code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
from typing import Dict from .base import GenericTensor, Pipeline class _A ( __magic_name__): def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , **_SCREAMING_SNAKE_CASE ): """simple docstring""" if tokenize_kwargs is None: SCREAMING_SNAKE_CASE_ : Dict = {} if truncation is not None: if "truncation" in tokenize_kwargs: raise ValueError( 'truncation parameter defined twice (given as keyword argument as well as in tokenize_kwargs)' ) SCREAMING_SNAKE_CASE_ : List[Any] = truncation SCREAMING_SNAKE_CASE_ : int = tokenize_kwargs SCREAMING_SNAKE_CASE_ : int = {} if return_tensors is not None: SCREAMING_SNAKE_CASE_ : Optional[int] = return_tensors return preprocess_params, {}, postprocess_params def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = self.framework SCREAMING_SNAKE_CASE_ : str = self.tokenizer(_SCREAMING_SNAKE_CASE , return_tensors=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) return model_inputs def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = self.model(**_SCREAMING_SNAKE_CASE ) return model_outputs def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False ): """simple docstring""" if return_tensors: return model_outputs[0] if self.framework == "pt": return model_outputs[0].tolist() elif self.framework == "tf": return model_outputs[0].numpy().tolist() def __call__( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ): """simple docstring""" return super().__call__(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )
253
import math def A_ ( a , a = 0 , a = 0 ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = end or len(a ) for i in range(a , a ): SCREAMING_SNAKE_CASE_ : List[Any] = i SCREAMING_SNAKE_CASE_ : Optional[Any] = array[i] while temp_index != start and temp_index_value < array[temp_index - 1]: SCREAMING_SNAKE_CASE_ : Tuple = array[temp_index - 1] temp_index -= 1 SCREAMING_SNAKE_CASE_ : str = temp_index_value return array def A_ ( a , a , a ): # Max Heap """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = index SCREAMING_SNAKE_CASE_ : str = 2 * index + 1 # Left Node SCREAMING_SNAKE_CASE_ : Union[str, Any] = 2 * index + 2 # Right Node if left_index < heap_size and array[largest] < array[left_index]: SCREAMING_SNAKE_CASE_ : Dict = left_index if right_index < heap_size and array[largest] < array[right_index]: SCREAMING_SNAKE_CASE_ : Any = right_index if largest != index: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Tuple = array[largest], array[index] heapify(a , a , a ) def A_ ( a ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = len(a ) for i in range(n // 2 , -1 , -1 ): heapify(a , a , a ) for i in range(n - 1 , 0 , -1 ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Tuple = array[0], array[i] heapify(a , 0 , a ) return array def A_ ( a , a , a , a ): """simple docstring""" if (array[first_index] > array[middle_index]) != ( array[first_index] > array[last_index] ): return array[first_index] elif (array[middle_index] > array[first_index]) != ( array[middle_index] > array[last_index] ): return array[middle_index] else: return array[last_index] def A_ ( a , a , a , a ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = low SCREAMING_SNAKE_CASE_ : Tuple = high while True: while array[i] < pivot: i += 1 j -= 1 while pivot < array[j]: j -= 1 if i >= j: return i SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Tuple = array[j], array[i] i += 1 def A_ ( a ): """simple docstring""" if len(a ) == 0: return array SCREAMING_SNAKE_CASE_ : Any = 2 * math.ceil(math.loga(len(a ) ) ) SCREAMING_SNAKE_CASE_ : int = 1_6 return intro_sort(a , 0 , len(a ) , a , a ) def A_ ( a , a , a , a , a ): """simple docstring""" while end - start > size_threshold: if max_depth == 0: return heap_sort(a ) max_depth -= 1 SCREAMING_SNAKE_CASE_ : Optional[int] = median_of_a(a , a , start + ((end - start) // 2) + 1 , end - 1 ) SCREAMING_SNAKE_CASE_ : Dict = partition(a , a , a , a ) intro_sort(a , a , a , a , a ) SCREAMING_SNAKE_CASE_ : List[Any] = p return insertion_sort(a , a , a ) if __name__ == "__main__": import doctest doctest.testmod() lowerCAmelCase : List[str] = input('Enter numbers separated by a comma : ').strip() lowerCAmelCase : Optional[Any] = [float(item) for item in user_input.split(',')] print(sort(unsorted))
253
1
"""simple docstring""" from typing import TYPE_CHECKING from ..utils import _LazyModule SCREAMING_SNAKE_CASE__ = { "config": [ "EXTERNAL_DATA_FORMAT_SIZE_LIMIT", "OnnxConfig", "OnnxConfigWithPast", "OnnxSeq2SeqConfigWithPast", "PatchingSpec", ], "convert": ["export", "validate_model_outputs"], "features": ["FeaturesManager"], "utils": ["ParameterFormat", "compute_serialized_parameters_size"], } if TYPE_CHECKING: from .config import ( EXTERNAL_DATA_FORMAT_SIZE_LIMIT, OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast, PatchingSpec, ) from .convert import export, validate_model_outputs from .features import FeaturesManager from .utils import ParameterFormat, compute_serialized_parameters_size else: import sys SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
149
"""simple docstring""" import itertools import os import random import tempfile import unittest import numpy as np from transformers import TvltFeatureExtractor, is_datasets_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_torch_available(): import torch if is_datasets_available(): from datasets import load_dataset SCREAMING_SNAKE_CASE__ = random.Random() def lowerCAmelCase__ ( _UpperCamelCase : List[Any] , _UpperCamelCase : Optional[Any]=1.0 , _UpperCamelCase : Optional[int]=None , _UpperCamelCase : Optional[int]=None ) -> Optional[int]: """simple docstring""" if rng is None: snake_case = global_rng snake_case = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class lowerCAmelCase_ ( unittest.TestCase ): """simple docstring""" def __init__( self , lowerCAmelCase , lowerCAmelCase=7 , lowerCAmelCase=4_00 , lowerCAmelCase=20_00 , lowerCAmelCase=20_48 , lowerCAmelCase=1_28 , lowerCAmelCase=1 , lowerCAmelCase=5_12 , lowerCAmelCase=30 , lowerCAmelCase=4_41_00 , ): """simple docstring""" snake_case = parent snake_case = batch_size snake_case = min_seq_length snake_case = max_seq_length snake_case = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) snake_case = spectrogram_length snake_case = feature_size snake_case = num_audio_channels snake_case = hop_length snake_case = chunk_length snake_case = sampling_rate def snake_case ( self ): """simple docstring""" return { "spectrogram_length": self.spectrogram_length, "feature_size": self.feature_size, "num_audio_channels": self.num_audio_channels, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "sampling_rate": self.sampling_rate, } def snake_case ( self , lowerCAmelCase=False , lowerCAmelCase=False ): """simple docstring""" def _flatten(lowerCAmelCase ): return list(itertools.chain(*lowerCAmelCase ) ) if equal_length: snake_case = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size snake_case = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: snake_case = [np.asarray(lowerCAmelCase ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class lowerCAmelCase_ ( lowerCAmelCase , unittest.TestCase ): """simple docstring""" _lowerCAmelCase : Union[str, Any] = TvltFeatureExtractor def snake_case ( self ): """simple docstring""" snake_case = TvltFeatureExtractionTester(self ) def snake_case ( self ): """simple docstring""" snake_case = self.feature_extraction_class(**self.feat_extract_dict ) self.assertTrue(hasattr(lowerCAmelCase , 'spectrogram_length' ) ) self.assertTrue(hasattr(lowerCAmelCase , 'feature_size' ) ) self.assertTrue(hasattr(lowerCAmelCase , 'num_audio_channels' ) ) self.assertTrue(hasattr(lowerCAmelCase , 'hop_length' ) ) self.assertTrue(hasattr(lowerCAmelCase , 'chunk_length' ) ) self.assertTrue(hasattr(lowerCAmelCase , 'sampling_rate' ) ) def snake_case ( self ): """simple docstring""" snake_case = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: snake_case = feat_extract_first.save_pretrained(lowerCAmelCase )[0] check_json_file_has_correct_format(lowerCAmelCase ) snake_case = self.feature_extraction_class.from_pretrained(lowerCAmelCase ) snake_case = feat_extract_first.to_dict() snake_case = feat_extract_second.to_dict() snake_case = dict_first.pop('mel_filters' ) snake_case = dict_second.pop('mel_filters' ) self.assertTrue(np.allclose(lowerCAmelCase , lowerCAmelCase ) ) self.assertEqual(lowerCAmelCase , lowerCAmelCase ) def snake_case ( self ): """simple docstring""" snake_case = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: snake_case = os.path.join(lowerCAmelCase , 'feat_extract.json' ) feat_extract_first.to_json_file(lowerCAmelCase ) snake_case = self.feature_extraction_class.from_json_file(lowerCAmelCase ) snake_case = feat_extract_first.to_dict() snake_case = feat_extract_second.to_dict() snake_case = dict_first.pop('mel_filters' ) snake_case = dict_second.pop('mel_filters' ) self.assertTrue(np.allclose(lowerCAmelCase , lowerCAmelCase ) ) self.assertEqual(lowerCAmelCase , lowerCAmelCase ) def snake_case ( self ): """simple docstring""" snake_case = self.feature_extraction_class(**self.feat_extract_dict ) # create three inputs of length 800, 1000, and 1200 snake_case = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )] snake_case = [np.asarray(lowerCAmelCase ) for speech_input in speech_inputs] # Test not batched input snake_case = feature_extractor(np_speech_inputs[0] , return_tensors='np' , sampling_rate=4_41_00 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test batched snake_case = feature_extractor(lowerCAmelCase , return_tensors='np' , sampling_rate=4_41_00 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test audio masking snake_case = feature_extractor( lowerCAmelCase , return_tensors='np' , sampling_rate=4_41_00 , mask_audio=lowerCAmelCase ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test 2-D numpy arrays are batched. snake_case = [floats_list((1, x) )[0] for x in (8_00, 8_00, 8_00)] snake_case = np.asarray(lowerCAmelCase ) snake_case = feature_extractor(lowerCAmelCase , return_tensors='np' , sampling_rate=4_41_00 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) def snake_case ( self , lowerCAmelCase ): """simple docstring""" snake_case = load_dataset('hf-internal-testing/librispeech_asr_dummy' , 'clean' , split='validation' ) # automatic decoding with librispeech snake_case = ds.sort('id' ).select(range(lowerCAmelCase ) )[:num_samples]['audio'] return [x["array"] for x in speech_samples] def snake_case ( self ): """simple docstring""" snake_case = self._load_datasamples(1 ) snake_case = TvltFeatureExtractor() snake_case = feature_extractor(lowerCAmelCase , return_tensors='pt' ).audio_values self.assertEquals(audio_values.shape , (1, 1, 1_92, 1_28) ) snake_case = torch.tensor([[-0.30_32, -0.27_08], [-0.44_34, -0.40_07]] ) self.assertTrue(torch.allclose(audio_values[0, 0, :2, :2] , lowerCAmelCase , atol=1E-4 ) )
149
1
'''simple docstring''' import json import os import tempfile import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ImageGPTImageProcessor class a__ ( unittest.TestCase ): """simple docstring""" def __init__(self , __lowercase , __lowercase=7 , __lowercase=3 , __lowercase=18 , __lowercase=30 , __lowercase=4_00 , __lowercase=True , __lowercase=None , __lowercase=True , ): __lowerCAmelCase = size if size is not None else {'''height''': 18, '''width''': 18} __lowerCAmelCase = parent __lowerCAmelCase = batch_size __lowerCAmelCase = num_channels __lowerCAmelCase = image_size __lowerCAmelCase = min_resolution __lowerCAmelCase = max_resolution __lowerCAmelCase = do_resize __lowerCAmelCase = size __lowerCAmelCase = do_normalize def _snake_case (self ): return { # here we create 2 clusters for the sake of simplicity "clusters": np.asarray( [ [0.8_8_6_6_4_4_3_6_3_4_0_3_3_2_0_3, 0.6_6_1_8_8_2_9_3_6_9_5_4_4_9_8_3, 0.3_8_9_1_7_4_6_4_0_1_7_8_6_8_0_4], [-0.6_0_4_2_5_5_9_1_4_6_8_8_1_1_0_4, -0.0_2_2_9_5_0_0_8_8_6_0_5_2_8_4_6_9, 0.5_4_2_3_7_9_7_3_6_9_0_0_3_2_9_6], ] ), "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, } @require_torch @require_vision class a__ ( __A , unittest.TestCase ): """simple docstring""" __UpperCamelCase : Optional[int] = ImageGPTImageProcessor if is_vision_available() else None def _snake_case (self ): __lowerCAmelCase = ImageGPTImageProcessingTester(self ) @property def _snake_case (self ): return self.image_processor_tester.prepare_image_processor_dict() def _snake_case (self ): __lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__lowercase , '''clusters''' ) ) self.assertTrue(hasattr(__lowercase , '''do_resize''' ) ) self.assertTrue(hasattr(__lowercase , '''size''' ) ) self.assertTrue(hasattr(__lowercase , '''do_normalize''' ) ) def _snake_case (self ): __lowerCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''height''': 18, '''width''': 18} ) __lowerCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {'''height''': 42, '''width''': 42} ) def _snake_case (self ): __lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) __lowerCAmelCase = json.loads(image_processor.to_json_string() ) for key, value in self.image_processor_dict.items(): if key == "clusters": self.assertTrue(np.array_equal(__lowercase , obj[key] ) ) else: self.assertEqual(obj[key] , __lowercase ) def _snake_case (self ): __lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) with tempfile.TemporaryDirectory() as tmpdirname: __lowerCAmelCase = os.path.join(__lowercase , '''image_processor.json''' ) image_processor_first.to_json_file(__lowercase ) __lowerCAmelCase = self.image_processing_class.from_json_file(__lowercase ).to_dict() __lowerCAmelCase = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(__lowercase , image_processor_second[key] ) ) else: self.assertEqual(image_processor_first[key] , __lowercase ) def _snake_case (self ): __lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) with tempfile.TemporaryDirectory() as tmpdirname: image_processor_first.save_pretrained(__lowercase ) __lowerCAmelCase = self.image_processing_class.from_pretrained(__lowercase ).to_dict() __lowerCAmelCase = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(__lowercase , image_processor_second[key] ) ) else: self.assertEqual(image_processor_first[key] , __lowercase ) @unittest.skip('''ImageGPT requires clusters at initialization''' ) def _snake_case (self ): pass def __magic_name__( ): __lowerCAmelCase = load_dataset('''hf-internal-testing/fixtures_image_utils''', split='''test''') __lowerCAmelCase = Image.open(dataset[4]['''file''']) __lowerCAmelCase = Image.open(dataset[5]['''file''']) __lowerCAmelCase = [imagea, imagea] return images @require_vision @require_torch class a__ ( unittest.TestCase ): """simple docstring""" @slow def _snake_case (self ): __lowerCAmelCase = ImageGPTImageProcessor.from_pretrained('''openai/imagegpt-small''' ) __lowerCAmelCase = prepare_images() # test non-batched __lowerCAmelCase = image_processing(images[0] , return_tensors='''pt''' ) self.assertIsInstance(encoding.input_ids , torch.LongTensor ) self.assertEqual(encoding.input_ids.shape , (1, 10_24) ) __lowerCAmelCase = [3_06, 1_91, 1_91] self.assertEqual(encoding.input_ids[0, :3].tolist() , __lowercase ) # test batched __lowerCAmelCase = image_processing(__lowercase , return_tensors='''pt''' ) self.assertIsInstance(encoding.input_ids , torch.LongTensor ) self.assertEqual(encoding.input_ids.shape , (2, 10_24) ) __lowerCAmelCase = [3_03, 13, 13] self.assertEqual(encoding.input_ids[1, -3:].tolist() , __lowercase )
174
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DiffusionPipeline, EulerDiscreteScheduler, StableDiffusionXLImgaImgPipeline, UNetaDConditionModel, ) from diffusers.utils import floats_tensor, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class a__ ( __A , __A , unittest.TestCase ): """simple docstring""" __UpperCamelCase : Union[str, Any] = StableDiffusionXLImgaImgPipeline __UpperCamelCase : str = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'height', 'width'} __UpperCamelCase : List[str] = PipelineTesterMixin.required_optional_params - {'latents'} __UpperCamelCase : List[str] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS __UpperCamelCase : Union[str, Any] = IMAGE_TO_IMAGE_IMAGE_PARAMS __UpperCamelCase : int = IMAGE_TO_IMAGE_IMAGE_PARAMS def _snake_case (self ): torch.manual_seed(0 ) __lowerCAmelCase = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , attention_head_dim=(2, 4) , use_linear_projection=__lowercase , addition_embed_type='''text_time''' , addition_time_embed_dim=8 , transformer_layers_per_block=(1, 2) , projection_class_embeddings_input_dim=80 , cross_attention_dim=64 , ) __lowerCAmelCase = EulerDiscreteScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , steps_offset=1 , beta_schedule='''scaled_linear''' , timestep_spacing='''leading''' , ) torch.manual_seed(0 ) __lowerCAmelCase = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , sample_size=1_28 , ) torch.manual_seed(0 ) __lowerCAmelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act='''gelu''' , projection_dim=32 , ) __lowerCAmelCase = CLIPTextModel(__lowercase ) __lowerCAmelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' , local_files_only=__lowercase ) __lowerCAmelCase = CLIPTextModelWithProjection(__lowercase ) __lowerCAmelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' , local_files_only=__lowercase ) __lowerCAmelCase = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''text_encoder_2''': text_encoder_a, '''tokenizer_2''': tokenizer_a, # "safety_checker": None, # "feature_extractor": None, } return components def _snake_case (self , __lowercase , __lowercase=0 ): __lowerCAmelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(__lowercase ) ).to(__lowercase ) __lowerCAmelCase = image / 2 + 0.5 if str(__lowercase ).startswith('''mps''' ): __lowerCAmelCase = torch.manual_seed(__lowercase ) else: __lowerCAmelCase = torch.Generator(device=__lowercase ).manual_seed(__lowercase ) __lowerCAmelCase = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': image, '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 5.0, '''output_type''': '''numpy''', '''strength''': 0.7_5, } return inputs def _snake_case (self ): __lowerCAmelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator __lowerCAmelCase = self.get_dummy_components() __lowerCAmelCase = StableDiffusionXLImgaImgPipeline(**__lowercase ) __lowerCAmelCase = sd_pipe.to(__lowercase ) sd_pipe.set_progress_bar_config(disable=__lowercase ) __lowerCAmelCase = self.get_dummy_inputs(__lowercase ) __lowerCAmelCase = sd_pipe(**__lowercase ).images __lowerCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) __lowerCAmelCase = np.array([0.4_6_5_6, 0.4_8_4_0, 0.4_4_3_9, 0.6_6_9_8, 0.5_5_7_4, 0.4_5_2_4, 0.5_7_9_9, 0.5_9_4_3, 0.5_1_6_5] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _snake_case (self ): super().test_attention_slicing_forward_pass(expected_max_diff=3e-3 ) def _snake_case (self ): super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) def _snake_case (self ): pass def _snake_case (self ): __lowerCAmelCase = self.get_dummy_components() __lowerCAmelCase = StableDiffusionXLImgaImgPipeline(**__lowercase ) __lowerCAmelCase = sd_pipe.to(__lowercase ) __lowerCAmelCase = sd_pipe.to(__lowercase ) sd_pipe.set_progress_bar_config(disable=__lowercase ) # forward without prompt embeds __lowerCAmelCase = self.get_dummy_inputs(__lowercase ) __lowerCAmelCase = 3 * ['''this is a negative prompt'''] __lowerCAmelCase = negative_prompt __lowerCAmelCase = 3 * [inputs['''prompt''']] __lowerCAmelCase = sd_pipe(**__lowercase ) __lowerCAmelCase = output.images[0, -3:, -3:, -1] # forward with prompt embeds __lowerCAmelCase = self.get_dummy_inputs(__lowercase ) __lowerCAmelCase = 3 * ['''this is a negative prompt'''] __lowerCAmelCase = 3 * [inputs.pop('''prompt''' )] ( ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ) = sd_pipe.encode_prompt(__lowercase , negative_prompt=__lowercase ) __lowerCAmelCase = sd_pipe( **__lowercase , prompt_embeds=__lowercase , negative_prompt_embeds=__lowercase , pooled_prompt_embeds=__lowercase , negative_pooled_prompt_embeds=__lowercase , ) __lowerCAmelCase = output.images[0, -3:, -3:, -1] # make sure that it's equal assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1e-4 @slow @require_torch_gpu class a__ ( unittest.TestCase ): """simple docstring""" def _snake_case (self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def _snake_case (self , __lowercase , __lowercase="cpu" , __lowercase=torch.floataa , __lowercase=0 ): __lowerCAmelCase = torch.Generator(device=__lowercase ).manual_seed(__lowercase ) __lowerCAmelCase = np.random.RandomState(__lowercase ).standard_normal((1, 4, 64, 64) ) __lowerCAmelCase = torch.from_numpy(__lowercase ).to(device=__lowercase , dtype=__lowercase ) __lowerCAmelCase = { '''prompt''': '''a photograph of an astronaut riding a horse''', '''latents''': latents, '''generator''': generator, '''num_inference_steps''': 3, '''guidance_scale''': 7.5, '''output_type''': '''numpy''', } return inputs def _snake_case (self ): __lowerCAmelCase = DiffusionPipeline.from_pretrained('''stabilityai/stable-diffusion-2-base''' ) pipe.to(__lowercase ) pipe.set_progress_bar_config(disable=__lowercase ) __lowerCAmelCase = self.get_inputs(__lowercase ) __lowerCAmelCase = pipe(**__lowercase ).images __lowerCAmelCase = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 5_12, 5_12, 3) __lowerCAmelCase = np.array([0.4_9_4_9_3, 0.4_7_8_9_6, 0.4_0_7_9_8, 0.5_4_2_1_4, 0.5_3_2_1_2, 0.4_8_2_0_2, 0.4_7_6_5_6, 0.4_6_3_2_9, 0.4_8_5_0_6] ) assert np.abs(image_slice - expected_slice ).max() < 7e-3
174
1
import argparse import gc import json import os import re import torch from huggingface_hub import hf_hub_download from transformers import AutoModelForCausalLM, AutoTokenizer, PreTrainedTokenizerFast, RwkvConfig from transformers.modeling_utils import WEIGHTS_INDEX_NAME, shard_checkpoint __A = { '''169M''': 12, '''430M''': 24, '''1B5''': 24, '''3B''': 32, '''7B''': 32, '''14B''': 40, } __A = { '''169M''': 7_68, '''430M''': 10_24, '''1B5''': 20_48, '''3B''': 25_60, '''7B''': 40_96, '''14B''': 51_20, } def snake_case_(_UpperCamelCase ) -> str: """simple docstring""" _snake_case = list(state_dict.keys() ) for name in state_dict_keys: _snake_case = state_dict.pop(__a ) # emb -> embedding if name.startswith('''emb.''' ): _snake_case = name.replace('''emb.''' , '''embeddings.''' ) # ln_0 -> pre_ln (only present at block 0) if name.startswith('''blocks.0.ln0''' ): _snake_case = name.replace('''blocks.0.ln0''' , '''blocks.0.pre_ln''' ) # att -> attention _snake_case = re.sub(R'''blocks\.(\d+)\.att''' , R'''blocks.\1.attention''' , __a ) # ffn -> feed_forward _snake_case = re.sub(R'''blocks\.(\d+)\.ffn''' , R'''blocks.\1.feed_forward''' , __a ) # time_mix_k -> time_mix_key and reshape if name.endswith('''.time_mix_k''' ): _snake_case = name.replace('''.time_mix_k''' , '''.time_mix_key''' ) # time_mix_v -> time_mix_value and reshape if name.endswith('''.time_mix_v''' ): _snake_case = name.replace('''.time_mix_v''' , '''.time_mix_value''' ) # time_mix_r -> time_mix_key and reshape if name.endswith('''.time_mix_r''' ): _snake_case = name.replace('''.time_mix_r''' , '''.time_mix_receptance''' ) if name != "head.weight": _snake_case = 'rwkv.' + name _snake_case = weight return state_dict def snake_case_(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase=None , _UpperCamelCase=None , _UpperCamelCase=False , _UpperCamelCase=None ) -> int: """simple docstring""" if tokenizer_file is None: print('''No `--tokenizer_file` provided, we will use the default tokenizer.''' ) _snake_case = 50_277 _snake_case = AutoTokenizer.from_pretrained('''EleutherAI/gpt-neox-20b''' ) else: _snake_case = PreTrainedTokenizerFast(tokenizer_file=__a ) _snake_case = len(__a ) tokenizer.save_pretrained(__a ) # 2. Build the config _snake_case = list(NUM_HIDDEN_LAYERS_MAPPING.keys() ) if size is None: # Try to infer size from the checkpoint name for candidate in possible_sizes: if candidate in checkpoint_file: _snake_case = candidate break if size is None: raise ValueError('''Could not infer the size, please provide it with the `--size` argument.''' ) if size not in possible_sizes: raise ValueError(F"""`size` should be one of {possible_sizes}, got {size}.""" ) _snake_case = RwkvConfig( vocab_size=__a , num_hidden_layers=NUM_HIDDEN_LAYERS_MAPPING[size] , hidden_size=HIDEN_SIZE_MAPPING[size] , ) config.save_pretrained(__a ) # 3. Download model file then convert state_dict _snake_case = hf_hub_download(__a , __a ) _snake_case = torch.load(__a , map_location='''cpu''' ) _snake_case = convert_state_dict(__a ) # 4. Split in shards and save _snake_case = shard_checkpoint(__a ) for shard_file, shard in shards.items(): torch.save(__a , os.path.join(__a , __a ) ) if index is not None: _snake_case = os.path.join(__a , __a ) # Save the index as well with open(__a , '''w''' , encoding='''utf-8''' ) as f: _snake_case = json.dumps(__a , indent=2 , sort_keys=__a ) + '\n' f.write(__a ) # 5. Clean up shards (for some reason the file PyTorch saves take the same space as the whole state_dict print( '''Cleaning up shards. This may error with an OOM error, it this is the case don\'t worry you still have converted the model.''' ) _snake_case = list(shards.keys() ) del state_dict del shards gc.collect() for shard_file in shard_files: _snake_case = torch.load(os.path.join(__a , __a ) ) torch.save({k: v.cpu().clone() for k, v in state_dict.items()} , os.path.join(__a , __a ) ) del state_dict gc.collect() if push_to_hub: if model_name is None: raise ValueError('''Please provide a `model_name` to push the model to the Hub.''' ) _snake_case = AutoModelForCausalLM.from_pretrained(__a ) model.push_to_hub(__a , max_shard_size='''2GB''' ) tokenizer.push_to_hub(__a ) if __name__ == "__main__": __A = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--repo_id''', default=None, type=str, required=True, help='''Repo ID from which to pull the checkpoint.''' ) parser.add_argument( '''--checkpoint_file''', default=None, type=str, required=True, help='''Name of the checkpoint file in the repo.''' ) parser.add_argument( '''--output_dir''', default=None, type=str, required=True, help='''Where to save the converted model.''' ) parser.add_argument( '''--tokenizer_file''', default=None, type=str, help='''Path to the tokenizer file to use (if not provided, only the model is converted).''', ) parser.add_argument( '''--size''', default=None, type=str, help='''Size of the model. Will be inferred from the `checkpoint_file` if not passed.''', ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Push to the Hub the converted model.''', ) parser.add_argument( '''--model_name''', default=None, type=str, help='''Name of the pushed model on the Hub, including the username / organization.''', ) __A = parser.parse_args() convert_rmkv_checkpoint_to_hf_format( args.repo_id, args.checkpoint_file, args.output_dir, size=args.size, tokenizer_file=args.tokenizer_file, push_to_hub=args.push_to_hub, model_name=args.model_name, )
355
from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_herbert import HerbertTokenizer __A = logging.get_logger(__name__) __A = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} __A = { '''vocab_file''': { '''allegro/herbert-base-cased''': '''https://huggingface.co/allegro/herbert-base-cased/resolve/main/vocab.json''' }, '''merges_file''': { '''allegro/herbert-base-cased''': '''https://huggingface.co/allegro/herbert-base-cased/resolve/main/merges.txt''' }, } __A = {'''allegro/herbert-base-cased''': 5_14} __A = {} class lowercase_ ( __lowercase ): UpperCamelCase_ : Any = VOCAB_FILES_NAMES UpperCamelCase_ : Optional[int] = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ : List[str] = PRETRAINED_INIT_CONFIGURATION UpperCamelCase_ : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ : Optional[Any] = HerbertTokenizer def __init__( self : Tuple , A__ : str=None , A__ : Optional[Any]=None , A__ : Union[str, Any]=None , A__ : Optional[int]="<s>" , A__ : Optional[int]="<unk>" , A__ : str="<pad>" , A__ : List[Any]="<mask>" , A__ : Dict="</s>" , **A__ : Optional[int] , ) -> Optional[int]: super().__init__( A__ , A__ , tokenizer_file=A__ , cls_token=A__ , unk_token=A__ , pad_token=A__ , mask_token=A__ , sep_token=A__ , **A__ , ) def UpperCamelCase_ ( self : str , A__ : List[int] , A__ : Optional[List[int]] = None ) -> List[int]: _snake_case = [self.cls_token_id] _snake_case = [self.sep_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def UpperCamelCase_ ( self : Tuple , A__ : List[int] , A__ : Optional[List[int]] = None , A__ : bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=A__ , token_ids_a=A__ , already_has_special_tokens=A__ ) if token_ids_a is None: return [1] + ([0] * len(A__ )) + [1] return [1] + ([0] * len(A__ )) + [1] + ([0] * len(A__ )) + [1] def UpperCamelCase_ ( self : Any , A__ : List[int] , A__ : Optional[List[int]] = None ) -> List[int]: _snake_case = [self.sep_token_id] _snake_case = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCamelCase_ ( self : Union[str, Any] , A__ : str , A__ : Optional[str] = None ) -> Tuple[str]: _snake_case = self._tokenizer.model.save(A__ , name=A__ ) return tuple(A__ )
278
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _UpperCAmelCase : List[Any] = logging.get_logger(__name__) _UpperCAmelCase : Tuple = { """microsoft/beit-base-patch16-224-pt22k""": ( """https://huggingface.co/microsoft/beit-base-patch16-224-pt22k/resolve/main/config.json""" ), # See all BEiT models at https://huggingface.co/models?filter=beit } class a__ ( __A ): """simple docstring""" __UpperCamelCase : Tuple = 'beit' def __init__(self , __lowercase=81_92 , __lowercase=7_68 , __lowercase=12 , __lowercase=12 , __lowercase=30_72 , __lowercase="gelu" , __lowercase=0.0 , __lowercase=0.0 , __lowercase=0.0_2 , __lowercase=1e-12 , __lowercase=2_24 , __lowercase=16 , __lowercase=3 , __lowercase=False , __lowercase=False , __lowercase=False , __lowercase=False , __lowercase=0.1 , __lowercase=0.1 , __lowercase=True , __lowercase=[3, 5, 7, 11] , __lowercase=[1, 2, 3, 6] , __lowercase=True , __lowercase=0.4 , __lowercase=2_56 , __lowercase=1 , __lowercase=False , __lowercase=2_55 , **__lowercase , ): super().__init__(**__lowercase ) __lowerCAmelCase = vocab_size __lowerCAmelCase = hidden_size __lowerCAmelCase = num_hidden_layers __lowerCAmelCase = num_attention_heads __lowerCAmelCase = intermediate_size __lowerCAmelCase = hidden_act __lowerCAmelCase = hidden_dropout_prob __lowerCAmelCase = attention_probs_dropout_prob __lowerCAmelCase = initializer_range __lowerCAmelCase = layer_norm_eps __lowerCAmelCase = image_size __lowerCAmelCase = patch_size __lowerCAmelCase = num_channels __lowerCAmelCase = use_mask_token __lowerCAmelCase = use_absolute_position_embeddings __lowerCAmelCase = use_relative_position_bias __lowerCAmelCase = use_shared_relative_position_bias __lowerCAmelCase = layer_scale_init_value __lowerCAmelCase = drop_path_rate __lowerCAmelCase = use_mean_pooling # decode head attributes (semantic segmentation) __lowerCAmelCase = out_indices __lowerCAmelCase = pool_scales # auxiliary head attributes (semantic segmentation) __lowerCAmelCase = use_auxiliary_head __lowerCAmelCase = auxiliary_loss_weight __lowerCAmelCase = auxiliary_channels __lowerCAmelCase = auxiliary_num_convs __lowerCAmelCase = auxiliary_concat_input __lowerCAmelCase = semantic_loss_ignore_index class a__ ( __A ): """simple docstring""" __UpperCamelCase : Any = version.parse('1.11' ) @property def _snake_case (self ): return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def _snake_case (self ): return 1e-4
174
'''simple docstring''' import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device if is_torch_available(): from transformers import AutoModelForSeqaSeqLM, AutoTokenizer @require_torch @require_sentencepiece @require_tokenizers class a__ ( unittest.TestCase ): """simple docstring""" @slow def _snake_case (self ): __lowerCAmelCase = AutoModelForSeqaSeqLM.from_pretrained('''google/mt5-small''' , return_dict=__lowercase ).to(__lowercase ) __lowerCAmelCase = AutoTokenizer.from_pretrained('''google/mt5-small''' ) __lowerCAmelCase = tokenizer('''Hello there''' , return_tensors='''pt''' ).input_ids __lowerCAmelCase = tokenizer('''Hi I am''' , return_tensors='''pt''' ).input_ids __lowerCAmelCase = model(input_ids.to(__lowercase ) , labels=labels.to(__lowercase ) ).loss __lowerCAmelCase = -(labels.shape[-1] * loss.item()) __lowerCAmelCase = -8_4.9_1_2_7 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1e-4 )
174
1
"""simple docstring""" from typing import Callable, List, Optional, Union import PIL import torch from transformers import ( CLIPImageProcessor, CLIPSegForImageSegmentation, CLIPSegProcessor, CLIPTextModel, CLIPTokenizer, ) from diffusers import DiffusionPipeline from diffusers.configuration_utils import FrozenDict from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion import StableDiffusionInpaintPipeline from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler from diffusers.utils import deprecate, is_accelerate_available, logging lowerCamelCase__ = logging.get_logger(__name__) # pylint: disable=invalid-name class A__ ( _lowerCamelCase): def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , ): super().__init__() if hasattr(scheduler.config , 'steps_offset' ) and scheduler.config.steps_offset != 1: __lowerCAmelCase : Optional[Any] = ( f"The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`" f" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure " 'to update the config accordingly as leaving `steps_offset` might led to incorrect results' ' in future versions. If you have downloaded this checkpoint from the Hugging Face Hub,' ' it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`' ' file' ) deprecate('steps_offset!=1' , '1.0.0' , _SCREAMING_SNAKE_CASE , standard_warn=_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Optional[int] = dict(scheduler.config ) __lowerCAmelCase : str = 1 __lowerCAmelCase : Tuple = FrozenDict(_SCREAMING_SNAKE_CASE ) if hasattr(scheduler.config , 'skip_prk_steps' ) and scheduler.config.skip_prk_steps is False: __lowerCAmelCase : List[Any] = ( f"The configuration file of this scheduler: {scheduler} has not set the configuration" ' `skip_prk_steps`. `skip_prk_steps` should be set to True in the configuration file. Please make' ' sure to update the config accordingly as not setting `skip_prk_steps` in the config might lead to' ' incorrect results in future versions. If you have downloaded this checkpoint from the Hugging Face' ' Hub, it would be very nice if you could open a Pull request for the' ' `scheduler/scheduler_config.json` file' ) deprecate('skip_prk_steps not set' , '1.0.0' , _SCREAMING_SNAKE_CASE , standard_warn=_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Optional[Any] = dict(scheduler.config ) __lowerCAmelCase : List[str] = True __lowerCAmelCase : Union[str, Any] = FrozenDict(_SCREAMING_SNAKE_CASE ) if safety_checker is None: logger.warning( f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure" ' that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered' ' results in services or applications open to the public. Both the diffusers team and Hugging Face' ' strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling' ' it only for use-cases that involve analyzing network behavior or auditing its results. For more' ' information, please have a look at https://github.com/huggingface/diffusers/pull/254 .' ) self.register_modules( segmentation_model=_SCREAMING_SNAKE_CASE , segmentation_processor=_SCREAMING_SNAKE_CASE , vae=_SCREAMING_SNAKE_CASE , text_encoder=_SCREAMING_SNAKE_CASE , tokenizer=_SCREAMING_SNAKE_CASE , unet=_SCREAMING_SNAKE_CASE , scheduler=_SCREAMING_SNAKE_CASE , safety_checker=_SCREAMING_SNAKE_CASE , feature_extractor=_SCREAMING_SNAKE_CASE , ) def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE = "auto" ): if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory __lowerCAmelCase : Any = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(_SCREAMING_SNAKE_CASE ) def __lowerCamelCase ( self ): self.enable_attention_slicing(_SCREAMING_SNAKE_CASE ) def __lowerCamelCase ( self ): if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('Please install accelerate via `pip install accelerate`' ) __lowerCAmelCase : Any = torch.device('cuda' ) for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae, self.safety_checker]: if cpu_offloaded_model is not None: cpu_offload(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def __lowerCamelCase ( self ): if self.device != torch.device('meta' ) or not hasattr(self.unet , '_hf_hook' ): return self.device for module in self.unet.modules(): if ( hasattr(_SCREAMING_SNAKE_CASE , '_hf_hook' ) and hasattr(module._hf_hook , 'execution_device' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() def __call__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 5_12 , _SCREAMING_SNAKE_CASE = 5_12 , _SCREAMING_SNAKE_CASE = 50 , _SCREAMING_SNAKE_CASE = 7.5 , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = 1 , _SCREAMING_SNAKE_CASE = 0.0 , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = "pil" , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = 1 , **_SCREAMING_SNAKE_CASE , ): __lowerCAmelCase : List[str] = self.segmentation_processor( text=[text] , images=[image] , padding='max_length' , return_tensors='pt' ).to(self.device ) __lowerCAmelCase : int = self.segmentation_model(**_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : str = torch.sigmoid(outputs.logits ).cpu().detach().unsqueeze(-1 ).numpy() __lowerCAmelCase : Tuple = self.numpy_to_pil(_SCREAMING_SNAKE_CASE )[0].resize(image.size ) # Run inpainting pipeline with the generated mask __lowerCAmelCase : Optional[int] = StableDiffusionInpaintPipeline( vae=self.vae , text_encoder=self.text_encoder , tokenizer=self.tokenizer , unet=self.unet , scheduler=self.scheduler , safety_checker=self.safety_checker , feature_extractor=self.feature_extractor , ) return inpainting_pipeline( prompt=_SCREAMING_SNAKE_CASE , image=_SCREAMING_SNAKE_CASE , mask_image=_SCREAMING_SNAKE_CASE , height=_SCREAMING_SNAKE_CASE , width=_SCREAMING_SNAKE_CASE , num_inference_steps=_SCREAMING_SNAKE_CASE , guidance_scale=_SCREAMING_SNAKE_CASE , negative_prompt=_SCREAMING_SNAKE_CASE , num_images_per_prompt=_SCREAMING_SNAKE_CASE , eta=_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , latents=_SCREAMING_SNAKE_CASE , output_type=_SCREAMING_SNAKE_CASE , return_dict=_SCREAMING_SNAKE_CASE , callback=_SCREAMING_SNAKE_CASE , callback_steps=_SCREAMING_SNAKE_CASE , )
