code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
import unittest import numpy as np from diffusers import OnnxStableDiffusionInpaintPipelineLegacy from diffusers.utils.testing_utils import ( is_onnx_available, load_image, load_numpy, nightly, require_onnxruntime, require_torch_gpu, ) if is_onnx_available(): import onnxruntime as ort @nightly @require_onnxruntime @require_torch_gpu class A_ ( unittest.TestCase ): @property def lowerCAmelCase ( self : str): return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def lowerCAmelCase ( self : Dict): __lowerCamelCase : Tuple = ort.SessionOptions() __lowerCamelCase : str = False return options def lowerCAmelCase ( self : Dict): __lowerCamelCase : Union[str, Any] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/in_paint/overture-creations-5sI6fQgYIuo.png') __lowerCamelCase : Any = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/in_paint/overture-creations-5sI6fQgYIuo_mask.png') __lowerCamelCase : List[str] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/in_paint/red_cat_sitting_on_a_park_bench_onnx.npy') # using the PNDM scheduler by default __lowerCamelCase : Tuple = OnnxStableDiffusionInpaintPipelineLegacy.from_pretrained( 'CompVis/stable-diffusion-v1-4' ,revision='onnx' ,safety_checker=SCREAMING_SNAKE_CASE__ ,feature_extractor=SCREAMING_SNAKE_CASE__ ,provider=self.gpu_provider ,sess_options=self.gpu_options ,) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__) __lowerCamelCase : List[str] = 'A red cat sitting on a park bench' __lowerCamelCase : Union[str, Any] = np.random.RandomState(0) __lowerCamelCase : Any = pipe( prompt=SCREAMING_SNAKE_CASE__ ,image=SCREAMING_SNAKE_CASE__ ,mask_image=SCREAMING_SNAKE_CASE__ ,strength=0.75 ,guidance_scale=7.5 ,num_inference_steps=1_5 ,generator=SCREAMING_SNAKE_CASE__ ,output_type='np' ,) __lowerCamelCase : Tuple = output.images[0] assert image.shape == (5_1_2, 5_1_2, 3) assert np.abs(expected_image - image).max() < 1E-2
73
from typing import Optional, Tuple, Union import flax import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict from ..configuration_utils import ConfigMixin, flax_register_to_config from ..utils import BaseOutput from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps from .modeling_flax_utils import FlaxModelMixin from .unet_ad_blocks_flax import ( FlaxCrossAttnDownBlockaD, FlaxCrossAttnUpBlockaD, FlaxDownBlockaD, FlaxUNetMidBlockaDCrossAttn, FlaxUpBlockaD, ) @flax.struct.dataclass class UpperCAmelCase ( A_ ): A__ : jnp.ndarray @flax_register_to_config class UpperCAmelCase ( nn.Module ,A_ ,A_ ): A__ : int = 32 A__ : int = 4 A__ : int = 4 A__ : Tuple[str] = ( "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D", ) A__ : Tuple[str] = ("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D") A__ : Union[bool, Tuple[bool]] = False A__ : Tuple[int] = (3_20, 6_40, 12_80, 12_80) A__ : int = 2 A__ : Union[int, Tuple[int]] = 8 A__ : Optional[Union[int, Tuple[int]]] = None A__ : int = 12_80 A__ : float = 0.0 A__ : bool = False A__ : jnp.dtype = jnp.floataa A__ : bool = True A__ : int = 0 A__ : bool = False def _SCREAMING_SNAKE_CASE (self : Optional[int] , snake_case__ : jax.random.KeyArray ) -> FrozenDict: '''simple docstring''' snake_case : Dict = (1, self.in_channels, self.sample_size, self.sample_size) snake_case : Any = jnp.zeros(snake_case__ , dtype=jnp.floataa ) snake_case : List[str] = jnp.ones((1,) , dtype=jnp.intaa ) snake_case : str = jnp.zeros((1, 1, self.cross_attention_dim) , dtype=jnp.floataa ) snake_case , snake_case : Optional[int] = jax.random.split(snake_case__ ) snake_case : Union[str, Any] = {"params": params_rng, "dropout": dropout_rng} return self.init(snake_case__ , snake_case__ , snake_case__ , snake_case__ )["params"] def _SCREAMING_SNAKE_CASE (self : str ) -> Tuple: '''simple docstring''' snake_case : str = self.block_out_channels snake_case : Optional[Any] = block_out_channels[0] * 4 if self.num_attention_heads is not None: raise ValueError( "At the moment it is not possible to define the number of attention heads via `num_attention_heads` because of a naming issue as described in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131. Passing `num_attention_heads` will only be supported in diffusers v0.19." ) # If `num_attention_heads` is not defined (which is the case for most models) # it will default to `attention_head_dim`. This looks weird upon first reading it and it is. # The reason for this behavior is to correct for incorrectly named variables that were introduced # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking # which is why we correct for the naming here. snake_case : Tuple = self.num_attention_heads or self.attention_head_dim # input snake_case : Tuple = nn.Conv( block_out_channels[0] , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) # time snake_case : Union[str, Any] = FlaxTimesteps( block_out_channels[0] , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.config.freq_shift ) snake_case : Dict = FlaxTimestepEmbedding(snake_case__ , dtype=self.dtype ) snake_case : List[str] = self.only_cross_attention if isinstance(snake_case__ , snake_case__ ): snake_case : List[Any] = (only_cross_attention,) * len(self.down_block_types ) if isinstance(snake_case__ , snake_case__ ): snake_case : List[Any] = (num_attention_heads,) * len(self.down_block_types ) # down snake_case : List[Any] = [] snake_case : Optional[int] = block_out_channels[0] for i, down_block_type in enumerate(self.down_block_types ): snake_case : List[Any] = output_channel snake_case : Dict = block_out_channels[i] snake_case : Optional[Any] = i == len(snake_case__ ) - 1 if down_block_type == "CrossAttnDownBlock2D": snake_case : List[Any] = FlaxCrossAttnDownBlockaD( in_channels=snake_case__ , out_channels=snake_case__ , dropout=self.dropout , num_layers=self.layers_per_block , num_attention_heads=num_attention_heads[i] , add_downsample=not is_final_block , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) else: snake_case : Union[str, Any] = FlaxDownBlockaD( in_channels=snake_case__ , out_channels=snake_case__ , dropout=self.dropout , num_layers=self.layers_per_block , add_downsample=not is_final_block , dtype=self.dtype , ) down_blocks.append(snake_case__ ) snake_case : Dict = down_blocks # mid snake_case : Optional[int] = FlaxUNetMidBlockaDCrossAttn( in_channels=block_out_channels[-1] , dropout=self.dropout , num_attention_heads=num_attention_heads[-1] , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) # up snake_case : Optional[Any] = [] snake_case : Optional[int] = list(reversed(snake_case__ ) ) snake_case : Dict = list(reversed(snake_case__ ) ) snake_case : Tuple = list(reversed(snake_case__ ) ) snake_case : Optional[Any] = reversed_block_out_channels[0] for i, up_block_type in enumerate(self.up_block_types ): snake_case : Optional[int] = output_channel snake_case : List[Any] = reversed_block_out_channels[i] snake_case : Union[str, Any] = reversed_block_out_channels[min(i + 1 , len(snake_case__ ) - 1 )] snake_case : int = i == len(snake_case__ ) - 1 if up_block_type == "CrossAttnUpBlock2D": snake_case : Any = FlaxCrossAttnUpBlockaD( in_channels=snake_case__ , out_channels=snake_case__ , prev_output_channel=snake_case__ , num_layers=self.layers_per_block + 1 , num_attention_heads=reversed_num_attention_heads[i] , add_upsample=not is_final_block , dropout=self.dropout , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) else: snake_case : Optional[int] = FlaxUpBlockaD( in_channels=snake_case__ , out_channels=snake_case__ , prev_output_channel=snake_case__ , num_layers=self.layers_per_block + 1 , add_upsample=not is_final_block , dropout=self.dropout , dtype=self.dtype , ) up_blocks.append(snake_case__ ) snake_case : Optional[int] = output_channel snake_case : Tuple = up_blocks # out snake_case : Optional[int] = nn.GroupNorm(num_groups=32 , epsilon=1e-5 ) snake_case : List[str] = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__(self : Dict , snake_case__ : Dict , snake_case__ : Dict , snake_case__ : Optional[int] , snake_case__ : Tuple=None , snake_case__ : Union[str, Any]=None , snake_case__ : bool = True , snake_case__ : bool = False , ) -> Union[FlaxUNetaDConditionOutput, Tuple]: '''simple docstring''' if not isinstance(snake_case__ , jnp.ndarray ): snake_case : List[Any] = jnp.array([timesteps] , dtype=jnp.intaa ) elif isinstance(snake_case__ , jnp.ndarray ) and len(timesteps.shape ) == 0: snake_case : Any = timesteps.astype(dtype=jnp.floataa ) snake_case : int = jnp.expand_dims(snake_case__ , 0 ) snake_case : str = self.time_proj(snake_case__ ) snake_case : str = self.time_embedding(snake_case__ ) # 2. pre-process snake_case : int = jnp.transpose(snake_case__ , (0, 2, 3, 1) ) snake_case : List[Any] = self.conv_in(snake_case__ ) # 3. down snake_case : Optional[int] = (sample,) for down_block in self.down_blocks: if isinstance(snake_case__ , snake_case__ ): snake_case , snake_case : List[Any] = down_block(snake_case__ , snake_case__ , snake_case__ , deterministic=not train ) else: snake_case , snake_case : str = down_block(snake_case__ , snake_case__ , deterministic=not train ) down_block_res_samples += res_samples if down_block_additional_residuals is not None: snake_case : Tuple = () for down_block_res_sample, down_block_additional_residual in zip( snake_case__ , snake_case__ ): down_block_res_sample += down_block_additional_residual new_down_block_res_samples += (down_block_res_sample,) snake_case : Optional[int] = new_down_block_res_samples # 4. mid snake_case : Optional[int] = self.mid_block(snake_case__ , snake_case__ , snake_case__ , deterministic=not train ) if mid_block_additional_residual is not None: sample += mid_block_additional_residual # 5. up for up_block in self.up_blocks: snake_case : int = down_block_res_samples[-(self.layers_per_block + 1) :] snake_case : Optional[Any] = down_block_res_samples[: -(self.layers_per_block + 1)] if isinstance(snake_case__ , snake_case__ ): snake_case : Optional[Any] = up_block( snake_case__ , temb=snake_case__ , encoder_hidden_states=snake_case__ , res_hidden_states_tuple=snake_case__ , deterministic=not train , ) else: snake_case : Dict = up_block(snake_case__ , temb=snake_case__ , res_hidden_states_tuple=snake_case__ , deterministic=not train ) # 6. post-process snake_case : List[str] = self.conv_norm_out(snake_case__ ) snake_case : Any = nn.silu(snake_case__ ) snake_case : Optional[int] = self.conv_out(snake_case__ ) snake_case : Union[str, Any] = jnp.transpose(snake_case__ , (0, 3, 1, 2) ) if not return_dict: return (sample,) return FlaxUNetaDConditionOutput(sample=snake_case__ )
59
0
import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class _UpperCAmelCase ( _UpperCamelCase ): """simple docstring""" a_ = ["""image_processor""", """tokenizer"""] a_ = """LayoutLMv2ImageProcessor""" a_ = ("""LayoutXLMTokenizer""", """LayoutXLMTokenizerFast""") def __init__( self : List[str] , lowerCAmelCase_ : Dict=None , lowerCAmelCase_ : List[str]=None , **lowerCAmelCase_ : int ) -> Optional[int]: if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , lowerCAmelCase_ , ) __lowerCAmelCase = kwargs.pop('feature_extractor' ) __lowerCAmelCase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(lowerCAmelCase_ , lowerCAmelCase_ ) def __call__( self : List[Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , lowerCAmelCase_ : Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None , lowerCAmelCase_ : Union[List[List[int]], List[List[List[int]]]] = None , lowerCAmelCase_ : Optional[Union[List[int], List[List[int]]]] = None , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Union[bool, str, PaddingStrategy] = False , lowerCAmelCase_ : Union[bool, str, TruncationStrategy] = None , lowerCAmelCase_ : Optional[int] = None , lowerCAmelCase_ : int = 0 , lowerCAmelCase_ : Optional[int] = None , lowerCAmelCase_ : Optional[bool] = None , lowerCAmelCase_ : Optional[bool] = None , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Optional[Union[str, TensorType]] = None , **lowerCAmelCase_ : Dict , ) -> BatchEncoding: # verify input if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( 'You cannot provide bounding boxes ' 'if you initialized the image processor with apply_ocr set to True.' ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( 'You cannot provide word labels if you initialized the image processor with apply_ocr set to True.' ) if return_overflowing_tokens is True and return_offsets_mapping is False: raise ValueError('You cannot return overflowing tokens without returning the offsets mapping.' ) # first, apply the image processor __lowerCAmelCase = self.image_processor(images=lowerCAmelCase_ , return_tensors=lowerCAmelCase_ ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): __lowerCAmelCase = [text] # add batch dimension (as the image processor always adds a batch dimension) __lowerCAmelCase = features['words'] __lowerCAmelCase = self.tokenizer( text=text if text is not None else features['words'] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features['boxes'] , word_labels=lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ , padding=lowerCAmelCase_ , truncation=lowerCAmelCase_ , max_length=lowerCAmelCase_ , stride=lowerCAmelCase_ , pad_to_multiple_of=lowerCAmelCase_ , return_token_type_ids=lowerCAmelCase_ , return_attention_mask=lowerCAmelCase_ , return_overflowing_tokens=lowerCAmelCase_ , return_special_tokens_mask=lowerCAmelCase_ , return_offsets_mapping=lowerCAmelCase_ , return_length=lowerCAmelCase_ , verbose=lowerCAmelCase_ , return_tensors=lowerCAmelCase_ , **lowerCAmelCase_ , ) # add pixel values __lowerCAmelCase = features.pop('pixel_values' ) if return_overflowing_tokens is True: __lowerCAmelCase = self.get_overflowing_images(lowerCAmelCase_ , encoded_inputs['overflow_to_sample_mapping'] ) __lowerCAmelCase = images return encoded_inputs def lowercase ( self : List[Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Any ) -> List[Any]: # in case there's an overflow, ensure each `input_ids` sample is mapped to its corresponding image __lowerCAmelCase = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(lowerCAmelCase_ ) != len(lowerCAmelCase_ ): raise ValueError( 'Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got' f""" {len(lowerCAmelCase_ )} and {len(lowerCAmelCase_ )}""" ) return images_with_overflow def lowercase ( self : List[Any] , *lowerCAmelCase_ : List[str] , **lowerCAmelCase_ : Optional[int] ) -> str: return self.tokenizer.batch_decode(*lowerCAmelCase_ , **lowerCAmelCase_ ) def lowercase ( self : int , *lowerCAmelCase_ : Tuple , **lowerCAmelCase_ : Dict ) -> str: return self.tokenizer.decode(*lowerCAmelCase_ , **lowerCAmelCase_ ) @property def lowercase ( self : Union[str, Any] ) -> List[str]: return ["input_ids", "bbox", "attention_mask", "image"] @property def lowercase ( self : Optional[Any] ) -> int: warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , lowerCAmelCase_ , ) return self.image_processor_class @property def lowercase ( self : int ) -> str: warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , lowerCAmelCase_ , ) return self.image_processor
207
import gc import unittest import numpy as np import torch from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS, UNCONDITIONAL_AUDIO_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class _UpperCAmelCase ( _UpperCamelCase , unittest.TestCase ): """simple docstring""" a_ = DanceDiffusionPipeline a_ = UNCONDITIONAL_AUDIO_GENERATION_PARAMS a_ = PipelineTesterMixin.required_optional_params - { """callback""", """latents""", """callback_steps""", """output_type""", """num_images_per_prompt""", } a_ = UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS a_ = False a_ = False def lowercase ( self : List[Any] ) -> Dict: torch.manual_seed(0 ) __lowerCAmelCase = UNetaDModel( block_out_channels=(3_2, 3_2, 6_4) , extra_in_channels=1_6 , sample_size=5_1_2 , sample_rate=1_6_0_0_0 , in_channels=2 , out_channels=2 , flip_sin_to_cos=lowerCAmelCase_ , use_timestep_embedding=lowerCAmelCase_ , time_embedding_type='fourier' , mid_block_type='UNetMidBlock1D' , down_block_types=('DownBlock1DNoSkip', 'DownBlock1D', 'AttnDownBlock1D') , up_block_types=('AttnUpBlock1D', 'UpBlock1D', 'UpBlock1DNoSkip') , ) __lowerCAmelCase = IPNDMScheduler() __lowerCAmelCase = { 'unet': unet, 'scheduler': scheduler, } return components def lowercase ( self : Tuple , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : List[str]=0 ) -> Any: if str(lowerCAmelCase_ ).startswith('mps' ): __lowerCAmelCase = torch.manual_seed(lowerCAmelCase_ ) else: __lowerCAmelCase = torch.Generator(device=lowerCAmelCase_ ).manual_seed(lowerCAmelCase_ ) __lowerCAmelCase = { 'batch_size': 1, 'generator': generator, 'num_inference_steps': 4, } return inputs def lowercase ( self : Union[str, Any] ) -> int: __lowerCAmelCase = 'cpu' # ensure determinism for the device-dependent torch.Generator __lowerCAmelCase = self.get_dummy_components() __lowerCAmelCase = DanceDiffusionPipeline(**lowerCAmelCase_ ) __lowerCAmelCase = pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) __lowerCAmelCase = self.get_dummy_inputs(lowerCAmelCase_ ) __lowerCAmelCase = pipe(**lowerCAmelCase_ ) __lowerCAmelCase = output.audios __lowerCAmelCase = audio[0, -3:, -3:] assert audio.shape == (1, 2, components["unet"].sample_size) __lowerCAmelCase = np.array([-0.72_65, 1.00_00, -0.83_88, 0.11_75, 0.94_98, -1.00_00] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1e-2 @skip_mps def lowercase ( self : Union[str, Any] ) -> Tuple: return super().test_save_load_local() @skip_mps def lowercase ( self : List[str] ) -> Dict: return super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 ) @skip_mps def lowercase ( self : str ) -> List[str]: return super().test_save_load_optional_components() @skip_mps def lowercase ( self : List[Any] ) -> List[str]: return super().test_attention_slicing_forward_pass() def lowercase ( self : str ) -> int: super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def lowercase ( self : Any ) -> Union[str, Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase ( self : List[str] ) -> List[str]: __lowerCAmelCase = torch_device __lowerCAmelCase = DanceDiffusionPipeline.from_pretrained('harmonai/maestro-150k' ) __lowerCAmelCase = pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) __lowerCAmelCase = torch.manual_seed(0 ) __lowerCAmelCase = pipe(generator=lowerCAmelCase_ , num_inference_steps=1_0_0 , audio_length_in_s=4.0_96 ) __lowerCAmelCase = output.audios __lowerCAmelCase = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) __lowerCAmelCase = np.array([-0.01_92, -0.02_31, -0.03_18, -0.00_59, 0.00_02, -0.00_20] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1e-2 def lowercase ( self : Tuple ) -> Dict: __lowerCAmelCase = torch_device __lowerCAmelCase = DanceDiffusionPipeline.from_pretrained('harmonai/maestro-150k' , torch_dtype=torch.floataa ) __lowerCAmelCase = pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) __lowerCAmelCase = torch.manual_seed(0 ) __lowerCAmelCase = pipe(generator=lowerCAmelCase_ , num_inference_steps=1_0_0 , audio_length_in_s=4.0_96 ) __lowerCAmelCase = output.audios __lowerCAmelCase = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) __lowerCAmelCase = np.array([-0.03_67, -0.04_88, -0.07_71, -0.05_25, -0.04_44, -0.03_41] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1e-2
207
1
import random from .binary_exp_mod import bin_exp_mod def A ( _SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE=1000 ) -> List[str]: if n < 2: return False if n % 2 == 0: return n == 2 # this means n is odd lowerCamelCase : List[Any] = n - 1 lowerCamelCase : Dict = 0 while d % 2 == 0: d /= 2 exp += 1 # n - 1=d*(2**exp) lowerCamelCase : Optional[Any] = 0 while count < prec: lowerCamelCase : str = random.randint(2 ,n - 1 ) lowerCamelCase : Dict = bin_exp_mod(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) if b != 1: lowerCamelCase : str = True for _ in range(_SCREAMING_SNAKE_CASE ): if b == n - 1: lowerCamelCase : Tuple = False break lowerCamelCase : int = b * b b %= n if flag: return False count += 1 return True if __name__ == "__main__": SCREAMING_SNAKE_CASE__ : Optional[int] = abs(int(input('Enter bound : ').strip())) print('Here\'s the list of primes:') print(', '.join(str(i) for i in range(n + 1) if is_prime_big(i)))
48
from __future__ import annotations import requests def A ( _SCREAMING_SNAKE_CASE ) -> dict: lowerCamelCase : Tuple = f'''https://hacker-news.firebaseio.com/v0/item/{story_id}.json?print=pretty''' return requests.get(_SCREAMING_SNAKE_CASE ).json() def A ( _SCREAMING_SNAKE_CASE = 10 ) -> list[dict]: lowerCamelCase : str = "https://hacker-news.firebaseio.com/v0/topstories.json?print=pretty" lowerCamelCase : Any = requests.get(_SCREAMING_SNAKE_CASE ).json()[:max_stories] return [get_hackernews_story(_SCREAMING_SNAKE_CASE ) for story_id in story_ids] def A ( _SCREAMING_SNAKE_CASE = 10 ) -> str: lowerCamelCase : str = hackernews_top_stories(_SCREAMING_SNAKE_CASE ) return "\n".join("* [{title}]({url})".format(**_SCREAMING_SNAKE_CASE ) for story in stories ) if __name__ == "__main__": print(hackernews_top_stories_as_markdown())
48
1
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from accelerate import PartialState from accelerate.utils.operations import broadcast, gather, gather_object, pad_across_processes, reduce def UpperCAmelCase_ ( __UpperCAmelCase : Optional[Any] ) -> Union[str, Any]: return (torch.arange(state.num_processes ) + 1.0 + (state.num_processes * state.process_index)).to(state.device ) def UpperCAmelCase_ ( __UpperCAmelCase : str ) -> List[str]: SCREAMING_SNAKE_CASE_ = create_tensor(__UpperCAmelCase ) SCREAMING_SNAKE_CASE_ = gather(__UpperCAmelCase ) assert gathered_tensor.tolist() == list(range(1 , state.num_processes**2 + 1 ) ) def UpperCAmelCase_ ( __UpperCAmelCase : Tuple ) -> int: SCREAMING_SNAKE_CASE_ = [state.process_index] SCREAMING_SNAKE_CASE_ = gather_object(__UpperCAmelCase ) assert len(__UpperCAmelCase ) == state.num_processes, f"{gathered_obj}, {len(__UpperCAmelCase )} != {state.num_processes}" assert gathered_obj == list(range(state.num_processes ) ), f"{gathered_obj} != {list(range(state.num_processes ) )}" def UpperCAmelCase_ ( __UpperCAmelCase : List[str] ) -> int: SCREAMING_SNAKE_CASE_ = create_tensor(__UpperCAmelCase ) SCREAMING_SNAKE_CASE_ = broadcast(__UpperCAmelCase ) assert broadcasted_tensor.shape == torch.Size([state.num_processes] ) assert broadcasted_tensor.tolist() == list(range(1 , state.num_processes + 1 ) ) def UpperCAmelCase_ ( __UpperCAmelCase : Optional[Any] ) -> Dict: # We need to pad the tensor with one more element if we are the main process # to ensure that we can pad if state.is_main_process: SCREAMING_SNAKE_CASE_ = torch.arange(state.num_processes + 1 ).to(state.device ) else: SCREAMING_SNAKE_CASE_ = torch.arange(state.num_processes ).to(state.device ) SCREAMING_SNAKE_CASE_ = pad_across_processes(__UpperCAmelCase ) assert padded_tensor.shape == torch.Size([state.num_processes + 1] ) if not state.is_main_process: assert padded_tensor.tolist() == list(range(0 , state.num_processes ) ) + [0] def UpperCAmelCase_ ( __UpperCAmelCase : Optional[Any] ) -> Union[str, Any]: # For now runs on only two processes if state.num_processes != 2: return SCREAMING_SNAKE_CASE_ = create_tensor(__UpperCAmelCase ) SCREAMING_SNAKE_CASE_ = reduce(__UpperCAmelCase , 'sum' ) SCREAMING_SNAKE_CASE_ = torch.tensor([4.0, 6] ).to(state.device ) assert torch.allclose(__UpperCAmelCase , __UpperCAmelCase ), f"{reduced_tensor} != {truth_tensor}" def UpperCAmelCase_ ( __UpperCAmelCase : Tuple ) -> List[str]: # For now runs on only two processes if state.num_processes != 2: return SCREAMING_SNAKE_CASE_ = create_tensor(__UpperCAmelCase ) SCREAMING_SNAKE_CASE_ = reduce(__UpperCAmelCase , 'mean' ) SCREAMING_SNAKE_CASE_ = torch.tensor([2.0, 3] ).to(state.device ) assert torch.allclose(__UpperCAmelCase , __UpperCAmelCase ), f"{reduced_tensor} != {truth_tensor}" def UpperCAmelCase_ ( __UpperCAmelCase : Dict ) -> str: # For xla_spawn (TPUs) main() def UpperCAmelCase_ ( ) -> Any: SCREAMING_SNAKE_CASE_ = PartialState() state.print(f"State: {state}" ) state.print('testing gather' ) test_gather(__UpperCAmelCase ) state.print('testing gather_object' ) test_gather_object(__UpperCAmelCase ) state.print('testing broadcast' ) test_broadcast(__UpperCAmelCase ) state.print('testing pad_across_processes' ) test_pad_across_processes(__UpperCAmelCase ) state.print('testing reduce_sum' ) test_reduce_sum(__UpperCAmelCase ) state.print('testing reduce_mean' ) test_reduce_mean(__UpperCAmelCase ) if __name__ == "__main__": main()
210
def UpperCAmelCase_ ( __UpperCAmelCase : str ) -> str: SCREAMING_SNAKE_CASE_ = '' for ch in key: if ch == " " or ch not in key_no_dups and ch.isalpha(): key_no_dups += ch return key_no_dups def UpperCAmelCase_ ( __UpperCAmelCase : str ) -> dict[str, str]: SCREAMING_SNAKE_CASE_ = [chr(i + 65 ) for i in range(26 )] # Remove duplicate characters from key SCREAMING_SNAKE_CASE_ = remove_duplicates(key.upper() ) SCREAMING_SNAKE_CASE_ = len(__UpperCAmelCase ) # First fill cipher with key characters SCREAMING_SNAKE_CASE_ = {alphabet[i]: char for i, char in enumerate(__UpperCAmelCase )} # Then map remaining characters in alphabet to # the alphabet from the beginning for i in range(len(__UpperCAmelCase ) , 26 ): SCREAMING_SNAKE_CASE_ = alphabet[i - offset] # Ensure we are not mapping letters to letters previously mapped while char in key: offset -= 1 SCREAMING_SNAKE_CASE_ = alphabet[i - offset] SCREAMING_SNAKE_CASE_ = char return cipher_alphabet def UpperCAmelCase_ ( __UpperCAmelCase : str , __UpperCAmelCase : dict[str, str] ) -> str: return "".join(cipher_map.get(__UpperCAmelCase , __UpperCAmelCase ) for ch in message.upper() ) def UpperCAmelCase_ ( __UpperCAmelCase : str , __UpperCAmelCase : dict[str, str] ) -> str: SCREAMING_SNAKE_CASE_ = {v: k for k, v in cipher_map.items()} return "".join(rev_cipher_map.get(__UpperCAmelCase , __UpperCAmelCase ) for ch in message.upper() ) def UpperCAmelCase_ ( ) -> None: SCREAMING_SNAKE_CASE_ = input('Enter message to encode or decode: ' ).strip() SCREAMING_SNAKE_CASE_ = input('Enter keyword: ' ).strip() SCREAMING_SNAKE_CASE_ = input('Encipher or decipher? E/D:' ).strip()[0].lower() try: SCREAMING_SNAKE_CASE_ = {'e': encipher, 'd': decipher}[option] except KeyError: raise KeyError('invalid input option' ) SCREAMING_SNAKE_CASE_ = create_cipher_map(__UpperCAmelCase ) print(func(__UpperCAmelCase , __UpperCAmelCase ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
210
1
"""simple docstring""" import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE : Union[str, Any] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : str = { """microsoft/unispeech-large-1500h-cv""": ( """https://huggingface.co/microsoft/unispeech-large-1500h-cv/resolve/main/config.json""" ), # See all UniSpeech models at https://huggingface.co/models?filter=unispeech } class _UpperCAmelCase ( __snake_case ): '''simple docstring''' lowerCamelCase__ ='unispeech' def __init__(self , a_=32 , a_=7_68 , a_=12 , a_=12 , a_=30_72 , a_="gelu" , a_=0.1 , a_=0.1 , a_=0.1 , a_=0.0 , a_=0.0 , a_=0.1 , a_=0.1 , a_=0.02 , a_=1E-5 , a_="group" , a_="gelu" , a_=(5_12, 5_12, 5_12, 5_12, 5_12, 5_12, 5_12) , a_=(5, 2, 2, 2, 2, 2, 2) , a_=(10, 3, 3, 3, 3, 2, 2) , a_=False , a_=1_28 , a_=16 , a_=False , a_=True , a_=0.05 , a_=10 , a_=2 , a_=0.0 , a_=10 , a_=0 , a_=3_20 , a_=2 , a_=0.1 , a_=1_00 , a_=2_56 , a_=2_56 , a_=0.1 , a_="mean" , a_=False , a_=False , a_=2_56 , a_=80 , a_=0 , a_=1 , a_=2 , a_=0.5 , **a_ , ): '''simple docstring''' super().__init__(**a_ , pad_token_id=a_ , bos_token_id=a_ , eos_token_id=a_ ) __snake_case : Union[str, Any] = hidden_size __snake_case : List[str] = feat_extract_norm __snake_case : Optional[Any] = feat_extract_activation __snake_case : str = list(a_ ) __snake_case : Dict = list(a_ ) __snake_case : Any = list(a_ ) __snake_case : Tuple = conv_bias __snake_case : str = num_conv_pos_embeddings __snake_case : List[Any] = num_conv_pos_embedding_groups __snake_case : Tuple = len(self.conv_dim ) __snake_case : Any = num_hidden_layers __snake_case : Dict = intermediate_size __snake_case : Optional[Any] = hidden_act __snake_case : Optional[Any] = num_attention_heads __snake_case : Tuple = hidden_dropout __snake_case : Union[str, Any] = attention_dropout __snake_case : List[str] = activation_dropout __snake_case : str = feat_proj_dropout __snake_case : Optional[Any] = final_dropout __snake_case : Dict = layerdrop __snake_case : str = layer_norm_eps __snake_case : Optional[Any] = initializer_range __snake_case : Optional[int] = num_ctc_classes __snake_case : int = vocab_size __snake_case : Tuple = do_stable_layer_norm __snake_case : str = use_weighted_layer_sum __snake_case : str = classifier_proj_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==''' ''' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =''' f""" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,""" f""" `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __snake_case : Dict = apply_spec_augment __snake_case : Optional[int] = mask_time_prob __snake_case : Tuple = mask_time_length __snake_case : Any = mask_time_min_masks __snake_case : int = mask_feature_prob __snake_case : Optional[Any] = mask_feature_length __snake_case : Union[str, Any] = mask_feature_min_masks # parameters for pretraining with codevector quantized representations __snake_case : Dict = num_codevectors_per_group __snake_case : int = num_codevector_groups __snake_case : Optional[Any] = contrastive_logits_temperature __snake_case : str = feat_quantizer_dropout __snake_case : Union[str, Any] = num_negatives __snake_case : int = codevector_dim __snake_case : Any = proj_codevector_dim __snake_case : Optional[int] = diversity_loss_weight # ctc loss __snake_case : Any = ctc_loss_reduction __snake_case : Optional[Any] = ctc_zero_infinity # pretraining loss __snake_case : List[str] = replace_prob @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return functools.reduce(operator.mul , self.conv_stride , 1 )
102
'''simple docstring''' import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { """microsoft/git-base""": """https://huggingface.co/microsoft/git-base/resolve/main/config.json""", } class UpperCamelCase__ ( lowercase_ ): """simple docstring""" SCREAMING_SNAKE_CASE__ = '''git_vision_model''' def __init__( self : int , lowerCamelCase_ : Dict=7_68 , lowerCamelCase_ : Tuple=30_72 , lowerCamelCase_ : List[Any]=12 , lowerCamelCase_ : Tuple=12 , lowerCamelCase_ : int=3 , lowerCamelCase_ : List[str]=2_24 , lowerCamelCase_ : Optional[Any]=16 , lowerCamelCase_ : Optional[Any]="quick_gelu" , lowerCamelCase_ : List[Any]=1e-5 , lowerCamelCase_ : List[Any]=0.0 , lowerCamelCase_ : Optional[Any]=0.02 , **lowerCamelCase_ : str , ): '''simple docstring''' super().__init__(**lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Union[str, Any] = hidden_size SCREAMING_SNAKE_CASE : int = intermediate_size SCREAMING_SNAKE_CASE : List[str] = num_hidden_layers SCREAMING_SNAKE_CASE : int = num_attention_heads SCREAMING_SNAKE_CASE : int = num_channels SCREAMING_SNAKE_CASE : Optional[Any] = patch_size SCREAMING_SNAKE_CASE : Optional[int] = image_size SCREAMING_SNAKE_CASE : List[str] = initializer_range SCREAMING_SNAKE_CASE : str = attention_dropout SCREAMING_SNAKE_CASE : Any = layer_norm_eps SCREAMING_SNAKE_CASE : List[str] = hidden_act @classmethod def lowerCamelCase_ ( cls : List[str] , lowerCamelCase_ : Union[str, os.PathLike] , **lowerCamelCase_ : int ): '''simple docstring''' cls._set_token_in_kwargs(lowerCamelCase_ ) SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Any = cls.get_config_dict(lowerCamelCase_ , **lowerCamelCase_ ) # get the vision config dict if we are loading from GITConfig if config_dict.get("""model_type""" ) == "git": SCREAMING_SNAKE_CASE : Optional[Any] = config_dict["""vision_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(lowerCamelCase_ , **lowerCamelCase_ ) class UpperCamelCase__ ( lowercase_ ): """simple docstring""" SCREAMING_SNAKE_CASE__ = '''git''' def __init__( self : List[str] , lowerCamelCase_ : Dict=None , lowerCamelCase_ : Tuple=3_05_22 , lowerCamelCase_ : Optional[Any]=7_68 , lowerCamelCase_ : Any=6 , lowerCamelCase_ : List[str]=12 , lowerCamelCase_ : List[str]=30_72 , lowerCamelCase_ : Union[str, Any]="gelu" , lowerCamelCase_ : List[str]=0.1 , lowerCamelCase_ : Dict=0.1 , lowerCamelCase_ : Optional[int]=10_24 , lowerCamelCase_ : int=0.02 , lowerCamelCase_ : Optional[int]=1e-12 , lowerCamelCase_ : Union[str, Any]=0 , lowerCamelCase_ : Optional[Any]="absolute" , lowerCamelCase_ : Dict=True , lowerCamelCase_ : Optional[Any]=False , lowerCamelCase_ : Optional[int]=1_01 , lowerCamelCase_ : Optional[Any]=1_02 , lowerCamelCase_ : List[str]=None , **lowerCamelCase_ : str , ): '''simple docstring''' super().__init__(bos_token_id=lowerCamelCase_ , eos_token_id=lowerCamelCase_ , pad_token_id=lowerCamelCase_ , **lowerCamelCase_ ) if vision_config is None: SCREAMING_SNAKE_CASE : Any = {} logger.info("""vision_config is None. initializing the GitVisionConfig with default values.""" ) SCREAMING_SNAKE_CASE : Union[str, Any] = GitVisionConfig(**lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = vocab_size SCREAMING_SNAKE_CASE : Tuple = hidden_size SCREAMING_SNAKE_CASE : int = num_hidden_layers SCREAMING_SNAKE_CASE : List[Any] = num_attention_heads SCREAMING_SNAKE_CASE : str = hidden_act SCREAMING_SNAKE_CASE : Dict = intermediate_size SCREAMING_SNAKE_CASE : Optional[Any] = hidden_dropout_prob SCREAMING_SNAKE_CASE : List[str] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : List[Any] = max_position_embeddings SCREAMING_SNAKE_CASE : Dict = initializer_range SCREAMING_SNAKE_CASE : Optional[int] = layer_norm_eps SCREAMING_SNAKE_CASE : Union[str, Any] = position_embedding_type SCREAMING_SNAKE_CASE : Union[str, Any] = use_cache SCREAMING_SNAKE_CASE : List[str] = tie_word_embeddings SCREAMING_SNAKE_CASE : int = num_image_with_embedding SCREAMING_SNAKE_CASE : Optional[Any] = bos_token_id SCREAMING_SNAKE_CASE : str = eos_token_id def lowerCamelCase_ ( self : Optional[int] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = copy.deepcopy(self.__dict__ ) SCREAMING_SNAKE_CASE : Tuple = self.vision_config.to_dict() SCREAMING_SNAKE_CASE : Any = self.__class__.model_type return output
323
0
import argparse import os from pathlib import Path from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import PegasusConfig, PegasusForConditionalGeneration, PegasusTokenizer from transformers.models.pegasus.configuration_pegasus import DEFAULTS, task_specific_params lowercase_ = [ # replace left string with right string to get the relevant state_dict key (identical state dict to bart) ['memory_attention', 'encoder_attn'], ['attention', 'attn'], ['/', '.'], ['.LayerNorm.gamma', '_layer_norm.weight'], ['.LayerNorm.beta', '_layer_norm.bias'], ['r.layer_', 'r.layers.'], ['output_proj', 'out_proj'], ['ffn.dense_1.', 'fc2.'], ['ffn.dense.', 'fc1.'], ['ffn_layer_norm', 'final_layer_norm'], ['kernel', 'weight'], ['encoder_layer_norm.', 'encoder.layer_norm.'], ['decoder_layer_norm.', 'decoder.layer_norm.'], ['embeddings.weights', 'shared.weight'], ] def UpperCamelCase__ ( SCREAMING_SNAKE_CASE__ ): for pegasus_name, hf_name in PATTERNS: __lowerCamelCase : Any = k.replace(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return k def UpperCamelCase__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): __lowerCamelCase : Optional[Any] = DEFAULTS.copy() cfg_kwargs.update(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase : Any = PegasusConfig(**SCREAMING_SNAKE_CASE__ ) __lowerCamelCase : int = PegasusForConditionalGeneration(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase : Optional[int] = torch_model.model.state_dict() __lowerCamelCase : Tuple = {} for k, v in tf_weights.items(): __lowerCamelCase : Union[str, Any] = rename_state_dict_key(SCREAMING_SNAKE_CASE__ ) if new_k not in sd: raise ValueError(f'could not find new key {new_k} in state dict. (converted from {k})' ) if "dense" in k or "proj" in new_k: __lowerCamelCase : Tuple = v.T __lowerCamelCase : str = torch.tensor(SCREAMING_SNAKE_CASE__ , dtype=sd[new_k].dtype ) assert v.shape == sd[new_k].shape, f'{new_k}, {k}, {v.shape}, {sd[new_k].shape}' # make sure embedding.padding_idx is respected __lowerCamelCase : Union[str, Any] = torch.zeros_like(mapping['shared.weight'][cfg.pad_token_id + 1] ) __lowerCamelCase : List[str] = mapping['shared.weight'] __lowerCamelCase : int = mapping['shared.weight'] __lowerCamelCase : int = {k: torch.zeros_like(SCREAMING_SNAKE_CASE__ ) for k, v in sd.items() if k.endswith('bias' ) and k not in mapping} mapping.update(**SCREAMING_SNAKE_CASE__ ) __lowerCamelCase , __lowerCamelCase : Union[str, Any] = torch_model.model.load_state_dict(SCREAMING_SNAKE_CASE__ , strict=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase : Dict = [ k for k in missing if k not in ['encoder.embed_positions.weight', 'decoder.embed_positions.weight'] ] assert unexpected_missing == [], f'no matches found for the following torch keys {unexpected_missing}' assert extra == [], f'no matches found for the following tf keys {extra}' return torch_model def UpperCamelCase__ ( SCREAMING_SNAKE_CASE__="./ckpt/aeslc/model.ckpt-32000" ): __lowerCamelCase : int = tf.train.list_variables(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase : List[str] = {} __lowerCamelCase : Dict = ['Adafactor', 'global_step'] for name, shape in tqdm(SCREAMING_SNAKE_CASE__ , desc='converting tf checkpoint to dict' ): __lowerCamelCase : int = any(pat in name for pat in ignore_name ) if skip_key: continue __lowerCamelCase : str = tf.train.load_variable(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) __lowerCamelCase : Any = array return tf_weights def UpperCamelCase__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): # save tokenizer first __lowerCamelCase : str = Path(SCREAMING_SNAKE_CASE__ ).parent.name __lowerCamelCase : Any = task_specific_params[f'summarization_{dataset}']['max_position_embeddings'] __lowerCamelCase : int = PegasusTokenizer.from_pretrained('sshleifer/pegasus' , model_max_length=SCREAMING_SNAKE_CASE__ ) assert tok.model_max_length == desired_max_model_length tok.save_pretrained(SCREAMING_SNAKE_CASE__ ) # convert model __lowerCamelCase : int = get_tf_weights_as_numpy(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase : Optional[int] = task_specific_params[f'summarization_{dataset}'] if dataset == "large": __lowerCamelCase : Optional[Any] = task_specific_params __lowerCamelCase : Any = convert_pegasus(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) torch_model.save_pretrained(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase : int = torch_model.state_dict() sd.pop('model.decoder.embed_positions.weight' ) sd.pop('model.encoder.embed_positions.weight' ) torch.save(SCREAMING_SNAKE_CASE__ , Path(SCREAMING_SNAKE_CASE__ ) / 'pytorch_model.bin' ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() # Required parameters parser.add_argument('tf_ckpt_path', type=str, help='passed to tf.train.list_variables') parser.add_argument('save_dir', default=None, type=str, help='Path to the output PyTorch model.') lowercase_ = parser.parse_args() if args.save_dir is None: lowercase_ = Path(args.tf_ckpt_path).parent.name lowercase_ = os.path.join('pegasus', dataset) convert_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir)
194
from dataclasses import dataclass, field from typing import Tuple from ..utils import cached_property, is_torch_available, is_torch_tpu_available, logging, requires_backends from .benchmark_args_utils import BenchmarkArguments if is_torch_available(): import torch if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm lowercase_ = logging.get_logger(__name__) @dataclass class A_ ( __UpperCamelCase ): '''simple docstring''' __snake_case = [ """no_inference""", """no_cuda""", """no_tpu""", """no_speed""", """no_memory""", """no_env_print""", """no_multi_process""", ] def __init__( self: Any , **a: Optional[Any] ): for deprecated_arg in self.deprecated_args: if deprecated_arg in kwargs: __lowerCamelCase : str = deprecated_arg[3:] setattr(self , a , not kwargs.pop(a ) ) logger.warning( F'{deprecated_arg} is depreciated. Please use --no_{positive_arg} or' F' {positive_arg}={kwargs[positive_arg]}' ) __lowerCamelCase : str = kwargs.pop('torchscript' , self.torchscript ) __lowerCamelCase : int = kwargs.pop('torch_xla_tpu_print_metrics' , self.torch_xla_tpu_print_metrics ) __lowerCamelCase : Dict = kwargs.pop('fp16_opt_level' , self.fpaa_opt_level ) super().__init__(**a ) __snake_case = field(default=__UpperCamelCase , metadata={"""help""": """Trace the models using torchscript"""} ) __snake_case = field(default=__UpperCamelCase , metadata={"""help""": """Print Xla/PyTorch tpu metrics"""} ) __snake_case = field( default="""O1""" , metadata={ """help""": ( """For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']. """ """See details at https://nvidia.github.io/apex/amp.html""" ) } , ) @cached_property def _snake_case ( self: Dict ): requires_backends(self , ['torch'] ) logger.info('PyTorch: setting up devices' ) if not self.cuda: __lowerCamelCase : Dict = torch.device('cpu' ) __lowerCamelCase : str = 0 elif is_torch_tpu_available(): __lowerCamelCase : Optional[int] = xm.xla_device() __lowerCamelCase : Dict = 0 else: __lowerCamelCase : Any = torch.device('cuda' if torch.cuda.is_available() else 'cpu' ) __lowerCamelCase : Union[str, Any] = torch.cuda.device_count() return device, n_gpu @property def _snake_case ( self: Optional[Any] ): return is_torch_tpu_available() and self.tpu @property def _snake_case ( self: Union[str, Any] ): requires_backends(self , ['torch'] ) # TODO(PVP): currently only single GPU is supported return torch.cuda.current_device() @property def _snake_case ( self: int ): requires_backends(self , ['torch'] ) return self._setup_devices[0] @property def _snake_case ( self: Union[str, Any] ): requires_backends(self , ['torch'] ) return self._setup_devices[1] @property def _snake_case ( self: List[Any] ): return self.n_gpu > 0
194
1
import math from numpy import inf from scipy.integrate import quad def _a ( SCREAMING_SNAKE_CASE_ : float ): if num <= 0: raise ValueError("math domain error" ) return quad(SCREAMING_SNAKE_CASE_ , 0 , SCREAMING_SNAKE_CASE_ , args=(SCREAMING_SNAKE_CASE_) )[0] def _a ( SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : float ): return math.pow(SCREAMING_SNAKE_CASE_ , z - 1 ) * math.exp(-x ) if __name__ == "__main__": from doctest import testmod testmod()
92
"""simple docstring""" import contextlib import importlib import io import unittest import transformers # Try to import everything from transformers to ensure every object can be loaded. from transformers import * # noqa F406 from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, require_flax, require_tf, require_torch from transformers.utils import ContextManagers, find_labels, is_flax_available, is_tf_available, is_torch_available if is_torch_available(): from transformers import BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification if is_tf_available(): from transformers import TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification if is_flax_available(): from transformers import FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification __lowerCamelCase = DUMMY_UNKNOWN_IDENTIFIER # An actual model hosted on huggingface.co __lowerCamelCase = "main" # Default branch name __lowerCamelCase = "f2c752cfc5c0ab6f4bdec59acea69eefbee381c2" # One particular commit (not the top of `main`) __lowerCamelCase = "aaaaaaa" # This commit does not exist, so we should 404. __lowerCamelCase = "d9e9f15bc825e4b2c9249e9578f884bbcb5e3684" # Sha-1 of config.json on the top of `main`, for checking purposes __lowerCamelCase = "4b243c475af8d0a7754e87d7d096c92e5199ec2fe168a2ee7998e3b8e9bcb1d3" @contextlib.contextmanager def UpperCAmelCase ( ): """simple docstring""" print('Welcome!' ) yield print('Bye!' ) @contextlib.contextmanager def UpperCAmelCase ( ): """simple docstring""" print('Bonjour!' ) yield print('Au revoir!' ) class UpperCamelCase__( unittest.TestCase ): def snake_case__ ( self ) -> List[str]: # If the spec is missing, importlib would not be able to import the module dynamically. assert transformers.__spec__ is not None assert importlib.util.find_spec('transformers' ) is not None class UpperCamelCase__( unittest.TestCase ): @unittest.mock.patch('sys.stdout' ,new_callable=io.StringIO ) def snake_case__ ( self ,__UpperCAmelCase ) -> Dict: with ContextManagers([] ): print('Transformers are awesome!' ) # The print statement adds a new line at the end of the output self.assertEqual(mock_stdout.getvalue() ,'Transformers are awesome!\n' ) @unittest.mock.patch('sys.stdout' ,new_callable=io.StringIO ) def snake_case__ ( self ,__UpperCAmelCase ) -> List[str]: with ContextManagers([context_en()] ): print('Transformers are awesome!' ) # The output should be wrapped with an English welcome and goodbye self.assertEqual(mock_stdout.getvalue() ,'Welcome!\nTransformers are awesome!\nBye!\n' ) @unittest.mock.patch('sys.stdout' ,new_callable=io.StringIO ) def snake_case__ ( self ,__UpperCAmelCase ) -> Any: with ContextManagers([context_fr(), context_en()] ): print('Transformers are awesome!' ) # The output should be wrapped with an English and French welcome and goodbye self.assertEqual(mock_stdout.getvalue() ,'Bonjour!\nWelcome!\nTransformers are awesome!\nBye!\nAu revoir!\n' ) @require_torch def snake_case__ ( self ) -> Union[str, Any]: self.assertEqual(find_labels(__UpperCAmelCase ) ,['labels'] ) self.assertEqual(find_labels(__UpperCAmelCase ) ,['labels', 'next_sentence_label'] ) self.assertEqual(find_labels(__UpperCAmelCase ) ,['start_positions', 'end_positions'] ) class UpperCamelCase__( __A ): pass self.assertEqual(find_labels(__UpperCAmelCase ) ,['labels'] ) @require_tf def snake_case__ ( self ) -> str: self.assertEqual(find_labels(__UpperCAmelCase ) ,['labels'] ) self.assertEqual(find_labels(__UpperCAmelCase ) ,['labels', 'next_sentence_label'] ) self.assertEqual(find_labels(__UpperCAmelCase ) ,['start_positions', 'end_positions'] ) class UpperCamelCase__( __A ): pass self.assertEqual(find_labels(__UpperCAmelCase ) ,['labels'] ) @require_flax def snake_case__ ( self ) -> List[Any]: # Flax models don't have labels self.assertEqual(find_labels(__UpperCAmelCase ) ,[] ) self.assertEqual(find_labels(__UpperCAmelCase ) ,[] ) self.assertEqual(find_labels(__UpperCAmelCase ) ,[] ) class UpperCamelCase__( __A ): pass self.assertEqual(find_labels(__UpperCAmelCase ) ,[] )
221
0
"""simple docstring""" from __future__ import annotations import copy import inspect import unittest import numpy as np from transformers import is_tf_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, TFLayoutLMvaModel, ) if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class UpperCAmelCase_ : def __init__( self : Optional[Any] , snake_case_ : List[Any] , snake_case_ : Tuple=2 , snake_case_ : List[Any]=3 , snake_case_ : Optional[int]=4 , snake_case_ : Any=2 , snake_case_ : Union[str, Any]=7 , snake_case_ : Dict=True , snake_case_ : Optional[Any]=True , snake_case_ : Union[str, Any]=True , snake_case_ : int=True , snake_case_ : List[Any]=99 , snake_case_ : List[Any]=36 , snake_case_ : List[Any]=2 , snake_case_ : str=4 , snake_case_ : int=37 , snake_case_ : int="gelu" , snake_case_ : Any=0.1 , snake_case_ : Union[str, Any]=0.1 , snake_case_ : int=512 , snake_case_ : Union[str, Any]=16 , snake_case_ : Optional[Any]=2 , snake_case_ : Tuple=0.02 , snake_case_ : List[str]=6 , snake_case_ : Dict=6 , snake_case_ : Optional[Any]=3 , snake_case_ : str=4 , snake_case_ : Union[str, Any]=None , snake_case_ : Union[str, Any]=1_000 , ) -> int: '''simple docstring''' A__ = parent A__ = batch_size A__ = num_channels A__ = image_size A__ = patch_size A__ = is_training A__ = use_input_mask A__ = use_token_type_ids A__ = use_labels A__ = vocab_size A__ = hidden_size A__ = num_hidden_layers A__ = num_attention_heads A__ = intermediate_size A__ = hidden_act A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = max_position_embeddings A__ = type_vocab_size A__ = type_sequence_label_size A__ = initializer_range A__ = coordinate_size A__ = shape_size A__ = num_labels A__ = num_choices A__ = scope A__ = range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) A__ = text_seq_length A__ = (image_size // patch_size) ** 2 + 1 A__ = self.text_seq_length + self.image_seq_length def __magic_name__ ( self : List[Any] ) -> Optional[int]: '''simple docstring''' A__ = ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size ) A__ = ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox ) A__ = bbox.numpy() # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: A__ = bbox[i, j, 3] A__ = bbox[i, j, 1] A__ = tmp_coordinate if bbox[i, j, 2] < bbox[i, j, 0]: A__ = bbox[i, j, 2] A__ = bbox[i, j, 0] A__ = tmp_coordinate A__ = tf.constant(snake_case_ ) A__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) A__ = None if self.use_input_mask: A__ = random_attention_mask([self.batch_size, self.text_seq_length] ) A__ = None if self.use_token_type_ids: A__ = ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size ) A__ = None A__ = None if self.use_labels: A__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A__ = ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels ) A__ = LayoutLMvaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , ) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def __magic_name__ ( self : List[str] , snake_case_ : Optional[int] , snake_case_ : str , snake_case_ : int , snake_case_ : Any , snake_case_ : Optional[int] , snake_case_ : Dict ) -> List[str]: '''simple docstring''' A__ = TFLayoutLMvaModel(config=snake_case_ ) # text + image A__ = model(snake_case_ , pixel_values=snake_case_ , training=snake_case_ ) A__ = model( snake_case_ , bbox=snake_case_ , pixel_values=snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , training=snake_case_ , ) A__ = model(snake_case_ , bbox=snake_case_ , pixel_values=snake_case_ , training=snake_case_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # text only A__ = model(snake_case_ , training=snake_case_ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) ) # image only A__ = model({"pixel_values": pixel_values} , training=snake_case_ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) ) def __magic_name__ ( self : List[Any] , snake_case_ : Optional[int] , snake_case_ : Union[str, Any] , snake_case_ : List[Any] , snake_case_ : List[Any] , snake_case_ : Tuple , snake_case_ : Tuple , snake_case_ : str ) -> Any: '''simple docstring''' A__ = self.num_labels A__ = TFLayoutLMvaForSequenceClassification(config=snake_case_ ) A__ = model( snake_case_ , bbox=snake_case_ , pixel_values=snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ , training=snake_case_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __magic_name__ ( self : Any , snake_case_ : Any , snake_case_ : List[Any] , snake_case_ : int , snake_case_ : Tuple , snake_case_ : Union[str, Any] , snake_case_ : int , snake_case_ : Tuple ) -> List[str]: '''simple docstring''' A__ = self.num_labels A__ = TFLayoutLMvaForTokenClassification(config=snake_case_ ) A__ = model( snake_case_ , bbox=snake_case_ , pixel_values=snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ , training=snake_case_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) ) def __magic_name__ ( self : Union[str, Any] , snake_case_ : Union[str, Any] , snake_case_ : List[Any] , snake_case_ : Optional[Any] , snake_case_ : Optional[Any] , snake_case_ : List[str] , snake_case_ : int , snake_case_ : List[str] ) -> List[str]: '''simple docstring''' A__ = 2 A__ = TFLayoutLMvaForQuestionAnswering(config=snake_case_ ) A__ = model( snake_case_ , bbox=snake_case_ , pixel_values=snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , start_positions=snake_case_ , end_positions=snake_case_ , training=snake_case_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __magic_name__ ( self : Optional[Any] ) -> List[str]: '''simple docstring''' A__ = self.prepare_config_and_inputs() (A__) = config_and_inputs A__ = { """input_ids""": input_ids, """bbox""": bbox, """pixel_values""": pixel_values, """token_type_ids""": token_type_ids, """attention_mask""": input_mask, } return config, inputs_dict @require_tf class UpperCAmelCase_ ( __lowercase, __lowercase, unittest.TestCase ): lowercase__ = ( ( TFLayoutLMvaModel, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, ) if is_tf_available() else () ) lowercase__ = ( {'''document-question-answering''': TFLayoutLMvaForQuestionAnswering, '''feature-extraction''': TFLayoutLMvaModel} if is_tf_available() else {} ) lowercase__ = False lowercase__ = False lowercase__ = False def __magic_name__ ( self : int , snake_case_ : Optional[Any] , snake_case_ : List[Any] , snake_case_ : Dict , snake_case_ : Dict , snake_case_ : List[str] ) -> Optional[Any]: '''simple docstring''' return True def __magic_name__ ( self : int , snake_case_ : Optional[int] , snake_case_ : List[Any] , snake_case_ : int=False ) -> dict: '''simple docstring''' A__ = copy.deepcopy(snake_case_ ) if model_class in get_values(snake_case_ ): A__ = { k: tf.tile(tf.expand_dims(snake_case_ , 1 ) , (1, self.model_tester.num_choices) + (1,) * (v.ndim - 1) ) if isinstance(snake_case_ , tf.Tensor ) and v.ndim > 0 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(snake_case_ ): A__ = tf.ones(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(snake_case_ ): A__ = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) A__ = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(snake_case_ ): A__ = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(snake_case_ ): A__ = tf.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=tf.intaa ) return inputs_dict def __magic_name__ ( self : Any ) -> int: '''simple docstring''' A__ = TFLayoutLMvaModelTester(self ) A__ = ConfigTester(self , config_class=snake_case_ , hidden_size=37 ) def __magic_name__ ( self : List[str] ) -> List[str]: '''simple docstring''' self.config_tester.run_common_tests() def __magic_name__ ( self : List[Any] ) -> Dict: '''simple docstring''' A__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ = model_class(snake_case_ ) if getattr(snake_case_ , "hf_compute_loss" , snake_case_ ): # The number of elements in the loss should be the same as the number of elements in the label A__ = self._prepare_for_class(inputs_dict.copy() , snake_case_ , return_labels=snake_case_ ) A__ = prepared_for_class[ sorted(prepared_for_class.keys() - inputs_dict.keys() , reverse=snake_case_ )[0] ] A__ = added_label.shape.as_list()[:1] # Test that model correctly compute the loss with kwargs A__ = self._prepare_for_class(inputs_dict.copy() , snake_case_ , return_labels=snake_case_ ) A__ = prepared_for_class.pop("input_ids" ) A__ = model(snake_case_ , **snake_case_ )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) # Test that model correctly compute the loss when we mask some positions A__ = self._prepare_for_class(inputs_dict.copy() , snake_case_ , return_labels=snake_case_ ) A__ = prepared_for_class.pop("input_ids" ) if "labels" in prepared_for_class: A__ = prepared_for_class["""labels"""].numpy() if len(labels.shape ) > 1 and labels.shape[1] != 1: A__ = -100 A__ = tf.convert_to_tensor(snake_case_ ) A__ = model(snake_case_ , **snake_case_ )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) self.assertTrue(not np.any(np.isnan(loss.numpy() ) ) ) # Test that model correctly compute the loss with a dict A__ = self._prepare_for_class(inputs_dict.copy() , snake_case_ , return_labels=snake_case_ ) A__ = model(snake_case_ )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) # Test that model correctly compute the loss with a tuple A__ = self._prepare_for_class(inputs_dict.copy() , snake_case_ , return_labels=snake_case_ ) # Get keys that were added with the _prepare_for_class function A__ = prepared_for_class.keys() - inputs_dict.keys() A__ = inspect.signature(model.call ).parameters A__ = list(signature.keys() ) # Create a dictionary holding the location of the tensors in the tuple A__ = {0: """input_ids"""} for label_key in label_keys: A__ = signature_names.index(snake_case_ ) A__ = label_key A__ = sorted(tuple_index_mapping.items() ) # Initialize a list with their default values, update the values and convert to a tuple A__ = [] for name in signature_names: if name != "kwargs": list_input.append(signature[name].default ) for index, value in sorted_tuple_index_mapping: A__ = prepared_for_class[value] A__ = tuple(snake_case_ ) # Send to model A__ = model(tuple_input[:-1] )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) def __magic_name__ ( self : List[str] ) -> List[Any]: '''simple docstring''' ( A__ ) = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) def __magic_name__ ( self : List[Any] ) -> Optional[int]: '''simple docstring''' ( A__ ) = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: A__ = type self.model_tester.create_and_check_model(snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) def __magic_name__ ( self : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' ( A__ ) = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification( snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) def __magic_name__ ( self : Tuple ) -> Optional[int]: '''simple docstring''' ( A__ ) = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification( snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) def __magic_name__ ( self : List[str] ) -> Union[str, Any]: '''simple docstring''' ( A__ ) = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering( snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) @slow def __magic_name__ ( self : str ) -> Optional[int]: '''simple docstring''' for model_name in TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A__ = TFLayoutLMvaModel.from_pretrained(snake_case_ ) self.assertIsNotNone(snake_case_ ) def _SCREAMING_SNAKE_CASE ( ) -> Optional[Any]: A__ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_tf class UpperCAmelCase_ ( unittest.TestCase ): @cached_property def __magic_name__ ( self : Optional[int] ) -> Dict: '''simple docstring''' return LayoutLMvaImageProcessor(apply_ocr=snake_case_ ) if is_vision_available() else None @slow def __magic_name__ ( self : str ) -> str: '''simple docstring''' A__ = TFLayoutLMvaModel.from_pretrained("microsoft/layoutlmv3-base" ) A__ = self.default_image_processor A__ = prepare_img() A__ = image_processor(images=snake_case_ , return_tensors="tf" ).pixel_values A__ = tf.constant([[1, 2]] ) A__ = tf.expand_dims(tf.constant([[1, 2, 3, 4], [5, 6, 7, 8]] ) , axis=0 ) # forward pass A__ = model(input_ids=snake_case_ , bbox=snake_case_ , pixel_values=snake_case_ , training=snake_case_ ) # verify the logits A__ = (1, 199, 768) self.assertEqual(outputs.last_hidden_state.shape , snake_case_ ) A__ = tf.constant( [[-0.0529, 0.3618, 0.1632], [-0.1587, -0.1667, -0.0400], [-0.1557, -0.1671, -0.0505]] ) self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] , snake_case_ , atol=1e-4 ) )
363
"""simple docstring""" from typing import Optional from torch import nn from .transformer_ad import TransformeraDModel, TransformeraDModelOutput class UpperCAmelCase_ ( nn.Module ): def __init__( self : Optional[int] , snake_case_ : int = 16 , snake_case_ : int = 88 , snake_case_ : Optional[int] = None , snake_case_ : int = 1 , snake_case_ : float = 0.0 , snake_case_ : int = 32 , snake_case_ : Optional[int] = None , snake_case_ : bool = False , snake_case_ : Optional[int] = None , snake_case_ : Optional[int] = None , snake_case_ : str = "geglu" , snake_case_ : Optional[int] = None , ) -> str: '''simple docstring''' super().__init__() A__ = nn.ModuleList( [ TransformeraDModel( num_attention_heads=snake_case_ , attention_head_dim=snake_case_ , in_channels=snake_case_ , num_layers=snake_case_ , dropout=snake_case_ , norm_num_groups=snake_case_ , cross_attention_dim=snake_case_ , attention_bias=snake_case_ , sample_size=snake_case_ , num_vector_embeds=snake_case_ , activation_fn=snake_case_ , num_embeds_ada_norm=snake_case_ , ) for _ in range(2 ) ] ) # Variables that can be set by a pipeline: # The ratio of transformer1 to transformer2's output states to be combined during inference A__ = 0.5 # The shape of `encoder_hidden_states` is expected to be # `(batch_size, condition_lengths[0]+condition_lengths[1], num_features)` A__ = [77, 257] # Which transformer to use to encode which condition. # E.g. `(1, 0)` means that we'll use `transformers[1](conditions[0])` and `transformers[0](conditions[1])` A__ = [1, 0] def __magic_name__ ( self : Dict , snake_case_ : List[Any] , snake_case_ : Tuple , snake_case_ : Any=None , snake_case_ : int=None , snake_case_ : Union[str, Any]=None , snake_case_ : bool = True , ) -> Union[str, Any]: '''simple docstring''' A__ = hidden_states A__ = [] A__ = 0 # attention_mask is not used yet for i in range(2 ): # for each of the two transformers, pass the corresponding condition tokens A__ = encoder_hidden_states[:, tokens_start : tokens_start + self.condition_lengths[i]] A__ = self.transformer_index_for_condition[i] A__ = self.transformers[transformer_index]( snake_case_ , encoder_hidden_states=snake_case_ , timestep=snake_case_ , cross_attention_kwargs=snake_case_ , return_dict=snake_case_ , )[0] encoded_states.append(encoded_state - input_states ) tokens_start += self.condition_lengths[i] A__ = encoded_states[0] * self.mix_ratio + encoded_states[1] * (1 - self.mix_ratio) A__ = output_states + input_states if not return_dict: return (output_states,) return TransformeraDModelOutput(sample=snake_case_ )
230
0
from __future__ import annotations # This is the precision for this function which can be altered. # It is recommended for users to keep this number greater than or equal to 10. a__ : List[str] = 10 def UpperCAmelCase_( a__ , a__ , a__ , a__ ): """simple docstring""" for i in range(a__ , a__ ): if array[i] == target: return i return -1 def UpperCAmelCase_( a__ , a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = 0 SCREAMING_SNAKE_CASE : Union[str, Any] = len(a__ ) while left <= right: if right - left < precision: return lin_search(a__ , a__ , a__ , a__ ) SCREAMING_SNAKE_CASE : Any = (left + right) // 3 + 1 SCREAMING_SNAKE_CASE : List[Any] = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: SCREAMING_SNAKE_CASE : Union[str, Any] = one_third - 1 elif array[two_third] < target: SCREAMING_SNAKE_CASE : Optional[Any] = two_third + 1 else: SCREAMING_SNAKE_CASE : Tuple = one_third + 1 SCREAMING_SNAKE_CASE : List[str] = two_third - 1 else: return -1 def UpperCAmelCase_( a__ , a__ , a__ , a__ ): """simple docstring""" if left < right: if right - left < precision: return lin_search(a__ , a__ , a__ , a__ ) SCREAMING_SNAKE_CASE : Tuple = (left + right) // 3 + 1 SCREAMING_SNAKE_CASE : Dict = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: return rec_ternary_search(a__ , one_third - 1 , a__ , a__ ) elif array[two_third] < target: return rec_ternary_search(two_third + 1 , a__ , a__ , a__ ) else: return rec_ternary_search(one_third + 1 , two_third - 1 , a__ , a__ ) else: return -1 if __name__ == "__main__": import doctest doctest.testmod() a__ : List[str] = input('''Enter numbers separated by comma:\n''').strip() a__ : List[Any] = [int(item.strip()) for item in user_input.split(''',''')] assert collection == sorted(collection), F"List must be ordered.\n{collection}." a__ : Optional[Any] = int(input('''Enter the number to be found in the list:\n''').strip()) a__ : Any = ite_ternary_search(collection, target) a__ : Any = rec_ternary_search(0, len(collection) - 1, collection, target) if resulta != -1: print(F"Iterative search: {target} found at positions: {resulta}") print(F"Recursive search: {target} found at positions: {resulta}") else: print('''Not found''')
313
from typing import Optional, Tuple, Union import flax import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict from ..configuration_utils import ConfigMixin, flax_register_to_config from ..utils import BaseOutput from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps from .modeling_flax_utils import FlaxModelMixin from .unet_ad_blocks_flax import ( FlaxCrossAttnDownBlockaD, FlaxCrossAttnUpBlockaD, FlaxDownBlockaD, FlaxUNetMidBlockaDCrossAttn, FlaxUpBlockaD, ) @flax.struct.dataclass class a_ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE : jnp.ndarray @flax_register_to_config class a_ ( nn.Module , a__ , a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE : int = 32 __SCREAMING_SNAKE_CASE : int = 4 __SCREAMING_SNAKE_CASE : int = 4 __SCREAMING_SNAKE_CASE : Tuple[str] = ( "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D", ) __SCREAMING_SNAKE_CASE : Tuple[str] = ("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D") __SCREAMING_SNAKE_CASE : Union[bool, Tuple[bool]] = False __SCREAMING_SNAKE_CASE : Tuple[int] = (320, 640, 1280, 1280) __SCREAMING_SNAKE_CASE : int = 2 __SCREAMING_SNAKE_CASE : Union[int, Tuple[int]] = 8 __SCREAMING_SNAKE_CASE : Optional[Union[int, Tuple[int]]] = None __SCREAMING_SNAKE_CASE : int = 1280 __SCREAMING_SNAKE_CASE : float = 0.0 __SCREAMING_SNAKE_CASE : bool = False __SCREAMING_SNAKE_CASE : jnp.dtype = jnp.floataa __SCREAMING_SNAKE_CASE : bool = True __SCREAMING_SNAKE_CASE : int = 0 __SCREAMING_SNAKE_CASE : bool = False def __lowerCAmelCase ( self , _lowerCamelCase ) ->FrozenDict: # init input tensors SCREAMING_SNAKE_CASE : List[Any] = (1, self.in_channels, self.sample_size, self.sample_size) SCREAMING_SNAKE_CASE : List[Any] = jnp.zeros(_lowerCamelCase , dtype=jnp.floataa ) SCREAMING_SNAKE_CASE : Tuple = jnp.ones((1,) , dtype=jnp.intaa ) SCREAMING_SNAKE_CASE : List[Any] = jnp.zeros((1, 1, self.cross_attention_dim) , dtype=jnp.floataa ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[Any] = jax.random.split(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Tuple = {'''params''': params_rng, '''dropout''': dropout_rng} return self.init(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase )["params"] def __lowerCAmelCase ( self ) ->int: SCREAMING_SNAKE_CASE : List[str] = self.block_out_channels SCREAMING_SNAKE_CASE : Optional[int] = block_out_channels[0] * 4 if self.num_attention_heads is not None: raise ValueError( '''At the moment it is not possible to define the number of attention heads via `num_attention_heads` because of a naming issue as described in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131. Passing `num_attention_heads` will only be supported in diffusers v0.19.''' ) # If `num_attention_heads` is not defined (which is the case for most models) # it will default to `attention_head_dim`. This looks weird upon first reading it and it is. # The reason for this behavior is to correct for incorrectly named variables that were introduced # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking # which is why we correct for the naming here. SCREAMING_SNAKE_CASE : List[str] = self.num_attention_heads or self.attention_head_dim # input SCREAMING_SNAKE_CASE : Optional[int] = nn.Conv( block_out_channels[0] , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) # time SCREAMING_SNAKE_CASE : Tuple = FlaxTimesteps( block_out_channels[0] , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.config.freq_shift ) SCREAMING_SNAKE_CASE : Dict = FlaxTimestepEmbedding(_lowerCamelCase , dtype=self.dtype ) SCREAMING_SNAKE_CASE : Union[str, Any] = self.only_cross_attention if isinstance(_lowerCamelCase , _lowerCamelCase ): SCREAMING_SNAKE_CASE : str = (only_cross_attention,) * len(self.down_block_types ) if isinstance(_lowerCamelCase , _lowerCamelCase ): SCREAMING_SNAKE_CASE : str = (num_attention_heads,) * len(self.down_block_types ) # down SCREAMING_SNAKE_CASE : Optional[int] = [] SCREAMING_SNAKE_CASE : Optional[Any] = block_out_channels[0] for i, down_block_type in enumerate(self.down_block_types ): SCREAMING_SNAKE_CASE : str = output_channel SCREAMING_SNAKE_CASE : int = block_out_channels[i] SCREAMING_SNAKE_CASE : List[Any] = i == len(_lowerCamelCase ) - 1 if down_block_type == "CrossAttnDownBlock2D": SCREAMING_SNAKE_CASE : Union[str, Any] = FlaxCrossAttnDownBlockaD( in_channels=_lowerCamelCase , out_channels=_lowerCamelCase , dropout=self.dropout , num_layers=self.layers_per_block , num_attention_heads=num_attention_heads[i] , add_downsample=not is_final_block , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) else: SCREAMING_SNAKE_CASE : Union[str, Any] = FlaxDownBlockaD( in_channels=_lowerCamelCase , out_channels=_lowerCamelCase , dropout=self.dropout , num_layers=self.layers_per_block , add_downsample=not is_final_block , dtype=self.dtype , ) down_blocks.append(_lowerCamelCase ) SCREAMING_SNAKE_CASE : str = down_blocks # mid SCREAMING_SNAKE_CASE : int = FlaxUNetMidBlockaDCrossAttn( in_channels=block_out_channels[-1] , dropout=self.dropout , num_attention_heads=num_attention_heads[-1] , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) # up SCREAMING_SNAKE_CASE : str = [] SCREAMING_SNAKE_CASE : str = list(reversed(_lowerCamelCase ) ) SCREAMING_SNAKE_CASE : int = list(reversed(_lowerCamelCase ) ) SCREAMING_SNAKE_CASE : int = list(reversed(_lowerCamelCase ) ) SCREAMING_SNAKE_CASE : List[str] = reversed_block_out_channels[0] for i, up_block_type in enumerate(self.up_block_types ): SCREAMING_SNAKE_CASE : Dict = output_channel SCREAMING_SNAKE_CASE : Union[str, Any] = reversed_block_out_channels[i] SCREAMING_SNAKE_CASE : Tuple = reversed_block_out_channels[min(i + 1 , len(_lowerCamelCase ) - 1 )] SCREAMING_SNAKE_CASE : Dict = i == len(_lowerCamelCase ) - 1 if up_block_type == "CrossAttnUpBlock2D": SCREAMING_SNAKE_CASE : str = FlaxCrossAttnUpBlockaD( in_channels=_lowerCamelCase , out_channels=_lowerCamelCase , prev_output_channel=_lowerCamelCase , num_layers=self.layers_per_block + 1 , num_attention_heads=reversed_num_attention_heads[i] , add_upsample=not is_final_block , dropout=self.dropout , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) else: SCREAMING_SNAKE_CASE : Optional[int] = FlaxUpBlockaD( in_channels=_lowerCamelCase , out_channels=_lowerCamelCase , prev_output_channel=_lowerCamelCase , num_layers=self.layers_per_block + 1 , add_upsample=not is_final_block , dropout=self.dropout , dtype=self.dtype , ) up_blocks.append(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = output_channel SCREAMING_SNAKE_CASE : Tuple = up_blocks # out SCREAMING_SNAKE_CASE : Any = nn.GroupNorm(num_groups=32 , epsilon=1e-5 ) SCREAMING_SNAKE_CASE : Any = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase = True , _lowerCamelCase = False , ) ->Union[FlaxUNetaDConditionOutput, Tuple]: # 1. time if not isinstance(_lowerCamelCase , jnp.ndarray ): SCREAMING_SNAKE_CASE : int = jnp.array([timesteps] , dtype=jnp.intaa ) elif isinstance(_lowerCamelCase , jnp.ndarray ) and len(timesteps.shape ) == 0: SCREAMING_SNAKE_CASE : List[str] = timesteps.astype(dtype=jnp.floataa ) SCREAMING_SNAKE_CASE : Optional[Any] = jnp.expand_dims(_lowerCamelCase , 0 ) SCREAMING_SNAKE_CASE : List[str] = self.time_proj(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[int] = self.time_embedding(_lowerCamelCase ) # 2. pre-process SCREAMING_SNAKE_CASE : int = jnp.transpose(_lowerCamelCase , (0, 2, 3, 1) ) SCREAMING_SNAKE_CASE : List[Any] = self.conv_in(_lowerCamelCase ) # 3. down SCREAMING_SNAKE_CASE : Optional[int] = (sample,) for down_block in self.down_blocks: if isinstance(_lowerCamelCase , _lowerCamelCase ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = down_block(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , deterministic=not train ) else: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = down_block(_lowerCamelCase , _lowerCamelCase , deterministic=not train ) down_block_res_samples += res_samples if down_block_additional_residuals is not None: SCREAMING_SNAKE_CASE : int = () for down_block_res_sample, down_block_additional_residual in zip( _lowerCamelCase , _lowerCamelCase ): down_block_res_sample += down_block_additional_residual new_down_block_res_samples += (down_block_res_sample,) SCREAMING_SNAKE_CASE : Dict = new_down_block_res_samples # 4. mid SCREAMING_SNAKE_CASE : Optional[Any] = self.mid_block(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , deterministic=not train ) if mid_block_additional_residual is not None: sample += mid_block_additional_residual # 5. up for up_block in self.up_blocks: SCREAMING_SNAKE_CASE : Optional[Any] = down_block_res_samples[-(self.layers_per_block + 1) :] SCREAMING_SNAKE_CASE : Optional[int] = down_block_res_samples[: -(self.layers_per_block + 1)] if isinstance(_lowerCamelCase , _lowerCamelCase ): SCREAMING_SNAKE_CASE : str = up_block( _lowerCamelCase , temb=_lowerCamelCase , encoder_hidden_states=_lowerCamelCase , res_hidden_states_tuple=_lowerCamelCase , deterministic=not train , ) else: SCREAMING_SNAKE_CASE : Optional[int] = up_block(_lowerCamelCase , temb=_lowerCamelCase , res_hidden_states_tuple=_lowerCamelCase , deterministic=not train ) # 6. post-process SCREAMING_SNAKE_CASE : Optional[int] = self.conv_norm_out(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[int] = nn.silu(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = self.conv_out(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[Any] = jnp.transpose(_lowerCamelCase , (0, 3, 1, 2) ) if not return_dict: return (sample,) return FlaxUNetaDConditionOutput(sample=_lowerCamelCase )
313
1
"""simple docstring""" import argparse import torch from transformers import GPTaConfig, GPTaModel, load_tf_weights_in_gpta from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def UpperCAmelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): """simple docstring""" if gpta_config_file == "": A__ = GPTaConfig() else: A__ = GPTaConfig.from_json_file(UpperCamelCase__ ) A__ = GPTaModel(UpperCamelCase__ ) # Load weights from numpy load_tf_weights_in_gpta(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # Save pytorch-model A__ = pytorch_dump_folder_path + '/' + WEIGHTS_NAME A__ = pytorch_dump_folder_path + '/' + CONFIG_NAME print(F'''Save PyTorch model to {pytorch_weights_dump_path}''' ) torch.save(model.state_dict() , UpperCamelCase__ ) print(F'''Save configuration file to {pytorch_config_dump_path}''' ) with open(UpperCamelCase__ , 'w' , encoding='utf-8' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": __lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( "--gpt2_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--gpt2_config_file", default="", type=str, help=( "An optional config json file corresponding to the pre-trained OpenAI model. \n" "This specifies the model architecture." ), ) __lowerCamelCase = parser.parse_args() convert_gpta_checkpoint_to_pytorch(args.gpta_checkpoint_path, args.gpta_config_file, args.pytorch_dump_folder_path)
154
"""simple docstring""" import argparse import os import re import numpy as np import PIL import torch from timm import create_model from torch.optim.lr_scheduler import OneCycleLR from torch.utils.data import DataLoader, Dataset from torchvision.transforms import Compose, RandomResizedCrop, Resize, ToTensor from accelerate import Accelerator def UpperCAmelCase ( UpperCamelCase__ ): """simple docstring""" A__ = fname.split(os.path.sep )[-1] return re.search(r'^(.*)_\d+\.jpg$' , UpperCamelCase__ ).groups()[0] class UpperCamelCase__( __A ): def __init__( self ,__UpperCAmelCase ,__UpperCAmelCase=None ,__UpperCAmelCase=None ) -> List[str]: A__ = file_names A__ = image_transform A__ = label_to_id def __len__( self ) -> Dict: return len(self.file_names ) def __getitem__( self ,__UpperCAmelCase ) -> Union[str, Any]: A__ = self.file_names[idx] A__ = PIL.Image.open(__UpperCAmelCase ) A__ = raw_image.convert('RGB' ) if self.image_transform is not None: A__ = self.image_transform(__UpperCAmelCase ) A__ = extract_label(__UpperCAmelCase ) if self.label_to_id is not None: A__ = self.label_to_id[label] return {"image": image, "label": label} def UpperCAmelCase ( UpperCamelCase__ , UpperCamelCase__ ): """simple docstring""" if args.with_tracking: A__ = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , log_with='all' , project_dir=args.project_dir ) else: A__ = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs A__ = config['lr'] A__ = int(config['num_epochs'] ) A__ = int(config['seed'] ) A__ = int(config['batch_size'] ) A__ = config['image_size'] if not isinstance(UpperCamelCase__ , (list, tuple) ): A__ = (image_size, image_size) # Parse out whether we are saving every epoch or after a certain number of batches if hasattr(args.checkpointing_steps , 'isdigit' ): if args.checkpointing_steps == "epoch": A__ = args.checkpointing_steps elif args.checkpointing_steps.isdigit(): A__ = int(args.checkpointing_steps ) else: raise ValueError( F'''Argument `checkpointing_steps` must be either a number or `epoch`. `{args.checkpointing_steps}` passed.''' ) else: A__ = None # We need to initialize the trackers we use, and also store our configuration if args.with_tracking: A__ = os.path.split(UpperCamelCase__ )[-1].split('.' )[0] accelerator.init_trackers(UpperCamelCase__ , UpperCamelCase__ ) # Grab all the image filenames A__ = [os.path.join(args.data_dir , UpperCamelCase__ ) for fname in os.listdir(args.data_dir ) if fname.endswith('.jpg' )] # Build the label correspondences A__ = [extract_label(UpperCamelCase__ ) for fname in file_names] A__ = list(set(UpperCamelCase__ ) ) id_to_label.sort() A__ = {lbl: i for i, lbl in enumerate(UpperCamelCase__ )} # Set the seed before splitting the data. np.random.seed(UpperCamelCase__ ) torch.manual_seed(UpperCamelCase__ ) torch.cuda.manual_seed_all(UpperCamelCase__ ) # Split our filenames between train and validation A__ = np.random.permutation(len(UpperCamelCase__ ) ) A__ = int(0.8 * len(UpperCamelCase__ ) ) A__ = random_perm[:cut] A__ = random_perm[cut:] # For training we use a simple RandomResizedCrop A__ = Compose([RandomResizedCrop(UpperCamelCase__ , scale=(0.5, 1.0) ), ToTensor()] ) A__ = PetsDataset( [file_names[i] for i in train_split] , image_transform=UpperCamelCase__ , label_to_id=UpperCamelCase__ ) # For evaluation, we use a deterministic Resize A__ = Compose([Resize(UpperCamelCase__ ), ToTensor()] ) A__ = PetsDataset([file_names[i] for i in eval_split] , image_transform=UpperCamelCase__ , label_to_id=UpperCamelCase__ ) # Instantiate dataloaders. A__ = DataLoader(UpperCamelCase__ , shuffle=UpperCamelCase__ , batch_size=UpperCamelCase__ , num_workers=4 ) A__ = DataLoader(UpperCamelCase__ , shuffle=UpperCamelCase__ , batch_size=UpperCamelCase__ , num_workers=4 ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) A__ = create_model('resnet50d' , pretrained=UpperCamelCase__ , num_classes=len(UpperCamelCase__ ) ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). A__ = model.to(accelerator.device ) # Freezing the base model for param in model.parameters(): A__ = False for param in model.get_classifier().parameters(): A__ = True # We normalize the batches of images to be a bit faster. A__ = torch.tensor(model.default_cfg['mean'] )[None, :, None, None].to(accelerator.device ) A__ = torch.tensor(model.default_cfg['std'] )[None, :, None, None].to(accelerator.device ) # Instantiate optimizer A__ = torch.optim.Adam(params=model.parameters() , lr=lr / 25 ) # Instantiate learning rate scheduler A__ = OneCycleLR(optimizer=UpperCamelCase__ , max_lr=UpperCamelCase__ , epochs=UpperCamelCase__ , steps_per_epoch=len(UpperCamelCase__ ) ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. A__ , A__ , A__ , A__ , A__ = accelerator.prepare( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # We need to keep track of how many total steps we have iterated over A__ = 0 # We also need to keep track of the starting epoch so files are named properly A__ = 0 # Potentially load in the weights and states from a previous save if args.resume_from_checkpoint: if args.resume_from_checkpoint is not None or args.resume_from_checkpoint != "": accelerator.print(F'''Resumed from checkpoint: {args.resume_from_checkpoint}''' ) accelerator.load_state(args.resume_from_checkpoint ) A__ = os.path.basename(args.resume_from_checkpoint ) else: # Get the most recent checkpoint A__ = [f.name for f in os.scandir(os.getcwd() ) if f.is_dir()] dirs.sort(key=os.path.getctime ) A__ = dirs[-1] # Sorts folders by date modified, most recent checkpoint is the last # Extract `epoch_{i}` or `step_{i}` A__ = os.path.splitext(UpperCamelCase__ )[0] if "epoch" in training_difference: A__ = int(training_difference.replace('epoch_' , '' ) ) + 1 A__ = None else: A__ = int(training_difference.replace('step_' , '' ) ) A__ = resume_step // len(UpperCamelCase__ ) resume_step -= starting_epoch * len(UpperCamelCase__ ) # Now we train the model for epoch in range(UpperCamelCase__ , UpperCamelCase__ ): model.train() if args.with_tracking: A__ = 0 if args.resume_from_checkpoint and epoch == starting_epoch and resume_step is not None: # We need to skip steps until we reach the resumed step A__ = accelerator.skip_first_batches(UpperCamelCase__ , UpperCamelCase__ ) overall_step += resume_step else: # After the first iteration though, we need to go back to the original dataloader A__ = train_dataloader for batch in active_dataloader: # We could avoid this line since we set the accelerator with `device_placement=True`. A__ = {k: v.to(accelerator.device ) for k, v in batch.items()} A__ = (batch['image'] - mean) / std A__ = model(UpperCamelCase__ ) A__ = torch.nn.functional.cross_entropy(UpperCamelCase__ , batch['label'] ) # We keep track of the loss at each epoch if args.with_tracking: total_loss += loss.detach().float() accelerator.backward(UpperCamelCase__ ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 if isinstance(UpperCamelCase__ , UpperCamelCase__ ): A__ = F'''step_{overall_step}''' if overall_step % checkpointing_steps == 0: if args.output_dir is not None: A__ = os.path.join(args.output_dir , UpperCamelCase__ ) accelerator.save_state(UpperCamelCase__ ) model.eval() A__ = 0 A__ = 0 for step, batch in enumerate(UpperCamelCase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. A__ = {k: v.to(accelerator.device ) for k, v in batch.items()} A__ = (batch['image'] - mean) / std with torch.no_grad(): A__ = model(UpperCamelCase__ ) A__ = outputs.argmax(dim=-1 ) A__ , A__ = accelerator.gather_for_metrics((predictions, batch['label']) ) A__ = predictions == references num_elems += accurate_preds.shape[0] accurate += accurate_preds.long().sum() A__ = accurate.item() / num_elems # Use accelerator.print to print only on the main process. accelerator.print(F'''epoch {epoch}: {100 * eval_metric:.2f}''' ) if args.with_tracking: accelerator.log( { 'accuracy': 100 * eval_metric, 'train_loss': total_loss.item() / len(UpperCamelCase__ ), 'epoch': epoch, } , step=UpperCamelCase__ , ) if checkpointing_steps == "epoch": A__ = F'''epoch_{epoch}''' if args.output_dir is not None: A__ = os.path.join(args.output_dir , UpperCamelCase__ ) accelerator.save_state(UpperCamelCase__ ) if args.with_tracking: accelerator.end_training() def UpperCAmelCase ( ): """simple docstring""" A__ = argparse.ArgumentParser(description='Simple example of training script.' ) parser.add_argument('--data_dir' , required=UpperCamelCase__ , help='The data folder on disk.' ) parser.add_argument('--fp16' , action='store_true' , help='If passed, will use FP16 training.' ) parser.add_argument( '--mixed_precision' , type=UpperCamelCase__ , default=UpperCamelCase__ , choices=['no', 'fp16', 'bf16', 'fp8'] , help='Whether to use mixed precision. Choose' 'between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.' 'and an Nvidia Ampere GPU.' , ) parser.add_argument('--cpu' , action='store_true' , help='If passed, will train on the CPU.' ) parser.add_argument( '--checkpointing_steps' , type=UpperCamelCase__ , default=UpperCamelCase__ , help='Whether the various states should be saved at the end of every n steps, or \'epoch\' for each epoch.' , ) parser.add_argument( '--output_dir' , type=UpperCamelCase__ , default='.' , help='Optional save directory where all checkpoint folders will be stored. Default is the current working directory.' , ) parser.add_argument( '--resume_from_checkpoint' , type=UpperCamelCase__ , default=UpperCamelCase__ , help='If the training should continue from a checkpoint folder.' , ) parser.add_argument( '--with_tracking' , action='store_true' , help='Whether to load in all available experiment trackers from the environment and use them for logging.' , ) parser.add_argument( '--project_dir' , type=UpperCamelCase__ , default='logs' , help='Location on where to store experiment tracking logs` and relevent project information' , ) A__ = parser.parse_args() A__ = {'lr': 3E-2, 'num_epochs': 3, 'seed': 42, 'batch_size': 64, 'image_size': 224} training_function(UpperCamelCase__ , UpperCamelCase__ ) if __name__ == "__main__": main()
154
1
import argparse import os import re import packaging.version _A : Optional[int] = 'examples/' _A : str = { 'examples': (re.compile(r'^check_min_version\("[^"]+"\)\s*$', re.MULTILINE), 'check_min_version("VERSION")\n'), 'init': (re.compile(r'^__version__\s+=\s+"([^"]+)"\s*$', re.MULTILINE), '__version__ = "VERSION"\n'), 'setup': (re.compile(r'^(\s*)version\s*=\s*"[^"]+",', re.MULTILINE), r'\1version="VERSION",'), 'doc': (re.compile(r'^(\s*)release\s*=\s*"[^"]+"$', re.MULTILINE), 'release = "VERSION"\n'), } _A : Any = { 'init': 'src/diffusers/__init__.py', 'setup': 'setup.py', } _A : List[str] = 'README.md' def _a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Any: """simple docstring""" with open(UpperCAmelCase , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: lowerCamelCase__ : Tuple = f.read() lowerCamelCase__ , lowerCamelCase__ : Optional[int] = REPLACE_PATTERNS[pattern] lowerCamelCase__ : Union[str, Any] = replace.replace('''VERSION''' , UpperCAmelCase ) lowerCamelCase__ : Optional[Any] = re_pattern.sub(UpperCAmelCase , UpperCAmelCase ) with open(UpperCAmelCase , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.write(UpperCAmelCase ) def _a ( UpperCAmelCase ) -> Dict: """simple docstring""" for folder, directories, fnames in os.walk(UpperCAmelCase ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove('''research_projects''' ) if "legacy" in directories: directories.remove('''legacy''' ) for fname in fnames: if fname.endswith('''.py''' ): update_version_in_file(os.path.join(UpperCAmelCase , UpperCAmelCase ) , UpperCAmelCase , pattern='''examples''' ) def _a ( UpperCAmelCase , UpperCAmelCase=False ) -> Dict: """simple docstring""" for pattern, fname in REPLACE_FILES.items(): update_version_in_file(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) if not patch: update_version_in_examples(UpperCAmelCase ) def _a ( ) -> Union[str, Any]: """simple docstring""" lowerCamelCase__ : Any = '''🤗 Transformers currently provides the following architectures''' lowerCamelCase__ : Dict = '''1. Want to contribute a new model?''' with open(UpperCAmelCase , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: lowerCamelCase__ : str = f.readlines() # Find the start of the list. lowerCamelCase__ : int = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 lowerCamelCase__ : str = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith('''1.''' ): lowerCamelCase__ : Any = lines[index].replace( '''https://huggingface.co/docs/diffusers/main/model_doc''' , '''https://huggingface.co/docs/diffusers/model_doc''' , ) index += 1 with open(UpperCAmelCase , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.writelines(UpperCAmelCase ) def _a ( ) -> Any: """simple docstring""" with open(REPLACE_FILES['''init'''] , '''r''' ) as f: lowerCamelCase__ : List[str] = f.read() lowerCamelCase__ : Any = REPLACE_PATTERNS['''init'''][0].search(UpperCAmelCase ).groups()[0] return packaging.version.parse(UpperCAmelCase ) def _a ( UpperCAmelCase=False ) -> str: """simple docstring""" lowerCamelCase__ : List[Any] = get_version() if patch and default_version.is_devrelease: raise ValueError('''Can\'t create a patch version from the dev branch, checkout a released version!''' ) if default_version.is_devrelease: lowerCamelCase__ : Union[str, Any] = default_version.base_version elif patch: lowerCamelCase__ : str = f"{default_version.major}.{default_version.minor}.{default_version.micro + 1}" else: lowerCamelCase__ : Dict = f"{default_version.major}.{default_version.minor + 1}.0" # Now let's ask nicely if that's the right one. lowerCamelCase__ : str = input(f"Which version are you releasing? [{default_version}]" ) if len(UpperCAmelCase ) == 0: lowerCamelCase__ : int = default_version print(f"Updating version to {version}." ) global_version_update(UpperCAmelCase , patch=UpperCAmelCase ) def _a ( ) -> List[Any]: """simple docstring""" lowerCamelCase__ : List[str] = get_version() lowerCamelCase__ : Optional[int] = f"{current_version.major}.{current_version.minor + 1}.0.dev0" lowerCamelCase__ : Union[str, Any] = current_version.base_version # Check with the user we got that right. lowerCamelCase__ : Dict = input(f"Which version are we developing now? [{dev_version}]" ) if len(UpperCAmelCase ) == 0: lowerCamelCase__ : Tuple = dev_version print(f"Updating version to {version}." ) global_version_update(UpperCAmelCase ) # print("Cleaning main README, don't forget to run `make fix-copies`.") # clean_main_ref_in_model_list() if __name__ == "__main__": _A : Any = argparse.ArgumentParser() parser.add_argument('--post_release', action='store_true', help='Whether this is pre or post release.') parser.add_argument('--patch', action='store_true', help='Whether or not this is a patch release.') _A : Optional[Any] = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print('Nothing to do after a patch :-)') else: post_release_work()
142
def _a ( UpperCAmelCase , UpperCAmelCase ) -> str: """simple docstring""" if a < 0 or b < 0: raise ValueError('''the value of both inputs must be positive''' ) lowerCamelCase__ : List[str] = str(bin(UpperCAmelCase ) )[2:] # remove the leading "0b" lowerCamelCase__ : List[Any] = str(bin(UpperCAmelCase ) )[2:] lowerCamelCase__ : Dict = max(len(UpperCAmelCase ) , len(UpperCAmelCase ) ) return "0b" + "".join( str(int('''1''' in (char_a, char_b) ) ) for char_a, char_b in zip(a_binary.zfill(UpperCAmelCase ) , b_binary.zfill(UpperCAmelCase ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
142
1
import numpy as np import torch from torch.utils.data import Dataset from utils import logger class lowerCamelCase (SCREAMING_SNAKE_CASE__ ): """simple docstring""" def __init__( self : int , __magic_name__ : Union[str, Any] , __magic_name__ : List[str] ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ = params SCREAMING_SNAKE_CASE_ = np.array(__magic_name__ ) SCREAMING_SNAKE_CASE_ = np.array([len(__magic_name__ ) for t in data] ) self.check() self.remove_long_sequences() self.remove_empty_sequences() self.remove_unknown_sequences() self.check() self.print_statistics() def __getitem__( self : str , __magic_name__ : Tuple ) -> Tuple: return (self.token_ids[index], self.lengths[index]) def __len__( self : Union[str, Any] ) -> Any: return len(self.lengths ) def __A ( self : Tuple ) -> List[str]: assert len(self.token_ids ) == len(self.lengths ) assert all(self.lengths[i] == len(self.token_ids[i] ) for i in range(len(self.lengths ) ) ) def __A ( self : Union[str, Any] ) -> Tuple: SCREAMING_SNAKE_CASE_ = self.params.max_model_input_size SCREAMING_SNAKE_CASE_ = self.lengths > max_len logger.info(F'''Splitting {sum(__magic_name__ )} too long sequences.''' ) def divide_chunks(__magic_name__ : str , __magic_name__ : List[str] ): return [l[i : i + n] for i in range(0 , len(__magic_name__ ) , __magic_name__ )] SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = [] if self.params.mlm: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.params.special_tok_ids["cls_token"], self.params.special_tok_ids["sep_token"] else: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.params.special_tok_ids["bos_token"], self.params.special_tok_ids["eos_token"] for seq_, len_ in zip(self.token_ids , self.lengths ): assert (seq_[0] == cls_id) and (seq_[-1] == sep_id), seq_ if len_ <= max_len: new_tok_ids.append(seq_ ) new_lengths.append(len_ ) else: SCREAMING_SNAKE_CASE_ = [] for sub_s in divide_chunks(seq_ , max_len - 2 ): if sub_s[0] != cls_id: SCREAMING_SNAKE_CASE_ = np.insert(__magic_name__ , 0 , __magic_name__ ) if sub_s[-1] != sep_id: SCREAMING_SNAKE_CASE_ = np.insert(__magic_name__ , len(__magic_name__ ) , __magic_name__ ) assert len(__magic_name__ ) <= max_len assert (sub_s[0] == cls_id) and (sub_s[-1] == sep_id), sub_s sub_seqs.append(__magic_name__ ) new_tok_ids.extend(__magic_name__ ) new_lengths.extend([len(__magic_name__ ) for l in sub_seqs] ) SCREAMING_SNAKE_CASE_ = np.array(__magic_name__ ) SCREAMING_SNAKE_CASE_ = np.array(__magic_name__ ) def __A ( self : Any ) -> Any: SCREAMING_SNAKE_CASE_ = len(self ) SCREAMING_SNAKE_CASE_ = self.lengths > 11 SCREAMING_SNAKE_CASE_ = self.token_ids[indices] SCREAMING_SNAKE_CASE_ = self.lengths[indices] SCREAMING_SNAKE_CASE_ = len(self ) logger.info(F'''Remove {init_size - new_size} too short (<=11 tokens) sequences.''' ) def __A ( self : Optional[int] ) -> Tuple: if "unk_token" not in self.params.special_tok_ids: return else: SCREAMING_SNAKE_CASE_ = self.params.special_tok_ids["unk_token"] SCREAMING_SNAKE_CASE_ = len(self ) SCREAMING_SNAKE_CASE_ = np.array([np.count_nonzero(a == unk_token_id ) for a in self.token_ids] ) SCREAMING_SNAKE_CASE_ = (unk_occs / self.lengths) < 0.5 SCREAMING_SNAKE_CASE_ = self.token_ids[indices] SCREAMING_SNAKE_CASE_ = self.lengths[indices] SCREAMING_SNAKE_CASE_ = len(self ) logger.info(F'''Remove {init_size - new_size} sequences with a high level of unknown tokens (50%).''' ) def __A ( self : Any ) -> Any: if not self.params.is_master: return logger.info(F'''{len(self )} sequences''' ) # data_len = sum(self.lengths) # nb_unique_tokens = len(Counter(list(chain(*self.token_ids)))) # logger.info(f'{data_len} tokens ({nb_unique_tokens} unique)') # unk_idx = self.params.special_tok_ids['unk_token'] # nb_unknown = sum([(t==unk_idx).sum() for t in self.token_ids]) # logger.info(f'{nb_unknown} unknown tokens (covering {100*nb_unknown/data_len:.2f}% of the data)') def __A ( self : Tuple , __magic_name__ : List[Any] ) -> Dict: SCREAMING_SNAKE_CASE_ = [t[0] for t in batch] SCREAMING_SNAKE_CASE_ = [t[1] for t in batch] assert len(__magic_name__ ) == len(__magic_name__ ) # Max for paddings SCREAMING_SNAKE_CASE_ = max(__magic_name__ ) # Pad token ids if self.params.mlm: SCREAMING_SNAKE_CASE_ = self.params.special_tok_ids["pad_token"] else: SCREAMING_SNAKE_CASE_ = self.params.special_tok_ids["unk_token"] SCREAMING_SNAKE_CASE_ = [list(t.astype(__magic_name__ ) ) + [pad_idx] * (max_seq_len_ - len(__magic_name__ )) for t in token_ids] assert len(tk_ ) == len(__magic_name__ ) assert all(len(__magic_name__ ) == max_seq_len_ for t in tk_ ) SCREAMING_SNAKE_CASE_ = torch.tensor(tk_ ) # (bs, max_seq_len_) SCREAMING_SNAKE_CASE_ = torch.tensor(__magic_name__ ) # (bs) return tk_t, lg_t
369
import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class lowerCamelCase (SCREAMING_SNAKE_CASE__ ): """simple docstring""" lowerCamelCase__ = ['''image_processor''', '''tokenizer'''] lowerCamelCase__ = '''ViltImageProcessor''' lowerCamelCase__ = ('''BertTokenizer''', '''BertTokenizerFast''') def __init__( self : Optional[int] , __magic_name__ : str=None , __magic_name__ : List[str]=None , **__magic_name__ : Any ) -> str: SCREAMING_SNAKE_CASE_ = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , __magic_name__ , ) SCREAMING_SNAKE_CASE_ = kwargs.pop("feature_extractor" ) SCREAMING_SNAKE_CASE_ = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(__magic_name__ , __magic_name__ ) SCREAMING_SNAKE_CASE_ = self.image_processor def __call__( self : List[str] , __magic_name__ : List[str] , __magic_name__ : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , __magic_name__ : bool = True , __magic_name__ : Union[bool, str, PaddingStrategy] = False , __magic_name__ : Union[bool, str, TruncationStrategy] = None , __magic_name__ : Optional[int] = None , __magic_name__ : int = 0 , __magic_name__ : Optional[int] = None , __magic_name__ : Optional[bool] = None , __magic_name__ : Optional[bool] = None , __magic_name__ : bool = False , __magic_name__ : bool = False , __magic_name__ : bool = False , __magic_name__ : bool = False , __magic_name__ : bool = True , __magic_name__ : Optional[Union[str, TensorType]] = None , **__magic_name__ : str , ) -> BatchEncoding: SCREAMING_SNAKE_CASE_ = self.tokenizer( text=__magic_name__ , add_special_tokens=__magic_name__ , padding=__magic_name__ , truncation=__magic_name__ , max_length=__magic_name__ , stride=__magic_name__ , pad_to_multiple_of=__magic_name__ , return_token_type_ids=__magic_name__ , return_attention_mask=__magic_name__ , return_overflowing_tokens=__magic_name__ , return_special_tokens_mask=__magic_name__ , return_offsets_mapping=__magic_name__ , return_length=__magic_name__ , verbose=__magic_name__ , return_tensors=__magic_name__ , **__magic_name__ , ) # add pixel_values + pixel_mask SCREAMING_SNAKE_CASE_ = self.image_processor(__magic_name__ , return_tensors=__magic_name__ ) encoding.update(__magic_name__ ) return encoding def __A ( self : Optional[int] , *__magic_name__ : List[Any] , **__magic_name__ : Optional[Any] ) -> Any: return self.tokenizer.batch_decode(*__magic_name__ , **__magic_name__ ) def __A ( self : Dict , *__magic_name__ : List[Any] , **__magic_name__ : Union[str, Any] ) -> str: return self.tokenizer.decode(*__magic_name__ , **__magic_name__ ) @property def __A ( self : Optional[int] ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ = self.tokenizer.model_input_names SCREAMING_SNAKE_CASE_ = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def __A ( self : Dict ) -> List[Any]: warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , __magic_name__ , ) return self.image_processor_class @property def __A ( self : int ) -> List[Any]: warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , __magic_name__ , ) return self.image_processor
305
0
'''simple docstring''' # DISCLAIMER: This file is strongly influenced by https://github.com/ermongroup/ddim from dataclasses import dataclass from typing import Optional, Tuple, Union import flax import jax import jax.numpy as jnp from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils_flax import ( CommonSchedulerState, FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, add_noise_common, get_velocity_common, ) @flax.struct.dataclass class UpperCAmelCase_ : """simple docstring""" lowerCamelCase : CommonSchedulerState # setable values lowerCamelCase : jnp.ndarray lowerCamelCase : jnp.ndarray lowerCamelCase : Optional[int] = None @classmethod def lowercase_ ( cls , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Optional[Any]: return cls(common=SCREAMING_SNAKE_CASE_ , init_noise_sigma=SCREAMING_SNAKE_CASE_ , timesteps=SCREAMING_SNAKE_CASE_ ) @dataclass class UpperCAmelCase_ (_UpperCAmelCase ): """simple docstring""" lowerCamelCase : DDPMSchedulerState class UpperCAmelCase_ (_UpperCAmelCase , _UpperCAmelCase ): """simple docstring""" lowerCamelCase : Dict = [e.name for e in FlaxKarrasDiffusionSchedulers] lowerCamelCase : jnp.dtype @property def lowercase_ ( self ) -> Any: return True @register_to_config def __init__( self , SCREAMING_SNAKE_CASE_ = 10_00 , SCREAMING_SNAKE_CASE_ = 0.0_0_0_1 , SCREAMING_SNAKE_CASE_ = 0.0_2 , SCREAMING_SNAKE_CASE_ = "linear" , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = "fixed_small" , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = "epsilon" , SCREAMING_SNAKE_CASE_ = jnp.floataa , ) -> int: __lowerCamelCase : List[str] = dtype def lowercase_ ( self , SCREAMING_SNAKE_CASE_ = None ) -> DDPMSchedulerState: if common is None: __lowerCamelCase : Optional[int] = CommonSchedulerState.create(self ) # standard deviation of the initial noise distribution __lowerCamelCase : Any = jnp.array(1.0 , dtype=self.dtype ) __lowerCamelCase : int = jnp.arange(0 , self.config.num_train_timesteps ).round()[::-1] return DDPMSchedulerState.create( common=SCREAMING_SNAKE_CASE_ , init_noise_sigma=SCREAMING_SNAKE_CASE_ , timesteps=SCREAMING_SNAKE_CASE_ , ) def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ) -> jnp.ndarray: return sample def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = () ) -> DDPMSchedulerState: __lowerCamelCase : int = self.config.num_train_timesteps // num_inference_steps # creates integer timesteps by multiplying by ratio # rounding to avoid issues when num_inference_step is power of 3 __lowerCamelCase : Union[str, Any] = (jnp.arange(0 , SCREAMING_SNAKE_CASE_ ) * step_ratio).round()[::-1] return state.replace( num_inference_steps=SCREAMING_SNAKE_CASE_ , timesteps=SCREAMING_SNAKE_CASE_ , ) def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None ) -> Tuple: __lowerCamelCase : Any = state.common.alphas_cumprod[t] __lowerCamelCase : Union[str, Any] = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) ) # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample __lowerCamelCase : Optional[int] = (1 - alpha_prod_t_prev) / (1 - alpha_prod_t) * state.common.betas[t] if variance_type is None: __lowerCamelCase : Union[str, Any] = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small": __lowerCamelCase : str = jnp.clip(SCREAMING_SNAKE_CASE_ , a_min=1E-20 ) # for rl-diffuser https://arxiv.org/abs/2205.09991 elif variance_type == "fixed_small_log": __lowerCamelCase : Optional[Any] = jnp.log(jnp.clip(SCREAMING_SNAKE_CASE_ , a_min=1E-20 ) ) elif variance_type == "fixed_large": __lowerCamelCase : Optional[int] = state.common.betas[t] elif variance_type == "fixed_large_log": # Glide max_log __lowerCamelCase : Union[str, Any] = jnp.log(state.common.betas[t] ) elif variance_type == "learned": return predicted_variance elif variance_type == "learned_range": __lowerCamelCase : str = variance __lowerCamelCase : Union[str, Any] = state.common.betas[t] __lowerCamelCase : Dict = (predicted_variance + 1) / 2 __lowerCamelCase : Dict = frac * max_log + (1 - frac) * min_log return variance def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = True , ) -> Union[FlaxDDPMSchedulerOutput, Tuple]: __lowerCamelCase : List[str] = timestep if key is None: __lowerCamelCase : Any = jax.random.PRNGKey(0 ) if model_output.shape[1] == sample.shape[1] * 2 and self.config.variance_type in ["learned", "learned_range"]: __lowerCamelCase , __lowerCamelCase : List[str] = jnp.split(SCREAMING_SNAKE_CASE_ , sample.shape[1] , axis=1 ) else: __lowerCamelCase : List[Any] = None # 1. compute alphas, betas __lowerCamelCase : str = state.common.alphas_cumprod[t] __lowerCamelCase : Union[str, Any] = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) ) __lowerCamelCase : Union[str, Any] = 1 - alpha_prod_t __lowerCamelCase : List[Any] = 1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": __lowerCamelCase : Any = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": __lowerCamelCase : str = model_output elif self.config.prediction_type == "v_prediction": __lowerCamelCase : Optional[Any] = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output else: raise ValueError( f'prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample` ' ' for the FlaxDDPMScheduler.' ) # 3. Clip "predicted x_0" if self.config.clip_sample: __lowerCamelCase : List[str] = jnp.clip(SCREAMING_SNAKE_CASE_ , -1 , 1 ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf __lowerCamelCase : Tuple = (alpha_prod_t_prev ** 0.5 * state.common.betas[t]) / beta_prod_t __lowerCamelCase : List[Any] = state.common.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf __lowerCamelCase : str = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise def random_variance(): __lowerCamelCase : Union[str, Any] = jax.random.split(SCREAMING_SNAKE_CASE_ , num=1 ) __lowerCamelCase : Any = jax.random.normal(SCREAMING_SNAKE_CASE_ , shape=model_output.shape , dtype=self.dtype ) return (self._get_variance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , predicted_variance=SCREAMING_SNAKE_CASE_ ) ** 0.5) * noise __lowerCamelCase : Optional[Any] = jnp.where(t > 0 , random_variance() , jnp.zeros(model_output.shape , dtype=self.dtype ) ) __lowerCamelCase : List[str] = pred_prev_sample + variance if not return_dict: return (pred_prev_sample, state) return FlaxDDPMSchedulerOutput(prev_sample=SCREAMING_SNAKE_CASE_ , state=SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ) -> jnp.ndarray: return add_noise_common(state.common , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ) -> jnp.ndarray: return get_velocity_common(state.common , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def __len__( self ) -> Any: return self.config.num_train_timesteps
185
'''simple docstring''' def UpperCAmelCase__ ( UpperCAmelCase_ : List[Any] ) -> str: __lowerCamelCase : Tuple = 0 __lowerCamelCase : Optional[int] = len(UpperCAmelCase_ ) for i in range(n - 1 ): for j in range(i + 1 , UpperCAmelCase_ ): if arr[i] > arr[j]: num_inversions += 1 return num_inversions def UpperCAmelCase__ ( UpperCAmelCase_ : str ) -> Optional[int]: if len(UpperCAmelCase_ ) <= 1: return arr, 0 __lowerCamelCase : str = len(UpperCAmelCase_ ) // 2 __lowerCamelCase : List[Any] = arr[0:mid] __lowerCamelCase : List[str] = arr[mid:] __lowerCamelCase , __lowerCamelCase : int = count_inversions_recursive(UpperCAmelCase_ ) __lowerCamelCase , __lowerCamelCase : Optional[Any] = count_inversions_recursive(UpperCAmelCase_ ) __lowerCamelCase , __lowerCamelCase : Any = _count_cross_inversions(UpperCAmelCase_ , UpperCAmelCase_ ) __lowerCamelCase : Optional[int] = inversion_p + inversions_q + cross_inversions return c, num_inversions def UpperCAmelCase__ ( UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[str] ) -> Optional[Any]: __lowerCamelCase : List[str] = [] __lowerCamelCase : Optional[int] = 0 while i < len(UpperCAmelCase_ ) and j < len(UpperCAmelCase_ ): if p[i] > q[j]: # if P[1] > Q[j], then P[k] > Q[k] for all i < k <= len(P) # These are all inversions. The claim emerges from the # property that P is sorted. num_inversion += len(UpperCAmelCase_ ) - i r.append(q[j] ) j += 1 else: r.append(p[i] ) i += 1 if i < len(UpperCAmelCase_ ): r.extend(p[i:] ) else: r.extend(q[j:] ) return r, num_inversion def UpperCAmelCase__ ( ) -> List[str]: __lowerCamelCase : Any = [10, 2, 1, 5, 5, 2, 11] # this arr has 8 inversions: # (10, 2), (10, 1), (10, 5), (10, 5), (10, 2), (2, 1), (5, 2), (5, 2) __lowerCamelCase : Optional[Any] = count_inversions_bf(UpperCAmelCase_ ) __lowerCamelCase , __lowerCamelCase : Dict = count_inversions_recursive(UpperCAmelCase_ ) assert num_inversions_bf == num_inversions_recursive == 8 print('number of inversions = ' , UpperCAmelCase_ ) # testing an array with zero inversion (a sorted arr_1) arr_a.sort() __lowerCamelCase : Optional[Any] = count_inversions_bf(UpperCAmelCase_ ) __lowerCamelCase , __lowerCamelCase : int = count_inversions_recursive(UpperCAmelCase_ ) assert num_inversions_bf == num_inversions_recursive == 0 print('number of inversions = ' , UpperCAmelCase_ ) # an empty list should also have zero inversions __lowerCamelCase : Dict = [] __lowerCamelCase : Optional[Any] = count_inversions_bf(UpperCAmelCase_ ) __lowerCamelCase , __lowerCamelCase : Union[str, Any] = count_inversions_recursive(UpperCAmelCase_ ) assert num_inversions_bf == num_inversions_recursive == 0 print('number of inversions = ' , UpperCAmelCase_ ) if __name__ == "__main__": main()
185
1
'''simple docstring''' def UpperCAmelCase_ ( __lowercase : float , __lowercase : float ) -> float: '''simple docstring''' if mass < 0: raise ValueError("The mass of a body cannot be negative" ) return 0.5 * mass * abs(__lowercase ) * abs(__lowercase ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
354
'''simple docstring''' import pyarrow.parquet as pq import pytest from datasets import Audio, Dataset, DatasetDict, Features, NamedSplit, Sequence, Value, config from datasets.features.image import Image from datasets.io.parquet import ParquetDatasetReader, ParquetDatasetWriter, get_writer_batch_size from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def UpperCAmelCase_ ( __lowercase : Dict , __lowercase : Dict ) -> Dict: '''simple docstring''' assert isinstance(__lowercase , __lowercase ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("keep_in_memory" , [False, True] ) def UpperCAmelCase_ ( __lowercase : int , __lowercase : Optional[int] , __lowercase : List[Any] ) -> Any: '''simple docstring''' _UpperCAmelCase = tmp_path / "cache" _UpperCAmelCase = {"col_1": "string", "col_2": "int64", "col_3": "float64"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): _UpperCAmelCase = ParquetDatasetReader(__lowercase , cache_dir=__lowercase , keep_in_memory=__lowercase ).read() _check_parquet_dataset(__lowercase , __lowercase ) @pytest.mark.parametrize( "features" , [ None, {"col_1": "string", "col_2": "int64", "col_3": "float64"}, {"col_1": "string", "col_2": "string", "col_3": "string"}, {"col_1": "int32", "col_2": "int32", "col_3": "int32"}, {"col_1": "float32", "col_2": "float32", "col_3": "float32"}, ] , ) def UpperCAmelCase_ ( __lowercase : Optional[int] , __lowercase : str , __lowercase : int ) -> int: '''simple docstring''' _UpperCAmelCase = tmp_path / "cache" _UpperCAmelCase = {"col_1": "string", "col_2": "int64", "col_3": "float64"} _UpperCAmelCase = features.copy() if features else default_expected_features _UpperCAmelCase = ( Features({feature: Value(__lowercase ) for feature, dtype in features.items()} ) if features is not None else None ) _UpperCAmelCase = ParquetDatasetReader(__lowercase , features=__lowercase , cache_dir=__lowercase ).read() _check_parquet_dataset(__lowercase , __lowercase ) @pytest.mark.parametrize("split" , [None, NamedSplit("train" ), "train", "test"] ) def UpperCAmelCase_ ( __lowercase : Any , __lowercase : Optional[Any] , __lowercase : Optional[Any] ) -> Any: '''simple docstring''' _UpperCAmelCase = tmp_path / "cache" _UpperCAmelCase = {"col_1": "string", "col_2": "int64", "col_3": "float64"} _UpperCAmelCase = ParquetDatasetReader(__lowercase , cache_dir=__lowercase , split=__lowercase ).read() _check_parquet_dataset(__lowercase , __lowercase ) assert dataset.split == split if split else "train" @pytest.mark.parametrize("path_type" , [str, list] ) def UpperCAmelCase_ ( __lowercase : Optional[int] , __lowercase : Optional[Any] , __lowercase : Tuple ) -> Tuple: '''simple docstring''' if issubclass(__lowercase , __lowercase ): _UpperCAmelCase = parquet_path elif issubclass(__lowercase , __lowercase ): _UpperCAmelCase = [parquet_path] _UpperCAmelCase = tmp_path / "cache" _UpperCAmelCase = {"col_1": "string", "col_2": "int64", "col_3": "float64"} _UpperCAmelCase = ParquetDatasetReader(__lowercase , cache_dir=__lowercase ).read() _check_parquet_dataset(__lowercase , __lowercase ) def UpperCAmelCase_ ( __lowercase : Tuple , __lowercase : Any , __lowercase : Union[str, Any]=("train",) ) -> List[str]: '''simple docstring''' assert isinstance(__lowercase , __lowercase ) for split in splits: _UpperCAmelCase = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("keep_in_memory" , [False, True] ) def UpperCAmelCase_ ( __lowercase : List[str] , __lowercase : str , __lowercase : Dict ) -> List[Any]: '''simple docstring''' _UpperCAmelCase = tmp_path / "cache" _UpperCAmelCase = {"col_1": "string", "col_2": "int64", "col_3": "float64"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): _UpperCAmelCase = ParquetDatasetReader( {"train": parquet_path} , cache_dir=__lowercase , keep_in_memory=__lowercase ).read() _check_parquet_datasetdict(__lowercase , __lowercase ) @pytest.mark.parametrize( "features" , [ None, {"col_1": "string", "col_2": "int64", "col_3": "float64"}, {"col_1": "string", "col_2": "string", "col_3": "string"}, {"col_1": "int32", "col_2": "int32", "col_3": "int32"}, {"col_1": "float32", "col_2": "float32", "col_3": "float32"}, ] , ) def UpperCAmelCase_ ( __lowercase : Dict , __lowercase : List[str] , __lowercase : Optional[Any] ) -> Dict: '''simple docstring''' _UpperCAmelCase = tmp_path / "cache" _UpperCAmelCase = {"col_1": "string", "col_2": "int64", "col_3": "float64"} _UpperCAmelCase = features.copy() if features else default_expected_features _UpperCAmelCase = ( Features({feature: Value(__lowercase ) for feature, dtype in features.items()} ) if features is not None else None ) _UpperCAmelCase = ParquetDatasetReader({"train": parquet_path} , features=__lowercase , cache_dir=__lowercase ).read() _check_parquet_datasetdict(__lowercase , __lowercase ) @pytest.mark.parametrize("split" , [None, NamedSplit("train" ), "train", "test"] ) def UpperCAmelCase_ ( __lowercase : List[Any] , __lowercase : Optional[int] , __lowercase : int ) -> List[Any]: '''simple docstring''' if split: _UpperCAmelCase = {split: parquet_path} else: _UpperCAmelCase = "train" _UpperCAmelCase = {"train": parquet_path, "test": parquet_path} _UpperCAmelCase = tmp_path / "cache" _UpperCAmelCase = {"col_1": "string", "col_2": "int64", "col_3": "float64"} _UpperCAmelCase = ParquetDatasetReader(__lowercase , cache_dir=__lowercase ).read() _check_parquet_datasetdict(__lowercase , __lowercase , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def UpperCAmelCase_ ( __lowercase : int , __lowercase : List[Any] ) -> Optional[int]: '''simple docstring''' _UpperCAmelCase = ParquetDatasetWriter(__lowercase , tmp_path / "foo.parquet" ) assert writer.write() > 0 _UpperCAmelCase = pq.ParquetFile(tmp_path / "foo.parquet" ) _UpperCAmelCase = pf.read() assert dataset.data.table == output_table def UpperCAmelCase_ ( __lowercase : Optional[int] , __lowercase : Union[str, Any] ) -> Dict: '''simple docstring''' _UpperCAmelCase = str(shared_datadir / "test_image_rgb.jpg" ) _UpperCAmelCase = {"image": [image_path]} _UpperCAmelCase = Features({"image": Image()} ) _UpperCAmelCase = Dataset.from_dict(__lowercase , features=__lowercase ) _UpperCAmelCase = ParquetDatasetWriter(__lowercase , tmp_path / "foo.parquet" ) assert writer.write() > 0 _UpperCAmelCase = Dataset.from_parquet(str(tmp_path / "foo.parquet" ) ) assert dataset.features == reloaded_dataset.features _UpperCAmelCase = ParquetDatasetReader(str(tmp_path / "foo.parquet" ) , streaming=__lowercase ).read() assert dataset.features == reloaded_iterable_dataset.features @pytest.mark.parametrize( "feature, expected" , [ (Features({"foo": Value("int32" )} ), None), (Features({"image": Image(), "foo": Value("int32" )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS), (Features({"nested": Sequence(Audio() )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS), ] , ) def UpperCAmelCase_ ( __lowercase : Any , __lowercase : Tuple ) -> Optional[int]: '''simple docstring''' assert get_writer_batch_size(__lowercase ) == expected
