''', set() ) @pytest.fixture def _UpperCAmelCase ( _UpperCamelCase : int ) -> Optional[Any]: class __UpperCAmelCase : '''simple docstring''' def __init__( self , _SCREAMING_SNAKE_CASE ) -> List[str]: A_ = metric_id class __UpperCAmelCase : '''simple docstring''' __lowercase : Any = [MetricMock(__lowercase ) for metric_id in ['accuracy', 'mse', 'precision', 'codeparrot/apps_metric']] def __A ( self ) -> Tuple: return self._metrics monkeypatch.setattr('''datasets.inspect.huggingface_hub''', HfhMock() ) @pytest.mark.parametrize( '''func, args''', [(load_metric, ('''metrics/mse''',)), (list_metrics, ()), (inspect_metric, ('''metrics/mse''', '''tmp_path'''))] ) def _UpperCAmelCase ( _UpperCamelCase : str, _UpperCamelCase : Tuple, _UpperCamelCase : Tuple, _UpperCamelCase : int, _UpperCamelCase : Union[str, Any] ) -> Optional[Any]: if "tmp_path" in args: A_ = tuple(arg if arg != '''tmp_path''' else tmp_path for arg in args ) with pytest.warns(__a, match='''https://huggingface.co/docs/evaluate''' ): func(*__a )
371
'''simple docstring''' from statistics import mean, stdev def _UpperCAmelCase ( _UpperCamelCase : list, _UpperCamelCase : int = 3 ) -> list: A_ = min(_UpperCamelCase ) A_ = max(_UpperCamelCase ) # normalize data return [round((x - x_min) / (x_max - x_min), _UpperCamelCase ) for x in data] def _UpperCAmelCase ( _UpperCamelCase : list, _UpperCamelCase : int = 3 ) -> list: A_ = mean(_UpperCamelCase ) A_ = stdev(_UpperCamelCase ) # standardize data return [round((x - mu) / (sigma), _UpperCamelCase ) for x in data]
18
0
def A_ ( snake_case : List[Any] ) -> Any: '''simple docstring''' __UpperCamelCase = len(snake_case ) __UpperCamelCase = sum(snake_case ) __UpperCamelCase = [[False for x in range(s + 1 )] for y in range(n + 1 )] for i in range(1 , n + 1 ): __UpperCamelCase = True for i in range(1 , s + 1 ): __UpperCamelCase = False for i in range(1 , n + 1 ): for j in range(1 , s + 1 ): __UpperCamelCase = dp[i][j - 1] if arr[i - 1] <= j: __UpperCamelCase = dp[i][j] or dp[i - 1][j - arr[i - 1]] for j in range(int(s / 2 ) , -1 , -1 ): if dp[n][j] is True: __UpperCamelCase = s - 2 * j break return diff
328
from __future__ import annotations from collections.abc import Callable from typing import Generic, TypeVar A__ = TypeVar("""T""") A__ = TypeVar("""U""") class __lowerCAmelCase ( Generic[T, U] ): def __init__( self , _snake_case , _snake_case ): """simple docstring""" _lowerCAmelCase = key _lowerCAmelCase = val _lowerCAmelCase = None _lowerCAmelCase = None def __repr__( self ): """simple docstring""" return ( F'Node: key: {self.key}, val: {self.val}, ' F'has next: {bool(self.next )}, has prev: {bool(self.prev )}' ) class __lowerCAmelCase ( Generic[T, U] ): def __init__( self ): """simple docstring""" _lowerCAmelCase = DoubleLinkedListNode(_snake_case , _snake_case ) _lowerCAmelCase = DoubleLinkedListNode(_snake_case , _snake_case ) _lowerCAmelCase , _lowerCAmelCase = self.rear, self.head def __repr__( self ): """simple docstring""" _lowerCAmelCase = ["""DoubleLinkedList"""] _lowerCAmelCase = self.head while node.next is not None: rep.append(str(_snake_case ) ) _lowerCAmelCase = node.next rep.append(str(self.rear ) ) return ",\n ".join(_snake_case ) def snake_case ( self , _snake_case ): """simple docstring""" _lowerCAmelCase = self.rear.prev # All nodes other than self.head are guaranteed to have non-None previous assert previous is not None _lowerCAmelCase = node _lowerCAmelCase = previous _lowerCAmelCase = node _lowerCAmelCase = self.rear def snake_case ( self , _snake_case ): """simple docstring""" if node.prev is None or node.next is None: return None _lowerCAmelCase = node.next _lowerCAmelCase = node.prev _lowerCAmelCase = None _lowerCAmelCase = None return node class __lowerCAmelCase ( Generic[T, U] ): __lowerCamelCase = {} def __init__( self , _snake_case ): """simple docstring""" _lowerCAmelCase = DoubleLinkedList() _lowerCAmelCase = capacity _lowerCAmelCase = 0 _lowerCAmelCase = 0 _lowerCAmelCase = 0 _lowerCAmelCase = {} def __repr__( self ): """simple docstring""" return ( F'CacheInfo(hits={self.hits}, misses={self.miss}, ' F'capacity={self.capacity}, current size={self.num_keys})' ) def __contains__( self , _snake_case ): """simple docstring""" return key in self.cache def snake_case ( self , _snake_case ): """simple docstring""" if key in self.cache: self.hits += 1 _lowerCAmelCase = self.cache[key] _lowerCAmelCase = self.list.remove(self.cache[key] ) assert node == value_node # node is guaranteed not None because it is in self.cache assert node is not None self.list.add(_snake_case ) return node.val self.miss += 1 return None def snake_case ( self , _snake_case , _snake_case ): """simple docstring""" if key not in self.cache: if self.num_keys >= self.capacity: # delete first node (oldest) when over capacity _lowerCAmelCase = self.list.head.next # guaranteed to have a non-None first node when num_keys > 0 # explain to type checker via assertions assert first_node is not None assert first_node.key is not None assert ( self.list.remove(_snake_case ) is not None ) # node guaranteed to be in list assert node.key is not None del self.cache[first_node.key] self.num_keys -= 1 _lowerCAmelCase = DoubleLinkedListNode(_snake_case , _snake_case ) self.list.add(self.cache[key] ) self.num_keys += 1 else: # bump node to the end of the list, update value _lowerCAmelCase = self.list.remove(self.cache[key] ) assert node is not None # node guaranteed to be in list _lowerCAmelCase = value self.list.add(_snake_case ) @classmethod def snake_case ( cls , _snake_case = 128 ): """simple docstring""" def cache_decorator_inner(_snake_case ) -> Callable[..., U]: def cache_decorator_wrapper(*_snake_case ) -> U: if func not in cls.decorator_function_to_instance_map: _lowerCAmelCase = LRUCache(_snake_case ) _lowerCAmelCase = cls.decorator_function_to_instance_map[func].get(args[0] ) if result is None: _lowerCAmelCase = func(*_snake_case ) cls.decorator_function_to_instance_map[func].put(args[0] , _snake_case ) return result def cache_info() -> LRUCache[T, U]: return cls.decorator_function_to_instance_map[func] setattr(_snake_case , """cache_info""" , _snake_case ) # noqa: B010 return cache_decorator_wrapper return cache_decorator_inner if __name__ == "__main__": import doctest doctest.testmod()
82
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ : List[Any] = logging.get_logger(__name__) lowercase__ : str = { # See all MEGATRON_BERT models at https://huggingface.co/models?filter=bert } class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" _snake_case : int = 'megatron-bert' def __init__( self : Dict , lowerCAmelCase__ : Tuple=29056 , lowerCAmelCase__ : int=1024 , lowerCAmelCase__ : Tuple=24 , lowerCAmelCase__ : Optional[int]=16 , lowerCAmelCase__ : Optional[int]=4096 , lowerCAmelCase__ : Optional[Any]="gelu" , lowerCAmelCase__ : Any=0.1 , lowerCAmelCase__ : Union[str, Any]=0.1 , lowerCAmelCase__ : List[Any]=512 , lowerCAmelCase__ : Dict=2 , lowerCAmelCase__ : Dict=0.02 , lowerCAmelCase__ : Any=1e-1_2 , lowerCAmelCase__ : Tuple=0 , lowerCAmelCase__ : Union[str, Any]="absolute" , lowerCAmelCase__ : Any=True , **lowerCAmelCase__ : str , ) -> str: '''simple docstring''' super().__init__(pad_token_id=lowerCAmelCase__ , **lowerCAmelCase__ ) _UpperCamelCase = vocab_size _UpperCamelCase = hidden_size _UpperCamelCase = num_hidden_layers _UpperCamelCase = num_attention_heads _UpperCamelCase = hidden_act _UpperCamelCase = intermediate_size _UpperCamelCase = hidden_dropout_prob _UpperCamelCase = attention_probs_dropout_prob _UpperCamelCase = max_position_embeddings _UpperCamelCase = type_vocab_size _UpperCamelCase = initializer_range _UpperCamelCase = layer_norm_eps _UpperCamelCase = position_embedding_type _UpperCamelCase = use_cache
287
'''simple docstring''' from cva import destroyAllWindows, imread, imshow, waitKey def a__ ( lowercase : str ) -> Optional[int]: """simple docstring""" _UpperCamelCase , _UpperCamelCase = img.shape[0], img.shape[1] # converting each pixel's color to its negative for i in range(lowercase ): for j in range(lowercase ): _UpperCamelCase = [255, 255, 255] - img[i][j] return img if __name__ == "__main__": # read original image lowercase__ : Optional[int] = imread('image_data/lena.jpg', 1) # convert to its negative lowercase__ : Union[str, Any] = convert_to_negative(img) # show result image imshow('negative of original image', img) waitKey(0) destroyAllWindows()
287
1
def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: int = 6_0_0_8_5_1_4_7_5_1_4_3 ) -> int: '''simple docstring''' try: A__ = int(SCREAMING_SNAKE_CASE_ ) except (TypeError, ValueError): raise TypeError("Parameter n must be int or castable to int." ) if n <= 0: raise ValueError("Parameter n must be greater than or equal to one." ) A__ = 2 A__ = 0 if n == 2: return 2 while n > 2: while n % i != 0: i += 1 A__ = i while n % i == 0: A__ = n // i i += 1 return int(SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": print(f"""{solution() = }""")
68
'''simple docstring''' def lowerCAmelCase_ ( snake_case__ = 10 ): '''simple docstring''' if not isinstance(snake_case__ , snake_case__ ) or n < 0: raise ValueError('''Invalid input''' ) A : List[str] = 10**n A : Tuple = 2_8433 * (pow(2 , 783_0457 , snake_case__ )) + 1 return str(number % modulus ) if __name__ == "__main__": from doctest import testmod testmod() print(f'''{solution(10) = }''')
3
0
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.auto import AutoModelForSequenceClassification, AutoTokenizer from .base import PipelineTool class __UpperCAmelCase ( _lowerCamelCase ): __lowercase = """facebook/bart-large-mnli""" __lowercase = ( """This is a tool that classifies an English text using provided labels. It takes two inputs: `text`, which """ """should be the text to classify, and `labels`, which should be the list of labels to use for classification. """ """It returns the most likely label in the list of provided `labels` for the input text.""" ) __lowercase = """text_classifier""" __lowercase = AutoTokenizer __lowercase = AutoModelForSequenceClassification __lowercase = ["""text""", ["""text"""]] __lowercase = ["""text"""] def lowerCamelCase ( self ): """simple docstring""" super().setup() _snake_case = self.model.config _snake_case = -1 for idx, label in config.idalabel.items(): if label.lower().startswith('entail' ): _snake_case = int(lowerCAmelCase_ ) if self.entailment_id == -1: raise ValueError('Could not determine the entailment ID from the model config, please pass it at init.' ) def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case = labels return self.pre_processor( [text] * len(lowerCAmelCase_ ) , [F'This example is {label}' for label in labels] , return_tensors='pt' , padding='max_length' , ) def lowerCamelCase ( self , lowerCAmelCase_ ): """simple docstring""" _snake_case = outputs.logits _snake_case = torch.argmax(logits[:, 2] ).item() return self._labels[label_id]
160
'''simple docstring''' from __future__ import annotations import math import random from typing import Any class __UpperCAmelCase : def __init__( self ): """simple docstring""" _snake_case = [] _snake_case = 0 _snake_case = 0 def lowerCamelCase ( self ): """simple docstring""" return self.head == self.tail def lowerCamelCase ( self , lowerCAmelCase_ ): """simple docstring""" self.data.append(lowerCAmelCase_ ) _snake_case = self.tail + 1 def lowerCamelCase ( self ): """simple docstring""" _snake_case = self.data[self.head] _snake_case = self.head + 1 return ret def lowerCamelCase ( self ): """simple docstring""" return self.tail - self.head def lowerCamelCase ( self ): """simple docstring""" print(self.data ) print('**************' ) print(self.data[self.head : self.tail] ) class __UpperCAmelCase : def __init__( self , lowerCAmelCase_ ): """simple docstring""" _snake_case = data _snake_case = None _snake_case = None _snake_case = 1 def lowerCamelCase ( self ): """simple docstring""" return self.data def lowerCamelCase ( self ): """simple docstring""" return self.left def lowerCamelCase ( self ): """simple docstring""" return self.right def lowerCamelCase ( self ): """simple docstring""" return self.height def lowerCamelCase ( self , lowerCAmelCase_ ): """simple docstring""" _snake_case = data def lowerCamelCase ( self , lowerCAmelCase_ ): """simple docstring""" _snake_case = node def lowerCamelCase ( self , lowerCAmelCase_ ): """simple docstring""" _snake_case = node def lowerCamelCase ( self , lowerCAmelCase_ ): """simple docstring""" _snake_case = height def SCREAMING_SNAKE_CASE__ ( __A ) -> int: if node is None: return 0 return node.get_height() def SCREAMING_SNAKE_CASE__ ( __A , __A ) -> int: if a > b: return a return b def SCREAMING_SNAKE_CASE__ ( __A ) -> MyNode: print('left rotation node:' , node.get_data() ) _snake_case = node.get_left() assert ret is not None node.set_left(ret.get_right() ) ret.set_right(__A ) _snake_case = my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1 node.set_height(__A ) _snake_case = my_max(get_height(ret.get_right() ) , get_height(ret.get_left() ) ) + 1 ret.set_height(__A ) return ret def SCREAMING_SNAKE_CASE__ ( __A ) -> MyNode: print('right rotation node:' , node.get_data() ) _snake_case = node.get_right() assert ret is not None node.set_right(ret.get_left() ) ret.set_left(__A ) _snake_case = my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1 node.set_height(__A ) _snake_case = my_max(get_height(ret.get_right() ) , get_height(ret.get_left() ) ) + 1 ret.set_height(__A ) return ret def SCREAMING_SNAKE_CASE__ ( __A ) -> MyNode: _snake_case = node.get_left() assert left_child is not None node.set_left(left_rotation(__A ) ) return right_rotation(__A ) def SCREAMING_SNAKE_CASE__ ( __A ) -> MyNode: _snake_case = node.get_right() assert right_child is not None node.set_right(right_rotation(__A ) ) return left_rotation(__A ) def SCREAMING_SNAKE_CASE__ ( __A , __A ) -> MyNode | None: if node is None: return MyNode(__A ) if data < node.get_data(): node.set_left(insert_node(node.get_left() , __A ) ) if ( get_height(node.get_left() ) - get_height(node.get_right() ) == 2 ): # an unbalance detected _snake_case = node.get_left() assert left_child is not None if ( data < left_child.get_data() ): # new node is the left child of the left child _snake_case = right_rotation(__A ) else: _snake_case = lr_rotation(__A ) else: node.set_right(insert_node(node.get_right() , __A ) ) if get_height(node.get_right() ) - get_height(node.get_left() ) == 2: _snake_case = node.get_right() assert right_child is not None if data < right_child.get_data(): _snake_case = rl_rotation(__A ) else: _snake_case = left_rotation(__A ) _snake_case = my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1 node.set_height(__A ) return node def SCREAMING_SNAKE_CASE__ ( __A ) -> Any: while True: _snake_case = root.get_right() if right_child is None: break _snake_case = right_child return root.get_data() def SCREAMING_SNAKE_CASE__ ( __A ) -> Any: while True: _snake_case = root.get_left() if left_child is None: break _snake_case = left_child return root.get_data() def SCREAMING_SNAKE_CASE__ ( __A , __A ) -> MyNode | None: _snake_case = root.get_left() _snake_case = root.get_right() if root.get_data() == data: if left_child is not None and right_child is not None: _snake_case = get_left_most(__A ) root.set_data(__A ) root.set_right(del_node(__A , __A ) ) elif left_child is not None: _snake_case = left_child elif right_child is not None: _snake_case = right_child else: return None elif root.get_data() > data: if left_child is None: print('No such data' ) return root else: root.set_left(del_node(__A , __A ) ) else: # root.get_data() < data if right_child is None: return root else: root.set_right(del_node(__A , __A ) ) if get_height(__A ) - get_height(__A ) == 2: assert right_child is not None if get_height(right_child.get_right() ) > get_height(right_child.get_left() ): _snake_case = left_rotation(__A ) else: _snake_case = rl_rotation(__A ) elif get_height(__A ) - get_height(__A ) == -2: assert left_child is not None if get_height(left_child.get_left() ) > get_height(left_child.get_right() ): _snake_case = right_rotation(__A ) else: _snake_case = lr_rotation(__A ) _snake_case = my_max(get_height(root.get_right() ) , get_height(root.get_left() ) ) + 1 root.set_height(__A ) return root class __UpperCAmelCase : def __init__( self ): """simple docstring""" _snake_case = None def lowerCamelCase ( self ): """simple docstring""" return get_height(self.root ) def lowerCamelCase ( self , lowerCAmelCase_ ): """simple docstring""" print('insert:' + str(lowerCAmelCase_ ) ) _snake_case = insert_node(self.root , lowerCAmelCase_ ) def lowerCamelCase ( self , lowerCAmelCase_ ): """simple docstring""" print('delete:' + str(lowerCAmelCase_ ) ) if self.root is None: print('Tree is empty!' ) return _snake_case = del_node(self.root , lowerCAmelCase_ ) def __str__( self , ): # a level traversale, gives a more intuitive look on the tree """simple docstring""" _snake_case = '' _snake_case = MyQueue() q.push(self.root ) _snake_case = self.get_height() if layer == 0: return output _snake_case = 0 while not q.is_empty(): _snake_case = q.pop() _snake_case = ' ' * int(math.pow(2 , layer - 1 ) ) output += space if node is None: output += "*" q.push(lowerCAmelCase_ ) q.push(lowerCAmelCase_ ) else: output += str(node.get_data() ) q.push(node.get_left() ) q.push(node.get_right() ) output += space _snake_case = cnt + 1 for i in range(1_00 ): if cnt == math.pow(2 , lowerCAmelCase_ ) - 1: _snake_case = layer - 1 if layer == 0: output += "\n*************************************" return output output += "\n" break output += "\n*************************************" return output def SCREAMING_SNAKE_CASE__ ( ) -> None: import doctest doctest.testmod() if __name__ == "__main__": _test() lowercase : List[Any] = AVLtree() lowercase : Dict = list(range(10)) random.shuffle(lst) for i in lst: t.insert(i) print(str(t)) random.shuffle(lst) for i in lst: t.del_node(i) print(str(t))
160
1
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DetaImageProcessor class a__ ( unittest.TestCase ): def __init__( self : Any,_A : int,_A : Tuple=7,_A : Tuple=3,_A : int=30,_A : str=400,_A : Any=True,_A : Optional[Any]=None,_A : Optional[Any]=True,_A : Dict=[0.5, 0.5, 0.5],_A : Dict=[0.5, 0.5, 0.5],_A : str=True,_A : Optional[int]=1 / 255,_A : Dict=True,): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = size if size is not None else {"shortest_edge": 18, "longest_edge": 1333} SCREAMING_SNAKE_CASE_ : int = parent SCREAMING_SNAKE_CASE_ : Dict = batch_size SCREAMING_SNAKE_CASE_ : Optional[Any] = num_channels SCREAMING_SNAKE_CASE_ : Dict = min_resolution SCREAMING_SNAKE_CASE_ : List[str] = max_resolution SCREAMING_SNAKE_CASE_ : List[str] = do_resize SCREAMING_SNAKE_CASE_ : Union[str, Any] = size SCREAMING_SNAKE_CASE_ : Dict = do_normalize SCREAMING_SNAKE_CASE_ : Any = image_mean SCREAMING_SNAKE_CASE_ : Any = image_std SCREAMING_SNAKE_CASE_ : Optional[Any] = do_rescale SCREAMING_SNAKE_CASE_ : str = rescale_factor SCREAMING_SNAKE_CASE_ : Optional[Any] = do_pad def __UpperCamelCase ( self : Dict ): """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def __UpperCamelCase ( self : Union[str, Any],_A : List[str],_A : Tuple=False ): """simple docstring""" if not batched: SCREAMING_SNAKE_CASE_ : Union[str, Any] = image_inputs[0] if isinstance(_A,Image.Image ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Union[str, Any] = image.size else: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : int = image.shape[1], image.shape[2] if w < h: SCREAMING_SNAKE_CASE_ : Tuple = int(self.size["shortest_edge"] * h / w ) SCREAMING_SNAKE_CASE_ : int = self.size["shortest_edge"] elif w > h: SCREAMING_SNAKE_CASE_ : int = self.size["shortest_edge"] SCREAMING_SNAKE_CASE_ : int = int(self.size["shortest_edge"] * w / h ) else: SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.size["shortest_edge"] SCREAMING_SNAKE_CASE_ : Optional[int] = self.size["shortest_edge"] else: SCREAMING_SNAKE_CASE_ : List[Any] = [] for image in image_inputs: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : List[Any] = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) SCREAMING_SNAKE_CASE_ : Tuple = max(_A,key=lambda _A : item[0] )[0] SCREAMING_SNAKE_CASE_ : Dict = max(_A,key=lambda _A : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class a__ ( A__ , unittest.TestCase ): A = DetaImageProcessor if is_vision_available() else None def __UpperCamelCase ( self : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = DetaImageProcessingTester(self ) @property def __UpperCamelCase ( self : str ): """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def __UpperCamelCase ( self : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_A,"image_mean" ) ) self.assertTrue(hasattr(_A,"image_std" ) ) self.assertTrue(hasattr(_A,"do_normalize" ) ) self.assertTrue(hasattr(_A,"do_resize" ) ) self.assertTrue(hasattr(_A,"do_rescale" ) ) self.assertTrue(hasattr(_A,"do_pad" ) ) self.assertTrue(hasattr(_A,"size" ) ) def __UpperCamelCase ( self : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size,{"shortest_edge": 18, "longest_edge": 1333} ) self.assertEqual(image_processor.do_pad,_A ) def __UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" pass def __UpperCamelCase ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images SCREAMING_SNAKE_CASE_ : List[str] = prepare_image_inputs(self.image_processor_tester,equal_resolution=_A ) for image in image_inputs: self.assertIsInstance(_A,Image.Image ) # Test not batched input SCREAMING_SNAKE_CASE_ : List[Any] = image_processing(image_inputs[0],return_tensors="pt" ).pixel_values SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : str = self.image_processor_tester.get_expected_values(_A ) self.assertEqual( encoded_images.shape,(1, self.image_processor_tester.num_channels, expected_height, expected_width),) # Test batched SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : List[Any] = self.image_processor_tester.get_expected_values(_A,batched=_A ) SCREAMING_SNAKE_CASE_ : Tuple = image_processing(_A,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ),) def __UpperCamelCase ( self : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors SCREAMING_SNAKE_CASE_ : Any = prepare_image_inputs(self.image_processor_tester,equal_resolution=_A,numpify=_A ) for image in image_inputs: self.assertIsInstance(_A,np.ndarray ) # Test not batched input SCREAMING_SNAKE_CASE_ : Any = image_processing(image_inputs[0],return_tensors="pt" ).pixel_values SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : str = self.image_processor_tester.get_expected_values(_A ) self.assertEqual( encoded_images.shape,(1, self.image_processor_tester.num_channels, expected_height, expected_width),) # Test batched SCREAMING_SNAKE_CASE_ : Optional[Any] = image_processing(_A,return_tensors="pt" ).pixel_values SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Dict = self.image_processor_tester.get_expected_values(_A,batched=_A ) self.assertEqual( encoded_images.shape,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ),) def __UpperCamelCase ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors SCREAMING_SNAKE_CASE_ : Optional[Any] = prepare_image_inputs(self.image_processor_tester,equal_resolution=_A,torchify=_A ) for image in image_inputs: self.assertIsInstance(_A,torch.Tensor ) # Test not batched input SCREAMING_SNAKE_CASE_ : Tuple = image_processing(image_inputs[0],return_tensors="pt" ).pixel_values SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Any = self.image_processor_tester.get_expected_values(_A ) self.assertEqual( encoded_images.shape,(1, self.image_processor_tester.num_channels, expected_height, expected_width),) # Test batched SCREAMING_SNAKE_CASE_ : int = image_processing(_A,return_tensors="pt" ).pixel_values SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Any = self.image_processor_tester.get_expected_values(_A,batched=_A ) self.assertEqual( encoded_images.shape,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ),) @slow def __UpperCamelCase ( self : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) with open("./tests/fixtures/tests_samples/COCO/coco_annotations.txt","r" ) as f: SCREAMING_SNAKE_CASE_ : Any = json.loads(f.read() ) SCREAMING_SNAKE_CASE_ : Optional[int] = {"image_id": 3_9769, "annotations": target} # encode them SCREAMING_SNAKE_CASE_ : Union[str, Any] = DetaImageProcessor() SCREAMING_SNAKE_CASE_ : Dict = image_processing(images=_A,annotations=_A,return_tensors="pt" ) # verify pixel values SCREAMING_SNAKE_CASE_ : Tuple = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding["pixel_values"].shape,_A ) SCREAMING_SNAKE_CASE_ : Tuple = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3],_A,atol=1E-4 ) ) # verify area SCREAMING_SNAKE_CASE_ : int = torch.tensor([5887.9600, 11250.2061, 489353.8438, 837122.7500, 147967.5156, 165732.3438] ) self.assertTrue(torch.allclose(encoding["labels"][0]["area"],_A ) ) # verify boxes SCREAMING_SNAKE_CASE_ : List[Any] = torch.Size([6, 4] ) self.assertEqual(encoding["labels"][0]["boxes"].shape,_A ) SCREAMING_SNAKE_CASE_ : Tuple = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215] ) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0],_A,atol=1E-3 ) ) # verify image_id SCREAMING_SNAKE_CASE_ : Union[str, Any] = torch.tensor([3_9769] ) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"],_A ) ) # verify is_crowd SCREAMING_SNAKE_CASE_ : List[Any] = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"],_A ) ) # verify class_labels SCREAMING_SNAKE_CASE_ : List[Any] = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"],_A ) ) # verify orig_size SCREAMING_SNAKE_CASE_ : Optional[Any] = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"],_A ) ) # verify size SCREAMING_SNAKE_CASE_ : str = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding["labels"][0]["size"],_A ) ) @slow def __UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) with open("./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt","r" ) as f: SCREAMING_SNAKE_CASE_ : str = json.loads(f.read() ) SCREAMING_SNAKE_CASE_ : Optional[Any] = {"file_name": "000000039769.png", "image_id": 3_9769, "segments_info": target} SCREAMING_SNAKE_CASE_ : Optional[int] = pathlib.Path("./tests/fixtures/tests_samples/COCO/coco_panoptic" ) # encode them SCREAMING_SNAKE_CASE_ : Union[str, Any] = DetaImageProcessor(format="coco_panoptic" ) SCREAMING_SNAKE_CASE_ : Any = image_processing(images=_A,annotations=_A,masks_path=_A,return_tensors="pt" ) # verify pixel values SCREAMING_SNAKE_CASE_ : Any = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding["pixel_values"].shape,_A ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3],_A,atol=1E-4 ) ) # verify area SCREAMING_SNAKE_CASE_ : List[str] = torch.tensor([147979.6875, 165527.0469, 484638.5938, 11292.9375, 5879.6562, 7634.1147] ) self.assertTrue(torch.allclose(encoding["labels"][0]["area"],_A ) ) # verify boxes SCREAMING_SNAKE_CASE_ : Dict = torch.Size([6, 4] ) self.assertEqual(encoding["labels"][0]["boxes"].shape,_A ) SCREAMING_SNAKE_CASE_ : str = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625] ) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0],_A,atol=1E-3 ) ) # verify image_id SCREAMING_SNAKE_CASE_ : Dict = torch.tensor([3_9769] ) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"],_A ) ) # verify is_crowd SCREAMING_SNAKE_CASE_ : Tuple = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"],_A ) ) # verify class_labels SCREAMING_SNAKE_CASE_ : Optional[int] = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"],_A ) ) # verify masks SCREAMING_SNAKE_CASE_ : str = 82_2873 self.assertEqual(encoding["labels"][0]["masks"].sum().item(),_A ) # verify orig_size SCREAMING_SNAKE_CASE_ : str = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"],_A ) ) # verify size SCREAMING_SNAKE_CASE_ : List[Any] = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding["labels"][0]["size"],_A ) )
18
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) if is_sentencepiece_available(): from ..ta.tokenization_ta import TaTokenizer else: from ...utils.dummy_sentencepiece_objects import TaTokenizer lowerCamelCase = TaTokenizer if is_tokenizers_available(): from ..ta.tokenization_ta_fast import TaTokenizerFast else: from ...utils.dummy_tokenizers_objects import TaTokenizerFast lowerCamelCase = TaTokenizerFast lowerCamelCase = {'configuration_mt5': ['MT5Config', 'MT5OnnxConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase = [ 'MT5EncoderModel', 'MT5ForConditionalGeneration', 'MT5ForQuestionAnswering', 'MT5Model', 'MT5PreTrainedModel', 'MT5Stack', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase = ['TFMT5EncoderModel', 'TFMT5ForConditionalGeneration', 'TFMT5Model'] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase = ['FlaxMT5EncoderModel', 'FlaxMT5ForConditionalGeneration', 'FlaxMT5Model'] if TYPE_CHECKING: from .configuration_mta import MTaConfig, MTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mta import ( MTaEncoderModel, MTaForConditionalGeneration, MTaForQuestionAnswering, MTaModel, MTaPreTrainedModel, MTaStack, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mta import TFMTaEncoderModel, TFMTaForConditionalGeneration, TFMTaModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_mta import FlaxMTaEncoderModel, FlaxMTaForConditionalGeneration, FlaxMTaModel else: import sys lowerCamelCase = _LazyModule( __name__, globals()['__file__'], _import_structure, extra_objects={'MT5Tokenizer': MTaTokenizer, 'MT5TokenizerFast': MTaTokenizerFast}, module_spec=__spec__, )
199
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCamelCase = { """configuration_whisper""": ["""WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """WhisperConfig""", """WhisperOnnxConfig"""], """feature_extraction_whisper""": ["""WhisperFeatureExtractor"""], """processing_whisper""": ["""WhisperProcessor"""], """tokenization_whisper""": ["""WhisperTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase = ["""WhisperTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase = [ """WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST""", """WhisperForConditionalGeneration""", """WhisperModel""", """WhisperPreTrainedModel""", """WhisperForAudioClassification""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase = [ """TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFWhisperForConditionalGeneration""", """TFWhisperModel""", """TFWhisperPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase = [ """FlaxWhisperForConditionalGeneration""", """FlaxWhisperModel""", """FlaxWhisperPreTrainedModel""", """FlaxWhisperForAudioClassification""", ] if TYPE_CHECKING: from .configuration_whisper import WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP, WhisperConfig, WhisperOnnxConfig from .feature_extraction_whisper import WhisperFeatureExtractor from .processing_whisper import WhisperProcessor from .tokenization_whisper import WhisperTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_whisper_fast import WhisperTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_whisper import ( WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST, WhisperForAudioClassification, WhisperForConditionalGeneration, WhisperModel, WhisperPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_whisper import ( TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST, TFWhisperForConditionalGeneration, TFWhisperModel, TFWhisperPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_whisper import ( FlaxWhisperForAudioClassification, FlaxWhisperForConditionalGeneration, FlaxWhisperModel, FlaxWhisperPreTrainedModel, ) else: import sys lowerCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
241
"""simple docstring""" import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCamelCase = ['''image_processor''', '''tokenizer'''] UpperCamelCase = '''ViTImageProcessor''' UpperCamelCase = ('''CLIPTokenizer''', '''CLIPTokenizerFast''') def __init__( self : List[Any] , _UpperCAmelCase : str=None , _UpperCAmelCase : Optional[int]=None , **_UpperCAmelCase : List[str] ) -> Any: '''simple docstring''' UpperCAmelCase_ = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , _UpperCAmelCase , ) UpperCAmelCase_ = kwargs.pop("feature_extractor" ) UpperCAmelCase_ = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(_UpperCAmelCase , _UpperCAmelCase ) def __call__( self : Optional[Any] , _UpperCAmelCase : Any=None , _UpperCAmelCase : Optional[int]=None , _UpperCAmelCase : str=None , _UpperCAmelCase : List[Any]=None , **_UpperCAmelCase : str ) -> Optional[int]: '''simple docstring''' if text is None and visual_prompt is None and images is None: raise ValueError("You have to specify either text, visual prompt or images." ) if text is not None and visual_prompt is not None: raise ValueError("You have to specify exactly one type of prompt. Either text or visual prompt." ) if text is not None: UpperCAmelCase_ = self.tokenizer(_UpperCAmelCase , return_tensors=_UpperCAmelCase , **_UpperCAmelCase ) if visual_prompt is not None: UpperCAmelCase_ = self.image_processor(_UpperCAmelCase , return_tensors=_UpperCAmelCase , **_UpperCAmelCase ) if images is not None: UpperCAmelCase_ = self.image_processor(_UpperCAmelCase , return_tensors=_UpperCAmelCase , **_UpperCAmelCase ) if visual_prompt is not None and images is not None: UpperCAmelCase_ = { "pixel_values": image_features.pixel_values, "conditional_pixel_values": prompt_features.pixel_values, } return encoding elif text is not None and images is not None: UpperCAmelCase_ = image_features.pixel_values return encoding elif text is not None: return encoding elif visual_prompt is not None: UpperCAmelCase_ = { "conditional_pixel_values": prompt_features.pixel_values, } return encoding else: return BatchEncoding(data=dict(**_UpperCAmelCase ) , tensor_type=_UpperCAmelCase ) def lowercase__ ( self : List[Any] , *_UpperCAmelCase : List[str] , **_UpperCAmelCase : List[Any] ) -> Any: '''simple docstring''' return self.tokenizer.batch_decode(*_UpperCAmelCase , **_UpperCAmelCase ) def lowercase__ ( self : Dict , *_UpperCAmelCase : Tuple , **_UpperCAmelCase : List[Any] ) -> Union[str, Any]: '''simple docstring''' return self.tokenizer.decode(*_UpperCAmelCase , **_UpperCAmelCase ) @property def lowercase__ ( self : int ) -> Optional[int]: '''simple docstring''' warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , _UpperCAmelCase , ) return self.image_processor_class @property def lowercase__ ( self : str ) -> List[Any]: '''simple docstring''' warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , _UpperCAmelCase , ) return self.image_processor
241
1
'''simple docstring''' from __future__ import annotations import os from typing import Any import requests A__ : Optional[Any] ='''https://api.github.com''' # https://docs.github.com/en/free-pro-team@latest/rest/reference/users#get-the-authenticated-user A__ : Union[str, Any] =BASE_URL + '''/user''' # https://github.com/settings/tokens A__ : Optional[int] =os.environ.get('''USER_TOKEN''', '''''') def UpperCamelCase__ ( lowerCAmelCase ): """simple docstring""" _lowerCAmelCase = { """Authorization""": f"token {auth_token}", """Accept""": """application/vnd.github.v3+json""", } return requests.get(lowerCAmelCase , headers=lowerCAmelCase ).json() if __name__ == "__main__": # pragma: no cover if USER_TOKEN: for key, value in fetch_github_info(USER_TOKEN).items(): print(F"""{key}: {value}""") else: raise ValueError('''\'USER_TOKEN\' field cannot be empty.''')