359
"""simple docstring""" import argparse import datetime import json import time import warnings from logging import getLogger from pathlib import Path from typing import Dict, List import torch from tqdm import tqdm from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from utils import calculate_bleu, calculate_rouge, chunks, parse_numeric_n_bool_cl_kwargs, use_task_specific_params lowerCamelCase__ = getLogger(__name__) lowerCamelCase__ = """cuda""" if torch.cuda.is_available() else """cpu""" def __lowerCAmelCase (_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = 8 , _UpperCamelCase = DEFAULT_DEVICE , _UpperCamelCase=False , _UpperCamelCase="summarization" , _UpperCamelCase=None , **_UpperCamelCase , ): __lowerCAmelCase : str = Path(_UpperCamelCase ).open('w' , encoding='utf-8' ) __lowerCAmelCase : Union[str, Any] = str(_UpperCamelCase ) __lowerCAmelCase : List[str] = AutoModelForSeqaSeqLM.from_pretrained(_UpperCamelCase ).to(_UpperCamelCase ) if fpaa: __lowerCAmelCase : Optional[Any] = model.half() __lowerCAmelCase : List[str] = AutoTokenizer.from_pretrained(_UpperCamelCase ) logger.info(F"Inferred tokenizer type: {tokenizer.__class__}" ) # if this is wrong, check config.model_type. __lowerCAmelCase : List[Any] = time.time() # update config with task specific params use_task_specific_params(_UpperCamelCase , _UpperCamelCase ) if prefix is None: __lowerCAmelCase : Optional[int] = prefix or getattr(model.config , 'prefix' , '' ) or '' for examples_chunk in tqdm(list(chunks(_UpperCamelCase , _UpperCamelCase ) ) ): __lowerCAmelCase : List[str] = [prefix + text for text in examples_chunk] __lowerCAmelCase : List[str] = tokenizer(_UpperCamelCase , return_tensors='pt' , truncation=_UpperCamelCase , padding='longest' ).to(_UpperCamelCase ) __lowerCAmelCase : str = model.generate( input_ids=batch.input_ids , attention_mask=batch.attention_mask , **_UpperCamelCase , ) __lowerCAmelCase : str = tokenizer.batch_decode(_UpperCamelCase , skip_special_tokens=_UpperCamelCase , clean_up_tokenization_spaces=_UpperCamelCase ) for hypothesis in dec: fout.write(hypothesis + '\n' ) fout.flush() fout.close() __lowerCAmelCase : Optional[int] = int(time.time() - start_time ) # seconds __lowerCAmelCase : List[Any] = len(_UpperCamelCase ) return {"n_obs": n_obs, "runtime": runtime, "seconds_per_sample": round(runtime / n_obs , 4 )} def __lowerCAmelCase (): return datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S' ) def __lowerCAmelCase (_UpperCamelCase=True ): __lowerCAmelCase : List[Any] = argparse.ArgumentParser() parser.add_argument('model_name' , type=_UpperCamelCase , help='like facebook/bart-large-cnn,t5-base, etc.' ) parser.add_argument('input_path' , type=_UpperCamelCase , help='like cnn_dm/test.source' ) parser.add_argument('save_path' , type=_UpperCamelCase , help='where to save summaries' ) parser.add_argument('--reference_path' , type=_UpperCamelCase , required=_UpperCamelCase , help='like cnn_dm/test.target' ) parser.add_argument('--score_path' , type=_UpperCamelCase , required=_UpperCamelCase , default='metrics.json' , help='where to save metrics' ) parser.add_argument('--device' , type=_UpperCamelCase , required=_UpperCamelCase , default=_UpperCamelCase , help='cuda, cuda:1, cpu etc.' ) parser.add_argument( '--prefix' , type=_UpperCamelCase , required=_UpperCamelCase , default=_UpperCamelCase , help='will be added to the begininng of src examples' ) parser.add_argument('--task' , type=_UpperCamelCase , default='summarization' , help='used for task_specific_params + metrics' ) parser.add_argument('--bs' , type=_UpperCamelCase , default=8 , required=_UpperCamelCase , help='batch size' ) parser.add_argument( '--n_obs' , type=_UpperCamelCase , default=-1 , required=_UpperCamelCase , help='How many observations. Defaults to all.' ) parser.add_argument('--fp16' , action='store_true' ) parser.add_argument('--dump-args' , action='store_true' , help='print the custom hparams with the results' ) parser.add_argument( '--info' , nargs='?' , type=_UpperCamelCase , const=datetime_now() , help=( 'use in conjunction w/ --dump-args to print with the results whatever other info you\'d like, e.g.' ' lang=en-ru. If no value is passed, the current datetime string will be used.' ) , ) # Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate __lowerCAmelCase , __lowerCAmelCase : Optional[int] = parser.parse_known_args() __lowerCAmelCase : Optional[int] = parse_numeric_n_bool_cl_kwargs(_UpperCamelCase ) if parsed_args and verbose: print(F"parsed the following generate kwargs: {parsed_args}" ) __lowerCAmelCase : Dict = [' ' + x.rstrip() if 't5' in args.model_name else x.rstrip() for x in open(args.input_path ).readlines()] if args.n_obs > 0: __lowerCAmelCase : int = examples[: args.n_obs] Path(args.save_path ).parent.mkdir(exist_ok=_UpperCamelCase ) if args.reference_path is None and Path(args.score_path ).exists(): warnings.warn(F"score_path {args.score_path} will be overwritten unless you type ctrl-c." ) if args.device == "cpu" and args.fpaa: # this mix leads to RuntimeError: "threshold_cpu" not implemented for 'Half' raise ValueError('Can\'t mix --fp16 and --device cpu' ) __lowerCAmelCase : Optional[Any] = generate_summaries_or_translations( _UpperCamelCase , args.save_path , args.model_name , batch_size=args.bs , device=args.device , fpaa=args.fpaa , task=args.task , prefix=args.prefix , **_UpperCamelCase , ) if args.reference_path is None: return {} # Compute scores __lowerCAmelCase : str = calculate_bleu if 'translation' in args.task else calculate_rouge __lowerCAmelCase : Dict = [x.rstrip() for x in open(args.save_path ).readlines()] __lowerCAmelCase : Dict = [x.rstrip() for x in open(args.reference_path ).readlines()][: len(_UpperCamelCase )] __lowerCAmelCase : dict = score_fn(_UpperCamelCase , _UpperCamelCase ) scores.update(_UpperCamelCase ) if args.dump_args: scores.update(_UpperCamelCase ) if args.info: __lowerCAmelCase : Optional[Any] = args.info if verbose: print(_UpperCamelCase ) if args.score_path is not None: json.dump(_UpperCamelCase , open(args.score_path , 'w' ) ) return scores if __name__ == "__main__": # Usage for MT: # python run_eval.py MODEL_NAME $DATA_DIR/test.source $save_dir/test_translations.txt --reference_path $DATA_DIR/test.target --score_path $save_dir/test_bleu.json --task translation $@ run_generate(verbose=True)
182
0
"""simple docstring""" import os # Precomputes a list of the 100 first triangular numbers lowerCamelCase_ : List[str] = [int(0.5 * n * (n + 1)) for n in range(1, 1_01)] def UpperCAmelCase__ ( ): """simple docstring""" A_ : Union[str, Any] = os.path.dirname(os.path.realpath(_UpperCAmelCase ) ) A_ : Tuple = os.path.join(_UpperCAmelCase , 'words.txt' ) A_ : List[Any] = '' with open(_UpperCAmelCase ) as f: A_ : int = f.readline() A_ : Optional[Any] = [word.strip('"' ) for word in words.strip('\r\n' ).split(',' )] A_ : Dict = [ word for word in [sum(ord(_UpperCAmelCase ) - 64 for x in word ) for word in words] if word in TRIANGULAR_NUMBERS ] return len(_UpperCAmelCase ) if __name__ == "__main__": print(solution())
286
"""simple docstring""" import os def UpperCAmelCase__ ( ): """simple docstring""" A_ : Any = os.path.join(os.path.dirname(_UpperCAmelCase ) , 'num.txt' ) with open(_UpperCAmelCase ) as file_hand: return str(sum(int(_UpperCAmelCase ) for line in file_hand ) )[:10] if __name__ == "__main__": print(solution())
286
1
"""simple docstring""" from __future__ import annotations from collections.abc import Iterator class __A : '''simple docstring''' def __init__( self : Any , UpperCAmelCase_ : int ) ->None: """simple docstring""" snake_case_ = value snake_case_ = None snake_case_ = None class __A : '''simple docstring''' def __init__( self : List[Any] , UpperCAmelCase_ : Node ) ->None: """simple docstring""" snake_case_ = tree def lowerCAmelCase ( self : List[str] , UpperCAmelCase_ : Node | None ) ->int: """simple docstring""" if node is None: return 0 return node.value + ( self.depth_first_search(node.left ) + self.depth_first_search(node.right ) ) def __iter__( self : str ) ->Iterator[int]: """simple docstring""" yield self.depth_first_search(self.tree ) if __name__ == "__main__": import doctest doctest.testmod()
364
"""simple docstring""" import secrets from random import shuffle from string import ascii_letters, ascii_lowercase, ascii_uppercase, digits, punctuation def _a ( _SCREAMING_SNAKE_CASE = 8 ) -> str: snake_case_ = ascii_letters + digits + punctuation return "".join(secrets.choice(_SCREAMING_SNAKE_CASE ) for _ in range(_SCREAMING_SNAKE_CASE ) ) def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> str: # Password Generator = full boot with random_number, random_letters, and # random_character FUNCTIONS # Put your code here... i -= len(_SCREAMING_SNAKE_CASE ) snake_case_ = i // 3 snake_case_ = i % 3 # chars = chars_incl + random_letters(ascii_letters, i / 3 + remainder) + # random_number(digits, i / 3) + random_characters(punctuation, i / 3) snake_case_ = ( chars_incl + random(_SCREAMING_SNAKE_CASE , quotient + remainder ) + random(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) + random(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) snake_case_ = list(_SCREAMING_SNAKE_CASE ) shuffle(_SCREAMING_SNAKE_CASE ) return "".join(_SCREAMING_SNAKE_CASE ) # random is a generalised function for letters, characters and numbers def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> str: return "".join(secrets.choice(_SCREAMING_SNAKE_CASE ) for _ in range(_SCREAMING_SNAKE_CASE ) ) def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Any: pass # Put your code here... def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[int]: pass # Put your code here... def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> List[Any]: pass # Put your code here... def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 8 ) -> bool: if len(_SCREAMING_SNAKE_CASE ) < min_length: # Your Password must be at least 8 characters long return False snake_case_ = any(char in ascii_uppercase for char in password ) snake_case_ = any(char in ascii_lowercase for char in password ) snake_case_ = any(char in digits for char in password ) snake_case_ = any(char in punctuation for char in password ) return upper and lower and num and spec_char # Passwords should contain UPPERCASE, lowerase # numbers, and special characters def _a ( ) -> Union[str, Any]: snake_case_ = int(input("""Please indicate the max length of your password: """ ).strip() ) snake_case_ = input( """Please indicate the characters that must be in your password: """ ).strip() print("""Password generated:""" , password_generator(_SCREAMING_SNAKE_CASE ) ) print( """Alternative Password generated:""" , alternative_password_generator(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , ) print("""[If you are thinking of using this passsword, You better save it.]""" ) if __name__ == "__main__": main()
233
0
import math def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : int) -> Any: '''simple docstring''' __UpperCamelCase : str = [True] * n __UpperCamelCase : List[str] = False __UpperCamelCase : Union[str, Any] = False __UpperCamelCase : Optional[Any] = True for i in range(3 , int(n**0.5 + 1) , 2): __UpperCamelCase : Tuple = i * 2 while index < n: __UpperCamelCase : List[str] = False __UpperCamelCase : Any = index + i __UpperCamelCase : Any = [2] for i in range(3 , __lowerCAmelCase , 2): if is_prime[i]: primes.append(__lowerCAmelCase) return primes def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : int = 999_966_663_333) -> Tuple: '''simple docstring''' __UpperCamelCase : Dict = math.floor(math.sqrt(__lowerCAmelCase)) + 100 __UpperCamelCase : List[str] = prime_sieve(__lowerCAmelCase) __UpperCamelCase : Dict = 0 __UpperCamelCase : Optional[int] = 0 __UpperCamelCase : Union[str, Any] = primes[prime_index] while (last_prime**2) <= limit: __UpperCamelCase : Tuple = primes[prime_index + 1] __UpperCamelCase : int = last_prime**2 __UpperCamelCase : Tuple = next_prime**2 # Get numbers divisible by lps(current) __UpperCamelCase : List[str] = lower_bound + last_prime while upper_bound > current <= limit: matches_sum += current current += last_prime # Reset the upper_bound while (upper_bound - next_prime) > limit: upper_bound -= next_prime # Add the numbers divisible by ups(current) __UpperCamelCase : Tuple = upper_bound - next_prime while current > lower_bound: matches_sum += current current -= next_prime # Remove the numbers divisible by both ups and lps __UpperCamelCase : Optional[Any] = 0 while upper_bound > current <= limit: if current <= lower_bound: # Increment the current number current += last_prime * next_prime continue if current > limit: break # Remove twice since it was added by both ups and lps matches_sum -= current * 2 # Increment the current number current += last_prime * next_prime # Setup for next pair __UpperCamelCase : List[Any] = next_prime prime_index += 1 return matches_sum if __name__ == "__main__": print(solution())
232
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, is_batched, to_numpy_array, valid_images, ) from ...utils import TensorType, logging snake_case : Union[str, Any] = logging.get_logger(__name__) class snake_case_ (lowerCamelCase_ ): UpperCAmelCase__ : List[Any] = ['''pixel_values'''] def __init__( self :Optional[int] ,__snake_case :bool = True ,__snake_case :Optional[Dict[str, int]] = None ,__snake_case :PILImageResampling = PILImageResampling.BICUBIC ,__snake_case :bool = True ,__snake_case :bool = True ,__snake_case :Union[int, float] = 1 / 2_55 ,__snake_case :Dict[str, int] = None ,__snake_case :bool = True ,__snake_case :Optional[Union[float, List[float]]] = None ,__snake_case :Optional[Union[float, List[float]]] = None ,**__snake_case :Dict ,) -> None: super().__init__(**__snake_case ) a__ = size if size is not None else {'height': 2_24, 'width': 2_24} a__ = get_size_dict(__snake_case ) a__ = crop_size if crop_size is not None else {'height': 2_24, 'width': 2_24} a__ = get_size_dict(__snake_case ,default_to_square=__snake_case ,param_name='crop_size' ) a__ = do_resize a__ = do_rescale a__ = do_normalize a__ = do_center_crop a__ = crop_size a__ = size a__ = resample a__ = rescale_factor a__ = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN a__ = image_std if image_std is not None else IMAGENET_DEFAULT_STD def lowerCamelCase__( self :Dict ,__snake_case :np.ndarray ,__snake_case :Dict[str, int] ,__snake_case :PILImageResampling = PILImageResampling.BILINEAR ,__snake_case :Optional[Union[str, ChannelDimension]] = None ,**__snake_case :List[Any] ,) -> np.ndarray: a__ = get_size_dict(__snake_case ) if "shortest_edge" in size: a__ = get_resize_output_image_size(__snake_case ,size=size['shortest_edge'] ,default_to_square=__snake_case ) # size = get_resize_output_image_size(image, size["shortest_edge"], size["longest_edge"]) elif "height" in size and "width" in size: a__ = (size['height'], size['width']) else: raise ValueError(F'Size must contain \'height\' and \'width\' keys or \'shortest_edge\' key. Got {size.keys()}' ) return resize(__snake_case ,size=__snake_case ,resample=__snake_case ,data_format=__snake_case ,**__snake_case ) def lowerCamelCase__( self :Dict ,__snake_case :np.ndarray ,__snake_case :Dict[str, int] ,__snake_case :Optional[Union[str, ChannelDimension]] = None ,**__snake_case :Any ,) -> np.ndarray: a__ = get_size_dict(__snake_case ) if "height" not in size or "width" not in size: raise ValueError(F'The `size` parameter must contain the keys (height, width). Got {size.keys()}' ) return center_crop(__snake_case ,size=(size['height'], size['width']) ,data_format=__snake_case ,**__snake_case ) def lowerCamelCase__( self :List[Any] ,__snake_case :np.ndarray ,__snake_case :float ,__snake_case :Optional[Union[str, ChannelDimension]] = None ,**__snake_case :int ) -> np.ndarray: return rescale(__snake_case ,scale=__snake_case ,data_format=__snake_case ,**__snake_case ) def lowerCamelCase__( self :Tuple ,__snake_case :np.ndarray ,__snake_case :Union[float, List[float]] ,__snake_case :Union[float, List[float]] ,__snake_case :Optional[Union[str, ChannelDimension]] = None ,**__snake_case :Any ,) -> np.ndarray: return normalize(__snake_case ,mean=__snake_case ,std=__snake_case ,data_format=__snake_case ,**__snake_case ) def lowerCamelCase__( self :Any ,__snake_case :ImageInput ,__snake_case :Optional[bool] = None ,__snake_case :Dict[str, int] = None ,__snake_case :PILImageResampling = None ,__snake_case :bool = None ,__snake_case :int = None ,__snake_case :Optional[bool] = None ,__snake_case :Optional[float] = None ,__snake_case :Optional[bool] = None ,__snake_case :Optional[Union[float, List[float]]] = None ,__snake_case :Optional[Union[float, List[float]]] = None ,__snake_case :Optional[Union[str, TensorType]] = None ,__snake_case :Union[str, ChannelDimension] = ChannelDimension.FIRST ,**__snake_case :Optional[int] ,) -> BatchFeature: a__ = do_resize if do_resize is not None else self.do_resize a__ = do_rescale if do_rescale is not None else self.do_rescale a__ = do_normalize if do_normalize is not None else self.do_normalize a__ = do_center_crop if do_center_crop is not None else self.do_center_crop a__ = crop_size if crop_size is not None else self.crop_size a__ = get_size_dict(__snake_case ,param_name='crop_size' ,default_to_square=__snake_case ) a__ = resample if resample is not None else self.resample a__ = rescale_factor if rescale_factor is not None else self.rescale_factor a__ = image_mean if image_mean is not None else self.image_mean a__ = image_std if image_std is not None else self.image_std a__ = size if size is not None else self.size a__ = get_size_dict(__snake_case ) if not is_batched(__snake_case ): a__ = [images] if not valid_images(__snake_case ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) # All transformations expect numpy arrays. a__ = [to_numpy_array(__snake_case ) for image in images] if do_resize: a__ = [self.resize(image=__snake_case ,size=__snake_case ,resample=__snake_case ) for image in images] if do_center_crop: a__ = [self.center_crop(image=__snake_case ,size=__snake_case ) for image in images] if do_rescale: a__ = [self.rescale(image=__snake_case ,scale=__snake_case ) for image in images] if do_normalize: a__ = [self.normalize(image=__snake_case ,mean=__snake_case ,std=__snake_case ) for image in images] a__ = [to_channel_dimension_format(__snake_case ,__snake_case ) for image in images] a__ = {'pixel_values': images} return BatchFeature(data=__snake_case ,tensor_type=__snake_case )
240
0
import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_torch_available from transformers.testing_utils import require_torch, torch_device if is_torch_available(): from transformers import PyTorchBenchmark, PyTorchBenchmarkArguments @require_torch class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" def __lowerCamelCase ( self , __UpperCamelCase ) -> Tuple: '''simple docstring''' for model_result in results.values(): for batch_size, sequence_length in zip(model_result["bs"] , model_result["ss"] ): __UpperCamelCase : Union[str, Any] = model_result["result"][batch_size][sequence_length] self.assertIsNotNone(__UpperCamelCase ) def __lowerCamelCase ( self ) -> Optional[int]: '''simple docstring''' __UpperCamelCase : Tuple = "sshleifer/tiny-gpt2" __UpperCamelCase : str = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__UpperCamelCase , inference=__UpperCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__UpperCamelCase , ) __UpperCamelCase : int = PyTorchBenchmark(__UpperCamelCase ) __UpperCamelCase : Dict = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __lowerCamelCase ( self ) -> Dict: '''simple docstring''' __UpperCamelCase : List[str] = "sgugger/tiny-distilbert-classification" __UpperCamelCase : Any = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__UpperCamelCase , inference=__UpperCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__UpperCamelCase , only_pretrain_model=__UpperCamelCase , ) __UpperCamelCase : Dict = PyTorchBenchmark(__UpperCamelCase ) __UpperCamelCase : List[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __lowerCamelCase ( self ) -> Optional[int]: '''simple docstring''' __UpperCamelCase : Union[str, Any] = "sshleifer/tiny-gpt2" __UpperCamelCase : List[Any] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__UpperCamelCase , inference=__UpperCamelCase , torchscript=__UpperCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__UpperCamelCase , ) __UpperCamelCase : int = PyTorchBenchmark(__UpperCamelCase ) __UpperCamelCase : List[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(torch_device == "cpu" , "Cant do half precision" ) def __lowerCamelCase ( self ) -> List[Any]: '''simple docstring''' __UpperCamelCase : Any = "sshleifer/tiny-gpt2" __UpperCamelCase : Optional[Any] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__UpperCamelCase , inference=__UpperCamelCase , fpaa=__UpperCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__UpperCamelCase , ) __UpperCamelCase : Dict = PyTorchBenchmark(__UpperCamelCase ) __UpperCamelCase : str = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __lowerCamelCase ( self ) -> int: '''simple docstring''' __UpperCamelCase : Union[str, Any] = "sshleifer/tiny-gpt2" __UpperCamelCase : List[Any] = AutoConfig.from_pretrained(__UpperCamelCase ) # set architectures equal to `None` __UpperCamelCase : Union[str, Any] = None __UpperCamelCase : Optional[Any] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__UpperCamelCase , inference=__UpperCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__UpperCamelCase , ) __UpperCamelCase : Union[str, Any] = PyTorchBenchmark(__UpperCamelCase , configs=[config] ) __UpperCamelCase : List[str] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __lowerCamelCase ( self ) -> int: '''simple docstring''' __UpperCamelCase : Tuple = "sshleifer/tiny-gpt2" __UpperCamelCase : Tuple = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__UpperCamelCase , inference=__UpperCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__UpperCamelCase , ) __UpperCamelCase : str = PyTorchBenchmark(__UpperCamelCase ) __UpperCamelCase : Union[str, Any] = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) @unittest.skipIf(torch_device == "cpu" , "Can't do half precision" ) def __lowerCamelCase ( self ) -> Union[str, Any]: '''simple docstring''' __UpperCamelCase : int = "sshleifer/tiny-gpt2" __UpperCamelCase : Optional[int] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__UpperCamelCase , inference=__UpperCamelCase , sequence_lengths=[8] , batch_sizes=[1] , fpaa=__UpperCamelCase , multi_process=__UpperCamelCase , ) __UpperCamelCase : int = PyTorchBenchmark(__UpperCamelCase ) __UpperCamelCase : Union[str, Any] = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def __lowerCamelCase ( self ) -> List[Any]: '''simple docstring''' __UpperCamelCase : Dict = "sshleifer/tiny-gpt2" __UpperCamelCase : Optional[Any] = AutoConfig.from_pretrained(__UpperCamelCase ) __UpperCamelCase : str = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__UpperCamelCase , inference=__UpperCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__UpperCamelCase , ) __UpperCamelCase : Union[str, Any] = PyTorchBenchmark(__UpperCamelCase , configs=[config] ) __UpperCamelCase : Any = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __lowerCamelCase ( self ) -> Any: '''simple docstring''' __UpperCamelCase : List[str] = "sshleifer/tinier_bart" __UpperCamelCase : str = AutoConfig.from_pretrained(__UpperCamelCase ) __UpperCamelCase : int = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__UpperCamelCase , inference=__UpperCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__UpperCamelCase , ) __UpperCamelCase : Tuple = PyTorchBenchmark(__UpperCamelCase , configs=[config] ) __UpperCamelCase : Union[str, Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __lowerCamelCase ( self ) -> List[Any]: '''simple docstring''' __UpperCamelCase : int = "sshleifer/tiny-gpt2" __UpperCamelCase : Union[str, Any] = AutoConfig.from_pretrained(__UpperCamelCase ) __UpperCamelCase : str = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__UpperCamelCase , inference=__UpperCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__UpperCamelCase , ) __UpperCamelCase : Optional[int] = PyTorchBenchmark(__UpperCamelCase , configs=[config] ) __UpperCamelCase : List[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def __lowerCamelCase ( self ) -> Union[str, Any]: '''simple docstring''' __UpperCamelCase : Optional[Any] = "sshleifer/tinier_bart" __UpperCamelCase : Optional[int] = AutoConfig.from_pretrained(__UpperCamelCase ) __UpperCamelCase : Optional[Any] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__UpperCamelCase , inference=__UpperCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__UpperCamelCase , ) __UpperCamelCase : Optional[Any] = PyTorchBenchmark(__UpperCamelCase , configs=[config] ) __UpperCamelCase : str = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def __lowerCamelCase ( self ) -> Tuple: '''simple docstring''' __UpperCamelCase : Union[str, Any] = "sshleifer/tiny-gpt2" with tempfile.TemporaryDirectory() as tmp_dir: __UpperCamelCase : Union[str, Any] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__UpperCamelCase , inference=__UpperCamelCase , save_to_csv=__UpperCamelCase , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(__UpperCamelCase , "inf_time.csv" ) , train_memory_csv_file=os.path.join(__UpperCamelCase , "train_mem.csv" ) , inference_memory_csv_file=os.path.join(__UpperCamelCase , "inf_mem.csv" ) , train_time_csv_file=os.path.join(__UpperCamelCase , "train_time.csv" ) , env_info_csv_file=os.path.join(__UpperCamelCase , "env.csv" ) , multi_process=__UpperCamelCase , ) __UpperCamelCase : Any = PyTorchBenchmark(__UpperCamelCase ) benchmark.run() self.assertTrue(Path(os.path.join(__UpperCamelCase , "inf_time.csv" ) ).exists() ) self.assertTrue(Path(os.path.join(__UpperCamelCase , "train_time.csv" ) ).exists() ) self.assertTrue(Path(os.path.join(__UpperCamelCase , "inf_mem.csv" ) ).exists() ) self.assertTrue(Path(os.path.join(__UpperCamelCase , "train_mem.csv" ) ).exists() ) self.assertTrue(Path(os.path.join(__UpperCamelCase , "env.csv" ) ).exists() ) def __lowerCamelCase ( self ) -> Optional[Any]: '''simple docstring''' __UpperCamelCase : Optional[Any] = "sshleifer/tiny-gpt2" def _check_summary_is_not_empty(__UpperCamelCase ): self.assertTrue(hasattr(__UpperCamelCase , "sequential" ) ) self.assertTrue(hasattr(__UpperCamelCase , "cumulative" ) ) self.assertTrue(hasattr(__UpperCamelCase , "current" ) ) self.assertTrue(hasattr(__UpperCamelCase , "total" ) ) with tempfile.TemporaryDirectory() as tmp_dir: __UpperCamelCase : int = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__UpperCamelCase , inference=__UpperCamelCase , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(__UpperCamelCase , "log.txt" ) , log_print=__UpperCamelCase , trace_memory_line_by_line=__UpperCamelCase , multi_process=__UpperCamelCase , ) __UpperCamelCase : Optional[int] = PyTorchBenchmark(__UpperCamelCase ) __UpperCamelCase : str = benchmark.run() _check_summary_is_not_empty(result.inference_summary ) _check_summary_is_not_empty(result.train_summary ) self.assertTrue(Path(os.path.join(__UpperCamelCase , "log.txt" ) ).exists() )
171
from .constants import ( MODEL_NAME, OPTIMIZER_NAME, RNG_STATE_NAME, SAFE_WEIGHTS_INDEX_NAME, SAFE_WEIGHTS_NAME, SCALER_NAME, SCHEDULER_NAME, TORCH_LAUNCH_PARAMS, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ) from .dataclasses import ( BnbQuantizationConfig, ComputeEnvironment, CustomDtype, DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, DynamoBackend, FPaRecipeKwargs, FullyShardedDataParallelPlugin, GradientAccumulationPlugin, GradScalerKwargs, InitProcessGroupKwargs, KwargsHandler, LoggerType, MegatronLMPlugin, PrecisionType, ProjectConfiguration, RNGType, SageMakerDistributedType, TensorInformation, TorchDynamoPlugin, ) from .environment import get_int_from_env, parse_choice_from_env, parse_flag_from_env from .imports import ( get_ccl_version, is_abit_bnb_available, is_abit_bnb_available, is_aim_available, is_bfaa_available, is_bnb_available, is_botoa_available, is_ccl_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_fpa_available, is_ipex_available, is_megatron_lm_available, is_mlflow_available, is_mps_available, is_npu_available, is_rich_available, is_safetensors_available, is_sagemaker_available, is_tensorboard_available, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) from .modeling import ( check_device_map, check_tied_parameters_in_config, check_tied_parameters_on_same_device, compute_module_sizes, convert_file_size_to_int, dtype_byte_size, find_tied_parameters, get_balanced_memory, get_max_layer_size, get_max_memory, get_mixed_precision_context_manager, id_tensor_storage, infer_auto_device_map, load_checkpoint_in_model, load_offloaded_weights, load_state_dict, named_module_tensors, retie_parameters, set_module_tensor_to_device, shard_checkpoint, ) from .offload import ( OffloadedWeightsLoader, PrefixedDataset, extract_submodules_state_dict, load_offloaded_weight, offload_state_dict, offload_weight, save_offload_index, ) from .operations import ( broadcast, broadcast_object_list, concatenate, convert_outputs_to_fpaa, convert_to_fpaa, find_batch_size, find_device, gather, gather_object, get_data_structure, honor_type, initialize_tensors, is_namedtuple, is_tensor_information, is_torch_tensor, listify, pad_across_processes, recursively_apply, reduce, send_to_device, slice_tensors, ) from .versions import compare_versions, is_torch_version if is_deepspeed_available(): from .deepspeed import ( DeepSpeedEngineWrapper, DeepSpeedOptimizerWrapper, DeepSpeedSchedulerWrapper, DummyOptim, DummyScheduler, HfDeepSpeedConfig, ) from .bnb import has_abit_bnb_layers, load_and_quantize_model from .fsdp_utils import load_fsdp_model, load_fsdp_optimizer, save_fsdp_model, save_fsdp_optimizer from .launch import ( PrepareForLaunch, _filter_args, prepare_deepspeed_cmd_env, prepare_multi_gpu_env, prepare_sagemager_args_inputs, prepare_simple_launcher_cmd_env, prepare_tpu, ) from .megatron_lm import ( AbstractTrainStep, BertTrainStep, GPTTrainStep, MegatronEngine, MegatronLMDummyDataLoader, MegatronLMDummyScheduler, MegatronLMOptimizerWrapper, MegatronLMSchedulerWrapper, TaTrainStep, avg_losses_across_data_parallel_group, gather_across_data_parallel_groups, ) from .megatron_lm import initialize as megatron_lm_initialize from .megatron_lm import prepare_data_loader as megatron_lm_prepare_data_loader from .megatron_lm import prepare_model as megatron_lm_prepare_model from .megatron_lm import prepare_optimizer as megatron_lm_prepare_optimizer from .megatron_lm import prepare_scheduler as megatron_lm_prepare_scheduler from .memory import find_executable_batch_size, release_memory from .other import ( extract_model_from_parallel, get_pretty_name, is_port_in_use, merge_dicts, patch_environment, save, wait_for_everyone, write_basic_config, ) from .random import set_seed, synchronize_rng_state, synchronize_rng_states from .torch_xla import install_xla from .tqdm import tqdm from .transformer_engine import convert_model, has_transformer_engine_layers
171
1