156
0
# This code is adapted from OpenAI's release # https://github.com/openai/human-eval/blob/master/human_eval/execution.py import contextlib import faulthandler import io import multiprocessing import os import platform import signal import tempfile def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = multiprocessing.Manager() lowercase__ = manager.list() lowercase__ = multiprocessing.Process(target=SCREAMING_SNAKE_CASE , args=(check_program, result, timeout) ) p.start() p.join(timeout=timeout + 1 ) if p.is_alive(): p.kill() if not result: result.append('''timed out''' ) return { "task_id": task_id, "passed": result[0] == "passed", "result": result[0], "completion_id": completion_id, } def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" with create_tempdir(): # These system calls are needed when cleaning up tempdir. import os import shutil lowercase__ = shutil.rmtree lowercase__ = os.rmdir lowercase__ = os.chdir # Disable functionalities that can make destructive changes to the test. reliability_guard() # Run program. try: lowercase__ = {} with swallow_io(): with time_limit(SCREAMING_SNAKE_CASE ): exec(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) result.append('''passed''' ) except TimeoutException: result.append('''timed out''' ) except BaseException as e: result.append(f'failed: {e}' ) # Needed for cleaning up. lowercase__ = rmtree lowercase__ = rmdir lowercase__ = chdir @contextlib.contextmanager def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" def signal_handler(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): raise TimeoutException('''Timed out!''' ) signal.setitimer(signal.ITIMER_REAL , SCREAMING_SNAKE_CASE ) signal.signal(signal.SIGALRM , SCREAMING_SNAKE_CASE ) try: yield finally: signal.setitimer(signal.ITIMER_REAL , 0 ) @contextlib.contextmanager def _a ( ): """simple docstring""" lowercase__ = WriteOnlyStringIO() with contextlib.redirect_stdout(SCREAMING_SNAKE_CASE ): with contextlib.redirect_stderr(SCREAMING_SNAKE_CASE ): with redirect_stdin(SCREAMING_SNAKE_CASE ): yield @contextlib.contextmanager def _a ( ): """simple docstring""" with tempfile.TemporaryDirectory() as dirname: with chdir(SCREAMING_SNAKE_CASE ): yield dirname class _a ( UpperCamelCase__ ): pass class _a ( io.StringIO ): def lowerCamelCase_ ( self: Optional[Any] , *UpperCamelCase_: Dict , **UpperCamelCase_: Union[str, Any] ) -> List[Any]: """simple docstring""" raise OSError def lowerCamelCase_ ( self: int , *UpperCamelCase_: Optional[Any] , **UpperCamelCase_: Optional[Any] ) -> Tuple: """simple docstring""" raise OSError def lowerCamelCase_ ( self: Union[str, Any] , *UpperCamelCase_: str , **UpperCamelCase_: str ) -> Tuple: """simple docstring""" raise OSError def lowerCamelCase_ ( self: str , *UpperCamelCase_: int , **UpperCamelCase_: Dict ) -> Tuple: """simple docstring""" return False class _a ( contextlib._RedirectStream ): # type: ignore _lowercase : Union[str, Any] = '''stdin''' @contextlib.contextmanager def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" if root == ".": yield return lowercase__ = os.getcwd() os.chdir(SCREAMING_SNAKE_CASE ) try: yield except BaseException as exc: raise exc finally: os.chdir(SCREAMING_SNAKE_CASE ) def _a ( SCREAMING_SNAKE_CASE=None ): """simple docstring""" if maximum_memory_bytes is not None: import resource resource.setrlimit(resource.RLIMIT_AS , (maximum_memory_bytes, maximum_memory_bytes) ) resource.setrlimit(resource.RLIMIT_DATA , (maximum_memory_bytes, maximum_memory_bytes) ) if not platform.uname().system == "Darwin": resource.setrlimit(resource.RLIMIT_STACK , (maximum_memory_bytes, maximum_memory_bytes) ) faulthandler.disable() import builtins lowercase__ = None lowercase__ = None import os lowercase__ = '''1''' lowercase__ = None lowercase__ = None lowercase__ = None lowercase__ = None lowercase__ = None lowercase__ = None lowercase__ = None lowercase__ = None lowercase__ = None lowercase__ = None lowercase__ = None lowercase__ = None lowercase__ = None lowercase__ = None lowercase__ = None lowercase__ = None lowercase__ = None lowercase__ = None lowercase__ = None lowercase__ = None lowercase__ = None lowercase__ = None lowercase__ = None lowercase__ = None lowercase__ = None lowercase__ = None lowercase__ = None import shutil lowercase__ = None lowercase__ = None lowercase__ = None import subprocess lowercase__ = None # type: ignore lowercase__ = None import sys lowercase__ = None lowercase__ = None lowercase__ = None lowercase__ = None lowercase__ = None
110
def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" if exponent == 1: return base if exponent % 2 == 0: lowercase__ = _modexpt(SCREAMING_SNAKE_CASE , exponent // 2 , SCREAMING_SNAKE_CASE ) % modulo_value return (x * x) % modulo_value else: return (base * _modexpt(SCREAMING_SNAKE_CASE , exponent - 1 , SCREAMING_SNAKE_CASE )) % modulo_value def _a ( SCREAMING_SNAKE_CASE = 17_77 , SCREAMING_SNAKE_CASE = 18_55 , SCREAMING_SNAKE_CASE = 8 ): """simple docstring""" lowercase__ = base for _ in range(1 , SCREAMING_SNAKE_CASE ): lowercase__ = _modexpt(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , 10**digits ) return result if __name__ == "__main__": print(f"""{solution() = }""")
110
1
"""simple docstring""" import inspect import unittest from transformers import BitConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import BitBackbone, BitForImageClassification, BitImageProcessor, BitModel from transformers.models.bit.modeling_bit import BIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class A__ : '''simple docstring''' def __init__( self: int , _SCREAMING_SNAKE_CASE: Optional[int] , _SCREAMING_SNAKE_CASE: Optional[int]=3 , _SCREAMING_SNAKE_CASE: Any=32 , _SCREAMING_SNAKE_CASE: Union[str, Any]=3 , _SCREAMING_SNAKE_CASE: List[Any]=10 , _SCREAMING_SNAKE_CASE: Dict=[8, 16, 32, 64] , _SCREAMING_SNAKE_CASE: Any=[1, 1, 2, 1] , _SCREAMING_SNAKE_CASE: Tuple=True , _SCREAMING_SNAKE_CASE: Dict=True , _SCREAMING_SNAKE_CASE: Optional[int]="relu" , _SCREAMING_SNAKE_CASE: Tuple=3 , _SCREAMING_SNAKE_CASE: List[str]=None , _SCREAMING_SNAKE_CASE: int=["stage2", "stage3", "stage4"] , _SCREAMING_SNAKE_CASE: Any=[2, 3, 4] , _SCREAMING_SNAKE_CASE: Dict=1 , ) -> int: """simple docstring""" __lowerCAmelCase : Union[str, Any] = parent __lowerCAmelCase : Tuple = batch_size __lowerCAmelCase : str = image_size __lowerCAmelCase : Any = num_channels __lowerCAmelCase : str = embeddings_size __lowerCAmelCase : List[Any] = hidden_sizes __lowerCAmelCase : Union[str, Any] = depths __lowerCAmelCase : Optional[Any] = is_training __lowerCAmelCase : Union[str, Any] = use_labels __lowerCAmelCase : Tuple = hidden_act __lowerCAmelCase : int = num_labels __lowerCAmelCase : str = scope __lowerCAmelCase : int = len(snake_case_) __lowerCAmelCase : List[Any] = out_features __lowerCAmelCase : int = out_indices __lowerCAmelCase : Tuple = num_groups def _SCREAMING_SNAKE_CASE ( self: int) -> Optional[int]: """simple docstring""" __lowerCAmelCase : Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) __lowerCAmelCase : Any = None if self.use_labels: __lowerCAmelCase : str = ids_tensor([self.batch_size] , self.num_labels) __lowerCAmelCase : List[Any] = self.get_config() return config, pixel_values, labels def _SCREAMING_SNAKE_CASE ( self: Optional[int]) -> Union[str, Any]: """simple docstring""" return BitConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , out_features=self.out_features , out_indices=self.out_indices , num_groups=self.num_groups , ) def _SCREAMING_SNAKE_CASE ( self: str , _SCREAMING_SNAKE_CASE: Any , _SCREAMING_SNAKE_CASE: Tuple , _SCREAMING_SNAKE_CASE: Tuple) -> Dict: """simple docstring""" __lowerCAmelCase : Union[str, Any] = BitModel(config=snake_case_) model.to(snake_case_) model.eval() __lowerCAmelCase : List[str] = model(snake_case_) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def _SCREAMING_SNAKE_CASE ( self: Dict , _SCREAMING_SNAKE_CASE: int , _SCREAMING_SNAKE_CASE: Union[str, Any] , _SCREAMING_SNAKE_CASE: List[str]) -> Tuple: """simple docstring""" __lowerCAmelCase : Dict = self.num_labels __lowerCAmelCase : Dict = BitForImageClassification(snake_case_) model.to(snake_case_) model.eval() __lowerCAmelCase : Tuple = model(snake_case_ , labels=snake_case_) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def _SCREAMING_SNAKE_CASE ( self: Tuple , _SCREAMING_SNAKE_CASE: Union[str, Any] , _SCREAMING_SNAKE_CASE: List[str] , _SCREAMING_SNAKE_CASE: Optional[int]) -> List[str]: """simple docstring""" __lowerCAmelCase : Union[str, Any] = BitBackbone(config=snake_case_) model.to(snake_case_) model.eval() __lowerCAmelCase : Any = model(snake_case_) # verify feature maps self.parent.assertEqual(len(result.feature_maps) , len(config.out_features)) self.parent.assertListEqual(list(result.feature_maps[0].shape) , [self.batch_size, self.hidden_sizes[1], 4, 4]) # verify channels self.parent.assertEqual(len(model.channels) , len(config.out_features)) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:]) # verify backbone works with out_features=None __lowerCAmelCase : Dict = None __lowerCAmelCase : List[Any] = BitBackbone(config=snake_case_) model.to(snake_case_) model.eval() __lowerCAmelCase : List[Any] = model(snake_case_) # verify feature maps self.parent.assertEqual(len(result.feature_maps) , 1) self.parent.assertListEqual(list(result.feature_maps[0].shape) , [self.batch_size, self.hidden_sizes[-1], 1, 1]) # verify channels self.parent.assertEqual(len(model.channels) , 1) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]]) def _SCREAMING_SNAKE_CASE ( self: Union[str, Any]) -> int: """simple docstring""" __lowerCAmelCase : List[str] = self.prepare_config_and_inputs() __lowerCAmelCase : Tuple = config_and_inputs __lowerCAmelCase : int = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class A__ ( _a , _a , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE = (BitModel, BitForImageClassification, BitBackbone) if is_torch_available() else () SCREAMING_SNAKE_CASE = ( {'feature-extraction': BitModel, 'image-classification': BitForImageClassification} if is_torch_available() else {} ) SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False def _SCREAMING_SNAKE_CASE ( self: str) -> Optional[int]: """simple docstring""" __lowerCAmelCase : Dict = BitModelTester(self) __lowerCAmelCase : Optional[Any] = ConfigTester(self , config_class=snake_case_ , has_text_modality=snake_case_) def _SCREAMING_SNAKE_CASE ( self: Dict) -> int: """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _SCREAMING_SNAKE_CASE ( self: List[str]) -> Union[str, Any]: """simple docstring""" return @unittest.skip(reason="Bit does not output attentions") def _SCREAMING_SNAKE_CASE ( self: Optional[int]) -> List[str]: """simple docstring""" pass @unittest.skip(reason="Bit does not use inputs_embeds") def _SCREAMING_SNAKE_CASE ( self: Dict) -> Optional[Any]: """simple docstring""" pass @unittest.skip(reason="Bit does not support input and output embeddings") def _SCREAMING_SNAKE_CASE ( self: str) -> int: """simple docstring""" pass def _SCREAMING_SNAKE_CASE ( self: Any) -> Any: """simple docstring""" __lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase : Optional[Any] = model_class(snake_case_) __lowerCAmelCase : List[str] = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCAmelCase : Optional[int] = [*signature.parameters.keys()] __lowerCAmelCase : Optional[Any] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , snake_case_) def _SCREAMING_SNAKE_CASE ( self: Tuple) -> Optional[Any]: """simple docstring""" __lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case_) def _SCREAMING_SNAKE_CASE ( self: List[str]) -> Optional[int]: """simple docstring""" __lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*snake_case_) def _SCREAMING_SNAKE_CASE ( self: Optional[int]) -> Any: """simple docstring""" __lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase : List[str] = model_class(config=snake_case_) for name, module in model.named_modules(): if isinstance(snake_case_ , (nn.BatchNormad, nn.GroupNorm)): self.assertTrue( torch.all(module.weight == 1) , msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" , ) self.assertTrue( torch.all(module.bias == 0) , msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" , ) def _SCREAMING_SNAKE_CASE ( self: Dict) -> List[Any]: """simple docstring""" def check_hidden_states_output(_SCREAMING_SNAKE_CASE: Optional[Any] , _SCREAMING_SNAKE_CASE: List[Any] , _SCREAMING_SNAKE_CASE: Optional[int]): __lowerCAmelCase : str = model_class(snake_case_) model.to(snake_case_) model.eval() with torch.no_grad(): __lowerCAmelCase : int = model(**self._prepare_for_class(snake_case_ , snake_case_)) __lowerCAmelCase : int = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __lowerCAmelCase : Optional[Any] = self.model_tester.num_stages self.assertEqual(len(snake_case_) , expected_num_stages + 1) # Bit's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:]) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) __lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() __lowerCAmelCase : Tuple = ["""preactivation""", """bottleneck"""] for model_class in self.all_model_classes: for layer_type in layers_type: __lowerCAmelCase : Dict = layer_type __lowerCAmelCase : Dict = True check_hidden_states_output(snake_case_ , snake_case_ , snake_case_) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowerCAmelCase : Union[str, Any] = True check_hidden_states_output(snake_case_ , snake_case_ , snake_case_) @unittest.skip(reason="Bit does not use feedforward chunking") def _SCREAMING_SNAKE_CASE ( self: Union[str, Any]) -> str: """simple docstring""" pass def _SCREAMING_SNAKE_CASE ( self: str) -> List[str]: """simple docstring""" __lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*snake_case_) @slow def _SCREAMING_SNAKE_CASE ( self: Optional[Any]) -> List[str]: """simple docstring""" for model_name in BIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCAmelCase : Optional[Any] = BitModel.from_pretrained(snake_case_) self.assertIsNotNone(snake_case_) def _lowercase ( ) -> Any: __lowerCAmelCase : Optional[Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class A__ ( unittest.TestCase ): '''simple docstring''' @cached_property def _SCREAMING_SNAKE_CASE ( self: Optional[Any]) -> List[str]: """simple docstring""" return ( BitImageProcessor.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0]) if is_vision_available() else None ) @slow def _SCREAMING_SNAKE_CASE ( self: Dict) -> List[Any]: """simple docstring""" __lowerCAmelCase : Any = BitForImageClassification.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0]).to(snake_case_) __lowerCAmelCase : Any = self.default_image_processor __lowerCAmelCase : Union[str, Any] = prepare_img() __lowerCAmelCase : Optional[Any] = image_processor(images=snake_case_ , return_tensors="pt").to(snake_case_) # forward pass with torch.no_grad(): __lowerCAmelCase : Union[str, Any] = model(**snake_case_) # verify the logits __lowerCAmelCase : Dict = torch.Size((1, 1000)) self.assertEqual(outputs.logits.shape , snake_case_) __lowerCAmelCase : str = torch.tensor([[-0.6526, -0.5263, -1.4398]]).to(snake_case_) self.assertTrue(torch.allclose(outputs.logits[0, :3] , snake_case_ , atol=1e-4)) @require_torch class A__ ( _a , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE = (BitBackbone,) if is_torch_available() else () SCREAMING_SNAKE_CASE = BitConfig SCREAMING_SNAKE_CASE = False def _SCREAMING_SNAKE_CASE ( self: Optional[int]) -> List[str]: """simple docstring""" __lowerCAmelCase : Union[str, Any] = BitModelTester(self)
371
"""simple docstring""" import collections.abc from typing import Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import BaseModelOutputWithNoAttention, ImageClassifierOutputWithNoAttention from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_poolformer import PoolFormerConfig __snake_case : str = logging.get_logger(__name__) # General docstring __snake_case : Optional[int] = 'PoolFormerConfig' # Base docstring __snake_case : Any = 'sail/poolformer_s12' __snake_case : Optional[Any] = [1, 512, 7, 7] # Image classification docstring __snake_case : List[Any] = 'sail/poolformer_s12' __snake_case : Optional[Any] = 'tabby, tabby cat' __snake_case : Union[str, Any] = [ 'sail/poolformer_s12', # See all PoolFormer models at https://huggingface.co/models?filter=poolformer ] def _lowercase ( __snake_case ,__snake_case = 0.0 ,__snake_case = False ) -> Tuple: if drop_prob == 0.0 or not training: return input __lowerCAmelCase : Optional[int] = 1 - drop_prob __lowerCAmelCase : Union[str, Any] = (input.shape[0],) + (1,) * (input.ndim - 1) # work with diff dim tensors, not just 2D ConvNets __lowerCAmelCase : List[str] = keep_prob + torch.rand(__snake_case ,dtype=input.dtype ,device=input.device ) random_tensor.floor_() # binarize __lowerCAmelCase : Tuple = input.div(__snake_case ) * random_tensor return output class A__ ( nn.Module ): '''simple docstring''' def __init__( self: Union[str, Any] , _SCREAMING_SNAKE_CASE: Optional[float] = None) -> None: """simple docstring""" super().__init__() __lowerCAmelCase : Dict = drop_prob def _SCREAMING_SNAKE_CASE ( self: Union[str, Any] , _SCREAMING_SNAKE_CASE: torch.Tensor) -> torch.Tensor: """simple docstring""" return drop_path(_SCREAMING_SNAKE_CASE , self.drop_prob , self.training) def _SCREAMING_SNAKE_CASE ( self: Tuple) -> str: """simple docstring""" return "p={}".format(self.drop_prob) class A__ ( nn.Module ): '''simple docstring''' def __init__( self: List[str] , _SCREAMING_SNAKE_CASE: Tuple , _SCREAMING_SNAKE_CASE: Optional[Any] , _SCREAMING_SNAKE_CASE: List[Any] , _SCREAMING_SNAKE_CASE: List[Any] , _SCREAMING_SNAKE_CASE: List[str] , _SCREAMING_SNAKE_CASE: Any=None) -> int: """simple docstring""" super().__init__() __lowerCAmelCase : Optional[int] = patch_size if isinstance(_SCREAMING_SNAKE_CASE , collections.abc.Iterable) else (patch_size, patch_size) __lowerCAmelCase : Any = stride if isinstance(_SCREAMING_SNAKE_CASE , collections.abc.Iterable) else (stride, stride) __lowerCAmelCase : Any = padding if isinstance(_SCREAMING_SNAKE_CASE , collections.abc.Iterable) else (padding, padding) __lowerCAmelCase : Optional[int] = nn.Convad(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , kernel_size=_SCREAMING_SNAKE_CASE , stride=_SCREAMING_SNAKE_CASE , padding=_SCREAMING_SNAKE_CASE) __lowerCAmelCase : int = norm_layer(_SCREAMING_SNAKE_CASE) if norm_layer else nn.Identity() def _SCREAMING_SNAKE_CASE ( self: Tuple , _SCREAMING_SNAKE_CASE: Optional[int]) -> Optional[Any]: """simple docstring""" __lowerCAmelCase : str = self.projection(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Tuple = self.norm(_SCREAMING_SNAKE_CASE) return embeddings class A__ ( nn.GroupNorm ): '''simple docstring''' def __init__( self: str , _SCREAMING_SNAKE_CASE: List[Any] , **_SCREAMING_SNAKE_CASE: List[Any]) -> Tuple: """simple docstring""" super().__init__(1 , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE) class A__ ( nn.Module ): '''simple docstring''' def __init__( self: int , _SCREAMING_SNAKE_CASE: str) -> Dict: """simple docstring""" super().__init__() __lowerCAmelCase : Dict = nn.AvgPoolad(_SCREAMING_SNAKE_CASE , stride=1 , padding=pool_size // 2 , count_include_pad=_SCREAMING_SNAKE_CASE) def _SCREAMING_SNAKE_CASE ( self: Optional[int] , _SCREAMING_SNAKE_CASE: Dict) -> Dict: """simple docstring""" return self.pool(_SCREAMING_SNAKE_CASE) - hidden_states class A__ ( nn.Module ): '''simple docstring''' def __init__( self: List[str] , _SCREAMING_SNAKE_CASE: Union[str, Any] , _SCREAMING_SNAKE_CASE: List[Any] , _SCREAMING_SNAKE_CASE: Tuple , _SCREAMING_SNAKE_CASE: str) -> Dict: """simple docstring""" super().__init__() __lowerCAmelCase : Dict = nn.Convad(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , 1) __lowerCAmelCase : Tuple = nn.Convad(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , 1) __lowerCAmelCase : Any = PoolFormerDropPath(_SCREAMING_SNAKE_CASE) if isinstance(config.hidden_act , _SCREAMING_SNAKE_CASE): __lowerCAmelCase : Optional[int] = ACTaFN[config.hidden_act] else: __lowerCAmelCase : int = config.hidden_act def _SCREAMING_SNAKE_CASE ( self: Optional[Any] , _SCREAMING_SNAKE_CASE: int) -> Tuple: """simple docstring""" __lowerCAmelCase : int = self.conva(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Tuple = self.act_fn(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Union[str, Any] = self.drop(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : int = self.conva(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : str = self.drop(_SCREAMING_SNAKE_CASE) return hidden_states class A__ ( nn.Module ): '''simple docstring''' def __init__( self: List[str] , _SCREAMING_SNAKE_CASE: Dict , _SCREAMING_SNAKE_CASE: str , _SCREAMING_SNAKE_CASE: Union[str, Any] , _SCREAMING_SNAKE_CASE: Tuple , _SCREAMING_SNAKE_CASE: Tuple , _SCREAMING_SNAKE_CASE: Optional[Any]) -> str: """simple docstring""" super().__init__() __lowerCAmelCase : List[str] = PoolFormerPooling(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : int = PoolFormerOutput(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE) __lowerCAmelCase : Dict = PoolFormerGroupNorm(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Dict = PoolFormerGroupNorm(_SCREAMING_SNAKE_CASE) # Useful for training neural nets __lowerCAmelCase : Optional[int] = PoolFormerDropPath(_SCREAMING_SNAKE_CASE) if drop_path > 0.0 else nn.Identity() __lowerCAmelCase : Union[str, Any] = config.use_layer_scale if config.use_layer_scale: __lowerCAmelCase : List[Any] = nn.Parameter( config.layer_scale_init_value * torch.ones((_SCREAMING_SNAKE_CASE)) , requires_grad=_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Optional[int] = nn.Parameter( config.layer_scale_init_value * torch.ones((_SCREAMING_SNAKE_CASE)) , requires_grad=_SCREAMING_SNAKE_CASE) def _SCREAMING_SNAKE_CASE ( self: Tuple , _SCREAMING_SNAKE_CASE: Union[str, Any]) -> Optional[int]: """simple docstring""" if self.use_layer_scale: __lowerCAmelCase : int = self.pooling(self.before_norm(_SCREAMING_SNAKE_CASE)) __lowerCAmelCase : List[str] = self.layer_scale_a.unsqueeze(-1).unsqueeze(-1) * pooling_output # First residual connection __lowerCAmelCase : Optional[Any] = hidden_states + self.drop_path(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Tuple = () __lowerCAmelCase : Union[str, Any] = self.output(self.after_norm(_SCREAMING_SNAKE_CASE)) __lowerCAmelCase : Dict = self.layer_scale_a.unsqueeze(-1).unsqueeze(-1) * layer_output # Second residual connection __lowerCAmelCase : List[str] = hidden_states + self.drop_path(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : str = (output,) + outputs return outputs else: __lowerCAmelCase : Optional[Any] = self.drop_path(self.pooling(self.before_norm(_SCREAMING_SNAKE_CASE))) # First residual connection __lowerCAmelCase : Optional[Any] = pooling_output + hidden_states __lowerCAmelCase : List[Any] = () # Second residual connection inside the PoolFormerOutput block __lowerCAmelCase : Any = self.drop_path(self.output(self.after_norm(_SCREAMING_SNAKE_CASE))) __lowerCAmelCase : str = hidden_states + layer_output __lowerCAmelCase : List[Any] = (output,) + outputs return outputs class A__ ( nn.Module ): '''simple docstring''' def __init__( self: Tuple , _SCREAMING_SNAKE_CASE: Optional[Any]) -> Optional[Any]: """simple docstring""" super().__init__() __lowerCAmelCase : Optional[int] = config # stochastic depth decay rule __lowerCAmelCase : Tuple = [x.item() for x in torch.linspace(0 , config.drop_path_rate , sum(config.depths))] # patch embeddings __lowerCAmelCase : List[str] = [] for i in range(config.num_encoder_blocks): embeddings.append( PoolFormerEmbeddings( patch_size=config.patch_sizes[i] , stride=config.strides[i] , padding=config.padding[i] , num_channels=config.num_channels if i == 0 else config.hidden_sizes[i - 1] , hidden_size=config.hidden_sizes[i] , )) __lowerCAmelCase : Tuple = nn.ModuleList(_SCREAMING_SNAKE_CASE) # Transformer blocks __lowerCAmelCase : Union[str, Any] = [] __lowerCAmelCase : Any = 0 for i in range(config.num_encoder_blocks): # each block consists of layers __lowerCAmelCase : List[Any] = [] if i != 0: cur += config.depths[i - 1] for j in range(config.depths[i]): layers.append( PoolFormerLayer( _SCREAMING_SNAKE_CASE , num_channels=config.hidden_sizes[i] , pool_size=config.pool_size , hidden_size=config.hidden_sizes[i] , intermediate_size=int(config.hidden_sizes[i] * config.mlp_ratio) , drop_path=dpr[cur + j] , )) blocks.append(nn.ModuleList(_SCREAMING_SNAKE_CASE)) __lowerCAmelCase : Union[str, Any] = nn.ModuleList(_SCREAMING_SNAKE_CASE) def _SCREAMING_SNAKE_CASE ( self: Union[str, Any] , _SCREAMING_SNAKE_CASE: Optional[int] , _SCREAMING_SNAKE_CASE: str=False , _SCREAMING_SNAKE_CASE: Union[str, Any]=True) -> Dict: """simple docstring""" __lowerCAmelCase : Dict = () if output_hidden_states else None __lowerCAmelCase : Union[str, Any] = pixel_values for idx, layers in enumerate(zip(self.patch_embeddings , self.block)): __lowerCAmelCase , __lowerCAmelCase : str = layers # Get patch embeddings from hidden_states __lowerCAmelCase : str = embedding_layer(_SCREAMING_SNAKE_CASE) # Send the embeddings through the blocks for _, blk in enumerate(_SCREAMING_SNAKE_CASE): __lowerCAmelCase : int = blk(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Optional[int] = layer_outputs[0] if output_hidden_states: __lowerCAmelCase : int = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states] if v is not None) return BaseModelOutputWithNoAttention(last_hidden_state=_SCREAMING_SNAKE_CASE , hidden_states=_SCREAMING_SNAKE_CASE) class A__ ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' SCREAMING_SNAKE_CASE = PoolFormerConfig SCREAMING_SNAKE_CASE = 'poolformer' SCREAMING_SNAKE_CASE = 'pixel_values' SCREAMING_SNAKE_CASE = True def _SCREAMING_SNAKE_CASE ( self: int , _SCREAMING_SNAKE_CASE: List[Any]) -> List[str]: """simple docstring""" if isinstance(_SCREAMING_SNAKE_CASE , (nn.Linear, nn.Convad)): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(_SCREAMING_SNAKE_CASE , nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) def _SCREAMING_SNAKE_CASE ( self: Dict , _SCREAMING_SNAKE_CASE: Optional[Any] , _SCREAMING_SNAKE_CASE: Union[str, Any]=False) -> Dict: """simple docstring""" if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE): __lowerCAmelCase : List[Any] = value __snake_case : Union[str, Any] = R'\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use\n it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`PoolFormerConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n' __snake_case : str = R'\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`PoolFormerImageProcessor.__call__`] for details.\n' @add_start_docstrings( 'The bare PoolFormer Model transformer outputting raw hidden-states without any specific head on top.' , __SCREAMING_SNAKE_CASE , ) class A__ ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self: str , _SCREAMING_SNAKE_CASE: Optional[int]) -> Any: """simple docstring""" super().__init__(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : List[Any] = config __lowerCAmelCase : Any = PoolFormerEncoder(_SCREAMING_SNAKE_CASE) # Initialize weights and apply final processing self.post_init() def _SCREAMING_SNAKE_CASE ( self: Union[str, Any]) -> Optional[Any]: """simple docstring""" return self.embeddings.patch_embeddings @add_start_docstrings_to_model_forward(_SCREAMING_SNAKE_CASE) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=_SCREAMING_SNAKE_CASE , config_class=_CONFIG_FOR_DOC , modality="vision" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def _SCREAMING_SNAKE_CASE ( self: Dict , _SCREAMING_SNAKE_CASE: Optional[torch.FloatTensor] = None , _SCREAMING_SNAKE_CASE: Optional[bool] = None , _SCREAMING_SNAKE_CASE: Optional[bool] = None , ) -> Union[Tuple, BaseModelOutputWithNoAttention]: """simple docstring""" __lowerCAmelCase : str = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __lowerCAmelCase : str = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError("You have to specify pixel_values") __lowerCAmelCase : Union[str, Any] = self.encoder( _SCREAMING_SNAKE_CASE , output_hidden_states=_SCREAMING_SNAKE_CASE , return_dict=_SCREAMING_SNAKE_CASE , ) __lowerCAmelCase : Union[str, Any] = encoder_outputs[0] if not return_dict: return (sequence_output, None) + encoder_outputs[1:] return BaseModelOutputWithNoAttention( last_hidden_state=_SCREAMING_SNAKE_CASE , hidden_states=encoder_outputs.hidden_states , ) class A__ ( nn.Module ): '''simple docstring''' def __init__( self: List[str] , _SCREAMING_SNAKE_CASE: Tuple) -> Union[str, Any]: """simple docstring""" super().__init__() __lowerCAmelCase : List[Any] = nn.Linear(config.hidden_size , config.hidden_size) def _SCREAMING_SNAKE_CASE ( self: List[str] , _SCREAMING_SNAKE_CASE: Optional[Any]) -> Optional[int]: """simple docstring""" __lowerCAmelCase : Optional[Any] = self.dense(_SCREAMING_SNAKE_CASE) return output @add_start_docstrings( '\n PoolFormer Model transformer with an image classification head on top\n ' , __SCREAMING_SNAKE_CASE , ) class A__ ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self: Tuple , _SCREAMING_SNAKE_CASE: Optional[Any]) -> Dict: """simple docstring""" super().__init__(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Optional[Any] = config.num_labels __lowerCAmelCase : Tuple = PoolFormerModel(_SCREAMING_SNAKE_CASE) # Final norm __lowerCAmelCase : Optional[Any] = PoolFormerGroupNorm(config.hidden_sizes[-1]) # Classifier head __lowerCAmelCase : Any = ( nn.Linear(config.hidden_sizes[-1] , config.num_labels) if config.num_labels > 0 else nn.Identity() ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(_SCREAMING_SNAKE_CASE) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=_SCREAMING_SNAKE_CASE , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def _SCREAMING_SNAKE_CASE ( self: Tuple , _SCREAMING_SNAKE_CASE: Optional[torch.FloatTensor] = None , _SCREAMING_SNAKE_CASE: Optional[torch.LongTensor] = None , _SCREAMING_SNAKE_CASE: Optional[bool] = None , _SCREAMING_SNAKE_CASE: Optional[bool] = None , ) -> Union[Tuple, ImageClassifierOutputWithNoAttention]: """simple docstring""" __lowerCAmelCase : List[str] = return_dict if return_dict is not None else self.config.use_return_dict __lowerCAmelCase : Union[str, Any] = self.poolformer( _SCREAMING_SNAKE_CASE , output_hidden_states=_SCREAMING_SNAKE_CASE , return_dict=_SCREAMING_SNAKE_CASE , ) __lowerCAmelCase : Union[str, Any] = outputs[0] __lowerCAmelCase : Optional[int] = self.classifier(self.norm(_SCREAMING_SNAKE_CASE).mean([-2, -1])) __lowerCAmelCase : Tuple = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: __lowerCAmelCase : int = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): __lowerCAmelCase : List[Any] = "single_label_classification" else: __lowerCAmelCase : Union[str, Any] = "multi_label_classification" if self.config.problem_type == "regression": __lowerCAmelCase : Dict = MSELoss() if self.num_labels == 1: __lowerCAmelCase : Optional[int] = loss_fct(logits.squeeze() , labels.squeeze()) else: __lowerCAmelCase : int = loss_fct(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE) elif self.config.problem_type == "single_label_classification": __lowerCAmelCase : int = CrossEntropyLoss() __lowerCAmelCase : str = loss_fct(logits.view(-1 , self.num_labels) , labels.view(-1)) elif self.config.problem_type == "multi_label_classification": __lowerCAmelCase : Union[str, Any] = BCEWithLogitsLoss() __lowerCAmelCase : Optional[int] = loss_fct(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE) if not return_dict: __lowerCAmelCase : List[Any] = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=_SCREAMING_SNAKE_CASE , logits=_SCREAMING_SNAKE_CASE , hidden_states=outputs.hidden_states)
58
0
import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import List import timm import torch import torch.nn as nn from huggingface_hub import hf_hub_download from torch import Tensor from transformers import AutoImageProcessor, ResNetConfig, ResNetForImageClassification from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase = logging.get_logger() @dataclass class __magic_name__ : '''simple docstring''' lowerCamelCase__ : nn.Module lowerCamelCase__ : List[nn.Module] = field(default_factory=lowerCamelCase__ ) lowerCamelCase__ : list = field(default_factory=lowerCamelCase__ ) def _UpperCAmelCase ( self, lowercase_, lowercase_, lowercase_ ) -> List[str]: """simple docstring""" a__ =len(list(m.modules() ) ) == 1 or isinstance(SCREAMING_SNAKE_CASE__, nn.Convad ) or isinstance(SCREAMING_SNAKE_CASE__, nn.BatchNormad ) if has_not_submodules: self.traced.append(SCREAMING_SNAKE_CASE__ ) def __call__( self, lowercase_ ) -> Optional[int]: """simple docstring""" for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook ) ) self.module(SCREAMING_SNAKE_CASE__ ) [x.remove() for x in self.handles] return self @property def _UpperCAmelCase ( self ) -> Any: """simple docstring""" return list(filter(lambda lowercase_ : len(list(x.state_dict().keys() ) ) > 0, self.traced ) ) @dataclass class __magic_name__ : '''simple docstring''' lowerCamelCase__ : nn.Module lowerCamelCase__ : nn.Module lowerCamelCase__ : int = 0 lowerCamelCase__ : List = field(default_factory=lowerCamelCase__ ) lowerCamelCase__ : List = field(default_factory=lowerCamelCase__ ) def __call__( self, lowercase_ ) -> Optional[Any]: """simple docstring""" a__ =Tracker(self.dest )(SCREAMING_SNAKE_CASE__ ).parametrized a__ =Tracker(self.src )(SCREAMING_SNAKE_CASE__ ).parametrized a__ =list(filter(lambda lowercase_ : type(SCREAMING_SNAKE_CASE__ ) not in self.src_skip, SCREAMING_SNAKE_CASE__ ) ) a__ =list(filter(lambda lowercase_ : type(SCREAMING_SNAKE_CASE__ ) not in self.dest_skip, SCREAMING_SNAKE_CASE__ ) ) if len(SCREAMING_SNAKE_CASE__ ) != len(SCREAMING_SNAKE_CASE__ ): raise Exception( F"""Numbers of operations are different. Source module has {len(SCREAMING_SNAKE_CASE__ )} operations while""" F""" destination module has {len(SCREAMING_SNAKE_CASE__ )}.""" ) for dest_m, src_m in zip(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ): dest_m.load_state_dict(src_m.state_dict() ) if self.verbose == 1: print(F"""Transfered from={src_m} to={dest_m}""" ) def UpperCAmelCase__ ( _A : str , _A : ResNetConfig , _A : Path , _A : bool = True ): '''simple docstring''' print(F"""Converting {name}...""" ) with torch.no_grad(): a__ =timm.create_model(a_ , pretrained=a_ ).eval() a__ =ResNetForImageClassification(a_ ).eval() a__ =ModuleTransfer(src=a_ , dest=a_ ) a__ =torch.randn((1, 3, 2_24, 2_24) ) module_transfer(a_ ) assert torch.allclose(from_model(a_ ) , our_model(a_ ).logits ), "The model logits don't match the original one." a__ =F"""resnet{"-".join(name.split("resnet" ) )}""" print(a_ ) if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message='''Add model''' , use_temp_dir=a_ , ) # we can use the convnext one a__ =AutoImageProcessor.from_pretrained('''facebook/convnext-base-224-22k-1k''' ) image_processor.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message='''Add image processor''' , use_temp_dir=a_ , ) print(F"""Pushed {checkpoint_name}""" ) def UpperCAmelCase__ ( _A : Path , _A : str = None , _A : bool = True ): '''simple docstring''' a__ ='''imagenet-1k-id2label.json''' a__ =10_00 a__ =(1, num_labels) a__ ='''huggingface/label-files''' a__ =num_labels a__ =json.load(open(hf_hub_download(a_ , a_ , repo_type='''dataset''' ) , '''r''' ) ) a__ ={int(a_ ): v for k, v in idalabel.items()} a__ =idalabel a__ ={v: k for k, v in idalabel.items()} a__ =partial(a_ , num_labels=a_ , idalabel=a_ , labelaid=a_ ) a__ ={ '''resnet18''': ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[64, 1_28, 2_56, 5_12] , layer_type='''basic''' ), '''resnet26''': ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[2_56, 5_12, 10_24, 20_48] , layer_type='''bottleneck''' ), '''resnet34''': ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[64, 1_28, 2_56, 5_12] , layer_type='''basic''' ), '''resnet50''': ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[2_56, 5_12, 10_24, 20_48] , layer_type='''bottleneck''' ), '''resnet101''': ImageNetPreTrainedConfig( depths=[3, 4, 23, 3] , hidden_sizes=[2_56, 5_12, 10_24, 20_48] , layer_type='''bottleneck''' ), '''resnet152''': ImageNetPreTrainedConfig( depths=[3, 8, 36, 3] , hidden_sizes=[2_56, 5_12, 10_24, 20_48] , layer_type='''bottleneck''' ), } if model_name: convert_weight_and_push(a_ , names_to_config[model_name] , a_ , a_ ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(a_ , a_ , a_ , a_ ) return config, expected_shape if __name__ == "__main__": lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default=None, type=str, help=( '''The name of the model you wish to convert, it must be one of the supported resnet* architecture,''' ''' currently: resnet18,26,34,50,101,152. If `None`, all of them will the converted.''' ), ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=Path, required=True, help='''Path to the output PyTorch model directory.''', ) parser.add_argument( '''--push_to_hub''', default=True, type=bool, required=False, help='''If True, push model and image processor to the hub.''', ) lowerCamelCase = parser.parse_args() lowerCamelCase = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
188
"""simple docstring""" import argparse import logging import pickle import random import time import numpy as np from transformers import BertTokenizer, GPTaTokenizer, RobertaTokenizer logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO ) lowerCamelCase_ = logging.getLogger(__name__) def __lowerCamelCase ( ) -> int: __SCREAMING_SNAKE_CASE :Union[str, Any] = argparse.ArgumentParser( description='''Preprocess the data to avoid re-doing it several times by (tokenization + token_to_ids).''' ) parser.add_argument('''--file_path''' , type=a_ , default='''data/dump.txt''' , help='''The path to the data.''' ) parser.add_argument('''--tokenizer_type''' , type=a_ , default='''bert''' , choices=['''bert''', '''roberta''', '''gpt2'''] ) parser.add_argument('''--tokenizer_name''' , type=a_ , default='''bert-base-uncased''' , help='''The tokenizer to use.''' ) parser.add_argument('''--dump_file''' , type=a_ , default='''data/dump''' , help='''The dump file prefix.''' ) __SCREAMING_SNAKE_CASE :Any = parser.parse_args() logger.info(f'''Loading Tokenizer ({args.tokenizer_name})''' ) if args.tokenizer_type == "bert": __SCREAMING_SNAKE_CASE :Union[str, Any] = BertTokenizer.from_pretrained(args.tokenizer_name ) __SCREAMING_SNAKE_CASE :Optional[int] = tokenizer.special_tokens_map['''cls_token'''] # `[CLS]` __SCREAMING_SNAKE_CASE :Union[str, Any] = tokenizer.special_tokens_map['''sep_token'''] # `[SEP]` elif args.tokenizer_type == "roberta": __SCREAMING_SNAKE_CASE :str = RobertaTokenizer.from_pretrained(args.tokenizer_name ) __SCREAMING_SNAKE_CASE :str = tokenizer.special_tokens_map['''cls_token'''] # `<s>` __SCREAMING_SNAKE_CASE :str = tokenizer.special_tokens_map['''sep_token'''] # `</s>` elif args.tokenizer_type == "gpt2": __SCREAMING_SNAKE_CASE :Union[str, Any] = GPTaTokenizer.from_pretrained(args.tokenizer_name ) __SCREAMING_SNAKE_CASE :Optional[int] = tokenizer.special_tokens_map['''bos_token'''] # `<|endoftext|>` __SCREAMING_SNAKE_CASE :str = tokenizer.special_tokens_map['''eos_token'''] # `<|endoftext|>` logger.info(f'''Loading text from {args.file_path}''' ) with open(args.file_path , '''r''' , encoding='''utf8''' ) as fp: __SCREAMING_SNAKE_CASE :Union[str, Any] = fp.readlines() logger.info('''Start encoding''' ) logger.info(f'''{len(a_ )} examples to process.''' ) __SCREAMING_SNAKE_CASE :Optional[int] = [] __SCREAMING_SNAKE_CASE :List[str] = 0 __SCREAMING_SNAKE_CASE :Optional[Any] = 1_00_00 __SCREAMING_SNAKE_CASE :List[Any] = time.time() for text in data: __SCREAMING_SNAKE_CASE :Any = f'''{bos} {text.strip()} {sep}''' __SCREAMING_SNAKE_CASE :int = tokenizer.encode(a_ , add_special_tokens=a_ ) rslt.append(a_ ) iter += 1 if iter % interval == 0: __SCREAMING_SNAKE_CASE :Any = time.time() logger.info(f'''{iter} examples processed. - {(end-start):.2f}s/{interval}expl''' ) __SCREAMING_SNAKE_CASE :Any = time.time() logger.info('''Finished binarization''' ) logger.info(f'''{len(a_ )} examples processed.''' ) __SCREAMING_SNAKE_CASE :Optional[int] = f'''{args.dump_file}.{args.tokenizer_name}.pickle''' __SCREAMING_SNAKE_CASE :str = tokenizer.vocab_size if vocab_size < (1 << 16): __SCREAMING_SNAKE_CASE :Union[str, Any] = [np.uintaa(a_ ) for d in rslt] else: __SCREAMING_SNAKE_CASE :List[Any] = [np.intaa(a_ ) for d in rslt] random.shuffle(rslt_ ) logger.info(f'''Dump to {dp_file}''' ) with open(a_ , '''wb''' ) as handle: pickle.dump(rslt_ , a_ , protocol=pickle.HIGHEST_PROTOCOL ) if __name__ == "__main__": main()
191
0
"""simple docstring""" import math import unittest from transformers import BioGptConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptTokenizer, ) from transformers.models.biogpt.modeling_biogpt import BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST class _a : """simple docstring""" def __init__( self : int , __UpperCamelCase : Dict , __UpperCamelCase : str=1_3 , __UpperCamelCase : Union[str, Any]=7 , __UpperCamelCase : str=True , __UpperCamelCase : int=True , __UpperCamelCase : Union[str, Any]=False , __UpperCamelCase : List[Any]=True , __UpperCamelCase : Optional[int]=9_9 , __UpperCamelCase : Dict=3_2 , __UpperCamelCase : int=5 , __UpperCamelCase : int=4 , __UpperCamelCase : List[Any]=3_7 , __UpperCamelCase : Any="gelu" , __UpperCamelCase : Union[str, Any]=0.1 , __UpperCamelCase : int=0.1 , __UpperCamelCase : Tuple=5_1_2 , __UpperCamelCase : List[Any]=1_6 , __UpperCamelCase : List[str]=2 , __UpperCamelCase : str=0.0_2 , __UpperCamelCase : Tuple=3 , __UpperCamelCase : Union[str, Any]=4 , __UpperCamelCase : Dict=None , )->str: _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = seq_length _UpperCAmelCase = is_training _UpperCAmelCase = use_input_mask _UpperCAmelCase = use_token_type_ids _UpperCAmelCase = use_labels _UpperCAmelCase = vocab_size _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_act _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = type_vocab_size _UpperCAmelCase = type_sequence_label_size _UpperCAmelCase = initializer_range _UpperCAmelCase = num_labels _UpperCAmelCase = num_choices _UpperCAmelCase = scope def lowercase__ ( self : int )->str: _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCAmelCase = None if self.use_input_mask: _UpperCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) _UpperCAmelCase = None if self.use_token_type_ids: _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = None if self.use_labels: _UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _UpperCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) _UpperCAmelCase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowercase__ ( self : Optional[Any] )->List[str]: return BioGptConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__UpperCamelCase , initializer_range=self.initializer_range , ) def lowercase__ ( self : List[Any] , __UpperCamelCase : int , __UpperCamelCase : Optional[int] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Tuple , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Any , __UpperCamelCase : Optional[Any] )->List[Any]: _UpperCAmelCase = BioGptModel(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() _UpperCAmelCase = model(__UpperCamelCase , attention_mask=__UpperCamelCase ) _UpperCAmelCase = model(__UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase__ ( self : Optional[int] , __UpperCamelCase : List[Any] , __UpperCamelCase : List[Any] , __UpperCamelCase : Dict , __UpperCamelCase : Tuple , __UpperCamelCase : Tuple , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : List[Any] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Optional[Any] , )->Dict: _UpperCAmelCase = BioGptForCausalLM(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() _UpperCAmelCase = model(__UpperCamelCase , attention_mask=__UpperCamelCase , token_type_ids=__UpperCamelCase , labels=__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase__ ( self : List[str] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Tuple , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Any , *__UpperCamelCase : str )->List[str]: _UpperCAmelCase = BioGptModel(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() # create attention mask _UpperCAmelCase = torch.ones(input_ids.shape , dtype=torch.long , device=__UpperCamelCase ) _UpperCAmelCase = self.seq_length // 2 _UpperCAmelCase = 0 # first forward pass _UpperCAmelCase , _UpperCAmelCase = model(__UpperCamelCase , attention_mask=__UpperCamelCase ).to_tuple() # create hypothetical next token and extent to next_input_ids _UpperCAmelCase = ids_tensor((self.batch_size, 1) , config.vocab_size ) # change a random masked slice from input_ids _UpperCAmelCase = ids_tensor((1,) , __UpperCamelCase ).item() + 1 _UpperCAmelCase = ids_tensor((self.batch_size, 1) , config.vocab_size ).squeeze(-1 ) _UpperCAmelCase = random_other_next_tokens # append to next input_ids and attn_mask _UpperCAmelCase = torch.cat([input_ids, next_tokens] , dim=-1 ) _UpperCAmelCase = torch.cat( [attn_mask, torch.ones((attn_mask.shape[0], 1) , dtype=torch.long , device=__UpperCamelCase )] , dim=1 , ) # get two different outputs _UpperCAmelCase = model(__UpperCamelCase , attention_mask=__UpperCamelCase )['''last_hidden_state'''] _UpperCAmelCase = model(__UpperCamelCase , past_key_values=__UpperCamelCase , attention_mask=__UpperCamelCase )['''last_hidden_state'''] # select random slice _UpperCAmelCase = ids_tensor((1,) , output_from_past.shape[-1] ).item() _UpperCAmelCase = output_from_no_past[:, -1, random_slice_idx].detach() _UpperCAmelCase = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__UpperCamelCase , __UpperCamelCase , atol=1e-3 ) ) def lowercase__ ( self : Dict , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : List[str] , __UpperCamelCase : Optional[int] , *__UpperCamelCase : Tuple )->Optional[int]: _UpperCAmelCase = BioGptModel(config=__UpperCamelCase ).to(__UpperCamelCase ).eval() _UpperCAmelCase = torch.ones(input_ids.shape , dtype=torch.long , device=__UpperCamelCase ) # first forward pass _UpperCAmelCase = model(__UpperCamelCase , attention_mask=__UpperCamelCase , use_cache=__UpperCamelCase ) _UpperCAmelCase , _UpperCAmelCase = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids _UpperCAmelCase = ids_tensor((self.batch_size, 3) , config.vocab_size ) _UpperCAmelCase = ids_tensor((self.batch_size, 3) , 2 ) # append to next input_ids and _UpperCAmelCase = torch.cat([input_ids, next_tokens] , dim=-1 ) _UpperCAmelCase = torch.cat([attention_mask, next_attn_mask] , dim=-1 ) _UpperCAmelCase = model(__UpperCamelCase , attention_mask=__UpperCamelCase )['''last_hidden_state'''] _UpperCAmelCase = model(__UpperCamelCase , attention_mask=__UpperCamelCase , past_key_values=__UpperCamelCase )[ '''last_hidden_state''' ] # select random slice _UpperCAmelCase = ids_tensor((1,) , output_from_past.shape[-1] ).item() _UpperCAmelCase = output_from_no_past[:, -3:, random_slice_idx].detach() _UpperCAmelCase = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__UpperCamelCase , __UpperCamelCase , atol=1e-3 ) ) def lowercase__ ( self : Union[str, Any] , __UpperCamelCase : Any , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Optional[int] , __UpperCamelCase : Any , __UpperCamelCase : Dict , *__UpperCamelCase : int , __UpperCamelCase : List[Any]=False )->Tuple: _UpperCAmelCase = BioGptForCausalLM(__UpperCamelCase ) model.to(__UpperCamelCase ) if gradient_checkpointing: model.gradient_checkpointing_enable() _UpperCAmelCase = model(__UpperCamelCase , labels=__UpperCamelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) result.loss.backward() def lowercase__ ( self : str , __UpperCamelCase : Any , *__UpperCamelCase : List[Any] )->int: _UpperCAmelCase = BioGptModel(__UpperCamelCase ) _UpperCAmelCase = model.config.initializer_range / math.sqrt(2 * model.config.num_hidden_layers ) for key in model.state_dict().keys(): if "c_proj" in key and "weight" in key: self.parent.assertLessEqual(abs(torch.std(model.state_dict()[key] ) - model_std ) , 0.0_0_1 ) self.parent.assertLessEqual(abs(torch.mean(model.state_dict()[key] ) - 0.0 ) , 0.0_1 ) def lowercase__ ( self : Union[str, Any] , __UpperCamelCase : Tuple , __UpperCamelCase : Dict , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : List[str] , __UpperCamelCase : Dict , *__UpperCamelCase : Any )->Optional[Any]: _UpperCAmelCase = self.num_labels _UpperCAmelCase = BioGptForTokenClassification(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() _UpperCAmelCase = model(__UpperCamelCase , attention_mask=__UpperCamelCase , token_type_ids=__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowercase__ ( self : str )->int: _UpperCAmelCase = self.prepare_config_and_inputs() ( ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ) = config_and_inputs _UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class _a ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , unittest.TestCase): """simple docstring""" UpperCamelCase__ = ( (BioGptModel, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification) if is_torch_available() else () ) UpperCamelCase__ = (BioGptForCausalLM,) if is_torch_available() else () UpperCamelCase__ = ( { """feature-extraction""": BioGptModel, """text-classification""": BioGptForSequenceClassification, """text-generation""": BioGptForCausalLM, """token-classification""": BioGptForTokenClassification, """zero-shot""": BioGptForSequenceClassification, } if is_torch_available() else {} ) UpperCamelCase__ = False def lowercase__ ( self : Optional[int] )->Union[str, Any]: _UpperCAmelCase = BioGptModelTester(self ) _UpperCAmelCase = ConfigTester(self , config_class=__UpperCamelCase , hidden_size=3_7 ) def lowercase__ ( self : List[str] )->int: self.config_tester.run_common_tests() def lowercase__ ( self : Union[str, Any] )->str: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCamelCase ) def lowercase__ ( self : Union[str, Any] )->List[str]: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _UpperCAmelCase = type self.model_tester.create_and_check_model(*__UpperCamelCase ) def lowercase__ ( self : Optional[Any] )->Union[str, Any]: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_attention_mask_past(*__UpperCamelCase ) def lowercase__ ( self : Tuple )->int: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_forward_and_backwards(*__UpperCamelCase , gradient_checkpointing=__UpperCamelCase ) def lowercase__ ( self : Optional[int] )->List[Any]: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_past_large_inputs(*__UpperCamelCase ) def lowercase__ ( self : Union[str, Any] )->int: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_weight_initialization(*__UpperCamelCase ) def lowercase__ ( self : Union[str, Any] )->Optional[int]: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_for_token_classification(*__UpperCamelCase ) @slow def lowercase__ ( self : int )->Union[str, Any]: _UpperCAmelCase = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''' ) model.to(__UpperCamelCase ) _UpperCAmelCase = BioGptTokenizer.from_pretrained('''microsoft/biogpt''' ) _UpperCAmelCase = '''left''' # Define PAD Token = EOS Token = 50256 _UpperCAmelCase = tokenizer.eos_token _UpperCAmelCase = model.config.eos_token_id # use different length sentences to test batching _UpperCAmelCase = [ '''Hello, my dog is a little''', '''Today, I''', ] _UpperCAmelCase = tokenizer(__UpperCamelCase , return_tensors='''pt''' , padding=__UpperCamelCase ) _UpperCAmelCase = inputs['''input_ids'''].to(__UpperCamelCase ) _UpperCAmelCase = model.generate( input_ids=__UpperCamelCase , attention_mask=inputs['''attention_mask'''].to(__UpperCamelCase ) , ) _UpperCAmelCase = tokenizer(sentences[0] , return_tensors='''pt''' ).input_ids.to(__UpperCamelCase ) _UpperCAmelCase = model.generate(input_ids=__UpperCamelCase ) _UpperCAmelCase = inputs_non_padded.shape[-1] - inputs['''attention_mask'''][-1].long().sum().cpu().item() _UpperCAmelCase = tokenizer(sentences[1] , return_tensors='''pt''' ).input_ids.to(__UpperCamelCase ) _UpperCAmelCase = model.generate(input_ids=__UpperCamelCase , max_length=model.config.max_length - num_paddings ) _UpperCAmelCase = tokenizer.batch_decode(__UpperCamelCase , skip_special_tokens=__UpperCamelCase ) _UpperCAmelCase = tokenizer.decode(output_non_padded[0] , skip_special_tokens=__UpperCamelCase ) _UpperCAmelCase = tokenizer.decode(output_padded[0] , skip_special_tokens=__UpperCamelCase ) _UpperCAmelCase = [ '''Hello, my dog is a little bit bigger than a little bit.''', '''Today, I have a good idea of how to use the information''', ] self.assertListEqual(__UpperCamelCase , __UpperCamelCase ) self.assertListEqual(__UpperCamelCase , [non_padded_sentence, padded_sentence] ) @slow def lowercase__ ( self : Dict )->List[str]: for model_name in BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase = BioGptModel.from_pretrained(__UpperCamelCase ) self.assertIsNotNone(__UpperCamelCase ) def lowercase__ ( self : int )->str: _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() _UpperCAmelCase = 3 _UpperCAmelCase = input_dict['''input_ids'''] _UpperCAmelCase = input_ids.ne(1 ).to(__UpperCamelCase ) _UpperCAmelCase = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) _UpperCAmelCase = BioGptForSequenceClassification(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() _UpperCAmelCase = model(__UpperCamelCase , attention_mask=__UpperCamelCase , labels=__UpperCamelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def lowercase__ ( self : str )->Tuple: _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() _UpperCAmelCase = 3 _UpperCAmelCase = '''multi_label_classification''' _UpperCAmelCase = input_dict['''input_ids'''] _UpperCAmelCase = input_ids.ne(1 ).to(__UpperCamelCase ) _UpperCAmelCase = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) _UpperCAmelCase = BioGptForSequenceClassification(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() _UpperCAmelCase = model(__UpperCamelCase , attention_mask=__UpperCamelCase , labels=__UpperCamelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @require_torch class _a ( unittest.TestCase): """simple docstring""" @slow def lowercase__ ( self : Dict )->Optional[int]: _UpperCAmelCase = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''' ) _UpperCAmelCase = torch.tensor([[2, 4_8_0_5, 9, 6_5_6, 2_1]] ) _UpperCAmelCase = model(__UpperCamelCase )[0] _UpperCAmelCase = 4_2_3_8_4 _UpperCAmelCase = torch.Size((1, 5, vocab_size) ) self.assertEqual(output.shape , __UpperCamelCase ) _UpperCAmelCase = torch.tensor( [[[-9.5_2_3_6, -9.8_9_1_8, 1_0.4_5_5_7], [-1_1.0_4_6_9, -9.6_4_2_3, 8.1_0_2_2], [-8.8_6_6_4, -7.8_8_2_6, 5.5_3_2_5]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __UpperCamelCase , atol=1e-4 ) ) @slow def lowercase__ ( self : str )->Optional[Any]: _UpperCAmelCase = BioGptTokenizer.from_pretrained('''microsoft/biogpt''' ) _UpperCAmelCase = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''' ) model.to(__UpperCamelCase ) torch.manual_seed(0 ) _UpperCAmelCase = tokenizer('''COVID-19 is''' , return_tensors='''pt''' ).to(__UpperCamelCase ) _UpperCAmelCase = model.generate( **__UpperCamelCase , min_length=1_0_0 , max_length=1_0_2_4 , num_beams=5 , early_stopping=__UpperCamelCase , ) _UpperCAmelCase = tokenizer.decode(output_ids[0] , skip_special_tokens=__UpperCamelCase ) _UpperCAmelCase = ( '''COVID-19 is a global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the''' ''' causative agent of coronavirus disease 2019 (COVID-19), which has spread to more than 200 countries and''' ''' territories, including the United States (US), Canada, Australia, New Zealand, the United Kingdom (UK),''' ''' and the United States of America (USA), as of March 11, 2020, with more than 800,000 confirmed cases and''' ''' more than 800,000 deaths.''' ) self.assertEqual(__UpperCamelCase , __UpperCamelCase )
370
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging __A : List[Any] = logging.get_logger(__name__) class _a ( lowerCAmelCase): """simple docstring""" UpperCamelCase__ = ["""pixel_values"""] def __init__( self : Tuple , __UpperCamelCase : bool = True , __UpperCamelCase : Optional[Dict[str, int]] = None , __UpperCamelCase : PILImageResampling = PILImageResampling.BILINEAR , __UpperCamelCase : bool = True , __UpperCamelCase : Dict[str, int] = None , __UpperCamelCase : bool = True , __UpperCamelCase : Union[int, float] = 1 / 2_5_5 , __UpperCamelCase : bool = True , __UpperCamelCase : Optional[Union[float, List[float]]] = None , __UpperCamelCase : Optional[Union[float, List[float]]] = None , **__UpperCamelCase : Tuple , )->None: super().__init__(**__UpperCamelCase ) _UpperCAmelCase = size if size is not None else {'''shortest_edge''': 2_5_6} _UpperCAmelCase = get_size_dict(__UpperCamelCase , default_to_square=__UpperCamelCase ) _UpperCAmelCase = crop_size if crop_size is not None else {'''height''': 2_2_4, '''width''': 2_2_4} _UpperCAmelCase = get_size_dict(__UpperCamelCase ) _UpperCAmelCase = do_resize _UpperCAmelCase = size _UpperCAmelCase = resample _UpperCAmelCase = do_center_crop _UpperCAmelCase = crop_size _UpperCAmelCase = do_rescale _UpperCAmelCase = rescale_factor _UpperCAmelCase = do_normalize _UpperCAmelCase = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _UpperCAmelCase = image_std if image_std is not None else IMAGENET_STANDARD_STD def lowercase__ ( self : Union[str, Any] , __UpperCamelCase : np.ndarray , __UpperCamelCase : Dict[str, int] , __UpperCamelCase : PILImageResampling = PILImageResampling.BICUBIC , __UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **__UpperCamelCase : int , )->np.ndarray: _UpperCAmelCase = get_size_dict(__UpperCamelCase , default_to_square=__UpperCamelCase ) if "shortest_edge" not in size: raise ValueError(F'The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}' ) _UpperCAmelCase = get_resize_output_image_size(__UpperCamelCase , size=size['''shortest_edge'''] , default_to_square=__UpperCamelCase ) return resize(__UpperCamelCase , size=__UpperCamelCase , resample=__UpperCamelCase , data_format=__UpperCamelCase , **__UpperCamelCase ) def lowercase__ ( self : Dict , __UpperCamelCase : np.ndarray , __UpperCamelCase : Dict[str, int] , __UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **__UpperCamelCase : Tuple , )->np.ndarray: _UpperCAmelCase = get_size_dict(__UpperCamelCase ) return center_crop(__UpperCamelCase , size=(size['''height'''], size['''width''']) , data_format=__UpperCamelCase , **__UpperCamelCase ) def lowercase__ ( self : Any , __UpperCamelCase : np.ndarray , __UpperCamelCase : float , __UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **__UpperCamelCase : Union[str, Any] )->np.ndarray: return rescale(__UpperCamelCase , scale=__UpperCamelCase , data_format=__UpperCamelCase , **__UpperCamelCase ) def lowercase__ ( self : Optional[Any] , __UpperCamelCase : np.ndarray , __UpperCamelCase : Union[float, List[float]] , __UpperCamelCase : Union[float, List[float]] , __UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **__UpperCamelCase : List[str] , )->np.ndarray: return normalize(__UpperCamelCase , mean=__UpperCamelCase , std=__UpperCamelCase , data_format=__UpperCamelCase , **__UpperCamelCase ) def lowercase__ ( self : List[str] , __UpperCamelCase : ImageInput , __UpperCamelCase : Optional[bool] = None , __UpperCamelCase : Dict[str, int] = None , __UpperCamelCase : PILImageResampling = None , __UpperCamelCase : bool = None , __UpperCamelCase : Dict[str, int] = None , __UpperCamelCase : Optional[bool] = None , __UpperCamelCase : Optional[float] = None , __UpperCamelCase : Optional[bool] = None , __UpperCamelCase : Optional[Union[float, List[float]]] = None , __UpperCamelCase : Optional[Union[float, List[float]]] = None , __UpperCamelCase : Optional[Union[str, TensorType]] = None , __UpperCamelCase : Union[str, ChannelDimension] = ChannelDimension.FIRST , **__UpperCamelCase : str , )->List[Any]: _UpperCAmelCase = do_resize if do_resize is not None else self.do_resize _UpperCAmelCase = size if size is not None else self.size _UpperCAmelCase = get_size_dict(__UpperCamelCase , default_to_square=__UpperCamelCase ) _UpperCAmelCase = resample if resample is not None else self.resample _UpperCAmelCase = do_center_crop if do_center_crop is not None else self.do_center_crop _UpperCAmelCase = crop_size if crop_size is not None else self.crop_size _UpperCAmelCase = get_size_dict(__UpperCamelCase ) _UpperCAmelCase = do_rescale if do_rescale is not None else self.do_rescale _UpperCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor _UpperCAmelCase = do_normalize if do_normalize is not None else self.do_normalize _UpperCAmelCase = image_mean if image_mean is not None else self.image_mean _UpperCAmelCase = image_std if image_std is not None else self.image_std _UpperCAmelCase = make_list_of_images(__UpperCamelCase ) if not valid_images(__UpperCamelCase ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. _UpperCAmelCase = [to_numpy_array(__UpperCamelCase ) for image in images] if do_resize: _UpperCAmelCase = [self.resize(image=__UpperCamelCase , size=__UpperCamelCase , resample=__UpperCamelCase ) for image in images] if do_center_crop: _UpperCAmelCase = [self.center_crop(image=__UpperCamelCase , size=__UpperCamelCase ) for image in images] if do_rescale: _UpperCAmelCase = [self.rescale(image=__UpperCamelCase , scale=__UpperCamelCase ) for image in images] if do_normalize: _UpperCAmelCase = [self.normalize(image=__UpperCamelCase , mean=__UpperCamelCase , std=__UpperCamelCase ) for image in images] _UpperCAmelCase = [to_channel_dimension_format(__UpperCamelCase , __UpperCamelCase ) for image in images] _UpperCAmelCase = {'''pixel_values''': images} return BatchFeature(data=__UpperCamelCase , tensor_type=__UpperCamelCase )
326
0
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import copy import importlib.metadata import json import os from dataclasses import dataclass from typing import Any, Dict, Union from packaging import version from ..utils import is_torch_available, logging if is_torch_available(): import torch lowerCamelCase__ : List[str] = logging.get_logger(__name__) @dataclass class lowerCamelCase_ : '''simple docstring''' def __init__( self : int , _lowerCAmelCase : Union[str, Any]=False , _lowerCAmelCase : Optional[int]=False , _lowerCAmelCase : Optional[Any]=6.0 , _lowerCAmelCase : Tuple=None , _lowerCAmelCase : List[str]=False , _lowerCAmelCase : List[Any]=False , _lowerCAmelCase : Any=None , _lowerCAmelCase : Optional[Any]="fp4" , _lowerCAmelCase : str=False , **_lowerCAmelCase : Tuple , ): SCREAMING_SNAKE_CASE_ = load_in_abit SCREAMING_SNAKE_CASE_ = load_in_abit SCREAMING_SNAKE_CASE_ = llm_inta_threshold SCREAMING_SNAKE_CASE_ = llm_inta_skip_modules SCREAMING_SNAKE_CASE_ = llm_inta_enable_fpaa_cpu_offload SCREAMING_SNAKE_CASE_ = llm_inta_has_fpaa_weight SCREAMING_SNAKE_CASE_ = bnb_abit_quant_type SCREAMING_SNAKE_CASE_ = bnb_abit_use_double_quant if bnb_abit_compute_dtype is None: SCREAMING_SNAKE_CASE_ = torch.floataa elif isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): SCREAMING_SNAKE_CASE_ = getattr(lowerCAmelCase__ , lowerCAmelCase__ ) elif isinstance(lowerCAmelCase__ , torch.dtype ): SCREAMING_SNAKE_CASE_ = bnb_abit_compute_dtype else: raise ValueError('bnb_4bit_compute_dtype must be a string or a torch.dtype' ) self.post_init() def lowerCAmelCase_ ( self : Union[str, Any] ): if not isinstance(self.llm_inta_threshold , lowerCAmelCase__ ): raise ValueError('llm_int8_threshold must be a float' ) if self.llm_inta_skip_modules is not None and not isinstance(self.llm_inta_skip_modules , lowerCAmelCase__ ): raise ValueError('llm_int8_skip_modules must be a list of strings' ) if not isinstance(self.llm_inta_enable_fpaa_cpu_offload , lowerCAmelCase__ ): raise ValueError('llm_int8_enable_fp32_cpu_offload must be a boolean' ) if not isinstance(self.llm_inta_has_fpaa_weight , lowerCAmelCase__ ): raise ValueError('llm_int8_has_fp16_weight must be a boolean' ) if self.bnb_abit_compute_dtype is not None and not isinstance(self.bnb_abit_compute_dtype , torch.dtype ): raise ValueError('bnb_4bit_compute_dtype must be torch.dtype' ) if not isinstance(self.bnb_abit_quant_type , lowerCAmelCase__ ): raise ValueError('bnb_4bit_quant_type must be a string' ) if not isinstance(self.bnb_abit_use_double_quant , lowerCAmelCase__ ): raise ValueError('bnb_4bit_use_double_quant must be a boolean' ) if self.load_in_abit and not version.parse(importlib.metadata.version('bitsandbytes' ) ) >= version.parse( '0.39.0' ): raise ValueError( '4 bit quantization requires bitsandbytes>=0.39.0 - please upgrade your bitsandbytes version' ) def lowerCAmelCase_ ( self : Tuple ): return self.load_in_abit or self.load_in_abit def lowerCAmelCase_ ( self : Tuple ): if self.load_in_abit: return "llm_int8" elif self.load_in_abit and self.bnb_abit_quant_type == "fp4": return "fp4" elif self.load_in_abit and self.bnb_abit_quant_type == "nf4": return "nf4" else: return None @classmethod def lowerCAmelCase_ ( cls : Any , _lowerCAmelCase : Any , _lowerCAmelCase : Union[str, Any] , **_lowerCAmelCase : int ): SCREAMING_SNAKE_CASE_ = cls(**lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ = [] for key, value in kwargs.items(): if hasattr(lowerCAmelCase__ , lowerCAmelCase__ ): setattr(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) to_remove.append(lowerCAmelCase__ ) for key in to_remove: kwargs.pop(lowerCAmelCase__ , lowerCAmelCase__ ) if return_unused_kwargs: return config, kwargs else: return config def lowerCAmelCase_ ( self : Optional[Any] , _lowerCAmelCase : Any ): with open(lowerCAmelCase__ , 'w' , encoding='utf-8' ) as writer: SCREAMING_SNAKE_CASE_ = self.to_dict() SCREAMING_SNAKE_CASE_ = json.dumps(lowerCAmelCase__ , indent=2 , sort_keys=lowerCAmelCase__ ) + '\n' writer.write(lowerCAmelCase__ ) def lowerCAmelCase_ ( self : str ): SCREAMING_SNAKE_CASE_ = copy.deepcopy(self.__dict__ ) SCREAMING_SNAKE_CASE_ = str(output['bnb_4bit_compute_dtype'] ).split('.' )[1] return output def __repr__( self : int ): return F"{self.__class__.__name__} {self.to_json_string()}" def lowerCAmelCase_ ( self : List[Any] , _lowerCAmelCase : int = True ): if use_diff is True: SCREAMING_SNAKE_CASE_ = self.to_diff_dict() else: SCREAMING_SNAKE_CASE_ = self.to_dict() return json.dumps(lowerCAmelCase__ , indent=2 , sort_keys=lowerCAmelCase__ ) + "\n" def lowerCAmelCase_ ( self : Any ): SCREAMING_SNAKE_CASE_ = self.to_dict() # get the default config dict SCREAMING_SNAKE_CASE_ = BitsAndBytesConfig().to_dict() SCREAMING_SNAKE_CASE_ = {} # only serialize values that differ from the default config for key, value in config_dict.items(): if value != default_config_dict[key]: SCREAMING_SNAKE_CASE_ = value return serializable_config_dict
225
def snake_case_ ( snake_case , snake_case ) -> bool: return numa ^ numa < 0 if __name__ == "__main__": import doctest doctest.testmod()
196
0
'''simple docstring''' import contextlib import csv import json import os import sqlitea import tarfile import textwrap import zipfile import pyarrow as pa import pyarrow.parquet as pq import pytest import datasets import datasets.config @pytest.fixture(scope="""session""" ) def _lowercase ( ): '''simple docstring''' __UpperCamelCase = 10 __UpperCamelCase = datasets.Features( { """tokens""": datasets.Sequence(datasets.Value("""string""" ) ), """labels""": datasets.Sequence(datasets.ClassLabel(names=["""negative""", """positive"""] ) ), """answers""": datasets.Sequence( { """text""": datasets.Value("""string""" ), """answer_start""": datasets.Value("""int32""" ), } ), """id""": datasets.Value("""int64""" ), } ) __UpperCamelCase = datasets.Dataset.from_dict( { """tokens""": [["""foo"""] * 5] * n, """labels""": [[1] * 5] * n, """answers""": [{"""answer_start""": [97], """text""": ["""1976"""]}] * 10, """id""": list(range(__A ) ), } ,features=__A ,) return dataset @pytest.fixture(scope="""session""" ) def _lowercase ( __A ,__A ): '''simple docstring''' __UpperCamelCase = str(tmp_path_factory.mktemp("""data""" ) / """file.arrow""" ) dataset.map(cache_file_name=__A ) return filename # FILE_CONTENT + files a__ = '\\n Text data.\n Second line of data.' @pytest.fixture(scope="""session""" ) def _lowercase ( __A ): '''simple docstring''' __UpperCamelCase = tmp_path_factory.mktemp("""data""" ) / """file.txt""" __UpperCamelCase = FILE_CONTENT with open(__A ,"""w""" ) as f: f.write(__A ) return filename @pytest.fixture(scope="""session""" ) def _lowercase ( __A ): '''simple docstring''' import bza __UpperCamelCase = tmp_path_factory.mktemp("""data""" ) / """file.txt.bz2""" __UpperCamelCase = bytes(__A ,"""utf-8""" ) with bza.open(__A ,"""wb""" ) as f: f.write(__A ) return path @pytest.fixture(scope="""session""" ) def _lowercase ( __A ): '''simple docstring''' import gzip __UpperCamelCase = str(tmp_path_factory.mktemp("""data""" ) / """file.txt.gz""" ) __UpperCamelCase = bytes(__A ,"""utf-8""" ) with gzip.open(__A ,"""wb""" ) as f: f.write(__A ) return path @pytest.fixture(scope="""session""" ) def _lowercase ( __A ): '''simple docstring''' if datasets.config.LZ4_AVAILABLE: import lza.frame __UpperCamelCase = tmp_path_factory.mktemp("""data""" ) / """file.txt.lz4""" __UpperCamelCase = bytes(__A ,"""utf-8""" ) with lza.frame.open(__A ,"""wb""" ) as f: f.write(__A ) return path @pytest.fixture(scope="""session""" ) def _lowercase ( __A ,__A ): '''simple docstring''' if datasets.config.PY7ZR_AVAILABLE: import pyazr __UpperCamelCase = tmp_path_factory.mktemp("""data""" ) / """file.txt.7z""" with pyazr.SevenZipFile(__A ,"""w""" ) as archive: archive.write(__A ,arcname=os.path.basename(__A ) ) return path @pytest.fixture(scope="""session""" ) def _lowercase ( __A ,__A ): '''simple docstring''' import tarfile __UpperCamelCase = tmp_path_factory.mktemp("""data""" ) / """file.txt.tar""" with tarfile.TarFile(__A ,"""w""" ) as f: f.add(__A ,arcname=os.path.basename(__A ) ) return path @pytest.fixture(scope="""session""" ) def _lowercase ( __A ): '''simple docstring''' import lzma __UpperCamelCase = tmp_path_factory.mktemp("""data""" ) / """file.txt.xz""" __UpperCamelCase = bytes(__A ,"""utf-8""" ) with lzma.open(__A ,"""wb""" ) as f: f.write(__A ) return path @pytest.fixture(scope="""session""" ) def _lowercase ( __A ,__A ): '''simple docstring''' import zipfile __UpperCamelCase = tmp_path_factory.mktemp("""data""" ) / """file.txt.zip""" with zipfile.ZipFile(__A ,"""w""" ) as f: f.write(__A ,arcname=os.path.basename(__A ) ) return path @pytest.fixture(scope="""session""" ) def _lowercase ( __A ): '''simple docstring''' if datasets.config.ZSTANDARD_AVAILABLE: import zstandard as zstd __UpperCamelCase = tmp_path_factory.mktemp("""data""" ) / """file.txt.zst""" __UpperCamelCase = bytes(__A ,"""utf-8""" ) with zstd.open(__A ,"""wb""" ) as f: f.write(__A ) return path @pytest.fixture(scope="""session""" ) def _lowercase ( __A ): '''simple docstring''' __UpperCamelCase = tmp_path_factory.mktemp("""data""" ) / """file.xml""" __UpperCamelCase = textwrap.dedent( """\ <?xml version=\"1.0\" encoding=\"UTF-8\" ?> <tmx version=\"1.4\"> <header segtype=\"sentence\" srclang=\"ca\" /> <body> <tu> <tuv xml:lang=\"ca\"><seg>Contingut 1</seg></tuv> <tuv xml:lang=\"en\"><seg>Content 1</seg></tuv> </tu> <tu> <tuv xml:lang=\"ca\"><seg>Contingut 2</seg></tuv> <tuv xml:lang=\"en\"><seg>Content 2</seg></tuv> </tu> <tu> <tuv xml:lang=\"ca\"><seg>Contingut 3</seg></tuv> <tuv xml:lang=\"en\"><seg>Content 3</seg></tuv> </tu> <tu> <tuv xml:lang=\"ca\"><seg>Contingut 4</seg></tuv> <tuv xml:lang=\"en\"><seg>Content 4</seg></tuv> </tu> <tu> <tuv xml:lang=\"ca\"><seg>Contingut 5</seg></tuv> <tuv xml:lang=\"en\"><seg>Content 5</seg></tuv> </tu> </body> </tmx>""" ) with open(__A ,"""w""" ) as f: f.write(__A ) return filename a__ = [ {'col_1': '0', 'col_2': 0, 'col_3': 0.0}, {'col_1': '1', 'col_2': 1, 'col_3': 1.0}, {'col_1': '2', 'col_2': 2, 'col_3': 2.0}, {'col_1': '3', 'col_2': 3, 'col_3': 3.0}, ] a__ = [ {'col_1': '4', 'col_2': 4, 'col_3': 4.0}, {'col_1': '5', 'col_2': 5, 'col_3': 5.0}, ] a__ = { 'col_1': ['0', '1', '2', '3'], 'col_2': [0, 1, 2, 3], 'col_3': [0.0, 1.0, 2.0, 3.0], } a__ = [ {'col_3': 0.0, 'col_1': '0', 'col_2': 0}, {'col_3': 1.0, 'col_1': '1', 'col_2': 1}, ] a__ = [ {'col_1': 's0', 'col_2': 0, 'col_3': 0.0}, {'col_1': 's1', 'col_2': 1, 'col_3': 1.0}, {'col_1': 's2', 'col_2': 2, 'col_3': 2.0}, {'col_1': 's3', 'col_2': 3, 'col_3': 3.0}, ] @pytest.fixture(scope="""session""" ) def _lowercase ( ): '''simple docstring''' return DATA_DICT_OF_LISTS @pytest.fixture(scope="""session""" ) def _lowercase ( __A ): '''simple docstring''' __UpperCamelCase = datasets.Dataset.from_dict(__A ) __UpperCamelCase = str(tmp_path_factory.mktemp("""data""" ) / """dataset.arrow""" ) dataset.map(cache_file_name=__A ) return path @pytest.fixture(scope="""session""" ) def _lowercase ( __A ): '''simple docstring''' __UpperCamelCase = str(tmp_path_factory.mktemp("""data""" ) / """dataset.sqlite""" ) with contextlib.closing(sqlitea.connect(__A ) ) as con: __UpperCamelCase = con.cursor() cur.execute("""CREATE TABLE dataset(col_1 text, col_2 int, col_3 real)""" ) for item in DATA: cur.execute("""INSERT INTO dataset(col_1, col_2, col_3) VALUES (?, ?, ?)""" ,tuple(item.values() ) ) con.commit() return path @pytest.fixture(scope="""session""" ) def _lowercase ( __A ): '''simple docstring''' __UpperCamelCase = str(tmp_path_factory.mktemp("""data""" ) / """dataset.csv""" ) with open(__A ,"""w""" ,newline="""""" ) as f: __UpperCamelCase = csv.DictWriter(__A ,fieldnames=["""col_1""", """col_2""", """col_3"""] ) writer.writeheader() for item in DATA: writer.writerow(__A ) return path @pytest.fixture(scope="""session""" ) def _lowercase ( __A ): '''simple docstring''' __UpperCamelCase = str(tmp_path_factory.mktemp("""data""" ) / """dataset2.csv""" ) with open(__A ,"""w""" ,newline="""""" ) as f: __UpperCamelCase = csv.DictWriter(__A ,fieldnames=["""col_1""", """col_2""", """col_3"""] ) writer.writeheader() for item in DATA: writer.writerow(__A ) return path @pytest.fixture(scope="""session""" ) def _lowercase ( __A ,__A ): '''simple docstring''' import bza __UpperCamelCase = tmp_path_factory.mktemp("""data""" ) / """dataset.csv.bz2""" with open(__A ,"""rb""" ) as f: __UpperCamelCase = f.read() # data = bytes(FILE_CONTENT, "utf-8") with bza.open(__A ,"""wb""" ) as f: f.write(__A ) return path @pytest.fixture(scope="""session""" ) def _lowercase ( __A ,__A ,__A ): '''simple docstring''' __UpperCamelCase = tmp_path_factory.mktemp("""data""" ) / """dataset.csv.zip""" with zipfile.ZipFile(__A ,"""w""" ) as f: f.write(__A ,arcname=os.path.basename(__A ) ) f.write(__A ,arcname=os.path.basename(__A ) ) return path @pytest.fixture(scope="""session""" ) def _lowercase ( __A ,__A ,__A ): '''simple docstring''' __UpperCamelCase = tmp_path_factory.mktemp("""data""" ) / """dataset.csv.zip""" with zipfile.ZipFile(__A ,"""w""" ) as f: f.write(__A ,arcname=os.path.basename(csv_path.replace(""".csv""" ,""".CSV""" ) ) ) f.write(__A ,arcname=os.path.basename(csva_path.replace(""".csv""" ,""".CSV""" ) ) ) return path @pytest.fixture(scope="""session""" ) def _lowercase ( __A ,__A ,__A ): '''simple docstring''' __UpperCamelCase = tmp_path_factory.mktemp("""data""" ) / """dataset_with_dir.csv.zip""" with zipfile.ZipFile(__A ,"""w""" ) as f: f.write(__A ,arcname=os.path.join("""main_dir""" ,os.path.basename(__A ) ) ) f.write(__A ,arcname=os.path.join("""main_dir""" ,os.path.basename(__A ) ) ) return path @pytest.fixture(scope="""session""" ) def _lowercase ( __A ): '''simple docstring''' __UpperCamelCase = str(tmp_path_factory.mktemp("""data""" ) / """dataset.parquet""" ) __UpperCamelCase = pa.schema( { """col_1""": pa.string(), """col_2""": pa.intaa(), """col_3""": pa.floataa(), } ) with open(__A ,"""wb""" ) as f: __UpperCamelCase = pq.ParquetWriter(__A ,schema=__A ) __UpperCamelCase = pa.Table.from_pydict({k: [DATA[i][k] for i in range(len(__A ) )] for k in DATA[0]} ,schema=__A ) writer.write_table(__A ) writer.close() return path @pytest.fixture(scope="""session""" ) def _lowercase ( __A ): '''simple docstring''' __UpperCamelCase = str(tmp_path_factory.mktemp("""data""" ) / """dataset.json""" ) __UpperCamelCase = {"""data""": DATA} with open(__A ,"""w""" ) as f: json.dump(__A ,__A ) return path @pytest.fixture(scope="""session""" ) def _lowercase ( __A ): '''simple docstring''' __UpperCamelCase = str(tmp_path_factory.mktemp("""data""" ) / """dataset.json""" ) __UpperCamelCase = {"""data""": DATA_DICT_OF_LISTS} with open(__A ,"""w""" ) as f: json.dump(__A ,__A ) return path @pytest.fixture(scope="""session""" ) def _lowercase ( __A ): '''simple docstring''' __UpperCamelCase = str(tmp_path_factory.mktemp("""data""" ) / """dataset.jsonl""" ) with open(__A ,"""w""" ) as f: for item in DATA: f.write(json.dumps(__A ) + """\n""" ) return path @pytest.fixture(scope="""session""" ) def _lowercase ( __A ): '''simple docstring''' __UpperCamelCase = str(tmp_path_factory.mktemp("""data""" ) / """dataset2.jsonl""" ) with open(__A ,"""w""" ) as f: for item in DATA: f.write(json.dumps(__A ) + """\n""" ) return path @pytest.fixture(scope="""session""" ) def _lowercase ( __A ): '''simple docstring''' __UpperCamelCase = str(tmp_path_factory.mktemp("""data""" ) / """dataset_312.jsonl""" ) with open(__A ,"""w""" ) as f: for item in DATA_312: f.write(json.dumps(__A ) + """\n""" ) return path @pytest.fixture(scope="""session""" ) def _lowercase ( __A ): '''simple docstring''' __UpperCamelCase = str(tmp_path_factory.mktemp("""data""" ) / """dataset-str.jsonl""" ) with open(__A ,"""w""" ) as f: for item in DATA_STR: f.write(json.dumps(__A ) + """\n""" ) return path @pytest.fixture(scope="""session""" ) def _lowercase ( __A ,__A ): '''simple docstring''' import gzip __UpperCamelCase = str(tmp_path_factory.mktemp("""data""" ) / """dataset.txt.gz""" ) with open(__A ,"""rb""" ) as orig_file: with gzip.open(__A ,"""wb""" ) as zipped_file: zipped_file.writelines(__A ) return path @pytest.fixture(scope="""session""" ) def _lowercase ( __A ,__A ): '''simple docstring''' import gzip __UpperCamelCase = str(tmp_path_factory.mktemp("""data""" ) / """dataset.jsonl.gz""" ) with open(__A ,"""rb""" ) as orig_file: with gzip.open(__A ,"""wb""" ) as zipped_file: zipped_file.writelines(__A ) return path @pytest.fixture(scope="""session""" ) def _lowercase ( __A ,__A ,__A ): '''simple docstring''' __UpperCamelCase = tmp_path_factory.mktemp("""data""" ) / """dataset.jsonl.zip""" with zipfile.ZipFile(__A ,"""w""" ) as f: f.write(__A ,arcname=os.path.basename(__A ) ) f.write(__A ,arcname=os.path.basename(__A ) ) return path @pytest.fixture(scope="""session""" ) def _lowercase ( __A ,__A ,__A ,__A ): '''simple docstring''' __UpperCamelCase = tmp_path_factory.mktemp("""data""" ) / """dataset_nested.jsonl.zip""" with zipfile.ZipFile(__A ,"""w""" ) as f: f.write(__A ,arcname=os.path.join("""nested""" ,os.path.basename(__A ) ) ) return path @pytest.fixture(scope="""session""" ) def _lowercase ( __A ,__A ,__A ): '''simple docstring''' __UpperCamelCase = tmp_path_factory.mktemp("""data""" ) / """dataset_with_dir.jsonl.zip""" with zipfile.ZipFile(__A ,"""w""" ) as f: f.write(__A ,arcname=os.path.join("""main_dir""" ,os.path.basename(__A ) ) ) f.write(__A ,arcname=os.path.join("""main_dir""" ,os.path.basename(__A ) ) ) return path @pytest.fixture(scope="""session""" ) def _lowercase ( __A ,__A ,__A ): '''simple docstring''' __UpperCamelCase = tmp_path_factory.mktemp("""data""" ) / """dataset.jsonl.tar""" with tarfile.TarFile(__A ,"""w""" ) as f: f.add(__A ,arcname=os.path.basename(__A ) ) f.add(__A ,arcname=os.path.basename(__A ) ) return path @pytest.fixture(scope="""session""" ) def _lowercase ( __A ,__A ,__A ,__A ): '''simple docstring''' __UpperCamelCase = tmp_path_factory.mktemp("""data""" ) / """dataset_nested.jsonl.tar""" with tarfile.TarFile(__A ,"""w""" ) as f: f.add(__A ,arcname=os.path.join("""nested""" ,os.path.basename(__A ) ) ) return path @pytest.fixture(scope="""session""" ) def _lowercase ( __A ): '''simple docstring''' __UpperCamelCase = ["""0""", """1""", """2""", """3"""] __UpperCamelCase = str(tmp_path_factory.mktemp("""data""" ) / """dataset.txt""" ) with open(__A ,"""w""" ) as f: for item in data: f.write(item + """\n""" ) return path @pytest.fixture(scope="""session""" ) def _lowercase ( __A ): '''simple docstring''' __UpperCamelCase = ["""0""", """1""", """2""", """3"""] __UpperCamelCase = str(tmp_path_factory.mktemp("""data""" ) / """dataset2.txt""" ) with open(__A ,"""w""" ) as f: for item in data: f.write(item + """\n""" ) return path @pytest.fixture(scope="""session""" ) def _lowercase ( __A ): '''simple docstring''' __UpperCamelCase = ["""0""", """1""", """2""", """3"""] __UpperCamelCase = tmp_path_factory.mktemp("""data""" ) / """dataset.abc""" with open(__A ,"""w""" ) as f: for item in data: f.write(item + """\n""" ) return path @pytest.fixture(scope="""session""" ) def _lowercase ( __A ,__A ,__A ): '''simple docstring''' __UpperCamelCase = tmp_path_factory.mktemp("""data""" ) / """dataset.text.zip""" with zipfile.ZipFile(__A ,"""w""" ) as f: f.write(__A ,arcname=os.path.basename(__A ) ) f.write(__A ,arcname=os.path.basename(__A ) ) return path @pytest.fixture(scope="""session""" ) def _lowercase ( __A ,__A ,__A ): '''simple docstring''' __UpperCamelCase = tmp_path_factory.mktemp("""data""" ) / """dataset_with_dir.text.zip""" with zipfile.ZipFile(__A ,"""w""" ) as f: f.write(__A ,arcname=os.path.join("""main_dir""" ,os.path.basename(__A ) ) ) f.write(__A ,arcname=os.path.join("""main_dir""" ,os.path.basename(__A ) ) ) return path @pytest.fixture(scope="""session""" ) def _lowercase ( __A ,__A ,__A ): '''simple docstring''' __UpperCamelCase = tmp_path_factory.mktemp("""data""" ) / """dataset.ext.zip""" with zipfile.ZipFile(__A ,"""w""" ) as f: f.write(__A ,arcname=os.path.basename("""unsupported.ext""" ) ) f.write(__A ,arcname=os.path.basename("""unsupported_2.ext""" ) ) return path @pytest.fixture(scope="""session""" ) def _lowercase ( __A ): '''simple docstring''' __UpperCamelCase = """\n""".join(["""First""", """Second\u2029with Unicode new line""", """Third"""] ) __UpperCamelCase = str(tmp_path_factory.mktemp("""data""" ) / """dataset_with_unicode_new_lines.txt""" ) with open(__A ,"""w""" ,encoding="""utf-8""" ) as f: f.write(__A ) return path @pytest.fixture(scope="""session""" ) def _lowercase ( ): '''simple docstring''' return os.path.join("""tests""" ,"""features""" ,"""data""" ,"""test_image_rgb.jpg""" ) @pytest.fixture(scope="""session""" ) def _lowercase ( ): '''simple docstring''' return os.path.join("""tests""" ,"""features""" ,"""data""" ,"""test_audio_44100.wav""" ) @pytest.fixture(scope="""session""" ) def _lowercase ( __A ,__A ): '''simple docstring''' __UpperCamelCase = tmp_path_factory.mktemp("""data""" ) / """dataset.img.zip""" with zipfile.ZipFile(__A ,"""w""" ) as f: f.write(__A ,arcname=os.path.basename(__A ) ) f.write(__A ,arcname=os.path.basename(__A ).replace(""".jpg""" ,"""2.jpg""" ) ) return path @pytest.fixture(scope="""session""" ) def _lowercase ( __A ): '''simple docstring''' __UpperCamelCase = tmp_path_factory.mktemp("""data_dir""" ) (data_dir / "subdir").mkdir() with open(data_dir / """subdir""" / """train.txt""" ,"""w""" ) as f: f.write("""foo\n""" * 10 ) with open(data_dir / """subdir""" / """test.txt""" ,"""w""" ) as f: f.write("""bar\n""" * 10 ) # hidden file with open(data_dir / """subdir""" / """.test.txt""" ,"""w""" ) as f: f.write("""bar\n""" * 10 ) # hidden directory (data_dir / ".subdir").mkdir() with open(data_dir / """.subdir""" / """train.txt""" ,"""w""" ) as f: f.write("""foo\n""" * 10 ) with open(data_dir / """.subdir""" / """test.txt""" ,"""w""" ) as f: f.write("""bar\n""" * 10 ) return data_dir
365
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_convbert import ConvBertTokenizer a__ : List[Any] = logging.get_logger(__name__) a__ : str = {'vocab_file': 'vocab.txt'} a__ : Any = { 'vocab_file': { 'YituTech/conv-bert-base': 'https://huggingface.co/YituTech/conv-bert-base/resolve/main/vocab.txt', 'YituTech/conv-bert-medium-small': ( 'https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/vocab.txt' ), 'YituTech/conv-bert-small': 'https://huggingface.co/YituTech/conv-bert-small/resolve/main/vocab.txt', } } a__ : Tuple = { 'YituTech/conv-bert-base': 5_1_2, 'YituTech/conv-bert-medium-small': 5_1_2, 'YituTech/conv-bert-small': 5_1_2, } a__ : str = { 'YituTech/conv-bert-base': {'do_lower_case': True}, 'YituTech/conv-bert-medium-small': {'do_lower_case': True}, 'YituTech/conv-bert-small': {'do_lower_case': True}, } class UpperCAmelCase__ ( UpperCAmelCase_): __SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE = PRETRAINED_INIT_CONFIGURATION __SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE = ConvBertTokenizer def __init__( self , lowercase=None , lowercase=None , lowercase=True , lowercase="[UNK]" , lowercase="[SEP]" , lowercase="[PAD]" , lowercase="[CLS]" , lowercase="[MASK]" , lowercase=True , lowercase=None , **lowercase , ) -> int: super().__init__( lowercase , tokenizer_file=lowercase , do_lower_case=lowercase , unk_token=lowercase , sep_token=lowercase , pad_token=lowercase , cls_token=lowercase , mask_token=lowercase , tokenize_chinese_chars=lowercase , strip_accents=lowercase , **lowercase , ) __UpperCamelCase = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("""lowercase""" , lowercase ) != do_lower_case or normalizer_state.get("""strip_accents""" , lowercase ) != strip_accents or normalizer_state.get("""handle_chinese_chars""" , lowercase ) != tokenize_chinese_chars ): __UpperCamelCase = getattr(lowercase , normalizer_state.pop("""type""" ) ) __UpperCamelCase = do_lower_case __UpperCamelCase = strip_accents __UpperCamelCase = tokenize_chinese_chars __UpperCamelCase = normalizer_class(**lowercase ) __UpperCamelCase = do_lower_case def __lowerCamelCase ( self , lowercase , lowercase=None ) -> Tuple: __UpperCamelCase = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __lowerCamelCase ( self , lowercase , lowercase = None ) -> List[int]: __UpperCamelCase = [self.sep_token_id] __UpperCamelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __lowerCamelCase ( self , lowercase , lowercase = None ) -> Tuple[str]: __UpperCamelCase = self._tokenizer.model.save(lowercase , name=lowercase ) return tuple(lowercase )
243
0
from __future__ import absolute_import, division, print_function, unicode_literals from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers import RobertaConfig from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.roberta.modeling_roberta import ( ROBERTA_INPUTS_DOCSTRING, ROBERTA_START_DOCSTRING, RobertaEmbeddings, ) from .modeling_highway_bert import BertPreTrainedModel, DeeBertModel, HighwayException, entropy @add_start_docstrings( '''The RoBERTa Model transformer with early exiting (DeeRoBERTa). ''' , lowerCAmelCase__ , ) class __UpperCamelCase ( lowerCAmelCase__ ): """simple docstring""" lowerCAmelCase_ = RobertaConfig lowerCAmelCase_ = '''roberta''' def __init__( self : Any , _A : List[str] ): """simple docstring""" super().__init__(_A ) __SCREAMING_SNAKE_CASE : List[str] = RobertaEmbeddings(_A ) self.init_weights() @add_start_docstrings( '''RoBERTa Model (with early exiting - DeeRoBERTa) with a classifier on top, also takes care of multi-layer training. ''' , lowerCAmelCase__ , ) class __UpperCamelCase ( lowerCAmelCase__ ): """simple docstring""" lowerCAmelCase_ = RobertaConfig lowerCAmelCase_ = '''roberta''' def __init__( self : Any , _A : str ): """simple docstring""" super().__init__(_A ) __SCREAMING_SNAKE_CASE : Any = config.num_labels __SCREAMING_SNAKE_CASE : Dict = config.num_hidden_layers __SCREAMING_SNAKE_CASE : Optional[Any] = DeeRobertaModel(_A ) __SCREAMING_SNAKE_CASE : List[Any] = nn.Dropout(config.hidden_dropout_prob ) __SCREAMING_SNAKE_CASE : Optional[int] = nn.Linear(config.hidden_size , self.config.num_labels ) @add_start_docstrings_to_model_forward(_A ) def UpperCAmelCase__ ( self : int , _A : Dict=None , _A : List[Any]=None , _A : Optional[int]=None , _A : Tuple=None , _A : Any=None , _A : Tuple=None , _A : Dict=None , _A : Any=-1 , _A : List[str]=False , ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[int] = self.num_layers try: __SCREAMING_SNAKE_CASE : Union[str, Any] = self.roberta( _A , attention_mask=_A , token_type_ids=_A , position_ids=_A , head_mask=_A , inputs_embeds=_A , ) __SCREAMING_SNAKE_CASE : Any = outputs[1] __SCREAMING_SNAKE_CASE : Tuple = self.dropout(_A ) __SCREAMING_SNAKE_CASE : Union[str, Any] = self.classifier(_A ) __SCREAMING_SNAKE_CASE : List[str] = (logits,) + outputs[2:] # add hidden states and attention if they are here except HighwayException as e: __SCREAMING_SNAKE_CASE : str = e.message __SCREAMING_SNAKE_CASE : Tuple = e.exit_layer __SCREAMING_SNAKE_CASE : str = outputs[0] if not self.training: __SCREAMING_SNAKE_CASE : int = entropy(_A ) __SCREAMING_SNAKE_CASE : str = [] __SCREAMING_SNAKE_CASE : int = [] if labels is not None: if self.num_labels == 1: # We are doing regression __SCREAMING_SNAKE_CASE : str = MSELoss() __SCREAMING_SNAKE_CASE : Any = loss_fct(logits.view(-1 ) , labels.view(-1 ) ) else: __SCREAMING_SNAKE_CASE : Optional[Any] = CrossEntropyLoss() __SCREAMING_SNAKE_CASE : Optional[Any] = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) # work with highway exits __SCREAMING_SNAKE_CASE : Any = [] for highway_exit in outputs[-1]: __SCREAMING_SNAKE_CASE : Optional[Any] = highway_exit[0] if not self.training: highway_logits_all.append(_A ) highway_entropy.append(highway_exit[2] ) if self.num_labels == 1: # We are doing regression __SCREAMING_SNAKE_CASE : List[str] = MSELoss() __SCREAMING_SNAKE_CASE : Union[str, Any] = loss_fct(highway_logits.view(-1 ) , labels.view(-1 ) ) else: __SCREAMING_SNAKE_CASE : Any = CrossEntropyLoss() __SCREAMING_SNAKE_CASE : List[Any] = loss_fct(highway_logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) highway_losses.append(_A ) if train_highway: __SCREAMING_SNAKE_CASE : List[str] = (sum(highway_losses[:-1] ),) + outputs # exclude the final highway, of course else: __SCREAMING_SNAKE_CASE : Union[str, Any] = (loss,) + outputs if not self.training: __SCREAMING_SNAKE_CASE : Tuple = outputs + ((original_entropy, highway_entropy), exit_layer) if output_layer >= 0: __SCREAMING_SNAKE_CASE : Optional[int] = ( (outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:] ) # use the highway of the last layer return outputs # (loss), logits, (hidden_states), (attentions), entropy
303
from __future__ import annotations import matplotlib.pyplot as plt # type: ignore import numpy # initial triangle of Koch snowflake lowercase_ = numpy.array([0, 0]) lowercase_ = numpy.array([0.5, 0.866_0254]) lowercase_ = numpy.array([1, 0]) lowercase_ = [VECTOR_1, VECTOR_2, VECTOR_3, VECTOR_1] def a__ ( snake_case , snake_case ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[str] = initial_vectors for _ in range(snake_case ): __SCREAMING_SNAKE_CASE : Dict = iteration_step(snake_case ) return vectors def a__ ( snake_case ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = [] for i, start_vector in enumerate(vectors[:-1] ): __SCREAMING_SNAKE_CASE : str = vectors[i + 1] new_vectors.append(snake_case ) __SCREAMING_SNAKE_CASE : List[str] = end_vector - start_vector new_vectors.append(start_vector + difference_vector / 3 ) new_vectors.append( start_vector + difference_vector / 3 + rotate(difference_vector / 3 , 60 ) ) new_vectors.append(start_vector + difference_vector * 2 / 3 ) new_vectors.append(vectors[-1] ) return new_vectors def a__ ( snake_case , snake_case ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = numpy.radians(snake_case ) __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : str = numpy.cos(snake_case ), numpy.sin(snake_case ) __SCREAMING_SNAKE_CASE : Any = numpy.array(((c, -s), (s, c)) ) return numpy.dot(snake_case , snake_case ) def a__ ( snake_case ): """simple docstring""" __SCREAMING_SNAKE_CASE : int = plt.gca() axes.set_aspect('''equal''' ) # matplotlib.pyplot.plot takes a list of all x-coordinates and a list of all # y-coordinates as inputs, which are constructed from the vector-list using # zip() __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Tuple = zip(*snake_case ) plt.plot(snake_case , snake_case ) plt.show() if __name__ == "__main__": import doctest doctest.testmod() lowercase_ = iterate(INITIAL_VECTORS, 5) plot(processed_vectors)
303
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = { """facebook/xmod-base""": """https://huggingface.co/facebook/xmod-base/resolve/main/config.json""", """facebook/xmod-large-prenorm""": """https://huggingface.co/facebook/xmod-large-prenorm/resolve/main/config.json""", """facebook/xmod-base-13-125k""": """https://huggingface.co/facebook/xmod-base-13-125k/resolve/main/config.json""", """facebook/xmod-base-30-125k""": """https://huggingface.co/facebook/xmod-base-30-125k/resolve/main/config.json""", """facebook/xmod-base-30-195k""": """https://huggingface.co/facebook/xmod-base-30-195k/resolve/main/config.json""", """facebook/xmod-base-60-125k""": """https://huggingface.co/facebook/xmod-base-60-125k/resolve/main/config.json""", """facebook/xmod-base-60-265k""": """https://huggingface.co/facebook/xmod-base-60-265k/resolve/main/config.json""", """facebook/xmod-base-75-125k""": """https://huggingface.co/facebook/xmod-base-75-125k/resolve/main/config.json""", """facebook/xmod-base-75-269k""": """https://huggingface.co/facebook/xmod-base-75-269k/resolve/main/config.json""", } class SCREAMING_SNAKE_CASE_ ( __lowerCAmelCase ): __lowerCAmelCase = """xmod""" def __init__( self : str , lowerCamelCase_ : str=3_0522 , lowerCamelCase_ : Union[str, Any]=768 , lowerCamelCase_ : Any=12 , lowerCamelCase_ : Union[str, Any]=12 , lowerCamelCase_ : str=3072 , lowerCamelCase_ : Dict="gelu" , lowerCamelCase_ : Optional[int]=0.1 , lowerCamelCase_ : Optional[int]=0.1 , lowerCamelCase_ : Dict=512 , lowerCamelCase_ : List[Any]=2 , lowerCamelCase_ : str=0.0_2 , lowerCamelCase_ : Optional[int]=1E-12 , lowerCamelCase_ : Tuple=1 , lowerCamelCase_ : Dict=0 , lowerCamelCase_ : List[Any]=2 , lowerCamelCase_ : Optional[Any]="absolute" , lowerCamelCase_ : str=True , lowerCamelCase_ : List[str]=None , lowerCamelCase_ : Any=False , lowerCamelCase_ : Union[str, Any]=2 , lowerCamelCase_ : Union[str, Any]=False , lowerCamelCase_ : Dict=True , lowerCamelCase_ : Optional[int]=True , lowerCamelCase_ : Optional[Any]=("en_XX",) , lowerCamelCase_ : Dict=None , **lowerCamelCase_ : List[Any] , ): """simple docstring""" super().__init__(pad_token_id=lowerCamelCase_ , bos_token_id=lowerCamelCase_ , eos_token_id=lowerCamelCase_ , **lowerCamelCase_ ) UpperCamelCase = vocab_size UpperCamelCase = hidden_size UpperCamelCase = num_hidden_layers UpperCamelCase = num_attention_heads UpperCamelCase = hidden_act UpperCamelCase = intermediate_size UpperCamelCase = hidden_dropout_prob UpperCamelCase = attention_probs_dropout_prob UpperCamelCase = max_position_embeddings UpperCamelCase = type_vocab_size UpperCamelCase = initializer_range UpperCamelCase = layer_norm_eps UpperCamelCase = position_embedding_type UpperCamelCase = use_cache UpperCamelCase = classifier_dropout UpperCamelCase = pre_norm UpperCamelCase = adapter_reduction_factor UpperCamelCase = adapter_layer_norm UpperCamelCase = adapter_reuse_layer_norm UpperCamelCase = ln_before_adapter UpperCamelCase = list(lowerCamelCase_ ) UpperCamelCase = default_language class SCREAMING_SNAKE_CASE_ ( __lowerCAmelCase ): @property def lowerCamelCase_ ( self : List[str] ): """simple docstring""" if self.task == "multiple-choice": UpperCamelCase = {0: """batch""", 1: """choice""", 2: """sequence"""} else: UpperCamelCase = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
165
def lowercase( UpperCamelCase_ = 1000000 ) -> int: '''simple docstring''' UpperCamelCase = [i - 1 for i in range(limit + 1 )] for i in range(2 , limit + 1 ): if phi[i] == i - 1: for j in range(2 * i , limit + 1 , UpperCamelCase_ ): phi[j] -= phi[j] // i return sum(phi[2 : limit + 1] ) if __name__ == "__main__": print(solution())
165
1
"""simple docstring""" def __lowercase ( snake_case_ : int ,snake_case_ : int ) ->int: '''simple docstring''' return int(input_a == input_a == 0 ) def __lowercase ( ) ->None: '''simple docstring''' print('''Truth Table of NOR Gate:''' ) print('''| Input 1 | Input 2 | Output |''' ) print(F"""| 0 | 0 | {nor_gate(0 ,0 )} |""" ) print(F"""| 0 | 1 | {nor_gate(0 ,1 )} |""" ) print(F"""| 1 | 0 | {nor_gate(1 ,0 )} |""" ) print(F"""| 1 | 1 | {nor_gate(1 ,1 )} |""" ) if __name__ == "__main__": import doctest doctest.testmod() main()
179
"""simple docstring""" def __lowercase ( snake_case_ : int ,snake_case_ : list ) ->Any: '''simple docstring''' _enforce_args(snake_case_ ,snake_case_ ) if n == 0: return 0 __A : int = float('''-inf''' ) for i in range(1 ,n + 1 ): __A : Union[str, Any] = max( snake_case_ ,prices[i - 1] + naive_cut_rod_recursive(n - i ,snake_case_ ) ) return max_revue def __lowercase ( snake_case_ : int ,snake_case_ : list ) ->int: '''simple docstring''' _enforce_args(snake_case_ ,snake_case_ ) __A : Dict = [float('''-inf''' ) for _ in range(n + 1 )] return _top_down_cut_rod_recursive(snake_case_ ,snake_case_ ,snake_case_ ) def __lowercase ( snake_case_ : int ,snake_case_ : list ,snake_case_ : list ) ->Any: '''simple docstring''' if max_rev[n] >= 0: return max_rev[n] elif n == 0: return 0 else: __A : Any = float('''-inf''' ) for i in range(1 ,n + 1 ): __A : Union[str, Any] = max( snake_case_ ,prices[i - 1] + _top_down_cut_rod_recursive(n - i ,snake_case_ ,snake_case_ ) ,) __A : Any = max_revenue return max_rev[n] def __lowercase ( snake_case_ : int ,snake_case_ : list ) ->Any: '''simple docstring''' _enforce_args(snake_case_ ,snake_case_ ) # length(max_rev) = n + 1, to accommodate for the revenue obtainable from a rod of # length 0. __A : Union[str, Any] = [float('''-inf''' ) for _ in range(n + 1 )] __A : List[Any] = 0 for i in range(1 ,n + 1 ): __A : Union[str, Any] = max_rev[i] for j in range(1 ,i + 1 ): __A : str = max(snake_case_ ,prices[j - 1] + max_rev[i - j] ) __A : List[str] = max_revenue_i return max_rev[n] def __lowercase ( snake_case_ : int ,snake_case_ : list ) ->Union[str, Any]: '''simple docstring''' if n < 0: __A : Union[str, Any] = F"""n must be greater than or equal to 0. Got n = {n}""" raise ValueError(snake_case_ ) if n > len(snake_case_ ): __A : List[Any] = ( '''Each integral piece of rod must have a corresponding price. ''' F"""Got n = {n} but length of prices = {len(snake_case_ )}""" ) raise ValueError(snake_case_ ) def __lowercase ( ) ->str: '''simple docstring''' __A : Any = [6, 10, 12, 15, 20, 23] __A : Union[str, Any] = len(snake_case_ ) # the best revenue comes from cutting the rod into 6 pieces, each # of length 1 resulting in a revenue of 6 * 6 = 36. __A : str = 36 __A : Any = top_down_cut_rod(snake_case_ ,snake_case_ ) __A : Any = bottom_up_cut_rod(snake_case_ ,snake_case_ ) __A : Optional[Any] = naive_cut_rod_recursive(snake_case_ ,snake_case_ ) assert expected_max_revenue == max_rev_top_down assert max_rev_top_down == max_rev_bottom_up assert max_rev_bottom_up == max_rev_naive if __name__ == "__main__": main()
179
1
"""simple docstring""" import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import SegformerImageProcessor, SwinConfig, UperNetConfig, UperNetForSemanticSegmentation def A_ ( _lowerCAmelCase : Optional[int] ): """simple docstring""" _a = 3_84 _a = 7 if "tiny" in model_name: _a = 96 _a = (2, 2, 6, 2) _a = (3, 6, 12, 24) elif "small" in model_name: _a = 96 _a = (2, 2, 18, 2) _a = (3, 6, 12, 24) elif "base" in model_name: _a = 1_28 _a = (2, 2, 18, 2) _a = (4, 8, 16, 32) _a = 12 _a = 5_12 elif "large" in model_name: _a = 1_92 _a = (2, 2, 18, 2) _a = (6, 12, 24, 48) _a = 12 _a = 7_68 # set label information _a = 1_50 _a = 'huggingface/label-files' _a = 'ade20k-id2label.json' _a = json.load(open(hf_hub_download(_UpperCAmelCase, _UpperCAmelCase, repo_type='''dataset''' ), '''r''' ) ) _a = {int(_UpperCAmelCase ): v for k, v in idalabel.items()} _a = {v: k for k, v in idalabel.items()} _a = SwinConfig( embed_dim=_UpperCAmelCase, depths=_UpperCAmelCase, num_heads=_UpperCAmelCase, window_size=_UpperCAmelCase, out_features=['''stage1''', '''stage2''', '''stage3''', '''stage4'''], ) _a = UperNetConfig( backbone_config=_UpperCAmelCase, auxiliary_in_channels=_UpperCAmelCase, num_labels=_UpperCAmelCase, idalabel=_UpperCAmelCase, labelaid=_UpperCAmelCase, ) return config def A_ ( _lowerCAmelCase : Optional[Any] ): """simple docstring""" _a = [] # fmt: off # stem rename_keys.append(('''backbone.patch_embed.projection.weight''', '''backbone.embeddings.patch_embeddings.projection.weight''') ) rename_keys.append(('''backbone.patch_embed.projection.bias''', '''backbone.embeddings.patch_embeddings.projection.bias''') ) rename_keys.append(('''backbone.patch_embed.norm.weight''', '''backbone.embeddings.norm.weight''') ) rename_keys.append(('''backbone.patch_embed.norm.bias''', '''backbone.embeddings.norm.bias''') ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f'backbone.stages.{i}.blocks.{j}.norm1.weight', f'backbone.encoder.layers.{i}.blocks.{j}.layernorm_before.weight') ) rename_keys.append((f'backbone.stages.{i}.blocks.{j}.norm1.bias', f'backbone.encoder.layers.{i}.blocks.{j}.layernorm_before.bias') ) rename_keys.append((f'backbone.stages.{i}.blocks.{j}.attn.w_msa.relative_position_bias_table', f'backbone.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table') ) rename_keys.append((f'backbone.stages.{i}.blocks.{j}.attn.w_msa.relative_position_index', f'backbone.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index') ) rename_keys.append((f'backbone.stages.{i}.blocks.{j}.attn.w_msa.proj.weight', f'backbone.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight') ) rename_keys.append((f'backbone.stages.{i}.blocks.{j}.attn.w_msa.proj.bias', f'backbone.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias') ) rename_keys.append((f'backbone.stages.{i}.blocks.{j}.norm2.weight', f'backbone.encoder.layers.{i}.blocks.{j}.layernorm_after.weight') ) rename_keys.append((f'backbone.stages.{i}.blocks.{j}.norm2.bias', f'backbone.encoder.layers.{i}.blocks.{j}.layernorm_after.bias') ) rename_keys.append((f'backbone.stages.{i}.blocks.{j}.ffn.layers.0.0.weight', f'backbone.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight') ) rename_keys.append((f'backbone.stages.{i}.blocks.{j}.ffn.layers.0.0.bias', f'backbone.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias') ) rename_keys.append((f'backbone.stages.{i}.blocks.{j}.ffn.layers.1.weight', f'backbone.encoder.layers.{i}.blocks.{j}.output.dense.weight') ) rename_keys.append((f'backbone.stages.{i}.blocks.{j}.ffn.layers.1.bias', f'backbone.encoder.layers.{i}.blocks.{j}.output.dense.bias') ) if i < 3: rename_keys.append((f'backbone.stages.{i}.downsample.reduction.weight', f'backbone.encoder.layers.{i}.downsample.reduction.weight') ) rename_keys.append((f'backbone.stages.{i}.downsample.norm.weight', f'backbone.encoder.layers.{i}.downsample.norm.weight') ) rename_keys.append((f'backbone.stages.{i}.downsample.norm.bias', f'backbone.encoder.layers.{i}.downsample.norm.bias') ) rename_keys.append((f'backbone.norm{i}.weight', f'backbone.hidden_states_norms.stage{i+1}.weight') ) rename_keys.append((f'backbone.norm{i}.bias', f'backbone.hidden_states_norms.stage{i+1}.bias') ) # decode head rename_keys.extend( [ ('''decode_head.conv_seg.weight''', '''decode_head.classifier.weight'''), ('''decode_head.conv_seg.bias''', '''decode_head.classifier.bias'''), ('''auxiliary_head.conv_seg.weight''', '''auxiliary_head.classifier.weight'''), ('''auxiliary_head.conv_seg.bias''', '''auxiliary_head.classifier.bias'''), ] ) # fmt: on return rename_keys def A_ ( _lowerCAmelCase : List[str], _lowerCAmelCase : List[str], _lowerCAmelCase : str ): """simple docstring""" _a = dct.pop(_UpperCAmelCase ) _a = val def A_ ( _lowerCAmelCase : Any, _lowerCAmelCase : Optional[int] ): """simple docstring""" _a = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): _a = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) _a = state_dict.pop(f'backbone.stages.{i}.blocks.{j}.attn.w_msa.qkv.weight' ) _a = state_dict.pop(f'backbone.stages.{i}.blocks.{j}.attn.w_msa.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict _a = in_proj_weight[:dim, :] _a = in_proj_bias[: dim] _a = in_proj_weight[ dim : dim * 2, : ] _a = in_proj_bias[ dim : dim * 2 ] _a = in_proj_weight[ -dim :, : ] _a = in_proj_bias[-dim :] # fmt: on def A_ ( _lowerCAmelCase : Any ): """simple docstring""" _a = x.shape _a = x.reshape(_UpperCAmelCase, 4, in_channel // 4 ) _a = x[:, [0, 2, 1, 3], :].transpose(1, 2 ).reshape(_UpperCAmelCase, _UpperCAmelCase ) return x def A_ ( _lowerCAmelCase : str ): """simple docstring""" _a = x.shape _a = x.reshape(_UpperCAmelCase, in_channel // 4, 4 ) _a = x[:, :, [0, 2, 1, 3]].transpose(1, 2 ).reshape(_UpperCAmelCase, _UpperCAmelCase ) return x def A_ ( _lowerCAmelCase : List[str] ): """simple docstring""" _a = x.shape[0] _a = x.reshape(4, in_channel // 4 ) _a = x[[0, 2, 1, 3], :].transpose(0, 1 ).reshape(_UpperCAmelCase ) return x def A_ ( _lowerCAmelCase : Optional[int] ): """simple docstring""" _a = x.shape[0] _a = x.reshape(in_channel // 4, 4 ) _a = x[:, [0, 2, 1, 3]].transpose(0, 1 ).reshape(_UpperCAmelCase ) return x def A_ ( _lowerCAmelCase : Union[str, Any], _lowerCAmelCase : Optional[Any], _lowerCAmelCase : Dict ): """simple docstring""" _a = { 'upernet-swin-tiny': 'https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210531_112542-e380ad3e.pth', 'upernet-swin-small': 'https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210526_192015-ee2fff1c.pth', 'upernet-swin-base': 'https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K_20210531_125459-429057bf.pth', 'upernet-swin-large': 'https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_large_patch4_window12_512x512_pretrain_384x384_22K_160k_ade20k/upernet_swin_large_patch4_window12_512x512_pretrain_384x384_22K_160k_ade20k_20220318_091743-9ba68901.pth', } _a = model_name_to_url[model_name] _a = torch.hub.load_state_dict_from_url(_UpperCAmelCase, map_location='''cpu''', file_name=_UpperCAmelCase )[ 'state_dict' ] for name, param in state_dict.items(): print(_UpperCAmelCase, param.shape ) _a = get_upernet_config(_UpperCAmelCase ) _a = UperNetForSemanticSegmentation(_UpperCAmelCase ) model.eval() # replace "bn" => "batch_norm" for key in state_dict.copy().keys(): _a = state_dict.pop(_UpperCAmelCase ) if "bn" in key: _a = key.replace('''bn''', '''batch_norm''' ) _a = val # rename keys _a = create_rename_keys(_UpperCAmelCase ) for src, dest in rename_keys: rename_key(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) read_in_q_k_v(_UpperCAmelCase, config.backbone_config ) # fix downsample parameters for key, value in state_dict.items(): if "downsample" in key: if "reduction" in key: _a = reverse_correct_unfold_reduction_order(_UpperCAmelCase ) if "norm" in key: _a = reverse_correct_unfold_norm_order(_UpperCAmelCase ) model.load_state_dict(_UpperCAmelCase ) # verify on image _a = 'https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg' _a = Image.open(requests.get(_UpperCAmelCase, stream=_UpperCAmelCase ).raw ).convert('''RGB''' ) _a = SegformerImageProcessor() _a = processor(_UpperCAmelCase, return_tensors='''pt''' ).pixel_values with torch.no_grad(): _a = model(_UpperCAmelCase ) _a = outputs.logits print(logits.shape ) print('''First values of logits:''', logits[0, 0, :3, :3] ) # assert values if model_name == "upernet-swin-tiny": _a = torch.tensor( [[-7.5_9_5_8, -7.5_9_5_8, -7.4_3_0_2], [-7.5_9_5_8, -7.5_9_5_8, -7.4_3_0_2], [-7.4_7_9_7, -7.4_7_9_7, -7.3_0_6_8]] ) elif model_name == "upernet-swin-small": _a = torch.tensor( [[-7.1_9_2_1, -7.1_9_2_1, -6.9_5_3_2], [-7.1_9_2_1, -7.1_9_2_1, -6.9_5_3_2], [-7.0_9_0_8, -7.0_9_0_8, -6.8_5_3_4]] ) elif model_name == "upernet-swin-base": _a = torch.tensor( [[-6.5_8_5_1, -6.5_8_5_1, -6.4_3_3_0], [-6.5_8_5_1, -6.5_8_5_1, -6.4_3_3_0], [-6.4_7_6_3, -6.4_7_6_3, -6.3_2_5_4]] ) elif model_name == "upernet-swin-large": _a = torch.tensor( [[-7.5_2_9_7, -7.5_2_9_7, -7.3_8_0_2], [-7.5_2_9_7, -7.5_2_9_7, -7.3_8_0_2], [-7.4_0_4_4, -7.4_0_4_4, -7.2_5_8_6]] ) print('''Logits:''', outputs.logits[0, 0, :3, :3] ) assert torch.allclose(outputs.logits[0, 0, :3, :3], _UpperCAmelCase, atol=1e-4 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(f'Saving model {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(_UpperCAmelCase ) print(f'Saving processor to {pytorch_dump_folder_path}' ) processor.save_pretrained(_UpperCAmelCase ) if push_to_hub: print(f'Pushing model and processor for {model_name} to hub' ) model.push_to_hub(f'openmmlab/{model_name}' ) processor.push_to_hub(f'openmmlab/{model_name}' ) if __name__ == "__main__": __snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''upernet-swin-tiny''', type=str, choices=[f'upernet-swin-{size}' for size in ['''tiny''', '''small''', '''base''', '''large''']], help='''Name of the Swin + UperNet model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) __snake_case = parser.parse_args() convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
350