70
from __future__ import annotations from typing import Generic, TypeVar a_ = TypeVar("""T""") class __lowerCAmelCase ( Generic[T] ): def __init__( self , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = data __lowerCamelCase = self __lowerCamelCase = 0 class __lowerCAmelCase ( Generic[T] ): def __init__( self ): '''simple docstring''' # map from node name to the node object __lowerCamelCase = {} def lowerCamelCase ( self , __UpperCAmelCase ): '''simple docstring''' # create a new set with x as its member __lowerCamelCase = DisjointSetTreeNode(__UpperCAmelCase ) def lowerCamelCase ( self , __UpperCAmelCase ): '''simple docstring''' # find the set x belongs to (with path-compression) __lowerCamelCase = self.map[data] if elem_ref != elem_ref.parent: __lowerCamelCase = self.find_set(elem_ref.parent.data ) return elem_ref.parent def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' # helper function for union operation if nodea.rank > nodea.rank: __lowerCamelCase = nodea else: __lowerCamelCase = nodea if nodea.rank == nodea.rank: nodea.rank += 1 def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' # merge 2 disjoint sets self.link(self.find_set(__UpperCAmelCase ) , self.find_set(__UpperCAmelCase ) ) class __lowerCAmelCase ( Generic[T] ): def __init__( self ): '''simple docstring''' # connections: map from the node to the neighbouring nodes (with weights) __lowerCamelCase = {} def lowerCamelCase ( self , __UpperCAmelCase ): '''simple docstring''' # add a node ONLY if its not present in the graph if node not in self.connections: __lowerCamelCase = {} def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' # add an edge with the given weight self.add_node(__UpperCAmelCase ) self.add_node(__UpperCAmelCase ) __lowerCamelCase = weight __lowerCamelCase = weight def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = [] __lowerCamelCase = set() for start in self.connections: for end in self.connections[start]: if (start, end) not in seen: seen.add((end, start) ) edges.append((start, end, self.connections[start][end]) ) edges.sort(key=lambda __UpperCAmelCase : x[2] ) # creating the disjoint set __lowerCamelCase = DisjointSetTree[T]() for node in self.connections: disjoint_set.make_set(__UpperCAmelCase ) # MST generation __lowerCamelCase = 0 __lowerCamelCase = 0 __lowerCamelCase = GraphUndirectedWeighted[T]() while num_edges < len(self.connections ) - 1: __lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase = edges[index] index += 1 __lowerCamelCase = disjoint_set.find_set(__UpperCAmelCase ) __lowerCamelCase = disjoint_set.find_set(__UpperCAmelCase ) if parent_u != parent_v: num_edges += 1 graph.add_edge(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) disjoint_set.union(__UpperCAmelCase , __UpperCAmelCase ) return graph
330
0
"""simple docstring""" lowerCAmelCase : Tuple = [ (1000, """M"""), (900, """CM"""), (500, """D"""), (400, """CD"""), (100, """C"""), (90, """XC"""), (50, """L"""), (40, """XL"""), (10, """X"""), (9, """IX"""), (5, """V"""), (4, """IV"""), (1, """I"""), ] def a__ ( snake_case__ ) -> int: lowerCamelCase = {"""I""": 1, """V""": 5, """X""": 10, """L""": 50, """C""": 1_00, """D""": 5_00, """M""": 10_00} lowerCamelCase = 0 lowerCamelCase = 0 while place < len(snake_case__ ): if (place + 1 < len(snake_case__ )) and (vals[roman[place]] < vals[roman[place + 1]]): total += vals[roman[place + 1]] - vals[roman[place]] place += 2 else: total += vals[roman[place]] place += 1 return total def a__ ( snake_case__ ) -> str: lowerCamelCase = [] for arabic, roman in ROMAN: ((lowerCamelCase) , (lowerCamelCase)) = divmod(snake_case__ , snake_case__ ) result.append(roman * factor ) if number == 0: break return "".join(snake_case__ ) if __name__ == "__main__": import doctest doctest.testmod()
168
"""simple docstring""" from __future__ import annotations class __magic_name__ : '''simple docstring''' def __init__( self , _a ): """simple docstring""" lowerCamelCase = TypeError( """Matrices must be formed from a list of zero or more lists containing at """ """least one and the same number of values, each of which must be of type """ """int or float.""" ) if len(_a ) != 0: lowerCamelCase = len(rows[0] ) if cols == 0: raise error for row in rows: if len(_a ) != cols: raise error for value in row: if not isinstance(_a , (int, float) ): raise error lowerCamelCase = rows else: lowerCamelCase = [] def _lowerCAmelCase ( self ): """simple docstring""" return [[row[i] for row in self.rows] for i in range(len(self.rows[0] ) )] @property def _lowerCAmelCase ( self ): """simple docstring""" return len(self.rows ) @property def _lowerCAmelCase ( self ): """simple docstring""" return len(self.rows[0] ) @property def _lowerCAmelCase ( self ): """simple docstring""" return (self.num_rows, self.num_columns) @property def _lowerCAmelCase ( self ): """simple docstring""" return self.order[0] == self.order[1] def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase = [ [0 if column_num != row_num else 1 for column_num in range(self.num_rows )] for row_num in range(self.num_rows ) ] return Matrix(_a ) def _lowerCAmelCase ( self ): """simple docstring""" if not self.is_square: return 0 if self.order == (0, 0): return 1 if self.order == (1, 1): return int(self.rows[0][0] ) if self.order == (2, 2): return int( (self.rows[0][0] * self.rows[1][1]) - (self.rows[0][1] * self.rows[1][0]) ) else: return sum( self.rows[0][column] * self.cofactors().rows[0][column] for column in range(self.num_columns ) ) def _lowerCAmelCase ( self ): """simple docstring""" return bool(self.determinant() ) def _lowerCAmelCase ( self , _a , _a ): """simple docstring""" lowerCamelCase = [ [ self.rows[other_row][other_column] for other_column in range(self.num_columns ) if other_column != column ] for other_row in range(self.num_rows ) if other_row != row ] return Matrix(_a ).determinant() def _lowerCAmelCase ( self , _a , _a ): """simple docstring""" if (row + column) % 2 == 0: return self.get_minor(_a , _a ) return -1 * self.get_minor(_a , _a ) def _lowerCAmelCase ( self ): """simple docstring""" return Matrix( [ [self.get_minor(_a , _a ) for column in range(self.num_columns )] for row in range(self.num_rows ) ] ) def _lowerCAmelCase ( self ): """simple docstring""" return Matrix( [ [ self.minors().rows[row][column] if (row + column) % 2 == 0 else self.minors().rows[row][column] * -1 for column in range(self.minors().num_columns ) ] for row in range(self.minors().num_rows ) ] ) def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase = [ [self.cofactors().rows[column][row] for column in range(self.num_columns )] for row in range(self.num_rows ) ] return Matrix(_a ) def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase = self.determinant() if not determinant: raise TypeError("""Only matrices with a non-zero determinant have an inverse""" ) return self.adjugate() * (1 / determinant) def __repr__( self ): """simple docstring""" return str(self.rows ) def __str__( self ): """simple docstring""" if self.num_rows == 0: return "[]" if self.num_rows == 1: return "[[" + ". ".join(str(self.rows[0] ) ) + "]]" return ( "[" + "\n ".join( [ """[""" + """. """.join([str(_a ) for value in row] ) + """.]""" for row in self.rows ] ) + "]" ) def _lowerCAmelCase ( self , _a , _a = None ): """simple docstring""" lowerCamelCase = TypeError("""Row must be a list containing all ints and/or floats""" ) if not isinstance(_a , _a ): raise type_error for value in row: if not isinstance(_a , (int, float) ): raise type_error if len(_a ) != self.num_columns: raise ValueError( """Row must be equal in length to the other rows in the matrix""" ) if position is None: self.rows.append(_a ) else: lowerCamelCase = self.rows[0:position] + [row] + self.rows[position:] def _lowerCAmelCase ( self , _a , _a = None ): """simple docstring""" lowerCamelCase = TypeError( """Column must be a list containing all ints and/or floats""" ) if not isinstance(_a , _a ): raise type_error for value in column: if not isinstance(_a , (int, float) ): raise type_error if len(_a ) != self.num_rows: raise ValueError( """Column must be equal in length to the other columns in the matrix""" ) if position is None: lowerCamelCase = [self.rows[i] + [column[i]] for i in range(self.num_rows )] else: lowerCamelCase = [ self.rows[i][0:position] + [column[i]] + self.rows[i][position:] for i in range(self.num_rows ) ] def __eq__( self , _a ): """simple docstring""" if not isinstance(_a , _a ): return NotImplemented return self.rows == other.rows def __ne__( self , _a ): """simple docstring""" return not self == other def __neg__( self ): """simple docstring""" return self * -1 def __add__( self , _a ): """simple docstring""" if self.order != other.order: raise ValueError("""Addition requires matrices of the same order""" ) return Matrix( [ [self.rows[i][j] + other.rows[i][j] for j in range(self.num_columns )] for i in range(self.num_rows ) ] ) def __sub__( self , _a ): """simple docstring""" if self.order != other.order: raise ValueError("""Subtraction requires matrices of the same order""" ) return Matrix( [ [self.rows[i][j] - other.rows[i][j] for j in range(self.num_columns )] for i in range(self.num_rows ) ] ) def __mul__( self , _a ): """simple docstring""" if isinstance(_a , (int, float) ): return Matrix( [[int(element * other ) for element in row] for row in self.rows] ) elif isinstance(_a , _a ): if self.num_columns != other.num_rows: raise ValueError( """The number of columns in the first matrix must """ """be equal to the number of rows in the second""" ) return Matrix( [ [Matrix.dot_product(_a , _a ) for column in other.columns()] for row in self.rows ] ) else: raise TypeError( """A Matrix can only be multiplied by an int, float, or another matrix""" ) def __pow__( self , _a ): """simple docstring""" if not isinstance(_a , _a ): raise TypeError("""A Matrix can only be raised to the power of an int""" ) if not self.is_square: raise ValueError("""Only square matrices can be raised to a power""" ) if other == 0: return self.identity() if other < 0: if self.is_invertable(): return self.inverse() ** (-other) raise ValueError( """Only invertable matrices can be raised to a negative power""" ) lowerCamelCase = self for _ in range(other - 1 ): result *= self return result @classmethod def _lowerCAmelCase ( cls , _a , _a ): """simple docstring""" return sum(row[i] * column[i] for i in range(len(_a ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
168
1
"""simple docstring""" from collections.abc import Callable import numpy as np def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> np.array: snake_case_ = int(np.ceil((x_end - xa) / step_size ) ) snake_case_ = np.zeros((n + 1,) ) snake_case_ = ya snake_case_ = xa for k in range(_SCREAMING_SNAKE_CASE ): snake_case_ = y[k] + step_size * ode_func(_SCREAMING_SNAKE_CASE , y[k] ) snake_case_ = y[k] + ( (step_size / 2) * (ode_func(_SCREAMING_SNAKE_CASE , y[k] ) + ode_func(x + step_size , _SCREAMING_SNAKE_CASE )) ) x += step_size return y if __name__ == "__main__": import doctest doctest.testmod()
347
"""simple docstring""" from __future__ import annotations def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> bool: snake_case_ = get_failure_array(_SCREAMING_SNAKE_CASE ) # 2) Step through text searching for pattern snake_case_ , snake_case_ = 0, 0 # index into text, pattern while i < len(_SCREAMING_SNAKE_CASE ): if pattern[j] == text[i]: if j == (len(_SCREAMING_SNAKE_CASE ) - 1): return True j += 1 # if this is a prefix in our pattern # just go back far enough to continue elif j > 0: snake_case_ = failure[j - 1] continue i += 1 return False def _a ( _SCREAMING_SNAKE_CASE ) -> list[int]: snake_case_ = [0] snake_case_ = 0 snake_case_ = 1 while j < len(_SCREAMING_SNAKE_CASE ): if pattern[i] == pattern[j]: i += 1 elif i > 0: snake_case_ = failure[i - 1] continue j += 1 failure.append(_SCREAMING_SNAKE_CASE ) return failure if __name__ == "__main__": # Test 1) __SCREAMING_SNAKE_CASE : Optional[int] = 'abc1abc12' __SCREAMING_SNAKE_CASE : Optional[int] = 'alskfjaldsabc1abc1abc12k23adsfabcabc' __SCREAMING_SNAKE_CASE : List[str] = 'alskfjaldsk23adsfabcabc' assert kmp(pattern, texta) and not kmp(pattern, texta) # Test 2) __SCREAMING_SNAKE_CASE : int = 'ABABX' __SCREAMING_SNAKE_CASE : Optional[Any] = 'ABABZABABYABABX' assert kmp(pattern, text) # Test 3) __SCREAMING_SNAKE_CASE : Any = 'AAAB' __SCREAMING_SNAKE_CASE : List[Any] = 'ABAAAAAB' assert kmp(pattern, text) # Test 4) __SCREAMING_SNAKE_CASE : Optional[int] = 'abcdabcy' __SCREAMING_SNAKE_CASE : str = 'abcxabcdabxabcdabcdabcy' assert kmp(pattern, text) # Test 5) __SCREAMING_SNAKE_CASE : Any = 'aabaabaaa' assert get_failure_array(pattern) == [0, 1, 0, 1, 2, 3, 4, 5, 2]
347
1
from __future__ import annotations import math def lowerCAmelCase( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> int: """simple docstring""" if depth < 0: raise ValueError("Depth cannot be less than 0" ) if not scores: raise ValueError("Scores cannot be empty" ) if depth == height: return scores[node_index] return ( max( minimax(depth + 1 , node_index * 2 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) , minimax(depth + 1 , node_index * 2 + 1 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) , ) if is_max else min( minimax(depth + 1 , node_index * 2 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) , minimax(depth + 1 , node_index * 2 + 1 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) , ) ) def lowerCAmelCase( )-> None: """simple docstring""" UpperCamelCase_ = [9_0, 2_3, 6, 3_3, 2_1, 6_5, 1_2_3, 3_4_4_2_3] UpperCamelCase_ = math.log(len(SCREAMING_SNAKE_CASE_ ) , 2 ) print(f"Optimal value : {minimax(0 , 0 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )}" ) if __name__ == "__main__": import doctest doctest.testmod() main()
60
import unittest import numpy as np from transformers import AlbertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.albert.modeling_flax_albert import ( FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForPreTraining, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertModel, ) class __magic_name__ ( unittest.TestCase ): def __init__( self , _lowercase , _lowercase=13 , _lowercase=7 , _lowercase=True , _lowercase=True , _lowercase=True , _lowercase=True , _lowercase=99 , _lowercase=32 , _lowercase=5 , _lowercase=4 , _lowercase=37 , _lowercase="gelu" , _lowercase=0.1 , _lowercase=0.1 , _lowercase=512 , _lowercase=16 , _lowercase=2 , _lowercase=0.02 , _lowercase=4 , )-> Union[str, Any]: UpperCamelCase_ = parent UpperCamelCase_ = batch_size UpperCamelCase_ = seq_length UpperCamelCase_ = is_training UpperCamelCase_ = use_attention_mask UpperCamelCase_ = use_token_type_ids UpperCamelCase_ = use_labels UpperCamelCase_ = vocab_size UpperCamelCase_ = hidden_size UpperCamelCase_ = num_hidden_layers UpperCamelCase_ = num_attention_heads UpperCamelCase_ = intermediate_size UpperCamelCase_ = hidden_act UpperCamelCase_ = hidden_dropout_prob UpperCamelCase_ = attention_probs_dropout_prob UpperCamelCase_ = max_position_embeddings UpperCamelCase_ = type_vocab_size UpperCamelCase_ = type_sequence_label_size UpperCamelCase_ = initializer_range UpperCamelCase_ = num_choices def UpperCAmelCase_ ( self )-> Optional[Any]: UpperCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase_ = None if self.use_attention_mask: UpperCamelCase_ = random_attention_mask([self.batch_size, self.seq_length] ) UpperCamelCase_ = None if self.use_token_type_ids: UpperCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCamelCase_ = AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_lowercase , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def UpperCAmelCase_ ( self )-> str: UpperCamelCase_ = self.prepare_config_and_inputs() UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = config_and_inputs UpperCamelCase_ = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask} return config, inputs_dict @require_flax class __magic_name__ ( snake_case , unittest.TestCase ): UpperCamelCase_ :Optional[Any] = ( ( FlaxAlbertModel, FlaxAlbertForPreTraining, FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertForQuestionAnswering, ) if is_flax_available() else () ) def UpperCAmelCase_ ( self )-> Optional[int]: UpperCamelCase_ = FlaxAlbertModelTester(self ) @slow def UpperCAmelCase_ ( self )-> str: for model_class_name in self.all_model_classes: UpperCamelCase_ = model_class_name.from_pretrained("albert-base-v2" ) UpperCamelCase_ = model(np.ones((1, 1) ) ) self.assertIsNotNone(_lowercase ) @require_flax class __magic_name__ ( unittest.TestCase ): @slow def UpperCAmelCase_ ( self )-> List[str]: UpperCamelCase_ = FlaxAlbertModel.from_pretrained("albert-base-v2" ) UpperCamelCase_ = np.array([[0, 345, 232, 328, 740, 140, 1_695, 69, 6_078, 1_588, 2]] ) UpperCamelCase_ = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) UpperCamelCase_ = model(_lowercase , attention_mask=_lowercase )[0] UpperCamelCase_ = (1, 11, 768) self.assertEqual(output.shape , _lowercase ) UpperCamelCase_ = np.array( [[[-0.6_513, 1.5_035, -0.2_766], [-0.6_515, 1.5_046, -0.2_780], [-0.6_512, 1.5_049, -0.2_784]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , _lowercase , atol=1e-4 ) )
60
1
# Lint as: python3 # pylint: enable=line-too-long # pylint: disable=g-import-not-at-top,g-bad-import-order,wrong-import-position lowercase : str = """2.13.1""" import platform import pyarrow from packaging import version if version.parse(platform.python_version()) < version.parse("""3.7"""): raise ImportWarning( """To use `datasets`, Python>=3.7 is required, and the current version of Python doesn't match this condition.""" ) if version.parse(pyarrow.__version__).major < 8: raise ImportWarning( """To use `datasets`, the module `pyarrow>=8.0.0` is required, and the current version of `pyarrow` doesn't match this condition.\n""" """If you are running this in a Google Colab, you should probably just restart the runtime to use the right version of `pyarrow`.""" ) del platform del pyarrow del version from .arrow_dataset import Dataset from .arrow_reader import ReadInstruction from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder from .combine import concatenate_datasets, interleave_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .download import * from .features import * from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled from .info import DatasetInfo, MetricInfo from .inspect import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, list_datasets, list_metrics, ) from .iterable_dataset import IterableDataset from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric from .metric import Metric from .splits import ( NamedSplit, NamedSplitAll, Split, SplitBase, SplitDict, SplitGenerator, SplitInfo, SubSplitInfo, percent, ) from .tasks import * from .utils import * from .utils import logging # deprecated modules from datasets import arrow_dataset as _arrow_dataset # isort:skip from datasets import utils as _utils # isort:skip from datasets.utils import download_manager as _deprecated_download_manager # isort:skip lowercase : Optional[Any] = concatenate_datasets lowercase : List[Any] = DownloadConfig lowercase : List[str] = DownloadManager lowercase : int = DownloadMode lowercase : Optional[Any] = DownloadConfig lowercase : Union[str, Any] = DownloadMode lowercase : Dict = DownloadManager del _arrow_dataset, _utils, _deprecated_download_manager
99
'''simple docstring''' from operator import delitem, getitem, setitem import pytest from data_structures.hashing.hash_map import HashMap def __lowerCamelCase ( _lowercase ) -> Optional[Any]: return getitem, k def __lowerCamelCase ( _lowercase , _lowercase ) -> List[str]: return setitem, k, v def __lowerCamelCase ( _lowercase ) -> int: return delitem, k def __lowerCamelCase ( _lowercase , _lowercase , *_lowercase ) -> Optional[Any]: try: return fun(_lowercase , *_lowercase ), None except Exception as e: return None, e a : List[str] = ( _set("""key_a""", """val_a"""), _set("""key_b""", """val_b"""), ) a : List[Any] = [ _set("""key_a""", """val_a"""), _set("""key_a""", """val_b"""), ] a : int = [ _set("""key_a""", """val_a"""), _set("""key_b""", """val_b"""), _del("""key_a"""), _del("""key_b"""), _set("""key_a""", """val_a"""), _del("""key_a"""), ] a : List[Any] = [ _get("""key_a"""), _del("""key_a"""), _set("""key_a""", """val_a"""), _del("""key_a"""), _del("""key_a"""), _get("""key_a"""), ] a : Tuple = [ *[_set(x, x) for x in range(5)], # guaranteed upsize ] a : Optional[Any] = [ *[_set(x, x) for x in range(5)], # guaranteed upsize *[_del(x) for x in range(5)], _set("""key_a""", """val_b"""), ] @pytest.mark.parametrize( """operations""" , ( pytest.param(_add_items , id="""add items""" ), pytest.param(_overwrite_items , id="""overwrite items""" ), pytest.param(_delete_items , id="""delete items""" ), pytest.param(_access_absent_items , id="""access absent items""" ), pytest.param(_add_with_resize_up , id="""add with resize up""" ), pytest.param(_add_with_resize_down , id="""add with resize down""" ), ) , ) def __lowerCamelCase ( _lowercase ) -> Optional[int]: UpperCAmelCase : List[str] = HashMap(initial_block_size=4 ) UpperCAmelCase : Dict = {} for _, (fun, *args) in enumerate(_lowercase ): UpperCAmelCase , UpperCAmelCase : Union[str, Any] = _run_operation(_lowercase , _lowercase , *_lowercase ) UpperCAmelCase , UpperCAmelCase : Any = _run_operation(_lowercase , _lowercase , *_lowercase ) assert my_res == py_res assert str(_lowercase ) == str(_lowercase ) assert set(_lowercase ) == set(_lowercase ) assert len(_lowercase ) == len(_lowercase ) assert set(my.items() ) == set(py.items() ) def __lowerCamelCase ( ) -> List[Any]: def is_public(_lowercase ) -> bool: return not name.startswith("""_""" ) UpperCAmelCase : int = {name for name in dir({} ) if is_public(_lowercase )} UpperCAmelCase : Any = {name for name in dir(HashMap() ) if is_public(_lowercase )} assert dict_public_names > hash_public_names
265
0
import argparse import logging import sys from unittest.mock import patch import run_glue_deebert from transformers.testing_utils import TestCasePlus, get_gpu_count, require_torch_non_multi_gpu, slow logging.basicConfig(level=logging.DEBUG) lowerCamelCase_ : Dict = logging.getLogger() def A__ ( ) -> Union[str, Any]: UpperCamelCase_: List[Any] = argparse.ArgumentParser() parser.add_argument("""-f""" ) UpperCamelCase_: Any = parser.parse_args() return args.f class _UpperCamelCase ( _A ): '''simple docstring''' def lowerCAmelCase__ ( self : Dict ): UpperCamelCase_: Tuple = logging.StreamHandler(sys.stdout ) logger.addHandler(snake_case_ ) def lowerCAmelCase__ ( self : str , snake_case_ : Dict ): UpperCamelCase_: Any = get_gpu_count() if n_gpu > 1: pass # XXX: doesn't quite work with n_gpu > 1 https://github.com/huggingface/transformers/issues/10560 # script = f"{self.examples_dir_str}/research_projects/deebert/run_glue_deebert.py" # distributed_args = f"-m torch.distributed.launch --nproc_per_node={n_gpu} {script}".split() # cmd = [sys.executable] + distributed_args + args # execute_subprocess_async(cmd, env=self.get_env()) # XXX: test the results - need to save them first into .json file else: args.insert(0 , """run_glue_deebert.py""" ) with patch.object(snake_case_ , """argv""" , snake_case_ ): UpperCamelCase_: int = run_glue_deebert.main() for value in result.values(): self.assertGreaterEqual(snake_case_ , 0.666 ) @slow @require_torch_non_multi_gpu def lowerCAmelCase__ ( self : Optional[int] ): UpperCamelCase_: Any = """ --model_type roberta --model_name_or_path roberta-base --task_name MRPC --do_train --do_eval --do_lower_case --data_dir ./tests/fixtures/tests_samples/MRPC/ --max_seq_length 128 --per_gpu_eval_batch_size=1 --per_gpu_train_batch_size=8 --learning_rate 2e-4 --num_train_epochs 3 --overwrite_output_dir --seed 42 --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --plot_data_dir ./examples/deebert/results/ --save_steps 0 --overwrite_cache --eval_after_first_stage """.split() self.run_and_check(snake_case_ ) UpperCamelCase_: Dict = """ --model_type roberta --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --task_name MRPC --do_eval --do_lower_case --data_dir ./tests/fixtures/tests_samples/MRPC/ --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --plot_data_dir ./examples/deebert/results/ --max_seq_length 128 --eval_each_highway --eval_highway --overwrite_cache --per_gpu_eval_batch_size=1 """.split() self.run_and_check(snake_case_ ) UpperCamelCase_: List[str] = """ --model_type roberta --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --task_name MRPC --do_eval --do_lower_case --data_dir ./tests/fixtures/tests_samples/MRPC/ --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --plot_data_dir ./examples/deebert/results/ --max_seq_length 128 --early_exit_entropy 0.1 --eval_highway --overwrite_cache --per_gpu_eval_batch_size=1 """.split() self.run_and_check(snake_case_ )
223
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase_ : Optional[int] = logging.get_logger(__name__) lowerCamelCase_ : Dict = { """studio-ousia/luke-base""": """https://huggingface.co/studio-ousia/luke-base/resolve/main/config.json""", """studio-ousia/luke-large""": """https://huggingface.co/studio-ousia/luke-large/resolve/main/config.json""", } class _UpperCamelCase ( _A ): '''simple docstring''' __UpperCamelCase : Optional[int] = """luke""" def __init__( self : Tuple , snake_case_ : List[Any]=5_0267 , snake_case_ : Any=50_0000 , snake_case_ : str=768 , snake_case_ : int=256 , snake_case_ : str=12 , snake_case_ : int=12 , snake_case_ : Dict=3072 , snake_case_ : Optional[Any]="gelu" , snake_case_ : Dict=0.1 , snake_case_ : List[str]=0.1 , snake_case_ : int=512 , snake_case_ : Dict=2 , snake_case_ : List[Any]=0.02 , snake_case_ : int=1e-12 , snake_case_ : Union[str, Any]=True , snake_case_ : Union[str, Any]=None , snake_case_ : Dict=1 , snake_case_ : Optional[int]=0 , snake_case_ : List[str]=2 , **snake_case_ : Union[str, Any] , ): super().__init__(pad_token_id=snake_case_ , bos_token_id=snake_case_ , eos_token_id=snake_case_ , **snake_case_ ) UpperCamelCase_: Dict = vocab_size UpperCamelCase_: Tuple = entity_vocab_size UpperCamelCase_: Optional[int] = hidden_size UpperCamelCase_: Any = entity_emb_size UpperCamelCase_: str = num_hidden_layers UpperCamelCase_: Union[str, Any] = num_attention_heads UpperCamelCase_: Dict = hidden_act UpperCamelCase_: Dict = intermediate_size UpperCamelCase_: str = hidden_dropout_prob UpperCamelCase_: List[str] = attention_probs_dropout_prob UpperCamelCase_: int = max_position_embeddings UpperCamelCase_: int = type_vocab_size UpperCamelCase_: List[Any] = initializer_range UpperCamelCase_: Union[str, Any] = layer_norm_eps UpperCamelCase_: Tuple = use_entity_aware_attention UpperCamelCase_: int = classifier_dropout
223
1
import argparse import torch from transformers import BertForMaskedLM if __name__ == "__main__": SCREAMING_SNAKE_CASE : int = argparse.ArgumentParser( description=( "Extraction some layers of the full BertForMaskedLM or RObertaForMaskedLM for Transfer Learned" " Distillation" ) ) parser.add_argument("--model_type", default="bert", choices=["bert"]) parser.add_argument("--model_name", default="bert-base-uncased", type=str) parser.add_argument("--dump_checkpoint", default="serialization_dir/tf_bert-base-uncased_0247911.pth", type=str) parser.add_argument("--vocab_transform", action="store_true") SCREAMING_SNAKE_CASE : List[Any] = parser.parse_args() if args.model_type == "bert": SCREAMING_SNAKE_CASE : Any = BertForMaskedLM.from_pretrained(args.model_name) SCREAMING_SNAKE_CASE : Union[str, Any] = "bert" else: raise ValueError("args.model_type should be \"bert\".") SCREAMING_SNAKE_CASE : Any = model.state_dict() SCREAMING_SNAKE_CASE : Tuple = {} for w in ["word_embeddings", "position_embeddings"]: SCREAMING_SNAKE_CASE : Dict = state_dict[F"{prefix}.embeddings.{w}.weight"] for w in ["weight", "bias"]: SCREAMING_SNAKE_CASE : List[str] = state_dict[F"{prefix}.embeddings.LayerNorm.{w}"] SCREAMING_SNAKE_CASE : Dict = 0 for teacher_idx in [0, 2, 4, 7, 9, 11]: for w in ["weight", "bias"]: SCREAMING_SNAKE_CASE : Tuple = state_dict[ F"{prefix}.encoder.layer.{teacher_idx}.attention.self.query.{w}" ] SCREAMING_SNAKE_CASE : Dict = state_dict[ F"{prefix}.encoder.layer.{teacher_idx}.attention.self.key.{w}" ] SCREAMING_SNAKE_CASE : Tuple = state_dict[ F"{prefix}.encoder.layer.{teacher_idx}.attention.self.value.{w}" ] SCREAMING_SNAKE_CASE : Dict = state_dict[ F"{prefix}.encoder.layer.{teacher_idx}.attention.output.dense.{w}" ] SCREAMING_SNAKE_CASE : List[str] = state_dict[ F"{prefix}.encoder.layer.{teacher_idx}.attention.output.LayerNorm.{w}" ] SCREAMING_SNAKE_CASE : Union[str, Any] = state_dict[ F"{prefix}.encoder.layer.{teacher_idx}.intermediate.dense.{w}" ] SCREAMING_SNAKE_CASE : Any = state_dict[ F"{prefix}.encoder.layer.{teacher_idx}.output.dense.{w}" ] SCREAMING_SNAKE_CASE : int = state_dict[ F"{prefix}.encoder.layer.{teacher_idx}.output.LayerNorm.{w}" ] std_idx += 1 SCREAMING_SNAKE_CASE : str = state_dict["cls.predictions.decoder.weight"] SCREAMING_SNAKE_CASE : Optional[int] = state_dict["cls.predictions.bias"] if args.vocab_transform: for w in ["weight", "bias"]: SCREAMING_SNAKE_CASE : List[str] = state_dict[F"cls.predictions.transform.dense.{w}"] SCREAMING_SNAKE_CASE : Optional[int] = state_dict[F"cls.predictions.transform.LayerNorm.{w}"] print(F"N layers selected for distillation: {std_idx}") print(F"Number of params transferred for distillation: {len(compressed_sd.keys())}") print(F"Save transferred checkpoint to {args.dump_checkpoint}.") torch.save(compressed_sd, args.dump_checkpoint)
21
from __future__ import annotations import os import tempfile import unittest from transformers import ConvBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertModel, ) class a__ : def __init__( self : Optional[int],_A : Dict,_A : List[str]=13,_A : List[str]=7,_A : int=True,_A : str=True,_A : Union[str, Any]=True,_A : Tuple=True,_A : Dict=99,_A : Tuple=32,_A : Tuple=2,_A : Tuple=4,_A : Optional[Any]=37,_A : str="gelu",_A : Dict=0.1,_A : List[Any]=0.1,_A : List[str]=512,_A : str=16,_A : int=2,_A : Dict=0.02,_A : List[Any]=3,_A : Optional[Any]=4,_A : Optional[int]=None,): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = parent SCREAMING_SNAKE_CASE_ : Any = 13 SCREAMING_SNAKE_CASE_ : List[str] = 7 SCREAMING_SNAKE_CASE_ : Dict = True SCREAMING_SNAKE_CASE_ : Optional[Any] = True SCREAMING_SNAKE_CASE_ : Tuple = True SCREAMING_SNAKE_CASE_ : List[str] = True SCREAMING_SNAKE_CASE_ : List[str] = 99 SCREAMING_SNAKE_CASE_ : Tuple = 384 SCREAMING_SNAKE_CASE_ : Optional[Any] = 2 SCREAMING_SNAKE_CASE_ : Any = 4 SCREAMING_SNAKE_CASE_ : str = 37 SCREAMING_SNAKE_CASE_ : Optional[Any] = "gelu" SCREAMING_SNAKE_CASE_ : List[Any] = 0.1 SCREAMING_SNAKE_CASE_ : Union[str, Any] = 0.1 SCREAMING_SNAKE_CASE_ : Dict = 512 SCREAMING_SNAKE_CASE_ : int = 16 SCREAMING_SNAKE_CASE_ : Optional[int] = 2 SCREAMING_SNAKE_CASE_ : Any = 0.02 SCREAMING_SNAKE_CASE_ : str = 3 SCREAMING_SNAKE_CASE_ : int = 4 SCREAMING_SNAKE_CASE_ : Dict = 128 SCREAMING_SNAKE_CASE_ : Any = 2 SCREAMING_SNAKE_CASE_ : Tuple = 9 SCREAMING_SNAKE_CASE_ : List[Any] = 1 SCREAMING_SNAKE_CASE_ : Any = None def __UpperCamelCase ( self : str ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = ids_tensor([self.batch_size, self.seq_length],self.vocab_size ) SCREAMING_SNAKE_CASE_ : Any = None if self.use_input_mask: SCREAMING_SNAKE_CASE_ : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE_ : List[str] = None if self.use_token_type_ids: SCREAMING_SNAKE_CASE_ : List[Any] = ids_tensor([self.batch_size, self.seq_length],self.type_vocab_size ) SCREAMING_SNAKE_CASE_ : Dict = None SCREAMING_SNAKE_CASE_ : Dict = None SCREAMING_SNAKE_CASE_ : str = None if self.use_labels: SCREAMING_SNAKE_CASE_ : List[str] = ids_tensor([self.batch_size],self.type_sequence_label_size ) SCREAMING_SNAKE_CASE_ : Dict = ids_tensor([self.batch_size, self.seq_length],self.num_labels ) SCREAMING_SNAKE_CASE_ : List[str] = ids_tensor([self.batch_size],self.num_choices ) SCREAMING_SNAKE_CASE_ : Any = ConvBertConfig( vocab_size=self.vocab_size,hidden_size=self.hidden_size,num_hidden_layers=self.num_hidden_layers,num_attention_heads=self.num_attention_heads,intermediate_size=self.intermediate_size,hidden_act=self.hidden_act,hidden_dropout_prob=self.hidden_dropout_prob,attention_probs_dropout_prob=self.attention_probs_dropout_prob,max_position_embeddings=self.max_position_embeddings,type_vocab_size=self.type_vocab_size,initializer_range=self.initializer_range,return_dict=_A,) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __UpperCamelCase ( self : Optional[int],_A : List[Any],_A : int,_A : Tuple,_A : Optional[int],_A : Union[str, Any],_A : Union[str, Any],_A : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = TFConvBertModel(config=_A ) SCREAMING_SNAKE_CASE_ : Optional[int] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} SCREAMING_SNAKE_CASE_ : str = [input_ids, input_mask] SCREAMING_SNAKE_CASE_ : List[str] = model(_A ) SCREAMING_SNAKE_CASE_ : Dict = model(_A ) self.parent.assertEqual(result.last_hidden_state.shape,(self.batch_size, self.seq_length, self.hidden_size) ) def __UpperCamelCase ( self : Dict,_A : Dict,_A : int,_A : Union[str, Any],_A : List[Any],_A : int,_A : str,_A : int ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = TFConvBertForMaskedLM(config=_A ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } SCREAMING_SNAKE_CASE_ : List[Any] = model(_A ) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.seq_length, self.vocab_size) ) def __UpperCamelCase ( self : Any,_A : Optional[int],_A : List[Any],_A : Union[str, Any],_A : List[Any],_A : Union[str, Any],_A : Optional[int],_A : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = self.num_labels SCREAMING_SNAKE_CASE_ : Any = TFConvBertForSequenceClassification(config=_A ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } SCREAMING_SNAKE_CASE_ : Optional[Any] = model(_A ) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.num_labels) ) def __UpperCamelCase ( self : int,_A : int,_A : Dict,_A : List[str],_A : Tuple,_A : Dict,_A : Optional[int],_A : int ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = self.num_choices SCREAMING_SNAKE_CASE_ : Optional[int] = TFConvBertForMultipleChoice(config=_A ) SCREAMING_SNAKE_CASE_ : Any = tf.tile(tf.expand_dims(_A,1 ),(1, self.num_choices, 1) ) SCREAMING_SNAKE_CASE_ : Any = tf.tile(tf.expand_dims(_A,1 ),(1, self.num_choices, 1) ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = tf.tile(tf.expand_dims(_A,1 ),(1, self.num_choices, 1) ) SCREAMING_SNAKE_CASE_ : int = { "input_ids": multiple_choice_inputs_ids, "attention_mask": multiple_choice_input_mask, "token_type_ids": multiple_choice_token_type_ids, } SCREAMING_SNAKE_CASE_ : int = model(_A ) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.num_choices) ) def __UpperCamelCase ( self : List[Any],_A : Union[str, Any],_A : int,_A : Optional[int],_A : str,_A : str,_A : Tuple,_A : str ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = self.num_labels SCREAMING_SNAKE_CASE_ : Union[str, Any] = TFConvBertForTokenClassification(config=_A ) SCREAMING_SNAKE_CASE_ : Tuple = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } SCREAMING_SNAKE_CASE_ : str = model(_A ) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.seq_length, self.num_labels) ) def __UpperCamelCase ( self : List[Any],_A : int,_A : List[str],_A : List[Any],_A : Any,_A : Optional[int],_A : List[str],_A : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = TFConvBertForQuestionAnswering(config=_A ) SCREAMING_SNAKE_CASE_ : Dict = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } SCREAMING_SNAKE_CASE_ : Any = model(_A ) self.parent.assertEqual(result.start_logits.shape,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape,(self.batch_size, self.seq_length) ) def __UpperCamelCase ( self : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ) : List[Any] = config_and_inputs SCREAMING_SNAKE_CASE_ : Any = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_tf class a__ ( A__ , A__ , unittest.TestCase ): A = ( ( TFConvBertModel, TFConvBertForMaskedLM, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertForMultipleChoice, ) if is_tf_available() else () ) A = ( { 'feature-extraction': TFConvBertModel, 'fill-mask': TFConvBertForMaskedLM, 'question-answering': TFConvBertForQuestionAnswering, 'text-classification': TFConvBertForSequenceClassification, 'token-classification': TFConvBertForTokenClassification, 'zero-shot': TFConvBertForSequenceClassification, } if is_tf_available() else {} ) A = False A = False A = False def __UpperCamelCase ( self : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = TFConvBertModelTester(self ) SCREAMING_SNAKE_CASE_ : Tuple = ConfigTester(self,config_class=_A,hidden_size=37 ) def __UpperCamelCase ( self : Optional[int] ): """simple docstring""" self.config_tester.run_common_tests() def __UpperCamelCase ( self : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A ) def __UpperCamelCase ( self : Optional[int] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_A ) def __UpperCamelCase ( self : Optional[int] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*_A ) def __UpperCamelCase ( self : str ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_A ) def __UpperCamelCase ( self : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_A ) def __UpperCamelCase ( self : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_A ) @slow def __UpperCamelCase ( self : Optional[int] ): """simple docstring""" SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE_ : List[str] = True SCREAMING_SNAKE_CASE_ : Any = True if hasattr(_A,"use_cache" ): SCREAMING_SNAKE_CASE_ : List[Any] = True SCREAMING_SNAKE_CASE_ : int = getattr(self.model_tester,"encoder_seq_length",self.model_tester.seq_length ) SCREAMING_SNAKE_CASE_ : Optional[Any] = getattr(self.model_tester,"key_length",_A ) for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_ : List[str] = self._prepare_for_class(_A,_A ) SCREAMING_SNAKE_CASE_ : List[Any] = model_class(_A ) SCREAMING_SNAKE_CASE_ : Optional[int] = len(model(_A ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_A,saved_model=_A ) SCREAMING_SNAKE_CASE_ : Optional[Any] = os.path.join(_A,"saved_model","1" ) SCREAMING_SNAKE_CASE_ : Tuple = tf.keras.models.load_model(_A ) SCREAMING_SNAKE_CASE_ : str = model(_A ) if self.is_encoder_decoder: SCREAMING_SNAKE_CASE_ : Optional[Any] = outputs["encoder_hidden_states"] SCREAMING_SNAKE_CASE_ : str = outputs["encoder_attentions"] else: SCREAMING_SNAKE_CASE_ : Any = outputs["hidden_states"] SCREAMING_SNAKE_CASE_ : List[str] = outputs["attentions"] self.assertEqual(len(_A ),_A ) SCREAMING_SNAKE_CASE_ : Any = getattr( self.model_tester,"expected_num_hidden_layers",self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(_A ),_A ) self.assertListEqual( list(output_hidden_states[0].shape[-2:] ),[self.model_tester.seq_length, self.model_tester.hidden_size],) self.assertEqual(len(_A ),self.model_tester.num_hidden_layers ) self.assertListEqual( list(output_attentions[0].shape[-3:] ),[self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length],) @slow def __UpperCamelCase ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = TFConvBertModel.from_pretrained("YituTech/conv-bert-base" ) self.assertIsNotNone(_A ) def __UpperCamelCase ( self : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Any = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE_ : List[str] = True SCREAMING_SNAKE_CASE_ : List[str] = getattr(self.model_tester,"decoder_seq_length",self.model_tester.seq_length ) SCREAMING_SNAKE_CASE_ : Any = getattr(self.model_tester,"encoder_seq_length",self.model_tester.seq_length ) SCREAMING_SNAKE_CASE_ : Optional[int] = getattr(self.model_tester,"key_length",_A ) SCREAMING_SNAKE_CASE_ : int = getattr(self.model_tester,"key_length",_A ) def check_decoder_attentions_output(_A : Dict ): SCREAMING_SNAKE_CASE_ : int = len(_A ) self.assertEqual(out_len % 2,0 ) SCREAMING_SNAKE_CASE_ : Tuple = outputs.decoder_attentions self.assertEqual(len(_A ),self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ),[self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length],) def check_encoder_attentions_output(_A : Tuple ): SCREAMING_SNAKE_CASE_ : int = [ t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions) ] self.assertEqual(len(_A ),self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ),[self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length],) for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_ : Optional[Any] = True SCREAMING_SNAKE_CASE_ : Optional[Any] = False SCREAMING_SNAKE_CASE_ : Tuple = model_class(_A ) SCREAMING_SNAKE_CASE_ : Any = model(self._prepare_for_class(_A,_A ) ) SCREAMING_SNAKE_CASE_ : Tuple = len(_A ) self.assertEqual(config.output_hidden_states,_A ) check_encoder_attentions_output(_A ) if self.is_encoder_decoder: SCREAMING_SNAKE_CASE_ : Optional[Any] = model_class(_A ) SCREAMING_SNAKE_CASE_ : int = model(self._prepare_for_class(_A,_A ) ) self.assertEqual(config.output_hidden_states,_A ) check_decoder_attentions_output(_A ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] SCREAMING_SNAKE_CASE_ : str = True SCREAMING_SNAKE_CASE_ : int = model_class(_A ) SCREAMING_SNAKE_CASE_ : List[str] = model(self._prepare_for_class(_A,_A ) ) self.assertEqual(config.output_hidden_states,_A ) check_encoder_attentions_output(_A ) # Check attention is always last and order is fine SCREAMING_SNAKE_CASE_ : str = True SCREAMING_SNAKE_CASE_ : int = True SCREAMING_SNAKE_CASE_ : Dict = model_class(_A ) SCREAMING_SNAKE_CASE_ : str = model(self._prepare_for_class(_A,_A ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1),len(_A ) ) self.assertEqual(model.config.output_hidden_states,_A ) check_encoder_attentions_output(_A ) @require_tf class a__ ( unittest.TestCase ): @slow def __UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = TFConvBertModel.from_pretrained("YituTech/conv-bert-base" ) SCREAMING_SNAKE_CASE_ : int = tf.constant([[0, 1, 2, 3, 4, 5]] ) SCREAMING_SNAKE_CASE_ : Tuple = model(_A )[0] SCREAMING_SNAKE_CASE_ : List[Any] = [1, 6, 768] self.assertEqual(output.shape,_A ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = tf.constant( [ [ [-0.03475493, -0.4686034, -0.30638832], [0.22637248, -0.26988646, -0.7423424], [0.10324868, -0.45013508, -0.58280784], ] ] ) tf.debugging.assert_near(output[:, :3, :3],_A,atol=1E-4 )