import argparse import os.path as osp import re import torch from safetensors.torch import load_file, save_file # =================# # UNet Conversion # # =================# lowercase__ : Union[str, Any] = [ # (stable-diffusion, HF Diffusers) ('''time_embed.0.weight''', '''time_embedding.linear_1.weight'''), ('''time_embed.0.bias''', '''time_embedding.linear_1.bias'''), ('''time_embed.2.weight''', '''time_embedding.linear_2.weight'''), ('''time_embed.2.bias''', '''time_embedding.linear_2.bias'''), ('''input_blocks.0.0.weight''', '''conv_in.weight'''), ('''input_blocks.0.0.bias''', '''conv_in.bias'''), ('''out.0.weight''', '''conv_norm_out.weight'''), ('''out.0.bias''', '''conv_norm_out.bias'''), ('''out.2.weight''', '''conv_out.weight'''), ('''out.2.bias''', '''conv_out.bias'''), ] lowercase__ : int = [ # (stable-diffusion, HF Diffusers) ('''in_layers.0''', '''norm1'''), ('''in_layers.2''', '''conv1'''), ('''out_layers.0''', '''norm2'''), ('''out_layers.3''', '''conv2'''), ('''emb_layers.1''', '''time_emb_proj'''), ('''skip_connection''', '''conv_shortcut'''), ] lowercase__ : Union[str, Any] = [] # hardcoded number of downblocks and resnets/attentions... # would need smarter logic for other networks. for i in range(4): # loop over downblocks/upblocks for j in range(2): # loop over resnets/attentions for downblocks lowercase__ : Dict = f'''down_blocks.{i}.resnets.{j}.''' lowercase__ : List[Any] = f'''input_blocks.{3*i + j + 1}.0.''' unet_conversion_map_layer.append((sd_down_res_prefix, hf_down_res_prefix)) if i < 3: # no attention layers in down_blocks.3 lowercase__ : Optional[int] = f'''down_blocks.{i}.attentions.{j}.''' lowercase__ : str = f'''input_blocks.{3*i + j + 1}.1.''' unet_conversion_map_layer.append((sd_down_atn_prefix, hf_down_atn_prefix)) for j in range(3): # loop over resnets/attentions for upblocks lowercase__ : Any = f'''up_blocks.{i}.resnets.{j}.''' lowercase__ : Dict = f'''output_blocks.{3*i + j}.0.''' unet_conversion_map_layer.append((sd_up_res_prefix, hf_up_res_prefix)) if i > 0: # no attention layers in up_blocks.0 lowercase__ : Union[str, Any] = f'''up_blocks.{i}.attentions.{j}.''' lowercase__ : Optional[Any] = f'''output_blocks.{3*i + j}.1.''' unet_conversion_map_layer.append((sd_up_atn_prefix, hf_up_atn_prefix)) if i < 3: # no downsample in down_blocks.3 lowercase__ : str = f'''down_blocks.{i}.downsamplers.0.conv.''' lowercase__ : int = f'''input_blocks.{3*(i+1)}.0.op.''' unet_conversion_map_layer.append((sd_downsample_prefix, hf_downsample_prefix)) # no upsample in up_blocks.3 lowercase__ : Optional[Any] = f'''up_blocks.{i}.upsamplers.0.''' lowercase__ : Union[str, Any] = f'''output_blocks.{3*i + 2}.{1 if i == 0 else 2}.''' unet_conversion_map_layer.append((sd_upsample_prefix, hf_upsample_prefix)) lowercase__ : int = '''mid_block.attentions.0.''' lowercase__ : Any = '''middle_block.1.''' unet_conversion_map_layer.append((sd_mid_atn_prefix, hf_mid_atn_prefix)) for j in range(2): lowercase__ : Tuple = f'''mid_block.resnets.{j}.''' lowercase__ : Optional[Any] = f'''middle_block.{2*j}.''' unet_conversion_map_layer.append((sd_mid_res_prefix, hf_mid_res_prefix)) def lowerCamelCase__ ( _A ): '''simple docstring''' snake_case_ = {k: k for k in unet_state_dict.keys()} for sd_name, hf_name in unet_conversion_map: snake_case_ = sd_name for k, v in mapping.items(): if "resnets" in k: for sd_part, hf_part in unet_conversion_map_resnet: snake_case_ = v.replace(A_ , A_ ) snake_case_ = v for k, v in mapping.items(): for sd_part, hf_part in unet_conversion_map_layer: snake_case_ = v.replace(A_ , A_ ) snake_case_ = v snake_case_ = {v: unet_state_dict[k] for k, v in mapping.items()} return new_state_dict # ================# # VAE Conversion # # ================# lowercase__ : Any = [ # (stable-diffusion, HF Diffusers) ('''nin_shortcut''', '''conv_shortcut'''), ('''norm_out''', '''conv_norm_out'''), ('''mid.attn_1.''', '''mid_block.attentions.0.'''), ] for i in range(4): # down_blocks have two resnets for j in range(2): lowercase__ : Optional[Any] = f'''encoder.down_blocks.{i}.resnets.{j}.''' lowercase__ : Tuple = f'''encoder.down.{i}.block.{j}.''' vae_conversion_map.append((sd_down_prefix, hf_down_prefix)) if i < 3: lowercase__ : Union[str, Any] = f'''down_blocks.{i}.downsamplers.0.''' lowercase__ : Any = f'''down.{i}.downsample.''' vae_conversion_map.append((sd_downsample_prefix, hf_downsample_prefix)) lowercase__ : Dict = f'''up_blocks.{i}.upsamplers.0.''' lowercase__ : str = f'''up.{3-i}.upsample.''' vae_conversion_map.append((sd_upsample_prefix, hf_upsample_prefix)) # up_blocks have three resnets # also, up blocks in hf are numbered in reverse from sd for j in range(3): lowercase__ : List[str] = f'''decoder.up_blocks.{i}.resnets.{j}.''' lowercase__ : List[str] = f'''decoder.up.{3-i}.block.{j}.''' vae_conversion_map.append((sd_up_prefix, hf_up_prefix)) # this part accounts for mid blocks in both the encoder and the decoder for i in range(2): lowercase__ : List[str] = f'''mid_block.resnets.{i}.''' lowercase__ : List[Any] = f'''mid.block_{i+1}.''' vae_conversion_map.append((sd_mid_res_prefix, hf_mid_res_prefix)) lowercase__ : Optional[int] = [ # (stable-diffusion, HF Diffusers) ('''norm.''', '''group_norm.'''), ('''q.''', '''query.'''), ('''k.''', '''key.'''), ('''v.''', '''value.'''), ('''proj_out.''', '''proj_attn.'''), ] def lowerCamelCase__ ( _A ): '''simple docstring''' return w.reshape(*w.shape , 1 , 1 ) def lowerCamelCase__ ( _A ): '''simple docstring''' snake_case_ = {k: k for k in vae_state_dict.keys()} for k, v in mapping.items(): for sd_part, hf_part in vae_conversion_map: snake_case_ = v.replace(A_ , A_ ) snake_case_ = v for k, v in mapping.items(): if "attentions" in k: for sd_part, hf_part in vae_conversion_map_attn: snake_case_ = v.replace(A_ , A_ ) snake_case_ = v snake_case_ = {v: vae_state_dict[k] for k, v in mapping.items()} snake_case_ = ['''q''', '''k''', '''v''', '''proj_out'''] for k, v in new_state_dict.items(): for weight_name in weights_to_convert: if f"mid.attn_1.{weight_name}.weight" in k: print(f"Reshaping {k} for SD format" ) snake_case_ = reshape_weight_for_sd(A_ ) return new_state_dict # =========================# # Text Encoder Conversion # # =========================# lowercase__ : int = [ # (stable-diffusion, HF Diffusers) ('''resblocks.''', '''text_model.encoder.layers.'''), ('''ln_1''', '''layer_norm1'''), ('''ln_2''', '''layer_norm2'''), ('''.c_fc.''', '''.fc1.'''), ('''.c_proj.''', '''.fc2.'''), ('''.attn''', '''.self_attn'''), ('''ln_final.''', '''transformer.text_model.final_layer_norm.'''), ('''token_embedding.weight''', '''transformer.text_model.embeddings.token_embedding.weight'''), ('''positional_embedding''', '''transformer.text_model.embeddings.position_embedding.weight'''), ] lowercase__ : List[str] = {re.escape(x[1]): x[0] for x in textenc_conversion_lst} lowercase__ : int = re.compile("|".join(protected.keys())) # Ordering is from https://github.com/pytorch/pytorch/blob/master/test/cpp/api/modules.cpp lowercase__ : Union[str, Any] = {'''q''': 0, '''k''': 1, '''v''': 2} def lowerCamelCase__ ( _A ): '''simple docstring''' snake_case_ = {} snake_case_ = {} snake_case_ = {} for k, v in text_enc_dict.items(): if ( k.endswith(".self_attn.q_proj.weight" ) or k.endswith(".self_attn.k_proj.weight" ) or k.endswith(".self_attn.v_proj.weight" ) ): snake_case_ = k[: -len(".q_proj.weight" )] snake_case_ = k[-len("q_proj.weight" )] if k_pre not in capture_qkv_weight: snake_case_ = [None, None, None] snake_case_ = v continue if ( k.endswith(".self_attn.q_proj.bias" ) or k.endswith(".self_attn.k_proj.bias" ) or k.endswith(".self_attn.v_proj.bias" ) ): snake_case_ = k[: -len(".q_proj.bias" )] snake_case_ = k[-len("q_proj.bias" )] if k_pre not in capture_qkv_bias: snake_case_ = [None, None, None] snake_case_ = v continue snake_case_ = textenc_pattern.sub(lambda _A : protected[re.escape(m.group(0 ) )] , A_ ) snake_case_ = v for k_pre, tensors in capture_qkv_weight.items(): if None in tensors: raise Exception("CORRUPTED MODEL: one of the q-k-v values for the text encoder was missing" ) snake_case_ = textenc_pattern.sub(lambda _A : protected[re.escape(m.group(0 ) )] , A_ ) snake_case_ = torch.cat(A_ ) for k_pre, tensors in capture_qkv_bias.items(): if None in tensors: raise Exception("CORRUPTED MODEL: one of the q-k-v values for the text encoder was missing" ) snake_case_ = textenc_pattern.sub(lambda _A : protected[re.escape(m.group(0 ) )] , A_ ) snake_case_ = torch.cat(A_ ) return new_state_dict def lowerCamelCase__ ( _A ): '''simple docstring''' return text_enc_dict if __name__ == "__main__": lowercase__ : List[str] = argparse.ArgumentParser() parser.add_argument("--model_path", default=None, type=str, required=True, help="Path to the model to convert.") parser.add_argument("--checkpoint_path", default=None, type=str, required=True, help="Path to the output model.") parser.add_argument("--half", action="store_true", help="Save weights in half precision.") parser.add_argument( "--use_safetensors", action="store_true", help="Save weights use safetensors, default is ckpt." ) lowercase__ : Dict = parser.parse_args() assert args.model_path is not None, "Must provide a model path!" assert args.checkpoint_path is not None, "Must provide a checkpoint path!" # Path for safetensors lowercase__ : Optional[int] = osp.join(args.model_path, "unet", "diffusion_pytorch_model.safetensors") lowercase__ : Dict = osp.join(args.model_path, "vae", "diffusion_pytorch_model.safetensors") lowercase__ : Optional[int] = osp.join(args.model_path, "text_encoder", "model.safetensors") # Load models from safetensors if it exists, if it doesn't pytorch if osp.exists(unet_path): lowercase__ : str = load_file(unet_path, device="cpu") else: lowercase__ : Any = osp.join(args.model_path, "unet", "diffusion_pytorch_model.bin") lowercase__ : List[Any] = torch.load(unet_path, map_location="cpu") if osp.exists(vae_path): lowercase__ : Dict = load_file(vae_path, device="cpu") else: lowercase__ : Union[str, Any] = osp.join(args.model_path, "vae", "diffusion_pytorch_model.bin") lowercase__ : Optional[int] = torch.load(vae_path, map_location="cpu") if osp.exists(text_enc_path): lowercase__ : str = load_file(text_enc_path, device="cpu") else: lowercase__ : Optional[Any] = osp.join(args.model_path, "text_encoder", "pytorch_model.bin") lowercase__ : Tuple = torch.load(text_enc_path, map_location="cpu") # Convert the UNet model lowercase__ : Optional[Any] = convert_unet_state_dict(unet_state_dict) lowercase__ : List[str] = {'''model.diffusion_model.''' + k: v for k, v in unet_state_dict.items()} # Convert the VAE model lowercase__ : Optional[Any] = convert_vae_state_dict(vae_state_dict) lowercase__ : str = {'''first_stage_model.''' + k: v for k, v in vae_state_dict.items()} # Easiest way to identify v2.0 model seems to be that the text encoder (OpenCLIP) is deeper lowercase__ : Dict = '''text_model.encoder.layers.22.layer_norm2.bias''' in text_enc_dict if is_vaa_model: # Need to add the tag 'transformer' in advance so we can knock it out from the final layer-norm lowercase__ : int = {'''transformer.''' + k: v for k, v in text_enc_dict.items()} lowercase__ : Any = convert_text_enc_state_dict_vaa(text_enc_dict) lowercase__ : Optional[Any] = {'''cond_stage_model.model.''' + k: v for k, v in text_enc_dict.items()} else: lowercase__ : str = convert_text_enc_state_dict(text_enc_dict) lowercase__ : Optional[int] = {'''cond_stage_model.transformer.''' + k: v for k, v in text_enc_dict.items()} # Put together new checkpoint lowercase__ : Dict = {**unet_state_dict, **vae_state_dict, **text_enc_dict} if args.half: lowercase__ : Dict = {k: v.half() for k, v in state_dict.items()} if args.use_safetensors: save_file(state_dict, args.checkpoint_path) else: lowercase__ : int = {'''state_dict''': state_dict} torch.save(state_dict, args.checkpoint_path)
187
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available __UpperCamelCase : Optional[Any] = { '''configuration_rag''': ['''RagConfig'''], '''retrieval_rag''': ['''RagRetriever'''], '''tokenization_rag''': ['''RagTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Tuple = [ '''RagModel''', '''RagPreTrainedModel''', '''RagSequenceForGeneration''', '''RagTokenForGeneration''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Union[str, Any] = [ '''TFRagModel''', '''TFRagPreTrainedModel''', '''TFRagSequenceForGeneration''', '''TFRagTokenForGeneration''', ] if TYPE_CHECKING: from .configuration_rag import RagConfig from .retrieval_rag import RagRetriever from .tokenization_rag import RagTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_rag import RagModel, RagPreTrainedModel, RagSequenceForGeneration, RagTokenForGeneration try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_rag import ( TFRagModel, TFRagPreTrainedModel, TFRagSequenceForGeneration, TFRagTokenForGeneration, ) else: import sys __UpperCamelCase : Dict = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
106
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _lowerCamelCase : Dict = { '''configuration_roc_bert''': ['''ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''RoCBertConfig'''], '''tokenization_roc_bert''': ['''RoCBertTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: pass try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Dict = [ '''ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''RoCBertForCausalLM''', '''RoCBertForMaskedLM''', '''RoCBertForMultipleChoice''', '''RoCBertForPreTraining''', '''RoCBertForQuestionAnswering''', '''RoCBertForSequenceClassification''', '''RoCBertForTokenClassification''', '''RoCBertLayer''', '''RoCBertModel''', '''RoCBertPreTrainedModel''', '''load_tf_weights_in_roc_bert''', ] if TYPE_CHECKING: from .configuration_roc_bert import ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RoCBertConfig from .tokenization_roc_bert import RoCBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: raise OptionalDependencyNotAvailable() try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roc_bert import ( ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, RoCBertForCausalLM, RoCBertForMaskedLM, RoCBertForMultipleChoice, RoCBertForPreTraining, RoCBertForQuestionAnswering, RoCBertForSequenceClassification, RoCBertForTokenClassification, RoCBertLayer, RoCBertModel, RoCBertPreTrainedModel, load_tf_weights_in_roc_bert, ) else: import sys _lowerCamelCase : List[str] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
206
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import FEATURE_EXTRACTOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import ChineseCLIPImageProcessor, ChineseCLIPProcessor @require_vision class lowercase ( unittest.TestCase ): def __snake_case( self : Tuple ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE = tempfile.mkdtemp() SCREAMING_SNAKE_CASE = [ "[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "的", "价", "格", "是", "15", "便", "alex", "##andra", ",", "。", "-", "t", "shirt", ] SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) SCREAMING_SNAKE_CASE = { "do_resize": True, "size": {"height": 224, "width": 224}, "do_center_crop": True, "crop_size": {"height": 18, "width": 18}, "do_normalize": True, "image_mean": [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3], "image_std": [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1], "do_convert_rgb": True, } SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname , _UpperCamelCase ) with open(self.image_processor_file , "w" , encoding="utf-8" ) as fp: json.dump(_UpperCamelCase , _UpperCamelCase ) def __snake_case( self : Union[str, Any] , **_UpperCamelCase : str ) -> int: '''simple docstring''' return BertTokenizer.from_pretrained(self.tmpdirname , **_UpperCamelCase ) def __snake_case( self : List[str] , **_UpperCamelCase : Tuple ) -> str: '''simple docstring''' return BertTokenizerFast.from_pretrained(self.tmpdirname , **_UpperCamelCase ) def __snake_case( self : List[Any] , **_UpperCamelCase : Optional[Any] ) -> Any: '''simple docstring''' return ChineseCLIPImageProcessor.from_pretrained(self.tmpdirname , **_UpperCamelCase ) def __snake_case( self : Optional[Any] ) -> int: '''simple docstring''' shutil.rmtree(self.tmpdirname ) def __snake_case( self : Dict ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] SCREAMING_SNAKE_CASE = [Image.fromarray(np.moveaxis(_UpperCamelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def __snake_case( self : List[str] ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE = self.get_tokenizer() SCREAMING_SNAKE_CASE = self.get_rust_tokenizer() SCREAMING_SNAKE_CASE = self.get_image_processor() SCREAMING_SNAKE_CASE = ChineseCLIPProcessor(tokenizer=_UpperCamelCase , image_processor=_UpperCamelCase ) processor_slow.save_pretrained(self.tmpdirname ) SCREAMING_SNAKE_CASE = ChineseCLIPProcessor.from_pretrained(self.tmpdirname , use_fast=_UpperCamelCase ) SCREAMING_SNAKE_CASE = ChineseCLIPProcessor(tokenizer=_UpperCamelCase , image_processor=_UpperCamelCase ) processor_fast.save_pretrained(self.tmpdirname ) SCREAMING_SNAKE_CASE = ChineseCLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , _UpperCamelCase ) self.assertIsInstance(processor_fast.tokenizer , _UpperCamelCase ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , _UpperCamelCase ) self.assertIsInstance(processor_fast.image_processor , _UpperCamelCase ) def __snake_case( self : str ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE = ChineseCLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) SCREAMING_SNAKE_CASE = self.get_tokenizer(cls_token="(CLS)" , sep_token="(SEP)" ) SCREAMING_SNAKE_CASE = self.get_image_processor(do_normalize=_UpperCamelCase ) SCREAMING_SNAKE_CASE = ChineseCLIPProcessor.from_pretrained( self.tmpdirname , cls_token="(CLS)" , sep_token="(SEP)" , do_normalize=_UpperCamelCase ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , _UpperCamelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _UpperCamelCase ) def __snake_case( self : List[Any] ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = self.get_image_processor() SCREAMING_SNAKE_CASE = self.get_tokenizer() SCREAMING_SNAKE_CASE = ChineseCLIPProcessor(tokenizer=_UpperCamelCase , image_processor=_UpperCamelCase ) SCREAMING_SNAKE_CASE = self.prepare_image_inputs() SCREAMING_SNAKE_CASE = image_processor(_UpperCamelCase , return_tensors="np" ) SCREAMING_SNAKE_CASE = processor(images=_UpperCamelCase , return_tensors="np" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def __snake_case( self : List[Any] ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE = self.get_image_processor() SCREAMING_SNAKE_CASE = self.get_tokenizer() SCREAMING_SNAKE_CASE = ChineseCLIPProcessor(tokenizer=_UpperCamelCase , image_processor=_UpperCamelCase ) SCREAMING_SNAKE_CASE = "Alexandra,T-shirt的价格是15便士。" SCREAMING_SNAKE_CASE = processor(text=_UpperCamelCase ) SCREAMING_SNAKE_CASE = tokenizer(_UpperCamelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def __snake_case( self : Optional[Any] ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE = self.get_image_processor() SCREAMING_SNAKE_CASE = self.get_tokenizer() SCREAMING_SNAKE_CASE = ChineseCLIPProcessor(tokenizer=_UpperCamelCase , image_processor=_UpperCamelCase ) SCREAMING_SNAKE_CASE = "Alexandra,T-shirt的价格是15便士。" SCREAMING_SNAKE_CASE = self.prepare_image_inputs() SCREAMING_SNAKE_CASE = processor(text=_UpperCamelCase , images=_UpperCamelCase ) self.assertListEqual(list(inputs.keys() ) , ["input_ids", "token_type_ids", "attention_mask", "pixel_values"] ) # test if it raises when no input is passed with pytest.raises(_UpperCamelCase ): processor() def __snake_case( self : Optional[Any] ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE = self.get_image_processor() SCREAMING_SNAKE_CASE = self.get_tokenizer() SCREAMING_SNAKE_CASE = ChineseCLIPProcessor(tokenizer=_UpperCamelCase , image_processor=_UpperCamelCase ) SCREAMING_SNAKE_CASE = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] SCREAMING_SNAKE_CASE = processor.batch_decode(_UpperCamelCase ) SCREAMING_SNAKE_CASE = tokenizer.batch_decode(_UpperCamelCase ) self.assertListEqual(_UpperCamelCase , _UpperCamelCase ) def __snake_case( self : int ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE = self.get_image_processor() SCREAMING_SNAKE_CASE = self.get_tokenizer() SCREAMING_SNAKE_CASE = ChineseCLIPProcessor(tokenizer=_UpperCamelCase , image_processor=_UpperCamelCase ) SCREAMING_SNAKE_CASE = "Alexandra,T-shirt的价格是15便士。" SCREAMING_SNAKE_CASE = self.prepare_image_inputs() SCREAMING_SNAKE_CASE = processor(text=_UpperCamelCase , images=_UpperCamelCase ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
206
1
from collections import defaultdict from graphs.minimum_spanning_tree_prims import prisms_algorithm as mst def __UpperCamelCase ( ) -> int: """simple docstring""" A , A : Optional[int] = 9, 14 # noqa: F841 A : Optional[int] = [ [0, 1, 4], [0, 7, 8], [1, 2, 8], [7, 8, 7], [7, 6, 1], [2, 8, 2], [8, 6, 6], [2, 3, 7], [2, 5, 4], [6, 5, 2], [3, 5, 14], [3, 4, 9], [5, 4, 10], [1, 7, 11], ] A : str = defaultdict(_lowerCAmelCase ) for nodea, nodea, cost in edges: adjancency[nodea].append([nodea, cost] ) adjancency[nodea].append([nodea, cost] ) A : str = mst(_lowerCAmelCase ) A : Optional[Any] = [ [7, 6, 1], [2, 8, 2], [6, 5, 2], [0, 1, 4], [2, 5, 4], [2, 3, 7], [0, 7, 8], [3, 4, 9], ] for answer in expected: A : Tuple = tuple(answer[:2] ) A : int = tuple(edge[::-1] ) assert edge in result or reverse in result
116
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging SCREAMING_SNAKE_CASE_:List[Any] = """▁""" SCREAMING_SNAKE_CASE_:int = {"""vocab_file""": """spiece.model"""} SCREAMING_SNAKE_CASE_:Any = { """vocab_file""": {"""google/pegasus-xsum""": """https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model"""} } SCREAMING_SNAKE_CASE_:Optional[Any] = { """google/pegasus-xsum""": 512, } SCREAMING_SNAKE_CASE_:Tuple = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __lowerCamelCase : Union[str, Any] = VOCAB_FILES_NAMES __lowerCamelCase : List[Any] = VOCAB_FILES_NAMES __lowerCamelCase : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP __lowerCamelCase : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCamelCase : str = ["input_ids", "attention_mask"] def __init__( self, lowerCamelCase__, lowerCamelCase__="<pad>", lowerCamelCase__="</s>", lowerCamelCase__="<unk>", lowerCamelCase__="<mask_2>", lowerCamelCase__="<mask_1>", lowerCamelCase__=None, lowerCamelCase__=103, lowerCamelCase__ = None, **lowerCamelCase__, ): A : int = offset if additional_special_tokens is not None: if not isinstance(lowerCamelCase__, lowerCamelCase__ ): raise TypeError( f'''additional_special_tokens should be of type {type(lowerCamelCase__ )}, but is''' f''' {type(lowerCamelCase__ )}''' ) A : Dict = ( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ f'''<unk_{i}>''' for i in range(len(lowerCamelCase__ ), self.offset - 1 ) ] if len(set(lowerCamelCase__ ) ) != len(lowerCamelCase__ ): raise ValueError( """Please make sure that the provided additional_special_tokens do not contain an incorrectly""" f''' shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}.''' ) A : int = additional_special_tokens_extended else: A : Optional[int] = [mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [f'''<unk_{i}>''' for i in range(2, self.offset )] A : Any = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=lowerCamelCase__, unk_token=lowerCamelCase__, mask_token=lowerCamelCase__, pad_token=lowerCamelCase__, mask_token_sent=lowerCamelCase__, offset=lowerCamelCase__, additional_special_tokens=lowerCamelCase__, sp_model_kwargs=self.sp_model_kwargs, **lowerCamelCase__, ) A : Union[str, Any] = mask_token_sent A : Optional[Any] = vocab_file A : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(lowerCamelCase__ ) # add special tokens to encoder dict A : Dict[int, str] = { 0: self.pad_token, 1: self.eos_token, } if self.mask_token_sent is not None: self.encoder.update( { 2: self.mask_token_sent, 3: self.mask_token, } ) if self.offset > 0: # entries 2-104 are only used for pretraining and called <mask_1>, <mask_2>, unk_2, ...unk_102 # mask_token_sent is already added to list -> so start at 1 self.encoder.update({i + 3: additional_special_tokens[i] for i in range(1, self.offset - 1 )} ) A : Dict[str, int] = {v: k for k, v in self.encoder.items()} @property def _lowerCAmelCase ( self ): return len(self.sp_model ) + self.offset def _lowerCAmelCase ( self ): A : Optional[int] = {self.convert_ids_to_tokens(lowerCamelCase__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ): A : List[Any] = self.__dict__.copy() A : Union[str, Any] = None return state def __setstate__( self, lowerCamelCase__ ): A : List[Any] = d # for backward compatibility if not hasattr(self, """sp_model_kwargs""" ): A : int = {} A : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _lowerCAmelCase ( self, lowerCamelCase__ ): return self.sp_model.encode(lowerCamelCase__, out_type=lowerCamelCase__ ) def _lowerCAmelCase ( self, lowerCamelCase__ ): if token in self.decoder: return self.decoder[token] elif token in self.added_tokens_decoder: return self.added_tokens_decoder[token] A : List[str] = self.sp_model.piece_to_id(lowerCamelCase__ ) return sp_id + self.offset def _lowerCAmelCase ( self, lowerCamelCase__ ): if index in self.encoder: return self.encoder[index] elif index in self.added_tokens_encoder: return self.added_tokens_encoder[index] else: A : Dict = self.sp_model.IdToPiece(index - self.offset ) return token def _lowerCAmelCase ( self, lowerCamelCase__ ): A : Optional[int] = [] A : Optional[Any] = """""" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(lowerCamelCase__ ) + token A : int = [] else: current_sub_tokens.append(lowerCamelCase__ ) out_string += self.sp_model.decode(lowerCamelCase__ ) return out_string.strip() def _lowerCAmelCase ( self, lowerCamelCase__=False ): return 1 def _lowerCAmelCase ( self, lowerCamelCase__ ): A : Optional[int] = set(self.all_special_ids ) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special return [1 if x in all_special_ids else 0 for x in seq] def _lowerCAmelCase ( self, lowerCamelCase__, lowerCamelCase__ = None, lowerCamelCase__ = False ): if already_has_special_tokens: return self._special_token_mask(lowerCamelCase__ ) elif token_ids_a is None: return self._special_token_mask(lowerCamelCase__ ) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a ) + [1] def _lowerCAmelCase ( self, lowerCamelCase__, lowerCamelCase__=None ): if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def _lowerCAmelCase ( self, lowerCamelCase__, lowerCamelCase__ = None ): if not os.path.isdir(lowerCamelCase__ ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return A : Any = os.path.join( lowerCamelCase__, (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCamelCase__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file, lowerCamelCase__ ) elif not os.path.isfile(self.vocab_file ): with open(lowerCamelCase__, """wb""" ) as fi: A : Dict = self.sp_model.serialized_model_proto() fi.write(lowerCamelCase__ ) return (out_vocab_file,)
116
1
def lowercase_ ( _lowerCamelCase: List[str] = 1000 ) -> Dict: '''simple docstring''' return sum(e for e in range(3 , _lowerCamelCase ) if e % 3 == 0 or e % 5 == 0 ) if __name__ == "__main__": print(F"""{solution() = }""")
354
"""simple docstring""" import gc import unittest import numpy as np import torch from diffusers import AutoencoderKL, DDIMScheduler, DiTPipeline, DPMSolverMultistepScheduler, TransformeraDModel from diffusers.utils import is_xformers_available, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS, CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class _snake_case ( a__ , unittest.TestCase ): snake_case__ = DiTPipeline snake_case__ = CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS snake_case__ = PipelineTesterMixin.required_optional_params - { "latents", "num_images_per_prompt", "callback", "callback_steps", } snake_case__ = CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS snake_case__ = False def lowerCamelCase__ ( self : Tuple ): torch.manual_seed(0 ) __lowerCamelCase : Optional[Any] = TransformeraDModel( sample_size=16 , num_layers=2 , patch_size=4 , attention_head_dim=8 , num_attention_heads=2 , in_channels=4 , out_channels=8 , attention_bias=UpperCAmelCase , activation_fn="gelu-approximate" , num_embeds_ada_norm=1000 , norm_type="ada_norm_zero" , norm_elementwise_affine=UpperCAmelCase , ) __lowerCamelCase : List[str] = AutoencoderKL() __lowerCamelCase : List[Any] = DDIMScheduler() __lowerCamelCase : Optional[Any] = {"transformer": transformer.eval(), "vae": vae.eval(), "scheduler": scheduler} return components def lowerCamelCase__ ( self : List[str] , UpperCAmelCase : Any , UpperCAmelCase : Union[str, Any]=0 ): if str(UpperCAmelCase ).startswith("mps" ): __lowerCamelCase : List[str] = torch.manual_seed(UpperCAmelCase ) else: __lowerCamelCase : List[str] = torch.Generator(device=UpperCAmelCase ).manual_seed(UpperCAmelCase ) __lowerCamelCase : str = { "class_labels": [1], "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs def lowerCamelCase__ ( self : Optional[Any] ): __lowerCamelCase : Dict = "cpu" __lowerCamelCase : int = self.get_dummy_components() __lowerCamelCase : Optional[Any] = self.pipeline_class(**UpperCAmelCase ) pipe.to(UpperCAmelCase ) pipe.set_progress_bar_config(disable=UpperCAmelCase ) __lowerCamelCase : Optional[int] = self.get_dummy_inputs(UpperCAmelCase ) __lowerCamelCase : List[Any] = pipe(**UpperCAmelCase ).images __lowerCamelCase : Optional[int] = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 16, 16, 3) ) __lowerCamelCase : Optional[int] = np.array([0.2_9_4_6, 0.6_6_0_1, 0.4_3_2_9, 0.3_2_9_6, 0.4_1_4_4, 0.5_3_1_9, 0.7_2_7_3, 0.5_0_1_3, 0.4_4_5_7] ) __lowerCamelCase : Optional[int] = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(UpperCAmelCase , 1E-3 ) def lowerCamelCase__ ( self : Any ): self._test_inference_batch_single_identical(relax_max_difference=UpperCAmelCase , expected_max_diff=1E-3 ) @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def lowerCamelCase__ ( self : List[str] ): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) @require_torch_gpu @slow class _snake_case ( unittest.TestCase ): def lowerCamelCase__ ( self : Any ): super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase__ ( self : List[str] ): __lowerCamelCase : Optional[int] = torch.manual_seed(0 ) __lowerCamelCase : str = DiTPipeline.from_pretrained("facebook/DiT-XL-2-256" ) pipe.to("cuda" ) __lowerCamelCase : Tuple = ["vase", "umbrella", "white shark", "white wolf"] __lowerCamelCase : Optional[int] = pipe.get_label_ids(UpperCAmelCase ) __lowerCamelCase : Optional[Any] = pipe(UpperCAmelCase , generator=UpperCAmelCase , num_inference_steps=40 , output_type="np" ).images for word, image in zip(UpperCAmelCase , UpperCAmelCase ): __lowerCamelCase : Dict = load_numpy( F"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/dit/{word}.npy""" ) assert np.abs((expected_image - image).max() ) < 1E-2 def lowerCamelCase__ ( self : str ): __lowerCamelCase : Tuple = DiTPipeline.from_pretrained("facebook/DiT-XL-2-512" ) __lowerCamelCase : Any = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.to("cuda" ) __lowerCamelCase : Union[str, Any] = ["vase", "umbrella"] __lowerCamelCase : int = pipe.get_label_ids(UpperCAmelCase ) __lowerCamelCase : Dict = torch.manual_seed(0 ) __lowerCamelCase : Dict = pipe(UpperCAmelCase , generator=UpperCAmelCase , num_inference_steps=25 , output_type="np" ).images for word, image in zip(UpperCAmelCase , UpperCAmelCase ): __lowerCamelCase : Union[str, Any] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" F"""/dit/{word}_512.npy""" ) assert np.abs((expected_image - image).max() ) < 1E-1
64
0
"""simple docstring""" import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert_fast import BertTokenizerFast from .tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer, DPRReaderTokenizer lowerCAmelCase__ : Optional[int] = logging.get_logger(__name__) lowerCAmelCase__ : Tuple = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} lowerCAmelCase__ : Optional[int] = { 'vocab_file': { 'facebook/dpr-ctx_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt' ), 'facebook/dpr-ctx_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'facebook/dpr-ctx_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json' ), 'facebook/dpr-ctx_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json' ), }, } lowerCAmelCase__ : List[Any] = { 'vocab_file': { 'facebook/dpr-question_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt' ), 'facebook/dpr-question_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'facebook/dpr-question_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json' ), 'facebook/dpr-question_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json' ), }, } lowerCAmelCase__ : List[Any] = { 'vocab_file': { 'facebook/dpr-reader-single-nq-base': ( 'https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt' ), 'facebook/dpr-reader-multiset-base': ( 'https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'facebook/dpr-reader-single-nq-base': ( 'https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json' ), 'facebook/dpr-reader-multiset-base': ( 'https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json' ), }, } lowerCAmelCase__ : Optional[int] = { 'facebook/dpr-ctx_encoder-single-nq-base': 512, 'facebook/dpr-ctx_encoder-multiset-base': 512, } lowerCAmelCase__ : Any = { 'facebook/dpr-question_encoder-single-nq-base': 512, 'facebook/dpr-question_encoder-multiset-base': 512, } lowerCAmelCase__ : Union[str, Any] = { 'facebook/dpr-reader-single-nq-base': 512, 'facebook/dpr-reader-multiset-base': 512, } lowerCAmelCase__ : Optional[Any] = { 'facebook/dpr-ctx_encoder-single-nq-base': {'do_lower_case': True}, 'facebook/dpr-ctx_encoder-multiset-base': {'do_lower_case': True}, } lowerCAmelCase__ : List[str] = { 'facebook/dpr-question_encoder-single-nq-base': {'do_lower_case': True}, 'facebook/dpr-question_encoder-multiset-base': {'do_lower_case': True}, } lowerCAmelCase__ : str = { 'facebook/dpr-reader-single-nq-base': {'do_lower_case': True}, 'facebook/dpr-reader-multiset-base': {'do_lower_case': True}, } class snake_case ( __UpperCAmelCase ): """simple docstring""" snake_case__ = VOCAB_FILES_NAMES snake_case__ = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP snake_case__ = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case__ = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION snake_case__ = DPRContextEncoderTokenizer class snake_case ( __UpperCAmelCase ): """simple docstring""" snake_case__ = VOCAB_FILES_NAMES snake_case__ = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP snake_case__ = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case__ = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION snake_case__ = DPRQuestionEncoderTokenizer lowerCAmelCase__ : Optional[int] = collections.namedtuple( 'DPRSpanPrediction', ['span_score', 'relevance_score', 'doc_id', 'start_index', 'end_index', 'text'] ) lowerCAmelCase__ : Tuple = collections.namedtuple('DPRReaderOutput', ['start_logits', 'end_logits', 'relevance_logits']) lowerCAmelCase__ : Tuple = r'\n Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`.\n It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers),\n using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)`\n with the format:\n\n [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids>\n\n Args:\n questions (`str` or `List[str]`):\n The questions to be encoded. You can specify one question for many passages. In this case, the question\n will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in\n `titles` or `texts`.\n titles (`str` or `List[str]`):\n The passages titles to be encoded. This can be a string or a list of strings if there are several passages.\n texts (`str` or `List[str]`):\n The passages texts to be encoded. This can be a string or a list of strings if there are several passages.\n padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):\n Activates and controls padding. Accepts the following values:\n\n - `True` or `\'longest\'`: Pad to the longest sequence in the batch (or no padding if only a single sequence\n if provided).\n - `\'max_length\'`: Pad to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided.\n - `False` or `\'do_not_pad\'` (default): No padding (i.e., can output a batch with sequences of different\n lengths).\n truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):\n Activates and controls truncation. Accepts the following values:\n\n - `True` or `\'longest_first\'`: Truncate to a maximum length specified with the argument `max_length` or to\n the maximum acceptable input length for the model if that argument is not provided. This will truncate\n token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch\n of pairs) is provided.\n - `\'only_first\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the first\n sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `\'only_second\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the\n second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `False` or `\'do_not_truncate\'` (default): No truncation (i.e., can output batch with sequence lengths\n greater than the model maximum admissible input size).\n max_length (`int`, *optional*):\n Controls the maximum length to use by one of the truncation/padding parameters.\n\n If left unset or set to `None`, this will use the predefined model maximum length if a maximum length\n is required by one of the truncation/padding parameters. If the model has no specific maximum input\n length (like XLNet) truncation/padding to a maximum length will be deactivated.\n return_tensors (`str` or [`~utils.TensorType`], *optional*):\n If set, will return tensors instead of list of python integers. Acceptable values are:\n\n - `\'tf\'`: Return TensorFlow `tf.constant` objects.\n - `\'pt\'`: Return PyTorch `torch.Tensor` objects.\n - `\'np\'`: Return Numpy `np.ndarray` objects.\n return_attention_mask (`bool`, *optional*):\n Whether or not to return the attention mask. If not set, will return the attention mask according to the\n specific tokenizer\'s default, defined by the `return_outputs` attribute.\n\n [What are attention masks?](../glossary#attention-mask)\n\n Return:\n `Dict[str, List[List[int]]]`: A dictionary with the following keys:\n\n - `input_ids`: List of token ids to be fed to a model.\n - `attention_mask`: List of indices specifying which tokens should be attended to by the model.\n ' @add_start_docstrings(__UpperCAmelCase ) class snake_case : """simple docstring""" def __call__( self : Optional[int] ,lowerCamelCase__ : Optional[Any] ,lowerCamelCase__ : Optional[str] = None ,lowerCamelCase__ : Optional[str] = None ,lowerCamelCase__ : Union[bool, str] = False ,lowerCamelCase__ : Union[bool, str] = False ,lowerCamelCase__ : Optional[int] = None ,lowerCamelCase__ : Optional[Union[str, TensorType]] = None ,lowerCamelCase__ : Optional[bool] = None ,**lowerCamelCase__ : List[Any] ,): if titles is None and texts is None: return super().__call__( lowerCamelCase__ ,padding=lowerCamelCase__ ,truncation=lowerCamelCase__ ,max_length=lowerCamelCase__ ,return_tensors=lowerCamelCase__ ,return_attention_mask=lowerCamelCase__ ,**lowerCamelCase__ ,) elif titles is None or texts is None: UpperCAmelCase__ = titles if texts is None else texts return super().__call__( lowerCamelCase__ ,lowerCamelCase__ ,padding=lowerCamelCase__ ,truncation=lowerCamelCase__ ,max_length=lowerCamelCase__ ,return_tensors=lowerCamelCase__ ,return_attention_mask=lowerCamelCase__ ,**lowerCamelCase__ ,) UpperCAmelCase__ = titles if not isinstance(lowerCamelCase__ ,lowerCamelCase__ ) else [titles] UpperCAmelCase__ = texts if not isinstance(lowerCamelCase__ ,lowerCamelCase__ ) else [texts] UpperCAmelCase__ = len(lowerCamelCase__ ) UpperCAmelCase__ = questions if not isinstance(lowerCamelCase__ ,lowerCamelCase__ ) else [questions] * n_passages assert len(lowerCamelCase__ ) == len( lowerCamelCase__ ), f'''There should be as many titles than texts but got {len(lowerCamelCase__ )} titles and {len(lowerCamelCase__ )} texts.''' UpperCAmelCase__ = super().__call__(lowerCamelCase__ ,lowerCamelCase__ ,padding=lowerCamelCase__ ,truncation=lowerCamelCase__ )['input_ids'] UpperCAmelCase__ = super().__call__(lowerCamelCase__ ,add_special_tokens=lowerCamelCase__ ,padding=lowerCamelCase__ ,truncation=lowerCamelCase__ )['input_ids'] UpperCAmelCase__ = { 'input_ids': [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(lowerCamelCase__ ,lowerCamelCase__ ) ] } if return_attention_mask is not False: UpperCAmelCase__ = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) UpperCAmelCase__ = attention_mask return self.pad(lowerCamelCase__ ,padding=lowerCamelCase__ ,max_length=lowerCamelCase__ ,return_tensors=lowerCamelCase__ ) def __lowerCAmelCase ( self : Optional[Any] ,lowerCamelCase__ : BatchEncoding ,lowerCamelCase__ : DPRReaderOutput ,lowerCamelCase__ : int = 16 ,lowerCamelCase__ : int = 64 ,lowerCamelCase__ : int = 4 ,): UpperCAmelCase__ = reader_input['input_ids'] UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = reader_output[:3] UpperCAmelCase__ = len(lowerCamelCase__ ) UpperCAmelCase__ = sorted(range(lowerCamelCase__ ) ,reverse=lowerCamelCase__ ,key=relevance_logits.__getitem__ ) UpperCAmelCase__ = [] for doc_id in sorted_docs: UpperCAmelCase__ = list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence UpperCAmelCase__ = sequence_ids.index(self.sep_token_id ,2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: UpperCAmelCase__ = sequence_ids.index(self.pad_token_id ) else: UpperCAmelCase__ = len(lowerCamelCase__ ) UpperCAmelCase__ = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] ,end_logits=end_logits[doc_id][passage_offset:sequence_len] ,max_answer_length=lowerCamelCase__ ,top_spans=lowerCamelCase__ ,) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] ,relevance_score=relevance_logits[doc_id] ,doc_id=lowerCamelCase__ ,start_index=lowerCamelCase__ ,end_index=lowerCamelCase__ ,text=self.decode(sequence_ids[start_index : end_index + 1] ) ,) ) if len(lowerCamelCase__ ) >= num_spans: break return nbest_spans_predictions[:num_spans] def __lowerCAmelCase ( self : Union[str, Any] ,lowerCamelCase__ : List[int] ,lowerCamelCase__ : List[int] ,lowerCamelCase__ : int ,lowerCamelCase__ : int ,): UpperCAmelCase__ = [] for start_index, start_score in enumerate(lowerCamelCase__ ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) UpperCAmelCase__ = sorted(lowerCamelCase__ ,key=lambda lowerCamelCase__ : x[1] ,reverse=lowerCamelCase__ ) UpperCAmelCase__ = [] for (start_index, end_index), score in scores: assert start_index <= end_index, f'''Wrong span indices: [{start_index}:{end_index}]''' UpperCAmelCase__ = end_index - start_index + 1 assert length <= max_answer_length, f'''Span is too long: {length} > {max_answer_length}''' if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(lowerCamelCase__ ) == top_spans: break return chosen_span_intervals @add_end_docstrings(__UpperCAmelCase ) class snake_case ( __UpperCAmelCase , __UpperCAmelCase ): """simple docstring""" snake_case__ = VOCAB_FILES_NAMES snake_case__ = READER_PRETRAINED_VOCAB_FILES_MAP snake_case__ = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case__ = READER_PRETRAINED_INIT_CONFIGURATION snake_case__ = ["input_ids", "attention_mask"] snake_case__ = DPRReaderTokenizer