"""simple docstring""" import unittest from transformers import GPTNeoXJapaneseConfig, is_torch_available from transformers.models.gpt_neox_japanese.tokenization_gpt_neox_japanese import GPTNeoXJapaneseTokenizer from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import GPTNeoXJapaneseForCausalLM, GPTNeoXJapaneseModel class __lowerCamelCase : '''simple docstring''' def __init__( self , __UpperCAmelCase , __UpperCAmelCase=13 , __UpperCAmelCase=7 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=99 , __UpperCAmelCase=32 , __UpperCAmelCase=5 , __UpperCAmelCase=4 , __UpperCAmelCase=4 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.1 , __UpperCAmelCase=True , __UpperCAmelCase=512 , __UpperCAmelCase=16 , __UpperCAmelCase=2 , __UpperCAmelCase=0.02 , __UpperCAmelCase=3 , __UpperCAmelCase=4 , __UpperCAmelCase=None , ) -> str: _a = parent _a = batch_size _a = seq_length _a = is_training _a = use_input_mask _a = use_token_type_ids _a = use_labels _a = vocab_size _a = hidden_size _a = num_hidden_layers _a = num_attention_heads _a = intermediate_multiple_size _a = hidden_act _a = hidden_dropout _a = attention_dropout _a = weight_tying _a = max_position_embeddings _a = type_vocab_size _a = type_sequence_label_size _a = initializer_range _a = num_labels _a = num_choices _a = scope def _UpperCAmelCase ( self ) -> Tuple: _a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _a = None if self.use_input_mask: _a = random_attention_mask([self.batch_size, self.seq_length] ) _a = None if self.use_labels: _a = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _a = self.get_config() return config, input_ids, input_mask, token_labels def _UpperCAmelCase ( self ) -> Optional[int]: return GPTNeoXJapaneseConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_multiple_size=self.intermediate_multiple_size , hidden_act=self.hidden_act , hidden_dropout=self.hidden_dropout , attention_dropout=self.attention_dropout , weight_tying=self.weight_tying , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__UpperCAmelCase , initializer_range=self.initializer_range , ) def _UpperCAmelCase ( self ) -> Union[str, Any]: _a , _a , _a , _a = self.prepare_config_and_inputs() _a = True return config, input_ids, input_mask, token_labels def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> int: _a = GPTNeoXJapaneseModel(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() _a = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase ) _a = model(__UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]: _a = True _a = GPTNeoXJapaneseModel(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() _a = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Union[str, Any]: _a = GPTNeoXJapaneseForCausalLM(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() _a = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[int]: _a = True _a = GPTNeoXJapaneseForCausalLM(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() # first forward pass _a = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , use_cache=__UpperCAmelCase ) _a = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids _a = ids_tensor((self.batch_size, 3) , config.vocab_size ) _a = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and _a = torch.cat([input_ids, next_tokens] , dim=-1 ) _a = torch.cat([input_mask, next_mask] , dim=-1 ) _a = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , output_hidden_states=__UpperCAmelCase ) _a = output_from_no_past['''hidden_states'''][0] _a = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , past_key_values=__UpperCAmelCase , output_hidden_states=__UpperCAmelCase , )['''hidden_states'''][0] # select random slice _a = ids_tensor((1,) , output_from_past.shape[-1] ).item() _a = output_from_no_past[:, -3:, random_slice_idx].detach() _a = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1e-3 ) ) def _UpperCAmelCase ( self ) -> List[str]: _a = self.prepare_config_and_inputs() _a , _a , _a , _a = config_and_inputs _a = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class __lowerCamelCase ( a__ , a__ , unittest.TestCase ): '''simple docstring''' A_ : str = (GPTNeoXJapaneseModel, GPTNeoXJapaneseForCausalLM) if is_torch_available() else () A_ : Tuple = (GPTNeoXJapaneseForCausalLM,) if is_torch_available() else () A_ : List[str] = ( {'feature-extraction': GPTNeoXJapaneseModel, 'text-generation': GPTNeoXJapaneseForCausalLM} if is_torch_available() else {} ) A_ : Any = False A_ : Optional[Any] = False A_ : Tuple = False A_ : Optional[int] = False def _UpperCAmelCase ( self ) -> Optional[Any]: _a = GPTNeoXJapaneseModelTester(self ) _a = ConfigTester(self , config_class=__UpperCAmelCase , hidden_size=37 ) def _UpperCAmelCase ( self ) -> Optional[Any]: self.config_tester.run_common_tests() def _UpperCAmelCase ( self ) -> str: _a , _a , _a , _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) def _UpperCAmelCase ( self ) -> Tuple: _a , _a , _a , _a = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) def _UpperCAmelCase ( self ) -> int: # This regression test was failing with PyTorch < 1.3 _a , _a , _a , _a = self.model_tester.prepare_config_and_inputs_for_decoder() _a = None self.model_tester.create_and_check_model_as_decoder(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) def _UpperCAmelCase ( self ) -> List[str]: _a , _a , _a , _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) def _UpperCAmelCase ( self ) -> Optional[int]: _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_causal_lm(*__UpperCAmelCase ) @slow def _UpperCAmelCase ( self ) -> Optional[int]: _a = '''abeja/gpt-neox-japanese-2.7b''' _a = ['''データサイエンティストとは、''', '''100年後に必要とされる会社は、''', '''フルリモートの環境で働くために必要なことは、''', '''国境の長いトンネルを抜けると''', '''美味しい日本食といえば、'''] _a = [ '''データサイエンティストとは、データを分析し、ビジネスに役立つ知見を導き出す専門家のことです。''', '''100年後に必要とされる会社は、「人」が中心の会社です。''', '''フルリモートの環境で働くために必要なことは、「自分の時間をコントロールする」ことです。''', '''国境の長いトンネルを抜けると、そこは雪国だった。''', '''美味しい日本食といえば、やっぱりお寿司ですよね。''', ] _a = GPTNeoXJapaneseTokenizer.from_pretrained(__UpperCAmelCase ) _a = GPTNeoXJapaneseForCausalLM.from_pretrained(__UpperCAmelCase ) _a = [] for prompt in prompts: _a = tokenizer(__UpperCAmelCase , return_tensors='''pt''' ).input_ids _a = model.generate(__UpperCAmelCase , max_length=50 ) _a = tokenizer.batch_decode(__UpperCAmelCase , skip_special_tokens=__UpperCAmelCase ) predicted_outputs += generated_string self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase )
153
0
import inspect import unittest from datasets import load_dataset from packaging import version from transformers import BeitConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_MAPPING, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, ) from transformers.models.beit.modeling_beit import BEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): import PIL from PIL import Image from transformers import BeitImageProcessor class a_ : """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase=100 , _lowerCamelCase=13 , _lowerCamelCase=30 , _lowerCamelCase=2 , _lowerCamelCase=3 , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=32 , _lowerCamelCase=4 , _lowerCamelCase=4 , _lowerCamelCase=37 , _lowerCamelCase="gelu" , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase=10 , _lowerCamelCase=0.0_2 , _lowerCamelCase=3 , _lowerCamelCase=None , _lowerCamelCase=[0, 1, 2, 3] , ) ->Dict: SCREAMING_SNAKE_CASE : Union[str, Any] = parent SCREAMING_SNAKE_CASE : int = 100 SCREAMING_SNAKE_CASE : Dict = batch_size SCREAMING_SNAKE_CASE : Any = image_size SCREAMING_SNAKE_CASE : Any = patch_size SCREAMING_SNAKE_CASE : int = num_channels SCREAMING_SNAKE_CASE : Optional[Any] = is_training SCREAMING_SNAKE_CASE : Optional[int] = use_labels SCREAMING_SNAKE_CASE : Any = hidden_size SCREAMING_SNAKE_CASE : Union[str, Any] = num_hidden_layers SCREAMING_SNAKE_CASE : int = num_attention_heads SCREAMING_SNAKE_CASE : Union[str, Any] = intermediate_size SCREAMING_SNAKE_CASE : List[Any] = hidden_act SCREAMING_SNAKE_CASE : Tuple = hidden_dropout_prob SCREAMING_SNAKE_CASE : Optional[Any] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : Union[str, Any] = type_sequence_label_size SCREAMING_SNAKE_CASE : Any = initializer_range SCREAMING_SNAKE_CASE : Any = scope SCREAMING_SNAKE_CASE : Any = out_indices SCREAMING_SNAKE_CASE : List[str] = num_labels # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) SCREAMING_SNAKE_CASE : Any = (image_size // patch_size) ** 2 SCREAMING_SNAKE_CASE : Optional[Any] = num_patches + 1 def __lowerCAmelCase ( self ) ->Optional[Any]: SCREAMING_SNAKE_CASE : Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE : List[str] = None SCREAMING_SNAKE_CASE : Tuple = None if self.use_labels: SCREAMING_SNAKE_CASE : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE : int = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) SCREAMING_SNAKE_CASE : Dict = self.get_config() return config, pixel_values, labels, pixel_labels def __lowerCAmelCase ( self ) ->Union[str, Any]: return BeitConfig( vocab_size=self.vocab_size , image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_lowerCamelCase , initializer_range=self.initializer_range , out_indices=self.out_indices , ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) ->int: SCREAMING_SNAKE_CASE : List[Any] = BeitModel(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() SCREAMING_SNAKE_CASE : Tuple = model(_lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) ->List[str]: SCREAMING_SNAKE_CASE : List[Any] = BeitForMaskedImageModeling(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() SCREAMING_SNAKE_CASE : int = model(_lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length - 1, self.vocab_size) ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) ->Any: SCREAMING_SNAKE_CASE : List[str] = self.type_sequence_label_size SCREAMING_SNAKE_CASE : List[Any] = BeitForImageClassification(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() SCREAMING_SNAKE_CASE : Optional[Any] = model(_lowerCamelCase , labels=_lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images SCREAMING_SNAKE_CASE : Dict = 1 SCREAMING_SNAKE_CASE : Union[str, Any] = BeitForImageClassification(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() SCREAMING_SNAKE_CASE : Tuple = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE : str = model(_lowerCamelCase , labels=_lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) ->Union[str, Any]: SCREAMING_SNAKE_CASE : Any = self.num_labels SCREAMING_SNAKE_CASE : Union[str, Any] = BeitForSemanticSegmentation(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() SCREAMING_SNAKE_CASE : Any = model(_lowerCamelCase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) SCREAMING_SNAKE_CASE : Union[str, Any] = model(_lowerCamelCase , labels=_lowerCamelCase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) def __lowerCAmelCase ( self ) ->str: SCREAMING_SNAKE_CASE : Any = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = config_and_inputs SCREAMING_SNAKE_CASE : Union[str, Any] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class a_ ( a__ , a__ , unittest.TestCase ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = ( (BeitModel, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation) if is_torch_available() else () ) __SCREAMING_SNAKE_CASE : Optional[int] = ( { 'feature-extraction': BeitModel, 'image-classification': BeitForImageClassification, 'image-segmentation': BeitForSemanticSegmentation, } if is_torch_available() else {} ) __SCREAMING_SNAKE_CASE : Dict = False __SCREAMING_SNAKE_CASE : List[Any] = False __SCREAMING_SNAKE_CASE : Union[str, Any] = False def __lowerCAmelCase ( self ) ->Union[str, Any]: SCREAMING_SNAKE_CASE : List[Any] = BeitModelTester(self ) SCREAMING_SNAKE_CASE : Tuple = ConfigTester(self , config_class=_lowerCamelCase , has_text_modality=_lowerCamelCase , hidden_size=37 ) def __lowerCAmelCase ( self ) ->Dict: self.config_tester.run_common_tests() @unittest.skip(reason='''BEiT does not use inputs_embeds''' ) def __lowerCAmelCase ( self ) ->Any: pass @require_torch_multi_gpu @unittest.skip(reason='''BEiT has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`''' ) def __lowerCAmelCase ( self ) ->Any: pass def __lowerCAmelCase ( self ) ->Any: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : str = model_class(_lowerCamelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) SCREAMING_SNAKE_CASE : Tuple = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_lowerCamelCase , nn.Linear ) ) def __lowerCAmelCase ( self ) ->List[str]: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : List[Any] = model_class(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Tuple = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE : Optional[int] = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE : Any = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _lowerCamelCase ) def __lowerCAmelCase ( self ) ->Dict: SCREAMING_SNAKE_CASE : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCamelCase ) def __lowerCAmelCase ( self ) ->str: SCREAMING_SNAKE_CASE : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_lowerCamelCase ) def __lowerCAmelCase ( self ) ->List[str]: SCREAMING_SNAKE_CASE : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_lowerCamelCase ) def __lowerCAmelCase ( self ) ->List[str]: SCREAMING_SNAKE_CASE : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*_lowerCamelCase ) def __lowerCAmelCase ( self ) ->List[str]: if not self.model_tester.is_training: return SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Any = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE : Any = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if model_class in [*get_values(_lowerCamelCase ), BeitForMaskedImageModeling]: continue SCREAMING_SNAKE_CASE : Any = model_class(_lowerCamelCase ) model.to(_lowerCamelCase ) model.train() SCREAMING_SNAKE_CASE : Optional[int] = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase , return_labels=_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = model(**_lowerCamelCase ).loss loss.backward() def __lowerCAmelCase ( self ) ->str: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Dict = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return SCREAMING_SNAKE_CASE : Any = False SCREAMING_SNAKE_CASE : int = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if ( model_class in [*get_values(_lowerCamelCase ), BeitForMaskedImageModeling] or not model_class.supports_gradient_checkpointing ): continue SCREAMING_SNAKE_CASE : Union[str, Any] = model_class(_lowerCamelCase ) model.gradient_checkpointing_enable() model.to(_lowerCamelCase ) model.train() SCREAMING_SNAKE_CASE : int = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase , return_labels=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Any = model(**_lowerCamelCase ).loss loss.backward() def __lowerCAmelCase ( self ) ->Any: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE : List[Any] = _config_zero_init(_lowerCamelCase ) for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : Tuple = model_class(config=_lowerCamelCase ) for name, param in model.named_parameters(): # we skip lambda parameters as these require special initial values # determined by config.layer_scale_init_value if "lambda" in name: continue if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @slow def __lowerCAmelCase ( self ) ->int: for model_name in BEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE : Any = BeitModel.from_pretrained(_lowerCamelCase ) self.assertIsNotNone(_lowerCamelCase ) def UpperCAmelCase_( ): """simple docstring""" SCREAMING_SNAKE_CASE : str = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class a_ ( unittest.TestCase ): """simple docstring""" @cached_property def __lowerCAmelCase ( self ) ->Union[str, Any]: return BeitImageProcessor.from_pretrained('''microsoft/beit-base-patch16-224''' ) if is_vision_available() else None @slow def __lowerCAmelCase ( self ) ->List[str]: SCREAMING_SNAKE_CASE : List[Any] = BeitForMaskedImageModeling.from_pretrained('''microsoft/beit-base-patch16-224-pt22k''' ).to(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Any = self.default_image_processor SCREAMING_SNAKE_CASE : Dict = prepare_img() SCREAMING_SNAKE_CASE : List[Any] = image_processor(images=_lowerCamelCase , return_tensors='''pt''' ).pixel_values.to(_lowerCamelCase ) # prepare bool_masked_pos SCREAMING_SNAKE_CASE : Optional[Any] = torch.ones((1, 196) , dtype=torch.bool ).to(_lowerCamelCase ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE : List[Any] = model(pixel_values=_lowerCamelCase , bool_masked_pos=_lowerCamelCase ) SCREAMING_SNAKE_CASE : int = outputs.logits # verify the logits SCREAMING_SNAKE_CASE : Optional[Any] = torch.Size((1, 196, 8192) ) self.assertEqual(logits.shape , _lowerCamelCase ) SCREAMING_SNAKE_CASE : str = torch.tensor( [[-3.2_4_3_7, 0.5_0_7_2, -1_3.9_1_7_4], [-3.2_4_5_6, 0.4_9_4_8, -1_3.9_4_0_1], [-3.2_0_3_3, 0.5_1_2_1, -1_3.8_5_5_0]] ).to(_lowerCamelCase ) self.assertTrue(torch.allclose(logits[bool_masked_pos][:3, :3] , _lowerCamelCase , atol=1e-2 ) ) @slow def __lowerCAmelCase ( self ) ->str: SCREAMING_SNAKE_CASE : Any = BeitForImageClassification.from_pretrained('''microsoft/beit-base-patch16-224''' ).to(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = self.default_image_processor SCREAMING_SNAKE_CASE : int = prepare_img() SCREAMING_SNAKE_CASE : List[Any] = image_processor(images=_lowerCamelCase , return_tensors='''pt''' ).to(_lowerCamelCase ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE : Any = model(**_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = outputs.logits # verify the logits SCREAMING_SNAKE_CASE : int = torch.Size((1, 1000) ) self.assertEqual(logits.shape , _lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[Any] = torch.tensor([-1.2_3_8_5, -1.0_9_8_7, -1.0_1_0_8] ).to(_lowerCamelCase ) self.assertTrue(torch.allclose(logits[0, :3] , _lowerCamelCase , atol=1e-4 ) ) SCREAMING_SNAKE_CASE : Optional[int] = 281 self.assertEqual(logits.argmax(-1 ).item() , _lowerCamelCase ) @slow def __lowerCAmelCase ( self ) ->Union[str, Any]: SCREAMING_SNAKE_CASE : Any = BeitForImageClassification.from_pretrained('''microsoft/beit-large-patch16-224-pt22k-ft22k''' ).to( _lowerCamelCase ) SCREAMING_SNAKE_CASE : Any = self.default_image_processor SCREAMING_SNAKE_CASE : Dict = prepare_img() SCREAMING_SNAKE_CASE : Dict = image_processor(images=_lowerCamelCase , return_tensors='''pt''' ).to(_lowerCamelCase ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE : int = model(**_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[str] = outputs.logits # verify the logits SCREAMING_SNAKE_CASE : List[str] = torch.Size((1, 2_1841) ) self.assertEqual(logits.shape , _lowerCamelCase ) SCREAMING_SNAKE_CASE : List[str] = torch.tensor([1.6_8_8_1, -0.2_7_8_7, 0.5_9_0_1] ).to(_lowerCamelCase ) self.assertTrue(torch.allclose(logits[0, :3] , _lowerCamelCase , atol=1e-4 ) ) SCREAMING_SNAKE_CASE : Optional[int] = 2396 self.assertEqual(logits.argmax(-1 ).item() , _lowerCamelCase ) @slow def __lowerCAmelCase ( self ) ->Optional[int]: SCREAMING_SNAKE_CASE : int = BeitForSemanticSegmentation.from_pretrained('''microsoft/beit-base-finetuned-ade-640-640''' ) SCREAMING_SNAKE_CASE : Any = model.to(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Any = BeitImageProcessor(do_resize=_lowerCamelCase , size=640 , do_center_crop=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[int] = load_dataset('''hf-internal-testing/fixtures_ade20k''' , split='''test''' ) SCREAMING_SNAKE_CASE : Union[str, Any] = Image.open(ds[0]['''file'''] ) SCREAMING_SNAKE_CASE : Any = image_processor(images=_lowerCamelCase , return_tensors='''pt''' ).to(_lowerCamelCase ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE : Union[str, Any] = model(**_lowerCamelCase ) SCREAMING_SNAKE_CASE : Any = outputs.logits # verify the logits SCREAMING_SNAKE_CASE : Tuple = torch.Size((1, 150, 160, 160) ) self.assertEqual(logits.shape , _lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[Any] = version.parse(PIL.__version__ ) < version.parse('''9.0.0''' ) if is_pillow_less_than_a: SCREAMING_SNAKE_CASE : List[str] = torch.tensor( [ [[-4.9_2_2_5, -2.3_9_5_4, -3.0_5_2_2], [-2.8_8_2_2, -1.0_0_4_6, -1.7_5_6_1], [-2.9_5_4_9, -1.3_2_2_8, -2.1_3_4_7]], [[-5.8_1_6_8, -3.4_1_2_9, -4.0_7_7_8], [-3.8_6_5_1, -2.2_2_1_4, -3.0_2_7_7], [-3.8_3_5_6, -2.4_6_4_3, -3.3_5_3_5]], [[-0.0_0_7_8, 3.9_9_5_2, 4.0_7_5_4], [2.9_8_5_6, 4.6_9_4_4, 5.0_0_3_5], [3.2_4_1_3, 4.7_8_1_3, 4.9_9_6_9]], ] , device=_lowerCamelCase , ) else: SCREAMING_SNAKE_CASE : Optional[int] = torch.tensor( [ [[-4.8_9_6_0, -2.3_6_8_8, -3.0_3_5_5], [-2.8_4_7_8, -0.9_8_3_6, -1.7_4_1_8], [-2.9_4_4_9, -1.3_3_3_2, -2.1_4_5_6]], [[-5.8_0_8_1, -3.4_1_2_4, -4.1_0_0_6], [-3.8_5_6_1, -2.2_0_8_1, -3.0_3_2_3], [-3.8_3_6_5, -2.4_6_0_1, -3.3_6_6_9]], [[-0.0_3_0_9, 3.9_8_6_8, 4.0_5_4_0], [2.9_6_4_0, 4.6_8_7_7, 4.9_9_7_6], [3.2_0_8_1, 4.7_6_9_0, 4.9_9_4_2]], ] , device=_lowerCamelCase , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , _lowerCamelCase , atol=1e-4 ) ) @slow def __lowerCAmelCase ( self ) ->str: SCREAMING_SNAKE_CASE : Optional[int] = BeitForSemanticSegmentation.from_pretrained('''microsoft/beit-base-finetuned-ade-640-640''' ) SCREAMING_SNAKE_CASE : Dict = model.to(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[Any] = BeitImageProcessor(do_resize=_lowerCamelCase , size=640 , do_center_crop=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[int] = load_dataset('''hf-internal-testing/fixtures_ade20k''' , split='''test''' ) SCREAMING_SNAKE_CASE : str = Image.open(ds[0]['''file'''] ) SCREAMING_SNAKE_CASE : Any = image_processor(images=_lowerCamelCase , return_tensors='''pt''' ).to(_lowerCamelCase ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE : List[Any] = model(**_lowerCamelCase ) SCREAMING_SNAKE_CASE : str = outputs.logits.detach().cpu() SCREAMING_SNAKE_CASE : List[Any] = image_processor.post_process_semantic_segmentation(outputs=_lowerCamelCase , target_sizes=[(500, 300)] ) SCREAMING_SNAKE_CASE : Union[str, Any] = torch.Size((500, 300) ) self.assertEqual(segmentation[0].shape , _lowerCamelCase ) SCREAMING_SNAKE_CASE : str = image_processor.post_process_semantic_segmentation(outputs=_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[str] = torch.Size((160, 160) ) self.assertEqual(segmentation[0].shape , _lowerCamelCase )
313
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyImgaImgPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class a_ ( a__ , unittest.TestCase ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = KandinskyImgaImgPipeline __SCREAMING_SNAKE_CASE : str = ['prompt', 'image_embeds', 'negative_image_embeds', 'image'] __SCREAMING_SNAKE_CASE : int = [ 'prompt', 'negative_prompt', 'image_embeds', 'negative_image_embeds', 'image', ] __SCREAMING_SNAKE_CASE : int = [ 'generator', 'height', 'width', 'strength', 'guidance_scale', 'negative_prompt', 'num_inference_steps', 'return_dict', 'guidance_scale', 'num_images_per_prompt', 'output_type', 'return_dict', ] __SCREAMING_SNAKE_CASE : List[Any] = False @property def __lowerCAmelCase ( self ) ->int: return 32 @property def __lowerCAmelCase ( self ) ->List[str]: return 32 @property def __lowerCAmelCase ( self ) ->Optional[int]: return self.time_input_dim @property def __lowerCAmelCase ( self ) ->Tuple: return self.time_input_dim * 4 @property def __lowerCAmelCase ( self ) ->Optional[int]: return 100 @property def __lowerCAmelCase ( self ) ->Dict: SCREAMING_SNAKE_CASE : str = XLMRobertaTokenizerFast.from_pretrained('''YiYiXu/tiny-random-mclip-base''' ) return tokenizer @property def __lowerCAmelCase ( self ) ->Tuple: torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : List[Any] = MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=1005 , ) SCREAMING_SNAKE_CASE : Dict = MultilingualCLIP(_lowerCamelCase ) SCREAMING_SNAKE_CASE : str = text_encoder.eval() return text_encoder @property def __lowerCAmelCase ( self ) ->Union[str, Any]: torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Any = { '''in_channels''': 4, # Out channels is double in channels because predicts mean and variance '''out_channels''': 8, '''addition_embed_type''': '''text_image''', '''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''), '''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''), '''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''', '''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2), '''layers_per_block''': 1, '''encoder_hid_dim''': self.text_embedder_hidden_size, '''encoder_hid_dim_type''': '''text_image_proj''', '''cross_attention_dim''': self.cross_attention_dim, '''attention_head_dim''': 4, '''resnet_time_scale_shift''': '''scale_shift''', '''class_embed_type''': None, } SCREAMING_SNAKE_CASE : Tuple = UNetaDConditionModel(**_lowerCamelCase ) return model @property def __lowerCAmelCase ( self ) ->List[str]: return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def __lowerCAmelCase ( self ) ->Optional[Any]: torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : List[str] = VQModel(**self.dummy_movq_kwargs ) return model def __lowerCAmelCase ( self ) ->Dict: SCREAMING_SNAKE_CASE : Any = self.dummy_text_encoder SCREAMING_SNAKE_CASE : Any = self.dummy_tokenizer SCREAMING_SNAKE_CASE : List[Any] = self.dummy_unet SCREAMING_SNAKE_CASE : Optional[int] = self.dummy_movq SCREAMING_SNAKE_CASE : Optional[Any] = { '''num_train_timesteps''': 1000, '''beta_schedule''': '''linear''', '''beta_start''': 0.0_0_0_8_5, '''beta_end''': 0.0_1_2, '''clip_sample''': False, '''set_alpha_to_one''': False, '''steps_offset''': 0, '''prediction_type''': '''epsilon''', '''thresholding''': False, } SCREAMING_SNAKE_CASE : Optional[Any] = DDIMScheduler(**_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = { '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''unet''': unet, '''scheduler''': scheduler, '''movq''': movq, } return components def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase=0 ) ->str: SCREAMING_SNAKE_CASE : List[str] = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(_lowerCamelCase ) ).to(_lowerCamelCase ) SCREAMING_SNAKE_CASE : int = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(_lowerCamelCase ) # create init_image SCREAMING_SNAKE_CASE : str = floats_tensor((1, 3, 64, 64) , rng=random.Random(_lowerCamelCase ) ).to(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Union[str, Any] = image.cpu().permute(0 , 2 , 3 , 1 )[0] SCREAMING_SNAKE_CASE : str = Image.fromarray(np.uinta(_lowerCamelCase ) ).convert('''RGB''' ).resize((256, 256) ) if str(_lowerCamelCase ).startswith('''mps''' ): SCREAMING_SNAKE_CASE : Optional[int] = torch.manual_seed(_lowerCamelCase ) else: SCREAMING_SNAKE_CASE : str = torch.Generator(device=_lowerCamelCase ).manual_seed(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Any = { '''prompt''': '''horse''', '''image''': init_image, '''image_embeds''': image_embeds, '''negative_image_embeds''': negative_image_embeds, '''generator''': generator, '''height''': 64, '''width''': 64, '''num_inference_steps''': 10, '''guidance_scale''': 7.0, '''strength''': 0.2, '''output_type''': '''np''', } return inputs def __lowerCAmelCase ( self ) ->Dict: SCREAMING_SNAKE_CASE : str = '''cpu''' SCREAMING_SNAKE_CASE : Optional[Any] = self.get_dummy_components() SCREAMING_SNAKE_CASE : List[str] = self.pipeline_class(**_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[int] = pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[int] = pipe(**self.get_dummy_inputs(_lowerCamelCase ) ) SCREAMING_SNAKE_CASE : Dict = output.images SCREAMING_SNAKE_CASE : Any = pipe( **self.get_dummy_inputs(_lowerCamelCase ) , return_dict=_lowerCamelCase , )[0] SCREAMING_SNAKE_CASE : List[Any] = image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE : List[Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) SCREAMING_SNAKE_CASE : Optional[int] = np.array( [0.6_1_4_7_4_9_4_3, 0.6_0_7_3_5_3_9, 0.4_3_3_0_8_5_4_4, 0.5_9_2_8_2_6_9, 0.4_7_4_9_3_5_9_5, 0.4_6_7_5_5_9_7_3, 0.4_6_1_3_8_3_8, 0.4_5_3_6_8_7_9_7, 0.5_0_1_1_9_2_3_3] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), F""" expected_slice {expected_slice}, but got {image_slice.flatten()}""" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), F""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}""" @slow @require_torch_gpu class a_ ( unittest.TestCase ): """simple docstring""" def __lowerCAmelCase ( self ) ->List[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCAmelCase ( self ) ->Optional[int]: SCREAMING_SNAKE_CASE : int = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/kandinsky_img2img_frog.npy''' ) SCREAMING_SNAKE_CASE : int = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/cat.png''' ) SCREAMING_SNAKE_CASE : str = '''A red cartoon frog, 4k''' SCREAMING_SNAKE_CASE : Any = KandinskyPriorPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-1-prior''' , torch_dtype=torch.floataa ) pipe_prior.to(_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[str] = KandinskyImgaImgPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-1''' , torch_dtype=torch.floataa ) SCREAMING_SNAKE_CASE : str = pipeline.to(_lowerCamelCase ) pipeline.set_progress_bar_config(disable=_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[str] = torch.Generator(device='''cpu''' ).manual_seed(0 ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Union[str, Any] = pipe_prior( _lowerCamelCase , generator=_lowerCamelCase , num_inference_steps=5 , negative_prompt='''''' , ).to_tuple() SCREAMING_SNAKE_CASE : Dict = pipeline( _lowerCamelCase , image=_lowerCamelCase , image_embeds=_lowerCamelCase , negative_image_embeds=_lowerCamelCase , generator=_lowerCamelCase , num_inference_steps=100 , height=768 , width=768 , strength=0.2 , output_type='''np''' , ) SCREAMING_SNAKE_CASE : Tuple = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(_lowerCamelCase , _lowerCamelCase )
313
1
from typing import Dict, List, Optional, Union import numpy as np from transformers.utils import is_vision_available from transformers.utils.generic import TensorType from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import logging if is_vision_available(): import PIL _lowerCAmelCase : int = logging.get_logger(__name__) def __snake_case ( _lowerCAmelCase : Optional[Any] ) -> List[List[ImageInput]]: if isinstance(_lowerCAmelCase , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(_lowerCAmelCase , (list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(_lowerCAmelCase ): return [[videos]] raise ValueError(f"Could not make batched video from {videos}" ) class __magic_name__ ( lowerCamelCase__ ): """simple docstring""" __UpperCamelCase = ['''pixel_values'''] def __init__( self :List[str] , snake_case :bool = True , snake_case :Dict[str, int] = None , snake_case :PILImageResampling = PILImageResampling.BILINEAR , snake_case :bool = True , snake_case :Dict[str, int] = None , snake_case :bool = True , snake_case :Union[int, float] = 1 / 255 , snake_case :bool = True , snake_case :bool = True , snake_case :Optional[Union[float, List[float]]] = None , snake_case :Optional[Union[float, List[float]]] = None , **snake_case :Any , ): '''simple docstring''' super().__init__(**snake_case ) A_ : str = size if size is not None else {"shortest_edge": 256} A_ : str = get_size_dict(snake_case , default_to_square=snake_case ) A_ : Any = crop_size if crop_size is not None else {"height": 224, "width": 224} A_ : Union[str, Any] = get_size_dict(snake_case , param_name="crop_size" ) A_ : int = do_resize A_ : Union[str, Any] = size A_ : List[Any] = do_center_crop A_ : Dict = crop_size A_ : List[Any] = resample A_ : Optional[int] = do_rescale A_ : Union[str, Any] = rescale_factor A_ : Tuple = offset A_ : Optional[int] = do_normalize A_ : Dict = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN A_ : int = image_std if image_std is not None else IMAGENET_STANDARD_STD def SCREAMING_SNAKE_CASE ( self :Union[str, Any] , snake_case :np.ndarray , snake_case :Dict[str, int] , snake_case :PILImageResampling = PILImageResampling.BILINEAR , snake_case :Optional[Union[str, ChannelDimension]] = None , **snake_case :Dict , ): '''simple docstring''' A_ : Optional[Any] = get_size_dict(snake_case , default_to_square=snake_case ) if "shortest_edge" in size: A_ : Any = get_resize_output_image_size(snake_case , size["shortest_edge"] , default_to_square=snake_case ) elif "height" in size and "width" in size: A_ : Optional[int] = (size["height"], size["width"]) else: raise ValueError(f"Size must have 'height' and 'width' or 'shortest_edge' as keys. Got {size.keys()}" ) return resize(snake_case , size=snake_case , resample=snake_case , data_format=snake_case , **snake_case ) def SCREAMING_SNAKE_CASE ( self :Optional[Any] , snake_case :np.ndarray , snake_case :Dict[str, int] , snake_case :Optional[Union[str, ChannelDimension]] = None , **snake_case :Dict , ): '''simple docstring''' A_ : str = get_size_dict(snake_case ) if "height" not in size or "width" not in size: raise ValueError(f"Size must have 'height' and 'width' as keys. Got {size.keys()}" ) return center_crop(snake_case , size=(size["height"], size["width"]) , data_format=snake_case , **snake_case ) def SCREAMING_SNAKE_CASE ( self :Dict , snake_case :np.ndarray , snake_case :Union[int, float] , snake_case :bool = True , snake_case :Optional[Union[str, ChannelDimension]] = None , **snake_case :List[Any] , ): '''simple docstring''' A_ : List[Any] = image.astype(np.floataa ) if offset: A_ : Optional[Any] = image - (scale / 2) return rescale(snake_case , scale=snake_case , data_format=snake_case , **snake_case ) def SCREAMING_SNAKE_CASE ( self :Union[str, Any] , snake_case :np.ndarray , snake_case :Union[float, List[float]] , snake_case :Union[float, List[float]] , snake_case :Optional[Union[str, ChannelDimension]] = None , **snake_case :Dict , ): '''simple docstring''' return normalize(snake_case , mean=snake_case , std=snake_case , data_format=snake_case , **snake_case ) def SCREAMING_SNAKE_CASE ( self :List[Any] , snake_case :ImageInput , snake_case :bool = None , snake_case :Dict[str, int] = None , snake_case :PILImageResampling = None , snake_case :bool = None , snake_case :Dict[str, int] = None , snake_case :bool = None , snake_case :float = None , snake_case :bool = None , snake_case :bool = None , snake_case :Optional[Union[float, List[float]]] = None , snake_case :Optional[Union[float, List[float]]] = None , snake_case :Optional[ChannelDimension] = ChannelDimension.FIRST , ): '''simple docstring''' if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) if offset and not do_rescale: raise ValueError("For offset, do_rescale must also be set to True." ) # All transformations expect numpy arrays. A_ : Dict = to_numpy_array(snake_case ) if do_resize: A_ : Any = self.resize(image=snake_case , size=snake_case , resample=snake_case ) if do_center_crop: A_ : Tuple = self.center_crop(snake_case , size=snake_case ) if do_rescale: A_ : Optional[Any] = self.rescale(image=snake_case , scale=snake_case , offset=snake_case ) if do_normalize: A_ : List[str] = self.normalize(image=snake_case , mean=snake_case , std=snake_case ) A_ : str = to_channel_dimension_format(snake_case , snake_case ) return image def SCREAMING_SNAKE_CASE ( self :Dict , snake_case :ImageInput , snake_case :bool = None , snake_case :Dict[str, int] = None , snake_case :PILImageResampling = None , snake_case :bool = None , snake_case :Dict[str, int] = None , snake_case :bool = None , snake_case :float = None , snake_case :bool = None , snake_case :bool = None , snake_case :Optional[Union[float, List[float]]] = None , snake_case :Optional[Union[float, List[float]]] = None , snake_case :Optional[Union[str, TensorType]] = None , snake_case :ChannelDimension = ChannelDimension.FIRST , **snake_case :Union[str, Any] , ): '''simple docstring''' A_ : str = do_resize if do_resize is not None else self.do_resize A_ : int = resample if resample is not None else self.resample A_ : Union[str, Any] = do_center_crop if do_center_crop is not None else self.do_center_crop A_ : Dict = do_rescale if do_rescale is not None else self.do_rescale A_ : int = rescale_factor if rescale_factor is not None else self.rescale_factor A_ : Any = offset if offset is not None else self.offset A_ : Any = do_normalize if do_normalize is not None else self.do_normalize A_ : str = image_mean if image_mean is not None else self.image_mean A_ : str = image_std if image_std is not None else self.image_std A_ : Optional[Any] = size if size is not None else self.size A_ : List[Any] = get_size_dict(snake_case , default_to_square=snake_case ) A_ : Any = crop_size if crop_size is not None else self.crop_size A_ : Dict = get_size_dict(snake_case , param_name="crop_size" ) if not valid_images(snake_case ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) A_ : str = make_batched(snake_case ) A_ : str = [ [ self._preprocess_image( image=snake_case , do_resize=snake_case , size=snake_case , resample=snake_case , do_center_crop=snake_case , crop_size=snake_case , do_rescale=snake_case , rescale_factor=snake_case , offset=snake_case , do_normalize=snake_case , image_mean=snake_case , image_std=snake_case , data_format=snake_case , ) for img in video ] for video in videos ] A_ : Tuple = {"pixel_values": videos} return BatchFeature(data=snake_case , tensor_type=snake_case )
70
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowerCAmelCase : Any = { '''configuration_clap''': [ '''CLAP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ClapAudioConfig''', '''ClapConfig''', '''ClapTextConfig''', ], '''processing_clap''': ['''ClapProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Tuple = [ '''CLAP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ClapModel''', '''ClapPreTrainedModel''', '''ClapTextModel''', '''ClapTextModelWithProjection''', '''ClapAudioModel''', '''ClapAudioModelWithProjection''', ] _lowerCAmelCase : int = ['''ClapFeatureExtractor'''] if TYPE_CHECKING: from .configuration_clap import ( CLAP_PRETRAINED_MODEL_ARCHIVE_LIST, ClapAudioConfig, ClapConfig, ClapTextConfig, ) from .processing_clap import ClapProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clap import ClapFeatureExtractor from .modeling_clap import ( CLAP_PRETRAINED_MODEL_ARCHIVE_LIST, ClapAudioModel, ClapAudioModelWithProjection, ClapModel, ClapPreTrainedModel, ClapTextModel, ClapTextModelWithProjection, ) else: import sys _lowerCAmelCase : Union[str, Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
70
1
from typing import Optional, Tuple, Union import tensorflow as tf from ...activations_tf import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_tf_outputs import ( TFBaseModelOutputWithNoAttention, TFBaseModelOutputWithPoolingAndNoAttention, TFSequenceClassifierOutput, ) from ...modeling_tf_utils import TFPreTrainedModel, TFSequenceClassificationLoss, keras_serializable, unpack_inputs from ...tf_utils import shape_list from ...utils import logging from .configuration_regnet import RegNetConfig a_ = logging.get_logger(__name__) # General docstring a_ = """RegNetConfig""" # Base docstring a_ = """facebook/regnet-y-040""" a_ = [1, 1_088, 7, 7] # Image classification docstring a_ = """facebook/regnet-y-040""" a_ = """tabby, tabby cat""" a_ = [ """facebook/regnet-y-040""", # See all regnet models at https://huggingface.co/models?filter=regnet ] class __lowerCAmelCase ( tf.keras.layers.Layer ): def __init__( self , __UpperCAmelCase , __UpperCAmelCase = 3 , __UpperCAmelCase = 1 , __UpperCAmelCase = 1 , __UpperCAmelCase = "relu" , **__UpperCAmelCase , ): '''simple docstring''' super().__init__(**__UpperCAmelCase ) # The padding and conv has been verified in # https://colab.research.google.com/gist/sayakpaul/854bc10eeaf21c9ee2119e0b9f3841a7/scratchpad.ipynb __lowerCamelCase = tf.keras.layers.ZeroPaddingaD(padding=kernel_size // 2 ) __lowerCamelCase = tf.keras.layers.ConvaD( filters=__UpperCAmelCase , kernel_size=__UpperCAmelCase , strides=__UpperCAmelCase , padding='''VALID''' , groups=__UpperCAmelCase , use_bias=__UpperCAmelCase , name='''convolution''' , ) __lowerCamelCase = tf.keras.layers.BatchNormalization(epsilon=1E-5 , momentum=0.9 , name='''normalization''' ) __lowerCamelCase = ACTaFN[activation] if activation is not None else tf.identity def lowerCamelCase ( self , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = self.convolution(self.padding(__UpperCAmelCase ) ) __lowerCamelCase = self.normalization(__UpperCAmelCase ) __lowerCamelCase = self.activation(__UpperCAmelCase ) return hidden_state class __lowerCAmelCase ( tf.keras.layers.Layer ): def __init__( self , __UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' super().__init__(**__UpperCAmelCase ) __lowerCamelCase = config.num_channels __lowerCamelCase = TFRegNetConvLayer( out_channels=config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act , name='''embedder''' , ) def lowerCamelCase ( self , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = shape_list(__UpperCAmelCase )[1] if tf.executing_eagerly() and num_channels != self.num_channels: raise ValueError( '''Make sure that the channel dimension of the pixel values match with the one set in the configuration.''' ) # When running on CPU, `tf.keras.layers.Conv2D` doesn't support `NCHW` format. # So change the input format from `NCHW` to `NHWC`. # shape = (batch_size, in_height, in_width, in_channels=num_channels) __lowerCamelCase = tf.transpose(__UpperCAmelCase , perm=(0, 2, 3, 1) ) __lowerCamelCase = self.embedder(__UpperCAmelCase ) return hidden_state class __lowerCAmelCase ( tf.keras.layers.Layer ): def __init__( self , __UpperCAmelCase , __UpperCAmelCase = 2 , **__UpperCAmelCase ): '''simple docstring''' super().__init__(**__UpperCAmelCase ) __lowerCamelCase = tf.keras.layers.ConvaD( filters=__UpperCAmelCase , kernel_size=1 , strides=__UpperCAmelCase , use_bias=__UpperCAmelCase , name='''convolution''' ) __lowerCamelCase = tf.keras.layers.BatchNormalization(epsilon=1E-5 , momentum=0.9 , name='''normalization''' ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase = False ): '''simple docstring''' return self.normalization(self.convolution(__UpperCAmelCase ) , training=__UpperCAmelCase ) class __lowerCAmelCase ( tf.keras.layers.Layer ): def __init__( self , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' super().__init__(**__UpperCAmelCase ) __lowerCamelCase = tf.keras.layers.GlobalAveragePoolingaD(keepdims=__UpperCAmelCase , name='''pooler''' ) __lowerCamelCase = [ tf.keras.layers.ConvaD(filters=__UpperCAmelCase , kernel_size=1 , activation='''relu''' , name='''attention.0''' ), tf.keras.layers.ConvaD(filters=__UpperCAmelCase , kernel_size=1 , activation='''sigmoid''' , name='''attention.2''' ), ] def lowerCamelCase ( self , __UpperCAmelCase ): '''simple docstring''' # [batch_size, h, w, num_channels] -> [batch_size, 1, 1, num_channels] __lowerCamelCase = self.pooler(__UpperCAmelCase ) for layer_module in self.attention: __lowerCamelCase = layer_module(__UpperCAmelCase ) __lowerCamelCase = hidden_state * pooled return hidden_state class __lowerCAmelCase ( tf.keras.layers.Layer ): def __init__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = 1 , **__UpperCAmelCase ): '''simple docstring''' super().__init__(**__UpperCAmelCase ) __lowerCamelCase = in_channels != out_channels or stride != 1 __lowerCamelCase = max(1 , out_channels // config.groups_width ) __lowerCamelCase = ( TFRegNetShortCut(__UpperCAmelCase , stride=__UpperCAmelCase , name='''shortcut''' ) if should_apply_shortcut else tf.keras.layers.Activation('''linear''' , name='''shortcut''' ) ) # `self.layers` instead of `self.layer` because that is a reserved argument. __lowerCamelCase = [ TFRegNetConvLayer(__UpperCAmelCase , kernel_size=1 , activation=config.hidden_act , name='''layer.0''' ), TFRegNetConvLayer( __UpperCAmelCase , stride=__UpperCAmelCase , groups=__UpperCAmelCase , activation=config.hidden_act , name='''layer.1''' ), TFRegNetConvLayer(__UpperCAmelCase , kernel_size=1 , activation=__UpperCAmelCase , name='''layer.2''' ), ] __lowerCamelCase = ACTaFN[config.hidden_act] def lowerCamelCase ( self , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = hidden_state for layer_module in self.layers: __lowerCamelCase = layer_module(__UpperCAmelCase ) __lowerCamelCase = self.shortcut(__UpperCAmelCase ) hidden_state += residual __lowerCamelCase = self.activation(__UpperCAmelCase ) return hidden_state class __lowerCAmelCase ( tf.keras.layers.Layer ): def __init__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = 1 , **__UpperCAmelCase ): '''simple docstring''' super().__init__(**__UpperCAmelCase ) __lowerCamelCase = in_channels != out_channels or stride != 1 __lowerCamelCase = max(1 , out_channels // config.groups_width ) __lowerCamelCase = ( TFRegNetShortCut(__UpperCAmelCase , stride=__UpperCAmelCase , name='''shortcut''' ) if should_apply_shortcut else tf.keras.layers.Activation('''linear''' , name='''shortcut''' ) ) __lowerCamelCase = [ TFRegNetConvLayer(__UpperCAmelCase , kernel_size=1 , activation=config.hidden_act , name='''layer.0''' ), TFRegNetConvLayer( __UpperCAmelCase , stride=__UpperCAmelCase , groups=__UpperCAmelCase , activation=config.hidden_act , name='''layer.1''' ), TFRegNetSELayer(__UpperCAmelCase , reduced_channels=int(round(in_channels / 4 ) ) , name='''layer.2''' ), TFRegNetConvLayer(__UpperCAmelCase , kernel_size=1 , activation=__UpperCAmelCase , name='''layer.3''' ), ] __lowerCamelCase = ACTaFN[config.hidden_act] def lowerCamelCase ( self , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = hidden_state for layer_module in self.layers: __lowerCamelCase = layer_module(__UpperCAmelCase ) __lowerCamelCase = self.shortcut(__UpperCAmelCase ) hidden_state += residual __lowerCamelCase = self.activation(__UpperCAmelCase ) return hidden_state class __lowerCAmelCase ( tf.keras.layers.Layer ): def __init__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = 2 , __UpperCAmelCase = 2 , **__UpperCAmelCase ): '''simple docstring''' super().__init__(**__UpperCAmelCase ) __lowerCamelCase = TFRegNetXLayer if config.layer_type == '''x''' else TFRegNetYLayer __lowerCamelCase = [ # downsampling is done in the first layer with stride of 2 layer(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , stride=__UpperCAmelCase , name='''layers.0''' ), *[layer(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , name=F"""layers.{i+1}""" ) for i in range(depth - 1 )], ] def lowerCamelCase ( self , __UpperCAmelCase ): '''simple docstring''' for layer_module in self.layers: __lowerCamelCase = layer_module(__UpperCAmelCase ) return hidden_state class __lowerCAmelCase ( tf.keras.layers.Layer ): def __init__( self , __UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' super().__init__(**__UpperCAmelCase ) __lowerCamelCase = [] # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( TFRegNetStage( __UpperCAmelCase , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , name='''stages.0''' , ) ) __lowerCamelCase = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for i, ((in_channels, out_channels), depth) in enumerate(zip(__UpperCAmelCase , config.depths[1:] ) ): self.stages.append(TFRegNetStage(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , depth=__UpperCAmelCase , name=F"""stages.{i+1}""" ) ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase = False , __UpperCAmelCase = True ): '''simple docstring''' __lowerCamelCase = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: __lowerCamelCase = hidden_states + (hidden_state,) __lowerCamelCase = stage_module(__UpperCAmelCase ) if output_hidden_states: __lowerCamelCase = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return TFBaseModelOutputWithNoAttention(last_hidden_state=__UpperCAmelCase , hidden_states=__UpperCAmelCase ) @keras_serializable class __lowerCAmelCase ( tf.keras.layers.Layer ): lowerCAmelCase__ = RegNetConfig def __init__( self , __UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' super().__init__(**__UpperCAmelCase ) __lowerCamelCase = config __lowerCamelCase = TFRegNetEmbeddings(__UpperCAmelCase , name='''embedder''' ) __lowerCamelCase = TFRegNetEncoder(__UpperCAmelCase , name='''encoder''' ) __lowerCamelCase = tf.keras.layers.GlobalAveragePoolingaD(keepdims=__UpperCAmelCase , name='''pooler''' ) @unpack_inputs def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = False , ): '''simple docstring''' __lowerCamelCase = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __lowerCamelCase = return_dict if return_dict is not None else self.config.use_return_dict __lowerCamelCase = self.embedder(__UpperCAmelCase , training=__UpperCAmelCase ) __lowerCamelCase = self.encoder( __UpperCAmelCase , output_hidden_states=__UpperCAmelCase , return_dict=__UpperCAmelCase , training=__UpperCAmelCase ) __lowerCamelCase = encoder_outputs[0] __lowerCamelCase = self.pooler(__UpperCAmelCase ) # Change to NCHW output format have uniformity in the modules __lowerCamelCase = tf.transpose(__UpperCAmelCase , perm=(0, 3, 1, 2) ) __lowerCamelCase = tf.transpose(__UpperCAmelCase , perm=(0, 3, 1, 2) ) # Change the other hidden state outputs to NCHW as well if output_hidden_states: __lowerCamelCase = tuple([tf.transpose(__UpperCAmelCase , perm=(0, 3, 1, 2) ) for h in encoder_outputs[1]] ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=__UpperCAmelCase , pooler_output=__UpperCAmelCase , hidden_states=hidden_states if output_hidden_states else encoder_outputs.hidden_states , ) class __lowerCAmelCase ( lowerCAmelCase__ ): lowerCAmelCase__ = RegNetConfig lowerCAmelCase__ = """regnet""" lowerCAmelCase__ = """pixel_values""" @property def lowerCamelCase ( self ): '''simple docstring''' return {"pixel_values": tf.TensorSpec(shape=(None, self.config.num_channels, 224, 224) , dtype=tf.floataa )} a_ = R""" Parameters: This model is a Tensorflow [tf.keras.layers.Layer](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Layer) sub-class. Use it as a regular Tensorflow Module and refer to the Tensorflow documentation for all matter related to general usage and behavior. config ([`RegNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights. """ a_ = R""" Args: pixel_values (`tf.Tensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ConveNextImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( """The bare RegNet model outputting raw features without any specific head on top.""" , lowerCAmelCase__ , ) class __lowerCAmelCase ( lowerCAmelCase__ ): def __init__( self , __UpperCAmelCase , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' super().__init__(__UpperCAmelCase , *__UpperCAmelCase , **__UpperCAmelCase ) __lowerCamelCase = TFRegNetMainLayer(__UpperCAmelCase , name='''regnet''' ) @unpack_inputs @add_start_docstrings_to_model_forward(__UpperCAmelCase ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=__UpperCAmelCase , config_class=_CONFIG_FOR_DOC , modality='''vision''' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase=False , ): '''simple docstring''' __lowerCamelCase = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __lowerCamelCase = return_dict if return_dict is not None else self.config.use_return_dict __lowerCamelCase = self.regnet( pixel_values=__UpperCAmelCase , output_hidden_states=__UpperCAmelCase , return_dict=__UpperCAmelCase , training=__UpperCAmelCase , ) if not return_dict: return (outputs[0],) + outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=outputs.last_hidden_state , pooler_output=outputs.pooler_output , hidden_states=outputs.hidden_states , ) @add_start_docstrings( """ RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for ImageNet. """ , lowerCAmelCase__ , ) class __lowerCAmelCase ( lowerCAmelCase__ , lowerCAmelCase__ ): def __init__( self , __UpperCAmelCase , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' super().__init__(__UpperCAmelCase , *__UpperCAmelCase , **__UpperCAmelCase ) __lowerCamelCase = config.num_labels __lowerCamelCase = TFRegNetMainLayer(__UpperCAmelCase , name='''regnet''' ) # classification head __lowerCamelCase = [ tf.keras.layers.Flatten(), tf.keras.layers.Dense(config.num_labels , name='''classifier.1''' ) if config.num_labels > 0 else tf.identity, ] @unpack_inputs @add_start_docstrings_to_model_forward(__UpperCAmelCase ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=__UpperCAmelCase , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def lowerCamelCase ( self , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase=False , ): '''simple docstring''' __lowerCamelCase = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __lowerCamelCase = return_dict if return_dict is not None else self.config.use_return_dict __lowerCamelCase = self.regnet( __UpperCAmelCase , output_hidden_states=__UpperCAmelCase , return_dict=__UpperCAmelCase , training=__UpperCAmelCase ) __lowerCamelCase = outputs.pooler_output if return_dict else outputs[1] __lowerCamelCase = self.classifier[0](__UpperCAmelCase ) __lowerCamelCase = self.classifier[1](__UpperCAmelCase ) __lowerCamelCase = None if labels is None else self.hf_compute_loss(labels=__UpperCAmelCase , logits=__UpperCAmelCase ) if not return_dict: __lowerCamelCase = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFSequenceClassifierOutput(loss=__UpperCAmelCase , logits=__UpperCAmelCase , hidden_states=outputs.hidden_states )
330
from transformers import BertTokenizer, EncoderDecoderModel, SeqaSeqTrainer, SeqaSeqTrainingArguments from transformers.testing_utils import TestCasePlus, require_torch, slow from transformers.utils import is_datasets_available if is_datasets_available(): import datasets class __lowerCAmelCase ( lowerCAmelCase__ ): @slow @require_torch def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = EncoderDecoderModel.from_encoder_decoder_pretrained('''prajjwal1/bert-tiny''' , '''prajjwal1/bert-tiny''' ) __lowerCamelCase = BertTokenizer.from_pretrained('''bert-base-uncased''' ) __lowerCamelCase = bertabert.config.encoder.vocab_size __lowerCamelCase = tokenizer.sep_token_id __lowerCamelCase = tokenizer.cls_token_id __lowerCamelCase = 128 __lowerCamelCase = datasets.load_dataset('''cnn_dailymail''' , '''3.0.0''' , split='''train[:1%]''' ) __lowerCamelCase = datasets.load_dataset('''cnn_dailymail''' , '''3.0.0''' , split='''validation[:1%]''' ) __lowerCamelCase = train_dataset.select(range(32 ) ) __lowerCamelCase = val_dataset.select(range(16 ) ) __lowerCamelCase = 4 def _map_to_encoder_decoder_inputs(__UpperCAmelCase ): # Tokenizer will automatically set [BOS] <text> [EOS] __lowerCamelCase = tokenizer(batch['''article'''] , padding='''max_length''' , truncation=__UpperCAmelCase , max_length=512 ) __lowerCamelCase = tokenizer(batch['''highlights'''] , padding='''max_length''' , truncation=__UpperCAmelCase , max_length=128 ) __lowerCamelCase = inputs.input_ids __lowerCamelCase = inputs.attention_mask __lowerCamelCase = outputs.input_ids __lowerCamelCase = outputs.input_ids.copy() __lowerCamelCase = [ [-100 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch['''labels'''] ] __lowerCamelCase = outputs.attention_mask assert all(len(__UpperCAmelCase ) == 512 for x in inputs.input_ids ) assert all(len(__UpperCAmelCase ) == 128 for x in outputs.input_ids ) return batch def _compute_metrics(__UpperCAmelCase ): __lowerCamelCase = pred.label_ids __lowerCamelCase = pred.predictions # all unnecessary tokens are removed __lowerCamelCase = tokenizer.batch_decode(__UpperCAmelCase , skip_special_tokens=__UpperCAmelCase ) __lowerCamelCase = tokenizer.batch_decode(__UpperCAmelCase , skip_special_tokens=__UpperCAmelCase ) __lowerCamelCase = sum([int(pred_str[i] == label_str[i] ) for i in range(len(__UpperCAmelCase ) )] ) / len(__UpperCAmelCase ) return {"accuracy": accuracy} # map train dataset __lowerCamelCase = train_dataset.map( _map_to_encoder_decoder_inputs , batched=__UpperCAmelCase , batch_size=__UpperCAmelCase , remove_columns=['''article''', '''highlights'''] , ) train_dataset.set_format( type='''torch''' , columns=['''input_ids''', '''attention_mask''', '''decoder_input_ids''', '''decoder_attention_mask''', '''labels'''] , ) # same for validation dataset __lowerCamelCase = val_dataset.map( _map_to_encoder_decoder_inputs , batched=__UpperCAmelCase , batch_size=__UpperCAmelCase , remove_columns=['''article''', '''highlights'''] , ) val_dataset.set_format( type='''torch''' , columns=['''input_ids''', '''attention_mask''', '''decoder_input_ids''', '''decoder_attention_mask''', '''labels'''] , ) __lowerCamelCase = self.get_auto_remove_tmp_dir() __lowerCamelCase = SeqaSeqTrainingArguments( output_dir=__UpperCAmelCase , per_device_train_batch_size=__UpperCAmelCase , per_device_eval_batch_size=__UpperCAmelCase , predict_with_generate=__UpperCAmelCase , evaluation_strategy='''steps''' , do_train=__UpperCAmelCase , do_eval=__UpperCAmelCase , warmup_steps=0 , eval_steps=2 , logging_steps=2 , ) # instantiate trainer __lowerCamelCase = SeqaSeqTrainer( model=__UpperCAmelCase , args=__UpperCAmelCase , compute_metrics=_compute_metrics , train_dataset=__UpperCAmelCase , eval_dataset=__UpperCAmelCase , tokenizer=__UpperCAmelCase , ) # start training trainer.train()
330
1
'''simple docstring''' import os import sys import unittest lowerCamelCase : Optional[Any] = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, "utils")) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path lowerCamelCase : Optional[int] = os.path.join(git_repo_path, "src", "transformers") lowerCamelCase : Union[str, Any] = "\n{0} = None\n" lowerCamelCase : Optional[Any] = "\nclass {0}(metaclass=DummyObject):\n _backends = {1}\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, {1})\n" lowerCamelCase : List[Any] = "\ndef {0}(*args, **kwargs):\n requires_backends({0}, {1})\n" class A__ ( unittest.TestCase ): def A ( self : Optional[int] ) -> Dict: '''simple docstring''' _SCREAMING_SNAKE_CASE =find_backend(' _import_structure["models.albert"].append("AlbertTokenizerFast")' ) self.assertIsNone(_a ) _SCREAMING_SNAKE_CASE =find_backend(' if not is_tokenizers_available():' ) self.assertEqual(_a , 'tokenizers' ) _SCREAMING_SNAKE_CASE =find_backend(' if not is_tensorflow_text_available():' ) self.assertEqual(_a , 'tensorflow_text' ) _SCREAMING_SNAKE_CASE =find_backend(' if not (is_sentencepiece_available() and is_tokenizers_available()):' ) self.assertEqual(_a , 'sentencepiece_and_tokenizers' ) _SCREAMING_SNAKE_CASE =find_backend( ' if not (is_sentencepiece_available() and is_tensorflow_text_available()):' ) self.assertEqual(_a , 'sentencepiece_and_tensorflow_text' ) _SCREAMING_SNAKE_CASE =find_backend( ' if not (is_sentencepiece_available() and is_tokenizers_available() and is_vision_available()):' ) self.assertEqual(_a , 'sentencepiece_and_tokenizers_and_vision' ) def A ( self : Optional[int] ) -> Any: '''simple docstring''' _SCREAMING_SNAKE_CASE =read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn('torch' , _a ) self.assertIn('tensorflow_text' , _a ) self.assertIn('sentencepiece_and_tokenizers' , _a ) # Likewise, we can't assert on the exact content of a key self.assertIn('BertModel' , objects['torch'] ) self.assertIn('TFBertModel' , objects['tf'] ) self.assertIn('FlaxBertModel' , objects['flax'] ) self.assertIn('BertModel' , objects['torch'] ) self.assertIn('TFBertTokenizer' , objects['tensorflow_text'] ) self.assertIn('convert_slow_tokenizer' , objects['sentencepiece_and_tokenizers'] ) def A ( self : Optional[int] ) -> List[str]: '''simple docstring''' _SCREAMING_SNAKE_CASE =create_dummy_object('CONSTANT' , '\'torch\'' ) self.assertEqual(_a , '\nCONSTANT = None\n' ) _SCREAMING_SNAKE_CASE =create_dummy_object('function' , '\'torch\'' ) self.assertEqual( _a , '\ndef function(*args, **kwargs):\n requires_backends(function, \'torch\')\n' ) _SCREAMING_SNAKE_CASE ='\nclass FakeClass(metaclass=DummyObject):\n _backends = \'torch\'\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, \'torch\')\n' _SCREAMING_SNAKE_CASE =create_dummy_object('FakeClass' , '\'torch\'' ) self.assertEqual(_a , _a ) def A ( self : Optional[int] ) -> Optional[int]: '''simple docstring''' _SCREAMING_SNAKE_CASE ='# This file is autogenerated by the command `make fix-copies`, do not edit.\nfrom ..utils import DummyObject, requires_backends\n\n\nCONSTANT = None\n\n\ndef function(*args, **kwargs):\n requires_backends(function, ["torch"])\n\n\nclass FakeClass(metaclass=DummyObject):\n _backends = ["torch"]\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, ["torch"])\n' _SCREAMING_SNAKE_CASE =create_dummy_files({'torch': ['CONSTANT', 'function', 'FakeClass']} ) self.assertEqual(dummy_files['torch'] , _a )
360
'''simple docstring''' import warnings from contextlib import contextmanager from ....processing_utils import ProcessorMixin class A__ ( A__ ): A__ = 'MCTCTFeatureExtractor' A__ = 'AutoTokenizer' def __init__( self : Optional[Any] , _a : Optional[int] , _a : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' super().__init__(_a , _a ) _SCREAMING_SNAKE_CASE =self.feature_extractor _SCREAMING_SNAKE_CASE =False def __call__( self : Dict , *_a : str , **_a : Dict ) -> Dict: '''simple docstring''' if self._in_target_context_manager: return self.current_processor(*_a , **_a ) if "raw_speech" in kwargs: warnings.warn('Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.' ) _SCREAMING_SNAKE_CASE =kwargs.pop('raw_speech' ) else: _SCREAMING_SNAKE_CASE =kwargs.pop('audio' , _a ) _SCREAMING_SNAKE_CASE =kwargs.pop('sampling_rate' , _a ) _SCREAMING_SNAKE_CASE =kwargs.pop('text' , _a ) if len(_a ) > 0: _SCREAMING_SNAKE_CASE =args[0] _SCREAMING_SNAKE_CASE =args[1:] if audio is None and text is None: raise ValueError('You need to specify either an `audio` or `text` input to process.' ) if audio is not None: _SCREAMING_SNAKE_CASE =self.feature_extractor(_a , *_a , sampling_rate=_a , **_a ) if text is not None: _SCREAMING_SNAKE_CASE =self.tokenizer(_a , **_a ) if text is None: return inputs elif audio is None: return encodings else: _SCREAMING_SNAKE_CASE =encodings['input_ids'] return inputs def A ( self : Any , *_a : List[str] , **_a : Optional[int] ) -> Optional[int]: '''simple docstring''' return self.tokenizer.batch_decode(*_a , **_a ) def A ( self : Dict , *_a : Tuple , **_a : Dict ) -> List[str]: '''simple docstring''' if self._in_target_context_manager: return self.current_processor.pad(*_a , **_a ) _SCREAMING_SNAKE_CASE =kwargs.pop('input_features' , _a ) _SCREAMING_SNAKE_CASE =kwargs.pop('labels' , _a ) if len(_a ) > 0: _SCREAMING_SNAKE_CASE =args[0] _SCREAMING_SNAKE_CASE =args[1:] if input_features is not None: _SCREAMING_SNAKE_CASE =self.feature_extractor.pad(_a , *_a , **_a ) if labels is not None: _SCREAMING_SNAKE_CASE =self.tokenizer.pad(_a , **_a ) if labels is None: return input_features elif input_features is None: return labels else: _SCREAMING_SNAKE_CASE =labels['input_ids'] return input_features def A ( self : Tuple , *_a : Dict , **_a : List[Any] ) -> Optional[int]: '''simple docstring''' return self.tokenizer.decode(*_a , **_a ) @contextmanager def A ( self : Optional[Any] ) -> Dict: '''simple docstring''' warnings.warn( '`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ' 'labels by using the argument `text` of the regular `__call__` method (either in the same call as ' 'your audio inputs, or in a separate call.' ) _SCREAMING_SNAKE_CASE =True _SCREAMING_SNAKE_CASE =self.tokenizer yield _SCREAMING_SNAKE_CASE =self.feature_extractor _SCREAMING_SNAKE_CASE =False
114
0
"""simple docstring""" import collections import os from typing import List, Optional, Tuple from transformers.utils import is_jieba_available, requires_backends if is_jieba_available(): import jieba from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = {"""vocab_file""": """vocab.txt"""} lowerCamelCase__ = { """vocab_file""": { """openbmb/cpm-ant-10b""": """https://huggingface.co/openbmb/cpm-ant-10b/blob/main/vocab.txt""", }, } lowerCamelCase__ = { """openbmb/cpm-ant-10b""": 1_024, } def __lowerCAmelCase (_UpperCamelCase ): __lowerCAmelCase : Union[str, Any] = collections.OrderedDict() with open(_UpperCamelCase , 'r' , encoding='utf-8' ) as reader: __lowerCAmelCase : Dict = reader.readlines() for index, token in enumerate(_UpperCamelCase ): __lowerCAmelCase : int = token.rstrip('\n' ) __lowerCAmelCase : str = index return vocab class A__ ( _lowerCamelCase): def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE="<unk>" , _SCREAMING_SNAKE_CASE=2_00 ): __lowerCAmelCase : Optional[Any] = vocab __lowerCAmelCase : Optional[int] = unk_token __lowerCAmelCase : List[Any] = max_input_chars_per_word def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE ): __lowerCAmelCase : Any = list(_SCREAMING_SNAKE_CASE ) if len(_SCREAMING_SNAKE_CASE ) > self.max_input_chars_per_word: return [self.unk_token] __lowerCAmelCase : Tuple = 0 __lowerCAmelCase : List[str] = [] while start < len(_SCREAMING_SNAKE_CASE ): __lowerCAmelCase : str = len(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : str = None while start < end: __lowerCAmelCase : List[str] = ''.join(chars[start:end] ) if substr in self.vocab: __lowerCAmelCase : str = substr break end -= 1 if cur_substr is None: sub_tokens.append(self.unk_token ) start += 1 else: sub_tokens.append(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Dict = end return sub_tokens class A__ ( _lowerCamelCase): A_ : Any = VOCAB_FILES_NAMES A_ : Any = PRETRAINED_VOCAB_FILES_MAP A_ : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A_ : Optional[int] = ['input_ids', 'attention_mask'] A_ : int = False def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE="<d>" , _SCREAMING_SNAKE_CASE="</d>" , _SCREAMING_SNAKE_CASE="<s>" , _SCREAMING_SNAKE_CASE="</s>" , _SCREAMING_SNAKE_CASE="<pad>" , _SCREAMING_SNAKE_CASE="<unk>" , _SCREAMING_SNAKE_CASE="</n>" , _SCREAMING_SNAKE_CASE="</_>" , _SCREAMING_SNAKE_CASE="left" , **_SCREAMING_SNAKE_CASE , ): requires_backends(self , ['jieba'] ) super().__init__( bod_token=_SCREAMING_SNAKE_CASE , eod_token=_SCREAMING_SNAKE_CASE , bos_token=_SCREAMING_SNAKE_CASE , eos_token=_SCREAMING_SNAKE_CASE , pad_token=_SCREAMING_SNAKE_CASE , unk_token=_SCREAMING_SNAKE_CASE , line_token=_SCREAMING_SNAKE_CASE , space_token=_SCREAMING_SNAKE_CASE , padding_side=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) __lowerCAmelCase : Optional[Any] = bod_token __lowerCAmelCase : List[Any] = eod_token __lowerCAmelCase : Dict = load_vocab(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : int = self.encoder[space_token] __lowerCAmelCase : Union[str, Any] = self.encoder[line_token] del self.encoder[space_token] del self.encoder[line_token] __lowerCAmelCase : int = collections.OrderedDict(sorted(self.encoder.items() , key=lambda _SCREAMING_SNAKE_CASE : x[1] ) ) __lowerCAmelCase : Union[str, Any] = {v: k for k, v in self.encoder.items()} __lowerCAmelCase : List[Any] = WordpieceTokenizer(vocab=self.encoder , unk_token=self.unk_token ) @property def __lowerCamelCase ( self ): return self.encoder[self.bod_token] @property def __lowerCamelCase ( self ): return self.encoder[self.eod_token] @property def __lowerCamelCase ( self ): return self.encoder["\n"] @property def __lowerCamelCase ( self ): return len(self.encoder ) def __lowerCamelCase ( self ): return dict(self.encoder , **self.added_tokens_encoder ) def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE ): __lowerCAmelCase : Union[str, Any] = [] for x in jieba.cut(_SCREAMING_SNAKE_CASE , cut_all=_SCREAMING_SNAKE_CASE ): output_tokens.extend(self.wordpiece_tokenizer.tokenize(_SCREAMING_SNAKE_CASE ) ) return output_tokens def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ): __lowerCAmelCase : Any = [i for i in token_ids if i >= 0] __lowerCAmelCase : Tuple = [ x for x in token_ids if x != self.pad_token_id and x != self.eos_token_id and x != self.bos_token_id ] return super()._decode(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE ): return token in self.encoder def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE ): return "".join(_SCREAMING_SNAKE_CASE ) def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE ): return self.encoder.get(_SCREAMING_SNAKE_CASE , self.encoder.get(self.unk_token ) ) def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE ): return self.decoder.get(_SCREAMING_SNAKE_CASE , self.unk_token ) def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ): if os.path.isdir(_SCREAMING_SNAKE_CASE ): __lowerCAmelCase : List[Any] = os.path.join( _SCREAMING_SNAKE_CASE , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) else: __lowerCAmelCase : int = (filename_prefix + '-' if filename_prefix else '') + save_directory __lowerCAmelCase : int = 0 if " " in self.encoder: __lowerCAmelCase : Optional[int] = self.encoder[' '] del self.encoder[" "] if "\n" in self.encoder: __lowerCAmelCase : Optional[int] = self.encoder['\n'] del self.encoder["\n"] __lowerCAmelCase : Union[str, Any] = collections.OrderedDict(sorted(self.encoder.items() , key=lambda _SCREAMING_SNAKE_CASE : x[1] ) ) with open(_SCREAMING_SNAKE_CASE , 'w' , encoding='utf-8' ) as writer: for token, token_index in self.encoder.items(): if index != token_index: logger.warning( f"Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive." ' Please check that the vocabulary is not corrupted!' ) __lowerCAmelCase : Optional[int] = token_index writer.write(token + '\n' ) index += 1 return (vocab_file,) def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ): if token_ids_a is None: return [self.bos_token_id] + token_ids_a return [self.bos_token_id] + token_ids_a + [self.bos_token_id] + token_ids_a def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_SCREAMING_SNAKE_CASE , token_ids_a=_SCREAMING_SNAKE_CASE , already_has_special_tokens=_SCREAMING_SNAKE_CASE ) if token_ids_a is not None: return [1] + ([0] * len(_SCREAMING_SNAKE_CASE )) + [1] + ([0] * len(_SCREAMING_SNAKE_CASE )) return [1] + ([0] * len(_SCREAMING_SNAKE_CASE ))
86
import argparse from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import BigBirdPegasusConfig, BigBirdPegasusForConditionalGeneration a_ = [ # tf -> hf ("""/""", """."""), ("""layer_""", """layers."""), ("""kernel""", """weight"""), ("""beta""", """bias"""), ("""gamma""", """weight"""), ("""pegasus""", """model"""), ] a_ = [ (""".output.dense""", """.fc2"""), ("""intermediate.LayerNorm""", """final_layer_norm"""), ("""intermediate.dense""", """fc1"""), ] a_ = ( INIT_COMMON + [ ("""attention.self.LayerNorm""", """self_attn_layer_norm"""), ("""attention.output.dense""", """self_attn.out_proj"""), ("""attention.self""", """self_attn"""), ("""attention.encdec.LayerNorm""", """encoder_attn_layer_norm"""), ("""attention.encdec_output.dense""", """encoder_attn.out_proj"""), ("""attention.encdec""", """encoder_attn"""), ("""key""", """k_proj"""), ("""value""", """v_proj"""), ("""query""", """q_proj"""), ("""decoder.LayerNorm""", """decoder.layernorm_embedding"""), ] + END_COMMON ) a_ = ( INIT_COMMON + [ ("""embeddings.word_embeddings""", """shared.weight"""), ("""embeddings.position_embeddings""", """embed_positions.weight"""), ("""attention.self.LayerNorm""", """self_attn_layer_norm"""), ("""attention.output.dense""", """self_attn.output"""), ("""attention.self""", """self_attn.self"""), ("""encoder.LayerNorm""", """encoder.layernorm_embedding"""), ] + END_COMMON ) a_ = [ """encdec/key/bias""", """encdec/query/bias""", """encdec/value/bias""", """self/key/bias""", """self/query/bias""", """self/value/bias""", """encdec_output/dense/bias""", """attention/output/dense/bias""", ] def a__ ( _UpperCamelCase : Optional[int] ,_UpperCamelCase : Optional[Any] ): for tf_name, hf_name in patterns: __lowerCamelCase = k.replace(_UpperCamelCase ,_UpperCamelCase ) return k def a__ ( _UpperCamelCase : dict ,_UpperCamelCase : dict ): __lowerCamelCase = BigBirdPegasusConfig(**_UpperCamelCase ) __lowerCamelCase = BigBirdPegasusForConditionalGeneration(_UpperCamelCase ) __lowerCamelCase = torch_model.state_dict() __lowerCamelCase = {} # separating decoder weights __lowerCamelCase = {k: tf_weights[k] for k in tf_weights if k.startswith('''pegasus/decoder''' )} __lowerCamelCase = {k: tf_weights[k] for k in tf_weights if not k.startswith('''pegasus/decoder''' )} for k, v in tqdm(decoder_weights.items() ,'''tf -> hf conversion''' ): __lowerCamelCase = [k.endswith(_UpperCamelCase ) for ending in KEYS_TO_IGNORE] if any(_UpperCamelCase ): continue __lowerCamelCase = DECODER_PATTERNS __lowerCamelCase = rename_state_dict_key(_UpperCamelCase ,_UpperCamelCase ) if new_k not in state_dict: raise ValueError(F"""could not find new key {new_k} in state dict. (converted from {k})""" ) if any(True if i in k else False for i in ['''dense''', '''query''', '''key''', '''value'''] ): __lowerCamelCase = v.T __lowerCamelCase = torch.from_numpy(_UpperCamelCase ) assert v.shape == state_dict[new_k].shape, F"""{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}""" for k, v in tqdm(remaining_weights.items() ,'''tf -> hf conversion''' ): __lowerCamelCase = [k.endswith(_UpperCamelCase ) for ending in KEYS_TO_IGNORE] if any(_UpperCamelCase ): continue __lowerCamelCase = REMAINING_PATTERNS __lowerCamelCase = rename_state_dict_key(_UpperCamelCase ,_UpperCamelCase ) if new_k not in state_dict and k != "pegasus/embeddings/position_embeddings": raise ValueError(F"""could not find new key {new_k} in state dict. (converted from {k})""" ) if any(True if i in k else False for i in ['''dense''', '''query''', '''key''', '''value'''] ): __lowerCamelCase = v.T __lowerCamelCase = torch.from_numpy(_UpperCamelCase ) if k != "pegasus/embeddings/position_embeddings": assert v.shape == state_dict[new_k].shape, F"""{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}""" __lowerCamelCase = mapping['''model.embed_positions.weight'''] __lowerCamelCase = mapping.pop('''model.embed_positions.weight''' ) __lowerCamelCase ,__lowerCamelCase = torch_model.load_state_dict(_UpperCamelCase ,strict=_UpperCamelCase ) __lowerCamelCase = [ k for k in missing if k not in [ '''final_logits_bias''', '''model.encoder.embed_tokens.weight''', '''model.decoder.embed_tokens.weight''', '''lm_head.weight''', ] ] assert unexpected_missing == [], F"""no matches found for the following torch keys {unexpected_missing}""" assert extra == [], F"""no matches found for the following tf keys {extra}""" return torch_model def a__ ( _UpperCamelCase : int ): __lowerCamelCase = tf.train.list_variables(_UpperCamelCase ) __lowerCamelCase = {} __lowerCamelCase = ['''global_step'''] for name, shape in tqdm(_UpperCamelCase ,desc='''converting tf checkpoint to dict''' ): __lowerCamelCase = any(pat in name for pat in ignore_name ) if skip_key: continue __lowerCamelCase = tf.train.load_variable(_UpperCamelCase ,_UpperCamelCase ) __lowerCamelCase = array return tf_weights def a__ ( _UpperCamelCase : str ,_UpperCamelCase : str ,_UpperCamelCase : dict ): __lowerCamelCase = get_tf_weights_as_numpy(_UpperCamelCase ) __lowerCamelCase = convert_bigbird_pegasus(_UpperCamelCase ,_UpperCamelCase ) torch_model.save_pretrained(_UpperCamelCase ) if __name__ == "__main__": a_ = argparse.ArgumentParser() parser.add_argument("""--tf_ckpt_path""", type=str, help="""passed to tf.train.list_variables""") parser.add_argument("""--save_dir""", default=None, type=str, help="""Path to the output PyTorch model.""") a_ = parser.parse_args() a_ = {} convert_bigbird_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir, config_update=config_update)
330
0
from __future__ import annotations import json import requests from bsa import BeautifulSoup from fake_useragent import UserAgent lowerCamelCase_ = {'''UserAgent''': UserAgent().random} def __magic_name__ ( __a : Union[str, Any] ): '''simple docstring''' UpperCamelCase__ = script.contents[0] UpperCamelCase__ = json.loads(data[data.find("""{\"config\"""" ) : -1] ) return info["entry_data"]["ProfilePage"][0]["graphql"]["user"] class __A: """simple docstring""" def __init__(self , SCREAMING_SNAKE_CASE_ ): UpperCamelCase__ = F"https://www.instagram.com/{username}/" UpperCamelCase__ = self.get_json() def UpperCAmelCase_ (self ): UpperCamelCase__ = requests.get(self.url , headers=SCREAMING_SNAKE_CASE_ ).text UpperCamelCase__ = BeautifulSoup(SCREAMING_SNAKE_CASE_ , """html.parser""" ).find_all("""script""" ) try: return extract_user_profile(scripts[4] ) except (json.decoder.JSONDecodeError, KeyError): return extract_user_profile(scripts[3] ) def __repr__(self ): return F"{self.__class__.__name__}('{self.username}')" def __str__(self ): return F"{self.fullname} ({self.username}) is {self.biography}" @property def UpperCAmelCase_ (self ): return self.user_data["username"] @property def UpperCAmelCase_ (self ): return self.user_data["full_name"] @property def UpperCAmelCase_ (self ): return self.user_data["biography"] @property def UpperCAmelCase_ (self ): return self.user_data["business_email"] @property def UpperCAmelCase_ (self ): return self.user_data["external_url"] @property def UpperCAmelCase_ (self ): return self.user_data["edge_followed_by"]["count"] @property def UpperCAmelCase_ (self ): return self.user_data["edge_follow"]["count"] @property def UpperCAmelCase_ (self ): return self.user_data["edge_owner_to_timeline_media"]["count"] @property def UpperCAmelCase_ (self ): return self.user_data["profile_pic_url_hd"] @property def UpperCAmelCase_ (self ): return self.user_data["is_verified"] @property def UpperCAmelCase_ (self ): return self.user_data["is_private"] def __magic_name__ ( __a : str = "github" ): '''simple docstring''' import os if os.environ.get("""CI""" ): return # test failing on GitHub Actions UpperCamelCase__ = InstagramUser(__a ) assert instagram_user.user_data assert isinstance(instagram_user.user_data , __a ) assert instagram_user.username == username if username != "github": return assert instagram_user.fullname == "GitHub" assert instagram_user.biography == "Built for developers." assert instagram_user.number_of_posts > 150 assert instagram_user.number_of_followers > 120_000 assert instagram_user.number_of_followings > 15 assert instagram_user.email == "support@github.com" assert instagram_user.website == "https://github.com/readme" assert instagram_user.profile_picture_url.startswith("""https://instagram.""" ) assert instagram_user.is_verified is True assert instagram_user.is_private is False if __name__ == "__main__": import doctest doctest.testmod() lowerCamelCase_ = InstagramUser('''github''') print(instagram_user) print(f'{instagram_user.number_of_posts = }') print(f'{instagram_user.number_of_followers = }') print(f'{instagram_user.number_of_followings = }') print(f'{instagram_user.email = }') print(f'{instagram_user.website = }') print(f'{instagram_user.profile_picture_url = }') print(f'{instagram_user.is_verified = }') print(f'{instagram_user.is_private = }')
178
import re import jax.numpy as jnp from flax.traverse_util import flatten_dict, unflatten_dict from jax.random import PRNGKey from ..utils import logging lowerCamelCase_ = logging.get_logger(__name__) def __magic_name__ ( __a : Optional[int] ): '''simple docstring''' UpperCamelCase__ = R"""\w+[.]\d+""" UpperCamelCase__ = re.findall(__a , __a ) for pat in pats: UpperCamelCase__ = key.replace(__a , """_""".join(pat.split(""".""" ) ) ) return key def __magic_name__ ( __a : str , __a : Dict , __a : int ): '''simple docstring''' UpperCamelCase__ = pt_tuple_key[:-1] + ("""scale""",) if ( any("""norm""" in str_ for str_ in pt_tuple_key ) and (pt_tuple_key[-1] == "bias") and (pt_tuple_key[:-1] + ("bias",) not in random_flax_state_dict) and (pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict) ): UpperCamelCase__ = pt_tuple_key[:-1] + ("""scale""",) return renamed_pt_tuple_key, pt_tensor elif pt_tuple_key[-1] in ["weight", "gamma"] and pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict: UpperCamelCase__ = pt_tuple_key[:-1] + ("""scale""",) return renamed_pt_tuple_key, pt_tensor # embedding if pt_tuple_key[-1] == "weight" and pt_tuple_key[:-1] + ("embedding",) in random_flax_state_dict: UpperCamelCase__ = pt_tuple_key[:-1] + ("""embedding""",) return renamed_pt_tuple_key, pt_tensor # conv layer UpperCamelCase__ = pt_tuple_key[:-1] + ("""kernel""",) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4: UpperCamelCase__ = pt_tensor.transpose(2 , 3 , 1 , 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer UpperCamelCase__ = pt_tuple_key[:-1] + ("""kernel""",) if pt_tuple_key[-1] == "weight": UpperCamelCase__ = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight UpperCamelCase__ = pt_tuple_key[:-1] + ("""weight""",) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias UpperCamelCase__ = pt_tuple_key[:-1] + ("""bias""",) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def __magic_name__ ( __a : List[Any] , __a : List[Any] , __a : Optional[int]=42 ): '''simple docstring''' UpperCamelCase__ = {k: v.numpy() for k, v in pt_state_dict.items()} # Step 2: Since the model is stateless, get random Flax params UpperCamelCase__ = flax_model.init_weights(PRNGKey(__a ) ) UpperCamelCase__ = flatten_dict(__a ) UpperCamelCase__ = {} # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): UpperCamelCase__ = rename_key(__a ) UpperCamelCase__ = tuple(renamed_pt_key.split(""".""" ) ) # Correctly rename weight parameters UpperCamelCase__ , UpperCamelCase__ = rename_key_and_reshape_tensor(__a , __a , __a ) if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( f"PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape " f"{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}." ) # also add unexpected weight so that warning is thrown UpperCamelCase__ = jnp.asarray(__a ) return unflatten_dict(__a )
178
1
from itertools import product from cva import COLOR_BGR2GRAY, cvtColor, imread, imshow, waitKey from numpy import dot, exp, mgrid, pi, ravel, square, uinta, zeros def A ( a_ ,a_ ) -> Union[str, Any]: __UpperCamelCase : List[Any] =k_size // 2 __UpperCamelCase , __UpperCamelCase : Tuple =mgrid[0 - center : k_size - center, 0 - center : k_size - center] __UpperCamelCase : List[str] =1 / (2 * pi * sigma) * exp(-(square(a_ ) + square(a_ )) / (2 * square(a_ )) ) return g def A ( a_ ,a_ ,a_ ) -> Any: __UpperCamelCase , __UpperCamelCase : Optional[Any] =image.shape[0], image.shape[1] # dst image height and width __UpperCamelCase : List[str] =height - k_size + 1 __UpperCamelCase : Dict =width - k_size + 1 # im2col, turn the k_size*k_size pixels into a row and np.vstack all rows __UpperCamelCase : Tuple =zeros((dst_height * dst_width, k_size * k_size) ) __UpperCamelCase : Optional[Any] =0 for i, j in product(range(a_ ) ,range(a_ ) ): __UpperCamelCase : Union[str, Any] =ravel(image[i : i + k_size, j : j + k_size] ) __UpperCamelCase : List[Any] =window row += 1 # turn the kernel into shape(k*k, 1) __UpperCamelCase : List[str] =gen_gaussian_kernel(a_ ,a_ ) __UpperCamelCase : Any =ravel(a_ ) # reshape and get the dst image __UpperCamelCase : int =dot(a_ ,a_ ).reshape(a_ ,a_ ).astype(a_ ) return dst if __name__ == "__main__": # read original image A_ :Any = imread(R'''../image_data/lena.jpg''') # turn image in gray scale value A_ :Any = cvtColor(img, COLOR_BGR2GRAY) # get values with two different mask size A_ :Any = gaussian_filter(gray, 3, sigma=1) A_ :Any = gaussian_filter(gray, 5, sigma=0.8) # show result images imshow('''gaussian filter with 3x3 mask''', gaussianaxa) imshow('''gaussian filter with 5x5 mask''', gaussianaxa) waitKey()
71
from torch import nn class __A ( nn.Module ): """simple docstring""" def __init__( self , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" super().__init__() __UpperCamelCase : Dict =class_size __UpperCamelCase : Any =embed_size # self.mlp1 = nn.Linear(embed_size, embed_size) # self.mlp2 = (nn.Linear(embed_size, class_size)) __UpperCamelCase : Any =nn.Linear(lowerCamelCase__ , lowerCamelCase__ ) def __lowercase ( self , lowerCamelCase__ ): """simple docstring""" __UpperCamelCase : List[Any] =self.mlp(lowerCamelCase__ ) return logits
71
1
"""simple docstring""" import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import Callable, Dict, List, Tuple import timm import torch import torch.nn as nn from classy_vision.models.regnet import RegNet, RegNetParams, RegNetYaagf, RegNetYaagf, RegNetYaaagf from huggingface_hub import cached_download, hf_hub_url from torch import Tensor from vissl.models.model_helpers import get_trunk_forward_outputs from transformers import AutoImageProcessor, RegNetConfig, RegNetForImageClassification, RegNetModel from transformers.utils import logging logging.set_verbosity_info() __snake_case = logging.get_logger() @dataclass class _lowerCAmelCase : __UpperCAmelCase : nn.Module __UpperCAmelCase : List[nn.Module] = field(default_factory=snake_case_ ) __UpperCAmelCase : list = field(default_factory=snake_case_ ) def lowerCamelCase ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> Dict: '''simple docstring''' snake_case : str = len(list(m.modules() ) ) == 1 or isinstance(UpperCamelCase__ , nn.Convad ) or isinstance(UpperCamelCase__ , nn.BatchNormad ) if has_not_submodules: self.traced.append(UpperCamelCase__ ) def __call__( self , UpperCamelCase__ ) -> Tuple: '''simple docstring''' for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook ) ) self.module(UpperCamelCase__ ) [x.remove() for x in self.handles] return self @property def lowerCamelCase ( self ) -> Optional[Any]: '''simple docstring''' return list(filter(lambda UpperCamelCase__ : len(list(x.state_dict().keys() ) ) > 0 , self.traced ) ) @dataclass class _lowerCAmelCase : __UpperCAmelCase : nn.Module __UpperCAmelCase : nn.Module __UpperCAmelCase : int = 1 __UpperCAmelCase : List = field(default_factory=snake_case_ ) __UpperCAmelCase : List = field(default_factory=snake_case_ ) __UpperCAmelCase : bool = True def __call__( self , UpperCamelCase__ ) -> List[Any]: '''simple docstring''' snake_case : Tuple = Tracker(self.dest )(UpperCamelCase__ ).parametrized snake_case : Any = Tracker(self.src )(UpperCamelCase__ ).parametrized snake_case : List[str] = list(filter(lambda UpperCamelCase__ : type(UpperCamelCase__ ) not in self.src_skip , UpperCamelCase__ ) ) snake_case : int = list(filter(lambda UpperCamelCase__ : type(UpperCamelCase__ ) not in self.dest_skip , UpperCamelCase__ ) ) if len(UpperCamelCase__ ) != len(UpperCamelCase__ ) and self.raise_if_mismatch: raise Exception( F'Numbers of operations are different. Source module has {len(UpperCamelCase__ )} operations while' F' destination module has {len(UpperCamelCase__ )}.' ) for dest_m, src_m in zip(UpperCamelCase__ , UpperCamelCase__ ): dest_m.load_state_dict(src_m.state_dict() ) if self.verbose == 1: print(F'Transfered from={src_m} to={dest_m}' ) class _lowerCAmelCase ( nn.Module ): def __init__( self , UpperCamelCase__ ) -> Optional[Any]: '''simple docstring''' super().__init__() snake_case : List[Tuple[str, nn.Module]] = [] # - get the stem feature_blocks.append(("conv1", model.stem) ) # - get all the feature blocks for k, v in model.trunk_output.named_children(): assert k.startswith("block" ), F'Unexpected layer name {k}' snake_case : Tuple = len(UpperCamelCase__ ) + 1 feature_blocks.append((F'res{block_index}', v) ) snake_case : List[Any] = nn.ModuleDict(UpperCamelCase__ ) def lowerCamelCase ( self , UpperCamelCase__ ) -> Tuple: '''simple docstring''' return get_trunk_forward_outputs( UpperCamelCase__ , out_feat_keys=UpperCamelCase__ , feature_blocks=self._feature_blocks , ) class _lowerCAmelCase ( snake_case_ ): def lowerCamelCase ( self , UpperCamelCase__ ) -> str: '''simple docstring''' snake_case : Any = x.split("-" ) return x_split[0] + x_split[1] + "_" + "".join(x_split[2:] ) def __getitem__( self , UpperCamelCase__ ) -> Callable[[], Tuple[nn.Module, Dict]]: '''simple docstring''' if x not in self: snake_case : List[str] = self.convert_name_to_timm(UpperCamelCase__ ) snake_case : List[Any] = partial(lambda: (timm.create_model(UpperCamelCase__ , pretrained=UpperCamelCase__ ).eval(), None) ) else: snake_case : Union[str, Any] = super().__getitem__(UpperCamelCase__ ) return val class _lowerCAmelCase ( snake_case_ ): def __getitem__( self , UpperCamelCase__ ) -> Callable[[], nn.Module]: '''simple docstring''' if "seer" in x and "in1k" not in x: snake_case : Dict = RegNetModel else: snake_case : Dict = RegNetForImageClassification return val def __lowerCAmelCase ( lowercase : Optional[Any] , lowercase : Union[str, Any] , lowercase : List[Tuple[str, str]] ) -> List[Any]: """simple docstring""" for from_key, to_key in keys: snake_case : str = from_state_dict[from_key].clone() print(F'Copied key={from_key} to={to_key}' ) return to_state_dict def __lowerCAmelCase ( lowercase : str , lowercase : Callable[[], nn.Module] , lowercase : Callable[[], nn.Module] , lowercase : RegNetConfig , lowercase : Path , lowercase : bool = True , ) -> Any: """simple docstring""" print(F'Converting {name}...' ) with torch.no_grad(): snake_case ,snake_case : Optional[int] = from_model_func() snake_case : Tuple = our_model_func(lowercase ).eval() snake_case : Dict = ModuleTransfer(src=lowercase , dest=lowercase , raise_if_mismatch=lowercase ) snake_case : List[str] = torch.randn((1, 3, 224, 224) ) module_transfer(lowercase ) if from_state_dict is not None: snake_case : Optional[int] = [] # for seer - in1k finetuned we have to manually copy the head if "seer" in name and "in1k" in name: snake_case : Optional[Any] = [("0.clf.0.weight", "classifier.1.weight"), ("0.clf.0.bias", "classifier.1.bias")] snake_case : List[Any] = manually_copy_vissl_head(lowercase , our_model.state_dict() , lowercase ) our_model.load_state_dict(lowercase ) snake_case : List[Any] = our_model(lowercase , output_hidden_states=lowercase ) snake_case : Any = ( our_outputs.logits if isinstance(lowercase , lowercase ) else our_outputs.last_hidden_state ) snake_case : int = from_model(lowercase ) snake_case : Union[str, Any] = from_output[-1] if type(lowercase ) is list else from_output # now since I don't want to use any config files, vissl seer model doesn't actually have an head, so let's just check the last hidden state if "seer" in name and "in1k" in name: snake_case : Optional[Any] = our_outputs.hidden_states[-1] assert torch.allclose(lowercase , lowercase ), "The model logits don't match the original one." if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / name , commit_message="Add model" , use_temp_dir=lowercase , ) snake_case : List[str] = 224 if "seer" not in name else 384 # we can use the convnext one snake_case : List[str] = AutoImageProcessor.from_pretrained("facebook/convnext-base-224-22k-1k" , size=lowercase ) image_processor.push_to_hub( repo_path_or_name=save_directory / name , commit_message="Add image processor" , use_temp_dir=lowercase , ) print(F'Pushed {name}' ) def __lowerCAmelCase ( lowercase : Path , lowercase : str = None , lowercase : bool = True ) -> str: """simple docstring""" snake_case : Optional[int] = "imagenet-1k-id2label.json" snake_case : Optional[Any] = 1000 snake_case : str = (1, num_labels) snake_case : Any = "huggingface/label-files" snake_case : Union[str, Any] = num_labels snake_case : int = json.load(open(cached_download(hf_hub_url(lowercase , lowercase , repo_type="dataset" ) ) , "r" ) ) snake_case : Any = {int(lowercase ): v for k, v in idalabel.items()} snake_case : str = idalabel snake_case : Dict = {v: k for k, v in idalabel.items()} snake_case : int = partial(lowercase , num_labels=lowercase , idalabel=lowercase , labelaid=lowercase ) snake_case : Any = { "regnet-x-002": ImageNetPreTrainedConfig( depths=[1, 1, 4, 7] , hidden_sizes=[24, 56, 152, 368] , groups_width=8 , layer_type="x" ), "regnet-x-004": ImageNetPreTrainedConfig( depths=[1, 2, 7, 12] , hidden_sizes=[32, 64, 160, 384] , groups_width=16 , layer_type="x" ), "regnet-x-006": ImageNetPreTrainedConfig( depths=[1, 3, 5, 7] , hidden_sizes=[48, 96, 240, 528] , groups_width=24 , layer_type="x" ), "regnet-x-008": ImageNetPreTrainedConfig( depths=[1, 3, 7, 5] , hidden_sizes=[64, 128, 288, 672] , groups_width=16 , layer_type="x" ), "regnet-x-016": ImageNetPreTrainedConfig( depths=[2, 4, 10, 2] , hidden_sizes=[72, 168, 408, 912] , groups_width=24 , layer_type="x" ), "regnet-x-032": ImageNetPreTrainedConfig( depths=[2, 6, 15, 2] , hidden_sizes=[96, 192, 432, 1008] , groups_width=48 , layer_type="x" ), "regnet-x-040": ImageNetPreTrainedConfig( depths=[2, 5, 14, 2] , hidden_sizes=[80, 240, 560, 1360] , groups_width=40 , layer_type="x" ), "regnet-x-064": ImageNetPreTrainedConfig( depths=[2, 4, 10, 1] , hidden_sizes=[168, 392, 784, 1624] , groups_width=56 , layer_type="x" ), "regnet-x-080": ImageNetPreTrainedConfig( depths=[2, 5, 15, 1] , hidden_sizes=[80, 240, 720, 1920] , groups_width=120 , layer_type="x" ), "regnet-x-120": ImageNetPreTrainedConfig( depths=[2, 5, 11, 1] , hidden_sizes=[224, 448, 896, 2240] , groups_width=112 , layer_type="x" ), "regnet-x-160": ImageNetPreTrainedConfig( depths=[2, 6, 13, 1] , hidden_sizes=[256, 512, 896, 2048] , groups_width=128 , layer_type="x" ), "regnet-x-320": ImageNetPreTrainedConfig( depths=[2, 7, 13, 1] , hidden_sizes=[336, 672, 1344, 2520] , groups_width=168 , layer_type="x" ), # y variant "regnet-y-002": ImageNetPreTrainedConfig(depths=[1, 1, 4, 7] , hidden_sizes=[24, 56, 152, 368] , groups_width=8 ), "regnet-y-004": ImageNetPreTrainedConfig( depths=[1, 3, 6, 6] , hidden_sizes=[48, 104, 208, 440] , groups_width=8 ), "regnet-y-006": ImageNetPreTrainedConfig( depths=[1, 3, 7, 4] , hidden_sizes=[48, 112, 256, 608] , groups_width=16 ), "regnet-y-008": ImageNetPreTrainedConfig( depths=[1, 3, 8, 2] , hidden_sizes=[64, 128, 320, 768] , groups_width=16 ), "regnet-y-016": ImageNetPreTrainedConfig( depths=[2, 6, 17, 2] , hidden_sizes=[48, 120, 336, 888] , groups_width=24 ), "regnet-y-032": ImageNetPreTrainedConfig( depths=[2, 5, 13, 1] , hidden_sizes=[72, 216, 576, 1512] , groups_width=24 ), "regnet-y-040": ImageNetPreTrainedConfig( depths=[2, 6, 12, 2] , hidden_sizes=[128, 192, 512, 1088] , groups_width=64 ), "regnet-y-064": ImageNetPreTrainedConfig( depths=[2, 7, 14, 2] , hidden_sizes=[144, 288, 576, 1296] , groups_width=72 ), "regnet-y-080": ImageNetPreTrainedConfig( depths=[2, 4, 10, 1] , hidden_sizes=[168, 448, 896, 2016] , groups_width=56 ), "regnet-y-120": ImageNetPreTrainedConfig( depths=[2, 5, 11, 1] , hidden_sizes=[224, 448, 896, 2240] , groups_width=112 ), "regnet-y-160": ImageNetPreTrainedConfig( depths=[2, 4, 11, 1] , hidden_sizes=[224, 448, 1232, 3024] , groups_width=112 ), "regnet-y-320": ImageNetPreTrainedConfig( depths=[2, 5, 12, 1] , hidden_sizes=[232, 696, 1392, 3712] , groups_width=232 ), # models created by SEER -> https://arxiv.org/abs/2202.08360 "regnet-y-320-seer": RegNetConfig(depths=[2, 5, 12, 1] , hidden_sizes=[232, 696, 1392, 3712] , groups_width=232 ), "regnet-y-640-seer": RegNetConfig(depths=[2, 5, 12, 1] , hidden_sizes=[328, 984, 1968, 4920] , groups_width=328 ), "regnet-y-1280-seer": RegNetConfig( depths=[2, 7, 17, 1] , hidden_sizes=[528, 1056, 2904, 7392] , groups_width=264 ), "regnet-y-2560-seer": RegNetConfig( depths=[3, 7, 16, 1] , hidden_sizes=[640, 1696, 2544, 5088] , groups_width=640 ), "regnet-y-10b-seer": ImageNetPreTrainedConfig( depths=[2, 7, 17, 1] , hidden_sizes=[2020, 4040, 1_1110, 2_8280] , groups_width=1010 ), # finetuned on imagenet "regnet-y-320-seer-in1k": ImageNetPreTrainedConfig( depths=[2, 5, 12, 1] , hidden_sizes=[232, 696, 1392, 3712] , groups_width=232 ), "regnet-y-640-seer-in1k": ImageNetPreTrainedConfig( depths=[2, 5, 12, 1] , hidden_sizes=[328, 984, 1968, 4920] , groups_width=328 ), "regnet-y-1280-seer-in1k": ImageNetPreTrainedConfig( depths=[2, 7, 17, 1] , hidden_sizes=[528, 1056, 2904, 7392] , groups_width=264 ), "regnet-y-2560-seer-in1k": ImageNetPreTrainedConfig( depths=[3, 7, 16, 1] , hidden_sizes=[640, 1696, 2544, 5088] , groups_width=640 ), "regnet-y-10b-seer-in1k": ImageNetPreTrainedConfig( depths=[2, 7, 17, 1] , hidden_sizes=[2020, 4040, 1_1110, 2_8280] , groups_width=1010 ), } snake_case : Optional[int] = NameToOurModelFuncMap() snake_case : Tuple = NameToFromModelFuncMap() # add seer weights logic def load_using_classy_vision(lowercase : str , lowercase : Callable[[], nn.Module] ) -> Tuple[nn.Module, Dict]: snake_case : str = torch.hub.load_state_dict_from_url(lowercase , model_dir=str(lowercase ) , map_location="cpu" ) snake_case : List[str] = model_func() # check if we have a head, if yes add it snake_case : Optional[Any] = files["classy_state_dict"]["base_model"]["model"] snake_case : Dict = model_state_dict["trunk"] model.load_state_dict(lowercase ) return model.eval(), model_state_dict["heads"] # pretrained snake_case : Optional[Any] = partial( lowercase , "https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet32d/seer_regnet32gf_model_iteration244000.torch" , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) snake_case : Tuple = partial( lowercase , "https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet64/seer_regnet64gf_model_final_checkpoint_phase0.torch" , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) snake_case : Optional[Any] = partial( lowercase , "https://dl.fbaipublicfiles.com/vissl/model_zoo/swav_ig1b_regnet128Gf_cnstant_bs32_node16_sinkhorn10_proto16k_syncBN64_warmup8k/model_final_checkpoint_phase0.torch" , lambda: FakeRegNetVisslWrapper(RegNetYaaagf() ) , ) snake_case : str = partial( lowercase , "https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet10B/model_iteration124500_conso.torch" , lambda: FakeRegNetVisslWrapper( RegNet(RegNetParams(depth=27 , group_width=1010 , w_a=1744 , w_a=620.83 , w_m=2.52 ) ) ) , ) # IN1K finetuned snake_case : Optional[int] = partial( lowercase , "https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet32_finetuned_in1k_model_final_checkpoint_phase78.torch" , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) snake_case : Tuple = partial( lowercase , "https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet64_finetuned_in1k_model_final_checkpoint_phase78.torch" , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) snake_case : Optional[Any] = partial( lowercase , "https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet128_finetuned_in1k_model_final_checkpoint_phase78.torch" , lambda: FakeRegNetVisslWrapper(RegNetYaaagf() ) , ) snake_case : Union[str, Any] = partial( lowercase , "https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_10b_finetuned_in1k_model_phase28_conso.torch" , lambda: FakeRegNetVisslWrapper( RegNet(RegNetParams(depth=27 , group_width=1010 , w_a=1744 , w_a=620.83 , w_m=2.52 ) ) ) , ) if model_name: convert_weight_and_push( lowercase , names_to_from_model_map[model_name] , names_to_ours_model_map[model_name] , names_to_config[model_name] , lowercase , lowercase , ) else: for model_name, config in names_to_config.items(): convert_weight_and_push( lowercase , names_to_from_model_map[model_name] , names_to_ours_model_map[model_name] , lowercase , lowercase , lowercase , ) return config, expected_shape if __name__ == "__main__": __snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default=None, type=str, help=( """The name of the model you wish to convert, it must be one of the supported regnet* architecture,""" """ currently: regnetx-*, regnety-*. If `None`, all of them will the converted.""" ), ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=Path, required=True, help="""Path to the output PyTorch model directory.""", ) parser.add_argument( """--push_to_hub""", default=True, type=bool, required=False, help="""If True, push model and image processor to the hub.""", ) __snake_case = parser.parse_args() __snake_case = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
112
"""simple docstring""" import argparse import json import os from collections import OrderedDict import torch from transformers import LukeConfig, LukeForMaskedLM, MLukeTokenizer, XLMRobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def __lowerCAmelCase ( lowercase : List[str] , lowercase : int , lowercase : Dict , lowercase : Dict , lowercase : int ) -> int: """simple docstring""" with open(lowercase ) as metadata_file: snake_case : str = json.load(lowercase ) snake_case : Optional[Any] = LukeConfig(use_entity_aware_attention=lowercase , **metadata["model_config"] ) # Load in the weights from the checkpoint_path snake_case : Tuple = torch.load(lowercase , map_location="cpu" )["module"] # Load the entity vocab file snake_case : Optional[Any] = load_original_entity_vocab(lowercase ) # add an entry for [MASK2] snake_case : Dict = max(entity_vocab.values() ) + 1 config.entity_vocab_size += 1 snake_case : Union[str, Any] = XLMRobertaTokenizer.from_pretrained(metadata["model_config"]["bert_model_name"] ) # Add special tokens to the token vocabulary for downstream tasks snake_case : Tuple = AddedToken("<ent>" , lstrip=lowercase , rstrip=lowercase ) snake_case : str = AddedToken("<ent2>" , lstrip=lowercase , rstrip=lowercase ) tokenizer.add_special_tokens({"additional_special_tokens": [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(F'Saving tokenizer to {pytorch_dump_folder_path}' ) tokenizer.save_pretrained(lowercase ) with open(os.path.join(lowercase , "tokenizer_config.json" ) , "r" ) as f: snake_case : str = json.load(lowercase ) snake_case : List[str] = "MLukeTokenizer" with open(os.path.join(lowercase , "tokenizer_config.json" ) , "w" ) as f: json.dump(lowercase , lowercase ) with open(os.path.join(lowercase , MLukeTokenizer.vocab_files_names["entity_vocab_file"] ) , "w" ) as f: json.dump(lowercase , lowercase ) snake_case : Dict = MLukeTokenizer.from_pretrained(lowercase ) # Initialize the embeddings of the special tokens snake_case : Tuple = tokenizer.convert_tokens_to_ids(["@"] )[0] snake_case : str = tokenizer.convert_tokens_to_ids(["#"] )[0] snake_case : Union[str, Any] = state_dict["embeddings.word_embeddings.weight"] snake_case : str = word_emb[ent_init_index].unsqueeze(0 ) snake_case : Union[str, Any] = word_emb[enta_init_index].unsqueeze(0 ) snake_case : Union[str, Any] = torch.cat([word_emb, ent_emb, enta_emb] ) # add special tokens for 'entity_predictions.bias' for bias_name in ["lm_head.decoder.bias", "lm_head.bias"]: snake_case : Tuple = state_dict[bias_name] snake_case : Optional[Any] = decoder_bias[ent_init_index].unsqueeze(0 ) snake_case : Optional[Any] = decoder_bias[enta_init_index].unsqueeze(0 ) snake_case : Any = torch.cat([decoder_bias, ent_decoder_bias, enta_decoder_bias] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: snake_case : Optional[int] = F'encoder.layer.{layer_index}.attention.self.' snake_case : Optional[Any] = state_dict[prefix + matrix_name] snake_case : Optional[Any] = state_dict[prefix + matrix_name] snake_case : Any = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks snake_case : List[Any] = state_dict["entity_embeddings.entity_embeddings.weight"] snake_case : str = entity_emb[entity_vocab["[MASK]"]].unsqueeze(0 ) snake_case : Tuple = torch.cat([entity_emb, entity_mask_emb] ) # add [MASK2] for 'entity_predictions.bias' snake_case : Optional[int] = state_dict["entity_predictions.bias"] snake_case : Optional[int] = entity_prediction_bias[entity_vocab["[MASK]"]].unsqueeze(0 ) snake_case : Union[str, Any] = torch.cat([entity_prediction_bias, entity_mask_bias] ) snake_case : Union[str, Any] = LukeForMaskedLM(config=lowercase ).eval() state_dict.pop("entity_predictions.decoder.weight" ) state_dict.pop("lm_head.decoder.weight" ) state_dict.pop("lm_head.decoder.bias" ) snake_case : Tuple = OrderedDict() for key, value in state_dict.items(): if not (key.startswith("lm_head" ) or key.startswith("entity_predictions" )): snake_case : Any = state_dict[key] else: snake_case : Tuple = state_dict[key] snake_case ,snake_case : Optional[Any] = model.load_state_dict(lowercase , strict=lowercase ) if set(lowercase ) != {"luke.embeddings.position_ids"}: raise ValueError(F'Unexpected unexpected_keys: {unexpected_keys}' ) if set(lowercase ) != { "lm_head.decoder.weight", "lm_head.decoder.bias", "entity_predictions.decoder.weight", }: raise ValueError(F'Unexpected missing_keys: {missing_keys}' ) model.tie_weights() assert (model.luke.embeddings.word_embeddings.weight == model.lm_head.decoder.weight).all() assert (model.luke.entity_embeddings.entity_embeddings.weight == model.entity_predictions.decoder.weight).all() # Check outputs snake_case : Optional[Any] = MLukeTokenizer.from_pretrained(lowercase , task="entity_classification" ) snake_case : List[str] = "ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan)." snake_case : str = (0, 9) snake_case : Union[str, Any] = tokenizer(lowercase , entity_spans=[span] , return_tensors="pt" ) snake_case : int = model(**lowercase ) # Verify word hidden states if model_size == "large": raise NotImplementedError else: # base snake_case : int = torch.Size((1, 33, 768) ) snake_case : str = torch.tensor([[0.0892, 0.0596, -0.2819], [0.0134, 0.1199, 0.0573], [-0.0169, 0.0927, 0.0644]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( F'Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}' ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3] , lowercase , atol=1e-4 ): raise ValueError # Verify entity hidden states if model_size == "large": raise NotImplementedError else: # base snake_case : Any = torch.Size((1, 1, 768) ) snake_case : List[Any] = torch.tensor([[-0.1482, 0.0609, 0.0322]] ) if not (outputs.entity_last_hidden_state.shape == expected_shape): raise ValueError( F'Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is' F' {expected_shape}' ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] , lowercase , atol=1e-4 ): raise ValueError # Verify masked word/entity prediction snake_case : List[str] = MLukeTokenizer.from_pretrained(lowercase ) snake_case : List[Any] = "Tokyo is the capital of <mask>." snake_case : Optional[Any] = (24, 30) snake_case : List[str] = tokenizer(lowercase , entity_spans=[span] , return_tensors="pt" ) snake_case : Any = model(**lowercase ) snake_case : int = encoding["input_ids"][0].tolist() snake_case : str = input_ids.index(tokenizer.convert_tokens_to_ids("<mask>" ) ) snake_case : Tuple = outputs.logits[0][mask_position_id].argmax(dim=-1 ) assert "Japan" == tokenizer.decode(lowercase ) snake_case : Tuple = outputs.entity_logits[0][0].argmax().item() snake_case : Optional[int] = [ entity for entity, entity_id in tokenizer.entity_vocab.items() if entity_id == predicted_entity_id ] assert [e for e in multilingual_predicted_entities if e.startswith("en:" )][0] == "en:Japan" # Finally, save our PyTorch model and tokenizer print("Saving PyTorch model to {}".format(lowercase ) ) model.save_pretrained(lowercase ) def __lowerCAmelCase ( lowercase : Union[str, Any] ) -> Dict: """simple docstring""" snake_case : Tuple = ["[MASK]", "[PAD]", "[UNK]"] snake_case : Optional[Any] = [json.loads(lowercase ) for line in open(lowercase )] snake_case : Any = {} for entry in data: snake_case : Union[str, Any] = entry["id"] for entity_name, language in entry["entities"]: if entity_name in SPECIAL_TOKENS: snake_case : Union[str, Any] = entity_id break snake_case : Dict = F'{language}:{entity_name}' snake_case : str = entity_id return new_mapping if __name__ == "__main__": __snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument("""--checkpoint_path""", type=str, help="""Path to a pytorch_model.bin file.""") parser.add_argument( """--metadata_path""", default=None, type=str, help="""Path to a metadata.json file, defining the configuration.""" ) parser.add_argument( """--entity_vocab_path""", default=None, type=str, help="""Path to an entity_vocab.tsv file, containing the entity vocabulary.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to where to dump the output PyTorch model.""" ) parser.add_argument( """--model_size""", default="""base""", type=str, choices=["""base""", """large"""], help="""Size of the model to be converted.""" ) __snake_case = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
112
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) _A = {'configuration_unispeech': ['UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP', 'UniSpeechConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = [ 'UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST', 'UniSpeechForCTC', 'UniSpeechForPreTraining', 'UniSpeechForSequenceClassification', 'UniSpeechModel', 'UniSpeechPreTrainedModel', ] if TYPE_CHECKING: from .configuration_unispeech import UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP, UniSpeechConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_unispeech import ( UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST, UniSpeechForCTC, UniSpeechForPreTraining, UniSpeechForSequenceClassification, UniSpeechModel, UniSpeechPreTrainedModel, ) else: import sys _A = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
62
from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available from ...utils import OptionalDependencyNotAvailable lowercase = {"configuration_gpt_neox": ["GPT_NEOX_PRETRAINED_CONFIG_ARCHIVE_MAP", "GPTNeoXConfig"]} try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase = ["GPTNeoXTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase = [ "GPT_NEOX_PRETRAINED_MODEL_ARCHIVE_LIST", "GPTNeoXForCausalLM", "GPTNeoXForQuestionAnswering", "GPTNeoXForSequenceClassification", "GPTNeoXForTokenClassification", "GPTNeoXLayer", "GPTNeoXModel", "GPTNeoXPreTrainedModel", ] if TYPE_CHECKING: from .configuration_gpt_neox import GPT_NEOX_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoXConfig try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_gpt_neox_fast import GPTNeoXTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neox import ( GPT_NEOX_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, GPTNeoXLayer, GPTNeoXModel, GPTNeoXPreTrainedModel, ) else: import sys lowercase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
178
0
"""simple docstring""" import re def UpperCAmelCase ( UpperCamelCase__ ): """simple docstring""" A__ = re.compile(r'^(\+91[\-\s]?)?[0]?(91)?[789]\d{9}$' ) if match := re.search(UpperCamelCase__ , UpperCamelCase__ ): return match.string == phone return False if __name__ == "__main__": print(indian_phone_validator("+918827897895"))
154
"""simple docstring""" def UpperCAmelCase ( UpperCamelCase__ = 100 ): """simple docstring""" A__ = (n * (n + 1) // 2) ** 2 A__ = n * (n + 1) * (2 * n + 1) // 6 return sum_cubes - sum_squares if __name__ == "__main__": print(F'''{solution() = }''')
154
1
"""simple docstring""" from typing import Optional import numpy as np import torch from torch import nn from transformers import GPTaConfig, GPTaLMHeadModel from transformers.modeling_utils import ModuleUtilsMixin from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class lowercase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): '''simple docstring''' lowercase__ = [r"""h\.\d+\.attn\.bias""", r"""h\.\d+\.attn\.masked_bias"""] @register_to_config def __init__( self: int, a_: str, a_: Tuple, a_: Dict = None, a_: str = 50_257, a_: Tuple = 1_024, a_: int = 768, a_: Dict = 12, a_: List[Any] = 12, a_: Tuple = None, a_: int = "gelu_new", a_: Union[str, Any] = 0.1, a_: int = 0.1, a_: Optional[int] = 0.1, a_: int = 1E-5, a_: Optional[Any] = 0.02, a_: List[Any] = True, a_: str = True, a_: Optional[int] = False, a_: Any = False, ): '''simple docstring''' super().__init__() _snake_case : Optional[int] = prefix_length if prefix_inner_dim != n_embd and prefix_hidden_dim is None: raise ValueError( f"`prefix_hidden_dim` cannot be `None` when `prefix_inner_dim`: {prefix_hidden_dim} and" f" `n_embd`: {n_embd} are not equal." ) _snake_case : int = prefix_inner_dim _snake_case : List[Any] = prefix_hidden_dim _snake_case : int = ( nn.Linear(self.prefix_inner_dim, self.prefix_hidden_dim ) if self.prefix_hidden_dim is not None else nn.Identity() ) _snake_case : Tuple = ( nn.Linear(self.prefix_hidden_dim, __lowercase ) if self.prefix_hidden_dim is not None else nn.Identity() ) _snake_case : Union[str, Any] = GPTaConfig( vocab_size=__lowercase, n_positions=__lowercase, n_embd=__lowercase, n_layer=__lowercase, n_head=__lowercase, n_inner=__lowercase, activation_function=__lowercase, resid_pdrop=__lowercase, embd_pdrop=__lowercase, attn_pdrop=__lowercase, layer_norm_epsilon=__lowercase, initializer_range=__lowercase, scale_attn_weights=__lowercase, use_cache=__lowercase, scale_attn_by_inverse_layer_idx=__lowercase, reorder_and_upcast_attn=__lowercase, ) _snake_case : List[str] = GPTaLMHeadModel(__lowercase ) def UpperCamelCase_ ( self: Tuple, a_: int, a_: int, a_: str = None, a_: Any = None, ): '''simple docstring''' _snake_case : Any = self.transformer.transformer.wte(__lowercase ) _snake_case : Union[str, Any] = self.encode_prefix(__lowercase ) _snake_case : List[str] = self.decode_prefix(__lowercase ) _snake_case : str = torch.cat((prefix_embeds, embedding_text), dim=1 ) if labels is not None: _snake_case : List[Any] = self.get_dummy_token(input_ids.shape[0], input_ids.device ) _snake_case : int = torch.cat((dummy_token, input_ids), dim=1 ) _snake_case : int = self.transformer(inputs_embeds=__lowercase, labels=__lowercase, attention_mask=__lowercase ) if self.prefix_hidden_dim is not None: return out, hidden else: return out def UpperCamelCase_ ( self: Tuple, a_: List[Any], a_: Dict ): '''simple docstring''' return torch.zeros(__lowercase, self.prefix_length, dtype=torch.intaa, device=__lowercase ) def UpperCamelCase_ ( self: Dict, a_: str ): '''simple docstring''' return self.encode_prefix(__lowercase ) @torch.no_grad() def UpperCamelCase_ ( self: List[str], a_: Optional[Any], a_: Union[str, Any], a_: List[str] ): '''simple docstring''' _snake_case : Tuple = torch.split(__lowercase, 1, dim=0 ) _snake_case : Tuple = [] _snake_case : Union[str, Any] = [] for feature in features: _snake_case : Optional[Any] = self.decode_prefix(feature.to(__lowercase ) ) # back to the clip feature # Only support beam search for now _snake_case : List[str] = self.generate_beam( input_embeds=__lowercase, device=__lowercase, eos_token_id=__lowercase ) generated_tokens.append(output_tokens[0] ) generated_seq_lengths.append(seq_lengths[0] ) _snake_case : Optional[Any] = torch.stack(__lowercase ) _snake_case : str = torch.stack(__lowercase ) return generated_tokens, generated_seq_lengths @torch.no_grad() def UpperCamelCase_ ( self: Dict, a_: List[str]=None, a_: List[str]=None, a_: Any=None, a_: Optional[Any] = 5, a_: Union[str, Any] = 67, a_: str = 1.0, a_: Union[str, Any] = None, ): '''simple docstring''' _snake_case : Optional[Any] = eos_token_id _snake_case : str = None _snake_case : Optional[int] = None _snake_case : List[Any] = torch.ones(__lowercase, device=__lowercase, dtype=torch.int ) _snake_case : List[str] = torch.zeros(__lowercase, device=__lowercase, dtype=torch.bool ) if input_embeds is not None: _snake_case : Dict = input_embeds else: _snake_case : int = self.transformer.transformer.wte(__lowercase ) for i in range(__lowercase ): _snake_case : List[str] = self.transformer(inputs_embeds=__lowercase ) _snake_case : List[str] = outputs.logits _snake_case : Union[str, Any] = logits[:, -1, :] / (temperature if temperature > 0 else 1.0) _snake_case : List[str] = logits.softmax(-1 ).log() if scores is None: _snake_case : Optional[Any] = logits.topk(__lowercase, -1 ) _snake_case : List[str] = generated.expand(__lowercase, *generated.shape[1:] ) _snake_case : Optional[int] = next_tokens.permute(1, 0 ), scores.squeeze(0 ) if tokens is None: _snake_case : str = next_tokens else: _snake_case : List[Any] = tokens.expand(__lowercase, *tokens.shape[1:] ) _snake_case : List[str] = torch.cat((tokens, next_tokens), dim=1 ) else: _snake_case : Dict = -float(np.inf ) _snake_case : Tuple = 0 _snake_case : List[str] = scores[:, None] + logits seq_lengths[~is_stopped] += 1 _snake_case : Optional[Any] = scores_sum / seq_lengths[:, None] _snake_case : Optional[Any] = scores_sum_average.view(-1 ).topk(__lowercase, -1 ) _snake_case : str = next_tokens // scores_sum.shape[1] _snake_case : Tuple = seq_lengths[next_tokens_source] _snake_case : str = next_tokens % scores_sum.shape[1] _snake_case : int = next_tokens.unsqueeze(1 ) _snake_case : Any = tokens[next_tokens_source] _snake_case : Optional[int] = torch.cat((tokens, next_tokens), dim=1 ) _snake_case : Optional[Any] = generated[next_tokens_source] _snake_case : str = scores_sum_average * seq_lengths _snake_case : Union[str, Any] = is_stopped[next_tokens_source] _snake_case : Optional[int] = self.transformer.transformer.wte(next_tokens.squeeze() ).view(generated.shape[0], 1, -1 ) _snake_case : int = torch.cat((generated, next_token_embed), dim=1 ) _snake_case : List[str] = is_stopped + next_tokens.eq(__lowercase ).squeeze() if is_stopped.all(): break _snake_case : Any = scores / seq_lengths _snake_case : Optional[int] = scores.argsort(descending=__lowercase ) # tokens tensors are already padded to max_seq_length _snake_case : int = [tokens[i] for i in order] _snake_case : str = torch.stack(__lowercase, dim=0 ) _snake_case : List[str] = torch.tensor([seq_lengths[i] for i in order], dtype=seq_lengths.dtype ) return output_texts, seq_lengths