18
0
from string import ascii_lowercase, ascii_uppercase def UpperCamelCase ( _A ): """simple docstring""" if not sentence: return "" __magic_name__ : Union[str, Any] = dict(zip(_A, _A ) ) return lower_to_upper.get(sentence[0], sentence[0] ) + sentence[1:] if __name__ == "__main__": from doctest import testmod testmod()
138
from decimal import Decimal, getcontext from math import ceil, factorial def UpperCamelCase ( _A ): """simple docstring""" if not isinstance(_A, _A ): raise TypeError("""Undefined for non-integers""" ) elif precision < 1: raise ValueError("""Undefined for non-natural numbers""" ) __magic_name__ : Dict = precision __magic_name__ : str = ceil(precision / 14 ) __magic_name__ : List[str] = 426880 * Decimal(10005 ).sqrt() __magic_name__ : List[Any] = 1 __magic_name__ : Dict = 13591409 __magic_name__ : Tuple = Decimal(_A ) for k in range(1, _A ): __magic_name__ : List[Any] = factorial(6 * k ) // (factorial(3 * k ) * factorial(_A ) ** 3) linear_term += 545140134 exponential_term *= -262537412640768000 partial_sum += Decimal(multinomial_term * linear_term ) / exponential_term return str(constant_term / partial_sum )[:-1] if __name__ == "__main__": __magic_name__: Tuple = 50 print(F"""The first {n} digits of pi is: {pi(n)}""")
138
1
import unittest from transformers import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING, is_vision_available, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class __lowerCAmelCase : @staticmethod def lowerCamelCase ( *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' pass @is_pipeline_test @require_vision @require_torch class __lowerCAmelCase ( unittest.TestCase ): lowerCAmelCase__ = MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = pipeline( '''zero-shot-object-detection''' , model='''hf-internal-testing/tiny-random-owlvit-object-detection''' ) __lowerCamelCase = [ { '''image''': '''./tests/fixtures/tests_samples/COCO/000000039769.png''', '''candidate_labels''': ['''cat''', '''remote''', '''couch'''], } ] return object_detector, examples def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = object_detector(examples[0] , threshold=0.0 ) __lowerCamelCase = len(__lowercase ) self.assertGreater(__lowercase , 0 ) self.assertEqual( __lowercase , [ { '''score''': ANY(__lowercase ), '''label''': ANY(__lowercase ), '''box''': {'''xmin''': ANY(__lowercase ), '''ymin''': ANY(__lowercase ), '''xmax''': ANY(__lowercase ), '''ymax''': ANY(__lowercase )}, } for i in range(__lowercase ) ] , ) @require_tf @unittest.skip('''Zero Shot Object Detection not implemented in TF''' ) def lowerCamelCase ( self ): '''simple docstring''' pass @require_torch def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = pipeline( '''zero-shot-object-detection''' , model='''hf-internal-testing/tiny-random-owlvit-object-detection''' ) __lowerCamelCase = object_detector( '''./tests/fixtures/tests_samples/COCO/000000039769.png''' , candidate_labels=['''cat''', '''remote''', '''couch'''] , threshold=0.64 , ) self.assertEqual( nested_simplify(__lowercase , decimals=4 ) , [ {'''score''': 0.7_235, '''label''': '''cat''', '''box''': {'''xmin''': 204, '''ymin''': 167, '''xmax''': 232, '''ymax''': 190}}, {'''score''': 0.7_218, '''label''': '''remote''', '''box''': {'''xmin''': 204, '''ymin''': 167, '''xmax''': 232, '''ymax''': 190}}, {'''score''': 0.7_184, '''label''': '''couch''', '''box''': {'''xmin''': 204, '''ymin''': 167, '''xmax''': 232, '''ymax''': 190}}, {'''score''': 0.6_748, '''label''': '''remote''', '''box''': {'''xmin''': 571, '''ymin''': 83, '''xmax''': 598, '''ymax''': 103}}, {'''score''': 0.6_656, '''label''': '''cat''', '''box''': {'''xmin''': 571, '''ymin''': 83, '''xmax''': 598, '''ymax''': 103}}, {'''score''': 0.6_614, '''label''': '''couch''', '''box''': {'''xmin''': 571, '''ymin''': 83, '''xmax''': 598, '''ymax''': 103}}, {'''score''': 0.6_456, '''label''': '''remote''', '''box''': {'''xmin''': 494, '''ymin''': 105, '''xmax''': 521, '''ymax''': 127}}, {'''score''': 0.642, '''label''': '''remote''', '''box''': {'''xmin''': 67, '''ymin''': 274, '''xmax''': 93, '''ymax''': 297}}, {'''score''': 0.6_419, '''label''': '''cat''', '''box''': {'''xmin''': 494, '''ymin''': 105, '''xmax''': 521, '''ymax''': 127}}, ] , ) __lowerCamelCase = object_detector( [ { '''image''': '''./tests/fixtures/tests_samples/COCO/000000039769.png''', '''candidate_labels''': ['''cat''', '''remote''', '''couch'''], } ] , threshold=0.64 , ) self.assertEqual( nested_simplify(__lowercase , decimals=4 ) , [ [ {'''score''': 0.7_235, '''label''': '''cat''', '''box''': {'''xmin''': 204, '''ymin''': 167, '''xmax''': 232, '''ymax''': 190}}, {'''score''': 0.7_218, '''label''': '''remote''', '''box''': {'''xmin''': 204, '''ymin''': 167, '''xmax''': 232, '''ymax''': 190}}, {'''score''': 0.7_184, '''label''': '''couch''', '''box''': {'''xmin''': 204, '''ymin''': 167, '''xmax''': 232, '''ymax''': 190}}, {'''score''': 0.6_748, '''label''': '''remote''', '''box''': {'''xmin''': 571, '''ymin''': 83, '''xmax''': 598, '''ymax''': 103}}, {'''score''': 0.6_656, '''label''': '''cat''', '''box''': {'''xmin''': 571, '''ymin''': 83, '''xmax''': 598, '''ymax''': 103}}, {'''score''': 0.6_614, '''label''': '''couch''', '''box''': {'''xmin''': 571, '''ymin''': 83, '''xmax''': 598, '''ymax''': 103}}, {'''score''': 0.6_456, '''label''': '''remote''', '''box''': {'''xmin''': 494, '''ymin''': 105, '''xmax''': 521, '''ymax''': 127}}, {'''score''': 0.642, '''label''': '''remote''', '''box''': {'''xmin''': 67, '''ymin''': 274, '''xmax''': 93, '''ymax''': 297}}, {'''score''': 0.6_419, '''label''': '''cat''', '''box''': {'''xmin''': 494, '''ymin''': 105, '''xmax''': 521, '''ymax''': 127}}, ] ] , ) @require_torch @slow def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = pipeline('''zero-shot-object-detection''' ) __lowerCamelCase = object_detector( '''http://images.cocodataset.org/val2017/000000039769.jpg''' , candidate_labels=['''cat''', '''remote''', '''couch'''] , ) self.assertEqual( nested_simplify(__lowercase , decimals=4 ) , [ {'''score''': 0.2_868, '''label''': '''cat''', '''box''': {'''xmin''': 324, '''ymin''': 20, '''xmax''': 640, '''ymax''': 373}}, {'''score''': 0.277, '''label''': '''remote''', '''box''': {'''xmin''': 40, '''ymin''': 72, '''xmax''': 177, '''ymax''': 115}}, {'''score''': 0.2_537, '''label''': '''cat''', '''box''': {'''xmin''': 1, '''ymin''': 55, '''xmax''': 315, '''ymax''': 472}}, {'''score''': 0.1_474, '''label''': '''remote''', '''box''': {'''xmin''': 335, '''ymin''': 74, '''xmax''': 371, '''ymax''': 187}}, {'''score''': 0.1_208, '''label''': '''couch''', '''box''': {'''xmin''': 4, '''ymin''': 0, '''xmax''': 642, '''ymax''': 476}}, ] , ) __lowerCamelCase = object_detector( [ { '''image''': '''http://images.cocodataset.org/val2017/000000039769.jpg''', '''candidate_labels''': ['''cat''', '''remote''', '''couch'''], }, { '''image''': '''http://images.cocodataset.org/val2017/000000039769.jpg''', '''candidate_labels''': ['''cat''', '''remote''', '''couch'''], }, ] , ) self.assertEqual( nested_simplify(__lowercase , decimals=4 ) , [ [ {'''score''': 0.2_868, '''label''': '''cat''', '''box''': {'''xmin''': 324, '''ymin''': 20, '''xmax''': 640, '''ymax''': 373}}, {'''score''': 0.277, '''label''': '''remote''', '''box''': {'''xmin''': 40, '''ymin''': 72, '''xmax''': 177, '''ymax''': 115}}, {'''score''': 0.2_537, '''label''': '''cat''', '''box''': {'''xmin''': 1, '''ymin''': 55, '''xmax''': 315, '''ymax''': 472}}, {'''score''': 0.1_474, '''label''': '''remote''', '''box''': {'''xmin''': 335, '''ymin''': 74, '''xmax''': 371, '''ymax''': 187}}, {'''score''': 0.1_208, '''label''': '''couch''', '''box''': {'''xmin''': 4, '''ymin''': 0, '''xmax''': 642, '''ymax''': 476}}, ], [ {'''score''': 0.2_868, '''label''': '''cat''', '''box''': {'''xmin''': 324, '''ymin''': 20, '''xmax''': 640, '''ymax''': 373}}, {'''score''': 0.277, '''label''': '''remote''', '''box''': {'''xmin''': 40, '''ymin''': 72, '''xmax''': 177, '''ymax''': 115}}, {'''score''': 0.2_537, '''label''': '''cat''', '''box''': {'''xmin''': 1, '''ymin''': 55, '''xmax''': 315, '''ymax''': 472}}, {'''score''': 0.1_474, '''label''': '''remote''', '''box''': {'''xmin''': 335, '''ymin''': 74, '''xmax''': 371, '''ymax''': 187}}, {'''score''': 0.1_208, '''label''': '''couch''', '''box''': {'''xmin''': 4, '''ymin''': 0, '''xmax''': 642, '''ymax''': 476}}, ], ] , ) @require_tf @unittest.skip('''Zero Shot Object Detection not implemented in TF''' ) def lowerCamelCase ( self ): '''simple docstring''' pass @require_torch @slow def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = 0.2 __lowerCamelCase = pipeline('''zero-shot-object-detection''' ) __lowerCamelCase = object_detector( '''http://images.cocodataset.org/val2017/000000039769.jpg''' , candidate_labels=['''cat''', '''remote''', '''couch'''] , threshold=__lowercase , ) self.assertEqual( nested_simplify(__lowercase , decimals=4 ) , [ {'''score''': 0.2_868, '''label''': '''cat''', '''box''': {'''xmin''': 324, '''ymin''': 20, '''xmax''': 640, '''ymax''': 373}}, {'''score''': 0.277, '''label''': '''remote''', '''box''': {'''xmin''': 40, '''ymin''': 72, '''xmax''': 177, '''ymax''': 115}}, {'''score''': 0.2_537, '''label''': '''cat''', '''box''': {'''xmin''': 1, '''ymin''': 55, '''xmax''': 315, '''ymax''': 472}}, ] , ) @require_torch @slow def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = 2 __lowerCamelCase = pipeline('''zero-shot-object-detection''' ) __lowerCamelCase = object_detector( '''http://images.cocodataset.org/val2017/000000039769.jpg''' , candidate_labels=['''cat''', '''remote''', '''couch'''] , top_k=__lowercase , ) self.assertEqual( nested_simplify(__lowercase , decimals=4 ) , [ {'''score''': 0.2_868, '''label''': '''cat''', '''box''': {'''xmin''': 324, '''ymin''': 20, '''xmax''': 640, '''ymax''': 373}}, {'''score''': 0.277, '''label''': '''remote''', '''box''': {'''xmin''': 40, '''ymin''': 72, '''xmax''': 177, '''ymax''': 115}}, ] , )
330
import platform from argparse import ArgumentParser import huggingface_hub from .. import __version__ as version from ..utils import is_accelerate_available, is_torch_available, is_transformers_available, is_xformers_available from . import BaseDiffusersCLICommand def lowerCAmelCase ( lowerCAmelCase_ )-> Union[str, Any]: return EnvironmentCommand() class snake_case__( UpperCAmelCase__ ): '''simple docstring''' @staticmethod def lowercase_ ( __lowercase ) -> List[Any]: lowerCAmelCase_ : List[str] = parser.add_parser('''env''' ) download_parser.set_defaults(func=__lowercase ) def lowercase_ ( self ) -> int: lowerCAmelCase_ : Optional[Any] = huggingface_hub.__version__ lowerCAmelCase_ : str = '''not installed''' lowerCAmelCase_ : str = '''NA''' if is_torch_available(): import torch lowerCAmelCase_ : Any = torch.__version__ lowerCAmelCase_ : str = torch.cuda.is_available() lowerCAmelCase_ : List[str] = '''not installed''' if is_transformers_available(): import transformers lowerCAmelCase_ : Any = transformers.__version__ lowerCAmelCase_ : Optional[Any] = '''not installed''' if is_accelerate_available(): import accelerate lowerCAmelCase_ : List[Any] = accelerate.__version__ lowerCAmelCase_ : List[str] = '''not installed''' if is_xformers_available(): import xformers lowerCAmelCase_ : Optional[Any] = xformers.__version__ lowerCAmelCase_ : int = { '''`diffusers` version''': version, '''Platform''': platform.platform(), '''Python version''': platform.python_version(), '''PyTorch version (GPU?)''': f"""{pt_version} ({pt_cuda_available})""", '''Huggingface_hub version''': hub_version, '''Transformers version''': transformers_version, '''Accelerate version''': accelerate_version, '''xFormers version''': xformers_version, '''Using GPU in script?''': '''<fill in>''', '''Using distributed or parallel set-up in script?''': '''<fill in>''', } print('''\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n''' ) print(self.format_dict(__lowercase ) ) return info @staticmethod def lowercase_ ( __lowercase ) -> str: return "\n".join([f"""- {prop}: {val}""" for prop, val in d.items()] ) + "\n"
262
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _UpperCamelCase = { '''configuration_electra''': ['''ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ElectraConfig''', '''ElectraOnnxConfig'''], '''tokenization_electra''': ['''ElectraTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = ['''ElectraTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = [ '''ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ElectraForCausalLM''', '''ElectraForMaskedLM''', '''ElectraForMultipleChoice''', '''ElectraForPreTraining''', '''ElectraForQuestionAnswering''', '''ElectraForSequenceClassification''', '''ElectraForTokenClassification''', '''ElectraModel''', '''ElectraPreTrainedModel''', '''load_tf_weights_in_electra''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = [ '''TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFElectraForMaskedLM''', '''TFElectraForMultipleChoice''', '''TFElectraForPreTraining''', '''TFElectraForQuestionAnswering''', '''TFElectraForSequenceClassification''', '''TFElectraForTokenClassification''', '''TFElectraModel''', '''TFElectraPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = [ '''FlaxElectraForCausalLM''', '''FlaxElectraForMaskedLM''', '''FlaxElectraForMultipleChoice''', '''FlaxElectraForPreTraining''', '''FlaxElectraForQuestionAnswering''', '''FlaxElectraForSequenceClassification''', '''FlaxElectraForTokenClassification''', '''FlaxElectraModel''', '''FlaxElectraPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_electra import ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, ElectraConfig, ElectraOnnxConfig from .tokenization_electra import ElectraTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_electra_fast import ElectraTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_electra import ( ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, ElectraForCausalLM, ElectraForMaskedLM, ElectraForMultipleChoice, ElectraForPreTraining, ElectraForQuestionAnswering, ElectraForSequenceClassification, ElectraForTokenClassification, ElectraModel, ElectraPreTrainedModel, load_tf_weights_in_electra, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_electra import ( TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, TFElectraForMaskedLM, TFElectraForMultipleChoice, TFElectraForPreTraining, TFElectraForQuestionAnswering, TFElectraForSequenceClassification, TFElectraForTokenClassification, TFElectraModel, TFElectraPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_electra import ( FlaxElectraForCausalLM, FlaxElectraForMaskedLM, FlaxElectraForMultipleChoice, FlaxElectraForPreTraining, FlaxElectraForQuestionAnswering, FlaxElectraForSequenceClassification, FlaxElectraForTokenClassification, FlaxElectraModel, FlaxElectraPreTrainedModel, ) else: import sys _UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
16
'''simple docstring''' import gc import unittest from transformers import MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, FillMaskPipeline, pipeline from transformers.pipelines import PipelineException from transformers.testing_utils import ( is_pipeline_test, is_torch_available, nested_simplify, require_tf, require_torch, require_torch_gpu, slow, ) from .test_pipelines_common import ANY @is_pipeline_test class _A ( unittest.TestCase ): _SCREAMING_SNAKE_CASE : Optional[Any] = MODEL_FOR_MASKED_LM_MAPPING _SCREAMING_SNAKE_CASE : Tuple = TF_MODEL_FOR_MASKED_LM_MAPPING def __A ( self ) -> Any: '''simple docstring''' super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() if is_torch_available(): import torch torch.cuda.empty_cache() @require_tf def __A ( self ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase : List[str] = pipeline(task="""fill-mask""" , model="""sshleifer/tiny-distilroberta-base""" , top_k=2 , framework="""tf""" ) __UpperCAmelCase : Union[str, Any] = unmasker("""My name is <mask>""" ) self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=6 ) , [ {"""sequence""": """My name is grouped""", """score""": 2.1E-05, """token""": 38_015, """token_str""": """ grouped"""}, {"""sequence""": """My name is accuser""", """score""": 2.1E-05, """token""": 25_506, """token_str""": """ accuser"""}, ] , ) __UpperCAmelCase : List[str] = unmasker("""The largest city in France is <mask>""" ) self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=6 ) , [ { """sequence""": """The largest city in France is grouped""", """score""": 2.1E-05, """token""": 38_015, """token_str""": """ grouped""", }, { """sequence""": """The largest city in France is accuser""", """score""": 2.1E-05, """token""": 25_506, """token_str""": """ accuser""", }, ] , ) __UpperCAmelCase : Union[str, Any] = unmasker("""My name is <mask>""" , targets=[""" Patrick""", """ Clara""", """ Teven"""] , top_k=3 ) self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=6 ) , [ {"""sequence""": """My name is Clara""", """score""": 2E-05, """token""": 13_606, """token_str""": """ Clara"""}, {"""sequence""": """My name is Patrick""", """score""": 2E-05, """token""": 3_499, """token_str""": """ Patrick"""}, {"""sequence""": """My name is Te""", """score""": 1.9E-05, """token""": 2_941, """token_str""": """ Te"""}, ] , ) @require_torch def __A ( self ) -> Dict: '''simple docstring''' __UpperCAmelCase : Dict = pipeline(task="""fill-mask""" , model="""sshleifer/tiny-distilroberta-base""" , top_k=2 , framework="""pt""" ) __UpperCAmelCase : Union[str, Any] = unmasker("""My name is <mask>""" ) self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=6 ) , [ {"""sequence""": """My name is Maul""", """score""": 2.2E-05, """token""": 35_676, """token_str""": """ Maul"""}, {"""sequence""": """My name isELS""", """score""": 2.2E-05, """token""": 16_416, """token_str""": """ELS"""}, ] , ) __UpperCAmelCase : Dict = unmasker("""The largest city in France is <mask>""" ) self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=6 ) , [ { """sequence""": """The largest city in France is Maul""", """score""": 2.2E-05, """token""": 35_676, """token_str""": """ Maul""", }, {"""sequence""": """The largest city in France isELS""", """score""": 2.2E-05, """token""": 16_416, """token_str""": """ELS"""}, ] , ) __UpperCAmelCase : str = unmasker("""My name is <mask>""" , targets=[""" Patrick""", """ Clara""", """ Teven"""] , top_k=3 ) self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=6 ) , [ {"""sequence""": """My name is Patrick""", """score""": 2.1E-05, """token""": 3_499, """token_str""": """ Patrick"""}, {"""sequence""": """My name is Te""", """score""": 2E-05, """token""": 2_941, """token_str""": """ Te"""}, {"""sequence""": """My name is Clara""", """score""": 2E-05, """token""": 13_606, """token_str""": """ Clara"""}, ] , ) __UpperCAmelCase : Optional[int] = unmasker("""My name is <mask> <mask>""" , top_k=2 ) self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=6 ) , [ [ { """score""": 2.2E-05, """token""": 35_676, """token_str""": """ Maul""", """sequence""": """<s>My name is Maul<mask></s>""", }, {"""score""": 2.2E-05, """token""": 16_416, """token_str""": """ELS""", """sequence""": """<s>My name isELS<mask></s>"""}, ], [ { """score""": 2.2E-05, """token""": 35_676, """token_str""": """ Maul""", """sequence""": """<s>My name is<mask> Maul</s>""", }, {"""score""": 2.2E-05, """token""": 16_416, """token_str""": """ELS""", """sequence""": """<s>My name is<mask>ELS</s>"""}, ], ] , ) @require_torch_gpu def __A ( self ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : List[str] = pipeline("""fill-mask""" , model="""hf-internal-testing/tiny-random-distilbert""" , device=0 , framework="""pt""" ) # convert model to fp16 pipe.model.half() __UpperCAmelCase : str = pipe("""Paris is the [MASK] of France.""" ) # We actually don't care about the result, we just want to make sure # it works, meaning the float16 tensor got casted back to float32 # for postprocessing. self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) @slow @require_torch def __A ( self ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase : Any = pipeline(task="""fill-mask""" , model="""distilroberta-base""" , top_k=2 , framework="""pt""" ) self.run_large_test(__UpperCAmelCase ) @slow @require_tf def __A ( self ) -> int: '''simple docstring''' __UpperCAmelCase : int = pipeline(task="""fill-mask""" , model="""distilroberta-base""" , top_k=2 , framework="""tf""" ) self.run_large_test(__UpperCAmelCase ) def __A ( self , __UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = unmasker("""My name is <mask>""" ) self.assertEqual( nested_simplify(__UpperCAmelCase ) , [ {"""sequence""": """My name is John""", """score""": 0.008, """token""": 610, """token_str""": """ John"""}, {"""sequence""": """My name is Chris""", """score""": 0.007, """token""": 1_573, """token_str""": """ Chris"""}, ] , ) __UpperCAmelCase : Optional[int] = unmasker("""The largest city in France is <mask>""" ) self.assertEqual( nested_simplify(__UpperCAmelCase ) , [ { """sequence""": """The largest city in France is Paris""", """score""": 0.251, """token""": 2_201, """token_str""": """ Paris""", }, { """sequence""": """The largest city in France is Lyon""", """score""": 0.214, """token""": 12_790, """token_str""": """ Lyon""", }, ] , ) __UpperCAmelCase : Optional[int] = unmasker("""My name is <mask>""" , targets=[""" Patrick""", """ Clara""", """ Teven"""] , top_k=3 ) self.assertEqual( nested_simplify(__UpperCAmelCase ) , [ {"""sequence""": """My name is Patrick""", """score""": 0.005, """token""": 3_499, """token_str""": """ Patrick"""}, {"""sequence""": """My name is Clara""", """score""": 0.000, """token""": 13_606, """token_str""": """ Clara"""}, {"""sequence""": """My name is Te""", """score""": 0.000, """token""": 2_941, """token_str""": """ Te"""}, ] , ) @require_torch def __A ( self ) -> List[str]: '''simple docstring''' __UpperCAmelCase : Dict = pipeline(task="""fill-mask""" , model="""sshleifer/tiny-distilroberta-base""" , framework="""pt""" ) __UpperCAmelCase : Tuple = None __UpperCAmelCase : int = None self.run_pipeline_test(__UpperCAmelCase , [] ) @require_tf def __A ( self ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : Dict = pipeline(task="""fill-mask""" , model="""sshleifer/tiny-distilroberta-base""" , framework="""tf""" ) __UpperCAmelCase : Optional[int] = None __UpperCAmelCase : str = None self.run_pipeline_test(__UpperCAmelCase , [] ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Any: '''simple docstring''' if tokenizer is None or tokenizer.mask_token_id is None: self.skipTest("""The provided tokenizer has no mask token, (probably reformer or wav2vec2)""" ) __UpperCAmelCase : str = FillMaskPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase ) __UpperCAmelCase : int = [ f'This is another {tokenizer.mask_token} test', ] return fill_masker, examples def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : Optional[int] = fill_masker.tokenizer __UpperCAmelCase : Union[str, Any] = fill_masker.model __UpperCAmelCase : Tuple = fill_masker( f'This is a {tokenizer.mask_token}' , ) self.assertEqual( __UpperCAmelCase , [ {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, ] , ) __UpperCAmelCase : int = fill_masker([f'This is a {tokenizer.mask_token}'] ) self.assertEqual( __UpperCAmelCase , [ {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, ] , ) __UpperCAmelCase : Union[str, Any] = fill_masker([f'This is a {tokenizer.mask_token}', f'Another {tokenizer.mask_token} great test.'] ) self.assertEqual( __UpperCAmelCase , [ [ {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, ], [ {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, ], ] , ) with self.assertRaises(__UpperCAmelCase ): fill_masker([None] ) # No mask_token is not supported with self.assertRaises(__UpperCAmelCase ): fill_masker("""This is""" ) self.run_test_top_k(__UpperCAmelCase , __UpperCAmelCase ) self.run_test_targets(__UpperCAmelCase , __UpperCAmelCase ) self.run_test_top_k_targets(__UpperCAmelCase , __UpperCAmelCase ) self.fill_mask_with_duplicate_targets_and_top_k(__UpperCAmelCase , __UpperCAmelCase ) self.fill_mask_with_multiple_masks(__UpperCAmelCase , __UpperCAmelCase ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Any: '''simple docstring''' __UpperCAmelCase : Dict = tokenizer.get_vocab() __UpperCAmelCase : Dict = sorted(vocab.keys() )[:2] # Pipeline argument __UpperCAmelCase : Dict = FillMaskPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase , targets=__UpperCAmelCase ) __UpperCAmelCase : List[str] = fill_masker(f'This is a {tokenizer.mask_token}' ) self.assertEqual( __UpperCAmelCase , [ {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, ] , ) __UpperCAmelCase : Any = {vocab[el] for el in targets} self.assertEqual({el["""token"""] for el in outputs} , __UpperCAmelCase ) __UpperCAmelCase : int = [tokenizer.decode([x] ) for x in target_ids] self.assertEqual({el["""token_str"""] for el in outputs} , set(__UpperCAmelCase ) ) # Call argument __UpperCAmelCase : List[Any] = FillMaskPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase ) __UpperCAmelCase : Tuple = fill_masker(f'This is a {tokenizer.mask_token}' , targets=__UpperCAmelCase ) self.assertEqual( __UpperCAmelCase , [ {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, ] , ) __UpperCAmelCase : List[Any] = {vocab[el] for el in targets} self.assertEqual({el["""token"""] for el in outputs} , __UpperCAmelCase ) __UpperCAmelCase : List[Any] = [tokenizer.decode([x] ) for x in target_ids] self.assertEqual({el["""token_str"""] for el in outputs} , set(__UpperCAmelCase ) ) # Score equivalence __UpperCAmelCase : Dict = fill_masker(f'This is a {tokenizer.mask_token}' , targets=__UpperCAmelCase ) __UpperCAmelCase : Dict = [top_mask["""token_str"""] for top_mask in outputs] __UpperCAmelCase : str = [top_mask["""score"""] for top_mask in outputs] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(__UpperCAmelCase ) == set(__UpperCAmelCase ): __UpperCAmelCase : str = fill_masker(f'This is a {tokenizer.mask_token}' , targets=__UpperCAmelCase ) __UpperCAmelCase : int = [top_mask["""score"""] for top_mask in unmasked_targets] self.assertEqual(nested_simplify(__UpperCAmelCase ) , nested_simplify(__UpperCAmelCase ) ) # Raises with invalid with self.assertRaises(__UpperCAmelCase ): __UpperCAmelCase : Any = fill_masker(f'This is a {tokenizer.mask_token}' , targets=[] ) # For some tokenizers, `""` is actually in the vocabulary and the expected error won't raised if "" not in tokenizer.get_vocab(): with self.assertRaises(__UpperCAmelCase ): __UpperCAmelCase : Dict = fill_masker(f'This is a {tokenizer.mask_token}' , targets=[""""""] ) with self.assertRaises(__UpperCAmelCase ): __UpperCAmelCase : Union[str, Any] = fill_masker(f'This is a {tokenizer.mask_token}' , targets="""""" ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Tuple: '''simple docstring''' __UpperCAmelCase : Dict = FillMaskPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase , top_k=2 ) __UpperCAmelCase : Optional[int] = fill_masker(f'This is a {tokenizer.mask_token}' ) self.assertEqual( __UpperCAmelCase , [ {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, ] , ) __UpperCAmelCase : List[Any] = FillMaskPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase ) __UpperCAmelCase : int = fill_masker(f'This is a {tokenizer.mask_token}' , top_k=2 ) self.assertEqual( __UpperCAmelCase , [ {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, ] , ) self.assertEqual(nested_simplify(__UpperCAmelCase ) , nested_simplify(__UpperCAmelCase ) ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Dict: '''simple docstring''' __UpperCAmelCase : int = tokenizer.get_vocab() __UpperCAmelCase : List[Any] = FillMaskPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase ) # top_k=2, ntargets=3 __UpperCAmelCase : Dict = sorted(vocab.keys() )[:3] __UpperCAmelCase : str = fill_masker(f'This is a {tokenizer.mask_token}' , top_k=2 , targets=__UpperCAmelCase ) # If we use the most probably targets, and filter differently, we should still # have the same results __UpperCAmelCase : Tuple = [el["""token_str"""] for el in sorted(__UpperCAmelCase , key=lambda __UpperCAmelCase : x["score"] , reverse=__UpperCAmelCase )] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(__UpperCAmelCase ).issubset(__UpperCAmelCase ): __UpperCAmelCase : Union[str, Any] = fill_masker(f'This is a {tokenizer.mask_token}' , top_k=3 , targets=__UpperCAmelCase ) # They should yield exactly the same result self.assertEqual(nested_simplify(__UpperCAmelCase ) , nested_simplify(__UpperCAmelCase ) ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = FillMaskPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase ) __UpperCAmelCase : List[Any] = tokenizer.get_vocab() # String duplicates + id duplicates __UpperCAmelCase : Dict = sorted(vocab.keys() )[:3] __UpperCAmelCase : Dict = [targets[0], targets[1], targets[0], targets[2], targets[1]] __UpperCAmelCase : Optional[int] = fill_masker(f'My name is {tokenizer.mask_token}' , targets=__UpperCAmelCase , top_k=10 ) # The target list contains duplicates, so we can't output more # than them self.assertEqual(len(__UpperCAmelCase ) , 3 ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : List[str] = FillMaskPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase ) __UpperCAmelCase : Dict = fill_masker( f'This is a {tokenizer.mask_token} {tokenizer.mask_token} {tokenizer.mask_token}' , top_k=2 ) self.assertEqual( __UpperCAmelCase , [ [ {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, ], [ {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, ], [ {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, ], ] , )
16
1
import unittest from transformers import load_tool from .test_tools_common import ToolTesterMixin __lowerCamelCase = """ Hugging Face was founded in 2016 by French entrepreneurs Clément Delangue, Julien Chaumond, and Thomas Wolf originally as a company that developed a chatbot app targeted at teenagers.[2] After open-sourcing the model behind the chatbot, the company pivoted to focus on being a platform for machine learning. In March 2021, Hugging Face raised $40 million in a Series B funding round.[3] On April 28, 2021, the company launched the BigScience Research Workshop in collaboration with several other research groups to release an open large language model.[4] In 2022, the workshop concluded with the announcement of BLOOM, a multilingual large language model with 176 billion parameters.[5] """ class UpperCAmelCase ( unittest.TestCase ,A_ ): def _SCREAMING_SNAKE_CASE (self : Dict ) -> int: '''simple docstring''' snake_case : Optional[Any] = load_tool("text-question-answering" ) self.tool.setup() snake_case : str = load_tool("text-question-answering" , remote=snake_case__ ) def _SCREAMING_SNAKE_CASE (self : Optional[Any] ) -> int: '''simple docstring''' snake_case : Tuple = self.tool(snake_case__ , "What did Hugging Face do in April 2021?" ) self.assertEqual(snake_case__ , "launched the BigScience Research Workshop" ) def _SCREAMING_SNAKE_CASE (self : Any ) -> Optional[int]: '''simple docstring''' snake_case : Optional[int] = self.remote_tool(snake_case__ , "What did Hugging Face do in April 2021?" ) self.assertEqual(snake_case__ , "launched the BigScience Research Workshop" ) def _SCREAMING_SNAKE_CASE (self : int ) -> int: '''simple docstring''' snake_case : Dict = self.tool(text=snake_case__ , question="What did Hugging Face do in April 2021?" ) self.assertEqual(snake_case__ , "launched the BigScience Research Workshop" ) def _SCREAMING_SNAKE_CASE (self : Optional[Any] ) -> int: '''simple docstring''' snake_case : List[Any] = self.remote_tool(text=snake_case__ , question="What did Hugging Face do in April 2021?" ) self.assertEqual(snake_case__ , "launched the BigScience Research Workshop" )
59
'''simple docstring''' from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowercase_ = {"configuration_mmbt": ["MMBTConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = ["MMBTForClassification", "MMBTModel", "ModalEmbeddings"] if TYPE_CHECKING: from .configuration_mmbt import MMBTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mmbt import MMBTForClassification, MMBTModel, ModalEmbeddings else: import sys lowercase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
211
0
'''simple docstring''' import logging from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import arg_to_scheduler from transformers import TrainingArguments snake_case__ = logging.getLogger(__name__) @dataclass class UpperCamelCase_ (_A ): """simple docstring""" _lowerCAmelCase = field( default=0.0, metadata={'help': 'The label smoothing epsilon to apply (if not zero).'} ) _lowerCAmelCase = field(default=_A, metadata={'help': 'Whether to SortishSamler or not.'} ) _lowerCAmelCase = field( default=_A, metadata={'help': 'Whether to use generate to calculate generative metrics (ROUGE, BLEU).'} ) _lowerCAmelCase = field(default=_A, metadata={'help': 'whether to use adafactor'} ) _lowerCAmelCase = field( default=_A, metadata={'help': 'Encoder layer dropout probability. Goes into model.config.'} ) _lowerCAmelCase = field( default=_A, metadata={'help': 'Decoder layer dropout probability. Goes into model.config.'} ) _lowerCAmelCase = field(default=_A, metadata={'help': 'Dropout probability. Goes into model.config.'} ) _lowerCAmelCase = field( default=_A, metadata={'help': 'Attention dropout probability. Goes into model.config.'} ) _lowerCAmelCase = field( default='linear', metadata={'help': F'''Which lr scheduler to use. Selected in {sorted(arg_to_scheduler.keys() )}'''}, )
362
'''simple docstring''' from collections.abc import Sequence def snake_case__ ( lowerCamelCase__ : Sequence[float] , lowerCamelCase__ : bool = False ) -> float: if not arr: return 0 A_ : Union[str, Any] = 0 if allow_empty_subarrays else float('''-inf''' ) A_ : str = 0.0 for num in arr: A_ : Any = max(0 if allow_empty_subarrays else num , curr_sum + num ) A_ : Tuple = max(lowerCamelCase__ , lowerCamelCase__ ) return max_sum if __name__ == "__main__": from doctest import testmod testmod() snake_case__ = [-2, 1, -3, 4, -1, 2, 1, -5, 4] print(F'{max_subarray_sum(nums) = }')
4
0
import contextlib import importlib import io import unittest import transformers # Try to import everything from transformers to ensure every object can be loaded. from transformers import * # noqa F406 from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, require_flax, require_tf, require_torch from transformers.utils import ContextManagers, find_labels, is_flax_available, is_tf_available, is_torch_available if is_torch_available(): from transformers import BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification if is_tf_available(): from transformers import TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification if is_flax_available(): from transformers import FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification __A = DUMMY_UNKNOWN_IDENTIFIER # An actual model hosted on huggingface.co __A = "main" # Default branch name __A = "f2c752cfc5c0ab6f4bdec59acea69eefbee381c2" # One particular commit (not the top of `main`) __A = "aaaaaaa" # This commit does not exist, so we should 404. __A = "d9e9f15bc825e4b2c9249e9578f884bbcb5e3684" # Sha-1 of config.json on the top of `main`, for checking purposes __A = "4b243c475af8d0a7754e87d7d096c92e5199ec2fe168a2ee7998e3b8e9bcb1d3" @contextlib.contextmanager def lowerCAmelCase_ ( ) -> List[Any]: """simple docstring""" print("Welcome!" ) yield print("Bye!" ) @contextlib.contextmanager def lowerCAmelCase_ ( ) -> int: """simple docstring""" print("Bonjour!" ) yield print("Au revoir!" ) class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE_ (self : int) ->Optional[int]: '''simple docstring''' assert transformers.__spec__ is not None assert importlib.util.find_spec("transformers") is not None class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' @unittest.mock.patch("sys.stdout" , new_callable=io.StringIO) def SCREAMING_SNAKE_CASE_ (self : Union[str, Any] , UpperCAmelCase_ : List[Any]) ->Dict: '''simple docstring''' with ContextManagers([]): print("Transformers are awesome!") # The print statement adds a new line at the end of the output self.assertEqual(mock_stdout.getvalue() , "Transformers are awesome!\n") @unittest.mock.patch("sys.stdout" , new_callable=io.StringIO) def SCREAMING_SNAKE_CASE_ (self : List[str] , UpperCAmelCase_ : List[str]) ->Any: '''simple docstring''' with ContextManagers([context_en()]): print("Transformers are awesome!") # The output should be wrapped with an English welcome and goodbye self.assertEqual(mock_stdout.getvalue() , "Welcome!\nTransformers are awesome!\nBye!\n") @unittest.mock.patch("sys.stdout" , new_callable=io.StringIO) def SCREAMING_SNAKE_CASE_ (self : List[str] , UpperCAmelCase_ : Dict) ->List[Any]: '''simple docstring''' with ContextManagers([context_fr(), context_en()]): print("Transformers are awesome!") # The output should be wrapped with an English and French welcome and goodbye self.assertEqual(mock_stdout.getvalue() , "Bonjour!\nWelcome!\nTransformers are awesome!\nBye!\nAu revoir!\n") @require_torch def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->Union[str, Any]: '''simple docstring''' self.assertEqual(find_labels(UpperCAmelCase_) , ["labels"]) self.assertEqual(find_labels(UpperCAmelCase_) , ["labels", "next_sentence_label"]) self.assertEqual(find_labels(UpperCAmelCase_) , ["start_positions", "end_positions"]) class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' pass self.assertEqual(find_labels(UpperCAmelCase_) , ["labels"]) @require_tf def SCREAMING_SNAKE_CASE_ (self : Dict) ->Optional[Any]: '''simple docstring''' self.assertEqual(find_labels(UpperCAmelCase_) , ["labels"]) self.assertEqual(find_labels(UpperCAmelCase_) , ["labels", "next_sentence_label"]) self.assertEqual(find_labels(UpperCAmelCase_) , ["start_positions", "end_positions"]) class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' pass self.assertEqual(find_labels(UpperCAmelCase_) , ["labels"]) @require_flax def SCREAMING_SNAKE_CASE_ (self : Tuple) ->Any: '''simple docstring''' self.assertEqual(find_labels(UpperCAmelCase_) , []) self.assertEqual(find_labels(UpperCAmelCase_) , []) self.assertEqual(find_labels(UpperCAmelCase_) , []) class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' pass self.assertEqual(find_labels(UpperCAmelCase_) , [])
10