98
"""simple docstring""" import functools def a_ ( lowerCamelCase , lowerCamelCase ): UpperCAmelCase__ = len(lowerCamelCase ) UpperCAmelCase__ = len(lowerCamelCase ) @functools.cache def min_distance(lowerCamelCase , lowerCamelCase ) -> int: # if first word index is overflow - delete all from the second word if indexa >= len_worda: return len_worda - indexa # if second word index is overflow - delete all from the first word if indexa >= len_worda: return len_worda - indexa UpperCAmelCase__ = int(worda[indexa] != worda[indexa] ) # current letters not identical return min( 1 + min_distance(indexa + 1 , lowerCamelCase ) , 1 + min_distance(lowerCamelCase , indexa + 1 ) , diff + min_distance(indexa + 1 , indexa + 1 ) , ) return min_distance(0 , 0 ) if __name__ == "__main__": import doctest doctest.testmod()
98
1
import os from pathlib import Path import numpy as np import pytest from pack_dataset import pack_data_dir from parameterized import parameterized from save_len_file import save_len_file from torch.utils.data import DataLoader from transformers import AutoTokenizer from transformers.models.mbart.modeling_mbart import shift_tokens_right from transformers.testing_utils import TestCasePlus, slow from utils import FAIRSEQ_AVAILABLE, DistributedSortishSampler, LegacySeqaSeqDataset, SeqaSeqDataset __UpperCamelCase : Union[str, Any] = "bert-base-cased" __UpperCamelCase : Tuple = "google/pegasus-xsum" __UpperCamelCase : Union[str, Any] = [" Sam ate lunch today.", "Sams lunch ingredients."] __UpperCamelCase : Union[str, Any] = ["A very interesting story about what I ate for lunch.", "Avocado, celery, turkey, coffee"] __UpperCamelCase : Any = "patrickvonplaten/t5-tiny-random" __UpperCamelCase : List[Any] = "sshleifer/bart-tiny-random" __UpperCamelCase : Any = "sshleifer/tiny-mbart" __UpperCamelCase : Optional[Any] = "sshleifer/tiny-marian-en-de" def _a ( SCREAMING_SNAKE_CASE : Path , SCREAMING_SNAKE_CASE : list ): """simple docstring""" UpperCamelCase__ : Optional[Any] = '''\n'''.join(SCREAMING_SNAKE_CASE ) Path(SCREAMING_SNAKE_CASE ).open('''w''' ).writelines(SCREAMING_SNAKE_CASE ) def _a ( SCREAMING_SNAKE_CASE : Dict ): """simple docstring""" for split in ["train", "val", "test"]: _dump_articles(os.path.join(SCREAMING_SNAKE_CASE , F"{split}.source" ) , SCREAMING_SNAKE_CASE ) _dump_articles(os.path.join(SCREAMING_SNAKE_CASE , F"{split}.target" ) , SCREAMING_SNAKE_CASE ) return tmp_dir class __magic_name__ ( __lowerCAmelCase): @parameterized.expand( [ MBART_TINY, MARIAN_TINY, T5_TINY, BART_TINY, PEGASUS_XSUM, ] , ) @slow def UpperCAmelCase__ ( self : Tuple , lowerCamelCase__ : Dict ) -> Optional[Any]: '''simple docstring''' UpperCamelCase__ : Dict = AutoTokenizer.from_pretrained(lowerCamelCase__ ) UpperCamelCase__ : Optional[int] = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) UpperCamelCase__ : Tuple = max(len(tokenizer.encode(lowerCamelCase__ ) ) for a in ARTICLES ) UpperCamelCase__ : List[str] = max(len(tokenizer.encode(lowerCamelCase__ ) ) for a in SUMMARIES ) UpperCamelCase__ : int = 4 UpperCamelCase__ : Union[str, Any] = 8 assert max_len_target > max_src_len # Will be truncated assert max_len_source > max_src_len # Will be truncated UpperCamelCase__ , UpperCamelCase__ : Union[str, Any] = '''ro_RO''', '''de_DE''' # ignored for all but mbart, but never causes error. UpperCamelCase__ : List[str] = SeqaSeqDataset( lowerCamelCase__ , data_dir=lowerCamelCase__ , type_path='''train''' , max_source_length=lowerCamelCase__ , max_target_length=lowerCamelCase__ , src_lang=lowerCamelCase__ , tgt_lang=lowerCamelCase__ , ) UpperCamelCase__ : Dict = DataLoader(lowerCamelCase__ , batch_size=2 , collate_fn=train_dataset.collate_fn ) for batch in dataloader: assert isinstance(lowerCamelCase__ , lowerCamelCase__ ) assert batch["attention_mask"].shape == batch["input_ids"].shape # show that articles were trimmed. assert batch["input_ids"].shape[1] == max_src_len # show that targets are the same len assert batch["labels"].shape[1] == max_tgt_len if tok_name != MBART_TINY: continue # check language codes in correct place UpperCamelCase__ : Dict = shift_tokens_right(batch['''labels'''] , tokenizer.pad_token_id ) assert batch["decoder_input_ids"][0, 0].item() == tokenizer.lang_code_to_id[tgt_lang] assert batch["decoder_input_ids"][0, -1].item() == tokenizer.eos_token_id assert batch["input_ids"][0, -2].item() == tokenizer.eos_token_id assert batch["input_ids"][0, -1].item() == tokenizer.lang_code_to_id[src_lang] break # No need to test every batch @parameterized.expand([BART_TINY, BERT_BASE_CASED] ) def UpperCAmelCase__ ( self : int , lowerCamelCase__ : Tuple ) -> List[Any]: '''simple docstring''' UpperCamelCase__ : Dict = AutoTokenizer.from_pretrained(lowerCamelCase__ ) UpperCamelCase__ : str = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) UpperCamelCase__ : Union[str, Any] = max(len(tokenizer.encode(lowerCamelCase__ ) ) for a in ARTICLES ) UpperCamelCase__ : str = max(len(tokenizer.encode(lowerCamelCase__ ) ) for a in SUMMARIES ) UpperCamelCase__ : Union[str, Any] = 4 UpperCamelCase__ : Optional[int] = LegacySeqaSeqDataset( lowerCamelCase__ , data_dir=lowerCamelCase__ , type_path='''train''' , max_source_length=20 , max_target_length=lowerCamelCase__ , ) UpperCamelCase__ : List[str] = DataLoader(lowerCamelCase__ , batch_size=2 , collate_fn=train_dataset.collate_fn ) for batch in dataloader: assert batch["attention_mask"].shape == batch["input_ids"].shape # show that articles were trimmed. assert batch["input_ids"].shape[1] == max_len_source assert 20 >= batch["input_ids"].shape[1] # trimmed significantly # show that targets were truncated assert batch["labels"].shape[1] == trunc_target # Truncated assert max_len_target > trunc_target # Truncated break # No need to test every batch def UpperCAmelCase__ ( self : List[str] ) -> Dict: '''simple docstring''' UpperCamelCase__ : Dict = AutoTokenizer.from_pretrained('''facebook/mbart-large-cc25''' ) UpperCamelCase__ : List[str] = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) ) UpperCamelCase__ : int = tmp_dir.joinpath('''train.source''' ).open().readlines() UpperCamelCase__ : Tuple = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) ) pack_data_dir(lowerCamelCase__ , lowerCamelCase__ , 128 , lowerCamelCase__ ) UpperCamelCase__ : str = {x.name for x in tmp_dir.iterdir()} UpperCamelCase__ : Optional[int] = {x.name for x in save_dir.iterdir()} UpperCamelCase__ : Dict = save_dir.joinpath('''train.source''' ).open().readlines() # orig: [' Sam ate lunch today.\n', 'Sams lunch ingredients.'] # desired_packed: [' Sam ate lunch today.\n Sams lunch ingredients.'] assert len(lowerCamelCase__ ) < len(lowerCamelCase__ ) assert len(lowerCamelCase__ ) == 1 assert len(packed_examples[0] ) == sum(len(lowerCamelCase__ ) for x in orig_examples ) assert orig_paths == new_paths @pytest.mark.skipif(not FAIRSEQ_AVAILABLE , reason='''This test requires fairseq''' ) def UpperCAmelCase__ ( self : str ) -> Optional[Any]: '''simple docstring''' if not FAIRSEQ_AVAILABLE: return UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ : Tuple = self._get_dataset(max_len=64 ) UpperCamelCase__ : List[str] = 64 UpperCamelCase__ : Optional[int] = ds.make_dynamic_sampler(lowerCamelCase__ , required_batch_size_multiple=lowerCamelCase__ ) UpperCamelCase__ : Union[str, Any] = [len(lowerCamelCase__ ) for x in batch_sampler] assert len(set(lowerCamelCase__ ) ) > 1 # it's not dynamic batch size if every batch is the same length assert sum(lowerCamelCase__ ) == len(lowerCamelCase__ ) # no dropped or added examples UpperCamelCase__ : Any = DataLoader(lowerCamelCase__ , batch_sampler=lowerCamelCase__ , collate_fn=ds.collate_fn , num_workers=2 ) UpperCamelCase__ : int = [] UpperCamelCase__ : Tuple = [] for batch in data_loader: UpperCamelCase__ : int = batch['''input_ids'''].shape UpperCamelCase__ : Any = src_shape[0] assert bs % required_batch_size_multiple == 0 or bs < required_batch_size_multiple UpperCamelCase__ : Tuple = np.product(batch['''input_ids'''].shape ) num_src_per_batch.append(lowerCamelCase__ ) if num_src_tokens > (max_tokens * 1.1): failures.append(lowerCamelCase__ ) assert num_src_per_batch[0] == max(lowerCamelCase__ ) if failures: raise AssertionError(F"too many tokens in {len(lowerCamelCase__ )} batches" ) def UpperCAmelCase__ ( self : str ) -> Optional[Any]: '''simple docstring''' UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ : Tuple = self._get_dataset(max_len=512 ) UpperCamelCase__ : Union[str, Any] = 2 UpperCamelCase__ : Optional[int] = ds.make_sortish_sampler(lowerCamelCase__ , shuffle=lowerCamelCase__ ) UpperCamelCase__ : List[Any] = DataLoader(lowerCamelCase__ , batch_size=lowerCamelCase__ , collate_fn=ds.collate_fn , num_workers=2 ) UpperCamelCase__ : str = DataLoader(lowerCamelCase__ , batch_size=lowerCamelCase__ , collate_fn=ds.collate_fn , num_workers=2 , sampler=lowerCamelCase__ ) UpperCamelCase__ : Optional[Any] = tokenizer.pad_token_id def count_pad_tokens(lowerCamelCase__ : int , lowerCamelCase__ : List[Any]="input_ids" ): return [batch[k].eq(lowerCamelCase__ ).sum().item() for batch in data_loader] assert sum(count_pad_tokens(lowerCamelCase__ , k='''labels''' ) ) < sum(count_pad_tokens(lowerCamelCase__ , k='''labels''' ) ) assert sum(count_pad_tokens(lowerCamelCase__ ) ) < sum(count_pad_tokens(lowerCamelCase__ ) ) assert len(lowerCamelCase__ ) == len(lowerCamelCase__ ) def UpperCAmelCase__ ( self : int , lowerCamelCase__ : List[Any]=1000 , lowerCamelCase__ : Tuple=128 ) -> str: '''simple docstring''' if os.getenv('''USE_REAL_DATA''' , lowerCamelCase__ ): UpperCamelCase__ : List[str] = '''examples/seq2seq/wmt_en_ro''' UpperCamelCase__ : int = max_len * 2 * 64 if not Path(lowerCamelCase__ ).joinpath('''train.len''' ).exists(): save_len_file(lowerCamelCase__ , lowerCamelCase__ ) else: UpperCamelCase__ : Optional[Any] = '''examples/seq2seq/test_data/wmt_en_ro''' UpperCamelCase__ : Optional[Any] = max_len * 4 save_len_file(lowerCamelCase__ , lowerCamelCase__ ) UpperCamelCase__ : List[str] = AutoTokenizer.from_pretrained(lowerCamelCase__ ) UpperCamelCase__ : Any = SeqaSeqDataset( lowerCamelCase__ , data_dir=lowerCamelCase__ , type_path='''train''' , max_source_length=lowerCamelCase__ , max_target_length=lowerCamelCase__ , n_obs=lowerCamelCase__ , ) return ds, max_tokens, tokenizer def UpperCAmelCase__ ( self : int ) -> str: '''simple docstring''' UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ : List[Any] = self._get_dataset() UpperCamelCase__ : Any = set(DistributedSortishSampler(lowerCamelCase__ , 256 , num_replicas=2 , rank=0 , add_extra_examples=lowerCamelCase__ ) ) UpperCamelCase__ : str = set(DistributedSortishSampler(lowerCamelCase__ , 256 , num_replicas=2 , rank=1 , add_extra_examples=lowerCamelCase__ ) ) assert idsa.intersection(lowerCamelCase__ ) == set() @parameterized.expand( [ MBART_TINY, MARIAN_TINY, T5_TINY, BART_TINY, PEGASUS_XSUM, ] , ) def UpperCAmelCase__ ( self : Any , lowerCamelCase__ : Tuple ) -> str: '''simple docstring''' UpperCamelCase__ : Union[str, Any] = AutoTokenizer.from_pretrained(lowerCamelCase__ , use_fast=lowerCamelCase__ ) if tok_name == MBART_TINY: UpperCamelCase__ : Dict = SeqaSeqDataset( lowerCamelCase__ , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) , type_path='''train''' , max_source_length=4 , max_target_length=8 , src_lang='''EN''' , tgt_lang='''FR''' , ) UpperCamelCase__ : List[Any] = train_dataset.dataset_kwargs assert "src_lang" in kwargs and "tgt_lang" in kwargs else: UpperCamelCase__ : List[Any] = SeqaSeqDataset( lowerCamelCase__ , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) , type_path='''train''' , max_source_length=4 , max_target_length=8 , ) UpperCamelCase__ : Optional[Any] = train_dataset.dataset_kwargs assert "add_prefix_space" not in kwargs if tok_name != BART_TINY else "add_prefix_space" in kwargs assert len(lowerCamelCase__ ) == 1 if tok_name == BART_TINY else len(lowerCamelCase__ ) == 0
51
from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, flip_channel_order, get_resize_output_image_size, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, is_vision_available, logging if is_vision_available(): import PIL if is_torch_available(): import torch __UpperCamelCase : int = logging.get_logger(__name__) class __magic_name__ ( __lowerCAmelCase): A: str = ["pixel_values"] def __init__( self : str , lowerCamelCase__ : bool = True , lowerCamelCase__ : Dict[str, int] = None , lowerCamelCase__ : PILImageResampling = PILImageResampling.BILINEAR , lowerCamelCase__ : bool = True , lowerCamelCase__ : Union[int, float] = 1 / 255 , lowerCamelCase__ : bool = True , lowerCamelCase__ : Dict[str, int] = None , lowerCamelCase__ : bool = True , **lowerCamelCase__ : Any , ) -> None: '''simple docstring''' super().__init__(**lowerCamelCase__ ) UpperCamelCase__ : Optional[int] = size if size is not None else {'''shortest_edge''': 224} UpperCamelCase__ : List[str] = get_size_dict(lowerCamelCase__ , default_to_square=lowerCamelCase__ ) UpperCamelCase__ : Union[str, Any] = crop_size if crop_size is not None else {'''height''': 256, '''width''': 256} UpperCamelCase__ : Dict = get_size_dict(lowerCamelCase__ , param_name='''crop_size''' ) UpperCamelCase__ : Optional[Any] = do_resize UpperCamelCase__ : List[Any] = size UpperCamelCase__ : Optional[int] = resample UpperCamelCase__ : Optional[int] = do_rescale UpperCamelCase__ : Dict = rescale_factor UpperCamelCase__ : Optional[Any] = do_center_crop UpperCamelCase__ : int = crop_size UpperCamelCase__ : List[str] = do_flip_channel_order def UpperCAmelCase__ ( self : Tuple , lowerCamelCase__ : np.ndarray , lowerCamelCase__ : Dict[str, int] , lowerCamelCase__ : PILImageResampling = PIL.Image.BILINEAR , lowerCamelCase__ : Optional[Union[str, ChannelDimension]] = None , **lowerCamelCase__ : List[str] , ) -> np.ndarray: '''simple docstring''' UpperCamelCase__ : Optional[int] = get_size_dict(lowerCamelCase__ , default_to_square=lowerCamelCase__ ) if "shortest_edge" not in size: raise ValueError(F"The `size` dictionary must contain the key `shortest_edge`. Got {size.keys()}" ) UpperCamelCase__ : int = get_resize_output_image_size(lowerCamelCase__ , size=size['''shortest_edge'''] , default_to_square=lowerCamelCase__ ) return resize(lowerCamelCase__ , size=lowerCamelCase__ , resample=lowerCamelCase__ , data_format=lowerCamelCase__ , **lowerCamelCase__ ) def UpperCAmelCase__ ( self : int , lowerCamelCase__ : np.ndarray , lowerCamelCase__ : Dict[str, int] , lowerCamelCase__ : Optional[Union[str, ChannelDimension]] = None , **lowerCamelCase__ : List[Any] , ) -> np.ndarray: '''simple docstring''' UpperCamelCase__ : Optional[int] = get_size_dict(lowerCamelCase__ ) if "height" not in size or "width" not in size: raise ValueError(F"The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}" ) return center_crop(lowerCamelCase__ , size=(size['''height'''], size['''width''']) , data_format=lowerCamelCase__ , **lowerCamelCase__ ) def UpperCAmelCase__ ( self : Tuple , lowerCamelCase__ : np.ndarray , lowerCamelCase__ : Union[int, float] , lowerCamelCase__ : Optional[Union[str, ChannelDimension]] = None , **lowerCamelCase__ : Tuple , ) -> List[Any]: '''simple docstring''' return rescale(lowerCamelCase__ , scale=lowerCamelCase__ , data_format=lowerCamelCase__ , **lowerCamelCase__ ) def UpperCAmelCase__ ( self : List[Any] , lowerCamelCase__ : np.ndarray , lowerCamelCase__ : Optional[Union[str, ChannelDimension]] = None ) -> np.ndarray: '''simple docstring''' return flip_channel_order(lowerCamelCase__ , data_format=lowerCamelCase__ ) def UpperCAmelCase__ ( self : Dict , lowerCamelCase__ : ImageInput , lowerCamelCase__ : bool = None , lowerCamelCase__ : Dict[str, int] = None , lowerCamelCase__ : PILImageResampling = None , lowerCamelCase__ : bool = None , lowerCamelCase__ : float = None , lowerCamelCase__ : bool = None , lowerCamelCase__ : Dict[str, int] = None , lowerCamelCase__ : bool = None , lowerCamelCase__ : Optional[Union[str, TensorType]] = None , lowerCamelCase__ : ChannelDimension = ChannelDimension.FIRST , **lowerCamelCase__ : List[Any] , ) -> PIL.Image.Image: '''simple docstring''' UpperCamelCase__ : Optional[Any] = do_resize if do_resize is not None else self.do_resize UpperCamelCase__ : List[Any] = resample if resample is not None else self.resample UpperCamelCase__ : str = do_rescale if do_rescale is not None else self.do_rescale UpperCamelCase__ : Optional[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCamelCase__ : Any = do_center_crop if do_center_crop is not None else self.do_center_crop UpperCamelCase__ : List[str] = ( do_flip_channel_order if do_flip_channel_order is not None else self.do_flip_channel_order ) UpperCamelCase__ : List[str] = size if size is not None else self.size UpperCamelCase__ : int = get_size_dict(lowerCamelCase__ , default_to_square=lowerCamelCase__ ) UpperCamelCase__ : Tuple = crop_size if crop_size is not None else self.crop_size UpperCamelCase__ : int = get_size_dict(lowerCamelCase__ , param_name='''crop_size''' ) UpperCamelCase__ : int = make_list_of_images(lowerCamelCase__ ) if not valid_images(lowerCamelCase__ ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) # All transformations expect numpy arrays. UpperCamelCase__ : Union[str, Any] = [to_numpy_array(lowerCamelCase__ ) for image in images] if do_resize: UpperCamelCase__ : Tuple = [self.resize(image=lowerCamelCase__ , size=lowerCamelCase__ , resample=lowerCamelCase__ ) for image in images] if do_center_crop: UpperCamelCase__ : Optional[Any] = [self.center_crop(image=lowerCamelCase__ , size=lowerCamelCase__ ) for image in images] if do_rescale: UpperCamelCase__ : List[Any] = [self.rescale(image=lowerCamelCase__ , scale=lowerCamelCase__ ) for image in images] # the pretrained checkpoints assume images are BGR, not RGB if do_flip_channel_order: UpperCamelCase__ : List[Any] = [self.flip_channel_order(image=lowerCamelCase__ ) for image in images] UpperCamelCase__ : Union[str, Any] = [to_channel_dimension_format(lowerCamelCase__ , lowerCamelCase__ ) for image in images] UpperCamelCase__ : int = {'''pixel_values''': images} return BatchFeature(data=lowerCamelCase__ , tensor_type=lowerCamelCase__ ) def UpperCAmelCase__ ( self : Any , lowerCamelCase__ : Optional[int] , lowerCamelCase__ : List[Tuple] = None ) -> Tuple: '''simple docstring''' UpperCamelCase__ : Tuple = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(lowerCamelCase__ ) != len(lowerCamelCase__ ): raise ValueError( '''Make sure that you pass in as many target sizes as the batch dimension of the logits''' ) if is_torch_tensor(lowerCamelCase__ ): UpperCamelCase__ : Tuple = target_sizes.numpy() UpperCamelCase__ : Any = [] for idx in range(len(lowerCamelCase__ ) ): UpperCamelCase__ : Optional[Any] = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode='''bilinear''' , align_corners=lowerCamelCase__ ) UpperCamelCase__ : Optional[Any] = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(lowerCamelCase__ ) else: UpperCamelCase__ : Dict = logits.argmax(dim=1 ) UpperCamelCase__ : Dict = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
51
1
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) class a ( __lowerCAmelCase ): """simple docstring""" lowerCamelCase :Tuple = ['''pixel_values'''] def __init__( self , lowerCAmelCase_ = True , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = PILImageResampling.BILINEAR , lowerCAmelCase_ = True , lowerCAmelCase_ = 1 / 2_55 , lowerCAmelCase_ = True , lowerCAmelCase_ = None , lowerCAmelCase_ = None , **lowerCAmelCase_ , ) -> None: super().__init__(**lowerCAmelCase_ ) _A = size if size is not None else {"""shortest_edge""": 3_84} _A = get_size_dict(lowerCAmelCase_ , default_to_square=lowerCAmelCase_ ) _A = do_resize _A = size # Default value set here for backwards compatibility where the value in config is None _A = crop_pct if crop_pct is not None else 2_24 / 2_56 _A = resample _A = do_rescale _A = rescale_factor _A = do_normalize _A = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _A = image_std if image_std is not None else IMAGENET_STANDARD_STD def UpperCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = PILImageResampling.BICUBIC , lowerCAmelCase_ = None , **lowerCAmelCase_ , ) -> np.ndarray: _A = get_size_dict(lowerCAmelCase_ , default_to_square=lowerCAmelCase_ ) if "shortest_edge" not in size: raise ValueError(F'''Size dictionary must contain \'shortest_edge\' key. Got {size.keys()}''' ) _A = size["""shortest_edge"""] if shortest_edge < 3_84: # maintain same ratio, resizing shortest edge to shortest_edge/crop_pct _A = int(shortest_edge / crop_pct ) _A = get_resize_output_image_size(lowerCAmelCase_ , size=lowerCAmelCase_ , default_to_square=lowerCAmelCase_ ) _A = resize(image=lowerCAmelCase_ , size=lowerCAmelCase_ , resample=lowerCAmelCase_ , data_format=lowerCAmelCase_ , **lowerCAmelCase_ ) # then crop to (shortest_edge, shortest_edge) return center_crop(image=lowerCAmelCase_ , size=(shortest_edge, shortest_edge) , data_format=lowerCAmelCase_ , **lowerCAmelCase_ ) else: # warping (no cropping) when evaluated at 384 or larger return resize( lowerCAmelCase_ , size=(shortest_edge, shortest_edge) , resample=lowerCAmelCase_ , data_format=lowerCAmelCase_ , **lowerCAmelCase_ ) def UpperCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = None , **lowerCAmelCase_ , ) -> Tuple: return rescale(lowerCAmelCase_ , scale=lowerCAmelCase_ , data_format=lowerCAmelCase_ , **lowerCAmelCase_ ) def UpperCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = None , **lowerCAmelCase_ , ) -> np.ndarray: return normalize(lowerCAmelCase_ , mean=lowerCAmelCase_ , std=lowerCAmelCase_ , data_format=lowerCAmelCase_ , **lowerCAmelCase_ ) def UpperCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = ChannelDimension.FIRST , **lowerCAmelCase_ , ) -> PIL.Image.Image: _A = do_resize if do_resize is not None else self.do_resize _A = crop_pct if crop_pct is not None else self.crop_pct _A = resample if resample is not None else self.resample _A = do_rescale if do_rescale is not None else self.do_rescale _A = rescale_factor if rescale_factor is not None else self.rescale_factor _A = do_normalize if do_normalize is not None else self.do_normalize _A = image_mean if image_mean is not None else self.image_mean _A = image_std if image_std is not None else self.image_std _A = size if size is not None else self.size _A = get_size_dict(lowerCAmelCase_ , default_to_square=lowerCAmelCase_ ) _A = make_list_of_images(lowerCAmelCase_ ) if not valid_images(lowerCAmelCase_ ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""" ) if do_resize and size["shortest_edge"] < 3_84 and crop_pct is None: raise ValueError("""crop_pct must be specified if size < 384.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. _A = [to_numpy_array(lowerCAmelCase_ ) for image in images] if do_resize: _A = [self.resize(image=lowerCAmelCase_ , size=lowerCAmelCase_ , crop_pct=lowerCAmelCase_ , resample=lowerCAmelCase_ ) for image in images] if do_rescale: _A = [self.rescale(image=lowerCAmelCase_ , scale=lowerCAmelCase_ ) for image in images] if do_normalize: _A = [self.normalize(image=lowerCAmelCase_ , mean=lowerCAmelCase_ , std=lowerCAmelCase_ ) for image in images] _A = [to_channel_dimension_format(lowerCAmelCase_ , lowerCAmelCase_ ) for image in images] _A = {"""pixel_values""": images} return BatchFeature(data=lowerCAmelCase_ , tensor_type=lowerCAmelCase_ )
180
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bert import BertTokenizer _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} _SCREAMING_SNAKE_CASE = { 'vocab_file': { 'bert-base-uncased': 'https://huggingface.co/bert-base-uncased/resolve/main/vocab.txt', 'bert-large-uncased': 'https://huggingface.co/bert-large-uncased/resolve/main/vocab.txt', 'bert-base-cased': 'https://huggingface.co/bert-base-cased/resolve/main/vocab.txt', 'bert-large-cased': 'https://huggingface.co/bert-large-cased/resolve/main/vocab.txt', 'bert-base-multilingual-uncased': ( 'https://huggingface.co/bert-base-multilingual-uncased/resolve/main/vocab.txt' ), 'bert-base-multilingual-cased': 'https://huggingface.co/bert-base-multilingual-cased/resolve/main/vocab.txt', 'bert-base-chinese': 'https://huggingface.co/bert-base-chinese/resolve/main/vocab.txt', 'bert-base-german-cased': 'https://huggingface.co/bert-base-german-cased/resolve/main/vocab.txt', 'bert-large-uncased-whole-word-masking': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/vocab.txt' ), 'bert-large-cased-whole-word-masking': ( 'https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/vocab.txt' ), 'bert-large-uncased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt' ), 'bert-large-cased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt' ), 'bert-base-cased-finetuned-mrpc': ( 'https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/vocab.txt' ), 'bert-base-german-dbmdz-cased': 'https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/vocab.txt', 'bert-base-german-dbmdz-uncased': ( 'https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/vocab.txt' ), 'TurkuNLP/bert-base-finnish-cased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/vocab.txt' ), 'TurkuNLP/bert-base-finnish-uncased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/vocab.txt' ), 'wietsedv/bert-base-dutch-cased': ( 'https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'bert-base-uncased': 'https://huggingface.co/bert-base-uncased/resolve/main/tokenizer.json', 'bert-large-uncased': 'https://huggingface.co/bert-large-uncased/resolve/main/tokenizer.json', 'bert-base-cased': 'https://huggingface.co/bert-base-cased/resolve/main/tokenizer.json', 'bert-large-cased': 'https://huggingface.co/bert-large-cased/resolve/main/tokenizer.json', 'bert-base-multilingual-uncased': ( 'https://huggingface.co/bert-base-multilingual-uncased/resolve/main/tokenizer.json' ), 'bert-base-multilingual-cased': ( 'https://huggingface.co/bert-base-multilingual-cased/resolve/main/tokenizer.json' ), 'bert-base-chinese': 'https://huggingface.co/bert-base-chinese/resolve/main/tokenizer.json', 'bert-base-german-cased': 'https://huggingface.co/bert-base-german-cased/resolve/main/tokenizer.json', 'bert-large-uncased-whole-word-masking': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/tokenizer.json' ), 'bert-large-cased-whole-word-masking': ( 'https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/tokenizer.json' ), 'bert-large-uncased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json' ), 'bert-large-cased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json' ), 'bert-base-cased-finetuned-mrpc': ( 'https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/tokenizer.json' ), 'bert-base-german-dbmdz-cased': ( 'https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/tokenizer.json' ), 'bert-base-german-dbmdz-uncased': ( 'https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/tokenizer.json' ), 'TurkuNLP/bert-base-finnish-cased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/tokenizer.json' ), 'TurkuNLP/bert-base-finnish-uncased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/tokenizer.json' ), 'wietsedv/bert-base-dutch-cased': ( 'https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/tokenizer.json' ), }, } _SCREAMING_SNAKE_CASE = { 'bert-base-uncased': 512, 'bert-large-uncased': 512, 'bert-base-cased': 512, 'bert-large-cased': 512, 'bert-base-multilingual-uncased': 512, 'bert-base-multilingual-cased': 512, 'bert-base-chinese': 512, 'bert-base-german-cased': 512, 'bert-large-uncased-whole-word-masking': 512, 'bert-large-cased-whole-word-masking': 512, 'bert-large-uncased-whole-word-masking-finetuned-squad': 512, 'bert-large-cased-whole-word-masking-finetuned-squad': 512, 'bert-base-cased-finetuned-mrpc': 512, 'bert-base-german-dbmdz-cased': 512, 'bert-base-german-dbmdz-uncased': 512, 'TurkuNLP/bert-base-finnish-cased-v1': 512, 'TurkuNLP/bert-base-finnish-uncased-v1': 512, 'wietsedv/bert-base-dutch-cased': 512, } _SCREAMING_SNAKE_CASE = { 'bert-base-uncased': {'do_lower_case': True}, 'bert-large-uncased': {'do_lower_case': True}, 'bert-base-cased': {'do_lower_case': False}, 'bert-large-cased': {'do_lower_case': False}, 'bert-base-multilingual-uncased': {'do_lower_case': True}, 'bert-base-multilingual-cased': {'do_lower_case': False}, 'bert-base-chinese': {'do_lower_case': False}, 'bert-base-german-cased': {'do_lower_case': False}, 'bert-large-uncased-whole-word-masking': {'do_lower_case': True}, 'bert-large-cased-whole-word-masking': {'do_lower_case': False}, 'bert-large-uncased-whole-word-masking-finetuned-squad': {'do_lower_case': True}, 'bert-large-cased-whole-word-masking-finetuned-squad': {'do_lower_case': False}, 'bert-base-cased-finetuned-mrpc': {'do_lower_case': False}, 'bert-base-german-dbmdz-cased': {'do_lower_case': False}, 'bert-base-german-dbmdz-uncased': {'do_lower_case': True}, 'TurkuNLP/bert-base-finnish-cased-v1': {'do_lower_case': False}, 'TurkuNLP/bert-base-finnish-uncased-v1': {'do_lower_case': True}, 'wietsedv/bert-base-dutch-cased': {'do_lower_case': False}, } class a ( __lowerCAmelCase ): """simple docstring""" lowerCamelCase :Tuple = VOCAB_FILES_NAMES lowerCamelCase :Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase :Dict = PRETRAINED_INIT_CONFIGURATION lowerCamelCase :Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase :Optional[Any] = BertTokenizer def __init__( self , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_=True , lowerCAmelCase_="[UNK]" , lowerCAmelCase_="[SEP]" , lowerCAmelCase_="[PAD]" , lowerCAmelCase_="[CLS]" , lowerCAmelCase_="[MASK]" , lowerCAmelCase_=True , lowerCAmelCase_=None , **lowerCAmelCase_ , ) -> List[str]: super().__init__( lowerCAmelCase_ , tokenizer_file=lowerCAmelCase_ , do_lower_case=lowerCAmelCase_ , unk_token=lowerCAmelCase_ , sep_token=lowerCAmelCase_ , pad_token=lowerCAmelCase_ , cls_token=lowerCAmelCase_ , mask_token=lowerCAmelCase_ , tokenize_chinese_chars=lowerCAmelCase_ , strip_accents=lowerCAmelCase_ , **lowerCAmelCase_ , ) _A = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("""lowercase""" , lowerCAmelCase_ ) != do_lower_case or normalizer_state.get("""strip_accents""" , lowerCAmelCase_ ) != strip_accents or normalizer_state.get("""handle_chinese_chars""" , lowerCAmelCase_ ) != tokenize_chinese_chars ): _A = getattr(lowerCAmelCase_ , normalizer_state.pop("""type""" ) ) _A = do_lower_case _A = strip_accents _A = tokenize_chinese_chars _A = normalizer_class(**lowerCAmelCase_ ) _A = do_lower_case def UpperCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_=None ) -> List[str]: _A = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ = None ) -> List[int]: _A = [self.sep_token_id] _A = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ = None ) -> Tuple[str]: _A = self._tokenizer.model.save(lowerCAmelCase_ , name=lowerCAmelCase_ ) return tuple(lowerCAmelCase_ )
180
1
'''simple docstring''' import os import pytest from transformers.dynamic_module_utils import get_imports __UpperCamelCase = "\nimport os\n" __UpperCamelCase = "\ndef foo():\n import os\n return False\n" __UpperCamelCase = "\ndef foo():\n def bar():\n if True:\n import os\n return False\n return bar()\n" __UpperCamelCase = "\nimport os\n\ntry:\n import bar\nexcept ImportError:\n raise ValueError()\n" __UpperCamelCase = "\nimport os\n\ndef foo():\n try:\n import bar\n except ImportError:\n raise ValueError()\n" __UpperCamelCase = "\nimport os\n\ntry:\n import bar\nexcept (ImportError, AttributeError):\n raise ValueError()\n" __UpperCamelCase = "\nimport os\n\ntry:\n import bar\nexcept ImportError as e:\n raise ValueError()\n" __UpperCamelCase = "\nimport os\n\ntry:\n import bar\nexcept:\n raise ValueError()\n" __UpperCamelCase = "\nimport os\n\ntry:\n import bar\n import baz\nexcept ImportError:\n raise ValueError()\n" __UpperCamelCase = "\nimport os\n\ntry:\n import bar\n import baz\nexcept ImportError:\n x = 1\n raise ValueError()\n" __UpperCamelCase = [ TOP_LEVEL_IMPORT, IMPORT_IN_FUNCTION, DEEPLY_NESTED_IMPORT, TOP_LEVEL_TRY_IMPORT, GENERIC_EXCEPT_IMPORT, MULTILINE_TRY_IMPORT, MULTILINE_BOTH_IMPORT, MULTIPLE_EXCEPTS_IMPORT, EXCEPT_AS_IMPORT, TRY_IMPORT_IN_FUNCTION, ] @pytest.mark.parametrize("""case""" , _lowerCamelCase ) def _a ( _lowerCamelCase , _lowerCamelCase ) -> List[str]: """simple docstring""" __snake_case : Union[str, Any] = os.path.join(_lowerCamelCase , """test_file.py""" ) with open(_lowerCamelCase , """w""" ) as _tmp_file: _tmp_file.write(_lowerCamelCase ) __snake_case : List[str] = get_imports(_lowerCamelCase ) assert parsed_imports == ["os"]
367
'''simple docstring''' from __future__ import annotations def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ) -> None: """simple docstring""" __snake_case : int = len(_lowerCamelCase ) # If row is equal to the size of the board it means there are a queen in each row in # the current board (possible_board) if row == n: # We convert the variable possible_board that looks like this: [1, 3, 0, 2] to # this: ['. Q . . ', '. . . Q ', 'Q . . . ', '. . Q . '] boards.append([""". """ * i + """Q """ + """. """ * (n - 1 - i) for i in possible_board] ) return # We iterate each column in the row to find all possible results in each row for col in range(_lowerCamelCase ): # We apply that we learned previously. First we check that in the current board # (possible_board) there are not other same value because if there is it means # that there are a collision in vertical. Then we apply the two formulas we # learned before: # # 45º: y - x = b or 45: row - col = b # 135º: y + x = b or row + col = b. # # And we verify if the results of this two formulas not exist in their variables # respectively. (diagonal_right_collisions, diagonal_left_collisions) # # If any or these are True it means there is a collision so we continue to the # next value in the for loop. if ( col in possible_board or row - col in diagonal_right_collisions or row + col in diagonal_left_collisions ): continue # If it is False we call dfs function again and we update the inputs depth_first_search( [*possible_board, col] , [*diagonal_right_collisions, row - col] , [*diagonal_left_collisions, row + col] , _lowerCamelCase , _lowerCamelCase , ) def _a ( _lowerCamelCase ) -> None: """simple docstring""" __snake_case : list[list[str]] = [] depth_first_search([] , [] , [] , _lowerCamelCase , _lowerCamelCase ) # Print all the boards for board in boards: for column in board: print(_lowerCamelCase ) print("""""" ) print(len(_lowerCamelCase ) , """solutions were found.""" ) if __name__ == "__main__": import doctest doctest.testmod() n_queens_solution(4)
13
0
# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from typing import Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import randn_tensor from .scheduling_utils import SchedulerMixin class __lowerCAmelCase ( a , a ): """simple docstring""" _SCREAMING_SNAKE_CASE = 1 @register_to_config def __init__( self : Optional[Any] , _lowerCAmelCase : Dict=2_0_0_0 , _lowerCAmelCase : Dict=0.1 , _lowerCAmelCase : List[Any]=2_0 , _lowerCAmelCase : Any=1e-3 ) -> Optional[int]: """simple docstring""" snake_case_ = None snake_case_ = None snake_case_ = None def lowerCAmelCase__ ( self : Any , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Union[str, torch.device] = None ) -> int: """simple docstring""" snake_case_ = torch.linspace(1 , self.config.sampling_eps , _lowerCAmelCase , device=_lowerCAmelCase ) def lowerCAmelCase__ ( self : int , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : int , _lowerCAmelCase : Optional[Any]=None ) -> Any: """simple docstring""" if self.timesteps is None: raise ValueError( "`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler" ) # TODO(Patrick) better comments + non-PyTorch # postprocess model score snake_case_ = ( -0.25 * t**2 * (self.config.beta_max - self.config.beta_min) - 0.5 * t * self.config.beta_min ) snake_case_ = torch.sqrt(1.0 - torch.exp(2.0 * log_mean_coeff ) ) snake_case_ = std.flatten() while len(std.shape ) < len(score.shape ): snake_case_ = std.unsqueeze(-1 ) snake_case_ = -score / std # compute snake_case_ = -1.0 / len(self.timesteps ) snake_case_ = self.config.beta_min + t * (self.config.beta_max - self.config.beta_min) snake_case_ = beta_t.flatten() while len(beta_t.shape ) < len(x.shape ): snake_case_ = beta_t.unsqueeze(-1 ) snake_case_ = -0.5 * beta_t * x snake_case_ = torch.sqrt(_lowerCAmelCase ) snake_case_ = drift - diffusion**2 * score snake_case_ = x + drift * dt # add noise snake_case_ = randn_tensor(x.shape , layout=x.layout , generator=_lowerCAmelCase , device=x.device , dtype=x.dtype ) snake_case_ = x_mean + diffusion * math.sqrt(-dt ) * noise return x, x_mean def __len__( self : Optional[int] ) -> int: """simple docstring""" return self.config.num_train_timesteps