64
import glob import os import random from string import ascii_lowercase, digits import cva import numpy as np # Parrameters __lowercase = (720, 1280) # Height, Width __lowercase = (0.4, 0.6) # if height or width lower than this scale, drop it. __lowercase = 1 / 100 __lowercase = '''''' __lowercase = '''''' __lowercase = '''''' __lowercase = 250 def lowerCamelCase ( ): '''simple docstring''' __UpperCamelCase , __UpperCamelCase :List[Any] = get_dataset(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for index in range(SCREAMING_SNAKE_CASE ): __UpperCamelCase :Optional[Any] = random.sample(range(len(SCREAMING_SNAKE_CASE ) ) , 4 ) __UpperCamelCase , __UpperCamelCase , __UpperCamelCase :str = update_image_and_anno( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , filter_scale=SCREAMING_SNAKE_CASE , ) # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' __UpperCamelCase :List[Any] = random_chars(32 ) __UpperCamelCase :List[str] = path.split(os.sep )[-1].rsplit('''.''' , 1 )[0] __UpperCamelCase :Tuple = f"""{OUTPUT_DIR}/{file_name}_MOSAIC_{letter_code}""" cva.imwrite(f"""{file_root}.jpg""" , SCREAMING_SNAKE_CASE , [cva.IMWRITE_JPEG_QUALITY, 85] ) print(f"""Succeeded {index+1}/{NUMBER_IMAGES} with {file_name}""" ) __UpperCamelCase :Optional[Any] = [] for anno in new_annos: __UpperCamelCase :int = anno[3] - anno[1] __UpperCamelCase :Optional[int] = anno[4] - anno[2] __UpperCamelCase :int = anno[1] + width / 2 __UpperCamelCase :List[str] = anno[2] + height / 2 __UpperCamelCase :str = f"""{anno[0]} {x_center} {y_center} {width} {height}""" annos_list.append(SCREAMING_SNAKE_CASE ) with open(f"""{file_root}.txt""" , '''w''' ) as outfile: outfile.write('''\n'''.join(line for line in annos_list ) ) def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCamelCase :str = [] __UpperCamelCase :str = [] for label_file in glob.glob(os.path.join(SCREAMING_SNAKE_CASE , '''*.txt''' ) ): __UpperCamelCase :Any = label_file.split(os.sep )[-1].rsplit('''.''' , 1 )[0] with open(SCREAMING_SNAKE_CASE ) as in_file: __UpperCamelCase :str = in_file.readlines() __UpperCamelCase :Optional[int] = os.path.join(SCREAMING_SNAKE_CASE , f"""{label_name}.jpg""" ) __UpperCamelCase :int = [] for obj_list in obj_lists: __UpperCamelCase :Optional[int] = obj_list.rstrip('''\n''' ).split(''' ''' ) __UpperCamelCase :Any = float(obj[1] ) - float(obj[3] ) / 2 __UpperCamelCase :List[str] = float(obj[2] ) - float(obj[4] ) / 2 __UpperCamelCase :Dict = float(obj[1] ) + float(obj[3] ) / 2 __UpperCamelCase :List[str] = float(obj[2] ) + float(obj[4] ) / 2 boxes.append([int(obj[0] ), xmin, ymin, xmax, ymax] ) if not boxes: continue img_paths.append(SCREAMING_SNAKE_CASE ) labels.append(SCREAMING_SNAKE_CASE ) return img_paths, labels def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = 0.0 , ): '''simple docstring''' __UpperCamelCase :List[str] = np.zeros([output_size[0], output_size[1], 3] , dtype=np.uinta ) __UpperCamelCase :List[Any] = scale_range[0] + random.random() * (scale_range[1] - scale_range[0]) __UpperCamelCase :int = scale_range[0] + random.random() * (scale_range[1] - scale_range[0]) __UpperCamelCase :Optional[int] = int(scale_x * output_size[1] ) __UpperCamelCase :Any = int(scale_y * output_size[0] ) __UpperCamelCase :List[str] = [] __UpperCamelCase :Dict = [] for i, index in enumerate(SCREAMING_SNAKE_CASE ): __UpperCamelCase :Any = all_img_list[index] path_list.append(SCREAMING_SNAKE_CASE ) __UpperCamelCase :Any = all_annos[index] __UpperCamelCase :Union[str, Any] = cva.imread(SCREAMING_SNAKE_CASE ) if i == 0: # top-left __UpperCamelCase :str = cva.resize(SCREAMING_SNAKE_CASE , (divid_point_x, divid_point_y) ) __UpperCamelCase :Union[str, Any] = img for bbox in img_annos: __UpperCamelCase :Union[str, Any] = bbox[1] * scale_x __UpperCamelCase :Optional[Any] = bbox[2] * scale_y __UpperCamelCase :int = bbox[3] * scale_x __UpperCamelCase :Union[str, Any] = bbox[4] * scale_y new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) elif i == 1: # top-right __UpperCamelCase :str = cva.resize(SCREAMING_SNAKE_CASE , (output_size[1] - divid_point_x, divid_point_y) ) __UpperCamelCase :List[str] = img for bbox in img_annos: __UpperCamelCase :str = scale_x + bbox[1] * (1 - scale_x) __UpperCamelCase :Dict = bbox[2] * scale_y __UpperCamelCase :Optional[Any] = scale_x + bbox[3] * (1 - scale_x) __UpperCamelCase :List[Any] = bbox[4] * scale_y new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) elif i == 2: # bottom-left __UpperCamelCase :str = cva.resize(SCREAMING_SNAKE_CASE , (divid_point_x, output_size[0] - divid_point_y) ) __UpperCamelCase :Optional[int] = img for bbox in img_annos: __UpperCamelCase :Tuple = bbox[1] * scale_x __UpperCamelCase :Optional[Any] = scale_y + bbox[2] * (1 - scale_y) __UpperCamelCase :Tuple = bbox[3] * scale_x __UpperCamelCase :Dict = scale_y + bbox[4] * (1 - scale_y) new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) else: # bottom-right __UpperCamelCase :Optional[int] = cva.resize( SCREAMING_SNAKE_CASE , (output_size[1] - divid_point_x, output_size[0] - divid_point_y) ) __UpperCamelCase :Optional[int] = img for bbox in img_annos: __UpperCamelCase :Optional[Any] = scale_x + bbox[1] * (1 - scale_x) __UpperCamelCase :Optional[int] = scale_y + bbox[2] * (1 - scale_y) __UpperCamelCase :Optional[Any] = scale_x + bbox[3] * (1 - scale_x) __UpperCamelCase :int = scale_y + bbox[4] * (1 - scale_y) new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) # Remove bounding box small than scale of filter if filter_scale > 0: __UpperCamelCase :List[Any] = [ anno for anno in new_anno if filter_scale < (anno[3] - anno[1]) and filter_scale < (anno[4] - anno[2]) ] return output_img, new_anno, path_list[0] def lowerCamelCase ( SCREAMING_SNAKE_CASE ): '''simple docstring''' assert number_char > 1, "The number of character should greater than 1" __UpperCamelCase :Optional[Any] = ascii_lowercase + digits return "".join(random.choice(SCREAMING_SNAKE_CASE ) for _ in range(SCREAMING_SNAKE_CASE ) ) if __name__ == "__main__": main() print('''DONE ✅''')
43
0
"""simple docstring""" __A = {0: [2, 3], 1: [0], 2: [1], 3: [4], 4: []} __A = {0: [1, 2, 3], 1: [2], 2: [0], 3: [4], 4: [5], 5: [3]} def __A (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->list[int]: """simple docstring""" lowerCAmelCase__ :Union[str, Any] = True lowerCAmelCase__ :Tuple = [] for neighbour in graph[vert]: if not visited[neighbour]: order += topology_sort(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) order.append(_SCREAMING_SNAKE_CASE ) return order def __A (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->list[int]: """simple docstring""" lowerCAmelCase__ :Optional[int] = True lowerCAmelCase__ :Union[str, Any] = [vert] for neighbour in reversed_graph[vert]: if not visited[neighbour]: component += find_components(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return component def __A (_SCREAMING_SNAKE_CASE ) ->list[list[int]]: """simple docstring""" lowerCAmelCase__ :Any = len(_SCREAMING_SNAKE_CASE ) * [False] lowerCAmelCase__ :dict[int, list[int]] = {vert: [] for vert in range(len(_SCREAMING_SNAKE_CASE ) )} for vert, neighbours in graph.items(): for neighbour in neighbours: reversed_graph[neighbour].append(_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ :Dict = [] for i, was_visited in enumerate(_SCREAMING_SNAKE_CASE ): if not was_visited: order += topology_sort(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) lowerCAmelCase__ :List[Any] = [] lowerCAmelCase__ :int = len(_SCREAMING_SNAKE_CASE ) * [False] for i in range(len(_SCREAMING_SNAKE_CASE ) ): lowerCAmelCase__ :Dict = order[len(_SCREAMING_SNAKE_CASE ) - i - 1] if not visited[vert]: lowerCAmelCase__ :Union[str, Any] = find_components(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) components_list.append(_SCREAMING_SNAKE_CASE ) return components_list
254
"""simple docstring""" import unittest from transformers import DebertaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DebertaForMaskedLM, DebertaForQuestionAnswering, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaModel, ) from transformers.models.deberta.modeling_deberta import DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST class _lowerCAmelCase ( a ): """simple docstring""" def __init__( self , __UpperCAmelCase , __UpperCAmelCase=1_3 , __UpperCAmelCase=7 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=9_9 , __UpperCAmelCase=3_2 , __UpperCAmelCase=5 , __UpperCAmelCase=4 , __UpperCAmelCase=3_7 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=5_1_2 , __UpperCAmelCase=1_6 , __UpperCAmelCase=2 , __UpperCAmelCase=0.02 , __UpperCAmelCase=False , __UpperCAmelCase=True , __UpperCAmelCase="None" , __UpperCAmelCase=3 , __UpperCAmelCase=4 , __UpperCAmelCase=None , ): '''simple docstring''' lowerCAmelCase__ :Union[str, Any] = parent lowerCAmelCase__ :int = batch_size lowerCAmelCase__ :List[str] = seq_length lowerCAmelCase__ :Tuple = is_training lowerCAmelCase__ :Tuple = use_input_mask lowerCAmelCase__ :Dict = use_token_type_ids lowerCAmelCase__ :Union[str, Any] = use_labels lowerCAmelCase__ :Tuple = vocab_size lowerCAmelCase__ :List[Any] = hidden_size lowerCAmelCase__ :Tuple = num_hidden_layers lowerCAmelCase__ :str = num_attention_heads lowerCAmelCase__ :List[str] = intermediate_size lowerCAmelCase__ :Optional[Any] = hidden_act lowerCAmelCase__ :Union[str, Any] = hidden_dropout_prob lowerCAmelCase__ :Any = attention_probs_dropout_prob lowerCAmelCase__ :Dict = max_position_embeddings lowerCAmelCase__ :Tuple = type_vocab_size lowerCAmelCase__ :List[str] = type_sequence_label_size lowerCAmelCase__ :Tuple = initializer_range lowerCAmelCase__ :Optional[Any] = num_labels lowerCAmelCase__ :int = num_choices lowerCAmelCase__ :Union[str, Any] = relative_attention lowerCAmelCase__ :int = position_biased_input lowerCAmelCase__ :Optional[int] = pos_att_type lowerCAmelCase__ :Dict = scope def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase__ :int = None if self.use_input_mask: lowerCAmelCase__ :int = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) lowerCAmelCase__ :Optional[Any] = None if self.use_token_type_ids: lowerCAmelCase__ :Tuple = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCAmelCase__ :Dict = None lowerCAmelCase__ :Union[str, Any] = None lowerCAmelCase__ :Dict = None if self.use_labels: lowerCAmelCase__ :Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase__ :List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase__ :Optional[int] = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase__ :Dict = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def snake_case ( self ): '''simple docstring''' return DebertaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , pos_att_type=self.pos_att_type , ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :List[Any] = self.get_config() lowerCAmelCase__ :Optional[Any] = 3_0_0 return config def snake_case ( self , __UpperCAmelCase ): '''simple docstring''' self.parent.assertListEqual(list(result.loss.size() ) , [] ) def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' lowerCAmelCase__ :Dict = DebertaModel(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() lowerCAmelCase__ :Any = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase )[0] lowerCAmelCase__ :List[Any] = model(__UpperCAmelCase , token_type_ids=__UpperCAmelCase )[0] lowerCAmelCase__ :Dict = model(__UpperCAmelCase )[0] self.parent.assertListEqual(list(sequence_output.size() ) , [self.batch_size, self.seq_length, self.hidden_size] ) def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' lowerCAmelCase__ :str = DebertaForMaskedLM(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() lowerCAmelCase__ :List[str] = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' lowerCAmelCase__ :Tuple = self.num_labels lowerCAmelCase__ :int = DebertaForSequenceClassification(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() lowerCAmelCase__ :Optional[int] = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertListEqual(list(result.logits.size() ) , [self.batch_size, self.num_labels] ) self.check_loss_output(__UpperCAmelCase ) def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' lowerCAmelCase__ :Optional[int] = self.num_labels lowerCAmelCase__ :Any = DebertaForTokenClassification(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() lowerCAmelCase__ :List[Any] = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' lowerCAmelCase__ :int = DebertaForQuestionAnswering(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() lowerCAmelCase__ :str = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , start_positions=__UpperCAmelCase , end_positions=__UpperCAmelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Optional[int] = self.prepare_config_and_inputs() ( ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ) :Tuple = config_and_inputs lowerCAmelCase__ :int = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class _lowerCAmelCase ( a , a , unittest.TestCase ): """simple docstring""" __magic_name__ :List[str] = ( ( DebertaModel, DebertaForMaskedLM, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaForQuestionAnswering, ) if is_torch_available() else () ) __magic_name__ :Optional[Any] = ( { """feature-extraction""": DebertaModel, """fill-mask""": DebertaForMaskedLM, """question-answering""": DebertaForQuestionAnswering, """text-classification""": DebertaForSequenceClassification, """token-classification""": DebertaForTokenClassification, """zero-shot""": DebertaForSequenceClassification, } if is_torch_available() else {} ) __magic_name__ :Tuple = True __magic_name__ :List[Any] = False __magic_name__ :Optional[Any] = False __magic_name__ :str = False __magic_name__ :int = False def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :List[str] = DebertaModelTester(self ) lowerCAmelCase__ :List[Any] = ConfigTester(self , config_class=__UpperCAmelCase , hidden_size=3_7 ) def snake_case ( self ): '''simple docstring''' self.config_tester.run_common_tests() def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_model(*__UpperCAmelCase ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_sequence_classification(*__UpperCAmelCase ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_masked_lm(*__UpperCAmelCase ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_question_answering(*__UpperCAmelCase ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_token_classification(*__UpperCAmelCase ) @slow def snake_case ( self ): '''simple docstring''' for model_name in DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase__ :int = DebertaModel.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) @require_torch @require_sentencepiece @require_tokenizers class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @unittest.skip(reason='Model not available yet' ) def snake_case ( self ): '''simple docstring''' pass @slow def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :str = DebertaModel.from_pretrained('microsoft/deberta-base' ) lowerCAmelCase__ :str = torch.tensor([[0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 4_6_0_7_8, 1_5_8_8, 2]] ) lowerCAmelCase__ :Tuple = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): lowerCAmelCase__ :int = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase )[0] # compare the actual values for a slice. lowerCAmelCase__ :str = torch.tensor( [[[-0.59_86, -0.80_55, -0.84_62], [1.44_84, -0.93_48, -0.80_59], [0.31_23, 0.00_32, -1.41_31]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , __UpperCAmelCase , atol=1E-4 ) , F"{output[:, 1:4, 1:4]}" )
254
1
from typing import Optional import pyspark from .. import Features, NamedSplit from ..download import DownloadMode from ..packaged_modules.spark.spark import Spark from .abc import AbstractDatasetReader class __lowerCAmelCase ( UpperCamelCase__): def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = True , lowerCAmelCase__ = None , lowerCAmelCase__ = False , lowerCAmelCase__ = None , lowerCAmelCase__ = True , lowerCAmelCase__ = "arrow" , **lowerCAmelCase__ , ) -> Optional[int]: '''simple docstring''' super().__init__( split=lowerCAmelCase__ , features=lowerCAmelCase__ , cache_dir=lowerCAmelCase__ , keep_in_memory=lowerCAmelCase__ , streaming=lowerCAmelCase__ , **lowerCAmelCase__ , ) a__ : int =load_from_cache_file a__ : Tuple =file_format a__ : List[Any] =Spark( df=lowerCAmelCase__ , features=lowerCAmelCase__ , cache_dir=lowerCAmelCase__ , working_dir=lowerCAmelCase__ , **lowerCAmelCase__ , ) def _lowercase ( self ) -> str: '''simple docstring''' if self.streaming: return self.builder.as_streaming_dataset(split=self.split ) a__ : str =None if self._load_from_cache_file else DownloadMode.FORCE_REDOWNLOAD self.builder.download_and_prepare( download_mode=lowerCAmelCase__ , file_format=self._file_format , ) return self.builder.as_dataset(split=self.split )
95
'''simple docstring''' import math from numpy import inf from scipy.integrate import quad def __a(SCREAMING_SNAKE_CASE_ : float ): '''simple docstring''' if num <= 0: raise ValueError("math domain error" ) return quad(SCREAMING_SNAKE_CASE_ , 0 , SCREAMING_SNAKE_CASE_ , args=(SCREAMING_SNAKE_CASE_) )[0] def __a(SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : float ): '''simple docstring''' return math.pow(SCREAMING_SNAKE_CASE_ , z - 1 ) * math.exp(-x ) if __name__ == "__main__": from doctest import testmod testmod()
158
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { '''naver-clova-ix/donut-base''': '''https://huggingface.co/naver-clova-ix/donut-base/resolve/main/config.json''', # See all Donut models at https://huggingface.co/models?filter=donut-swin } class __snake_case ( _lowercase): snake_case__ : str = "donut-swin" snake_case__ : List[Any] = { "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self : str , __lowerCAmelCase : str=2_2_4 , __lowerCAmelCase : Tuple=4 , __lowerCAmelCase : Union[str, Any]=3 , __lowerCAmelCase : Tuple=9_6 , __lowerCAmelCase : Optional[int]=[2, 2, 6, 2] , __lowerCAmelCase : List[str]=[3, 6, 1_2, 2_4] , __lowerCAmelCase : List[str]=7 , __lowerCAmelCase : str=4.0 , __lowerCAmelCase : str=True , __lowerCAmelCase : Tuple=0.0 , __lowerCAmelCase : Union[str, Any]=0.0 , __lowerCAmelCase : Tuple=0.1 , __lowerCAmelCase : Any="gelu" , __lowerCAmelCase : str=False , __lowerCAmelCase : str=0.02 , __lowerCAmelCase : List[str]=1E-5 , **__lowerCAmelCase : Any , ): """simple docstring""" super().__init__(**__lowerCAmelCase ) _lowerCamelCase : List[Any] = image_size _lowerCamelCase : List[Any] = patch_size _lowerCamelCase : Any = num_channels _lowerCamelCase : str = embed_dim _lowerCamelCase : List[str] = depths _lowerCamelCase : Union[str, Any] = len(__lowerCAmelCase ) _lowerCamelCase : List[str] = num_heads _lowerCamelCase : str = window_size _lowerCamelCase : List[str] = mlp_ratio _lowerCamelCase : int = qkv_bias _lowerCamelCase : int = hidden_dropout_prob _lowerCamelCase : Optional[int] = attention_probs_dropout_prob _lowerCamelCase : Tuple = drop_path_rate _lowerCamelCase : int = hidden_act _lowerCamelCase : List[str] = use_absolute_embeddings _lowerCamelCase : List[str] = layer_norm_eps _lowerCamelCase : str = initializer_range # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model _lowerCamelCase : List[Any] = int(embed_dim * 2 ** (len(__lowerCAmelCase ) - 1) )
175
"""simple docstring""" def snake_case_ ( A_ : float ): '''simple docstring''' if edge <= 0 or not isinstance(A_, A_ ): raise ValueError('''Length must be a positive.''' ) return 3 * ((25 + 10 * (5 ** (1 / 2))) ** (1 / 2)) * (edge**2) def snake_case_ ( A_ : float ): '''simple docstring''' if edge <= 0 or not isinstance(A_, A_ ): raise ValueError('''Length must be a positive.''' ) return ((15 + (7 * (5 ** (1 / 2)))) / 4) * (edge**3) if __name__ == "__main__": import doctest doctest.testmod()
175
1
'''simple docstring''' import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv('''TEST_SAGEMAKER''' , '''False''' ) ) is not True , reason='''Skipping test because should only be run when releasing minor transformers version''' , ) @pytest.mark.usefixtures('''sm_env''' ) @parameterized_class( [ { '''framework''': '''pytorch''', '''script''': '''run_glue.py''', '''model_name_or_path''': '''distilbert-base-cased''', '''instance_type''': '''ml.g4dn.xlarge''', '''results''': {'''train_runtime''': 650, '''eval_accuracy''': 0.6, '''eval_loss''': 0.9}, }, { '''framework''': '''tensorflow''', '''script''': '''run_tf.py''', '''model_name_or_path''': '''distilbert-base-cased''', '''instance_type''': '''ml.g4dn.xlarge''', '''results''': {'''train_runtime''': 600, '''eval_accuracy''': 0.3, '''eval_loss''': 0.9}, }, ] ) class UpperCAmelCase ( unittest.TestCase ): def lowercase__ ( self : int ) -> Optional[Any]: if self.framework == "pytorch": subprocess.run( f"cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py".split() , encoding="""utf-8""" , check=__snake_case , ) assert hasattr(self , """env""" ) def lowercase__ ( self : Optional[int] , __snake_case : List[str]=1 ) -> Optional[Any]: # creates estimator return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=f"{self.env.base_job_name}-single" , instance_count=__snake_case , instance_type=self.instance_type , debugger_hook_config=__snake_case , hyperparameters={**self.env.hyperparameters, """model_name_or_path""": self.model_name_or_path} , metric_definitions=self.env.metric_definitions , py_version="""py36""" , ) def lowercase__ ( self : Any , __snake_case : Optional[int] ) -> Optional[Any]: TrainingJobAnalytics(__snake_case ).export_csv(f"{self.env.test_path}/{job_name}_metrics.csv" ) def lowercase__ ( self : int ) -> Any: # create estimator _lowerCAmelCase = self.create_estimator() # run training estimator.fit() # result dataframe _lowerCAmelCase = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis _lowerCAmelCase = list(result_metrics_df[result_metrics_df.metric_name == """eval_accuracy"""]["""value"""] ) _lowerCAmelCase = list(result_metrics_df[result_metrics_df.metric_name == """eval_loss"""]["""value"""] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping _lowerCAmelCase = ( Session().describe_training_job(estimator.latest_training_job.name ).get("""TrainingTimeInSeconds""" , 99_99_99 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results["""eval_accuracy"""] for t in eval_accuracy ) assert all(t <= self.results["""eval_loss"""] for t in eval_loss ) # dump tests result into json file to share in PR with open(f"{estimator.latest_training_job.name}.json" , """w""" ) as outfile: json.dump({"""train_time""": train_runtime, """eval_accuracy""": eval_accuracy, """eval_loss""": eval_loss} , __snake_case )
70
'''simple docstring''' import math from typing import Callable, List, Optional, Union import numpy as np import PIL import torch from PIL import Image from transformers import CLIPTextModel, CLIPTokenizer from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale import StableDiffusionUpscalePipeline from diffusers.schedulers import DDIMScheduler, DDPMScheduler, LMSDiscreteScheduler, PNDMScheduler def UpperCamelCase__ ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase=[] ): """simple docstring""" _lowerCAmelCase = size[0] - overlap_pixels * 2 _lowerCAmelCase = size[1] - overlap_pixels * 2 for letter in ["l", "r"]: if letter in remove_borders: size_x += overlap_pixels for letter in ["t", "b"]: if letter in remove_borders: size_y += overlap_pixels _lowerCAmelCase = np.ones((size_y, size_x) , dtype=np.uinta ) * 2_55 _lowerCAmelCase = np.pad(lowerCAmelCase , mode="""linear_ramp""" , pad_width=lowerCAmelCase , end_values=0 ) if "l" in remove_borders: _lowerCAmelCase = mask[:, overlap_pixels : mask.shape[1]] if "r" in remove_borders: _lowerCAmelCase = mask[:, 0 : mask.shape[1] - overlap_pixels] if "t" in remove_borders: _lowerCAmelCase = mask[overlap_pixels : mask.shape[0], :] if "b" in remove_borders: _lowerCAmelCase = mask[0 : mask.shape[0] - overlap_pixels, :] return mask def UpperCamelCase__ ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): """simple docstring""" return max(lowerCAmelCase , min(lowerCAmelCase , lowerCAmelCase ) ) def UpperCamelCase__ ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): """simple docstring""" return ( clamp(rect[0] , min[0] , max[0] ), clamp(rect[1] , min[1] , max[1] ), clamp(rect[2] , min[0] , max[0] ), clamp(rect[3] , min[1] , max[1] ), ) def UpperCamelCase__ ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): """simple docstring""" _lowerCAmelCase = list(lowerCAmelCase ) rect[0] -= overlap rect[1] -= overlap rect[2] += overlap rect[3] += overlap _lowerCAmelCase = clamp_rect(lowerCAmelCase , [0, 0] , [image_size[0], image_size[1]] ) return rect def UpperCamelCase__ ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): """simple docstring""" _lowerCAmelCase = Image.new("""RGB""" , (tile.size[0] + original_slice, tile.size[1]) ) result.paste( original_image.resize((tile.size[0], tile.size[1]) , Image.BICUBIC ).crop( (slice_x, 0, slice_x + original_slice, tile.size[1]) ) , (0, 0) , ) result.paste(lowerCAmelCase , (original_slice, 0) ) return result def UpperCamelCase__ ( lowerCAmelCase , lowerCAmelCase ): """simple docstring""" _lowerCAmelCase = (original_image_slice * 4, 0, tile.size[0], tile.size[1]) _lowerCAmelCase = tile.crop(lowerCAmelCase ) return tile def UpperCamelCase__ ( lowerCAmelCase , lowerCAmelCase ): """simple docstring""" _lowerCAmelCase = n % d return n - divisor class UpperCAmelCase ( snake_case_ ): def __init__( self : List[Any] , __snake_case : AutoencoderKL , __snake_case : CLIPTextModel , __snake_case : CLIPTokenizer , __snake_case : UNetaDConditionModel , __snake_case : DDPMScheduler , __snake_case : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , __snake_case : int = 3_50 , ) -> int: super().__init__( vae=__snake_case , text_encoder=__snake_case , tokenizer=__snake_case , unet=__snake_case , low_res_scheduler=__snake_case , scheduler=__snake_case , max_noise_level=__snake_case , ) def lowercase__ ( self : List[Any] , __snake_case : List[Any] , __snake_case : List[Any] , __snake_case : Dict , __snake_case : List[Any] , __snake_case : int , __snake_case : Optional[Any] , __snake_case : Any , **__snake_case : str ) -> int: torch.manual_seed(0 ) _lowerCAmelCase = ( min(image.size[0] - (tile_size + original_image_slice) , x * tile_size ), min(image.size[1] - (tile_size + original_image_slice) , y * tile_size ), min(image.size[0] , (x + 1) * tile_size ), min(image.size[1] , (y + 1) * tile_size ), ) _lowerCAmelCase = add_overlap_rect(__snake_case , __snake_case , image.size ) _lowerCAmelCase = image.crop(__snake_case ) _lowerCAmelCase = ((crop_rect[0] + ((crop_rect[2] - crop_rect[0]) / 2)) / image.size[0]) * tile.size[0] _lowerCAmelCase = translated_slice_x - (original_image_slice / 2) _lowerCAmelCase = max(0 , __snake_case ) _lowerCAmelCase = squeeze_tile(__snake_case , __snake_case , __snake_case , __snake_case ) _lowerCAmelCase = to_input.size _lowerCAmelCase = to_input.resize((tile_size, tile_size) , Image.BICUBIC ) _lowerCAmelCase = super(__snake_case , self ).__call__(image=__snake_case , **__snake_case ).images[0] _lowerCAmelCase = upscaled_tile.resize((orig_input_size[0] * 4, orig_input_size[1] * 4) , Image.BICUBIC ) _lowerCAmelCase = unsqueeze_tile(__snake_case , __snake_case ) _lowerCAmelCase = upscaled_tile.resize((tile.size[0] * 4, tile.size[1] * 4) , Image.BICUBIC ) _lowerCAmelCase = [] if x == 0: remove_borders.append("""l""" ) elif crop_rect[2] == image.size[0]: remove_borders.append("""r""" ) if y == 0: remove_borders.append("""t""" ) elif crop_rect[3] == image.size[1]: remove_borders.append("""b""" ) _lowerCAmelCase = Image.fromarray( make_transparency_mask( (upscaled_tile.size[0], upscaled_tile.size[1]) , tile_border * 4 , remove_borders=__snake_case ) , mode="""L""" , ) final_image.paste( __snake_case , (crop_rect_with_overlap[0] * 4, crop_rect_with_overlap[1] * 4) , __snake_case ) @torch.no_grad() def __call__( self : Union[str, Any] , __snake_case : Union[str, List[str]] , __snake_case : Union[PIL.Image.Image, List[PIL.Image.Image]] , __snake_case : int = 75 , __snake_case : float = 9.0 , __snake_case : int = 50 , __snake_case : Optional[Union[str, List[str]]] = None , __snake_case : Optional[int] = 1 , __snake_case : float = 0.0 , __snake_case : Optional[torch.Generator] = None , __snake_case : Optional[torch.FloatTensor] = None , __snake_case : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , __snake_case : int = 1 , __snake_case : int = 1_28 , __snake_case : int = 32 , __snake_case : int = 32 , ) -> str: _lowerCAmelCase = Image.new("""RGB""" , (image.size[0] * 4, image.size[1] * 4) ) _lowerCAmelCase = math.ceil(image.size[0] / tile_size ) _lowerCAmelCase = math.ceil(image.size[1] / tile_size ) _lowerCAmelCase = tcx * tcy _lowerCAmelCase = 0 for y in range(__snake_case ): for x in range(__snake_case ): self._process_tile( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , prompt=__snake_case , num_inference_steps=__snake_case , guidance_scale=__snake_case , noise_level=__snake_case , negative_prompt=__snake_case , num_images_per_prompt=__snake_case , eta=__snake_case , generator=__snake_case , latents=__snake_case , ) current_count += 1 if callback is not None: callback({"""progress""": current_count / total_tile_count, """image""": final_image} ) return final_image def UpperCamelCase__ ( ): """simple docstring""" _lowerCAmelCase = """stabilityai/stable-diffusion-x4-upscaler""" _lowerCAmelCase = StableDiffusionTiledUpscalePipeline.from_pretrained(lowerCAmelCase , revision="""fp16""" , torch_dtype=torch.floataa ) _lowerCAmelCase = pipe.to("""cuda""" ) _lowerCAmelCase = Image.open("""../../docs/source/imgs/diffusers_library.jpg""" ) def callback(lowerCAmelCase ): print(f"progress: {obj['progress']:.4f}" ) obj["image"].save("""diffusers_library_progress.jpg""" ) _lowerCAmelCase = pipe(image=lowerCAmelCase , prompt="""Black font, white background, vector""" , noise_level=40 , callback=lowerCAmelCase ) final_image.save("""diffusers_library.jpg""" ) if __name__ == "__main__": main()
70
1
import inspect import unittest from transformers import MobileViTConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTModel from transformers.models.mobilevit.modeling_mobilevit import MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class snake_case_ (SCREAMING_SNAKE_CASE_ ): def lowerCamelCase__( self :Any ) -> Optional[int]: a__ = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(__a ,'hidden_sizes' ) ) self.parent.assertTrue(hasattr(__a ,'neck_hidden_sizes' ) ) self.parent.assertTrue(hasattr(__a ,'num_attention_heads' ) ) class snake_case_ : def __init__( self :Any ,__snake_case :List[str] ,__snake_case :Optional[int]=13 ,__snake_case :int=32 ,__snake_case :Tuple=2 ,__snake_case :Tuple=3 ,__snake_case :Any=6_40 ,__snake_case :List[str]=4 ,__snake_case :Any="silu" ,__snake_case :int=3 ,__snake_case :List[str]=32 ,__snake_case :Optional[int]=0.1 ,__snake_case :Any=0.1 ,__snake_case :List[str]=0.1 ,__snake_case :List[Any]=0.02 ,__snake_case :List[str]=True ,__snake_case :str=True ,__snake_case :Optional[int]=10 ,__snake_case :Optional[Any]=None ,) -> Optional[Any]: a__ = parent a__ = batch_size a__ = image_size a__ = patch_size a__ = num_channels a__ = last_hidden_size a__ = num_attention_heads a__ = hidden_act a__ = conv_kernel_size a__ = output_stride a__ = hidden_dropout_prob a__ = attention_probs_dropout_prob a__ = classifier_dropout_prob a__ = use_labels a__ = is_training a__ = num_labels a__ = initializer_range a__ = scope def lowerCamelCase__( self :Optional[int] ) -> Optional[int]: a__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) a__ = None a__ = None if self.use_labels: a__ = ids_tensor([self.batch_size] ,self.num_labels ) a__ = ids_tensor([self.batch_size, self.image_size, self.image_size] ,self.num_labels ) a__ = self.get_config() return config, pixel_values, labels, pixel_labels def lowerCamelCase__( self :List[str] ) -> int: return MobileViTConfig( image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,num_attention_heads=self.num_attention_heads ,hidden_act=self.hidden_act ,conv_kernel_size=self.conv_kernel_size ,output_stride=self.output_stride ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,classifier_dropout_prob=self.classifier_dropout_prob ,initializer_range=self.initializer_range ,) def lowerCamelCase__( self :str ,__snake_case :Union[str, Any] ,__snake_case :Optional[int] ,__snake_case :Optional[Any] ,__snake_case :List[str] ) -> Union[str, Any]: a__ = MobileViTModel(config=__a ) model.to(__a ) model.eval() a__ = model(__a ) self.parent.assertEqual( result.last_hidden_state.shape ,( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) ,) def lowerCamelCase__( self :Optional[Any] ,__snake_case :str ,__snake_case :Dict ,__snake_case :Optional[Any] ,__snake_case :Any ) -> int: a__ = self.num_labels a__ = MobileViTForImageClassification(__a ) model.to(__a ) model.eval() a__ = model(__a ,labels=__a ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def lowerCamelCase__( self :Dict ,__snake_case :List[Any] ,__snake_case :List[str] ,__snake_case :str ,__snake_case :Optional[int] ) -> Dict: a__ = self.num_labels a__ = MobileViTForSemanticSegmentation(__a ) model.to(__a ) model.eval() a__ = model(__a ) self.parent.assertEqual( result.logits.shape ,( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) ,) a__ = model(__a ,labels=__a ) self.parent.assertEqual( result.logits.shape ,( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) ,) def lowerCamelCase__( self :Any ) -> Any: a__ = self.prepare_config_and_inputs() a__ = config_and_inputs a__ = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class snake_case_ (SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ): UpperCAmelCase__ : List[Any] = ( (MobileViTModel, MobileViTForImageClassification, MobileViTForSemanticSegmentation) if is_torch_available() else () ) UpperCAmelCase__ : Any = ( { '''feature-extraction''': MobileViTModel, '''image-classification''': MobileViTForImageClassification, '''image-segmentation''': MobileViTForSemanticSegmentation, } if is_torch_available() else {} ) UpperCAmelCase__ : str = False UpperCAmelCase__ : Tuple = False UpperCAmelCase__ : Optional[Any] = False UpperCAmelCase__ : List[str] = False def lowerCamelCase__( self :Tuple ) -> Optional[Any]: a__ = MobileViTModelTester(self ) a__ = MobileViTConfigTester(self ,config_class=__a ,has_text_modality=__a ) def lowerCamelCase__( self :Optional[Any] ) -> List[str]: self.config_tester.run_common_tests() @unittest.skip(reason='MobileViT does not use inputs_embeds' ) def lowerCamelCase__( self :Any ) -> Union[str, Any]: pass @unittest.skip(reason='MobileViT does not support input and output embeddings' ) def lowerCamelCase__( self :Tuple ) -> List[Any]: pass @unittest.skip(reason='MobileViT does not output attentions' ) def lowerCamelCase__( self :int ) -> Union[str, Any]: pass def lowerCamelCase__( self :int ) -> Any: a__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a__ = model_class(__a ) a__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic a__ = [*signature.parameters.keys()] a__ = ['pixel_values'] self.assertListEqual(arg_names[:1] ,__a ) @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def lowerCamelCase__( self :Optional[int] ) -> Any: pass def lowerCamelCase__( self :Any ) -> Optional[Any]: a__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a ) def lowerCamelCase__( self :Union[str, Any] ) -> Tuple: def check_hidden_states_output(__snake_case :Any ,__snake_case :Tuple ,__snake_case :Optional[Any] ): a__ = model_class(__a ) model.to(__a ) model.eval() with torch.no_grad(): a__ = model(**self._prepare_for_class(__a ,__a ) ) a__ = outputs.hidden_states a__ = 5 self.assertEqual(len(__a ) ,__a ) # MobileViT's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. a__ = 2 for i in range(len(__a ) ): self.assertListEqual( list(hidden_states[i].shape[-2:] ) ,[self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] ,) divisor *= 2 self.assertEqual(self.model_tester.output_stride ,divisor // 2 ) a__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a__ = True check_hidden_states_output(__a ,__a ,__a ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] a__ = True check_hidden_states_output(__a ,__a ,__a ) def lowerCamelCase__( self :Optional[int] ) -> str: a__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__a ) def lowerCamelCase__( self :int ) -> str: a__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*__a ) @slow def lowerCamelCase__( self :Union[str, Any] ) -> Optional[int]: for model_name in MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a__ = MobileViTModel.from_pretrained(__a ) self.assertIsNotNone(__a ) def __lowercase ( ): a__ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class snake_case_ (unittest.TestCase ): @cached_property def lowerCamelCase__( self :Union[str, Any] ) -> List[str]: return MobileViTImageProcessor.from_pretrained('apple/mobilevit-xx-small' ) if is_vision_available() else None @slow def lowerCamelCase__( self :int ) -> Tuple: a__ = MobileViTForImageClassification.from_pretrained('apple/mobilevit-xx-small' ).to(__a ) a__ = self.default_image_processor a__ = prepare_img() a__ = image_processor(images=__a ,return_tensors='pt' ).to(__a ) # forward pass with torch.no_grad(): a__ = model(**__a ) # verify the logits a__ = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape ,__a ) a__ = torch.tensor([-1.93_64, -1.23_27, -0.46_53] ).to(__a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] ,__a ,atol=1E-4 ) ) @slow def lowerCamelCase__( self :Any ) -> Optional[int]: a__ = MobileViTForSemanticSegmentation.from_pretrained('apple/deeplabv3-mobilevit-xx-small' ) a__ = model.to(__a ) a__ = MobileViTImageProcessor.from_pretrained('apple/deeplabv3-mobilevit-xx-small' ) a__ = prepare_img() a__ = image_processor(images=__a ,return_tensors='pt' ).to(__a ) # forward pass with torch.no_grad(): a__ = model(**__a ) a__ = outputs.logits # verify the logits a__ = torch.Size((1, 21, 32, 32) ) self.assertEqual(logits.shape ,__a ) a__ = torch.tensor( [ [[6.97_13, 6.97_86, 7.24_22], [7.28_93, 7.28_25, 7.44_46], [7.65_80, 7.87_97, 7.94_20]], [[-10.68_69, -10.32_50, -10.34_71], [-10.42_28, -9.98_68, -9.71_32], [-11.04_05, -11.02_21, -10.73_18]], [[-3.30_89, -2.85_39, -2.67_40], [-3.27_06, -2.56_21, -2.51_08], [-3.25_34, -2.66_15, -2.66_51]], ] ,device=__a ,) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] ,__a ,atol=1E-4 ) ) @slow def lowerCamelCase__( self :List[str] ) -> Any: a__ = MobileViTForSemanticSegmentation.from_pretrained('apple/deeplabv3-mobilevit-xx-small' ) a__ = model.to(__a ) a__ = MobileViTImageProcessor.from_pretrained('apple/deeplabv3-mobilevit-xx-small' ) a__ = prepare_img() a__ = image_processor(images=__a ,return_tensors='pt' ).to(__a ) # forward pass with torch.no_grad(): a__ = model(**__a ) a__ = outputs.logits.detach().cpu() a__ = image_processor.post_process_semantic_segmentation(outputs=__a ,target_sizes=[(50, 60)] ) a__ = torch.Size((50, 60) ) self.assertEqual(segmentation[0].shape ,__a ) a__ = image_processor.post_process_semantic_segmentation(outputs=__a ) a__ = torch.Size((32, 32) ) self.assertEqual(segmentation[0].shape ,__a )
350
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL snake_case : str = logging.get_logger(__name__) def __lowercase ( __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Optional[Any] ): a__ = b.T a__ = np.sum(np.square(__lowerCAmelCase ) , axis=1 ) a__ = np.sum(np.square(__lowerCAmelCase ) , axis=0 ) a__ = np.matmul(__lowerCAmelCase , __lowerCAmelCase ) a__ = aa[:, None] - 2 * ab + ba[None, :] return d def __lowercase ( __lowerCAmelCase : List[Any] , __lowerCAmelCase : str ): a__ = x.reshape(-1 , 3 ) a__ = squared_euclidean_distance(__lowerCAmelCase , __lowerCAmelCase ) return np.argmin(__lowerCAmelCase , axis=1 ) class snake_case_ (lowerCamelCase_ ): UpperCAmelCase__ : Optional[Any] = ['''pixel_values'''] def __init__( self :Dict ,__snake_case :Optional[Union[List[List[int]], np.ndarray]] = None ,__snake_case :bool = True ,__snake_case :Dict[str, int] = None ,__snake_case :PILImageResampling = PILImageResampling.BILINEAR ,__snake_case :bool = True ,__snake_case :bool = True ,**__snake_case :Optional[int] ,) -> None: super().__init__(**__snake_case ) a__ = size if size is not None else {'height': 2_56, 'width': 2_56} a__ = get_size_dict(__snake_case ) a__ = np.array(__snake_case ) if clusters is not None else None a__ = do_resize a__ = size a__ = resample a__ = do_normalize a__ = do_color_quantize def lowerCamelCase__( self :Union[str, Any] ,__snake_case :np.ndarray ,__snake_case :Dict[str, int] ,__snake_case :PILImageResampling = PILImageResampling.BILINEAR ,__snake_case :Optional[Union[str, ChannelDimension]] = None ,**__snake_case :Any ,) -> np.ndarray: a__ = get_size_dict(__snake_case ) if "height" not in size or "width" not in size: raise ValueError(F'Size dictionary must contain both height and width keys. Got {size.keys()}' ) return resize( __snake_case ,size=(size['height'], size['width']) ,resample=__snake_case ,data_format=__snake_case ,**__snake_case ) def lowerCamelCase__( self :List[Any] ,__snake_case :np.ndarray ,__snake_case :Optional[Union[str, ChannelDimension]] = None ,) -> np.ndarray: a__ = rescale(image=__snake_case ,scale=1 / 1_27.5 ,data_format=__snake_case ) a__ = image - 1 return image def lowerCamelCase__( self :Optional[Any] ,__snake_case :ImageInput ,__snake_case :bool = None ,__snake_case :Dict[str, int] = None ,__snake_case :PILImageResampling = None ,__snake_case :bool = None ,__snake_case :Optional[bool] = None ,__snake_case :Optional[Union[List[List[int]], np.ndarray]] = None ,__snake_case :Optional[Union[str, TensorType]] = None ,__snake_case :Optional[Union[str, ChannelDimension]] = ChannelDimension.FIRST ,**__snake_case :List[str] ,) -> PIL.Image.Image: a__ = do_resize if do_resize is not None else self.do_resize a__ = size if size is not None else self.size a__ = get_size_dict(__snake_case ) a__ = resample if resample is not None else self.resample a__ = do_normalize if do_normalize is not None else self.do_normalize a__ = do_color_quantize if do_color_quantize is not None else self.do_color_quantize a__ = clusters if clusters is not None else self.clusters a__ = np.array(__snake_case ) a__ = make_list_of_images(__snake_case ) if not valid_images(__snake_case ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.' ) if do_color_quantize and clusters is None: raise ValueError('Clusters must be specified if do_color_quantize is True.' ) # All transformations expect numpy arrays. a__ = [to_numpy_array(__snake_case ) for image in images] if do_resize: a__ = [self.resize(image=__snake_case ,size=__snake_case ,resample=__snake_case ) for image in images] if do_normalize: a__ = [self.normalize(image=__snake_case ) for image in images] if do_color_quantize: a__ = [to_channel_dimension_format(__snake_case ,ChannelDimension.LAST ) for image in images] # color quantize from (batch_size, height, width, 3) to (batch_size, height, width) a__ = np.array(__snake_case ) a__ = color_quantize(__snake_case ,__snake_case ).reshape(images.shape[:-1] ) # flatten to (batch_size, height*width) a__ = images.shape[0] a__ = images.reshape(__snake_case ,-1 ) # We need to convert back to a list of images to keep consistent behaviour across processors. a__ = list(__snake_case ) else: a__ = [to_channel_dimension_format(__snake_case ,__snake_case ) for image in images] a__ = {'input_ids': images} return BatchFeature(data=__snake_case ,tensor_type=__snake_case )
109
0
import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, CycleDiffusionPipeline, DDIMScheduler, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class _a ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" _lowerCamelCase : Optional[int] = CycleDiffusionPipeline _lowerCamelCase : Any = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - { 'negative_prompt', 'height', 'width', 'negative_prompt_embeds', } _lowerCamelCase : int = PipelineTesterMixin.required_optional_params - {'latents'} _lowerCamelCase : Any = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({'source_prompt'} ) _lowerCamelCase : Tuple = IMAGE_TO_IMAGE_IMAGE_PARAMS _lowerCamelCase : int = IMAGE_TO_IMAGE_IMAGE_PARAMS def __A ( self : int ): torch.manual_seed(0 ) A_ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , ) A_ = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule="scaled_linear" , num_train_timesteps=1000 , clip_sample=_a , set_alpha_to_one=_a , ) torch.manual_seed(0 ) A_ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) torch.manual_seed(0 ) A_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) A_ = CLIPTextModel(_a ) A_ = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) A_ = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "safety_checker": None, "feature_extractor": None, } return components def __A ( self : List[Any] , UpperCAmelCase : int , UpperCAmelCase : Optional[int]=0 ): A_ = floats_tensor((1, 3, 32, 32) , rng=random.Random(_a ) ).to(_a ) A_ = image / 2 + 0.5 if str(_a ).startswith("mps" ): A_ = torch.manual_seed(_a ) else: A_ = torch.Generator(device=_a ).manual_seed(_a ) A_ = { "prompt": "An astronaut riding an elephant", "source_prompt": "An astronaut riding a horse", "image": image, "generator": generator, "num_inference_steps": 2, "eta": 0.1, "strength": 0.8, "guidance_scale": 3, "source_guidance_scale": 1, "output_type": "numpy", } return inputs def __A ( self : Any ): A_ = "cpu" # ensure determinism for the device-dependent torch.Generator A_ = self.get_dummy_components() A_ = CycleDiffusionPipeline(**_a ) A_ = pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) A_ = self.get_dummy_inputs(_a ) A_ = pipe(**_a ) A_ = output.images A_ = images[0, -3:, -3:, -1] assert images.shape == (1, 32, 32, 3) A_ = np.array([0.4_459, 0.4_943, 0.4_544, 0.6_643, 0.5_474, 0.4_327, 0.5_701, 0.5_959, 0.5_179] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @unittest.skipIf(torch_device != "cuda" , "This test requires a GPU" ) def __A ( self : List[Any] ): A_ = self.get_dummy_components() for name, module in components.items(): if hasattr(_a , "half" ): A_ = module.half() A_ = CycleDiffusionPipeline(**_a ) A_ = pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) A_ = self.get_dummy_inputs(_a ) A_ = pipe(**_a ) A_ = output.images A_ = images[0, -3:, -3:, -1] assert images.shape == (1, 32, 32, 3) A_ = np.array([0.3_506, 0.4_543, 0.446, 0.4_575, 0.5_195, 0.4_155, 0.5_273, 0.518, 0.4_116] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @skip_mps def __A ( self : str ): return super().test_save_load_local() @unittest.skip("non-deterministic pipeline" ) def __A ( self : Any ): return super().test_inference_batch_single_identical() @skip_mps def __A ( self : Tuple ): return super().test_dict_tuple_outputs_equivalent() @skip_mps def __A ( self : List[str] ): return super().test_save_load_optional_components() @skip_mps def __A ( self : Optional[Any] ): return super().test_attention_slicing_forward_pass() @slow @require_torch_gpu class _a ( unittest.TestCase ): """simple docstring""" def __A ( self : Tuple ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __A ( self : Union[str, Any] ): A_ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/cycle-diffusion/black_colored_car.png" ) A_ = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car_fp16.npy" ) A_ = init_image.resize((512, 512) ) A_ = "CompVis/stable-diffusion-v1-4" A_ = DDIMScheduler.from_pretrained(_a , subfolder="scheduler" ) A_ = CycleDiffusionPipeline.from_pretrained( _a , scheduler=_a , safety_checker=_a , torch_dtype=torch.floataa , revision="fp16" ) pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) pipe.enable_attention_slicing() A_ = "A black colored car" A_ = "A blue colored car" A_ = torch.manual_seed(0 ) A_ = pipe( prompt=_a , source_prompt=_a , image=_a , num_inference_steps=100 , eta=0.1 , strength=0.85 , guidance_scale=3 , source_guidance_scale=1 , generator=_a , output_type="np" , ) A_ = output.images # the values aren't exactly equal, but the images look the same visually assert np.abs(image - expected_image ).max() < 5E-1 def __A ( self : List[Any] ): A_ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/cycle-diffusion/black_colored_car.png" ) A_ = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car.npy" ) A_ = init_image.resize((512, 512) ) A_ = "CompVis/stable-diffusion-v1-4" A_ = DDIMScheduler.from_pretrained(_a , subfolder="scheduler" ) A_ = CycleDiffusionPipeline.from_pretrained(_a , scheduler=_a , safety_checker=_a ) pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) pipe.enable_attention_slicing() A_ = "A black colored car" A_ = "A blue colored car" A_ = torch.manual_seed(0 ) A_ = pipe( prompt=_a , source_prompt=_a , image=_a , num_inference_steps=100 , eta=0.1 , strength=0.85 , guidance_scale=3 , source_guidance_scale=1 , generator=_a , output_type="np" , ) A_ = output.images assert np.abs(image - expected_image ).max() < 2E-2
312
"""simple docstring""" import warnings from ..trainer import Trainer from ..utils import logging lowercase_ = logging.get_logger(__name__) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self , _a=None , **_a ): warnings.warn( '''`SageMakerTrainer` is deprecated and will be removed in v5 of Transformers. You can use `Trainer` ''' '''instead.''' , _a , ) super().__init__(args=_a , **_a )
45
0
import torch from torch import nn class SCREAMING_SNAKE_CASE__ (nn.Module ): def __init__( self , a , a , a , a , a=1 , a=False): super().__init__() lowercase__ : Optional[int] = n_token lowercase__ : Optional[Any] = d_embed lowercase__ : Union[str, Any] = d_proj lowercase__ : Optional[Any] = cutoffs + [n_token] lowercase__ : Any = [0] + self.cutoffs lowercase__ : Optional[Any] = div_val lowercase__ : str = self.cutoffs[0] lowercase__ : Union[str, Any] = len(self.cutoffs) - 1 lowercase__ : Tuple = self.shortlist_size + self.n_clusters if self.n_clusters > 0: lowercase__ : Optional[int] = nn.Parameter(torch.zeros(self.n_clusters , self.d_embed)) lowercase__ : Union[str, Any] = nn.Parameter(torch.zeros(self.n_clusters)) lowercase__ : Optional[Any] = nn.ModuleList() lowercase__ : Optional[Any] = nn.ParameterList() if div_val == 1: for i in range(len(self.cutoffs)): if d_proj != d_embed: self.out_projs.append(nn.Parameter(torch.FloatTensor(a , a))) else: self.out_projs.append(a) self.out_layers.append(nn.Linear(a , a)) else: for i in range(len(self.cutoffs)): lowercase__ : Union[str, Any] = self.cutoff_ends[i], self.cutoff_ends[i + 1] lowercase__ : List[str] = d_embed // (div_val**i) self.out_projs.append(nn.Parameter(torch.FloatTensor(a , a))) self.out_layers.append(nn.Linear(a , r_idx - l_idx)) lowercase__ : Dict = keep_order def snake_case_ ( self , a , a , a , a): if proj is None: lowercase__ : int = nn.functional.linear(a , a , bias=a) else: # if CUDA_MAJOR <= 9 and CUDA_MINOR <= 1: lowercase__ : Optional[int] = nn.functional.linear(a , proj.t().contiguous()) lowercase__ : Any = nn.functional.linear(a , a , bias=a) # else: # logit = torch.einsum('bd,de,ev->bv', (hidden, proj, weight.t())) # if bias is not None: # logit = logit + bias return logit def snake_case_ ( self , a , a=None , a=False): if labels is not None: # Shift so that tokens < n predict n lowercase__ : Tuple = hidden[..., :-1, :].contiguous() lowercase__ : Optional[int] = labels[..., 1:].contiguous() lowercase__ : Optional[int] = hidden.view(-1 , hidden.size(-1)) lowercase__ : List[Any] = labels.view(-1) if hidden.size(0) != labels.size(0): raise RuntimeError('Input and labels should have the same size in the batch dimension.') else: lowercase__ : Dict = hidden.view(-1 , hidden.size(-1)) if self.n_clusters == 0: lowercase__ : int = self._compute_logit(a , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0]) if labels is not None: lowercase__ : Union[str, Any] = labels != -100 lowercase__ : Dict = torch.zeros_like(a , dtype=hidden.dtype , device=hidden.device) lowercase__ : Any = ( -nn.functional.log_softmax(a , dim=-1)[mask].gather(1 , labels[mask].unsqueeze(1)).squeeze(1) ) else: lowercase__ : Optional[int] = nn.functional.log_softmax(a , dim=-1) else: # construct weights and biases lowercase__ : Union[str, Any] = [], [] for i in range(len(self.cutoffs)): if self.div_val == 1: lowercase__ : Tuple = self.cutoff_ends[i], self.cutoff_ends[i + 1] lowercase__ : Any = self.out_layers[0].weight[l_idx:r_idx] lowercase__ : Optional[Any] = self.out_layers[0].bias[l_idx:r_idx] else: lowercase__ : Dict = self.out_layers[i].weight lowercase__ : Union[str, Any] = self.out_layers[i].bias if i == 0: lowercase__ : Optional[int] = torch.cat([weight_i, self.cluster_weight] , dim=0) lowercase__ : Dict = torch.cat([bias_i, self.cluster_bias] , dim=0) weights.append(a) biases.append(a) lowercase__ : Tuple = weights[0], biases[0], self.out_projs[0] lowercase__ : Tuple = self._compute_logit(a , a , a , a) lowercase__ : Dict = nn.functional.log_softmax(a , dim=1) if labels is None: lowercase__ : Tuple = hidden.new_empty((head_logit.size(0), self.n_token)) else: lowercase__ : Optional[Any] = torch.zeros_like(a , dtype=hidden.dtype , device=hidden.device) lowercase__ : Dict = 0 lowercase__ : List[str] = [0] + self.cutoffs for i in range(len(a) - 1): lowercase__ : Any = cutoff_values[i], cutoff_values[i + 1] if labels is not None: lowercase__ : Optional[Any] = (labels >= l_idx) & (labels < r_idx) lowercase__ : Union[str, Any] = mask_i.nonzero().squeeze() if indices_i.numel() == 0: continue lowercase__ : Any = labels.index_select(0 , a) - l_idx lowercase__ : Union[str, Any] = head_logprob.index_select(0 , a) lowercase__ : List[Any] = hidden.index_select(0 , a) else: lowercase__ : Any = hidden if i == 0: if labels is not None: lowercase__ : List[Any] = head_logprob_i.gather(1 , target_i[:, None]).squeeze(1) else: lowercase__ : Any = head_logprob[:, : self.cutoffs[0]] else: lowercase__ : Any = weights[i], biases[i], self.out_projs[i] lowercase__ : Tuple = self._compute_logit(a , a , a , a) lowercase__ : Tuple = nn.functional.log_softmax(a , dim=1) lowercase__ : Tuple = self.cutoffs[0] + i - 1 # No probability for the head cluster if labels is not None: lowercase__ : List[Any] = head_logprob_i[:, cluster_prob_idx] + tail_logprob_i.gather( 1 , target_i[:, None]).squeeze(1) else: lowercase__ : List[Any] = head_logprob[:, cluster_prob_idx, None] + tail_logprob_i lowercase__ : Tuple = logprob_i if labels is not None: if (hasattr(self , 'keep_order') and self.keep_order) or keep_order: out.index_copy_(0 , a , -logprob_i) else: out[offset : offset + logprob_i.size(0)].copy_(-logprob_i) offset += logprob_i.size(0) return out def snake_case_ ( self , a): if self.n_clusters == 0: lowercase__ : List[Any] = self._compute_logit(a , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0]) return nn.functional.log_softmax(a , dim=-1) else: # construct weights and biases lowercase__ : Optional[Any] = [], [] for i in range(len(self.cutoffs)): if self.div_val == 1: lowercase__ : str = self.cutoff_ends[i], self.cutoff_ends[i + 1] lowercase__ : Dict = self.out_layers[0].weight[l_idx:r_idx] lowercase__ : Optional[Any] = self.out_layers[0].bias[l_idx:r_idx] else: lowercase__ : Any = self.out_layers[i].weight lowercase__ : Optional[Any] = self.out_layers[i].bias if i == 0: lowercase__ : Any = torch.cat([weight_i, self.cluster_weight] , dim=0) lowercase__ : Any = torch.cat([bias_i, self.cluster_bias] , dim=0) weights.append(a) biases.append(a) lowercase__ : Optional[Any] = weights[0], biases[0], self.out_projs[0] lowercase__ : List[Any] = self._compute_logit(a , a , a , a) lowercase__ : int = hidden.new_empty((head_logit.size(0), self.n_token)) lowercase__ : str = nn.functional.log_softmax(a , dim=1) lowercase__ : Optional[Any] = [0] + self.cutoffs for i in range(len(a) - 1): lowercase__ : str = cutoff_values[i], cutoff_values[i + 1] if i == 0: lowercase__ : Optional[int] = head_logprob[:, : self.cutoffs[0]] else: lowercase__ : List[str] = weights[i], biases[i], self.out_projs[i] lowercase__ : Union[str, Any] = self._compute_logit(a , a , a , a) lowercase__ : Dict = nn.functional.log_softmax(a , dim=1) lowercase__ : Dict = head_logprob[:, -i] + tail_logprob_i lowercase__ : Union[str, Any] = logprob_i return out
355
import warnings from diffusers import StableDiffusionInpaintPipeline as StableDiffusionInpaintPipeline # noqa F401 warnings.warn( '''The `inpainting.py` script is outdated. Please use directly `from diffusers import''' ''' StableDiffusionInpaintPipeline` instead.''' )
216
0
"""simple docstring""" import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ConditionalDetrImageProcessor class __A ( unittest.TestCase ): '''simple docstring''' def __init__( self : Optional[int] ,_snake_case : Tuple ,_snake_case : List[str]=7 ,_snake_case : Dict=3 ,_snake_case : List[str]=30 ,_snake_case : Union[str, Any]=400 ,_snake_case : Union[str, Any]=True ,_snake_case : Any=None ,_snake_case : List[Any]=True ,_snake_case : Optional[Any]=[0.5, 0.5, 0.5] ,_snake_case : Dict=[0.5, 0.5, 0.5] ,_snake_case : Union[str, Any]=True ,_snake_case : Union[str, Any]=1 / 255 ,_snake_case : int=True ,) -> List[Any]: """simple docstring""" lowercase__ : Dict = size if size is not None else {'shortest_edge': 18, 'longest_edge': 1_333} lowercase__ : Optional[Any] = parent lowercase__ : Optional[Any] = batch_size lowercase__ : Tuple = num_channels lowercase__ : Tuple = min_resolution lowercase__ : Optional[int] = max_resolution lowercase__ : List[Any] = do_resize lowercase__ : str = size lowercase__ : str = do_normalize lowercase__ : Dict = image_mean lowercase__ : Tuple = image_std lowercase__ : List[str] = do_rescale lowercase__ : Union[str, Any] = rescale_factor lowercase__ : List[Any] = do_pad def UpperCAmelCase ( self : int ) -> Union[str, Any]: """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def UpperCAmelCase ( self : Union[str, Any] ,_snake_case : List[Any] ,_snake_case : List[Any]=False ) -> Any: """simple docstring""" if not batched: lowercase__ : List[str] = image_inputs[0] if isinstance(_snake_case ,Image.Image ): lowercase__ : Union[str, Any] = image.size else: lowercase__ : str = image.shape[1], image.shape[2] if w < h: lowercase__ : Any = int(self.size['''shortest_edge'''] * h / w ) lowercase__ : List[Any] = self.size['shortest_edge'] elif w > h: lowercase__ : Tuple = self.size['shortest_edge'] lowercase__ : str = int(self.size['''shortest_edge'''] * w / h ) else: lowercase__ : Any = self.size['shortest_edge'] lowercase__ : Tuple = self.size['shortest_edge'] else: lowercase__ : Dict = [] for image in image_inputs: lowercase__ : Dict = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) lowercase__ : str = max(_snake_case ,key=lambda _snake_case : item[0] )[0] lowercase__ : Optional[Any] = max(_snake_case ,key=lambda _snake_case : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class __A ( __A ,unittest.TestCase ): '''simple docstring''' lowerCAmelCase : Optional[Any] = ConditionalDetrImageProcessor if is_vision_available() else None def UpperCAmelCase ( self : List[str] ) -> str: """simple docstring""" lowercase__ : Optional[int] = ConditionalDetrImageProcessingTester(self ) @property def UpperCAmelCase ( self : Optional[Any] ) -> List[Any]: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" lowercase__ : List[str] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_snake_case ,'''image_mean''' ) ) self.assertTrue(hasattr(_snake_case ,'''image_std''' ) ) self.assertTrue(hasattr(_snake_case ,'''do_normalize''' ) ) self.assertTrue(hasattr(_snake_case ,'''do_resize''' ) ) self.assertTrue(hasattr(_snake_case ,'''size''' ) ) def UpperCAmelCase ( self : Union[str, Any] ) -> List[str]: """simple docstring""" lowercase__ : Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size ,{'''shortest_edge''': 18, '''longest_edge''': 1_333} ) self.assertEqual(image_processor.do_pad ,_snake_case ) lowercase__ : Any = self.image_processing_class.from_dict( self.image_processor_dict ,size=42 ,max_size=84 ,pad_and_return_pixel_mask=_snake_case ) self.assertEqual(image_processor.size ,{'''shortest_edge''': 42, '''longest_edge''': 84} ) self.assertEqual(image_processor.do_pad ,_snake_case ) def UpperCAmelCase ( self : Any ) -> Optional[int]: """simple docstring""" pass def UpperCAmelCase ( self : Dict ) -> Tuple: """simple docstring""" lowercase__ : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowercase__ : List[Any] = prepare_image_inputs(self.image_processor_tester ,equal_resolution=_snake_case ) for image in image_inputs: self.assertIsInstance(_snake_case ,Image.Image ) # Test not batched input lowercase__ : Union[str, Any] = image_processing(image_inputs[0] ,return_tensors='''pt''' ).pixel_values lowercase__ : Optional[Any] = self.image_processor_tester.get_expected_values(_snake_case ) self.assertEqual( encoded_images.shape ,(1, self.image_processor_tester.num_channels, expected_height, expected_width) ,) # Test batched lowercase__ : Dict = self.image_processor_tester.get_expected_values(_snake_case ,batched=_snake_case ) lowercase__ : Optional[int] = image_processing(_snake_case ,return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) ,) def UpperCAmelCase ( self : Union[str, Any] ) -> List[str]: """simple docstring""" lowercase__ : Dict = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowercase__ : List[str] = prepare_image_inputs(self.image_processor_tester ,equal_resolution=_snake_case ,numpify=_snake_case ) for image in image_inputs: self.assertIsInstance(_snake_case ,np.ndarray ) # Test not batched input lowercase__ : Union[str, Any] = image_processing(image_inputs[0] ,return_tensors='''pt''' ).pixel_values lowercase__ : Optional[int] = self.image_processor_tester.get_expected_values(_snake_case ) self.assertEqual( encoded_images.shape ,(1, self.image_processor_tester.num_channels, expected_height, expected_width) ,) # Test batched lowercase__ : List[str] = image_processing(_snake_case ,return_tensors='''pt''' ).pixel_values lowercase__ : Union[str, Any] = self.image_processor_tester.get_expected_values(_snake_case ,batched=_snake_case ) self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) ,) def UpperCAmelCase ( self : Optional[Any] ) -> Tuple: """simple docstring""" lowercase__ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowercase__ : Optional[int] = prepare_image_inputs(self.image_processor_tester ,equal_resolution=_snake_case ,torchify=_snake_case ) for image in image_inputs: self.assertIsInstance(_snake_case ,torch.Tensor ) # Test not batched input lowercase__ : List[str] = image_processing(image_inputs[0] ,return_tensors='''pt''' ).pixel_values lowercase__ : Dict = self.image_processor_tester.get_expected_values(_snake_case ) self.assertEqual( encoded_images.shape ,(1, self.image_processor_tester.num_channels, expected_height, expected_width) ,) # Test batched lowercase__ : Any = image_processing(_snake_case ,return_tensors='''pt''' ).pixel_values lowercase__ : Dict = self.image_processor_tester.get_expected_values(_snake_case ,batched=_snake_case ) self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) ,) @slow def UpperCAmelCase ( self : int ) -> Any: """simple docstring""" lowercase__ : Optional[int] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_annotations.txt''' ,'''r''' ) as f: lowercase__ : List[str] = json.loads(f.read() ) lowercase__ : int = {'image_id': 39_769, 'annotations': target} # encode them lowercase__ : int = ConditionalDetrImageProcessor.from_pretrained('''microsoft/conditional-detr-resnet-50''' ) lowercase__ : Any = image_processing(images=_snake_case ,annotations=_snake_case ,return_tensors='''pt''' ) # verify pixel values lowercase__ : int = torch.Size([1, 3, 800, 1_066] ) self.assertEqual(encoding['''pixel_values'''].shape ,_snake_case ) lowercase__ : Optional[int] = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] ,_snake_case ,atol=1e-4 ) ) # verify area lowercase__ : Union[str, Any] = torch.tensor([5887.9600, 11_250.2_061, 489_353.8_438, 837_122.7_500, 147_967.5_156, 165_732.3_438] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] ,_snake_case ) ) # verify boxes lowercase__ : Optional[int] = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape ,_snake_case ) lowercase__ : Union[str, Any] = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] ,_snake_case ,atol=1e-3 ) ) # verify image_id lowercase__ : str = torch.tensor([39_769] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] ,_snake_case ) ) # verify is_crowd lowercase__ : Union[str, Any] = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] ,_snake_case ) ) # verify class_labels lowercase__ : List[str] = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] ,_snake_case ) ) # verify orig_size lowercase__ : str = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] ,_snake_case ) ) # verify size lowercase__ : str = torch.tensor([800, 1_066] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] ,_snake_case ) ) @slow def UpperCAmelCase ( self : Tuple ) -> Union[str, Any]: """simple docstring""" lowercase__ : str = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt''' ,'''r''' ) as f: lowercase__ : int = json.loads(f.read() ) lowercase__ : Any = {'file_name': '000000039769.png', 'image_id': 39_769, 'segments_info': target} lowercase__ : List[str] = pathlib.Path('''./tests/fixtures/tests_samples/COCO/coco_panoptic''' ) # encode them lowercase__ : int = ConditionalDetrImageProcessor(format='''coco_panoptic''' ) lowercase__ : str = image_processing(images=_snake_case ,annotations=_snake_case ,masks_path=_snake_case ,return_tensors='''pt''' ) # verify pixel values lowercase__ : List[Any] = torch.Size([1, 3, 800, 1_066] ) self.assertEqual(encoding['''pixel_values'''].shape ,_snake_case ) lowercase__ : Optional[Any] = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] ,_snake_case ,atol=1e-4 ) ) # verify area lowercase__ : Dict = torch.tensor([147_979.6_875, 165_527.0_469, 484_638.5_938, 11_292.9_375, 5879.6562, 7634.1147] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] ,_snake_case ) ) # verify boxes lowercase__ : Optional[int] = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape ,_snake_case ) lowercase__ : Optional[Any] = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] ,_snake_case ,atol=1e-3 ) ) # verify image_id lowercase__ : Optional[int] = torch.tensor([39_769] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] ,_snake_case ) ) # verify is_crowd lowercase__ : Union[str, Any] = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] ,_snake_case ) ) # verify class_labels lowercase__ : Optional[int] = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] ,_snake_case ) ) # verify masks lowercase__ : Optional[int] = 822_873 self.assertEqual(encoding['''labels'''][0]['''masks'''].sum().item() ,_snake_case ) # verify orig_size lowercase__ : Union[str, Any] = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] ,_snake_case ) ) # verify size lowercase__ : Optional[Any] = torch.tensor([800, 1_066] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] ,_snake_case ) )
16
import json import os import torch from diffusers import UNetaDModel os.makedirs("""hub/hopper-medium-v2/unet/hor32""", exist_ok=True) os.makedirs("""hub/hopper-medium-v2/unet/hor128""", exist_ok=True) os.makedirs("""hub/hopper-medium-v2/value_function""", exist_ok=True) def UpperCamelCase ( __lowercase : int ): '''simple docstring''' if hor == 1_28: A_ : List[Any] = ('DownResnetBlock1D', 'DownResnetBlock1D', 'DownResnetBlock1D') A_ : Tuple = (32, 1_28, 2_56) A_ : Optional[int] = ('UpResnetBlock1D', 'UpResnetBlock1D') elif hor == 32: A_ : Union[str, Any] = ('DownResnetBlock1D', 'DownResnetBlock1D', 'DownResnetBlock1D', 'DownResnetBlock1D') A_ : Any = (32, 64, 1_28, 2_56) A_ : int = ('UpResnetBlock1D', 'UpResnetBlock1D', 'UpResnetBlock1D') A_ : List[str] = torch.load(f'''/Users/bglickenhaus/Documents/diffuser/temporal_unet-hopper-mediumv2-hor{hor}.torch''' ) A_ : List[Any] = model.state_dict() A_ : List[str] = { 'down_block_types': down_block_types, 'block_out_channels': block_out_channels, 'up_block_types': up_block_types, 'layers_per_block': 1, 'use_timestep_embedding': True, 'out_block_type': 'OutConv1DBlock', 'norm_num_groups': 8, 'downsample_each_block': False, 'in_channels': 14, 'out_channels': 14, 'extra_in_channels': 0, 'time_embedding_type': 'positional', 'flip_sin_to_cos': False, 'freq_shift': 1, 'sample_size': 6_55_36, 'mid_block_type': 'MidResTemporalBlock1D', 'act_fn': 'mish', } A_ : Union[str, Any] = UNetaDModel(**__lowercase ) print(f'''length of state dict: {len(state_dict.keys() )}''' ) print(f'''length of value function dict: {len(hf_value_function.state_dict().keys() )}''' ) A_ : Optional[Any] = dict(zip(model.state_dict().keys() ,hf_value_function.state_dict().keys() ) ) for k, v in mapping.items(): A_ : Optional[int] = state_dict.pop(__lowercase ) hf_value_function.load_state_dict(__lowercase ) torch.save(hf_value_function.state_dict() ,f'''hub/hopper-medium-v2/unet/hor{hor}/diffusion_pytorch_model.bin''' ) with open(f'''hub/hopper-medium-v2/unet/hor{hor}/config.json''' ,'w' ) as f: json.dump(__lowercase ,__lowercase ) def UpperCamelCase ( ): '''simple docstring''' A_ : Any = { 'in_channels': 14, 'down_block_types': ('DownResnetBlock1D', 'DownResnetBlock1D', 'DownResnetBlock1D', 'DownResnetBlock1D'), 'up_block_types': (), 'out_block_type': 'ValueFunction', 'mid_block_type': 'ValueFunctionMidBlock1D', 'block_out_channels': (32, 64, 1_28, 2_56), 'layers_per_block': 1, 'downsample_each_block': True, 'sample_size': 6_55_36, 'out_channels': 14, 'extra_in_channels': 0, 'time_embedding_type': 'positional', 'use_timestep_embedding': True, 'flip_sin_to_cos': False, 'freq_shift': 1, 'norm_num_groups': 8, 'act_fn': 'mish', } A_ : Union[str, Any] = torch.load('/Users/bglickenhaus/Documents/diffuser/value_function-hopper-mediumv2-hor32.torch' ) A_ : List[Any] = model A_ : Union[str, Any] = UNetaDModel(**__lowercase ) print(f'''length of state dict: {len(state_dict.keys() )}''' ) print(f'''length of value function dict: {len(hf_value_function.state_dict().keys() )}''' ) A_ : Optional[int] = dict(zip(state_dict.keys() ,hf_value_function.state_dict().keys() ) ) for k, v in mapping.items(): A_ : List[str] = state_dict.pop(__lowercase ) hf_value_function.load_state_dict(__lowercase ) torch.save(hf_value_function.state_dict() ,'hub/hopper-medium-v2/value_function/diffusion_pytorch_model.bin' ) with open('hub/hopper-medium-v2/value_function/config.json' ,'w' ) as f: json.dump(__lowercase ,__lowercase ) if __name__ == "__main__": unet(32) # unet(128) value_function()
140
0
def A (__A : int ) -> str: """simple docstring""" if isinstance(__A , __A ): raise TypeError('''\'float\' object cannot be interpreted as an integer''' ) if isinstance(__A , __A ): raise TypeError('''\'str\' object cannot be interpreted as an integer''' ) if num == 0: return "0b0" UpperCAmelCase_ = False if num < 0: UpperCAmelCase_ = True UpperCAmelCase_ = -num UpperCAmelCase_ = [] while num > 0: binary.insert(0 , num % 2 ) num >>= 1 if negative: return "-0b" + "".join(str(__A ) for e in binary ) return "0b" + "".join(str(__A ) for e in binary ) if __name__ == "__main__": import doctest doctest.testmod()
7
import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class __snake_case ( a ): UpperCAmelCase__ : Optional[int] = (DPMSolverSinglestepScheduler,) UpperCAmelCase__ : str = (('''num_inference_steps''', 2_5),) def lowerCamelCase ( self : Dict , **_snake_case : Dict): """simple docstring""" UpperCAmelCase_ = { '''num_train_timesteps''': 1000, '''beta_start''': 0.0_0_0_1, '''beta_end''': 0.0_2, '''beta_schedule''': '''linear''', '''solver_order''': 2, '''prediction_type''': '''epsilon''', '''thresholding''': False, '''sample_max_value''': 1.0, '''algorithm_type''': '''dpmsolver++''', '''solver_type''': '''midpoint''', '''lambda_min_clipped''': -float('''inf'''), '''variance_type''': None, } config.update(**_snake_case) return config def lowerCamelCase ( self : Dict , _snake_case : int=0 , **_snake_case : List[Any]): """simple docstring""" UpperCAmelCase_ = dict(self.forward_default_kwargs) UpperCAmelCase_ = kwargs.pop('''num_inference_steps''' , _snake_case) UpperCAmelCase_ = self.dummy_sample UpperCAmelCase_ = 0.1 * sample UpperCAmelCase_ = [residual + 0.2, residual + 0.1_5, residual + 0.1_0] for scheduler_class in self.scheduler_classes: UpperCAmelCase_ = self.get_scheduler_config(**_snake_case) UpperCAmelCase_ = scheduler_class(**_snake_case) scheduler.set_timesteps(_snake_case) # copy over dummy past residuals UpperCAmelCase_ = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_snake_case) UpperCAmelCase_ = scheduler_class.from_pretrained(_snake_case) new_scheduler.set_timesteps(_snake_case) # copy over dummy past residuals UpperCAmelCase_ = dummy_past_residuals[: new_scheduler.config.solver_order] UpperCAmelCase_ , UpperCAmelCase_ = sample, sample for t in range(_snake_case , time_step + scheduler.config.solver_order + 1): UpperCAmelCase_ = scheduler.step(_snake_case , _snake_case , _snake_case , **_snake_case).prev_sample UpperCAmelCase_ = new_scheduler.step(_snake_case , _snake_case , _snake_case , **_snake_case).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical" def lowerCamelCase ( self : Tuple): """simple docstring""" pass def lowerCamelCase ( self : Tuple , _snake_case : Optional[Any]=0 , **_snake_case : int): """simple docstring""" UpperCAmelCase_ = dict(self.forward_default_kwargs) UpperCAmelCase_ = kwargs.pop('''num_inference_steps''' , _snake_case) UpperCAmelCase_ = self.dummy_sample UpperCAmelCase_ = 0.1 * sample UpperCAmelCase_ = [residual + 0.2, residual + 0.1_5, residual + 0.1_0] for scheduler_class in self.scheduler_classes: UpperCAmelCase_ = self.get_scheduler_config() UpperCAmelCase_ = scheduler_class(**_snake_case) scheduler.set_timesteps(_snake_case) # copy over dummy past residuals (must be after setting timesteps) UpperCAmelCase_ = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_snake_case) UpperCAmelCase_ = scheduler_class.from_pretrained(_snake_case) # copy over dummy past residuals new_scheduler.set_timesteps(_snake_case) # copy over dummy past residual (must be after setting timesteps) UpperCAmelCase_ = dummy_past_residuals[: new_scheduler.config.solver_order] UpperCAmelCase_ = scheduler.step(_snake_case , _snake_case , _snake_case , **_snake_case).prev_sample UpperCAmelCase_ = new_scheduler.step(_snake_case , _snake_case , _snake_case , **_snake_case).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical" def lowerCamelCase ( self : Dict , _snake_case : int=None , **_snake_case : Optional[Any]): """simple docstring""" if scheduler is None: UpperCAmelCase_ = self.scheduler_classes[0] UpperCAmelCase_ = self.get_scheduler_config(**_snake_case) UpperCAmelCase_ = scheduler_class(**_snake_case) UpperCAmelCase_ = self.scheduler_classes[0] UpperCAmelCase_ = self.get_scheduler_config(**_snake_case) UpperCAmelCase_ = scheduler_class(**_snake_case) UpperCAmelCase_ = 10 UpperCAmelCase_ = self.dummy_model() UpperCAmelCase_ = self.dummy_sample_deter scheduler.set_timesteps(_snake_case) for i, t in enumerate(scheduler.timesteps): UpperCAmelCase_ = model(_snake_case , _snake_case) UpperCAmelCase_ = scheduler.step(_snake_case , _snake_case , _snake_case).prev_sample return sample def lowerCamelCase ( self : Union[str, Any]): """simple docstring""" UpperCAmelCase_ = DPMSolverSinglestepScheduler(**self.get_scheduler_config()) UpperCAmelCase_ = 50 UpperCAmelCase_ = self.dummy_model() UpperCAmelCase_ = self.dummy_sample_deter scheduler.set_timesteps(_snake_case) # make sure that the first t is uneven for i, t in enumerate(scheduler.timesteps[3:]): UpperCAmelCase_ = model(_snake_case , _snake_case) UpperCAmelCase_ = scheduler.step(_snake_case , _snake_case , _snake_case).prev_sample UpperCAmelCase_ = torch.mean(torch.abs(_snake_case)) assert abs(result_mean.item() - 0.2_5_7_4) < 1e-3 def lowerCamelCase ( self : int): """simple docstring""" for timesteps in [25, 50, 100, 999, 1000]: self.check_over_configs(num_train_timesteps=_snake_case) def lowerCamelCase ( self : Dict): """simple docstring""" UpperCAmelCase_ = DPMSolverSinglestepScheduler(**self.get_scheduler_config()) UpperCAmelCase_ = self.full_loop(scheduler=_snake_case) UpperCAmelCase_ = torch.mean(torch.abs(_snake_case)) assert abs(result_mean.item() - 0.2_7_9_1) < 1e-3 UpperCAmelCase_ = DEISMultistepScheduler.from_config(scheduler.config) UpperCAmelCase_ = DPMSolverMultistepScheduler.from_config(scheduler.config) UpperCAmelCase_ = UniPCMultistepScheduler.from_config(scheduler.config) UpperCAmelCase_ = DPMSolverSinglestepScheduler.from_config(scheduler.config) UpperCAmelCase_ = self.full_loop(scheduler=_snake_case) UpperCAmelCase_ = torch.mean(torch.abs(_snake_case)) assert abs(result_mean.item() - 0.2_7_9_1) < 1e-3 def lowerCamelCase ( self : Union[str, Any]): """simple docstring""" self.check_over_configs(thresholding=_snake_case) for order in [1, 2, 3]: for solver_type in ["midpoint", "heun"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=_snake_case , prediction_type=_snake_case , sample_max_value=_snake_case , algorithm_type='''dpmsolver++''' , solver_order=_snake_case , solver_type=_snake_case , ) def lowerCamelCase ( self : Dict): """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_snake_case) def lowerCamelCase ( self : Union[str, Any]): """simple docstring""" for algorithm_type in ["dpmsolver", "dpmsolver++"]: for solver_type in ["midpoint", "heun"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=_snake_case , solver_type=_snake_case , prediction_type=_snake_case , algorithm_type=_snake_case , ) UpperCAmelCase_ = self.full_loop( solver_order=_snake_case , solver_type=_snake_case , prediction_type=_snake_case , algorithm_type=_snake_case , ) assert not torch.isnan(_snake_case).any(), "Samples have nan numbers" def lowerCamelCase ( self : Union[str, Any]): """simple docstring""" self.check_over_configs(lower_order_final=_snake_case) self.check_over_configs(lower_order_final=_snake_case) def lowerCamelCase ( self : Union[str, Any]): """simple docstring""" self.check_over_configs(lambda_min_clipped=-float('''inf''')) self.check_over_configs(lambda_min_clipped=-5.1) def lowerCamelCase ( self : int): """simple docstring""" self.check_over_configs(variance_type=_snake_case) self.check_over_configs(variance_type='''learned_range''') def lowerCamelCase ( self : Optional[Any]): """simple docstring""" for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1000]: self.check_over_forward(num_inference_steps=_snake_case , time_step=0) def lowerCamelCase ( self : str): """simple docstring""" UpperCAmelCase_ = self.full_loop() UpperCAmelCase_ = torch.mean(torch.abs(_snake_case)) assert abs(result_mean.item() - 0.2_7_9_1) < 1e-3 def lowerCamelCase ( self : Optional[Any]): """simple docstring""" UpperCAmelCase_ = self.full_loop(use_karras_sigmas=_snake_case) UpperCAmelCase_ = torch.mean(torch.abs(_snake_case)) assert abs(result_mean.item() - 0.2_2_4_8) < 1e-3 def lowerCamelCase ( self : List[Any]): """simple docstring""" UpperCAmelCase_ = self.full_loop(prediction_type='''v_prediction''') UpperCAmelCase_ = torch.mean(torch.abs(_snake_case)) assert abs(result_mean.item() - 0.1_4_5_3) < 1e-3 def lowerCamelCase ( self : List[str]): """simple docstring""" UpperCAmelCase_ = self.full_loop(prediction_type='''v_prediction''' , use_karras_sigmas=_snake_case) UpperCAmelCase_ = torch.mean(torch.abs(_snake_case)) assert abs(result_mean.item() - 0.0_6_4_9) < 1e-3 def lowerCamelCase ( self : Dict): """simple docstring""" UpperCAmelCase_ = self.scheduler_classes[0] UpperCAmelCase_ = self.get_scheduler_config(thresholding=_snake_case , dynamic_thresholding_ratio=0) UpperCAmelCase_ = scheduler_class(**_snake_case) UpperCAmelCase_ = 10 UpperCAmelCase_ = self.dummy_model() UpperCAmelCase_ = self.dummy_sample_deter.half() scheduler.set_timesteps(_snake_case) for i, t in enumerate(scheduler.timesteps): UpperCAmelCase_ = model(_snake_case , _snake_case) UpperCAmelCase_ = scheduler.step(_snake_case , _snake_case , _snake_case).prev_sample assert sample.dtype == torch.floataa
7
1
'''simple docstring''' from typing import Optional, Union import torch from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_mobilenet_va import MobileNetVaConfig UpperCamelCase__ : Union[str, Any] = logging.get_logger(__name__) # General docstring UpperCamelCase__ : Union[str, Any] = '''MobileNetV1Config''' # Base docstring UpperCamelCase__ : Optional[Any] = '''google/mobilenet_v1_1.0_224''' UpperCamelCase__ : str = [1, 10_24, 7, 7] # Image classification docstring UpperCamelCase__ : Any = '''google/mobilenet_v1_1.0_224''' UpperCamelCase__ : Optional[Any] = '''tabby, tabby cat''' UpperCamelCase__ : Any = [ '''google/mobilenet_v1_1.0_224''', '''google/mobilenet_v1_0.75_192''', # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 ] def lowerCAmelCase_ ( _lowerCamelCase: List[str] , _lowerCamelCase: str , _lowerCamelCase: Tuple=None ): __SCREAMING_SNAKE_CASE : List[str] = {} if isinstance(_lowerCamelCase , _lowerCamelCase ): __SCREAMING_SNAKE_CASE : Optional[Any] = model.mobilenet_va else: __SCREAMING_SNAKE_CASE : Union[str, Any] = model __SCREAMING_SNAKE_CASE : List[Any] = """MobilenetV1/Conv2d_0/""" __SCREAMING_SNAKE_CASE : List[str] = backbone.conv_stem.convolution.weight __SCREAMING_SNAKE_CASE : Optional[Any] = backbone.conv_stem.normalization.bias __SCREAMING_SNAKE_CASE : Optional[int] = backbone.conv_stem.normalization.weight __SCREAMING_SNAKE_CASE : str = backbone.conv_stem.normalization.running_mean __SCREAMING_SNAKE_CASE : Dict = backbone.conv_stem.normalization.running_var for i in range(13 ): __SCREAMING_SNAKE_CASE : List[Any] = i + 1 __SCREAMING_SNAKE_CASE : Dict = i * 2 __SCREAMING_SNAKE_CASE : List[str] = backbone.layer[pt_index] __SCREAMING_SNAKE_CASE : int = F"MobilenetV1/Conv2d_{tf_index}_depthwise/" __SCREAMING_SNAKE_CASE : List[str] = pointer.convolution.weight __SCREAMING_SNAKE_CASE : Optional[Any] = pointer.normalization.bias __SCREAMING_SNAKE_CASE : str = pointer.normalization.weight __SCREAMING_SNAKE_CASE : Tuple = pointer.normalization.running_mean __SCREAMING_SNAKE_CASE : int = pointer.normalization.running_var __SCREAMING_SNAKE_CASE : Optional[Any] = backbone.layer[pt_index + 1] __SCREAMING_SNAKE_CASE : Dict = F"MobilenetV1/Conv2d_{tf_index}_pointwise/" __SCREAMING_SNAKE_CASE : Optional[Any] = pointer.convolution.weight __SCREAMING_SNAKE_CASE : Optional[int] = pointer.normalization.bias __SCREAMING_SNAKE_CASE : Optional[Any] = pointer.normalization.weight __SCREAMING_SNAKE_CASE : str = pointer.normalization.running_mean __SCREAMING_SNAKE_CASE : int = pointer.normalization.running_var if isinstance(_lowerCamelCase , _lowerCamelCase ): __SCREAMING_SNAKE_CASE : Tuple = """MobilenetV1/Logits/Conv2d_1c_1x1/""" __SCREAMING_SNAKE_CASE : str = model.classifier.weight __SCREAMING_SNAKE_CASE : Tuple = model.classifier.bias return tf_to_pt_map def lowerCAmelCase_ ( _lowerCamelCase: Optional[Any] , _lowerCamelCase: Tuple , _lowerCamelCase: Dict ): try: import numpy as np import tensorflow as tf except ImportError: logger.error( """Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see """ """https://www.tensorflow.org/install/ for installation instructions.""" ) raise # Load weights from TF model __SCREAMING_SNAKE_CASE : Tuple = tf.train.list_variables(_lowerCamelCase ) __SCREAMING_SNAKE_CASE : str = {} for name, shape in init_vars: logger.info(F"Loading TF weight {name} with shape {shape}" ) __SCREAMING_SNAKE_CASE : Optional[int] = tf.train.load_variable(_lowerCamelCase , _lowerCamelCase ) __SCREAMING_SNAKE_CASE : Optional[Any] = array # Build TF to PyTorch weights loading map __SCREAMING_SNAKE_CASE : Union[str, Any] = _build_tf_to_pytorch_map(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) for name, pointer in tf_to_pt_map.items(): logger.info(F"Importing {name}" ) if name not in tf_weights: logger.info(F"{name} not in tf pre-trained weights, skipping" ) continue __SCREAMING_SNAKE_CASE : Optional[int] = tf_weights[name] if "depthwise_weights" in name: logger.info("""Transposing depthwise""" ) __SCREAMING_SNAKE_CASE : Any = np.transpose(_lowerCamelCase , (2, 3, 0, 1) ) elif "weights" in name: logger.info("""Transposing""" ) if len(pointer.shape ) == 2: # copying into linear layer __SCREAMING_SNAKE_CASE : List[str] = array.squeeze().transpose() else: __SCREAMING_SNAKE_CASE : List[Any] = np.transpose(_lowerCamelCase , (3, 2, 0, 1) ) if pointer.shape != array.shape: raise ValueError(F"Pointer shape {pointer.shape} and array shape {array.shape} mismatched" ) logger.info(F"Initialize PyTorch weight {name} {array.shape}" ) __SCREAMING_SNAKE_CASE : Tuple = torch.from_numpy(_lowerCamelCase ) tf_weights.pop(_lowerCamelCase , _lowerCamelCase ) tf_weights.pop(name + """/RMSProp""" , _lowerCamelCase ) tf_weights.pop(name + """/RMSProp_1""" , _lowerCamelCase ) tf_weights.pop(name + """/ExponentialMovingAverage""" , _lowerCamelCase ) logger.info(F"Weights not copied to PyTorch model: {', '.join(tf_weights.keys() )}" ) return model def lowerCAmelCase_ ( _lowerCamelCase: torch.Tensor , _lowerCamelCase: nn.Convad ): __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : List[str] = features.shape[-2:] __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Union[str, Any] = conv_layer.stride __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : int = conv_layer.kernel_size if in_height % stride_height == 0: __SCREAMING_SNAKE_CASE : Optional[int] = max(kernel_height - stride_height , 0 ) else: __SCREAMING_SNAKE_CASE : Any = max(kernel_height - (in_height % stride_height) , 0 ) if in_width % stride_width == 0: __SCREAMING_SNAKE_CASE : Union[str, Any] = max(kernel_width - stride_width , 0 ) else: __SCREAMING_SNAKE_CASE : List[str] = max(kernel_width - (in_width % stride_width) , 0 ) __SCREAMING_SNAKE_CASE : List[Any] = pad_along_width // 2 __SCREAMING_SNAKE_CASE : Union[str, Any] = pad_along_width - pad_left __SCREAMING_SNAKE_CASE : Dict = pad_along_height // 2 __SCREAMING_SNAKE_CASE : Any = pad_along_height - pad_top __SCREAMING_SNAKE_CASE : List[str] = (pad_left, pad_right, pad_top, pad_bottom) return nn.functional.pad(_lowerCamelCase , _lowerCamelCase , """constant""" , 0.0 ) class _UpperCamelCase ( nn.Module ): '''simple docstring''' def __init__( self : Optional[Any] , lowerCAmelCase__ : MobileNetVaConfig , lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : Optional[int] = 1 , lowerCAmelCase__ : Optional[int] = 1 , lowerCAmelCase__ : bool = False , lowerCAmelCase__ : Optional[bool] = True , lowerCAmelCase__ : Optional[bool or str] = True , ): """simple docstring""" super().__init__() __SCREAMING_SNAKE_CASE : Tuple = config if in_channels % groups != 0: raise ValueError(F"Input channels ({in_channels}) are not divisible by {groups} groups." ) if out_channels % groups != 0: raise ValueError(F"Output channels ({out_channels}) are not divisible by {groups} groups." ) __SCREAMING_SNAKE_CASE : Any = 0 if config.tf_padding else int((kernel_size - 1) / 2 ) __SCREAMING_SNAKE_CASE : Optional[Any] = nn.Convad( in_channels=lowerCAmelCase__ , out_channels=lowerCAmelCase__ , kernel_size=lowerCAmelCase__ , stride=lowerCAmelCase__ , padding=lowerCAmelCase__ , groups=lowerCAmelCase__ , bias=lowerCAmelCase__ , padding_mode="""zeros""" , ) if use_normalization: __SCREAMING_SNAKE_CASE : str = nn.BatchNormad( num_features=lowerCAmelCase__ , eps=config.layer_norm_eps , momentum=0.99_97 , affine=lowerCAmelCase__ , track_running_stats=lowerCAmelCase__ , ) else: __SCREAMING_SNAKE_CASE : List[Any] = None if use_activation: if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): __SCREAMING_SNAKE_CASE : List[str] = ACTaFN[use_activation] elif isinstance(config.hidden_act , lowerCAmelCase__ ): __SCREAMING_SNAKE_CASE : Any = ACTaFN[config.hidden_act] else: __SCREAMING_SNAKE_CASE : str = config.hidden_act else: __SCREAMING_SNAKE_CASE : List[str] = None def UpperCamelCase__ ( self : Optional[int] , lowerCAmelCase__ : torch.Tensor ): """simple docstring""" if self.config.tf_padding: __SCREAMING_SNAKE_CASE : Union[str, Any] = apply_tf_padding(lowerCAmelCase__ , self.convolution ) __SCREAMING_SNAKE_CASE : Tuple = self.convolution(lowerCAmelCase__ ) if self.normalization is not None: __SCREAMING_SNAKE_CASE : List[Any] = self.normalization(lowerCAmelCase__ ) if self.activation is not None: __SCREAMING_SNAKE_CASE : List[Any] = self.activation(lowerCAmelCase__ ) return features class _UpperCamelCase ( lowerCamelCase__ ): '''simple docstring''' _A : Optional[int] = MobileNetVaConfig _A : Optional[int] = load_tf_weights_in_mobilenet_va _A : Tuple = '''mobilenet_v1''' _A : Tuple = '''pixel_values''' _A : Optional[Any] = False def UpperCamelCase__ ( self : List[Any] , lowerCAmelCase__ : Union[nn.Linear, nn.Convad] ): """simple docstring""" if isinstance(lowerCAmelCase__ , (nn.Linear, nn.Convad) ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() elif isinstance(lowerCAmelCase__ , nn.BatchNormad ): module.bias.data.zero_() module.weight.data.fill_(1.0 ) UpperCamelCase__ : int = R''' This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`MobileNetV1Config`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. ''' UpperCamelCase__ : Any = R''' Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`MobileNetV1ImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. ''' @add_start_docstrings( '''The bare MobileNetV1 model outputting raw hidden-states without any specific head on top.''' , lowerCamelCase__ , ) class _UpperCamelCase ( lowerCamelCase__ ): '''simple docstring''' def __init__( self : Optional[int] , lowerCAmelCase__ : MobileNetVaConfig , lowerCAmelCase__ : bool = True ): """simple docstring""" super().__init__(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Dict = config __SCREAMING_SNAKE_CASE : Any = 3_2 __SCREAMING_SNAKE_CASE : List[Any] = max(int(depth * config.depth_multiplier ) , config.min_depth ) __SCREAMING_SNAKE_CASE : Union[str, Any] = MobileNetVaConvLayer( lowerCAmelCase__ , in_channels=config.num_channels , out_channels=lowerCAmelCase__ , kernel_size=3 , stride=2 , ) __SCREAMING_SNAKE_CASE : Dict = [1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1] __SCREAMING_SNAKE_CASE : Tuple = nn.ModuleList() for i in range(1_3 ): __SCREAMING_SNAKE_CASE : List[Any] = out_channels if strides[i] == 2 or i == 0: depth *= 2 __SCREAMING_SNAKE_CASE : int = max(int(depth * config.depth_multiplier ) , config.min_depth ) self.layer.append( MobileNetVaConvLayer( lowerCAmelCase__ , in_channels=lowerCAmelCase__ , out_channels=lowerCAmelCase__ , kernel_size=3 , stride=strides[i] , groups=lowerCAmelCase__ , ) ) self.layer.append( MobileNetVaConvLayer( lowerCAmelCase__ , in_channels=lowerCAmelCase__ , out_channels=lowerCAmelCase__ , kernel_size=1 , ) ) __SCREAMING_SNAKE_CASE : List[Any] = nn.AdaptiveAvgPoolad((1, 1) ) if add_pooling_layer else None # Initialize weights and apply final processing self.post_init() def UpperCamelCase__ ( self : Optional[int] , lowerCAmelCase__ : Optional[int] ): """simple docstring""" raise NotImplementedError @add_start_docstrings_to_model_forward(lowerCAmelCase__ ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=lowerCAmelCase__ , config_class=_CONFIG_FOR_DOC , modality="""vision""" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def UpperCamelCase__ ( self : str , lowerCAmelCase__ : Optional[torch.Tensor] = None , lowerCAmelCase__ : Optional[bool] = None , lowerCAmelCase__ : Optional[bool] = None , ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __SCREAMING_SNAKE_CASE : Optional[Any] = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError("""You have to specify pixel_values""" ) __SCREAMING_SNAKE_CASE : Optional[Any] = self.conv_stem(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : str = () if output_hidden_states else None for i, layer_module in enumerate(self.layer ): __SCREAMING_SNAKE_CASE : Any = layer_module(lowerCAmelCase__ ) if output_hidden_states: __SCREAMING_SNAKE_CASE : Union[str, Any] = all_hidden_states + (hidden_states,) __SCREAMING_SNAKE_CASE : str = hidden_states if self.pooler is not None: __SCREAMING_SNAKE_CASE : List[str] = torch.flatten(self.pooler(lowerCAmelCase__ ) , start_dim=1 ) else: __SCREAMING_SNAKE_CASE : Optional[int] = None if not return_dict: return tuple(v for v in [last_hidden_state, pooled_output, all_hidden_states] if v is not None ) return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=lowerCAmelCase__ , pooler_output=lowerCAmelCase__ , hidden_states=lowerCAmelCase__ , ) @add_start_docstrings( ''' MobileNetV1 model with an image classification head on top (a linear layer on top of the pooled features), e.g. for ImageNet. ''' , lowerCamelCase__ , ) class _UpperCamelCase ( lowerCamelCase__ ): '''simple docstring''' def __init__( self : str , lowerCAmelCase__ : MobileNetVaConfig ): """simple docstring""" super().__init__(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[Any] = config.num_labels __SCREAMING_SNAKE_CASE : int = MobileNetVaModel(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[str] = self.mobilenet_va.layer[-1].convolution.out_channels # Classifier head __SCREAMING_SNAKE_CASE : Dict = nn.Dropout(config.classifier_dropout_prob , inplace=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : int = nn.Linear(lowerCAmelCase__ , config.num_labels ) if config.num_labels > 0 else nn.Identity() # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowerCAmelCase__ ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=lowerCAmelCase__ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def UpperCamelCase__ ( self : str , lowerCAmelCase__ : Optional[torch.Tensor] = None , lowerCAmelCase__ : Optional[bool] = None , lowerCAmelCase__ : Optional[torch.Tensor] = None , lowerCAmelCase__ : Optional[bool] = None , ): """simple docstring""" __SCREAMING_SNAKE_CASE : Dict = return_dict if return_dict is not None else self.config.use_return_dict __SCREAMING_SNAKE_CASE : Optional[Any] = self.mobilenet_va(lowerCAmelCase__ , output_hidden_states=lowerCAmelCase__ , return_dict=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Union[str, Any] = outputs.pooler_output if return_dict else outputs[1] __SCREAMING_SNAKE_CASE : Tuple = self.classifier(self.dropout(lowerCAmelCase__ ) ) __SCREAMING_SNAKE_CASE : List[str] = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: __SCREAMING_SNAKE_CASE : List[str] = """regression""" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): __SCREAMING_SNAKE_CASE : Union[str, Any] = """single_label_classification""" else: __SCREAMING_SNAKE_CASE : List[Any] = """multi_label_classification""" if self.config.problem_type == "regression": __SCREAMING_SNAKE_CASE : List[Any] = MSELoss() if self.num_labels == 1: __SCREAMING_SNAKE_CASE : Any = loss_fct(logits.squeeze() , labels.squeeze() ) else: __SCREAMING_SNAKE_CASE : Optional[Any] = loss_fct(lowerCAmelCase__ , lowerCAmelCase__ ) elif self.config.problem_type == "single_label_classification": __SCREAMING_SNAKE_CASE : List[str] = CrossEntropyLoss() __SCREAMING_SNAKE_CASE : List[Any] = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": __SCREAMING_SNAKE_CASE : Optional[Any] = BCEWithLogitsLoss() __SCREAMING_SNAKE_CASE : Tuple = loss_fct(lowerCAmelCase__ , lowerCAmelCase__ ) if not return_dict: __SCREAMING_SNAKE_CASE : Any = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention( loss=lowerCAmelCase__ , logits=lowerCAmelCase__ , hidden_states=outputs.hidden_states , )
112
'''simple docstring''' import string # frequency taken from https://en.wikipedia.org/wiki/Letter_frequency UpperCamelCase__ : List[Any] = { '''E''': 1_2.7_0, '''T''': 9.0_6, '''A''': 8.1_7, '''O''': 7.5_1, '''I''': 6.9_7, '''N''': 6.7_5, '''S''': 6.3_3, '''H''': 6.0_9, '''R''': 5.9_9, '''D''': 4.2_5, '''L''': 4.0_3, '''C''': 2.7_8, '''U''': 2.7_6, '''M''': 2.4_1, '''W''': 2.3_6, '''F''': 2.2_3, '''G''': 2.0_2, '''Y''': 1.9_7, '''P''': 1.9_3, '''B''': 1.2_9, '''V''': 0.9_8, '''K''': 0.7_7, '''J''': 0.1_5, '''X''': 0.1_5, '''Q''': 0.1_0, '''Z''': 0.0_7, } UpperCamelCase__ : Optional[Any] = '''ETAOINSHRDLCUMWFGYPBVKJXQZ''' UpperCamelCase__ : Dict = '''ABCDEFGHIJKLMNOPQRSTUVWXYZ''' def lowerCAmelCase_ ( _lowerCamelCase: str ): __SCREAMING_SNAKE_CASE : int = {letter: 0 for letter in string.ascii_uppercase} for letter in message.upper(): if letter in LETTERS: letter_count[letter] += 1 return letter_count def lowerCAmelCase_ ( _lowerCamelCase: tuple ): return x[0] def lowerCAmelCase_ ( _lowerCamelCase: str ): __SCREAMING_SNAKE_CASE : Dict = get_letter_count(_lowerCamelCase ) __SCREAMING_SNAKE_CASE : dict[int, list[str]] = { freq: [] for letter, freq in letter_to_freq.items() } for letter in LETTERS: freq_to_letter[letter_to_freq[letter]].append(_lowerCamelCase ) __SCREAMING_SNAKE_CASE : dict[int, str] = {} for freq in freq_to_letter: freq_to_letter[freq].sort(key=ETAOIN.find , reverse=_lowerCamelCase ) __SCREAMING_SNAKE_CASE : Tuple = """""".join(freq_to_letter[freq] ) __SCREAMING_SNAKE_CASE : str = list(freq_to_letter_str.items() ) freq_pairs.sort(key=_lowerCamelCase , reverse=_lowerCamelCase ) __SCREAMING_SNAKE_CASE : list[str] = [freq_pair[1] for freq_pair in freq_pairs] return "".join(_lowerCamelCase ) def lowerCAmelCase_ ( _lowerCamelCase: str ): __SCREAMING_SNAKE_CASE : List[Any] = get_frequency_order(_lowerCamelCase ) __SCREAMING_SNAKE_CASE : Union[str, Any] = 0 for common_letter in ETAOIN[:6]: if common_letter in freq_order[:6]: match_score += 1 for uncommon_letter in ETAOIN[-6:]: if uncommon_letter in freq_order[-6:]: match_score += 1 return match_score if __name__ == "__main__": import doctest doctest.testmod()
112
1
'''simple docstring''' from __future__ import annotations from collections import deque from collections.abc import Sequence from dataclasses import dataclass from typing import Any @dataclass class __lowerCAmelCase : """simple docstring""" _snake_case : int _snake_case : Node | None = None _snake_case : Node | None = None def a__ ( ) -> Node | None: """simple docstring""" _UpperCamelCase = Node(1 ) _UpperCamelCase = Node(2 ) _UpperCamelCase = Node(3 ) _UpperCamelCase = Node(4 ) _UpperCamelCase = Node(5 ) return tree def a__ ( lowercase : Node | None ) -> list[int]: """simple docstring""" return [root.data, *preorder(root.left ), *preorder(root.right )] if root else [] def a__ ( lowercase : Node | None ) -> list[int]: """simple docstring""" return postorder(root.left ) + postorder(root.right ) + [root.data] if root else [] def a__ ( lowercase : Node | None ) -> list[int]: """simple docstring""" return [*inorder(root.left ), root.data, *inorder(root.right )] if root else [] def a__ ( lowercase : Node | None ) -> int: """simple docstring""" return (max(height(root.left ), height(root.right ) ) + 1) if root else 0 def a__ ( lowercase : Node | None ) -> Sequence[Node | None]: """simple docstring""" _UpperCamelCase = [] if root is None: return output _UpperCamelCase = deque([root] ) while process_queue: _UpperCamelCase = process_queue.popleft() output.append(node.data ) if node.left: process_queue.append(node.left ) if node.right: process_queue.append(node.right ) return output def a__ ( lowercase : Node | None, lowercase : int ) -> Sequence[Node | None]: """simple docstring""" _UpperCamelCase = [] def populate_output(lowercase : Node | None, lowercase : int ) -> None: if not root: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.left, level - 1 ) populate_output(root.right, level - 1 ) populate_output(lowercase, lowercase ) return output def a__ ( lowercase : Node | None, lowercase : int ) -> Sequence[Node | None]: """simple docstring""" _UpperCamelCase = [] def populate_output(lowercase : Node | None, lowercase : int ) -> None: if root is None: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.right, level - 1 ) populate_output(root.left, level - 1 ) populate_output(lowercase, lowercase ) return output def a__ ( lowercase : Node | None ) -> Sequence[Node | None] | list[Any]: """simple docstring""" if root is None: return [] _UpperCamelCase = [] _UpperCamelCase = 0 _UpperCamelCase = height(lowercase ) for h in range(1, height_tree + 1 ): if not flag: output.append(get_nodes_from_left_to_right(lowercase, lowercase ) ) _UpperCamelCase = 1 else: output.append(get_nodes_from_right_to_left(lowercase, lowercase ) ) _UpperCamelCase = 0 return output def a__ ( ) -> None: # Main function for testing. """simple docstring""" _UpperCamelCase = make_tree() print(F"""In-order Traversal: {inorder(lowercase )}""" ) print(F"""Pre-order Traversal: {preorder(lowercase )}""" ) print(F"""Post-order Traversal: {postorder(lowercase )}""", '''\n''' ) print(F"""Height of Tree: {height(lowercase )}""", '''\n''' ) print('''Complete Level Order Traversal: ''' ) print(level_order(lowercase ), '''\n''' ) print('''Level-wise order Traversal: ''' ) for level in range(1, height(lowercase ) + 1 ): print(F"""Level {level}:""", get_nodes_from_left_to_right(lowercase, level=lowercase ) ) print('''\nZigZag order Traversal: ''' ) print(zigzag(lowercase ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
287
'''simple docstring''' import gc import unittest from diffusers import FlaxControlNetModel, FlaxStableDiffusionControlNetPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def snake_case__ ( self : List[str] ) -> Optional[int]: '''simple docstring''' super().tearDown() gc.collect() def snake_case__ ( self : int ) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = FlaxControlNetModel.from_pretrained( '''lllyasviel/sd-controlnet-canny''' , from_pt=lowerCAmelCase__ , dtype=jnp.bfloataa ) _UpperCamelCase , _UpperCamelCase = FlaxStableDiffusionControlNetPipeline.from_pretrained( '''runwayml/stable-diffusion-v1-5''' , controlnet=lowerCAmelCase__ , from_pt=lowerCAmelCase__ , dtype=jnp.bfloataa ) _UpperCamelCase = controlnet_params _UpperCamelCase = '''bird''' _UpperCamelCase = jax.device_count() _UpperCamelCase = pipe.prepare_text_inputs([prompts] * num_samples ) _UpperCamelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png''' ) _UpperCamelCase = pipe.prepare_image_inputs([canny_image] * num_samples ) _UpperCamelCase = jax.random.PRNGKey(0 ) _UpperCamelCase = jax.random.split(lowerCAmelCase__ , jax.device_count() ) _UpperCamelCase = replicate(lowerCAmelCase__ ) _UpperCamelCase = shard(lowerCAmelCase__ ) _UpperCamelCase = shard(lowerCAmelCase__ ) _UpperCamelCase = pipe( prompt_ids=lowerCAmelCase__ , image=lowerCAmelCase__ , params=lowerCAmelCase__ , prng_seed=lowerCAmelCase__ , num_inference_steps=50 , jit=lowerCAmelCase__ , ).images assert images.shape == (jax.device_count(), 1, 768, 512, 3) _UpperCamelCase = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) _UpperCamelCase = images[0, 253:256, 253:256, -1] _UpperCamelCase = jnp.asarray(jax.device_get(image_slice.flatten() ) ) _UpperCamelCase = jnp.array( [0.167969, 0.116699, 0.081543, 0.154297, 0.132812, 0.108887, 0.169922, 0.169922, 0.205078] ) print(f"""output_slice: {output_slice}""" ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2 def snake_case__ ( self : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = FlaxControlNetModel.from_pretrained( '''lllyasviel/sd-controlnet-openpose''' , from_pt=lowerCAmelCase__ , dtype=jnp.bfloataa ) _UpperCamelCase , _UpperCamelCase = FlaxStableDiffusionControlNetPipeline.from_pretrained( '''runwayml/stable-diffusion-v1-5''' , controlnet=lowerCAmelCase__ , from_pt=lowerCAmelCase__ , dtype=jnp.bfloataa ) _UpperCamelCase = controlnet_params _UpperCamelCase = '''Chef in the kitchen''' _UpperCamelCase = jax.device_count() _UpperCamelCase = pipe.prepare_text_inputs([prompts] * num_samples ) _UpperCamelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/pose.png''' ) _UpperCamelCase = pipe.prepare_image_inputs([pose_image] * num_samples ) _UpperCamelCase = jax.random.PRNGKey(0 ) _UpperCamelCase = jax.random.split(lowerCAmelCase__ , jax.device_count() ) _UpperCamelCase = replicate(lowerCAmelCase__ ) _UpperCamelCase = shard(lowerCAmelCase__ ) _UpperCamelCase = shard(lowerCAmelCase__ ) _UpperCamelCase = pipe( prompt_ids=lowerCAmelCase__ , image=lowerCAmelCase__ , params=lowerCAmelCase__ , prng_seed=lowerCAmelCase__ , num_inference_steps=50 , jit=lowerCAmelCase__ , ).images assert images.shape == (jax.device_count(), 1, 768, 512, 3) _UpperCamelCase = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) _UpperCamelCase = images[0, 253:256, 253:256, -1] _UpperCamelCase = jnp.asarray(jax.device_get(image_slice.flatten() ) ) _UpperCamelCase = jnp.array( [[0.271484, 0.261719, 0.275391, 0.277344, 0.279297, 0.291016, 0.294922, 0.302734, 0.302734]] ) print(f"""output_slice: {output_slice}""" ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2
287
1
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = '''▁''' _snake_case = {'''vocab_file''': '''sentencepiece.bpe.model'''} _snake_case = { '''vocab_file''': { '''facebook/mbart-large-en-ro''': ( '''https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model''' ), '''facebook/mbart-large-cc25''': ( '''https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model''' ), } } _snake_case = { '''facebook/mbart-large-en-ro''': 10_24, '''facebook/mbart-large-cc25''': 10_24, } # fmt: off _snake_case = ['''ar_AR''', '''cs_CZ''', '''de_DE''', '''en_XX''', '''es_XX''', '''et_EE''', '''fi_FI''', '''fr_XX''', '''gu_IN''', '''hi_IN''', '''it_IT''', '''ja_XX''', '''kk_KZ''', '''ko_KR''', '''lt_LT''', '''lv_LV''', '''my_MM''', '''ne_NP''', '''nl_XX''', '''ro_RO''', '''ru_RU''', '''si_LK''', '''tr_TR''', '''vi_VN''', '''zh_CN'''] class UpperCAmelCase_ ( A_ ): '''simple docstring''' __A : int = VOCAB_FILES_NAMES __A : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __A : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP __A : str = ["input_ids", "attention_mask"] __A : str = [] __A : Dict = [] def __init__( self , __A , __A="<s>" , __A="</s>" , __A="</s>" , __A="<s>" , __A="<unk>" , __A="<pad>" , __A="<mask>" , __A=None , __A=None , __A=None , __A = None , __A=None , **__A , ): """simple docstring""" lowerCamelCase : Any = AddedToken(snake_case_ , lstrip=snake_case_ , rstrip=snake_case_ ) if isinstance(snake_case_ , snake_case_ ) else mask_token lowerCamelCase : Tuple = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=snake_case_ , eos_token=snake_case_ , unk_token=snake_case_ , sep_token=snake_case_ , cls_token=snake_case_ , pad_token=snake_case_ , mask_token=snake_case_ , tokenizer_file=snake_case_ , src_lang=snake_case_ , tgt_lang=snake_case_ , additional_special_tokens=snake_case_ , sp_model_kwargs=self.sp_model_kwargs , **snake_case_ , ) lowerCamelCase : str = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(snake_case_ ) ) lowerCamelCase : Tuple = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token lowerCamelCase : List[Any] = {"<s>": 0, "<pad>": 1, "</s>": 2, "<unk>": 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab lowerCamelCase : Dict = 1 lowerCamelCase : Union[str, Any] = len(self.sp_model ) lowerCamelCase : Optional[int] = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(snake_case_ ) } lowerCamelCase : Any = {v: k for k, v in self.lang_code_to_id.items()} lowerCamelCase : Union[str, Any] = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) lowerCamelCase : Any = {v: k for k, v in self.fairseq_tokens_to_ids.items()} lowerCamelCase : int = list(self.lang_code_to_id.keys() ) if additional_special_tokens is not None: # Only add those special tokens if they are not already there. self._additional_special_tokens.extend( [t for t in additional_special_tokens if t not in self._additional_special_tokens] ) lowerCamelCase : List[str] = src_lang if src_lang is not None else "en_XX" lowerCamelCase : Dict = self.lang_code_to_id[self._src_lang] lowerCamelCase : Union[str, Any] = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__( self ): """simple docstring""" lowerCamelCase : Optional[int] = self.__dict__.copy() lowerCamelCase : List[str] = None lowerCamelCase : Union[str, Any] = self.sp_model.serialized_model_proto() return state def __setstate__( self , __A ): """simple docstring""" lowerCamelCase : List[Any] = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): lowerCamelCase : Optional[int] = {} lowerCamelCase : int = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) @property def _snake_case ( self ): """simple docstring""" return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def _snake_case ( self ): """simple docstring""" return self._src_lang @src_lang.setter def _snake_case ( self , __A ): """simple docstring""" lowerCamelCase : Optional[Any] = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def _snake_case ( self , __A , __A = None , __A = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=snake_case_ , token_ids_a=snake_case_ , already_has_special_tokens=snake_case_ ) lowerCamelCase : Dict = [1] * len(self.prefix_tokens ) lowerCamelCase : int = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(snake_case_ )) + suffix_ones return prefix_ones + ([0] * len(snake_case_ )) + ([0] * len(snake_case_ )) + suffix_ones def _snake_case ( self , __A , __A = None ): """simple docstring""" if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def _snake_case ( self , __A , __A = None ): """simple docstring""" lowerCamelCase : Any = [self.sep_token_id] lowerCamelCase : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _snake_case ( self , __A , __A , __A , __A , **__A ): """simple docstring""" if src_lang is None or tgt_lang is None: raise ValueError("Translation requires a `src_lang` and a `tgt_lang` for this model" ) lowerCamelCase : Union[str, Any] = src_lang lowerCamelCase : Any = self(snake_case_ , add_special_tokens=snake_case_ , return_tensors=snake_case_ , **snake_case_ ) lowerCamelCase : Optional[int] = self.convert_tokens_to_ids(snake_case_ ) lowerCamelCase : Union[str, Any] = tgt_lang_id return inputs def _snake_case ( self ): """simple docstring""" lowerCamelCase : List[Any] = {self.convert_ids_to_tokens(snake_case_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def _snake_case ( self , __A ): """simple docstring""" return self.sp_model.encode(snake_case_ , out_type=snake_case_ ) def _snake_case ( self , __A ): """simple docstring""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] lowerCamelCase : List[Any] = self.sp_model.PieceToId(snake_case_ ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def _snake_case ( self , __A ): """simple docstring""" if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def _snake_case ( self , __A ): """simple docstring""" lowerCamelCase : List[Any] = "".join(snake_case_ ).replace(snake_case_ , " " ).strip() return out_string def _snake_case ( self , __A , __A = None ): """simple docstring""" if not os.path.isdir(snake_case_ ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return lowerCamelCase : Dict = os.path.join( snake_case_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , snake_case_ ) elif not os.path.isfile(self.vocab_file ): with open(snake_case_ , "wb" ) as fi: lowerCamelCase : List[Any] = self.sp_model.serialized_model_proto() fi.write(snake_case_ ) return (out_vocab_file,) def _snake_case ( self , __A , __A = "en_XX" , __A = None , __A = "ro_RO" , **__A , ): """simple docstring""" lowerCamelCase : List[Any] = src_lang lowerCamelCase : List[str] = tgt_lang return super().prepare_seqaseq_batch(snake_case_ , snake_case_ , **snake_case_ ) def _snake_case ( self ): """simple docstring""" return self.set_src_lang_special_tokens(self.src_lang ) def _snake_case ( self ): """simple docstring""" return self.set_tgt_lang_special_tokens(self.tgt_lang ) def _snake_case ( self , __A ): """simple docstring""" lowerCamelCase : Optional[int] = self.lang_code_to_id[src_lang] lowerCamelCase : Dict = [] lowerCamelCase : str = [self.eos_token_id, self.cur_lang_code] def _snake_case ( self , __A ): """simple docstring""" lowerCamelCase : str = self.lang_code_to_id[lang] lowerCamelCase : Union[str, Any] = [] lowerCamelCase : List[str] = [self.eos_token_id, self.cur_lang_code]