"""simple docstring""" # Usage: # ./gen-card-facebook-wmt19.py import os from pathlib import Path def lowercase (SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : int ) -> List[str]: SCREAMING_SNAKE_CASE = { 'en': 'Machine learning is great, isn\'t it?', 'ru': 'Машинное обучение - это здорово, не так ли?', 'de': 'Maschinelles Lernen ist großartig, oder?', } # BLUE scores as follows: # "pair": [fairseq, transformers] SCREAMING_SNAKE_CASE = { 'ru-en': ['[41.3](http://matrix.statmt.org/matrix/output/1907?run_id=6937)', '39.20'], 'en-ru': ['[36.4](http://matrix.statmt.org/matrix/output/1914?run_id=6724)', '33.47'], 'en-de': ['[43.1](http://matrix.statmt.org/matrix/output/1909?run_id=6862)', '42.83'], 'de-en': ['[42.3](http://matrix.statmt.org/matrix/output/1902?run_id=6750)', '41.35'], } SCREAMING_SNAKE_CASE = F'{src_lang}-{tgt_lang}' SCREAMING_SNAKE_CASE = F'\n---\nlanguage: \n- {src_lang}\n- {tgt_lang}\nthumbnail:\ntags:\n- translation\n- wmt19\n- facebook\nlicense: apache-2.0\ndatasets:\n- wmt19\nmetrics:\n- bleu\n---\n\n# FSMT\n\n## Model description\n\nThis is a ported version of [fairseq wmt19 transformer](https://github.com/pytorch/fairseq/blob/master/examples/wmt19/README.md) for {src_lang}-{tgt_lang}.\n\nFor more details, please see, [Facebook FAIR\'s WMT19 News Translation Task Submission](https://arxiv.org/abs/1907.06616).\n\nThe abbreviation FSMT stands for FairSeqMachineTranslation\n\nAll four models are available:\n\n* [wmt19-en-ru](https://huggingface.co/facebook/wmt19-en-ru)\n* [wmt19-ru-en](https://huggingface.co/facebook/wmt19-ru-en)\n* [wmt19-en-de](https://huggingface.co/facebook/wmt19-en-de)\n* [wmt19-de-en](https://huggingface.co/facebook/wmt19-de-en)\n\n## Intended uses & limitations\n\n#### How to use\n\n```python\nfrom transformers import FSMTForConditionalGeneration, FSMTTokenizer\nmname = "facebook/wmt19-{src_lang}-{tgt_lang}"\ntokenizer = FSMTTokenizer.from_pretrained(mname)\nmodel = FSMTForConditionalGeneration.from_pretrained(mname)\n\ninput = "{texts[src_lang]}"\ninput_ids = tokenizer.encode(input, return_tensors="pt")\noutputs = model.generate(input_ids)\ndecoded = tokenizer.decode(outputs[0], skip_special_tokens=True)\nprint(decoded) # {texts[tgt_lang]}\n\n```\n\n#### Limitations and bias\n\n- The original (and this ported model) doesn\'t seem to handle well inputs with repeated sub-phrases, [content gets truncated](https://discuss.huggingface.co/t/issues-with-translating-inputs-containing-repeated-phrases/981)\n\n## Training data\n\nPretrained weights were left identical to the original model released by fairseq. For more details, please, see the [paper](https://arxiv.org/abs/1907.06616).\n\n## Eval results\n\npair | fairseq | transformers\n-------|---------|----------\n{pair} | {scores[pair][0]} | {scores[pair][1]}\n\nThe score is slightly below the score reported by `fairseq`, since `transformers`` currently doesn\'t support:\n- model ensemble, therefore the best performing checkpoint was ported (``model4.pt``).\n- re-ranking\n\nThe score was calculated using this code:\n\n```bash\ngit clone https://github.com/huggingface/transformers\ncd transformers\nexport PAIR={pair}\nexport DATA_DIR=data/$PAIR\nexport SAVE_DIR=data/$PAIR\nexport BS=8\nexport NUM_BEAMS=15\nmkdir -p $DATA_DIR\nsacrebleu -t wmt19 -l $PAIR --echo src > $DATA_DIR/val.source\nsacrebleu -t wmt19 -l $PAIR --echo ref > $DATA_DIR/val.target\necho $PAIR\nPYTHONPATH="src:examples/seq2seq" python examples/seq2seq/run_eval.py facebook/wmt19-$PAIR $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS\n```\nnote: fairseq reports using a beam of 50, so you should get a slightly higher score if re-run with `--num_beams 50`.\n\n## Data Sources\n\n- [training, etc.](http://www.statmt.org/wmt19/)\n- [test set](http://matrix.statmt.org/test_sets/newstest2019.tgz?1556572561)\n\n\n### BibTeX entry and citation info\n\n```bibtex\n@inproceedings{{...,\n year={{2020}},\n title={{Facebook FAIR\'s WMT19 News Translation Task Submission}},\n author={{Ng, Nathan and Yee, Kyra and Baevski, Alexei and Ott, Myle and Auli, Michael and Edunov, Sergey}},\n booktitle={{Proc. of WMT}},\n}}\n```\n\n\n## TODO\n\n- port model ensemble (fairseq uses 4 model checkpoints)\n\n' os.makedirs(SCREAMING_SNAKE_CASE_ , exist_ok=SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE = os.path.join(SCREAMING_SNAKE_CASE_ , 'README.md' ) print(F'Generating {path}' ) with open(SCREAMING_SNAKE_CASE_ , 'w' , encoding='utf-8' ) as f: f.write(SCREAMING_SNAKE_CASE_ ) # make sure we are under the root of the project __UpperCamelCase = Path(__file__).resolve().parent.parent.parent __UpperCamelCase = repo_dir / '''model_cards''' for model_name in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: __UpperCamelCase,__UpperCamelCase,__UpperCamelCase = model_name.split('''-''') __UpperCamelCase = model_cards_dir / '''facebook''' / model_name write_model_card(model_card_dir, src_lang=src_lang, tgt_lang=tgt_lang)
113
0
'''simple docstring''' import gc import unittest import numpy as np import torch import torch.nn.functional as F from transformers import ( ClapTextConfig, ClapTextModelWithProjection, RobertaTokenizer, SpeechTaHifiGan, SpeechTaHifiGanConfig, ) from diffusers import ( AudioLDMPipeline, AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.utils import is_xformers_available, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_AUDIO_BATCH_PARAMS, TEXT_TO_AUDIO_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class lowerCamelCase ( lowerCamelCase__ , unittest.TestCase ): '''simple docstring''' __snake_case = AudioLDMPipeline __snake_case = TEXT_TO_AUDIO_PARAMS __snake_case = TEXT_TO_AUDIO_BATCH_PARAMS __snake_case = frozenset( [ 'num_inference_steps', 'num_waveforms_per_prompt', 'generator', 'latents', 'output_type', 'return_dict', 'callback', 'callback_steps', ] ) def lowercase__ ( self : int ) -> List[str]: '''simple docstring''' torch.manual_seed(0 ) A__ : Optional[int] =UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=(32, 64) , class_embed_type="""simple_projection""" , projection_class_embeddings_input_dim=32 , class_embeddings_concat=lowercase__ , ) A__ : Optional[int] =DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=lowercase__ , set_alpha_to_one=lowercase__ , ) torch.manual_seed(0 ) A__ : str =AutoencoderKL( block_out_channels=[32, 64] , in_channels=1 , out_channels=1 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) torch.manual_seed(0 ) A__ : List[str] =ClapTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , projection_dim=32 , ) A__ : Tuple =ClapTextModelWithProjection(lowercase__ ) A__ : List[str] =RobertaTokenizer.from_pretrained("""hf-internal-testing/tiny-random-roberta""" , model_max_length=77 ) A__ : Optional[Any] =SpeechTaHifiGanConfig( model_in_dim=8 , sampling_rate=1_60_00 , upsample_initial_channel=16 , upsample_rates=[2, 2] , upsample_kernel_sizes=[4, 4] , resblock_kernel_sizes=[3, 7] , resblock_dilation_sizes=[[1, 3, 5], [1, 3, 5]] , normalize_before=lowercase__ , ) A__ : List[Any] =SpeechTaHifiGan(lowercase__ ) A__ : Tuple ={ """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """vocoder""": vocoder, } return components def lowercase__ ( self : Optional[Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Union[str, Any]=0 ) -> Dict: '''simple docstring''' if str(lowercase__ ).startswith("""mps""" ): A__ : str =torch.manual_seed(lowercase__ ) else: A__ : Optional[int] =torch.Generator(device=lowercase__ ).manual_seed(lowercase__ ) A__ : Tuple ={ """prompt""": """A hammer hitting a wooden surface""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, } return inputs def lowercase__ ( self : str ) -> Union[str, Any]: '''simple docstring''' A__ : Any ="""cpu""" # ensure determinism for the device-dependent torch.Generator A__ : List[str] =self.get_dummy_components() A__ : Any =AudioLDMPipeline(**lowercase__ ) A__ : Optional[Any] =audioldm_pipe.to(lowercase__ ) audioldm_pipe.set_progress_bar_config(disable=lowercase__ ) A__ : Optional[int] =self.get_dummy_inputs(lowercase__ ) A__ : List[str] =audioldm_pipe(**lowercase__ ) A__ : Dict =output.audios[0] assert audio.ndim == 1 assert len(lowercase__ ) == 2_56 A__ : Union[str, Any] =audio[:10] A__ : Any =np.array( [-0.0050, 0.0050, -0.0060, 0.0033, -0.0026, 0.0033, -0.0027, 0.0033, -0.0028, 0.0033] ) assert np.abs(audio_slice - expected_slice ).max() < 1e-2 def lowercase__ ( self : Optional[int] ) -> Optional[int]: '''simple docstring''' A__ : Tuple =self.get_dummy_components() A__ : Any =AudioLDMPipeline(**lowercase__ ) A__ : Tuple =audioldm_pipe.to(lowercase__ ) A__ : Union[str, Any] =audioldm_pipe.to(lowercase__ ) audioldm_pipe.set_progress_bar_config(disable=lowercase__ ) A__ : Optional[Any] =self.get_dummy_inputs(lowercase__ ) A__ : Optional[int] =3 * [inputs["""prompt"""]] # forward A__ : int =audioldm_pipe(**lowercase__ ) A__ : Any =output.audios[0] A__ : Union[str, Any] =self.get_dummy_inputs(lowercase__ ) A__ : int =3 * [inputs.pop("""prompt""" )] A__ : Any =audioldm_pipe.tokenizer( lowercase__ , padding="""max_length""" , max_length=audioldm_pipe.tokenizer.model_max_length , truncation=lowercase__ , return_tensors="""pt""" , ) A__ : str =text_inputs["""input_ids"""].to(lowercase__ ) A__ : Union[str, Any] =audioldm_pipe.text_encoder( lowercase__ , ) A__ : Union[str, Any] =prompt_embeds.text_embeds # additional L_2 normalization over each hidden-state A__ : Any =F.normalize(lowercase__ , dim=-1 ) A__ : List[Any] =prompt_embeds # forward A__ : Union[str, Any] =audioldm_pipe(**lowercase__ ) A__ : Dict =output.audios[0] assert np.abs(audio_a - audio_a ).max() < 1e-2 def lowercase__ ( self : Union[str, Any] ) -> Optional[int]: '''simple docstring''' A__ : int =self.get_dummy_components() A__ : Union[str, Any] =AudioLDMPipeline(**lowercase__ ) A__ : Tuple =audioldm_pipe.to(lowercase__ ) A__ : int =audioldm_pipe.to(lowercase__ ) audioldm_pipe.set_progress_bar_config(disable=lowercase__ ) A__ : Any =self.get_dummy_inputs(lowercase__ ) A__ : Any =3 * ["""this is a negative prompt"""] A__ : Dict =negative_prompt A__ : int =3 * [inputs["""prompt"""]] # forward A__ : List[str] =audioldm_pipe(**lowercase__ ) A__ : str =output.audios[0] A__ : Optional[Any] =self.get_dummy_inputs(lowercase__ ) A__ : Tuple =3 * [inputs.pop("""prompt""" )] A__ : Optional[Any] =[] for p in [prompt, negative_prompt]: A__ : List[Any] =audioldm_pipe.tokenizer( lowercase__ , padding="""max_length""" , max_length=audioldm_pipe.tokenizer.model_max_length , truncation=lowercase__ , return_tensors="""pt""" , ) A__ : List[str] =text_inputs["""input_ids"""].to(lowercase__ ) A__ : Union[str, Any] =audioldm_pipe.text_encoder( lowercase__ , ) A__ : Tuple =text_embeds.text_embeds # additional L_2 normalization over each hidden-state A__ : Optional[Any] =F.normalize(lowercase__ , dim=-1 ) embeds.append(lowercase__ ) A__ , A__ : Dict =embeds # forward A__ : Optional[Any] =audioldm_pipe(**lowercase__ ) A__ : Optional[Any] =output.audios[0] assert np.abs(audio_a - audio_a ).max() < 1e-2 def lowercase__ ( self : Optional[Any] ) -> List[str]: '''simple docstring''' A__ : List[str] ="""cpu""" # ensure determinism for the device-dependent torch.Generator A__ : List[Any] =self.get_dummy_components() A__ : Dict =PNDMScheduler(skip_prk_steps=lowercase__ ) A__ : int =AudioLDMPipeline(**lowercase__ ) A__ : List[str] =audioldm_pipe.to(lowercase__ ) audioldm_pipe.set_progress_bar_config(disable=lowercase__ ) A__ : int =self.get_dummy_inputs(lowercase__ ) A__ : Optional[int] ="""egg cracking""" A__ : Dict =audioldm_pipe(**lowercase__ , negative_prompt=lowercase__ ) A__ : Optional[int] =output.audios[0] assert audio.ndim == 1 assert len(lowercase__ ) == 2_56 A__ : Any =audio[:10] A__ : str =np.array( [-0.0051, 0.0050, -0.0060, 0.0034, -0.0026, 0.0033, -0.0027, 0.0033, -0.0028, 0.0032] ) assert np.abs(audio_slice - expected_slice ).max() < 1e-2 def lowercase__ ( self : Optional[int] ) -> Optional[Any]: '''simple docstring''' A__ : List[str] ="""cpu""" # ensure determinism for the device-dependent torch.Generator A__ : Optional[Any] =self.get_dummy_components() A__ : Any =PNDMScheduler(skip_prk_steps=lowercase__ ) A__ : Dict =AudioLDMPipeline(**lowercase__ ) A__ : Any =audioldm_pipe.to(lowercase__ ) audioldm_pipe.set_progress_bar_config(disable=lowercase__ ) A__ : str ="""A hammer hitting a wooden surface""" # test num_waveforms_per_prompt=1 (default) A__ : Tuple =audioldm_pipe(lowercase__ , num_inference_steps=2 ).audios assert audios.shape == (1, 2_56) # test num_waveforms_per_prompt=1 (default) for batch of prompts A__ : int =2 A__ : List[Any] =audioldm_pipe([prompt] * batch_size , num_inference_steps=2 ).audios assert audios.shape == (batch_size, 2_56) # test num_waveforms_per_prompt for single prompt A__ : List[str] =2 A__ : Optional[int] =audioldm_pipe(lowercase__ , num_inference_steps=2 , num_waveforms_per_prompt=lowercase__ ).audios assert audios.shape == (num_waveforms_per_prompt, 2_56) # test num_waveforms_per_prompt for batch of prompts A__ : Tuple =2 A__ : Optional[int] =audioldm_pipe( [prompt] * batch_size , num_inference_steps=2 , num_waveforms_per_prompt=lowercase__ ).audios assert audios.shape == (batch_size * num_waveforms_per_prompt, 2_56) def lowercase__ ( self : Dict ) -> str: '''simple docstring''' A__ : Union[str, Any] ="""cpu""" # ensure determinism for the device-dependent torch.Generator A__ : List[Any] =self.get_dummy_components() A__ : Any =AudioLDMPipeline(**lowercase__ ) A__ : Optional[int] =audioldm_pipe.to(lowercase__ ) audioldm_pipe.set_progress_bar_config(disable=lowercase__ ) A__ : str =audioldm_pipe.vocoder.config.sampling_rate A__ : Any =self.get_dummy_inputs(lowercase__ ) A__ : Dict =audioldm_pipe(audio_length_in_s=0.016 , **lowercase__ ) A__ : List[Any] =output.audios[0] assert audio.ndim == 1 assert len(lowercase__ ) / vocoder_sampling_rate == 0.016 A__ : Union[str, Any] =audioldm_pipe(audio_length_in_s=0.032 , **lowercase__ ) A__ : Any =output.audios[0] assert audio.ndim == 1 assert len(lowercase__ ) / vocoder_sampling_rate == 0.032 def lowercase__ ( self : str ) -> Any: '''simple docstring''' A__ : int =self.get_dummy_components() A__ : int =AudioLDMPipeline(**lowercase__ ) A__ : int =audioldm_pipe.to(lowercase__ ) audioldm_pipe.set_progress_bar_config(disable=lowercase__ ) A__ : Optional[Any] =["""hey"""] A__ : Any =audioldm_pipe(lowercase__ , num_inference_steps=1 ) A__ : int =output.audios.shape assert audio_shape == (1, 2_56) A__ : List[str] =audioldm_pipe.vocoder.config config.model_in_dim *= 2 A__ : Any =SpeechTaHifiGan(lowercase__ ).to(lowercase__ ) A__ : Optional[int] =audioldm_pipe(lowercase__ , num_inference_steps=1 ) A__ : Dict =output.audios.shape # waveform shape is unchanged, we just have 2x the number of mel channels in the spectrogram assert audio_shape == (1, 2_56) def lowercase__ ( self : List[Any] ) -> Optional[int]: '''simple docstring''' self._test_attention_slicing_forward_pass(test_mean_pixel_difference=lowercase__ ) def lowercase__ ( self : str ) -> str: '''simple docstring''' self._test_inference_batch_single_identical(test_mean_pixel_difference=lowercase__ ) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def lowercase__ ( self : List[str] ) -> List[str]: '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=lowercase__ ) @slow class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def lowercase__ ( self : Dict ) -> Optional[int]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase__ ( self : Any , lowerCAmelCase_ : str , lowerCAmelCase_ : Dict="cpu" , lowerCAmelCase_ : List[Any]=torch.floataa , lowerCAmelCase_ : Tuple=0 ) -> List[str]: '''simple docstring''' A__ : Tuple =torch.Generator(device=lowercase__ ).manual_seed(lowercase__ ) A__ : List[str] =np.random.RandomState(lowercase__ ).standard_normal((1, 8, 1_28, 16) ) A__ : Any =torch.from_numpy(lowercase__ ).to(device=lowercase__ , dtype=lowercase__ ) A__ : int ={ """prompt""": """A hammer hitting a wooden surface""", """latents""": latents, """generator""": generator, """num_inference_steps""": 3, """guidance_scale""": 2.5, } return inputs def lowercase__ ( self : List[str] ) -> Tuple: '''simple docstring''' A__ : Optional[int] =AudioLDMPipeline.from_pretrained("""cvssp/audioldm""" ) A__ : Tuple =audioldm_pipe.to(lowercase__ ) audioldm_pipe.set_progress_bar_config(disable=lowercase__ ) A__ : Dict =self.get_inputs(lowercase__ ) A__ : Any =25 A__ : Tuple =audioldm_pipe(**lowercase__ ).audios[0] assert audio.ndim == 1 assert len(lowercase__ ) == 8_19_20 A__ : Any =audio[7_72_30:7_72_40] A__ : List[Any] =np.array( [-0.4884, -0.4607, 0.0023, 0.5007, 0.5896, 0.5151, 0.3813, -0.0208, -0.3687, -0.4315] ) A__ : Union[str, Any] =np.abs(expected_slice - audio_slice ).max() assert max_diff < 1e-2 def lowercase__ ( self : Dict ) -> List[str]: '''simple docstring''' A__ : Tuple =AudioLDMPipeline.from_pretrained("""cvssp/audioldm""" ) A__ : List[str] =LMSDiscreteScheduler.from_config(audioldm_pipe.scheduler.config ) A__ : Dict =audioldm_pipe.to(lowercase__ ) audioldm_pipe.set_progress_bar_config(disable=lowercase__ ) A__ : Tuple =self.get_inputs(lowercase__ ) A__ : Dict =audioldm_pipe(**lowercase__ ).audios[0] assert audio.ndim == 1 assert len(lowercase__ ) == 8_19_20 A__ : Optional[int] =audio[2_77_80:2_77_90] A__ : Tuple =np.array([-0.2131, -0.0873, -0.0124, -0.0189, 0.0569, 0.1373, 0.1883, 0.2886, 0.3297, 0.2212] ) A__ : Tuple =np.abs(expected_slice - audio_slice ).max() assert max_diff < 3e-2
358
'''simple docstring''' def __lowerCamelCase ( __snake_case : int ) -> bool: """simple docstring""" if p < 2: raise ValueError("""p should not be less than 2!""" ) elif p == 2: return True A__ : Any =4 A__ : int =(1 << p) - 1 for _ in range(p - 2 ): A__ : Dict =((s * s) - 2) % m return s == 0 if __name__ == "__main__": print(lucas_lehmer_test(7)) print(lucas_lehmer_test(11))
136
0
'''simple docstring''' import math import numpy as np import qiskit from qiskit import Aer, ClassicalRegister, QuantumCircuit, QuantumRegister, execute def A__ ( UpperCAmelCase_ = 3 ): if isinstance(__A , __A ): raise TypeError('number of qubits must be a integer.' ) if number_of_qubits <= 0: raise ValueError('number of qubits must be > 0.' ) if math.floor(__A ) != number_of_qubits: raise ValueError('number of qubits must be exact integer.' ) if number_of_qubits > 1_0: raise ValueError('number of qubits too large to simulate(>10).' ) _UpperCamelCase : Optional[Any] = QuantumRegister(__A , 'qr' ) _UpperCamelCase : Any = ClassicalRegister(__A , 'cr' ) _UpperCamelCase : Any = QuantumCircuit(__A , __A ) _UpperCamelCase : str = number_of_qubits for i in range(__A ): quantum_circuit.h(number_of_qubits - i - 1 ) counter -= 1 for j in range(__A ): quantum_circuit.cp(np.pi / 2 ** (counter - j) , __A , __A ) for k in range(number_of_qubits // 2 ): quantum_circuit.swap(__A , number_of_qubits - k - 1 ) # measure all the qubits quantum_circuit.measure(__A , __A ) # simulate with 10000 shots _UpperCamelCase : Optional[int] = Aer.get_backend('qasm_simulator' ) _UpperCamelCase : List[Any] = execute(__A , __A , shots=1_0_0_0_0 ) return job.result().get_counts(__A ) if __name__ == "__main__": print( F"""Total count for quantum fourier transform state is: \ {quantum_fourier_transform(3)}""" )
83
'''simple docstring''' from dataclasses import dataclass from typing import Optional import numpy as np import torch import torch.nn as nn from ..utils import BaseOutput, is_torch_version, randn_tensor from .attention_processor import SpatialNorm from .unet_ad_blocks import UNetMidBlockaD, get_down_block, get_up_block @dataclass class __UpperCAmelCase ( _lowerCamelCase ): __lowercase = 42 class __UpperCAmelCase ( nn.Module ): def __init__( self , lowerCAmelCase_=3 , lowerCAmelCase_=3 , lowerCAmelCase_=("DownEncoderBlock2D",) , lowerCAmelCase_=(64,) , lowerCAmelCase_=2 , lowerCAmelCase_=32 , lowerCAmelCase_="silu" , lowerCAmelCase_=True , ): """simple docstring""" super().__init__() _snake_case = layers_per_block _snake_case = torch.nn.Convad( lowerCAmelCase_ , block_out_channels[0] , kernel_size=3 , stride=1 , padding=1 , ) _snake_case = None _snake_case = nn.ModuleList([] ) # down _snake_case = block_out_channels[0] for i, down_block_type in enumerate(lowerCAmelCase_ ): _snake_case = output_channel _snake_case = block_out_channels[i] _snake_case = i == len(lowerCAmelCase_ ) - 1 _snake_case = get_down_block( lowerCAmelCase_ , num_layers=self.layers_per_block , in_channels=lowerCAmelCase_ , out_channels=lowerCAmelCase_ , add_downsample=not is_final_block , resnet_eps=1E-6 , downsample_padding=0 , resnet_act_fn=lowerCAmelCase_ , resnet_groups=lowerCAmelCase_ , attention_head_dim=lowerCAmelCase_ , temb_channels=lowerCAmelCase_ , ) self.down_blocks.append(lowerCAmelCase_ ) # mid _snake_case = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1E-6 , resnet_act_fn=lowerCAmelCase_ , output_scale_factor=1 , resnet_time_scale_shift='default' , attention_head_dim=block_out_channels[-1] , resnet_groups=lowerCAmelCase_ , temb_channels=lowerCAmelCase_ , ) # out _snake_case = nn.GroupNorm(num_channels=block_out_channels[-1] , num_groups=lowerCAmelCase_ , eps=1E-6 ) _snake_case = nn.SiLU() _snake_case = 2 * out_channels if double_z else out_channels _snake_case = nn.Convad(block_out_channels[-1] , lowerCAmelCase_ , 3 , padding=1 ) _snake_case = False def lowerCamelCase ( self , lowerCAmelCase_ ): """simple docstring""" _snake_case = x _snake_case = self.conv_in(lowerCAmelCase_ ) if self.training and self.gradient_checkpointing: def create_custom_forward(lowerCAmelCase_ ): def custom_forward(*lowerCAmelCase_ ): return module(*lowerCAmelCase_ ) return custom_forward # down if is_torch_version('>=' , '1.11.0' ): for down_block in self.down_blocks: _snake_case = torch.utils.checkpoint.checkpoint( create_custom_forward(lowerCAmelCase_ ) , lowerCAmelCase_ , use_reentrant=lowerCAmelCase_ ) # middle _snake_case = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , lowerCAmelCase_ , use_reentrant=lowerCAmelCase_ ) else: for down_block in self.down_blocks: _snake_case = torch.utils.checkpoint.checkpoint(create_custom_forward(lowerCAmelCase_ ) , lowerCAmelCase_ ) # middle _snake_case = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block ) , lowerCAmelCase_ ) else: # down for down_block in self.down_blocks: _snake_case = down_block(lowerCAmelCase_ ) # middle _snake_case = self.mid_block(lowerCAmelCase_ ) # post-process _snake_case = self.conv_norm_out(lowerCAmelCase_ ) _snake_case = self.conv_act(lowerCAmelCase_ ) _snake_case = self.conv_out(lowerCAmelCase_ ) return sample class __UpperCAmelCase ( nn.Module ): def __init__( self , lowerCAmelCase_=3 , lowerCAmelCase_=3 , lowerCAmelCase_=("UpDecoderBlock2D",) , lowerCAmelCase_=(64,) , lowerCAmelCase_=2 , lowerCAmelCase_=32 , lowerCAmelCase_="silu" , lowerCAmelCase_="group" , ): """simple docstring""" super().__init__() _snake_case = layers_per_block _snake_case = nn.Convad( lowerCAmelCase_ , block_out_channels[-1] , kernel_size=3 , stride=1 , padding=1 , ) _snake_case = None _snake_case = nn.ModuleList([] ) _snake_case = in_channels if norm_type == 'spatial' else None # mid _snake_case = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1E-6 , resnet_act_fn=lowerCAmelCase_ , output_scale_factor=1 , resnet_time_scale_shift='default' if norm_type == 'group' else norm_type , attention_head_dim=block_out_channels[-1] , resnet_groups=lowerCAmelCase_ , temb_channels=lowerCAmelCase_ , ) # up _snake_case = list(reversed(lowerCAmelCase_ ) ) _snake_case = reversed_block_out_channels[0] for i, up_block_type in enumerate(lowerCAmelCase_ ): _snake_case = output_channel _snake_case = reversed_block_out_channels[i] _snake_case = i == len(lowerCAmelCase_ ) - 1 _snake_case = get_up_block( lowerCAmelCase_ , num_layers=self.layers_per_block + 1 , in_channels=lowerCAmelCase_ , out_channels=lowerCAmelCase_ , prev_output_channel=lowerCAmelCase_ , add_upsample=not is_final_block , resnet_eps=1E-6 , resnet_act_fn=lowerCAmelCase_ , resnet_groups=lowerCAmelCase_ , attention_head_dim=lowerCAmelCase_ , temb_channels=lowerCAmelCase_ , resnet_time_scale_shift=lowerCAmelCase_ , ) self.up_blocks.append(lowerCAmelCase_ ) _snake_case = output_channel # out if norm_type == "spatial": _snake_case = SpatialNorm(block_out_channels[0] , lowerCAmelCase_ ) else: _snake_case = nn.GroupNorm(num_channels=block_out_channels[0] , num_groups=lowerCAmelCase_ , eps=1E-6 ) _snake_case = nn.SiLU() _snake_case = nn.Convad(block_out_channels[0] , lowerCAmelCase_ , 3 , padding=1 ) _snake_case = False def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_=None ): """simple docstring""" _snake_case = z _snake_case = self.conv_in(lowerCAmelCase_ ) _snake_case = next(iter(self.up_blocks.parameters() ) ).dtype if self.training and self.gradient_checkpointing: def create_custom_forward(lowerCAmelCase_ ): def custom_forward(*lowerCAmelCase_ ): return module(*lowerCAmelCase_ ) return custom_forward if is_torch_version('>=' , '1.11.0' ): # middle _snake_case = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , lowerCAmelCase_ , lowerCAmelCase_ , use_reentrant=lowerCAmelCase_ ) _snake_case = sample.to(lowerCAmelCase_ ) # up for up_block in self.up_blocks: _snake_case = torch.utils.checkpoint.checkpoint( create_custom_forward(lowerCAmelCase_ ) , lowerCAmelCase_ , lowerCAmelCase_ , use_reentrant=lowerCAmelCase_ ) else: # middle _snake_case = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , lowerCAmelCase_ , lowerCAmelCase_ ) _snake_case = sample.to(lowerCAmelCase_ ) # up for up_block in self.up_blocks: _snake_case = torch.utils.checkpoint.checkpoint(create_custom_forward(lowerCAmelCase_ ) , lowerCAmelCase_ , lowerCAmelCase_ ) else: # middle _snake_case = self.mid_block(lowerCAmelCase_ , lowerCAmelCase_ ) _snake_case = sample.to(lowerCAmelCase_ ) # up for up_block in self.up_blocks: _snake_case = up_block(lowerCAmelCase_ , lowerCAmelCase_ ) # post-process if latent_embeds is None: _snake_case = self.conv_norm_out(lowerCAmelCase_ ) else: _snake_case = self.conv_norm_out(lowerCAmelCase_ , lowerCAmelCase_ ) _snake_case = self.conv_act(lowerCAmelCase_ ) _snake_case = self.conv_out(lowerCAmelCase_ ) return sample class __UpperCAmelCase ( nn.Module ): def __init__( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=None , lowerCAmelCase_="random" , lowerCAmelCase_=False , lowerCAmelCase_=True ): """simple docstring""" super().__init__() _snake_case = n_e _snake_case = vq_embed_dim _snake_case = beta _snake_case = legacy _snake_case = nn.Embedding(self.n_e , self.vq_embed_dim ) self.embedding.weight.data.uniform_(-1.0 / self.n_e , 1.0 / self.n_e ) _snake_case = remap if self.remap is not None: self.register_buffer('used' , torch.tensor(np.load(self.remap ) ) ) _snake_case = self.used.shape[0] _snake_case = unknown_index # "random" or "extra" or integer if self.unknown_index == "extra": _snake_case = self.re_embed _snake_case = self.re_embed + 1 print( F'Remapping {self.n_e} indices to {self.re_embed} indices. ' F'Using {self.unknown_index} for unknown indices.' ) else: _snake_case = n_e _snake_case = sane_index_shape def lowerCamelCase ( self , lowerCAmelCase_ ): """simple docstring""" _snake_case = inds.shape assert len(lowerCAmelCase_ ) > 1 _snake_case = inds.reshape(ishape[0] , -1 ) _snake_case = self.used.to(lowerCAmelCase_ ) _snake_case = (inds[:, :, None] == used[None, None, ...]).long() _snake_case = match.argmax(-1 ) _snake_case = match.sum(2 ) < 1 if self.unknown_index == "random": _snake_case = torch.randint(0 , self.re_embed , size=new[unknown].shape ).to(device=new.device ) else: _snake_case = self.unknown_index return new.reshape(lowerCAmelCase_ ) def lowerCamelCase ( self , lowerCAmelCase_ ): """simple docstring""" _snake_case = inds.shape assert len(lowerCAmelCase_ ) > 1 _snake_case = inds.reshape(ishape[0] , -1 ) _snake_case = self.used.to(lowerCAmelCase_ ) if self.re_embed > self.used.shape[0]: # extra token _snake_case = 0 # simply set to zero _snake_case = torch.gather(used[None, :][inds.shape[0] * [0], :] , 1 , lowerCAmelCase_ ) return back.reshape(lowerCAmelCase_ ) def lowerCamelCase ( self , lowerCAmelCase_ ): """simple docstring""" _snake_case = z.permute(0 , 2 , 3 , 1 ).contiguous() _snake_case = z.view(-1 , self.vq_embed_dim ) # distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z _snake_case = torch.argmin(torch.cdist(lowerCAmelCase_ , self.embedding.weight ) , dim=1 ) _snake_case = self.embedding(lowerCAmelCase_ ).view(z.shape ) _snake_case = None _snake_case = None # compute loss for embedding if not self.legacy: _snake_case = self.beta * torch.mean((z_q.detach() - z) ** 2 ) + torch.mean((z_q - z.detach()) ** 2 ) else: _snake_case = torch.mean((z_q.detach() - z) ** 2 ) + self.beta * torch.mean((z_q - z.detach()) ** 2 ) # preserve gradients _snake_case = z + (z_q - z).detach() # reshape back to match original input shape _snake_case = z_q.permute(0 , 3 , 1 , 2 ).contiguous() if self.remap is not None: _snake_case = min_encoding_indices.reshape(z.shape[0] , -1 ) # add batch axis _snake_case = self.remap_to_used(lowerCAmelCase_ ) _snake_case = min_encoding_indices.reshape(-1 , 1 ) # flatten if self.sane_index_shape: _snake_case = min_encoding_indices.reshape(z_q.shape[0] , z_q.shape[2] , z_q.shape[3] ) return z_q, loss, (perplexity, min_encodings, min_encoding_indices) def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" if self.remap is not None: _snake_case = indices.reshape(shape[0] , -1 ) # add batch axis _snake_case = self.unmap_to_all(lowerCAmelCase_ ) _snake_case = indices.reshape(-1 ) # flatten again # get quantized latent vectors _snake_case = self.embedding(lowerCAmelCase_ ) if shape is not None: _snake_case = z_q.view(lowerCAmelCase_ ) # reshape back to match original input shape _snake_case = z_q.permute(0 , 3 , 1 , 2 ).contiguous() return z_q class __UpperCAmelCase ( _lowerCamelCase ): def __init__( self , lowerCAmelCase_ , lowerCAmelCase_=False ): """simple docstring""" _snake_case = parameters _snake_case , _snake_case = torch.chunk(lowerCAmelCase_ , 2 , dim=1 ) _snake_case = torch.clamp(self.logvar , -30.0 , 20.0 ) _snake_case = deterministic _snake_case = torch.exp(0.5 * self.logvar ) _snake_case = torch.exp(self.logvar ) if self.deterministic: _snake_case = _snake_case = torch.zeros_like( self.mean , device=self.parameters.device , dtype=self.parameters.dtype ) def lowerCamelCase ( self , lowerCAmelCase_ = None ): """simple docstring""" _snake_case = randn_tensor( self.mean.shape , generator=lowerCAmelCase_ , device=self.parameters.device , dtype=self.parameters.dtype ) _snake_case = self.mean + self.std * sample return x def lowerCamelCase ( self , lowerCAmelCase_=None ): """simple docstring""" if self.deterministic: return torch.Tensor([0.0] ) else: if other is None: return 0.5 * torch.sum(torch.pow(self.mean , 2 ) + self.var - 1.0 - self.logvar , dim=[1, 2, 3] ) else: return 0.5 * torch.sum( torch.pow(self.mean - other.mean , 2 ) / other.var + self.var / other.var - 1.0 - self.logvar + other.logvar , dim=[1, 2, 3] , ) def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_=[1, 2, 3] ): """simple docstring""" if self.deterministic: return torch.Tensor([0.0] ) _snake_case = np.log(2.0 * np.pi ) return 0.5 * torch.sum(logtwopi + self.logvar + torch.pow(sample - self.mean , 2 ) / self.var , dim=lowerCAmelCase_ ) def lowerCamelCase ( self ): """simple docstring""" return self.mean
42
0
"""simple docstring""" import gc import unittest import numpy as np import torch from torch.backends.cuda import sdp_kernel from diffusers import ( CMStochasticIterativeScheduler, ConsistencyModelPipeline, UNetaDModel, ) from diffusers.utils import randn_tensor, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_a, require_torch_gpu from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class lowerCamelCase_( A__, unittest.TestCase ): '''simple docstring''' lowercase__ : Optional[int] = ConsistencyModelPipeline lowercase__ : Union[str, Any] = UNCONDITIONAL_IMAGE_GENERATION_PARAMS lowercase__ : Optional[Any] = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS # Override required_optional_params to remove num_images_per_prompt lowercase__ : Dict = frozenset( [ 'num_inference_steps', 'generator', 'latents', 'output_type', 'return_dict', 'callback', 'callback_steps', ] ) @property def snake_case__ ( self ): _lowerCamelCase = UNetaDModel.from_pretrained( '''diffusers/consistency-models-test''' , subfolder='''test_unet''' , ) return unet @property def snake_case__ ( self ): _lowerCamelCase = UNetaDModel.from_pretrained( '''diffusers/consistency-models-test''' , subfolder='''test_unet_class_cond''' , ) return unet def snake_case__ ( self , lowerCamelCase__=False ): if class_cond: _lowerCamelCase = self.dummy_cond_unet else: _lowerCamelCase = self.dummy_uncond_unet # Default to CM multistep sampler _lowerCamelCase = CMStochasticIterativeScheduler( num_train_timesteps=4_0 , sigma_min=0.0_0_2 , sigma_max=8_0.0 , ) _lowerCamelCase = { '''unet''': unet, '''scheduler''': scheduler, } return components def snake_case__ ( self , lowerCamelCase__ , lowerCamelCase__=0 ): if str(lowerCamelCase__ ).startswith('''mps''' ): _lowerCamelCase = torch.manual_seed(lowerCamelCase__ ) else: _lowerCamelCase = torch.Generator(device=lowerCamelCase__ ).manual_seed(lowerCamelCase__ ) _lowerCamelCase = { '''batch_size''': 1, '''num_inference_steps''': None, '''timesteps''': [2_2, 0], '''generator''': generator, '''output_type''': '''np''', } return inputs def snake_case__ ( self ): _lowerCamelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator _lowerCamelCase = self.get_dummy_components() _lowerCamelCase = ConsistencyModelPipeline(**lowerCamelCase__ ) _lowerCamelCase = pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) _lowerCamelCase = self.get_dummy_inputs(lowerCamelCase__ ) _lowerCamelCase = pipe(**lowerCamelCase__ ).images assert image.shape == (1, 3_2, 3_2, 3) _lowerCamelCase = image[0, -3:, -3:, -1] _lowerCamelCase = np.array([0.3_5_7_2, 0.6_2_7_3, 0.4_0_3_1, 0.3_9_6_1, 0.4_3_2_1, 0.5_7_3_0, 0.5_2_6_6, 0.4_7_8_0, 0.5_0_0_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def snake_case__ ( self ): _lowerCamelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator _lowerCamelCase = self.get_dummy_components(class_cond=lowerCamelCase__ ) _lowerCamelCase = ConsistencyModelPipeline(**lowerCamelCase__ ) _lowerCamelCase = pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) _lowerCamelCase = self.get_dummy_inputs(lowerCamelCase__ ) _lowerCamelCase = 0 _lowerCamelCase = pipe(**lowerCamelCase__ ).images assert image.shape == (1, 3_2, 3_2, 3) _lowerCamelCase = image[0, -3:, -3:, -1] _lowerCamelCase = np.array([0.3_5_7_2, 0.6_2_7_3, 0.4_0_3_1, 0.3_9_6_1, 0.4_3_2_1, 0.5_7_3_0, 0.5_2_6_6, 0.4_7_8_0, 0.5_0_0_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def snake_case__ ( self ): _lowerCamelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator _lowerCamelCase = self.get_dummy_components() _lowerCamelCase = ConsistencyModelPipeline(**lowerCamelCase__ ) _lowerCamelCase = pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) _lowerCamelCase = self.get_dummy_inputs(lowerCamelCase__ ) _lowerCamelCase = 1 _lowerCamelCase = None _lowerCamelCase = pipe(**lowerCamelCase__ ).images assert image.shape == (1, 3_2, 3_2, 3) _lowerCamelCase = image[0, -3:, -3:, -1] _lowerCamelCase = np.array([0.5_0_0_4, 0.5_0_0_4, 0.4_9_9_4, 0.5_0_0_8, 0.4_9_7_6, 0.5_0_1_8, 0.4_9_9_0, 0.4_9_8_2, 0.4_9_8_7] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def snake_case__ ( self ): _lowerCamelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator _lowerCamelCase = self.get_dummy_components(class_cond=lowerCamelCase__ ) _lowerCamelCase = ConsistencyModelPipeline(**lowerCamelCase__ ) _lowerCamelCase = pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) _lowerCamelCase = self.get_dummy_inputs(lowerCamelCase__ ) _lowerCamelCase = 1 _lowerCamelCase = None _lowerCamelCase = 0 _lowerCamelCase = pipe(**lowerCamelCase__ ).images assert image.shape == (1, 3_2, 3_2, 3) _lowerCamelCase = image[0, -3:, -3:, -1] _lowerCamelCase = np.array([0.5_0_0_4, 0.5_0_0_4, 0.4_9_9_4, 0.5_0_0_8, 0.4_9_7_6, 0.5_0_1_8, 0.4_9_9_0, 0.4_9_8_2, 0.4_9_8_7] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 @slow @require_torch_gpu class lowerCamelCase_( unittest.TestCase ): '''simple docstring''' def snake_case__ ( self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case__ ( self , lowerCamelCase__=0 , lowerCamelCase__=False , lowerCamelCase__="cpu" , lowerCamelCase__=torch.floataa , lowerCamelCase__=(1, 3, 6_4, 6_4) ): _lowerCamelCase = torch.manual_seed(lowerCamelCase__ ) _lowerCamelCase = { '''num_inference_steps''': None, '''timesteps''': [2_2, 0], '''class_labels''': 0, '''generator''': generator, '''output_type''': '''np''', } if get_fixed_latents: _lowerCamelCase = self.get_fixed_latents(seed=lowerCamelCase__ , device=lowerCamelCase__ , dtype=lowerCamelCase__ , shape=lowerCamelCase__ ) _lowerCamelCase = latents return inputs def snake_case__ ( self , lowerCamelCase__=0 , lowerCamelCase__="cpu" , lowerCamelCase__=torch.floataa , lowerCamelCase__=(1, 3, 6_4, 6_4) ): if type(lowerCamelCase__ ) == str: _lowerCamelCase = torch.device(lowerCamelCase__ ) _lowerCamelCase = torch.Generator(device=lowerCamelCase__ ).manual_seed(lowerCamelCase__ ) _lowerCamelCase = randn_tensor(lowerCamelCase__ , generator=lowerCamelCase__ , device=lowerCamelCase__ , dtype=lowerCamelCase__ ) return latents def snake_case__ ( self ): _lowerCamelCase = UNetaDModel.from_pretrained('''diffusers/consistency_models''' , subfolder='''diffusers_cd_imagenet64_l2''' ) _lowerCamelCase = CMStochasticIterativeScheduler( num_train_timesteps=4_0 , sigma_min=0.0_0_2 , sigma_max=8_0.0 , ) _lowerCamelCase = ConsistencyModelPipeline(unet=lowerCamelCase__ , scheduler=lowerCamelCase__ ) pipe.to(torch_device=lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) _lowerCamelCase = self.get_inputs() _lowerCamelCase = pipe(**lowerCamelCase__ ).images assert image.shape == (1, 6_4, 6_4, 3) _lowerCamelCase = image[0, -3:, -3:, -1] _lowerCamelCase = np.array([0.0_8_8_8, 0.0_8_8_1, 0.0_6_6_6, 0.0_4_7_9, 0.0_2_9_2, 0.0_1_9_5, 0.0_2_0_1, 0.0_1_6_3, 0.0_2_5_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2 def snake_case__ ( self ): _lowerCamelCase = UNetaDModel.from_pretrained('''diffusers/consistency_models''' , subfolder='''diffusers_cd_imagenet64_l2''' ) _lowerCamelCase = CMStochasticIterativeScheduler( num_train_timesteps=4_0 , sigma_min=0.0_0_2 , sigma_max=8_0.0 , ) _lowerCamelCase = ConsistencyModelPipeline(unet=lowerCamelCase__ , scheduler=lowerCamelCase__ ) pipe.to(torch_device=lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) _lowerCamelCase = self.get_inputs() _lowerCamelCase = 1 _lowerCamelCase = None _lowerCamelCase = pipe(**lowerCamelCase__ ).images assert image.shape == (1, 6_4, 6_4, 3) _lowerCamelCase = image[0, -3:, -3:, -1] _lowerCamelCase = np.array([0.0_3_4_0, 0.0_1_5_2, 0.0_0_6_3, 0.0_2_6_7, 0.0_2_2_1, 0.0_1_0_7, 0.0_4_1_6, 0.0_1_8_6, 0.0_2_1_7] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2 @require_torch_a def snake_case__ ( self ): _lowerCamelCase = UNetaDModel.from_pretrained('''diffusers/consistency_models''' , subfolder='''diffusers_cd_imagenet64_l2''' ) _lowerCamelCase = CMStochasticIterativeScheduler( num_train_timesteps=4_0 , sigma_min=0.0_0_2 , sigma_max=8_0.0 , ) _lowerCamelCase = ConsistencyModelPipeline(unet=lowerCamelCase__ , scheduler=lowerCamelCase__ ) pipe.to(torch_device=lowerCamelCase__ , torch_dtype=torch.floataa ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) _lowerCamelCase = self.get_inputs(get_fixed_latents=lowerCamelCase__ , device=lowerCamelCase__ ) # Ensure usage of flash attention in torch 2.0 with sdp_kernel(enable_flash=lowerCamelCase__ , enable_math=lowerCamelCase__ , enable_mem_efficient=lowerCamelCase__ ): _lowerCamelCase = pipe(**lowerCamelCase__ ).images assert image.shape == (1, 6_4, 6_4, 3) _lowerCamelCase = image[0, -3:, -3:, -1] _lowerCamelCase = np.array([0.1_8_7_5, 0.1_4_2_8, 0.1_2_8_9, 0.2_1_5_1, 0.2_0_9_2, 0.1_4_7_7, 0.1_8_7_7, 0.1_6_4_1, 0.1_3_5_3] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 @require_torch_a def snake_case__ ( self ): _lowerCamelCase = UNetaDModel.from_pretrained('''diffusers/consistency_models''' , subfolder='''diffusers_cd_imagenet64_l2''' ) _lowerCamelCase = CMStochasticIterativeScheduler( num_train_timesteps=4_0 , sigma_min=0.0_0_2 , sigma_max=8_0.0 , ) _lowerCamelCase = ConsistencyModelPipeline(unet=lowerCamelCase__ , scheduler=lowerCamelCase__ ) pipe.to(torch_device=lowerCamelCase__ , torch_dtype=torch.floataa ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) _lowerCamelCase = self.get_inputs(get_fixed_latents=lowerCamelCase__ , device=lowerCamelCase__ ) _lowerCamelCase = 1 _lowerCamelCase = None # Ensure usage of flash attention in torch 2.0 with sdp_kernel(enable_flash=lowerCamelCase__ , enable_math=lowerCamelCase__ , enable_mem_efficient=lowerCamelCase__ ): _lowerCamelCase = pipe(**lowerCamelCase__ ).images assert image.shape == (1, 6_4, 6_4, 3) _lowerCamelCase = image[0, -3:, -3:, -1] _lowerCamelCase = np.array([0.1_6_6_3, 0.1_9_4_8, 0.2_2_7_5, 0.1_6_8_0, 0.1_2_0_4, 0.1_2_4_5, 0.1_8_5_8, 0.1_3_3_8, 0.2_0_9_5] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