159
import unittest from knapsack import greedy_knapsack as kp class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def lowerCAmelCase__ ( self : Any ) -> str: """simple docstring""" snake_case_ = [1_0, 2_0, 3_0, 4_0, 5_0, 6_0] snake_case_ = [2, 4, 6, 8, 1_0, 1_2] snake_case_ = 1_0_0 self.assertEqual(kp.calc_profit(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) , 2_1_0 ) def lowerCAmelCase__ ( self : List[str] ) -> Tuple: """simple docstring""" self.assertRaisesRegex(_lowerCAmelCase , "max_weight must greater than zero." ) def lowerCAmelCase__ ( self : Dict ) -> Optional[Any]: """simple docstring""" self.assertRaisesRegex(_lowerCAmelCase , "Weight can not be negative." ) def lowerCAmelCase__ ( self : Dict ) -> Tuple: """simple docstring""" self.assertRaisesRegex(_lowerCAmelCase , "Profit can not be negative." ) def lowerCAmelCase__ ( self : Optional[int] ) -> str: """simple docstring""" self.assertRaisesRegex(_lowerCAmelCase , "max_weight must greater than zero." ) def lowerCAmelCase__ ( self : Union[str, Any] ) -> str: """simple docstring""" self.assertRaisesRegex( _lowerCAmelCase , "The length of profit and weight must be same." ) if __name__ == "__main__": unittest.main()
159
1
import argparse import json import os import torch from torch import nn from transformers import NllbMoeConfig, NllbMoeModel from transformers.modeling_utils import dtype_byte_size from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME def A__ ( SCREAMING_SNAKE_CASE__) -> List[str]: __snake_case: Optional[int] = [ """encoder.version""", """decoder.version""", """model.encoder.version""", """model.decoder.version""", """decoder.output_projection.weight""", """_float_tensor""", """encoder.embed_positions._float_tensor""", """decoder.embed_positions._float_tensor""", ] for k in ignore_keys: state_dict.pop(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__) def A__ ( SCREAMING_SNAKE_CASE__) -> Dict: __snake_case , __snake_case: Tuple = emb.weight.shape __snake_case: str = nn.Linear(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , bias=SCREAMING_SNAKE_CASE__) __snake_case: Any = emb.weight.data return lin_layer def A__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=None) -> Optional[int]: __snake_case: List[str] = {} for old_key in state_dict.keys(): __snake_case: Optional[int] = old_key if "moe_layer.experts." in key: if expert_idx is not None: __snake_case: List[str] = key.replace("""moe_layer.experts.0""" , F'''ffn.experts.expert_{expert_idx}''') else: __snake_case: int = key.replace("""moe_layer.experts.""" , """ffn.experts.expert_""") if "gate" in key: __snake_case: Any = key.replace(""".moe_layer.gate.wg""" , """.ffn.router.classifier""") if "fc2" and "experts" not in key: __snake_case: Optional[int] = key.replace(""".fc2.""" , """.ffn.fc2.""") if "fc1" and "experts" not in key: __snake_case: List[Any] = key.replace(""".fc1.""" , """.ffn.fc1.""") if ".encoder_attn." in key: __snake_case: Optional[Any] = key.replace(""".encoder_attn.""" , """.cross_attention.""") if "encoder_attn_layer_norm" in key: __snake_case: Optional[Any] = key.replace("""encoder_attn_layer_norm""" , """cross_attention_layer_norm""") if "final_layer_norm" in key: __snake_case: str = key.replace("""final_layer_norm""" , """ff_layer_norm""") __snake_case: Tuple = state_dict[old_key] return new_dict def A__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = WEIGHTS_NAME) -> Optional[Any]: __snake_case: str = [] __snake_case: Optional[int] = 0 os.makedirs(SCREAMING_SNAKE_CASE__ , exist_ok=SCREAMING_SNAKE_CASE__) for expert in range(SCREAMING_SNAKE_CASE__): __snake_case: Optional[int] = switch_checkpoint_path + F'''-rank-{expert}.pt''' if os.path.isfile(SCREAMING_SNAKE_CASE__): __snake_case: Optional[Any] = torch.load(SCREAMING_SNAKE_CASE__)["""model"""] remove_ignore_keys_(SCREAMING_SNAKE_CASE__) __snake_case: Any = rename_fairseq_keys(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__) __snake_case: int = os.path.join( SCREAMING_SNAKE_CASE__ , weights_name.replace(""".bin""" , F'''-{len(SCREAMING_SNAKE_CASE__)+1:05d}-of-???.bin''')) torch.save(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__) sharded_state_dicts.append(expert_state.keys()) total_size += sum([value.numel() for key, value in expert_state.items()]) * dtype_byte_size( expert_state[list(SCREAMING_SNAKE_CASE__)[0]].dtype) # Add the last block __snake_case: str = os.path.join(SCREAMING_SNAKE_CASE__ , weights_name.replace(""".bin""" , F'''-{len(SCREAMING_SNAKE_CASE__)+1:05d}-of-???.bin''')) __snake_case: Optional[int] = torch.load(switch_checkpoint_path + """-shared.pt""")["""model"""] remove_ignore_keys_(SCREAMING_SNAKE_CASE__) __snake_case: Optional[Any] = rename_fairseq_keys(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__) __snake_case: List[str] = shared_weights["""decoder.embed_tokens.weight"""] sharded_state_dicts.append(shared_weights.keys()) # If we only have the shared weights (dummy model/experts saved on the same file) if len(SCREAMING_SNAKE_CASE__) == 1: __snake_case: Tuple = os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__) torch.save(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__) return {weights_name: sharded_state_dicts[0]}, None else: torch.save(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__) # Otherwise, let's build the index __snake_case: Any = {} for idx, shard in enumerate(SCREAMING_SNAKE_CASE__): __snake_case: Tuple = weights_name.replace(""".bin""" , F'''-{idx+1:05d}-of-{len(SCREAMING_SNAKE_CASE__):05d}.bin''') __snake_case: Optional[Any] = os.path.join(SCREAMING_SNAKE_CASE__ , weights_name.replace(""".bin""" , F'''-{idx+1:05d}-of-???.bin''')) os.rename(SCREAMING_SNAKE_CASE__ , os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__)) for key in shard: __snake_case: List[str] = shard_file # Add the metadata __snake_case: Dict = {"""total_size""": total_size} __snake_case: Optional[int] = {"""metadata""": metadata, """weight_map""": weight_map} with open(os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__) , """w""" , encoding="""utf-8""") as f: __snake_case: Dict = json.dumps(SCREAMING_SNAKE_CASE__ , indent=2 , sort_keys=SCREAMING_SNAKE_CASE__) + """\n""" f.write(SCREAMING_SNAKE_CASE__) return metadata, index if __name__ == "__main__": __UpperCAmelCase : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( "--nllb_moe_checkpoint_path", default="/home/arthur_huggingface_co/fairseq/weights/checkpoints/model_moe_54b/checkpoint_2_300000", type=str, required=False, help="Path to a directory containing a folder per layer. Follows the original Google format.", ) parser.add_argument("--dtype", default="float32", type=str, required=False, help="dtype of the saved model") parser.add_argument( "--pytorch_dump_folder_path", default="/home/arthur_huggingface_co/fairseq/weights/checkpoints/hf-converted-moe-54b", type=str, required=False, help="Path to the output pytorch model.", ) __UpperCAmelCase : Optional[int] = parser.parse_args() __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = shard_on_the_fly( args.nllb_moe_checkpoint_path, args.pytorch_dump_folder_path, 128, args.dtype, ) __UpperCAmelCase : Union[str, Any] = NllbMoeConfig.from_pretrained( "facebook/nllb-200-3.3B", encoder_sparse_step=4, decoder_sparse_step=4, num_experts=128 ) config.save_pretrained(args.pytorch_dump_folder_path) __UpperCAmelCase : Union[str, Any] = NllbMoeModel.from_pretrained(args.pytorch_dump_folder_path) print("Done") model.save_pretrained(args.pytorch_dump_folder_path)
293
import unittest import numpy as np from diffusers import LMSDiscreteScheduler, OnnxStableDiffusionInpaintPipeline from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class __snake_case ( __lowerCamelCase , unittest.TestCase ): '''simple docstring''' pass @nightly @require_onnxruntime @require_torch_gpu class __snake_case ( unittest.TestCase ): '''simple docstring''' @property def UpperCAmelCase__ ( self : Dict ): return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def UpperCAmelCase__ ( self : Dict ): __snake_case: Optional[int] = ort.SessionOptions() __snake_case: List[Any] = False return options def UpperCAmelCase__ ( self : Optional[Any] ): __snake_case: Optional[Any] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/in_paint/overture-creations-5sI6fQgYIuo.png""" ) __snake_case: Any = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/in_paint/overture-creations-5sI6fQgYIuo_mask.png""" ) __snake_case: List[str] = OnnxStableDiffusionInpaintPipeline.from_pretrained( """runwayml/stable-diffusion-inpainting""" , revision="""onnx""" , safety_checker=A , feature_extractor=A , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=A ) __snake_case: int = """A red cat sitting on a park bench""" __snake_case: Any = np.random.RandomState(0 ) __snake_case: Optional[Any] = pipe( prompt=A , image=A , mask_image=A , guidance_scale=7.5 , num_inference_steps=10 , generator=A , output_type="""np""" , ) __snake_case: List[Any] = output.images __snake_case: str = images[0, 255:258, 255:258, -1] assert images.shape == (1, 512, 512, 3) __snake_case: Any = np.array([0.2514, 0.3007, 0.3517, 0.1790, 0.2382, 0.3167, 0.1944, 0.2273, 0.2464] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def UpperCAmelCase__ ( self : Optional[Any] ): __snake_case: Optional[Any] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/in_paint/overture-creations-5sI6fQgYIuo.png""" ) __snake_case: Optional[int] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/in_paint/overture-creations-5sI6fQgYIuo_mask.png""" ) __snake_case: Optional[int] = LMSDiscreteScheduler.from_pretrained( """runwayml/stable-diffusion-inpainting""" , subfolder="""scheduler""" , revision="""onnx""" ) __snake_case: List[Any] = OnnxStableDiffusionInpaintPipeline.from_pretrained( """runwayml/stable-diffusion-inpainting""" , revision="""onnx""" , scheduler=A , safety_checker=A , feature_extractor=A , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=A ) __snake_case: Optional[int] = """A red cat sitting on a park bench""" __snake_case: Dict = np.random.RandomState(0 ) __snake_case: Optional[Any] = pipe( prompt=A , image=A , mask_image=A , guidance_scale=7.5 , num_inference_steps=20 , generator=A , output_type="""np""" , ) __snake_case: List[str] = output.images __snake_case: str = images[0, 255:258, 255:258, -1] assert images.shape == (1, 512, 512, 3) __snake_case: Union[str, Any] = np.array([0.0086, 0.0077, 0.0083, 0.0093, 0.0107, 0.0139, 0.0094, 0.0097, 0.0125] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3
293
1
def UpperCamelCase ( snake_case__ : list , snake_case__ : list ) -> float: _validate_point(lowerCAmelCase__ ) _validate_point(lowerCAmelCase__ ) if len(lowerCAmelCase__ ) != len(lowerCAmelCase__ ): raise ValueError('Both points must be in the same n-dimensional space' ) return float(sum(abs(a - b ) for a, b in zip(lowerCAmelCase__ , lowerCAmelCase__ ) ) ) def UpperCamelCase ( snake_case__ : list[float] ) -> None: if point: if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): for item in point: if not isinstance(lowerCAmelCase__ , (int, float) ): UpperCamelCase : Optional[Any] = ( 'Expected a list of numbers as input, found ' F"""{type(lowerCAmelCase__ ).__name__}""" ) raise TypeError(lowerCAmelCase__ ) else: UpperCamelCase : Dict = F"""Expected a list of numbers as input, found {type(lowerCAmelCase__ ).__name__}""" raise TypeError(lowerCAmelCase__ ) else: raise ValueError('Missing an input' ) def UpperCamelCase ( snake_case__ : list , snake_case__ : list ) -> float: _validate_point(lowerCAmelCase__ ) _validate_point(lowerCAmelCase__ ) if len(lowerCAmelCase__ ) != len(lowerCAmelCase__ ): raise ValueError('Both points must be in the same n-dimensional space' ) return float(sum(abs(x - y ) for x, y in zip(lowerCAmelCase__ , lowerCAmelCase__ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
119
'''simple docstring''' import torch from diffusers import KDPMaDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class a ( _SCREAMING_SNAKE_CASE ): _lowerCAmelCase = (KDPMaDiscreteScheduler,) _lowerCAmelCase = 1_0 def __UpperCAmelCase ( self , **__magic_name__ ) -> int: _a = { 'num_train_timesteps': 11_00, 'beta_start': 0.0_0_0_1, 'beta_end': 0.0_2, 'beta_schedule': 'linear', } config.update(**__magic_name__ ) return config def __UpperCAmelCase ( self ) -> Union[str, Any]: for timesteps in [10, 50, 1_00, 10_00]: self.check_over_configs(num_train_timesteps=__magic_name__ ) def __UpperCAmelCase ( self ) -> Union[str, Any]: for beta_start, beta_end in zip([0.0_0_0_0_1, 0.0_0_0_1, 0.0_0_1] , [0.0_0_0_2, 0.0_0_2, 0.0_2] ): self.check_over_configs(beta_start=__magic_name__ , beta_end=__magic_name__ ) def __UpperCAmelCase ( self ) -> str: for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=__magic_name__ ) def __UpperCAmelCase ( self ) -> List[Any]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=__magic_name__ ) def __UpperCAmelCase ( self ) -> int: _a = self.scheduler_classes[0] _a = self.get_scheduler_config(prediction_type='v_prediction' ) _a = scheduler_class(**__magic_name__ ) scheduler.set_timesteps(self.num_inference_steps ) _a = self.dummy_model() _a = self.dummy_sample_deter * scheduler.init_noise_sigma _a = sample.to(__magic_name__ ) for i, t in enumerate(scheduler.timesteps ): _a = scheduler.scale_model_input(__magic_name__ , __magic_name__ ) _a = model(__magic_name__ , __magic_name__ ) _a = scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ ) _a = output.prev_sample _a = torch.sum(torch.abs(__magic_name__ ) ) _a = torch.mean(torch.abs(__magic_name__ ) ) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 4.6934e-07 ) < 1e-2 assert abs(result_mean.item() - 6.1112e-10 ) < 1e-3 else: # CUDA assert abs(result_sum.item() - 4.693428650170972e-07 ) < 1e-2 assert abs(result_mean.item() - 0.0_0_0_2 ) < 1e-3 def __UpperCAmelCase ( self ) -> Tuple: if torch_device == "mps": return _a = self.scheduler_classes[0] _a = self.get_scheduler_config() _a = scheduler_class(**__magic_name__ ) scheduler.set_timesteps(self.num_inference_steps ) _a = self.dummy_model() _a = self.dummy_sample_deter * scheduler.init_noise_sigma _a = sample.to(__magic_name__ ) for i, t in enumerate(scheduler.timesteps ): _a = scheduler.scale_model_input(__magic_name__ , __magic_name__ ) _a = model(__magic_name__ , __magic_name__ ) _a = scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ ) _a = output.prev_sample _a = torch.sum(torch.abs(__magic_name__ ) ) _a = torch.mean(torch.abs(__magic_name__ ) ) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 2_0.4_1_2_5 ) < 1e-2 assert abs(result_mean.item() - 0.0_2_6_6 ) < 1e-3 else: # CUDA assert abs(result_sum.item() - 2_0.4_1_2_5 ) < 1e-2 assert abs(result_mean.item() - 0.0_2_6_6 ) < 1e-3 def __UpperCAmelCase ( self ) -> List[Any]: if torch_device == "mps": return _a = self.scheduler_classes[0] _a = self.get_scheduler_config() _a = scheduler_class(**__magic_name__ ) scheduler.set_timesteps(self.num_inference_steps , device=__magic_name__ ) _a = self.dummy_model() _a = self.dummy_sample_deter.to(__magic_name__ ) * scheduler.init_noise_sigma for t in scheduler.timesteps: _a = scheduler.scale_model_input(__magic_name__ , __magic_name__ ) _a = model(__magic_name__ , __magic_name__ ) _a = scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ ) _a = output.prev_sample _a = torch.sum(torch.abs(__magic_name__ ) ) _a = torch.mean(torch.abs(__magic_name__ ) ) if str(__magic_name__ ).startswith('cpu' ): # The following sum varies between 148 and 156 on mps. Why? assert abs(result_sum.item() - 2_0.4_1_2_5 ) < 1e-2 assert abs(result_mean.item() - 0.0_2_6_6 ) < 1e-3 else: # CUDA assert abs(result_sum.item() - 2_0.4_1_2_5 ) < 1e-2 assert abs(result_mean.item() - 0.0_2_6_6 ) < 1e-3
168
0
import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler _lowerCamelCase = 16 _lowerCamelCase = 32 def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Accelerator , __UpperCamelCase : int = 16 , __UpperCamelCase : str = "bert-base-cased" ) -> Union[str, Any]: UpperCAmelCase_ = AutoTokenizer.from_pretrained(__UpperCamelCase ) UpperCAmelCase_ = load_dataset('''glue''' , '''mrpc''' ) def tokenize_function(__UpperCamelCase : str ): # max_length=None => use the model max length (it's actually the default) UpperCAmelCase_ = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=__UpperCamelCase , max_length=__UpperCamelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset UpperCAmelCase_ = datasets.map( __UpperCamelCase , batched=__UpperCamelCase , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , load_from_cache_file=__UpperCamelCase ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library UpperCAmelCase_ = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(__UpperCamelCase : Any ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(__UpperCamelCase , padding='''max_length''' , max_length=128 , return_tensors='''pt''' ) return tokenizer.pad(__UpperCamelCase , padding='''longest''' , return_tensors='''pt''' ) # Instantiate dataloaders. UpperCAmelCase_ = DataLoader( tokenized_datasets['''train'''] , shuffle=__UpperCamelCase , collate_fn=__UpperCamelCase , batch_size=__UpperCamelCase ) UpperCAmelCase_ = DataLoader( tokenized_datasets['''validation'''] , shuffle=__UpperCamelCase , collate_fn=__UpperCamelCase , batch_size=__UpperCamelCase ) return train_dataloader, eval_dataloader def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Optional[Any] , __UpperCamelCase : Optional[Any] ) -> Tuple: # Initialize accelerator UpperCAmelCase_ = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs UpperCAmelCase_ = config['''lr'''] UpperCAmelCase_ = int(config['''num_epochs'''] ) UpperCAmelCase_ = int(config['''seed'''] ) UpperCAmelCase_ = int(config['''batch_size'''] ) UpperCAmelCase_ = args.model_name_or_path set_seed(__UpperCamelCase ) UpperCAmelCase_ , UpperCAmelCase_ = get_dataloaders(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) UpperCAmelCase_ = AutoModelForSequenceClassification.from_pretrained(__UpperCamelCase , return_dict=__UpperCamelCase ) # Instantiate optimizer UpperCAmelCase_ = ( AdamW if accelerator.state.deepspeed_plugin is None or '''optimizer''' not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) UpperCAmelCase_ = optimizer_cls(params=model.parameters() , lr=__UpperCamelCase ) if accelerator.state.deepspeed_plugin is not None: UpperCAmelCase_ = accelerator.state.deepspeed_plugin.deepspeed_config[ '''gradient_accumulation_steps''' ] else: UpperCAmelCase_ = 1 UpperCAmelCase_ = (len(__UpperCamelCase ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): UpperCAmelCase_ = get_linear_schedule_with_warmup( optimizer=__UpperCamelCase , num_warmup_steps=0 , num_training_steps=__UpperCamelCase , ) else: UpperCAmelCase_ = DummyScheduler(__UpperCamelCase , total_num_steps=__UpperCamelCase , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = accelerator.prepare( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) # We need to keep track of how many total steps we have iterated over UpperCAmelCase_ = 0 # We also need to keep track of the stating epoch so files are named properly UpperCAmelCase_ = 0 # Now we train the model UpperCAmelCase_ = evaluate.load('''glue''' , '''mrpc''' ) UpperCAmelCase_ = 0 UpperCAmelCase_ = {} for epoch in range(__UpperCamelCase , __UpperCamelCase ): model.train() for step, batch in enumerate(__UpperCamelCase ): UpperCAmelCase_ = model(**__UpperCamelCase ) UpperCAmelCase_ = outputs.loss UpperCAmelCase_ = loss / gradient_accumulation_steps accelerator.backward(__UpperCamelCase ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 model.eval() UpperCAmelCase_ = 0 for step, batch in enumerate(__UpperCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): UpperCAmelCase_ = model(**__UpperCamelCase ) UpperCAmelCase_ = outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times UpperCAmelCase_ , UpperCAmelCase_ = accelerator.gather( (predictions, batch['''labels''']) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(__UpperCamelCase ) - 1: UpperCAmelCase_ = predictions[: len(eval_dataloader.dataset ) - samples_seen] UpperCAmelCase_ = references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=__UpperCamelCase , references=__UpperCamelCase , ) UpperCAmelCase_ = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f'epoch {epoch}:' , __UpperCamelCase ) UpperCAmelCase_ = eval_metric['''accuracy'''] if best_performance < eval_metric["accuracy"]: UpperCAmelCase_ = eval_metric['''accuracy'''] if args.performance_lower_bound is not None: assert ( args.performance_lower_bound <= best_performance ), f'Best performance metric {best_performance} is lower than the lower bound {args.performance_lower_bound}' accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , '''all_results.json''' ) , '''w''' ) as f: json.dump(__UpperCamelCase , __UpperCamelCase ) def SCREAMING_SNAKE_CASE ( ) -> List[Any]: UpperCAmelCase_ = argparse.ArgumentParser(description='''Simple example of training script tracking peak GPU memory usage.''' ) parser.add_argument( '''--model_name_or_path''' , type=__UpperCamelCase , default='''bert-base-cased''' , help='''Path to pretrained model or model identifier from huggingface.co/models.''' , required=__UpperCamelCase , ) parser.add_argument( '''--output_dir''' , type=__UpperCamelCase , default='''.''' , help='''Optional save directory where all checkpoint folders will be stored. Default is the current working directory.''' , ) parser.add_argument( '''--performance_lower_bound''' , type=__UpperCamelCase , default=__UpperCamelCase , help='''Optional lower bound for the performance metric. If set, the training will throw error when the performance metric drops below this value.''' , ) parser.add_argument( '''--num_epochs''' , type=__UpperCamelCase , default=3 , help='''Number of train epochs.''' , ) UpperCAmelCase_ = parser.parse_args() UpperCAmelCase_ = {'''lr''': 2e-5, '''num_epochs''': args.num_epochs, '''seed''': 42, '''batch_size''': 16} training_function(__UpperCamelCase , __UpperCamelCase ) if __name__ == "__main__": main()
177
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class a ( unittest.TestCase ): '''simple docstring''' def __init__( self : Tuple , __snake_case : int , __snake_case : List[Any]=7 , __snake_case : Any=3 , __snake_case : Any=18 , __snake_case : str=30 , __snake_case : Any=4_00 , __snake_case : Optional[int]=True , __snake_case : str=None , __snake_case : Any=True , __snake_case : List[Any]=None , ): UpperCAmelCase_ = size if size is not None else {'''shortest_edge''': 20} UpperCAmelCase_ = crop_size if crop_size is not None else {'''height''': 18, '''width''': 18} UpperCAmelCase_ = parent UpperCAmelCase_ = batch_size UpperCAmelCase_ = num_channels UpperCAmelCase_ = image_size UpperCAmelCase_ = min_resolution UpperCAmelCase_ = max_resolution UpperCAmelCase_ = do_resize UpperCAmelCase_ = size UpperCAmelCase_ = do_center_crop UpperCAmelCase_ = crop_size def lowerCamelCase_ ( self : Any ): return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, } @require_torch @require_vision class a ( _A , unittest.TestCase ): '''simple docstring''' lowerCAmelCase : Union[str, Any] = MobileNetVaImageProcessor if is_vision_available() else None def lowerCamelCase_ ( self : Any ): UpperCAmelCase_ = MobileNetVaImageProcessingTester(self ) @property def lowerCamelCase_ ( self : List[str] ): return self.image_processor_tester.prepare_image_processor_dict() def lowerCamelCase_ ( self : Optional[int] ): UpperCAmelCase_ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__snake_case , '''do_resize''' ) ) self.assertTrue(hasattr(__snake_case , '''size''' ) ) self.assertTrue(hasattr(__snake_case , '''do_center_crop''' ) ) self.assertTrue(hasattr(__snake_case , '''crop_size''' ) ) def lowerCamelCase_ ( self : Dict ): UpperCAmelCase_ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 20} ) self.assertEqual(image_processor.crop_size , {'''height''': 18, '''width''': 18} ) UpperCAmelCase_ = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'''shortest_edge''': 42} ) self.assertEqual(image_processor.crop_size , {'''height''': 84, '''width''': 84} ) def lowerCamelCase_ ( self : Optional[int] ): pass def lowerCamelCase_ ( self : Tuple ): # Initialize image_processing UpperCAmelCase_ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCAmelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=__snake_case ) for image in image_inputs: self.assertIsInstance(__snake_case , Image.Image ) # Test not batched input UpperCAmelCase_ = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched UpperCAmelCase_ = image_processing(__snake_case , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def lowerCamelCase_ ( self : str ): # Initialize image_processing UpperCAmelCase_ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCAmelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=__snake_case , numpify=__snake_case ) for image in image_inputs: self.assertIsInstance(__snake_case , np.ndarray ) # Test not batched input UpperCAmelCase_ = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched UpperCAmelCase_ = image_processing(__snake_case , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def lowerCamelCase_ ( self : int ): # Initialize image_processing UpperCAmelCase_ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCAmelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=__snake_case , torchify=__snake_case ) for image in image_inputs: self.assertIsInstance(__snake_case , torch.Tensor ) # Test not batched input UpperCAmelCase_ = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched UpperCAmelCase_ = image_processing(__snake_case , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , )
177
1
import unittest from transformers import DonutProcessor SCREAMING_SNAKE_CASE_ = """naver-clova-ix/donut-base""" class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE = DonutProcessor.from_pretrained(lowerCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self : Dict ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE = { """name""": """John Doe""", """age""": """99""", """city""": """Atlanta""", """state""": """GA""", """zip""": """30301""", """phone""": """123-4567""", """nicknames""": [{"""nickname""": """Johnny"""}, {"""nickname""": """JD"""}], } SCREAMING_SNAKE_CASE = ( """<s_name>John Doe</s_name><s_age>99</s_age><s_city>Atlanta</s_city>""" """<s_state>GA</s_state><s_zip>30301</s_zip><s_phone>123-4567</s_phone>""" """<s_nicknames><s_nickname>Johnny</s_nickname>""" """<sep/><s_nickname>JD</s_nickname></s_nicknames>""" ) SCREAMING_SNAKE_CASE = self.processor.tokenajson(lowerCamelCase__ ) self.assertDictEqual(lowerCamelCase__ ,lowerCamelCase__ )
296
from argparse import ArgumentParser from .env import EnvironmentCommand def __lowercase ( ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE = ArgumentParser("""Diffusers CLI tool""" , usage="""diffusers-cli <command> [<args>]""" ) SCREAMING_SNAKE_CASE = parser.add_subparsers(help="""diffusers-cli command helpers""" ) # Register commands EnvironmentCommand.register_subcommand(_SCREAMING_SNAKE_CASE ) # Let's go SCREAMING_SNAKE_CASE = parser.parse_args() if not hasattr(_SCREAMING_SNAKE_CASE , """func""" ): parser.print_help() exit(1 ) # Run SCREAMING_SNAKE_CASE = args.func(_SCREAMING_SNAKE_CASE ) service.run() if __name__ == "__main__": main()
296
1
"""simple docstring""" import unittest import numpy as np from transformers import DistilBertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.distilbert.modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, ) class lowerCAmelCase_ ( unittest.TestCase ): """simple docstring""" def __init__( self , lowerCAmelCase , lowerCAmelCase=13 , lowerCAmelCase=7 , lowerCAmelCase=True , lowerCAmelCase=True , lowerCAmelCase=True , lowerCAmelCase=True , lowerCAmelCase=99 , lowerCAmelCase=32 , lowerCAmelCase=5 , lowerCAmelCase=4 , lowerCAmelCase=37 , lowerCAmelCase="gelu" , lowerCAmelCase=0.1 , lowerCAmelCase=0.1 , lowerCAmelCase=5_12 , lowerCAmelCase=16 , lowerCAmelCase=2 , lowerCAmelCase=0.02 , lowerCAmelCase=4 , ): """simple docstring""" snake_case = parent snake_case = batch_size snake_case = seq_length snake_case = is_training snake_case = use_attention_mask snake_case = use_token_type_ids snake_case = use_labels snake_case = vocab_size snake_case = hidden_size snake_case = num_hidden_layers snake_case = num_attention_heads snake_case = intermediate_size snake_case = hidden_act snake_case = hidden_dropout_prob snake_case = attention_probs_dropout_prob snake_case = max_position_embeddings snake_case = type_vocab_size snake_case = type_sequence_label_size snake_case = initializer_range snake_case = num_choices def snake_case ( self ): """simple docstring""" snake_case = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case = None if self.use_attention_mask: snake_case = random_attention_mask([self.batch_size, self.seq_length] ) snake_case = DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , tie_weights_=lowerCAmelCase , ) return config, input_ids, attention_mask def snake_case ( self ): """simple docstring""" snake_case = self.prepare_config_and_inputs() snake_case ,snake_case ,snake_case = config_and_inputs snake_case = {'input_ids': input_ids, 'attention_mask': attention_mask} return config, inputs_dict @require_flax class lowerCAmelCase_ ( lowerCAmelCase , unittest.TestCase ): """simple docstring""" _lowerCAmelCase : List[Any] = ( ( FlaxDistilBertModel, FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertForQuestionAnswering, ) if is_flax_available() else () ) def snake_case ( self ): """simple docstring""" snake_case = FlaxDistilBertModelTester(self ) @slow def snake_case ( self ): """simple docstring""" for model_class_name in self.all_model_classes: snake_case = model_class_name.from_pretrained('distilbert-base-uncased' ) snake_case = model(np.ones((1, 1) ) ) self.assertIsNotNone(lowerCAmelCase ) @require_flax class lowerCAmelCase_ ( unittest.TestCase ): """simple docstring""" @slow def snake_case ( self ): """simple docstring""" snake_case = FlaxDistilBertModel.from_pretrained('distilbert-base-uncased' ) snake_case = np.array([[0, 3_45, 2_32, 3_28, 7_40, 1_40, 16_95, 69, 60_78, 15_88, 2]] ) snake_case = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) snake_case = model(lowerCAmelCase , attention_mask=lowerCAmelCase )[0] snake_case = (1, 11, 7_68) self.assertEqual(output.shape , lowerCAmelCase ) snake_case = np.array([[[-0.16_39, 0.32_99, 0.16_48], [-0.17_46, 0.32_89, 0.17_10], [-0.18_84, 0.33_57, 0.18_10]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , lowerCAmelCase , atol=1E-4 ) )
149
"""simple docstring""" from typing import Optional import numpy as np import torch from torch import nn from transformers import GPTaConfig, GPTaLMHeadModel from transformers.modeling_utils import ModuleUtilsMixin from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class lowerCAmelCase_ ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): """simple docstring""" _lowerCAmelCase : int = [r"""h\.\d+\.attn\.bias""", r"""h\.\d+\.attn\.masked_bias"""] @register_to_config def __init__( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = None , lowerCAmelCase = 5_02_57 , lowerCAmelCase = 10_24 , lowerCAmelCase = 7_68 , lowerCAmelCase = 12 , lowerCAmelCase = 12 , lowerCAmelCase = None , lowerCAmelCase = "gelu_new" , lowerCAmelCase = 0.1 , lowerCAmelCase = 0.1 , lowerCAmelCase = 0.1 , lowerCAmelCase = 1E-5 , lowerCAmelCase = 0.02 , lowerCAmelCase = True , lowerCAmelCase = True , lowerCAmelCase = False , lowerCAmelCase = False , ): """simple docstring""" super().__init__() snake_case = prefix_length if prefix_inner_dim != n_embd and prefix_hidden_dim is None: raise ValueError( F"""`prefix_hidden_dim` cannot be `None` when `prefix_inner_dim`: {prefix_hidden_dim} and""" F""" `n_embd`: {n_embd} are not equal.""" ) snake_case = prefix_inner_dim snake_case = prefix_hidden_dim snake_case = ( nn.Linear(self.prefix_inner_dim , self.prefix_hidden_dim ) if self.prefix_hidden_dim is not None else nn.Identity() ) snake_case = ( nn.Linear(self.prefix_hidden_dim , lowerCAmelCase ) if self.prefix_hidden_dim is not None else nn.Identity() ) snake_case = GPTaConfig( vocab_size=lowerCAmelCase , n_positions=lowerCAmelCase , n_embd=lowerCAmelCase , n_layer=lowerCAmelCase , n_head=lowerCAmelCase , n_inner=lowerCAmelCase , activation_function=lowerCAmelCase , resid_pdrop=lowerCAmelCase , embd_pdrop=lowerCAmelCase , attn_pdrop=lowerCAmelCase , layer_norm_epsilon=lowerCAmelCase , initializer_range=lowerCAmelCase , scale_attn_weights=lowerCAmelCase , use_cache=lowerCAmelCase , scale_attn_by_inverse_layer_idx=lowerCAmelCase , reorder_and_upcast_attn=lowerCAmelCase , ) snake_case = GPTaLMHeadModel(lowerCAmelCase ) def snake_case ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = None , lowerCAmelCase = None , ): """simple docstring""" snake_case = self.transformer.transformer.wte(lowerCAmelCase ) snake_case = self.encode_prefix(lowerCAmelCase ) snake_case = self.decode_prefix(lowerCAmelCase ) snake_case = torch.cat((prefix_embeds, embedding_text) , dim=1 ) if labels is not None: snake_case = self.get_dummy_token(input_ids.shape[0] , input_ids.device ) snake_case = torch.cat((dummy_token, input_ids) , dim=1 ) snake_case = self.transformer(inputs_embeds=lowerCAmelCase , labels=lowerCAmelCase , attention_mask=lowerCAmelCase ) if self.prefix_hidden_dim is not None: return out, hidden else: return out def snake_case ( self , lowerCAmelCase , lowerCAmelCase ): """simple docstring""" return torch.zeros(lowerCAmelCase , self.prefix_length , dtype=torch.intaa , device=lowerCAmelCase ) def snake_case ( self , lowerCAmelCase ): """simple docstring""" return self.encode_prefix(lowerCAmelCase ) @torch.no_grad() def snake_case ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): """simple docstring""" snake_case = torch.split(lowerCAmelCase , 1 , dim=0 ) snake_case = [] snake_case = [] for feature in features: snake_case = self.decode_prefix(feature.to(lowerCAmelCase ) ) # back to the clip feature # Only support beam search for now snake_case ,snake_case = self.generate_beam( input_embeds=lowerCAmelCase , device=lowerCAmelCase , eos_token_id=lowerCAmelCase ) generated_tokens.append(output_tokens[0] ) generated_seq_lengths.append(seq_lengths[0] ) snake_case = torch.stack(lowerCAmelCase ) snake_case = torch.stack(lowerCAmelCase ) return generated_tokens, generated_seq_lengths @torch.no_grad() def snake_case ( self , lowerCAmelCase=None , lowerCAmelCase=None , lowerCAmelCase=None , lowerCAmelCase = 5 , lowerCAmelCase = 67 , lowerCAmelCase = 1.0 , lowerCAmelCase = None , ): """simple docstring""" snake_case = eos_token_id snake_case = None snake_case = None snake_case = torch.ones(lowerCAmelCase , device=lowerCAmelCase , dtype=torch.int ) snake_case = torch.zeros(lowerCAmelCase , device=lowerCAmelCase , dtype=torch.bool ) if input_embeds is not None: snake_case = input_embeds else: snake_case = self.transformer.transformer.wte(lowerCAmelCase ) for i in range(lowerCAmelCase ): snake_case = self.transformer(inputs_embeds=lowerCAmelCase ) snake_case = outputs.logits snake_case = logits[:, -1, :] / (temperature if temperature > 0 else 1.0) snake_case = logits.softmax(-1 ).log() if scores is None: snake_case ,snake_case = logits.topk(lowerCAmelCase , -1 ) snake_case = generated.expand(lowerCAmelCase , *generated.shape[1:] ) snake_case ,snake_case = next_tokens.permute(1 , 0 ), scores.squeeze(0 ) if tokens is None: snake_case = next_tokens else: snake_case = tokens.expand(lowerCAmelCase , *tokens.shape[1:] ) snake_case = torch.cat((tokens, next_tokens) , dim=1 ) else: snake_case = -float(np.inf ) snake_case = 0 snake_case = scores[:, None] + logits seq_lengths[~is_stopped] += 1 snake_case = scores_sum / seq_lengths[:, None] snake_case ,snake_case = scores_sum_average.view(-1 ).topk(lowerCAmelCase , -1 ) snake_case = next_tokens // scores_sum.shape[1] snake_case = seq_lengths[next_tokens_source] snake_case = next_tokens % scores_sum.shape[1] snake_case = next_tokens.unsqueeze(1 ) snake_case = tokens[next_tokens_source] snake_case = torch.cat((tokens, next_tokens) , dim=1 ) snake_case = generated[next_tokens_source] snake_case = scores_sum_average * seq_lengths snake_case = is_stopped[next_tokens_source] snake_case = self.transformer.transformer.wte(next_tokens.squeeze() ).view(generated.shape[0] , 1 , -1 ) snake_case = torch.cat((generated, next_token_embed) , dim=1 ) snake_case = is_stopped + next_tokens.eq(lowerCAmelCase ).squeeze() if is_stopped.all(): break snake_case = scores / seq_lengths snake_case = scores.argsort(descending=lowerCAmelCase ) # tokens tensors are already padded to max_seq_length snake_case = [tokens[i] for i in order] snake_case = torch.stack(lowerCAmelCase , dim=0 ) snake_case = torch.tensor([seq_lengths[i] for i in order] , dtype=seq_lengths.dtype ) return output_texts, seq_lengths
149
1