283
"""simple docstring""" from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging SCREAMING_SNAKE_CASE = logging.get_logger(__name__) SCREAMING_SNAKE_CASE = { "Salesforce/codegen-350M-nl": "https://huggingface.co/Salesforce/codegen-350M-nl/resolve/main/config.json", "Salesforce/codegen-350M-multi": "https://huggingface.co/Salesforce/codegen-350M-multi/resolve/main/config.json", "Salesforce/codegen-350M-mono": "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/config.json", "Salesforce/codegen-2B-nl": "https://huggingface.co/Salesforce/codegen-2B-nl/resolve/main/config.json", "Salesforce/codegen-2B-multi": "https://huggingface.co/Salesforce/codegen-2B-multi/resolve/main/config.json", "Salesforce/codegen-2B-mono": "https://huggingface.co/Salesforce/codegen-2B-mono/resolve/main/config.json", "Salesforce/codegen-6B-nl": "https://huggingface.co/Salesforce/codegen-6B-nl/resolve/main/config.json", "Salesforce/codegen-6B-multi": "https://huggingface.co/Salesforce/codegen-6B-multi/resolve/main/config.json", "Salesforce/codegen-6B-mono": "https://huggingface.co/Salesforce/codegen-6B-mono/resolve/main/config.json", "Salesforce/codegen-16B-nl": "https://huggingface.co/Salesforce/codegen-16B-nl/resolve/main/config.json", "Salesforce/codegen-16B-multi": "https://huggingface.co/Salesforce/codegen-16B-multi/resolve/main/config.json", "Salesforce/codegen-16B-mono": "https://huggingface.co/Salesforce/codegen-16B-mono/resolve/main/config.json", } class UpperCAmelCase_ ( A_ ): lowercase__ = '''codegen''' lowercase__ = { '''max_position_embeddings''': '''n_positions''', '''hidden_size''': '''n_embd''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self : Any , snake_case_ : int=50_400 , snake_case_ : Any=2_048 , snake_case_ : List[str]=2_048 , snake_case_ : List[Any]=4_096 , snake_case_ : Union[str, Any]=28 , snake_case_ : List[str]=16 , snake_case_ : Dict=64 , snake_case_ : Dict=None , snake_case_ : List[Any]="gelu_new" , snake_case_ : List[str]=0.0 , snake_case_ : int=0.0 , snake_case_ : List[str]=0.0 , snake_case_ : Optional[Any]=1e-5 , snake_case_ : Optional[int]=0.02 , snake_case_ : Dict=True , snake_case_ : Union[str, Any]=50_256 , snake_case_ : Optional[Any]=50_256 , snake_case_ : Optional[Any]=False , **snake_case_ : Any , ) -> List[Any]: '''simple docstring''' A__ = vocab_size A__ = n_ctx A__ = n_positions A__ = n_embd A__ = n_layer A__ = n_head A__ = n_inner A__ = rotary_dim A__ = activation_function A__ = resid_pdrop A__ = embd_pdrop A__ = attn_pdrop A__ = layer_norm_epsilon A__ = initializer_range A__ = use_cache A__ = bos_token_id A__ = eos_token_id super().__init__( bos_token_id=snake_case_ , eos_token_id=snake_case_ , tie_word_embeddings=snake_case_ , **snake_case_ ) class UpperCAmelCase_ ( A_ ): def __init__( self : Any , snake_case_ : PretrainedConfig , snake_case_ : str = "default" , snake_case_ : List[PatchingSpec] = None , snake_case_ : bool = False , ) -> int: '''simple docstring''' super().__init__(snake_case_ , task=snake_case_ , patching_specs=snake_case_ , use_past=snake_case_ ) if not getattr(self._config , "pad_token_id" , snake_case_ ): # TODO: how to do that better? A__ = 0 @property def __magic_name__ ( self : Any ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' A__ = OrderedDict({"input_ids": {0: "batch", 1: "sequence"}} ) if self.use_past: self.fill_with_past_key_values_(snake_case_ , direction="inputs" ) A__ = {0: "batch", 1: "past_sequence + sequence"} else: A__ = {0: "batch", 1: "sequence"} return common_inputs @property def __magic_name__ ( self : List[Any] ) -> int: '''simple docstring''' return self._config.n_layer @property def __magic_name__ ( self : Optional[int] ) -> int: '''simple docstring''' return self._config.n_head def __magic_name__ ( self : str , snake_case_ : PreTrainedTokenizer , snake_case_ : int = -1 , snake_case_ : int = -1 , snake_case_ : bool = False , snake_case_ : Optional[TensorType] = None , ) -> Mapping[str, Any]: '''simple docstring''' A__ = super(snake_case_ , self ).generate_dummy_inputs( snake_case_ , batch_size=snake_case_ , seq_length=snake_case_ , is_pair=snake_case_ , framework=snake_case_ ) # We need to order the input in the way they appears in the forward() A__ = OrderedDict({"input_ids": common_inputs["input_ids"]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch A__, A__ = common_inputs["input_ids"].shape # Not using the same length for past_key_values A__ = seqlen + 2 A__ = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) A__ = [ (torch.zeros(snake_case_ ), torch.zeros(snake_case_ )) for _ in range(self.num_layers ) ] A__ = common_inputs["attention_mask"] if self.use_past: A__ = ordered_inputs["attention_mask"].dtype A__ = torch.cat( [ordered_inputs["attention_mask"], torch.ones(snake_case_ , snake_case_ , dtype=snake_case_ )] , dim=1 ) return ordered_inputs @property def __magic_name__ ( self : Optional[int] ) -> int: '''simple docstring''' return 13
247
0
from string import ascii_lowercase, ascii_uppercase def a__ ( UpperCAmelCase : str ) -> str: if not sentence: return "" UpperCAmelCase : Tuple = dict(zip(UpperCAmelCase , UpperCAmelCase ) ) return lower_to_upper.get(sentence[0] , sentence[0] ) + sentence[1:] if __name__ == "__main__": from doctest import testmod testmod()
99
import inspect import unittest from transformers import DPTConfig from transformers.file_utils import is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MODEL_MAPPING, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel from transformers.models.dpt.modeling_dpt import DPT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class __UpperCAmelCase : def __init__( self : Any, __A : List[Any], __A : Optional[Any]=2, __A : List[Any]=3_2, __A : Tuple=1_6, __A : int=3, __A : Any=True, __A : List[Any]=True, __A : List[Any]=3_2, __A : List[Any]=4, __A : Union[str, Any]=[0, 1, 2, 3], __A : List[Any]=4, __A : Optional[int]=3_7, __A : int="gelu", __A : Any=0.1, __A : Tuple=0.1, __A : Any=0.0_2, __A : List[str]=3, __A : int=[1, 3_8_4, 2_4, 2_4], __A : Any=True, __A : List[str]=None, ): UpperCAmelCase : List[str] = parent UpperCAmelCase : List[Any] = batch_size UpperCAmelCase : Tuple = image_size UpperCAmelCase : Dict = patch_size UpperCAmelCase : str = num_channels UpperCAmelCase : Tuple = is_training UpperCAmelCase : Optional[Any] = use_labels UpperCAmelCase : Dict = hidden_size UpperCAmelCase : Optional[int] = num_hidden_layers UpperCAmelCase : str = backbone_out_indices UpperCAmelCase : Dict = num_attention_heads UpperCAmelCase : Dict = intermediate_size UpperCAmelCase : Union[str, Any] = hidden_act UpperCAmelCase : Optional[Any] = hidden_dropout_prob UpperCAmelCase : Tuple = attention_probs_dropout_prob UpperCAmelCase : str = initializer_range UpperCAmelCase : Optional[int] = num_labels UpperCAmelCase : int = backbone_featmap_shape UpperCAmelCase : Union[str, Any] = scope UpperCAmelCase : int = is_hybrid # sequence length of DPT = num_patches + 1 (we add 1 for the [CLS] token) UpperCAmelCase : Any = (image_size // patch_size) ** 2 UpperCAmelCase : Optional[Any] = num_patches + 1 def __magic_name__ ( self : Union[str, Any] ): UpperCAmelCase : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase : Union[str, Any] = None if self.use_labels: UpperCAmelCase : List[Any] = ids_tensor([self.batch_size, self.image_size, self.image_size], self.num_labels ) UpperCAmelCase : Tuple = self.get_config() return config, pixel_values, labels def __magic_name__ ( self : Dict ): UpperCAmelCase : List[Any] = { '''global_padding''': '''same''', '''layer_type''': '''bottleneck''', '''depths''': [3, 4, 9], '''out_features''': ['''stage1''', '''stage2''', '''stage3'''], '''embedding_dynamic_padding''': True, '''hidden_sizes''': [9_6, 1_9_2, 3_8_4, 7_6_8], '''num_groups''': 2, } return DPTConfig( image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, backbone_out_indices=self.backbone_out_indices, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, is_decoder=__A, initializer_range=self.initializer_range, is_hybrid=self.is_hybrid, backbone_config=__A, backbone_featmap_shape=self.backbone_featmap_shape, ) def __magic_name__ ( self : Optional[Any], __A : List[Any], __A : Union[str, Any], __A : Tuple ): UpperCAmelCase : Optional[Any] = DPTModel(config=__A ) model.to(__A ) model.eval() UpperCAmelCase : int = model(__A ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def __magic_name__ ( self : Optional[int], __A : Any, __A : Dict, __A : Optional[int] ): UpperCAmelCase : Optional[Any] = self.num_labels UpperCAmelCase : List[Any] = DPTForDepthEstimation(__A ) model.to(__A ) model.eval() UpperCAmelCase : Tuple = model(__A ) self.parent.assertEqual(result.predicted_depth.shape, (self.batch_size, self.image_size, self.image_size) ) def __magic_name__ ( self : Union[str, Any], __A : Dict, __A : List[Any], __A : Optional[int] ): UpperCAmelCase : Dict = self.num_labels UpperCAmelCase : Tuple = DPTForSemanticSegmentation(__A ) model.to(__A ) model.eval() UpperCAmelCase : Dict = model(__A, labels=__A ) self.parent.assertEqual( result.logits.shape, (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def __magic_name__ ( self : Optional[int] ): UpperCAmelCase : str = self.prepare_config_and_inputs() UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Union[str, Any] = config_and_inputs UpperCAmelCase : Union[str, Any] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class __UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): UpperCamelCase = (DPTModel, DPTForDepthEstimation, DPTForSemanticSegmentation) if is_torch_available() else () UpperCamelCase = ( { """depth-estimation""": DPTForDepthEstimation, """feature-extraction""": DPTModel, """image-segmentation""": DPTForSemanticSegmentation, } if is_torch_available() else {} ) UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False def __magic_name__ ( self : Tuple ): UpperCAmelCase : int = DPTModelTester(self ) UpperCAmelCase : List[Any] = ConfigTester(self, config_class=__A, has_text_modality=__A, hidden_size=3_7 ) def __magic_name__ ( self : Any ): self.config_tester.run_common_tests() @unittest.skip(reason='''DPT does not use inputs_embeds''' ) def __magic_name__ ( self : int ): pass def __magic_name__ ( self : List[Any] ): UpperCAmelCase , UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase : List[Any] = model_class(__A ) self.assertIsInstance(model.get_input_embeddings(), (nn.Module) ) UpperCAmelCase : Union[str, Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__A, nn.Linear ) ) def __magic_name__ ( self : Dict ): UpperCAmelCase , UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase : Tuple = model_class(__A ) UpperCAmelCase : Tuple = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase : Optional[int] = [*signature.parameters.keys()] UpperCAmelCase : Dict = ['''pixel_values'''] self.assertListEqual(arg_names[:1], __A ) def __magic_name__ ( self : Tuple ): UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__A ) def __magic_name__ ( self : Any ): UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_depth_estimation(*__A ) def __magic_name__ ( self : List[str] ): UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*__A ) def __magic_name__ ( self : Union[str, Any] ): for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue UpperCAmelCase , UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase : str = True if model_class in get_values(__A ): continue UpperCAmelCase : Union[str, Any] = model_class(__A ) model.to(__A ) model.train() UpperCAmelCase : str = self._prepare_for_class(__A, __A, return_labels=__A ) UpperCAmelCase : Union[str, Any] = model(**__A ).loss loss.backward() def __magic_name__ ( self : Optional[int] ): for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue UpperCAmelCase , UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase : int = False UpperCAmelCase : int = True if model_class in get_values(__A ) or not model_class.supports_gradient_checkpointing: continue UpperCAmelCase : Dict = model_class(__A ) model.to(__A ) model.gradient_checkpointing_enable() model.train() UpperCAmelCase : List[str] = self._prepare_for_class(__A, __A, return_labels=__A ) UpperCAmelCase : Any = model(**__A ).loss loss.backward() def __magic_name__ ( self : Dict ): UpperCAmelCase , UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase : Optional[Any] = _config_zero_init(__A ) for model_class in self.all_model_classes: UpperCAmelCase : Dict = model_class(config=__A ) # Skip the check for the backbone UpperCAmelCase : Dict = [] for name, module in model.named_modules(): if module.__class__.__name__ == "DPTViTHybridEmbeddings": UpperCAmelCase : Optional[Any] = [F'''{name}.{key}''' for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item(), [0.0, 1.0], msg=F'''Parameter {name} of model {model_class} seems not properly initialized''', ) @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def __magic_name__ ( self : Optional[int] ): pass @slow def __magic_name__ ( self : Optional[Any] ): for model_name in DPT_PRETRAINED_MODEL_ARCHIVE_LIST[1:]: UpperCAmelCase : Optional[int] = DPTModel.from_pretrained(__A ) self.assertIsNotNone(__A ) def __magic_name__ ( self : int ): # We do this test only for DPTForDepthEstimation since it is the only model that uses readout_type UpperCAmelCase , UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase : int = '''add''' with self.assertRaises(__A ): UpperCAmelCase : Dict = DPTForDepthEstimation(__A ) def a__ ( ) -> Tuple: UpperCAmelCase : Optional[Any] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision @slow class __UpperCAmelCase ( unittest.TestCase ): def __magic_name__ ( self : Dict ): UpperCAmelCase : Dict = DPTImageProcessor.from_pretrained('''Intel/dpt-hybrid-midas''' ) UpperCAmelCase : Tuple = DPTForDepthEstimation.from_pretrained('''Intel/dpt-hybrid-midas''' ).to(__A ) UpperCAmelCase : List[Any] = prepare_img() UpperCAmelCase : Union[str, Any] = image_processor(images=__A, return_tensors='''pt''' ).to(__A ) # forward pass with torch.no_grad(): UpperCAmelCase : int = model(**__A ) UpperCAmelCase : int = outputs.predicted_depth # verify the predicted depth UpperCAmelCase : Tuple = torch.Size((1, 3_8_4, 3_8_4) ) self.assertEqual(predicted_depth.shape, __A ) UpperCAmelCase : Dict = torch.tensor( [[[5.6_4_3_7, 5.6_1_4_6, 5.6_5_1_1], [5.4_3_7_1, 5.5_6_4_9, 5.5_9_5_8], [5.5_2_1_5, 5.5_1_8_4, 5.5_2_9_3]]] ).to(__A ) self.assertTrue(torch.allclose(outputs.predicted_depth[:3, :3, :3] / 1_0_0, __A, atol=1E-4 ) )
99
1
import itertools from dataclasses import dataclass from typing import List, Optional import pyarrow as pa import pyarrow.parquet as pq import datasets from datasets.table import table_cast snake_case : List[Any] = datasets.utils.logging.get_logger(__name__) @dataclass class _snake_case ( datasets.BuilderConfig ): SCREAMING_SNAKE_CASE__ = 1_0000 SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = None class _snake_case ( datasets.ArrowBasedBuilder ): SCREAMING_SNAKE_CASE__ = ParquetConfig def SCREAMING_SNAKE_CASE__ ( self ): return datasets.DatasetInfo(features=self.config.features ) def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase ): if not self.config.data_files: raise ValueError(F'''At least one data file must be specified, but got data_files={self.config.data_files}''' ) a :Union[str, Any] = dl_manager.download_and_extract(self.config.data_files ) if isinstance(_lowerCamelCase , (str, list, tuple) ): a :Dict = data_files if isinstance(_lowerCamelCase , _lowerCamelCase ): a :List[Any] = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive a :List[Any] = [dl_manager.iter_files(_lowerCamelCase ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''files''': files} )] a :List[str] = [] for split_name, files in data_files.items(): if isinstance(_lowerCamelCase , _lowerCamelCase ): a :Dict = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive a :Any = [dl_manager.iter_files(_lowerCamelCase ) for file in files] # Infer features is they are stoed in the arrow schema if self.info.features is None: for file in itertools.chain.from_iterable(_lowerCamelCase ): with open(_lowerCamelCase , '''rb''' ) as f: a :int = datasets.Features.from_arrow_schema(pq.read_schema(_lowerCamelCase ) ) break splits.append(datasets.SplitGenerator(name=_lowerCamelCase , gen_kwargs={'''files''': files} ) ) return splits def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase ): if self.info.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example a :Dict = table_cast(_lowerCamelCase , self.info.features.arrow_schema ) return pa_table def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase ): a :str = self.info.features.arrow_schema if self.info.features is not None else None if self.info.features is not None and self.config.columns is not None: if sorted(field.name for field in schema ) != sorted(self.config.columns ): raise ValueError( F'''Tried to load parquet data with columns \'{self.config.columns}\' with mismatching features \'{self.info.features}\'''' ) for file_idx, file in enumerate(itertools.chain.from_iterable(_lowerCamelCase ) ): with open(_lowerCamelCase , '''rb''' ) as f: a :str = pq.ParquetFile(_lowerCamelCase ) try: for batch_idx, record_batch in enumerate( parquet_file.iter_batches(batch_size=self.config.batch_size , columns=self.config.columns ) ): a :int = pa.Table.from_batches([record_batch] ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield F'''{file_idx}_{batch_idx}''', self._cast_table(_lowerCamelCase ) except ValueError as e: logger.error(F'''Failed to read file \'{file}\' with error {type(_lowerCamelCase )}: {e}''' ) raise
94
from collections import defaultdict from math import gcd def _a ( UpperCamelCase_ : int = 1_500_000 ) -> int: """simple docstring""" lowerCAmelCase__ = defaultdict(UpperCamelCase_ ) lowerCAmelCase__ = 2 while 2 * euclid_m * (euclid_m + 1) <= limit: for euclid_n in range((euclid_m % 2) + 1 , UpperCamelCase_ , 2 ): if gcd(UpperCamelCase_ , UpperCamelCase_ ) > 1: continue lowerCAmelCase__ = 2 * euclid_m * (euclid_m + euclid_n) for perimeter in range(UpperCamelCase_ , limit + 1 , UpperCamelCase_ ): frequencies[perimeter] += 1 euclid_m += 1 return sum(1 for frequency in frequencies.values() if frequency == 1 ) if __name__ == "__main__": print(F"{solution() = }")
340
0
import gc import random import unittest import numpy as np import torch from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import ( DiffusionPipeline, UnCLIPImageVariationPipeline, UnCLIPScheduler, UNetaDConditionModel, UNetaDModel, ) from diffusers.pipelines.unclip.text_proj import UnCLIPTextProjModel from diffusers.utils import floats_tensor, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, load_image, require_torch_gpu, skip_mps from ..pipeline_params import IMAGE_VARIATION_BATCH_PARAMS, IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class A__ ( snake_case__ , unittest.TestCase ): """simple docstring""" __magic_name__ = UnCLIPImageVariationPipeline __magic_name__ = IMAGE_VARIATION_PARAMS - {'height', 'width', 'guidance_scale'} __magic_name__ = IMAGE_VARIATION_BATCH_PARAMS __magic_name__ = [ 'generator', 'return_dict', 'decoder_num_inference_steps', 'super_res_num_inference_steps', ] __magic_name__ = False @property def a_ ( self ): return 3_2 @property def a_ ( self ): return 3_2 @property def a_ ( self ): return self.time_input_dim @property def a_ ( self ): return self.time_input_dim * 4 @property def a_ ( self ): return 1_0_0 @property def a_ ( self ): snake_case = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) return tokenizer @property def a_ ( self ): torch.manual_seed(0 ) snake_case = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=3_7 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , ) return CLIPTextModelWithProjection(__snake_case ) @property def a_ ( self ): torch.manual_seed(0 ) snake_case = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , num_hidden_layers=5 , num_attention_heads=4 , image_size=3_2 , intermediate_size=3_7 , patch_size=1 , ) return CLIPVisionModelWithProjection(__snake_case ) @property def a_ ( self ): torch.manual_seed(0 ) snake_case = { '''clip_embeddings_dim''': self.text_embedder_hidden_size, '''time_embed_dim''': self.time_embed_dim, '''cross_attention_dim''': self.cross_attention_dim, } snake_case = UnCLIPTextProjModel(**__snake_case ) return model @property def a_ ( self ): torch.manual_seed(0 ) snake_case = { '''sample_size''': 3_2, # RGB in channels '''in_channels''': 3, # Out channels is double in channels because predicts mean and variance '''out_channels''': 6, '''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''), '''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''), '''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''', '''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2), '''layers_per_block''': 1, '''cross_attention_dim''': self.cross_attention_dim, '''attention_head_dim''': 4, '''resnet_time_scale_shift''': '''scale_shift''', '''class_embed_type''': '''identity''', } snake_case = UNetaDConditionModel(**__snake_case ) return model @property def a_ ( self ): return { "sample_size": 6_4, "layers_per_block": 1, "down_block_types": ("ResnetDownsampleBlock2D", "ResnetDownsampleBlock2D"), "up_block_types": ("ResnetUpsampleBlock2D", "ResnetUpsampleBlock2D"), "block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2), "in_channels": 6, "out_channels": 3, } @property def a_ ( self ): torch.manual_seed(0 ) snake_case = UNetaDModel(**self.dummy_super_res_kwargs ) return model @property def a_ ( self ): # seeded differently to get different unet than `self.dummy_super_res_first` torch.manual_seed(1 ) snake_case = UNetaDModel(**self.dummy_super_res_kwargs ) return model def a_ ( self ): snake_case = self.dummy_decoder snake_case = self.dummy_text_proj snake_case = self.dummy_text_encoder snake_case = self.dummy_tokenizer snake_case = self.dummy_super_res_first snake_case = self.dummy_super_res_last snake_case = UnCLIPScheduler( variance_type='''learned_range''' , prediction_type='''epsilon''' , num_train_timesteps=1_0_0_0 , ) snake_case = UnCLIPScheduler( variance_type='''fixed_small_log''' , prediction_type='''epsilon''' , num_train_timesteps=1_0_0_0 , ) snake_case = CLIPImageProcessor(crop_size=3_2 , size=3_2 ) snake_case = self.dummy_image_encoder return { "decoder": decoder, "text_encoder": text_encoder, "tokenizer": tokenizer, "text_proj": text_proj, "feature_extractor": feature_extractor, "image_encoder": image_encoder, "super_res_first": super_res_first, "super_res_last": super_res_last, "decoder_scheduler": decoder_scheduler, "super_res_scheduler": super_res_scheduler, } def a_ ( self , __snake_case , __snake_case=0 , __snake_case=True ): snake_case = floats_tensor((1, 3, 3_2, 3_2) , rng=random.Random(__snake_case ) ).to(__snake_case ) if str(__snake_case ).startswith('''mps''' ): snake_case = torch.manual_seed(__snake_case ) else: snake_case = torch.Generator(device=__snake_case ).manual_seed(__snake_case ) if pil_image: snake_case = input_image * 0.5 + 0.5 snake_case = input_image.clamp(0 , 1 ) snake_case = input_image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() snake_case = DiffusionPipeline.numpy_to_pil(__snake_case )[0] return { "image": input_image, "generator": generator, "decoder_num_inference_steps": 2, "super_res_num_inference_steps": 2, "output_type": "np", } def a_ ( self ): snake_case = '''cpu''' snake_case = self.get_dummy_components() snake_case = self.pipeline_class(**__snake_case ) snake_case = pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) snake_case = self.get_dummy_inputs(__snake_case , pil_image=__snake_case ) snake_case = pipe(**__snake_case ) snake_case = output.images snake_case = self.get_dummy_inputs(__snake_case , pil_image=__snake_case ) snake_case = pipe( **__snake_case , return_dict=__snake_case , )[0] snake_case = image[0, -3:, -3:, -1] snake_case = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) snake_case = np.array( [ 0.9997, 0.0002, 0.9997, 0.9997, 0.9969, 0.0023, 0.9997, 0.9969, 0.9970, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def a_ ( self ): snake_case = '''cpu''' snake_case = self.get_dummy_components() snake_case = self.pipeline_class(**__snake_case ) snake_case = pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) snake_case = self.get_dummy_inputs(__snake_case , pil_image=__snake_case ) snake_case = pipe(**__snake_case ) snake_case = output.images snake_case = self.get_dummy_inputs(__snake_case , pil_image=__snake_case ) snake_case = pipe( **__snake_case , return_dict=__snake_case , )[0] snake_case = image[0, -3:, -3:, -1] snake_case = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) snake_case = np.array([0.9997, 0.0003, 0.9997, 0.9997, 0.9970, 0.0024, 0.9997, 0.9971, 0.9971] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def a_ ( self ): snake_case = '''cpu''' snake_case = self.get_dummy_components() snake_case = self.pipeline_class(**__snake_case ) snake_case = pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) snake_case = self.get_dummy_inputs(__snake_case , pil_image=__snake_case ) snake_case = [ pipeline_inputs['''image'''], pipeline_inputs['''image'''], ] snake_case = pipe(**__snake_case ) snake_case = output.images snake_case = self.get_dummy_inputs(__snake_case , pil_image=__snake_case ) snake_case = [ tuple_pipeline_inputs['''image'''], tuple_pipeline_inputs['''image'''], ] snake_case = pipe( **__snake_case , return_dict=__snake_case , )[0] snake_case = image[0, -3:, -3:, -1] snake_case = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (2, 6_4, 6_4, 3) snake_case = np.array( [ 0.9997, 0.9989, 0.0008, 0.0021, 0.9960, 0.0018, 0.0014, 0.0002, 0.9933, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def a_ ( self ): snake_case = torch.device('''cpu''' ) class A__ : """simple docstring""" __magic_name__ = 1 snake_case = self.get_dummy_components() snake_case = self.pipeline_class(**__snake_case ) snake_case = pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) snake_case = torch.Generator(device=__snake_case ).manual_seed(0 ) snake_case = pipe.decoder.dtype snake_case = 1 snake_case = ( batch_size, pipe.decoder.config.in_channels, pipe.decoder.config.sample_size, pipe.decoder.config.sample_size, ) snake_case = pipe.prepare_latents( __snake_case , dtype=__snake_case , device=__snake_case , generator=__snake_case , latents=__snake_case , scheduler=DummyScheduler() ) snake_case = ( batch_size, pipe.super_res_first.config.in_channels // 2, pipe.super_res_first.config.sample_size, pipe.super_res_first.config.sample_size, ) snake_case = pipe.prepare_latents( __snake_case , dtype=__snake_case , device=__snake_case , generator=__snake_case , latents=__snake_case , scheduler=DummyScheduler() ) snake_case = self.get_dummy_inputs(__snake_case , pil_image=__snake_case ) snake_case = pipe( **__snake_case , decoder_latents=__snake_case , super_res_latents=__snake_case ).images snake_case = self.get_dummy_inputs(__snake_case , pil_image=__snake_case ) # Don't pass image, instead pass embedding snake_case = pipeline_inputs.pop('''image''' ) snake_case = pipe.image_encoder(__snake_case ).image_embeds snake_case = pipe( **__snake_case , decoder_latents=__snake_case , super_res_latents=__snake_case , image_embeddings=__snake_case , ).images # make sure passing text embeddings manually is identical assert np.abs(img_out_a - img_out_a ).max() < 1E-4 @skip_mps def a_ ( self ): snake_case = torch_device == '''cpu''' # Check is relaxed because there is not a torch 2.0 sliced attention added kv processor snake_case = 1E-2 self._test_attention_slicing_forward_pass( test_max_difference=__snake_case , expected_max_diff=__snake_case ) @skip_mps def a_ ( self ): snake_case = torch_device == '''cpu''' snake_case = True snake_case = [ '''decoder_num_inference_steps''', '''super_res_num_inference_steps''', ] self._test_inference_batch_single_identical( test_max_difference=__snake_case , relax_max_difference=__snake_case , additional_params_copy_to_batched_inputs=__snake_case , ) def a_ ( self ): snake_case = [ '''decoder_num_inference_steps''', '''super_res_num_inference_steps''', ] if torch_device == "mps": # TODO: MPS errors with larger batch sizes snake_case = [2, 3] self._test_inference_batch_consistent( batch_sizes=__snake_case , additional_params_copy_to_batched_inputs=__snake_case , ) else: self._test_inference_batch_consistent( additional_params_copy_to_batched_inputs=__snake_case ) @skip_mps def a_ ( self ): return super().test_dict_tuple_outputs_equivalent() @skip_mps def a_ ( self ): return super().test_save_load_local() @skip_mps def a_ ( self ): return super().test_save_load_optional_components() @slow @require_torch_gpu class A__ ( unittest.TestCase ): """simple docstring""" def a_ ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def a_ ( self ): snake_case = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/unclip/cat.png''' ) snake_case = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/unclip/karlo_v1_alpha_cat_variation_fp16.npy''' ) snake_case = UnCLIPImageVariationPipeline.from_pretrained( '''kakaobrain/karlo-v1-alpha-image-variations''' , torch_dtype=torch.floataa ) snake_case = pipeline.to(__snake_case ) pipeline.set_progress_bar_config(disable=__snake_case ) snake_case = torch.Generator(device='''cpu''' ).manual_seed(0 ) snake_case = pipeline( __snake_case , generator=__snake_case , output_type='''np''' , ) snake_case = output.images[0] assert image.shape == (2_5_6, 2_5_6, 3) assert_mean_pixel_difference(__snake_case , __snake_case , 1_5 )
213
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTImageProcessor, ViTMSNConfig, ViTMSNModel from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD torch.set_grad_enabled(False) def UpperCAmelCase__ (UpperCamelCase_ ,UpperCamelCase_=False ): """simple docstring""" snake_case = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F'''module.blocks.{i}.norm1.weight''', F'''vit.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((F'''module.blocks.{i}.norm1.bias''', F'''vit.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append( (F'''module.blocks.{i}.attn.proj.weight''', F'''vit.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append((F'''module.blocks.{i}.attn.proj.bias''', F'''vit.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append((F'''module.blocks.{i}.norm2.weight''', F'''vit.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((F'''module.blocks.{i}.norm2.bias''', F'''vit.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append((F'''module.blocks.{i}.mlp.fc1.weight''', F'''vit.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append((F'''module.blocks.{i}.mlp.fc1.bias''', F'''vit.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append((F'''module.blocks.{i}.mlp.fc2.weight''', F'''vit.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((F'''module.blocks.{i}.mlp.fc2.bias''', F'''vit.encoder.layer.{i}.output.dense.bias''') ) # projection layer + position embeddings rename_keys.extend( [ ('''module.cls_token''', '''vit.embeddings.cls_token'''), ('''module.patch_embed.proj.weight''', '''vit.embeddings.patch_embeddings.projection.weight'''), ('''module.patch_embed.proj.bias''', '''vit.embeddings.patch_embeddings.projection.bias'''), ('''module.pos_embed''', '''vit.embeddings.position_embeddings'''), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('''module.norm.weight''', '''layernorm.weight'''), ('''module.norm.bias''', '''layernorm.bias'''), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" snake_case = [(pair[0], pair[1][4:]) if pair[1].startswith('''vit''' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('''norm.weight''', '''vit.layernorm.weight'''), ('''norm.bias''', '''vit.layernorm.bias'''), ('''head.weight''', '''classifier.weight'''), ('''head.bias''', '''classifier.bias'''), ] ) return rename_keys def UpperCAmelCase__ (UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_=False ): """simple docstring""" for i in range(config.num_hidden_layers ): if base_model: snake_case = '''''' else: snake_case = '''vit.''' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) snake_case = state_dict.pop(F'''module.blocks.{i}.attn.qkv.weight''' ) snake_case = state_dict.pop(F'''module.blocks.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict snake_case = in_proj_weight[ : config.hidden_size, : ] snake_case = in_proj_bias[: config.hidden_size] snake_case = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] snake_case = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] snake_case = in_proj_weight[ -config.hidden_size :, : ] snake_case = in_proj_bias[-config.hidden_size :] def UpperCAmelCase__ (UpperCamelCase_ ): """simple docstring""" snake_case = ['''head.weight''', '''head.bias'''] for k in ignore_keys: state_dict.pop(UpperCamelCase_ ,UpperCamelCase_ ) def UpperCAmelCase__ (UpperCamelCase_ ): """simple docstring""" snake_case = [ '''module.fc.fc1.weight''', '''module.fc.fc1.bias''', '''module.fc.bn1.weight''', '''module.fc.bn1.bias''', '''module.fc.bn1.running_mean''', '''module.fc.bn1.running_var''', '''module.fc.bn1.num_batches_tracked''', '''module.fc.fc2.weight''', '''module.fc.fc2.bias''', '''module.fc.bn2.weight''', '''module.fc.bn2.bias''', '''module.fc.bn2.running_mean''', '''module.fc.bn2.running_var''', '''module.fc.bn2.num_batches_tracked''', '''module.fc.fc3.weight''', '''module.fc.fc3.bias''', ] for k in ignore_keys: state_dict.pop(UpperCamelCase_ ,UpperCamelCase_ ) def UpperCAmelCase__ (UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_ ): """simple docstring""" snake_case = dct.pop(UpperCamelCase_ ) snake_case = val def UpperCAmelCase__ (UpperCamelCase_ ,UpperCamelCase_ ): """simple docstring""" snake_case = ViTMSNConfig() snake_case = 10_00 snake_case = '''datasets/huggingface/label-files''' snake_case = '''imagenet-1k-id2label.json''' snake_case = json.load(open(hf_hub_download(UpperCamelCase_ ,UpperCamelCase_ ) ,'''r''' ) ) snake_case = {int(UpperCamelCase_ ): v for k, v in idalabel.items()} snake_case = idalabel snake_case = {v: k for k, v in idalabel.items()} if "s16" in checkpoint_url: snake_case = 3_84 snake_case = 15_36 snake_case = 6 elif "l16" in checkpoint_url: snake_case = 10_24 snake_case = 40_96 snake_case = 24 snake_case = 16 snake_case = 0.1 elif "b4" in checkpoint_url: snake_case = 4 elif "l7" in checkpoint_url: snake_case = 7 snake_case = 10_24 snake_case = 40_96 snake_case = 24 snake_case = 16 snake_case = 0.1 snake_case = ViTMSNModel(UpperCamelCase_ ) snake_case = torch.hub.load_state_dict_from_url(UpperCamelCase_ ,map_location='''cpu''' )['''target_encoder'''] snake_case = ViTImageProcessor(size=config.image_size ) remove_projection_head(UpperCamelCase_ ) snake_case = create_rename_keys(UpperCamelCase_ ,base_model=UpperCamelCase_ ) for src, dest in rename_keys: rename_key(UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_ ) read_in_q_k_v(UpperCamelCase_ ,UpperCamelCase_ ,base_model=UpperCamelCase_ ) model.load_state_dict(UpperCamelCase_ ) model.eval() snake_case = '''http://images.cocodataset.org/val2017/000000039769.jpg''' snake_case = Image.open(requests.get(UpperCamelCase_ ,stream=UpperCamelCase_ ).raw ) snake_case = ViTImageProcessor( size=config.image_size ,image_mean=UpperCamelCase_ ,image_std=UpperCamelCase_ ) snake_case = image_processor(images=UpperCamelCase_ ,return_tensors='''pt''' ) # forward pass torch.manual_seed(2 ) snake_case = model(**UpperCamelCase_ ) snake_case = outputs.last_hidden_state # The following Colab Notebook was used to generate these outputs: # https://colab.research.google.com/gist/sayakpaul/3672419a04f5997827503fd84079bdd1/scratchpad.ipynb if "s16" in checkpoint_url: snake_case = torch.tensor([[-1.0915, -1.4876, -1.1809]] ) elif "b16" in checkpoint_url: snake_case = torch.tensor([[14.2889, -18.9045, 11.7281]] ) elif "l16" in checkpoint_url: snake_case = torch.tensor([[41.5028, -22.8681, 45.6475]] ) elif "b4" in checkpoint_url: snake_case = torch.tensor([[-4.3868, 5.2932, -0.4137]] ) else: snake_case = torch.tensor([[-0.1792, -0.6465, 2.4263]] ) # verify logits assert torch.allclose(last_hidden_state[:, 0, :3] ,UpperCamelCase_ ,atol=1e-4 ) print(F'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(UpperCamelCase_ ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(UpperCamelCase_ ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint_url", default="https://dl.fbaipublicfiles.com/msn/vits16_800ep.pth.tar", type=str, help="URL of the checkpoint you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) _SCREAMING_SNAKE_CASE : Any = parser.parse_args() convert_vit_msn_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
213
1
import collections import inspect import unittest from typing import Dict, List, Tuple from transformers import MaskFormerSwinConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, torch_device from transformers.utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MaskFormerSwinBackbone from transformers.models.maskformer import MaskFormerSwinModel class _lowercase : def __init__( self : str , snake_case : List[Any] , snake_case : str=1_3 , snake_case : Dict=3_2 , snake_case : Union[str, Any]=2 , snake_case : List[Any]=3 , snake_case : str=1_6 , snake_case : str=[1, 2, 1] , snake_case : Tuple=[2, 2, 4] , snake_case : int=2 , snake_case : str=2.0 , snake_case : List[str]=True , snake_case : Tuple=0.0 , snake_case : Union[str, Any]=0.0 , snake_case : int=0.1 , snake_case : str="gelu" , snake_case : Union[str, Any]=False , snake_case : Any=True , snake_case : str=0.02 , snake_case : List[str]=1e-5 , snake_case : Optional[int]=True , snake_case : Optional[Any]=None , snake_case : int=True , snake_case : List[Any]=1_0 , snake_case : Optional[Any]=8 , snake_case : List[Any]=["stage1", "stage2", "stage3"] , snake_case : Any=[1, 2, 3] , ) -> Union[str, Any]: """simple docstring""" UpperCamelCase_ : List[Any] = parent UpperCamelCase_ : Optional[int] = batch_size UpperCamelCase_ : List[Any] = image_size UpperCamelCase_ : str = patch_size UpperCamelCase_ : List[str] = num_channels UpperCamelCase_ : Tuple = embed_dim UpperCamelCase_ : List[str] = depths UpperCamelCase_ : Optional[Any] = num_heads UpperCamelCase_ : Any = window_size UpperCamelCase_ : Tuple = mlp_ratio UpperCamelCase_ : Any = qkv_bias UpperCamelCase_ : str = hidden_dropout_prob UpperCamelCase_ : str = attention_probs_dropout_prob UpperCamelCase_ : Union[str, Any] = drop_path_rate UpperCamelCase_ : Tuple = hidden_act UpperCamelCase_ : Dict = use_absolute_embeddings UpperCamelCase_ : Any = patch_norm UpperCamelCase_ : Tuple = layer_norm_eps UpperCamelCase_ : List[Any] = initializer_range UpperCamelCase_ : str = is_training UpperCamelCase_ : Union[str, Any] = scope UpperCamelCase_ : int = use_labels UpperCamelCase_ : List[Any] = type_sequence_label_size UpperCamelCase_ : int = encoder_stride UpperCamelCase_ : str = out_features UpperCamelCase_ : int = out_indices def SCREAMING_SNAKE_CASE__ ( self : str ) -> Optional[Any]: """simple docstring""" UpperCamelCase_ : str = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase_ : Tuple = None if self.use_labels: UpperCamelCase_ : str = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase_ : int = self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE__ ( self : List[str] ) -> List[str]: """simple docstring""" return MaskFormerSwinConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def SCREAMING_SNAKE_CASE__ ( self : Dict , snake_case : Optional[Any] , snake_case : int , snake_case : List[str] ) -> Union[str, Any]: """simple docstring""" UpperCamelCase_ : Tuple = MaskFormerSwinModel(config=snake_case ) model.to(snake_case ) model.eval() UpperCamelCase_ : str = model(snake_case ) UpperCamelCase_ : List[Any] = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) UpperCamelCase_ : str = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def SCREAMING_SNAKE_CASE__ ( self : int , snake_case : int , snake_case : List[Any] , snake_case : Any ) -> Dict: """simple docstring""" UpperCamelCase_ : Dict = MaskFormerSwinBackbone(config=snake_case ) model.to(snake_case ) model.eval() UpperCamelCase_ : Optional[int] = model(snake_case ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [1_3, 1_6, 1_6, 1_6] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , [1_6, 3_2, 6_4] ) # verify ValueError with self.parent.assertRaises(snake_case ): UpperCamelCase_ : Optional[int] = ['stem'] UpperCamelCase_ : List[str] = MaskFormerSwinBackbone(config=snake_case ) def SCREAMING_SNAKE_CASE__ ( self : str ) -> int: """simple docstring""" UpperCamelCase_ : Tuple = self.prepare_config_and_inputs() UpperCamelCase_, UpperCamelCase_, UpperCamelCase_ : Any = config_and_inputs UpperCamelCase_ : int = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class _lowercase ( snake_case_ , snake_case_ , unittest.TestCase ): lowercase = ( ( MaskFormerSwinModel, MaskFormerSwinBackbone, ) if is_torch_available() else () ) lowercase = {'feature-extraction': MaskFormerSwinModel} if is_torch_available() else {} lowercase = False lowercase = False lowercase = False lowercase = False lowercase = False def SCREAMING_SNAKE_CASE__ ( self : List[Any] ) -> str: """simple docstring""" UpperCamelCase_ : int = MaskFormerSwinModelTester(self ) UpperCamelCase_ : List[Any] = ConfigTester(self , config_class=snake_case , embed_dim=3_7 ) @require_torch_multi_gpu @unittest.skip( reason=( '`MaskFormerSwinModel` outputs `hidden_states_spatial_dimensions` which doesn\'t work well with' ' `nn.DataParallel`' ) ) def SCREAMING_SNAKE_CASE__ ( self : Any ) -> Tuple: """simple docstring""" pass def SCREAMING_SNAKE_CASE__ ( self : List[Any] ) -> Optional[int]: """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def SCREAMING_SNAKE_CASE__ ( self : List[str] ) -> List[str]: """simple docstring""" return def SCREAMING_SNAKE_CASE__ ( self : str ) -> Dict: """simple docstring""" UpperCamelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] ) -> int: """simple docstring""" UpperCamelCase_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*snake_case ) @unittest.skip('Swin does not use inputs_embeds' ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] ) -> List[str]: """simple docstring""" pass @unittest.skip('Swin does not support feedforward chunking' ) def SCREAMING_SNAKE_CASE__ ( self : Any ) -> int: """simple docstring""" pass def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ) -> List[str]: """simple docstring""" UpperCamelCase_, UpperCamelCase_ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase_ : Any = model_class(snake_case ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) UpperCamelCase_ : Tuple = model.get_output_embeddings() self.assertTrue(x is None or isinstance(snake_case , nn.Linear ) ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ) -> Dict: """simple docstring""" UpperCamelCase_, UpperCamelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase_ : int = model_class(snake_case ) UpperCamelCase_ : List[str] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase_ : Dict = [*signature.parameters.keys()] UpperCamelCase_ : Optional[int] = ['pixel_values'] self.assertListEqual(arg_names[:1] , snake_case ) @unittest.skip(reason='MaskFormerSwin is only used as backbone and doesn\'t support output_attentions' ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ) -> List[str]: """simple docstring""" pass @unittest.skip(reason='MaskFormerSwin is only used as an internal backbone' ) def SCREAMING_SNAKE_CASE__ ( self : List[str] ) -> Optional[Any]: """simple docstring""" pass def SCREAMING_SNAKE_CASE__ ( self : Any , snake_case : Dict , snake_case : List[Any] , snake_case : Dict , snake_case : Dict ) -> Tuple: """simple docstring""" UpperCamelCase_ : Union[str, Any] = model_class(snake_case ) model.to(snake_case ) model.eval() with torch.no_grad(): UpperCamelCase_ : List[Any] = model(**self._prepare_for_class(snake_case , snake_case ) ) UpperCamelCase_ : Any = outputs.hidden_states UpperCamelCase_ : Union[str, Any] = getattr( self.model_tester , 'expected_num_hidden_layers' , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(snake_case ) , snake_case ) # Swin has a different seq_length UpperCamelCase_ : int = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) UpperCamelCase_ : Dict = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ) -> Tuple: """simple docstring""" UpperCamelCase_, UpperCamelCase_ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase_ : Optional[Any] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: UpperCamelCase_ : int = True self.check_hidden_states_output(snake_case , snake_case , snake_case , snake_case ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCamelCase_ : int = True self.check_hidden_states_output(snake_case , snake_case , snake_case , snake_case ) def SCREAMING_SNAKE_CASE__ ( self : Tuple ) -> Optional[Any]: """simple docstring""" UpperCamelCase_, UpperCamelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase_ : Any = 3 UpperCamelCase_ : Optional[int] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) UpperCamelCase_ : Any = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) UpperCamelCase_ : List[Any] = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) UpperCamelCase_ : Optional[int] = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: UpperCamelCase_ : Any = True self.check_hidden_states_output(snake_case , snake_case , snake_case , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCamelCase_ : Optional[Any] = True self.check_hidden_states_output(snake_case , snake_case , snake_case , (padded_height, padded_width) ) @unittest.skip(reason='MaskFormerSwin doesn\'t have pretrained checkpoints' ) def SCREAMING_SNAKE_CASE__ ( self : int ) -> Optional[Any]: """simple docstring""" pass @unittest.skip(reason='This will be fixed once MaskFormerSwin is replaced by native Swin' ) def SCREAMING_SNAKE_CASE__ ( self : List[str] ) -> Optional[Any]: """simple docstring""" pass @unittest.skip(reason='This will be fixed once MaskFormerSwin is replaced by native Swin' ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ) -> int: """simple docstring""" pass def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ) -> str: """simple docstring""" UpperCamelCase_, UpperCamelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() def set_nan_tensor_to_zero(snake_case : int ): UpperCamelCase_ : Tuple = 0 return t def check_equivalence(snake_case : str , snake_case : Optional[Any] , snake_case : Optional[int] , snake_case : int={} ): with torch.no_grad(): UpperCamelCase_ : Any = model(**snake_case , return_dict=snake_case , **snake_case ) UpperCamelCase_ : Dict = model(**snake_case , return_dict=snake_case , **snake_case ).to_tuple() def recursive_check(snake_case : str , snake_case : str ): if isinstance(snake_case , (List, Tuple) ): for tuple_iterable_value, dict_iterable_value in zip(snake_case , snake_case ): recursive_check(snake_case , snake_case ) elif isinstance(snake_case , snake_case ): for tuple_iterable_value, dict_iterable_value in zip( tuple_object.values() , dict_object.values() ): recursive_check(snake_case , snake_case ) elif tuple_object is None: return else: self.assertTrue( torch.allclose( set_nan_tensor_to_zero(snake_case ) , set_nan_tensor_to_zero(snake_case ) , atol=1e-5 ) , msg=( 'Tuple and dict output are not equal. Difference:' f" {torch.max(torch.abs(tuple_object - dict_object ) )}. Tuple has `nan`:" f" {torch.isnan(snake_case ).any()} and `inf`: {torch.isinf(snake_case )}. Dict has" f" `nan`: {torch.isnan(snake_case ).any()} and `inf`: {torch.isinf(snake_case )}." ) , ) recursive_check(snake_case , snake_case ) for model_class in self.all_model_classes: UpperCamelCase_ : Any = model_class(snake_case ) model.to(snake_case ) model.eval() UpperCamelCase_ : int = self._prepare_for_class(snake_case , snake_case ) UpperCamelCase_ : int = self._prepare_for_class(snake_case , snake_case ) check_equivalence(snake_case , snake_case , snake_case ) UpperCamelCase_ : List[str] = self._prepare_for_class(snake_case , snake_case , return_labels=snake_case ) UpperCamelCase_ : Tuple = self._prepare_for_class(snake_case , snake_case , return_labels=snake_case ) check_equivalence(snake_case , snake_case , snake_case ) UpperCamelCase_ : str = self._prepare_for_class(snake_case , snake_case ) UpperCamelCase_ : Dict = self._prepare_for_class(snake_case , snake_case ) check_equivalence(snake_case , snake_case , snake_case , {'output_hidden_states': True} ) UpperCamelCase_ : int = self._prepare_for_class(snake_case , snake_case , return_labels=snake_case ) UpperCamelCase_ : Union[str, Any] = self._prepare_for_class(snake_case , snake_case , return_labels=snake_case ) check_equivalence(snake_case , snake_case , snake_case , {'output_hidden_states': True} ) @require_torch class _lowercase ( unittest.TestCase , snake_case_ ): lowercase = (MaskFormerSwinBackbone,) if is_torch_available() else () lowercase = MaskFormerSwinConfig def SCREAMING_SNAKE_CASE__ ( self : Dict ) -> Tuple: """simple docstring""" UpperCamelCase_ : int = MaskFormerSwinModelTester(self ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" UpperCamelCase_, UpperCamelCase_ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase_ : Any = inputs_dict['pixel_values'].shape[0] for backbone_class in self.all_model_classes: UpperCamelCase_ : List[Any] = backbone_class(snake_case ) backbone.to(snake_case ) backbone.eval() UpperCamelCase_ : List[Any] = backbone(**snake_case ) # Test default outputs and verify feature maps self.assertIsInstance(outputs.feature_maps , snake_case ) self.assertTrue(len(outputs.feature_maps ) == len(backbone.channels ) ) for feature_map, n_channels in zip(outputs.feature_maps , backbone.channels ): self.assertTrue(feature_map.shape[:2] , (batch_size, n_channels) ) self.assertIsNone(outputs.hidden_states ) self.assertIsNone(outputs.attentions ) # Test output_hidden_states=True UpperCamelCase_ : str = backbone(**snake_case , output_hidden_states=snake_case ) self.assertIsNotNone(outputs.hidden_states ) self.assertTrue(len(outputs.hidden_states ) , len(backbone.stage_names ) ) # We skip the stem layer for hidden_states, n_channels in zip(outputs.hidden_states[1:] , backbone.channels ): for hidden_state in hidden_states: # Hidden states are in the format (batch_size, (height * width), n_channels) UpperCamelCase_, UpperCamelCase_, UpperCamelCase_ : Optional[int] = hidden_state.shape self.assertTrue((h_batch_size, h_n_channels) , (batch_size, n_channels) ) # Test output_attentions=True if self.has_attentions: UpperCamelCase_ : Tuple = backbone(**snake_case , output_attentions=snake_case ) self.assertIsNotNone(outputs.attentions )
175
from transformers import HfArgumentParser, TensorFlowBenchmark, TensorFlowBenchmarkArguments def __lowercase ( ): UpperCamelCase_ : Optional[Any] = HfArgumentParser(lowerCamelCase ) UpperCamelCase_ : Tuple = parser.parse_args_into_dataclasses()[0] UpperCamelCase_ : Dict = TensorFlowBenchmark(args=lowerCamelCase ) try: UpperCamelCase_ : Any = parser.parse_args_into_dataclasses()[0] except ValueError as e: UpperCamelCase_ : Any = 'Arg --no_{0} is no longer used, please use --no-{0} instead.' UpperCamelCase_ : Optional[int] = ' '.join(str(lowerCamelCase ).split(' ' )[:-1] ) UpperCamelCase_ : Any = '' UpperCamelCase_ : Any = eval(str(lowerCamelCase ).split(' ' )[-1] ) UpperCamelCase_ : List[Any] = [] for arg in depreciated_args: # arg[2:] removes '--' if arg[2:] in TensorFlowBenchmark.deprecated_args: # arg[5:] removes '--no_' full_error_msg += arg_error_msg.format(arg[5:] ) else: wrong_args.append(lowerCamelCase ) if len(lowerCamelCase ) > 0: UpperCamelCase_ : List[str] = full_error_msg + begin_error_msg + str(lowerCamelCase ) raise ValueError(lowerCamelCase ) benchmark.run() if __name__ == "__main__": main()
175
1
from collections.abc import Iterator, MutableMapping from dataclasses import dataclass from typing import Generic, TypeVar lowercase_ = TypeVar("""KEY""") lowercase_ = TypeVar("""VAL""") @dataclass(frozen=UpperCAmelCase , slots=UpperCAmelCase ) class SCREAMING_SNAKE_CASE (Generic[KEY, VAL] ): _UpperCamelCase : KEY _UpperCamelCase : VAL class SCREAMING_SNAKE_CASE (_Item ): def __init__( self : Optional[int] )-> None: """simple docstring""" super().__init__(a , a ) def __bool__( self : str )-> bool: """simple docstring""" return False lowercase_ = _DeletedItem() class SCREAMING_SNAKE_CASE (MutableMapping[KEY, VAL] ): def __init__( self : Tuple , a : int = 8 , a : float = 0.75 )-> None: """simple docstring""" lowercase__ = initial_block_size lowercase__ = [None] * initial_block_size assert 0.0 < capacity_factor < 1.0 lowercase__ = capacity_factor lowercase__ = 0 def SCREAMING_SNAKE_CASE_ ( self : Any , a : KEY )-> int: """simple docstring""" return hash(a ) % len(self._buckets ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , a : int )-> int: """simple docstring""" return (ind + 1) % len(self._buckets ) def SCREAMING_SNAKE_CASE_ ( self : Any , a : int , a : KEY , a : VAL )-> bool: """simple docstring""" lowercase__ = self._buckets[ind] if not stored: lowercase__ = _Item(a , a ) self._len += 1 return True elif stored.key == key: lowercase__ = _Item(a , a ) return True else: return False def SCREAMING_SNAKE_CASE_ ( self : str )-> bool: """simple docstring""" lowercase__ = len(self._buckets ) * self._capacity_factor return len(self ) >= int(a ) def SCREAMING_SNAKE_CASE_ ( self : Tuple )-> bool: """simple docstring""" if len(self._buckets ) <= self._initial_block_size: return False lowercase__ = len(self._buckets ) * self._capacity_factor / 2 return len(self ) < limit def SCREAMING_SNAKE_CASE_ ( self : List[str] , a : int )-> None: """simple docstring""" lowercase__ = self._buckets lowercase__ = [None] * new_size lowercase__ = 0 for item in old_buckets: if item: self._add_item(item.key , item.val ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] )-> None: """simple docstring""" self._resize(len(self._buckets ) * 2 ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] )-> None: """simple docstring""" self._resize(len(self._buckets ) // 2 ) def SCREAMING_SNAKE_CASE_ ( self : Any , a : KEY )-> Iterator[int]: """simple docstring""" lowercase__ = self._get_bucket_index(a ) for _ in range(len(self._buckets ) ): yield ind lowercase__ = self._get_next_ind(a ) def SCREAMING_SNAKE_CASE_ ( self : Tuple , a : KEY , a : VAL )-> None: """simple docstring""" for ind in self._iterate_buckets(a ): if self._try_set(a , a , a ): break def __setitem__( self : List[Any] , a : KEY , a : VAL )-> None: """simple docstring""" if self._is_full(): self._size_up() self._add_item(a , a ) def __delitem__( self : str , a : KEY )-> None: """simple docstring""" for ind in self._iterate_buckets(a ): lowercase__ = self._buckets[ind] if item is None: raise KeyError(a ) if item is _deleted: continue if item.key == key: lowercase__ = _deleted self._len -= 1 break if self._is_sparse(): self._size_down() def __getitem__( self : List[str] , a : KEY )-> VAL: """simple docstring""" for ind in self._iterate_buckets(a ): lowercase__ = self._buckets[ind] if item is None: break if item is _deleted: continue if item.key == key: return item.val raise KeyError(a ) def __len__( self : Tuple )-> int: """simple docstring""" return self._len def __iter__( self : int )-> Iterator[KEY]: """simple docstring""" yield from (item.key for item in self._buckets if item) def __repr__( self : Union[str, Any] )-> str: """simple docstring""" lowercase__ = ' ,'.join( f"""{item.key}: {item.val}""" for item in self._buckets if item ) return f"""HashMap({val_string})"""
269
from binascii import hexlify from hashlib import shaaaa from os import urandom # RFC 3526 - More Modular Exponential (MODP) Diffie-Hellman groups for # Internet Key Exchange (IKE) https://tools.ietf.org/html/rfc3526 lowercase_ = { # 1536-bit 5: { """prime""": int( """FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1""" + """29024E088A67CC74020BBEA63B139B22514A08798E3404DD""" + """EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245""" + """E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED""" + """EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D""" + """C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F""" + """83655D23DCA3AD961C62F356208552BB9ED529077096966D""" + """670C354E4ABC9804F1746C08CA237327FFFFFFFFFFFFFFFF""", base=16, ), """generator""": 2, }, # 2048-bit 14: { """prime""": int( """FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1""" + """29024E088A67CC74020BBEA63B139B22514A08798E3404DD""" + """EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245""" + """E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED""" + """EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D""" + """C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F""" + """83655D23DCA3AD961C62F356208552BB9ED529077096966D""" + """670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B""" + """E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9""" + """DE2BCBF6955817183995497CEA956AE515D2261898FA0510""" + """15728E5A8AACAA68FFFFFFFFFFFFFFFF""", base=16, ), """generator""": 2, }, # 3072-bit 15: { """prime""": int( """FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1""" + """29024E088A67CC74020BBEA63B139B22514A08798E3404DD""" + """EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245""" + """E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED""" + """EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D""" + """C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F""" + """83655D23DCA3AD961C62F356208552BB9ED529077096966D""" + """670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B""" + """E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9""" + """DE2BCBF6955817183995497CEA956AE515D2261898FA0510""" + """15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64""" + """ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7""" + """ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B""" + """F12FFA06D98A0864D87602733EC86A64521F2B18177B200C""" + """BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31""" + """43DB5BFCE0FD108E4B82D120A93AD2CAFFFFFFFFFFFFFFFF""", base=16, ), """generator""": 2, }, # 4096-bit 16: { """prime""": int( """FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1""" + """29024E088A67CC74020BBEA63B139B22514A08798E3404DD""" + """EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245""" + """E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED""" + """EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D""" + """C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F""" + """83655D23DCA3AD961C62F356208552BB9ED529077096966D""" + """670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B""" + """E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9""" + """DE2BCBF6955817183995497CEA956AE515D2261898FA0510""" + """15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64""" + """ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7""" + """ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B""" + """F12FFA06D98A0864D87602733EC86A64521F2B18177B200C""" + """BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31""" + """43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7""" + """88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA""" + """2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6""" + """287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED""" + """1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9""" + """93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934063199""" + """FFFFFFFFFFFFFFFF""", base=16, ), """generator""": 2, }, # 6144-bit 17: { """prime""": int( """FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E08""" + """8A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B""" + """302B0A6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9""" + """A637ED6B0BFF5CB6F406B7EDEE386BFB5A899FA5AE9F24117C4B1FE6""" + """49286651ECE45B3DC2007CB8A163BF0598DA48361C55D39A69163FA8""" + """FD24CF5F83655D23DCA3AD961C62F356208552BB9ED529077096966D""" + """670C354E4ABC9804F1746C08CA18217C32905E462E36CE3BE39E772C""" + """180E86039B2783A2EC07A28FB5C55DF06F4C52C9DE2BCBF695581718""" + """3995497CEA956AE515D2261898FA051015728E5A8AAAC42DAD33170D""" + """04507A33A85521ABDF1CBA64ECFB850458DBEF0A8AEA71575D060C7D""" + """B3970F85A6E1E4C7ABF5AE8CDB0933D71E8C94E04A25619DCEE3D226""" + """1AD2EE6BF12FFA06D98A0864D87602733EC86A64521F2B18177B200C""" + """BBE117577A615D6C770988C0BAD946E208E24FA074E5AB3143DB5BFC""" + """E0FD108E4B82D120A92108011A723C12A787E6D788719A10BDBA5B26""" + """99C327186AF4E23C1A946834B6150BDA2583E9CA2AD44CE8DBBBC2DB""" + """04DE8EF92E8EFC141FBECAA6287C59474E6BC05D99B2964FA090C3A2""" + """233BA186515BE7ED1F612970CEE2D7AFB81BDD762170481CD0069127""" + """D5B05AA993B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492""" + """36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BDF8FF9406""" + """AD9E530EE5DB382F413001AEB06A53ED9027D831179727B0865A8918""" + """DA3EDBEBCF9B14ED44CE6CBACED4BB1BDB7F1447E6CC254B33205151""" + """2BD7AF426FB8F401378CD2BF5983CA01C64B92ECF032EA15D1721D03""" + """F482D7CE6E74FEF6D55E702F46980C82B5A84031900B1C9E59E7C97F""" + """BEC7E8F323A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA""" + """CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE32806A1D58B""" + """B7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55CDA56C9EC2EF29632""" + """387FE8D76E3C0468043E8F663F4860EE12BF2D5B0B7474D6E694F91E""" + """6DCC4024FFFFFFFFFFFFFFFF""", base=16, ), """generator""": 2, }, # 8192-bit 18: { """prime""": int( """FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1""" + """29024E088A67CC74020BBEA63B139B22514A08798E3404DD""" + """EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245""" + """E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED""" + """EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D""" + """C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F""" + """83655D23DCA3AD961C62F356208552BB9ED529077096966D""" + """670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B""" + """E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9""" + """DE2BCBF6955817183995497CEA956AE515D2261898FA0510""" + """15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64""" + """ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7""" + """ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B""" + """F12FFA06D98A0864D87602733EC86A64521F2B18177B200C""" + """BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31""" + """43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7""" + """88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA""" + """2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6""" + """287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED""" + """1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9""" + """93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492""" + """36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BD""" + """F8FF9406AD9E530EE5DB382F413001AEB06A53ED9027D831""" + """179727B0865A8918DA3EDBEBCF9B14ED44CE6CBACED4BB1B""" + """DB7F1447E6CC254B332051512BD7AF426FB8F401378CD2BF""" + """5983CA01C64B92ECF032EA15D1721D03F482D7CE6E74FEF6""" + """D55E702F46980C82B5A84031900B1C9E59E7C97FBEC7E8F3""" + """23A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA""" + """CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE328""" + """06A1D58BB7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55C""" + """DA56C9EC2EF29632387FE8D76E3C0468043E8F663F4860EE""" + """12BF2D5B0B7474D6E694F91E6DBE115974A3926F12FEE5E4""" + """38777CB6A932DF8CD8BEC4D073B931BA3BC832B68D9DD300""" + """741FA7BF8AFC47ED2576F6936BA424663AAB639C5AE4F568""" + """3423B4742BF1C978238F16CBE39D652DE3FDB8BEFC848AD9""" + """22222E04A4037C0713EB57A81A23F0C73473FC646CEA306B""" + """4BCBC8862F8385DDFA9D4B7FA2C087E879683303ED5BDD3A""" + """062B3CF5B3A278A66D2A13F83F44F82DDF310EE074AB6A36""" + """4597E899A0255DC164F31CC50846851DF9AB48195DED7EA1""" + """B1D510BD7EE74D73FAF36BC31ECFA268359046F4EB879F92""" + """4009438B481C6CD7889A002ED5EE382BC9190DA6FC026E47""" + """9558E4475677E9AA9E3050E2765694DFC81F56E880B96E71""" + """60C980DD98EDD3DFFFFFFFFFFFFFFFFF""", base=16, ), """generator""": 2, }, } class SCREAMING_SNAKE_CASE : def __init__( self : Optional[Any] , a : int = 14 )-> None: """simple docstring""" if group not in primes: raise ValueError('Unsupported Group' ) lowercase__ = primes[group]['prime'] lowercase__ = primes[group]['generator'] lowercase__ = int(hexlify(urandom(32 ) ) , base=16 ) def SCREAMING_SNAKE_CASE_ ( self : List[str] )-> str: """simple docstring""" return hex(self.__private_key )[2:] def SCREAMING_SNAKE_CASE_ ( self : Tuple )-> str: """simple docstring""" lowercase__ = pow(self.generator , self.__private_key , self.prime ) return hex(a )[2:] def SCREAMING_SNAKE_CASE_ ( self : Tuple , a : int )-> bool: """simple docstring""" return ( 2 <= key <= self.prime - 2 and pow(a , (self.prime - 1) // 2 , self.prime ) == 1 ) def SCREAMING_SNAKE_CASE_ ( self : str , a : str )-> str: """simple docstring""" lowercase__ = int(a , base=16 ) if not self.is_valid_public_key(a ): raise ValueError('Invalid public key' ) lowercase__ = pow(a , self.__private_key , self.prime ) return shaaaa(str(a ).encode() ).hexdigest() @staticmethod def SCREAMING_SNAKE_CASE_ ( a : int , a : int )-> bool: """simple docstring""" return ( 2 <= remote_public_key_str <= prime - 2 and pow(a , (prime - 1) // 2 , a ) == 1 ) @staticmethod def SCREAMING_SNAKE_CASE_ ( a : str , a : str , a : int = 14 )-> str: """simple docstring""" lowercase__ = int(a , base=16 ) lowercase__ = int(a , base=16 ) lowercase__ = primes[group]['prime'] if not DiffieHellman.is_valid_public_key_static(a , a ): raise ValueError('Invalid public key' ) lowercase__ = pow(a , a , a ) return shaaaa(str(a ).encode() ).hexdigest() if __name__ == "__main__": import doctest doctest.testmod()
269
1
"""simple docstring""" import inspect import unittest from transformers import ViTConfig from transformers.testing_utils import ( require_accelerate, require_torch, require_torch_gpu, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTForImageClassification, ViTForMaskedImageModeling, ViTModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class SCREAMING_SNAKE_CASE__ : def __init__( self : str , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Any=1_3 , lowerCAmelCase_ : Dict=3_0 , lowerCAmelCase_ : Union[str, Any]=2 , lowerCAmelCase_ : Tuple=3 , lowerCAmelCase_ : Any=True , lowerCAmelCase_ : List[str]=True , lowerCAmelCase_ : List[str]=3_2 , lowerCAmelCase_ : List[str]=5 , lowerCAmelCase_ : List[Any]=4 , lowerCAmelCase_ : int=3_7 , lowerCAmelCase_ : Optional[int]="gelu" , lowerCAmelCase_ : str=0.1 , lowerCAmelCase_ : Any=0.1 , lowerCAmelCase_ : int=1_0 , lowerCAmelCase_ : Optional[Any]=0.02 , lowerCAmelCase_ : List[Any]=None , lowerCAmelCase_ : List[Any]=2 , ): """simple docstring""" lowercase_ = parent lowercase_ = batch_size lowercase_ = image_size lowercase_ = patch_size lowercase_ = num_channels lowercase_ = is_training lowercase_ = use_labels lowercase_ = hidden_size lowercase_ = num_hidden_layers lowercase_ = num_attention_heads lowercase_ = intermediate_size lowercase_ = hidden_act lowercase_ = hidden_dropout_prob lowercase_ = attention_probs_dropout_prob lowercase_ = type_sequence_label_size lowercase_ = initializer_range lowercase_ = scope lowercase_ = encoder_stride # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) lowercase_ = (image_size // patch_size) ** 2 lowercase_ = num_patches + 1 def _UpperCAmelCase ( self : Tuple): """simple docstring""" lowercase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) lowercase_ = None if self.use_labels: lowercase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size) lowercase_ = self.get_config() return config, pixel_values, labels def _UpperCAmelCase ( self : Tuple): """simple docstring""" return ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowerCAmelCase_ , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def _UpperCAmelCase ( self : Any , lowerCAmelCase_ : str , lowerCAmelCase_ : str , lowerCAmelCase_ : int): """simple docstring""" lowercase_ = ViTModel(config=lowerCAmelCase_) model.to(lowerCAmelCase_) model.eval() lowercase_ = model(lowerCAmelCase_) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def _UpperCAmelCase ( self : Dict , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : List[str]): """simple docstring""" lowercase_ = ViTForMaskedImageModeling(config=lowerCAmelCase_) model.to(lowerCAmelCase_) model.eval() lowercase_ = model(lowerCAmelCase_) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size)) # test greyscale images lowercase_ = 1 lowercase_ = ViTForMaskedImageModeling(lowerCAmelCase_) model.to(lowerCAmelCase_) model.eval() lowercase_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) lowercase_ = model(lowerCAmelCase_) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size)) def _UpperCAmelCase ( self : Tuple , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : List[Any]): """simple docstring""" lowercase_ = self.type_sequence_label_size lowercase_ = ViTForImageClassification(lowerCAmelCase_) model.to(lowerCAmelCase_) model.eval() lowercase_ = model(lowerCAmelCase_ , labels=lowerCAmelCase_) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) # test greyscale images lowercase_ = 1 lowercase_ = ViTForImageClassification(lowerCAmelCase_) model.to(lowerCAmelCase_) model.eval() lowercase_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) lowercase_ = model(lowerCAmelCase_) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) def _UpperCAmelCase ( self : List[Any]): """simple docstring""" lowercase_ = self.prepare_config_and_inputs() ( ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ) = config_and_inputs lowercase_ = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase , unittest.TestCase ): lowercase__ = ( ( ViTModel, ViTForImageClassification, ViTForMaskedImageModeling, ) if is_torch_available() else () ) lowercase__ = ( {"feature-extraction": ViTModel, "image-classification": ViTForImageClassification} if is_torch_available() else {} ) lowercase__ = True lowercase__ = False lowercase__ = False lowercase__ = False def _UpperCAmelCase ( self : Any): """simple docstring""" lowercase_ = ViTModelTester(self) lowercase_ = ConfigTester(self , config_class=lowerCAmelCase_ , has_text_modality=lowerCAmelCase_ , hidden_size=3_7) def _UpperCAmelCase ( self : int): """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="""ViT does not use inputs_embeds""") def _UpperCAmelCase ( self : List[Any]): """simple docstring""" pass def _UpperCAmelCase ( self : List[str]): """simple docstring""" lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase_ = model_class(lowerCAmelCase_) self.assertIsInstance(model.get_input_embeddings() , (nn.Module)) lowercase_ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCAmelCase_ , nn.Linear)) def _UpperCAmelCase ( self : int): """simple docstring""" lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase_ = model_class(lowerCAmelCase_) lowercase_ = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase_ = [*signature.parameters.keys()] lowercase_ = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , lowerCAmelCase_) def _UpperCAmelCase ( self : List[Any]): """simple docstring""" lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase_) def _UpperCAmelCase ( self : Dict): """simple docstring""" lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*lowerCAmelCase_) def _UpperCAmelCase ( self : List[str]): """simple docstring""" lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase_) @slow def _UpperCAmelCase ( self : List[Any]): """simple docstring""" for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase_ = ViTModel.from_pretrained(lowerCAmelCase_) self.assertIsNotNone(lowerCAmelCase_) def _SCREAMING_SNAKE_CASE () -> int: '''simple docstring''' lowercase_ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): @cached_property def _UpperCAmelCase ( self : Union[str, Any]): """simple docstring""" return ViTImageProcessor.from_pretrained("""google/vit-base-patch16-224""") if is_vision_available() else None @slow def _UpperCAmelCase ( self : Tuple): """simple docstring""" lowercase_ = ViTForImageClassification.from_pretrained("""google/vit-base-patch16-224""").to(lowerCAmelCase_) lowercase_ = self.default_image_processor lowercase_ = prepare_img() lowercase_ = image_processor(images=lowerCAmelCase_ , return_tensors="""pt""").to(lowerCAmelCase_) # forward pass with torch.no_grad(): lowercase_ = model(**lowerCAmelCase_) # verify the logits lowercase_ = torch.Size((1, 1_0_0_0)) self.assertEqual(outputs.logits.shape , lowerCAmelCase_) lowercase_ = torch.tensor([-0.2_744, 0.8_215, -0.0_836]).to(lowerCAmelCase_) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCAmelCase_ , atol=1E-4)) @slow def _UpperCAmelCase ( self : Tuple): """simple docstring""" lowercase_ = ViTModel.from_pretrained("""facebook/dino-vits8""").to(lowerCAmelCase_) lowercase_ = ViTImageProcessor.from_pretrained("""facebook/dino-vits8""" , size=4_8_0) lowercase_ = prepare_img() lowercase_ = image_processor(images=lowerCAmelCase_ , return_tensors="""pt""") lowercase_ = inputs.pixel_values.to(lowerCAmelCase_) # forward pass with torch.no_grad(): lowercase_ = model(lowerCAmelCase_ , interpolate_pos_encoding=lowerCAmelCase_) # verify the logits lowercase_ = torch.Size((1, 3_6_0_1, 3_8_4)) self.assertEqual(outputs.last_hidden_state.shape , lowerCAmelCase_) lowercase_ = torch.tensor( [[4.2_340, 4.3_906, -6.6_692], [4.5_463, 1.8_928, -6.7_257], [4.4_429, 0.8_496, -5.8_585]]).to(lowerCAmelCase_) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] , lowerCAmelCase_ , atol=1E-4)) @slow @require_accelerate @require_torch_gpu def _UpperCAmelCase ( self : Union[str, Any]): """simple docstring""" lowercase_ = ViTModel.from_pretrained("""facebook/dino-vits8""" , torch_dtype=torch.floataa , device_map="""auto""") lowercase_ = self.default_image_processor lowercase_ = prepare_img() lowercase_ = image_processor(images=lowerCAmelCase_ , return_tensors="""pt""") lowercase_ = inputs.pixel_values.to(lowerCAmelCase_) # forward pass to make sure inference works in fp16 with torch.no_grad(): lowercase_ = model(lowerCAmelCase_)
136
"""simple docstring""" def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> list: '''simple docstring''' lowercase_ = len(__lowerCAmelCase ) lowercase_ = [[0] * n for i in range(__lowerCAmelCase )] for i in range(__lowerCAmelCase ): lowercase_ = y_points[i] for i in range(2 , __lowerCAmelCase ): for j in range(__lowerCAmelCase , __lowerCAmelCase ): lowercase_ = ( (xa - x_points[j - i + 1]) * q[j][i - 1] - (xa - x_points[j]) * q[j - 1][i - 1] ) / (x_points[j] - x_points[j - i + 1]) return [q[n - 1][n - 1], q] if __name__ == "__main__": import doctest doctest.testmod()
136
1
import itertools from dataclasses import dataclass from typing import List, Optional import pyarrow as pa import pyarrow.parquet as pq import datasets from datasets.table import table_cast lowerCamelCase_ = datasets.utils.logging.get_logger(__name__) @dataclass class a_ ( datasets.BuilderConfig ): '''simple docstring''' __a: List[Any] = 1_0_0_0_0 __a: Optional[Any] = None __a: Union[str, Any] = None class a_ ( datasets.ArrowBasedBuilder ): '''simple docstring''' __a: Dict = ParquetConfig def _lowercase ( self ) -> Tuple: '''simple docstring''' return datasets.DatasetInfo(features=self.config.features ) def _lowercase ( self , lowercase_ ) -> Optional[int]: '''simple docstring''' if not self.config.data_files: raise ValueError(f'''At least one data file must be specified, but got data_files={self.config.data_files}''' ) lowerCAmelCase_ = dl_manager.download_and_extract(self.config.data_files ) if isinstance(_lowerCamelCase , (str, list, tuple) ): lowerCAmelCase_ = data_files if isinstance(_lowerCamelCase , _lowerCamelCase ): lowerCAmelCase_ = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive lowerCAmelCase_ = [dl_manager.iter_files(_lowerCamelCase ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'files': files} )] lowerCAmelCase_ = [] for split_name, files in data_files.items(): if isinstance(_lowerCamelCase , _lowerCamelCase ): lowerCAmelCase_ = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive lowerCAmelCase_ = [dl_manager.iter_files(_lowerCamelCase ) for file in files] # Infer features is they are stoed in the arrow schema if self.info.features is None: for file in itertools.chain.from_iterable(_lowerCamelCase ): with open(_lowerCamelCase , 'rb' ) as f: lowerCAmelCase_ = datasets.Features.from_arrow_schema(pq.read_schema(_lowerCamelCase ) ) break splits.append(datasets.SplitGenerator(name=_lowerCamelCase , gen_kwargs={'files': files} ) ) return splits def _lowercase ( self , lowercase_ ) -> str: '''simple docstring''' if self.info.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example lowerCAmelCase_ = table_cast(_lowerCamelCase , self.info.features.arrow_schema ) return pa_table def _lowercase ( self , lowercase_ ) -> int: '''simple docstring''' lowerCAmelCase_ = self.info.features.arrow_schema if self.info.features is not None else None if self.info.features is not None and self.config.columns is not None: if sorted(field.name for field in schema ) != sorted(self.config.columns ): raise ValueError( f'''Tried to load parquet data with columns \'{self.config.columns}\' with mismatching features \'{self.info.features}\'''' ) for file_idx, file in enumerate(itertools.chain.from_iterable(_lowerCamelCase ) ): with open(_lowerCamelCase , 'rb' ) as f: lowerCAmelCase_ = pq.ParquetFile(_lowerCamelCase ) try: for batch_idx, record_batch in enumerate( parquet_file.iter_batches(batch_size=self.config.batch_size , columns=self.config.columns ) ): lowerCAmelCase_ = pa.Table.from_batches([record_batch] ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield f'''{file_idx}_{batch_idx}''', self._cast_table(_lowerCamelCase ) except ValueError as e: logger.error(f'''Failed to read file \'{file}\' with error {type(_lowerCamelCase )}: {e}''' ) raise
354
import baseaa def lowerCamelCase ( a_ ) -> bytes: return baseaa.baaencode(string.encode('utf-8' ) ) def lowerCamelCase ( a_ ) -> str: return baseaa.baadecode(a_ ).decode('utf-8' ) if __name__ == "__main__": lowerCamelCase_ = """Hello World!""" lowerCamelCase_ = baseaa_encode(test) print(encoded) lowerCamelCase_ = baseaa_decode(encoded) print(decoded)
14
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _A = { """configuration_x_clip""": [ """XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""", """XCLIPConfig""", """XCLIPTextConfig""", """XCLIPVisionConfig""", ], """processing_x_clip""": ["""XCLIPProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = [ """XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """XCLIPModel""", """XCLIPPreTrainedModel""", """XCLIPTextModel""", """XCLIPVisionModel""", ] if TYPE_CHECKING: from .configuration_x_clip import ( XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, XCLIPConfig, XCLIPTextConfig, XCLIPVisionConfig, ) from .processing_x_clip import XCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_x_clip import ( XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, XCLIPModel, XCLIPPreTrainedModel, XCLIPTextModel, XCLIPVisionModel, ) else: import sys _A = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
171
"""simple docstring""" import unittest import numpy as np from transformers import RobertaConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.roberta.modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, ) class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def __init__(self , _lowerCamelCase , _lowerCamelCase=13 , _lowerCamelCase=7 , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=99 , _lowerCamelCase=32 , _lowerCamelCase=5 , _lowerCamelCase=4 , _lowerCamelCase=37 , _lowerCamelCase="gelu" , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase=512 , _lowerCamelCase=16 , _lowerCamelCase=2 , _lowerCamelCase=0.02 , _lowerCamelCase=4 , ): """simple docstring""" UpperCAmelCase__ : Optional[Any] = parent UpperCAmelCase__ : Any = batch_size UpperCAmelCase__ : Optional[int] = seq_length UpperCAmelCase__ : Any = is_training UpperCAmelCase__ : int = use_attention_mask UpperCAmelCase__ : Any = use_token_type_ids UpperCAmelCase__ : Any = use_labels UpperCAmelCase__ : Union[str, Any] = vocab_size UpperCAmelCase__ : str = hidden_size UpperCAmelCase__ : List[Any] = num_hidden_layers UpperCAmelCase__ : Optional[Any] = num_attention_heads UpperCAmelCase__ : str = intermediate_size UpperCAmelCase__ : Dict = hidden_act UpperCAmelCase__ : Union[str, Any] = hidden_dropout_prob UpperCAmelCase__ : str = attention_probs_dropout_prob UpperCAmelCase__ : str = max_position_embeddings UpperCAmelCase__ : Union[str, Any] = type_vocab_size UpperCAmelCase__ : Dict = type_sequence_label_size UpperCAmelCase__ : Optional[int] = initializer_range UpperCAmelCase__ : int = num_choices def _a (self ): """simple docstring""" UpperCAmelCase__ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase__ : int = None if self.use_attention_mask: UpperCAmelCase__ : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase__ : List[Any] = None if self.use_token_type_ids: UpperCAmelCase__ : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase__ : Optional[Any] = RobertaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_lowerCamelCase , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def _a (self ): """simple docstring""" UpperCAmelCase__ : int = self.prepare_config_and_inputs() UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : Tuple = config_and_inputs UpperCAmelCase__ : Dict = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask} return config, inputs_dict def _a (self ): """simple docstring""" UpperCAmelCase__ : List[Any] = self.prepare_config_and_inputs() UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : List[Any] = config_and_inputs UpperCAmelCase__ : Dict = True UpperCAmelCase__ : Optional[Any] = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) UpperCAmelCase__ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax class lowerCamelCase ( lowerCAmelCase__ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = ( ( FlaxRobertaModel, FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, ) if is_flax_available() else () ) def _a (self ): """simple docstring""" UpperCAmelCase__ : str = FlaxRobertaModelTester(self ) @slow def _a (self ): """simple docstring""" for model_class_name in self.all_model_classes: UpperCAmelCase__ : Dict = model_class_name.from_pretrained("""roberta-base""" , from_pt=_lowerCamelCase ) UpperCAmelCase__ : Union[str, Any] = model(np.ones((1, 1) ) ) self.assertIsNotNone(_lowerCamelCase )
171
1
import comet # From: unbabel-comet import torch import datasets a_ : Union[str, Any] = datasets.logging.get_logger(__name__) a_ : Optional[int] = '\\n@inproceedings{rei-EtAl:2020:WMT,\n author = {Rei, Ricardo and Stewart, Craig and Farinha, Ana C and Lavie, Alon},\n title = {Unbabel\'s Participation in the WMT20 Metrics Shared Task},\n booktitle = {Proceedings of the Fifth Conference on Machine Translation},\n month = {November},\n year = {2020},\n address = {Online},\n publisher = {Association for Computational Linguistics},\n pages = {909--918},\n}\n@inproceedings{rei-etal-2020-comet,\n title = "{COMET}: A Neural Framework for {MT} Evaluation",\n author = "Rei, Ricardo and\n Stewart, Craig and\n Farinha, Ana C and\n Lavie, Alon",\n booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)",\n month = nov,\n year = "2020",\n address = "Online",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/2020.emnlp-main.213",\n pages = "2685--2702",\n}\n' a_ : List[str] = '\\nCrosslingual Optimized Metric for Evaluation of Translation (COMET) is an open-source framework used to train Machine Translation metrics that achieve high levels of correlation with different types of human judgments (HTER, DA\'s or MQM).\nWith the release of the framework the authors also released fully trained models that were used to compete in the WMT20 Metrics Shared Task achieving SOTA in that years competition.\n\nSee the [README.md] file at https://unbabel.github.io/COMET/html/models.html for more information.\n' a_ : str = '\nCOMET score.\n\nArgs:\n\n`sources` (list of str): Source sentences\n`predictions` (list of str): candidate translations\n`references` (list of str): reference translations\n`cuda` (bool): If set to True, runs COMET using GPU\n`show_progress` (bool): Shows progress\n`model`: COMET model to be used. Will default to `wmt-large-da-estimator-1719` if None.\n\nReturns:\n `samples`: List of dictionaries with `src`, `mt`, `ref` and `score`.\n `scores`: List of scores.\n\nExamples:\n\n >>> comet_metric = datasets.load_metric(\'comet\')\n >>> # comet_metric = load_metric(\'comet\', \'wmt20-comet-da\') # you can also choose which model to use\n >>> source = ["Dem Feuer konnte Einhalt geboten werden", "Schulen und Kindergärten wurden eröffnet."]\n >>> hypothesis = ["The fire could be stopped", "Schools and kindergartens were open"]\n >>> reference = ["They were able to control the fire.", "Schools and kindergartens opened"]\n >>> results = comet_metric.compute(predictions=hypothesis, references=reference, sources=source)\n >>> print([round(v, 2) for v in results["scores"]])\n [0.19, 0.92]\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _snake_case ( datasets.Metric ): def SCREAMING_SNAKE_CASE__ ( self) -> int: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='https://unbabel.github.io/COMET/html/index.html' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'sources': datasets.Value('string' , id='sequence'), 'predictions': datasets.Value('string' , id='sequence'), 'references': datasets.Value('string' , id='sequence'), }) , codebase_urls=['https://github.com/Unbabel/COMET'] , reference_urls=[ 'https://github.com/Unbabel/COMET', 'https://www.aclweb.org/anthology/2020.emnlp-main.213/', 'http://www.statmt.org/wmt20/pdf/2020.wmt-1.101.pdf6', ] , ) def SCREAMING_SNAKE_CASE__ ( self , a) -> str: if self.config_name == "default": SCREAMING_SNAKE_CASE = comet.load_from_checkpoint(comet.download_model('wmt20-comet-da')) else: SCREAMING_SNAKE_CASE = comet.load_from_checkpoint(comet.download_model(self.config_name)) def SCREAMING_SNAKE_CASE__ ( self , a , a , a , a=None , a=False) -> Union[str, Any]: if gpus is None: SCREAMING_SNAKE_CASE = 1 if torch.cuda.is_available() else 0 SCREAMING_SNAKE_CASE = {'src': sources, 'mt': predictions, 'ref': references} SCREAMING_SNAKE_CASE = [dict(zip(a , a)) for t in zip(*data.values())] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.scorer.predict(a , gpus=a , progress_bar=a) return {"mean_score": mean_score, "scores": scores}
327
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFCamembertModel @require_tf @require_sentencepiece @require_tokenizers class _snake_case ( unittest.TestCase ): @slow def SCREAMING_SNAKE_CASE__ ( self) -> int: SCREAMING_SNAKE_CASE = TFCamembertModel.from_pretrained('jplu/tf-camembert-base') SCREAMING_SNAKE_CASE = tf.convert_to_tensor( [[5, 121, 11, 660, 16, 730, 2_5543, 110, 83, 6]] , dtype=tf.intaa , ) # J'aime le camembert !" SCREAMING_SNAKE_CASE = model(a)['last_hidden_state'] SCREAMING_SNAKE_CASE = tf.TensorShape((1, 10, 768)) self.assertEqual(output.shape , a) # compare the actual values for a slice. SCREAMING_SNAKE_CASE = tf.convert_to_tensor( [[[-0.02_54, 0.02_35, 0.10_27], [0.06_06, -0.18_11, -0.04_18], [-0.15_61, -0.11_27, 0.26_87]]] , dtype=tf.floataa , ) # camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0') # camembert.eval() # expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach() self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4))
327
1
def _snake_case( SCREAMING_SNAKE_CASE__ : int ) -> str: '''simple docstring''' if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): raise TypeError('\'float\' object cannot be interpreted as an integer' ) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): raise TypeError('\'str\' object cannot be interpreted as an integer' ) if num == 0: return "0b0" A__ = False if num < 0: A__ = True A__ = -num A__ = [] while num > 0: binary.insert(0 , num % 2 ) num >>= 1 if negative: return "-0b" + "".join(str(SCREAMING_SNAKE_CASE__ ) for e in binary ) return "0b" + "".join(str(SCREAMING_SNAKE_CASE__ ) for e in binary ) if __name__ == "__main__": import doctest doctest.testmod()
7
import unittest from parameterized import parameterized from transformers import AutoTokenizer, GPTNeoXConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, GPTNeoXModel, ) class A : """simple docstring""" def __init__( self : str,lowercase_ : Any,lowercase_ : Tuple=1_3,lowercase_ : str=7,lowercase_ : Tuple=True,lowercase_ : int=True,lowercase_ : List[Any]=True,lowercase_ : List[str]=True,lowercase_ : List[str]=9_9,lowercase_ : List[Any]=6_4,lowercase_ : List[str]=5,lowercase_ : Optional[Any]=4,lowercase_ : Optional[Any]=3_7,lowercase_ : Optional[Any]="gelu",lowercase_ : int=0.1,lowercase_ : str=0.1,lowercase_ : Optional[Any]=5_1_2,lowercase_ : int=1_6,lowercase_ : List[Any]=2,lowercase_ : Union[str, Any]=0.02,lowercase_ : Tuple=3,lowercase_ : List[Any]=4,lowercase_ : str=None,)-> Union[str, Any]: '''simple docstring''' A__ = parent A__ = batch_size A__ = seq_length A__ = is_training A__ = use_input_mask A__ = use_token_type_ids A__ = use_labels A__ = vocab_size A__ = hidden_size A__ = num_hidden_layers A__ = num_attention_heads A__ = intermediate_size A__ = hidden_act A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = max_position_embeddings A__ = type_vocab_size A__ = type_sequence_label_size A__ = initializer_range A__ = num_labels A__ = num_choices A__ = scope A__ = vocab_size - 1 def snake_case__ ( self : str )-> Optional[Any]: '''simple docstring''' A__ = ids_tensor([self.batch_size, self.seq_length],self.vocab_size ) A__ = None if self.use_input_mask: A__ = random_attention_mask([self.batch_size, self.seq_length] ) A__ = None if self.use_labels: A__ = ids_tensor([self.batch_size, self.seq_length],self.num_labels ) A__ = self.get_config() return config, input_ids, input_mask, token_labels def snake_case__ ( self : List[Any] )-> Tuple: '''simple docstring''' return GPTNeoXConfig( vocab_size=self.vocab_size,hidden_size=self.hidden_size,num_hidden_layers=self.num_hidden_layers,num_attention_heads=self.num_attention_heads,intermediate_size=self.intermediate_size,hidden_act=self.hidden_act,hidden_dropout_prob=self.hidden_dropout_prob,attention_probs_dropout_prob=self.attention_probs_dropout_prob,max_position_embeddings=self.max_position_embeddings,type_vocab_size=self.type_vocab_size,is_decoder=lowercase_,initializer_range=self.initializer_range,pad_token_id=self.pad_token_id,) def snake_case__ ( self : Optional[int] )-> Union[str, Any]: '''simple docstring''' A__ , A__ , A__ , A__ = self.prepare_config_and_inputs() A__ = True return config, input_ids, input_mask, token_labels def snake_case__ ( self : Any,lowercase_ : List[Any],lowercase_ : List[Any],lowercase_ : str )-> Any: '''simple docstring''' A__ = GPTNeoXModel(config=lowercase_ ) model.to(lowercase_ ) model.eval() A__ = model(lowercase_,attention_mask=lowercase_ ) A__ = model(lowercase_ ) self.parent.assertEqual(result.last_hidden_state.shape,(self.batch_size, self.seq_length, self.hidden_size) ) def snake_case__ ( self : Union[str, Any],lowercase_ : List[str],lowercase_ : Dict,lowercase_ : Optional[Any] )-> Tuple: '''simple docstring''' A__ = True A__ = GPTNeoXModel(lowercase_ ) model.to(lowercase_ ) model.eval() A__ = model(lowercase_,attention_mask=lowercase_ ) self.parent.assertEqual(result.last_hidden_state.shape,(self.batch_size, self.seq_length, self.hidden_size) ) def snake_case__ ( self : Union[str, Any],lowercase_ : str,lowercase_ : Union[str, Any],lowercase_ : Union[str, Any],lowercase_ : List[str] )-> List[str]: '''simple docstring''' A__ = GPTNeoXForCausalLM(config=lowercase_ ) model.to(lowercase_ ) model.eval() A__ = model(lowercase_,attention_mask=lowercase_,labels=lowercase_ ) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.seq_length, self.vocab_size) ) def snake_case__ ( self : Optional[int],lowercase_ : Optional[int],lowercase_ : Optional[int],lowercase_ : Dict,lowercase_ : Any )-> int: '''simple docstring''' A__ = self.num_labels A__ = GPTNeoXForQuestionAnswering(lowercase_ ) model.to(lowercase_ ) model.eval() A__ = model(lowercase_,attention_mask=lowercase_ ) self.parent.assertEqual(result.start_logits.shape,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape,(self.batch_size, self.seq_length) ) def snake_case__ ( self : List[str],lowercase_ : List[str],lowercase_ : int,lowercase_ : Union[str, Any],lowercase_ : Optional[int] )-> str: '''simple docstring''' A__ = self.num_labels A__ = GPTNeoXForSequenceClassification(lowercase_ ) model.to(lowercase_ ) model.eval() A__ = ids_tensor([self.batch_size],self.type_sequence_label_size ) A__ = model(lowercase_,attention_mask=lowercase_,labels=lowercase_ ) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.num_labels) ) def snake_case__ ( self : Any,lowercase_ : Union[str, Any],lowercase_ : List[Any],lowercase_ : Optional[Any],lowercase_ : int )-> Union[str, Any]: '''simple docstring''' A__ = self.num_labels A__ = GPTNeoXForTokenClassification(lowercase_ ) model.to(lowercase_ ) model.eval() A__ = model(lowercase_,attention_mask=lowercase_,labels=lowercase_ ) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.seq_length, self.num_labels) ) def snake_case__ ( self : int,lowercase_ : str,lowercase_ : int,lowercase_ : Union[str, Any] )-> List[Any]: '''simple docstring''' A__ = True A__ = GPTNeoXForCausalLM(config=lowercase_ ) model.to(lowercase_ ) model.eval() # first forward pass A__ = model(lowercase_,attention_mask=lowercase_,use_cache=lowercase_ ) A__ = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids A__ = ids_tensor((self.batch_size, 3),config.vocab_size ) A__ = ids_tensor((self.batch_size, 3),vocab_size=2 ) # append to next input_ids and A__ = torch.cat([input_ids, next_tokens],dim=-1 ) A__ = torch.cat([input_mask, next_mask],dim=-1 ) A__ = model(lowercase_,attention_mask=lowercase_,output_hidden_states=lowercase_ ) A__ = output_from_no_past['hidden_states'][0] A__ = model( lowercase_,attention_mask=lowercase_,past_key_values=lowercase_,output_hidden_states=lowercase_,)['hidden_states'][0] # select random slice A__ = ids_tensor((1,),output_from_past.shape[-1] ).item() A__ = output_from_no_past[:, -3:, random_slice_idx].detach() A__ = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowercase_,lowercase_,atol=1E-3 ) ) def snake_case__ ( self : str )-> Union[str, Any]: '''simple docstring''' A__ = self.prepare_config_and_inputs() A__ , A__ , A__ , A__ = config_and_inputs A__ = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class A ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): """simple docstring""" lowerCamelCase = ( ( GPTNeoXModel, GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, ) if is_torch_available() else () ) lowerCamelCase = (GPTNeoXForCausalLM,) if is_torch_available() else () lowerCamelCase = ( { 'feature-extraction': GPTNeoXModel, 'question-answering': GPTNeoXForQuestionAnswering, 'text-classification': GPTNeoXForSequenceClassification, 'text-generation': GPTNeoXForCausalLM, 'token-classification': GPTNeoXForTokenClassification, 'zero-shot': GPTNeoXForSequenceClassification, } if is_torch_available() else {} ) lowerCamelCase = False lowerCamelCase = False lowerCamelCase = False lowerCamelCase = False def snake_case__ ( self : str )-> Tuple: '''simple docstring''' A__ = GPTNeoXModelTester(self ) A__ = ConfigTester(self,config_class=lowercase_,hidden_size=6_4,num_attention_heads=8 ) def snake_case__ ( self : Optional[Any] )-> Union[str, Any]: '''simple docstring''' self.config_tester.run_common_tests() def snake_case__ ( self : Union[str, Any] )-> Union[str, Any]: '''simple docstring''' A__ , A__ , A__ , A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(lowercase_,lowercase_,lowercase_ ) def snake_case__ ( self : Dict )-> List[Any]: '''simple docstring''' A__ , A__ , A__ , A__ = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(lowercase_,lowercase_,lowercase_ ) def snake_case__ ( self : List[str] )-> Any: '''simple docstring''' A__ , A__ , A__ , A__ = self.model_tester.prepare_config_and_inputs_for_decoder() A__ = None self.model_tester.create_and_check_model_as_decoder(lowercase_,lowercase_,lowercase_ ) def snake_case__ ( self : Optional[Any] )-> str: '''simple docstring''' A__ , A__ , A__ , A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(lowercase_,lowercase_,lowercase_ ) def snake_case__ ( self : Dict )-> Dict: '''simple docstring''' A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_causal_lm(*lowercase_ ) def snake_case__ ( self : Tuple )-> List[Any]: '''simple docstring''' A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowercase_ ) def snake_case__ ( self : Any )-> List[str]: '''simple docstring''' A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowercase_ ) def snake_case__ ( self : str )-> Tuple: '''simple docstring''' A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowercase_ ) @unittest.skip(reason='Feed forward chunking is not implemented' ) def snake_case__ ( self : Union[str, Any] )-> Optional[Any]: '''simple docstring''' pass @parameterized.expand([('linear',), ('dynamic',)] ) def snake_case__ ( self : List[str],lowercase_ : Any )-> List[str]: '''simple docstring''' A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() A__ = ids_tensor([1, 1_0],config.vocab_size ) A__ = ids_tensor([1, int(config.max_position_embeddings * 1.5 )],config.vocab_size ) set_seed(4_2 ) # Fixed seed at init time so the two models get the same random weights A__ = GPTNeoXModel(lowercase_ ) original_model.to(lowercase_ ) original_model.eval() A__ = original_model(lowercase_ ).last_hidden_state A__ = original_model(lowercase_ ).last_hidden_state set_seed(4_2 ) # Fixed seed at init time so the two models get the same random weights A__ = {'type': scaling_type, 'factor': 10.0} A__ = GPTNeoXModel(lowercase_ ) scaled_model.to(lowercase_ ) scaled_model.eval() A__ = scaled_model(lowercase_ ).last_hidden_state A__ = scaled_model(lowercase_ ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(lowercase_,lowercase_,atol=1E-5 ) ) else: self.assertFalse(torch.allclose(lowercase_,lowercase_,atol=1E-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(lowercase_,lowercase_,atol=1E-5 ) ) @require_torch class A ( unittest.TestCase ): """simple docstring""" @slow def snake_case__ ( self : Tuple )-> Union[str, Any]: '''simple docstring''' A__ = AutoTokenizer.from_pretrained('EleutherAI/pythia-410m-deduped' ) for checkpointing in [True, False]: A__ = GPTNeoXForCausalLM.from_pretrained('EleutherAI/pythia-410m-deduped' ) if checkpointing: model.gradient_checkpointing_enable() else: model.gradient_checkpointing_disable() model.to(lowercase_ ) A__ = tokenizer('My favorite food is',return_tensors='pt' ).to(lowercase_ ) # The hub repo. is updated on 2023-04-04, resulting in poor outputs. # See: https://github.com/huggingface/transformers/pull/24193 A__ = 'My favorite food is a good old-fashioned, old-fashioned, old-fashioned.\n\nI\'m not sure' A__ = model.generate(**lowercase_,do_sample=lowercase_,max_new_tokens=2_0 ) A__ = tokenizer.batch_decode(lowercase_ )[0] self.assertEqual(lowercase_,lowercase_ )
7
1
from typing import Dict, Iterable, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format, to_pil_image from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_pytesseract_available, is_vision_available, logging, requires_backends if is_vision_available(): import PIL # soft dependency if is_pytesseract_available(): import pytesseract a__ = logging.get_logger(__name__) def __UpperCAmelCase ( __a : Union[str, Any] ,__a : str ,__a : Union[str, Any] ) -> List[str]: """simple docstring""" return [ int(1_000 * (box[0] / width) ), int(1_000 * (box[1] / height) ), int(1_000 * (box[2] / width) ), int(1_000 * (box[3] / height) ), ] def __UpperCAmelCase ( __a : np.ndarray ,__a : Optional[str] ,__a : Optional[str] ) -> List[Any]: """simple docstring""" _a : str = to_pil_image(__a ) _a : Optional[Any] = pil_image.size _a : Tuple = pytesseract.image_to_data(__a ,lang=__a ,output_type='''dict''' ,config=__a ) _a : List[str] = data['''text'''], data['''left'''], data['''top'''], data['''width'''], data['''height'''] # filter empty words and corresponding coordinates _a : Dict = [idx for idx, word in enumerate(__a ) if not word.strip()] _a : str = [word for idx, word in enumerate(__a ) if idx not in irrelevant_indices] _a : List[str] = [coord for idx, coord in enumerate(__a ) if idx not in irrelevant_indices] _a : Union[str, Any] = [coord for idx, coord in enumerate(__a ) if idx not in irrelevant_indices] _a : str = [coord for idx, coord in enumerate(__a ) if idx not in irrelevant_indices] _a : Union[str, Any] = [coord for idx, coord in enumerate(__a ) if idx not in irrelevant_indices] # turn coordinates into (left, top, left+width, top+height) format _a : int = [] for x, y, w, h in zip(__a ,__a ,__a ,__a ): _a : List[str] = [x, y, x + w, y + h] actual_boxes.append(__a ) # finally, normalize the bounding boxes _a : Dict = [] for box in actual_boxes: normalized_boxes.append(normalize_box(__a ,__a ,__a ) ) assert len(__a ) == len(__a ), "Not as many words as there are bounding boxes" return words, normalized_boxes class UpperCAmelCase_ ( __lowercase ): """simple docstring""" UpperCAmelCase__ : Optional[int] = ["pixel_values"] def __init__( self , _a = True , _a = None , _a = PILImageResampling.BILINEAR , _a = True , _a = 1 / 2_5_5 , _a = True , _a = None , _a = None , _a = True , _a = None , _a = "" , **_a , ) -> None: super().__init__(**_a ) _a : List[str] = size if size is not None else {'''height''': 2_2_4, '''width''': 2_2_4} _a : Union[str, Any] = get_size_dict(_a ) _a : int = do_resize _a : Optional[int] = size _a : str = resample _a : str = do_rescale _a : Any = rescale_value _a : Optional[Any] = do_normalize _a : int = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _a : List[str] = image_std if image_std is not None else IMAGENET_STANDARD_STD _a : List[Any] = apply_ocr _a : Optional[int] = ocr_lang _a : Tuple = tesseract_config def __lowercase ( self , _a , _a , _a = PILImageResampling.BILINEAR , _a = None , **_a , ) -> np.ndarray: _a : Any = get_size_dict(_a ) if "height" not in size or "width" not in size: raise ValueError(F"""The size dictionary must contain the keys 'height' and 'width'. Got {size.keys()}""" ) _a : Optional[int] = (size['''height'''], size['''width''']) return resize(_a , size=_a , resample=_a , data_format=_a , **_a ) def __lowercase ( self , _a , _a , _a = None , **_a , ) -> np.ndarray: return rescale(_a , scale=_a , data_format=_a , **_a ) def __lowercase ( self , _a , _a , _a , _a = None , **_a , ) -> np.ndarray: return normalize(_a , mean=_a , std=_a , data_format=_a , **_a ) def __lowercase ( self , _a , _a = None , _a = None , _a=None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = ChannelDimension.FIRST , **_a , ) -> PIL.Image.Image: _a : Optional[int] = do_resize if do_resize is not None else self.do_resize _a : Union[str, Any] = size if size is not None else self.size _a : Any = get_size_dict(_a ) _a : List[str] = resample if resample is not None else self.resample _a : int = do_rescale if do_rescale is not None else self.do_rescale _a : Union[str, Any] = rescale_factor if rescale_factor is not None else self.rescale_factor _a : int = do_normalize if do_normalize is not None else self.do_normalize _a : str = image_mean if image_mean is not None else self.image_mean _a : Tuple = image_std if image_std is not None else self.image_std _a : Any = apply_ocr if apply_ocr is not None else self.apply_ocr _a : int = ocr_lang if ocr_lang is not None else self.ocr_lang _a : Optional[int] = tesseract_config if tesseract_config is not None else self.tesseract_config _a : List[Any] = make_list_of_images(_a ) if not valid_images(_a ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''If do_normalize is True, image_mean and image_std must be specified.''' ) # All transformations expect numpy arrays. _a : Any = [to_numpy_array(_a ) for image in images] # Tesseract OCR to get words + normalized bounding boxes if apply_ocr: requires_backends(self , '''pytesseract''' ) _a : str = [] _a : str = [] for image in images: _a : Union[str, Any] = apply_tesseract(_a , _a , _a ) words_batch.append(_a ) boxes_batch.append(_a ) if do_resize: _a : List[str] = [self.resize(image=_a , size=_a , resample=_a ) for image in images] if do_rescale: _a : Optional[Any] = [self.rescale(image=_a , scale=_a ) for image in images] if do_normalize: _a : List[Any] = [self.normalize(image=_a , mean=_a , std=_a ) for image in images] _a : List[str] = [to_channel_dimension_format(_a , _a ) for image in images] _a : List[str] = BatchFeature(data={'''pixel_values''': images} , tensor_type=_a ) if apply_ocr: _a : Optional[int] = words_batch _a : List[Any] = boxes_batch return data
366
from __future__ import annotations def __UpperCAmelCase ( __a : list ) -> float: """simple docstring""" if not nums: raise ValueError('''List is empty''' ) return sum(__a ) / len(__a ) if __name__ == "__main__": import doctest doctest.testmod()
15
0
"""simple docstring""" import argparse import torch from transformers import LxmertConfig, LxmertForPreTraining, load_tf_weights_in_lxmert from transformers.utils import logging logging.set_verbosity_info() def snake_case_ ( A_ : Tuple, A_ : int, A_ : Dict ): '''simple docstring''' _lowerCamelCase : Union[str, Any] = LxmertConfig.from_json_file(A_ ) print(F'''Building PyTorch model from configuration: {config}''' ) _lowerCamelCase : List[str] = LxmertForPreTraining(A_ ) # Load weights from tf checkpoint load_tf_weights_in_lxmert(A_, A_, A_ ) # Save pytorch-model print(F'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict(), A_ ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help='''The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.''', ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) lowerCAmelCase__ = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path)
72
'''simple docstring''' import math def lowercase__ ( __UpperCamelCase , __UpperCamelCase )-> float: if initial_intensity < 0: raise ValueError("""The value of intensity cannot be negative""" ) # handling of negative values of initial intensity if angle < 0 or angle > 360: raise ValueError("""In Malus Law, the angle is in the range 0-360 degrees""" ) # handling of values out of allowed range return initial_intensity * (math.cos(math.radians(__UpperCamelCase ) ) ** 2) if __name__ == "__main__": import doctest doctest.testmod(name='malus_law')
321
0