73
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) __SCREAMING_SNAKE_CASE : Dict = { '''configuration_mega''': ['''MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MegaConfig''', '''MegaOnnxConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE : Union[str, Any] = [ '''MEGA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MegaForCausalLM''', '''MegaForMaskedLM''', '''MegaForMultipleChoice''', '''MegaForQuestionAnswering''', '''MegaForSequenceClassification''', '''MegaForTokenClassification''', '''MegaModel''', '''MegaPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mega import MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP, MegaConfig, MegaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mega import ( MEGA_PRETRAINED_MODEL_ARCHIVE_LIST, MegaForCausalLM, MegaForMaskedLM, MegaForMultipleChoice, MegaForQuestionAnswering, MegaForSequenceClassification, MegaForTokenClassification, MegaModel, MegaPreTrainedModel, ) else: import sys __SCREAMING_SNAKE_CASE : List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
73
1
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileViTConfig, MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() a : Optional[int] = logging.get_logger(__name__) def _SCREAMING_SNAKE_CASE ( _lowercase : Dict ) ->List[Any]: '''simple docstring''' a : str = MobileViTConfig() # size of the architecture if "mobilevit_s" in mobilevit_name: a : str = [144, 192, 240] a : Optional[Any] = [16, 32, 64, 96, 128, 160, 640] elif "mobilevit_xs" in mobilevit_name: a : List[str] = [96, 120, 144] a : Dict = [16, 32, 48, 64, 80, 96, 384] elif "mobilevit_xxs" in mobilevit_name: a : List[Any] = [64, 80, 96] a : Any = [16, 16, 24, 48, 64, 80, 320] a : List[str] = 0.05 a : Dict = 2.0 if mobilevit_name.startswith("deeplabv3_" ): a : Optional[Any] = 512 a : List[Any] = 16 a : List[str] = 21 a : int = """pascal-voc-id2label.json""" else: a : Optional[Any] = 1000 a : Optional[Any] = """imagenet-1k-id2label.json""" a : Tuple = """huggingface/label-files""" a : str = json.load(open(hf_hub_download(_A , _A , repo_type="dataset" ) , "r" ) ) a : Optional[int] = {int(_A ): v for k, v in idalabel.items()} a : Any = idalabel a : Dict = {v: k for k, v in idalabel.items()} return config def _SCREAMING_SNAKE_CASE ( _lowercase : Optional[int] , _lowercase : Dict=False ) ->int: '''simple docstring''' for i in range(1 , 6 ): if F"""layer_{i}.""" in name: a : Optional[int] = name.replace(F"""layer_{i}.""" , F"""encoder.layer.{i - 1}.""" ) if "conv_1." in name: a : Optional[int] = name.replace("conv_1." , "conv_stem." ) if ".block." in name: a : Optional[int] = name.replace(".block." , "." ) if "exp_1x1" in name: a : int = name.replace("exp_1x1" , "expand_1x1" ) if "red_1x1" in name: a : Any = name.replace("red_1x1" , "reduce_1x1" ) if ".local_rep.conv_3x3." in name: a : Optional[Any] = name.replace(".local_rep.conv_3x3." , ".conv_kxk." ) if ".local_rep.conv_1x1." in name: a : Union[str, Any] = name.replace(".local_rep.conv_1x1." , ".conv_1x1." ) if ".norm." in name: a : List[str] = name.replace(".norm." , ".normalization." ) if ".conv." in name: a : List[Any] = name.replace(".conv." , ".convolution." ) if ".conv_proj." in name: a : str = name.replace(".conv_proj." , ".conv_projection." ) for i in range(0 , 2 ): for j in range(0 , 4 ): if F""".{i}.{j}.""" in name: a : List[str] = name.replace(F""".{i}.{j}.""" , F""".{i}.layer.{j}.""" ) for i in range(2 , 6 ): for j in range(0 , 4 ): if F""".{i}.{j}.""" in name: a : Tuple = name.replace(F""".{i}.{j}.""" , F""".{i}.""" ) if "expand_1x1" in name: a : Dict = name.replace("expand_1x1" , "downsampling_layer.expand_1x1" ) if "conv_3x3" in name: a : Union[str, Any] = name.replace("conv_3x3" , "downsampling_layer.conv_3x3" ) if "reduce_1x1" in name: a : Union[str, Any] = name.replace("reduce_1x1" , "downsampling_layer.reduce_1x1" ) for i in range(2 , 5 ): if F""".global_rep.{i}.weight""" in name: a : Union[str, Any] = name.replace(F""".global_rep.{i}.weight""" , ".layernorm.weight" ) if F""".global_rep.{i}.bias""" in name: a : Any = name.replace(F""".global_rep.{i}.bias""" , ".layernorm.bias" ) if ".global_rep." in name: a : int = name.replace(".global_rep." , ".transformer." ) if ".pre_norm_mha.0." in name: a : Union[str, Any] = name.replace(".pre_norm_mha.0." , ".layernorm_before." ) if ".pre_norm_mha.1.out_proj." in name: a : List[str] = name.replace(".pre_norm_mha.1.out_proj." , ".attention.output.dense." ) if ".pre_norm_ffn.0." in name: a : Dict = name.replace(".pre_norm_ffn.0." , ".layernorm_after." ) if ".pre_norm_ffn.1." in name: a : Union[str, Any] = name.replace(".pre_norm_ffn.1." , ".intermediate.dense." ) if ".pre_norm_ffn.4." in name: a : Dict = name.replace(".pre_norm_ffn.4." , ".output.dense." ) if ".transformer." in name: a : List[Any] = name.replace(".transformer." , ".transformer.layer." ) if ".aspp_layer." in name: a : str = name.replace(".aspp_layer." , "." ) if ".aspp_pool." in name: a : Any = name.replace(".aspp_pool." , "." ) if "seg_head." in name: a : List[Any] = name.replace("seg_head." , "segmentation_head." ) if "segmentation_head.classifier.classifier." in name: a : Any = name.replace("segmentation_head.classifier.classifier." , "segmentation_head.classifier." ) if "classifier.fc." in name: a : Any = name.replace("classifier.fc." , "classifier." ) elif (not base_model) and ("segmentation_head." not in name): a : Optional[int] = """mobilevit.""" + name return name def _SCREAMING_SNAKE_CASE ( _lowercase : str , _lowercase : Tuple , _lowercase : Union[str, Any]=False ) ->List[Any]: '''simple docstring''' if base_model: a : str = """""" else: a : List[str] = """mobilevit.""" for key in orig_state_dict.copy().keys(): a : str = orig_state_dict.pop(_A ) if key[:8] == "encoder.": a : Dict = key[8:] if "qkv" in key: a : List[str] = key.split("." ) a : str = int(key_split[0][6:] ) - 1 a : Any = int(key_split[3] ) a : int = model.get_submodule(F"""{model_prefix}encoder.layer.{layer_num}""" ) a : int = layer.transformer.layer[transformer_num].attention.attention.all_head_size a : str = ( F"""{model_prefix}encoder.layer.{layer_num}.transformer.layer.{transformer_num}.attention.attention.""" ) if "weight" in key: a : Tuple = val[:dim, :] a : Union[str, Any] = val[dim : dim * 2, :] a : Any = val[-dim:, :] else: a : Tuple = val[:dim] a : str = val[dim : dim * 2] a : List[str] = val[-dim:] else: a : Any = val return orig_state_dict def _SCREAMING_SNAKE_CASE ( ) ->Tuple: '''simple docstring''' a : str = """http://images.cocodataset.org/val2017/000000039769.jpg""" a : Optional[int] = Image.open(requests.get(_A , stream=_A ).raw ) return im @torch.no_grad() def _SCREAMING_SNAKE_CASE ( _lowercase : Any , _lowercase : Dict , _lowercase : Any , _lowercase : Any=False ) ->Tuple: '''simple docstring''' a : Tuple = get_mobilevit_config(_A ) # load original state_dict a : Optional[int] = torch.load(_A , map_location="cpu" ) # load 🤗 model if mobilevit_name.startswith("deeplabv3_" ): a : Tuple = MobileViTForSemanticSegmentation(_A ).eval() else: a : Dict = MobileViTForImageClassification(_A ).eval() a : str = convert_state_dict(_A , _A ) model.load_state_dict(_A ) # Check outputs on an image, prepared by MobileViTImageProcessor a : Any = MobileViTImageProcessor(crop_size=config.image_size , size=config.image_size + 32 ) a : Optional[int] = image_processor(images=prepare_img() , return_tensors="pt" ) a : Union[str, Any] = model(**_A ) a : str = outputs.logits if mobilevit_name.startswith("deeplabv3_" ): assert logits.shape == (1, 21, 32, 32) if mobilevit_name == "deeplabv3_mobilevit_s": a : Dict = torch.tensor( [ [[6.2065, 6.1292, 6.2070], [6.1079, 6.1254, 6.1747], [6.0042, 6.1071, 6.1034]], [[-6.9253, -6.8653, -7.0398], [-7.3218, -7.3983, -7.3670], [-7.1961, -7.2482, -7.1569]], [[-4.4723, -4.4348, -4.3769], [-5.3629, -5.4632, -5.4598], [-5.1587, -5.3402, -5.5059]], ] ) elif mobilevit_name == "deeplabv3_mobilevit_xs": a : Optional[int] = torch.tensor( [ [[5.4449, 5.5733, 5.6314], [5.1815, 5.3930, 5.5963], [5.1656, 5.4333, 5.4853]], [[-9.4423, -9.7766, -9.6714], [-9.1581, -9.5720, -9.5519], [-9.1006, -9.6458, -9.5703]], [[-7.7721, -7.3716, -7.1583], [-8.4599, -8.0624, -7.7944], [-8.4172, -7.8366, -7.5025]], ] ) elif mobilevit_name == "deeplabv3_mobilevit_xxs": a : int = torch.tensor( [ [[6.9811, 6.9743, 7.3123], [7.1777, 7.1931, 7.3938], [7.5633, 7.8050, 7.8901]], [[-10.5536, -10.2332, -10.2924], [-10.2336, -9.8624, -9.5964], [-10.8840, -10.8158, -10.6659]], [[-3.4938, -3.0631, -2.8620], [-3.4205, -2.8135, -2.6875], [-3.4179, -2.7945, -2.8750]], ] ) else: raise ValueError(F"""Unknown mobilevit_name: {mobilevit_name}""" ) assert torch.allclose(logits[0, :3, :3, :3] , _A , atol=1E-4 ) else: assert logits.shape == (1, 1000) if mobilevit_name == "mobilevit_s": a : Any = torch.tensor([-0.9866, 0.2392, -1.1241] ) elif mobilevit_name == "mobilevit_xs": a : int = torch.tensor([-2.4761, -0.9399, -1.9587] ) elif mobilevit_name == "mobilevit_xxs": a : Any = torch.tensor([-1.9364, -1.2327, -0.4653] ) else: raise ValueError(F"""Unknown mobilevit_name: {mobilevit_name}""" ) assert torch.allclose(logits[0, :3] , _A , atol=1E-4 ) Path(_A ).mkdir(exist_ok=_A ) print(F"""Saving model {mobilevit_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(_A ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(_A ) if push_to_hub: a : Dict = { """mobilevit_s""": """mobilevit-small""", """mobilevit_xs""": """mobilevit-x-small""", """mobilevit_xxs""": """mobilevit-xx-small""", """deeplabv3_mobilevit_s""": """deeplabv3-mobilevit-small""", """deeplabv3_mobilevit_xs""": """deeplabv3-mobilevit-x-small""", """deeplabv3_mobilevit_xxs""": """deeplabv3-mobilevit-xx-small""", } print("Pushing to the hub..." ) a : Optional[Any] = model_mapping[mobilevit_name] image_processor.push_to_hub(_A , organization="apple" ) model.push_to_hub(_A , organization="apple" ) if __name__ == "__main__": a : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--mobilevit_name''', default='''mobilevit_s''', type=str, help=( '''Name of the MobileViT model you\'d like to convert. Should be one of \'mobilevit_s\', \'mobilevit_xs\',''' ''' \'mobilevit_xxs\', \'deeplabv3_mobilevit_s\', \'deeplabv3_mobilevit_xs\', \'deeplabv3_mobilevit_xxs\'.''' ), ) parser.add_argument( '''--checkpoint_path''', required=True, type=str, help='''Path to the original state dict (.pt file).''' ) parser.add_argument( '''--pytorch_dump_folder_path''', required=True, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) a : int = parser.parse_args() convert_movilevit_checkpoint( args.mobilevit_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
105
import collections import inspect import unittest from transformers import FocalNetConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, ) from transformers.models.focalnet.modeling_focalnet import FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class snake_case__ : def __init__( self , lowerCAmelCase__ , lowerCAmelCase__=13 , lowerCAmelCase__=32 , lowerCAmelCase__=2 , lowerCAmelCase__=3 , lowerCAmelCase__=16 , lowerCAmelCase__=[32, 64, 1_28] , lowerCAmelCase__=[1, 2, 1] , lowerCAmelCase__=[2, 2, 4] , lowerCAmelCase__=2 , lowerCAmelCase__=2.0 , lowerCAmelCase__=True , lowerCAmelCase__=0.0 , lowerCAmelCase__=0.0 , lowerCAmelCase__=0.1 , lowerCAmelCase__="gelu" , lowerCAmelCase__=False , lowerCAmelCase__=True , lowerCAmelCase__=0.0_2 , lowerCAmelCase__=1e-5 , lowerCAmelCase__=True , lowerCAmelCase__=None , lowerCAmelCase__=True , lowerCAmelCase__=10 , lowerCAmelCase__=8 , lowerCAmelCase__=["stage1", "stage2"] , lowerCAmelCase__=[1, 2] , ) -> str: __magic_name__ : Optional[int] = parent __magic_name__ : Any = batch_size __magic_name__ : Union[str, Any] = image_size __magic_name__ : Optional[int] = patch_size __magic_name__ : Union[str, Any] = num_channels __magic_name__ : str = embed_dim __magic_name__ : int = hidden_sizes __magic_name__ : Union[str, Any] = depths __magic_name__ : List[str] = num_heads __magic_name__ : str = window_size __magic_name__ : Optional[Any] = mlp_ratio __magic_name__ : Dict = qkv_bias __magic_name__ : Dict = hidden_dropout_prob __magic_name__ : Optional[Any] = attention_probs_dropout_prob __magic_name__ : List[Any] = drop_path_rate __magic_name__ : Optional[Any] = hidden_act __magic_name__ : int = use_absolute_embeddings __magic_name__ : Dict = patch_norm __magic_name__ : Tuple = layer_norm_eps __magic_name__ : List[str] = initializer_range __magic_name__ : Optional[int] = is_training __magic_name__ : Optional[Any] = scope __magic_name__ : Union[str, Any] = use_labels __magic_name__ : Optional[Any] = type_sequence_label_size __magic_name__ : Union[str, Any] = encoder_stride __magic_name__ : List[Any] = out_features __magic_name__ : Union[str, Any] = out_indices def __magic_name__ ( self ) -> str: __magic_name__ : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __magic_name__ : Optional[Any] = None if self.use_labels: __magic_name__ : Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __magic_name__ : Dict = self.get_config() return config, pixel_values, labels def __magic_name__ ( self ) -> List[Any]: return FocalNetConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , hidden_sizes=self.hidden_sizes , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Optional[Any]: __magic_name__ : Any = FocalNetModel(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __magic_name__ : Optional[int] = model(lowerCAmelCase__ ) __magic_name__ : Union[str, Any] = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) __magic_name__ : Optional[Any] = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Optional[Any]: __magic_name__ : List[str] = FocalNetBackbone(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __magic_name__ : Tuple = model(lowerCAmelCase__ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size, 8, 8] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[:-1] ) # verify backbone works with out_features=None __magic_name__ : Optional[Any] = None __magic_name__ : List[str] = FocalNetBackbone(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __magic_name__ : Union[str, Any] = model(lowerCAmelCase__ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size * 2, 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Union[str, Any]: __magic_name__ : Optional[int] = FocalNetForMaskedImageModeling(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __magic_name__ : str = model(lowerCAmelCase__ ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images __magic_name__ : Optional[int] = 1 __magic_name__ : int = FocalNetForMaskedImageModeling(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __magic_name__ : int = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __magic_name__ : List[Any] = model(lowerCAmelCase__ ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Tuple: __magic_name__ : int = self.type_sequence_label_size __magic_name__ : Tuple = FocalNetForImageClassification(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __magic_name__ : int = model(lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images __magic_name__ : Optional[int] = 1 __magic_name__ : Dict = FocalNetForImageClassification(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __magic_name__ : Union[str, Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __magic_name__ : Dict = model(lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __magic_name__ ( self ) -> int: __magic_name__ : int = self.prepare_config_and_inputs() __magic_name__ ,__magic_name__ ,__magic_name__ : Dict = config_and_inputs __magic_name__ : Optional[Any] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class snake_case__ ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): lowercase__ : str = ( ( FocalNetModel, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetBackbone, ) if is_torch_available() else () ) lowercase__ : Any = ( {'''feature-extraction''': FocalNetModel, '''image-classification''': FocalNetForImageClassification} if is_torch_available() else {} ) lowercase__ : Dict = False lowercase__ : Dict = False lowercase__ : int = False lowercase__ : Tuple = False lowercase__ : Optional[Any] = False def __magic_name__ ( self ) -> Dict: __magic_name__ : Optional[Any] = FocalNetModelTester(self ) __magic_name__ : int = ConfigTester(self , config_class=lowerCAmelCase__ , embed_dim=37 , has_text_modality=lowerCAmelCase__ ) def __magic_name__ ( self ) -> List[Any]: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __magic_name__ ( self ) -> List[str]: return def __magic_name__ ( self ) -> Tuple: __magic_name__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase__ ) def __magic_name__ ( self ) -> Tuple: __magic_name__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*lowerCAmelCase__ ) def __magic_name__ ( self ) -> List[str]: __magic_name__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*lowerCAmelCase__ ) def __magic_name__ ( self ) -> List[Any]: __magic_name__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase__ ) @unittest.skip(reason="""FocalNet does not use inputs_embeds""" ) def __magic_name__ ( self ) -> List[str]: pass @unittest.skip(reason="""FocalNet does not use feedforward chunking""" ) def __magic_name__ ( self ) -> List[Any]: pass def __magic_name__ ( self ) -> List[Any]: __magic_name__ ,__magic_name__ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: __magic_name__ : Dict = model_class(lowerCAmelCase__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __magic_name__ : Dict = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCAmelCase__ , nn.Linear ) ) def __magic_name__ ( self ) -> Tuple: __magic_name__ ,__magic_name__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: __magic_name__ : str = model_class(lowerCAmelCase__ ) __magic_name__ : Optional[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __magic_name__ : Tuple = [*signature.parameters.keys()] __magic_name__ : str = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , lowerCAmelCase__ ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Dict: __magic_name__ : List[Any] = model_class(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() with torch.no_grad(): __magic_name__ : List[str] = model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) ) __magic_name__ : Optional[Any] = outputs.hidden_states __magic_name__ : Union[str, Any] = getattr( self.model_tester , """expected_num_hidden_layers""" , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(lowerCAmelCase__ ) , lowerCAmelCase__ ) # FocalNet has a different seq_length __magic_name__ : List[str] = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) __magic_name__ : Optional[Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) __magic_name__ : str = outputs.reshaped_hidden_states self.assertEqual(len(lowerCAmelCase__ ) , lowerCAmelCase__ ) __magic_name__ ,__magic_name__ ,__magic_name__ ,__magic_name__ : Tuple = reshaped_hidden_states[0].shape __magic_name__ : Union[str, Any] = ( reshaped_hidden_states[0].view(lowerCAmelCase__ , lowerCAmelCase__ , height * width ).permute(0 , 2 , 1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def __magic_name__ ( self ) -> str: __magic_name__ ,__magic_name__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() __magic_name__ : Optional[Any] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes[:-1]: __magic_name__ : List[Any] = True self.check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __magic_name__ : Optional[Any] = True self.check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def __magic_name__ ( self ) -> str: __magic_name__ ,__magic_name__ : int = self.model_tester.prepare_config_and_inputs_for_common() __magic_name__ : Optional[Any] = 3 __magic_name__ : Union[str, Any] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) __magic_name__ : Dict = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) __magic_name__ : List[Any] = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) __magic_name__ : Tuple = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes[:-1]: __magic_name__ : Optional[int] = True self.check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __magic_name__ : str = True self.check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , (padded_height, padded_width) ) @slow def __magic_name__ ( self ) -> Union[str, Any]: for model_name in FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __magic_name__ : Optional[int] = FocalNetModel.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) def __magic_name__ ( self ) -> Optional[int]: __magic_name__ ,__magic_name__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() __magic_name__ : Dict = _config_zero_init(lowerCAmelCase__ ) for model_class in self.all_model_classes: __magic_name__ : Any = model_class(config=lowerCAmelCase__ ) for name, param in model.named_parameters(): if "embeddings" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F'Parameter {name} of model {model_class} seems not properly initialized' , ) @require_vision @require_torch class snake_case__ ( unittest.TestCase ): @cached_property def __magic_name__ ( self ) -> Optional[int]: # TODO update organization return AutoImageProcessor.from_pretrained("""microsoft/focalnet-tiny""" ) if is_vision_available() else None @slow def __magic_name__ ( self ) -> Optional[Any]: __magic_name__ : int = FocalNetForImageClassification.from_pretrained("""microsoft/focalnet-tiny""" ).to(lowerCAmelCase__ ) __magic_name__ : Optional[Any] = self.default_image_processor __magic_name__ : int = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) __magic_name__ : Union[str, Any] = image_processor(images=lowerCAmelCase__ , return_tensors="""pt""" ).to(lowerCAmelCase__ ) # forward pass with torch.no_grad(): __magic_name__ : List[Any] = model(**lowerCAmelCase__ ) # verify the logits __magic_name__ : Union[str, Any] = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase__ ) __magic_name__ : Dict = torch.tensor([0.2_1_6_6, -0.4_3_6_8, 0.2_1_9_1] ).to(lowerCAmelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCAmelCase__ , atol=1e-4 ) ) self.assertTrue(outputs.logits.argmax(dim=-1 ).item() , 2_81 ) @require_torch class snake_case__ ( _lowerCAmelCase , unittest.TestCase ): lowercase__ : Any = (FocalNetBackbone,) if is_torch_available() else () lowercase__ : Optional[int] = FocalNetConfig lowercase__ : Dict = False def __magic_name__ ( self ) -> int: __magic_name__ : Dict = FocalNetModelTester(self )
342
0
"""simple docstring""" import os import numpy import onnx def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> List[Any]: snake_case_ = a.name snake_case_ = b.name snake_case_ = """""" snake_case_ = """""" snake_case_ = a == b snake_case_ = name_a snake_case_ = name_b return res def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> int: for i, input_name in enumerate(node_proto.input ): if input_name == name: node_proto.input.insert(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) node_proto.input.pop(i + 1 ) if node_proto.op_type == "If": _graph_replace_input_with(node_proto.attribute[0].g , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _graph_replace_input_with(node_proto.attribute[1].g , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if node_proto.op_type == "Loop": _graph_replace_input_with(node_proto.attribute[0].g , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Dict: for n in graph_proto.node: _node_replace_input_with(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> str: snake_case_ = list(model.graph.initializer ) snake_case_ = list(model_without_ext.graph.initializer ) for i, ref_i in ind_to_replace: assert inits_with_data[i].name == inits[i].name assert inits_with_data[ref_i].name == inits[ref_i].name assert i > ref_i snake_case_ = inits[i].name snake_case_ = inits[ref_i].name model_without_ext.graph.initializer.remove(inits[i] ) # for n in model.graph.node: _graph_replace_input_with(model_without_ext.graph , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def _a ( _SCREAMING_SNAKE_CASE ) -> Optional[Any]: snake_case_ = os.path.dirname(_SCREAMING_SNAKE_CASE ) snake_case_ = os.path.basename(_SCREAMING_SNAKE_CASE ) snake_case_ = onnx.load(os.path.join(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) snake_case_ = list(model.graph.initializer ) snake_case_ = set() snake_case_ = {} snake_case_ = [] snake_case_ = 0 for i in range(len(_SCREAMING_SNAKE_CASE ) ): if i in dup_set: continue for j in range(i + 1 , len(_SCREAMING_SNAKE_CASE ) ): if j in dup_set: continue if _is_equal_tensor_proto(inits[i] , inits[j] ): dup_set.add(_SCREAMING_SNAKE_CASE ) dup_set.add(_SCREAMING_SNAKE_CASE ) snake_case_ = inits[j].data_type snake_case_ = numpy.prod(inits[j].dims ) if dtype == 1: mem_size *= 4 elif dtype == 6: mem_size *= 4 elif dtype == 7 or dtype == 11: mem_size *= 8 else: print("""unexpected data type: """ , _SCREAMING_SNAKE_CASE ) total_reduced_size += mem_size snake_case_ = inits[i].name snake_case_ = inits[j].name if name_i in dup_map: dup_map[name_i].append(_SCREAMING_SNAKE_CASE ) else: snake_case_ = [name_j] ind_to_replace.append((j, i) ) print("""total reduced size: """ , total_reduced_size / 1_024 / 1_024 / 1_024 , """GB""" ) snake_case_ = sorted(_SCREAMING_SNAKE_CASE ) _remove_dup_initializers_from_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) snake_case_ = """optimized_""" + model_file_name snake_case_ = os.path.join(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) onnx.save(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return new_model
360
"""simple docstring""" # NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from ...utils import deprecate from ..controlnet.pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline # noqa: F401 deprecate( 'stable diffusion controlnet', '0.22.0', 'Importing `FlaxStableDiffusionControlNetPipeline` from diffusers.pipelines.stable_diffusion.flax_pipeline_stable_diffusion_controlnet is deprecated. Please import `from diffusers import FlaxStableDiffusionControlNetPipeline` instead.', standard_warn=False, stacklevel=3, )
233
0
'''simple docstring''' import inspect import jax import jax.lax as lax import jax.numpy as jnp from ..utils import add_start_docstrings from ..utils.logging import get_logger lowerCAmelCase : Optional[int] =get_logger(__name__) lowerCAmelCase : Dict =r''' Args: input_ids (`jnp.ndarray` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`PreTrainedTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) scores (`jnp.ndarray` of shape `(batch_size, config.vocab_size)`): Prediction scores of a language modeling head. These can be logits for each vocabulary when not using beam search or log softmax for each vocabulary token when using beam search kwargs (`Dict[str, Any]`, *optional*): Additional logits processor specific kwargs. Return: `jnp.ndarray` of shape `(batch_size, config.vocab_size)`: The processed prediction scores. ''' class a_ : @add_start_docstrings(lowercase ) def __call__( self : Dict , lowercase : jnp.ndarray , lowercase : jnp.ndarray ): """simple docstring""" raise NotImplementedError( F'{self.__class__} is an abstract class. Only classes inheriting this class can be called.' ) class a_ : @add_start_docstrings(lowercase ) def __call__( self : Optional[Any] , lowercase : jnp.ndarray , lowercase : jnp.ndarray ): """simple docstring""" raise NotImplementedError( F'{self.__class__} is an abstract class. Only classes inheriting this class can be called.' ) class a_ ( _lowerCAmelCase ): @add_start_docstrings(lowercase ) def __call__( self : Optional[Any] , lowercase : jnp.ndarray , lowercase : jnp.ndarray , lowercase : int , **lowercase : Dict ): """simple docstring""" for processor in self: lowercase_ :Any = inspect.signature(processor.__call__ ).parameters if len(lowercase ) > 3: if not all(arg in kwargs for arg in list(function_args.keys() )[2:] ): raise ValueError( F'Make sure that all the required parameters: {list(function_args.keys() )} for ' F'{processor.__class__} are passed to the logits processor.' ) lowercase_ :str = processor(lowercase , lowercase , lowercase , **lowercase ) else: lowercase_ :Union[str, Any] = processor(lowercase , lowercase , lowercase ) return scores class a_ ( _lowerCAmelCase ): def __init__( self : Dict , lowercase : float ): """simple docstring""" if not isinstance(lowercase , lowercase ) or not (temperature > 0): raise ValueError(F'`temperature` has to be a strictly positive float, but is {temperature}' ) lowercase_ :Optional[int] = temperature def __call__( self : str , lowercase : jnp.ndarray , lowercase : jnp.ndarray , lowercase : int ): """simple docstring""" lowercase_ :Optional[Any] = scores / self.temperature return scores class a_ ( _lowerCAmelCase ): def __init__( self : str , lowercase : float , lowercase : float = -float("Inf" ) , lowercase : int = 1 ): """simple docstring""" if not isinstance(lowercase , lowercase ) or (top_p < 0 or top_p > 1.0): raise ValueError(F'`top_p` has to be a float > 0 and < 1, but is {top_p}' ) if not isinstance(lowercase , lowercase ) or (min_tokens_to_keep < 1): raise ValueError(F'`min_tokens_to_keep` has to be a positive integer, but is {min_tokens_to_keep}' ) lowercase_ :Union[str, Any] = top_p lowercase_ :Tuple = filter_value lowercase_ :Optional[int] = min_tokens_to_keep def __call__( self : int , lowercase : jnp.ndarray , lowercase : jnp.ndarray , lowercase : int ): """simple docstring""" lowercase_ , lowercase_ :Any = lax.top_k(lowercase , scores.shape[-1] ) lowercase_ :List[str] = jnp.full_like(lowercase , self.filter_value ) lowercase_ :Optional[Any] = jax.nn.softmax(lowercase , axis=-1 ).cumsum(axis=-1 ) lowercase_ :Any = cumulative_probs < self.top_p # include the token that is higher than top_p as well lowercase_ :Dict = jnp.roll(lowercase , 1 ) score_mask |= score_mask.at[:, 0].set(lowercase ) # min tokens to keep lowercase_ :List[Any] = score_mask.at[:, : self.min_tokens_to_keep].set(lowercase ) lowercase_ :Dict = jnp.where(lowercase , lowercase , lowercase ) lowercase_ :Optional[Any] = jax.lax.sort_key_val(lowercase , lowercase )[-1] return next_scores class a_ ( _lowerCAmelCase ): def __init__( self : Optional[Any] , lowercase : int , lowercase : float = -float("Inf" ) , lowercase : int = 1 ): """simple docstring""" if not isinstance(lowercase , lowercase ) or top_k <= 0: raise ValueError(F'`top_k` has to be a strictly positive integer, but is {top_k}' ) lowercase_ :List[str] = max(lowercase , lowercase ) lowercase_ :Optional[int] = filter_value def __call__( self : int , lowercase : jnp.ndarray , lowercase : jnp.ndarray , lowercase : int ): """simple docstring""" lowercase_ , lowercase_ :int = scores.shape lowercase_ :str = jnp.full(batch_size * vocab_size , self.filter_value ) lowercase_ :Union[str, Any] = min(self.top_k , scores.shape[-1] ) # Safety check lowercase_ , lowercase_ :Any = lax.top_k(lowercase , lowercase ) lowercase_ :List[Any] = jnp.broadcast_to((jnp.arange(lowercase ) * vocab_size)[:, None] , (batch_size, topk) ).flatten() lowercase_ :Tuple = topk_scores.flatten() lowercase_ :Any = topk_indices.flatten() + shift lowercase_ :Union[str, Any] = next_scores_flat.at[topk_indices_flat].set(lowercase ) lowercase_ :Optional[int] = next_scores_flat.reshape(lowercase , lowercase ) return next_scores class a_ ( _lowerCAmelCase ): def __init__( self : Union[str, Any] , lowercase : int ): """simple docstring""" lowercase_ :List[str] = bos_token_id def __call__( self : List[str] , lowercase : jnp.ndarray , lowercase : jnp.ndarray , lowercase : int ): """simple docstring""" lowercase_ :Optional[Any] = jnp.full(scores.shape , -float("inf" ) ) lowercase_ :str = 1 - jnp.bool_(cur_len - 1 ) lowercase_ :List[str] = jnp.where(lowercase , new_scores.at[:, self.bos_token_id].set(0 ) , lowercase ) return scores class a_ ( _lowerCAmelCase ): def __init__( self : Optional[Any] , lowercase : int , lowercase : int ): """simple docstring""" lowercase_ :Tuple = max_length lowercase_ :Optional[int] = eos_token_id def __call__( self : Tuple , lowercase : jnp.ndarray , lowercase : jnp.ndarray , lowercase : int ): """simple docstring""" lowercase_ :Any = jnp.full(scores.shape , -float("inf" ) ) lowercase_ :Union[str, Any] = 1 - jnp.bool_(cur_len - self.max_length + 1 ) lowercase_ :List[Any] = jnp.where(lowercase , new_scores.at[:, self.eos_token_id].set(0 ) , lowercase ) return scores class a_ ( _lowerCAmelCase ): def __init__( self : Any , lowercase : int , lowercase : int ): """simple docstring""" if not isinstance(lowercase , lowercase ) or min_length < 0: raise ValueError(F'`min_length` has to be a positive integer, but is {min_length}' ) if not isinstance(lowercase , lowercase ) or eos_token_id < 0: raise ValueError(F'`eos_token_id` has to be a positive integer, but is {eos_token_id}' ) lowercase_ :int = min_length lowercase_ :str = eos_token_id def __call__( self : str , lowercase : jnp.ndarray , lowercase : jnp.ndarray , lowercase : int ): """simple docstring""" lowercase_ :List[str] = 1 - jnp.clip(cur_len - self.min_length , 0 , 1 ) lowercase_ :Union[str, Any] = jnp.where(lowercase , scores.at[:, self.eos_token_id].set(-float("inf" ) ) , lowercase ) return scores class a_ ( _lowerCAmelCase ): def __init__( self : Dict , lowercase : Any , lowercase : List[str] ): """simple docstring""" lowercase_ :List[str] = list(lowercase ) lowercase_ :Optional[int] = begin_index def __call__( self : Tuple , lowercase : str , lowercase : Dict , lowercase : int ): """simple docstring""" lowercase_ :Union[str, Any] = 1 - jnp.bool_(cur_len - self.begin_index ) lowercase_ :List[Any] = jnp.where(lowercase , scores.at[:, self.begin_suppress_tokens].set(-float("inf" ) ) , lowercase ) return scores class a_ ( _lowerCAmelCase ): def __init__( self : List[Any] , lowercase : list ): """simple docstring""" lowercase_ :Dict = list(lowercase ) def __call__( self : Any , lowercase : jnp.ndarray , lowercase : jnp.ndarray , lowercase : int ): """simple docstring""" lowercase_ :str = scores.at[..., self.suppress_tokens].set(-float("inf" ) ) return scores class a_ ( _lowerCAmelCase ): def __init__( self : List[str] , lowercase : Union[str, Any] ): """simple docstring""" lowercase_ :Union[str, Any] = dict(lowercase ) # Converts the dictionary of format {index: token} containing the tokens to be forced to an array, where the # index of the array corresponds to the index of the token to be forced, for XLA compatibility. # Indexes without forced tokens will have a negative value. lowercase_ :Union[str, Any] = jnp.ones((max(force_token_map.keys() ) + 1) , dtype=jnp.intaa ) * -1 for index, token in force_token_map.items(): if token is not None: lowercase_ :List[str] = force_token_array.at[index].set(lowercase ) lowercase_ :Union[str, Any] = jnp.intaa(lowercase ) def __call__( self : List[Any] , lowercase : jnp.ndarray , lowercase : jnp.ndarray , lowercase : int ): """simple docstring""" def _force_token(lowercase : Optional[int] ): lowercase_ :List[Any] = scores.shape[0] lowercase_ :Optional[Any] = self.force_token_array[generation_idx] lowercase_ :List[str] = jnp.ones_like(lowercase , dtype=scores.dtype ) * -float("inf" ) lowercase_ :Optional[int] = jnp.zeros((batch_size, 1) , dtype=scores.dtype ) lowercase_ :Optional[Any] = lax.dynamic_update_slice(lowercase , lowercase , (0, current_token) ) return new_scores lowercase_ :List[Any] = lax.cond( cur_len >= self.force_token_array.shape[0] , lambda: scores , lambda: lax.cond( self.force_token_array[cur_len] >= 0 , lambda: _force_token(lowercase ) , lambda: scores , ) , ) return scores class a_ ( _lowerCAmelCase ): def __init__( self : Dict , lowercase : str , lowercase : Any , lowercase : Any ): """simple docstring""" lowercase_ :str = generate_config.eos_token_id lowercase_ :Dict = generate_config.no_timestamps_token_id lowercase_ :int = generate_config.no_timestamps_token_id + 1 lowercase_ :int = decoder_input_length + 1 if generate_config.is_multilingual: # room for language token and task token self.begin_index += 2 if hasattr(lowercase , "max_initial_timestamp_index" ): lowercase_ :Union[str, Any] = generate_config.max_initial_timestamp_index else: lowercase_ :str = model_config.vocab_size if self.max_initial_timestamp_index is None: lowercase_ :Union[str, Any] = model_config.vocab_size def __call__( self : Dict , lowercase : Tuple , lowercase : Tuple , lowercase : int ): """simple docstring""" lowercase_ :Optional[Any] = scores.at[:, self.no_timestamps_token_id].set(-float("inf" ) ) def handle_pairs(lowercase : str , lowercase : int ): lowercase_ :List[str] = jnp.where((cur_len - self.begin_index) >= 1 , lowercase , lowercase ) lowercase_ :List[Any] = jnp.where( input_ids_k[cur_len - 1] >= self.timestamp_begin , True and last_was_timestamp , lowercase , ) lowercase_ :Optional[Any] = jnp.where((cur_len - self.begin_index) < 2 , lowercase , lowercase ) lowercase_ :Optional[int] = jnp.where( input_ids_k[cur_len - 2] >= self.timestamp_begin , lowercase , lowercase , ) return jnp.where( lowercase , jnp.where( penultimate_was_timestamp > 0 , scores_k.at[self.timestamp_begin :].set(-float("inf" ) ) , scores_k.at[: self.eos_token_id].set(-float("inf" ) ) , ) , lowercase , ) lowercase_ :Optional[Any] = jax.vmap(lowercase )(lowercase , lowercase ) lowercase_ :Any = jnp.where(cur_len == self.begin_index , lowercase , lowercase ) lowercase_ :int = jnp.where( self.max_initial_timestamp_index is not None , True and apply_max_initial_timestamp , lowercase , ) lowercase_ :List[str] = self.timestamp_begin + self.max_initial_timestamp_index lowercase_ :List[str] = jnp.where( lowercase , scores.at[:, last_allowed + 1 :].set(-float("inf" ) ) , lowercase , ) # if sum of probability over timestamps is above any other token, sample timestamp lowercase_ :int = jax.nn.log_softmax(lowercase , axis=-1 ) def handle_cumulative_probs(lowercase : Dict , lowercase : Union[str, Any] ): lowercase_ :Union[str, Any] = jax.nn.logsumexp(logprobs_k[self.timestamp_begin :] , axis=-1 ) lowercase_ :Optional[Any] = jnp.max(logprobs_k[: self.timestamp_begin] ) return jnp.where( timestamp_logprob > max_text_token_logprob , scores_k.at[: self.timestamp_begin].set(-float("inf" ) ) , lowercase , ) lowercase_ :Dict = jax.vmap(lowercase )(lowercase , lowercase ) return scores
223