"""simple docstring""" import argparse import json import numpy import torch from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def A ( snake_case :List[str] , snake_case :str ) -> Dict: # Load checkpoint __UpperCamelCase = torch.load(snake_case , map_location='cpu' ) __UpperCamelCase = chkpt['model'] # We have the base model one level deeper than the original XLM repository __UpperCamelCase = {} for k, v in state_dict.items(): if "pred_layer" in k: __UpperCamelCase = v else: __UpperCamelCase = v __UpperCamelCase = chkpt['params'] __UpperCamelCase = {n: v for n, v in config.items() if not isinstance(snake_case , (torch.FloatTensor, numpy.ndarray) )} __UpperCamelCase = chkpt['dico_word2id'] __UpperCamelCase = {s + '</w>' if s.find('@@' ) == -1 and i > 1_3 else s.replace('@@' , '' ): i for s, i in vocab.items()} # Save pytorch-model __UpperCamelCase = pytorch_dump_folder_path + '/' + WEIGHTS_NAME __UpperCamelCase = pytorch_dump_folder_path + '/' + CONFIG_NAME __UpperCamelCase = pytorch_dump_folder_path + '/' + VOCAB_FILES_NAMES['vocab_file'] print(f'Save PyTorch model to {pytorch_weights_dump_path}' ) torch.save(snake_case , snake_case ) print(f'Save configuration file to {pytorch_config_dump_path}' ) with open(snake_case , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(snake_case , indent=2 ) + '\n' ) print(f'Save vocab file to {pytorch_config_dump_path}' ) with open(snake_case , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(snake_case , indent=2 ) + '\n' ) if __name__ == "__main__": UpperCamelCase : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--xlm_checkpoint_path", default=None, type=str, required=True, help="Path the official PyTorch dump." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) UpperCamelCase : Optional[Any] = parser.parse_args() convert_xlm_checkpoint_to_pytorch(args.xlm_checkpoint_path, args.pytorch_dump_folder_path)
316
"""simple docstring""" UpperCamelCase : dict[str, float] = { "km/h": 1.0, "m/s": 3.6, "mph": 1.60_93_44, "knot": 1.8_52, } UpperCamelCase : dict[str, float] = { "km/h": 1.0, "m/s": 0.2_77_77_77_78, "mph": 0.6_21_37_11_92, "knot": 0.5_39_95_68_03, } def A ( snake_case :float , snake_case :str , snake_case :str ) -> float: if unit_to not in speed_chart or unit_from not in speed_chart_inverse: __UpperCamelCase = ( f'Incorrect \'from_type\' or \'to_type\' value: {unit_from!r}, {unit_to!r}\n' f'Valid values are: {", ".join(snake_case )}' ) raise ValueError(snake_case ) return round(speed * speed_chart[unit_from] * speed_chart_inverse[unit_to] , 3 ) if __name__ == "__main__": import doctest doctest.testmod()
316
1
'''simple docstring''' def __UpperCamelCase ( _UpperCAmelCase ): __UpperCAmelCase : Union[str, Any] = 0 # if input_string is "aba" than new_input_string become "a|b|a" __UpperCAmelCase : Any = "" __UpperCAmelCase : List[Any] = "" # append each character + "|" in new_string for range(0, length-1) for i in input_string[: len(_UpperCAmelCase ) - 1]: new_input_string += i + "|" # append last character new_input_string += input_string[-1] # we will store the starting and ending of previous furthest ending palindromic # substring __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = 0, 0 # length[i] shows the length of palindromic substring with center i __UpperCAmelCase : Dict = [1 for i in range(len(_UpperCAmelCase ) )] # for each character in new_string find corresponding palindromic string __UpperCAmelCase : str = 0 for j in range(len(_UpperCAmelCase ) ): __UpperCAmelCase : str = 1 if j > r else min(length[l + r - j] // 2, r - j + 1 ) while ( j - k >= 0 and j + k < len(_UpperCAmelCase ) and new_input_string[k + j] == new_input_string[j - k] ): k += 1 __UpperCAmelCase : Optional[int] = 2 * k - 1 # does this string is ending after the previously explored end (that is r) ? # if yes the update the new r to the last index of this if j + k - 1 > r: __UpperCAmelCase : Tuple = j - k + 1 # noqa: E741 __UpperCAmelCase : int = j + k - 1 # update max_length and start position if max_length < length[j]: __UpperCAmelCase : List[str] = length[j] __UpperCAmelCase : Dict = j # create that string __UpperCAmelCase : List[str] = new_input_string[start - max_length // 2 : start + max_length // 2 + 1] for i in s: if i != "|": output_string += i return output_string if __name__ == "__main__": import doctest doctest.testmod()
37
'''simple docstring''' # Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import platform import numpy as np import psutil import torch from accelerate import __version__ as version from accelerate.commands.config import default_config_file, load_config_from_file from ..utils import is_npu_available, is_xpu_available def __UpperCamelCase ( _UpperCAmelCase=None ): if subparsers is not None: __UpperCAmelCase : Optional[int] = subparsers.add_parser("env" ) else: __UpperCAmelCase : List[Any] = argparse.ArgumentParser("Accelerate env command" ) parser.add_argument( "--config_file", default=_UpperCAmelCase, help="The config file to use for the default values in the launching script." ) if subparsers is not None: parser.set_defaults(func=_UpperCAmelCase ) return parser def __UpperCamelCase ( _UpperCAmelCase ): __UpperCAmelCase : Dict = torch.__version__ __UpperCAmelCase : str = torch.cuda.is_available() __UpperCAmelCase : str = is_xpu_available() __UpperCAmelCase : List[Any] = is_npu_available() __UpperCAmelCase : Union[str, Any] = "Not found" # Get the default from the config file. if args.config_file is not None or os.path.isfile(_UpperCAmelCase ): __UpperCAmelCase : Union[str, Any] = load_config_from_file(args.config_file ).to_dict() __UpperCAmelCase : List[str] = { "`Accelerate` version": version, "Platform": platform.platform(), "Python version": platform.python_version(), "Numpy version": np.__version__, "PyTorch version (GPU?)": F"{pt_version} ({pt_cuda_available})", "PyTorch XPU available": str(_UpperCAmelCase ), "PyTorch NPU available": str(_UpperCAmelCase ), "System RAM": F"{psutil.virtual_memory().total / 1024 ** 3:.2f} GB", } if pt_cuda_available: __UpperCAmelCase : int = torch.cuda.get_device_name() print("\nCopy-and-paste the text below in your GitHub issue\n" ) print("\n".join([F"- {prop}: {val}" for prop, val in info.items()] ) ) print("- `Accelerate` default config:" if args.config_file is None else "- `Accelerate` config passed:" ) __UpperCAmelCase : Tuple = ( "\n".join([F"\t- {prop}: {val}" for prop, val in accelerate_config.items()] ) if isinstance(_UpperCAmelCase, _UpperCAmelCase ) else F"\t{accelerate_config}" ) print(_UpperCAmelCase ) __UpperCAmelCase : Any = accelerate_config return info def __UpperCamelCase ( ): __UpperCAmelCase : Tuple = env_command_parser() __UpperCAmelCase : Dict = parser.parse_args() env_command(_UpperCAmelCase ) return 0 if __name__ == "__main__": raise SystemExit(main())
37
1
import numpy as np from matplotlib import pyplot as plt from sklearn.datasets import load_iris from sklearn.metrics import ConfusionMatrixDisplay from sklearn.model_selection import train_test_split from xgboost import XGBClassifier def _A ( SCREAMING_SNAKE_CASE : dict ): """simple docstring""" return (data["data"], data["target"]) def _A ( SCREAMING_SNAKE_CASE : np.ndarray , SCREAMING_SNAKE_CASE : np.ndarray ): """simple docstring""" a__ : Tuple =XGBClassifier() classifier.fit(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return classifier def _A ( ): """simple docstring""" a__ : Optional[Any] =load_iris() a__ , a__ : Union[str, Any] =data_handling(SCREAMING_SNAKE_CASE ) a__ , a__ , a__ , a__ : int =train_test_split( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , test_size=0.2_5 ) a__ : List[str] =iris["target_names"] # Create an XGBoost Classifier from the training data a__ : Union[str, Any] =xgboost(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Display the confusion matrix of the classifier with both training and test sets ConfusionMatrixDisplay.from_estimator( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , display_labels=SCREAMING_SNAKE_CASE , cmap="Blues" , normalize="true" , ) plt.title("Normalized Confusion Matrix - IRIS Dataset" ) plt.show() if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
95
from typing import List, Optional, Union import numpy as np import PIL.Image from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, PILImageResampling, get_image_size, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging __lowercase = logging.get_logger(__name__) class lowerCamelCase_ ( UpperCAmelCase_ ): '''simple docstring''' a__ : Optional[Any] = ["""pixel_values"""] def __init__( self , __lowercase = True , __lowercase = 32 , __lowercase=PILImageResampling.BILINEAR , __lowercase = True , **__lowercase , ) -> None: __UpperCamelCase :Optional[int] = do_resize __UpperCamelCase :Any = do_rescale __UpperCamelCase :str = size_divisor __UpperCamelCase :Dict = resample super().__init__(**__lowercase) def UpperCamelCase__ ( self , __lowercase , __lowercase , __lowercase , __lowercase = None , **__lowercase) -> np.ndarray: __UpperCamelCase , __UpperCamelCase :int = get_image_size(__lowercase) # Rounds the height and width down to the closest multiple of size_divisor __UpperCamelCase :List[Any] = height // size_divisor * size_divisor __UpperCamelCase :List[str] = width // size_divisor * size_divisor __UpperCamelCase :str = resize(__lowercase , (new_h, new_w) , resample=__lowercase , data_format=__lowercase , **__lowercase) return image def UpperCamelCase__ ( self , __lowercase , __lowercase , __lowercase = None , **__lowercase) -> np.ndarray: return rescale(image=__lowercase , scale=__lowercase , data_format=__lowercase , **__lowercase) def UpperCamelCase__ ( self , __lowercase , __lowercase = None , __lowercase = None , __lowercase=None , __lowercase = None , __lowercase = None , __lowercase = ChannelDimension.FIRST , **__lowercase , ) -> BatchFeature: __UpperCamelCase :Union[str, Any] = do_resize if do_resize is not None else self.do_resize __UpperCamelCase :Tuple = do_rescale if do_rescale is not None else self.do_rescale __UpperCamelCase :List[str] = size_divisor if size_divisor is not None else self.size_divisor __UpperCamelCase :List[Any] = resample if resample is not None else self.resample if do_resize and size_divisor is None: raise ValueError('''size_divisor is required for resizing''') __UpperCamelCase :List[Any] = make_list_of_images(__lowercase) if not valid_images(__lowercase): raise ValueError('''Invalid image(s)''') # All transformations expect numpy arrays. __UpperCamelCase :Optional[Any] = [to_numpy_array(__lowercase) for img in images] if do_resize: __UpperCamelCase :List[str] = [self.resize(__lowercase , size_divisor=__lowercase , resample=__lowercase) for image in images] if do_rescale: __UpperCamelCase :Dict = [self.rescale(__lowercase , scale=1 / 255) for image in images] __UpperCamelCase :str = [to_channel_dimension_format(__lowercase , __lowercase) for image in images] __UpperCamelCase :int = {'''pixel_values''': images} return BatchFeature(data=__lowercase , tensor_type=__lowercase)
43
0
"""simple docstring""" from timeit import timeit UpperCAmelCase = { '''MALAYALAM''': True, '''String''': False, '''rotor''': True, '''level''': True, '''A''': True, '''BB''': True, '''ABC''': False, '''amanaplanacanalpanama''': True, # "a man a plan a canal panama" } # Ensure our test data is valid assert all((key == key[::-1]) is value for key, value in test_data.items()) def lowerCamelCase (a_ :str) -> bool: lowercase :Tuple = 0 lowercase :str = len(a_) - 1 while start_i < end_i: if s[start_i] == s[end_i]: start_i += 1 end_i -= 1 else: return False return True def lowerCamelCase (a_ :str) -> bool: lowercase :str = len(a_) // 2 lowercase :Optional[Any] = len(a_) # We need to traverse till half of the length of string # as we can get access of the i'th last element from # i'th index. # eg: [0,1,2,3,4,5] => 4th index can be accessed # with the help of 1st index (i==n-i-1) # where n is length of string return all(s[i] == s[n - i - 1] for i in range(a_)) def lowerCamelCase (a_ :str) -> bool: if len(a_) <= 2: return True if s[0] == s[len(a_) - 1]: return is_palindrome_recursive(s[1:-1]) else: return False def lowerCamelCase (a_ :str) -> bool: return s == s[::-1] def lowerCamelCase (a_ :str) -> None: lowercase :Union[str, Any] = F"""all({name}(key) is value for key, value in test_data.items())""" lowercase :str = F"""from __main__ import test_data, {name}""" lowercase :Union[str, Any] = 50_0000 lowercase :List[str] = timeit(stmt=a_ , setup=a_ , number=a_) print(F"""{name:<35} finished {number:,} runs in {result:.5f} seconds""") if __name__ == "__main__": for key, value in test_data.items(): assert is_palindrome(key) is is_palindrome_recursive(key) assert is_palindrome(key) is is_palindrome_slice(key) print(F"""{key:21} {value}""") print('''a man a plan a canal panama''') # finished 500,000 runs in 0.46793 seconds benchmark_function('''is_palindrome_slice''') # finished 500,000 runs in 0.85234 seconds benchmark_function('''is_palindrome''') # finished 500,000 runs in 1.32028 seconds benchmark_function('''is_palindrome_recursive''') # finished 500,000 runs in 2.08679 seconds benchmark_function('''is_palindrome_traversal''')
361
"""simple docstring""" def lowerCamelCase (a_ :int , a_ :int) -> int: while a != 0: lowercase , lowercase :Dict = b % a, a return b def lowerCamelCase (a_ :int , a_ :int) -> int: if gcd(a_ , a_) != 1: lowercase :List[Any] = F"""mod inverse of {a!r} and {m!r} does not exist""" raise ValueError(a_) lowercase , lowercase , lowercase :List[str] = 1, 0, a lowercase , lowercase , lowercase :int = 0, 1, m while va != 0: lowercase :Union[str, Any] = ua // va lowercase , lowercase , lowercase , lowercase , lowercase , lowercase :Dict = (ua - q * va), (ua - q * va), (ua - q * va), va, va, va return ua % m
172
0
"""simple docstring""" import warnings from ...utils import logging from .image_processing_owlvit import OwlViTImageProcessor _lowerCamelCase : int = logging.get_logger(__name__) class lowercase ( __UpperCAmelCase): def __init__( self : str , *_lowerCamelCase : int , **_lowerCamelCase : Tuple ): """simple docstring""" warnings.warn( '''The class OwlViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use OwlViTImageProcessor instead.''' , _lowerCamelCase , ) super().__init__(*_lowerCamelCase , **_lowerCamelCase )
167
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices _lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) _lowerCamelCase : str = { 'facebook/convnextv2-tiny-1k-224': 'https://huggingface.co/facebook/convnextv2-tiny-1k-224/resolve/main/config.json', } class lowercase ( __UpperCAmelCase , __UpperCAmelCase): __lowerCAmelCase : List[Any] = """convnextv2""" def __init__( self : int , _lowerCamelCase : str=3 , _lowerCamelCase : str=4 , _lowerCamelCase : List[Any]=4 , _lowerCamelCase : Optional[Any]=None , _lowerCamelCase : List[Any]=None , _lowerCamelCase : Optional[int]="gelu" , _lowerCamelCase : Union[str, Any]=0.02 , _lowerCamelCase : List[str]=1E-12 , _lowerCamelCase : Tuple=0.0 , _lowerCamelCase : Optional[int]=2_24 , _lowerCamelCase : Optional[Any]=None , _lowerCamelCase : Optional[Any]=None , **_lowerCamelCase : Optional[Any] , ): """simple docstring""" super().__init__(**_lowerCamelCase ) A_ : str = num_channels A_ : int = patch_size A_ : Union[str, Any] = num_stages A_ : Any = [96, 1_92, 3_84, 7_68] if hidden_sizes is None else hidden_sizes A_ : Any = [3, 3, 9, 3] if depths is None else depths A_ : Optional[int] = hidden_act A_ : Tuple = initializer_range A_ : int = layer_norm_eps A_ : List[Any] = drop_path_rate A_ : Union[str, Any] = image_size A_ : Any = ['''stem'''] + [F"""stage{idx}""" for idx in range(1 , len(self.depths ) + 1 )] A_ , A_ : Tuple = get_aligned_output_features_output_indices( out_features=_lowerCamelCase , out_indices=_lowerCamelCase , stage_names=self.stage_names )
167
1
import json import os import tempfile import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ImageGPTImageProcessor class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self : Optional[int] , snake_case_ : Dict , snake_case_ : Tuple=7 , snake_case_ : Optional[Any]=3 , snake_case_ : Dict=18 , snake_case_ : Dict=30 , snake_case_ : Union[str, Any]=400 , snake_case_ : List[Any]=True , snake_case_ : Any=None , snake_case_ : List[str]=True , ): UpperCamelCase_: Dict = size if size is not None else {"""height""": 18, """width""": 18} UpperCamelCase_: Union[str, Any] = parent UpperCamelCase_: Tuple = batch_size UpperCamelCase_: List[str] = num_channels UpperCamelCase_: Optional[int] = image_size UpperCamelCase_: Dict = min_resolution UpperCamelCase_: Optional[int] = max_resolution UpperCamelCase_: str = do_resize UpperCamelCase_: Tuple = size UpperCamelCase_: Dict = do_normalize def lowerCAmelCase__ ( self : str ): return { # here we create 2 clusters for the sake of simplicity "clusters": np.asarray( [ [0.8866_4436_3403_3203, 0.6618_8293_6954_4983, 0.3891_7464_0178_6804], [-0.6042_5591_4688_1104, -0.0_2295_0088_6052_8469, 0.5423_7973_6900_3296], ] ), "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, } @require_torch @require_vision class _UpperCamelCase ( _A , unittest.TestCase ): '''simple docstring''' __UpperCamelCase : Optional[int] = ImageGPTImageProcessor if is_vision_available() else None def lowerCAmelCase__ ( self : List[str] ): UpperCamelCase_: Any = ImageGPTImageProcessingTester(self ) @property def lowerCAmelCase__ ( self : Optional[int] ): return self.image_processor_tester.prepare_image_processor_dict() def lowerCAmelCase__ ( self : Optional[int] ): UpperCamelCase_: List[Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(snake_case_ , """clusters""" ) ) self.assertTrue(hasattr(snake_case_ , """do_resize""" ) ) self.assertTrue(hasattr(snake_case_ , """size""" ) ) self.assertTrue(hasattr(snake_case_ , """do_normalize""" ) ) def lowerCAmelCase__ ( self : int ): UpperCamelCase_: List[Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""height""": 18, """width""": 18} ) UpperCamelCase_: Tuple = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {"""height""": 42, """width""": 42} ) def lowerCAmelCase__ ( self : Optional[Any] ): UpperCamelCase_: int = self.image_processing_class(**self.image_processor_dict ) UpperCamelCase_: Optional[int] = json.loads(image_processor.to_json_string() ) for key, value in self.image_processor_dict.items(): if key == "clusters": self.assertTrue(np.array_equal(snake_case_ , obj[key] ) ) else: self.assertEqual(obj[key] , snake_case_ ) def lowerCAmelCase__ ( self : List[Any] ): UpperCamelCase_: Dict = self.image_processing_class(**self.image_processor_dict ) with tempfile.TemporaryDirectory() as tmpdirname: UpperCamelCase_: int = os.path.join(snake_case_ , """image_processor.json""" ) image_processor_first.to_json_file(snake_case_ ) UpperCamelCase_: Any = self.image_processing_class.from_json_file(snake_case_ ).to_dict() UpperCamelCase_: str = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(snake_case_ , image_processor_second[key] ) ) else: self.assertEqual(image_processor_first[key] , snake_case_ ) def lowerCAmelCase__ ( self : Union[str, Any] ): UpperCamelCase_: Optional[Any] = self.image_processing_class(**self.image_processor_dict ) with tempfile.TemporaryDirectory() as tmpdirname: image_processor_first.save_pretrained(snake_case_ ) UpperCamelCase_: Optional[int] = self.image_processing_class.from_pretrained(snake_case_ ).to_dict() UpperCamelCase_: Union[str, Any] = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(snake_case_ , image_processor_second[key] ) ) else: self.assertEqual(image_processor_first[key] , snake_case_ ) @unittest.skip("""ImageGPT requires clusters at initialization""" ) def lowerCAmelCase__ ( self : List[Any] ): pass def A__ ( ) -> Optional[int]: UpperCamelCase_: Optional[int] = load_dataset("""hf-internal-testing/fixtures_image_utils""" , split="""test""" ) UpperCamelCase_: Tuple = Image.open(dataset[4]["""file"""] ) UpperCamelCase_: Union[str, Any] = Image.open(dataset[5]["""file"""] ) UpperCamelCase_: List[str] = [imagea, imagea] return images @require_vision @require_torch class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' @slow def lowerCAmelCase__ ( self : List[str] ): UpperCamelCase_: List[Any] = ImageGPTImageProcessor.from_pretrained("""openai/imagegpt-small""" ) UpperCamelCase_: List[str] = prepare_images() # test non-batched UpperCamelCase_: List[str] = image_processing(images[0] , return_tensors="""pt""" ) self.assertIsInstance(encoding.input_ids , torch.LongTensor ) self.assertEqual(encoding.input_ids.shape , (1, 1024) ) UpperCamelCase_: Union[str, Any] = [306, 191, 191] self.assertEqual(encoding.input_ids[0, :3].tolist() , snake_case_ ) # test batched UpperCamelCase_: Optional[int] = image_processing(snake_case_ , return_tensors="""pt""" ) self.assertIsInstance(encoding.input_ids , torch.LongTensor ) self.assertEqual(encoding.input_ids.shape , (2, 1024) ) UpperCamelCase_: str = [303, 13, 13] self.assertEqual(encoding.input_ids[1, -3:].tolist() , snake_case_ )
223
def A__ ( lowerCamelCase , lowerCamelCase ) -> list: UpperCamelCase_: Optional[int] = word.split() def justify(lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> str: UpperCamelCase_: Tuple = max_width - width UpperCamelCase_: Optional[Any] = len(lowerCamelCase ) if len(lowerCamelCase ) == 1: # if there is only word in line # just insert overall_spaces_count for the remainder of line return line[0] + " " * overall_spaces_count else: UpperCamelCase_: List[Any] = words_count - 1 # num_spaces_between_words_list[i] : tells you to insert # num_spaces_between_words_list[i] spaces # after word on line[i] UpperCamelCase_: Optional[Any] = spaces_to_insert_between_words * [ overall_spaces_count // spaces_to_insert_between_words ] UpperCamelCase_: List[str] = ( overall_spaces_count % spaces_to_insert_between_words ) # distribute spaces via round robin to the left words for i in range(lowerCamelCase ): num_spaces_between_words_list[i] += 1 UpperCamelCase_: Dict = [] for i in range(lowerCamelCase ): # add the word aligned_words_list.append(line[i] ) # add the spaces to insert aligned_words_list.append(num_spaces_between_words_list[i] * """ """ ) # just add the last word to the sentence aligned_words_list.append(line[-1] ) # join the aligned words list to form a justified line return "".join(lowerCamelCase ) UpperCamelCase_: Optional[int] = [] UpperCamelCase_: list[str] = [] UpperCamelCase_: List[str] = 0 for word in words: if width + len(lowerCamelCase ) + len(lowerCamelCase ) <= max_width: # keep adding words until we can fill out max_width # width = sum of length of all words (without overall_spaces_count) # len(word) = length of current word # len(line) = number of overall_spaces_count to insert between words line.append(lowerCamelCase ) width += len(lowerCamelCase ) else: # justify the line and add it to result answer.append(justify(lowerCamelCase , lowerCamelCase , lowerCamelCase ) ) # reset new line and new width UpperCamelCase_, UpperCamelCase_: List[str] = [word], len(lowerCamelCase ) UpperCamelCase_: List[str] = max_width - width - len(lowerCamelCase ) answer.append(""" """.join(lowerCamelCase ) + (remaining_spaces + 1) * """ """ ) return answer if __name__ == "__main__": from doctest import testmod testmod()
223
1
import os import posixpath import uuid from dataclasses import dataclass from typing import TYPE_CHECKING, Iterable, List, Optional, Tuple, Union import numpy as np import pyarrow as pa import datasets from datasets.arrow_writer import ArrowWriter, ParquetWriter from datasets.config import MAX_SHARD_SIZE from datasets.filesystems import ( is_remote_filesystem, rename, ) from datasets.iterable_dataset import _BaseExamplesIterable from datasets.utils.py_utils import convert_file_size_to_int _snake_case = datasets.utils.logging.get_logger(__name__) if TYPE_CHECKING: import pyspark @dataclass class lowercase ( datasets.BuilderConfig ): _a = None def lowerCAmelCase_ ( snake_case_,snake_case_,): import pyspark def generate_fn(): _A : List[Any] = df.select("""*""",pyspark.sql.functions.spark_partition_id().alias("""part_id""" ) ) for partition_id in partition_order: _A : Optional[Any] = df_with_partition_id.select("""*""" ).where(f'''part_id = {partition_id}''' ).drop("""part_id""" ) _A : int = partition_df.collect() _A : Optional[int] = 0 for row in rows: yield f'''{partition_id}_{row_id}''', row.asDict() row_id += 1 return generate_fn class lowercase ( _BaseExamplesIterable ): def __init__( self , _a , _a=None , ) -> Any: _A : Optional[Any] = df _A : Tuple = partition_order or range(self.df.rdd.getNumPartitions() ) _A : Tuple = _generate_iterable_examples(self.df , self.partition_order ) def __iter__( self ) -> Optional[int]: yield from self.generate_examples_fn() def a__ ( self , _a ) -> List[str]: _A : List[str] = list(range(self.df.rdd.getNumPartitions() ) ) generator.shuffle(lowerCAmelCase__ ) return SparkExamplesIterable(self.df , partition_order=lowerCAmelCase__ ) def a__ ( self , _a , _a ) -> Optional[Any]: _A : str = self.split_shard_indices_by_worker(lowerCAmelCase__ , lowerCAmelCase__ ) return SparkExamplesIterable(self.df , partition_order=lowerCAmelCase__ ) @property def a__ ( self ) -> Dict: return len(self.partition_order ) class lowercase ( datasets.DatasetBuilder ): _a = SparkConfig def __init__( self , _a , _a = None , _a = None , **_a , ) -> Any: import pyspark _A : str = pyspark.sql.SparkSession.builder.getOrCreate() _A : List[str] = df _A : Optional[Any] = working_dir super().__init__( cache_dir=lowerCAmelCase__ , config_name=str(self.df.semanticHash() ) , **lowerCAmelCase__ , ) def a__ ( self ) -> str: # Returns the path of the created file. def create_cache_and_write_probe(_a ): # makedirs with exist_ok will recursively create the directory. It will not throw an error if directories # already exist. os.makedirs(self._cache_dir , exist_ok=lowerCAmelCase__ ) _A : Union[str, Any] = os.path.join(self._cache_dir , """fs_test""" + uuid.uuida().hex ) # Opening the file in append mode will create a new file unless it already exists, in which case it will not # change the file contents. open(lowerCAmelCase__ , """a""" ) return [probe_file] if self._spark.conf.get("""spark.master""" , """""" ).startswith("""local""" ): return # If the cluster is multi-node, make sure that the user provided a cache_dir and that it is on an NFS # accessible to the driver. # TODO: Stream batches to the driver using ArrowCollectSerializer instead of throwing an error. if self._cache_dir: _A : Dict = ( self._spark.sparkContext.parallelize(range(1 ) , 1 ).mapPartitions(lowerCAmelCase__ ).collect() ) if os.path.isfile(probe[0] ): return raise ValueError( """When using Dataset.from_spark on a multi-node cluster, the driver and all workers should be able to access cache_dir""" ) def a__ ( self ) -> Tuple: return datasets.DatasetInfo(features=self.config.features ) def a__ ( self , _a ) -> Dict: return [datasets.SplitGenerator(name=datasets.Split.TRAIN )] def a__ ( self , _a ) -> Optional[Any]: import pyspark def get_arrow_batch_size(_a ): for batch in it: yield pa.RecordBatch.from_pydict({"""batch_bytes""": [batch.nbytes]} ) _A : Optional[Any] = self.df.count() _A : Tuple = df_num_rows if df_num_rows <= 100 else 100 # Approximate the size of each row (in Arrow format) by averaging over a max-100-row sample. _A : Optional[int] = ( self.df.limit(lowerCAmelCase__ ) .repartition(1 ) .mapInArrow(lowerCAmelCase__ , """batch_bytes: long""" ) .agg(pyspark.sql.functions.sum("""batch_bytes""" ).alias("""sample_bytes""" ) ) .collect()[0] .sample_bytes / sample_num_rows ) _A : Union[str, Any] = approx_bytes_per_row * df_num_rows if approx_total_size > max_shard_size: # Make sure there is at least one row per partition. _A : Any = min(lowerCAmelCase__ , int(approx_total_size / max_shard_size ) ) _A : Any = self.df.repartition(lowerCAmelCase__ ) def a__ ( self , _a , _a , _a , ) -> str: import pyspark _A : Dict = ParquetWriter if file_format == "parquet" else ArrowWriter _A : Tuple = os.path.join(self._working_dir , os.path.basename(lowerCAmelCase__ ) ) if self._working_dir else fpath _A : str = file_format == "parquet" # Define these so that we don't reference self in write_arrow, which will result in a pickling error due to # pickling the SparkContext. _A : List[Any] = self.config.features _A : List[Any] = self._writer_batch_size _A : Optional[Any] = self._fs.storage_options def write_arrow(_a ): # Within the same SparkContext, no two task attempts will share the same attempt ID. _A : Tuple = pyspark.TaskContext().taskAttemptId() _A : Optional[Any] = next(lowerCAmelCase__ , lowerCAmelCase__ ) if first_batch is None: # Some partitions might not receive any data. return pa.RecordBatch.from_arrays( [[task_id], [0], [0]] , names=["""task_id""", """num_examples""", """num_bytes"""] , ) _A : Dict = 0 _A : Dict = writer_class( features=lowerCAmelCase__ , path=working_fpath.replace("""SSSSS""" , F'''{shard_id:05d}''' ).replace("""TTTTT""" , F'''{task_id:05d}''' ) , writer_batch_size=lowerCAmelCase__ , storage_options=lowerCAmelCase__ , embed_local_files=lowerCAmelCase__ , ) _A : List[str] = pa.Table.from_batches([first_batch] ) writer.write_table(lowerCAmelCase__ ) for batch in it: if max_shard_size is not None and writer._num_bytes >= max_shard_size: _A : Optional[int] = writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]] , names=["""task_id""", """num_examples""", """num_bytes"""] , ) shard_id += 1 _A : Optional[int] = writer_class( features=writer._features , path=working_fpath.replace("""SSSSS""" , F'''{shard_id:05d}''' ).replace("""TTTTT""" , F'''{task_id:05d}''' ) , writer_batch_size=lowerCAmelCase__ , storage_options=lowerCAmelCase__ , embed_local_files=lowerCAmelCase__ , ) _A : Tuple = pa.Table.from_batches([batch] ) writer.write_table(lowerCAmelCase__ ) if writer._num_bytes > 0: _A : List[Any] = writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]] , names=["""task_id""", """num_examples""", """num_bytes"""] , ) if working_fpath != fpath: for file in os.listdir(os.path.dirname(lowerCAmelCase__ ) ): _A : List[Any] = os.path.join(os.path.dirname(lowerCAmelCase__ ) , os.path.basename(lowerCAmelCase__ ) ) shutil.move(lowerCAmelCase__ , lowerCAmelCase__ ) _A : Optional[Any] = ( self.df.mapInArrow(lowerCAmelCase__ , """task_id: long, num_examples: long, num_bytes: long""" ) .groupBy("""task_id""" ) .agg( pyspark.sql.functions.sum("""num_examples""" ).alias("""total_num_examples""" ) , pyspark.sql.functions.sum("""num_bytes""" ).alias("""total_num_bytes""" ) , pyspark.sql.functions.count("""num_bytes""" ).alias("""num_shards""" ) , pyspark.sql.functions.collect_list("""num_examples""" ).alias("""shard_lengths""" ) , ) .collect() ) for row in stats: yield row.task_id, (row.total_num_examples, row.total_num_bytes, row.num_shards, row.shard_lengths) def a__ ( self , _a , _a = "arrow" , _a = None , _a = None , **_a , ) -> Tuple: self._validate_cache_dir() _A : Dict = convert_file_size_to_int(max_shard_size or MAX_SHARD_SIZE ) self._repartition_df_if_needed(lowerCAmelCase__ ) _A : Union[str, Any] = not is_remote_filesystem(self._fs ) _A : List[str] = os.path.join if is_local else posixpath.join _A : List[Any] = "-TTTTT-SSSSS-of-NNNNN" _A : int = F'''{self.name}-{split_generator.name}{SUFFIX}.{file_format}''' _A : Any = path_join(self._output_dir , lowerCAmelCase__ ) _A : List[Any] = 0 _A : Any = 0 _A : Union[str, Any] = 0 _A : Optional[Any] = [] _A : Tuple = [] for task_id, content in self._prepare_split_single(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): ( _A ) : List[str] = content if num_bytes > 0: total_num_examples += num_examples total_num_bytes += num_bytes total_shards += num_shards task_id_and_num_shards.append((task_id, num_shards) ) all_shard_lengths.extend(lowerCAmelCase__ ) _A : Any = total_num_examples _A : Any = total_num_bytes # should rename everything at the end logger.debug(F'''Renaming {total_shards} shards.''' ) if total_shards > 1: _A : int = all_shard_lengths # Define fs outside of _rename_shard so that we don't reference self in the function, which will result in a # pickling error due to pickling the SparkContext. _A : Tuple = self._fs # use the -SSSSS-of-NNNNN pattern def _rename_shard( _a , _a , _a , ): rename( lowerCAmelCase__ , fpath.replace("""SSSSS""" , F'''{shard_id:05d}''' ).replace("""TTTTT""" , F'''{task_id:05d}''' ) , fpath.replace("""TTTTT-SSSSS""" , F'''{global_shard_id:05d}''' ).replace("""NNNNN""" , F'''{total_shards:05d}''' ) , ) _A : Tuple = [] _A : Tuple = 0 for i in range(len(lowerCAmelCase__ ) ): _A : int = task_id_and_num_shards[i] for shard_id in range(lowerCAmelCase__ ): args.append([task_id, shard_id, global_shard_id] ) global_shard_id += 1 self._spark.sparkContext.parallelize(lowerCAmelCase__ , len(lowerCAmelCase__ ) ).map(lambda _a : _rename_shard(*lowerCAmelCase__ ) ).collect() else: # don't use any pattern _A : Optional[int] = 0 _A : Optional[Any] = task_id_and_num_shards[0][0] self._rename( fpath.replace("""SSSSS""" , F'''{shard_id:05d}''' ).replace("""TTTTT""" , F'''{task_id:05d}''' ) , fpath.replace(lowerCAmelCase__ , """""" ) , ) def a__ ( self , _a , ) -> Dict: return SparkExamplesIterable(self.df )
26
def A_ ( _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: List[str] = [0] * len(_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: List[Any] = [] SCREAMING_SNAKE_CASE_: str = [] SCREAMING_SNAKE_CASE_: List[str] = 0 for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(_UpperCAmelCase ) ): if indegree[i] == 0: queue.append(_UpperCAmelCase ) while queue: SCREAMING_SNAKE_CASE_: Optional[int] = queue.pop(0 ) cnt += 1 topo.append(_UpperCAmelCase ) for x in graph[vertex]: indegree[x] -= 1 if indegree[x] == 0: queue.append(_UpperCAmelCase ) if cnt != len(_UpperCAmelCase ): print("Cycle exists" ) else: print(_UpperCAmelCase ) # Adjacency List of Graph lowerCAmelCase : Any = {0: [1, 2], 1: [3], 2: [3], 3: [4, 5], 4: [], 5: []} topological_sort(graph)
13
0
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np from transformers import BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES, BertTokenizer from transformers.testing_utils import require_tokenizers, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor, ViTImageProcessor @require_tokenizers @require_vision class _snake_case ( unittest.TestCase ): def lowerCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' snake_case_ = tempfile.mkdtemp() # fmt: off snake_case_ = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest"] # fmt: on snake_case_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) snake_case_ = { "do_resize": True, "size": {"height": 18, "width": 18}, "do_normalize": True, "image_mean": [0.5, 0.5, 0.5], "image_std": [0.5, 0.5, 0.5], } snake_case_ = os.path.join(self.tmpdirname , a__ ) with open(self.image_processor_file , "w" , encoding="utf-8" ) as fp: json.dump(a__ , a__ ) def lowerCAmelCase__ ( self , **a__ ) -> Any: '''simple docstring''' return BertTokenizer.from_pretrained(self.tmpdirname , **a__ ) def lowerCAmelCase__ ( self , **a__ ) -> List[str]: '''simple docstring''' return ViTImageProcessor.from_pretrained(self.tmpdirname , **a__ ) def lowerCAmelCase__ ( self ) -> List[str]: '''simple docstring''' shutil.rmtree(self.tmpdirname ) def lowerCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' snake_case_ = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] snake_case_ = [Image.fromarray(np.moveaxis(a__ , 0 , -1 ) ) for x in image_inputs] return image_inputs def lowerCAmelCase__ ( self ) -> Any: '''simple docstring''' snake_case_ = self.get_tokenizer() snake_case_ = self.get_image_processor() snake_case_ = VisionTextDualEncoderProcessor(tokenizer=a__ , image_processor=a__ ) processor.save_pretrained(self.tmpdirname ) snake_case_ = VisionTextDualEncoderProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor.image_processor , a__ ) def lowerCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' snake_case_ = VisionTextDualEncoderProcessor( tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) snake_case_ = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" ) snake_case_ = self.get_image_processor(do_normalize=a__ , padding_value=1.0 ) snake_case_ = VisionTextDualEncoderProcessor.from_pretrained( self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=a__ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , a__ ) def lowerCAmelCase__ ( self ) -> str: '''simple docstring''' snake_case_ = self.get_image_processor() snake_case_ = self.get_tokenizer() snake_case_ = VisionTextDualEncoderProcessor(tokenizer=a__ , image_processor=a__ ) snake_case_ = self.prepare_image_inputs() snake_case_ = image_processor(a__ , return_tensors="np" ) snake_case_ = processor(images=a__ , return_tensors="np" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def lowerCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' snake_case_ = self.get_image_processor() snake_case_ = self.get_tokenizer() snake_case_ = VisionTextDualEncoderProcessor(tokenizer=a__ , image_processor=a__ ) snake_case_ = "lower newer" snake_case_ = processor(text=a__ ) snake_case_ = tokenizer(a__ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowerCAmelCase__ ( self ) -> Tuple: '''simple docstring''' snake_case_ = self.get_image_processor() snake_case_ = self.get_tokenizer() snake_case_ = VisionTextDualEncoderProcessor(tokenizer=a__ , image_processor=a__ ) snake_case_ = "lower newer" snake_case_ = self.prepare_image_inputs() snake_case_ = processor(text=a__ , images=a__ ) self.assertListEqual(list(inputs.keys() ) , ["input_ids", "token_type_ids", "attention_mask", "pixel_values"] ) # test if it raises when no input is passed with self.assertRaises(a__ ): processor() def lowerCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' snake_case_ = self.get_image_processor() snake_case_ = self.get_tokenizer() snake_case_ = VisionTextDualEncoderProcessor(tokenizer=a__ , image_processor=a__ ) snake_case_ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] snake_case_ = processor.batch_decode(a__ ) snake_case_ = tokenizer.batch_decode(a__ ) self.assertListEqual(a__ , a__ ) def lowerCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' snake_case_ = self.get_image_processor() snake_case_ = self.get_tokenizer() snake_case_ = VisionTextDualEncoderProcessor(tokenizer=a__ , image_processor=a__ ) snake_case_ = "lower newer" snake_case_ = self.prepare_image_inputs() snake_case_ = processor(text=a__ , images=a__ ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