import os import re import sys import traceback import warnings from pathlib import Path from typing import Dict, Optional, Union from uuid import uuida from huggingface_hub import HfFolder, ModelCard, ModelCardData, hf_hub_download, whoami from huggingface_hub.file_download import REGEX_COMMIT_HASH from huggingface_hub.utils import ( EntryNotFoundError, RepositoryNotFoundError, RevisionNotFoundError, is_jinja_available, ) from packaging import version from requests import HTTPError from .. import __version__ from .constants import ( DEPRECATED_REVISION_ARGS, DIFFUSERS_CACHE, HUGGINGFACE_CO_RESOLVE_ENDPOINT, SAFETENSORS_WEIGHTS_NAME, WEIGHTS_NAME, ) from .import_utils import ( ENV_VARS_TRUE_VALUES, _flax_version, _jax_version, _onnxruntime_version, _torch_version, is_flax_available, is_onnx_available, is_torch_available, ) from .logging import get_logger A__ = get_logger(__name__) A__ = Path(__file__).parent / '''model_card_template.md''' A__ = uuida().hex A__ = os.getenv('''HF_HUB_OFFLINE''', '''''').upper() in ENV_VARS_TRUE_VALUES A__ = os.getenv('''DISABLE_TELEMETRY''', '''''').upper() in ENV_VARS_TRUE_VALUES A__ = HUGGINGFACE_CO_RESOLVE_ENDPOINT + '''/api/telemetry/''' def _lowerCAmelCase ( __lowerCAmelCase = None ) -> str: """simple docstring""" snake_case__ : List[Any] = f"""diffusers/{__version__}; python/{sys.version.split()[0]}; session_id/{SESSION_ID}""" if DISABLE_TELEMETRY or HF_HUB_OFFLINE: return ua + "; telemetry/off" if is_torch_available(): ua += f"""; torch/{_torch_version}""" if is_flax_available(): ua += f"""; jax/{_jax_version}""" ua += f"""; flax/{_flax_version}""" if is_onnx_available(): ua += f"""; onnxruntime/{_onnxruntime_version}""" # CI will set this value to True if os.environ.get('''DIFFUSERS_IS_CI''' , '''''' ).upper() in ENV_VARS_TRUE_VALUES: ua += "; is_ci/true" if isinstance(__lowerCAmelCase , __lowerCAmelCase ): ua += "; " + "; ".join(f"""{k}/{v}""" for k, v in user_agent.items() ) elif isinstance(__lowerCAmelCase , __lowerCAmelCase ): ua += "; " + user_agent return ua def _lowerCAmelCase ( __lowerCAmelCase , __lowerCAmelCase = None , __lowerCAmelCase = None ) -> Tuple: """simple docstring""" if token is None: snake_case__ : Optional[Any] = HfFolder.get_token() if organization is None: snake_case__ : Tuple = whoami(__lowerCAmelCase )['''name'''] return f"""{username}/{model_id}""" else: return f"""{organization}/{model_id}""" def _lowerCAmelCase ( __lowerCAmelCase , __lowerCAmelCase ) -> Dict: """simple docstring""" if not is_jinja_available(): raise ValueError( '''Modelcard rendering is based on Jinja templates.''' ''' Please make sure to have `jinja` installed before using `create_model_card`.''' ''' To install it, please run `pip install Jinja2`.''' ) if hasattr(__lowerCAmelCase , '''local_rank''' ) and args.local_rank not in [-1, 0]: return snake_case__ : str = args.hub_token if hasattr(__lowerCAmelCase , '''hub_token''' ) else None snake_case__ : List[str] = get_full_repo_name(__lowerCAmelCase , token=__lowerCAmelCase ) snake_case__ : str = ModelCard.from_template( card_data=ModelCardData( # Card metadata object that will be converted to YAML block language='''en''' , license='''apache-2.0''' , library_name='''diffusers''' , tags=[] , datasets=args.dataset_name , metrics=[] , ) , template_path=__lowerCAmelCase , model_name=__lowerCAmelCase , repo_name=__lowerCAmelCase , dataset_name=args.dataset_name if hasattr(__lowerCAmelCase , '''dataset_name''' ) else None , learning_rate=args.learning_rate , train_batch_size=args.train_batch_size , eval_batch_size=args.eval_batch_size , gradient_accumulation_steps=( args.gradient_accumulation_steps if hasattr(__lowerCAmelCase , '''gradient_accumulation_steps''' ) else None ) , adam_betaa=args.adam_betaa if hasattr(__lowerCAmelCase , '''adam_beta1''' ) else None , adam_betaa=args.adam_betaa if hasattr(__lowerCAmelCase , '''adam_beta2''' ) else None , adam_weight_decay=args.adam_weight_decay if hasattr(__lowerCAmelCase , '''adam_weight_decay''' ) else None , adam_epsilon=args.adam_epsilon if hasattr(__lowerCAmelCase , '''adam_epsilon''' ) else None , lr_scheduler=args.lr_scheduler if hasattr(__lowerCAmelCase , '''lr_scheduler''' ) else None , lr_warmup_steps=args.lr_warmup_steps if hasattr(__lowerCAmelCase , '''lr_warmup_steps''' ) else None , ema_inv_gamma=args.ema_inv_gamma if hasattr(__lowerCAmelCase , '''ema_inv_gamma''' ) else None , ema_power=args.ema_power if hasattr(__lowerCAmelCase , '''ema_power''' ) else None , ema_max_decay=args.ema_max_decay if hasattr(__lowerCAmelCase , '''ema_max_decay''' ) else None , mixed_precision=args.mixed_precision , ) snake_case__ : str = os.path.join(args.output_dir , '''README.md''' ) model_card.save(__lowerCAmelCase ) def _lowerCAmelCase ( __lowerCAmelCase , __lowerCAmelCase = None ) -> str: """simple docstring""" if resolved_file is None or commit_hash is not None: return commit_hash snake_case__ : List[str] = str(Path(__lowerCAmelCase ).as_posix() ) snake_case__ : Dict = re.search(r'''snapshots/([^/]+)/''' , __lowerCAmelCase ) if search is None: return None snake_case__ : str = search.groups()[0] return commit_hash if REGEX_COMMIT_HASH.match(__lowerCAmelCase ) else None # Old default cache path, potentially to be migrated. # This logic was more or less taken from `transformers`, with the following differences: # - Diffusers doesn't use custom environment variables to specify the cache path. # - There is no need to migrate the cache format, just move the files to the new location. A__ = os.path.expanduser( os.getenv('''HF_HOME''', os.path.join(os.getenv('''XDG_CACHE_HOME''', '''~/.cache'''), '''huggingface''')) ) A__ = os.path.join(hf_cache_home, '''diffusers''') def _lowerCAmelCase ( __lowerCAmelCase = None , __lowerCAmelCase = None ) -> None: """simple docstring""" if new_cache_dir is None: snake_case__ : Union[str, Any] = DIFFUSERS_CACHE if old_cache_dir is None: snake_case__ : int = old_diffusers_cache snake_case__ : int = Path(__lowerCAmelCase ).expanduser() snake_case__ : List[Any] = Path(__lowerCAmelCase ).expanduser() for old_blob_path in old_cache_dir.glob('''**/blobs/*''' ): if old_blob_path.is_file() and not old_blob_path.is_symlink(): snake_case__ : Dict = new_cache_dir / old_blob_path.relative_to(__lowerCAmelCase ) new_blob_path.parent.mkdir(parents=__lowerCAmelCase , exist_ok=__lowerCAmelCase ) os.replace(__lowerCAmelCase , __lowerCAmelCase ) try: os.symlink(__lowerCAmelCase , __lowerCAmelCase ) except OSError: logger.warning( '''Could not create symlink between old cache and new cache. If you use an older version of diffusers again, files will be re-downloaded.''' ) # At this point, old_cache_dir contains symlinks to the new cache (it can still be used). A__ = os.path.join(DIFFUSERS_CACHE, '''version_diffusers_cache.txt''') if not os.path.isfile(cache_version_file): A__ = 0 else: with open(cache_version_file) as f: try: A__ = int(f.read()) except ValueError: A__ = 0 if cache_version < 1: A__ = os.path.isdir(old_diffusers_cache) and len(os.listdir(old_diffusers_cache)) > 0 if old_cache_is_not_empty: logger.warning( '''The cache for model files in Diffusers v0.14.0 has moved to a new location. Moving your ''' '''existing cached models. This is a one-time operation, you can interrupt it or run it ''' '''later by calling `diffusers.utils.hub_utils.move_cache()`.''' ) try: move_cache() except Exception as e: A__ = '''\n'''.join(traceback.format_tb(e.__traceback__)) logger.error( f"""There was a problem when trying to move your cache:\n\n{trace}\n{e.__class__.__name__}: {e}\n\nPlease """ '''file an issue at https://github.com/huggingface/diffusers/issues/new/choose, copy paste this whole ''' '''message and we will do our best to help.''' ) if cache_version < 1: try: os.makedirs(DIFFUSERS_CACHE, exist_ok=True) with open(cache_version_file, '''w''') as f: f.write('''1''') except Exception: logger.warning( f"""There was a problem when trying to write in your cache folder ({DIFFUSERS_CACHE}). Please, ensure """ '''the directory exists and can be written to.''' ) def _lowerCAmelCase ( __lowerCAmelCase , __lowerCAmelCase = None ) -> str: """simple docstring""" if variant is not None: snake_case__ : Any = weights_name.split('''.''' ) snake_case__ : int = splits[:-1] + [variant] + splits[-1:] snake_case__ : List[str] = '''.'''.join(__lowerCAmelCase ) return weights_name def _lowerCAmelCase ( __lowerCAmelCase , *, __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=None , ) -> List[Any]: """simple docstring""" snake_case__ : int = str(__lowerCAmelCase ) if os.path.isfile(__lowerCAmelCase ): return pretrained_model_name_or_path elif os.path.isdir(__lowerCAmelCase ): if os.path.isfile(os.path.join(__lowerCAmelCase , __lowerCAmelCase ) ): # Load from a PyTorch checkpoint snake_case__ : List[Any] = os.path.join(__lowerCAmelCase , __lowerCAmelCase ) return model_file elif subfolder is not None and os.path.isfile( os.path.join(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) ): snake_case__ : str = os.path.join(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) return model_file else: raise EnvironmentError( f"""Error no file named {weights_name} found in directory {pretrained_model_name_or_path}.""" ) else: # 1. First check if deprecated way of loading from branches is used if ( revision in DEPRECATED_REVISION_ARGS and (weights_name == WEIGHTS_NAME or weights_name == SAFETENSORS_WEIGHTS_NAME) and version.parse(version.parse(__lowerCAmelCase ).base_version ) >= version.parse('''0.20.0''' ) ): try: snake_case__ : str = hf_hub_download( __lowerCAmelCase , filename=_add_variant(__lowerCAmelCase , __lowerCAmelCase ) , cache_dir=__lowerCAmelCase , force_download=__lowerCAmelCase , proxies=__lowerCAmelCase , resume_download=__lowerCAmelCase , local_files_only=__lowerCAmelCase , use_auth_token=__lowerCAmelCase , user_agent=__lowerCAmelCase , subfolder=__lowerCAmelCase , revision=revision or commit_hash , ) warnings.warn( f"""Loading the variant {revision} from {pretrained_model_name_or_path} via `revision='{revision}'` is deprecated. Loading instead from `revision='main'` with `variant={revision}`. Loading model variants via `revision='{revision}'` will be removed in diffusers v1. Please use `variant='{revision}'` instead.""" , __lowerCAmelCase , ) return model_file except: # noqa: E722 warnings.warn( f"""You are loading the variant {revision} from {pretrained_model_name_or_path} via `revision='{revision}'`. This behavior is deprecated and will be removed in diffusers v1. One should use `variant='{revision}'` instead. However, it appears that {pretrained_model_name_or_path} currently does not have a {_add_variant(__lowerCAmelCase , __lowerCAmelCase )} file in the 'main' branch of {pretrained_model_name_or_path}. \n The Diffusers team and community would be very grateful if you could open an issue: https://github.com/huggingface/diffusers/issues/new with the title '{pretrained_model_name_or_path} is missing {_add_variant(__lowerCAmelCase , __lowerCAmelCase )}' so that the correct variant file can be added.""" , __lowerCAmelCase , ) try: # 2. Load model file as usual snake_case__ : Dict = hf_hub_download( __lowerCAmelCase , filename=__lowerCAmelCase , cache_dir=__lowerCAmelCase , force_download=__lowerCAmelCase , proxies=__lowerCAmelCase , resume_download=__lowerCAmelCase , local_files_only=__lowerCAmelCase , use_auth_token=__lowerCAmelCase , user_agent=__lowerCAmelCase , subfolder=__lowerCAmelCase , revision=revision or commit_hash , ) return model_file except RepositoryNotFoundError: raise EnvironmentError( f"""{pretrained_model_name_or_path} is not a local folder and is not a valid model identifier """ '''listed on \'https://huggingface.co/models\'\nIf this is a private repository, make sure to pass a ''' '''token having permission to this repo with `use_auth_token` or log in with `huggingface-cli ''' '''login`.''' ) except RevisionNotFoundError: raise EnvironmentError( f"""{revision} is not a valid git identifier (branch name, tag name or commit id) that exists for """ '''this model name. Check the model page at ''' f"""'https://huggingface.co/{pretrained_model_name_or_path}' for available revisions.""" ) except EntryNotFoundError: raise EnvironmentError( f"""{pretrained_model_name_or_path} does not appear to have a file named {weights_name}.""" ) except HTTPError as err: raise EnvironmentError( f"""There was a specific connection error when trying to load {pretrained_model_name_or_path}:\n{err}""" ) except ValueError: raise EnvironmentError( f"""We couldn't connect to '{HUGGINGFACE_CO_RESOLVE_ENDPOINT}' to load this model, couldn't find it""" f""" in the cached files and it looks like {pretrained_model_name_or_path} is not the path to a""" f""" directory containing a file named {weights_name} or""" ''' \nCheckout your internet connection or see how to run the library in''' ''' offline mode at \'https://huggingface.co/docs/diffusers/installation#offline-mode\'.''' ) except EnvironmentError: raise EnvironmentError( f"""Can't load the model for '{pretrained_model_name_or_path}'. If you were trying to load it from """ '''\'https://huggingface.co/models\', make sure you don\'t have a local directory with the same name. ''' f"""Otherwise, make sure '{pretrained_model_name_or_path}' is the correct path to a directory """ f"""containing a file named {weights_name}""" )
44
import os import unittest from transformers.models.transfo_xl.tokenization_transfo_xl import VOCAB_FILES_NAMES, TransfoXLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class a ( __lowerCamelCase , unittest.TestCase ): __lowerCAmelCase : Dict = TransfoXLTokenizer __lowerCAmelCase : Union[str, Any] = False __lowerCAmelCase : List[str] = False def __lowerCamelCase ( self :Union[str, Any] ): super().setUp() snake_case__ : Optional[int] = [ '''<unk>''', '''[CLS]''', '''[SEP]''', '''want''', '''unwanted''', '''wa''', '''un''', '''running''', ''',''', '''low''', '''l''', ] snake_case__ : Optional[Any] = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file ,'''w''' ,encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def __lowerCamelCase ( self :int ,**__lowercase :Any ): snake_case__ : str = True return TransfoXLTokenizer.from_pretrained(self.tmpdirname ,**__lowercase ) def __lowerCamelCase ( self :int ,__lowercase :Optional[int] ): snake_case__ : int = '''<unk> UNwanted , running''' snake_case__ : List[Any] = '''<unk> unwanted, running''' return input_text, output_text def __lowerCamelCase ( self :Union[str, Any] ): snake_case__ : Optional[Any] = TransfoXLTokenizer(vocab_file=self.vocab_file ,lower_case=__lowercase ) snake_case__ : Tuple = tokenizer.tokenize('''<unk> UNwanted , running''' ) self.assertListEqual(__lowercase ,['''<unk>''', '''unwanted''', ''',''', '''running'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__lowercase ) ,[0, 4, 8, 7] ) def __lowerCamelCase ( self :Union[str, Any] ): snake_case__ : List[Any] = TransfoXLTokenizer(lower_case=__lowercase ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo ! how \n Are yoU ? ''' ) ,['''hello''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) def __lowerCamelCase ( self :Tuple ): snake_case__ : Optional[Any] = TransfoXLTokenizer(lower_case=__lowercase ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo ! how \n Are yoU ? ''' ) ,['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def __lowerCamelCase ( self :Optional[int] ): snake_case__ : Any = TransfoXLTokenizer(lower_case=__lowercase ) snake_case__ : List[str] = '''Hello (bracket) and side-scrolled [and] Henry\'s $5,000 with 3.34 m. What\'s up!?''' snake_case__ : Union[str, Any] = [ '''Hello''', '''(''', '''bracket''', ''')''', '''and''', '''side''', '''@-@''', '''scrolled''', '''[''', '''and''', ''']''', '''Henry''', '''\'s''', '''$''', '''5''', '''@,@''', '''000''', '''with''', '''3''', '''@.@''', '''34''', '''m''', '''.''', '''What''', '''\'s''', '''up''', '''!''', '''?''', ] self.assertListEqual(tokenizer.tokenize(__lowercase ) ,__lowercase ) self.assertEqual(tokenizer.convert_tokens_to_string(__lowercase ) ,__lowercase ) def __lowerCamelCase ( self :Optional[Any] ): snake_case__ : Any = self.get_tokenizer() snake_case__ : Optional[Any] = len(__lowercase ) tokenizer.add_tokens(['''new1''', '''new2'''] ) tokenizer.move_added_token('''new1''' ,1 ) # Check that moved token is not copied (duplicate) self.assertEqual(len(__lowercase ) ,original_len + 2 ) # Check that token is moved to specified id self.assertEqual(tokenizer.encode('''new1''' ) ,[1] ) self.assertEqual(tokenizer.decode([1] ) ,'''new1''' )
44
1
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_url from PIL import Image from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor from transformers.utils import logging logging.set_verbosity_info() lowercase__ =logging.get_logger(__name__) def __UpperCamelCase ( lowerCAmelCase__ : Tuple ): __a : Any = DPTConfig() if "large" in checkpoint_url: __a : List[Any] = 1_0_2_4 __a : List[str] = 4_0_9_6 __a : Tuple = 2_4 __a : List[Any] = 1_6 __a : List[str] = [5, 1_1, 1_7, 2_3] __a : Union[str, Any] = [2_5_6, 5_1_2, 1_0_2_4, 1_0_2_4] __a : Dict = (1, 3_8_4, 3_8_4) if "ade" in checkpoint_url: __a : List[Any] = True __a : str = 1_5_0 __a : Dict = '''huggingface/label-files''' __a : Union[str, Any] = '''ade20k-id2label.json''' __a : int = json.load(open(cached_download(hf_hub_url(lowerCAmelCase__ , lowerCAmelCase__ , repo_type='''dataset''' ) ) , '''r''' ) ) __a : Tuple = {int(lowerCAmelCase__ ): v for k, v in idalabel.items()} __a : Union[str, Any] = idalabel __a : Union[str, Any] = {v: k for k, v in idalabel.items()} __a : List[Any] = [1, 1_5_0, 4_8_0, 4_8_0] return config, expected_shape def __UpperCamelCase ( lowerCAmelCase__ : int ): __a : Optional[Any] = ['''pretrained.model.head.weight''', '''pretrained.model.head.bias'''] for k in ignore_keys: state_dict.pop(lowerCAmelCase__ , lowerCAmelCase__ ) def __UpperCamelCase ( lowerCAmelCase__ : str ): if ( "pretrained.model" in name and "cls_token" not in name and "pos_embed" not in name and "patch_embed" not in name ): __a : Tuple = name.replace('''pretrained.model''' , '''dpt.encoder''' ) if "pretrained.model" in name: __a : str = name.replace('''pretrained.model''' , '''dpt.embeddings''' ) if "patch_embed" in name: __a : Union[str, Any] = name.replace('''patch_embed''' , '''patch_embeddings''' ) if "pos_embed" in name: __a : List[Any] = name.replace('''pos_embed''' , '''position_embeddings''' ) if "attn.proj" in name: __a : int = name.replace('''attn.proj''' , '''attention.output.dense''' ) if "proj" in name and "project" not in name: __a : Dict = name.replace('''proj''' , '''projection''' ) if "blocks" in name: __a : Optional[Any] = name.replace('''blocks''' , '''layer''' ) if "mlp.fc1" in name: __a : Optional[Any] = name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: __a : List[str] = name.replace('''mlp.fc2''' , '''output.dense''' ) if "norm1" in name: __a : Tuple = name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name: __a : str = name.replace('''norm2''' , '''layernorm_after''' ) if "scratch.output_conv" in name: __a : Optional[Any] = name.replace('''scratch.output_conv''' , '''head''' ) if "scratch" in name: __a : Tuple = name.replace('''scratch''' , '''neck''' ) if "layer1_rn" in name: __a : Optional[Any] = name.replace('''layer1_rn''' , '''convs.0''' ) if "layer2_rn" in name: __a : Tuple = name.replace('''layer2_rn''' , '''convs.1''' ) if "layer3_rn" in name: __a : Any = name.replace('''layer3_rn''' , '''convs.2''' ) if "layer4_rn" in name: __a : Union[str, Any] = name.replace('''layer4_rn''' , '''convs.3''' ) if "refinenet" in name: __a : Dict = int(name[len('''neck.refinenet''' ) : len('''neck.refinenet''' ) + 1] ) # tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3 __a : int = name.replace(f"refinenet{layer_idx}" , f"fusion_stage.layers.{abs(layer_idx-4 )}" ) if "out_conv" in name: __a : List[str] = name.replace('''out_conv''' , '''projection''' ) if "resConfUnit1" in name: __a : Optional[int] = name.replace('''resConfUnit1''' , '''residual_layer1''' ) if "resConfUnit2" in name: __a : Optional[int] = name.replace('''resConfUnit2''' , '''residual_layer2''' ) if "conv1" in name: __a : Optional[int] = name.replace('''conv1''' , '''convolution1''' ) if "conv2" in name: __a : Optional[int] = name.replace('''conv2''' , '''convolution2''' ) # readout blocks if "pretrained.act_postprocess1.0.project.0" in name: __a : Optional[Any] = name.replace('''pretrained.act_postprocess1.0.project.0''' , '''neck.reassemble_stage.readout_projects.0.0''' ) if "pretrained.act_postprocess2.0.project.0" in name: __a : Union[str, Any] = name.replace('''pretrained.act_postprocess2.0.project.0''' , '''neck.reassemble_stage.readout_projects.1.0''' ) if "pretrained.act_postprocess3.0.project.0" in name: __a : List[Any] = name.replace('''pretrained.act_postprocess3.0.project.0''' , '''neck.reassemble_stage.readout_projects.2.0''' ) if "pretrained.act_postprocess4.0.project.0" in name: __a : str = name.replace('''pretrained.act_postprocess4.0.project.0''' , '''neck.reassemble_stage.readout_projects.3.0''' ) # resize blocks if "pretrained.act_postprocess1.3" in name: __a : Union[str, Any] = name.replace('''pretrained.act_postprocess1.3''' , '''neck.reassemble_stage.layers.0.projection''' ) if "pretrained.act_postprocess1.4" in name: __a : List[Any] = name.replace('''pretrained.act_postprocess1.4''' , '''neck.reassemble_stage.layers.0.resize''' ) if "pretrained.act_postprocess2.3" in name: __a : Optional[int] = name.replace('''pretrained.act_postprocess2.3''' , '''neck.reassemble_stage.layers.1.projection''' ) if "pretrained.act_postprocess2.4" in name: __a : List[Any] = name.replace('''pretrained.act_postprocess2.4''' , '''neck.reassemble_stage.layers.1.resize''' ) if "pretrained.act_postprocess3.3" in name: __a : Union[str, Any] = name.replace('''pretrained.act_postprocess3.3''' , '''neck.reassemble_stage.layers.2.projection''' ) if "pretrained.act_postprocess4.3" in name: __a : str = name.replace('''pretrained.act_postprocess4.3''' , '''neck.reassemble_stage.layers.3.projection''' ) if "pretrained.act_postprocess4.4" in name: __a : Optional[Any] = name.replace('''pretrained.act_postprocess4.4''' , '''neck.reassemble_stage.layers.3.resize''' ) if "pretrained" in name: __a : Optional[Any] = name.replace('''pretrained''' , '''dpt''' ) if "bn" in name: __a : List[str] = name.replace('''bn''' , '''batch_norm''' ) if "head" in name: __a : int = name.replace('''head''' , '''head.head''' ) if "encoder.norm" in name: __a : Union[str, Any] = name.replace('''encoder.norm''' , '''layernorm''' ) if "auxlayer" in name: __a : str = name.replace('''auxlayer''' , '''auxiliary_head.head''' ) return name def __UpperCamelCase ( lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Tuple ): for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) __a : Tuple = state_dict.pop(f"dpt.encoder.layer.{i}.attn.qkv.weight" ) __a : List[Any] = state_dict.pop(f"dpt.encoder.layer.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict __a : str = in_proj_weight[: config.hidden_size, :] __a : Tuple = in_proj_bias[: config.hidden_size] __a : Optional[Any] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] __a : Tuple = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] __a : Dict = in_proj_weight[ -config.hidden_size :, : ] __a : List[Any] = in_proj_bias[-config.hidden_size :] def __UpperCamelCase ( ): __a : List[str] = '''http://images.cocodataset.org/val2017/000000039769.jpg''' __a : Tuple = Image.open(requests.get(lowerCAmelCase__ , stream=lowerCAmelCase__ ).raw ) return im @torch.no_grad() def __UpperCamelCase ( lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : List[Any] ): __a : List[Any] = get_dpt_config(lowerCAmelCase__ ) # load original state_dict from URL __a : int = torch.hub.load_state_dict_from_url(lowerCAmelCase__ , map_location='''cpu''' ) # remove certain keys remove_ignore_keys_(lowerCAmelCase__ ) # rename keys for key in state_dict.copy().keys(): __a : Tuple = state_dict.pop(lowerCAmelCase__ ) __a : Optional[int] = val # read in qkv matrices read_in_q_k_v(lowerCAmelCase__ , lowerCAmelCase__ ) # load HuggingFace model __a : int = DPTForSemanticSegmentation(lowerCAmelCase__ ) if '''ade''' in checkpoint_url else DPTForDepthEstimation(lowerCAmelCase__ ) model.load_state_dict(lowerCAmelCase__ ) model.eval() # Check outputs on an image __a : Any = 4_8_0 if '''ade''' in checkpoint_url else 3_8_4 __a : Union[str, Any] = DPTImageProcessor(size=lowerCAmelCase__ ) __a : Any = prepare_img() __a : Any = image_processor(lowerCAmelCase__ , return_tensors='''pt''' ) # forward pass __a : Dict = model(**lowerCAmelCase__ ).logits if '''ade''' in checkpoint_url else model(**lowerCAmelCase__ ).predicted_depth # Assert logits __a : Union[str, Any] = torch.tensor([[6.31_99, 6.36_29, 6.41_48], [6.38_50, 6.36_15, 6.41_66], [6.35_19, 6.31_76, 6.35_75]] ) if "ade" in checkpoint_url: __a : Any = torch.tensor([[4.04_80, 4.24_20, 4.43_60], [4.31_24, 4.56_93, 4.82_61], [4.57_68, 4.89_65, 5.21_63]] ) assert outputs.shape == torch.Size(lowerCAmelCase__ ) assert ( torch.allclose(outputs[0, 0, :3, :3] , lowerCAmelCase__ , atol=1e-4 ) if "ade" in checkpoint_url else torch.allclose(outputs[0, :3, :3] , lowerCAmelCase__ ) ) Path(lowerCAmelCase__ ).mkdir(exist_ok=lowerCAmelCase__ ) print(f"Saving model to {pytorch_dump_folder_path}" ) model.save_pretrained(lowerCAmelCase__ ) print(f"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(lowerCAmelCase__ ) if push_to_hub: print('''Pushing model to hub...''' ) model.push_to_hub( repo_path_or_name=Path(lowerCAmelCase__ , lowerCAmelCase__ ) , organization='''nielsr''' , commit_message='''Add model''' , use_temp_dir=lowerCAmelCase__ , ) image_processor.push_to_hub( repo_path_or_name=Path(lowerCAmelCase__ , lowerCAmelCase__ ) , organization='''nielsr''' , commit_message='''Add image processor''' , use_temp_dir=lowerCAmelCase__ , ) if __name__ == "__main__": lowercase__ =argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint_url', default='https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt', type=str, help='URL of the original DPT checkpoint you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model directory.', ) parser.add_argument( '--push_to_hub', action='store_true', ) parser.add_argument( '--model_name', default='dpt-large', type=str, help='Name of the model, in case you\'re pushing to the hub.', ) lowercase__ =parser.parse_args() convert_dpt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
216
import requests from bsa import BeautifulSoup def _a ( SCREAMING_SNAKE_CASE : str = "AAPL" ): """simple docstring""" UpperCamelCase__ : Tuple = F"https://in.finance.yahoo.com/quote/{symbol}?s={symbol}" UpperCamelCase__ : int = BeautifulSoup(requests.get(SCREAMING_SNAKE_CASE ).text , '''html.parser''' ) UpperCamelCase__ : str = '''My(6px) Pos(r) smartphone_Mt(6px)''' return soup.find('''div''' , class_=class_ ).find('''span''' ).text if __name__ == "__main__": for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split(): print(f"Current {symbol:<4} stock price is {stock_price(symbol):>8}")
146
0
'''simple docstring''' from typing import List, Optional, Tuple, Union import PIL import torch from torchvision import transforms from diffusers.pipeline_utils import DiffusionPipeline, ImagePipelineOutput from diffusers.schedulers import DDIMScheduler from diffusers.utils import randn_tensor __a = transforms.Compose( [ transforms.Resize((256, 256)), transforms.ToTensor(), transforms.Normalize([0.5], [0.5]), ] ) def __snake_case( _lowerCAmelCase ) -> int: if isinstance(_A , torch.Tensor ): return image elif isinstance(_A , PIL.Image.Image ): snake_case__ : str = [image] snake_case__ : Dict = [trans(img.convert("""RGB""" ) ) for img in image] snake_case__ : Optional[int] = torch.stack(_A ) return image class UpperCAmelCase_ ( lowerCamelCase__ ): """simple docstring""" def __init__( self : List[Any] , snake_case_ : Optional[Any] , snake_case_ : str ): super().__init__() # make sure scheduler can always be converted to DDIM snake_case__ : str = DDIMScheduler.from_config(scheduler.config ) self.register_modules(unet=__snake_case , scheduler=__snake_case ) def lowerCamelCase ( self : Union[str, Any] , snake_case_ : Union[str, Any] ): if strength < 0 or strength > 1: raise ValueError(f"The value of strength should in [0.0, 1.0] but is {strength}" ) def lowerCamelCase ( self : Optional[Any] , snake_case_ : Dict , snake_case_ : Any , snake_case_ : List[str] ): # get the original timestep using init_timestep snake_case__ : Union[str, Any] = min(int(num_inference_steps * strength ) , __snake_case ) snake_case__ : str = max(num_inference_steps - init_timestep , 0 ) snake_case__ : int = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def lowerCamelCase ( self : Union[str, Any] , snake_case_ : str , snake_case_ : str , snake_case_ : int , snake_case_ : Tuple , snake_case_ : Dict , snake_case_ : Dict=None ): if not isinstance(__snake_case , (torch.Tensor, PIL.Image.Image, list) ): raise ValueError( f"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(__snake_case )}" ) snake_case__ : Union[str, Any] = image.to(device=__snake_case , dtype=__snake_case ) if isinstance(__snake_case , __snake_case ) and len(__snake_case ) != batch_size: raise ValueError( f"You have passed a list of generators of length {len(__snake_case )}, but requested an effective batch" f" size of {batch_size}. Make sure the batch size matches the length of the generators." ) snake_case__ : List[Any] = init_latents.shape snake_case__ : str = randn_tensor(__snake_case , generator=__snake_case , device=__snake_case , dtype=__snake_case ) # get latents print("""add noise to latents at timestep""" , __snake_case ) snake_case__ : List[Any] = self.scheduler.add_noise(__snake_case , __snake_case , __snake_case ) snake_case__ : Dict = init_latents return latents @torch.no_grad() def __call__( self : Any , snake_case_ : Union[torch.FloatTensor, PIL.Image.Image] = None , snake_case_ : float = 0.8 , snake_case_ : int = 1 , snake_case_ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , snake_case_ : float = 0.0 , snake_case_ : int = 50 , snake_case_ : Optional[bool] = None , snake_case_ : Optional[str] = "pil" , snake_case_ : bool = True , ): self.check_inputs(__snake_case ) # 2. Preprocess image snake_case__ : Tuple = preprocess(__snake_case ) # 3. set timesteps self.scheduler.set_timesteps(__snake_case , device=self.device ) snake_case__ : Optional[Any] = self.get_timesteps(__snake_case , __snake_case , self.device ) snake_case__ : List[str] = timesteps[:1].repeat(__snake_case ) # 4. Prepare latent variables snake_case__ : List[str] = self.prepare_latents(__snake_case , __snake_case , __snake_case , self.unet.dtype , self.device , __snake_case ) snake_case__ : Optional[Any] = latents # 5. Denoising loop for t in self.progress_bar(__snake_case ): # 1. predict noise model_output snake_case__ : List[Any] = self.unet(__snake_case , __snake_case ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 snake_case__ : Optional[int] = self.scheduler.step( __snake_case , __snake_case , __snake_case , eta=__snake_case , use_clipped_model_output=__snake_case , generator=__snake_case , ).prev_sample snake_case__ : Optional[Any] = (image / 2 + 0.5).clamp(0 , 1 ) snake_case__ : Union[str, Any] = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": snake_case__ : List[str] = self.numpy_to_pil(__snake_case ) if not return_dict: return (image, latent_timestep.item()) return ImagePipelineOutput(images=__snake_case )
357
'''simple docstring''' def __snake_case( _lowerCAmelCase ) -> int: if not isinstance(_lowerCAmelCase , _lowerCAmelCase ): raise ValueError("""multiplicative_persistence() only accepts integral values""" ) if num < 0: raise ValueError("""multiplicative_persistence() does not accept negative values""" ) snake_case__ : List[Any] = 0 snake_case__ : Union[str, Any] = str(_lowerCAmelCase ) while len(_lowerCAmelCase ) != 1: snake_case__ : List[Any] = [int(_lowerCAmelCase ) for i in num_string] snake_case__ : str = 1 for i in range(0 , len(_lowerCAmelCase ) ): total *= numbers[i] snake_case__ : Optional[Any] = str(_lowerCAmelCase ) steps += 1 return steps def __snake_case( _lowerCAmelCase ) -> int: if not isinstance(_lowerCAmelCase , _lowerCAmelCase ): raise ValueError("""additive_persistence() only accepts integral values""" ) if num < 0: raise ValueError("""additive_persistence() does not accept negative values""" ) snake_case__ : Union[str, Any] = 0 snake_case__ : List[str] = str(_lowerCAmelCase ) while len(_lowerCAmelCase ) != 1: snake_case__ : Optional[int] = [int(_lowerCAmelCase ) for i in num_string] snake_case__ : Dict = 0 for i in range(0 , len(_lowerCAmelCase ) ): total += numbers[i] snake_case__ : List[Any] = str(_lowerCAmelCase ) steps += 1 return steps if __name__ == "__main__": import doctest doctest.testmod()
43
0
"""simple docstring""" __UpperCamelCase = 9.80665 def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = g ) -> float: if fluid_density <= 0: raise ValueError('Impossible fluid density' ) if volume < 0: raise ValueError('Impossible Object volume' ) if gravity <= 0: raise ValueError('Impossible Gravity' ) return fluid_density * gravity * volume if __name__ == "__main__": import doctest # run doctest doctest.testmod()
69
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tensorflow_text_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __UpperCamelCase = { '''configuration_bert''': ['''BERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BertConfig''', '''BertOnnxConfig'''], '''tokenization_bert''': ['''BasicTokenizer''', '''BertTokenizer''', '''WordpieceTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = ['''BertTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = [ '''BERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BertForMaskedLM''', '''BertForMultipleChoice''', '''BertForNextSentencePrediction''', '''BertForPreTraining''', '''BertForQuestionAnswering''', '''BertForSequenceClassification''', '''BertForTokenClassification''', '''BertLayer''', '''BertLMHeadModel''', '''BertModel''', '''BertPreTrainedModel''', '''load_tf_weights_in_bert''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = [ '''TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFBertEmbeddings''', '''TFBertForMaskedLM''', '''TFBertForMultipleChoice''', '''TFBertForNextSentencePrediction''', '''TFBertForPreTraining''', '''TFBertForQuestionAnswering''', '''TFBertForSequenceClassification''', '''TFBertForTokenClassification''', '''TFBertLMHeadModel''', '''TFBertMainLayer''', '''TFBertModel''', '''TFBertPreTrainedModel''', ] try: if not is_tensorflow_text_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = ['''TFBertTokenizer'''] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = [ '''FlaxBertForCausalLM''', '''FlaxBertForMaskedLM''', '''FlaxBertForMultipleChoice''', '''FlaxBertForNextSentencePrediction''', '''FlaxBertForPreTraining''', '''FlaxBertForQuestionAnswering''', '''FlaxBertForSequenceClassification''', '''FlaxBertForTokenClassification''', '''FlaxBertModel''', '''FlaxBertPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_bert import BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, BertConfig, BertOnnxConfig from .tokenization_bert import BasicTokenizer, BertTokenizer, WordpieceTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bert_fast import BertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bert import ( BERT_PRETRAINED_MODEL_ARCHIVE_LIST, BertForMaskedLM, BertForMultipleChoice, BertForNextSentencePrediction, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, BertForTokenClassification, BertLayer, BertLMHeadModel, BertModel, BertPreTrainedModel, load_tf_weights_in_bert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_bert import ( TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFBertEmbeddings, TFBertForMaskedLM, TFBertForMultipleChoice, TFBertForNextSentencePrediction, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertForTokenClassification, TFBertLMHeadModel, TFBertMainLayer, TFBertModel, TFBertPreTrainedModel, ) try: if not is_tensorflow_text_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bert_tf import TFBertTokenizer try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_bert import ( FlaxBertForCausalLM, FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForNextSentencePrediction, FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertModel, FlaxBertPreTrainedModel, ) else: import sys __UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
69
1
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging UpperCAmelCase: str = logging.get_logger(__name__) UpperCAmelCase: int = '''▁''' UpperCAmelCase: str = {'''vocab_file''': '''sentencepiece.bpe.model''', '''monolingual_vocab_file''': '''dict.txt'''} UpperCAmelCase: List[str] = { '''vocab_file''': { '''vinai/bartpho-syllable''': '''https://huggingface.co/vinai/bartpho-syllable/resolve/main/sentencepiece.bpe.model''', }, '''monolingual_vocab_file''': { '''vinai/bartpho-syllable''': '''https://huggingface.co/vinai/bartpho-syllable/resolve/main/dict.txt''', }, } UpperCAmelCase: int = {'''vinai/bartpho-syllable''': 1_024} class UpperCamelCase ( _a ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE_ : str = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE_ : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE_ : int = ["""input_ids""", """attention_mask"""] def __init__( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_="<s>" ,UpperCAmelCase_="</s>" ,UpperCAmelCase_="</s>" ,UpperCAmelCase_="<s>" ,UpperCAmelCase_="<unk>" ,UpperCAmelCase_="<pad>" ,UpperCAmelCase_="<mask>" ,UpperCAmelCase_ = None ,**UpperCAmelCase_ ,): # Mask token behave like a normal word, i.e. include the space before it _lowercase : Optional[int] = AddedToken(__lowerCamelCase ,lstrip=__lowerCamelCase ,rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase ,__lowerCamelCase ) else mask_token _lowercase : Tuple = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=__lowerCamelCase ,eos_token=__lowerCamelCase ,unk_token=__lowerCamelCase ,sep_token=__lowerCamelCase ,cls_token=__lowerCamelCase ,pad_token=__lowerCamelCase ,mask_token=__lowerCamelCase ,sp_model_kwargs=self.sp_model_kwargs ,**__lowerCamelCase ,) _lowercase : int = vocab_file _lowercase : Optional[int] = monolingual_vocab_file _lowercase : List[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(__lowerCamelCase ) ) # Load the reduced vocab # Keep order of special tokens for backward compatibility _lowercase : Optional[Any] = {} _lowercase : Optional[Any] = 0 for token in [bos_token, pad_token, eos_token, unk_token, sep_token, cls_token]: if str(__lowerCamelCase ) not in self.fairseq_tokens_to_ids: _lowercase : Tuple = cnt cnt += 1 with open(__lowerCamelCase ,"""r""" ,encoding="""utf-8""" ) as f: for line in f.readlines(): _lowercase : int = line.strip().split()[0] _lowercase : Any = len(self.fairseq_tokens_to_ids ) if str(__lowerCamelCase ) not in self.fairseq_tokens_to_ids: _lowercase : str = len(self.fairseq_tokens_to_ids ) _lowercase : Optional[int] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self ): _lowercase : int = self.__dict__.copy() _lowercase : Optional[int] = None _lowercase : List[Any] = self.sp_model.serialized_model_proto() return state def __setstate__( self ,UpperCAmelCase_ ): _lowercase : List[str] = d # for backward compatibility if not hasattr(self ,"""sp_model_kwargs""" ): _lowercase : Dict = {} _lowercase : int = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _lowercase : Union[str, Any] = [self.cls_token_id] _lowercase : Dict = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ = None ,UpperCAmelCase_ = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__lowerCamelCase ,token_ids_a=__lowerCamelCase ,already_has_special_tokens=__lowerCamelCase ) if token_ids_a is None: return [1] + ([0] * len(__lowerCamelCase )) + [1] return [1] + ([0] * len(__lowerCamelCase )) + [1, 1] + ([0] * len(__lowerCamelCase )) + [1] def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ = None ): _lowercase : Any = [self.sep_token_id] _lowercase : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def lowerCamelCase__ ( self ): return len(self.fairseq_ids_to_tokens ) def lowerCamelCase__ ( self ): _lowercase : Tuple = {self.convert_ids_to_tokens(__lowerCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def lowerCamelCase__ ( self ,UpperCAmelCase_ ): return self.sp_model.encode(__lowerCamelCase ,out_type=__lowerCamelCase ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] else: return self.unk_token_id def lowerCamelCase__ ( self ,UpperCAmelCase_ ): return self.fairseq_ids_to_tokens[index] def lowerCamelCase__ ( self ,UpperCAmelCase_ ): _lowercase : int = """""".join(__lowerCamelCase ).replace(__lowerCamelCase ,""" """ ).strip() return out_string def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ = None ): if not os.path.isdir(__lowerCamelCase ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return _lowercase : Tuple = os.path.join( __lowerCamelCase ,(filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) _lowercase : List[Any] = os.path.join( __lowerCamelCase ,(filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""monolingual_vocab_file"""] ,) if os.path.abspath(self.vocab_file ) != os.path.abspath(__lowerCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file ,__lowerCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(__lowerCamelCase ,"""wb""" ) as fi: _lowercase : List[str] = self.sp_model.serialized_model_proto() fi.write(__lowerCamelCase ) if os.path.abspath(self.monolingual_vocab_file ) != os.path.abspath( __lowerCamelCase ) and os.path.isfile(self.monolingual_vocab_file ): copyfile(self.monolingual_vocab_file ,__lowerCamelCase ) elif not os.path.isfile(self.monolingual_vocab_file ): with open(__lowerCamelCase ,"""w""" ,encoding="""utf-8""" ) as fp: for token in self.fairseq_tokens_to_ids: if token not in self.all_special_tokens: fp.write(f"""{str(__lowerCamelCase )} \n""" ) return out_vocab_file, out_monolingual_vocab_file
368
"""simple docstring""" import unittest from transformers import SPIECE_UNDERLINE, XLNetTokenizer, XLNetTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin UpperCAmelCase: Optional[int] = get_tests_dir("""fixtures/test_sentencepiece.model""") @require_sentencepiece @require_tokenizers class UpperCamelCase ( snake_case , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = XLNetTokenizer SCREAMING_SNAKE_CASE_ : Dict = XLNetTokenizerFast SCREAMING_SNAKE_CASE_ : int = True SCREAMING_SNAKE_CASE_ : Union[str, Any] = True def lowerCamelCase__ ( self ): super().setUp() # We have a SentencePiece fixture for testing _lowercase : Dict = XLNetTokenizer(UpperCAmelCase_ ,keep_accents=UpperCAmelCase_ ) tokenizer.sanitize_special_tokens() tokenizer.save_pretrained(self.tmpdirname ) def lowerCamelCase__ ( self ): _lowercase : Union[str, Any] = """<s>""" _lowercase : List[Any] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCAmelCase_ ) ,UpperCAmelCase_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCAmelCase_ ) ,UpperCAmelCase_ ) def lowerCamelCase__ ( self ): _lowercase : str = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] ,"""<unk>""" ) self.assertEqual(vocab_keys[1] ,"""<s>""" ) self.assertEqual(vocab_keys[-1] ,"""<eod>""" ) self.assertEqual(len(UpperCAmelCase_ ) ,10_06 ) def lowerCamelCase__ ( self ): self.assertEqual(self.get_tokenizer().vocab_size ,10_00 ) def lowerCamelCase__ ( self ): _lowercase : int = XLNetTokenizer(UpperCAmelCase_ ,keep_accents=UpperCAmelCase_ ) _lowercase : Union[str, Any] = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(UpperCAmelCase_ ,["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase_ ) ,[2_85, 46, 10, 1_70, 3_82] ) _lowercase : Any = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( UpperCAmelCase_ ,[ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] ,) _lowercase : List[Any] = tokenizer.convert_tokens_to_ids(UpperCAmelCase_ ) self.assertListEqual(UpperCAmelCase_ ,[8, 21, 84, 55, 24, 19, 7, 0, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 0, 4] ) _lowercase : Optional[Any] = tokenizer.convert_ids_to_tokens(UpperCAmelCase_ ) self.assertListEqual( UpperCAmelCase_ ,[ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] ,) def lowerCamelCase__ ( self ): _lowercase : Dict = XLNetTokenizer(UpperCAmelCase_ ,do_lower_case=UpperCAmelCase_ ) _lowercase : List[str] = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( UpperCAmelCase_ ,[ SPIECE_UNDERLINE + """""", """i""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """se""", """.""", ] ,) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) ,["""▁he""", """ll""", """o"""] ) def lowerCamelCase__ ( self ): _lowercase : int = XLNetTokenizer(UpperCAmelCase_ ,do_lower_case=UpperCAmelCase_ ) _lowercase : List[str] = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( UpperCAmelCase_ ,[ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """se""", """.""", ] ,) @slow def lowerCamelCase__ ( self ): _lowercase : Dict = XLNetTokenizer.from_pretrained("""xlnet-base-cased""" ) _lowercase : int = tokenizer.encode("""sequence builders""" ,add_special_tokens=UpperCAmelCase_ ) _lowercase : List[str] = tokenizer.encode("""multi-sequence build""" ,add_special_tokens=UpperCAmelCase_ ) _lowercase : Optional[int] = tokenizer.build_inputs_with_special_tokens(UpperCAmelCase_ ) _lowercase : Dict = tokenizer.build_inputs_with_special_tokens(UpperCAmelCase_ ,UpperCAmelCase_ ) assert encoded_sentence == text + [4, 3] assert encoded_pair == text + [4] + text_a + [4, 3] @slow def lowerCamelCase__ ( self ): # fmt: off _lowercase : Union[str, Any] = {"""input_ids""": [[17, 2_14_42, 2_70, 17, 10, 1_46_45, 3_18, 34, 17, 45_46, 31_45, 7_87, 13, 77_52, 2_20_18, 23, 21, 17, 45_46, 31_45, 7_87, 13, 33_52, 1_44_31, 13, 55_00, 11, 11_76, 5_80, 13, 1_68_19, 47_97, 23, 17, 10, 1_71_35, 6_58, 19, 4_57, 79_32, 13, 1_84, 19, 31_54, 1_71_35, 64_68, 19, 14_04, 1_22_69, 19, 42_29, 53_56, 1_62_64, 46, 19, 17, 2_05_45, 1_03_95, 9, 9, 9, 11, 28, 64_21, 95_31, 2_07_29, 17, 10, 3_53, 1_70_22, 11, 21, 64_21, 95_31, 1_69_49, 17, 10, 1_15_09, 7_53, 11, 33, 95, 24_21, 73_85, 9_56, 1_44_31, 26_26, 25, 8_42, 73_85, 48_36, 21, 14_29, 22_72, 98_55, 31_20, 1_61, 2_47_38, 19, 1_32_03, 6_58, 2_18, 7_87, 21, 4_30, 1_84_82, 8_47, 26_37, 9, 4, 3], [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 3_22, 2_21_78, 27, 10_64, 22, 9_56, 13, 1_11_01, 14_29, 58_54, 2_43_13, 1_89_53, 40, 4_22, 2_43_66, 68, 17_58, 37, 1_04_83, 1_42_57, 31, 2_07, 2_63, 21, 2_03, 37_73, 25, 71, 97_35, 9, 4, 3], [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 32, 20_49, 34_42, 17, 1_38_94, 33_80, 23, 95, 18, 1_76_34, 22_88, 9, 4, 3]], """token_type_ids""": [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2], [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2], [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=UpperCAmelCase_ ,model_name="""xlnet-base-cased""" ,revision="""c841166438c31ec7ca9a106dee7bb312b73ae511""" ,)
336
0
def _A ( SCREAMING_SNAKE_CASE : int ): """simple docstring""" if not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): raise ValueError("multiplicative_persistence() only accepts integral values" ) if num < 0: raise ValueError("multiplicative_persistence() does not accept negative values" ) a__ : Dict =0 a__ : List[Any] =str(SCREAMING_SNAKE_CASE ) while len(SCREAMING_SNAKE_CASE ) != 1: a__ : Any =[int(SCREAMING_SNAKE_CASE ) for i in num_string] a__ : Optional[int] =1 for i in range(0 , len(SCREAMING_SNAKE_CASE ) ): total *= numbers[i] a__ : Dict =str(SCREAMING_SNAKE_CASE ) steps += 1 return steps def _A ( SCREAMING_SNAKE_CASE : int ): """simple docstring""" if not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): raise ValueError("additive_persistence() only accepts integral values" ) if num < 0: raise ValueError("additive_persistence() does not accept negative values" ) a__ : Dict =0 a__ : Tuple =str(SCREAMING_SNAKE_CASE ) while len(SCREAMING_SNAKE_CASE ) != 1: a__ : Optional[Any] =[int(SCREAMING_SNAKE_CASE ) for i in num_string] a__ : Any =0 for i in range(0 , len(SCREAMING_SNAKE_CASE ) ): total += numbers[i] a__ : Optional[Any] =str(SCREAMING_SNAKE_CASE ) steps += 1 return steps if __name__ == "__main__": import doctest doctest.testmod()
95
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase : Optional[Any] = logging.get_logger(__name__) UpperCAmelCase : Optional[int] = { """google/canine-s""": """https://huggingface.co/google/canine-s/resolve/main/config.json""", # See all CANINE models at https://huggingface.co/models?filter=canine } class __lowerCAmelCase ( UpperCamelCase__): _lowercase : List[Any] = """canine""" def __init__( self , lowerCAmelCase__=7_6_8 , lowerCAmelCase__=1_2 , lowerCAmelCase__=1_2 , lowerCAmelCase__=3_0_7_2 , lowerCAmelCase__="gelu" , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.1 , lowerCAmelCase__=1_6_3_8_4 , lowerCAmelCase__=1_6 , lowerCAmelCase__=0.02 , lowerCAmelCase__=1E-12 , lowerCAmelCase__=0 , lowerCAmelCase__=0XE0_00 , lowerCAmelCase__=0XE0_01 , lowerCAmelCase__=4 , lowerCAmelCase__=4 , lowerCAmelCase__=8 , lowerCAmelCase__=1_6_3_8_4 , lowerCAmelCase__=1_2_8 , **lowerCAmelCase__ , ) -> Dict: '''simple docstring''' super().__init__(pad_token_id=lowerCAmelCase__ , bos_token_id=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__ , **lowerCAmelCase__ ) a__ : Optional[int] =max_position_embeddings a__ : str =hidden_size a__ : Optional[Any] =num_hidden_layers a__ : Tuple =num_attention_heads a__ : Optional[Any] =intermediate_size a__ : Optional[int] =hidden_act a__ : List[Any] =hidden_dropout_prob a__ : Union[str, Any] =attention_probs_dropout_prob a__ : Optional[Any] =initializer_range a__ : Union[str, Any] =type_vocab_size a__ : Optional[int] =layer_norm_eps # Character config: a__ : int =downsampling_rate a__ : Optional[Any] =upsampling_kernel_size a__ : Union[str, Any] =num_hash_functions a__ : Any =num_hash_buckets a__ : int =local_transformer_stride
95
1
import heapq as hq import math from collections.abc import Iterator class __magic_name__ : """simple docstring""" def __init__( self :int , snake_case :Optional[Any] ): '''simple docstring''' A_ : Dict = str(id_ ) A_ : Tuple = None A_ : Any = None A_ : List[Any] = [] A_ : Optional[int] = {} # {vertex:distance} def __lt__( self :int , snake_case :Dict ): '''simple docstring''' return self.key < other.key def __repr__( self :Union[str, Any] ): '''simple docstring''' return self.id def SCREAMING_SNAKE_CASE ( self :List[Any] , snake_case :List[str] ): '''simple docstring''' self.neighbors.append(snake_case ) def SCREAMING_SNAKE_CASE ( self :Tuple , snake_case :Dict , snake_case :Optional[Any] ): '''simple docstring''' A_ : int = weight def __snake_case ( _lowerCAmelCase : List[str] , _lowerCAmelCase : List[str] , _lowerCAmelCase : Tuple , _lowerCAmelCase : str ) -> Any: # add the neighbors: graph[a - 1].add_neighbor(graph[b - 1] ) graph[b - 1].add_neighbor(graph[a - 1] ) # add the edges: graph[a - 1].add_edge(graph[b - 1] , _lowerCAmelCase ) graph[b - 1].add_edge(graph[a - 1] , _lowerCAmelCase ) def __snake_case ( _lowerCAmelCase : list , _lowerCAmelCase : Vertex ) -> list: A_ : Any = [] for u in graph: A_ : int = math.inf A_ : Union[str, Any] = None A_ : List[str] = 0 A_ : Optional[int] = graph[:] while q: A_ : Optional[Any] = min(_lowerCAmelCase ) q.remove(_lowerCAmelCase ) for v in u.neighbors: if (v in q) and (u.edges[v.id] < v.key): A_ : Any = u A_ : int = u.edges[v.id] for i in range(1 , len(_lowerCAmelCase ) ): a.append((int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) ) return a def __snake_case ( _lowerCAmelCase : list , _lowerCAmelCase : Vertex ) -> Iterator[tuple]: for u in graph: A_ : List[str] = math.inf A_ : Dict = None A_ : Tuple = 0 A_ : Optional[Any] = list(_lowerCAmelCase ) hq.heapify(_lowerCAmelCase ) while h: A_ : List[str] = hq.heappop(_lowerCAmelCase ) for v in u.neighbors: if (v in h) and (u.edges[v.id] < v.key): A_ : Tuple = u A_ : Dict = u.edges[v.id] hq.heapify(_lowerCAmelCase ) for i in range(1 , len(_lowerCAmelCase ) ): yield (int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) def __snake_case ( ) -> None: pass if __name__ == "__main__": import doctest doctest.testmod()
70
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowerCAmelCase : Union[str, Any] = { '''configuration_xmod''': [ '''XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XmodConfig''', '''XmodOnnxConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : str = [ '''XMOD_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XmodForCausalLM''', '''XmodForMaskedLM''', '''XmodForMultipleChoice''', '''XmodForQuestionAnswering''', '''XmodForSequenceClassification''', '''XmodForTokenClassification''', '''XmodModel''', '''XmodPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xmod import XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP, XmodConfig, XmodOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xmod import ( XMOD_PRETRAINED_MODEL_ARCHIVE_LIST, XmodForCausalLM, XmodForMaskedLM, XmodForMultipleChoice, XmodForQuestionAnswering, XmodForSequenceClassification, XmodForTokenClassification, XmodModel, XmodPreTrainedModel, ) else: import sys _lowerCAmelCase : List[str] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
70
1
'''simple docstring''' from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel from ...schedulers import KarrasVeScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class UpperCAmelCase_ ( __lowercase ): lowerCamelCase : UNetaDModel lowerCamelCase : KarrasVeScheduler def __init__( self : str , UpperCAmelCase__ : UNetaDModel , UpperCAmelCase__ : KarrasVeScheduler ) -> int: super().__init__() self.register_modules(unet=UpperCAmelCase__ , scheduler=UpperCAmelCase__ ) @torch.no_grad() def __call__( self : Dict , UpperCAmelCase__ : int = 1 , UpperCAmelCase__ : int = 5_0 , UpperCAmelCase__ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , UpperCAmelCase__ : Optional[str] = "pil" , UpperCAmelCase__ : bool = True , **UpperCAmelCase__ : Dict , ) -> Union[Tuple, ImagePipelineOutput]: lowerCAmelCase = self.unet.config.sample_size lowerCAmelCase = (batch_size, 3, img_size, img_size) lowerCAmelCase = self.unet # sample x_0 ~ N(0, sigma_0^2 * I) lowerCAmelCase = randn_tensor(UpperCAmelCase__ , generator=UpperCAmelCase__ , device=self.device ) * self.scheduler.init_noise_sigma self.scheduler.set_timesteps(UpperCAmelCase__ ) for t in self.progress_bar(self.scheduler.timesteps ): # here sigma_t == t_i from the paper lowerCAmelCase = self.scheduler.schedule[t] lowerCAmelCase = self.scheduler.schedule[t - 1] if t > 0 else 0 # 1. Select temporarily increased noise level sigma_hat # 2. Add new noise to move from sample_i to sample_hat lowerCAmelCase , lowerCAmelCase = self.scheduler.add_noise_to_input(UpperCAmelCase__ , UpperCAmelCase__ , generator=UpperCAmelCase__ ) # 3. Predict the noise residual given the noise magnitude `sigma_hat` # The model inputs and output are adjusted by following eq. (213) in [1]. lowerCAmelCase = (sigma_hat / 2) * model((sample_hat + 1) / 2 , sigma_hat / 2 ).sample # 4. Evaluate dx/dt at sigma_hat # 5. Take Euler step from sigma to sigma_prev lowerCAmelCase = self.scheduler.step(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) if sigma_prev != 0: # 6. Apply 2nd order correction # The model inputs and output are adjusted by following eq. (213) in [1]. lowerCAmelCase = (sigma_prev / 2) * model((step_output.prev_sample + 1) / 2 , sigma_prev / 2 ).sample lowerCAmelCase = self.scheduler.step_correct( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , step_output.prev_sample , step_output['derivative'] , ) lowerCAmelCase = step_output.prev_sample lowerCAmelCase = (sample / 2 + 0.5).clamp(0 , 1 ) lowerCAmelCase = sample.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": lowerCAmelCase = self.numpy_to_pil(UpperCAmelCase__ ) if not return_dict: return (image,) return ImagePipelineOutput(images=UpperCAmelCase__ )
4
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCamelCase : Any = logging.get_logger(__name__) class UpperCamelCase_ ( UpperCAmelCase__ ): '''simple docstring''' UpperCAmelCase__ = '''encoder-decoder''' UpperCAmelCase__ = True def __init__( self : List[str] , **UpperCAmelCase__ : Union[str, Any]) ->List[Any]: '''simple docstring''' super().__init__(**UpperCAmelCase__) assert ( "encoder" in kwargs and "decoder" in kwargs ), "Config has to be initialized with encoder and decoder config" A__ = kwargs.pop('''encoder''') A__ = encoder_config.pop('''model_type''') A__ = kwargs.pop('''decoder''') A__ = decoder_config.pop('''model_type''') from ..auto.configuration_auto import AutoConfig A__ = AutoConfig.for_model(UpperCAmelCase__ , **UpperCAmelCase__) A__ = AutoConfig.for_model(UpperCAmelCase__ , **UpperCAmelCase__) A__ = True @classmethod def SCREAMING_SNAKE_CASE ( cls : Union[str, Any] , UpperCAmelCase__ : PretrainedConfig , UpperCAmelCase__ : PretrainedConfig , **UpperCAmelCase__ : Union[str, Any]) ->PretrainedConfig: '''simple docstring''' logger.info('''Set `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config''') A__ = True A__ = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : str) ->Optional[Any]: '''simple docstring''' A__ = copy.deepcopy(self.__dict__) A__ = self.encoder.to_dict() A__ = self.decoder.to_dict() A__ = self.__class__.model_type return output
14
0
'''simple docstring''' import dataclasses import json import warnings from dataclasses import dataclass, field from time import time from typing import List from ..utils import logging _lowercase : int = logging.get_logger(__name__) def lowerCamelCase ( UpperCAmelCase__ : Optional[int]=None , UpperCAmelCase__ : Optional[int]=None ): return field(default_factory=lambda: default , metadata=lowerCAmelCase__ ) @dataclass class __magic_name__ : UpperCamelCase__ = list_field( default=[], metadata={ '''help''': ( '''Model checkpoints to be provided to the AutoModel classes. Leave blank to benchmark the base version''' ''' of all available models''' ) }, ) UpperCamelCase__ = list_field( default=[8], metadata={'''help''': '''List of batch sizes for which memory and time performance will be evaluated'''}) UpperCamelCase__ = list_field( default=[8, 32, 128, 512], metadata={'''help''': '''List of sequence lengths for which memory and time performance will be evaluated'''}, ) UpperCamelCase__ = field( default=__SCREAMING_SNAKE_CASE, metadata={'''help''': '''Whether to benchmark inference of model. Inference can be disabled via --no-inference.'''}, ) UpperCamelCase__ = field( default=__SCREAMING_SNAKE_CASE, metadata={'''help''': '''Whether to run on available cuda devices. Cuda can be disabled via --no-cuda.'''}, ) UpperCamelCase__ = field( default=__SCREAMING_SNAKE_CASE, metadata={'''help''': '''Whether to run on available tpu devices. TPU can be disabled via --no-tpu.'''}) UpperCamelCase__ = field(default=__SCREAMING_SNAKE_CASE, metadata={'''help''': '''Use FP16 to accelerate inference.'''}) UpperCamelCase__ = field(default=__SCREAMING_SNAKE_CASE, metadata={'''help''': '''Benchmark training of model'''}) UpperCamelCase__ = field(default=__SCREAMING_SNAKE_CASE, metadata={'''help''': '''Verbose memory tracing'''}) UpperCamelCase__ = field( default=__SCREAMING_SNAKE_CASE, metadata={'''help''': '''Whether to perform speed measurements. Speed measurements can be disabled via --no-speed.'''}, ) UpperCamelCase__ = field( default=__SCREAMING_SNAKE_CASE, metadata={ '''help''': '''Whether to perform memory measurements. Memory measurements can be disabled via --no-memory''' }, ) UpperCamelCase__ = field(default=__SCREAMING_SNAKE_CASE, metadata={'''help''': '''Trace memory line by line'''}) UpperCamelCase__ = field(default=__SCREAMING_SNAKE_CASE, metadata={'''help''': '''Save result to a CSV file'''}) UpperCamelCase__ = field(default=__SCREAMING_SNAKE_CASE, metadata={'''help''': '''Save all print statements in a log file'''}) UpperCamelCase__ = field(default=__SCREAMING_SNAKE_CASE, metadata={'''help''': '''Whether to print environment information'''}) UpperCamelCase__ = field( default=__SCREAMING_SNAKE_CASE, metadata={ '''help''': ( '''Whether to use multiprocessing for memory and speed measurement. It is highly recommended to use''' ''' multiprocessing for accurate CPU and GPU memory measurements. This option should only be disabled''' ''' for debugging / testing and on TPU.''' ) }, ) UpperCamelCase__ = field( default=f"inference_time_{round(time())}.csv", metadata={'''help''': '''CSV filename used if saving time results to csv.'''}, ) UpperCamelCase__ = field( default=f"inference_memory_{round(time())}.csv", metadata={'''help''': '''CSV filename used if saving memory results to csv.'''}, ) UpperCamelCase__ = field( default=f"train_time_{round(time())}.csv", metadata={'''help''': '''CSV filename used if saving time results to csv for training.'''}, ) UpperCamelCase__ = field( default=f"train_memory_{round(time())}.csv", metadata={'''help''': '''CSV filename used if saving memory results to csv for training.'''}, ) UpperCamelCase__ = field( default=f"env_info_{round(time())}.csv", metadata={'''help''': '''CSV filename used if saving environment information.'''}, ) UpperCamelCase__ = field( default=f"log_{round(time())}.csv", metadata={'''help''': '''Log filename used if print statements are saved in log.'''}, ) UpperCamelCase__ = field(default=3, metadata={'''help''': '''Times an experiment will be run.'''}) UpperCamelCase__ = field( default=__SCREAMING_SNAKE_CASE, metadata={ '''help''': ( '''Instead of loading the model as defined in `config.architectures` if exists, just load the pretrain''' ''' model weights.''' ) }, ) def SCREAMING_SNAKE_CASE_ ( self : int ): warnings.warn( f'''The class {self.__class__} is deprecated. Hugging Face Benchmarking utils''' """ are deprecated in general and it is advised to use external Benchmarking libraries """ """ to benchmark Transformer models.""" , __UpperCAmelCase , ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] ): return json.dumps(dataclasses.asdict(self ) , indent=2 ) @property def SCREAMING_SNAKE_CASE_ ( self : List[str] ): if len(self.models ) <= 0: raise ValueError( """Please make sure you provide at least one model name / model identifier, *e.g.* `--models""" """ bert-base-cased` or `args.models = ['bert-base-cased'].""" ) return self.models @property def SCREAMING_SNAKE_CASE_ ( self : Tuple ): if not self.multi_process: return False elif self.is_tpu: logger.info("""Multiprocessing is currently not possible on TPU.""" ) return False else: return True
366
'''simple docstring''' from dataclasses import dataclass, field from typing import Tuple from ..utils import cached_property, is_torch_available, is_torch_tpu_available, logging, requires_backends from .benchmark_args_utils import BenchmarkArguments if is_torch_available(): import torch if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm _lowercase : int = logging.get_logger(__name__) @dataclass class __magic_name__ ( _UpperCAmelCase): UpperCamelCase__ = [ '''no_inference''', '''no_cuda''', '''no_tpu''', '''no_speed''', '''no_memory''', '''no_env_print''', '''no_multi_process''', ] def __init__( self : Optional[Any] , **lowercase_ : int ): for deprecated_arg in self.deprecated_args: if deprecated_arg in kwargs: lowercase_ : Optional[int] = deprecated_arg[3:] setattr(self , lowercase_ , not kwargs.pop(lowercase_ ) ) logger.warning( f'''{deprecated_arg} is depreciated. Please use --no_{positive_arg} or''' f''' {positive_arg}={kwargs[positive_arg]}''' ) lowercase_ : Tuple = kwargs.pop("""torchscript""" , self.torchscript ) lowercase_ : List[Any] = kwargs.pop("""torch_xla_tpu_print_metrics""" , self.torch_xla_tpu_print_metrics ) lowercase_ : List[Any] = kwargs.pop("""fp16_opt_level""" , self.fpaa_opt_level ) super().__init__(**lowercase_ ) UpperCamelCase__ = field(default=_UpperCAmelCase, metadata={'''help''': '''Trace the models using torchscript'''}) UpperCamelCase__ = field(default=_UpperCAmelCase, metadata={'''help''': '''Print Xla/PyTorch tpu metrics'''}) UpperCamelCase__ = field( default='''O1''', metadata={ '''help''': ( '''For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\']. ''' '''See details at https://nvidia.github.io/apex/amp.html''' ) }, ) @cached_property def SCREAMING_SNAKE_CASE_ ( self : Tuple ): requires_backends(self , ["""torch"""] ) logger.info("""PyTorch: setting up devices""" ) if not self.cuda: lowercase_ : Optional[Any] = torch.device("""cpu""" ) lowercase_ : Tuple = 0 elif is_torch_tpu_available(): lowercase_ : Optional[int] = xm.xla_device() lowercase_ : str = 0 else: lowercase_ : int = torch.device("""cuda""" if torch.cuda.is_available() else """cpu""" ) lowercase_ : str = torch.cuda.device_count() return device, n_gpu @property def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): return is_torch_tpu_available() and self.tpu @property def SCREAMING_SNAKE_CASE_ ( self : List[str] ): requires_backends(self , ["""torch"""] ) # TODO(PVP): currently only single GPU is supported return torch.cuda.current_device() @property def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): requires_backends(self , ["""torch"""] ) return self._setup_devices[0] @property def SCREAMING_SNAKE_CASE_ ( self : int ): requires_backends(self , ["""torch"""] ) return self._setup_devices[1] @property def SCREAMING_SNAKE_CASE_ ( self : int ): return self.n_gpu > 0
21
0
'''simple docstring''' import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { 'google/pix2struct-textcaps-base': ( 'https://huggingface.co/google/pix2struct-textcaps-base/resolve/main/config.json' ), } class a__ ( lowerCamelCase_ ): _SCREAMING_SNAKE_CASE : str = 'pix2struct_text_model' _SCREAMING_SNAKE_CASE : int = ['past_key_values'] _SCREAMING_SNAKE_CASE : List[str] = { 'hidden_size': 'hidden_size', 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers', } def __init__( self , _UpperCamelCase=50244 , _UpperCamelCase=768 , _UpperCamelCase=64 , _UpperCamelCase=2048 , _UpperCamelCase=12 , _UpperCamelCase=12 , _UpperCamelCase=32 , _UpperCamelCase=128 , _UpperCamelCase=0.1 , _UpperCamelCase=1E-6 , _UpperCamelCase=1.0 , _UpperCamelCase="gelu_new" , _UpperCamelCase=0 , _UpperCamelCase=False , _UpperCamelCase=0 , _UpperCamelCase=1 , _UpperCamelCase=False , _UpperCamelCase=True , **_UpperCamelCase , ): """simple docstring""" _lowercase : str = vocab_size _lowercase : Tuple = hidden_size _lowercase : Optional[Any] = d_kv _lowercase : Any = d_ff _lowercase : List[Any] = num_layers _lowercase : str = num_heads _lowercase : List[Any] = relative_attention_num_buckets _lowercase : int = relative_attention_max_distance _lowercase : List[str] = dropout_rate _lowercase : Optional[int] = layer_norm_epsilon _lowercase : Optional[Any] = initializer_factor _lowercase : Optional[int] = use_cache _lowercase : int = eos_token_id _lowercase : List[Any] = decoder_start_token_id # for backwards compatibility _lowercase : str = dense_act_fn super().__init__( pad_token_id=_UpperCamelCase , eos_token_id=_UpperCamelCase , decoder_start_token_id=_UpperCamelCase , tie_word_embeddings=_UpperCamelCase , is_decoder=_UpperCamelCase , **_UpperCamelCase , ) @classmethod def _lowerCamelCase ( cls , _UpperCamelCase , **_UpperCamelCase ): """simple docstring""" cls._set_token_in_kwargs(_UpperCamelCase ) _lowercase , _lowercase : Tuple = cls.get_config_dict(_UpperCamelCase , **_UpperCamelCase ) # get the text config dict if we are loading from Pix2StructConfig if config_dict.get("model_type" ) == "pix2struct": _lowercase : int = config_dict["text_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(_UpperCamelCase , **_UpperCamelCase ) class a__ ( lowerCamelCase_ ): _SCREAMING_SNAKE_CASE : Optional[Any] = 'pix2struct_vision_model' def __init__( self , _UpperCamelCase=768 , _UpperCamelCase=768 , _UpperCamelCase=2048 , _UpperCamelCase=64 , _UpperCamelCase=12 , _UpperCamelCase=12 , _UpperCamelCase="gelu_new" , _UpperCamelCase=1E-6 , _UpperCamelCase=0.0 , _UpperCamelCase=0.0 , _UpperCamelCase=1E-1_0 , _UpperCamelCase=1.0 , _UpperCamelCase=4096 , _UpperCamelCase=32 , _UpperCamelCase=128 , **_UpperCamelCase , ): """simple docstring""" super().__init__(**_UpperCamelCase ) _lowercase : int = hidden_size _lowercase : List[Any] = patch_embed_hidden_size _lowercase : List[str] = d_ff _lowercase : int = dropout_rate _lowercase : str = num_hidden_layers _lowercase : Union[str, Any] = num_attention_heads _lowercase : int = initializer_range _lowercase : int = initializer_factor _lowercase : Any = attention_dropout _lowercase : Dict = layer_norm_eps _lowercase : Optional[Any] = dense_act_fn _lowercase : List[Any] = seq_len _lowercase : List[Any] = relative_attention_num_buckets _lowercase : List[str] = relative_attention_max_distance _lowercase : Optional[Any] = d_kv @classmethod def _lowerCamelCase ( cls , _UpperCamelCase , **_UpperCamelCase ): """simple docstring""" cls._set_token_in_kwargs(_UpperCamelCase ) _lowercase , _lowercase : List[Any] = cls.get_config_dict(_UpperCamelCase , **_UpperCamelCase ) # get the vision config dict if we are loading from Pix2StructConfig if config_dict.get("model_type" ) == "pix2struct": _lowercase : Any = config_dict["vision_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(_UpperCamelCase , **_UpperCamelCase ) class a__ ( lowerCamelCase_ ): _SCREAMING_SNAKE_CASE : Any = 'pix2struct' _SCREAMING_SNAKE_CASE : Optional[int] = True def __init__( self , _UpperCamelCase=None , _UpperCamelCase=None , _UpperCamelCase=1.0 , _UpperCamelCase=0.0_2 , _UpperCamelCase=False , _UpperCamelCase=False , _UpperCamelCase=True , **_UpperCamelCase , ): """simple docstring""" super().__init__(tie_word_embeddings=_UpperCamelCase , is_encoder_decoder=_UpperCamelCase , **_UpperCamelCase ) if text_config is None: _lowercase : Optional[Any] = {} logger.info("text_config is None. Initializing the Pix2StructTextConfig with default values." ) if vision_config is None: _lowercase : str = {} logger.info("vision_config is None. Initializing the Pix2StructVisionConfig with default values." ) _lowercase : Union[str, Any] = PixaStructTextConfig(**_UpperCamelCase ) _lowercase : Union[str, Any] = PixaStructVisionConfig(**_UpperCamelCase ) _lowercase : int = self.text_config.decoder_start_token_id _lowercase : Tuple = self.text_config.pad_token_id _lowercase : Union[str, Any] = self.text_config.eos_token_id _lowercase : Tuple = initializer_factor _lowercase : Any = initializer_range _lowercase : List[Any] = self.initializer_range _lowercase : List[Any] = self.initializer_range _lowercase : List[str] = is_vqa @classmethod def _lowerCamelCase ( cls , _UpperCamelCase , _UpperCamelCase , **_UpperCamelCase ): """simple docstring""" return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **_UpperCamelCase ) def _lowerCamelCase ( self ): """simple docstring""" _lowercase : Tuple = copy.deepcopy(self.__dict__ ) _lowercase : str = self.text_config.to_dict() _lowercase : Union[str, Any] = self.vision_config.to_dict() _lowercase : Union[str, Any] = self.__class__.model_type return output
250
'''simple docstring''' _snake_case = 8.3_1_4_4_5_9_8 def _A ( snake_case , snake_case ) -> float: if temperature < 0: raise Exception("Temperature cannot be less than 0 K" ) if molar_mass <= 0: raise Exception("Molar mass cannot be less than or equal to 0 kg/mol" ) else: return (3 * UNIVERSAL_GAS_CONSTANT * temperature / molar_mass) ** 0.5 if __name__ == "__main__": import doctest # run doctest doctest.testmod() # example _snake_case = 300 _snake_case = 28 _snake_case = rms_speed_of_molecule(temperature, molar_mass) print(F'''Vrms of Nitrogen gas at 300 K is {vrms} m/s''')
250
1
lowercase_ = """ABCDEFGHIJKLMNOPQRSTUVWXYZ""" def __lowerCAmelCase ( ): lowercase__ = input("Enter message: " ) lowercase__ = input("Enter key [alphanumeric]: " ) lowercase__ = input("Encrypt/Decrypt [e/d]: " ) if mode.lower().startswith("e" ): lowercase__ = 'encrypt' lowercase__ = encrypt_message(lowercase__ , lowercase__ ) elif mode.lower().startswith("d" ): lowercase__ = 'decrypt' lowercase__ = decrypt_message(lowercase__ , lowercase__ ) print(f'''\n{mode.title()}ed message:''' ) print(lowercase__ ) def __lowerCAmelCase ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): return translate_message(lowercase__ , lowercase__ , "encrypt" ) def __lowerCAmelCase ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): return translate_message(lowercase__ , lowercase__ , "decrypt" ) def __lowerCAmelCase ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): lowercase__ = [] lowercase__ = 0 lowercase__ = key.upper() for symbol in message: lowercase__ = LETTERS.find(symbol.upper() ) if num != -1: if mode == "encrypt": num += LETTERS.find(key[key_index] ) elif mode == "decrypt": num -= LETTERS.find(key[key_index] ) num %= len(lowercase__ ) if symbol.isupper(): translated.append(LETTERS[num] ) elif symbol.islower(): translated.append(LETTERS[num].lower() ) key_index += 1 if key_index == len(lowercase__ ): lowercase__ = 0 else: translated.append(lowercase__ ) return "".join(lowercase__ ) if __name__ == "__main__": main()
362
from math import sqrt import numpy as np from sympy import symbols # Coefficient # Speed of light (m/s) lowercase_ = 2_9979_2458 # Symbols lowercase_ , lowercase_ , lowercase_ , lowercase_ = symbols("""ct x y z""") def __lowerCAmelCase ( SCREAMING_SNAKE_CASE_ ): if velocity > c: raise ValueError("Speed must not exceed light speed 299,792,458 [m/s]!" ) elif velocity < 1: # Usually the speed should be much higher than 1 (c order of magnitude) raise ValueError("Speed must be greater than or equal to 1!" ) return velocity / c def __lowerCAmelCase ( SCREAMING_SNAKE_CASE_ ): return 1 / sqrt(1 - beta(SCREAMING_SNAKE_CASE_ ) ** 2 ) def __lowerCAmelCase ( SCREAMING_SNAKE_CASE_ ): return np.array( [ [gamma(SCREAMING_SNAKE_CASE_ ), -gamma(SCREAMING_SNAKE_CASE_ ) * beta(SCREAMING_SNAKE_CASE_ ), 0, 0], [-gamma(SCREAMING_SNAKE_CASE_ ) * beta(SCREAMING_SNAKE_CASE_ ), gamma(SCREAMING_SNAKE_CASE_ ), 0, 0], [0, 0, 1, 0], [0, 0, 0, 1], ] ) def __lowerCAmelCase ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ): # Ensure event is not empty if event is None: lowercase__ = np.array([ct, x, y, z] ) # Symbolic four vector else: event[0] *= c # x0 is ct (speed of light * time) return transformation_matrix(SCREAMING_SNAKE_CASE_ ) @ event if __name__ == "__main__": import doctest doctest.testmod() # Example of symbolic vector: lowercase_ = transform(2997_9245) print("""Example of four vector: """) print(F'ct\' = {four_vector[0]}') print(F'x\' = {four_vector[1]}') print(F'y\' = {four_vector[2]}') print(F'z\' = {four_vector[3]}') # Substitute symbols with numerical values lowercase_ = {ct: c, x: 1, y: 1, z: 1} lowercase_ = [four_vector[i].subs(sub_dict) for i in range(4)] print(F'\n{numerical_vector}')
224
0
import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging _UpperCAmelCase : Union[str, Any] = logging.get_logger(__name__) _UpperCAmelCase : Any = { 'RUCAIBox/mvp': 'https://huggingface.co/RUCAIBox/mvp/resolve/main/config.json', } class lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): UpperCAmelCase__ = """mvp""" UpperCAmelCase__ = ["""past_key_values"""] UpperCAmelCase__ = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self : str , UpperCAmelCase : Optional[Any]=50267 , UpperCAmelCase : int=1024 , UpperCAmelCase : List[Any]=12 , UpperCAmelCase : Any=4096 , UpperCAmelCase : Dict=16 , UpperCAmelCase : Any=12 , UpperCAmelCase : Optional[int]=4096 , UpperCAmelCase : Optional[int]=16 , UpperCAmelCase : List[Any]=0.0 , UpperCAmelCase : List[Any]=0.0 , UpperCAmelCase : Optional[Any]="gelu" , UpperCAmelCase : int=1024 , UpperCAmelCase : int=0.1 , UpperCAmelCase : Tuple=0.0 , UpperCAmelCase : Optional[Any]=0.0 , UpperCAmelCase : Optional[Any]=0.0_2 , UpperCAmelCase : str=0.0 , UpperCAmelCase : Any=False , UpperCAmelCase : Optional[Any]=True , UpperCAmelCase : str=1 , UpperCAmelCase : Optional[Any]=0 , UpperCAmelCase : Optional[Any]=2 , UpperCAmelCase : List[Any]=True , UpperCAmelCase : int=2 , UpperCAmelCase : str=2 , UpperCAmelCase : List[Any]=False , UpperCAmelCase : str=100 , UpperCAmelCase : Any=800 , **UpperCAmelCase : str , ) -> Any: lowerCamelCase__ : Any = vocab_size lowerCamelCase__ : Union[str, Any] = max_position_embeddings lowerCamelCase__ : Union[str, Any] = d_model lowerCamelCase__ : List[Any] = encoder_ffn_dim lowerCamelCase__ : List[Any] = encoder_layers lowerCamelCase__ : int = encoder_attention_heads lowerCamelCase__ : Union[str, Any] = decoder_ffn_dim lowerCamelCase__ : List[Any] = decoder_layers lowerCamelCase__ : Tuple = decoder_attention_heads lowerCamelCase__ : Any = dropout lowerCamelCase__ : Optional[int] = attention_dropout lowerCamelCase__ : Any = activation_dropout lowerCamelCase__ : str = activation_function lowerCamelCase__ : Union[str, Any] = init_std lowerCamelCase__ : int = encoder_layerdrop lowerCamelCase__ : Optional[Any] = decoder_layerdrop lowerCamelCase__ : List[Any] = classifier_dropout lowerCamelCase__ : Optional[int] = use_cache lowerCamelCase__ : Tuple = encoder_layers lowerCamelCase__ : int = scale_embedding # scale factor will be sqrt(d_model) if True lowerCamelCase__ : List[Any] = use_prompt lowerCamelCase__ : Union[str, Any] = prompt_length lowerCamelCase__ : Tuple = prompt_mid_dim super().__init__( pad_token_id=UpperCAmelCase , bos_token_id=UpperCAmelCase , eos_token_id=UpperCAmelCase , is_encoder_decoder=UpperCAmelCase , decoder_start_token_id=UpperCAmelCase , forced_eos_token_id=UpperCAmelCase , **UpperCAmelCase , ) if self.forced_bos_token_id is None and kwargs.get('force_bos_token_to_be_generated' , UpperCAmelCase ): lowerCamelCase__ : Union[str, Any] = self.bos_token_id warnings.warn( F"""Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. """ 'The config can simply be saved and uploaded again to be fixed.' )
50
SCREAMING_SNAKE_CASE :Any = 256 # Modulus to hash a string SCREAMING_SNAKE_CASE :Union[str, Any] = 100_0003 def UpperCAmelCase ( a_ , a_ ) -> bool: """simple docstring""" __A = len(a_ ) __A = len(a_ ) if p_len > t_len: return False __A = 0 __A = 0 __A = 1 # Calculating the hash of pattern and substring of text for i in range(a_ ): __A = (ord(pattern[i] ) + p_hash * alphabet_size) % modulus __A = (ord(text[i] ) + text_hash * alphabet_size) % modulus if i == p_len - 1: continue __A = (modulus_power * alphabet_size) % modulus for i in range(0 , t_len - p_len + 1 ): if text_hash == p_hash and text[i : i + p_len] == pattern: return True if i == t_len - p_len: continue # Calculate the https://en.wikipedia.org/wiki/Rolling_hash __A = ( (text_hash - ord(text[i] ) * modulus_power) * alphabet_size + ord(text[i + p_len] ) ) % modulus return False def UpperCAmelCase ( ) -> None: """simple docstring""" __A = "abc1abc12" __A = "alskfjaldsabc1abc1abc12k23adsfabcabc" __A = "alskfjaldsk23adsfabcabc" assert rabin_karp(a_ , a_ ) and not rabin_karp(a_ , a_ ) # Test 2) __A = "ABABX" __A = "ABABZABABYABABX" assert rabin_karp(a_ , a_ ) # Test 3) __A = "AAAB" __A = "ABAAAAAB" assert rabin_karp(a_ , a_ ) # Test 4) __A = "abcdabcy" __A = "abcxabcdabxabcdabcdabcy" assert rabin_karp(a_ , a_ ) # Test 5) __A = "Lü" __A = "Lüsai" assert rabin_karp(a_ , a_ ) __A = "Lue" assert not rabin_karp(a_ , a_ ) print("Success." ) if __name__ == "__main__": test_rabin_karp()
15
0
from datetime import datetime import matplotlib.pyplot as plt import torch def __lowerCamelCase ( lowerCAmelCase__ ): for param in module.parameters(): lowerCAmelCase__ = False def __lowerCamelCase ( ): lowerCAmelCase__ = 'cuda' if torch.cuda.is_available() else 'cpu' if torch.backends.mps.is_available() and torch.backends.mps.is_built(): lowerCAmelCase__ = 'mps' if device == "mps": print( 'WARNING: MPS currently doesn\'t seem to work, and messes up backpropagation without any visible torch' ' errors. I recommend using CUDA on a colab notebook or CPU instead if you\'re facing inexplicable issues' ' with generations.' ) return device def __lowerCamelCase ( lowerCAmelCase__ ): lowerCAmelCase__ = plt.imshow(lowerCAmelCase__ ) fig.axes.get_xaxis().set_visible(lowerCAmelCase__ ) fig.axes.get_yaxis().set_visible(lowerCAmelCase__ ) plt.show() def __lowerCamelCase ( ): lowerCAmelCase__ = datetime.now() lowerCAmelCase__ = current_time.strftime('%H:%M:%S' ) return timestamp
119
import warnings from typing import Any, Dict, List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, optimal_fft_length, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging lowerCAmelCase__ = logging.get_logger(__name__) class a_ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCAmelCase_ = ['input_values', 'attention_mask'] def __init__( self : Union[str, Any] , lowercase__ : int = 1 , lowercase__ : int = 16_000 , lowercase__ : float = 0.0 , lowercase__ : bool = False , lowercase__ : int = 80 , lowercase__ : int = 16 , lowercase__ : int = 64 , lowercase__ : str = "hann_window" , lowercase__ : float = 1.0 , lowercase__ : float = 80 , lowercase__ : float = 7_600 , lowercase__ : float = 1e-10 , lowercase__ : int = 2 , lowercase__ : bool = True , **lowercase__ : Optional[int] , ): '''simple docstring''' super().__init__(feature_size=lowercase__ , sampling_rate=lowercase__ , padding_value=lowercase__ , **lowercase__) lowerCAmelCase__ = do_normalize lowerCAmelCase__ = return_attention_mask lowerCAmelCase__ = num_mel_bins lowerCAmelCase__ = hop_length lowerCAmelCase__ = win_length lowerCAmelCase__ = win_function lowerCAmelCase__ = frame_signal_scale lowerCAmelCase__ = fmin lowerCAmelCase__ = fmax lowerCAmelCase__ = mel_floor lowerCAmelCase__ = reduction_factor lowerCAmelCase__ = win_length * sampling_rate // 1_000 lowerCAmelCase__ = hop_length * sampling_rate // 1_000 lowerCAmelCase__ = optimal_fft_length(self.sample_size) lowerCAmelCase__ = (self.n_fft // 2) + 1 lowerCAmelCase__ = window_function(window_length=self.sample_size , name=self.win_function , periodic=lowercase__) lowerCAmelCase__ = mel_filter_bank( num_frequency_bins=self.n_freqs , num_mel_filters=self.num_mel_bins , min_frequency=self.fmin , max_frequency=self.fmax , sampling_rate=self.sampling_rate , norm='slaney' , mel_scale='slaney' , ) if frame_signal_scale != 1.0: warnings.warn( 'The argument `frame_signal_scale` is deprecated and will be removed in version 4.30.0 of Transformers' , lowercase__ , ) if reduction_factor != 2.0: warnings.warn( 'The argument `reduction_factor` is deprecated and will be removed in version 4.30.0 of Transformers' , lowercase__ , ) @staticmethod # Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm def __snake_case ( lowercase__ : List[np.ndarray] , lowercase__ : List[np.ndarray] , lowercase__ : float = 0.0): '''simple docstring''' if attention_mask is not None: lowerCAmelCase__ = np.array(lowercase__ , np.intaa) lowerCAmelCase__ = [] for vector, length in zip(lowercase__ , attention_mask.sum(-1)): lowerCAmelCase__ = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1e-7) if length < normed_slice.shape[0]: lowerCAmelCase__ = padding_value normed_input_values.append(lowercase__) else: lowerCAmelCase__ = [(x - x.mean()) / np.sqrt(x.var() + 1e-7) for x in input_values] return normed_input_values def __snake_case ( self : List[Any] , lowercase__ : np.ndarray , ): '''simple docstring''' lowerCAmelCase__ = spectrogram( lowercase__ , window=self.window , frame_length=self.sample_size , hop_length=self.sample_stride , fft_length=self.n_fft , mel_filters=self.mel_filters , mel_floor=self.mel_floor , log_mel='log10' , ) return log_mel_spec.T def __call__( self : str , lowercase__ : Optional[Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]]] = None , lowercase__ : Optional[Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]]] = None , lowercase__ : Union[bool, str, PaddingStrategy] = False , lowercase__ : Optional[int] = None , lowercase__ : bool = False , lowercase__ : Optional[int] = None , lowercase__ : Optional[bool] = None , lowercase__ : Optional[Union[str, TensorType]] = None , lowercase__ : Optional[int] = None , **lowercase__ : Union[str, Any] , ): '''simple docstring''' if audio is None and audio_target is None: raise ValueError('You must provide either `audio` or `audio_target` values.') if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F"""The model corresponding to this feature extractor: {self} was trained using a sampling rate of""" F""" {self.sampling_rate}. Please make sure that the provided audio input was sampled with""" F""" {self.sampling_rate} and not {sampling_rate}.""") else: logger.warning( 'It is strongly recommended to pass the ``sampling_rate`` argument to this function. ' 'Failing to do so can result in silent errors that might be hard to debug.') if audio is not None: lowerCAmelCase__ = self._process_audio( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , **lowercase__ , ) else: lowerCAmelCase__ = None if audio_target is not None: lowerCAmelCase__ = self._process_audio( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , **lowercase__ , ) if inputs is None: return inputs_target else: lowerCAmelCase__ = inputs_target['input_values'] lowerCAmelCase__ = inputs_target.get('attention_mask') if decoder_attention_mask is not None: lowerCAmelCase__ = decoder_attention_mask return inputs def __snake_case ( self : Tuple , lowercase__ : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , lowercase__ : bool = False , lowercase__ : Union[bool, str, PaddingStrategy] = False , lowercase__ : Optional[int] = None , lowercase__ : bool = False , lowercase__ : Optional[int] = None , lowercase__ : Optional[bool] = None , lowercase__ : Optional[Union[str, TensorType]] = None , **lowercase__ : Optional[Any] , ): '''simple docstring''' lowerCAmelCase__ = isinstance(lowercase__ , np.ndarray) and len(speech.shape) > 1 if is_batched_numpy and len(speech.shape) > 2: raise ValueError(F"""Only mono-channel audio is supported for input to {self}""") lowerCAmelCase__ = is_batched_numpy or ( isinstance(lowercase__ , (list, tuple)) and (isinstance(speech[0] , (np.ndarray, tuple, list))) ) if is_batched: lowerCAmelCase__ = [np.asarray(lowercase__ , dtype=np.floataa) for speech in speech] elif not is_batched and not isinstance(lowercase__ , np.ndarray): lowerCAmelCase__ = np.asarray(lowercase__ , dtype=np.floataa) elif isinstance(lowercase__ , np.ndarray) and speech.dtype is np.dtype(np.floataa): lowerCAmelCase__ = speech.astype(np.floataa) # always return batch if not is_batched: lowerCAmelCase__ = [speech] # needed to make pad() work on spectrogram inputs lowerCAmelCase__ = self.feature_size # convert into correct format for padding if is_target: lowerCAmelCase__ = [self._extract_mel_features(lowercase__) for waveform in speech] lowerCAmelCase__ = BatchFeature({'input_values': features}) lowerCAmelCase__ = self.num_mel_bins else: lowerCAmelCase__ = BatchFeature({'input_values': speech}) lowerCAmelCase__ = self.pad( lowercase__ , padding=lowercase__ , max_length=lowercase__ , truncation=lowercase__ , pad_to_multiple_of=lowercase__ , return_attention_mask=lowercase__ , **lowercase__ , ) lowerCAmelCase__ = feature_size_hack # convert input values to correct format lowerCAmelCase__ = padded_inputs['input_values'] if not isinstance(input_values[0] , np.ndarray): lowerCAmelCase__ = [np.asarray(lowercase__ , dtype=np.floataa) for array in input_values] elif ( not isinstance(lowercase__ , np.ndarray) and isinstance(input_values[0] , np.ndarray) and input_values[0].dtype is np.dtype(np.floataa) ): lowerCAmelCase__ = [array.astype(np.floataa) for array in input_values] elif isinstance(lowercase__ , np.ndarray) and input_values.dtype is np.dtype(np.floataa): lowerCAmelCase__ = input_values.astype(np.floataa) # convert attention_mask to correct format lowerCAmelCase__ = padded_inputs.get('attention_mask') if attention_mask is not None: lowerCAmelCase__ = [np.asarray(lowercase__ , dtype=np.intaa) for array in attention_mask] # zero-mean and unit-variance normalization if not is_target and self.do_normalize: lowerCAmelCase__ = ( attention_mask if self._get_padding_strategies(lowercase__ , max_length=lowercase__) is not PaddingStrategy.DO_NOT_PAD else None ) lowerCAmelCase__ = self.zero_mean_unit_var_norm( padded_inputs['input_values'] , attention_mask=lowercase__ , padding_value=self.padding_value) if return_tensors is not None: lowerCAmelCase__ = padded_inputs.convert_to_tensors(lowercase__) return padded_inputs def __snake_case ( self : Any): '''simple docstring''' lowerCAmelCase__ = super().to_dict() # Don't serialize these as they are derived from the other properties. lowerCAmelCase__ = ['window', 'mel_filters', 'sample_size', 'sample_stride', 'n_fft', 'n_freqs'] for name in names: if name in output: del output[name] return output
119
1
'''simple docstring''' import multiprocessing from typing import TYPE_CHECKING, Optional, Union from .. import Dataset, Features, config from ..formatting import query_table from ..packaged_modules.sql.sql import Sql from ..utils import logging from .abc import AbstractDatasetInputStream if TYPE_CHECKING: import sqlitea import sqlalchemy class lowercase_ ( a__ ): def __init__( self , a , a , a = None , a = None , a = False , **a , ): super().__init__(features=a , cache_dir=a , keep_in_memory=a , **a ) UpperCamelCase__ = Sql( cache_dir=a , features=a , sql=a , con=a , **a , ) def __a ( self ): UpperCamelCase__ = None UpperCamelCase__ = None UpperCamelCase__ = None UpperCamelCase__ = None self.builder.download_and_prepare( download_config=a , download_mode=a , verification_mode=a , base_path=a , ) # Build dataset for splits UpperCamelCase__ = self.builder.as_dataset( split="train" , verification_mode=a , in_memory=self.keep_in_memory ) return dataset class lowercase_ : def __init__( self , a , a , a , a = None , a = None , **a , ): if num_proc is not None and num_proc <= 0: raise ValueError(f'''num_proc {num_proc} must be an integer > 0.''' ) UpperCamelCase__ = dataset UpperCamelCase__ = name UpperCamelCase__ = con UpperCamelCase__ = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE UpperCamelCase__ = num_proc UpperCamelCase__ = to_sql_kwargs def __a ( self ): UpperCamelCase__ = self.to_sql_kwargs.pop("sql" , a ) UpperCamelCase__ = self.to_sql_kwargs.pop("con" , a ) UpperCamelCase__ = self.to_sql_kwargs.pop("index" , a ) UpperCamelCase__ = self._write(index=a , **self.to_sql_kwargs ) return written def __a ( self , a ): UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = args UpperCamelCase__ = {**to_sql_kwargs, "if_exists": "append"} if offset > 0 else to_sql_kwargs UpperCamelCase__ = query_table( table=self.dataset.data , key=slice(a , offset + self.batch_size ) , indices=self.dataset._indices , ) UpperCamelCase__ = batch.to_pandas() UpperCamelCase__ = df.to_sql(self.name , self.con , index=a , **a ) return num_rows or len(a ) def __a ( self , a , **a ): UpperCamelCase__ = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 , len(self.dataset ) , self.batch_size ) , unit="ba" , disable=not logging.is_progress_bar_enabled() , desc="Creating SQL from Arrow format" , ): written += self._batch_sql((offset, index, to_sql_kwargs) ) else: UpperCamelCase__ , UpperCamelCase__ = len(self.dataset ), self.batch_size with multiprocessing.Pool(self.num_proc ) as pool: for num_rows in logging.tqdm( pool.imap( self._batch_sql , [(offset, index, to_sql_kwargs) for offset in range(0 , a , a )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit="ba" , disable=not logging.is_progress_bar_enabled() , desc="Creating SQL from Arrow format" , ): written += num_rows return written
80
'''simple docstring''' import multiprocessing from typing import TYPE_CHECKING, Optional, Union from .. import Dataset, Features, config from ..formatting import query_table from ..packaged_modules.sql.sql import Sql from ..utils import logging from .abc import AbstractDatasetInputStream if TYPE_CHECKING: import sqlitea import sqlalchemy class lowercase_ ( a__ ): def __init__( self , a , a , a = None , a = None , a = False , **a , ): super().__init__(features=a , cache_dir=a , keep_in_memory=a , **a ) UpperCamelCase__ = Sql( cache_dir=a , features=a , sql=a , con=a , **a , ) def __a ( self ): UpperCamelCase__ = None UpperCamelCase__ = None UpperCamelCase__ = None UpperCamelCase__ = None self.builder.download_and_prepare( download_config=a , download_mode=a , verification_mode=a , base_path=a , ) # Build dataset for splits UpperCamelCase__ = self.builder.as_dataset( split="train" , verification_mode=a , in_memory=self.keep_in_memory ) return dataset class lowercase_ : def __init__( self , a , a , a , a = None , a = None , **a , ): if num_proc is not None and num_proc <= 0: raise ValueError(f'''num_proc {num_proc} must be an integer > 0.''' ) UpperCamelCase__ = dataset UpperCamelCase__ = name UpperCamelCase__ = con UpperCamelCase__ = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE UpperCamelCase__ = num_proc UpperCamelCase__ = to_sql_kwargs def __a ( self ): UpperCamelCase__ = self.to_sql_kwargs.pop("sql" , a ) UpperCamelCase__ = self.to_sql_kwargs.pop("con" , a ) UpperCamelCase__ = self.to_sql_kwargs.pop("index" , a ) UpperCamelCase__ = self._write(index=a , **self.to_sql_kwargs ) return written def __a ( self , a ): UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = args UpperCamelCase__ = {**to_sql_kwargs, "if_exists": "append"} if offset > 0 else to_sql_kwargs UpperCamelCase__ = query_table( table=self.dataset.data , key=slice(a , offset + self.batch_size ) , indices=self.dataset._indices , ) UpperCamelCase__ = batch.to_pandas() UpperCamelCase__ = df.to_sql(self.name , self.con , index=a , **a ) return num_rows or len(a ) def __a ( self , a , **a ): UpperCamelCase__ = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 , len(self.dataset ) , self.batch_size ) , unit="ba" , disable=not logging.is_progress_bar_enabled() , desc="Creating SQL from Arrow format" , ): written += self._batch_sql((offset, index, to_sql_kwargs) ) else: UpperCamelCase__ , UpperCamelCase__ = len(self.dataset ), self.batch_size with multiprocessing.Pool(self.num_proc ) as pool: for num_rows in logging.tqdm( pool.imap( self._batch_sql , [(offset, index, to_sql_kwargs) for offset in range(0 , a , a )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit="ba" , disable=not logging.is_progress_bar_enabled() , desc="Creating SQL from Arrow format" , ): written += num_rows return written
80
1
from typing import List, Optional, Union import numpy as np import tensorflow as tf from .utils import logging lowerCamelCase_ : Optional[Any] = logging.get_logger(__name__) def A__ ( lowerCamelCase ) -> List[int]: if isinstance(lowerCamelCase , np.ndarray ): return list(tensor.shape ) UpperCamelCase_: Union[str, Any] = tf.shape(lowerCamelCase ) if tensor.shape == tf.TensorShape(lowerCamelCase ): return dynamic UpperCamelCase_: Tuple = tensor.shape.as_list() return [dynamic[i] if s is None else s for i, s in enumerate(lowerCamelCase )] def A__ ( lowerCamelCase , lowerCamelCase = None , lowerCamelCase = None ) -> tf.Tensor: return tf.nn.softmax(logits=logits + 1E-9 , axis=lowerCamelCase , name=lowerCamelCase ) def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase=1E-5 , lowerCamelCase=-1 ) -> List[str]: # This is a very simplified functional layernorm, designed to duplicate # the functionality of PyTorch nn.functional.layer_norm when this is needed to port # models in Transformers. if weight.shape.rank != 1 or bias.shape.rank != 1 or not isinstance(lowerCamelCase , lowerCamelCase ): raise NotImplementedError("""Only 1D weight and bias tensors are supported for now, with only a single axis.""" ) # Get mean and variance on the axis to be normalized UpperCamelCase_, UpperCamelCase_: List[str] = tf.nn.moments(lowerCamelCase , axes=[axis] , keepdims=lowerCamelCase ) if axis != -1: # Reshape scale and weight to have the same rank as inputs, but with 1 dimensions # on every dimension except axis UpperCamelCase_: Union[str, Any] = [1] * inputs.shape.rank UpperCamelCase_: str = shape_list(lowerCamelCase )[axis] UpperCamelCase_: Optional[int] = tf.reshape(lowerCamelCase , lowerCamelCase ) UpperCamelCase_: Tuple = tf.reshape(lowerCamelCase , lowerCamelCase ) # Compute layer normalization using the batch_normalization # function. UpperCamelCase_: int = tf.nn.batch_normalization( lowerCamelCase , lowerCamelCase , lowerCamelCase , offset=lowerCamelCase , scale=lowerCamelCase , variance_epsilon=lowerCamelCase , ) return outputs def A__ ( lowerCamelCase , lowerCamelCase=0 , lowerCamelCase=-1 ) -> Any: # Replicates the behavior of torch.flatten in TF # If end_dim or start_dim is negative, count them from the end if end_dim < 0: end_dim += input.shape.rank if start_dim < 0: start_dim += input.shape.rank if start_dim == end_dim: return input UpperCamelCase_: List[str] = tf.shape(lowerCamelCase ) UpperCamelCase_: str = tf.math.reduce_prod(in_shape[start_dim : end_dim + 1] ) UpperCamelCase_: int = tf.concat([in_shape[:start_dim], [flattened_dim], in_shape[end_dim + 1 :]] , axis=0 ) return tf.reshape(lowerCamelCase , lowerCamelCase ) def A__ ( lowerCamelCase ) -> tf.Tensor: if not isinstance(lowerCamelCase , tf.Tensor ): UpperCamelCase_: List[Any] = tf.convert_to_tensor(lowerCamelCase ) # Catches stray NumPy inputs if encoder_attention_mask.shape.rank == 3: UpperCamelCase_: int = encoder_attention_mask[:, None, :, :] if encoder_attention_mask.shape.rank == 2: UpperCamelCase_: Optional[Any] = encoder_attention_mask[:, None, None, :] # T5 has a mask that can compare sequence ids, we can simulate this here with this transposition # Cf. https://github.com/tensorflow/mesh/blob/8d2465e9bc93129b913b5ccc6a59aa97abd96ec6/mesh_tensorflow # /transformer/transformer_layers.py#L270 # encoder_extended_attention_mask = (encoder_extended_attention_mask == # encoder_extended_attention_mask.transpose(-1, -2)) UpperCamelCase_: Dict = ( tf.cast(1 , encoder_attention_mask.dtype ) - encoder_extended_attention_mask ) * encoder_extended_attention_mask.dtype.min return encoder_extended_attention_mask def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase = "input_ids" ) -> None: tf.debugging.assert_less( lowerCamelCase , tf.cast(lowerCamelCase , dtype=tensor.dtype ) , message=( F'''The maximum value of {tensor_name} ({tf.math.reduce_max(lowerCamelCase )}) must be smaller than the embedding ''' F'''layer\'s input dimension ({embed_dim}). The likely cause is some problem at tokenization time.''' ) , ) def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> Optional[Any]: UpperCamelCase_: List[Any] = 6_45_12 # Check that no item in `data` is larger than `HDF5_OBJECT_HEADER_LIMIT` # because in that case even chunking the array would not make the saving # possible. UpperCamelCase_: Union[str, Any] = [x for x in data if len(lowerCamelCase ) > HDF5_OBJECT_HEADER_LIMIT] # Expecting this to never be true. if bad_attributes: raise RuntimeError( """The following attributes cannot be saved to HDF5 file because """ F'''they are larger than {HDF5_OBJECT_HEADER_LIMIT} ''' F'''bytes: {bad_attributes}''' ) UpperCamelCase_: List[Any] = np.asarray(lowerCamelCase ) UpperCamelCase_: Optional[Any] = 1 UpperCamelCase_: Tuple = np.array_split(lowerCamelCase , lowerCamelCase ) # This will never loop forever thanks to the test above. while any(x.nbytes > HDF5_OBJECT_HEADER_LIMIT for x in chunked_data ): num_chunks += 1 UpperCamelCase_: Tuple = np.array_split(lowerCamelCase , lowerCamelCase ) if num_chunks > 1: for chunk_id, chunk_data in enumerate(lowerCamelCase ): UpperCamelCase_: Optional[int] = chunk_data else: UpperCamelCase_: Tuple = data def A__ ( lowerCamelCase , lowerCamelCase ) -> Optional[int]: if name in group.attrs: UpperCamelCase_: Optional[Any] = [n.decode("""utf8""" ) if hasattr(lowerCamelCase , """decode""" ) else n for n in group.attrs[name]] else: UpperCamelCase_: List[Any] = [] UpperCamelCase_: Tuple = 0 while "%s%d" % (name, chunk_id) in group.attrs: data.extend( [n.decode("""utf8""" ) if hasattr(lowerCamelCase , """decode""" ) else n for n in group.attrs["""%s%d""" % (name, chunk_id)]] ) chunk_id += 1 return data def A__ ( lowerCamelCase ) -> Dict: def _expand_single_ad_tensor(lowerCamelCase ): if isinstance(lowerCamelCase , tf.Tensor ) and t.shape.rank == 1: return tf.expand_dims(lowerCamelCase , axis=-1 ) return t return tf.nest.map_structure(_expand_single_ad_tensor , lowerCamelCase )
223
from __future__ import annotations import unittest from transformers import AutoTokenizer, PegasusConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFPegasusForConditionalGeneration, TFPegasusModel @require_tf class _UpperCamelCase : '''simple docstring''' __UpperCamelCase : str = PegasusConfig __UpperCamelCase : str = {} __UpperCamelCase : Optional[Any] = """gelu""" def __init__( self : Optional[Any] , snake_case_ : Optional[Any] , snake_case_ : str=13 , snake_case_ : Dict=7 , snake_case_ : List[Any]=True , snake_case_ : Optional[int]=False , snake_case_ : Any=99 , snake_case_ : Optional[Any]=32 , snake_case_ : Dict=2 , snake_case_ : Any=4 , snake_case_ : Optional[Any]=37 , snake_case_ : Dict=0.1 , snake_case_ : Optional[int]=0.1 , snake_case_ : List[str]=40 , snake_case_ : Tuple=2 , snake_case_ : Optional[int]=1 , snake_case_ : str=0 , ): UpperCamelCase_: List[str] = parent UpperCamelCase_: Optional[Any] = batch_size UpperCamelCase_: Union[str, Any] = seq_length UpperCamelCase_: Tuple = is_training UpperCamelCase_: Tuple = use_labels UpperCamelCase_: Tuple = vocab_size UpperCamelCase_: Tuple = hidden_size UpperCamelCase_: Optional[Any] = num_hidden_layers UpperCamelCase_: List[Any] = num_attention_heads UpperCamelCase_: Optional[int] = intermediate_size UpperCamelCase_: Dict = hidden_dropout_prob UpperCamelCase_: str = attention_probs_dropout_prob UpperCamelCase_: Optional[int] = max_position_embeddings UpperCamelCase_: Union[str, Any] = eos_token_id UpperCamelCase_: Optional[int] = pad_token_id UpperCamelCase_: List[Any] = bos_token_id def lowerCAmelCase__ ( self : str ): UpperCamelCase_: List[Any] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) UpperCamelCase_: int = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) UpperCamelCase_: List[Any] = tf.concat([input_ids, eos_tensor] , axis=1 ) UpperCamelCase_: List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase_: Optional[int] = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) UpperCamelCase_: List[str] = prepare_pegasus_inputs_dict(snake_case_ , snake_case_ , snake_case_ ) return config, inputs_dict def lowerCAmelCase__ ( self : Any , snake_case_ : List[str] , snake_case_ : Dict ): UpperCamelCase_: Any = TFPegasusModel(config=snake_case_ ).get_decoder() UpperCamelCase_: Any = inputs_dict["""input_ids"""] UpperCamelCase_: int = input_ids[:1, :] UpperCamelCase_: List[str] = inputs_dict["""attention_mask"""][:1, :] UpperCamelCase_: Tuple = inputs_dict["""head_mask"""] UpperCamelCase_: int = 1 # first forward pass UpperCamelCase_: Dict = model(snake_case_ , attention_mask=snake_case_ , head_mask=snake_case_ , use_cache=snake_case_ ) UpperCamelCase_, UpperCamelCase_: List[str] = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids UpperCamelCase_: Optional[int] = ids_tensor((self.batch_size, 3) , config.vocab_size ) UpperCamelCase_: Union[str, Any] = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and UpperCamelCase_: Union[str, Any] = tf.concat([input_ids, next_tokens] , axis=-1 ) UpperCamelCase_: Optional[int] = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) UpperCamelCase_: List[Any] = model(snake_case_ , attention_mask=snake_case_ )[0] UpperCamelCase_: Dict = model(snake_case_ , attention_mask=snake_case_ , past_key_values=snake_case_ )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice UpperCamelCase_: str = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) UpperCamelCase_: str = output_from_no_past[:, -3:, random_slice_idx] UpperCamelCase_: int = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(snake_case_ , snake_case_ , rtol=1e-3 ) def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=None , ) -> Optional[int]: if attention_mask is None: UpperCamelCase_: Union[str, Any] = tf.cast(tf.math.not_equal(lowerCamelCase , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: UpperCamelCase_: str = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: UpperCamelCase_: Tuple = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: UpperCamelCase_: Dict = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: UpperCamelCase_: str = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class _UpperCamelCase ( _A , _A , unittest.TestCase ): '''simple docstring''' __UpperCamelCase : Union[str, Any] = (TFPegasusForConditionalGeneration, TFPegasusModel) if is_tf_available() else () __UpperCamelCase : str = (TFPegasusForConditionalGeneration,) if is_tf_available() else () __UpperCamelCase : int = ( { """conversational""": TFPegasusForConditionalGeneration, """feature-extraction""": TFPegasusModel, """summarization""": TFPegasusForConditionalGeneration, """text2text-generation""": TFPegasusForConditionalGeneration, """translation""": TFPegasusForConditionalGeneration, } if is_tf_available() else {} ) __UpperCamelCase : Optional[Any] = True __UpperCamelCase : Any = False __UpperCamelCase : Dict = False def lowerCAmelCase__ ( self : Dict ): UpperCamelCase_: Tuple = TFPegasusModelTester(self ) UpperCamelCase_: List[Any] = ConfigTester(self , config_class=snake_case_ ) def lowerCAmelCase__ ( self : Dict ): self.config_tester.run_common_tests() def lowerCAmelCase__ ( self : Optional[int] ): UpperCamelCase_: Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*snake_case_ ) @require_sentencepiece @require_tokenizers @require_tf class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' __UpperCamelCase : Union[str, Any] = [ """ PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.""", """ The London trio are up for best UK act and best album, as well as getting two nominations in the best song category.\"We got told like this morning 'Oh I think you're nominated'\", said Dappy.\"And I was like 'Oh yeah, which one?' And now we've got nominated for four awards. I mean, wow!\"Bandmate Fazer added: \"We thought it's best of us to come down and mingle with everyone and say hello to the cameras. And now we find we've got four nominations.\"The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn't be too disappointed if they didn't win this time around.\"At the end of the day we're grateful to be where we are in our careers.\"If it don't happen then it don't happen - live to fight another day and keep on making albums and hits for the fans.\"Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers' All These Things That I've Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year's Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border.\"We just done Edinburgh the other day,\" said Dappy.\"We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!\" """, ] __UpperCamelCase : Optional[int] = [ """California's largest electricity provider has cut power to hundreds of thousands of customers in an effort to""" """ reduce the risk of wildfires.""", """N-Dubz have revealed they\'re \"grateful\" to have been nominated for four Mobo Awards.""", ] # differs slightly from pytorch, likely due to numerical differences in linear layers __UpperCamelCase : Union[str, Any] = """google/pegasus-xsum""" @cached_property def lowerCAmelCase__ ( self : Dict ): return AutoTokenizer.from_pretrained(self.model_name ) @cached_property def lowerCAmelCase__ ( self : int ): UpperCamelCase_: List[Any] = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model def lowerCAmelCase__ ( self : Union[str, Any] , **snake_case_ : Optional[int] ): UpperCamelCase_: str = self.translate_src_text(**snake_case_ ) assert self.expected_text == generated_words def lowerCAmelCase__ ( self : Optional[Any] , **snake_case_ : int ): UpperCamelCase_: Tuple = self.tokenizer(self.src_text , **snake_case_ , padding=snake_case_ , return_tensors="""tf""" ) UpperCamelCase_: Tuple = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 , use_cache=snake_case_ , ) UpperCamelCase_: Tuple = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=snake_case_ ) return generated_words @slow def lowerCAmelCase__ ( self : Optional[Any] ): self._assert_generated_batch_equal_expected()
223
1
from __future__ import annotations import unittest from transformers import BlenderbotSmallConfig, BlenderbotSmallTokenizer, is_tf_available from transformers.testing_utils import require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel @require_tf class snake_case__ : """simple docstring""" _SCREAMING_SNAKE_CASE = BlenderbotSmallConfig _SCREAMING_SNAKE_CASE = {} _SCREAMING_SNAKE_CASE = """gelu""" def __init__( self : List[Any], _snake_case : Union[str, Any], _snake_case : List[str]=1_3, _snake_case : List[Any]=7, _snake_case : Dict=True, _snake_case : Any=False, _snake_case : Optional[int]=9_9, _snake_case : Dict=3_2, _snake_case : Tuple=2, _snake_case : Optional[int]=4, _snake_case : List[Any]=3_7, _snake_case : Optional[int]=0.1, _snake_case : List[str]=0.1, _snake_case : Dict=2_0, _snake_case : Union[str, Any]=2, _snake_case : Optional[Any]=1, _snake_case : Optional[int]=0, ) ->str: snake_case__ : List[str] = parent snake_case__ : Union[str, Any] = batch_size snake_case__ : Optional[Any] = seq_length snake_case__ : str = is_training snake_case__ : Any = use_labels snake_case__ : Optional[Any] = vocab_size snake_case__ : List[Any] = hidden_size snake_case__ : List[str] = num_hidden_layers snake_case__ : List[str] = num_attention_heads snake_case__ : Tuple = intermediate_size snake_case__ : Optional[int] = hidden_dropout_prob snake_case__ : List[Any] = attention_probs_dropout_prob snake_case__ : int = max_position_embeddings snake_case__ : Optional[Any] = eos_token_id snake_case__ : List[Any] = pad_token_id snake_case__ : Any = bos_token_id def lowercase_ ( self : Optional[Any] ) ->Optional[int]: snake_case__ : int = ids_tensor([self.batch_size, self.seq_length - 1], self.vocab_size ) snake_case__ : int = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ), 1 ) snake_case__ : List[str] = tf.concat([input_ids, eos_tensor], axis=1 ) snake_case__ : Any = ids_tensor([self.batch_size, self.seq_length], self.vocab_size ) snake_case__ : Dict = self.config_cls( vocab_size=self.vocab_size, d_model=self.hidden_size, encoder_layers=self.num_hidden_layers, decoder_layers=self.num_hidden_layers, encoder_attention_heads=self.num_attention_heads, decoder_attention_heads=self.num_attention_heads, encoder_ffn_dim=self.intermediate_size, decoder_ffn_dim=self.intermediate_size, dropout=self.hidden_dropout_prob, attention_dropout=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, eos_token_ids=[2], bos_token_id=self.bos_token_id, pad_token_id=self.pad_token_id, decoder_start_token_id=self.pad_token_id, **self.config_updates, ) snake_case__ : str = prepare_blenderbot_small_inputs_dict(_snake_case, _snake_case, _snake_case ) return config, inputs_dict def lowercase_ ( self : Dict, _snake_case : Dict, _snake_case : List[Any] ) ->Tuple: snake_case__ : str = TFBlenderbotSmallModel(config=_snake_case ).get_decoder() snake_case__ : List[str] = inputs_dict['input_ids'] snake_case__ : Tuple = input_ids[:1, :] snake_case__ : str = inputs_dict['attention_mask'][:1, :] snake_case__ : Optional[Any] = inputs_dict['head_mask'] snake_case__ : Union[str, Any] = 1 # first forward pass snake_case__ : Dict = model(_snake_case, attention_mask=_snake_case, head_mask=_snake_case, use_cache=_snake_case ) snake_case__ , snake_case__ : List[Any] = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids snake_case__ : Optional[int] = ids_tensor((self.batch_size, 3), config.vocab_size ) snake_case__ : Any = tf.cast(ids_tensor((self.batch_size, 3), 2 ), tf.inta ) # append to next input_ids and snake_case__ : int = tf.concat([input_ids, next_tokens], axis=-1 ) snake_case__ : List[str] = tf.concat([attention_mask, next_attn_mask], axis=-1 ) snake_case__ : Tuple = model(_snake_case, attention_mask=_snake_case )[0] snake_case__ : int = model(_snake_case, attention_mask=_snake_case, past_key_values=_snake_case )[0] self.parent.assertEqual(next_tokens.shape[1], output_from_past.shape[1] ) # select random slice snake_case__ : List[str] = int(ids_tensor((1,), output_from_past.shape[-1] ) ) snake_case__ : Tuple = output_from_no_past[:, -3:, random_slice_idx] snake_case__ : List[Any] = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(_snake_case, _snake_case, rtol=1e-3 ) def lowercase_ (A : Dict , A : Any , A : Optional[int] , A : Dict=None , A : int=None , A : List[str]=None , A : Union[str, Any]=None , A : Optional[Any]=None , ): if attention_mask is None: snake_case__ : Union[str, Any] = tf.cast(tf.math.not_equal(A , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: snake_case__ : List[str] = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: snake_case__ : Tuple = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: snake_case__ : int = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: snake_case__ : Any = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class snake_case__ ( lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ): """simple docstring""" _SCREAMING_SNAKE_CASE = ( (TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel) if is_tf_available() else () ) _SCREAMING_SNAKE_CASE = (TFBlenderbotSmallForConditionalGeneration,) if is_tf_available() else () _SCREAMING_SNAKE_CASE = ( { """conversational""": TFBlenderbotSmallForConditionalGeneration, """feature-extraction""": TFBlenderbotSmallModel, """summarization""": TFBlenderbotSmallForConditionalGeneration, """text2text-generation""": TFBlenderbotSmallForConditionalGeneration, """translation""": TFBlenderbotSmallForConditionalGeneration, } if is_tf_available() else {} ) _SCREAMING_SNAKE_CASE = True _SCREAMING_SNAKE_CASE = False _SCREAMING_SNAKE_CASE = False def lowercase_ ( self : List[Any] ) ->List[str]: snake_case__ : Optional[int] = TFBlenderbotSmallModelTester(self ) snake_case__ : List[Any] = ConfigTester(self, config_class=_snake_case ) def lowercase_ ( self : List[Any] ) ->Any: self.config_tester.run_common_tests() def lowercase_ ( self : Union[str, Any] ) ->Optional[Any]: snake_case__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*_snake_case ) @require_tokenizers @require_tf class snake_case__ ( unittest.TestCase ): """simple docstring""" _SCREAMING_SNAKE_CASE = [ """Social anxiety\nWow, I am never shy. Do you have anxiety?\nYes. I end up sweating and blushing and feel like """ """ i'm going to throw up.\nand why is that?""" ] _SCREAMING_SNAKE_CASE = """facebook/blenderbot_small-90M""" @cached_property def lowercase_ ( self : List[Any] ) ->List[Any]: # use "old" tokenizer here because of bug when downloading new tokenizer return BlenderbotSmallTokenizer.from_pretrained('facebook/blenderbot-90M' ) @cached_property def lowercase_ ( self : List[Any] ) ->List[str]: snake_case__ : Tuple = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model @slow def lowercase_ ( self : Union[str, Any] ) ->Optional[int]: snake_case__ : Any = self.tokenizer(self.src_text, return_tensors='tf' ) snake_case__ : List[str] = self.model.generate( model_inputs.input_ids, attention_mask=model_inputs.attention_mask, num_beams=2, use_cache=_snake_case, ) snake_case__ : List[str] = self.tokenizer.batch_decode(generated_ids.numpy(), skip_special_tokens=_snake_case )[0] assert generated_words in ( "i don't know. i just feel like i'm going to throw up. it's not fun.", "i'm not sure. i just feel like i've been feeling like i have to be in a certain place", "i'm not sure. i just feel like i've been in a bad situation.", )
277
from typing import Dict, List from nltk.translate import gleu_score import datasets from datasets import MetricInfo a_ :Any = "\\n@misc{wu2016googles,\n title={Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation},\n author={Yonghui Wu and Mike Schuster and Zhifeng Chen and Quoc V. Le and Mohammad Norouzi and Wolfgang Macherey\n and Maxim Krikun and Yuan Cao and Qin Gao and Klaus Macherey and Jeff Klingner and Apurva Shah and Melvin\n Johnson and Xiaobing Liu and Łukasz Kaiser and Stephan Gouws and Yoshikiyo Kato and Taku Kudo and Hideto\n Kazawa and Keith Stevens and George Kurian and Nishant Patil and Wei Wang and Cliff Young and\n Jason Smith and Jason Riesa and Alex Rudnick and Oriol Vinyals and Greg Corrado and Macduff Hughes\n and Jeffrey Dean},\n year={2016},\n eprint={1609.08144},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n" a_ :List[str] = "\\nThe BLEU score has some undesirable properties when used for single\nsentences, as it was designed to be a corpus measure. We therefore\nuse a slightly different score for our RL experiments which we call\nthe 'GLEU score'. For the GLEU score, we record all sub-sequences of\n1, 2, 3 or 4 tokens in output and target sequence (n-grams). We then\ncompute a recall, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the target (ground truth) sequence,\nand a precision, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the generated output sequence. Then\nGLEU score is simply the minimum of recall and precision. This GLEU\nscore's range is always between 0 (no matches) and 1 (all match) and\nit is symmetrical when switching output and target. According to\nour experiments, GLEU score correlates quite well with the BLEU\nmetric on a corpus level but does not have its drawbacks for our per\nsentence reward objective.\n" a_ :List[str] = "\\nComputes corpus-level Google BLEU (GLEU) score of translated segments against one or more references.\nInstead of averaging the sentence level GLEU scores (i.e. macro-average precision), Wu et al. (2016) sum up the matching\ntokens and the max of hypothesis and reference tokens for each sentence, then compute using the aggregate values.\n\nArgs:\n predictions (list of str): list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references (list of list of str): list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n min_len (int): The minimum order of n-gram this function should extract. Defaults to 1.\n max_len (int): The maximum order of n-gram this function should extract. Defaults to 4.\n\nReturns:\n 'google_bleu': google_bleu score\n\nExamples:\n Example 1:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.44\n\n Example 2:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.61\n\n Example 3:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references, min_len=2)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.53\n\n Example 4:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses,references=list_of_references, min_len=2, max_len=6)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.4\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class snake_case__ ( datasets.Metric ): """simple docstring""" def lowercase_ ( self : str ) ->MetricInfo: return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( { 'predictions': datasets.Sequence(datasets.Value('string', id='token' ), id='sequence' ), 'references': datasets.Sequence( datasets.Sequence(datasets.Value('string', id='token' ), id='sequence' ), id='references' ), } ), ) def lowercase_ ( self : str, _snake_case : List[List[List[str]]], _snake_case : List[List[str]], _snake_case : int = 1, _snake_case : int = 4, ) ->Dict[str, float]: return { "google_bleu": gleu_score.corpus_gleu( list_of_references=_snake_case, hypotheses=_snake_case, min_len=_snake_case, max_len=_snake_case ) }