'''simple docstring''' import json import os from pathlib import Path from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import sentencepiece from ...tokenization_utils import BatchEncoding, PreTrainedTokenizer from ...utils import logging lowerCAmelCase : int =logging.get_logger(__name__) lowerCAmelCase : List[str] ='''▁''' lowerCAmelCase : List[str] ={ '''vocab_file''': '''vocab.json''', '''spm_file''': '''sentencepiece.bpe.model''', '''tokenizer_config_file''': '''tokenizer_config.json''', } lowerCAmelCase : Optional[Any] ={ '''vocab_file''': { '''facebook/m2m100_418M''': '''https://huggingface.co/facebook/m2m100_418M/resolve/main/vocab.json''', '''facebook/m2m100_1.2B''': '''https://huggingface.co/facebook/m2m100_1.2B/resolve/main/vocab.json''', }, '''spm_file''': { '''facebook/m2m100_418M''': '''https://huggingface.co/facebook/m2m100_418M/resolve/main/sentencepiece.bpe.model''', '''facebook/m2m100_1.2B''': '''https://huggingface.co/facebook/m2m100_1.2B/resolve/main/sentencepiece.bpe.model''', }, '''tokenizer_config_file''': { '''facebook/m2m100_418M''': '''https://huggingface.co/facebook/m2m100_418M/resolve/main/tokenizer_config.json''', '''facebook/m2m100_1.2B''': '''https://huggingface.co/facebook/m2m100_1.2B/resolve/main/tokenizer_config.json''', }, } lowerCAmelCase : int ={ '''facebook/m2m100_418M''': 1_024, } # fmt: off lowerCAmelCase : str ={ '''m2m100''': ['''af''', '''am''', '''ar''', '''ast''', '''az''', '''ba''', '''be''', '''bg''', '''bn''', '''br''', '''bs''', '''ca''', '''ceb''', '''cs''', '''cy''', '''da''', '''de''', '''el''', '''en''', '''es''', '''et''', '''fa''', '''ff''', '''fi''', '''fr''', '''fy''', '''ga''', '''gd''', '''gl''', '''gu''', '''ha''', '''he''', '''hi''', '''hr''', '''ht''', '''hu''', '''hy''', '''id''', '''ig''', '''ilo''', '''is''', '''it''', '''ja''', '''jv''', '''ka''', '''kk''', '''km''', '''kn''', '''ko''', '''lb''', '''lg''', '''ln''', '''lo''', '''lt''', '''lv''', '''mg''', '''mk''', '''ml''', '''mn''', '''mr''', '''ms''', '''my''', '''ne''', '''nl''', '''no''', '''ns''', '''oc''', '''or''', '''pa''', '''pl''', '''ps''', '''pt''', '''ro''', '''ru''', '''sd''', '''si''', '''sk''', '''sl''', '''so''', '''sq''', '''sr''', '''ss''', '''su''', '''sv''', '''sw''', '''ta''', '''th''', '''tl''', '''tn''', '''tr''', '''uk''', '''ur''', '''uz''', '''vi''', '''wo''', '''xh''', '''yi''', '''yo''', '''zh''', '''zu'''], '''wmt21''': ['''en''', '''ha''', '''is''', '''ja''', '''cs''', '''ru''', '''zh''', '''de'''] } class a_ ( _lowerCAmelCase ): __A = VOCAB_FILES_NAMES __A = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __A = PRETRAINED_VOCAB_FILES_MAP __A = ["input_ids", "attention_mask"] __A = [] __A = [] def __init__( self : Any , lowercase : Any , lowercase : List[Any] , lowercase : int=None , lowercase : Optional[Any]=None , lowercase : Union[str, Any]="<s>" , lowercase : Any="</s>" , lowercase : Optional[int]="</s>" , lowercase : List[Any]="<pad>" , lowercase : Optional[int]="<unk>" , lowercase : Optional[int]="m2m100" , lowercase : Optional[Dict[str, Any]] = None , lowercase : Any=8 , **lowercase : int , ): """simple docstring""" lowercase_ :Optional[int] = {} if sp_model_kwargs is None else sp_model_kwargs lowercase_ :Optional[Any] = language_codes lowercase_ :Tuple = FAIRSEQ_LANGUAGE_CODES[language_codes] lowercase_ :List[Any] = {lang_code: F'__{lang_code}__' for lang_code in fairseq_language_code} lowercase_ :Union[str, Any] = kwargs.get("additional_special_tokens" , [] ) kwargs["additional_special_tokens"] += [ self.get_lang_token(lowercase ) for lang_code in fairseq_language_code if self.get_lang_token(lowercase ) not in kwargs["additional_special_tokens"] ] super().__init__( src_lang=lowercase , tgt_lang=lowercase , bos_token=lowercase , eos_token=lowercase , sep_token=lowercase , unk_token=lowercase , pad_token=lowercase , language_codes=lowercase , sp_model_kwargs=self.sp_model_kwargs , num_madeup_words=lowercase , **lowercase , ) lowercase_ :Optional[int] = vocab_file lowercase_ :Any = load_json(lowercase ) lowercase_ :Optional[Any] = {v: k for k, v in self.encoder.items()} lowercase_ :List[str] = spm_file lowercase_ :List[str] = load_spm(lowercase , self.sp_model_kwargs ) lowercase_ :Optional[int] = len(self.encoder ) lowercase_ :int = { self.get_lang_token(lowercase ): self.encoder_size + i for i, lang_code in enumerate(lowercase ) } lowercase_ :List[Any] = {lang_code: self.encoder_size + i for i, lang_code in enumerate(lowercase )} lowercase_ :List[Any] = {v: k for k, v in self.lang_token_to_id.items()} lowercase_ :int = src_lang if src_lang is not None else "en" lowercase_ :Union[str, Any] = tgt_lang lowercase_ :List[Any] = self.get_lang_id(self._src_lang ) self.set_src_lang_special_tokens(self._src_lang ) lowercase_ :int = num_madeup_words @property def lowercase__ ( self : List[str] ): """simple docstring""" return len(self.encoder ) + len(self.lang_token_to_id ) @property def lowercase__ ( self : Any ): """simple docstring""" return self._src_lang @src_lang.setter def lowercase__ ( self : Optional[int] , lowercase : str ): """simple docstring""" lowercase_ :str = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def lowercase__ ( self : Dict , lowercase : str ): """simple docstring""" return self.sp_model.encode(lowercase , out_type=lowercase ) def lowercase__ ( self : Tuple , lowercase : Dict ): """simple docstring""" if token in self.lang_token_to_id: return self.lang_token_to_id[token] return self.encoder.get(lowercase , self.encoder[self.unk_token] ) def lowercase__ ( self : Any , lowercase : int ): """simple docstring""" if index in self.id_to_lang_token: return self.id_to_lang_token[index] return self.decoder.get(lowercase , self.unk_token ) def lowercase__ ( self : int , lowercase : int ): """simple docstring""" lowercase_ :Optional[Any] = [] lowercase_ :Any = "" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(lowercase ) + token lowercase_ :str = [] else: current_sub_tokens.append(lowercase ) out_string += self.sp_model.decode(lowercase ) return out_string.strip() def lowercase__ ( self : Any , lowercase : List[int] , lowercase : Optional[List[int]] = None , lowercase : bool = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowercase , token_ids_a=lowercase , already_has_special_tokens=lowercase ) lowercase_ :List[Any] = [1] * len(self.prefix_tokens ) lowercase_ :List[Any] = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(lowercase )) + suffix_ones return prefix_ones + ([0] * len(lowercase )) + ([0] * len(lowercase )) + suffix_ones def lowercase__ ( self : Union[str, Any] , lowercase : List[int] , lowercase : Optional[List[int]] = None ): """simple docstring""" if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def lowercase__ ( self : Union[str, Any] ): """simple docstring""" lowercase_ :str = {self.convert_ids_to_tokens(lowercase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : str ): """simple docstring""" lowercase_ :Any = self.__dict__.copy() lowercase_ :str = None return state def __setstate__( self : Tuple , lowercase : Dict ): """simple docstring""" lowercase_ :int = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): lowercase_ :List[str] = {} lowercase_ :List[Any] = load_spm(self.spm_file , self.sp_model_kwargs ) def lowercase__ ( self : str , lowercase : str , lowercase : Optional[str] = None ): """simple docstring""" lowercase_ :Dict = Path(lowercase ) if not save_dir.is_dir(): raise OSError(F'{save_directory} should be a directory' ) lowercase_ :Dict = save_dir / ( (filename_prefix + "-" if filename_prefix else "") + self.vocab_files_names["vocab_file"] ) lowercase_ :Dict = save_dir / ( (filename_prefix + "-" if filename_prefix else "") + self.vocab_files_names["spm_file"] ) save_json(self.encoder , lowercase ) if os.path.abspath(self.spm_file ) != os.path.abspath(lowercase ) and os.path.isfile(self.spm_file ): copyfile(self.spm_file , lowercase ) elif not os.path.isfile(self.spm_file ): with open(lowercase , "wb" ) as fi: lowercase_ :List[str] = self.sp_model.serialized_model_proto() fi.write(lowercase ) return (str(lowercase ), str(lowercase )) def lowercase__ ( self : List[str] , lowercase : List[str] , lowercase : str = "en" , lowercase : Optional[List[str]] = None , lowercase : str = "ro" , **lowercase : Optional[int] , ): """simple docstring""" lowercase_ :int = src_lang lowercase_ :Optional[int] = tgt_lang self.set_src_lang_special_tokens(self.src_lang ) return super().prepare_seqaseq_batch(lowercase , lowercase , **lowercase ) def lowercase__ ( self : List[Any] , lowercase : Any , lowercase : Optional[str] , lowercase : Optional[str] , **lowercase : Union[str, Any] ): """simple docstring""" if src_lang is None or tgt_lang is None: raise ValueError("Translation requires a `src_lang` and a `tgt_lang` for this model" ) lowercase_ :List[str] = src_lang lowercase_ :Union[str, Any] = self(lowercase , add_special_tokens=lowercase , **lowercase ) lowercase_ :str = self.get_lang_id(lowercase ) lowercase_ :Union[str, Any] = tgt_lang_id return inputs def lowercase__ ( self : str ): """simple docstring""" self.set_src_lang_special_tokens(self.src_lang ) def lowercase__ ( self : Tuple ): """simple docstring""" self.set_tgt_lang_special_tokens(self.tgt_lang ) def lowercase__ ( self : str , lowercase : str ): """simple docstring""" lowercase_ :List[str] = self.get_lang_token(lowercase ) lowercase_ :List[str] = self.lang_token_to_id[lang_token] lowercase_ :List[Any] = [self.cur_lang_id] lowercase_ :str = [self.eos_token_id] def lowercase__ ( self : str , lowercase : str ): """simple docstring""" lowercase_ :Optional[int] = self.get_lang_token(lowercase ) lowercase_ :Tuple = self.lang_token_to_id[lang_token] lowercase_ :Dict = [self.cur_lang_id] lowercase_ :List[Any] = [self.eos_token_id] def lowercase__ ( self : Union[str, Any] , lowercase : str ): """simple docstring""" return self.lang_code_to_token[lang] def lowercase__ ( self : Dict , lowercase : str ): """simple docstring""" lowercase_ :Union[str, Any] = self.get_lang_token(lowercase ) return self.lang_token_to_id[lang_token] def UpperCAmelCase_ ( __lowerCamelCase : str ,__lowerCamelCase : Dict[str, Any] ): lowercase_ :List[str] = sentencepiece.SentencePieceProcessor(**__lowerCamelCase ) spm.Load(str(__lowerCamelCase ) ) return spm def UpperCAmelCase_ ( __lowerCamelCase : str ): with open(__lowerCamelCase ,"r" ) as f: return json.load(__lowerCamelCase ) def UpperCAmelCase_ ( __lowerCamelCase : int ,__lowerCamelCase : str ): with open(__lowerCamelCase ,"w" ) as f: json.dump(__lowerCamelCase ,__lowerCamelCase ,indent=2 )
223
1
"""simple docstring""" import inspect import tempfile from collections import OrderedDict, UserDict from collections.abc import MutableMapping from contextlib import ExitStack, contextmanager from dataclasses import fields from enum import Enum from typing import Any, ContextManager, List, Tuple import numpy as np from .import_utils import is_flax_available, is_tf_available, is_torch_available, is_torch_fx_proxy if is_flax_available(): import jax.numpy as jnp class __magic_name__ ( lowerCAmelCase__ ): def __get__( self : Union[str, Any] , snake_case__ : Union[str, Any] , snake_case__ : List[Any]=None ): '''simple docstring''' if obj is None: return self if self.fget is None: raise AttributeError('''unreadable attribute''' ) lowercase :Dict = '''__cached_''' + self.fget.__name__ lowercase :Optional[Any] = getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if cached is None: lowercase :Optional[Any] = self.fget(_SCREAMING_SNAKE_CASE ) setattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return cached def lowerCamelCase (a_ :List[str]) -> str: lowercase :Optional[int] = val.lower() if val in {"y", "yes", "t", "true", "on", "1"}: return 1 if val in {"n", "no", "f", "false", "off", "0"}: return 0 raise ValueError(F"""invalid truth value {val!r}""") def lowerCamelCase (a_ :Tuple) -> Dict: if is_torch_fx_proxy(_A): return True if is_torch_available(): import torch if isinstance(_A , torch.Tensor): return True if is_tf_available(): import tensorflow as tf if isinstance(_A , tf.Tensor): return True if is_flax_available(): import jax.numpy as jnp from jax.core import Tracer if isinstance(_A , (jnp.ndarray, Tracer)): return True return isinstance(_A , np.ndarray) def lowerCamelCase (a_ :Optional[Any]) -> int: return isinstance(_A , np.ndarray) def lowerCamelCase (a_ :List[str]) -> Optional[Any]: return _is_numpy(_A) def lowerCamelCase (a_ :Tuple) -> List[str]: import torch return isinstance(_A , torch.Tensor) def lowerCamelCase (a_ :Any) -> Optional[int]: return False if not is_torch_available() else _is_torch(_A) def lowerCamelCase (a_ :Union[str, Any]) -> List[str]: import torch return isinstance(_A , torch.device) def lowerCamelCase (a_ :Any) -> Dict: return False if not is_torch_available() else _is_torch_device(_A) def lowerCamelCase (a_ :Union[str, Any]) -> str: import torch if isinstance(_A , _A): if hasattr(_A , _A): lowercase :Tuple = getattr(_A , _A) else: return False return isinstance(_A , torch.dtype) def lowerCamelCase (a_ :str) -> int: return False if not is_torch_available() else _is_torch_dtype(_A) def lowerCamelCase (a_ :Union[str, Any]) -> str: import tensorflow as tf return isinstance(_A , tf.Tensor) def lowerCamelCase (a_ :List[str]) -> Dict: return False if not is_tf_available() else _is_tensorflow(_A) def lowerCamelCase (a_ :Optional[int]) -> str: import tensorflow as tf # the `is_symbolic_tensor` predicate is only available starting with TF 2.14 if hasattr(_A , '''is_symbolic_tensor'''): return tf.is_symbolic_tensor(_A) return type(_A) == tf.Tensor def lowerCamelCase (a_ :Optional[Any]) -> Dict: return False if not is_tf_available() else _is_tf_symbolic_tensor(_A) def lowerCamelCase (a_ :str) -> Any: import jax.numpy as jnp # noqa: F811 return isinstance(_A , jnp.ndarray) def lowerCamelCase (a_ :Optional[int]) -> List[Any]: return False if not is_flax_available() else _is_jax(_A) def lowerCamelCase (a_ :str) -> Any: if isinstance(_A , (dict, UserDict)): return {k: to_py_obj(_A) for k, v in obj.items()} elif isinstance(_A , (list, tuple)): return [to_py_obj(_A) for o in obj] elif is_tf_tensor(_A): return obj.numpy().tolist() elif is_torch_tensor(_A): return obj.detach().cpu().tolist() elif is_jax_tensor(_A): return np.asarray(_A).tolist() elif isinstance(_A , (np.ndarray, np.number)): # tolist also works on 0d np arrays return obj.tolist() else: return obj def lowerCamelCase (a_ :Tuple) -> Any: if isinstance(_A , (dict, UserDict)): return {k: to_numpy(_A) for k, v in obj.items()} elif isinstance(_A , (list, tuple)): return np.array(_A) elif is_tf_tensor(_A): return obj.numpy() elif is_torch_tensor(_A): return obj.detach().cpu().numpy() elif is_jax_tensor(_A): return np.asarray(_A) else: return obj class __magic_name__ ( lowerCAmelCase__ ): def __snake_case ( self : Tuple ): '''simple docstring''' lowercase :Any = fields(self ) # Safety and consistency checks if not len(_SCREAMING_SNAKE_CASE ): raise ValueError(f"""{self.__class__.__name__} has no fields.""" ) if not all(field.default is None for field in class_fields[1:] ): raise ValueError(f"""{self.__class__.__name__} should not have more than one required field.""" ) lowercase :Optional[int] = getattr(self , class_fields[0].name ) lowercase :Dict = all(getattr(self , field.name ) is None for field in class_fields[1:] ) if other_fields_are_none and not is_tensor(_SCREAMING_SNAKE_CASE ): if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): lowercase :int = first_field.items() lowercase :int = True else: try: lowercase :Dict = iter(_SCREAMING_SNAKE_CASE ) lowercase :Tuple = True except TypeError: lowercase :Dict = False # if we provided an iterator as first field and the iterator is a (key, value) iterator # set the associated fields if first_field_iterator: for idx, element in enumerate(_SCREAMING_SNAKE_CASE ): if ( not isinstance(_SCREAMING_SNAKE_CASE , (list, tuple) ) or not len(_SCREAMING_SNAKE_CASE ) == 2 or not isinstance(element[0] , _SCREAMING_SNAKE_CASE ) ): if idx == 0: # If we do not have an iterator of key/values, set it as attribute lowercase :Tuple = first_field else: # If we have a mixed iterator, raise an error raise ValueError( f"""Cannot set key/value for {element}. It needs to be a tuple (key, value).""" ) break setattr(self , element[0] , element[1] ) if element[1] is not None: lowercase :Union[str, Any] = element[1] elif first_field is not None: lowercase :int = first_field else: for field in class_fields: lowercase :Optional[Any] = getattr(self , field.name ) if v is not None: lowercase :List[Any] = v def __delitem__( self : Any , *snake_case__ : Tuple , **snake_case__ : Tuple ): '''simple docstring''' raise Exception(f"""You cannot use ``__delitem__`` on a {self.__class__.__name__} instance.""" ) def __snake_case ( self : str , *snake_case__ : List[Any] , **snake_case__ : Optional[Any] ): '''simple docstring''' raise Exception(f"""You cannot use ``setdefault`` on a {self.__class__.__name__} instance.""" ) def __snake_case ( self : Optional[int] , *snake_case__ : List[str] , **snake_case__ : List[str] ): '''simple docstring''' raise Exception(f"""You cannot use ``pop`` on a {self.__class__.__name__} instance.""" ) def __snake_case ( self : Optional[Any] , *snake_case__ : List[Any] , **snake_case__ : Tuple ): '''simple docstring''' raise Exception(f"""You cannot use ``update`` on a {self.__class__.__name__} instance.""" ) def __getitem__( self : Optional[Any] , snake_case__ : Optional[int] ): '''simple docstring''' if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): lowercase :Dict = dict(self.items() ) return inner_dict[k] else: return self.to_tuple()[k] def __setattr__( self : Tuple , snake_case__ : List[Any] , snake_case__ : str ): '''simple docstring''' if name in self.keys() and value is not None: # Don't call self.__setitem__ to avoid recursion errors super().__setitem__(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) super().__setattr__(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def __setitem__( self : Dict , snake_case__ : int , snake_case__ : Dict ): '''simple docstring''' super().__setitem__(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Don't call self.__setattr__ to avoid recursion errors super().__setattr__(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def __snake_case ( self : str ): '''simple docstring''' return tuple(self[k] for k in self.keys() ) class __magic_name__ ( lowerCAmelCase__ , lowerCAmelCase__ ): @classmethod def __snake_case ( cls : Tuple , snake_case__ : Dict ): '''simple docstring''' raise ValueError( f"""{value} is not a valid {cls.__name__}, please select one of {list(cls._valueamember_map_.keys() )}""" ) class __magic_name__ ( lowerCAmelCase__ ): __A : Any = "longest" __A : List[Any] = "max_length" __A : Optional[int] = "do_not_pad" class __magic_name__ ( lowerCAmelCase__ ): __A : List[str] = "pt" __A : Union[str, Any] = "tf" __A : Optional[int] = "np" __A : Optional[int] = "jax" class __magic_name__ : def __init__( self : Optional[Any] , snake_case__ : Any ): '''simple docstring''' lowercase :Tuple = context_managers lowercase :Optional[int] = ExitStack() def __enter__( self : Optional[Any] ): '''simple docstring''' for context_manager in self.context_managers: self.stack.enter_context(_SCREAMING_SNAKE_CASE ) def __exit__( self : Tuple , *snake_case__ : Any , **snake_case__ : str ): '''simple docstring''' self.stack.__exit__(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def lowerCamelCase (a_ :Optional[int]) -> Optional[Any]: lowercase :Union[str, Any] = infer_framework(_A) if framework == "tf": lowercase :Any = inspect.signature(model_class.call) # TensorFlow models elif framework == "pt": lowercase :Union[str, Any] = inspect.signature(model_class.forward) # PyTorch models else: lowercase :Optional[int] = inspect.signature(model_class.__call__) # Flax models for p in signature.parameters: if p == "return_loss" and signature.parameters[p].default is True: return True return False def lowerCamelCase (a_ :str) -> List[Any]: lowercase :Dict = model_class.__name__ lowercase :List[Any] = infer_framework(_A) if framework == "tf": lowercase :Any = inspect.signature(model_class.call) # TensorFlow models elif framework == "pt": lowercase :Optional[int] = inspect.signature(model_class.forward) # PyTorch models else: lowercase :int = inspect.signature(model_class.__call__) # Flax models if "QuestionAnswering" in model_name: return [p for p in signature.parameters if "label" in p or p in ("start_positions", "end_positions")] else: return [p for p in signature.parameters if "label" in p] def lowerCamelCase (a_ :MutableMapping , a_ :str = "" , a_ :str = ".") -> Any: def _flatten_dict(a_ :Tuple , a_ :List[str]="" , a_ :str="."): for k, v in d.items(): lowercase :Tuple = str(_A) + delimiter + str(_A) if parent_key else k if v and isinstance(_A , _A): yield from flatten_dict(_A , _A , delimiter=_A).items() else: yield key, v return dict(_flatten_dict(_A , _A , _A)) @contextmanager def lowerCamelCase (a_ :Dict , a_ :bool = False) -> Union[str, Any]: if use_temp_dir: with tempfile.TemporaryDirectory() as tmp_dir: yield tmp_dir else: yield working_dir def lowerCamelCase (a_ :int , a_ :str=None) -> Tuple: if is_numpy_array(_A): return np.transpose(_A , axes=_A) elif is_torch_tensor(_A): return array.T if axes is None else array.permute(*_A) elif is_tf_tensor(_A): import tensorflow as tf return tf.transpose(_A , perm=_A) elif is_jax_tensor(_A): return jnp.transpose(_A , axes=_A) else: raise ValueError(F"""Type not supported for transpose: {type(_A)}.""") def lowerCamelCase (a_ :List[Any] , a_ :Union[str, Any]) -> Optional[Any]: if is_numpy_array(_A): return np.reshape(_A , _A) elif is_torch_tensor(_A): return array.reshape(*_A) elif is_tf_tensor(_A): import tensorflow as tf return tf.reshape(_A , _A) elif is_jax_tensor(_A): return jnp.reshape(_A , _A) else: raise ValueError(F"""Type not supported for reshape: {type(_A)}.""") def lowerCamelCase (a_ :Optional[int] , a_ :Tuple=None) -> int: if is_numpy_array(_A): return np.squeeze(_A , axis=_A) elif is_torch_tensor(_A): return array.squeeze() if axis is None else array.squeeze(dim=_A) elif is_tf_tensor(_A): import tensorflow as tf return tf.squeeze(_A , axis=_A) elif is_jax_tensor(_A): return jnp.squeeze(_A , axis=_A) else: raise ValueError(F"""Type not supported for squeeze: {type(_A)}.""") def lowerCamelCase (a_ :Dict , a_ :Any) -> Tuple: if is_numpy_array(_A): return np.expand_dims(_A , _A) elif is_torch_tensor(_A): return array.unsqueeze(dim=_A) elif is_tf_tensor(_A): import tensorflow as tf return tf.expand_dims(_A , axis=_A) elif is_jax_tensor(_A): return jnp.expand_dims(_A , axis=_A) else: raise ValueError(F"""Type not supported for expand_dims: {type(_A)}.""") def lowerCamelCase (a_ :List[Any]) -> Optional[int]: if is_numpy_array(_A): return np.size(_A) elif is_torch_tensor(_A): return array.numel() elif is_tf_tensor(_A): import tensorflow as tf return tf.size(_A) elif is_jax_tensor(_A): return array.size else: raise ValueError(F"""Type not supported for expand_dims: {type(_A)}.""") def lowerCamelCase (a_ :Union[str, Any] , a_ :str) -> int: for key, value in auto_map.items(): if isinstance(_A , (tuple, list)): lowercase :Tuple = [F"""{repo_id}--{v}""" if (v is not None and '''--''' not in v) else v for v in value] elif value is not None and "--" not in value: lowercase :Optional[Any] = F"""{repo_id}--{value}""" return auto_map def lowerCamelCase (a_ :Dict) -> Union[str, Any]: for base_class in inspect.getmro(_A): lowercase :int = base_class.__module__ lowercase :Optional[int] = base_class.__name__ if module.startswith('''tensorflow''') or module.startswith('''keras''') or name == "TFPreTrainedModel": return "tf" elif module.startswith('''torch''') or name == "PreTrainedModel": return "pt" elif module.startswith('''flax''') or module.startswith('''jax''') or name == "FlaxPreTrainedModel": return "flax" else: raise TypeError(F"""Could not infer framework from class {model_class}.""")
355
"""simple docstring""" import pytest from datasets.parallel import ParallelBackendConfig, parallel_backend from datasets.utils.py_utils import map_nested from .utils import require_dill_gt_0_3_2, require_joblibspark, require_not_windows def lowerCamelCase (a_ :int) -> int: # picklable for multiprocessing return i + 1 @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows def lowerCamelCase () -> Optional[int]: with parallel_backend('''spark'''): assert ParallelBackendConfig.backend_name == "spark" lowercase :Optional[int] = [1, 2, 3] with pytest.raises(a_): with parallel_backend('''unsupported backend'''): map_nested(a_ , a_ , num_proc=2) with pytest.raises(a_): with parallel_backend('''unsupported backend'''): map_nested(a_ , a_ , num_proc=-1) @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows @pytest.mark.parametrize('''num_proc''' , [2, -1]) def lowerCamelCase (a_ :Union[str, Any]) -> Optional[Any]: lowercase :Optional[Any] = [1, 2] lowercase :int = {'''a''': 1, '''b''': 2} lowercase :List[Any] = {'''a''': [1, 2], '''b''': [3, 4]} lowercase :Optional[int] = {'''a''': {'''1''': 1}, '''b''': 2} lowercase :List[Any] = {'''a''': 1, '''b''': 2, '''c''': 3, '''d''': 4} lowercase :Optional[int] = [2, 3] lowercase :Tuple = {'''a''': 2, '''b''': 3} lowercase :Union[str, Any] = {'''a''': [2, 3], '''b''': [4, 5]} lowercase :List[str] = {'''a''': {'''1''': 2}, '''b''': 3} lowercase :Union[str, Any] = {'''a''': 2, '''b''': 3, '''c''': 4, '''d''': 5} with parallel_backend('''spark'''): assert map_nested(a_ , a_ , num_proc=a_) == expected_map_nested_sa assert map_nested(a_ , a_ , num_proc=a_) == expected_map_nested_sa assert map_nested(a_ , a_ , num_proc=a_) == expected_map_nested_sa assert map_nested(a_ , a_ , num_proc=a_) == expected_map_nested_sa assert map_nested(a_ , a_ , num_proc=a_) == expected_map_nested_sa
172
0
"""simple docstring""" import argparse import json from collections import OrderedDict import torch from huggingface_hub import cached_download, hf_hub_url from transformers import AutoImageProcessor, CvtConfig, CvtForImageClassification def a_ ( _lowerCAmelCase : int ): '''simple docstring''' lowercase__ : List[str] = [] embed.append( ( f"""cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.weight""", f"""stage{idx}.patch_embed.proj.weight""", ) ) embed.append( ( f"""cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.bias""", f"""stage{idx}.patch_embed.proj.bias""", ) ) embed.append( ( f"""cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.weight""", f"""stage{idx}.patch_embed.norm.weight""", ) ) embed.append( ( f"""cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.bias""", f"""stage{idx}.patch_embed.norm.bias""", ) ) return embed def a_ ( _lowerCAmelCase : str , _lowerCAmelCase : Optional[int] ): '''simple docstring''' lowercase__ : Tuple = [] attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.convolution.weight""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.conv.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.weight""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.bias""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.bias""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_mean""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_mean""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_var""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_var""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.num_batches_tracked""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.num_batches_tracked""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.convolution.weight""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.conv.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.weight""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.bias""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.bias""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_mean""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_mean""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_var""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_var""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.num_batches_tracked""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.num_batches_tracked""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.convolution.weight""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.conv.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.weight""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.bias""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.bias""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_mean""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_mean""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_var""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_var""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.num_batches_tracked""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.num_batches_tracked""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.weight""", f"""stage{idx}.blocks.{cnt}.attn.proj_q.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.bias""", f"""stage{idx}.blocks.{cnt}.attn.proj_q.bias""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.weight""", f"""stage{idx}.blocks.{cnt}.attn.proj_k.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.bias""", f"""stage{idx}.blocks.{cnt}.attn.proj_k.bias""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.weight""", f"""stage{idx}.blocks.{cnt}.attn.proj_v.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.bias""", f"""stage{idx}.blocks.{cnt}.attn.proj_v.bias""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.weight""", f"""stage{idx}.blocks.{cnt}.attn.proj.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.bias""", f"""stage{idx}.blocks.{cnt}.attn.proj.bias""", ) ) attention_weights.append( (f"""cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.weight""", f"""stage{idx}.blocks.{cnt}.mlp.fc1.weight""") ) attention_weights.append( (f"""cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.bias""", f"""stage{idx}.blocks.{cnt}.mlp.fc1.bias""") ) attention_weights.append( (f"""cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.weight""", f"""stage{idx}.blocks.{cnt}.mlp.fc2.weight""") ) attention_weights.append( (f"""cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.bias""", f"""stage{idx}.blocks.{cnt}.mlp.fc2.bias""") ) attention_weights.append( (f"""cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.weight""", f"""stage{idx}.blocks.{cnt}.norm1.weight""") ) attention_weights.append( (f"""cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.bias""", f"""stage{idx}.blocks.{cnt}.norm1.bias""") ) attention_weights.append( (f"""cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.weight""", f"""stage{idx}.blocks.{cnt}.norm2.weight""") ) attention_weights.append( (f"""cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.bias""", f"""stage{idx}.blocks.{cnt}.norm2.bias""") ) return attention_weights def a_ ( _lowerCAmelCase : Union[str, Any] ): '''simple docstring''' lowercase__ : Union[str, Any] = [] token.append((f"""cvt.encoder.stages.{idx}.cls_token""", 'stage2.cls_token') ) return token def a_ ( ): '''simple docstring''' lowercase__ : List[Any] = [] head.append(('layernorm.weight', 'norm.weight') ) head.append(('layernorm.bias', 'norm.bias') ) head.append(('classifier.weight', 'head.weight') ) head.append(('classifier.bias', 'head.bias') ) return head def a_ ( _lowerCAmelCase : Dict , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Optional[Any] ): '''simple docstring''' lowercase__ : Any = 'imagenet-1k-id2label.json' lowercase__ : int = 1000 lowercase__ : Any = 'huggingface/label-files' lowercase__ : Union[str, Any] = num_labels lowercase__ : str = json.load(open(cached_download(hf_hub_url(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , repo_type='dataset' ) ) , 'r' ) ) lowercase__ : Dict = {int(_SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} lowercase__ : Optional[Any] = idalabel lowercase__ : List[Any] = {v: k for k, v in idalabel.items()} lowercase__ : Tuple = CvtConfig(num_labels=_SCREAMING_SNAKE_CASE , idalabel=_SCREAMING_SNAKE_CASE , labelaid=_SCREAMING_SNAKE_CASE ) # For depth size 13 (13 = 1+2+10) if cvt_model.rsplit('/' , 1 )[-1][4:6] == "13": lowercase__ : List[str] = [1, 2, 10] # For depth size 21 (21 = 1+4+16) elif cvt_model.rsplit('/' , 1 )[-1][4:6] == "21": lowercase__ : str = [1, 4, 16] # For wide cvt (similar to wide-resnet) depth size 24 (w24 = 2 + 2 20) else: lowercase__ : Any = [2, 2, 20] lowercase__ : Optional[Any] = [3, 12, 16] lowercase__ : Dict = [192, 768, 1024] lowercase__ : Union[str, Any] = CvtForImageClassification(_SCREAMING_SNAKE_CASE ) lowercase__ : str = AutoImageProcessor.from_pretrained('facebook/convnext-base-224-22k-1k' ) lowercase__ : Tuple = image_size lowercase__ : List[Any] = torch.load(_SCREAMING_SNAKE_CASE , map_location=torch.device('cpu' ) ) lowercase__ : List[Any] = OrderedDict() lowercase__ : List[str] = [] for idx in range(len(config.depth ) ): if config.cls_token[idx]: lowercase__ : Dict = list_of_state_dict + cls_token(_SCREAMING_SNAKE_CASE ) lowercase__ : Tuple = list_of_state_dict + embeddings(_SCREAMING_SNAKE_CASE ) for cnt in range(config.depth[idx] ): lowercase__ : Any = list_of_state_dict + attention(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) lowercase__ : str = list_of_state_dict + final() for gg in list_of_state_dict: print(_SCREAMING_SNAKE_CASE ) for i in range(len(_SCREAMING_SNAKE_CASE ) ): lowercase__ : List[str] = original_weights[list_of_state_dict[i][1]] model.load_state_dict(_SCREAMING_SNAKE_CASE ) model.save_pretrained(_SCREAMING_SNAKE_CASE ) image_processor.save_pretrained(_SCREAMING_SNAKE_CASE ) # Download the weights from zoo: https://1drv.ms/u/s!AhIXJn_J-blW9RzF3rMW7SsLHa8h?e=blQ0Al if __name__ == "__main__": _UpperCamelCase : Any = argparse.ArgumentParser() parser.add_argument( "--cvt_model", default="cvt-w24", type=str, help="Name of the cvt model you'd like to convert.", ) parser.add_argument( "--image_size", default=3_84, type=int, help="Input Image Size", ) parser.add_argument( "--cvt_file_name", default=r"cvtmodels\CvT-w24-384x384-IN-22k.pth", type=str, help="Input Image Size", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) _UpperCamelCase : Union[str, Any] = parser.parse_args() convert_cvt_checkpoint(args.cvt_model, args.image_size, args.cvt_file_name, args.pytorch_dump_folder_path)
77
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) SCREAMING_SNAKE_CASE_ = { """configuration_llama""": ["""LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """LlamaConfig"""], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ = ["""LlamaTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ = ["""LlamaTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ = [ """LlamaForCausalLM""", """LlamaModel""", """LlamaPreTrainedModel""", """LlamaForSequenceClassification""", ] if TYPE_CHECKING: from .configuration_llama import LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP, LlamaConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama import LlamaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama_fast import LlamaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_llama import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaPreTrainedModel else: import sys SCREAMING_SNAKE_CASE_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
296
0
import os import time import numpy as np import onnxruntime as ort lowerCAmelCase__ :Tuple = '''1''' lowerCAmelCase__ :Any = '''0''' lowerCAmelCase__ :int = '''1''' lowerCAmelCase__ :List[Any] = ort.SessionOptions() lowerCAmelCase__ :Dict = ort.GraphOptimizationLevel.ORT_DISABLE_ALL print('''Create inference session...''') lowerCAmelCase__ :Dict = ['''TensorrtExecutionProvider''', '''CUDAExecutionProvider'''] lowerCAmelCase__ :Any = ort.InferenceSession('''model.onnx''', sess_options=sess_opt, providers=execution_provider) lowerCAmelCase__ :List[Any] = ort.RunOptions() lowerCAmelCase__ :List[Any] = 1_2_8 lowerCAmelCase__ :Tuple = 1 lowerCAmelCase__ :Optional[Any] = np.ones((batch, sequence), dtype=np.intaa) lowerCAmelCase__ :Any = np.ones((batch, sequence), dtype=np.intaa) lowerCAmelCase__ :Optional[int] = np.ones((batch, sequence), dtype=np.intaa) print('''Warm up phase...''') sess.run( None, { sess.get_inputs()[0].name: input_ids, sess.get_inputs()[1].name: attention_mask, sess.get_inputs()[2].name: token_type_ids, }, run_options=run_opt, ) print('''Start inference...''') lowerCAmelCase__ :Optional[Any] = time.time() lowerCAmelCase__ :str = 2_0_0_0 lowerCAmelCase__ :int = {} for iter in range(max_iters): lowerCAmelCase__ :Optional[Any] = sess.run( None, { sess.get_inputs()[0].name: input_ids, sess.get_inputs()[1].name: attention_mask, sess.get_inputs()[2].name: token_type_ids, }, run_options=run_opt, ) print('''Average Inference Time = {:.3f} ms'''.format((time.time() - start_time) * 1_0_0_0 / max_iters))
185
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase__ :List[str] = { '''configuration_x_clip''': [ '''XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XCLIPConfig''', '''XCLIPTextConfig''', '''XCLIPVisionConfig''', ], '''processing_x_clip''': ['''XCLIPProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ :Any = [ '''XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XCLIPModel''', '''XCLIPPreTrainedModel''', '''XCLIPTextModel''', '''XCLIPVisionModel''', ] if TYPE_CHECKING: from .configuration_x_clip import ( XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, XCLIPConfig, XCLIPTextConfig, XCLIPVisionConfig, ) from .processing_x_clip import XCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_x_clip import ( XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, XCLIPModel, XCLIPPreTrainedModel, XCLIPTextModel, XCLIPVisionModel, ) else: import sys lowerCAmelCase__ :str = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
185
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase_ = { 'configuration_electra': ['ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ElectraConfig', 'ElectraOnnxConfig'], 'tokenization_electra': ['ElectraTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['ElectraTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST', 'ElectraForCausalLM', 'ElectraForMaskedLM', 'ElectraForMultipleChoice', 'ElectraForPreTraining', 'ElectraForQuestionAnswering', 'ElectraForSequenceClassification', 'ElectraForTokenClassification', 'ElectraModel', 'ElectraPreTrainedModel', 'load_tf_weights_in_electra', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFElectraForMaskedLM', 'TFElectraForMultipleChoice', 'TFElectraForPreTraining', 'TFElectraForQuestionAnswering', 'TFElectraForSequenceClassification', 'TFElectraForTokenClassification', 'TFElectraModel', 'TFElectraPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'FlaxElectraForCausalLM', 'FlaxElectraForMaskedLM', 'FlaxElectraForMultipleChoice', 'FlaxElectraForPreTraining', 'FlaxElectraForQuestionAnswering', 'FlaxElectraForSequenceClassification', 'FlaxElectraForTokenClassification', 'FlaxElectraModel', 'FlaxElectraPreTrainedModel', ] if TYPE_CHECKING: from .configuration_electra import ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, ElectraConfig, ElectraOnnxConfig from .tokenization_electra import ElectraTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_electra_fast import ElectraTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_electra import ( ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, ElectraForCausalLM, ElectraForMaskedLM, ElectraForMultipleChoice, ElectraForPreTraining, ElectraForQuestionAnswering, ElectraForSequenceClassification, ElectraForTokenClassification, ElectraModel, ElectraPreTrainedModel, load_tf_weights_in_electra, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_electra import ( TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, TFElectraForMaskedLM, TFElectraForMultipleChoice, TFElectraForPreTraining, TFElectraForQuestionAnswering, TFElectraForSequenceClassification, TFElectraForTokenClassification, TFElectraModel, TFElectraPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_electra import ( FlaxElectraForCausalLM, FlaxElectraForMaskedLM, FlaxElectraForMultipleChoice, FlaxElectraForPreTraining, FlaxElectraForQuestionAnswering, FlaxElectraForSequenceClassification, FlaxElectraForTokenClassification, FlaxElectraModel, FlaxElectraPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
16