92
'''simple docstring''' import logging import os from .state import PartialState class _snake_case ( logging.LoggerAdapter ): @staticmethod def lowerCAmelCase__ ( a__ ) -> Optional[Any]: '''simple docstring''' snake_case_ = PartialState() return not main_process_only or (main_process_only and state.is_main_process) def lowerCAmelCase__ ( self , a__ , a__ , *a__ , **a__ ) -> List[Any]: '''simple docstring''' if PartialState._shared_state == {}: raise RuntimeError( "You must initialize the accelerate state by calling either `PartialState()` or `Accelerator()` before using the logging utility." ) snake_case_ = kwargs.pop("main_process_only" , a__ ) snake_case_ = kwargs.pop("in_order" , a__ ) if self.isEnabledFor(a__ ): if self._should_log(a__ ): snake_case_ , snake_case_ = self.process(a__ , a__ ) self.logger.log(a__ , a__ , *a__ , **a__ ) elif in_order: snake_case_ = PartialState() for i in range(state.num_processes ): if i == state.process_index: snake_case_ , snake_case_ = self.process(a__ , a__ ) self.logger.log(a__ , a__ , *a__ , **a__ ) state.wait_for_everyone() def UpperCamelCase_( snake_case : str , snake_case : str = None ): '''simple docstring''' if log_level is None: snake_case_ = os.environ.get("ACCELERATE_LOG_LEVEL" , snake_case ) snake_case_ = logging.getLogger(snake_case ) if log_level is not None: logger.setLevel(log_level.upper() ) logger.root.setLevel(log_level.upper() ) return MultiProcessAdapter(snake_case , {} )
92
1
'''simple docstring''' import flax.linen as nn import jax import jax.numpy as jnp class lowerCAmelCase__ ( nn.Module ): lowerCAmelCase : int lowerCAmelCase : jnp.dtype = jnp.floataa def lowerCAmelCase__ ( self : List[str] ) ->List[str]: '''simple docstring''' _UpperCAmelCase : Any = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self : List[str] , lowerCamelCase__ : Dict ) ->Optional[int]: '''simple docstring''' _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Dict = hidden_states.shape _UpperCAmelCase : Optional[int] = jax.image.resize( lowerCamelCase__ , shape=(batch, height * 2, width * 2, channels) , method="nearest" , ) _UpperCAmelCase : Optional[Any] = self.conv(lowerCamelCase__ ) return hidden_states class lowerCAmelCase__ ( nn.Module ): lowerCAmelCase : int lowerCAmelCase : jnp.dtype = jnp.floataa def lowerCAmelCase__ ( self : Union[str, Any] ) ->Optional[int]: '''simple docstring''' _UpperCAmelCase : Dict = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(2, 2) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self : Optional[int] , lowerCamelCase__ : Optional[Any] ) ->Dict: '''simple docstring''' _UpperCAmelCase : int = self.conv(lowerCamelCase__ ) return hidden_states class lowerCAmelCase__ ( nn.Module ): lowerCAmelCase : int lowerCAmelCase : int = None lowerCAmelCase : float = 0.0 lowerCAmelCase : bool = None lowerCAmelCase : jnp.dtype = jnp.floataa def lowerCAmelCase__ ( self : int ) ->Any: '''simple docstring''' _UpperCAmelCase : Optional[Any] = self.in_channels if self.out_channels is None else self.out_channels _UpperCAmelCase : Dict = nn.GroupNorm(num_groups=32 , epsilon=1E-5 ) _UpperCAmelCase : List[str] = nn.Conv( lowerCamelCase__ , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) _UpperCAmelCase : Any = nn.Dense(lowerCamelCase__ , dtype=self.dtype ) _UpperCAmelCase : int = nn.GroupNorm(num_groups=32 , epsilon=1E-5 ) _UpperCAmelCase : List[str] = nn.Dropout(self.dropout_prob ) _UpperCAmelCase : Optional[Any] = nn.Conv( lowerCamelCase__ , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) _UpperCAmelCase : Tuple = self.in_channels != out_channels if self.use_nin_shortcut is None else self.use_nin_shortcut _UpperCAmelCase : Dict = None if use_nin_shortcut: _UpperCAmelCase : str = nn.Conv( lowerCamelCase__ , kernel_size=(1, 1) , strides=(1, 1) , padding="VALID" , dtype=self.dtype , ) def __call__( self : Optional[Any] , lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : List[str] , lowerCamelCase__ : str=True ) ->Optional[int]: '''simple docstring''' _UpperCAmelCase : str = hidden_states _UpperCAmelCase : Union[str, Any] = self.norma(lowerCamelCase__ ) _UpperCAmelCase : List[str] = nn.swish(lowerCamelCase__ ) _UpperCAmelCase : Tuple = self.conva(lowerCamelCase__ ) _UpperCAmelCase : List[str] = self.time_emb_proj(nn.swish(lowerCamelCase__ ) ) _UpperCAmelCase : List[Any] = jnp.expand_dims(jnp.expand_dims(lowerCamelCase__ , 1 ) , 1 ) _UpperCAmelCase : int = hidden_states + temb _UpperCAmelCase : Dict = self.norma(lowerCamelCase__ ) _UpperCAmelCase : Tuple = nn.swish(lowerCamelCase__ ) _UpperCAmelCase : str = self.dropout(lowerCamelCase__ , lowerCamelCase__ ) _UpperCAmelCase : Dict = self.conva(lowerCamelCase__ ) if self.conv_shortcut is not None: _UpperCAmelCase : int = self.conv_shortcut(lowerCamelCase__ ) return hidden_states + residual
234
'''simple docstring''' def __lowerCAmelCase (__lowerCAmelCase = 50 ): _UpperCAmelCase : Tuple = [[0] * 3 for _ in range(length + 1 )] for row_length in range(length + 1 ): for tile_length in range(2 , 5 ): for tile_start in range(row_length - tile_length + 1 ): different_colour_ways_number[row_length][tile_length - 2] += ( different_colour_ways_number[row_length - tile_start - tile_length][ tile_length - 2 ] + 1 ) return sum(different_colour_ways_number[length] ) if __name__ == "__main__": print(F'''{solution() = }''')
234
1
from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case__ : Optional[Any] = logging.get_logger(__name__) snake_case__ : Optional[Any] = {'openai-gpt': 'https://huggingface.co/openai-gpt/resolve/main/config.json'} class A_ ( _lowerCamelCase ): lowerCAmelCase__ = """openai-gpt""" lowerCAmelCase__ = { """max_position_embeddings""": """n_positions""", """hidden_size""": """n_embd""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__(self :Tuple , _UpperCamelCase :Any=4_0478 , _UpperCamelCase :int=512 , _UpperCamelCase :str=768 , _UpperCamelCase :List[Any]=12 , _UpperCamelCase :Any=12 , _UpperCamelCase :str="gelu" , _UpperCamelCase :Tuple=0.1 , _UpperCamelCase :Dict=0.1 , _UpperCamelCase :Tuple=0.1 , _UpperCamelCase :int=1e-5 , _UpperCamelCase :Union[str, Any]=0.0_2 , _UpperCamelCase :str="cls_index" , _UpperCamelCase :List[Any]=True , _UpperCamelCase :Dict=None , _UpperCamelCase :Union[str, Any]=True , _UpperCamelCase :Union[str, Any]=0.1 , **_UpperCamelCase :List[str] , )-> Tuple: __A = vocab_size __A = n_positions __A = n_embd __A = n_layer __A = n_head __A = afn __A = resid_pdrop __A = embd_pdrop __A = attn_pdrop __A = layer_norm_epsilon __A = initializer_range __A = summary_type __A = summary_use_proj __A = summary_activation __A = summary_first_dropout __A = summary_proj_to_labels super().__init__(**_UpperCamelCase )
250
from __future__ import annotations snake_case__ : Dict = [True] * 1000001 snake_case__ : int = 2 while i * i <= 1000000: if seive[i]: for j in range(i * i, 1000001, i): snake_case__ : str = False i += 1 def _a ( lowerCamelCase: int ) -> bool: '''simple docstring''' return seive[n] def _a ( lowerCamelCase: int ) -> bool: '''simple docstring''' return any(digit in '''02468''' for digit in str(lowerCamelCase ) ) def _a ( lowerCamelCase: int = 1_00_00_00 ) -> list[int]: '''simple docstring''' __A = [2] # result already includes the number 2. for num in range(3 , limit + 1 , 2 ): if is_prime(lowerCamelCase ) and not contains_an_even_digit(lowerCamelCase ): __A = str(lowerCamelCase ) __A = [int(str_num[j:] + str_num[:j] ) for j in range(len(lowerCamelCase ) )] if all(is_prime(lowerCamelCase ) for i in list_nums ): result.append(lowerCamelCase ) return result def _a ( ) -> int: '''simple docstring''' return len(find_circular_primes() ) if __name__ == "__main__": print(f'{len(find_circular_primes()) = }')
250
1
"""simple docstring""" import numpy as np from transformers import Pipeline def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : List[Any] ): '''simple docstring''' lowerCAmelCase = np.max(SCREAMING_SNAKE_CASE , axis=-1 , keepdims=SCREAMING_SNAKE_CASE ) lowerCAmelCase = np.exp(outputs - maxes ) return shifted_exp / shifted_exp.sum(axis=-1 , keepdims=SCREAMING_SNAKE_CASE ) class lowercase ( _UpperCAmelCase ): def _snake_case ( self , **lowercase ) -> Optional[int]: lowerCAmelCase = {} if "second_text" in kwargs: lowerCAmelCase = kwargs["""second_text"""] return preprocess_kwargs, {}, {} def _snake_case ( self , lowercase , lowercase=None ) -> List[Any]: return self.tokenizer(lowercase , text_pair=lowercase , return_tensors=self.framework ) def _snake_case ( self , lowercase ) -> Optional[int]: return self.model(**lowercase ) def _snake_case ( self , lowercase ) -> str: lowerCAmelCase = model_outputs.logits[0].numpy() lowerCAmelCase = softmax(lowercase ) lowerCAmelCase = np.argmax(lowercase ) lowerCAmelCase = self.model.config.idalabel[best_class] lowerCAmelCase = probabilities[best_class].item() lowerCAmelCase = logits.tolist() return {"label": label, "score": score, "logits": logits}
46
'''simple docstring''' import inspect import unittest from transformers import ViTHybridConfig from transformers.testing_utils import require_accelerate, require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel from transformers.models.vit_hybrid.modeling_vit_hybrid import VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class a : def __init__( self , __magic_name__ , __magic_name__=13 , __magic_name__=64 , __magic_name__=2 , __magic_name__=3 , __magic_name__=True , __magic_name__=True , __magic_name__=32 , __magic_name__=5 , __magic_name__=4 , __magic_name__=37 , __magic_name__="gelu" , __magic_name__=0.1 , __magic_name__=0.1 , __magic_name__=10 , __magic_name__=0.0_2 , __magic_name__=[1, 16, 4, 4] , __magic_name__=None , ) -> str: _a = parent _a = batch_size _a = image_size _a = patch_size _a = num_channels _a = is_training _a = use_labels _a = hidden_size _a = num_hidden_layers _a = num_attention_heads _a = intermediate_size _a = hidden_act _a = hidden_dropout_prob _a = attention_probs_dropout_prob _a = type_sequence_label_size _a = initializer_range _a = scope _a = backbone_featmap_shape # in ViT hybrid, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) # the number of patches is based on the feature map of the backbone, which by default uses an output stride # of 32, which means that the feature map has a spatial resolution of 1/32 of the input image size _a = (self.image_size // 32) ** 2 _a = num_patches + 1 def __UpperCAmelCase ( self ) -> str: _a = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _a = None if self.use_labels: _a = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _a = self.get_config() return config, pixel_values, labels def __UpperCAmelCase ( self ) -> Dict: _a = { 'global_padding': 'same', 'layer_type': 'bottleneck', 'depths': [3, 4, 9], 'out_features': ['stage1', 'stage2', 'stage3'], 'embedding_dynamic_padding': True, 'hidden_sizes': [4, 8, 16, 32], 'num_groups': 2, } return ViTHybridConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__magic_name__ , initializer_range=self.initializer_range , backbone_featmap_shape=self.backbone_featmap_shape , backbone_config=__magic_name__ , ) def __UpperCAmelCase ( self , __magic_name__ , __magic_name__ , __magic_name__ ) -> int: _a = ViTHybridModel(config=__magic_name__ ) model.to(__magic_name__ ) model.eval() _a = model(__magic_name__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __UpperCAmelCase ( self , __magic_name__ , __magic_name__ , __magic_name__ ) -> Union[str, Any]: _a = self.type_sequence_label_size _a = ViTHybridForImageClassification(__magic_name__ ) model.to(__magic_name__ ) model.eval() _a = model(__magic_name__ , labels=__magic_name__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __UpperCAmelCase ( self ) -> int: _a = self.prepare_config_and_inputs() _a , _a , _a = config_and_inputs _a = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , unittest.TestCase ): _lowerCAmelCase = (ViTHybridModel, ViTHybridForImageClassification) if is_torch_available() else () _lowerCAmelCase = ( {"""feature-extraction""": ViTHybridModel, """image-classification""": ViTHybridForImageClassification} if is_torch_available() else {} ) _lowerCAmelCase = False _lowerCAmelCase = False _lowerCAmelCase = False def __UpperCAmelCase ( self ) -> int: _a = ViTHybridModelTester(self ) _a = ConfigTester(self , config_class=__magic_name__ , has_text_modality=__magic_name__ , hidden_size=37 ) def __UpperCAmelCase ( self ) -> Optional[Any]: self.config_tester.run_common_tests() @unittest.skip(reason='ViT does not use inputs_embeds' ) def __UpperCAmelCase ( self ) -> str: pass def __UpperCAmelCase ( self ) -> List[str]: _a , _a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a = model_class(__magic_name__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _a = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__magic_name__ , nn.Linear ) ) def __UpperCAmelCase ( self ) -> Optional[int]: _a , _a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a = model_class(__magic_name__ ) _a = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _a = [*signature.parameters.keys()] _a = ['pixel_values'] self.assertListEqual(arg_names[:1] , __magic_name__ ) def __UpperCAmelCase ( self ) -> str: _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__magic_name__ ) def __UpperCAmelCase ( self ) -> Optional[int]: _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__magic_name__ ) def __UpperCAmelCase ( self ) -> Optional[int]: _a , _a = self.model_tester.prepare_config_and_inputs_for_common() _a = _config_zero_init(__magic_name__ ) for model_class in self.all_model_classes: _a = model_class(config=__magic_name__ ) # Skip the check for the backbone for name, module in model.named_modules(): if module.__class__.__name__ == "ViTHybridPatchEmbeddings": _a = [f'{name}.{key}' for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f'Parameter {name} of model {model_class} seems not properly initialized' , ) @slow def __UpperCAmelCase ( self ) -> Tuple: for model_name in VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _a = ViTHybridModel.from_pretrained(__magic_name__ ) self.assertIsNotNone(__magic_name__ ) def _A () -> int: '''simple docstring''' _a = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class a ( unittest.TestCase ): @cached_property def __UpperCAmelCase ( self ) -> Union[str, Any]: return ( ViTHybridImageProcessor.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def __UpperCAmelCase ( self ) -> str: _a = ViTHybridForImageClassification.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to( __magic_name__ ) _a = self.default_image_processor _a = prepare_img() _a = image_processor(images=__magic_name__ , return_tensors='pt' ).to(__magic_name__ ) # forward pass with torch.no_grad(): _a = model(**__magic_name__ ) # verify the logits _a = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , __magic_name__ ) _a = torch.tensor([-1.9_0_9_0, -0.4_9_9_3, -0.2_3_8_9] ).to(__magic_name__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __magic_name__ , atol=1e-4 ) ) @slow @require_accelerate def __UpperCAmelCase ( self ) -> Optional[Any]: _a = ViTHybridImageProcessor.from_pretrained('google/vit-hybrid-base-bit-384' ) _a = ViTHybridForImageClassification.from_pretrained('google/vit-hybrid-base-bit-384' , device_map='auto' ) _a = prepare_img() _a = image_processor(images=__magic_name__ , return_tensors='pt' ) _a = model(**__magic_name__ ) _a = outputs.logits # model predicts one of the 1000 ImageNet classes _a = logits.argmax(-1 ).item() self.assertTrue(model.config.idalabel[predicted_class_idx] , 'tabby, tabby cat' )
168
0
import copy from ...configuration_utils import PretrainedConfig from ...utils import add_start_docstrings UpperCAmelCase__ = r"\n [`RagConfig`] stores the configuration of a *RagModel*. Configuration objects inherit from [`PretrainedConfig`] and\n can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information.\n\n Args:\n title_sep (`str`, *optional*, defaults to `\" / \"`):\n Separator inserted between the title and the text of the retrieved document when calling [`RagRetriever`].\n doc_sep (`str`, *optional*, defaults to `\" // \"`):\n Separator inserted between the text of the retrieved document and the original input when calling\n [`RagRetriever`].\n n_docs (`int`, *optional*, defaults to 5):\n Number of documents to retrieve.\n max_combined_length (`int`, *optional*, defaults to 300):\n Max length of contextualized input returned by [`~RagRetriever.__call__`].\n retrieval_vector_size (`int`, *optional*, defaults to 768):\n Dimensionality of the document embeddings indexed by [`RagRetriever`].\n retrieval_batch_size (`int`, *optional*, defaults to 8):\n Retrieval batch size, defined as the number of queries issues concurrently to the faiss index encapsulated\n [`RagRetriever`].\n dataset (`str`, *optional*, defaults to `\"wiki_dpr\"`):\n A dataset identifier of the indexed dataset in HuggingFace Datasets (list all available datasets and ids\n using `datasets.list_datasets()`).\n dataset_split (`str`, *optional*, defaults to `\"train\"`)\n Which split of the `dataset` to load.\n index_name (`str`, *optional*, defaults to `\"compressed\"`)\n The index name of the index associated with the `dataset`. One can choose between `\"legacy\"`, `\"exact\"` and\n `\"compressed\"`.\n index_path (`str`, *optional*)\n The path to the serialized faiss index on disk.\n passages_path (`str`, *optional*):\n A path to text passages compatible with the faiss index. Required if using\n [`~models.rag.retrieval_rag.LegacyIndex`]\n use_dummy_dataset (`bool`, *optional*, defaults to `False`)\n Whether to load a \"dummy\" variant of the dataset specified by `dataset`.\n label_smoothing (`float`, *optional*, defaults to 0.0):\n Only relevant if `return_loss` is set to `True`. Controls the `epsilon` parameter value for label smoothing\n in the loss calculation. If set to 0, no label smoothing is performed.\n do_marginalize (`bool`, *optional*, defaults to `False`):\n If `True`, the logits are marginalized over all documents by making use of\n `torch.nn.functional.log_softmax`.\n reduce_loss (`bool`, *optional*, defaults to `False`):\n Whether or not to reduce the NLL loss using the `torch.Tensor.sum` operation.\n do_deduplication (`bool`, *optional*, defaults to `True`):\n Whether or not to deduplicate the generations from different context documents for a given input. Has to be\n set to `False` if used while training with distributed backend.\n exclude_bos_score (`bool`, *optional*, defaults to `False`):\n Whether or not to disregard the BOS token when computing the loss.\n output_retrieved(`bool`, *optional*, defaults to `False`):\n If set to `True`, `retrieved_doc_embeds`, `retrieved_doc_ids`, `context_input_ids` and\n `context_attention_mask` are returned. See returned tensors for more detail.\n use_cache (`bool`, *optional*, defaults to `True`):\n Whether or not the model should return the last key/values attentions (not used by all models).\n forced_eos_token_id (`int`, *optional*):\n The id of the token to force as the last generated token when `max_length` is reached. Usually set to\n `eos_token_id`.\n" @add_start_docstrings(A ) class __lowerCAmelCase ( A ): UpperCamelCase = '''rag''' UpperCamelCase = True def __init__( self : str , A : int=None , A : Dict=True , A : int=None , A : Any=None , A : Any=None , A : Any=None , A : int=None , A : str=" / " , A : int=" // " , A : Any=5 , A : Optional[Any]=3_00 , A : Optional[Any]=7_68 , A : Optional[int]=8 , A : Union[str, Any]="wiki_dpr" , A : int="train" , A : Tuple="compressed" , A : str=None , A : Any=None , A : Tuple=False , A : List[str]=False , A : Tuple=0.0 , A : Any=True , A : int=False , A : Dict=False , A : List[str]=False , A : Optional[Any]=True , A : Tuple=None , **A : Optional[Any] , ) -> Optional[Any]: """simple docstring""" super().__init__( bos_token_id=A , pad_token_id=A , eos_token_id=A , decoder_start_token_id=A , forced_eos_token_id=A , is_encoder_decoder=A , prefix=A , vocab_size=A , **A , ) assert ( "question_encoder" in kwargs and "generator" in kwargs ), "Config has to be initialized with question_encoder and generator config" _UpperCAmelCase = kwargs.pop('question_encoder') _UpperCAmelCase = question_encoder_config.pop('model_type') _UpperCAmelCase = kwargs.pop('generator') _UpperCAmelCase = decoder_config.pop('model_type') from ..auto.configuration_auto import AutoConfig _UpperCAmelCase = AutoConfig.for_model(A , **A) _UpperCAmelCase = AutoConfig.for_model(A , **A) _UpperCAmelCase = reduce_loss _UpperCAmelCase = label_smoothing _UpperCAmelCase = exclude_bos_score _UpperCAmelCase = do_marginalize _UpperCAmelCase = title_sep _UpperCAmelCase = doc_sep _UpperCAmelCase = n_docs _UpperCAmelCase = max_combined_length _UpperCAmelCase = dataset _UpperCAmelCase = dataset_split _UpperCAmelCase = index_name _UpperCAmelCase = retrieval_vector_size _UpperCAmelCase = retrieval_batch_size _UpperCAmelCase = passages_path _UpperCAmelCase = index_path _UpperCAmelCase = use_dummy_dataset _UpperCAmelCase = output_retrieved _UpperCAmelCase = do_deduplication _UpperCAmelCase = use_cache if self.forced_eos_token_id is None: _UpperCAmelCase = getattr(self.generator , 'forced_eos_token_id' , A) @classmethod def _lowerCamelCase ( cls : Union[str, Any] , A : PretrainedConfig , A : PretrainedConfig , **A : Optional[Any]) -> PretrainedConfig: """simple docstring""" return cls(question_encoder=question_encoder_config.to_dict() , generator=generator_config.to_dict() , **A) def _lowerCamelCase ( self : Dict) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = copy.deepcopy(self.__dict__) _UpperCAmelCase = self.question_encoder.to_dict() _UpperCAmelCase = self.generator.to_dict() _UpperCAmelCase = self.__class__.model_type return output
290
from __future__ import annotations from itertools import permutations from random import randint from timeit import repeat def A ( ) -> tuple[list[int], int]: '''simple docstring''' _UpperCAmelCase = [randint(-1_000 , 1_000 ) for i in range(10 )] _UpperCAmelCase = randint(-5_000 , 5_000 ) return (arr, r) UpperCAmelCase__ = make_dataset() def A ( _UpperCAmelCase : list[int] , _UpperCAmelCase : int ) -> tuple[int, ...]: '''simple docstring''' for triplet in permutations(_UpperCAmelCase , 3 ): if sum(_UpperCAmelCase ) == target: return tuple(sorted(_UpperCAmelCase ) ) return (0, 0, 0) def A ( _UpperCAmelCase : list[int] , _UpperCAmelCase : int ) -> tuple[int, int, int]: '''simple docstring''' arr.sort() _UpperCAmelCase = len(_UpperCAmelCase ) for i in range(n - 1 ): _UpperCAmelCase , _UpperCAmelCase = i + 1, n - 1 while left < right: if arr[i] + arr[left] + arr[right] == target: return (arr[i], arr[left], arr[right]) elif arr[i] + arr[left] + arr[right] < target: left += 1 elif arr[i] + arr[left] + arr[right] > target: right -= 1 return (0, 0, 0) def A ( ) -> tuple[float, float]: '''simple docstring''' _UpperCAmelCase = '\nfrom __main__ import dataset, triplet_sum1, triplet_sum2\n' _UpperCAmelCase = '\ntriplet_sum1(*dataset)\n' _UpperCAmelCase = '\ntriplet_sum2(*dataset)\n' _UpperCAmelCase = repeat(setup=_UpperCAmelCase , stmt=_UpperCAmelCase , repeat=5 , number=10_000 ) _UpperCAmelCase = repeat(setup=_UpperCAmelCase , stmt=_UpperCAmelCase , repeat=5 , number=10_000 ) return (min(_UpperCAmelCase ), min(_UpperCAmelCase )) if __name__ == "__main__": from doctest import testmod testmod() UpperCAmelCase__ = solution_times() print(f"""The time for naive implementation is {times[0]}.""") print(f"""The time for optimized implementation is {times[1]}.""")
290
1
import unittest from transformers import DebertaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DebertaForMaskedLM, DebertaForQuestionAnswering, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaModel, ) from transformers.models.deberta.modeling_deberta import DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST class _A ( __UpperCAmelCase ): def __init__( self : List[str] , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Optional[Any]=13 , __SCREAMING_SNAKE_CASE : Tuple=7 , __SCREAMING_SNAKE_CASE : List[str]=True , __SCREAMING_SNAKE_CASE : List[Any]=True , __SCREAMING_SNAKE_CASE : Dict=True , __SCREAMING_SNAKE_CASE : List[Any]=True , __SCREAMING_SNAKE_CASE : str=99 , __SCREAMING_SNAKE_CASE : List[str]=32 , __SCREAMING_SNAKE_CASE : Tuple=5 , __SCREAMING_SNAKE_CASE : List[Any]=4 , __SCREAMING_SNAKE_CASE : int=37 , __SCREAMING_SNAKE_CASE : List[Any]="gelu" , __SCREAMING_SNAKE_CASE : List[Any]=0.1 , __SCREAMING_SNAKE_CASE : List[str]=0.1 , __SCREAMING_SNAKE_CASE : Optional[int]=512 , __SCREAMING_SNAKE_CASE : str=16 , __SCREAMING_SNAKE_CASE : List[Any]=2 , __SCREAMING_SNAKE_CASE : Optional[int]=0.02 , __SCREAMING_SNAKE_CASE : str=False , __SCREAMING_SNAKE_CASE : str=True , __SCREAMING_SNAKE_CASE : Tuple="None" , __SCREAMING_SNAKE_CASE : Union[str, Any]=3 , __SCREAMING_SNAKE_CASE : Any=4 , __SCREAMING_SNAKE_CASE : Optional[Any]=None , ): '''simple docstring''' __a = parent __a = batch_size __a = seq_length __a = is_training __a = use_input_mask __a = use_token_type_ids __a = use_labels __a = vocab_size __a = hidden_size __a = num_hidden_layers __a = num_attention_heads __a = intermediate_size __a = hidden_act __a = hidden_dropout_prob __a = attention_probs_dropout_prob __a = max_position_embeddings __a = type_vocab_size __a = type_sequence_label_size __a = initializer_range __a = num_labels __a = num_choices __a = relative_attention __a = position_biased_input __a = pos_att_type __a = scope def _lowerCamelCase ( self : List[str]): '''simple docstring''' __a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) __a = None if self.use_input_mask: __a = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2) __a = None if self.use_token_type_ids: __a = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) __a = None __a = None __a = None if self.use_labels: __a = ids_tensor([self.batch_size] , self.type_sequence_label_size) __a = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) __a = ids_tensor([self.batch_size] , self.num_choices) __a = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _lowerCamelCase ( self : Union[str, Any]): '''simple docstring''' return DebertaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , pos_att_type=self.pos_att_type , ) def _lowerCamelCase ( self : Union[str, Any]): '''simple docstring''' __a = self.get_config() __a = 300 return config def _lowerCamelCase ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : Tuple): '''simple docstring''' self.parent.assertListEqual(list(result.loss.size()) , []) def _lowerCamelCase ( self : Optional[int] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : Union[str, Any]): '''simple docstring''' __a = DebertaModel(config=__SCREAMING_SNAKE_CASE) model.to(__SCREAMING_SNAKE_CASE) model.eval() __a = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , token_type_ids=__SCREAMING_SNAKE_CASE)[0] __a = model(__SCREAMING_SNAKE_CASE , token_type_ids=__SCREAMING_SNAKE_CASE)[0] __a = model(__SCREAMING_SNAKE_CASE)[0] self.parent.assertListEqual(list(sequence_output.size()) , [self.batch_size, self.seq_length, self.hidden_size]) def _lowerCamelCase ( self : Optional[int] , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : List[Any]): '''simple docstring''' __a = DebertaForMaskedLM(config=__SCREAMING_SNAKE_CASE) model.to(__SCREAMING_SNAKE_CASE) model.eval() __a = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , token_type_ids=__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def _lowerCamelCase ( self : Any , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Any): '''simple docstring''' __a = self.num_labels __a = DebertaForSequenceClassification(__SCREAMING_SNAKE_CASE) model.to(__SCREAMING_SNAKE_CASE) model.eval() __a = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , token_type_ids=__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE) self.parent.assertListEqual(list(result.logits.size()) , [self.batch_size, self.num_labels]) self.check_loss_output(__SCREAMING_SNAKE_CASE) def _lowerCamelCase ( self : Optional[int] , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : Optional[int]): '''simple docstring''' __a = self.num_labels __a = DebertaForTokenClassification(config=__SCREAMING_SNAKE_CASE) model.to(__SCREAMING_SNAKE_CASE) model.eval() __a = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , token_type_ids=__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def _lowerCamelCase ( self : str , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Optional[int]): '''simple docstring''' __a = DebertaForQuestionAnswering(config=__SCREAMING_SNAKE_CASE) model.to(__SCREAMING_SNAKE_CASE) model.eval() __a = model( __SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , token_type_ids=__SCREAMING_SNAKE_CASE , start_positions=__SCREAMING_SNAKE_CASE , end_positions=__SCREAMING_SNAKE_CASE , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def _lowerCamelCase ( self : Tuple): '''simple docstring''' __a = self.prepare_config_and_inputs() ( ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ) = config_and_inputs __a = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class _A ( __UpperCAmelCase ,__UpperCAmelCase ,unittest.TestCase ): UpperCamelCase__ : int = ( ( DebertaModel, DebertaForMaskedLM, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaForQuestionAnswering, ) if is_torch_available() else () ) UpperCamelCase__ : List[str] = ( { '''feature-extraction''': DebertaModel, '''fill-mask''': DebertaForMaskedLM, '''question-answering''': DebertaForQuestionAnswering, '''text-classification''': DebertaForSequenceClassification, '''token-classification''': DebertaForTokenClassification, '''zero-shot''': DebertaForSequenceClassification, } if is_torch_available() else {} ) UpperCamelCase__ : Union[str, Any] = True UpperCamelCase__ : Any = False UpperCamelCase__ : Any = False UpperCamelCase__ : Dict = False UpperCamelCase__ : Tuple = False def _lowerCamelCase ( self : Tuple): '''simple docstring''' __a = DebertaModelTester(self) __a = ConfigTester(self , config_class=__SCREAMING_SNAKE_CASE , hidden_size=37) def _lowerCamelCase ( self : List[str]): '''simple docstring''' self.config_tester.run_common_tests() def _lowerCamelCase ( self : Tuple): '''simple docstring''' __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_model(*__SCREAMING_SNAKE_CASE) def _lowerCamelCase ( self : Tuple): '''simple docstring''' __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_sequence_classification(*__SCREAMING_SNAKE_CASE) def _lowerCamelCase ( self : Any): '''simple docstring''' __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_masked_lm(*__SCREAMING_SNAKE_CASE) def _lowerCamelCase ( self : Dict): '''simple docstring''' __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_question_answering(*__SCREAMING_SNAKE_CASE) def _lowerCamelCase ( self : Any): '''simple docstring''' __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_token_classification(*__SCREAMING_SNAKE_CASE) @slow def _lowerCamelCase ( self : Tuple): '''simple docstring''' for model_name in DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __a = DebertaModel.from_pretrained(__SCREAMING_SNAKE_CASE) self.assertIsNotNone(__SCREAMING_SNAKE_CASE) @require_torch @require_sentencepiece @require_tokenizers class _A ( unittest.TestCase ): @unittest.skip(reason='''Model not available yet''') def _lowerCamelCase ( self : int): '''simple docstring''' pass @slow def _lowerCamelCase ( self : int): '''simple docstring''' __a = DebertaModel.from_pretrained('''microsoft/deberta-base''') __a = torch.tensor([[0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2]]) __a = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]) with torch.no_grad(): __a = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE)[0] # compare the actual values for a slice. __a = torch.tensor( [[[-0.59_86, -0.80_55, -0.84_62], [1.44_84, -0.93_48, -0.80_59], [0.31_23, 0.00_32, -1.41_31]]]) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , __SCREAMING_SNAKE_CASE , atol=1E-4) , F'{output[:, 1:4, 1:4]}')
49
import argparse import torch from transformers import LxmertConfig, LxmertForPreTraining, load_tf_weights_in_lxmert from transformers.utils import logging logging.set_verbosity_info() def __snake_case ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): # Initialise PyTorch model __a = LxmertConfig.from_json_file(_UpperCAmelCase ) print(f'Building PyTorch model from configuration: {config}' ) __a = LxmertForPreTraining(_UpperCAmelCase ) # Load weights from tf checkpoint load_tf_weights_in_lxmert(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # Save pytorch-model print(f'Save PyTorch model to {pytorch_dump_path}' ) torch.save(model.state_dict() , _UpperCAmelCase ) if __name__ == "__main__": __snake_case :List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help='''The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.''', ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) __snake_case :Optional[Any] = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path)
49
1