277
1
import collections import gzip import os import urllib import numpy from tensorflow.python.framework import dtypes, random_seed from tensorflow.python.platform import gfile from tensorflow.python.util.deprecation import deprecated __magic_name__: str = collections.namedtuple("_Datasets", ["train", "validation", "test"]) # CVDF mirror of http://yann.lecun.com/exdb/mnist/ __magic_name__: Dict = "https://storage.googleapis.com/cvdf-datasets/mnist/" def UpperCamelCase ( _A ): """simple docstring""" __magic_name__ : Optional[int] = numpy.dtype(numpy.uintaa ).newbyteorder(""">""" ) return numpy.frombuffer(bytestream.read(4 ), dtype=_A )[0] @deprecated(_A, """Please use tf.data to implement this functionality.""" ) def UpperCamelCase ( _A ): """simple docstring""" print("""Extracting""", f.name ) with gzip.GzipFile(fileobj=_A ) as bytestream: __magic_name__ : Optional[Any] = _readaa(_A ) if magic != 2051: raise ValueError( """Invalid magic number %d in MNIST image file: %s""" % (magic, f.name) ) __magic_name__ : int = _readaa(_A ) __magic_name__ : Tuple = _readaa(_A ) __magic_name__ : str = _readaa(_A ) __magic_name__ : Any = bytestream.read(rows * cols * num_images ) __magic_name__ : List[str] = numpy.frombuffer(_A, dtype=numpy.uinta ) __magic_name__ : List[str] = data.reshape(_A, _A, _A, 1 ) return data @deprecated(_A, """Please use tf.one_hot on tensors.""" ) def UpperCamelCase ( _A, _A ): """simple docstring""" __magic_name__ : Any = labels_dense.shape[0] __magic_name__ : Union[str, Any] = numpy.arange(_A ) * num_classes __magic_name__ : str = numpy.zeros((num_labels, num_classes) ) __magic_name__ : Optional[Any] = 1 return labels_one_hot @deprecated(_A, """Please use tf.data to implement this functionality.""" ) def UpperCamelCase ( _A, _A=False, _A=10 ): """simple docstring""" print("""Extracting""", f.name ) with gzip.GzipFile(fileobj=_A ) as bytestream: __magic_name__ : List[str] = _readaa(_A ) if magic != 2049: raise ValueError( """Invalid magic number %d in MNIST label file: %s""" % (magic, f.name) ) __magic_name__ : Tuple = _readaa(_A ) __magic_name__ : Union[str, Any] = bytestream.read(_A ) __magic_name__ : Dict = numpy.frombuffer(_A, dtype=numpy.uinta ) if one_hot: return _dense_to_one_hot(_A, _A ) return labels class snake_case__ : @deprecated( lowerCAmelCase__ , """Please use alternatives such as official/mnist/_DataSet.py""" """ from tensorflow/models.""" , ) def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=False , lowerCAmelCase__=False , lowerCAmelCase__=dtypes.floataa , lowerCAmelCase__=True , lowerCAmelCase__=None , ) -> int: __magic_name__ ,__magic_name__ : Dict = random_seed.get_seed(lowerCAmelCase__ ) # If op level seed is not set, use whatever graph level seed is returned numpy.random.seed(seeda if seed is None else seeda ) __magic_name__ : int = dtypes.as_dtype(lowerCAmelCase__ ).base_dtype if dtype not in (dtypes.uinta, dtypes.floataa): raise TypeError("""Invalid image dtype %r, expected uint8 or float32""" % dtype ) if fake_data: __magic_name__ : Optional[Any] = 1_00_00 __magic_name__ : str = one_hot else: assert ( images.shape[0] == labels.shape[0] ), F'images.shape: {images.shape} labels.shape: {labels.shape}' __magic_name__ : Dict = images.shape[0] # Convert shape from [num examples, rows, columns, depth] # to [num examples, rows*columns] (assuming depth == 1) if reshape: assert images.shape[3] == 1 __magic_name__ : List[str] = images.reshape( images.shape[0] , images.shape[1] * images.shape[2] ) if dtype == dtypes.floataa: # Convert from [0, 255] -> [0.0, 1.0]. __magic_name__ : List[str] = images.astype(numpy.floataa ) __magic_name__ : int = numpy.multiply(lowerCAmelCase__ , 1.0 / 2_5_5.0 ) __magic_name__ : Optional[Any] = images __magic_name__ : Optional[Any] = labels __magic_name__ : str = 0 __magic_name__ : Union[str, Any] = 0 @property def __magic_name__ ( self ) -> Dict: return self._images @property def __magic_name__ ( self ) -> Any: return self._labels @property def __magic_name__ ( self ) -> str: return self._num_examples @property def __magic_name__ ( self ) -> Any: return self._epochs_completed def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__=False , lowerCAmelCase__=True ) -> int: if fake_data: __magic_name__ : Tuple = [1] * 7_84 __magic_name__ : Dict = [1] + [0] * 9 if self.one_hot else 0 return ( [fake_image for _ in range(lowerCAmelCase__ )], [fake_label for _ in range(lowerCAmelCase__ )], ) __magic_name__ : Any = self._index_in_epoch # Shuffle for the first epoch if self._epochs_completed == 0 and start == 0 and shuffle: __magic_name__ : Union[str, Any] = numpy.arange(self._num_examples ) numpy.random.shuffle(lowerCAmelCase__ ) __magic_name__ : List[Any] = self.images[perma] __magic_name__ : int = self.labels[perma] # Go to the next epoch if start + batch_size > self._num_examples: # Finished epoch self._epochs_completed += 1 # Get the rest examples in this epoch __magic_name__ : Any = self._num_examples - start __magic_name__ : List[Any] = self._images[start : self._num_examples] __magic_name__ : Optional[Any] = self._labels[start : self._num_examples] # Shuffle the data if shuffle: __magic_name__ : Optional[Any] = numpy.arange(self._num_examples ) numpy.random.shuffle(lowerCAmelCase__ ) __magic_name__ : int = self.images[perm] __magic_name__ : Dict = self.labels[perm] # Start next epoch __magic_name__ : Tuple = 0 __magic_name__ : Optional[int] = batch_size - rest_num_examples __magic_name__ : List[str] = self._index_in_epoch __magic_name__ : Dict = self._images[start:end] __magic_name__ : int = self._labels[start:end] return ( numpy.concatenate((images_rest_part, images_new_part) , axis=0 ), numpy.concatenate((labels_rest_part, labels_new_part) , axis=0 ), ) else: self._index_in_epoch += batch_size __magic_name__ : str = self._index_in_epoch return self._images[start:end], self._labels[start:end] @deprecated(_A, """Please write your own downloading logic.""" ) def UpperCamelCase ( _A, _A, _A ): """simple docstring""" if not gfile.Exists(_A ): gfile.MakeDirs(_A ) __magic_name__ : Optional[int] = os.path.join(_A, _A ) if not gfile.Exists(_A ): urllib.request.urlretrieve(_A, _A ) # noqa: S310 with gfile.GFile(_A ) as f: __magic_name__ : Any = f.size() print("""Successfully downloaded""", _A, _A, """bytes.""" ) return filepath @deprecated( _A, """Please use alternatives such as:""" """ tensorflow_datasets.load('mnist')""" ) def UpperCamelCase ( _A, _A=False, _A=False, _A=dtypes.floataa, _A=True, _A=5000, _A=None, _A=DEFAULT_SOURCE_URL, ): """simple docstring""" if fake_data: def fake(): return _DataSet( [], [], fake_data=_A, one_hot=_A, dtype=_A, seed=_A ) __magic_name__ : Tuple = fake() __magic_name__ : List[Any] = fake() __magic_name__ : Optional[int] = fake() return _Datasets(train=_A, validation=_A, test=_A ) if not source_url: # empty string check __magic_name__ : str = DEFAULT_SOURCE_URL __magic_name__ : Optional[Any] = """train-images-idx3-ubyte.gz""" __magic_name__ : Any = """train-labels-idx1-ubyte.gz""" __magic_name__ : Optional[Any] = """t10k-images-idx3-ubyte.gz""" __magic_name__ : Union[str, Any] = """t10k-labels-idx1-ubyte.gz""" __magic_name__ : str = _maybe_download( _A, _A, source_url + train_images_file ) with gfile.Open(_A, """rb""" ) as f: __magic_name__ : Optional[int] = _extract_images(_A ) __magic_name__ : Any = _maybe_download( _A, _A, source_url + train_labels_file ) with gfile.Open(_A, """rb""" ) as f: __magic_name__ : Dict = _extract_labels(_A, one_hot=_A ) __magic_name__ : Optional[int] = _maybe_download( _A, _A, source_url + test_images_file ) with gfile.Open(_A, """rb""" ) as f: __magic_name__ : str = _extract_images(_A ) __magic_name__ : Optional[int] = _maybe_download( _A, _A, source_url + test_labels_file ) with gfile.Open(_A, """rb""" ) as f: __magic_name__ : str = _extract_labels(_A, one_hot=_A ) if not 0 <= validation_size <= len(_A ): __magic_name__ : List[str] = ( """Validation size should be between 0 and """ f'{len(_A )}. Received: {validation_size}.' ) raise ValueError(_A ) __magic_name__ : Tuple = train_images[:validation_size] __magic_name__ : int = train_labels[:validation_size] __magic_name__ : Any = train_images[validation_size:] __magic_name__ : Union[str, Any] = train_labels[validation_size:] __magic_name__ : List[Any] = {"""dtype""": dtype, """reshape""": reshape, """seed""": seed} __magic_name__ : Dict = _DataSet(_A, _A, **_A ) __magic_name__ : Optional[int] = _DataSet(_A, _A, **_A ) __magic_name__ : Dict = _DataSet(_A, _A, **_A ) return _Datasets(train=_A, validation=_A, test=_A )
138
import gc import random import unittest import numpy as np import torch from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableUnCLIPImgaImgPipeline, UNetaDConditionModel from diffusers.pipelines.pipeline_utils import DiffusionPipeline from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import ( enable_full_determinism, floats_tensor, load_image, load_numpy, require_torch_gpu, skip_mps, slow, torch_device, ) from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class snake_case__ ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): lowercase__ : str = StableUnCLIPImgaImgPipeline lowercase__ : Any = TEXT_GUIDED_IMAGE_VARIATION_PARAMS lowercase__ : Tuple = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS lowercase__ : Union[str, Any] = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess lowercase__ : Union[str, Any] = frozenset([] ) def __magic_name__ ( self ) -> Tuple: __magic_name__ : Any = 32 __magic_name__ : Union[str, Any] = embedder_hidden_size # image encoding components __magic_name__ : Optional[int] = CLIPImageProcessor(crop_size=32 , size=32 ) torch.manual_seed(0 ) __magic_name__ : Optional[Any] = CLIPVisionModelWithProjection( CLIPVisionConfig( hidden_size=lowerCAmelCase__ , projection_dim=lowerCAmelCase__ , num_hidden_layers=5 , num_attention_heads=4 , image_size=32 , intermediate_size=37 , patch_size=1 , ) ) # regular denoising components torch.manual_seed(0 ) __magic_name__ : Any = StableUnCLIPImageNormalizer(embedding_dim=lowerCAmelCase__ ) __magic_name__ : int = DDPMScheduler(beta_schedule="""squaredcos_cap_v2""" ) torch.manual_seed(0 ) __magic_name__ : Tuple = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) torch.manual_seed(0 ) __magic_name__ : Optional[Any] = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=lowerCAmelCase__ , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) ) torch.manual_seed(0 ) __magic_name__ : str = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""CrossAttnDownBlock2D""", """DownBlock2D""") , up_block_types=("""UpBlock2D""", """CrossAttnUpBlock2D""") , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type="""projection""" , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=lowerCAmelCase__ , layers_per_block=1 , upcast_attention=lowerCAmelCase__ , use_linear_projection=lowerCAmelCase__ , ) torch.manual_seed(0 ) __magic_name__ : Optional[Any] = DDIMScheduler( beta_schedule="""scaled_linear""" , beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , prediction_type="""v_prediction""" , set_alpha_to_one=lowerCAmelCase__ , steps_offset=1 , ) torch.manual_seed(0 ) __magic_name__ : List[str] = AutoencoderKL() __magic_name__ : List[str] = { # image encoding components """feature_extractor""": feature_extractor, """image_encoder""": image_encoder.eval(), # image noising components """image_normalizer""": image_normalizer.eval(), """image_noising_scheduler""": image_noising_scheduler, # regular denoising components """tokenizer""": tokenizer, """text_encoder""": text_encoder.eval(), """unet""": unet.eval(), """scheduler""": scheduler, """vae""": vae.eval(), } return components def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__=0 , lowerCAmelCase__=True ) -> List[Any]: if str(lowerCAmelCase__ ).startswith("""mps""" ): __magic_name__ : Optional[int] = torch.manual_seed(lowerCAmelCase__ ) else: __magic_name__ : Optional[int] = torch.Generator(device=lowerCAmelCase__ ).manual_seed(lowerCAmelCase__ ) __magic_name__ : Any = floats_tensor((1, 3, 32, 32) , rng=random.Random(lowerCAmelCase__ ) ).to(lowerCAmelCase__ ) if pil_image: __magic_name__ : Optional[Any] = input_image * 0.5 + 0.5 __magic_name__ : int = input_image.clamp(0 , 1 ) __magic_name__ : Union[str, Any] = input_image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() __magic_name__ : Optional[int] = DiffusionPipeline.numpy_to_pil(lowerCAmelCase__ )[0] return { "prompt": "An anime racoon running a marathon", "image": input_image, "generator": generator, "num_inference_steps": 2, "output_type": "np", } @skip_mps def __magic_name__ ( self ) -> List[Any]: __magic_name__ : Optional[Any] = """cpu""" # ensure determinism for the device-dependent torch.Generator __magic_name__ : List[str] = self.get_dummy_components() __magic_name__ : int = StableUnCLIPImgaImgPipeline(**lowerCAmelCase__ ) __magic_name__ : List[str] = sd_pipe.to(lowerCAmelCase__ ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) __magic_name__ : Any = self.get_dummy_inputs(lowerCAmelCase__ ) inputs.update({"""image_embeds""": None} ) __magic_name__ : List[str] = sd_pipe(**lowerCAmelCase__ ).images __magic_name__ : Dict = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) __magic_name__ : int = np.array([0.3_8_7_2, 0.7_2_2_4, 0.5_6_0_1, 0.4_7_4_1, 0.6_8_7_2, 0.5_8_1_4, 0.4_6_3_6, 0.3_8_6_7, 0.5_0_7_8] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def __magic_name__ ( self ) -> Dict: __magic_name__ : int = torch_device in ["""cpu""", """mps"""] self._test_attention_slicing_forward_pass(test_max_difference=lowerCAmelCase__ ) def __magic_name__ ( self ) -> Union[str, Any]: __magic_name__ : Tuple = torch_device in ["""cpu""", """mps"""] self._test_inference_batch_single_identical(test_max_difference=lowerCAmelCase__ ) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def __magic_name__ ( self ) -> str: self._test_xformers_attention_forwardGenerator_pass(test_max_difference=lowerCAmelCase__ ) @slow @require_torch_gpu class snake_case__ ( unittest.TestCase ): def __magic_name__ ( self ) -> int: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __magic_name__ ( self ) -> List[Any]: __magic_name__ : Optional[Any] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png""" ) __magic_name__ : int = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_img2img_anime_turtle_fp16.npy""" ) __magic_name__ : List[Any] = StableUnCLIPImgaImgPipeline.from_pretrained( """fusing/stable-unclip-2-1-l-img2img""" , torch_dtype=torch.floataa ) pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() __magic_name__ : Union[str, Any] = torch.Generator(device="""cpu""" ).manual_seed(0 ) __magic_name__ : Union[str, Any] = pipe(lowerCAmelCase__ , """anime turle""" , generator=lowerCAmelCase__ , output_type="""np""" ) __magic_name__ : Optional[Any] = output.images[0] assert image.shape == (7_68, 7_68, 3) assert_mean_pixel_difference(lowerCAmelCase__ , lowerCAmelCase__ ) def __magic_name__ ( self ) -> List[Any]: __magic_name__ : Union[str, Any] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png""" ) __magic_name__ : Dict = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_h_img2img_anime_turtle_fp16.npy""" ) __magic_name__ : Union[str, Any] = StableUnCLIPImgaImgPipeline.from_pretrained( """fusing/stable-unclip-2-1-h-img2img""" , torch_dtype=torch.floataa ) pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() __magic_name__ : List[str] = torch.Generator(device="""cpu""" ).manual_seed(0 ) __magic_name__ : Any = pipe(lowerCAmelCase__ , """anime turle""" , generator=lowerCAmelCase__ , output_type="""np""" ) __magic_name__ : Any = output.images[0] assert image.shape == (7_68, 7_68, 3) assert_mean_pixel_difference(lowerCAmelCase__ , lowerCAmelCase__ ) def __magic_name__ ( self ) -> str: __magic_name__ : Any = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png""" ) torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() __magic_name__ : Union[str, Any] = StableUnCLIPImgaImgPipeline.from_pretrained( """fusing/stable-unclip-2-1-h-img2img""" , torch_dtype=torch.floataa ) __magic_name__ : int = pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() __magic_name__ : List[Any] = pipe( lowerCAmelCase__ , """anime turtle""" , num_inference_steps=2 , output_type="""np""" , ) __magic_name__ : List[str] = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
138
1
import gc import inspect import unittest import torch from parameterized import parameterized from diffusers import PriorTransformer from diffusers.utils import floats_tensor, slow, torch_all_close, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin enable_full_determinism() class UpperCAmelCase__ ( A_ , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : Tuple = PriorTransformer UpperCAmelCase__ : List[str] = "hidden_states" @property def _a ( self ) -> int: __UpperCamelCase =4 __UpperCamelCase =8 __UpperCamelCase =7 __UpperCamelCase =floats_tensor((batch_size, embedding_dim) ).to(A_ ) __UpperCamelCase =floats_tensor((batch_size, embedding_dim) ).to(A_ ) __UpperCamelCase =floats_tensor((batch_size, num_embeddings, embedding_dim) ).to(A_ ) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } def _a ( self , A_=0 ) -> Dict: torch.manual_seed(A_ ) __UpperCamelCase =4 __UpperCamelCase =8 __UpperCamelCase =7 __UpperCamelCase =torch.randn((batch_size, embedding_dim) ).to(A_ ) __UpperCamelCase =torch.randn((batch_size, embedding_dim) ).to(A_ ) __UpperCamelCase =torch.randn((batch_size, num_embeddings, embedding_dim) ).to(A_ ) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } @property def _a ( self ) -> Tuple: return (4, 8) @property def _a ( self ) -> List[Any]: return (4, 8) def _a ( self ) -> str: __UpperCamelCase ={ 'num_attention_heads': 2, 'attention_head_dim': 4, 'num_layers': 2, 'embedding_dim': 8, 'num_embeddings': 7, 'additional_embeddings': 4, } __UpperCamelCase =self.dummy_input return init_dict, inputs_dict def _a ( self ) -> Union[str, Any]: __UpperCamelCase , __UpperCamelCase =PriorTransformer.from_pretrained( 'hf-internal-testing/prior-dummy' , output_loading_info=A_ ) self.assertIsNotNone(A_ ) self.assertEqual(len(loading_info['missing_keys'] ) , 0 ) model.to(A_ ) __UpperCamelCase =model(**self.dummy_input )[0] assert hidden_states is not None, "Make sure output is not None" def _a ( self ) -> Any: __UpperCamelCase , __UpperCamelCase =self.prepare_init_args_and_inputs_for_common() __UpperCamelCase =self.model_class(**A_ ) __UpperCamelCase =inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __UpperCamelCase =[*signature.parameters.keys()] __UpperCamelCase =['hidden_states', 'timestep'] self.assertListEqual(arg_names[:2] , A_ ) def _a ( self ) -> Union[str, Any]: __UpperCamelCase =PriorTransformer.from_pretrained('hf-internal-testing/prior-dummy' ) __UpperCamelCase =model.to(A_ ) if hasattr(A_ , 'set_default_attn_processor' ): model.set_default_attn_processor() __UpperCamelCase =self.get_dummy_seed_input() with torch.no_grad(): __UpperCamelCase =model(**A_ )[0] __UpperCamelCase =output[0, :5].flatten().cpu() print(A_ ) # Since the VAE Gaussian prior's generator is seeded on the appropriate device, # the expected output slices are not the same for CPU and GPU. __UpperCamelCase =torch.tensor([-1.3436, -0.2870, 0.7538, 0.4368, -0.0239] ) self.assertTrue(torch_all_close(A_ , A_ , rtol=1E-2 ) ) @slow class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" def _a ( self , A_=1 , A_=768 , A_=77 , A_=0 ) -> Union[str, Any]: torch.manual_seed(A_ ) __UpperCamelCase =batch_size __UpperCamelCase =embedding_dim __UpperCamelCase =num_embeddings __UpperCamelCase =torch.randn((batch_size, embedding_dim) ).to(A_ ) __UpperCamelCase =torch.randn((batch_size, embedding_dim) ).to(A_ ) __UpperCamelCase =torch.randn((batch_size, num_embeddings, embedding_dim) ).to(A_ ) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } def _a ( self ) -> Any: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @parameterized.expand( [ # fmt: off [13, [-0.5861, 0.1283, -0.0931, 0.0882, 0.4476, 0.1329, -0.0498, 0.0640]], [37, [-0.4913, 0.0110, -0.0483, 0.0541, 0.4954, -0.0170, 0.0354, 0.1651]], # fmt: on ] ) def _a ( self , A_ , A_ ) -> int: __UpperCamelCase =PriorTransformer.from_pretrained('kandinsky-community/kandinsky-2-1-prior' , subfolder='prior' ) model.to(A_ ) __UpperCamelCase =self.get_dummy_seed_input(seed=A_ ) with torch.no_grad(): __UpperCamelCase =model(**A_ )[0] assert list(sample.shape ) == [1, 768] __UpperCamelCase =sample[0, :8].flatten().cpu() print(A_ ) __UpperCamelCase =torch.tensor(A_ ) assert torch_all_close(A_ , A_ , atol=1E-3 )
62
import inspect import unittest from transformers import MobileNetVaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation, MobileNetVaModel from transformers.models.mobilenet_va.modeling_mobilenet_va import MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class __UpperCAmelCase ( lowerCamelCase__ ): def __magic_name__ ( self : Optional[Any] ): UpperCAmelCase : str = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(__A, '''tf_padding''' ) ) self.parent.assertTrue(hasattr(__A, '''depth_multiplier''' ) ) class __UpperCAmelCase : def __init__( self : int, __A : List[Any], __A : str=1_3, __A : Dict=3, __A : int=3_2, __A : int=0.2_5, __A : List[str]=8, __A : int=8, __A : Dict=6, __A : str=3_2, __A : Any=True, __A : str=True, __A : int=True, __A : Union[str, Any]="relu6", __A : Any=1_2_8_0, __A : List[Any]=0.1, __A : Optional[Any]=0.0_2, __A : Tuple=True, __A : List[Any]=True, __A : str=1_0, __A : Optional[Any]=None, ): UpperCAmelCase : Optional[int] = parent UpperCAmelCase : List[str] = batch_size UpperCAmelCase : List[str] = num_channels UpperCAmelCase : str = image_size UpperCAmelCase : Optional[int] = depth_multiplier UpperCAmelCase : Union[str, Any] = depth_divisible_by UpperCAmelCase : Optional[Any] = min_depth UpperCAmelCase : List[str] = expand_ratio UpperCAmelCase : Dict = tf_padding UpperCAmelCase : str = output_stride UpperCAmelCase : Union[str, Any] = first_layer_is_expansion UpperCAmelCase : List[Any] = finegrained_output UpperCAmelCase : Optional[Any] = hidden_act UpperCAmelCase : str = last_hidden_size if finegrained_output else int(last_hidden_size * depth_multiplier ) UpperCAmelCase : Optional[Any] = classifier_dropout_prob UpperCAmelCase : Dict = use_labels UpperCAmelCase : List[str] = is_training UpperCAmelCase : Tuple = num_labels UpperCAmelCase : Union[str, Any] = initializer_range UpperCAmelCase : Any = scope def __magic_name__ ( self : List[Any] ): UpperCAmelCase : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase : Dict = None UpperCAmelCase : Any = None if self.use_labels: UpperCAmelCase : Dict = ids_tensor([self.batch_size], self.num_labels ) UpperCAmelCase : Optional[int] = ids_tensor([self.batch_size, self.image_size, self.image_size], self.num_labels ) UpperCAmelCase : Optional[Any] = self.get_config() return config, pixel_values, labels, pixel_labels def __magic_name__ ( self : Any ): return MobileNetVaConfig( num_channels=self.num_channels, image_size=self.image_size, depth_multiplier=self.depth_multiplier, depth_divisible_by=self.depth_divisible_by, min_depth=self.min_depth, expand_ratio=self.expand_ratio, output_stride=self.output_stride, first_layer_is_expansion=self.first_layer_is_expansion, finegrained_output=self.finegrained_output, hidden_act=self.hidden_act, tf_padding=self.tf_padding, classifier_dropout_prob=self.classifier_dropout_prob, initializer_range=self.initializer_range, ) def __magic_name__ ( self : List[Any], __A : Dict, __A : Optional[Any], __A : Optional[int], __A : Union[str, Any] ): UpperCAmelCase : Any = MobileNetVaModel(config=__A ) model.to(__A ) model.eval() UpperCAmelCase : Optional[Any] = model(__A ) self.parent.assertEqual( result.last_hidden_state.shape, ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ), ) self.parent.assertEqual( result.pooler_output.shape, (self.batch_size, self.last_hidden_size), ) def __magic_name__ ( self : str, __A : Union[str, Any], __A : Dict, __A : Optional[Any], __A : str ): UpperCAmelCase : Optional[int] = self.num_labels UpperCAmelCase : Any = MobileNetVaForImageClassification(__A ) model.to(__A ) model.eval() UpperCAmelCase : Optional[int] = model(__A, labels=__A ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) ) def __magic_name__ ( self : List[Any], __A : Optional[Any], __A : List[str], __A : Dict, __A : Dict ): UpperCAmelCase : Tuple = self.num_labels UpperCAmelCase : Dict = MobileNetVaForSemanticSegmentation(__A ) model.to(__A ) model.eval() UpperCAmelCase : Dict = model(__A ) self.parent.assertEqual( result.logits.shape, ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ), ) UpperCAmelCase : Optional[Any] = model(__A, labels=__A ) self.parent.assertEqual( result.logits.shape, ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ), ) def __magic_name__ ( self : Tuple ): UpperCAmelCase : List[str] = self.prepare_config_and_inputs() UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : int = config_and_inputs UpperCAmelCase : Optional[int] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class __UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): UpperCamelCase = ( (MobileNetVaModel, MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation) if is_torch_available() else () ) UpperCamelCase = ( { """feature-extraction""": MobileNetVaModel, """image-classification""": MobileNetVaForImageClassification, """image-segmentation""": MobileNetVaForSemanticSegmentation, } if is_torch_available() else {} ) UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False def __magic_name__ ( self : Union[str, Any] ): UpperCAmelCase : List[Any] = MobileNetVaModelTester(self ) UpperCAmelCase : List[Any] = MobileNetVaConfigTester(self, config_class=__A, has_text_modality=__A ) def __magic_name__ ( self : Tuple ): self.config_tester.run_common_tests() @unittest.skip(reason='''MobileNetV2 does not use inputs_embeds''' ) def __magic_name__ ( self : Optional[int] ): pass @unittest.skip(reason='''MobileNetV2 does not support input and output embeddings''' ) def __magic_name__ ( self : Tuple ): pass @unittest.skip(reason='''MobileNetV2 does not output attentions''' ) def __magic_name__ ( self : Any ): pass def __magic_name__ ( self : Optional[int] ): UpperCAmelCase , UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase : Optional[Any] = model_class(__A ) UpperCAmelCase : Optional[int] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase : Union[str, Any] = [*signature.parameters.keys()] UpperCAmelCase : Any = ['''pixel_values'''] self.assertListEqual(arg_names[:1], __A ) def __magic_name__ ( self : List[Any] ): UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__A ) def __magic_name__ ( self : int ): def check_hidden_states_output(__A : Any, __A : Optional[Any], __A : str ): UpperCAmelCase : Union[str, Any] = model_class(__A ) model.to(__A ) model.eval() with torch.no_grad(): UpperCAmelCase : Dict = model(**self._prepare_for_class(__A, __A ) ) UpperCAmelCase : Optional[Any] = outputs.hidden_states UpperCAmelCase : List[Any] = 1_6 self.assertEqual(len(__A ), __A ) UpperCAmelCase , UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase : Tuple = True check_hidden_states_output(__A, __A, __A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase : Tuple = True check_hidden_states_output(__A, __A, __A ) def __magic_name__ ( self : List[str] ): UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__A ) def __magic_name__ ( self : int ): UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*__A ) @slow def __magic_name__ ( self : Dict ): for model_name in MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase : Optional[Any] = MobileNetVaModel.from_pretrained(__A ) self.assertIsNotNone(__A ) def a__ ( ) -> int: UpperCAmelCase : Dict = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class __UpperCAmelCase ( unittest.TestCase ): @cached_property def __magic_name__ ( self : List[Any] ): return ( MobileNetVaImageProcessor.from_pretrained('''google/mobilenet_v2_1.0_224''' ) if is_vision_available() else None ) @slow def __magic_name__ ( self : Optional[Any] ): UpperCAmelCase : List[Any] = MobileNetVaForImageClassification.from_pretrained('''google/mobilenet_v2_1.0_224''' ).to(__A ) UpperCAmelCase : Optional[int] = self.default_image_processor UpperCAmelCase : Optional[Any] = prepare_img() UpperCAmelCase : Dict = image_processor(images=__A, return_tensors='''pt''' ).to(__A ) # forward pass with torch.no_grad(): UpperCAmelCase : str = model(**__A ) # verify the logits UpperCAmelCase : int = torch.Size((1, 1_0_0_1) ) self.assertEqual(outputs.logits.shape, __A ) UpperCAmelCase : Tuple = torch.tensor([0.2_4_4_5, -1.1_9_9_3, 0.1_9_0_5] ).to(__A ) self.assertTrue(torch.allclose(outputs.logits[0, :3], __A, atol=1E-4 ) ) @slow def __magic_name__ ( self : Optional[int] ): UpperCAmelCase : Tuple = MobileNetVaForSemanticSegmentation.from_pretrained('''google/deeplabv3_mobilenet_v2_1.0_513''' ) UpperCAmelCase : List[Any] = model.to(__A ) UpperCAmelCase : Tuple = MobileNetVaImageProcessor.from_pretrained('''google/deeplabv3_mobilenet_v2_1.0_513''' ) UpperCAmelCase : List[Any] = prepare_img() UpperCAmelCase : int = image_processor(images=__A, return_tensors='''pt''' ).to(__A ) # forward pass with torch.no_grad(): UpperCAmelCase : Union[str, Any] = model(**__A ) UpperCAmelCase : Optional[Any] = outputs.logits # verify the logits UpperCAmelCase : Tuple = torch.Size((1, 2_1, 6_5, 6_5) ) self.assertEqual(logits.shape, __A ) UpperCAmelCase : Tuple = torch.tensor( [ [[1_7.5_7_9_0, 1_7.7_5_8_1, 1_8.3_3_5_5], [1_8.3_2_5_7, 1_8.4_2_3_0, 1_8.8_9_7_3], [1_8.6_1_6_9, 1_8.8_6_5_0, 1_9.2_1_8_7]], [[-2.1_5_9_5, -2.0_9_7_7, -2.3_7_4_1], [-2.4_2_2_6, -2.3_0_2_8, -2.6_8_3_5], [-2.7_8_1_9, -2.5_9_9_1, -2.7_7_0_6]], [[4.2_0_5_8, 4.8_3_1_7, 4.7_6_3_8], [4.4_1_3_6, 5.0_3_6_1, 4.9_3_8_3], [4.5_0_2_8, 4.9_6_4_4, 4.8_7_3_4]], ], device=__A, ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3], __A, atol=1E-4 ) )
336
0
"""simple docstring""" import inspect import unittest from transformers import SegformerConfig, is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_MAPPING, SegformerForImageClassification, SegformerForSemanticSegmentation, SegformerModel, ) from transformers.models.segformer.modeling_segformer import SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import SegformerImageProcessor class UpperCamelCase ( lowercase ): def _lowercase (self : Any) -> List[Any]: __snake_case : Any = self.config_class(**self.inputs_dict) self.parent.assertTrue(hasattr(_A , 'hidden_sizes')) self.parent.assertTrue(hasattr(_A , 'num_attention_heads')) self.parent.assertTrue(hasattr(_A , 'num_encoder_blocks')) class UpperCamelCase : def __init__(self : Optional[int] , _A : Any , _A : str=13 , _A : List[str]=64 , _A : List[Any]=3 , _A : Any=4 , _A : List[str]=[2, 2, 2, 2] , _A : Tuple=[8, 4, 2, 1] , _A : List[str]=[16, 32, 64, 1_28] , _A : int=[1, 4, 8, 16] , _A : List[str]=[1, 2, 4, 8] , _A : Dict=True , _A : Any=True , _A : List[str]="gelu" , _A : Optional[int]=0.1 , _A : Union[str, Any]=0.1 , _A : List[Any]=0.02 , _A : str=3 , _A : int=None , ) -> List[Any]: __snake_case : int = parent __snake_case : List[Any] = batch_size __snake_case : Optional[int] = image_size __snake_case : List[str] = num_channels __snake_case : Any = num_encoder_blocks __snake_case : Dict = sr_ratios __snake_case : Any = depths __snake_case : Tuple = hidden_sizes __snake_case : Tuple = downsampling_rates __snake_case : Union[str, Any] = num_attention_heads __snake_case : Optional[int] = is_training __snake_case : Any = use_labels __snake_case : List[Any] = hidden_act __snake_case : Union[str, Any] = hidden_dropout_prob __snake_case : Tuple = attention_probs_dropout_prob __snake_case : List[Any] = initializer_range __snake_case : Union[str, Any] = num_labels __snake_case : Dict = scope def _lowercase (self : List[Any]) -> Tuple: __snake_case : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) __snake_case : str = None if self.use_labels: __snake_case : Optional[Any] = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels) __snake_case : Dict = self.get_config() return config, pixel_values, labels def _lowercase (self : Any) -> Optional[int]: return SegformerConfig( image_size=self.image_size , num_channels=self.num_channels , num_encoder_blocks=self.num_encoder_blocks , depths=self.depths , hidden_sizes=self.hidden_sizes , num_attention_heads=self.num_attention_heads , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , ) def _lowercase (self : List[str] , _A : Union[str, Any] , _A : List[Any] , _A : Union[str, Any]) -> int: __snake_case : Union[str, Any] = SegformerModel(config=_A) model.to(_A) model.eval() __snake_case : str = model(_A) __snake_case : List[Any] = self.image_size // (self.downsampling_rates[-1] * 2) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], expected_height, expected_width)) def _lowercase (self : Tuple , _A : Dict , _A : Any , _A : int) -> str: __snake_case : Any = self.num_labels __snake_case : List[str] = SegformerForSemanticSegmentation(_A) model.to(_A) model.eval() __snake_case : Dict = model(_A) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size // 4, self.image_size // 4)) __snake_case : Dict = model(_A , labels=_A) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size // 4, self.image_size // 4)) self.parent.assertGreater(result.loss , 0.0) def _lowercase (self : Optional[Any] , _A : Dict , _A : Optional[int] , _A : str) -> List[Any]: __snake_case : List[Any] = 1 __snake_case : str = SegformerForSemanticSegmentation(config=_A) model.to(_A) model.eval() __snake_case : Any = torch.randint(0 , 1 , (self.batch_size, self.image_size, self.image_size)).to(_A) __snake_case : Any = model(_A , labels=_A) self.parent.assertGreater(result.loss , 0.0) def _lowercase (self : Any) -> Optional[int]: __snake_case : Optional[Any] = self.prepare_config_and_inputs() __snake_case , __snake_case , __snake_case : str = config_and_inputs __snake_case : List[str] = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class UpperCamelCase ( lowercase , lowercase , unittest.TestCase ): UpperCAmelCase : List[str] = ( ( SegformerModel, SegformerForSemanticSegmentation, SegformerForImageClassification, ) if is_torch_available() else () ) UpperCAmelCase : Dict = ( { """feature-extraction""": SegformerModel, """image-classification""": SegformerForImageClassification, """image-segmentation""": SegformerForSemanticSegmentation, } if is_torch_available() else {} ) UpperCAmelCase : Optional[int] = True UpperCAmelCase : Optional[int] = False UpperCAmelCase : List[Any] = False UpperCAmelCase : List[Any] = False def _lowercase (self : str) -> Union[str, Any]: __snake_case : Optional[int] = SegformerModelTester(self) __snake_case : Any = SegformerConfigTester(self , config_class=_A) def _lowercase (self : List[str]) -> Optional[int]: self.config_tester.run_common_tests() def _lowercase (self : List[Any]) -> List[str]: __snake_case : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A) def _lowercase (self : Optional[int]) -> str: __snake_case : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_binary_image_segmentation(*_A) def _lowercase (self : int) -> Union[str, Any]: __snake_case : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_segmentation(*_A) @unittest.skip('SegFormer does not use inputs_embeds') def _lowercase (self : Union[str, Any]) -> str: pass @unittest.skip('SegFormer does not have get_input_embeddings method and get_output_embeddings methods') def _lowercase (self : int) -> str: pass def _lowercase (self : List[str]) -> Any: __snake_case , __snake_case : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case : str = model_class(_A) __snake_case : str = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic __snake_case : List[str] = [*signature.parameters.keys()] __snake_case : Optional[int] = ['pixel_values'] self.assertListEqual(arg_names[:1] , _A) def _lowercase (self : List[str]) -> List[Any]: __snake_case , __snake_case : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() __snake_case : Optional[int] = True for model_class in self.all_model_classes: __snake_case : Union[str, Any] = True __snake_case : List[str] = False __snake_case : Tuple = True __snake_case : int = model_class(_A) model.to(_A) model.eval() with torch.no_grad(): __snake_case : int = model(**self._prepare_for_class(_A , _A)) __snake_case : Union[str, Any] = outputs.attentions __snake_case : int = sum(self.model_tester.depths) self.assertEqual(len(_A) , _A) # check that output_attentions also work using config del inputs_dict["output_attentions"] __snake_case : int = True __snake_case : Union[str, Any] = model_class(_A) model.to(_A) model.eval() with torch.no_grad(): __snake_case : List[str] = model(**self._prepare_for_class(_A , _A)) __snake_case : Optional[int] = outputs.attentions self.assertEqual(len(_A) , _A) # verify the first attentions (first block, first layer) __snake_case : Optional[int] = (self.model_tester.image_size // 4) ** 2 __snake_case : Tuple = (self.model_tester.image_size // (4 * self.model_tester.sr_ratios[0])) ** 2 self.assertListEqual( list(attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads[0], expected_seq_len, expected_reduced_seq_len] , ) # verify the last attentions (last block, last layer) __snake_case : int = (self.model_tester.image_size // 32) ** 2 __snake_case : Any = (self.model_tester.image_size // (32 * self.model_tester.sr_ratios[-1])) ** 2 self.assertListEqual( list(attentions[-1].shape[-3:]) , [self.model_tester.num_attention_heads[-1], expected_seq_len, expected_reduced_seq_len] , ) __snake_case : int = len(_A) # Check attention is always last and order is fine __snake_case : Any = True __snake_case : Tuple = True __snake_case : Optional[Any] = model_class(_A) model.to(_A) model.eval() with torch.no_grad(): __snake_case : Any = model(**self._prepare_for_class(_A , _A)) self.assertEqual(out_len + 1 , len(_A)) __snake_case : List[Any] = outputs.attentions self.assertEqual(len(_A) , _A) # verify the first attentions (first block, first layer) __snake_case : Any = (self.model_tester.image_size // 4) ** 2 __snake_case : List[Any] = (self.model_tester.image_size // (4 * self.model_tester.sr_ratios[0])) ** 2 self.assertListEqual( list(self_attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads[0], expected_seq_len, expected_reduced_seq_len] , ) def _lowercase (self : str) -> List[str]: def check_hidden_states_output(_A : Union[str, Any] , _A : List[str] , _A : Tuple): __snake_case : Tuple = model_class(_A) model.to(_A) model.eval() with torch.no_grad(): __snake_case : Optional[int] = model(**self._prepare_for_class(_A , _A)) __snake_case : List[str] = outputs.hidden_states __snake_case : Tuple = self.model_tester.num_encoder_blocks self.assertEqual(len(_A) , _A) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:]) , [ self.model_tester.hidden_sizes[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] , ) __snake_case , __snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case : List[str] = True check_hidden_states_output(_A , _A , _A) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __snake_case : Any = True check_hidden_states_output(_A , _A , _A) def _lowercase (self : Optional[int]) -> int: if not self.model_tester.is_training: return __snake_case , __snake_case : Dict = self.model_tester.prepare_config_and_inputs_for_common() __snake_case : int = True for model_class in self.all_model_classes: if model_class in get_values(_A): continue __snake_case : Tuple = model_class(_A) model.to(_A) model.train() __snake_case : str = self._prepare_for_class(_A , _A , return_labels=_A) __snake_case : Dict = model(**_A).loss loss.backward() @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.') def _lowercase (self : Tuple) -> Dict: pass @slow def _lowercase (self : Any) -> List[str]: for model_name in SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case : List[Any] = SegformerModel.from_pretrained(_A) self.assertIsNotNone(_A) def __UpperCAmelCase ( ) -> Union[str, Any]: '''simple docstring''' __snake_case : Tuple = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch class UpperCamelCase ( unittest.TestCase ): @slow def _lowercase (self : Union[str, Any]) -> Any: # only resize + normalize __snake_case : List[str] = SegformerImageProcessor( image_scale=(5_12, 5_12) , keep_ratio=_A , align=_A , do_random_crop=_A) __snake_case : Tuple = SegformerForSemanticSegmentation.from_pretrained('nvidia/segformer-b0-finetuned-ade-512-512').to( _A) __snake_case : Optional[Any] = prepare_img() __snake_case : Tuple = image_processor(images=_A , return_tensors='pt') __snake_case : List[str] = encoded_inputs.pixel_values.to(_A) with torch.no_grad(): __snake_case : Any = model(_A) __snake_case : Optional[int] = torch.Size((1, model.config.num_labels, 1_28, 1_28)) self.assertEqual(outputs.logits.shape , _A) __snake_case : Tuple = torch.tensor( [ [[-4.6_310, -5.5_232, -6.2_356], [-5.1_921, -6.1_444, -6.5_996], [-5.4_424, -6.2_790, -6.7_574]], [[-12.1_391, -13.3_122, -13.9_554], [-12.8_732, -13.9_352, -14.3_563], [-12.9_438, -13.8_226, -14.2_513]], [[-12.5_134, -13.4_686, -14.4_915], [-12.8_669, -14.4_343, -14.7_758], [-13.2_523, -14.5_819, -15.0_694]], ]).to(_A) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3, :3] , _A , atol=1E-4)) @slow def _lowercase (self : Any) -> Optional[int]: # only resize + normalize __snake_case : int = SegformerImageProcessor( image_scale=(5_12, 5_12) , keep_ratio=_A , align=_A , do_random_crop=_A) __snake_case : Tuple = SegformerForSemanticSegmentation.from_pretrained( 'nvidia/segformer-b1-finetuned-cityscapes-1024-1024').to(_A) __snake_case : str = prepare_img() __snake_case : Union[str, Any] = image_processor(images=_A , return_tensors='pt') __snake_case : str = encoded_inputs.pixel_values.to(_A) with torch.no_grad(): __snake_case : Any = model(_A) __snake_case : Any = torch.Size((1, model.config.num_labels, 1_28, 1_28)) self.assertEqual(outputs.logits.shape , _A) __snake_case : List[Any] = torch.tensor( [ [[-13.5_748, -13.9_111, -12.6_500], [-14.3_500, -15.3_683, -14.2_328], [-14.7_532, -16.0_424, -15.6_087]], [[-17.1_651, -15.8_725, -12.9_653], [-17.2_580, -17.3_718, -14.8_223], [-16.6_058, -16.8_783, -16.7_452]], [[-3.6_456, -3.0_209, -1.4_203], [-3.0_797, -3.1_959, -2.0_000], [-1.8_757, -1.9_217, -1.6_997]], ]).to(_A) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3, :3] , _A , atol=1E-1)) @slow def _lowercase (self : Optional[int]) -> Union[str, Any]: # only resize + normalize __snake_case : List[Any] = SegformerImageProcessor( image_scale=(5_12, 5_12) , keep_ratio=_A , align=_A , do_random_crop=_A) __snake_case : Optional[Any] = SegformerForSemanticSegmentation.from_pretrained('nvidia/segformer-b0-finetuned-ade-512-512').to( _A) __snake_case : Optional[Any] = prepare_img() __snake_case : Optional[Any] = image_processor(images=_A , return_tensors='pt') __snake_case : Union[str, Any] = encoded_inputs.pixel_values.to(_A) with torch.no_grad(): __snake_case : Any = model(_A) __snake_case : Optional[Any] = outputs.logits.detach().cpu() __snake_case : Any = image_processor.post_process_semantic_segmentation(outputs=_A , target_sizes=[(5_00, 3_00)]) __snake_case : Any = torch.Size((5_00, 3_00)) self.assertEqual(segmentation[0].shape , _A) __snake_case : Any = image_processor.post_process_semantic_segmentation(outputs=_A) __snake_case : str = torch.Size((1_28, 1_28)) self.assertEqual(segmentation[0].shape , _A)
95
"""simple docstring""" def __UpperCAmelCase ( UpperCAmelCase_ : int , UpperCAmelCase_ : int ) -> int: '''simple docstring''' while a != 0: __snake_case , __snake_case : Union[str, Any] = b % a, a return b def __UpperCAmelCase ( UpperCAmelCase_ : int , UpperCAmelCase_ : int ) -> int: '''simple docstring''' if gcd(UpperCAmelCase_ , UpperCAmelCase_ ) != 1: __snake_case : Union[str, Any] = F"mod inverse of {a!r} and {m!r} does not exist" raise ValueError(UpperCAmelCase_ ) __snake_case , __snake_case , __snake_case : List[str] = 1, 0, a __snake_case , __snake_case , __snake_case : Dict = 0, 1, m while va != 0: __snake_case : List[str] = ua // va __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case : List[str] = (ua - q * va), (ua - q * va), (ua - q * va), va, va, va return ua % m
95
1
import os import pickle import unittest from transformers import AutoTokenizer from transformers.models.bert.tokenization_bert import BertTokenizer from transformers.models.bert_japanese.tokenization_bert_japanese import ( VOCAB_FILES_NAMES, BertJapaneseTokenizer, CharacterTokenizer, JumanppTokenizer, MecabTokenizer, SudachiTokenizer, WordpieceTokenizer, ) from transformers.testing_utils import custom_tokenizers, require_jumanpp, require_sudachi from ...test_tokenization_common import TokenizerTesterMixin @custom_tokenizers class lowercase_ ( lowercase , unittest.TestCase ): '''simple docstring''' __snake_case = BertJapaneseTokenizer __snake_case = False __snake_case = True def __lowerCAmelCase ( self : List[str] ) ->Tuple: """simple docstring""" super().setUp() a = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''こんにちは''', '''こん''', '''にちは''', '''ばんは''', '''##こん''', '''##にちは''', '''##ばんは''', '''世界''', '''##世界''', '''、''', '''##、''', '''。''', '''##。''', ] a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def __lowerCAmelCase ( self : Tuple , __UpperCAmelCase : Optional[int] ) ->Union[str, Any]: """simple docstring""" a = '''こんにちは、世界。 \nこんばんは、世界。''' a = '''こんにちは 、 世界 。 こんばんは 、 世界 。''' return input_text, output_text def __lowerCAmelCase ( self : str , __UpperCAmelCase : List[str] ) ->Union[str, Any]: """simple docstring""" a , a = self.get_input_output_texts(__UpperCAmelCase ) a = tokenizer.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) a = tokenizer.decode(__UpperCAmelCase , clean_up_tokenization_spaces=__UpperCAmelCase ) return text, ids def __lowerCAmelCase ( self : Optional[Any] ) ->Any: """simple docstring""" pass # TODO add if relevant def __lowerCAmelCase ( self : int ) ->int: """simple docstring""" pass # TODO add if relevant def __lowerCAmelCase ( self : Optional[Any] ) ->Tuple: """simple docstring""" pass # TODO add if relevant def __lowerCAmelCase ( self : Dict ) ->Any: """simple docstring""" a = self.tokenizer_class(self.vocab_file ) a = tokenizer.tokenize('''こんにちは、世界。\nこんばんは、世界。''' ) self.assertListEqual(__UpperCAmelCase , ['''こんにちは''', '''、''', '''世界''', '''。''', '''こん''', '''##ばんは''', '''、''', '''世界''', '''。'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__UpperCAmelCase ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] ) def __lowerCAmelCase ( self : List[str] ) ->Dict: """simple docstring""" a = self.tokenizer_class(self.vocab_file , word_tokenizer_type='''mecab''' ) self.assertIsNotNone(__UpperCAmelCase ) a = '''こんにちは、世界。\nこんばんは、世界。''' a = tokenizer.tokenize(__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , ['''こんにちは''', '''、''', '''世界''', '''。''', '''こん''', '''##ばんは''', '''、''', '''世界''', '''。'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__UpperCAmelCase ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] ) a = os.path.join(self.tmpdirname , '''tokenizer.bin''' ) with open(__UpperCAmelCase , '''wb''' ) as handle: pickle.dump(__UpperCAmelCase , __UpperCAmelCase ) with open(__UpperCAmelCase , '''rb''' ) as handle: a = pickle.load(__UpperCAmelCase ) a = tokenizer_new.tokenize(__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) def __lowerCAmelCase ( self : List[Any] ) ->str: """simple docstring""" a = MecabTokenizer(mecab_dic='''ipadic''' ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップルストア''', '''で''', '''iPhone''', '''8''', '''が''', '''発売''', '''さ''', '''れ''', '''た''', '''。'''] , ) def __lowerCAmelCase ( self : Any ) ->Union[str, Any]: """simple docstring""" try: a = MecabTokenizer(mecab_dic='''unidic_lite''' ) except ModuleNotFoundError: return self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップル''', '''ストア''', '''で''', '''iPhone''', '''8''', '''が''', '''発売''', '''さ''', '''れ''', '''た''', '''。'''] , ) def __lowerCAmelCase ( self : int ) ->Optional[int]: """simple docstring""" try: a = MecabTokenizer(mecab_dic='''unidic''' ) except ModuleNotFoundError: return self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップル''', '''ストア''', '''で''', '''iPhone''', '''8''', '''が''', '''発売''', '''さ''', '''れ''', '''た''', '''。'''] , ) def __lowerCAmelCase ( self : Union[str, Any] ) ->List[Any]: """simple docstring""" a = MecabTokenizer(do_lower_case=__UpperCAmelCase , mecab_dic='''ipadic''' ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップルストア''', '''で''', '''iphone''', '''8''', '''が''', '''発売''', '''さ''', '''れ''', '''た''', '''。'''] , ) def __lowerCAmelCase ( self : str ) ->Tuple: """simple docstring""" try: a = MecabTokenizer( do_lower_case=__UpperCAmelCase , normalize_text=__UpperCAmelCase , mecab_option='''-d /usr/local/lib/mecab/dic/jumandic''' ) except RuntimeError: # if dict doesn't exist in the system, previous code raises this error. return self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップルストア''', '''で''', '''iPhone''', '''8''', '''が''', '''発売''', '''さ''', '''れた''', '''\u3000''', '''。'''] , ) def __lowerCAmelCase ( self : List[Any] ) ->Dict: """simple docstring""" a = MecabTokenizer(normalize_text=__UpperCAmelCase , mecab_dic='''ipadic''' ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップルストア''', '''で''', '''iPhone''', '''8''', '''が''', '''発売''', '''さ''', '''れ''', '''た''', ''' ''', '''。'''] , ) @require_sudachi def __lowerCAmelCase ( self : Optional[Any] ) ->Dict: """simple docstring""" a = self.tokenizer_class(self.vocab_file , word_tokenizer_type='''sudachi''' ) self.assertIsNotNone(__UpperCAmelCase ) a = '''こんにちは、世界。\nこんばんは、世界。''' a = tokenizer.tokenize(__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , ['''こんにちは''', '''、''', '''世界''', '''。''', '''こん''', '''##ばんは''', '''、''', '''世界''', '''。'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__UpperCAmelCase ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] ) a = os.path.join(self.tmpdirname , '''tokenizer.bin''' ) with open(__UpperCAmelCase , '''wb''' ) as handle: pickle.dump(__UpperCAmelCase , __UpperCAmelCase ) with open(__UpperCAmelCase , '''rb''' ) as handle: a = pickle.load(__UpperCAmelCase ) a = tokenizer_new.tokenize(__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) @require_sudachi def __lowerCAmelCase ( self : str ) ->Optional[int]: """simple docstring""" a = SudachiTokenizer(sudachi_dict_type='''core''' ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , [''' ''', '''\t''', '''アップル''', '''ストア''', '''で''', '''iPhone''', '''8''', ''' ''', '''が''', ''' ''', ''' ''', '''\n ''', '''発売''', '''さ''', '''れ''', '''た''', ''' ''', '''。''', ''' ''', ''' '''] , ) @require_sudachi def __lowerCAmelCase ( self : Union[str, Any] ) ->Any: """simple docstring""" a = SudachiTokenizer(sudachi_dict_type='''core''' , sudachi_split_mode='''A''' ) self.assertListEqual(tokenizer.tokenize('''外国人参政権''' ) , ['''外国''', '''人''', '''参政''', '''権'''] ) @require_sudachi def __lowerCAmelCase ( self : str ) ->Tuple: """simple docstring""" a = SudachiTokenizer(sudachi_dict_type='''core''' , sudachi_split_mode='''B''' ) self.assertListEqual(tokenizer.tokenize('''外国人参政権''' ) , ['''外国人''', '''参政権'''] ) @require_sudachi def __lowerCAmelCase ( self : Optional[Any] ) ->Tuple: """simple docstring""" a = SudachiTokenizer(sudachi_dict_type='''core''' , sudachi_split_mode='''C''' ) self.assertListEqual(tokenizer.tokenize('''外国人参政権''' ) , ['''外国人参政権'''] ) @require_sudachi def __lowerCAmelCase ( self : List[Any] ) ->Dict: """simple docstring""" a = SudachiTokenizer(do_lower_case=__UpperCAmelCase , sudachi_dict_type='''core''' ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , [''' ''', '''\t''', '''アップル''', '''ストア''', '''で''', '''iphone''', '''8''', ''' ''', '''が''', ''' ''', ''' ''', '''\n ''', '''発売''', '''さ''', '''れ''', '''た''', ''' ''', '''。''', ''' ''', ''' '''] , ) @require_sudachi def __lowerCAmelCase ( self : Union[str, Any] ) ->Any: """simple docstring""" a = SudachiTokenizer(normalize_text=__UpperCAmelCase , sudachi_dict_type='''core''' ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , [''' ''', '''\t''', '''アップル''', '''ストア''', '''で''', '''iPhone''', '''8''', ''' ''', '''が''', ''' ''', ''' ''', '''\n ''', '''発売''', '''さ''', '''れ''', '''た''', '''\u3000''', '''。''', ''' ''', ''' '''] , ) @require_sudachi def __lowerCAmelCase ( self : Any ) ->Optional[Any]: """simple docstring""" a = SudachiTokenizer(trim_whitespace=__UpperCAmelCase , sudachi_dict_type='''core''' ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップル''', '''ストア''', '''で''', '''iPhone''', '''8''', '''が''', '''発売''', '''さ''', '''れ''', '''た''', '''。'''] , ) @require_jumanpp def __lowerCAmelCase ( self : Optional[Any] ) ->List[str]: """simple docstring""" a = self.tokenizer_class(self.vocab_file , word_tokenizer_type='''jumanpp''' ) self.assertIsNotNone(__UpperCAmelCase ) a = '''こんにちは、世界。\nこんばんは、世界。''' a = tokenizer.tokenize(__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , ['''こんにちは''', '''、''', '''世界''', '''。''', '''こん''', '''##ばんは''', '''、''', '''世界''', '''。'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__UpperCAmelCase ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] ) a = os.path.join(self.tmpdirname , '''tokenizer.bin''' ) with open(__UpperCAmelCase , '''wb''' ) as handle: pickle.dump(__UpperCAmelCase , __UpperCAmelCase ) with open(__UpperCAmelCase , '''rb''' ) as handle: a = pickle.load(__UpperCAmelCase ) a = tokenizer_new.tokenize(__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) @require_jumanpp def __lowerCAmelCase ( self : Tuple ) ->Tuple: """simple docstring""" a = JumanppTokenizer() self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップル''', '''ストア''', '''で''', '''iPhone''', '''8''', '''\u3000''', '''が''', '''\u3000''', '''\u3000''', '''\u3000''', '''発売''', '''さ''', '''れた''', '''\u3000''', '''。'''] , ) @require_jumanpp def __lowerCAmelCase ( self : int ) ->Tuple: """simple docstring""" a = JumanppTokenizer(do_lower_case=__UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップル''', '''ストア''', '''で''', '''iphone''', '''8''', '''\u3000''', '''が''', '''\u3000''', '''\u3000''', '''\u3000''', '''発売''', '''さ''', '''れた''', '''\u3000''', '''。'''] , ) @require_jumanpp def __lowerCAmelCase ( self : List[str] ) ->Tuple: """simple docstring""" a = JumanppTokenizer(normalize_text=__UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''ア''', '''ッ''', '''フ''', '''゚''', '''ル''', '''ストア''', '''で''', '''iPhone''', '''8''', '''\u3000''', '''が''', '''\u3000''', '''\u3000''', '''\u3000''', '''発売''', '''さ''', '''れた''', '''\u3000''', '''。'''] , ) @require_jumanpp def __lowerCAmelCase ( self : int ) ->Optional[int]: """simple docstring""" a = JumanppTokenizer(trim_whitespace=__UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップル''', '''ストア''', '''で''', '''iPhone''', '''8''', '''が''', '''発売''', '''さ''', '''れた''', '''。'''] , ) @require_jumanpp def __lowerCAmelCase ( self : Union[str, Any] ) ->Tuple: """simple docstring""" a = JumanppTokenizer() self.assertListEqual( tokenizer.tokenize('''ありがとうございますm(_ _)m見つけるのが大変です。''' ) , ['''ありがとう''', '''ございます''', '''m(_ _)m''', '''見つける''', '''の''', '''が''', '''大変です''', '''。'''] , ) def __lowerCAmelCase ( self : List[Any] ) ->int: """simple docstring""" a = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''こんにちは''', '''こん''', '''にちは''', '''ばんは''', '''##こん''', '''##にちは''', '''##ばんは'''] a = {} for i, token in enumerate(__UpperCAmelCase ): a = i a = WordpieceTokenizer(vocab=__UpperCAmelCase , unk_token='''[UNK]''' ) self.assertListEqual(tokenizer.tokenize('''''' ) , [] ) self.assertListEqual(tokenizer.tokenize('''こんにちは''' ) , ['''こんにちは'''] ) self.assertListEqual(tokenizer.tokenize('''こんばんは''' ) , ['''こん''', '''##ばんは'''] ) self.assertListEqual(tokenizer.tokenize('''こんばんは こんばんにちは こんにちは''' ) , ['''こん''', '''##ばんは''', '''[UNK]''', '''こんにちは'''] ) def __lowerCAmelCase ( self : int ) ->List[str]: """simple docstring""" a = BertJapaneseTokenizer.from_pretrained('''nlp-waseda/roberta-base-japanese-with-auto-jumanpp''' ) a = tokenizer.subword_tokenizer a = subword_tokenizer.tokenize('''国境 の 長い トンネル を 抜ける と 雪国 であった 。''' ) self.assertListEqual(__UpperCAmelCase , ['''▁国境''', '''▁の''', '''▁長い''', '''▁トンネル''', '''▁を''', '''▁抜ける''', '''▁と''', '''▁雪''', '''国''', '''▁であった''', '''▁。'''] ) a = subword_tokenizer.tokenize('''こんばんは こんばん にち は こんにちは''' ) self.assertListEqual(__UpperCAmelCase , ['''▁こん''', '''ばん''', '''は''', '''▁こん''', '''ばん''', '''▁に''', '''ち''', '''▁は''', '''▁こんにちは'''] ) def __lowerCAmelCase ( self : Union[str, Any] ) ->List[str]: """simple docstring""" a = self.tokenizer_class.from_pretrained('''cl-tohoku/bert-base-japanese''' ) a = tokenizer.encode('''ありがとう。''' , add_special_tokens=__UpperCAmelCase ) a = tokenizer.encode('''どういたしまして。''' , add_special_tokens=__UpperCAmelCase ) a = tokenizer.build_inputs_with_special_tokens(__UpperCAmelCase ) a = tokenizer.build_inputs_with_special_tokens(__UpperCAmelCase , __UpperCAmelCase ) # 2 is for "[CLS]", 3 is for "[SEP]" assert encoded_sentence == [2] + text + [3] assert encoded_pair == [2] + text + [3] + text_a + [3] @custom_tokenizers class lowercase_ ( lowercase , unittest.TestCase ): '''simple docstring''' __snake_case = BertJapaneseTokenizer __snake_case = False def __lowerCAmelCase ( self : Union[str, Any] ) ->int: """simple docstring""" super().setUp() a = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''こ''', '''ん''', '''に''', '''ち''', '''は''', '''ば''', '''世''', '''界''', '''、''', '''。'''] a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def __lowerCAmelCase ( self : List[str] , **__UpperCAmelCase : str ) ->List[Any]: """simple docstring""" return BertJapaneseTokenizer.from_pretrained(self.tmpdirname , subword_tokenizer_type='''character''' , **__UpperCAmelCase ) def __lowerCAmelCase ( self : Union[str, Any] , __UpperCAmelCase : Optional[Any] ) ->int: """simple docstring""" a = '''こんにちは、世界。 \nこんばんは、世界。''' a = '''こ ん に ち は 、 世 界 。 こ ん ば ん は 、 世 界 。''' return input_text, output_text def __lowerCAmelCase ( self : Any ) ->Optional[int]: """simple docstring""" pass # TODO add if relevant def __lowerCAmelCase ( self : Tuple ) ->int: """simple docstring""" pass # TODO add if relevant def __lowerCAmelCase ( self : Optional[int] ) ->Dict: """simple docstring""" pass # TODO add if relevant def __lowerCAmelCase ( self : Tuple ) ->Optional[int]: """simple docstring""" a = self.tokenizer_class(self.vocab_file , subword_tokenizer_type='''character''' ) a = tokenizer.tokenize('''こんにちは、世界。 \nこんばんは、世界。''' ) self.assertListEqual( __UpperCAmelCase , ['''こ''', '''ん''', '''に''', '''ち''', '''は''', '''、''', '''世''', '''界''', '''。''', '''こ''', '''ん''', '''ば''', '''ん''', '''は''', '''、''', '''世''', '''界''', '''。'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__UpperCAmelCase ) , [3, 4, 5, 6, 7, 11, 9, 10, 12, 3, 4, 8, 4, 7, 11, 9, 10, 12] ) def __lowerCAmelCase ( self : Any ) ->Optional[int]: """simple docstring""" a = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''こ''', '''ん''', '''に''', '''ち''', '''は''', '''ば''', '''世''', '''界''', '''、''', '''。'''] a = {} for i, token in enumerate(__UpperCAmelCase ): a = i a = CharacterTokenizer(vocab=__UpperCAmelCase , unk_token='''[UNK]''' ) self.assertListEqual(tokenizer.tokenize('''''' ) , [] ) self.assertListEqual(tokenizer.tokenize('''こんにちは''' ) , ['''こ''', '''ん''', '''に''', '''ち''', '''は'''] ) self.assertListEqual(tokenizer.tokenize('''こんにちほ''' ) , ['''こ''', '''ん''', '''に''', '''ち''', '''[UNK]'''] ) def __lowerCAmelCase ( self : Optional[int] ) ->Dict: """simple docstring""" a = self.tokenizer_class.from_pretrained('''cl-tohoku/bert-base-japanese-char''' ) a = tokenizer.encode('''ありがとう。''' , add_special_tokens=__UpperCAmelCase ) a = tokenizer.encode('''どういたしまして。''' , add_special_tokens=__UpperCAmelCase ) a = tokenizer.build_inputs_with_special_tokens(__UpperCAmelCase ) a = tokenizer.build_inputs_with_special_tokens(__UpperCAmelCase , __UpperCAmelCase ) # 2 is for "[CLS]", 3 is for "[SEP]" assert encoded_sentence == [2] + text + [3] assert encoded_pair == [2] + text + [3] + text_a + [3] @custom_tokenizers class lowercase_ ( unittest.TestCase ): '''simple docstring''' def __lowerCAmelCase ( self : Union[str, Any] ) ->Any: """simple docstring""" a = '''cl-tohoku/bert-base-japanese''' a = AutoTokenizer.from_pretrained(__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) class lowercase_ ( unittest.TestCase ): '''simple docstring''' def __lowerCAmelCase ( self : List[Any] ) ->int: """simple docstring""" a = '''cl-tohoku/bert-base-japanese''' with self.assertLogs('''transformers''' , level='''WARNING''' ) as cm: BertTokenizer.from_pretrained(__UpperCAmelCase ) self.assertTrue( cm.records[0].message.startswith( '''The tokenizer class you load from this checkpoint is not the same type as the class this function''' ''' is called from.''' ) ) a = '''bert-base-cased''' with self.assertLogs('''transformers''' , level='''WARNING''' ) as cm: BertJapaneseTokenizer.from_pretrained(__UpperCAmelCase ) self.assertTrue( cm.records[0].message.startswith( '''The tokenizer class you load from this checkpoint is not the same type as the class this function''' ''' is called from.''' ) )
0
import gc import unittest import numpy as np import torch from diffusers import ( AudioDiffusionPipeline, AutoencoderKL, DDIMScheduler, DDPMScheduler, DiffusionPipeline, Mel, UNetaDConditionModel, UNetaDModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class _a ( unittest.TestCase ): def __snake_case (self ) -> List[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def __snake_case (self ) -> Optional[Any]: torch.manual_seed(0 ) UpperCAmelCase_: Any = UNetaDModel( sample_size=(32, 64), in_channels=1, out_channels=1, layers_per_block=2, block_out_channels=(128, 128), down_block_types=("""AttnDownBlock2D""", """DownBlock2D"""), up_block_types=("""UpBlock2D""", """AttnUpBlock2D"""), ) return model @property def __snake_case (self ) -> List[Any]: torch.manual_seed(0 ) UpperCAmelCase_: Optional[int] = UNetaDConditionModel( sample_size=(64, 32), in_channels=1, out_channels=1, layers_per_block=2, block_out_channels=(128, 128), down_block_types=("""CrossAttnDownBlock2D""", """DownBlock2D"""), up_block_types=("""UpBlock2D""", """CrossAttnUpBlock2D"""), cross_attention_dim=10, ) return model @property def __snake_case (self ) -> Union[str, Any]: torch.manual_seed(0 ) UpperCAmelCase_: Optional[int] = AutoencoderKL( sample_size=(128, 64), in_channels=1, out_channels=1, latent_channels=1, layers_per_block=2, block_out_channels=(128, 128), down_block_types=("""DownEncoderBlock2D""", """DownEncoderBlock2D"""), up_block_types=("""UpDecoderBlock2D""", """UpDecoderBlock2D"""), ) UpperCAmelCase_: Optional[Any] = UNetaDModel( sample_size=(64, 32), in_channels=1, out_channels=1, layers_per_block=2, block_out_channels=(128, 128), down_block_types=("""AttnDownBlock2D""", """DownBlock2D"""), up_block_types=("""UpBlock2D""", """AttnUpBlock2D"""), ) return vqvae, unet @slow def __snake_case (self ) -> Optional[Any]: UpperCAmelCase_: str = """cpu""" # ensure determinism for the device-dependent torch.Generator UpperCAmelCase_: str = Mel( x_res=self.dummy_unet.config.sample_size[1], y_res=self.dummy_unet.config.sample_size[0], ) UpperCAmelCase_: Tuple = DDPMScheduler() UpperCAmelCase_: List[Any] = AudioDiffusionPipeline(vqvae=SCREAMING_SNAKE_CASE_, unet=self.dummy_unet, mel=SCREAMING_SNAKE_CASE_, scheduler=SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: int = pipe.to(SCREAMING_SNAKE_CASE_ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: List[Any] = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(42 ) UpperCAmelCase_: str = pipe(generator=SCREAMING_SNAKE_CASE_, steps=4 ) UpperCAmelCase_: Optional[Any] = output.audios[0] UpperCAmelCase_: Optional[int] = output.images[0] UpperCAmelCase_: Dict = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(42 ) UpperCAmelCase_: Dict = pipe(generator=SCREAMING_SNAKE_CASE_, steps=4, return_dict=SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Any = output[0][0] assert audio.shape == (1, (self.dummy_unet.config.sample_size[1] - 1) * mel.hop_length) assert ( image.height == self.dummy_unet.config.sample_size[0] and image.width == self.dummy_unet.config.sample_size[1] ) UpperCAmelCase_: Optional[Any] = np.frombuffer(image.tobytes(), dtype="""uint8""" )[:10] UpperCAmelCase_: List[Any] = np.frombuffer(image_from_tuple.tobytes(), dtype="""uint8""" )[:10] UpperCAmelCase_: Dict = np.array([69, 255, 255, 255, 0, 0, 77, 181, 12, 127] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() == 0 UpperCAmelCase_: int = Mel( x_res=self.dummy_vqvae_and_unet[0].config.sample_size[1], y_res=self.dummy_vqvae_and_unet[0].config.sample_size[0], ) UpperCAmelCase_: List[str] = DDIMScheduler() UpperCAmelCase_: int = self.dummy_vqvae_and_unet UpperCAmelCase_: Dict = AudioDiffusionPipeline( vqvae=self.dummy_vqvae_and_unet[0], unet=dummy_vqvae_and_unet[1], mel=SCREAMING_SNAKE_CASE_, scheduler=SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: List[str] = pipe.to(SCREAMING_SNAKE_CASE_ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) np.random.seed(0 ) UpperCAmelCase_: Dict = np.random.uniform(-1, 1, ((dummy_vqvae_and_unet[0].config.sample_size[1] - 1) * mel.hop_length,) ) UpperCAmelCase_: List[Any] = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(42 ) UpperCAmelCase_: Dict = pipe(raw_audio=SCREAMING_SNAKE_CASE_, generator=SCREAMING_SNAKE_CASE_, start_step=5, steps=10 ) UpperCAmelCase_: Any = output.images[0] assert ( image.height == self.dummy_vqvae_and_unet[0].config.sample_size[0] and image.width == self.dummy_vqvae_and_unet[0].config.sample_size[1] ) UpperCAmelCase_: Union[str, Any] = np.frombuffer(image.tobytes(), dtype="""uint8""" )[:10] UpperCAmelCase_: Union[str, Any] = np.array([120, 117, 110, 109, 138, 167, 138, 148, 132, 121] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 UpperCAmelCase_: Union[str, Any] = self.dummy_unet_condition UpperCAmelCase_: Union[str, Any] = AudioDiffusionPipeline( vqvae=self.dummy_vqvae_and_unet[0], unet=SCREAMING_SNAKE_CASE_, mel=SCREAMING_SNAKE_CASE_, scheduler=SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Any = pipe.to(SCREAMING_SNAKE_CASE_ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) np.random.seed(0 ) UpperCAmelCase_: List[str] = torch.rand((1, 1, 10) ) UpperCAmelCase_: Optional[int] = pipe(generator=SCREAMING_SNAKE_CASE_, encoding=SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: List[str] = output.images[0] UpperCAmelCase_: Any = np.frombuffer(image.tobytes(), dtype="""uint8""" )[:10] UpperCAmelCase_: Any = np.array([107, 103, 120, 127, 142, 122, 113, 122, 97, 111] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 @slow @require_torch_gpu class _a ( unittest.TestCase ): def __snake_case (self ) -> Any: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __snake_case (self ) -> Optional[Any]: UpperCAmelCase_: str = torch_device UpperCAmelCase_: Any = DiffusionPipeline.from_pretrained("""teticio/audio-diffusion-ddim-256""" ) UpperCAmelCase_: Dict = pipe.to(SCREAMING_SNAKE_CASE_ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Union[str, Any] = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(42 ) UpperCAmelCase_: Union[str, Any] = pipe(generator=SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Optional[Any] = output.audios[0] UpperCAmelCase_: Optional[Any] = output.images[0] assert audio.shape == (1, (pipe.unet.config.sample_size[1] - 1) * pipe.mel.hop_length) assert image.height == pipe.unet.config.sample_size[0] and image.width == pipe.unet.config.sample_size[1] UpperCAmelCase_: Optional[Any] = np.frombuffer(image.tobytes(), dtype="""uint8""" )[:10] UpperCAmelCase_: Any = np.array([151, 167, 154, 144, 122, 134, 121, 105, 70, 26] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0
147
0
import os import unittest from transformers import BertTokenizerFast from transformers.models.bert.tokenization_bert import ( VOCAB_FILES_NAMES, BasicTokenizer, BertTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class A ( __UpperCAmelCase , unittest.TestCase ): __snake_case = BertTokenizer __snake_case = BertTokenizerFast __snake_case = True __snake_case = True __snake_case = filter_non_english def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" super().setUp() lowerCAmelCase_ = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] lowerCAmelCase_ = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file, '''w''', encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__ ): """simple docstring""" lowerCAmelCase_ = '''UNwant\u00E9d,running''' lowerCAmelCase_ = '''unwanted, running''' return input_text, output_text def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = self.tokenizer_class(self.vocab_file ) lowerCAmelCase_ = tokenizer.tokenize('''UNwant\u00E9d,running''' ) self.assertListEqual(UpperCamelCase__, ['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCamelCase__ ), [9, 6, 7, 12, 10, 11] ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" if not self.test_rust_tokenizer: return lowerCAmelCase_ = self.get_tokenizer() lowerCAmelCase_ = self.get_rust_tokenizer() lowerCAmelCase_ = '''UNwant\u00E9d,running''' lowerCAmelCase_ = tokenizer.tokenize(UpperCamelCase__ ) lowerCAmelCase_ = rust_tokenizer.tokenize(UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__, UpperCamelCase__ ) lowerCAmelCase_ = tokenizer.encode(UpperCamelCase__, add_special_tokens=UpperCamelCase__ ) lowerCAmelCase_ = rust_tokenizer.encode(UpperCamelCase__, add_special_tokens=UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__, UpperCamelCase__ ) lowerCAmelCase_ = self.get_rust_tokenizer() lowerCAmelCase_ = tokenizer.encode(UpperCamelCase__ ) lowerCAmelCase_ = rust_tokenizer.encode(UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__, UpperCamelCase__ ) # With lower casing lowerCAmelCase_ = self.get_tokenizer(do_lower_case=UpperCamelCase__ ) lowerCAmelCase_ = self.get_rust_tokenizer(do_lower_case=UpperCamelCase__ ) lowerCAmelCase_ = '''UNwant\u00E9d,running''' lowerCAmelCase_ = tokenizer.tokenize(UpperCamelCase__ ) lowerCAmelCase_ = rust_tokenizer.tokenize(UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__, UpperCamelCase__ ) lowerCAmelCase_ = tokenizer.encode(UpperCamelCase__, add_special_tokens=UpperCamelCase__ ) lowerCAmelCase_ = rust_tokenizer.encode(UpperCamelCase__, add_special_tokens=UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__, UpperCamelCase__ ) lowerCAmelCase_ = self.get_rust_tokenizer() lowerCAmelCase_ = tokenizer.encode(UpperCamelCase__ ) lowerCAmelCase_ = rust_tokenizer.encode(UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__, UpperCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = BasicTokenizer() self.assertListEqual(tokenizer.tokenize('''ah\u535A\u63A8zz''' ), ['''ah''', '''\u535A''', '''\u63A8''', '''zz'''] ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = BasicTokenizer(do_lower_case=UpperCamelCase__ ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ), ['''hello''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ), ['''hello'''] ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = BasicTokenizer(do_lower_case=UpperCamelCase__, strip_accents=UpperCamelCase__ ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ), ['''hällo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ), ['''h\u00E9llo'''] ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = BasicTokenizer(do_lower_case=UpperCamelCase__, strip_accents=UpperCamelCase__ ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ), ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ), ['''hello'''] ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = BasicTokenizer(do_lower_case=UpperCamelCase__ ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ), ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ), ['''hello'''] ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = BasicTokenizer(do_lower_case=UpperCamelCase__ ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ), ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = BasicTokenizer(do_lower_case=UpperCamelCase__, strip_accents=UpperCamelCase__ ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ), ['''HäLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = BasicTokenizer(do_lower_case=UpperCamelCase__, strip_accents=UpperCamelCase__ ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ), ['''HaLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = BasicTokenizer(do_lower_case=UpperCamelCase__, never_split=['''[UNK]'''] ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? [UNK]''' ), ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?''', '''[UNK]'''] ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = BasicTokenizer() lowerCAmelCase_ = '''a\n\'ll !!to?\'d of, can\'t.''' lowerCAmelCase_ = ['''a''', '''\'''', '''ll''', '''!''', '''!''', '''to''', '''?''', '''\'''', '''d''', '''of''', ''',''', '''can''', '''\'''', '''t''', '''.'''] self.assertListEqual(tokenizer.tokenize(UpperCamelCase__ ), UpperCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing'''] lowerCAmelCase_ = {} for i, token in enumerate(UpperCamelCase__ ): lowerCAmelCase_ = i lowerCAmelCase_ = WordpieceTokenizer(vocab=UpperCamelCase__, unk_token='''[UNK]''' ) self.assertListEqual(tokenizer.tokenize('''''' ), [] ) self.assertListEqual(tokenizer.tokenize('''unwanted running''' ), ['''un''', '''##want''', '''##ed''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.tokenize('''unwantedX running''' ), ['''[UNK]''', '''runn''', '''##ing'''] ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" self.assertTrue(_is_whitespace(''' ''' ) ) self.assertTrue(_is_whitespace('''\t''' ) ) self.assertTrue(_is_whitespace('''\r''' ) ) self.assertTrue(_is_whitespace('''\n''' ) ) self.assertTrue(_is_whitespace('''\u00A0''' ) ) self.assertFalse(_is_whitespace('''A''' ) ) self.assertFalse(_is_whitespace('''-''' ) ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" self.assertTrue(_is_control('''\u0005''' ) ) self.assertFalse(_is_control('''A''' ) ) self.assertFalse(_is_control(''' ''' ) ) self.assertFalse(_is_control('''\t''' ) ) self.assertFalse(_is_control('''\r''' ) ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" self.assertTrue(_is_punctuation('''-''' ) ) self.assertTrue(_is_punctuation('''$''' ) ) self.assertTrue(_is_punctuation('''`''' ) ) self.assertTrue(_is_punctuation('''.''' ) ) self.assertFalse(_is_punctuation('''A''' ) ) self.assertFalse(_is_punctuation(''' ''' ) ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = self.get_tokenizer() lowerCAmelCase_ = self.get_rust_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(UpperCamelCase__ ) for t in ['''Test''', '''\xad''', '''test''']], [['''[UNK]'''], [], ['''[UNK]''']] ) self.assertListEqual( [rust_tokenizer.tokenize(UpperCamelCase__ ) for t in ['''Test''', '''\xad''', '''test''']], [['''[UNK]'''], [], ['''[UNK]''']] ) @slow def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = self.tokenizer_class.from_pretrained('''bert-base-uncased''' ) lowerCAmelCase_ = tokenizer.encode('''sequence builders''', add_special_tokens=UpperCamelCase__ ) lowerCAmelCase_ = tokenizer.encode('''multi-sequence build''', add_special_tokens=UpperCamelCase__ ) lowerCAmelCase_ = tokenizer.build_inputs_with_special_tokens(UpperCamelCase__ ) lowerCAmelCase_ = tokenizer.build_inputs_with_special_tokens(UpperCamelCase__, UpperCamelCase__ ) assert encoded_sentence == [101] + text + [102] assert encoded_pair == [101] + text + [102] + text_a + [102] def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ): lowerCAmelCase_ = self.rust_tokenizer_class.from_pretrained(UpperCamelCase__, **UpperCamelCase__ ) lowerCAmelCase_ = f"A, naïve {tokenizer_r.mask_token} AllenNLP sentence." lowerCAmelCase_ = tokenizer_r.encode_plus( UpperCamelCase__, return_attention_mask=UpperCamelCase__, return_token_type_ids=UpperCamelCase__, return_offsets_mapping=UpperCamelCase__, add_special_tokens=UpperCamelCase__, ) lowerCAmelCase_ = tokenizer_r.do_lower_case if hasattr(UpperCamelCase__, '''do_lower_case''' ) else False lowerCAmelCase_ = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), '''A'''), ((1, 2), ''','''), ((3, 5), '''na'''), ((5, 6), '''##ï'''), ((6, 8), '''##ve'''), ((9, 15), tokenizer_r.mask_token), ((16, 21), '''Allen'''), ((21, 23), '''##NL'''), ((23, 24), '''##P'''), ((25, 33), '''sentence'''), ((33, 34), '''.'''), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), '''a'''), ((1, 2), ''','''), ((3, 8), '''naive'''), ((9, 15), tokenizer_r.mask_token), ((16, 21), '''allen'''), ((21, 23), '''##nl'''), ((23, 24), '''##p'''), ((25, 33), '''sentence'''), ((33, 34), '''.'''), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results], tokenizer_r.convert_ids_to_tokens(tokens['''input_ids'''] ) ) self.assertEqual([e[0] for e in expected_results], tokens['''offset_mapping'''] ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = ['''的''', '''人''', '''有'''] lowerCAmelCase_ = ''''''.join(UpperCamelCase__ ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ): lowerCAmelCase_ = True lowerCAmelCase_ = self.tokenizer_class.from_pretrained(UpperCamelCase__, **UpperCamelCase__ ) lowerCAmelCase_ = self.rust_tokenizer_class.from_pretrained(UpperCamelCase__, **UpperCamelCase__ ) lowerCAmelCase_ = tokenizer_p.encode(UpperCamelCase__, add_special_tokens=UpperCamelCase__ ) lowerCAmelCase_ = tokenizer_r.encode(UpperCamelCase__, add_special_tokens=UpperCamelCase__ ) lowerCAmelCase_ = tokenizer_r.convert_ids_to_tokens(UpperCamelCase__ ) lowerCAmelCase_ = tokenizer_p.convert_ids_to_tokens(UpperCamelCase__ ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(UpperCamelCase__, UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__, UpperCamelCase__ ) lowerCAmelCase_ = False lowerCAmelCase_ = self.rust_tokenizer_class.from_pretrained(UpperCamelCase__, **UpperCamelCase__ ) lowerCAmelCase_ = self.tokenizer_class.from_pretrained(UpperCamelCase__, **UpperCamelCase__ ) lowerCAmelCase_ = tokenizer_r.encode(UpperCamelCase__, add_special_tokens=UpperCamelCase__ ) lowerCAmelCase_ = tokenizer_p.encode(UpperCamelCase__, add_special_tokens=UpperCamelCase__ ) lowerCAmelCase_ = tokenizer_r.convert_ids_to_tokens(UpperCamelCase__ ) lowerCAmelCase_ = tokenizer_p.convert_ids_to_tokens(UpperCamelCase__ ) # it is expected that only the first Chinese character is not preceded by "##". lowerCAmelCase_ = [ f"##{token}" if idx != 0 else token for idx, token in enumerate(UpperCamelCase__ ) ] self.assertListEqual(UpperCamelCase__, UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__, UpperCamelCase__ )
167
import string def __UpperCamelCase ( _A ): for key in range(len(string.ascii_uppercase ) ): lowerCAmelCase_ = '''''' for symbol in message: if symbol in string.ascii_uppercase: lowerCAmelCase_ = string.ascii_uppercase.find(_A ) lowerCAmelCase_ = num - key if num < 0: lowerCAmelCase_ = num + len(string.ascii_uppercase ) lowerCAmelCase_ = translated + string.ascii_uppercase[num] else: lowerCAmelCase_ = translated + symbol print(f"Decryption using Key #{key}: {translated}" ) def __UpperCamelCase ( ): lowerCAmelCase_ = input('''Encrypted message: ''' ) lowerCAmelCase_ = message.upper() decrypt(_A ) if __name__ == "__main__": import doctest doctest.testmod() main()
167
1
import itertools import os from collections import Counter, defaultdict from concurrent.futures import ThreadPoolExecutor, as_completed import numpy as np import datasets from .execute import check_correctness SCREAMING_SNAKE_CASE :Dict = '\\n@misc{chen2021evaluating,\n title={Evaluating Large Language Models Trained on Code},\n author={Mark Chen and Jerry Tworek and Heewoo Jun and Qiming Yuan \\nand Henrique Ponde de Oliveira Pinto and Jared Kaplan and Harri Edwards \\nand Yuri Burda and Nicholas Joseph and Greg Brockman and Alex Ray \\nand Raul Puri and Gretchen Krueger and Michael Petrov and Heidy Khlaaf \\nand Girish Sastry and Pamela Mishkin and Brooke Chan and Scott Gray \\nand Nick Ryder and Mikhail Pavlov and Alethea Power and Lukasz Kaiser \\nand Mohammad Bavarian and Clemens Winter and Philippe Tillet \\nand Felipe Petroski Such and Dave Cummings and Matthias Plappert \\nand Fotios Chantzis and Elizabeth Barnes and Ariel Herbert-Voss \\nand William Hebgen Guss and Alex Nichol and Alex Paino and Nikolas Tezak \\nand Jie Tang and Igor Babuschkin and Suchir Balaji and Shantanu Jain \\nand William Saunders and Christopher Hesse and Andrew N. Carr \\nand Jan Leike and Josh Achiam and Vedant Misra and Evan Morikawa \\nand Alec Radford and Matthew Knight and Miles Brundage and Mira Murati \\nand Katie Mayer and Peter Welinder and Bob McGrew and Dario Amodei \\nand Sam McCandlish and Ilya Sutskever and Wojciech Zaremba},\n year={2021},\n eprint={2107.03374},\n archivePrefix={arXiv},\n primaryClass={cs.LG}\n}\n' SCREAMING_SNAKE_CASE :List[Any] = '\\nThis metric implements the evaluation harness for the HumanEval problem solving dataset\ndescribed in the paper "Evaluating Large Language Models Trained on Code"\n(https://arxiv.org/abs/2107.03374).\n' SCREAMING_SNAKE_CASE :Dict = '\nCalculates how good are predictions given some references, using certain scores\nArgs:\n predictions: list of candidates to evaluate. Each candidates should be a list\n of strings with several code candidates to solve the problem.\n references: a list with a test for each prediction. Each test should evaluate the\n correctness of a code candidate.\n k: number of code candidates to consider in the evaluation (Default: [1, 10, 100])\n num_workers: number of workers used to evaluate the canidate programs (Default: 4).\n timeout:\nReturns:\n pass_at_k: dict with pass rates for each k\n results: dict with granular results of each unittest\nExamples:\n >>> code_eval = datasets.load_metric("code_eval")\n >>> test_cases = ["assert add(2,3)==5"]\n >>> candidates = [["def add(a,b): return a*b", "def add(a, b): return a+b"]]\n >>> pass_at_k, results = code_eval.compute(references=test_cases, predictions=candidates, k=[1, 2])\n >>> print(pass_at_k)\n {\'pass@1\': 0.5, \'pass@2\': 1.0}\n' SCREAMING_SNAKE_CASE :Union[str, Any] = '\n################################################################################\n !!!WARNING!!!\n################################################################################\nThe "code_eval" metric executes untrusted model-generated code in Python.\nAlthough it is highly unlikely that model-generated code will do something\novertly malicious in response to this test suite, model-generated code may act\ndestructively due to a lack of model capability or alignment.\nUsers are strongly encouraged to sandbox this evaluation suite so that it\ndoes not perform destructive actions on their host or network. For more\ninformation on how OpenAI sandboxes its code, see the paper "Evaluating Large\nLanguage Models Trained on Code" (https://arxiv.org/abs/2107.03374).\n\nOnce you have read this disclaimer and taken appropriate precautions,\nset the environment variable HF_ALLOW_CODE_EVAL="1". Within Python you can to this\nwith:\n\n>>> import os\n>>> os.environ["HF_ALLOW_CODE_EVAL"] = "1"\n\n################################################################################\\n' SCREAMING_SNAKE_CASE :List[Any] = 'The MIT License\n\nCopyright (c) OpenAI (https://openai.com)\n\nPermission is hereby granted, free of charge, to any person obtaining a copy\nof this software and associated documentation files (the "Software"), to deal\nin the Software without restriction, including without limitation the rights\nto use, copy, modify, merge, publish, distribute, sublicense, and/or sell\ncopies of the Software, and to permit persons to whom the Software is\nfurnished to do so, subject to the following conditions:\n\nThe above copyright notice and this permission notice shall be included in\nall copies or substantial portions of the Software.\n\nTHE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR\nIMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,\nFITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE\nAUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER\nLIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,\nOUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN\nTHE SOFTWARE.' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase ( datasets.Metric ): '''simple docstring''' def UpperCamelCase_ ( self : Optional[Any] ): return datasets.MetricInfo( # This is the description that will appear on the metrics page. description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { "predictions": datasets.Sequence(datasets.Value("string" ) ), "references": datasets.Value("string" ), } ) ,homepage="https://github.com/openai/human-eval" ,codebase_urls=["https://github.com/openai/human-eval"] ,reference_urls=["https://github.com/openai/human-eval"] ,license=_LICENSE ,) def UpperCamelCase_ ( self : str ,A : int ,A : Union[str, Any] ,A : Optional[int]=[1, 10, 1_00] ,A : Union[str, Any]=4 ,A : Dict=3.0 ): if os.getenv("HF_ALLOW_CODE_EVAL" ,0 ) != "1": raise ValueError(_WARNING ) if os.name == "nt": raise NotImplementedError("This metric is currently not supported on Windows." ) with ThreadPoolExecutor(max_workers=A ) as executor: __A = [] __A = Counter() __A = 0 __A = defaultdict(A ) for task_id, (candidates, test_case) in enumerate(zip(A ,A ) ): for candidate in candidates: __A = candidate + "\n" + test_case __A = (test_program, timeout, task_id, completion_id[task_id]) __A = executor.submit(A ,*A ) futures.append(A ) completion_id[task_id] += 1 n_samples += 1 for future in as_completed(A ): __A = future.result() results[result["task_id"]].append((result["completion_id"], result) ) __A , __A = [], [] for result in results.values(): result.sort() __A = [r[1]["passed"] for r in result] total.append(len(A ) ) correct.append(sum(A ) ) __A = np.array(A ) __A = np.array(A ) __A = k __A = {f'''pass@{k}''': estimate_pass_at_k(A ,A ,A ).mean() for k in ks if (total >= k).all()} return pass_at_k, results def UpperCAmelCase ( a_ , a_ , a_ ) -> Union[str, Any]: """simple docstring""" def estimator(a_ , a_ , a_ ) -> float: if n - c < k: return 1.0 return 1.0 - np.prod(1.0 - k / np.arange(n - c + 1 , n + 1 ) ) if isinstance(a_ , a_ ): __A = itertools.repeat(a_ , len(a_ ) ) else: assert len(a_ ) == len(a_ ) __A = iter(a_ ) return np.array([estimator(int(a_ ) , int(a_ ) , a_ ) for n, c in zip(a_ , a_ )] )
15
from __future__ import annotations from math import ceil, floor, sqrt def UpperCamelCase_( lowerCamelCase_ = 200_0000 ) -> int: _lowercase : list[int] = [0] _lowercase : int for idx in range(1 , ceil(sqrt(target * 2 ) * 1.1 ) ): triangle_numbers.append(triangle_numbers[-1] + idx ) # we want this to be as close as possible to target _lowercase : int = 0 # the area corresponding to the grid that gives the product closest to target _lowercase : int = 0 # an estimate of b, using the quadratic formula _lowercase : float # the largest integer less than b_estimate _lowercase : int # the largest integer less than b_estimate _lowercase : int # the triangle number corresponding to b_floor _lowercase : int # the triangle number corresponding to b_ceil _lowercase : int for idx_a, triangle_a in enumerate(triangle_numbers[1:] , 1 ): _lowercase : Optional[int] = (-1 + sqrt(1 + 8 * target / triangle_a )) / 2 _lowercase : List[str] = floor(lowerCamelCase_ ) _lowercase : Dict = ceil(lowerCamelCase_ ) _lowercase : List[str] = triangle_numbers[b_floor] _lowercase : List[str] = triangle_numbers[b_ceil] if abs(target - triangle_b_first_guess * triangle_a ) < abs( target - best_product ): _lowercase : Union[str, Any] = triangle_b_first_guess * triangle_a _lowercase : Union[str, Any] = idx_a * b_floor if abs(target - triangle_b_second_guess * triangle_a ) < abs( target - best_product ): _lowercase : Any = triangle_b_second_guess * triangle_a _lowercase : Optional[Any] = idx_a * b_ceil return area if __name__ == "__main__": print(F"{solution() = }")
21
0
import enum import warnings from ..tokenization_utils import TruncationStrategy from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING lowerCAmelCase__ :Dict = logging.get_logger(__name__) class __a ( enum.Enum ): _a : List[Any] = 0 _a : str = 1 @add_end_docstrings(UpperCAmelCase ) class __a ( UpperCAmelCase ): _a : Optional[int] = 'generated' def __init__( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Any: """simple docstring""" super().__init__(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) self.check_model_type( TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING if self.framework == 'tf' else MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING ) def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , **_SCREAMING_SNAKE_CASE , ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase = {} if truncation is not None: _UpperCAmelCase = truncation _UpperCAmelCase = generate_kwargs _UpperCAmelCase = {} if return_tensors is not None and return_type is None: _UpperCAmelCase = ReturnType.TENSORS if return_tensors else ReturnType.TEXT if return_type is not None: _UpperCAmelCase = return_type if clean_up_tokenization_spaces is not None: _UpperCAmelCase = clean_up_tokenization_spaces if stop_sequence is not None: _UpperCAmelCase = self.tokenizer.encode(_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE ) if len(_SCREAMING_SNAKE_CASE ) > 1: warnings.warn( 'Stopping on a multiple token sequence is not yet supported on transformers. The first token of' ' the stop sequence will be used as the stop sequence string in the interim.' ) _UpperCAmelCase = stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Any: """simple docstring""" return True def UpperCAmelCase__ ( self , *_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" _UpperCAmelCase = self.model.config.prefix if self.model.config.prefix is not None else '''''' if isinstance(args[0] , _SCREAMING_SNAKE_CASE ): if self.tokenizer.pad_token_id is None: raise ValueError('Please make sure that the tokenizer has a pad_token_id when using a batch input' ) _UpperCAmelCase = ([prefix + arg for arg in args[0]],) _UpperCAmelCase = True elif isinstance(args[0] , _SCREAMING_SNAKE_CASE ): _UpperCAmelCase = (prefix + args[0],) _UpperCAmelCase = False else: raise ValueError( f''' `args[0]`: {args[0]} have the wrong format. The should be either of type `str` or type `list`''' ) _UpperCAmelCase = self.tokenizer(*_SCREAMING_SNAKE_CASE , padding=_SCREAMING_SNAKE_CASE , truncation=_SCREAMING_SNAKE_CASE , return_tensors=self.framework ) # This is produced by tokenizers but is an invalid generate kwargs if "token_type_ids" in inputs: del inputs["token_type_ids"] return inputs def __call__( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Dict: """simple docstring""" _UpperCAmelCase = super().__call__(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) if ( isinstance(args[0] , _SCREAMING_SNAKE_CASE ) and all(isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for el in args[0] ) and all(len(_SCREAMING_SNAKE_CASE ) == 1 for res in result ) ): return [res[0] for res in result] return result def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=TruncationStrategy.DO_NOT_TRUNCATE , **_SCREAMING_SNAKE_CASE ) -> List[Any]: """simple docstring""" _UpperCAmelCase = self._parse_and_tokenize(_SCREAMING_SNAKE_CASE , truncation=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) return inputs def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" if self.framework == "pt": _UpperCAmelCase = model_inputs['''input_ids'''].shape elif self.framework == "tf": _UpperCAmelCase = tf.shape(model_inputs['input_ids'] ).numpy() _UpperCAmelCase = generate_kwargs.get('min_length' , self.model.config.min_length ) _UpperCAmelCase = generate_kwargs.get('max_length' , self.model.config.max_length ) self.check_inputs(_SCREAMING_SNAKE_CASE , generate_kwargs['min_length'] , generate_kwargs['max_length'] ) _UpperCAmelCase = self.model.generate(**_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = output_ids.shape[0] if self.framework == "pt": _UpperCAmelCase = output_ids.reshape(_SCREAMING_SNAKE_CASE , out_b // in_b , *output_ids.shape[1:] ) elif self.framework == "tf": _UpperCAmelCase = tf.reshape(_SCREAMING_SNAKE_CASE , (in_b, out_b // in_b, *output_ids.shape[1:]) ) return {"output_ids": output_ids} def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=ReturnType.TEXT , _SCREAMING_SNAKE_CASE=False ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase = [] for output_ids in model_outputs["output_ids"][0]: if return_type == ReturnType.TENSORS: _UpperCAmelCase = {f'''{self.return_name}_token_ids''': output_ids} elif return_type == ReturnType.TEXT: _UpperCAmelCase = { f'''{self.return_name}_text''': self.tokenizer.decode( _SCREAMING_SNAKE_CASE , skip_special_tokens=_SCREAMING_SNAKE_CASE , clean_up_tokenization_spaces=_SCREAMING_SNAKE_CASE , ) } records.append(_SCREAMING_SNAKE_CASE ) return records @add_end_docstrings(UpperCAmelCase ) class __a ( UpperCAmelCase ): _a : List[Any] = 'summary' def __call__( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Optional[int]: """simple docstring""" return super().__call__(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> bool: """simple docstring""" if max_length < min_length: logger.warning(f'''Your min_length={min_length} must be inferior than your max_length={max_length}.''' ) if input_length < max_length: logger.warning( f'''Your max_length is set to {max_length}, but your input_length is only {input_length}. Since this is ''' 'a summarization task, where outputs shorter than the input are typically wanted, you might ' f'''consider decreasing max_length manually, e.g. summarizer(\'...\', max_length={input_length//2})''' ) @add_end_docstrings(UpperCAmelCase ) class __a ( UpperCAmelCase ): _a : int = 'translation' def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Union[str, Any]: """simple docstring""" if input_length > 0.9 * max_length: logger.warning( f'''Your input_length: {input_length} is bigger than 0.9 * max_length: {max_length}. You might consider ''' 'increasing your max_length manually, e.g. translator(\'...\', max_length=400)' ) return True def UpperCAmelCase__ ( self , *_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=TruncationStrategy.DO_NOT_TRUNCATE , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None ) -> Tuple: """simple docstring""" if getattr(self.tokenizer , '_build_translation_inputs' , _SCREAMING_SNAKE_CASE ): return self.tokenizer._build_translation_inputs( *_SCREAMING_SNAKE_CASE , return_tensors=self.framework , truncation=_SCREAMING_SNAKE_CASE , src_lang=_SCREAMING_SNAKE_CASE , tgt_lang=_SCREAMING_SNAKE_CASE ) else: return super()._parse_and_tokenize(*_SCREAMING_SNAKE_CASE , truncation=_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , **_SCREAMING_SNAKE_CASE ) -> List[Any]: """simple docstring""" _UpperCAmelCase = super()._sanitize_parameters(**_SCREAMING_SNAKE_CASE ) if src_lang is not None: _UpperCAmelCase = src_lang if tgt_lang is not None: _UpperCAmelCase = tgt_lang if src_lang is None and tgt_lang is None: # Backward compatibility, direct arguments use is preferred. _UpperCAmelCase = kwargs.get('task' , self.task ) _UpperCAmelCase = task.split('_' ) if task and len(_SCREAMING_SNAKE_CASE ) == 4: # translation, XX, to YY _UpperCAmelCase = items[1] _UpperCAmelCase = items[3] return preprocess_params, forward_params, postprocess_params def __call__( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Any: """simple docstring""" return super().__call__(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )
371
from __future__ import annotations import numpy as np from numpy import floataa from numpy.typing import NDArray def lowerCAmelCase__ ( a__: NDArray[floataa] , a__: NDArray[floataa] , a__: list[int] , a__: int , ) -> list[float]: '''simple docstring''' _UpperCAmelCase , _UpperCAmelCase = coefficient_matrix.shape _UpperCAmelCase , _UpperCAmelCase = constant_matrix.shape if rowsa != colsa: _UpperCAmelCase = F'''Coefficient matrix dimensions must be nxn but received {rowsa}x{colsa}''' raise ValueError(a__ ) if colsa != 1: _UpperCAmelCase = F'''Constant matrix must be nx1 but received {rowsa}x{colsa}''' raise ValueError(a__ ) if rowsa != rowsa: _UpperCAmelCase = ( 'Coefficient and constant matrices dimensions must be nxn and nx1 but ' F'''received {rowsa}x{colsa} and {rowsa}x{colsa}''' ) raise ValueError(a__ ) if len(a__ ) != rowsa: _UpperCAmelCase = ( 'Number of initial values must be equal to number of rows in coefficient ' F'''matrix but received {len(a__ )} and {rowsa}''' ) raise ValueError(a__ ) if iterations <= 0: raise ValueError('Iterations must be at least 1' ) _UpperCAmelCase = np.concatenate( (coefficient_matrix, constant_matrix) , axis=1 ) _UpperCAmelCase , _UpperCAmelCase = table.shape strictly_diagonally_dominant(a__ ) # Iterates the whole matrix for given number of times for _ in range(a__ ): _UpperCAmelCase = [] for row in range(a__ ): _UpperCAmelCase = 0 for col in range(a__ ): if col == row: _UpperCAmelCase = table[row][col] elif col == cols - 1: _UpperCAmelCase = table[row][col] else: temp += (-1) * table[row][col] * init_val[col] _UpperCAmelCase = (temp + val) / denom new_val.append(a__ ) _UpperCAmelCase = new_val return [float(a__ ) for i in new_val] def lowerCAmelCase__ ( a__: NDArray[floataa] ) -> bool: '''simple docstring''' _UpperCAmelCase , _UpperCAmelCase = table.shape _UpperCAmelCase = True for i in range(0 , a__ ): _UpperCAmelCase = 0 for j in range(0 , cols - 1 ): if i == j: continue else: total += table[i][j] if table[i][i] <= total: raise ValueError('Coefficient matrix is not strictly diagonally dominant' ) return is_diagonally_dominant # Test Cases if __name__ == "__main__": import doctest doctest.testmod()
185
0
"""simple docstring""" def lowercase ( __snake_case : str , __snake_case : bool = False ): if not isinstance(__lowerCamelCase , __lowerCamelCase ): lowercase_ : Any = F'''Expected string as input, found {type(__lowerCamelCase )}''' raise ValueError(__lowerCamelCase ) if not isinstance(__lowerCamelCase , __lowerCamelCase ): lowercase_ : List[str] = F'''Expected boolean as use_pascal parameter, found {type(__lowerCamelCase )}''' raise ValueError(__lowerCamelCase ) lowercase_ : Union[str, Any] = input_str.split('''_''' ) lowercase_ : List[Any] = 0 if use_pascal else 1 lowercase_ : List[Any] = words[start_index:] lowercase_ : Dict = [word[0].upper() + word[1:] for word in words_to_capitalize] lowercase_ : Optional[Any] = """""" if use_pascal else words[0] return "".join([initial_word, *capitalized_words] ) if __name__ == "__main__": from doctest import testmod testmod()
33
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL a : Union[str, Any] = logging.get_logger(__name__) class a ( lowercase__ ): """simple docstring""" a : Any = ['pixel_values'] def __init__( self : Optional[int] , __lowercase : bool = True , __lowercase : Dict[str, int] = None , __lowercase : int = 0.9 , __lowercase : PILImageResampling = PILImageResampling.BICUBIC , __lowercase : bool = True , __lowercase : Dict[str, int] = None , __lowercase : Union[int, float] = 1 / 255 , __lowercase : bool = True , __lowercase : bool = True , __lowercase : Optional[Union[float, List[float]]] = None , __lowercase : Optional[Union[float, List[float]]] = None , **__lowercase : Any , ) -> None: super().__init__(**__lowercase ) __UpperCAmelCase : Tuple = size if size is not None else {"""shortest_edge""": 224} __UpperCAmelCase : Union[str, Any] = get_size_dict(__lowercase , default_to_square=__lowercase ) __UpperCAmelCase : Union[str, Any] = crop_size if crop_size is not None else {"""height""": 224, """width""": 224} __UpperCAmelCase : Any = get_size_dict(__lowercase , param_name="""crop_size""" ) __UpperCAmelCase : Dict = do_resize __UpperCAmelCase : Dict = size __UpperCAmelCase : Tuple = crop_pct __UpperCAmelCase : List[Any] = resample __UpperCAmelCase : List[Any] = do_center_crop __UpperCAmelCase : List[Any] = crop_size __UpperCAmelCase : Any = do_rescale __UpperCAmelCase : Tuple = rescale_factor __UpperCAmelCase : int = do_normalize __UpperCAmelCase : List[Any] = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN __UpperCAmelCase : List[str] = image_std if image_std is not None else IMAGENET_DEFAULT_STD def UpperCAmelCase ( self : Tuple , __lowercase : np.ndarray , __lowercase : Dict[str, int] , __lowercase : Optional[float] = None , __lowercase : PILImageResampling = PILImageResampling.BICUBIC , __lowercase : Optional[Union[str, ChannelDimension]] = None , **__lowercase : Optional[int] , ) -> np.ndarray: __UpperCAmelCase : Tuple = get_size_dict(__lowercase , default_to_square=__lowercase ) if "shortest_edge" not in size and ("height" not in size or "width" not in size): raise ValueError(f"""size must contain 'height' and 'width' or 'shortest_edge' as keys. Got {size.keys()}""" ) if crop_pct is not None: if "shortest_edge" in size: __UpperCAmelCase : Union[str, Any] = int(size["""shortest_edge"""] / crop_pct ) elif "height" in size and "width" in size: if size["height"] == size["width"]: __UpperCAmelCase : Tuple = int(size["""height"""] / crop_pct ) else: __UpperCAmelCase : str = (int(size["""height"""] / crop_pct ), int(size["""width"""] / crop_pct )) else: raise ValueError("""Invalid size for resize: {}""".format(__lowercase ) ) __UpperCAmelCase : str = get_resize_output_image_size(__lowercase , size=__lowercase , default_to_square=__lowercase ) else: if "shortest_edge" in size: __UpperCAmelCase : List[str] = get_resize_output_image_size(__lowercase , size=size["""shortest_edge"""] , default_to_square=__lowercase ) elif "height" in size and "width" in size: __UpperCAmelCase : int = (size["""height"""], size["""width"""]) else: raise ValueError("""Invalid size for resize: {}""".format(__lowercase ) ) return resize(__lowercase , size=__lowercase , resample=__lowercase , data_format=__lowercase , **__lowercase ) def UpperCAmelCase ( self : Dict , __lowercase : np.ndarray , __lowercase : Dict[str, int] , __lowercase : Optional[Union[str, ChannelDimension]] = None , **__lowercase : Union[str, Any] , ) -> np.ndarray: __UpperCAmelCase : Optional[Any] = get_size_dict(__lowercase ) if "height" not in size or "width" not in size: raise ValueError(f"""size must contain 'height' and 'width' as keys. Got {size.keys()}""" ) return center_crop(__lowercase , size=(size["""height"""], size["""width"""]) , data_format=__lowercase , **__lowercase ) def UpperCAmelCase ( self : List[str] , __lowercase : np.ndarray , __lowercase : Union[int, float] , __lowercase : Optional[Union[str, ChannelDimension]] = None , **__lowercase : int , ) -> int: return rescale(__lowercase , scale=__lowercase , data_format=__lowercase , **__lowercase ) def UpperCAmelCase ( self : List[Any] , __lowercase : np.ndarray , __lowercase : Union[float, List[float]] , __lowercase : Union[float, List[float]] , __lowercase : Optional[Union[str, ChannelDimension]] = None , **__lowercase : List[Any] , ) -> np.ndarray: return normalize(__lowercase , mean=__lowercase , std=__lowercase , data_format=__lowercase , **__lowercase ) def UpperCAmelCase ( self : Any , __lowercase : ImageInput , __lowercase : bool = None , __lowercase : Dict[str, int] = None , __lowercase : int = None , __lowercase : PILImageResampling = None , __lowercase : bool = None , __lowercase : Dict[str, int] = None , __lowercase : bool = None , __lowercase : float = None , __lowercase : bool = None , __lowercase : Optional[Union[float, List[float]]] = None , __lowercase : Optional[Union[float, List[float]]] = None , __lowercase : Optional[Union[str, TensorType]] = None , __lowercase : ChannelDimension = ChannelDimension.FIRST , **__lowercase : List[str] , ) -> PIL.Image.Image: __UpperCAmelCase : Any = do_resize if do_resize is not None else self.do_resize __UpperCAmelCase : Optional[int] = crop_pct if crop_pct is not None else self.crop_pct __UpperCAmelCase : Optional[Any] = resample if resample is not None else self.resample __UpperCAmelCase : List[Any] = do_center_crop if do_center_crop is not None else self.do_center_crop __UpperCAmelCase : Dict = do_rescale if do_rescale is not None else self.do_rescale __UpperCAmelCase : Tuple = rescale_factor if rescale_factor is not None else self.rescale_factor __UpperCAmelCase : Union[str, Any] = do_normalize if do_normalize is not None else self.do_normalize __UpperCAmelCase : Tuple = image_mean if image_mean is not None else self.image_mean __UpperCAmelCase : Any = image_std if image_std is not None else self.image_std __UpperCAmelCase : Optional[int] = size if size is not None else self.size __UpperCAmelCase : Dict = get_size_dict(__lowercase , default_to_square=__lowercase ) __UpperCAmelCase : Tuple = crop_size if crop_size is not None else self.crop_size __UpperCAmelCase : Tuple = get_size_dict(__lowercase , param_name="""crop_size""" ) __UpperCAmelCase : Dict = make_list_of_images(__lowercase ) if not valid_images(__lowercase ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""" ) if do_center_crop and crop_pct is None: raise ValueError("""Crop_pct must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. __UpperCAmelCase : str = [to_numpy_array(__lowercase ) for image in images] if do_resize: __UpperCAmelCase : str = [self.resize(image=__lowercase , size=__lowercase , crop_pct=__lowercase , resample=__lowercase ) for image in images] if do_center_crop: __UpperCAmelCase : Any = [self.center_crop(image=__lowercase , size=__lowercase ) for image in images] if do_rescale: __UpperCAmelCase : List[str] = [self.rescale(image=__lowercase , scale=__lowercase ) for image in images] if do_normalize: __UpperCAmelCase : str = [self.normalize(image=__lowercase , mean=__lowercase , std=__lowercase ) for image in images] __UpperCAmelCase : List[str] = [to_channel_dimension_format(__lowercase , __lowercase ) for image in images] __UpperCAmelCase : Any = {"""pixel_values""": images} return BatchFeature(data=__lowercase , tensor_type=__lowercase )
114
0
"""simple docstring""" import timeit import numpy as np import datasets from datasets.arrow_writer import ArrowWriter from datasets.features.features import _ArrayXD def SCREAMING_SNAKE_CASE ( _lowerCamelCase : List[Any] ) -> Tuple: def wrapper(*_lowerCamelCase : int ,**_lowerCamelCase : List[str] ): _lowerCAmelCase : Any = timeit.default_timer() _lowerCAmelCase : Tuple = func(*SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__ ) _lowerCAmelCase : str = timeit.default_timer() - starttime return delta _lowerCAmelCase : Tuple = func.__name__ return wrapper def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Optional[Any] ,_lowerCamelCase : Tuple=100 ,_lowerCamelCase : Optional[int]=None ) -> str: _lowerCAmelCase : Dict = [] _lowerCAmelCase : int = seq_shapes or {} for i in range(SCREAMING_SNAKE_CASE__ ): _lowerCAmelCase : Optional[int] = {} for col_id, (k, v) in enumerate(features.items() ): if isinstance(SCREAMING_SNAKE_CASE__ ,_ArrayXD ): _lowerCAmelCase : Tuple = np.random.rand(*v.shape ).astype(v.dtype ) elif isinstance(SCREAMING_SNAKE_CASE__ ,datasets.Value ): if v.dtype == "string": _lowerCAmelCase : Dict = '''The small grey turtle was surprisingly fast when challenged.''' else: _lowerCAmelCase : List[str] = np.random.randint(10 ,size=1 ).astype(v.dtype ).item() elif isinstance(SCREAMING_SNAKE_CASE__ ,datasets.Sequence ): while isinstance(SCREAMING_SNAKE_CASE__ ,datasets.Sequence ): _lowerCAmelCase : Union[str, Any] = v.feature _lowerCAmelCase : List[str] = seq_shapes[k] _lowerCAmelCase : Any = np.random.rand(*SCREAMING_SNAKE_CASE__ ).astype(v.dtype ) _lowerCAmelCase : Dict = data dummy_data.append((i, example) ) return dummy_data def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Union[str, Any] ,_lowerCamelCase : Optional[int] ,_lowerCamelCase : Tuple=100 ,_lowerCamelCase : Any=None ) -> Any: _lowerCAmelCase : Tuple = generate_examples(SCREAMING_SNAKE_CASE__ ,num_examples=SCREAMING_SNAKE_CASE__ ,seq_shapes=SCREAMING_SNAKE_CASE__ ) with ArrowWriter(features=SCREAMING_SNAKE_CASE__ ,path=SCREAMING_SNAKE_CASE__ ) as writer: for key, record in dummy_data: _lowerCAmelCase : Dict = features.encode_example(SCREAMING_SNAKE_CASE__ ) writer.write(SCREAMING_SNAKE_CASE__ ) _lowerCAmelCase : List[str] = writer.finalize() if not num_final_examples == num_examples: raise ValueError( f"Error writing the dataset, wrote {num_final_examples} examples but should have written {num_examples}." ) _lowerCAmelCase : int = datasets.Dataset.from_file(filename=SCREAMING_SNAKE_CASE__ ,info=datasets.DatasetInfo(features=SCREAMING_SNAKE_CASE__ ) ) return dataset
367
"""simple docstring""" import math def SCREAMING_SNAKE_CASE ( ) -> None: _lowerCAmelCase : Any = input("""Enter message: """ ) _lowerCAmelCase : List[Any] = int(input(f"Enter key [2-{len(_lowerCamelCase ) - 1}]: " ) ) _lowerCAmelCase : Optional[Any] = input("""Encryption/Decryption [e/d]: """ ) if mode.lower().startswith("""e""" ): _lowerCAmelCase : Tuple = encrypt_message(_lowerCamelCase ,_lowerCamelCase ) elif mode.lower().startswith("""d""" ): _lowerCAmelCase : Dict = decrypt_message(_lowerCamelCase ,_lowerCamelCase ) # Append pipe symbol (vertical bar) to identify spaces at the end. print(f"Output:\n{text + '|'}" ) def SCREAMING_SNAKE_CASE ( _lowerCamelCase : int ,_lowerCamelCase : str ) -> str: _lowerCAmelCase : Dict = [""""""] * key for col in range(_lowerCamelCase ): _lowerCAmelCase : List[str] = col while pointer < len(_lowerCamelCase ): cipher_text[col] += message[pointer] pointer += key return "".join(_lowerCamelCase ) def SCREAMING_SNAKE_CASE ( _lowerCamelCase : int ,_lowerCamelCase : str ) -> str: _lowerCAmelCase : str = math.ceil(len(_lowerCamelCase ) / key ) _lowerCAmelCase : Union[str, Any] = key _lowerCAmelCase : Any = (num_cols * num_rows) - len(_lowerCamelCase ) _lowerCAmelCase : Dict = [""""""] * num_cols _lowerCAmelCase : Optional[Any] = 0 _lowerCAmelCase : Dict = 0 for symbol in message: plain_text[col] += symbol col += 1 if ( (col == num_cols) or (col == num_cols - 1) and (row >= num_rows - num_shaded_boxes) ): _lowerCAmelCase : str = 0 row += 1 return "".join(_lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod() main()
126
0