"""simple docstring""" from __future__ import annotations import inspect import unittest import numpy as np from transformers import ResNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFResNetForImageClassification, TFResNetModel from transformers.models.resnet.modeling_tf_resnet import TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __A : '''simple docstring''' def __init__( self : str ,_snake_case : List[Any] ,_snake_case : Optional[int]=3 ,_snake_case : Optional[int]=32 ,_snake_case : Union[str, Any]=3 ,_snake_case : int=10 ,_snake_case : List[str]=[10, 20, 30, 40] ,_snake_case : Any=[1, 1, 2, 1] ,_snake_case : int=True ,_snake_case : Optional[Any]=True ,_snake_case : Union[str, Any]="relu" ,_snake_case : Dict=3 ,_snake_case : Any=None ,) -> str: """simple docstring""" lowercase__ : int = parent lowercase__ : Optional[Any] = batch_size lowercase__ : Optional[Any] = image_size lowercase__ : Optional[Any] = num_channels lowercase__ : Optional[Any] = embeddings_size lowercase__ : Optional[Any] = hidden_sizes lowercase__ : str = depths lowercase__ : Tuple = is_training lowercase__ : List[Any] = use_labels lowercase__ : Union[str, Any] = hidden_act lowercase__ : Union[str, Any] = num_labels lowercase__ : Tuple = scope lowercase__ : Optional[Any] = len(_snake_case ) def UpperCAmelCase ( self : Optional[int] ) -> Tuple: """simple docstring""" lowercase__ : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase__ : Tuple = None if self.use_labels: lowercase__ : Dict = ids_tensor([self.batch_size] ,self.num_labels ) lowercase__ : int = self.get_config() return config, pixel_values, labels def UpperCAmelCase ( self : Tuple ) -> Optional[Any]: """simple docstring""" return ResNetConfig( num_channels=self.num_channels ,embeddings_size=self.embeddings_size ,hidden_sizes=self.hidden_sizes ,depths=self.depths ,hidden_act=self.hidden_act ,num_labels=self.num_labels ,image_size=self.image_size ,) def UpperCAmelCase ( self : List[str] ,_snake_case : Optional[int] ,_snake_case : int ,_snake_case : Tuple ) -> List[Any]: """simple docstring""" lowercase__ : Optional[int] = TFResNetModel(config=_snake_case ) lowercase__ : List[str] = model(_snake_case ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape ,(self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) ,) def UpperCAmelCase ( self : Optional[int] ,_snake_case : Optional[Any] ,_snake_case : int ,_snake_case : Any ) -> Tuple: """simple docstring""" lowercase__ : Tuple = self.num_labels lowercase__ : Union[str, Any] = TFResNetForImageClassification(_snake_case ) lowercase__ : List[str] = model(_snake_case ,labels=_snake_case ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def UpperCAmelCase ( self : Tuple ) -> str: """simple docstring""" lowercase__ : Dict = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ : Union[str, Any] = config_and_inputs lowercase__ : Dict = {'''pixel_values''': pixel_values} return config, inputs_dict @require_tf class __A ( A_ ,A_ ,unittest.TestCase ): '''simple docstring''' lowerCAmelCase : Optional[int] = (TFResNetModel, TFResNetForImageClassification) if is_tf_available() else () lowerCAmelCase : Any = ( {"feature-extraction": TFResNetModel, "image-classification": TFResNetForImageClassification} if is_tf_available() else {} ) lowerCAmelCase : List[Any] = False lowerCAmelCase : List[Any] = False lowerCAmelCase : int = False lowerCAmelCase : Union[str, Any] = False lowerCAmelCase : List[str] = False def UpperCAmelCase ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" lowercase__ : Optional[Any] = TFResNetModelTester(self ) lowercase__ : int = ConfigTester(self ,config_class=_snake_case ,has_text_modality=_snake_case ) def UpperCAmelCase ( self : Optional[Any] ) -> str: """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCAmelCase ( self : List[Any] ) -> List[str]: """simple docstring""" return @unittest.skip(reason='''ResNet does not use inputs_embeds''' ) def UpperCAmelCase ( self : Optional[int] ) -> Dict: """simple docstring""" pass @unittest.skip(reason='''ResNet does not support input and output embeddings''' ) def UpperCAmelCase ( self : Tuple ) -> Optional[Any]: """simple docstring""" pass def UpperCAmelCase ( self : int ) -> Union[str, Any]: """simple docstring""" lowercase__ , lowercase__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ : str = model_class(_snake_case ) lowercase__ : Dict = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__ : Optional[int] = [*signature.parameters.keys()] lowercase__ : Any = ['''pixel_values'''] self.assertListEqual(arg_names[:1] ,_snake_case ) def UpperCAmelCase ( self : Tuple ) -> Any: """simple docstring""" lowercase__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_snake_case ) def UpperCAmelCase ( self : Dict ) -> List[str]: """simple docstring""" def check_hidden_states_output(_snake_case : Optional[int] ,_snake_case : List[str] ,_snake_case : Optional[Any] ): lowercase__ : str = model_class(_snake_case ) lowercase__ : Union[str, Any] = model(**self._prepare_for_class(_snake_case ,_snake_case ) ) lowercase__ : List[Any] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states lowercase__ : Tuple = self.model_tester.num_stages self.assertEqual(len(_snake_case ) ,expected_num_stages + 1 ) # ResNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) ,[self.model_tester.image_size // 4, self.model_tester.image_size // 4] ,) lowercase__ , lowercase__ : int = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ : List[Any] = ['''basic''', '''bottleneck'''] for model_class in self.all_model_classes: for layer_type in layers_type: lowercase__ : List[Any] = layer_type lowercase__ : Dict = True check_hidden_states_output(_snake_case ,_snake_case ,_snake_case ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase__ : Dict = True check_hidden_states_output(_snake_case ,_snake_case ,_snake_case ) def UpperCAmelCase ( self : Dict ) -> Any: """simple docstring""" lowercase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_snake_case ) @slow def UpperCAmelCase ( self : Optional[Any] ) -> int: """simple docstring""" for model_name in TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ : Optional[Any] = TFResNetModel.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) def __UpperCAmelCase ( ) -> Dict: lowercase__ : List[str] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_tf @require_vision class __A ( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCAmelCase ( self : str ) -> Any: """simple docstring""" return ( AutoImageProcessor.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def UpperCAmelCase ( self : Union[str, Any] ) -> Dict: """simple docstring""" lowercase__ : Tuple = TFResNetForImageClassification.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) lowercase__ : Any = self.default_image_processor lowercase__ : int = prepare_img() lowercase__ : Tuple = image_processor(images=_snake_case ,return_tensors='''tf''' ) # forward pass lowercase__ : Dict = model(**_snake_case ) # verify the logits lowercase__ : List[str] = tf.TensorShape((1, 1_000) ) self.assertEqual(outputs.logits.shape ,_snake_case ) lowercase__ : Any = tf.constant([-11.1069, -9.7877, -8.3777] ) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() ,_snake_case ,atol=1e-4 ) )
16
1
from __future__ import annotations def UpperCamelCase ( _A ): """simple docstring""" if not nums: raise ValueError("""List is empty""" ) return sum(_A ) / len(_A ) if __name__ == "__main__": import doctest doctest.testmod()
138
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available __magic_name__: Tuple = { "configuration_tapas": ["TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP", "TapasConfig"], "tokenization_tapas": ["TapasTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__: Dict = [ "TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST", "TapasForMaskedLM", "TapasForQuestionAnswering", "TapasForSequenceClassification", "TapasModel", "TapasPreTrainedModel", "load_tf_weights_in_tapas", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__: int = [ "TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST", "TFTapasForMaskedLM", "TFTapasForQuestionAnswering", "TFTapasForSequenceClassification", "TFTapasModel", "TFTapasPreTrainedModel", ] if TYPE_CHECKING: from .configuration_tapas import TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP, TapasConfig from .tokenization_tapas import TapasTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tapas import ( TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasPreTrainedModel, load_tf_weights_in_tapas, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_tapas import ( TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TFTapasForMaskedLM, TFTapasForQuestionAnswering, TFTapasForSequenceClassification, TFTapasModel, TFTapasPreTrainedModel, ) else: import sys __magic_name__: Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
138
1
"""simple docstring""" def _lowerCamelCase ( _UpperCamelCase ): '''simple docstring''' return "".join(chr(ord(_UpperCamelCase ) - 32 ) if "a" <= char <= "z" else char for char in word ) if __name__ == "__main__": from doctest import testmod testmod()
57
'''simple docstring''' from __future__ import annotations from typing import Any class UpperCAmelCase_ : def __init__( self : Optional[int] , UpperCAmelCase__ : int , UpperCAmelCase__ : int , UpperCAmelCase__ : float = 0 ) -> None: lowerCAmelCase , lowerCAmelCase = row, column lowerCAmelCase = [[default_value for c in range(UpperCAmelCase__ )] for r in range(UpperCAmelCase__ )] def __str__( self : List[str] ) -> str: lowerCAmelCase = F'''Matrix consist of {self.row} rows and {self.column} columns\n''' # Make string identifier lowerCAmelCase = 0 for row_vector in self.array: for obj in row_vector: lowerCAmelCase = max(UpperCAmelCase__ , len(str(UpperCAmelCase__ ) ) ) lowerCAmelCase = F'''%{max_element_length}s''' # Make string and return def single_line(UpperCAmelCase__ : list[float] ) -> str: nonlocal string_format_identifier lowerCAmelCase = '[' line += ", ".join(string_format_identifier % (obj,) for obj in row_vector ) line += "]" return line s += "\n".join(single_line(UpperCAmelCase__ ) for row_vector in self.array ) return s def __repr__( self : List[str] ) -> str: return str(self ) def __UpperCAmelCase ( self : Optional[int] , UpperCAmelCase__ : tuple[int, int] ) -> bool: if not (isinstance(UpperCAmelCase__ , (list, tuple) ) and len(UpperCAmelCase__ ) == 2): return False elif not (0 <= loc[0] < self.row and 0 <= loc[1] < self.column): return False else: return True def __getitem__( self : Any , UpperCAmelCase__ : tuple[int, int] ) -> Any: assert self.validate_indicies(UpperCAmelCase__ ) return self.array[loc[0]][loc[1]] def __setitem__( self : Dict , UpperCAmelCase__ : tuple[int, int] , UpperCAmelCase__ : float ) -> None: assert self.validate_indicies(UpperCAmelCase__ ) lowerCAmelCase = value def __add__( self : Any , UpperCAmelCase__ : Matrix ) -> Matrix: assert isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) assert self.row == another.row and self.column == another.column # Add lowerCAmelCase = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): lowerCAmelCase = self[r, c] + another[r, c] return result def __neg__( self : int ) -> Matrix: lowerCAmelCase = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): lowerCAmelCase = -self[r, c] return result def __sub__( self : str , UpperCAmelCase__ : Matrix ) -> Matrix: return self + (-another) def __mul__( self : str , UpperCAmelCase__ : int | float | Matrix ) -> Matrix: if isinstance(UpperCAmelCase__ , (int, float) ): # Scalar multiplication lowerCAmelCase = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): lowerCAmelCase = self[r, c] * another return result elif isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): # Matrix multiplication assert self.column == another.row lowerCAmelCase = Matrix(self.row , another.column ) for r in range(self.row ): for c in range(another.column ): for i in range(self.column ): result[r, c] += self[r, i] * another[i, c] return result else: lowerCAmelCase = F'''Unsupported type given for another ({type(UpperCAmelCase__ )})''' raise TypeError(UpperCAmelCase__ ) def __UpperCAmelCase ( self : Optional[Any] ) -> Matrix: lowerCAmelCase = Matrix(self.column , self.row ) for r in range(self.row ): for c in range(self.column ): lowerCAmelCase = self[r, c] return result def __UpperCAmelCase ( self : List[str] , UpperCAmelCase__ : Matrix , UpperCAmelCase__ : Matrix ) -> Any: assert isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) and isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) assert self.row == self.column == u.row == v.row # u, v should be column vector assert u.column == v.column == 1 # u, v should be column vector # Calculate lowerCAmelCase = v.transpose() lowerCAmelCase = (v_t * self * u)[0, 0] + 1 if numerator_factor == 0: return None # It's not invertable return self - ((self * u) * (v_t * self) * (1.0 / numerator_factor)) # Testing if __name__ == "__main__": def a_ ( ): # a^(-1) lowerCAmelCase = Matrix(3 , 3 , 0 ) for i in range(3 ): lowerCAmelCase = 1 print(f'''a^(-1) is {ainv}''' ) # u, v lowerCAmelCase = Matrix(3 , 1 , 0 ) lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = 1, 2, -3 lowerCAmelCase = Matrix(3 , 1 , 0 ) lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = 4, -2, 5 print(f'''u is {u}''' ) print(f'''v is {v}''' ) print(f'''uv^T is {u * v.transpose()}''' ) # Sherman Morrison print(f'''(a + uv^T)^(-1) is {ainv.sherman_morrison(lowerCamelCase , lowerCamelCase )}''' ) def a_ ( ): import doctest doctest.testmod() testa()
4
0
import gc import random import unittest import torch from diffusers import ( IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ) from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import floats_tensor, load_numpy, require_torch_gpu, skip_mps, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference from . import IFPipelineTesterMixin @skip_mps class __snake_case ( __lowercase , __lowercase , unittest.TestCase ): UpperCAmelCase__ : Optional[int] = IFPipeline UpperCAmelCase__ : Union[str, Any] = TEXT_TO_IMAGE_PARAMS - {'''width''', '''height''', '''latents'''} UpperCAmelCase__ : List[str] = TEXT_TO_IMAGE_BATCH_PARAMS UpperCAmelCase__ : List[Any] = PipelineTesterMixin.required_optional_params - {'''latents'''} def lowerCamelCase ( self : Optional[int]): """simple docstring""" return self._get_dummy_components() def lowerCamelCase ( self : Dict , _snake_case : List[str] , _snake_case : Union[str, Any]=0): """simple docstring""" if str(_snake_case).startswith('''mps'''): UpperCAmelCase_ = torch.manual_seed(_snake_case) else: UpperCAmelCase_ = torch.Generator(device=_snake_case).manual_seed(_snake_case) UpperCAmelCase_ = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs def lowerCamelCase ( self : Union[str, Any]): """simple docstring""" self._test_save_load_optional_components() @unittest.skipIf(torch_device != '''cuda''' , reason='''float16 requires CUDA''') def lowerCamelCase ( self : List[Any]): """simple docstring""" super().test_save_load_floataa(expected_max_diff=1e-1) def lowerCamelCase ( self : List[str]): """simple docstring""" self._test_attention_slicing_forward_pass(expected_max_diff=1e-2) def lowerCamelCase ( self : Tuple): """simple docstring""" self._test_save_load_local() def lowerCamelCase ( self : int): """simple docstring""" self._test_inference_batch_single_identical( expected_max_diff=1e-2 , ) @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def lowerCamelCase ( self : Tuple): """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3) @slow @require_torch_gpu class __snake_case ( unittest.TestCase ): def lowerCamelCase ( self : Optional[int]): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase ( self : str): """simple docstring""" UpperCAmelCase_ = IFPipeline.from_pretrained('''DeepFloyd/IF-I-XL-v1.0''' , variant='''fp16''' , torch_dtype=torch.floataa) UpperCAmelCase_ = IFSuperResolutionPipeline.from_pretrained( '''DeepFloyd/IF-II-L-v1.0''' , variant='''fp16''' , torch_dtype=torch.floataa , text_encoder=_snake_case , tokenizer=_snake_case) # pre compute text embeddings and remove T5 to save memory pipe_a.text_encoder.to('''cuda''') UpperCAmelCase_ = pipe_a.encode_prompt('''anime turtle''' , device='''cuda''') del pipe_a.tokenizer del pipe_a.text_encoder gc.collect() UpperCAmelCase_ = None UpperCAmelCase_ = None pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor()) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor()) self._test_if(_snake_case , _snake_case , _snake_case , _snake_case) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # img2img UpperCAmelCase_ = IFImgaImgPipeline(**pipe_a.components) UpperCAmelCase_ = IFImgaImgSuperResolutionPipeline(**pipe_a.components) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor()) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor()) self._test_if_imgaimg(_snake_case , _snake_case , _snake_case , _snake_case) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # inpainting UpperCAmelCase_ = IFInpaintingPipeline(**pipe_a.components) UpperCAmelCase_ = IFInpaintingSuperResolutionPipeline(**pipe_a.components) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor()) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor()) self._test_if_inpainting(_snake_case , _snake_case , _snake_case , _snake_case) def lowerCamelCase ( self : Optional[Any] , _snake_case : Optional[Any] , _snake_case : Optional[int] , _snake_case : Optional[Any] , _snake_case : Optional[int]): """simple docstring""" _start_torch_memory_measurement() UpperCAmelCase_ = torch.Generator(device='''cpu''').manual_seed(0) UpperCAmelCase_ = pipe_a( prompt_embeds=_snake_case , negative_prompt_embeds=_snake_case , num_inference_steps=2 , generator=_snake_case , output_type='''np''' , ) UpperCAmelCase_ = output.images[0] assert image.shape == (64, 64, 3) UpperCAmelCase_ = torch.cuda.max_memory_allocated() assert mem_bytes < 13 * 10**9 UpperCAmelCase_ = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if.npy''') assert_mean_pixel_difference(_snake_case , _snake_case) # pipeline 2 _start_torch_memory_measurement() UpperCAmelCase_ = torch.Generator(device='''cpu''').manual_seed(0) UpperCAmelCase_ = floats_tensor((1, 3, 64, 64) , rng=random.Random(0)).to(_snake_case) UpperCAmelCase_ = pipe_a( prompt_embeds=_snake_case , negative_prompt_embeds=_snake_case , image=_snake_case , generator=_snake_case , num_inference_steps=2 , output_type='''np''' , ) UpperCAmelCase_ = output.images[0] assert image.shape == (256, 256, 3) UpperCAmelCase_ = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 UpperCAmelCase_ = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_superresolution_stage_II.npy''') assert_mean_pixel_difference(_snake_case , _snake_case) def lowerCamelCase ( self : str , _snake_case : Optional[Any] , _snake_case : Dict , _snake_case : Dict , _snake_case : Union[str, Any]): """simple docstring""" _start_torch_memory_measurement() UpperCAmelCase_ = floats_tensor((1, 3, 64, 64) , rng=random.Random(0)).to(_snake_case) UpperCAmelCase_ = torch.Generator(device='''cpu''').manual_seed(0) UpperCAmelCase_ = pipe_a( prompt_embeds=_snake_case , negative_prompt_embeds=_snake_case , image=_snake_case , num_inference_steps=2 , generator=_snake_case , output_type='''np''' , ) UpperCAmelCase_ = output.images[0] assert image.shape == (64, 64, 3) UpperCAmelCase_ = torch.cuda.max_memory_allocated() assert mem_bytes < 10 * 10**9 UpperCAmelCase_ = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img.npy''') assert_mean_pixel_difference(_snake_case , _snake_case) # pipeline 2 _start_torch_memory_measurement() UpperCAmelCase_ = torch.Generator(device='''cpu''').manual_seed(0) UpperCAmelCase_ = floats_tensor((1, 3, 256, 256) , rng=random.Random(0)).to(_snake_case) UpperCAmelCase_ = floats_tensor((1, 3, 64, 64) , rng=random.Random(0)).to(_snake_case) UpperCAmelCase_ = pipe_a( prompt_embeds=_snake_case , negative_prompt_embeds=_snake_case , image=_snake_case , original_image=_snake_case , generator=_snake_case , num_inference_steps=2 , output_type='''np''' , ) UpperCAmelCase_ = output.images[0] assert image.shape == (256, 256, 3) UpperCAmelCase_ = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 UpperCAmelCase_ = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img_superresolution_stage_II.npy''') assert_mean_pixel_difference(_snake_case , _snake_case) def lowerCamelCase ( self : List[str] , _snake_case : Dict , _snake_case : Optional[int] , _snake_case : int , _snake_case : Dict): """simple docstring""" _start_torch_memory_measurement() UpperCAmelCase_ = floats_tensor((1, 3, 64, 64) , rng=random.Random(0)).to(_snake_case) UpperCAmelCase_ = floats_tensor((1, 3, 64, 64) , rng=random.Random(1)).to(_snake_case) UpperCAmelCase_ = torch.Generator(device='''cpu''').manual_seed(0) UpperCAmelCase_ = pipe_a( prompt_embeds=_snake_case , negative_prompt_embeds=_snake_case , image=_snake_case , mask_image=_snake_case , num_inference_steps=2 , generator=_snake_case , output_type='''np''' , ) UpperCAmelCase_ = output.images[0] assert image.shape == (64, 64, 3) UpperCAmelCase_ = torch.cuda.max_memory_allocated() assert mem_bytes < 10 * 10**9 UpperCAmelCase_ = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting.npy''') assert_mean_pixel_difference(_snake_case , _snake_case) # pipeline 2 _start_torch_memory_measurement() UpperCAmelCase_ = torch.Generator(device='''cpu''').manual_seed(0) UpperCAmelCase_ = floats_tensor((1, 3, 64, 64) , rng=random.Random(0)).to(_snake_case) UpperCAmelCase_ = floats_tensor((1, 3, 256, 256) , rng=random.Random(0)).to(_snake_case) UpperCAmelCase_ = floats_tensor((1, 3, 256, 256) , rng=random.Random(1)).to(_snake_case) UpperCAmelCase_ = pipe_a( prompt_embeds=_snake_case , negative_prompt_embeds=_snake_case , image=_snake_case , mask_image=_snake_case , original_image=_snake_case , generator=_snake_case , num_inference_steps=2 , output_type='''np''' , ) UpperCAmelCase_ = output.images[0] assert image.shape == (256, 256, 3) UpperCAmelCase_ = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 UpperCAmelCase_ = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting_superresolution_stage_II.npy''') assert_mean_pixel_difference(_snake_case , _snake_case) def A () -> List[Any]: """simple docstring""" torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats()
362
from __future__ import annotations from collections.abc import Iterable, Iterator from dataclasses import dataclass snake_case_ : List[Any] = (3, 9, -11, 0, 7, 5, 1, -1) snake_case_ : str = (4, 6, 2, 0, 8, 10, 3, -2) @dataclass class __snake_case : UpperCAmelCase__ : int UpperCAmelCase__ : Node | None class __snake_case : def __init__( self : Optional[int] , _snake_case : Iterable[int]): """simple docstring""" UpperCAmelCase_ = None for i in sorted(_snake_case , reverse=_snake_case): UpperCAmelCase_ = Node(_snake_case , self.head) def __iter__( self : Dict): """simple docstring""" UpperCAmelCase_ = self.head while node: yield node.data UpperCAmelCase_ = node.next_node def __len__( self : int): """simple docstring""" return sum(1 for _ in self) def __str__( self : Optional[Any]): """simple docstring""" return " -> ".join([str(_snake_case) for node in self]) def A (__A : SortedLinkedList , __A : SortedLinkedList ) -> SortedLinkedList: """simple docstring""" return SortedLinkedList(list(__A ) + list(__A ) ) if __name__ == "__main__": import doctest doctest.testmod() snake_case_ : Union[str, Any] = SortedLinkedList print(merge_lists(SSL(test_data_odd), SSL(test_data_even)))
7
0
from __future__ import annotations import copy import inspect import json import math import os import tempfile import unittest from importlib import import_module import numpy as np from transformers import ViTMAEConfig from transformers.file_utils import cached_property, is_tf_available, is_vision_available from transformers.testing_utils import require_tf, require_vision, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFViTMAEForPreTraining, TFViTMAEModel if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class _a : """simple docstring""" def __init__( self : Tuple , UpperCAmelCase : Any , UpperCAmelCase : Dict=13 , UpperCAmelCase : str=30 , UpperCAmelCase : Optional[int]=2 , UpperCAmelCase : Any=3 , UpperCAmelCase : List[Any]=True , UpperCAmelCase : Optional[int]=True , UpperCAmelCase : Tuple=32 , UpperCAmelCase : Dict=2 , UpperCAmelCase : Dict=4 , UpperCAmelCase : Dict=37 , UpperCAmelCase : Optional[int]="gelu" , UpperCAmelCase : Union[str, Any]=0.1 , UpperCAmelCase : Dict=0.1 , UpperCAmelCase : Optional[int]=10 , UpperCAmelCase : int=0.02 , UpperCAmelCase : Tuple=3 , UpperCAmelCase : int=0.6 , UpperCAmelCase : Optional[int]=None , ): A_ = parent A_ = batch_size A_ = image_size A_ = patch_size A_ = num_channels A_ = is_training A_ = use_labels A_ = hidden_size A_ = num_hidden_layers A_ = num_attention_heads A_ = intermediate_size A_ = hidden_act A_ = hidden_dropout_prob A_ = attention_probs_dropout_prob A_ = type_sequence_label_size A_ = initializer_range A_ = mask_ratio A_ = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) A_ = (image_size // patch_size) ** 2 A_ = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) ) def __A ( self : List[str] ): A_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) A_ = None if self.use_labels: A_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A_ = self.get_config() return config, pixel_values, labels def __A ( self : int ): return ViTMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , decoder_hidden_size=self.hidden_size , decoder_num_hidden_layers=self.num_hidden_layers , decoder_num_attention_heads=self.num_attention_heads , decoder_intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCAmelCase , initializer_range=self.initializer_range , mask_ratio=self.mask_ratio , ) def __A ( self : Dict , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : int ): A_ = TFViTMAEModel(config=UpperCAmelCase ) A_ = model(UpperCAmelCase , training=UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __A ( self : Any , UpperCAmelCase : Dict , UpperCAmelCase : str , UpperCAmelCase : Tuple ): A_ = TFViTMAEForPreTraining(UpperCAmelCase ) A_ = model(UpperCAmelCase , training=UpperCAmelCase ) # expected sequence length = num_patches A_ = (self.image_size // self.patch_size) ** 2 A_ = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) # test greyscale images A_ = 1 A_ = TFViTMAEForPreTraining(UpperCAmelCase ) A_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) A_ = model(UpperCAmelCase , training=UpperCAmelCase ) A_ = self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) def __A ( self : Any ): A_ = self.prepare_config_and_inputs() ((A_) , (A_) , (A_)) = config_and_inputs A_ = {"pixel_values": pixel_values} return config, inputs_dict @require_tf class _a ( snake_case_ , snake_case_ , unittest.TestCase ): """simple docstring""" _lowerCamelCase : str = (TFViTMAEModel, TFViTMAEForPreTraining) if is_tf_available() else () _lowerCamelCase : Union[str, Any] = {'feature-extraction': TFViTMAEModel} if is_tf_available() else {} _lowerCamelCase : str = False _lowerCamelCase : List[Any] = False _lowerCamelCase : List[str] = False _lowerCamelCase : List[str] = False def __A ( self : List[str] ): A_ = TFViTMAEModelTester(self ) A_ = ConfigTester(self , config_class=UpperCAmelCase , has_text_modality=UpperCAmelCase , hidden_size=37 ) def __A ( self : Union[str, Any] ): self.config_tester.run_common_tests() @unittest.skip(reason="ViTMAE does not use inputs_embeds" ) def __A ( self : List[Any] ): pass def __A ( self : str ): A_ , A_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ = model_class(UpperCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) A_ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCAmelCase , tf.keras.layers.Layer ) ) def __A ( self : Union[str, Any] ): A_ , A_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ = model_class(UpperCAmelCase ) A_ = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A_ = [*signature.parameters.keys()] A_ = ["pixel_values"] self.assertListEqual(arg_names[:1] , UpperCAmelCase ) def __A ( self : Optional[int] ): A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase ) def __A ( self : Optional[int] ): A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*UpperCAmelCase ) def __A ( self : Dict ): # make the mask reproducible np.random.seed(2 ) A_ , A_ = self.model_tester.prepare_config_and_inputs_for_common() A_ = int((config.image_size // config.patch_size) ** 2 ) A_ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: A_ = model_class(UpperCAmelCase ) A_ = self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) A_ = model(UpperCAmelCase , noise=UpperCAmelCase ) A_ = copy.deepcopy(self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) ) A_ = model(**UpperCAmelCase , noise=UpperCAmelCase ) A_ = outputs_dict[0].numpy() A_ = outputs_keywords[0].numpy() self.assertLess(np.sum(np.abs(output_dict - output_keywords ) ) , 1E-6 ) def __A ( self : Dict ): # make the mask reproducible np.random.seed(2 ) A_ , A_ = self.model_tester.prepare_config_and_inputs_for_common() A_ = int((config.image_size // config.patch_size) ** 2 ) A_ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) def prepare_numpy_arrays(UpperCAmelCase : str ): A_ = {} for k, v in inputs_dict.items(): if tf.is_tensor(UpperCAmelCase ): A_ = v.numpy() else: A_ = np.array(UpperCAmelCase ) return inputs_np_dict for model_class in self.all_model_classes: A_ = model_class(UpperCAmelCase ) A_ = self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) A_ = prepare_numpy_arrays(UpperCAmelCase ) A_ = model(UpperCAmelCase , noise=UpperCAmelCase ) A_ = model(**UpperCAmelCase , noise=UpperCAmelCase ) self.assert_outputs_same(UpperCAmelCase , UpperCAmelCase ) def __A ( self : List[Any] , UpperCAmelCase : List[Any] , UpperCAmelCase : Any , UpperCAmelCase : Optional[int] ): # make masks reproducible np.random.seed(2 ) A_ = int((tf_model.config.image_size // tf_model.config.patch_size) ** 2 ) A_ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) A_ = tf.constant(UpperCAmelCase ) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument A_ = tf_noise super().check_pt_tf_models(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) def __A ( self : Any ): # make mask reproducible np.random.seed(2 ) A_ , A_ = self.model_tester.prepare_config_and_inputs_for_common() A_ = { module_member for model_class in self.all_model_classes for module in (import_module(model_class.__module__ ),) for module_member_name in dir(UpperCAmelCase ) if module_member_name.endswith("MainLayer" ) # This condition is required, since `modeling_tf_clip.py` has 3 classes whose names end with `MainLayer`. and module_member_name[: -len("MainLayer" )] == model_class.__name__[: -len("Model" )] for module_member in (getattr(UpperCAmelCase , UpperCAmelCase ),) if isinstance(UpperCAmelCase , UpperCAmelCase ) and tf.keras.layers.Layer in module_member.__bases__ and getattr(UpperCAmelCase , "_keras_serializable" , UpperCAmelCase ) } A_ = int((config.image_size // config.patch_size) ** 2 ) A_ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) A_ = tf.convert_to_tensor(UpperCAmelCase ) inputs_dict.update({"noise": noise} ) for main_layer_class in tf_main_layer_classes: A_ = main_layer_class(UpperCAmelCase ) A_ = { name: tf.keras.Input(tensor.shape[1:] , dtype=tensor.dtype ) for name, tensor in inputs_dict.items() } A_ = tf.keras.Model(UpperCAmelCase , outputs=main_layer(UpperCAmelCase ) ) A_ = model(UpperCAmelCase ) with tempfile.TemporaryDirectory() as tmpdirname: A_ = os.path.join(UpperCAmelCase , "keras_model.h5" ) model.save(UpperCAmelCase ) A_ = tf.keras.models.load_model( UpperCAmelCase , custom_objects={main_layer_class.__name__: main_layer_class} ) assert isinstance(UpperCAmelCase , tf.keras.Model ) A_ = model(UpperCAmelCase ) self.assert_outputs_same(UpperCAmelCase , UpperCAmelCase ) @slow def __A ( self : Any ): # make mask reproducible np.random.seed(2 ) A_ , A_ = self.model_tester.prepare_config_and_inputs_for_common() A_ = int((config.image_size // config.patch_size) ** 2 ) A_ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: A_ = model_class(UpperCAmelCase ) A_ = self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) A_ = model(UpperCAmelCase , noise=UpperCAmelCase ) if model_class.__name__ == "TFViTMAEModel": A_ = outputs.last_hidden_state.numpy() A_ = 0 else: A_ = outputs.logits.numpy() A_ = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(UpperCAmelCase , saved_model=UpperCAmelCase ) A_ = model_class.from_pretrained(UpperCAmelCase ) A_ = model(UpperCAmelCase , noise=UpperCAmelCase ) if model_class.__name__ == "TFViTMAEModel": A_ = after_outputs["last_hidden_state"].numpy() A_ = 0 else: A_ = after_outputs["logits"].numpy() A_ = 0 A_ = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(UpperCAmelCase , 1E-5 ) def __A ( self : str ): # make mask reproducible np.random.seed(2 ) A_ , A_ = self.model_tester.prepare_config_and_inputs_for_common() A_ = int((config.image_size // config.patch_size) ** 2 ) A_ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: A_ = model_class(UpperCAmelCase ) A_ = self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) A_ = model(UpperCAmelCase , noise=UpperCAmelCase ) A_ = model.get_config() # make sure that returned config is jsonifiable, which is required by keras json.dumps(UpperCAmelCase ) A_ = model_class.from_config(model.get_config() ) # make sure it also accepts a normal config A_ = model_class.from_config(model.config ) A_ = new_model(UpperCAmelCase ) # Build model new_model.set_weights(model.get_weights() ) A_ = new_model(UpperCAmelCase , noise=UpperCAmelCase ) self.assert_outputs_same(UpperCAmelCase , UpperCAmelCase ) @unittest.skip( reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results." ) def __A ( self : str ): pass @unittest.skip(reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load" ) def __A ( self : Dict ): pass @slow def __A ( self : Tuple ): A_ = TFViTMAEModel.from_pretrained("google/vit-base-patch16-224" ) self.assertIsNotNone(UpperCAmelCase ) def __snake_case ( ): """simple docstring""" A_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_tf @require_vision class _a ( unittest.TestCase ): """simple docstring""" @cached_property def __A ( self : str ): return ViTImageProcessor.from_pretrained("facebook/vit-mae-base" ) if is_vision_available() else None @slow def __A ( self : int ): # make random mask reproducible across the PT and TF model np.random.seed(2 ) A_ = TFViTMAEForPreTraining.from_pretrained("facebook/vit-mae-base" ) A_ = self.default_image_processor A_ = prepare_img() A_ = image_processor(images=UpperCAmelCase , return_tensors="tf" ) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) A_ = ViTMAEConfig() A_ = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 ) A_ = np.random.uniform(size=(1, num_patches) ) # forward pass A_ = model(**UpperCAmelCase , noise=UpperCAmelCase ) # verify the logits A_ = tf.convert_to_tensor([1, 196, 768] ) self.assertEqual(outputs.logits.shape , UpperCAmelCase ) A_ = tf.convert_to_tensor( [[-0.0_548, -1.7_023, -0.9_325], [0.3_721, -0.5_670, -0.2_233], [0.8_235, -1.3_878, -0.3_524]] ) tf.debugging.assert_near(outputs.logits[0, :3, :3] , UpperCAmelCase , atol=1E-4 )
312
import unittest from typing import Tuple import torch from diffusers.utils import floats_tensor, randn_tensor, torch_all_close, torch_device from diffusers.utils.testing_utils import require_torch @require_torch class _a : """simple docstring""" @property def __A ( self : Union[str, Any] ): return self.get_dummy_input() @property def __A ( self : int ): if self.block_type == "down": return (4, 32, 16, 16) elif self.block_type == "mid": return (4, 32, 32, 32) elif self.block_type == "up": return (4, 32, 64, 64) raise ValueError(f'''\'{self.block_type}\' is not a supported block_type. Set it to \'up\', \'mid\', or \'down\'.''' ) def __A ( self : Union[str, Any] , UpperCAmelCase : List[Any]=True , UpperCAmelCase : str=False , UpperCAmelCase : Tuple=False , UpperCAmelCase : Optional[Any]=False , ): A_ = 4 A_ = 32 A_ = (32, 32) A_ = torch.manual_seed(0 ) A_ = torch.device(UpperCAmelCase ) A_ = (batch_size, num_channels) + sizes A_ = randn_tensor(UpperCAmelCase , generator=UpperCAmelCase , device=UpperCAmelCase ) A_ = {"hidden_states": hidden_states} if include_temb: A_ = 128 A_ = randn_tensor((batch_size, temb_channels) , generator=UpperCAmelCase , device=UpperCAmelCase ) if include_res_hidden_states_tuple: A_ = torch.manual_seed(1 ) A_ = (randn_tensor(UpperCAmelCase , generator=UpperCAmelCase , device=UpperCAmelCase ),) if include_encoder_hidden_states: A_ = floats_tensor((batch_size, 32, 32) ).to(UpperCAmelCase ) if include_skip_sample: A_ = randn_tensor(((batch_size, 3) + sizes) , generator=UpperCAmelCase , device=UpperCAmelCase ) return dummy_input def __A ( self : Optional[int] ): A_ = { "in_channels": 32, "out_channels": 32, "temb_channels": 128, } if self.block_type == "up": A_ = 32 if self.block_type == "mid": init_dict.pop("out_channels" ) A_ = self.dummy_input return init_dict, inputs_dict def __A ( self : List[str] , UpperCAmelCase : Optional[Any] ): A_ , A_ = self.prepare_init_args_and_inputs_for_common() A_ = self.block_class(**UpperCAmelCase ) unet_block.to(UpperCAmelCase ) unet_block.eval() with torch.no_grad(): A_ = unet_block(**UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ): A_ = output[0] self.assertEqual(output.shape , self.output_shape ) A_ = output[0, -1, -3:, -3:] A_ = torch.tensor(UpperCAmelCase ).to(UpperCAmelCase ) assert torch_all_close(output_slice.flatten() , UpperCAmelCase , atol=5E-3 ) @unittest.skipIf(torch_device == "mps" , "Training is not supported in mps" ) def __A ( self : Union[str, Any] ): A_ , A_ = self.prepare_init_args_and_inputs_for_common() A_ = self.block_class(**UpperCAmelCase ) model.to(UpperCAmelCase ) model.train() A_ = model(**UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ): A_ = output[0] A_ = torch.device(UpperCAmelCase ) A_ = randn_tensor(output.shape , device=UpperCAmelCase ) A_ = torch.nn.functional.mse_loss(UpperCAmelCase , UpperCAmelCase ) loss.backward()
312
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) SCREAMING_SNAKE_CASE__:int = { """configuration_vision_text_dual_encoder""": ["""VisionTextDualEncoderConfig"""], """processing_vision_text_dual_encoder""": ["""VisionTextDualEncoderProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__:Union[str, Any] = ["""VisionTextDualEncoderModel"""] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__:Optional[Any] = ["""FlaxVisionTextDualEncoderModel"""] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__:Optional[Any] = ["""TFVisionTextDualEncoderModel"""] if TYPE_CHECKING: from .configuration_vision_text_dual_encoder import VisionTextDualEncoderConfig from .processing_vision_text_dual_encoder import VisionTextDualEncoderProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vision_text_dual_encoder import VisionTextDualEncoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vision_text_dual_encoder import FlaxVisionTextDualEncoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vision_text_dual_encoder import TFVisionTextDualEncoderModel else: import sys SCREAMING_SNAKE_CASE__:str = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
365
"""simple docstring""" import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE__:Optional[Any] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__:str = { """asapp/sew-d-tiny-100k""": """https://huggingface.co/asapp/sew-d-tiny-100k/resolve/main/config.json""", # See all SEW-D models at https://huggingface.co/models?filter=sew-d } class snake_case__ ( snake_case_ ): _snake_case : str = """sew-d""" def __init__( self , lowerCamelCase=32 , lowerCamelCase=768 , lowerCamelCase=12 , lowerCamelCase=12 , lowerCamelCase=3072 , lowerCamelCase=2 , lowerCamelCase=512 , lowerCamelCase=256 , lowerCamelCase=True , lowerCamelCase=True , lowerCamelCase=("p2c", "c2p") , lowerCamelCase="layer_norm" , lowerCamelCase="gelu_python" , lowerCamelCase=0.1 , lowerCamelCase=0.1 , lowerCamelCase=0.1 , lowerCamelCase=0.0 , lowerCamelCase=0.1 , lowerCamelCase=0.02 , lowerCamelCase=1E-7 , lowerCamelCase=1E-5 , lowerCamelCase="group" , lowerCamelCase="gelu" , lowerCamelCase=(64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512) , lowerCamelCase=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , lowerCamelCase=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , lowerCamelCase=False , lowerCamelCase=128 , lowerCamelCase=16 , lowerCamelCase=True , lowerCamelCase=0.05 , lowerCamelCase=10 , lowerCamelCase=2 , lowerCamelCase=0.0 , lowerCamelCase=10 , lowerCamelCase=0 , lowerCamelCase="mean" , lowerCamelCase=False , lowerCamelCase=False , lowerCamelCase=256 , lowerCamelCase=0 , lowerCamelCase=1 , lowerCamelCase=2 , **lowerCamelCase , ): super().__init__(**lowerCamelCase , pad_token_id=lowerCamelCase , bos_token_id=lowerCamelCase , eos_token_id=lowerCamelCase ) __a = hidden_size __a = feat_extract_norm __a = feat_extract_activation __a = list(lowerCamelCase ) __a = list(lowerCamelCase ) __a = list(lowerCamelCase ) __a = conv_bias __a = num_conv_pos_embeddings __a = num_conv_pos_embedding_groups __a = len(self.conv_dim ) __a = num_hidden_layers __a = intermediate_size __a = squeeze_factor __a = max_position_embeddings __a = position_buckets __a = share_att_key __a = relative_attention __a = norm_rel_ebd __a = list(lowerCamelCase ) __a = hidden_act __a = num_attention_heads __a = hidden_dropout __a = attention_dropout __a = activation_dropout __a = feat_proj_dropout __a = final_dropout __a = layer_norm_eps __a = feature_layer_norm_eps __a = initializer_range __a = vocab_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( "Configuration for convolutional layers is incorrect." "It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`," F"but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)" F"= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`." ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __a = apply_spec_augment __a = mask_time_prob __a = mask_time_length __a = mask_time_min_masks __a = mask_feature_prob __a = mask_feature_length __a = mask_feature_min_masks # ctc loss __a = ctc_loss_reduction __a = ctc_zero_infinity # sequence classification __a = use_weighted_layer_sum __a = classifier_proj_size @property def a__ ( self ): return functools.reduce(operator.mul , self.conv_stride , 1 )