import json import logging import os import re import sys from dataclasses import dataclass, field from typing import Any, Dict, List, Optional, Union import datasets import numpy as np import torch import torchaudio from packaging import version from torch import nn import transformers from transformers import ( HfArgumentParser, Trainer, TrainingArguments, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaProcessor, is_apex_available, set_seed, ) from transformers.trainer_utils import get_last_checkpoint, is_main_process if is_apex_available(): from apex import amp if version.parse(version.parse(torch.__version__).base_version) >= version.parse('1.6'): _A = True from torch.cuda.amp import autocast _A = logging.getLogger(__name__) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int=None , SCREAMING_SNAKE_CASE__ : Any=None ): return field(default_factory=lambda: default , metadata=SCREAMING_SNAKE_CASE__ ) @dataclass class UpperCAmelCase__ : """simple docstring""" UpperCAmelCase__ : str = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) UpperCAmelCase__ : Optional[str] = field( default=A_ , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) UpperCAmelCase__ : Optional[bool] = field( default=A_ , metadata={"help": "Whether to freeze the feature extractor layers of the model."} ) UpperCAmelCase__ : Optional[float] = field( default=0.1 , metadata={"help": "The dropout ratio for the attention probabilities."} ) UpperCAmelCase__ : Optional[float] = field( default=0.1 , metadata={"help": "The dropout ratio for activations inside the fully connected layer."} ) UpperCAmelCase__ : Optional[float] = field( default=0.1 , metadata={ "help": "The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler." } , ) UpperCAmelCase__ : Optional[float] = field( default=0.1 , metadata={"help": "The dropout probabilitiy for all 1D convolutional layers in feature extractor."} , ) UpperCAmelCase__ : Optional[float] = field( default=0.05 , metadata={ "help": ( "Propability of each feature vector along the time axis to be chosen as the start of the vector" "span to be masked. Approximately ``mask_time_prob * sequence_length // mask_time_length`` feature" "vectors will be masked along the time axis. This is only relevant if ``apply_spec_augment is True``." ) } , ) UpperCAmelCase__ : Optional[float] = field(default=0.0 , metadata={"help": "The LayerDrop probability."} ) @dataclass class UpperCAmelCase__ : """simple docstring""" UpperCAmelCase__ : Optional[str] = field( default=A_ , metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} ) UpperCAmelCase__ : Optional[str] = field( default="train+validation" , metadata={ "help": "The name of the training data set split to use (via the datasets library). Defaults to 'train'" } , ) UpperCAmelCase__ : bool = field( default=A_ , metadata={"help": "Overwrite the cached preprocessed datasets or not."} ) UpperCAmelCase__ : Optional[int] = field( default=A_ , metadata={"help": "The number of processes to use for the preprocessing."} , ) UpperCAmelCase__ : Optional[int] = field( default=A_ , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) } , ) UpperCAmelCase__ : Optional[int] = field( default=A_ , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of validation examples to this " "value if set." ) } , ) UpperCAmelCase__ : List[str] = list_field( default=[",", "?", ".", "!", "-", ";", ":", "\"\"", "%", "'", "\"", "�"] , metadata={"help": "A list of characters to remove from the transcripts."} , ) @dataclass class UpperCAmelCase__ : """simple docstring""" UpperCAmelCase__ : WavaVecaProcessor UpperCAmelCase__ : Union[bool, str] = True UpperCAmelCase__ : Optional[int] = None UpperCAmelCase__ : Optional[int] = None UpperCAmelCase__ : Optional[int] = None UpperCAmelCase__ : Optional[int] = None def __call__( self , A_ ) -> Dict[str, torch.Tensor]: # split inputs and labels since they have to be of different lenghts and need # different padding methods __UpperCamelCase =[{'input_values': feature['input_values']} for feature in features] __UpperCamelCase =[{'input_ids': feature['labels']} for feature in features] __UpperCamelCase =self.processor.pad( A_ , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='pt' , ) __UpperCamelCase =self.processor.pad( labels=A_ , padding=self.padding , max_length=self.max_length_labels , pad_to_multiple_of=self.pad_to_multiple_of_labels , return_tensors='pt' , ) # replace padding with -100 to ignore loss correctly __UpperCamelCase =labels_batch['input_ids'].masked_fill(labels_batch.attention_mask.ne(1 ) , -100 ) __UpperCamelCase =labels return batch class UpperCAmelCase__ ( A_ ): """simple docstring""" def _a ( self , A_ , A_ ) -> torch.Tensor: model.train() __UpperCamelCase =self._prepare_inputs(A_ ) if self.use_amp: with autocast(): __UpperCamelCase =self.compute_loss(A_ , A_ ) else: __UpperCamelCase =self.compute_loss(A_ , A_ ) if self.args.n_gpu > 1: if model.module.config.ctc_loss_reduction == "mean": __UpperCamelCase =loss.mean() elif model.module.config.ctc_loss_reduction == "sum": __UpperCamelCase =loss.sum() / (inputs['labels'] >= 0).sum() else: raise ValueError(f'{model.config.ctc_loss_reduction} is not valid. Choose one of [\'mean\', \'sum\']' ) if self.args.gradient_accumulation_steps > 1: __UpperCamelCase =loss / self.args.gradient_accumulation_steps if self.use_amp: self.scaler.scale(A_ ).backward() elif self.use_apex: with amp.scale_loss(A_ , self.optimizer ) as scaled_loss: scaled_loss.backward() elif self.deepspeed: self.deepspeed.backward(A_ ) else: loss.backward() return loss.detach() def _UpperCAmelCase ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. __UpperCamelCase =HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __UpperCamelCase , __UpperCamelCase , __UpperCamelCase =parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __UpperCamelCase , __UpperCamelCase , __UpperCamelCase =parser.parse_args_into_dataclasses() # Detecting last checkpoint. __UpperCamelCase =None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: __UpperCamelCase =get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'Output directory ({training_args.output_dir}) already exists and is not empty. ' 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None: logger.info( F'Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ' 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN ) # Log on each process the small summary: logger.warning( F'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}' + F'distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}' ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info('Training/evaluation parameters %s' , SCREAMING_SNAKE_CASE__ ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: __UpperCamelCase =datasets.load_dataset( 'common_voice' , data_args.dataset_config_name , split=data_args.train_split_name ) __UpperCamelCase =datasets.load_dataset('common_voice' , data_args.dataset_config_name , split='test' ) # Create and save tokenizer __UpperCamelCase =F'[{"".join(data_args.chars_to_ignore )}]' def remove_special_characters(SCREAMING_SNAKE_CASE__ : Dict ): __UpperCamelCase =re.sub(SCREAMING_SNAKE_CASE__ , '' , batch['sentence'] ).lower() + ' ' return batch __UpperCamelCase =train_dataset.map(SCREAMING_SNAKE_CASE__ , remove_columns=['sentence'] ) __UpperCamelCase =eval_dataset.map(SCREAMING_SNAKE_CASE__ , remove_columns=['sentence'] ) def extract_all_chars(SCREAMING_SNAKE_CASE__ : Union[str, Any] ): __UpperCamelCase =' '.join(batch['text'] ) __UpperCamelCase =list(set(SCREAMING_SNAKE_CASE__ ) ) return {"vocab": [vocab], "all_text": [all_text]} __UpperCamelCase =train_dataset.map( SCREAMING_SNAKE_CASE__ , batched=SCREAMING_SNAKE_CASE__ , batch_size=-1 , keep_in_memory=SCREAMING_SNAKE_CASE__ , remove_columns=train_dataset.column_names , ) __UpperCamelCase =train_dataset.map( SCREAMING_SNAKE_CASE__ , batched=SCREAMING_SNAKE_CASE__ , batch_size=-1 , keep_in_memory=SCREAMING_SNAKE_CASE__ , remove_columns=eval_dataset.column_names , ) __UpperCamelCase =list(set(vocab_train['vocab'][0] ) | set(vocab_test['vocab'][0] ) ) __UpperCamelCase ={v: k for k, v in enumerate(SCREAMING_SNAKE_CASE__ )} __UpperCamelCase =vocab_dict[' '] del vocab_dict[" "] __UpperCamelCase =len(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =len(SCREAMING_SNAKE_CASE__ ) with open('vocab.json' , 'w' ) as vocab_file: json.dump(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __UpperCamelCase =WavaVecaCTCTokenizer( 'vocab.json' , unk_token='[UNK]' , pad_token='[PAD]' , word_delimiter_token='|' , ) __UpperCamelCase =WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_60_00 , padding_value=0.0 , do_normalize=SCREAMING_SNAKE_CASE__ , return_attention_mask=SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =WavaVecaProcessor(feature_extractor=SCREAMING_SNAKE_CASE__ , tokenizer=SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =WavaVecaForCTC.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , activation_dropout=model_args.activation_dropout , attention_dropout=model_args.attention_dropout , hidden_dropout=model_args.hidden_dropout , feat_proj_dropout=model_args.feat_proj_dropout , mask_time_prob=model_args.mask_time_prob , gradient_checkpointing=training_args.gradient_checkpointing , layerdrop=model_args.layerdrop , ctc_loss_reduction='mean' , pad_token_id=processor.tokenizer.pad_token_id , vocab_size=len(processor.tokenizer ) , ) if data_args.max_train_samples is not None: __UpperCamelCase =min(len(SCREAMING_SNAKE_CASE__ ) , data_args.max_train_samples ) __UpperCamelCase =train_dataset.select(range(SCREAMING_SNAKE_CASE__ ) ) if data_args.max_val_samples is not None: __UpperCamelCase =eval_dataset.select(range(data_args.max_val_samples ) ) __UpperCamelCase =torchaudio.transforms.Resample(4_80_00 , 1_60_00 ) # Preprocessing the datasets. # We need to read the aduio files as arrays and tokenize the targets. def speech_file_to_array_fn(SCREAMING_SNAKE_CASE__ : Tuple ): __UpperCamelCase , __UpperCamelCase =torchaudio.load(batch['path'] ) __UpperCamelCase =resampler(SCREAMING_SNAKE_CASE__ ).squeeze().numpy() __UpperCamelCase =1_60_00 __UpperCamelCase =batch['text'] return batch __UpperCamelCase =train_dataset.map( SCREAMING_SNAKE_CASE__ , remove_columns=train_dataset.column_names , num_proc=data_args.preprocessing_num_workers , ) __UpperCamelCase =eval_dataset.map( SCREAMING_SNAKE_CASE__ , remove_columns=eval_dataset.column_names , num_proc=data_args.preprocessing_num_workers , ) def prepare_dataset(SCREAMING_SNAKE_CASE__ : List[Any] ): # check that all files have the correct sampling rate assert ( len(set(batch['sampling_rate'] ) ) == 1 ), F'Make sure all inputs have the same sampling rate of {processor.feature_extractor.sampling_rate}.' __UpperCamelCase =processor( audio=batch['speech'] , text=batch['target_text'] , sampling_rate=batch['sampling_rate'][0] ) batch.update(SCREAMING_SNAKE_CASE__ ) return batch __UpperCamelCase =train_dataset.map( SCREAMING_SNAKE_CASE__ , remove_columns=train_dataset.column_names , batch_size=training_args.per_device_train_batch_size , batched=SCREAMING_SNAKE_CASE__ , num_proc=data_args.preprocessing_num_workers , ) __UpperCamelCase =eval_dataset.map( SCREAMING_SNAKE_CASE__ , remove_columns=eval_dataset.column_names , batch_size=training_args.per_device_train_batch_size , batched=SCREAMING_SNAKE_CASE__ , num_proc=data_args.preprocessing_num_workers , ) # Metric __UpperCamelCase =datasets.load_metric('wer' ) def compute_metrics(SCREAMING_SNAKE_CASE__ : int ): __UpperCamelCase =pred.predictions __UpperCamelCase =np.argmax(SCREAMING_SNAKE_CASE__ , axis=-1 ) __UpperCamelCase =processor.tokenizer.pad_token_id __UpperCamelCase =processor.batch_decode(SCREAMING_SNAKE_CASE__ ) # we do not want to group tokens when computing the metrics __UpperCamelCase =processor.batch_decode(pred.label_ids , group_tokens=SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =wer_metric.compute(predictions=SCREAMING_SNAKE_CASE__ , references=SCREAMING_SNAKE_CASE__ ) return {"wer": wer} if model_args.freeze_feature_extractor: model.freeze_feature_extractor() # Data collator __UpperCamelCase =DataCollatorCTCWithPadding(processor=SCREAMING_SNAKE_CASE__ , padding=SCREAMING_SNAKE_CASE__ ) # Initialize our Trainer __UpperCamelCase =CTCTrainer( model=SCREAMING_SNAKE_CASE__ , data_collator=SCREAMING_SNAKE_CASE__ , args=SCREAMING_SNAKE_CASE__ , compute_metrics=SCREAMING_SNAKE_CASE__ , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=processor.feature_extractor , ) # Training if training_args.do_train: if last_checkpoint is not None: __UpperCamelCase =last_checkpoint elif os.path.isdir(model_args.model_name_or_path ): __UpperCamelCase =model_args.model_name_or_path else: __UpperCamelCase =None # Save the feature_extractor and the tokenizer if is_main_process(training_args.local_rank ): processor.save_pretrained(training_args.output_dir ) __UpperCamelCase =trainer.train(resume_from_checkpoint=SCREAMING_SNAKE_CASE__ ) trainer.save_model() __UpperCamelCase =train_result.metrics __UpperCamelCase =( data_args.max_train_samples if data_args.max_train_samples is not None else len(SCREAMING_SNAKE_CASE__ ) ) __UpperCamelCase =min(SCREAMING_SNAKE_CASE__ , len(SCREAMING_SNAKE_CASE__ ) ) trainer.log_metrics('train' , SCREAMING_SNAKE_CASE__ ) trainer.save_metrics('train' , SCREAMING_SNAKE_CASE__ ) trainer.save_state() # Evaluation __UpperCamelCase ={} if training_args.do_eval: logger.info('*** Evaluate ***' ) __UpperCamelCase =trainer.evaluate() __UpperCamelCase =data_args.max_val_samples if data_args.max_val_samples is not None else len(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =min(SCREAMING_SNAKE_CASE__ , len(SCREAMING_SNAKE_CASE__ ) ) trainer.log_metrics('eval' , SCREAMING_SNAKE_CASE__ ) trainer.save_metrics('eval' , SCREAMING_SNAKE_CASE__ ) return results if __name__ == "__main__": main()
62
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _A = {'configuration_sew': ['SEW_PRETRAINED_CONFIG_ARCHIVE_MAP', 'SEWConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = [ 'SEW_PRETRAINED_MODEL_ARCHIVE_LIST', 'SEWForCTC', 'SEWForSequenceClassification', 'SEWModel', 'SEWPreTrainedModel', ] if TYPE_CHECKING: from .configuration_sew import SEW_PRETRAINED_CONFIG_ARCHIVE_MAP, SEWConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_sew import ( SEW_PRETRAINED_MODEL_ARCHIVE_LIST, SEWForCTC, SEWForSequenceClassification, SEWModel, SEWPreTrainedModel, ) else: import sys _A = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
62
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowercase__ = { "configuration_bloom": ["BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP", "BloomConfig", "BloomOnnxConfig"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ = ["BloomTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ = [ "BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST", "BloomForCausalLM", "BloomModel", "BloomPreTrainedModel", "BloomForSequenceClassification", "BloomForTokenClassification", "BloomForQuestionAnswering", ] if TYPE_CHECKING: from .configuration_bloom import BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP, BloomConfig, BloomOnnxConfig try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bloom_fast import BloomTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bloom import ( BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST, BloomForCausalLM, BloomForQuestionAnswering, BloomForSequenceClassification, BloomForTokenClassification, BloomModel, BloomPreTrainedModel, ) else: import sys lowercase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
280
'''simple docstring''' from __future__ import annotations def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): if len(UpperCAmelCase_ ) == 0: raise ValueError('find_max() arg is an empty sequence' ) if ( left >= len(UpperCAmelCase_ ) or left < -len(UpperCAmelCase_ ) or right >= len(UpperCAmelCase_ ) or right < -len(UpperCAmelCase_ ) ): raise IndexError('list index out of range' ) if left == right: return nums[left] UpperCAmelCase : Optional[int] = (left + right) >> 1 # the middle UpperCAmelCase : Any = find_max(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) # find max in range[left, mid] UpperCAmelCase : Union[str, Any] = find_max(UpperCAmelCase_ , mid + 1 , UpperCAmelCase_ ) # find max in range[mid + 1, right] return left_max if left_max >= right_max else right_max if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
280
1
'''simple docstring''' import unittest import numpy as np import timeout_decorator # noqa from transformers import BlenderbotSmallConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html __lowercase : Optional[Any] = 'platform' import jax import jax.numpy as jnp from transformers.models.blenderbot_small.modeling_flax_blenderbot_small import ( FlaxBlenderbotSmallForConditionalGeneration, FlaxBlenderbotSmallModel, shift_tokens_right, ) def lowerCamelCase (_SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : List[str]=None , _SCREAMING_SNAKE_CASE : Any=None , _SCREAMING_SNAKE_CASE : Union[str, Any]=None , _SCREAMING_SNAKE_CASE : List[Any]=None , _SCREAMING_SNAKE_CASE : List[Any]=None , _SCREAMING_SNAKE_CASE : Optional[Any]=None , ): if attention_mask is None: __a : Union[str, Any] = np.where(input_ids != config.pad_token_id , 1 , 0 ) if decoder_attention_mask is None: __a : List[Any] = np.where(decoder_input_ids != config.pad_token_id , 1 , 0 ) if head_mask is None: __a : Any = np.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: __a : Union[str, Any] = np.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: __a : Union[str, Any] = np.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, } class __UpperCamelCase : def __init__( self , __a , __a=13 , __a=7 , __a=True , __a=False , __a=99 , __a=16 , __a=2 , __a=4 , __a=4 , __a="gelu" , __a=0.1 , __a=0.1 , __a=32 , __a=2 , __a=1 , __a=0 , __a=0.02 , ): '''simple docstring''' __a : Dict = parent __a : str = batch_size __a : Tuple = seq_length __a : str = is_training __a : Optional[Any] = use_labels __a : List[Any] = vocab_size __a : Any = hidden_size __a : Dict = num_hidden_layers __a : int = num_attention_heads __a : Optional[int] = intermediate_size __a : Tuple = hidden_act __a : List[Any] = hidden_dropout_prob __a : Optional[int] = attention_probs_dropout_prob __a : Optional[int] = max_position_embeddings __a : Any = eos_token_id __a : str = pad_token_id __a : Union[str, Any] = bos_token_id __a : Dict = initializer_range def __UpperCAmelCase ( self ): '''simple docstring''' __a : str = np.clip(ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) , 3 , self.vocab_size ) __a : Optional[Any] = np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1) , dtype=np.intaa )) , -1 ) __a : int = shift_tokens_right(__a , 1 , 2 ) __a : Union[str, Any] = BlenderbotSmallConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , initializer_range=self.initializer_range , use_cache=__a , ) __a : str = prepare_blenderbot_inputs_dict(__a , __a , __a ) return config, inputs_dict def __UpperCAmelCase ( self ): '''simple docstring''' __a , __a : Union[str, Any] = self.prepare_config_and_inputs() return config, inputs_dict def __UpperCAmelCase ( self , __a , __a , __a ): '''simple docstring''' __a : int = 20 __a : Any = model_class_name(__a ) __a : Union[str, Any] = model.encode(inputs_dict['input_ids'] ) __a , __a : Union[str, Any] = ( inputs_dict['decoder_input_ids'], inputs_dict['decoder_attention_mask'], ) __a : Any = model.init_cache(decoder_input_ids.shape[0] , __a , __a ) __a : Optional[Any] = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype='i4' ) __a : Tuple = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) __a : str = model.decode( decoder_input_ids[:, :-1] , __a , decoder_attention_mask=__a , past_key_values=__a , decoder_position_ids=__a , ) __a : Dict = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='i4' ) __a : Optional[Any] = model.decode( decoder_input_ids[:, -1:] , __a , decoder_attention_mask=__a , past_key_values=outputs_cache.past_key_values , decoder_position_ids=__a , ) __a : List[str] = model.decode(__a , __a ) __a : Optional[int] = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=f"""Max diff is {diff}""" ) def __UpperCAmelCase ( self , __a , __a , __a ): '''simple docstring''' __a : Optional[int] = 20 __a : Optional[Any] = model_class_name(__a ) __a : Optional[Any] = model.encode(inputs_dict['input_ids'] ) __a , __a : List[str] = ( inputs_dict['decoder_input_ids'], inputs_dict['decoder_attention_mask'], ) __a : Tuple = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] , axis=-1 , ) __a : Tuple = model.init_cache(decoder_input_ids.shape[0] , __a , __a ) __a : List[Any] = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) __a : Union[str, Any] = model.decode( decoder_input_ids[:, :-1] , __a , decoder_attention_mask=__a , past_key_values=__a , decoder_position_ids=__a , ) __a : Dict = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='i4' ) __a : int = model.decode( decoder_input_ids[:, -1:] , __a , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=__a , decoder_position_ids=__a , ) __a : int = model.decode(__a , __a , decoder_attention_mask=__a ) __a : List[Any] = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=f"""Max diff is {diff}""" ) @require_flax class __UpperCamelCase ( unittest.TestCase ): A_ = 99 def __UpperCAmelCase ( self ): '''simple docstring''' __a : List[Any] = np.array( [ [71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 82, 2], [5, 97, 17, 39, 94, 40, 2], [76, 83, 94, 25, 70, 78, 2], [87, 59, 41, 35, 48, 66, 2], [55, 13, 16, 58, 5, 2, 1], # note padding [64, 27, 31, 51, 12, 75, 2], [52, 64, 86, 17, 83, 39, 2], [48, 61, 9, 24, 71, 82, 2], [26, 1, 60, 48, 22, 13, 2], [21, 5, 62, 28, 14, 76, 2], [45, 98, 37, 86, 59, 48, 2], [70, 70, 50, 9, 28, 0, 2], ] , dtype=np.intaa , ) __a : int = input_ids.shape[0] __a : Optional[int] = BlenderbotSmallConfig( vocab_size=self.vocab_size , d_model=24 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=32 , decoder_ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size def __UpperCAmelCase ( self ): '''simple docstring''' __a , __a , __a : Any = self._get_config_and_data() __a : str = FlaxBlenderbotSmallForConditionalGeneration(__a ) __a : List[str] = lm_model(input_ids=__a ) __a : List[Any] = (batch_size, input_ids.shape[1], config.vocab_size) self.assertEqual(outputs['logits'].shape , __a ) def __UpperCAmelCase ( self ): '''simple docstring''' __a : List[str] = BlenderbotSmallConfig( vocab_size=self.vocab_size , d_model=14 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=8 , decoder_ffn_dim=8 , max_position_embeddings=48 , ) __a : Union[str, Any] = FlaxBlenderbotSmallForConditionalGeneration(__a ) __a : Any = np.array([[71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 2, 1]] , dtype=np.intaa ) __a : Union[str, Any] = np.array([[82, 71, 82, 18, 2], [58, 68, 2, 1, 1]] , dtype=np.intaa ) __a : Any = lm_model(input_ids=__a , decoder_input_ids=__a ) __a : List[str] = (*summary.shape, config.vocab_size) self.assertEqual(outputs['logits'].shape , __a ) def __UpperCAmelCase ( self ): '''simple docstring''' __a : Optional[int] = np.array([[71, 82, 18, 33, 2, 1, 1], [68, 34, 26, 58, 30, 82, 2]] , dtype=np.intaa ) __a : Dict = shift_tokens_right(__a , 1 , 2 ) __a : Any = np.equal(__a , 1 ).astype(np.floataa ).sum() __a : Tuple = np.equal(__a , 1 ).astype(np.floataa ).sum() self.assertEqual(shifted.shape , input_ids.shape ) self.assertEqual(__a , n_pad_before - 1 ) self.assertTrue(np.equal(shifted[:, 0] , 2 ).all() ) @require_flax class __UpperCamelCase ( lowerCAmelCase_ , unittest.TestCase , lowerCAmelCase_ ): A_ = True A_ = ( ( FlaxBlenderbotSmallModel, FlaxBlenderbotSmallForConditionalGeneration, ) if is_flax_available() else () ) A_ = (FlaxBlenderbotSmallForConditionalGeneration,) if is_flax_available() else () def __UpperCAmelCase ( self ): '''simple docstring''' __a : Any = FlaxBlenderbotSmallModelTester(self ) def __UpperCAmelCase ( self ): '''simple docstring''' __a , __a : Optional[int] = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(__a , __a , __a ) def __UpperCAmelCase ( self ): '''simple docstring''' __a , __a : Union[str, Any] = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(__a , __a , __a ) def __UpperCAmelCase ( self ): '''simple docstring''' __a , __a : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __a : str = self._prepare_for_class(__a , __a ) __a : List[str] = model_class(__a ) @jax.jit def encode_jitted(__a , __a=None , **__a ): return model.encode(input_ids=__a , attention_mask=__a ) with self.subTest('JIT Enabled' ): __a : str = encode_jitted(**__a ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): __a : List[str] = encode_jitted(**__a ).to_tuple() self.assertEqual(len(__a ) , len(__a ) ) for jitted_output, output in zip(__a , __a ): self.assertEqual(jitted_output.shape , output.shape ) def __UpperCAmelCase ( self ): '''simple docstring''' __a , __a : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __a : str = model_class(__a ) __a : Optional[Any] = model.encode(inputs_dict['input_ids'] , inputs_dict['attention_mask'] ) __a : int = { 'decoder_input_ids': inputs_dict['decoder_input_ids'], 'decoder_attention_mask': inputs_dict['decoder_attention_mask'], 'encoder_outputs': encoder_outputs, } @jax.jit def decode_jitted(__a , __a , __a ): return model.decode( decoder_input_ids=__a , decoder_attention_mask=__a , encoder_outputs=__a , ) with self.subTest('JIT Enabled' ): __a : List[Any] = decode_jitted(**__a ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): __a : Optional[Any] = decode_jitted(**__a ).to_tuple() self.assertEqual(len(__a ) , len(__a ) ) for jitted_output, output in zip(__a , __a ): self.assertEqual(jitted_output.shape , output.shape ) @slow def __UpperCAmelCase ( self ): '''simple docstring''' for model_class_name in self.all_model_classes: __a : Dict = model_class_name.from_pretrained('facebook/blenderbot_small-90M' ) # FlaxBlenderbotForSequenceClassification expects eos token in input_ids __a : int = np.ones((1, 1) ) * model.config.eos_token_id __a : Any = model(__a ) self.assertIsNotNone(__a )
27
'''simple docstring''' def UpperCAmelCase_ ( __lowerCamelCase : int = 1_00 ): lowercase_ :Tuple = n * (n + 1) * (2 * n + 1) / 6 lowercase_ :List[str] = (n * (n + 1) / 2) ** 2 return int(square_of_sum - sum_of_squares ) if __name__ == "__main__": print(F'''{solution() = }''')
223
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCAmelCase__ = { """configuration_convbert""": ["""CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ConvBertConfig""", """ConvBertOnnxConfig"""], """tokenization_convbert""": ["""ConvBertTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = ["""ConvBertTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ """CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """ConvBertForMaskedLM""", """ConvBertForMultipleChoice""", """ConvBertForQuestionAnswering""", """ConvBertForSequenceClassification""", """ConvBertForTokenClassification""", """ConvBertLayer""", """ConvBertModel""", """ConvBertPreTrainedModel""", """load_tf_weights_in_convbert""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ """TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFConvBertForMaskedLM""", """TFConvBertForMultipleChoice""", """TFConvBertForQuestionAnswering""", """TFConvBertForSequenceClassification""", """TFConvBertForTokenClassification""", """TFConvBertLayer""", """TFConvBertModel""", """TFConvBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_convbert import CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvBertConfig, ConvBertOnnxConfig from .tokenization_convbert import ConvBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_convbert_fast import ConvBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convbert import ( CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvBertForMaskedLM, ConvBertForMultipleChoice, ConvBertForQuestionAnswering, ConvBertForSequenceClassification, ConvBertForTokenClassification, ConvBertLayer, ConvBertModel, ConvBertPreTrainedModel, load_tf_weights_in_convbert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convbert import ( TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertLayer, TFConvBertModel, TFConvBertPreTrainedModel, ) else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
354
"""simple docstring""" def __UpperCAmelCase ( lowercase ): """simple docstring""" return " ".join(input_str.split()[::-1] ) if __name__ == "__main__": import doctest doctest.testmod()
30
0
"""simple docstring""" from __future__ import annotations def _snake_case ( UpperCAmelCase_ : int , UpperCAmelCase_ : int ): A__ = [] create_all_state(1 , UpperCAmelCase_ , UpperCAmelCase_ , [] , UpperCAmelCase_ ) return result def _snake_case ( UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : list[int] , UpperCAmelCase_ : list[list[int]] , ): if level == 0: total_list.append(current_list[:] ) return for i in range(UpperCAmelCase_ , total_number - level + 2 ): current_list.append(UpperCAmelCase_ ) create_all_state(i + 1 , UpperCAmelCase_ , level - 1 , UpperCAmelCase_ , UpperCAmelCase_ ) current_list.pop() def _snake_case ( UpperCAmelCase_ : list[list[int]] ): for i in total_list: print(*UpperCAmelCase_ ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_ : Optional[Any] = 4 SCREAMING_SNAKE_CASE_ : int = 2 SCREAMING_SNAKE_CASE_ : Union[str, Any] = generate_all_combinations(n, k) print_all_state(total_list)
335
"""simple docstring""" import math class a : """simple docstring""" def __init__( self: List[Any] , UpperCamelCase: List[str]=0 ): # a graph with Node 0,1,...,N-1 """simple docstring""" A__ = n A__ = [ [math.inf for j in range(0 , UpperCamelCase )] for i in range(0 , UpperCamelCase ) ] # adjacency matrix for weight A__ = [ [math.inf for j in range(0 , UpperCamelCase )] for i in range(0 , UpperCamelCase ) ] # dp[i][j] stores minimum distance from i to j def UpperCamelCase ( self: Union[str, Any] , UpperCamelCase: Optional[int] , UpperCamelCase: Union[str, Any] , UpperCamelCase: Tuple ): """simple docstring""" A__ = w def UpperCamelCase ( self: int ): """simple docstring""" for k in range(0 , self.n ): for i in range(0 , self.n ): for j in range(0 , self.n ): A__ = min(self.dp[i][j] , self.dp[i][k] + self.dp[k][j] ) def UpperCamelCase ( self: int , UpperCamelCase: List[str] , UpperCamelCase: Dict ): """simple docstring""" return self.dp[u][v] if __name__ == "__main__": SCREAMING_SNAKE_CASE_ : List[Any] = Graph(5) graph.add_edge(0, 2, 9) graph.add_edge(0, 4, 1_0) graph.add_edge(1, 3, 5) graph.add_edge(2, 3, 7) graph.add_edge(3, 0, 1_0) graph.add_edge(3, 1, 2) graph.add_edge(3, 2, 1) graph.add_edge(3, 4, 6) graph.add_edge(4, 1, 3) graph.add_edge(4, 2, 4) graph.add_edge(4, 3, 9) graph.floyd_warshall() graph.show_min(1, 4) graph.show_min(0, 3)
335
1
from __future__ import annotations from typing import TypedDict class __lowercase ( UpperCAmelCase_ ): """simple docstring""" _UpperCAmelCase : str _UpperCAmelCase : int def A_ ( _UpperCAmelCase ): if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): raise TypeError("The parameter s type must be str." ) return [s[i:] + s[:i] for i in range(len(_UpperCAmelCase ) )] def A_ ( _UpperCAmelCase ): if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): raise TypeError("The parameter s type must be str." ) if not s: raise ValueError("The parameter s must not be empty." ) SCREAMING_SNAKE_CASE_: str = all_rotations(_UpperCAmelCase ) rotations.sort() # sort the list of rotations in alphabetically order # make a string composed of the last char of each rotation SCREAMING_SNAKE_CASE_: BWTTransformDict = { "bwt_string": "".join([word[-1] for word in rotations] ), "idx_original_string": rotations.index(_UpperCAmelCase ), } return response def A_ ( _UpperCAmelCase , _UpperCAmelCase ): if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): raise TypeError("The parameter bwt_string type must be str." ) if not bwt_string: raise ValueError("The parameter bwt_string must not be empty." ) try: SCREAMING_SNAKE_CASE_: Optional[int] = int(_UpperCAmelCase ) except ValueError: raise TypeError( "The parameter idx_original_string type must be int or passive" " of cast to int." ) if idx_original_string < 0: raise ValueError("The parameter idx_original_string must not be lower than 0." ) if idx_original_string >= len(_UpperCAmelCase ): raise ValueError( "The parameter idx_original_string must be lower than" " len(bwt_string)." ) SCREAMING_SNAKE_CASE_: Tuple = [""] * len(_UpperCAmelCase ) for _ in range(len(_UpperCAmelCase ) ): for i in range(len(_UpperCAmelCase ) ): SCREAMING_SNAKE_CASE_: Optional[Any] = bwt_string[i] + ordered_rotations[i] ordered_rotations.sort() return ordered_rotations[idx_original_string] if __name__ == "__main__": lowerCAmelCase : List[Any] = """Provide a string that I will generate its BWT transform: """ lowerCAmelCase : List[Any] = input(entry_msg).strip() lowerCAmelCase : int = bwt_transform(s) print( f'''Burrows Wheeler transform for string \'{s}\' results ''' f'''in \'{result['bwt_string']}\'''' ) lowerCAmelCase : Any = reverse_bwt(result["""bwt_string"""], result["""idx_original_string"""]) print( f'''Reversing Burrows Wheeler transform for entry \'{result['bwt_string']}\' ''' f'''we get original string \'{original_string}\'''' )
127
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DeformableDetrImageProcessor class __lowercase ( unittest.TestCase ): """simple docstring""" def __init__( self : Any , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Optional[Any]=7 , lowerCAmelCase__ : Tuple=3 , lowerCAmelCase__ : Optional[int]=30 , lowerCAmelCase__ : Dict=400 , lowerCAmelCase__ : int=True , lowerCAmelCase__ : Dict=None , lowerCAmelCase__ : Union[str, Any]=True , lowerCAmelCase__ : Any=[0.5, 0.5, 0.5] , lowerCAmelCase__ : Optional[Any]=[0.5, 0.5, 0.5] , lowerCAmelCase__ : List[Any]=True , lowerCAmelCase__ : Tuple=1 / 255 , lowerCAmelCase__ : int=True , ): # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p SCREAMING_SNAKE_CASE_: Optional[Any] = size if size is not None else {"shortest_edge": 18, "longest_edge": 1333} SCREAMING_SNAKE_CASE_: str = parent SCREAMING_SNAKE_CASE_: Tuple = batch_size SCREAMING_SNAKE_CASE_: Tuple = num_channels SCREAMING_SNAKE_CASE_: Union[str, Any] = min_resolution SCREAMING_SNAKE_CASE_: Tuple = max_resolution SCREAMING_SNAKE_CASE_: List[Any] = do_resize SCREAMING_SNAKE_CASE_: Optional[int] = size SCREAMING_SNAKE_CASE_: Optional[int] = do_normalize SCREAMING_SNAKE_CASE_: Any = image_mean SCREAMING_SNAKE_CASE_: Dict = image_std SCREAMING_SNAKE_CASE_: Tuple = do_rescale SCREAMING_SNAKE_CASE_: int = rescale_factor SCREAMING_SNAKE_CASE_: int = do_pad def _SCREAMING_SNAKE_CASE ( self : Optional[int]): return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase__ : Dict , lowerCAmelCase__ : int=False): if not batched: SCREAMING_SNAKE_CASE_: List[str] = image_inputs[0] if isinstance(lowerCAmelCase__ , Image.Image): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Union[str, Any] = image.size else: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Union[str, Any] = image.shape[1], image.shape[2] if w < h: SCREAMING_SNAKE_CASE_: List[Any] = int(self.size["shortest_edge"] * h / w) SCREAMING_SNAKE_CASE_: Union[str, Any] = self.size["shortest_edge"] elif w > h: SCREAMING_SNAKE_CASE_: Any = self.size["shortest_edge"] SCREAMING_SNAKE_CASE_: Union[str, Any] = int(self.size["shortest_edge"] * w / h) else: SCREAMING_SNAKE_CASE_: int = self.size["shortest_edge"] SCREAMING_SNAKE_CASE_: Dict = self.size["shortest_edge"] else: SCREAMING_SNAKE_CASE_: int = [] for image in image_inputs: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Optional[int] = self.get_expected_values([image]) expected_values.append((expected_height, expected_width)) SCREAMING_SNAKE_CASE_: Tuple = max(lowerCAmelCase__ , key=lambda lowerCAmelCase__: item[0])[0] SCREAMING_SNAKE_CASE_: Optional[Any] = max(lowerCAmelCase__ , key=lambda lowerCAmelCase__: item[1])[1] return expected_height, expected_width @require_torch @require_vision class __lowercase ( UpperCAmelCase_ , unittest.TestCase ): """simple docstring""" _UpperCAmelCase : Any = DeformableDetrImageProcessor if is_vision_available() else None def _SCREAMING_SNAKE_CASE ( self : Optional[int]): SCREAMING_SNAKE_CASE_: int = DeformableDetrImageProcessingTester(self) @property def _SCREAMING_SNAKE_CASE ( self : Optional[int]): return self.image_processor_tester.prepare_image_processor_dict() def _SCREAMING_SNAKE_CASE ( self : List[str]): SCREAMING_SNAKE_CASE_: Dict = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(lowerCAmelCase__ , "image_mean")) self.assertTrue(hasattr(lowerCAmelCase__ , "image_std")) self.assertTrue(hasattr(lowerCAmelCase__ , "do_normalize")) self.assertTrue(hasattr(lowerCAmelCase__ , "do_resize")) self.assertTrue(hasattr(lowerCAmelCase__ , "do_rescale")) self.assertTrue(hasattr(lowerCAmelCase__ , "do_pad")) self.assertTrue(hasattr(lowerCAmelCase__ , "size")) def _SCREAMING_SNAKE_CASE ( self : Tuple): SCREAMING_SNAKE_CASE_: Dict = self.image_processing_class.from_dict(self.image_processor_dict) self.assertEqual(image_processor.size , {"shortest_edge": 18, "longest_edge": 1333}) self.assertEqual(image_processor.do_pad , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Dict = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=lowerCAmelCase__) self.assertEqual(image_processor.size , {"shortest_edge": 42, "longest_edge": 84}) self.assertEqual(image_processor.do_pad , lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): pass def _SCREAMING_SNAKE_CASE ( self : List[Any]): # Initialize image_processing SCREAMING_SNAKE_CASE_: List[Any] = self.image_processing_class(**self.image_processor_dict) # create random PIL images SCREAMING_SNAKE_CASE_: Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , Image.Image) # Test not batched input SCREAMING_SNAKE_CASE_: Union[str, Any] = image_processing(image_inputs[0] , return_tensors="pt").pixel_values SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[str] = self.image_processor_tester.get_expected_values(lowerCAmelCase__) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Optional[Any] = self.image_processor_tester.get_expected_values(lowerCAmelCase__ , batched=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[str] = image_processing(lowerCAmelCase__ , return_tensors="pt").pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _SCREAMING_SNAKE_CASE ( self : str): # Initialize image_processing SCREAMING_SNAKE_CASE_: Optional[Any] = self.image_processing_class(**self.image_processor_dict) # create random numpy tensors SCREAMING_SNAKE_CASE_: List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , numpify=lowerCAmelCase__) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , np.ndarray) # Test not batched input SCREAMING_SNAKE_CASE_: str = image_processing(image_inputs[0] , return_tensors="pt").pixel_values SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[str] = self.image_processor_tester.get_expected_values(lowerCAmelCase__) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched SCREAMING_SNAKE_CASE_: Any = image_processing(lowerCAmelCase__ , return_tensors="pt").pixel_values SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: int = self.image_processor_tester.get_expected_values(lowerCAmelCase__ , batched=lowerCAmelCase__) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _SCREAMING_SNAKE_CASE ( self : List[Any]): # Initialize image_processing SCREAMING_SNAKE_CASE_: List[Any] = self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors SCREAMING_SNAKE_CASE_: int = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , torchify=lowerCAmelCase__) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , torch.Tensor) # Test not batched input SCREAMING_SNAKE_CASE_: Dict = image_processing(image_inputs[0] , return_tensors="pt").pixel_values SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Any = self.image_processor_tester.get_expected_values(lowerCAmelCase__) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched SCREAMING_SNAKE_CASE_: Optional[Any] = image_processing(lowerCAmelCase__ , return_tensors="pt").pixel_values SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Optional[Any] = self.image_processor_tester.get_expected_values(lowerCAmelCase__ , batched=lowerCAmelCase__) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def _SCREAMING_SNAKE_CASE ( self : Tuple): # prepare image and target SCREAMING_SNAKE_CASE_: Optional[Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") with open("./tests/fixtures/tests_samples/COCO/coco_annotations.txt" , "r") as f: SCREAMING_SNAKE_CASE_: str = json.loads(f.read()) SCREAMING_SNAKE_CASE_: Optional[int] = {"image_id": 3_9769, "annotations": target} # encode them SCREAMING_SNAKE_CASE_: str = DeformableDetrImageProcessor() SCREAMING_SNAKE_CASE_: Dict = image_processing(images=lowerCAmelCase__ , annotations=lowerCAmelCase__ , return_tensors="pt") # verify pixel values SCREAMING_SNAKE_CASE_: Optional[Any] = torch.Size([1, 3, 800, 1066]) self.assertEqual(encoding["pixel_values"].shape , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: str = torch.tensor([0.2796, 0.3138, 0.3481]) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , lowerCAmelCase__ , atol=1E-4)) # verify area SCREAMING_SNAKE_CASE_: int = torch.tensor([5887.9600, 1_1250.2061, 48_9353.8438, 83_7122.7500, 14_7967.5156, 16_5732.3438]) self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , lowerCAmelCase__)) # verify boxes SCREAMING_SNAKE_CASE_: str = torch.Size([6, 4]) self.assertEqual(encoding["labels"][0]["boxes"].shape , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Dict = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215]) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , lowerCAmelCase__ , atol=1E-3)) # verify image_id SCREAMING_SNAKE_CASE_: str = torch.tensor([3_9769]) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , lowerCAmelCase__)) # verify is_crowd SCREAMING_SNAKE_CASE_: int = torch.tensor([0, 0, 0, 0, 0, 0]) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , lowerCAmelCase__)) # verify class_labels SCREAMING_SNAKE_CASE_: Tuple = torch.tensor([75, 75, 63, 65, 17, 17]) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , lowerCAmelCase__)) # verify orig_size SCREAMING_SNAKE_CASE_: Union[str, Any] = torch.tensor([480, 640]) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , lowerCAmelCase__)) # verify size SCREAMING_SNAKE_CASE_: str = torch.tensor([800, 1066]) self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , lowerCAmelCase__)) @slow def _SCREAMING_SNAKE_CASE ( self : Tuple): # prepare image, target and masks_path SCREAMING_SNAKE_CASE_: Union[str, Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") with open("./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt" , "r") as f: SCREAMING_SNAKE_CASE_: List[Any] = json.loads(f.read()) SCREAMING_SNAKE_CASE_: Optional[Any] = {"file_name": "000000039769.png", "image_id": 3_9769, "segments_info": target} SCREAMING_SNAKE_CASE_: int = pathlib.Path("./tests/fixtures/tests_samples/COCO/coco_panoptic") # encode them SCREAMING_SNAKE_CASE_: Any = DeformableDetrImageProcessor(format="coco_panoptic") SCREAMING_SNAKE_CASE_: Optional[Any] = image_processing(images=lowerCAmelCase__ , annotations=lowerCAmelCase__ , masks_path=lowerCAmelCase__ , return_tensors="pt") # verify pixel values SCREAMING_SNAKE_CASE_: Dict = torch.Size([1, 3, 800, 1066]) self.assertEqual(encoding["pixel_values"].shape , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = torch.tensor([0.2796, 0.3138, 0.3481]) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , lowerCAmelCase__ , atol=1E-4)) # verify area SCREAMING_SNAKE_CASE_: Optional[Any] = torch.tensor([14_7979.6875, 16_5527.0469, 48_4638.5938, 1_1292.9375, 5879.6562, 7634.1147]) self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , lowerCAmelCase__)) # verify boxes SCREAMING_SNAKE_CASE_: List[str] = torch.Size([6, 4]) self.assertEqual(encoding["labels"][0]["boxes"].shape , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[Any] = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625]) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , lowerCAmelCase__ , atol=1E-3)) # verify image_id SCREAMING_SNAKE_CASE_: Any = torch.tensor([3_9769]) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , lowerCAmelCase__)) # verify is_crowd SCREAMING_SNAKE_CASE_: Union[str, Any] = torch.tensor([0, 0, 0, 0, 0, 0]) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , lowerCAmelCase__)) # verify class_labels SCREAMING_SNAKE_CASE_: List[Any] = torch.tensor([17, 17, 63, 75, 75, 93]) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , lowerCAmelCase__)) # verify masks SCREAMING_SNAKE_CASE_: Tuple = 82_2873 self.assertEqual(encoding["labels"][0]["masks"].sum().item() , lowerCAmelCase__) # verify orig_size SCREAMING_SNAKE_CASE_: str = torch.tensor([480, 640]) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , lowerCAmelCase__)) # verify size SCREAMING_SNAKE_CASE_: Optional[int] = torch.tensor([800, 1066]) self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , lowerCAmelCase__))
127
1
from ..utils import DummyObject, requires_backends class A ( metaclass=__UpperCAmelCase ): __snake_case = ['torch', 'transformers', 'onnx'] def __init__( self, *UpperCamelCase__, **UpperCamelCase__ ): """simple docstring""" requires_backends(self, ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def SCREAMING_SNAKE_CASE__ ( cls, *UpperCamelCase__, **UpperCamelCase__ ): """simple docstring""" requires_backends(cls, ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def SCREAMING_SNAKE_CASE__ ( cls, *UpperCamelCase__, **UpperCamelCase__ ): """simple docstring""" requires_backends(cls, ['''torch''', '''transformers''', '''onnx'''] ) class A ( metaclass=__UpperCAmelCase ): __snake_case = ['torch', 'transformers', 'onnx'] def __init__( self, *UpperCamelCase__, **UpperCamelCase__ ): """simple docstring""" requires_backends(self, ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def SCREAMING_SNAKE_CASE__ ( cls, *UpperCamelCase__, **UpperCamelCase__ ): """simple docstring""" requires_backends(cls, ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def SCREAMING_SNAKE_CASE__ ( cls, *UpperCamelCase__, **UpperCamelCase__ ): """simple docstring""" requires_backends(cls, ['''torch''', '''transformers''', '''onnx'''] ) class A ( metaclass=__UpperCAmelCase ): __snake_case = ['torch', 'transformers', 'onnx'] def __init__( self, *UpperCamelCase__, **UpperCamelCase__ ): """simple docstring""" requires_backends(self, ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def SCREAMING_SNAKE_CASE__ ( cls, *UpperCamelCase__, **UpperCamelCase__ ): """simple docstring""" requires_backends(cls, ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def SCREAMING_SNAKE_CASE__ ( cls, *UpperCamelCase__, **UpperCamelCase__ ): """simple docstring""" requires_backends(cls, ['''torch''', '''transformers''', '''onnx'''] ) class A ( metaclass=__UpperCAmelCase ): __snake_case = ['torch', 'transformers', 'onnx'] def __init__( self, *UpperCamelCase__, **UpperCamelCase__ ): """simple docstring""" requires_backends(self, ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def SCREAMING_SNAKE_CASE__ ( cls, *UpperCamelCase__, **UpperCamelCase__ ): """simple docstring""" requires_backends(cls, ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def SCREAMING_SNAKE_CASE__ ( cls, *UpperCamelCase__, **UpperCamelCase__ ): """simple docstring""" requires_backends(cls, ['''torch''', '''transformers''', '''onnx'''] ) class A ( metaclass=__UpperCAmelCase ): __snake_case = ['torch', 'transformers', 'onnx'] def __init__( self, *UpperCamelCase__, **UpperCamelCase__ ): """simple docstring""" requires_backends(self, ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def SCREAMING_SNAKE_CASE__ ( cls, *UpperCamelCase__, **UpperCamelCase__ ): """simple docstring""" requires_backends(cls, ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def SCREAMING_SNAKE_CASE__ ( cls, *UpperCamelCase__, **UpperCamelCase__ ): """simple docstring""" requires_backends(cls, ['''torch''', '''transformers''', '''onnx'''] ) class A ( metaclass=__UpperCAmelCase ): __snake_case = ['torch', 'transformers', 'onnx'] def __init__( self, *UpperCamelCase__, **UpperCamelCase__ ): """simple docstring""" requires_backends(self, ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def SCREAMING_SNAKE_CASE__ ( cls, *UpperCamelCase__, **UpperCamelCase__ ): """simple docstring""" requires_backends(cls, ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def SCREAMING_SNAKE_CASE__ ( cls, *UpperCamelCase__, **UpperCamelCase__ ): """simple docstring""" requires_backends(cls, ['''torch''', '''transformers''', '''onnx'''] )
278
def __UpperCamelCase ( _A ): if not numbers: return 0 if not isinstance(_A , (list, tuple) ) or not all( isinstance(_A , _A ) for number in numbers ): raise ValueError('''numbers must be an iterable of integers''' ) lowerCAmelCase_ = lowerCAmelCase_ = lowerCAmelCase_ = numbers[0] for i in range(1 , len(_A ) ): # update the maximum and minimum subarray products lowerCAmelCase_ = numbers[i] if number < 0: lowerCAmelCase_ , lowerCAmelCase_ = min_till_now, max_till_now lowerCAmelCase_ = max(_A , max_till_now * number ) lowerCAmelCase_ = min(_A , min_till_now * number ) # update the maximum product found till now lowerCAmelCase_ = max(_A , _A ) return max_prod
278
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tensorflow_text_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _a = { 'configuration_bert': ['BERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BertConfig', 'BertOnnxConfig'], 'tokenization_bert': ['BasicTokenizer', 'BertTokenizer', 'WordpieceTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a = ['BertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a = [ 'BERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'BertForMaskedLM', 'BertForMultipleChoice', 'BertForNextSentencePrediction', 'BertForPreTraining', 'BertForQuestionAnswering', 'BertForSequenceClassification', 'BertForTokenClassification', 'BertLayer', 'BertLMHeadModel', 'BertModel', 'BertPreTrainedModel', 'load_tf_weights_in_bert', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a = [ 'TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFBertEmbeddings', 'TFBertForMaskedLM', 'TFBertForMultipleChoice', 'TFBertForNextSentencePrediction', 'TFBertForPreTraining', 'TFBertForQuestionAnswering', 'TFBertForSequenceClassification', 'TFBertForTokenClassification', 'TFBertLMHeadModel', 'TFBertMainLayer', 'TFBertModel', 'TFBertPreTrainedModel', ] try: if not is_tensorflow_text_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a = ['TFBertTokenizer'] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a = [ 'FlaxBertForCausalLM', 'FlaxBertForMaskedLM', 'FlaxBertForMultipleChoice', 'FlaxBertForNextSentencePrediction', 'FlaxBertForPreTraining', 'FlaxBertForQuestionAnswering', 'FlaxBertForSequenceClassification', 'FlaxBertForTokenClassification', 'FlaxBertModel', 'FlaxBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_bert import BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, BertConfig, BertOnnxConfig from .tokenization_bert import BasicTokenizer, BertTokenizer, WordpieceTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bert_fast import BertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bert import ( BERT_PRETRAINED_MODEL_ARCHIVE_LIST, BertForMaskedLM, BertForMultipleChoice, BertForNextSentencePrediction, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, BertForTokenClassification, BertLayer, BertLMHeadModel, BertModel, BertPreTrainedModel, load_tf_weights_in_bert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_bert import ( TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFBertEmbeddings, TFBertForMaskedLM, TFBertForMultipleChoice, TFBertForNextSentencePrediction, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertForTokenClassification, TFBertLMHeadModel, TFBertMainLayer, TFBertModel, TFBertPreTrainedModel, ) try: if not is_tensorflow_text_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bert_tf import TFBertTokenizer try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_bert import ( FlaxBertForCausalLM, FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForNextSentencePrediction, FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertModel, FlaxBertPreTrainedModel, ) else: import sys _a = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
356
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _a = logging.get_logger(__name__) _a = { 'caidas/swin2sr-classicalsr-x2-64': ( 'https://huggingface.co/caidas/swin2sr-classicalsr-x2-64/resolve/main/config.json' ), } class _lowerCAmelCase ( lowercase ): """simple docstring""" __UpperCAmelCase : List[Any] = "swin2sr" __UpperCAmelCase : List[Any] = { "hidden_size": "embed_dim", "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self : Any, UpperCAmelCase__ : Dict=6_4, UpperCAmelCase__ : List[Any]=1, UpperCAmelCase__ : Dict=3, UpperCAmelCase__ : Optional[Any]=1_8_0, UpperCAmelCase__ : Any=[6, 6, 6, 6, 6, 6], UpperCAmelCase__ : Dict=[6, 6, 6, 6, 6, 6], UpperCAmelCase__ : Tuple=8, UpperCAmelCase__ : Optional[int]=2.0, UpperCAmelCase__ : List[str]=True, UpperCAmelCase__ : Tuple=0.0, UpperCAmelCase__ : Optional[Any]=0.0, UpperCAmelCase__ : List[str]=0.1, UpperCAmelCase__ : Dict="gelu", UpperCAmelCase__ : Dict=False, UpperCAmelCase__ : Dict=0.02, UpperCAmelCase__ : Tuple=1E-5, UpperCAmelCase__ : str=2, UpperCAmelCase__ : str=1.0, UpperCAmelCase__ : Optional[int]="1conv", UpperCAmelCase__ : Dict="pixelshuffle", **UpperCAmelCase__ : List[Any], ): super().__init__(**UpperCAmelCase__ ) __lowercase = image_size __lowercase = patch_size __lowercase = num_channels __lowercase = embed_dim __lowercase = depths __lowercase = len(UpperCAmelCase__ ) __lowercase = num_heads __lowercase = window_size __lowercase = mlp_ratio __lowercase = qkv_bias __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = drop_path_rate __lowercase = hidden_act __lowercase = use_absolute_embeddings __lowercase = layer_norm_eps __lowercase = initializer_range __lowercase = upscale __lowercase = img_range __lowercase = resi_connection __lowercase = upsampler
144
0
'''simple docstring''' import math from typing import Callable, List, Optional, Union import numpy as np import PIL import torch from PIL import Image from transformers import CLIPTextModel, CLIPTokenizer from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale import StableDiffusionUpscalePipeline from diffusers.schedulers import DDIMScheduler, DDPMScheduler, LMSDiscreteScheduler, PNDMScheduler def __lowerCamelCase ( _lowercase , _lowercase , _lowercase=[] ) -> List[str]: UpperCAmelCase : Any = size[0] - overlap_pixels * 2 UpperCAmelCase : List[str] = size[1] - overlap_pixels * 2 for letter in ["l", "r"]: if letter in remove_borders: size_x += overlap_pixels for letter in ["t", "b"]: if letter in remove_borders: size_y += overlap_pixels UpperCAmelCase : List[Any] = np.ones((size_y, size_x) , dtype=np.uinta ) * 2_5_5 UpperCAmelCase : List[str] = np.pad(__lowerCAmelCase , mode="""linear_ramp""" , pad_width=__lowerCAmelCase , end_values=0 ) if "l" in remove_borders: UpperCAmelCase : Optional[int] = mask[:, overlap_pixels : mask.shape[1]] if "r" in remove_borders: UpperCAmelCase : Optional[Any] = mask[:, 0 : mask.shape[1] - overlap_pixels] if "t" in remove_borders: UpperCAmelCase : List[str] = mask[overlap_pixels : mask.shape[0], :] if "b" in remove_borders: UpperCAmelCase : Union[str, Any] = mask[0 : mask.shape[0] - overlap_pixels, :] return mask def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> int: return max(__lowerCAmelCase , min(__lowerCAmelCase , __lowerCAmelCase ) ) def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> Any: return ( clamp(rect[0] , min[0] , max[0] ), clamp(rect[1] , min[1] , max[1] ), clamp(rect[2] , min[0] , max[0] ), clamp(rect[3] , min[1] , max[1] ), ) def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> Union[str, Any]: UpperCAmelCase : Union[str, Any] = list(__lowerCAmelCase ) rect[0] -= overlap rect[1] -= overlap rect[2] += overlap rect[3] += overlap UpperCAmelCase : Tuple = clamp_rect(__lowerCAmelCase , [0, 0] , [image_size[0], image_size[1]] ) return rect def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase ) -> List[str]: UpperCAmelCase : List[str] = Image.new("""RGB""" , (tile.size[0] + original_slice, tile.size[1]) ) result.paste( original_image.resize((tile.size[0], tile.size[1]) , Image.BICUBIC ).crop( (slice_x, 0, slice_x + original_slice, tile.size[1]) ) , (0, 0) , ) result.paste(__lowerCAmelCase , (original_slice, 0) ) return result def __lowerCamelCase ( _lowercase , _lowercase ) -> str: UpperCAmelCase : List[str] = (original_image_slice * 4, 0, tile.size[0], tile.size[1]) UpperCAmelCase : str = tile.crop(__lowerCAmelCase ) return tile def __lowerCamelCase ( _lowercase , _lowercase ) -> List[Any]: UpperCAmelCase : Tuple = n % d return n - divisor class UpperCamelCase_ ( __lowerCamelCase ): def __init__( self , A , A , A , A , A , A , A = 350 , ) -> List[str]: super().__init__( vae=__lowercase , text_encoder=__lowercase , tokenizer=__lowercase , unet=__lowercase , low_res_scheduler=__lowercase , scheduler=__lowercase , max_noise_level=__lowercase , ) def _lowercase( self , A , A , A , A , A , A , A , **A ) -> Optional[int]: torch.manual_seed(0 ) UpperCAmelCase : List[str] = ( min(image.size[0] - (tile_size + original_image_slice) , x * tile_size ), min(image.size[1] - (tile_size + original_image_slice) , y * tile_size ), min(image.size[0] , (x + 1) * tile_size ), min(image.size[1] , (y + 1) * tile_size ), ) UpperCAmelCase : Union[str, Any] = add_overlap_rect(__lowercase , __lowercase , image.size ) UpperCAmelCase : Dict = image.crop(__lowercase ) UpperCAmelCase : List[str] = ((crop_rect[0] + ((crop_rect[2] - crop_rect[0]) / 2)) / image.size[0]) * tile.size[0] UpperCAmelCase : List[Any] = translated_slice_x - (original_image_slice / 2) UpperCAmelCase : Optional[Any] = max(0 , __lowercase ) UpperCAmelCase : List[Any] = squeeze_tile(__lowercase , __lowercase , __lowercase , __lowercase ) UpperCAmelCase : Dict = to_input.size UpperCAmelCase : Tuple = to_input.resize((tile_size, tile_size) , Image.BICUBIC ) UpperCAmelCase : Union[str, Any] = super(__lowercase , self ).__call__(image=__lowercase , **__lowercase ).images[0] UpperCAmelCase : Tuple = upscaled_tile.resize((orig_input_size[0] * 4, orig_input_size[1] * 4) , Image.BICUBIC ) UpperCAmelCase : Union[str, Any] = unsqueeze_tile(__lowercase , __lowercase ) UpperCAmelCase : Optional[int] = upscaled_tile.resize((tile.size[0] * 4, tile.size[1] * 4) , Image.BICUBIC ) UpperCAmelCase : List[str] = [] if x == 0: remove_borders.append("""l""" ) elif crop_rect[2] == image.size[0]: remove_borders.append("""r""" ) if y == 0: remove_borders.append("""t""" ) elif crop_rect[3] == image.size[1]: remove_borders.append("""b""" ) UpperCAmelCase : Dict = Image.fromarray( make_transparency_mask( (upscaled_tile.size[0], upscaled_tile.size[1]) , tile_border * 4 , remove_borders=__lowercase ) , mode="""L""" , ) final_image.paste( __lowercase , (crop_rect_with_overlap[0] * 4, crop_rect_with_overlap[1] * 4) , __lowercase ) @torch.no_grad() def __call__( self , A , A , A = 75 , A = 9.0 , A = 50 , A = None , A = 1 , A = 0.0 , A = None , A = None , A = None , A = 1 , A = 128 , A = 32 , A = 32 , ) -> Tuple: UpperCAmelCase : Optional[Any] = Image.new("""RGB""" , (image.size[0] * 4, image.size[1] * 4) ) UpperCAmelCase : Tuple = math.ceil(image.size[0] / tile_size ) UpperCAmelCase : Any = math.ceil(image.size[1] / tile_size ) UpperCAmelCase : Dict = tcx * tcy UpperCAmelCase : Optional[Any] = 0 for y in range(__lowercase ): for x in range(__lowercase ): self._process_tile( __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , prompt=__lowercase , num_inference_steps=__lowercase , guidance_scale=__lowercase , noise_level=__lowercase , negative_prompt=__lowercase , num_images_per_prompt=__lowercase , eta=__lowercase , generator=__lowercase , latents=__lowercase , ) current_count += 1 if callback is not None: callback({"""progress""": current_count / total_tile_count, """image""": final_image} ) return final_image def __lowerCamelCase ( ) -> Optional[Any]: UpperCAmelCase : str = '''stabilityai/stable-diffusion-x4-upscaler''' UpperCAmelCase : str = StableDiffusionTiledUpscalePipeline.from_pretrained(__lowerCAmelCase , revision="""fp16""" , torch_dtype=torch.floataa ) UpperCAmelCase : Tuple = pipe.to("""cuda""" ) UpperCAmelCase : Union[str, Any] = Image.open("""../../docs/source/imgs/diffusers_library.jpg""" ) def callback(_lowercase ): print(F'''progress: {obj['progress']:.4f}''' ) obj["image"].save("""diffusers_library_progress.jpg""" ) UpperCAmelCase : Tuple = pipe(image=__lowerCAmelCase , prompt="""Black font, white background, vector""" , noise_level=4_0 , callback=__lowerCAmelCase ) final_image.save("""diffusers_library.jpg""" ) if __name__ == "__main__": main()
265
import json import multiprocessing import os import re from collections import defaultdict import torch from accelerate import Accelerator from accelerate.utils import set_seed from arguments import HumanEvalArguments from datasets import load_dataset, load_metric from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from tqdm import tqdm import transformers from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, StoppingCriteria, StoppingCriteriaList A__ = ['''\nclass''', '''\ndef''', '''\n#''', '''\n@''', '''\nprint''', '''\nif'''] class a ( __lowerCamelCase ): def __init__( self :str ,__lowercase :Dict ,__lowercase :str ,__lowercase :Any=None ,__lowercase :Union[str, Any]=1 ): snake_case__ : Optional[int] = tokenizer snake_case__ : List[Any] = dataset snake_case__ : Any = len(__lowercase ) if n_tasks is None else n_tasks snake_case__ : List[Any] = n_copies def __iter__( self :Tuple ): snake_case__ : Union[str, Any] = [] for task in range(self.n_tasks ): # without strip, the model generate commented codes ... prompts.append(self.tokenizer.eos_token + self.dataset[task]['''prompt'''].strip() ) snake_case__ : Optional[int] = self.tokenizer(__lowercase ,padding=__lowercase ,return_tensors='''pt''' ) for task in range(self.n_tasks ): for _ in range(self.n_copies ): yield { "ids": outputs.input_ids[task], "task_id": task, "input_len": outputs.attention_mask[task].sum(), } class a ( __lowerCamelCase ): def __init__( self :Union[str, Any] ,__lowercase :List[Any] ,__lowercase :int ,__lowercase :List[str] ): snake_case__ : List[str] = start_length snake_case__ : Any = eof_strings snake_case__ : Optional[Any] = tokenizer def __call__( self :str ,__lowercase :str ,__lowercase :Any ,**__lowercase :Optional[int] ): snake_case__ : Tuple = self.tokenizer.batch_decode(input_ids[:, self.start_length :] ) snake_case__ : Union[str, Any] = [] for decoded_generation in decoded_generations: done.append(any(stop_string in decoded_generation for stop_string in self.eof_strings ) ) return all(__lowercase ) def _lowerCAmelCase ( __lowerCAmelCase ) -> List[Any]: """simple docstring""" snake_case__ : List[Any] = re.split('''(%s)''' % '''|'''.join(__lowerCAmelCase ) , __lowerCAmelCase ) # last string should be "" return "".join(string_list[:-2] ) def _lowerCAmelCase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=20 , **__lowerCAmelCase ) -> List[Any]: """simple docstring""" snake_case__ : Optional[int] = defaultdict(__lowerCAmelCase ) # dict of list of generated tokens for step, batch in tqdm(enumerate(__lowerCAmelCase ) ): with torch.no_grad(): snake_case__ : List[Any] = batch['''ids'''].shape[-1] snake_case__ : str = accelerator.unwrap_model(__lowerCAmelCase ).generate( input_ids=batch['''ids'''][:, : batch['''input_len''']] , num_return_sequences=__lowerCAmelCase , **__lowerCAmelCase ) # each task is generated batch_size times snake_case__ : str = batch['''task_id'''].repeat(__lowerCAmelCase ) snake_case__ : Optional[int] = accelerator.pad_across_processes( __lowerCAmelCase , dim=1 , pad_index=tokenizer.pad_token_id ) snake_case__ , snake_case__ : Any = accelerator.gather((generated_tokens, generated_tasks) ) snake_case__ : Union[str, Any] = generated_tokens.cpu().numpy() snake_case__ : Optional[Any] = generated_tasks.cpu().numpy() for task, generated_tokens in zip(__lowerCAmelCase , __lowerCAmelCase ): gen_token_dict[task].append(__lowerCAmelCase ) snake_case__ : List[Any] = [[] for _ in range(__lowerCAmelCase )] for task, generated_tokens in gen_token_dict.items(): for s in generated_tokens: snake_case__ : int = tokenizer.decode(__lowerCAmelCase , skip_special_tokens=__lowerCAmelCase , clean_up_tokenization_spaces=__lowerCAmelCase ) code_gens[task].append(remove_last_block(__lowerCAmelCase ) ) return code_gens def _lowerCAmelCase ( ) -> Optional[int]: """simple docstring""" snake_case__ : List[str] = HfArgumentParser(__lowerCAmelCase ) snake_case__ : Optional[Any] = parser.parse_args() transformers.logging.set_verbosity_error() # enables code execution in code_eval metric snake_case__ : Union[str, Any] = args.HF_ALLOW_CODE_EVAL # make sure tokenizer plays nice with multiprocessing snake_case__ : Union[str, Any] = '''false''' if args.num_workers is None: snake_case__ : Union[str, Any] = multiprocessing.cpu_count() # Use dataset load to feed to accelerate snake_case__ : Dict = Accelerator() set_seed(args.seed , device_specific=__lowerCAmelCase ) # Load model and tokenizer snake_case__ : str = AutoTokenizer.from_pretrained(args.model_ckpt ) snake_case__ : List[str] = tokenizer.eos_token snake_case__ : Optional[Any] = AutoModelForCausalLM.from_pretrained(args.model_ckpt ) # Generation settings snake_case__ : List[Any] = { '''do_sample''': args.do_sample, '''temperature''': args.temperature, '''max_new_tokens''': args.max_new_tokens, '''top_p''': args.top_p, '''top_k''': args.top_k, '''stopping_criteria''': StoppingCriteriaList([EndOfFunctionCriteria(0 , __lowerCAmelCase , __lowerCAmelCase )] ), } # Load evaluation dataset and metric snake_case__ : List[str] = load_dataset('''openai_humaneval''' ) snake_case__ : str = load_metric('''code_eval''' ) snake_case__ : List[Any] = args.num_tasks if args.num_tasks is not None else len(human_eval['''test'''] ) snake_case__ : str = args.n_samples // args.batch_size snake_case__ : Tuple = TokenizedDataset(__lowerCAmelCase , human_eval['''test'''] , n_copies=__lowerCAmelCase , n_tasks=__lowerCAmelCase ) # do not confuse args.batch_size, which is actually the num_return_sequences snake_case__ : Tuple = DataLoader(__lowerCAmelCase , batch_size=1 ) # Run a quick test to see if code evaluation is enabled try: snake_case__ : Optional[Any] = code_eval_metric.compute(references=[''''''] , predictions=[['''''']] ) except ValueError as exception: print( '''Code evaluation not enabled. Read the warning below carefully and then use `--HF_ALLOW_CODE_EVAL="1"`''' ''' flag to enable code evaluation.''' ) raise exception snake_case__ , snake_case__ : Optional[Any] = accelerator.prepare(__lowerCAmelCase , __lowerCAmelCase ) snake_case__ : Dict = complete_code( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , n_tasks=__lowerCAmelCase , batch_size=args.batch_size , **__lowerCAmelCase , ) if accelerator.is_main_process: snake_case__ : Optional[Any] = [] for task in tqdm(range(__lowerCAmelCase ) ): snake_case__ : str = human_eval['''test'''][task]['''test'''] snake_case__ : int = f"""check({human_eval['test'][task]['entry_point']})""" references.append('''\n''' + test_func + '''\n''' + entry_point ) # Evaluate completions with "code_eval" metric snake_case__ , snake_case__ : Any = code_eval_metric.compute( references=__lowerCAmelCase , predictions=__lowerCAmelCase , num_workers=args.num_workers ) print(f"""Results: {pass_at_k}""" ) # Save results to json file with open(args.output_file , '''w''' ) as fp: json.dump(__lowerCAmelCase , __lowerCAmelCase ) # For some reason the folliwng seems to be necessary sometimes for code_eval to work nice with multiprocessing # https://stackoverflow.com/questions/60804599/python-multiprocessing-keeps-spawning-the-whole-script if __name__ == "__main__": main()
230
0
import torch def A__ ( ) -> str: if torch.cuda.is_available(): __snake_case: int = torch.cuda.device_count() else: __snake_case: Optional[Any] = 0 print(F'''Successfully ran on {num_gpus} GPUs''') if __name__ == "__main__": main()
354
from __future__ import annotations import numpy as np def A__ ( SCREAMING_SNAKE_CASE__) -> List[str]: return np.maximum(0 , SCREAMING_SNAKE_CASE__) if __name__ == "__main__": print(np.array(relu([-1, 0, 5]))) # --> [0, 0, 5]
293
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ = logging.get_logger(__name__) lowercase__ = {"""openai-gpt""": """https://huggingface.co/openai-gpt/resolve/main/config.json"""} class __lowerCamelCase ( snake_case_ ): '''simple docstring''' a_ : Optional[int] = """openai-gpt""" a_ : int = { """max_position_embeddings""": """n_positions""", """hidden_size""": """n_embd""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self : Union[str, Any] , a_ : Dict=4_04_78 , a_ : str=5_12 , a_ : int=7_68 , a_ : List[Any]=12 , a_ : Dict=12 , a_ : Optional[Any]="gelu" , a_ : Any=0.1 , a_ : Optional[int]=0.1 , a_ : List[Any]=0.1 , a_ : Dict=1e-5 , a_ : List[Any]=0.02 , a_ : List[str]="cls_index" , a_ : Union[str, Any]=True , a_ : str=None , a_ : Union[str, Any]=True , a_ : Tuple=0.1 , **a_ : Union[str, Any] , ): lowerCAmelCase_ : List[Any] = vocab_size lowerCAmelCase_ : Dict = n_positions lowerCAmelCase_ : int = n_embd lowerCAmelCase_ : int = n_layer lowerCAmelCase_ : Optional[int] = n_head lowerCAmelCase_ : Tuple = afn lowerCAmelCase_ : Dict = resid_pdrop lowerCAmelCase_ : Any = embd_pdrop lowerCAmelCase_ : Optional[Any] = attn_pdrop lowerCAmelCase_ : Union[str, Any] = layer_norm_epsilon lowerCAmelCase_ : Union[str, Any] = initializer_range lowerCAmelCase_ : Union[str, Any] = summary_type lowerCAmelCase_ : List[Any] = summary_use_proj lowerCAmelCase_ : Dict = summary_activation lowerCAmelCase_ : Optional[Any] = summary_first_dropout lowerCAmelCase_ : Optional[int] = summary_proj_to_labels super().__init__(**a_ )
241
'''simple docstring''' import random import sys import numpy as np from matplotlib import pyplot as plt from matplotlib.colors import ListedColormap lowercase_ = """Usage of script: script_name <size_of_canvas:int>""" lowercase_ = [0] * 100 + [1] * 10 random.shuffle(choice) def lowerCamelCase ( __lowerCamelCase : int ) ->list[list[bool]]: _SCREAMING_SNAKE_CASE = [[False for i in range(__lowerCamelCase )] for j in range(__lowerCamelCase )] return canvas def lowerCamelCase ( __lowerCamelCase : list[list[bool]] ) ->None: for i, row in enumerate(__lowerCamelCase ): for j, _ in enumerate(__lowerCamelCase ): _SCREAMING_SNAKE_CASE = bool(random.getrandbits(1 ) ) def lowerCamelCase ( __lowerCamelCase : list[list[bool]] ) ->list[list[bool]]: _SCREAMING_SNAKE_CASE = np.array(__lowerCamelCase ) _SCREAMING_SNAKE_CASE = np.array(create_canvas(current_canvas.shape[0] ) ) for r, row in enumerate(__lowerCamelCase ): for c, pt in enumerate(__lowerCamelCase ): _SCREAMING_SNAKE_CASE = __judge_point( __lowerCamelCase , current_canvas[r - 1 : r + 2, c - 1 : c + 2] ) _SCREAMING_SNAKE_CASE = next_gen_canvas del next_gen_canvas # cleaning memory as we move on. _SCREAMING_SNAKE_CASE = current_canvas.tolist() return return_canvas def lowerCamelCase ( __lowerCamelCase : bool , __lowerCamelCase : list[list[bool]] ) ->bool: _SCREAMING_SNAKE_CASE = 0 _SCREAMING_SNAKE_CASE = 0 # finding dead or alive neighbours count. for i in neighbours: for status in i: if status: alive += 1 else: dead += 1 # handling duplicate entry for focus pt. if pt: alive -= 1 else: dead -= 1 # running the rules of game here. _SCREAMING_SNAKE_CASE = pt if pt: if alive < 2: _SCREAMING_SNAKE_CASE = False elif alive == 2 or alive == 3: _SCREAMING_SNAKE_CASE = True elif alive > 3: _SCREAMING_SNAKE_CASE = False else: if alive == 3: _SCREAMING_SNAKE_CASE = True return state if __name__ == "__main__": if len(sys.argv) != 2: raise Exception(usage_doc) lowercase_ = int(sys.argv[1]) # main working structure of this module. lowercase_ = create_canvas(canvas_size) seed(c) lowercase_ , lowercase_ = plt.subplots() fig.show() lowercase_ = ListedColormap(["""w""", """k"""]) try: while True: lowercase_ = run(c) ax.matshow(c, cmap=cmap) fig.canvas.draw() ax.cla() except KeyboardInterrupt: # do nothing. pass
58
0
"""simple docstring""" import logging import math import os from dataclasses import dataclass, field from glob import glob from typing import Optional from torch.utils.data import ConcatDataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_WITH_LM_HEAD_MAPPING, AutoConfig, AutoModelWithLMHead, AutoTokenizer, DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForWholeWordMask, HfArgumentParser, LineByLineTextDataset, LineByLineWithRefDataset, PreTrainedTokenizer, TextDataset, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process _UpperCAmelCase : Any = logging.getLogger(__name__) _UpperCAmelCase : Tuple = list(MODEL_WITH_LM_HEAD_MAPPING.keys()) _UpperCAmelCase : Dict = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class lowercase : __lowercase : Optional[str] = field( default=_SCREAMING_SNAKE_CASE , metadata={ "help": ( "The model checkpoint for weights initialization. Leave None if you want to train a model from" " scratch." ) } , ) __lowercase : Optional[str] = field( default=_SCREAMING_SNAKE_CASE , metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(_SCREAMING_SNAKE_CASE )} , ) __lowercase : Optional[str] = field( default=_SCREAMING_SNAKE_CASE , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) __lowercase : Optional[str] = field( default=_SCREAMING_SNAKE_CASE , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) __lowercase : Optional[str] = field( default=_SCREAMING_SNAKE_CASE , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) @dataclass class lowercase : __lowercase : Optional[str] = field( default=_SCREAMING_SNAKE_CASE , metadata={"help": "The input training data file (a text file)."} ) __lowercase : Optional[str] = field( default=_SCREAMING_SNAKE_CASE , metadata={ "help": ( "The input training data files (multiple files in glob format). " "Very often splitting large files to smaller files can prevent tokenizer going out of memory" ) } , ) __lowercase : Optional[str] = field( default=_SCREAMING_SNAKE_CASE , metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."} , ) __lowercase : Optional[str] = field( default=_SCREAMING_SNAKE_CASE , metadata={"help": "An optional input train ref data file for whole word mask in Chinese."} , ) __lowercase : Optional[str] = field( default=_SCREAMING_SNAKE_CASE , metadata={"help": "An optional input eval ref data file for whole word mask in Chinese."} , ) __lowercase : bool = field( default=_SCREAMING_SNAKE_CASE , metadata={"help": "Whether distinct lines of text in the dataset are to be handled as distinct sequences."} , ) __lowercase : bool = field( default=_SCREAMING_SNAKE_CASE , metadata={"help": "Train with masked-language modeling loss instead of language modeling."} ) __lowercase : bool = field(default=_SCREAMING_SNAKE_CASE , metadata={"help": "Whether ot not to use whole word mask."} ) __lowercase : float = field( default=0.1_5 , metadata={"help": "Ratio of tokens to mask for masked language modeling loss"} ) __lowercase : float = field( default=1 / 6 , metadata={ "help": ( "Ratio of length of a span of masked tokens to surrounding context length for permutation language" " modeling." ) } , ) __lowercase : int = field( default=5 , metadata={"help": "Maximum length of a span of masked tokens for permutation language modeling."} ) __lowercase : int = field( default=-1 , metadata={ "help": ( "Optional input sequence length after tokenization." "The training dataset will be truncated in block of this size for training." "Default to the model max input length for single sentence inputs (take into account special tokens)." ) } , ) __lowercase : bool = field( default=_SCREAMING_SNAKE_CASE , metadata={"help": "Overwrite the cached training and evaluation sets"} ) def A ( lowercase , lowercase , lowercase = False , lowercase = None , ) -> Optional[int]: '''simple docstring''' def _dataset(lowercase , lowercase=None ): if args.line_by_line: if ref_path is not None: if not args.whole_word_mask or not args.mlm: raise ValueError('You need to set world whole masking and mlm to True for Chinese Whole Word Mask' ) return LineByLineWithRefDataset( tokenizer=lowercase , file_path=lowercase , block_size=args.block_size , ref_path=lowercase , ) return LineByLineTextDataset(tokenizer=lowercase , file_path=lowercase , block_size=args.block_size ) else: return TextDataset( tokenizer=lowercase , file_path=lowercase , block_size=args.block_size , overwrite_cache=args.overwrite_cache , cache_dir=lowercase , ) if evaluate: return _dataset(args.eval_data_file , args.eval_ref_file ) elif args.train_data_files: return ConcatDataset([_dataset(lowercase ) for f in glob(args.train_data_files )] ) else: return _dataset(args.train_data_file , args.train_ref_file ) def A ( ) -> str: '''simple docstring''' UpperCamelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) UpperCamelCase , UpperCamelCase , UpperCamelCase = parser.parse_args_into_dataclasses() if data_args.eval_data_file is None and training_args.do_eval: raise ValueError( 'Cannot do evaluation without an evaluation data file. Either supply a file to --eval_data_file ' 'or remove the --do_eval argument.' ) if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f'''Output directory ({training_args.output_dir}) already exists and is not empty. Use''' ' --overwrite_output_dir to overcome.' ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( 'Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('Training/evaluation parameters %s' , lowercase ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. if model_args.config_name: UpperCamelCase = AutoConfig.from_pretrained(model_args.config_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: UpperCamelCase = AutoConfig.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: UpperCamelCase = CONFIG_MAPPING[model_args.model_type]() logger.warning('You are instantiating a new config instance from scratch.' ) if model_args.tokenizer_name: UpperCamelCase = AutoTokenizer.from_pretrained(model_args.tokenizer_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: UpperCamelCase = AutoTokenizer.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: raise ValueError( 'You are instantiating a new tokenizer from scratch. This is not supported, but you can do it from another' ' script, save it,and load it from here, using --tokenizer_name' ) if model_args.model_name_or_path: UpperCamelCase = AutoModelWithLMHead.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=lowercase , cache_dir=model_args.cache_dir , ) else: logger.info('Training new model from scratch' ) UpperCamelCase = AutoModelWithLMHead.from_config(lowercase ) model.resize_token_embeddings(len(lowercase ) ) if config.model_type in ["bert", "roberta", "distilbert", "camembert"] and not data_args.mlm: raise ValueError( 'BERT and RoBERTa-like models do not have LM heads but masked LM heads. They must be run using the' '--mlm flag (masked language modeling).' ) if data_args.block_size <= 0: UpperCamelCase = tokenizer.max_len # Our input block size will be the max possible for the model else: UpperCamelCase = min(data_args.block_size , tokenizer.max_len ) # Get datasets UpperCamelCase = ( get_dataset(lowercase , tokenizer=lowercase , cache_dir=model_args.cache_dir ) if training_args.do_train else None ) UpperCamelCase = ( get_dataset(lowercase , tokenizer=lowercase , evaluate=lowercase , cache_dir=model_args.cache_dir ) if training_args.do_eval else None ) if config.model_type == "xlnet": UpperCamelCase = DataCollatorForPermutationLanguageModeling( tokenizer=lowercase , plm_probability=data_args.plm_probability , max_span_length=data_args.max_span_length , ) else: if data_args.mlm and data_args.whole_word_mask: UpperCamelCase = DataCollatorForWholeWordMask( tokenizer=lowercase , mlm_probability=data_args.mlm_probability ) else: UpperCamelCase = DataCollatorForLanguageModeling( tokenizer=lowercase , mlm=data_args.mlm , mlm_probability=data_args.mlm_probability ) # Initialize our Trainer UpperCamelCase = Trainer( model=lowercase , args=lowercase , data_collator=lowercase , train_dataset=lowercase , eval_dataset=lowercase , prediction_loss_only=lowercase , ) # Training if training_args.do_train: UpperCamelCase = ( model_args.model_name_or_path if model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ) else None ) trainer.train(model_path=lowercase ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation UpperCamelCase = {} if training_args.do_eval: logger.info('*** Evaluate ***' ) UpperCamelCase = trainer.evaluate() UpperCamelCase = math.exp(eval_output['eval_loss'] ) UpperCamelCase = {'perplexity': perplexity} UpperCamelCase = os.path.join(training_args.output_dir , 'eval_results_lm.txt' ) if trainer.is_world_master(): with open(lowercase , 'w' ) as writer: logger.info('***** Eval results *****' ) for key in sorted(result.keys() ): logger.info(' %s = %s' , lowercase , str(result[key] ) ) writer.write('%s = %s\n' % (key, str(result[key] )) ) results.update(lowercase ) return results def A ( lowercase ) -> Tuple: '''simple docstring''' main() if __name__ == "__main__": main()
354
from typing import Optional, Union import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models.modeling_utils import ModelMixin class lowercase ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): @register_to_config def __init__( self , A_ = 768 , ) -> List[Any]: """simple docstring""" super().__init__() UpperCamelCase = nn.Parameter(torch.zeros(1 , A_ ) ) UpperCamelCase = nn.Parameter(torch.ones(1 , A_ ) ) def __UpperCamelCase ( self , A_ = None , A_ = None , ) -> Any: """simple docstring""" UpperCamelCase = nn.Parameter(self.mean.to(A_ ).to(A_ ) ) UpperCamelCase = nn.Parameter(self.std.to(A_ ).to(A_ ) ) return self def __UpperCamelCase ( self , A_ ) -> Dict: """simple docstring""" UpperCamelCase = (embeds - self.mean) * 1.0 / self.std return embeds def __UpperCamelCase ( self , A_ ) -> Dict: """simple docstring""" UpperCamelCase = (embeds * self.std) + self.mean return embeds
110
0
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version('>=', '4.25.0')): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( VersatileDiffusionDualGuidedPipeline, VersatileDiffusionImageVariationPipeline, VersatileDiffusionPipeline, VersatileDiffusionTextToImagePipeline, ) else: from .modeling_text_unet import UNetFlatConditionModel from .pipeline_versatile_diffusion import VersatileDiffusionPipeline from .pipeline_versatile_diffusion_dual_guided import VersatileDiffusionDualGuidedPipeline from .pipeline_versatile_diffusion_image_variation import VersatileDiffusionImageVariationPipeline from .pipeline_versatile_diffusion_text_to_image import VersatileDiffusionTextToImagePipeline
225
from math import sqrt def UpperCAmelCase_ ( __UpperCAmelCase : int ) -> bool: if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(sqrt(__UpperCAmelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def UpperCAmelCase_ ( __UpperCAmelCase : int = 1_00_01 ) -> int: SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = 1 while count != nth and number < 3: number += 1 if is_prime(__UpperCAmelCase ): count += 1 while count != nth: number += 2 if is_prime(__UpperCAmelCase ): count += 1 return number if __name__ == "__main__": print(f'''{solution() = }''')
225
1
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers import ( TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, BertConfig, DPRConfig, TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, ) class _snake_case : def __init__( self , _a , _a=13 , _a=7 , _a=True , _a=True , _a=True , _a=True , _a=99 , _a=32 , _a=2 , _a=4 , _a=37 , _a="gelu" , _a=0.1 , _a=0.1 , _a=512 , _a=16 , _a=2 , _a=0.02 , _a=3 , _a=4 , _a=None , _a=0 , ): __magic_name__ : Optional[Any] = parent __magic_name__ : Dict = batch_size __magic_name__ : Optional[int] = seq_length __magic_name__ : Any = is_training __magic_name__ : List[Any] = use_input_mask __magic_name__ : List[str] = use_token_type_ids __magic_name__ : List[str] = use_labels __magic_name__ : Dict = vocab_size __magic_name__ : Any = hidden_size __magic_name__ : Tuple = num_hidden_layers __magic_name__ : int = num_attention_heads __magic_name__ : str = intermediate_size __magic_name__ : Dict = hidden_act __magic_name__ : List[Any] = hidden_dropout_prob __magic_name__ : Any = attention_probs_dropout_prob __magic_name__ : Optional[Any] = max_position_embeddings __magic_name__ : Optional[Any] = type_vocab_size __magic_name__ : Any = type_sequence_label_size __magic_name__ : Union[str, Any] = initializer_range __magic_name__ : str = num_labels __magic_name__ : int = num_choices __magic_name__ : List[Any] = scope __magic_name__ : Dict = projection_dim def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __magic_name__ : List[Any] = None if self.use_input_mask: # follow test_modeling_tf_ctrl.py __magic_name__ : str = random_attention_mask([self.batch_size, self.seq_length] ) __magic_name__ : List[str] = None if self.use_token_type_ids: __magic_name__ : Any = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __magic_name__ : Optional[Any] = None __magic_name__ : Optional[Any] = None __magic_name__ : List[str] = None if self.use_labels: __magic_name__ : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __magic_name__ : int = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __magic_name__ : List[str] = ids_tensor([self.batch_size] , self.num_choices ) __magic_name__ : List[str] = BertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_a , initializer_range=self.initializer_range , ) __magic_name__ : Union[str, Any] = DPRConfig(projection_dim=self.projection_dim , **config.to_dict() ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def SCREAMING_SNAKE_CASE ( self , _a , _a , _a , _a , _a , _a , _a ): __magic_name__ : List[Any] = TFDPRContextEncoder(config=_a ) __magic_name__ : List[str] = model(_a , attention_mask=_a , token_type_ids=_a ) __magic_name__ : List[str] = model(_a , token_type_ids=_a ) __magic_name__ : Dict = model(_a ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.projection_dim or self.hidden_size) ) def SCREAMING_SNAKE_CASE ( self , _a , _a , _a , _a , _a , _a , _a ): __magic_name__ : Any = TFDPRQuestionEncoder(config=_a ) __magic_name__ : str = model(_a , attention_mask=_a , token_type_ids=_a ) __magic_name__ : int = model(_a , token_type_ids=_a ) __magic_name__ : Optional[Any] = model(_a ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.projection_dim or self.hidden_size) ) def SCREAMING_SNAKE_CASE ( self , _a , _a , _a , _a , _a , _a , _a ): __magic_name__ : Optional[Any] = TFDPRReader(config=_a ) __magic_name__ : Dict = model(_a , attention_mask=_a ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.relevance_logits.shape , (self.batch_size,) ) def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : Union[str, Any] = self.prepare_config_and_inputs() ( ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ) : Optional[int] = config_and_inputs __magic_name__ : Dict = {"input_ids": input_ids} return config, inputs_dict @require_tf class _snake_case ( snake_case , snake_case , unittest.TestCase ): UpperCamelCase__ = ( ( TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, ) if is_tf_available() else () ) UpperCamelCase__ = {'feature-extraction': TFDPRQuestionEncoder} if is_tf_available() else {} UpperCamelCase__ = False UpperCamelCase__ = False UpperCamelCase__ = False UpperCamelCase__ = False UpperCamelCase__ = False def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : str = TFDPRModelTester(self ) __magic_name__ : Dict = ConfigTester(self , config_class=_a , hidden_size=37 ) def SCREAMING_SNAKE_CASE ( self ): self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_context_encoder(*_a ) def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_question_encoder(*_a ) def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_reader(*_a ) @slow def SCREAMING_SNAKE_CASE ( self ): for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __magic_name__ : List[Any] = TFDPRContextEncoder.from_pretrained(_a ) self.assertIsNotNone(_a ) for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __magic_name__ : Optional[Any] = TFDPRContextEncoder.from_pretrained(_a ) self.assertIsNotNone(_a ) for model_name in TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __magic_name__ : List[str] = TFDPRQuestionEncoder.from_pretrained(_a ) self.assertIsNotNone(_a ) for model_name in TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __magic_name__ : Optional[Any] = TFDPRReader.from_pretrained(_a ) self.assertIsNotNone(_a ) @require_tf class _snake_case ( unittest.TestCase ): @slow def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : Optional[int] = TFDPRQuestionEncoder.from_pretrained("facebook/dpr-question_encoder-single-nq-base" ) __magic_name__ : int = tf.constant( [[101, 7_592, 1_010, 2_003, 2_026, 3_899, 10_140, 1_029, 102]] ) # [CLS] hello, is my dog cute? [SEP] __magic_name__ : Dict = model(_a )[0] # embedding shape = (1, 768) # compare the actual values for a slice. __magic_name__ : List[str] = tf.constant( [ [ 0.03_23_62_53, 0.12_75_33_35, 0.16_81_85_09, 0.00_27_97_86, 0.3_89_69_33, 0.24_26_49_45, 0.2_17_89_71, -0.02_33_52_27, -0.08_48_19_59, -0.14_32_41_17, ] ] ) self.assertTrue(numpy.allclose(output[:, :10].numpy() , expected_slice.numpy() , atol=1e-4 ) )
41
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging snake_case : Union[str, Any] = logging.get_logger(__name__) snake_case : List[Any] = { "junnyu/roformer_chinese_small": "https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/config.json", "junnyu/roformer_chinese_base": "https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/config.json", "junnyu/roformer_chinese_char_small": ( "https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/config.json" ), "junnyu/roformer_chinese_char_base": ( "https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/config.json" ), "junnyu/roformer_small_discriminator": ( "https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/config.json" ), "junnyu/roformer_small_generator": ( "https://huggingface.co/junnyu/roformer_small_generator/resolve/main/config.json" ), # See all RoFormer models at https://huggingface.co/models?filter=roformer } class _snake_case ( snake_case ): UpperCamelCase__ = 'roformer' def __init__( self , _a=50_000 , _a=None , _a=768 , _a=12 , _a=12 , _a=3_072 , _a="gelu" , _a=0.1 , _a=0.1 , _a=1_536 , _a=2 , _a=0.02 , _a=1e-12 , _a=0 , _a=False , _a=True , **_a , ): super().__init__(pad_token_id=_a , **_a ) __magic_name__ : Tuple = vocab_size __magic_name__ : Dict = hidden_size if embedding_size is None else embedding_size __magic_name__ : int = hidden_size __magic_name__ : int = num_hidden_layers __magic_name__ : Union[str, Any] = num_attention_heads __magic_name__ : Union[str, Any] = hidden_act __magic_name__ : Optional[int] = intermediate_size __magic_name__ : Union[str, Any] = hidden_dropout_prob __magic_name__ : Union[str, Any] = attention_probs_dropout_prob __magic_name__ : Tuple = max_position_embeddings __magic_name__ : str = type_vocab_size __magic_name__ : Dict = initializer_range __magic_name__ : Tuple = layer_norm_eps __magic_name__ : Optional[int] = rotary_value __magic_name__ : List[Any] = use_cache class _snake_case ( snake_case ): @property def SCREAMING_SNAKE_CASE ( self ): if self.task == "multiple-choice": __magic_name__ : str = {0: "batch", 1: "choice", 2: "sequence"} else: __magic_name__ : str = {0: "batch", 1: "sequence"} __magic_name__ : Tuple = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ("token_type_ids", dynamic_axis), ] )
41
1
from __future__ import annotations import collections import tempfile import unittest import numpy as np from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import is_tf_available, is_vision_available from ...test_modeling_tf_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_tf_bert import TFBertModelTester from ..clip.test_modeling_tf_clip import TFCLIPVisionModelTester from ..deit.test_modeling_tf_deit import TFDeiTModelTester from ..roberta.test_modeling_tf_roberta import TFRobertaModelTester from ..vit.test_modeling_tf_vit import TFViTModelTester if is_tf_available(): from transformers import ( TFBertModel, TFCLIPVisionModel, TFDeiTModel, TFRobertaModel, TFVisionTextDualEncoderModel, TFViTModel, VisionTextDualEncoderConfig, ) if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor def _UpperCAmelCase ( snake_case ): """simple docstring""" if isinstance(snake_case , collections.abc.Iterable ): return x return (x, x) @require_tf class __lowerCAmelCase : def snake_case ( self , _snake_case , _snake_case ): """simple docstring""" pass def snake_case ( self ): """simple docstring""" pass def snake_case ( self ): """simple docstring""" pass def snake_case ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case=None , **_snake_case ): """simple docstring""" _lowerCAmelCase = VisionTextDualEncoderConfig.from_vision_text_configs(_snake_case , _snake_case ) _lowerCAmelCase = TFVisionTextDualEncoderModel(_snake_case ) _lowerCAmelCase = model(input_ids=_snake_case , pixel_values=_snake_case , attention_mask=_snake_case ) self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], config.projection_dim) ) self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], config.projection_dim) ) def snake_case ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case=None , **_snake_case ): """simple docstring""" _lowerCAmelCase , _lowerCAmelCase = self.get_vision_text_model(_snake_case , _snake_case ) _lowerCAmelCase = TFVisionTextDualEncoderModel(vision_model=_snake_case , text_model=_snake_case ) _lowerCAmelCase = model(input_ids=_snake_case , pixel_values=_snake_case , attention_mask=_snake_case ) self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], model.config.projection_dim) ) def snake_case ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case=None , **_snake_case ): """simple docstring""" _lowerCAmelCase , _lowerCAmelCase = self.get_vision_text_model(_snake_case , _snake_case ) _lowerCAmelCase = {"""vision_model""": vision_model, """text_model""": text_model} _lowerCAmelCase = TFVisionTextDualEncoderModel.from_vision_text_pretrained(**_snake_case ) _lowerCAmelCase = model(input_ids=_snake_case , pixel_values=_snake_case , attention_mask=_snake_case ) self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], model.config.projection_dim) ) def snake_case ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case=None , **_snake_case ): """simple docstring""" _lowerCAmelCase , _lowerCAmelCase = self.get_vision_text_model(_snake_case , _snake_case ) _lowerCAmelCase = TFVisionTextDualEncoderModel(vision_model=_snake_case , text_model=_snake_case ) _lowerCAmelCase = model(input_ids=_snake_case , pixel_values=_snake_case , attention_mask=_snake_case ) _lowerCAmelCase = output[0].numpy() with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_snake_case ) _lowerCAmelCase = TFVisionTextDualEncoderModel.from_pretrained(_snake_case ) _lowerCAmelCase = model(input_ids=_snake_case , pixel_values=_snake_case , attention_mask=_snake_case ) _lowerCAmelCase = after_output[0].numpy() _lowerCAmelCase = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(_snake_case , 1e-5 ) def snake_case ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case=None , **_snake_case ): """simple docstring""" _lowerCAmelCase , _lowerCAmelCase = self.get_vision_text_model(_snake_case , _snake_case ) _lowerCAmelCase = TFVisionTextDualEncoderModel(vision_model=_snake_case , text_model=_snake_case ) _lowerCAmelCase = model( input_ids=_snake_case , pixel_values=_snake_case , attention_mask=_snake_case , output_attentions=_snake_case ) _lowerCAmelCase = output.vision_model_output.attentions self.assertEqual(len(_snake_case ) , vision_config.num_hidden_layers ) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) _lowerCAmelCase = to_atuple(vision_model.config.image_size ) _lowerCAmelCase = to_atuple(vision_model.config.patch_size ) _lowerCAmelCase = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) _lowerCAmelCase = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) _lowerCAmelCase = output.text_model_output.attentions self.assertEqual(len(_snake_case ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def snake_case ( self , _snake_case , _snake_case , _snake_case ): """simple docstring""" _lowerCAmelCase = np.abs((a - b) ).max() self.assertLessEqual(_snake_case , _snake_case , F'Difference between torch and flax is {diff} (>= {tol}).' ) def snake_case ( self ): """simple docstring""" _lowerCAmelCase = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_model(**_snake_case ) def snake_case ( self ): """simple docstring""" _lowerCAmelCase = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**_snake_case ) def snake_case ( self ): """simple docstring""" _lowerCAmelCase = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**_snake_case ) def snake_case ( self ): """simple docstring""" _lowerCAmelCase = self.prepare_config_and_inputs() self.check_save_load(**_snake_case ) def snake_case ( self ): """simple docstring""" _lowerCAmelCase = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**_snake_case ) @slow def snake_case ( self ): """simple docstring""" _lowerCAmelCase , _lowerCAmelCase = self.get_pretrained_model_and_inputs() _lowerCAmelCase = model_a(**_snake_case ) _lowerCAmelCase = outputs[0].numpy() with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(_snake_case ) _lowerCAmelCase = TFVisionTextDualEncoderModel.from_pretrained(_snake_case ) _lowerCAmelCase = model_a(**_snake_case ) _lowerCAmelCase = after_outputs[0].numpy() _lowerCAmelCase = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(_snake_case , 1e-5 ) @require_tf class __lowerCAmelCase ( lowerCamelCase__ , unittest.TestCase ): def snake_case ( self ): """simple docstring""" _lowerCAmelCase = TFVisionTextDualEncoderModel.from_vision_text_pretrained( """hf-internal-testing/tiny-random-vit""" , """hf-internal-testing/tiny-random-bert""" ) _lowerCAmelCase = 13 _lowerCAmelCase = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) _lowerCAmelCase = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) _lowerCAmelCase = random_attention_mask([batch_size, 4] ) _lowerCAmelCase = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask} return model, inputs def snake_case ( self , _snake_case , _snake_case ): """simple docstring""" _lowerCAmelCase = TFViTModel(_snake_case , name="""vision_model""" ) _lowerCAmelCase = TFBertModel(_snake_case , name="""text_model""" ) return vision_model, text_model def snake_case ( self ): """simple docstring""" _lowerCAmelCase = TFViTModelTester(self ) _lowerCAmelCase = TFBertModelTester(self ) _lowerCAmelCase = vit_model_tester.prepare_config_and_inputs() _lowerCAmelCase = bert_model_tester.prepare_config_and_inputs() _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = vision_config_and_inputs ( ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ) = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class __lowerCAmelCase ( lowerCamelCase__ , unittest.TestCase ): def snake_case ( self ): """simple docstring""" _lowerCAmelCase = TFVisionTextDualEncoderModel.from_vision_text_pretrained( """Rocketknight1/tiny-random-deit-tf""" , """hf-internal-testing/tiny-random-roberta""" ) _lowerCAmelCase = 13 _lowerCAmelCase = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) _lowerCAmelCase = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) _lowerCAmelCase = random_attention_mask([batch_size, 4] ) _lowerCAmelCase = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask} return model, inputs def snake_case ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case=None , **_snake_case ): """simple docstring""" _lowerCAmelCase , _lowerCAmelCase = self.get_vision_text_model(_snake_case , _snake_case ) _lowerCAmelCase = TFVisionTextDualEncoderModel(vision_model=_snake_case , text_model=_snake_case ) _lowerCAmelCase = model( input_ids=_snake_case , pixel_values=_snake_case , attention_mask=_snake_case , output_attentions=_snake_case ) _lowerCAmelCase = output.vision_model_output.attentions self.assertEqual(len(_snake_case ) , vision_config.num_hidden_layers ) # in DEiT, the seq_len equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens) _lowerCAmelCase = to_atuple(vision_model.config.image_size ) _lowerCAmelCase = to_atuple(vision_model.config.patch_size ) _lowerCAmelCase = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) _lowerCAmelCase = num_patches + 2 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) _lowerCAmelCase = output.text_model_output.attentions self.assertEqual(len(_snake_case ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def snake_case ( self , _snake_case , _snake_case ): """simple docstring""" _lowerCAmelCase = TFDeiTModel(_snake_case , name="""vision_model""" ) _lowerCAmelCase = TFRobertaModel(_snake_case , name="""text_model""" ) return vision_model, text_model def snake_case ( self ): """simple docstring""" _lowerCAmelCase = TFDeiTModelTester(self ) _lowerCAmelCase = TFRobertaModelTester(self ) _lowerCAmelCase = vit_model_tester.prepare_config_and_inputs() _lowerCAmelCase = bert_model_tester.prepare_config_and_inputs() _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = vision_config_and_inputs ( ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ) = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class __lowerCAmelCase ( lowerCamelCase__ , unittest.TestCase ): def snake_case ( self ): """simple docstring""" _lowerCAmelCase = TFVisionTextDualEncoderModel.from_vision_text_pretrained( """Rocketknight1/tiny-random-clip-tf""" , """hf-internal-testing/tiny-random-bert""" ) _lowerCAmelCase = 13 _lowerCAmelCase = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) _lowerCAmelCase = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) _lowerCAmelCase = random_attention_mask([batch_size, 4] ) _lowerCAmelCase = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask} return model, inputs def snake_case ( self , _snake_case , _snake_case ): """simple docstring""" _lowerCAmelCase = TFCLIPVisionModel(_snake_case , name="""vision_model""" ) _lowerCAmelCase = TFBertModel(_snake_case , name="""text_model""" ) return vision_model, text_model def snake_case ( self ): """simple docstring""" _lowerCAmelCase = TFCLIPVisionModelTester(self ) _lowerCAmelCase = TFBertModelTester(self ) _lowerCAmelCase = clip_model_tester.prepare_config_and_inputs() _lowerCAmelCase = bert_model_tester.prepare_config_and_inputs() _lowerCAmelCase , _lowerCAmelCase = vision_config_and_inputs ( ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ) = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_vision @require_tf class __lowerCAmelCase ( unittest.TestCase ): @slow def snake_case ( self ): """simple docstring""" _lowerCAmelCase = TFVisionTextDualEncoderModel.from_pretrained( """clip-italian/clip-italian""" , logit_scale_init_value=1.0 , from_pt=_snake_case ) _lowerCAmelCase = VisionTextDualEncoderProcessor.from_pretrained("""clip-italian/clip-italian""" ) _lowerCAmelCase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) _lowerCAmelCase = processor( text=["""una foto di un gatto""", """una foto di un cane"""] , images=_snake_case , padding=_snake_case , return_tensors="""np""" ) _lowerCAmelCase = model(**_snake_case ) # verify the logits self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) ) self.assertEqual( outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , ) _lowerCAmelCase = np.array([[1.228_4727, 0.310_4122]] ) self.assertTrue(np.allclose(outputs.logits_per_image.numpy() , _snake_case , atol=1e-3 ) )
82
"""simple docstring""" import argparse from pathlib import Path import requests import torch from PIL import Image from transformers import ( RobertaTokenizer, TrOCRConfig, TrOCRForCausalLM, TrOCRProcessor, VisionEncoderDecoderModel, ViTConfig, ViTImageProcessor, ViTModel, ) from transformers.utils import logging logging.set_verbosity_info() _A = logging.get_logger(__name__) def lowercase_ ( __UpperCAmelCase , __UpperCAmelCase ) -> Dict: lowerCAmelCase__ : List[str] = [] for i in range(encoder_config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (f"""encoder.deit.blocks.{i}.norm1.weight""", f"""encoder.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((f"""encoder.deit.blocks.{i}.norm1.bias""", f"""encoder.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append( (f"""encoder.deit.blocks.{i}.attn.proj.weight""", f"""encoder.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append( (f"""encoder.deit.blocks.{i}.attn.proj.bias""", f"""encoder.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append( (f"""encoder.deit.blocks.{i}.norm2.weight""", f"""encoder.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((f"""encoder.deit.blocks.{i}.norm2.bias""", f"""encoder.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append( (f"""encoder.deit.blocks.{i}.mlp.fc1.weight""", f"""encoder.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append( (f"""encoder.deit.blocks.{i}.mlp.fc1.bias""", f"""encoder.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append( (f"""encoder.deit.blocks.{i}.mlp.fc2.weight""", f"""encoder.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((f"""encoder.deit.blocks.{i}.mlp.fc2.bias""", f"""encoder.encoder.layer.{i}.output.dense.bias""") ) # cls token, position embeddings and patch embeddings of encoder rename_keys.extend( [ ("""encoder.deit.cls_token""", """encoder.embeddings.cls_token"""), ("""encoder.deit.pos_embed""", """encoder.embeddings.position_embeddings"""), ("""encoder.deit.patch_embed.proj.weight""", """encoder.embeddings.patch_embeddings.projection.weight"""), ("""encoder.deit.patch_embed.proj.bias""", """encoder.embeddings.patch_embeddings.projection.bias"""), ("""encoder.deit.norm.weight""", """encoder.layernorm.weight"""), ("""encoder.deit.norm.bias""", """encoder.layernorm.bias"""), ] ) return rename_keys def lowercase_ ( __UpperCAmelCase , __UpperCAmelCase ) -> Any: for i in range(encoder_config.num_hidden_layers ): # queries, keys and values (only weights, no biases) lowerCAmelCase__ : List[str] = state_dict.pop(f"""encoder.deit.blocks.{i}.attn.qkv.weight""" ) lowerCAmelCase__ : Any = in_proj_weight[ : encoder_config.hidden_size, : ] lowerCAmelCase__ : int = in_proj_weight[ encoder_config.hidden_size : encoder_config.hidden_size * 2, : ] lowerCAmelCase__ : int = in_proj_weight[ -encoder_config.hidden_size :, : ] def lowercase_ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Dict: lowerCAmelCase__ : Any = dct.pop(__UpperCAmelCase ) lowerCAmelCase__ : Any = val def lowercase_ ( __UpperCAmelCase ) -> int: if "handwritten" in checkpoint_url: lowerCAmelCase__ : Tuple = """https://fki.tic.heia-fr.ch/static/img/a01-122-02-00.jpg""" # industry # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-12.jpg" # have # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-10.jpg" # let # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02.jpg" # # url = "https://fki.tic.heia-fr.ch/static/img/a01-122.jpg" elif "printed" in checkpoint_url or "stage1" in checkpoint_url: lowerCAmelCase__ : Optional[int] = """https://www.researchgate.net/profile/Dinh-Sang/publication/338099565/figure/fig8/AS:840413229350922@1577381536857/An-receipt-example-in-the-SROIE-2019-dataset_Q640.jpg""" lowerCAmelCase__ : int = Image.open(requests.get(__UpperCAmelCase , stream=__UpperCAmelCase ).raw ).convert("""RGB""" ) return im @torch.no_grad() def lowercase_ ( __UpperCAmelCase , __UpperCAmelCase ) -> Tuple: lowerCAmelCase__ : Any = ViTConfig(image_size=384 , qkv_bias=__UpperCAmelCase ) lowerCAmelCase__ : Union[str, Any] = TrOCRConfig() # size of the architecture if "base" in checkpoint_url: lowerCAmelCase__ : List[str] = 768 elif "large" in checkpoint_url: # use ViT-large encoder lowerCAmelCase__ : Dict = 1024 lowerCAmelCase__ : Tuple = 4096 lowerCAmelCase__ : Optional[Any] = 24 lowerCAmelCase__ : Tuple = 16 lowerCAmelCase__ : List[str] = 1024 else: raise ValueError("""Should either find 'base' or 'large' in checkpoint URL""" ) # the large-printed + stage1 checkpoints uses sinusoidal position embeddings, no layernorm afterwards if "large-printed" in checkpoint_url or "stage1" in checkpoint_url: lowerCAmelCase__ : Optional[int] = False lowerCAmelCase__ : List[str] = """relu""" lowerCAmelCase__ : Dict = 1024 lowerCAmelCase__ : Union[str, Any] = True lowerCAmelCase__ : int = False lowerCAmelCase__ : List[Any] = False # load HuggingFace model lowerCAmelCase__ : Tuple = ViTModel(__UpperCAmelCase , add_pooling_layer=__UpperCAmelCase ) lowerCAmelCase__ : int = TrOCRForCausalLM(__UpperCAmelCase ) lowerCAmelCase__ : Any = VisionEncoderDecoderModel(encoder=__UpperCAmelCase , decoder=__UpperCAmelCase ) model.eval() # load state_dict of original model, rename some keys lowerCAmelCase__ : Union[str, Any] = torch.hub.load_state_dict_from_url(__UpperCAmelCase , map_location="""cpu""" , check_hash=__UpperCAmelCase )["""model"""] lowerCAmelCase__ : List[Any] = create_rename_keys(__UpperCAmelCase , __UpperCAmelCase ) for src, dest in rename_keys: rename_key(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) read_in_q_k_v(__UpperCAmelCase , __UpperCAmelCase ) # remove parameters we don't need del state_dict["encoder.deit.head.weight"] del state_dict["encoder.deit.head.bias"] del state_dict["decoder.version"] # add prefix to decoder keys for key, val in state_dict.copy().items(): lowerCAmelCase__ : int = state_dict.pop(__UpperCAmelCase ) if key.startswith("""decoder""" ) and "output_projection" not in key: lowerCAmelCase__ : Optional[Any] = val else: lowerCAmelCase__ : int = val # load state dict model.load_state_dict(__UpperCAmelCase ) # Check outputs on an image lowerCAmelCase__ : Any = ViTImageProcessor(size=encoder_config.image_size ) lowerCAmelCase__ : Optional[Any] = RobertaTokenizer.from_pretrained("""roberta-large""" ) lowerCAmelCase__ : List[str] = TrOCRProcessor(__UpperCAmelCase , __UpperCAmelCase ) lowerCAmelCase__ : Dict = processor(images=prepare_img(__UpperCAmelCase ) , return_tensors="""pt""" ).pixel_values # verify logits lowerCAmelCase__ : str = torch.tensor([[model.config.decoder.decoder_start_token_id]] ) lowerCAmelCase__ : List[str] = model(pixel_values=__UpperCAmelCase , decoder_input_ids=__UpperCAmelCase ) lowerCAmelCase__ : str = outputs.logits lowerCAmelCase__ : Union[str, Any] = torch.Size([1, 1, 5_0265] ) if "trocr-base-handwritten" in checkpoint_url: lowerCAmelCase__ : Optional[int] = torch.tensor( [-1.4502, -4.6683, -0.5347, -2.9291, 9.1435, -3.0571, 8.9764, 1.7560, 8.7358, -1.5311] ) elif "trocr-large-handwritten" in checkpoint_url: lowerCAmelCase__ : int = torch.tensor( [-2.6437, -1.3129, -2.2596, -5.3455, 6.3539, 1.7604, 5.4991, 1.4702, 5.6113, 2.0170] ) elif "trocr-base-printed" in checkpoint_url: lowerCAmelCase__ : Optional[Any] = torch.tensor( [-5.6816, -5.8388, 1.1398, -6.9034, 6.8505, -2.4393, 1.2284, -1.0232, -1.9661, -3.9210] ) elif "trocr-large-printed" in checkpoint_url: lowerCAmelCase__ : int = torch.tensor( [-6.0162, -7.0959, 4.4155, -5.1063, 7.0468, -3.1631, 2.6466, -0.3081, -0.8106, -1.7535] ) if "stage1" not in checkpoint_url: assert logits.shape == expected_shape, "Shape of logits not as expected" assert torch.allclose(logits[0, 0, :10] , __UpperCAmelCase , atol=1E-3 ), "First elements of logits not as expected" Path(__UpperCAmelCase ).mkdir(exist_ok=__UpperCAmelCase ) print(f"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(__UpperCAmelCase ) print(f"""Saving processor to {pytorch_dump_folder_path}""" ) processor.save_pretrained(__UpperCAmelCase ) if __name__ == "__main__": _A = argparse.ArgumentParser() parser.add_argument( """--checkpoint_url""", default="""https://layoutlm.blob.core.windows.net/trocr/model_zoo/fairseq/trocr-base-handwritten.pt""", type=str, help="""URL to the original PyTorch checkpoint (.pth file).""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) _A = parser.parse_args() convert_tr_ocr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
242
0
from ..utils import DummyObject, requires_backends class lowercase_ ( metaclass=_UpperCAmelCase ): _lowerCamelCase = ['flax', 'transformers'] def __init__( self , *lowercase_ , **lowercase_ ): requires_backends(self , ["flax", "transformers"] ) @classmethod def UpperCamelCase ( cls , *lowercase_ , **lowercase_ ): requires_backends(cls , ["flax", "transformers"] ) @classmethod def UpperCamelCase ( cls , *lowercase_ , **lowercase_ ): requires_backends(cls , ["flax", "transformers"] ) class lowercase_ ( metaclass=_UpperCAmelCase ): _lowerCamelCase = ['flax', 'transformers'] def __init__( self , *lowercase_ , **lowercase_ ): requires_backends(self , ["flax", "transformers"] ) @classmethod def UpperCamelCase ( cls , *lowercase_ , **lowercase_ ): requires_backends(cls , ["flax", "transformers"] ) @classmethod def UpperCamelCase ( cls , *lowercase_ , **lowercase_ ): requires_backends(cls , ["flax", "transformers"] ) class lowercase_ ( metaclass=_UpperCAmelCase ): _lowerCamelCase = ['flax', 'transformers'] def __init__( self , *lowercase_ , **lowercase_ ): requires_backends(self , ["flax", "transformers"] ) @classmethod def UpperCamelCase ( cls , *lowercase_ , **lowercase_ ): requires_backends(cls , ["flax", "transformers"] ) @classmethod def UpperCamelCase ( cls , *lowercase_ , **lowercase_ ): requires_backends(cls , ["flax", "transformers"] ) class lowercase_ ( metaclass=_UpperCAmelCase ): _lowerCamelCase = ['flax', 'transformers'] def __init__( self , *lowercase_ , **lowercase_ ): requires_backends(self , ["flax", "transformers"] ) @classmethod def UpperCamelCase ( cls , *lowercase_ , **lowercase_ ): requires_backends(cls , ["flax", "transformers"] ) @classmethod def UpperCamelCase ( cls , *lowercase_ , **lowercase_ ): requires_backends(cls , ["flax", "transformers"] )
355
import torch from transformers import PreTrainedModel, XLMRobertaConfig, XLMRobertaModel class lowercase_ ( __snake_case ): _lowerCamelCase = 'M-CLIP' def __init__( self , lowercase_=1_024 , lowercase_=768 , **lowercase_ ): _snake_case : str = transformerDimSize _snake_case : Union[str, Any] = imageDimSize super().__init__(**lowercase_ ) class lowercase_ ( __snake_case ): _lowerCamelCase = MCLIPConfig def __init__( self , lowercase_ , *lowercase_ , **lowercase_ ): super().__init__(lowercase_ , *lowercase_ , **lowercase_ ) _snake_case : List[Any] = XLMRobertaModel(lowercase_ ) _snake_case : int = torch.nn.Linear( in_features=config.transformerDimensions , out_features=config.numDims ) def UpperCamelCase ( self , lowercase_ , lowercase_ ): _snake_case : Tuple = self.transformer(input_ids=lowercase_ , attention_mask=lowercase_ )[0] _snake_case : Tuple = (embs * attention_mask.unsqueeze(2 )).sum(dim=1 ) / attention_mask.sum(dim=1 )[:, None] return self.LinearTransformation(lowercase_ ), embs
284
0