268
0
'''simple docstring''' from pathlib import Path import fire from tqdm import tqdm def UpperCAmelCase_ ( __lowerCamelCase : Any="ro" ,__lowerCamelCase : Any="en" ,__lowerCamelCase : Any="wmt16" ,__lowerCamelCase : Dict=None ): try: import datasets except (ModuleNotFoundError, ImportError): raise ImportError("run pip install datasets" ) lowercase_ :str = F'{src_lang}-{tgt_lang}' print(F'Converting {dataset}-{pair}' ) lowercase_ :Tuple = datasets.load_dataset(__lowerCamelCase ,__lowerCamelCase ) if save_dir is None: lowercase_ :List[str] = F'{dataset}-{pair}' lowercase_ :int = Path(__lowerCamelCase ) save_dir.mkdir(exist_ok=__lowerCamelCase ) for split in ds.keys(): print(F'Splitting {split} with {ds[split].num_rows} records' ) # to save to val.source, val.target like summary datasets lowercase_ :Any = "val" if split == "validation" else split lowercase_ :int = save_dir.joinpath(F'{fn}.source' ) lowercase_ :int = save_dir.joinpath(F'{fn}.target' ) lowercase_ :Optional[int] = src_path.open("w+" ) lowercase_ :Optional[int] = tgt_path.open("w+" ) # reader is the bottleneck so writing one record at a time doesn't slow things down for x in tqdm(ds[split] ): lowercase_ :Optional[int] = x["translation"] src_fp.write(ex[src_lang] + "\n" ) tgt_fp.write(ex[tgt_lang] + "\n" ) print(F'Saved {dataset} dataset to {save_dir}' ) if __name__ == "__main__": fire.Fire(download_wmt_dataset)
223
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mvp import MvpTokenizer lowerCAmelCase : Tuple =logging.get_logger(__name__) lowerCAmelCase : List[str] ={'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} # See all MVP models at https://huggingface.co/models?filter=mvp lowerCAmelCase : Optional[int] ={ '''vocab_file''': { '''RUCAIBox/mvp''': '''https://huggingface.co/RUCAIBox/mvp/resolve/main/vocab.json''', }, '''added_tokens.json''': { '''RUCAIBox/mvp''': '''https://huggingface.co/RUCAIBox/mvp/resolve/main/added_tokens.json''', }, '''merges_file''': { '''RUCAIBox/mvp''': '''https://huggingface.co/RUCAIBox/mvp/resolve/main/merges.txt''', }, '''tokenizer_file''': { '''RUCAIBox/mvp''': '''https://huggingface.co/RUCAIBox/mvp/resolve/main/tokenizer.json''', }, } lowerCAmelCase : List[Any] ={ '''RUCAIBox/mvp''': 1_024, } class a_ ( _lowerCAmelCase ): __A = VOCAB_FILES_NAMES __A = PRETRAINED_VOCAB_FILES_MAP __A = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __A = ["input_ids", "attention_mask"] __A = MvpTokenizer def __init__( self : Optional[Any] , lowercase : Any=None , lowercase : List[Any]=None , lowercase : Dict=None , lowercase : int="replace" , lowercase : int="<s>" , lowercase : List[str]="</s>" , lowercase : Optional[Any]="</s>" , lowercase : List[str]="<s>" , lowercase : List[str]="<unk>" , lowercase : List[str]="<pad>" , lowercase : Tuple="<mask>" , lowercase : Tuple=False , lowercase : Dict=True , **lowercase : List[str] , ): """simple docstring""" super().__init__( lowercase , lowercase , tokenizer_file=lowercase , errors=lowercase , bos_token=lowercase , eos_token=lowercase , sep_token=lowercase , cls_token=lowercase , unk_token=lowercase , pad_token=lowercase , mask_token=lowercase , add_prefix_space=lowercase , trim_offsets=lowercase , **lowercase , ) lowercase_ :Dict = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , lowercase ) != add_prefix_space: lowercase_ :List[str] = getattr(lowercase , pre_tok_state.pop("type" ) ) lowercase_ :int = add_prefix_space lowercase_ :Optional[int] = pre_tok_class(**lowercase ) lowercase_ :Any = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` lowercase_ :List[Any] = "post_processor" lowercase_ :str = getattr(self.backend_tokenizer , lowercase , lowercase ) if tokenizer_component_instance: lowercase_ :Any = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: lowercase_ :int = tuple(state["sep"] ) if "cls" in state: lowercase_ :Any = tuple(state["cls"] ) lowercase_ :int = False if state.get("add_prefix_space" , lowercase ) != add_prefix_space: lowercase_ :Union[str, Any] = add_prefix_space lowercase_ :int = True if state.get("trim_offsets" , lowercase ) != trim_offsets: lowercase_ :Any = trim_offsets lowercase_ :int = True if changes_to_apply: lowercase_ :Tuple = getattr(lowercase , state.pop("type" ) ) lowercase_ :Any = component_class(**lowercase ) setattr(self.backend_tokenizer , lowercase , lowercase ) @property def lowercase__ ( self : Optional[int] ): """simple docstring""" if self._mask_token is None: if self.verbose: logger.error("Using mask_token, but it is not set yet." ) return None return str(self._mask_token ) @mask_token.setter def lowercase__ ( self : int , lowercase : Dict ): """simple docstring""" lowercase_ :List[str] = AddedToken(lowercase , lstrip=lowercase , rstrip=lowercase ) if isinstance(lowercase , lowercase ) else value lowercase_ :Union[str, Any] = value def lowercase__ ( self : Optional[Any] , *lowercase : List[Any] , **lowercase : Any ): """simple docstring""" lowercase_ :Any = kwargs.get("is_split_into_words" , lowercase ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*lowercase , **lowercase ) def lowercase__ ( self : Optional[Any] , *lowercase : Optional[int] , **lowercase : int ): """simple docstring""" lowercase_ :Any = kwargs.get("is_split_into_words" , lowercase ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._encode_plus(*lowercase , **lowercase ) def lowercase__ ( self : Dict , lowercase : str , lowercase : Optional[str] = None ): """simple docstring""" lowercase_ :str = self._tokenizer.model.save(lowercase , name=lowercase ) return tuple(lowercase ) def lowercase__ ( self : Tuple , lowercase : Dict , lowercase : int=None ): """simple docstring""" lowercase_ :List[str] = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def lowercase__ ( self : int , lowercase : List[int] , lowercase : Optional[List[int]] = None ): """simple docstring""" lowercase_ :Union[str, Any] = [self.sep_token_id] lowercase_ :Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
223
1
import pytest import datasets.config from datasets.utils.info_utils import is_small_dataset @pytest.mark.parametrize('dataset_size' , [None, 400 * 2**20, 600 * 2**20] ) @pytest.mark.parametrize('input_in_memory_max_size' , ['default', 0, 100 * 2**20, 900 * 2**20] ) def A ( _UpperCAmelCase : str , _UpperCAmelCase : int , _UpperCAmelCase : int ) -> Optional[Any]: '''simple docstring''' if input_in_memory_max_size != "default": monkeypatch.setattr(datasets.config , 'IN_MEMORY_MAX_SIZE' , _UpperCAmelCase ) _UpperCAmelCase = datasets.config.IN_MEMORY_MAX_SIZE if input_in_memory_max_size == "default": assert in_memory_max_size == 0 else: assert in_memory_max_size == input_in_memory_max_size if dataset_size and in_memory_max_size: _UpperCAmelCase = dataset_size < in_memory_max_size else: _UpperCAmelCase = False _UpperCAmelCase = is_small_dataset(_UpperCAmelCase ) assert result == expected
290
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) UpperCAmelCase__ = { "configuration_mega": ["MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP", "MegaConfig", "MegaOnnxConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ "MEGA_PRETRAINED_MODEL_ARCHIVE_LIST", "MegaForCausalLM", "MegaForMaskedLM", "MegaForMultipleChoice", "MegaForQuestionAnswering", "MegaForSequenceClassification", "MegaForTokenClassification", "MegaModel", "MegaPreTrainedModel", ] if TYPE_CHECKING: from .configuration_mega import MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP, MegaConfig, MegaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mega import ( MEGA_PRETRAINED_MODEL_ARCHIVE_LIST, MegaForCausalLM, MegaForMaskedLM, MegaForMultipleChoice, MegaForQuestionAnswering, MegaForSequenceClassification, MegaForTokenClassification, MegaModel, MegaPreTrainedModel, ) else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
290
1
from __future__ import annotations import math def UpperCAmelCase__ ( _A : int , _A : int , _A : bool , _A : list[int] , _A : float ): '''simple docstring''' if depth < 0: raise ValueError('''Depth cannot be less than 0''' ) if not scores: raise ValueError('''Scores cannot be empty''' ) if depth == height: return scores[node_index] return ( max( minimax(depth + 1 , node_index * 2 , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) , minimax(depth + 1 , node_index * 2 + 1 , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) , ) if is_max else min( minimax(depth + 1 , node_index * 2 , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) , minimax(depth + 1 , node_index * 2 + 1 , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) , ) ) def UpperCAmelCase__ ( ): '''simple docstring''' a__ =[90, 23, 6, 33, 21, 65, 1_23, 3_44_23] a__ =math.log(len(lowerCAmelCase_ ) , 2 ) print(F"""Optimal value : {minimax(0 , 0 , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )}""" ) if __name__ == "__main__": import doctest doctest.testmod() main()
188
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..models.auto import AutoProcessor from ..models.vision_encoder_decoder import VisionEncoderDecoderModel from ..utils import is_vision_available from .base import PipelineTool if is_vision_available(): from PIL import Image class lowerCAmelCase ( __a ): '''simple docstring''' _A : List[str] = '''naver-clova-ix/donut-base-finetuned-docvqa''' _A : Any = ( '''This is a tool that answers a question about an document (pdf). It takes an input named `document` which ''' '''should be the document containing the information, as well as a `question` that is the question about the ''' '''document. It returns a text that contains the answer to the question.''' ) _A : Tuple = '''document_qa''' _A : Dict = AutoProcessor _A : Tuple = VisionEncoderDecoderModel _A : Optional[int] = ['''image''', '''text'''] _A : Optional[int] = ['''text'''] def __init__( self : Any , *__a : List[str] , **__a : Any ) -> Optional[Any]: """simple docstring""" if not is_vision_available(): raise ValueError("""Pillow must be installed to use the DocumentQuestionAnsweringTool.""" ) super().__init__(*__a , **__a ) def lowerCAmelCase ( self : List[Any] , __a : "Image" , __a : str ) -> List[str]: """simple docstring""" __lowercase : int = """<s_docvqa><s_question>{user_input}</s_question><s_answer>""" __lowercase : str = task_prompt.replace("""{user_input}""" , __a ) __lowercase : Union[str, Any] = self.pre_processor.tokenizer( __a , add_special_tokens=__a , return_tensors="""pt""" ).input_ids __lowercase : int = self.pre_processor(__a , return_tensors="""pt""" ).pixel_values return {"decoder_input_ids": decoder_input_ids, "pixel_values": pixel_values} def lowerCAmelCase ( self : Optional[int] , __a : int ) -> int: """simple docstring""" return self.model.generate( inputs["""pixel_values"""].to(self.device ) , decoder_input_ids=inputs["""decoder_input_ids"""].to(self.device ) , max_length=self.model.decoder.config.max_position_embeddings , early_stopping=__a , pad_token_id=self.pre_processor.tokenizer.pad_token_id , eos_token_id=self.pre_processor.tokenizer.eos_token_id , use_cache=__a , num_beams=1 , bad_words_ids=[[self.pre_processor.tokenizer.unk_token_id]] , return_dict_in_generate=__a , ).sequences def lowerCAmelCase ( self : Union[str, Any] , __a : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" __lowercase : Tuple = self.pre_processor.batch_decode(__a )[0] __lowercase : int = sequence.replace(self.pre_processor.tokenizer.eos_token , """""" ) __lowercase : Union[str, Any] = sequence.replace(self.pre_processor.tokenizer.pad_token , """""" ) __lowercase : Optional[Any] = re.sub(r"""<.*?>""" , """""" , __a , count=1 ).strip() # remove first task start token __lowercase : Dict = self.pre_processor.tokenajson(__a ) return sequence["answer"]
233
0
'''simple docstring''' import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( HubertConfig, HubertForCTC, HubertModel, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() a : List[str] = logging.get_logger(__name__) a : List[str] = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'w2v_encoder.proj': 'lm_head', 'mask_emb': 'masked_spec_embed', } def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase ) -> List[str]: '''simple docstring''' for attribute in key.split('''.''' ): snake_case_ = getattr(__UpperCAmelCase, __UpperCAmelCase ) if weight_type is not None: snake_case_ = getattr(__UpperCAmelCase, __UpperCAmelCase ).shape else: snake_case_ = hf_pointer.shape assert hf_shape == value.shape, ( F"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be" F" {value.shape} for {full_name}" ) if weight_type == "weight": snake_case_ = value elif weight_type == "weight_g": snake_case_ = value elif weight_type == "weight_v": snake_case_ = value elif weight_type == "bias": snake_case_ = value else: snake_case_ = value logger.info(F"{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}." ) def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase ) -> Optional[int]: '''simple docstring''' snake_case_ = [] snake_case_ = fairseq_model.state_dict() snake_case_ = hf_model.hubert.feature_extractor if is_finetuned else hf_model.feature_extractor for name, value in fairseq_dict.items(): snake_case_ = False if "conv_layers" in name: load_conv_layer( __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase, hf_model.config.feat_extract_norm == '''group''', ) snake_case_ = True else: for key, mapped_key in MAPPING.items(): snake_case_ = '''hubert.''' + mapped_key if (is_finetuned and mapped_key != '''lm_head''') else mapped_key if key in name or (key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0] and not is_finetuned): snake_case_ = True if "*" in mapped_key: snake_case_ = name.split(__UpperCAmelCase )[0].split('''.''' )[-2] snake_case_ = mapped_key.replace('''*''', __UpperCAmelCase ) if "weight_g" in name: snake_case_ = '''weight_g''' elif "weight_v" in name: snake_case_ = '''weight_v''' elif "weight" in name: snake_case_ = '''weight''' elif "bias" in name: snake_case_ = '''bias''' else: snake_case_ = None set_recursively(__UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase ) continue if not is_used: unused_weights.append(__UpperCAmelCase ) logger.warning(F"Unused weights: {unused_weights}" ) def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase ) -> Optional[int]: '''simple docstring''' snake_case_ = full_name.split('''conv_layers.''' )[-1] snake_case_ = name.split('''.''' ) snake_case_ = int(items[0] ) snake_case_ = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found." ) snake_case_ = value logger.info(F"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found." ) snake_case_ = value logger.info(F"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F"{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was" " found." ) snake_case_ = value logger.info(F"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F"{full_name} has size {value.shape}, but" F" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found." ) snake_case_ = value logger.info(F"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) else: unused_weights.append(__UpperCAmelCase ) @torch.no_grad() def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase=None, __UpperCAmelCase=None, __UpperCAmelCase=True ) -> Optional[int]: '''simple docstring''' if config_path is not None: snake_case_ = HubertConfig.from_pretrained(__UpperCAmelCase ) else: snake_case_ = HubertConfig() if is_finetuned: if dict_path: snake_case_ = Dictionary.load(__UpperCAmelCase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq snake_case_ = target_dict.pad_index snake_case_ = target_dict.bos_index snake_case_ = target_dict.eos_index snake_case_ = len(target_dict.symbols ) snake_case_ = os.path.join(__UpperCAmelCase, '''vocab.json''' ) if not os.path.isdir(__UpperCAmelCase ): logger.error('''--pytorch_dump_folder_path ({}) should be a directory'''.format(__UpperCAmelCase ) ) return os.makedirs(__UpperCAmelCase, exist_ok=__UpperCAmelCase ) with open(__UpperCAmelCase, '''w''', encoding='''utf-8''' ) as vocab_handle: json.dump(target_dict.indices, __UpperCAmelCase ) snake_case_ = WavaVecaCTCTokenizer( __UpperCAmelCase, unk_token=target_dict.unk_word, pad_token=target_dict.pad_word, bos_token=target_dict.bos_word, eos_token=target_dict.eos_word, word_delimiter_token='''|''', do_lower_case=__UpperCAmelCase, ) snake_case_ = True if config.feat_extract_norm == '''layer''' else False snake_case_ = WavaVecaFeatureExtractor( feature_size=1, sampling_rate=1_6000, padding_value=0, do_normalize=__UpperCAmelCase, return_attention_mask=__UpperCAmelCase, ) snake_case_ = WavaVecaProcessor(feature_extractor=__UpperCAmelCase, tokenizer=__UpperCAmelCase ) processor.save_pretrained(__UpperCAmelCase ) snake_case_ = HubertForCTC(__UpperCAmelCase ) else: snake_case_ = HubertModel(__UpperCAmelCase ) if is_finetuned: snake_case_ ,snake_case_ ,snake_case_ = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path], arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} ) else: snake_case_ ,snake_case_ ,snake_case_ = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) snake_case_ = model[0].eval() recursively_load_weights(__UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase ) hf_wavavec.save_pretrained(__UpperCAmelCase ) if __name__ == "__main__": a : Optional[int] = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not' ) a : Optional[Any] = parser.parse_args() convert_hubert_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
72
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a : Optional[int] = logging.get_logger(__name__) a : Optional[Any] = { 'facebook/xlm-roberta-xl': 'https://huggingface.co/facebook/xlm-roberta-xl/resolve/main/config.json', 'facebook/xlm-roberta-xxl': 'https://huggingface.co/facebook/xlm-roberta-xxl/resolve/main/config.json', # See all XLM-RoBERTa-XL models at https://huggingface.co/models?filter=xlm-roberta-xl } class a ( _lowerCamelCase ): snake_case_ = "xlm-roberta-xl" def __init__( self : Optional[Any] , lowercase_ : Optional[Any]=25_0880 , lowercase_ : Tuple=2560 , lowercase_ : str=36 , lowercase_ : List[str]=32 , lowercase_ : Optional[Any]=1_0240 , lowercase_ : List[str]="gelu" , lowercase_ : Union[str, Any]=0.1 , lowercase_ : Union[str, Any]=0.1 , lowercase_ : str=514 , lowercase_ : Any=1 , lowercase_ : Optional[Any]=0.02 , lowercase_ : Dict=1e-05 , lowercase_ : List[Any]=1 , lowercase_ : str=0 , lowercase_ : Dict=2 , lowercase_ : Optional[Any]="absolute" , lowercase_ : str=True , lowercase_ : str=None , **lowercase_ : Tuple , ): super().__init__(pad_token_id=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ , **lowercase_ ) snake_case_ = vocab_size snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = hidden_act snake_case_ = intermediate_size snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = max_position_embeddings snake_case_ = type_vocab_size snake_case_ = initializer_range snake_case_ = layer_norm_eps snake_case_ = position_embedding_type snake_case_ = use_cache snake_case_ = classifier_dropout class a ( _lowerCamelCase ): @property def A_ ( self : Optional[Any] ): if self.task == "multiple-choice": snake_case_ = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: snake_case_ = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
72
1
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_flax, require_tf, require_torch from transformers.utils import ( expand_dims, flatten_dict, is_flax_available, is_tf_available, is_torch_available, reshape, squeeze, transpose, ) if is_flax_available(): import jax.numpy as jnp if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch class snake_case__ ( unittest.TestCase): def A ( self : Optional[Any] ) -> str: UpperCAmelCase_ : str = { 'task_specific_params': { 'summarization': {'length_penalty': 1.0, 'max_length': 1_28, 'min_length': 12, 'num_beams': 4}, 'summarization_cnn': {'length_penalty': 2.0, 'max_length': 1_42, 'min_length': 56, 'num_beams': 4}, 'summarization_xsum': {'length_penalty': 1.0, 'max_length': 62, 'min_length': 11, 'num_beams': 6}, } } UpperCAmelCase_ : int = { 'task_specific_params.summarization.length_penalty': 1.0, 'task_specific_params.summarization.max_length': 1_28, 'task_specific_params.summarization.min_length': 12, 'task_specific_params.summarization.num_beams': 4, 'task_specific_params.summarization_cnn.length_penalty': 2.0, 'task_specific_params.summarization_cnn.max_length': 1_42, 'task_specific_params.summarization_cnn.min_length': 56, 'task_specific_params.summarization_cnn.num_beams': 4, 'task_specific_params.summarization_xsum.length_penalty': 1.0, 'task_specific_params.summarization_xsum.max_length': 62, 'task_specific_params.summarization_xsum.min_length': 11, 'task_specific_params.summarization_xsum.num_beams': 6, } self.assertEqual(flatten_dict(UpperCAmelCase_ ) , UpperCAmelCase_ ) def A ( self : int ) -> str: UpperCAmelCase_ : Tuple = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(transpose(UpperCAmelCase_ ) , x.transpose() ) ) UpperCAmelCase_ : Dict = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(transpose(UpperCAmelCase_ , axes=(1, 2, 0) ) , x.transpose((1, 2, 0) ) ) ) @require_torch def A ( self : List[str] ) -> Any: UpperCAmelCase_ : List[str] = np.random.randn(3 , 4 ) UpperCAmelCase_ : str = torch.tensor(UpperCAmelCase_ ) self.assertTrue(np.allclose(transpose(UpperCAmelCase_ ) , transpose(UpperCAmelCase_ ).numpy() ) ) UpperCAmelCase_ : List[Any] = np.random.randn(3 , 4 , 5 ) UpperCAmelCase_ : Dict = torch.tensor(UpperCAmelCase_ ) self.assertTrue(np.allclose(transpose(UpperCAmelCase_ , axes=(1, 2, 0) ) , transpose(UpperCAmelCase_ , axes=(1, 2, 0) ).numpy() ) ) @require_tf def A ( self : List[Any] ) -> Optional[int]: UpperCAmelCase_ : Union[str, Any] = np.random.randn(3 , 4 ) UpperCAmelCase_ : Any = tf.constant(UpperCAmelCase_ ) self.assertTrue(np.allclose(transpose(UpperCAmelCase_ ) , transpose(UpperCAmelCase_ ).numpy() ) ) UpperCAmelCase_ : Union[str, Any] = np.random.randn(3 , 4 , 5 ) UpperCAmelCase_ : int = tf.constant(UpperCAmelCase_ ) self.assertTrue(np.allclose(transpose(UpperCAmelCase_ , axes=(1, 2, 0) ) , transpose(UpperCAmelCase_ , axes=(1, 2, 0) ).numpy() ) ) @require_flax def A ( self : Union[str, Any] ) -> int: UpperCAmelCase_ : List[Any] = np.random.randn(3 , 4 ) UpperCAmelCase_ : Optional[Any] = jnp.array(UpperCAmelCase_ ) self.assertTrue(np.allclose(transpose(UpperCAmelCase_ ) , np.asarray(transpose(UpperCAmelCase_ ) ) ) ) UpperCAmelCase_ : Optional[int] = np.random.randn(3 , 4 , 5 ) UpperCAmelCase_ : List[Any] = jnp.array(UpperCAmelCase_ ) self.assertTrue(np.allclose(transpose(UpperCAmelCase_ , axes=(1, 2, 0) ) , np.asarray(transpose(UpperCAmelCase_ , axes=(1, 2, 0) ) ) ) ) def A ( self : str ) -> Tuple: UpperCAmelCase_ : int = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(reshape(UpperCAmelCase_ , (4, 3) ) , np.reshape(UpperCAmelCase_ , (4, 3) ) ) ) UpperCAmelCase_ : Optional[Any] = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(reshape(UpperCAmelCase_ , (12, 5) ) , np.reshape(UpperCAmelCase_ , (12, 5) ) ) ) @require_torch def A ( self : List[str] ) -> int: UpperCAmelCase_ : Dict = np.random.randn(3 , 4 ) UpperCAmelCase_ : Optional[Any] = torch.tensor(UpperCAmelCase_ ) self.assertTrue(np.allclose(reshape(UpperCAmelCase_ , (4, 3) ) , reshape(UpperCAmelCase_ , (4, 3) ).numpy() ) ) UpperCAmelCase_ : Dict = np.random.randn(3 , 4 , 5 ) UpperCAmelCase_ : Union[str, Any] = torch.tensor(UpperCAmelCase_ ) self.assertTrue(np.allclose(reshape(UpperCAmelCase_ , (12, 5) ) , reshape(UpperCAmelCase_ , (12, 5) ).numpy() ) ) @require_tf def A ( self : List[Any] ) -> str: UpperCAmelCase_ : Union[str, Any] = np.random.randn(3 , 4 ) UpperCAmelCase_ : Any = tf.constant(UpperCAmelCase_ ) self.assertTrue(np.allclose(reshape(UpperCAmelCase_ , (4, 3) ) , reshape(UpperCAmelCase_ , (4, 3) ).numpy() ) ) UpperCAmelCase_ : str = np.random.randn(3 , 4 , 5 ) UpperCAmelCase_ : int = tf.constant(UpperCAmelCase_ ) self.assertTrue(np.allclose(reshape(UpperCAmelCase_ , (12, 5) ) , reshape(UpperCAmelCase_ , (12, 5) ).numpy() ) ) @require_flax def A ( self : Optional[Any] ) -> int: UpperCAmelCase_ : str = np.random.randn(3 , 4 ) UpperCAmelCase_ : Tuple = jnp.array(UpperCAmelCase_ ) self.assertTrue(np.allclose(reshape(UpperCAmelCase_ , (4, 3) ) , np.asarray(reshape(UpperCAmelCase_ , (4, 3) ) ) ) ) UpperCAmelCase_ : List[Any] = np.random.randn(3 , 4 , 5 ) UpperCAmelCase_ : Any = jnp.array(UpperCAmelCase_ ) self.assertTrue(np.allclose(reshape(UpperCAmelCase_ , (12, 5) ) , np.asarray(reshape(UpperCAmelCase_ , (12, 5) ) ) ) ) def A ( self : Tuple ) -> Union[str, Any]: UpperCAmelCase_ : Optional[Any] = np.random.randn(1 , 3 , 4 ) self.assertTrue(np.allclose(squeeze(UpperCAmelCase_ ) , np.squeeze(UpperCAmelCase_ ) ) ) UpperCAmelCase_ : Tuple = np.random.randn(1 , 4 , 1 , 5 ) self.assertTrue(np.allclose(squeeze(UpperCAmelCase_ , axis=2 ) , np.squeeze(UpperCAmelCase_ , axis=2 ) ) ) @require_torch def A ( self : Tuple ) -> List[Any]: UpperCAmelCase_ : Dict = np.random.randn(1 , 3 , 4 ) UpperCAmelCase_ : List[str] = torch.tensor(UpperCAmelCase_ ) self.assertTrue(np.allclose(squeeze(UpperCAmelCase_ ) , squeeze(UpperCAmelCase_ ).numpy() ) ) UpperCAmelCase_ : Dict = np.random.randn(1 , 4 , 1 , 5 ) UpperCAmelCase_ : Dict = torch.tensor(UpperCAmelCase_ ) self.assertTrue(np.allclose(squeeze(UpperCAmelCase_ , axis=2 ) , squeeze(UpperCAmelCase_ , axis=2 ).numpy() ) ) @require_tf def A ( self : List[Any] ) -> int: UpperCAmelCase_ : List[str] = np.random.randn(1 , 3 , 4 ) UpperCAmelCase_ : Optional[Any] = tf.constant(UpperCAmelCase_ ) self.assertTrue(np.allclose(squeeze(UpperCAmelCase_ ) , squeeze(UpperCAmelCase_ ).numpy() ) ) UpperCAmelCase_ : List[str] = np.random.randn(1 , 4 , 1 , 5 ) UpperCAmelCase_ : Optional[Any] = tf.constant(UpperCAmelCase_ ) self.assertTrue(np.allclose(squeeze(UpperCAmelCase_ , axis=2 ) , squeeze(UpperCAmelCase_ , axis=2 ).numpy() ) ) @require_flax def A ( self : Optional[Any] ) -> Tuple: UpperCAmelCase_ : Optional[int] = np.random.randn(1 , 3 , 4 ) UpperCAmelCase_ : int = jnp.array(UpperCAmelCase_ ) self.assertTrue(np.allclose(squeeze(UpperCAmelCase_ ) , np.asarray(squeeze(UpperCAmelCase_ ) ) ) ) UpperCAmelCase_ : Optional[int] = np.random.randn(1 , 4 , 1 , 5 ) UpperCAmelCase_ : Optional[int] = jnp.array(UpperCAmelCase_ ) self.assertTrue(np.allclose(squeeze(UpperCAmelCase_ , axis=2 ) , np.asarray(squeeze(UpperCAmelCase_ , axis=2 ) ) ) ) def A ( self : int ) -> Dict: UpperCAmelCase_ : Tuple = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(expand_dims(UpperCAmelCase_ , axis=1 ) , np.expand_dims(UpperCAmelCase_ , axis=1 ) ) ) @require_torch def A ( self : List[str] ) -> int: UpperCAmelCase_ : List[Any] = np.random.randn(3 , 4 ) UpperCAmelCase_ : Dict = torch.tensor(UpperCAmelCase_ ) self.assertTrue(np.allclose(expand_dims(UpperCAmelCase_ , axis=1 ) , expand_dims(UpperCAmelCase_ , axis=1 ).numpy() ) ) @require_tf def A ( self : List[str] ) -> Any: UpperCAmelCase_ : Union[str, Any] = np.random.randn(3 , 4 ) UpperCAmelCase_ : str = tf.constant(UpperCAmelCase_ ) self.assertTrue(np.allclose(expand_dims(UpperCAmelCase_ , axis=1 ) , expand_dims(UpperCAmelCase_ , axis=1 ).numpy() ) ) @require_flax def A ( self : Union[str, Any] ) -> str: UpperCAmelCase_ : int = np.random.randn(3 , 4 ) UpperCAmelCase_ : Union[str, Any] = jnp.array(UpperCAmelCase_ ) self.assertTrue(np.allclose(expand_dims(UpperCAmelCase_ , axis=1 ) , np.asarray(expand_dims(UpperCAmelCase_ , axis=1 ) ) ) )
304
import collections import gzip import os import urllib import numpy from tensorflow.python.framework import dtypes, random_seed from tensorflow.python.platform import gfile from tensorflow.python.util.deprecation import deprecated __A : Tuple = collections.namedtuple('''_Datasets''', ['''train''', '''validation''', '''test''']) # CVDF mirror of http://yann.lecun.com/exdb/mnist/ __A : Tuple = '''https://storage.googleapis.com/cvdf-datasets/mnist/''' def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> Dict: '''simple docstring''' lowerCAmelCase : Dict = numpy.dtype(numpy.uintaa ).newbyteorder('>' ) return numpy.frombuffer(bytestream.read(4 ), dtype=_UpperCAmelCase )[0] @deprecated(_UpperCAmelCase, 'Please use tf.data to implement this functionality.' ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> int: '''simple docstring''' print('Extracting', f.name ) with gzip.GzipFile(fileobj=_UpperCAmelCase ) as bytestream: lowerCAmelCase : List[str] = _readaa(_UpperCAmelCase ) if magic != 2_051: raise ValueError( 'Invalid magic number %d in MNIST image file: %s' % (magic, f.name) ) lowerCAmelCase : Optional[Any] = _readaa(_UpperCAmelCase ) lowerCAmelCase : Any = _readaa(_UpperCAmelCase ) lowerCAmelCase : List[Any] = _readaa(_UpperCAmelCase ) lowerCAmelCase : Union[str, Any] = bytestream.read(rows * cols * num_images ) lowerCAmelCase : Any = numpy.frombuffer(_UpperCAmelCase, dtype=numpy.uinta ) lowerCAmelCase : Optional[int] = data.reshape(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, 1 ) return data @deprecated(_UpperCAmelCase, 'Please use tf.one_hot on tensors.' ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> Any: '''simple docstring''' lowerCAmelCase : Optional[Any] = labels_dense.shape[0] lowerCAmelCase : Union[str, Any] = numpy.arange(_UpperCAmelCase ) * num_classes lowerCAmelCase : List[str] = numpy.zeros((num_labels, num_classes) ) lowerCAmelCase : List[str] = 1 return labels_one_hot @deprecated(_UpperCAmelCase, 'Please use tf.data to implement this functionality.' ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase=False, _UpperCAmelCase=10 ) -> List[str]: '''simple docstring''' print('Extracting', f.name ) with gzip.GzipFile(fileobj=_UpperCAmelCase ) as bytestream: lowerCAmelCase : List[str] = _readaa(_UpperCAmelCase ) if magic != 2_049: raise ValueError( 'Invalid magic number %d in MNIST label file: %s' % (magic, f.name) ) lowerCAmelCase : Optional[Any] = _readaa(_UpperCAmelCase ) lowerCAmelCase : Dict = bytestream.read(_UpperCAmelCase ) lowerCAmelCase : Dict = numpy.frombuffer(_UpperCAmelCase, dtype=numpy.uinta ) if one_hot: return _dense_to_one_hot(_UpperCAmelCase, _UpperCAmelCase ) return labels class __A : @deprecated( UpperCAmelCase_ , 'Please use alternatives such as official/mnist/_DataSet.py' ' from tensorflow/models.' , ) def __init__( self : Any , UpperCAmelCase_ : int , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : str=False , UpperCAmelCase_ : int=False , UpperCAmelCase_ : List[str]=dtypes.floataa , UpperCAmelCase_ : Union[str, Any]=True , UpperCAmelCase_ : Optional[Any]=None , ): lowerCAmelCase , lowerCAmelCase : int = random_seed.get_seed(UpperCAmelCase_ ) # If op level seed is not set, use whatever graph level seed is returned numpy.random.seed(seeda if seed is None else seeda ) lowerCAmelCase : List[str] = dtypes.as_dtype(UpperCAmelCase_ ).base_dtype if dtype not in (dtypes.uinta, dtypes.floataa): raise TypeError('Invalid image dtype %r, expected uint8 or float32' % dtype ) if fake_data: lowerCAmelCase : Dict = 10000 lowerCAmelCase : Any = one_hot else: assert ( images.shape[0] == labels.shape[0] ), f"images.shape: {images.shape} labels.shape: {labels.shape}" lowerCAmelCase : Optional[Any] = images.shape[0] # Convert shape from [num examples, rows, columns, depth] # to [num examples, rows*columns] (assuming depth == 1) if reshape: assert images.shape[3] == 1 lowerCAmelCase : Union[str, Any] = images.reshape( images.shape[0] , images.shape[1] * images.shape[2] ) if dtype == dtypes.floataa: # Convert from [0, 255] -> [0.0, 1.0]. lowerCAmelCase : Optional[int] = images.astype(numpy.floataa ) lowerCAmelCase : Dict = numpy.multiply(UpperCAmelCase_ , 1.0 / 2_55.0 ) lowerCAmelCase : List[str] = images lowerCAmelCase : List[str] = labels lowerCAmelCase : List[Any] = 0 lowerCAmelCase : Optional[int] = 0 @property def lowercase__ ( self : str ): return self._images @property def lowercase__ ( self : Dict ): return self._labels @property def lowercase__ ( self : List[Any] ): return self._num_examples @property def lowercase__ ( self : Any ): return self._epochs_completed def lowercase__ ( self : Optional[Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[int]=False , UpperCAmelCase_ : List[str]=True ): if fake_data: lowerCAmelCase : Union[str, Any] = [1] * 784 lowerCAmelCase : Dict = [1] + [0] * 9 if self.one_hot else 0 return ( [fake_image for _ in range(UpperCAmelCase_ )], [fake_label for _ in range(UpperCAmelCase_ )], ) lowerCAmelCase : Union[str, Any] = self._index_in_epoch # Shuffle for the first epoch if self._epochs_completed == 0 and start == 0 and shuffle: lowerCAmelCase : Optional[int] = numpy.arange(self._num_examples ) numpy.random.shuffle(UpperCAmelCase_ ) lowerCAmelCase : List[Any] = self.images[perma] lowerCAmelCase : str = self.labels[perma] # Go to the next epoch if start + batch_size > self._num_examples: # Finished epoch self._epochs_completed += 1 # Get the rest examples in this epoch lowerCAmelCase : Tuple = self._num_examples - start lowerCAmelCase : Union[str, Any] = self._images[start : self._num_examples] lowerCAmelCase : Tuple = self._labels[start : self._num_examples] # Shuffle the data if shuffle: lowerCAmelCase : Dict = numpy.arange(self._num_examples ) numpy.random.shuffle(UpperCAmelCase_ ) lowerCAmelCase : List[Any] = self.images[perm] lowerCAmelCase : Optional[Any] = self.labels[perm] # Start next epoch lowerCAmelCase : Optional[Any] = 0 lowerCAmelCase : Dict = batch_size - rest_num_examples lowerCAmelCase : int = self._index_in_epoch lowerCAmelCase : Union[str, Any] = self._images[start:end] lowerCAmelCase : int = self._labels[start:end] return ( numpy.concatenate((images_rest_part, images_new_part) , axis=0 ), numpy.concatenate((labels_rest_part, labels_new_part) , axis=0 ), ) else: self._index_in_epoch += batch_size lowerCAmelCase : Optional[Any] = self._index_in_epoch return self._images[start:end], self._labels[start:end] @deprecated(_UpperCAmelCase, 'Please write your own downloading logic.' ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> Any: '''simple docstring''' if not gfile.Exists(_UpperCAmelCase ): gfile.MakeDirs(_UpperCAmelCase ) lowerCAmelCase : Union[str, Any] = os.path.join(_UpperCAmelCase, _UpperCAmelCase ) if not gfile.Exists(_UpperCAmelCase ): urllib.request.urlretrieve(_UpperCAmelCase, _UpperCAmelCase ) # noqa: S310 with gfile.GFile(_UpperCAmelCase ) as f: lowerCAmelCase : List[Any] = f.size() print('Successfully downloaded', _UpperCAmelCase, _UpperCAmelCase, 'bytes.' ) return filepath @deprecated( _UpperCAmelCase, 'Please use alternatives such as:' ' tensorflow_datasets.load(\'mnist\')' ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase=False, _UpperCAmelCase=False, _UpperCAmelCase=dtypes.floataa, _UpperCAmelCase=True, _UpperCAmelCase=5_000, _UpperCAmelCase=None, _UpperCAmelCase=DEFAULT_SOURCE_URL, ) -> Tuple: '''simple docstring''' if fake_data: def fake(): return _DataSet( [], [], fake_data=_UpperCAmelCase, one_hot=_UpperCAmelCase, dtype=_UpperCAmelCase, seed=_UpperCAmelCase ) lowerCAmelCase : Tuple = fake() lowerCAmelCase : Optional[Any] = fake() lowerCAmelCase : List[Any] = fake() return _Datasets(train=_UpperCAmelCase, validation=_UpperCAmelCase, test=_UpperCAmelCase ) if not source_url: # empty string check lowerCAmelCase : Any = DEFAULT_SOURCE_URL lowerCAmelCase : Optional[Any] = 'train-images-idx3-ubyte.gz' lowerCAmelCase : Any = 'train-labels-idx1-ubyte.gz' lowerCAmelCase : int = 't10k-images-idx3-ubyte.gz' lowerCAmelCase : Union[str, Any] = 't10k-labels-idx1-ubyte.gz' lowerCAmelCase : str = _maybe_download( _UpperCAmelCase, _UpperCAmelCase, source_url + train_images_file ) with gfile.Open(_UpperCAmelCase, 'rb' ) as f: lowerCAmelCase : Any = _extract_images(_UpperCAmelCase ) lowerCAmelCase : Tuple = _maybe_download( _UpperCAmelCase, _UpperCAmelCase, source_url + train_labels_file ) with gfile.Open(_UpperCAmelCase, 'rb' ) as f: lowerCAmelCase : int = _extract_labels(_UpperCAmelCase, one_hot=_UpperCAmelCase ) lowerCAmelCase : Optional[Any] = _maybe_download( _UpperCAmelCase, _UpperCAmelCase, source_url + test_images_file ) with gfile.Open(_UpperCAmelCase, 'rb' ) as f: lowerCAmelCase : List[Any] = _extract_images(_UpperCAmelCase ) lowerCAmelCase : Any = _maybe_download( _UpperCAmelCase, _UpperCAmelCase, source_url + test_labels_file ) with gfile.Open(_UpperCAmelCase, 'rb' ) as f: lowerCAmelCase : List[str] = _extract_labels(_UpperCAmelCase, one_hot=_UpperCAmelCase ) if not 0 <= validation_size <= len(_UpperCAmelCase ): lowerCAmelCase : str = ( 'Validation size should be between 0 and ' f"{len(_UpperCAmelCase )}. Received: {validation_size}." ) raise ValueError(_UpperCAmelCase ) lowerCAmelCase : str = train_images[:validation_size] lowerCAmelCase : Dict = train_labels[:validation_size] lowerCAmelCase : List[str] = train_images[validation_size:] lowerCAmelCase : str = train_labels[validation_size:] lowerCAmelCase : str = {'dtype': dtype, 'reshape': reshape, 'seed': seed} lowerCAmelCase : int = _DataSet(_UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ) lowerCAmelCase : Union[str, Any] = _DataSet(_UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ) lowerCAmelCase : Union[str, Any] = _DataSet(_UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ) return _Datasets(train=_UpperCAmelCase, validation=_UpperCAmelCase, test=_UpperCAmelCase )
138
0
import fire from utils import calculate_rouge, save_json def UpperCAmelCase_ (_lowerCAmelCase : List[Any] , _lowerCAmelCase : Any , _lowerCAmelCase : Tuple=None , **_lowerCAmelCase : str ): __UpperCamelCase : Union[str, Any] = [x.strip() for x in open(_lowerCAmelCase ).readlines()] __UpperCamelCase : Optional[Any] = [x.strip() for x in open(_lowerCAmelCase ).readlines()][: len(_lowerCAmelCase )] __UpperCamelCase : Optional[Any] = calculate_rouge(_lowerCAmelCase , _lowerCAmelCase , **_lowerCAmelCase ) if save_path is not None: save_json(_lowerCAmelCase , _lowerCAmelCase , indent=_lowerCAmelCase ) return metrics # these print nicely if __name__ == "__main__": fire.Fire(calculate_rouge_path)
171
import argparse import os import torch from transformers import ( XLNetConfig, XLNetForQuestionAnswering, XLNetForSequenceClassification, XLNetLMHeadModel, load_tf_weights_in_xlnet, ) from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging lowercase : Optional[int] = { "cola": 2, "mnli": 3, "mrpc": 2, "sst-2": 2, "sts-b": 1, "qqp": 2, "qnli": 2, "rte": 2, "wnli": 2, } logging.set_verbosity_info() def UpperCAmelCase_ (_lowerCAmelCase : Tuple , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : int=None ): # Initialise PyTorch model __UpperCamelCase : str = XLNetConfig.from_json_file(_lowerCAmelCase ) __UpperCamelCase : int = finetuning_task.lower() if finetuning_task is not None else "" if finetuning_task in GLUE_TASKS_NUM_LABELS: print(F'''Building PyTorch XLNetForSequenceClassification model from configuration: {config}''' ) __UpperCamelCase : List[str] = finetuning_task __UpperCamelCase : List[str] = GLUE_TASKS_NUM_LABELS[finetuning_task] __UpperCamelCase : Dict = XLNetForSequenceClassification(_lowerCAmelCase ) elif "squad" in finetuning_task: __UpperCamelCase : List[str] = finetuning_task __UpperCamelCase : Optional[int] = XLNetForQuestionAnswering(_lowerCAmelCase ) else: __UpperCamelCase : Optional[int] = XLNetLMHeadModel(_lowerCAmelCase ) # Load weights from tf checkpoint load_tf_weights_in_xlnet(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # Save pytorch-model __UpperCamelCase : Optional[Any] = os.path.join(_lowerCAmelCase , _lowerCAmelCase ) __UpperCamelCase : Union[str, Any] = os.path.join(_lowerCAmelCase , _lowerCAmelCase ) print(F'''Save PyTorch model to {os.path.abspath(_lowerCAmelCase )}''' ) torch.save(model.state_dict() , _lowerCAmelCase ) print(F'''Save configuration file to {os.path.abspath(_lowerCAmelCase )}''' ) with open(_lowerCAmelCase , "w" , encoding="utf-8" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": lowercase : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--xlnet_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained XLNet model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the folder to store the PyTorch model or dataset/vocab.", ) parser.add_argument( "--finetuning_task", default=None, type=str, help="Name of a task on which the XLNet TensorFlow model was fine-tuned", ) lowercase : Dict = parser.parse_args() print(args) convert_xlnet_checkpoint_to_pytorch( args.tf_checkpoint_path, args.xlnet_config_file, args.pytorch_dump_folder_path, args.finetuning_task )
171
1