"""simple docstring""" from copy import deepcopy import torch import torch.nn.functional as F from torch.optim import AdamW from torch.optim.lr_scheduler import LambdaLR from torch.utils.data import DataLoader from accelerate.accelerator import Accelerator from accelerate.state import GradientState from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import DistributedType, is_torch_version, set_seed def A_ ( _lowerCAmelCase : Optional[Any], _lowerCAmelCase : int, _lowerCAmelCase : int, _lowerCAmelCase : str ): """simple docstring""" for param, grad_param in zip(model_a.parameters(), model_b.parameters() ): if not param.requires_grad: continue if not did_step: # Grads should not be in sync assert ( torch.allclose(param.grad, grad_param.grad ) is False ), f'Gradients in sync when they should not be at iteration {iteration}:\nmodel_a grad ({param.grad}) == model_b grad ({grad_param.grad})' else: # Grads should be in sync assert ( torch.allclose(param.grad, grad_param.grad ) is True ), f'Gradients not in sync when they should be at iteration {iteration}:\nmodel_a grad ({param.grad}) != model_b grad ({grad_param.grad})' def A_ ( _lowerCAmelCase : List[Any], _lowerCAmelCase : List[str], _lowerCAmelCase : Any, _lowerCAmelCase : Optional[int], _lowerCAmelCase : str=True ): """simple docstring""" model.train() _a = model(a__ ) _a = F.mse_loss(a__, target.to(output.device ) ) if not do_backward: loss /= accelerator.gradient_accumulation_steps loss.backward() else: accelerator.backward(a__ ) def A_ ( _lowerCAmelCase : Optional[int], _lowerCAmelCase : Any=False ): """simple docstring""" set_seed(42 ) _a = RegressionModel() _a = deepcopy(a__ ) _a = RegressionDataset(length=80 ) _a = DataLoader(a__, batch_size=16 ) model.to(accelerator.device ) if sched: _a = AdamW(params=model.parameters(), lr=1e-3 ) _a = AdamW(params=ddp_model.parameters(), lr=1e-3 ) _a = LambdaLR(a__, lr_lambda=lambda _lowerCAmelCase : epoch**0.6_5 ) _a = LambdaLR(a__, lr_lambda=lambda _lowerCAmelCase : epoch**0.6_5 ) # Make a copy of `model` if sched: _a , _a , _a , _a = accelerator.prepare(a__, a__, a__, a__ ) else: _a , _a = accelerator.prepare(a__, a__ ) if sched: return (model, opt, sched, dataloader, ddp_model, ddp_opt, ddp_sched) return model, ddp_model, dataloader def A_ ( _lowerCAmelCase : Tuple ): """simple docstring""" _a , _a , _a = get_training_setup(a__ ) # Use a single batch _a , _a = next(iter(a__ ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model _a , _a = accelerator.gather((ddp_input, ddp_target) ) _a , _a = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(a__, a__, a__, a__ ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(a__ ): step_model(a__, a__, a__, a__ ) else: # Sync grads step_model(a__, a__, a__, a__ ) # Since `no_sync` is a noop, `ddp_model` and `model` grads should always be in sync check_model_parameters(a__, a__, a__, a__ ) for param, ddp_param in zip(model.parameters(), ddp_model.parameters() ): if not param.requires_grad: continue assert torch.allclose( param.grad, ddp_param.grad ), f'Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})' # Shuffle ddp_input on each iteration torch.manual_seed(13_37 + iteration ) _a = ddp_input[torch.randperm(len(a__ ) )] def A_ ( _lowerCAmelCase : Dict ): """simple docstring""" _a , _a , _a = get_training_setup(a__ ) # Use a single batch _a , _a = next(iter(a__ ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model _a , _a = accelerator.gather((ddp_input, ddp_target) ) _a , _a = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(a__, a__, a__, a__ ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(a__ ): step_model(a__, a__, a__, a__ ) else: # Sync grads step_model(a__, a__, a__, a__ ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters(), ddp_model.parameters() ): if not param.requires_grad: continue if iteration % 2 == 0: # Grads should not be in sync assert ( torch.allclose(param.grad, ddp_param.grad ) is False ), f'Gradients in sync when they should not be:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})' else: # Grads should be in sync assert ( torch.allclose(param.grad, ddp_param.grad ) is True ), f'Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})' # Shuffle ddp_input on each iteration torch.manual_seed(13_37 + iteration ) _a = ddp_input[torch.randperm(len(a__ ) )] def A_ ( _lowerCAmelCase : Any=False, _lowerCAmelCase : Optional[int]=False ): """simple docstring""" _a = Accelerator( split_batches=a__, dispatch_batches=a__, gradient_accumulation_steps=2 ) # Test that context manager behaves properly _a , _a , _a = get_training_setup(a__ ) for iteration, batch in enumerate(a__ ): _a , _a = batch.values() # Gather the distributed inputs and targs for the base model _a , _a = accelerator.gather((ddp_input, ddp_target) ) _a , _a = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(a__, a__, a__, a__, a__ ) # Do "gradient accumulation" (noop) with accelerator.accumulate(a__ ): step_model(a__, a__, a__, a__ ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters(), ddp_model.parameters() ): if not param.requires_grad: continue if ((iteration + 1) % 2 == 0) or (iteration == len(a__ ) - 1): # Grads should be in sync assert ( torch.allclose(param.grad, ddp_param.grad ) is True ), f'Gradients not in sync when they should be at iteration {iteration}:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})' else: # Grads should not be in sync assert ( torch.allclose(param.grad, ddp_param.grad ) is False ), f'Gradients in sync when they should not be at iteration {iteration}:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})' # Shuffle ddp_input on each iteration torch.manual_seed(13_37 + iteration ) _a = ddp_input[torch.randperm(len(a__ ) )] GradientState._reset_state() def A_ ( _lowerCAmelCase : Union[str, Any]=False, _lowerCAmelCase : Any=False ): """simple docstring""" _a = Accelerator( split_batches=a__, dispatch_batches=a__, gradient_accumulation_steps=2 ) # Test that context manager behaves properly _a , _a , _a , _a , _a , _a , _a = get_training_setup(a__, a__ ) for iteration, batch in enumerate(a__ ): _a , _a = batch.values() # Gather the distributed inputs and targs for the base model _a , _a = accelerator.gather((ddp_input, ddp_target) ) _a , _a = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" model.train() ddp_model.train() step_model(a__, a__, a__, a__, a__ ) opt.step() if ((iteration + 1) % 2 == 0) or ((iteration + 1) == len(a__ )): if split_batches: sched.step() else: for _ in range(accelerator.num_processes ): sched.step() opt.zero_grad() # Perform gradient accumulation under wrapper with accelerator.accumulate(a__ ): step_model(a__, a__, a__, a__ ) ddp_opt.step() ddp_sched.step() ddp_opt.zero_grad() # Learning rates should be the same assert ( opt.param_groups[0]["lr"] == ddp_opt.param_groups[0]["lr"] ), f'Learning rates found in each optimizer did not align\nopt: {opt.param_groups[0]["lr"]}\nDDP opt: {ddp_opt.param_groups[0]["lr"]}\n' _a = (((iteration + 1) % 2) == 0) or ((iteration + 1) == len(a__ )) if accelerator.num_processes > 1: check_model_parameters(a__, a__, a__, a__ ) # Shuffle ddp_input on each iteration torch.manual_seed(13_37 + iteration ) GradientState._reset_state() def A_ ( ): """simple docstring""" _a = Accelerator() _a = RegressionDataset(length=80 ) _a = DataLoader(a__, batch_size=16 ) _a = RegressionDataset(length=96 ) _a = DataLoader(a__, batch_size=16 ) _a , _a = accelerator.prepare(a__, a__ ) assert accelerator.gradient_state.active_dataloader is None for iteration, _ in enumerate(a__ ): assert id(accelerator.gradient_state.active_dataloader ) == id(a__ ) if iteration < len(a__ ) - 1: assert not accelerator.gradient_state.end_of_dataloader if iteration == 1: for batch_num, _ in enumerate(a__ ): assert id(accelerator.gradient_state.active_dataloader ) == id(a__ ) if batch_num < len(a__ ) - 1: assert not accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader assert accelerator.gradient_state.active_dataloader is None def A_ ( ): """simple docstring""" _a = Accelerator() _a = accelerator.state if state.local_process_index == 0: print('''**Test `accumulate` gradient accumulation with dataloader break**''' ) test_dataloader_break() if state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print('''**Test NOOP `no_sync` context manager**''' ) test_noop_sync(a__ ) if state.distributed_type in (DistributedType.MULTI_GPU, DistributedType.MULTI_CPU): if state.local_process_index == 0: print('''**Test Distributed `no_sync` context manager**''' ) test_distributed_sync(a__ ) if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if state.local_process_index == 0: print( '''**Test `accumulate` gradient accumulation, ''', f'`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**', ) test_gradient_accumulation(a__, a__ ) # Currently will break on torch 2.0 +, need to investigate why if is_torch_version('''<''', '''2.0''' ) or state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print( '''**Test `accumulate` gradient accumulation with optimizer and scheduler, ''', '''`split_batches=False`, `dispatch_batches=False`**''', ) test_gradient_accumulation_with_opt_and_scheduler() if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if not split_batch and not dispatch_batches: continue if state.local_process_index == 0: print( '''**Test `accumulate` gradient accumulation with optimizer and scheduler, ''', f'`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**', ) test_gradient_accumulation_with_opt_and_scheduler(a__, a__ ) def A_ ( _lowerCAmelCase : Optional[int] ): """simple docstring""" main() if __name__ == "__main__": main()
369
"""simple docstring""" import argparse import torch from transformers import BertConfig, BertForPreTraining, load_tf_weights_in_bert from transformers.utils import logging logging.set_verbosity_info() def A_ ( _lowerCAmelCase : Dict, _lowerCAmelCase : List[str], _lowerCAmelCase : List[str] ): """simple docstring""" _a = BertConfig.from_json_file(_lowerCAmelCase ) print(f'Building PyTorch model from configuration: {config}' ) _a = BertForPreTraining(_lowerCAmelCase ) # Load weights from tf checkpoint load_tf_weights_in_bert(_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase ) # Save pytorch-model print(f'Save PyTorch model to {pytorch_dump_path}' ) torch.save(model.state_dict(), _lowerCAmelCase ) if __name__ == "__main__": __snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--bert_config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained BERT model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) __snake_case = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
153
0
'''simple docstring''' _lowerCAmelCase = { '''Pillow''': '''Pillow<10.0.0''', '''accelerate''': '''accelerate>=0.20.3''', '''av''': '''av==9.2.0''', '''beautifulsoup4''': '''beautifulsoup4''', '''black''': '''black~=23.1''', '''codecarbon''': '''codecarbon==1.2.0''', '''cookiecutter''': '''cookiecutter==1.7.3''', '''dataclasses''': '''dataclasses''', '''datasets''': '''datasets!=2.5.0''', '''decord''': '''decord==0.6.0''', '''deepspeed''': '''deepspeed>=0.9.3''', '''diffusers''': '''diffusers''', '''dill''': '''dill<0.3.5''', '''evaluate''': '''evaluate>=0.2.0''', '''fairscale''': '''fairscale>0.3''', '''faiss-cpu''': '''faiss-cpu''', '''fastapi''': '''fastapi''', '''filelock''': '''filelock''', '''flax''': '''flax>=0.4.1,<=0.7.0''', '''ftfy''': '''ftfy''', '''fugashi''': '''fugashi>=1.0''', '''GitPython''': '''GitPython<3.1.19''', '''hf-doc-builder''': '''hf-doc-builder>=0.3.0''', '''huggingface-hub''': '''huggingface-hub>=0.14.1,<1.0''', '''importlib_metadata''': '''importlib_metadata''', '''ipadic''': '''ipadic>=1.0.0,<2.0''', '''isort''': '''isort>=5.5.4''', '''jax''': '''jax>=0.2.8,!=0.3.2,<=0.4.13''', '''jaxlib''': '''jaxlib>=0.1.65,<=0.4.13''', '''jieba''': '''jieba''', '''kenlm''': '''kenlm''', '''keras-nlp''': '''keras-nlp>=0.3.1''', '''librosa''': '''librosa''', '''nltk''': '''nltk''', '''natten''': '''natten>=0.14.6''', '''numpy''': '''numpy>=1.17''', '''onnxconverter-common''': '''onnxconverter-common''', '''onnxruntime-tools''': '''onnxruntime-tools>=1.4.2''', '''onnxruntime''': '''onnxruntime>=1.4.0''', '''opencv-python''': '''opencv-python''', '''optuna''': '''optuna''', '''optax''': '''optax>=0.0.8,<=0.1.4''', '''packaging''': '''packaging>=20.0''', '''parameterized''': '''parameterized''', '''phonemizer''': '''phonemizer''', '''protobuf''': '''protobuf''', '''psutil''': '''psutil''', '''pyyaml''': '''pyyaml>=5.1''', '''pydantic''': '''pydantic<2''', '''pytest''': '''pytest>=7.2.0''', '''pytest-timeout''': '''pytest-timeout''', '''pytest-xdist''': '''pytest-xdist''', '''python''': '''python>=3.8.0''', '''ray[tune]''': '''ray[tune]''', '''regex''': '''regex!=2019.12.17''', '''requests''': '''requests''', '''rhoknp''': '''rhoknp>=1.1.0,<1.3.1''', '''rjieba''': '''rjieba''', '''rouge-score''': '''rouge-score!=0.0.7,!=0.0.8,!=0.1,!=0.1.1''', '''ruff''': '''ruff>=0.0.241,<=0.0.259''', '''sacrebleu''': '''sacrebleu>=1.4.12,<2.0.0''', '''sacremoses''': '''sacremoses''', '''safetensors''': '''safetensors>=0.3.1''', '''sagemaker''': '''sagemaker>=2.31.0''', '''scikit-learn''': '''scikit-learn''', '''sentencepiece''': '''sentencepiece>=0.1.91,!=0.1.92''', '''sigopt''': '''sigopt''', '''starlette''': '''starlette''', '''sudachipy''': '''sudachipy>=0.6.6''', '''sudachidict_core''': '''sudachidict_core>=20220729''', '''tensorflow-cpu''': '''tensorflow-cpu>=2.6,<2.14''', '''tensorflow''': '''tensorflow>=2.6,<2.14''', '''tensorflow-text''': '''tensorflow-text<2.14''', '''tf2onnx''': '''tf2onnx''', '''timeout-decorator''': '''timeout-decorator''', '''timm''': '''timm''', '''tokenizers''': '''tokenizers>=0.11.1,!=0.11.3,<0.14''', '''torch''': '''torch>=1.9,!=1.12.0''', '''torchaudio''': '''torchaudio''', '''torchvision''': '''torchvision''', '''pyctcdecode''': '''pyctcdecode>=0.4.0''', '''tqdm''': '''tqdm>=4.27''', '''unidic''': '''unidic>=1.0.2''', '''unidic_lite''': '''unidic_lite>=1.0.7''', '''urllib3''': '''urllib3<2.0.0''', '''uvicorn''': '''uvicorn''', }
37
'''simple docstring''' import os import re import unicodedata from shutil import copyfile from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import is_torch_available, logging if is_torch_available(): import torch if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = {'''vocab_file''': '''spiece.model'''} _lowerCAmelCase = { '''vocab_file''': { '''AI-Sweden/gpt-sw3-126m''': '''https://huggingface.co/AI-Sweden/gpt-sw3-126m/resolve/main/spiece.model''', '''AI-Sweden/gpt-sw3-350m''': '''https://huggingface.co/AI-Sweden/gpt-sw3-350m/resolve/main/spiece.model''', '''AI-Sweden/gpt-sw3-1.6b''': '''https://huggingface.co/AI-Sweden/gpt-sw3-1.6b/resolve/main/spiece.model''', '''AI-Sweden/gpt-sw3-6.7b''': '''https://huggingface.co/AI-Sweden/gpt-sw3-6.7b/resolve/main/spiece.model''', '''AI-Sweden/gpt-sw3-20b''': '''https://huggingface.co/AI-Sweden/gpt-sw3-20b/resolve/main/spiece.model''', } } _lowerCAmelCase = { '''AI-Sweden/gpt-sw3-126m''': 2048, '''AI-Sweden/gpt-sw3-350m''': 2048, '''AI-Sweden/gpt-sw3-1.6b''': 2048, '''AI-Sweden/gpt-sw3-6.7b''': 2048, '''AI-Sweden/gpt-sw3-20b''': 2048, } class lowerCAmelCase_( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' __lowercase : Dict = VOCAB_FILES_NAMES __lowercase : str = PRETRAINED_VOCAB_FILES_MAP __lowercase : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowercase : Optional[int] = ['''input_ids''', '''attention_mask'''] def __init__( self ,__UpperCAmelCase ,__UpperCAmelCase=False ,__UpperCAmelCase=False ,__UpperCAmelCase=False ,__UpperCAmelCase=None ,__UpperCAmelCase=None ,__UpperCAmelCase=None ,__UpperCAmelCase=None ,__UpperCAmelCase = None ,**__UpperCAmelCase ,) -> None: lowerCAmelCase__ : Optional[int] = {} if sp_model_kwargs is None else sp_model_kwargs lowerCAmelCase__ : Dict = kwargs.get("""name_or_path""" ) if name_or_path is None: logger.warning( """name_or_path not provided, will work for all GPTSw3 models except gpt-sw3-7b,""" """ you are testing the model, this can safely be ignored""" ) lowerCAmelCase__ : Tuple = """None""" # Default definitions for our 2 tokenizer versions, with None-checks to enable proper testing lowerCAmelCase__ : Union[str, Any] = """<|endoftext|>""" if eos_token is None else eos_token lowerCAmelCase__ : Dict = """<unk>""" if unk_token is None else unk_token if "gpt-sw3-7b" in name_or_path: lowerCAmelCase__ : Any = unk_token if pad_token is None else pad_token lowerCAmelCase__ : Dict = eos_token if bos_token is None else bos_token else: lowerCAmelCase__ : List[str] = """<pad>""" if pad_token is None else pad_token lowerCAmelCase__ : Optional[int] = """<s>""" if bos_token is None else bos_token super().__init__( do_lower_case=__UpperCAmelCase ,remove_space=__UpperCAmelCase ,keep_accents=__UpperCAmelCase ,bos_token=__UpperCAmelCase ,eos_token=__UpperCAmelCase ,unk_token=__UpperCAmelCase ,pad_token=__UpperCAmelCase ,sp_model_kwargs=self.sp_model_kwargs ,**__UpperCAmelCase ,) lowerCAmelCase__ : Optional[int] = do_lower_case lowerCAmelCase__ : Dict = remove_space lowerCAmelCase__ : Optional[Any] = keep_accents lowerCAmelCase__ : int = vocab_file lowerCAmelCase__ : str = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__UpperCAmelCase ) # Used for whitespace normalization in input texts # fmt : off lowerCAmelCase__ : int = {""" """, """ """, """ """, """ """, """ """, """ """, """ """, """ """, """ """, """ """, """""", """„"""} # fmt : on # Regular expression to remove non-printing characters (e.g. some unicode control chars) in preprocessing lowerCAmelCase__ : List[str] = re.compile( F"""[{''.join(map(__UpperCAmelCase ,list(range(0 ,9 ) ) + list(range(11 ,32 ) ) + list(range(127 ,160 ) ) + [160, 173, 8203] ) )}]""" ) def __getstate__( self ) -> Any: lowerCAmelCase__ : int = self.__dict__.copy() lowerCAmelCase__ : Optional[int] = None return state def __setstate__( self ,__UpperCAmelCase ) -> List[str]: lowerCAmelCase__ : List[str] = d # for backward compatibility if not hasattr(self ,"""sp_model_kwargs""" ): lowerCAmelCase__ : Tuple = {} lowerCAmelCase__ : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) @property # Copied from transformers.models.albert.tokenization_albert.AlbertTokenizer.vocab_size def UpperCAmelCase_ ( self ) -> int: return len(self.sp_model ) def UpperCAmelCase_ ( self ,__UpperCAmelCase ) -> str: lowerCAmelCase__ : Tuple = self.non_printing_characters_re.sub("""""" ,__UpperCAmelCase ) # Normalize whitespaces lowerCAmelCase__ : List[Any] = """""".join([char if char not in self.whitespaces else """ """ for char in text] ) # NFC Unicode normalization lowerCAmelCase__ : List[Any] = unicodedata.normalize("""NFC""" ,__UpperCAmelCase ) return text def UpperCAmelCase_ ( self ,__UpperCAmelCase ,**__UpperCAmelCase ) -> List[str]: lowerCAmelCase__ : List[Any] = self.preprocess_text(__UpperCAmelCase ) return self.sp_model.encode(__UpperCAmelCase ,out_type=__UpperCAmelCase ) def UpperCAmelCase_ ( self ,__UpperCAmelCase ) -> int: return self.sp_model.PieceToId(__UpperCAmelCase ) def UpperCAmelCase_ ( self ,__UpperCAmelCase ) -> str: return self.sp_model.IdToPiece(__UpperCAmelCase ) @staticmethod def UpperCAmelCase_ ( __UpperCAmelCase ) -> str: return out_string def UpperCAmelCase_ ( self ,__UpperCAmelCase ) -> str: lowerCAmelCase__ : int = [] lowerCAmelCase__ : Optional[int] = """""" lowerCAmelCase__ : Tuple = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: # TODO: Check if this is needed, as it ensures that decode(encode(doc)) != doc by adding extra whitespace in the decoded document if not prev_is_special: out_string += " " out_string += self.sp_model.decode(__UpperCAmelCase ) + token lowerCAmelCase__ : Union[str, Any] = True lowerCAmelCase__ : Optional[Any] = [] else: current_sub_tokens.append(__UpperCAmelCase ) lowerCAmelCase__ : Any = False out_string += self.sp_model.decode(__UpperCAmelCase ) return out_string def UpperCAmelCase_ ( self ) -> Dict[str, int]: lowerCAmelCase__ : Optional[int] = {self.convert_ids_to_tokens(__UpperCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase = None ) -> Tuple[str]: if not os.path.isdir(__UpperCAmelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return lowerCAmelCase__ : Optional[int] = os.path.join( __UpperCAmelCase ,(filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file ,__UpperCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(__UpperCAmelCase ,"""wb""" ) as fi: lowerCAmelCase__ : str = self.sp_model.serialized_model_proto() fi.write(__UpperCAmelCase ) return (out_vocab_file,) def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase = False ) -> Union[List[int], List[List[int]], "torch.Tensor"]: if isinstance(__UpperCAmelCase ,__UpperCAmelCase ): lowerCAmelCase__ : Tuple = self.preprocess_text(__UpperCAmelCase ) lowerCAmelCase__ : int = self.sp_model.encode(__UpperCAmelCase ) else: lowerCAmelCase__ : int = [self.preprocess_text(__UpperCAmelCase ) for t in text] lowerCAmelCase__ : Any = self.sp_model.encode(__UpperCAmelCase ) if return_tensors is True or return_tensors == "pt": lowerCAmelCase__ : Tuple = torch.tensor(__UpperCAmelCase ) return token_ids def UpperCAmelCase_ ( self ,__UpperCAmelCase ) -> str: return self.sp_model.decode(__UpperCAmelCase ) def UpperCAmelCase_ ( self ,__UpperCAmelCase ) -> List[int]: lowerCAmelCase__ : List[Any] = [F"""User: {text}""" if is_user else F"""Bot: {text}""" for is_user, text in conversation.iter_texts()] lowerCAmelCase__ : Any = ( F"""{self.eos_token}{self.bos_token}""" + F"""{self.bos_token}""".join(__UpperCAmelCase ) + F"""{self.bos_token}Bot:""" ) return self.encode(text=__UpperCAmelCase )
37
1
'''simple docstring''' import json import os from functools import lru_cache from typing import TYPE_CHECKING, List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation _UpperCAmelCase : Union[str, Any] = logging.get_logger(__name__) _UpperCAmelCase : int = { """vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_config_file""": """tokenizer_config.json""", } _UpperCAmelCase : Dict = { """vocab_file""": {"""facebook/blenderbot-3B""": """https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json"""}, """merges_file""": {"""facebook/blenderbot-3B""": """https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt"""}, """tokenizer_config_file""": { """facebook/blenderbot-3B""": """https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json""" }, } _UpperCAmelCase : Optional[Any] = {"""facebook/blenderbot-3B""": 1_2_8} @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def __magic_name__( ): __lowerCAmelCase = ( list(range(ord('''!'''), ord('''~''') + 1)) + list(range(ord('''¡'''), ord('''¬''') + 1)) + list(range(ord('''®'''), ord('''ÿ''') + 1)) ) __lowerCAmelCase = bs[:] __lowerCAmelCase = 0 for b in range(2**8): if b not in bs: bs.append(lowerCamelCase) cs.append(2**8 + n) n += 1 __lowerCAmelCase = [chr(lowerCamelCase) for n in cs] return dict(zip(lowerCamelCase, lowerCamelCase)) def __magic_name__( lowerCamelCase): __lowerCAmelCase = set() __lowerCAmelCase = word[0] for char in word[1:]: pairs.add((prev_char, char)) __lowerCAmelCase = char return pairs class a__ ( __A ): """simple docstring""" __UpperCamelCase : Optional[int] = VOCAB_FILES_NAMES __UpperCamelCase : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase : str = ['input_ids', 'attention_mask'] def __init__(self , __lowercase , __lowercase , __lowercase="replace" , __lowercase="<s>" , __lowercase="</s>" , __lowercase="</s>" , __lowercase="<s>" , __lowercase="<unk>" , __lowercase="<pad>" , __lowercase="<mask>" , __lowercase=False , **__lowercase , ): __lowerCAmelCase = AddedToken(__lowercase , lstrip=__lowercase , rstrip=__lowercase ) if isinstance(__lowercase , __lowercase ) else bos_token __lowerCAmelCase = AddedToken(__lowercase , lstrip=__lowercase , rstrip=__lowercase ) if isinstance(__lowercase , __lowercase ) else eos_token __lowerCAmelCase = AddedToken(__lowercase , lstrip=__lowercase , rstrip=__lowercase ) if isinstance(__lowercase , __lowercase ) else sep_token __lowerCAmelCase = AddedToken(__lowercase , lstrip=__lowercase , rstrip=__lowercase ) if isinstance(__lowercase , __lowercase ) else cls_token __lowerCAmelCase = AddedToken(__lowercase , lstrip=__lowercase , rstrip=__lowercase ) if isinstance(__lowercase , __lowercase ) else unk_token __lowerCAmelCase = AddedToken(__lowercase , lstrip=__lowercase , rstrip=__lowercase ) if isinstance(__lowercase , __lowercase ) else pad_token # Mask token behave like a normal word, i.e. include the space before it __lowerCAmelCase = AddedToken(__lowercase , lstrip=__lowercase , rstrip=__lowercase ) if isinstance(__lowercase , __lowercase ) else mask_token super().__init__( errors=__lowercase , bos_token=__lowercase , eos_token=__lowercase , unk_token=__lowercase , sep_token=__lowercase , cls_token=__lowercase , pad_token=__lowercase , mask_token=__lowercase , add_prefix_space=__lowercase , **__lowercase , ) with open(__lowercase , encoding='''utf-8''' ) as vocab_handle: __lowerCAmelCase = json.load(__lowercase ) __lowerCAmelCase = {v: k for k, v in self.encoder.items()} __lowerCAmelCase = errors # how to handle errors in decoding __lowerCAmelCase = bytes_to_unicode() __lowerCAmelCase = {v: k for k, v in self.byte_encoder.items()} with open(__lowercase , encoding='''utf-8''' ) as merges_handle: __lowerCAmelCase = merges_handle.read().split('''\n''' )[1:-1] __lowerCAmelCase = [tuple(merge.split() ) for merge in bpe_merges] __lowerCAmelCase = dict(zip(__lowercase , range(len(__lowercase ) ) ) ) __lowerCAmelCase = {} __lowerCAmelCase = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions __lowerCAmelCase = re.compile(R'''\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+''' ) @property # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.vocab_size with Roberta->Blenderbot, RoBERTa->Blenderbot def _snake_case (self ): return len(self.encoder ) def _snake_case (self ): return dict(self.encoder , **self.added_tokens_encoder ) def _snake_case (self , __lowercase ): if token in self.cache: return self.cache[token] __lowerCAmelCase = tuple(__lowercase ) __lowerCAmelCase = get_pairs(__lowercase ) if not pairs: return token while True: __lowerCAmelCase = min(__lowercase , key=lambda __lowercase : self.bpe_ranks.get(__lowercase , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break __lowerCAmelCase , __lowerCAmelCase = bigram __lowerCAmelCase = [] __lowerCAmelCase = 0 while i < len(__lowercase ): try: __lowerCAmelCase = word.index(__lowercase , __lowercase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) __lowerCAmelCase = j if word[i] == first and i < len(__lowercase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 __lowerCAmelCase = tuple(__lowercase ) __lowerCAmelCase = new_word if len(__lowercase ) == 1: break else: __lowerCAmelCase = get_pairs(__lowercase ) __lowerCAmelCase = ''' '''.join(__lowercase ) __lowerCAmelCase = word return word def _snake_case (self , __lowercase ): __lowerCAmelCase = [] for token in re.findall(self.pat , __lowercase ): __lowerCAmelCase = ''''''.join( self.byte_encoder[b] for b in token.encode('''utf-8''' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(__lowercase ).split(''' ''' ) ) return bpe_tokens def _snake_case (self , __lowercase ): return self.encoder.get(__lowercase , self.encoder.get(self.unk_token ) ) def _snake_case (self , __lowercase ): return self.decoder.get(__lowercase ) def _snake_case (self , __lowercase ): __lowerCAmelCase = ''''''.join(__lowercase ) __lowerCAmelCase = bytearray([self.byte_decoder[c] for c in text] ).decode('''utf-8''' , errors=self.errors ) return text def _snake_case (self , __lowercase , __lowercase = None ): if not os.path.isdir(__lowercase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return __lowerCAmelCase = os.path.join( __lowercase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) __lowerCAmelCase = os.path.join( __lowercase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(__lowercase , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=__lowercase , ensure_ascii=__lowercase ) + '''\n''' ) __lowerCAmelCase = 0 with open(__lowercase , '''w''' , encoding='''utf-8''' ) as writer: writer.write('''#version: 0.2\n''' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __lowercase : kv[1] ): if index != token_index: logger.warning( F"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" ''' Please check that the tokenizer is not corrupted!''' ) __lowerCAmelCase = token_index writer.write(''' '''.join(__lowercase ) + '''\n''' ) index += 1 return vocab_file, merge_file def _snake_case (self , __lowercase , __lowercase = None , __lowercase = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__lowercase , token_ids_a=__lowercase , already_has_special_tokens=__lowercase ) if token_ids_a is None: return [1] + ([0] * len(__lowercase )) + [1] return [1] + ([0] * len(__lowercase )) + [1, 1] + ([0] * len(__lowercase )) + [1] def _snake_case (self , __lowercase , __lowercase = None ): __lowerCAmelCase = [self.sep_token_id] __lowerCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _snake_case (self , __lowercase , __lowercase=False , **__lowercase ): __lowerCAmelCase = kwargs.pop('''add_prefix_space''' , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(__lowercase ) > 0 and not text[0].isspace()): __lowerCAmelCase = ''' ''' + text return (text, kwargs) def _snake_case (self , __lowercase , __lowercase = None ): return token_ids_a + [self.eos_token_id] def _snake_case (self , __lowercase ): __lowerCAmelCase = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(''' ''' + text ) else: # Generated responses should contain them already. inputs.append(__lowercase ) __lowerCAmelCase = ''' '''.join(__lowercase ) __lowerCAmelCase = self.encode(__lowercase ) if len(__lowercase ) > self.model_max_length: __lowerCAmelCase = input_ids[-self.model_max_length :] logger.warning(F"""Trimmed input from conversation as it was longer than {self.model_max_length} tokens.""" ) return input_ids
9
'''simple docstring''' from typing import Callable, Dict, Optional, Tuple import torch from torch import nn from torch.distributions import ( AffineTransform, Distribution, Independent, NegativeBinomial, Normal, StudentT, TransformedDistribution, ) class a__ ( __A ): """simple docstring""" def __init__(self , __lowercase , __lowercase=None , __lowercase=None , __lowercase=0 ): __lowerCAmelCase = 1.0 if scale is None else scale __lowerCAmelCase = 0.0 if loc is None else loc super().__init__(__lowercase , [AffineTransform(loc=self.loc , scale=self.scale , event_dim=__lowercase )] ) @property def _snake_case (self ): return self.base_dist.mean * self.scale + self.loc @property def _snake_case (self ): return self.base_dist.variance * self.scale**2 @property def _snake_case (self ): return self.variance.sqrt() class a__ ( nn.Module ): """simple docstring""" def __init__(self , __lowercase , __lowercase , __lowercase , **__lowercase ): super().__init__(**__lowercase ) __lowerCAmelCase = args_dim __lowerCAmelCase = nn.ModuleList([nn.Linear(__lowercase , __lowercase ) for dim in args_dim.values()] ) __lowerCAmelCase = domain_map def _snake_case (self , __lowercase ): __lowerCAmelCase = [proj(__lowercase ) for proj in self.proj] return self.domain_map(*__lowercase ) class a__ ( nn.Module ): """simple docstring""" def __init__(self , __lowercase ): super().__init__() __lowerCAmelCase = function def _snake_case (self , __lowercase , *__lowercase ): return self.function(__lowercase , *__lowercase ) class a__ : """simple docstring""" __UpperCamelCase : type __UpperCamelCase : int __UpperCamelCase : Dict[str, int] def __init__(self , __lowercase = 1 ): __lowerCAmelCase = dim __lowerCAmelCase = {k: dim * self.args_dim[k] for k in self.args_dim} def _snake_case (self , __lowercase ): if self.dim == 1: return self.distribution_class(*__lowercase ) else: return Independent(self.distribution_class(*__lowercase ) , 1 ) def _snake_case (self , __lowercase , __lowercase = None , __lowercase = None , ): __lowerCAmelCase = self._base_distribution(__lowercase ) if loc is None and scale is None: return distr else: return AffineTransformed(__lowercase , loc=__lowercase , scale=__lowercase , event_dim=self.event_dim ) @property def _snake_case (self ): return () if self.dim == 1 else (self.dim,) @property def _snake_case (self ): return len(self.event_shape ) @property def _snake_case (self ): return 0.0 def _snake_case (self , __lowercase ): return ParameterProjection( in_features=__lowercase , args_dim=self.args_dim , domain_map=LambdaLayer(self.domain_map ) , ) def _snake_case (self , *__lowercase ): raise NotImplementedError() @staticmethod def _snake_case (__lowercase ): return (x + torch.sqrt(torch.square(__lowercase ) + 4.0 )) / 2.0 class a__ ( __A ): """simple docstring""" __UpperCamelCase : Dict[str, int] = {"df": 1, "loc": 1, "scale": 1} __UpperCamelCase : type = StudentT @classmethod def _snake_case (cls , __lowercase , __lowercase , __lowercase ): __lowerCAmelCase = cls.squareplus(__lowercase ).clamp_min(torch.finfo(scale.dtype ).eps ) __lowerCAmelCase = 2.0 + cls.squareplus(__lowercase ) return df.squeeze(-1 ), loc.squeeze(-1 ), scale.squeeze(-1 ) class a__ ( __A ): """simple docstring""" __UpperCamelCase : Dict[str, int] = {"loc": 1, "scale": 1} __UpperCamelCase : type = Normal @classmethod def _snake_case (cls , __lowercase , __lowercase ): __lowerCAmelCase = cls.squareplus(__lowercase ).clamp_min(torch.finfo(scale.dtype ).eps ) return loc.squeeze(-1 ), scale.squeeze(-1 ) class a__ ( __A ): """simple docstring""" __UpperCamelCase : Dict[str, int] = {"total_count": 1, "logits": 1} __UpperCamelCase : type = NegativeBinomial @classmethod def _snake_case (cls , __lowercase , __lowercase ): __lowerCAmelCase = cls.squareplus(__lowercase ) return total_count.squeeze(-1 ), logits.squeeze(-1 ) def _snake_case (self , __lowercase ): __lowerCAmelCase , __lowerCAmelCase = distr_args if self.dim == 1: return self.distribution_class(total_count=__lowercase , logits=__lowercase ) else: return Independent(self.distribution_class(total_count=__lowercase , logits=__lowercase ) , 1 ) def _snake_case (self , __lowercase , __lowercase = None , __lowercase = None ): __lowerCAmelCase , __lowerCAmelCase = distr_args if scale is not None: # See scaling property of Gamma. logits += scale.log() return self._base_distribution((total_count, logits) )
9
1
import argparse import logging import sys from unittest.mock import patch import run_glue_deebert from transformers.testing_utils import TestCasePlus, get_gpu_count, require_torch_non_multi_gpu, slow logging.basicConfig(level=logging.DEBUG) a : Any = logging.getLogger() def lowerCamelCase__ ( ): __UpperCAmelCase : Optional[Any] = argparse.ArgumentParser() parser.add_argument("""-f""" ) __UpperCAmelCase : List[Any] = parser.parse_args() return args.f class a ( lowercase__ ): """simple docstring""" def UpperCAmelCase ( self : Optional[int] ) -> None: __UpperCAmelCase : Tuple = logging.StreamHandler(sys.stdout ) logger.addHandler(__lowercase ) def UpperCAmelCase ( self : Optional[Any] , __lowercase : Optional[int] ) -> Tuple: __UpperCAmelCase : Optional[Any] = get_gpu_count() if n_gpu > 1: pass # XXX: doesn't quite work with n_gpu > 1 https://github.com/huggingface/transformers/issues/10560 # script = f"{self.examples_dir_str}/research_projects/deebert/run_glue_deebert.py" # distributed_args = f"-m torch.distributed.launch --nproc_per_node={n_gpu} {script}".split() # cmd = [sys.executable] + distributed_args + args # execute_subprocess_async(cmd, env=self.get_env()) # XXX: test the results - need to save them first into .json file else: args.insert(0 , """run_glue_deebert.py""" ) with patch.object(__lowercase , """argv""" , __lowercase ): __UpperCAmelCase : List[str] = run_glue_deebert.main() for value in result.values(): self.assertGreaterEqual(__lowercase , 0.666 ) @slow @require_torch_non_multi_gpu def UpperCAmelCase ( self : Any ) -> List[str]: __UpperCAmelCase : List[str] = """\n --model_type roberta\n --model_name_or_path roberta-base\n --task_name MRPC\n --do_train\n --do_eval\n --do_lower_case\n --data_dir ./tests/fixtures/tests_samples/MRPC/\n --max_seq_length 128\n --per_gpu_eval_batch_size=1\n --per_gpu_train_batch_size=8\n --learning_rate 2e-4\n --num_train_epochs 3\n --overwrite_output_dir\n --seed 42\n --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --plot_data_dir ./examples/deebert/results/\n --save_steps 0\n --overwrite_cache\n --eval_after_first_stage\n """.split() self.run_and_check(__lowercase ) __UpperCAmelCase : Union[str, Any] = """\n --model_type roberta\n --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --task_name MRPC\n --do_eval\n --do_lower_case\n --data_dir ./tests/fixtures/tests_samples/MRPC/\n --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --plot_data_dir ./examples/deebert/results/\n --max_seq_length 128\n --eval_each_highway\n --eval_highway\n --overwrite_cache\n --per_gpu_eval_batch_size=1\n """.split() self.run_and_check(__lowercase ) __UpperCAmelCase : Tuple = """\n --model_type roberta\n --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --task_name MRPC\n --do_eval\n --do_lower_case\n --data_dir ./tests/fixtures/tests_samples/MRPC/\n --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --plot_data_dir ./examples/deebert/results/\n --max_seq_length 128\n --early_exit_entropy 0.1\n --eval_highway\n --overwrite_cache\n --per_gpu_eval_batch_size=1\n """.split() self.run_and_check(__lowercase )
114
import inspect from typing import Callable, List, Optional, Union import torch from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer from diffusers import DiffusionPipeline from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler from diffusers.utils import logging _lowerCAmelCase : Optional[Any] = logging.get_logger(__name__) # pylint: disable=invalid-name class _UpperCamelCase ( lowerCAmelCase ): def __init__( self :int , lowerCamelCase :AutoencoderKL , lowerCamelCase :CLIPTextModel , lowerCamelCase :CLIPTokenizer , lowerCamelCase :UNetaDConditionModel , lowerCamelCase :Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , lowerCamelCase :StableDiffusionSafetyChecker , lowerCamelCase :CLIPImageProcessor , ) -> Optional[int]: super().__init__() self.register_modules( vae=lowerCamelCase , text_encoder=lowerCamelCase , tokenizer=lowerCamelCase , unet=lowerCamelCase , scheduler=lowerCamelCase , safety_checker=lowerCamelCase , feature_extractor=lowerCamelCase , ) def UpperCAmelCase_ ( self :Tuple , lowerCamelCase :Optional[Union[str, int]] = "auto" ) -> int: if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory UpperCAmelCase__ = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(lowerCamelCase ) def UpperCAmelCase_ ( self :Optional[int] ) -> Union[str, Any]: self.enable_attention_slicing(lowerCamelCase ) @torch.no_grad() def __call__( self :int , lowerCamelCase :Union[str, List[str]] , lowerCamelCase :int = 512 , lowerCamelCase :int = 512 , lowerCamelCase :int = 50 , lowerCamelCase :float = 7.5 , lowerCamelCase :Optional[Union[str, List[str]]] = None , lowerCamelCase :Optional[int] = 1 , lowerCamelCase :float = 0.0 , lowerCamelCase :Optional[torch.Generator] = None , lowerCamelCase :Optional[torch.FloatTensor] = None , lowerCamelCase :Optional[str] = "pil" , lowerCamelCase :bool = True , lowerCamelCase :Optional[Callable[[int, int, torch.FloatTensor], None]] = None , lowerCamelCase :int = 1 , lowerCamelCase :Optional[torch.FloatTensor] = None , **lowerCamelCase :List[str] , ) -> str: if isinstance(lowerCamelCase , lowerCamelCase ): UpperCAmelCase__ = 1 elif isinstance(lowerCamelCase , lowerCamelCase ): UpperCAmelCase__ = len(lowerCamelCase ) else: raise ValueError(f'''`prompt` has to be of type `str` or `list` but is {type(lowerCamelCase )}''' ) if height % 8 != 0 or width % 8 != 0: raise ValueError(f'''`height` and `width` have to be divisible by 8 but are {height} and {width}.''' ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(lowerCamelCase , lowerCamelCase ) or callback_steps <= 0) ): raise ValueError( f'''`callback_steps` has to be a positive integer but is {callback_steps} of type''' f''' {type(lowerCamelCase )}.''' ) # get prompt text embeddings UpperCAmelCase__ = self.tokenizer( lowerCamelCase , padding="max_length" , max_length=self.tokenizer.model_max_length , return_tensors="pt" , ) UpperCAmelCase__ = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: UpperCAmelCase__ = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( "The following part of your input was truncated because CLIP can only handle sequences up to" f''' {self.tokenizer.model_max_length} tokens: {removed_text}''' ) UpperCAmelCase__ = text_input_ids[:, : self.tokenizer.model_max_length] if text_embeddings is None: UpperCAmelCase__ = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = text_embeddings.shape UpperCAmelCase__ = text_embeddings.repeat(1 , lowerCamelCase , 1 ) UpperCAmelCase__ = text_embeddings.view(bs_embed * num_images_per_prompt , lowerCamelCase , -1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. UpperCAmelCase__ = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: UpperCAmelCase__ = 42 if negative_prompt is None: UpperCAmelCase__ = [""] elif type(lowerCamelCase ) is not type(lowerCamelCase ): raise TypeError( f'''`negative_prompt` should be the same type to `prompt`, but got {type(lowerCamelCase )} !=''' f''' {type(lowerCamelCase )}.''' ) elif isinstance(lowerCamelCase , lowerCamelCase ): UpperCAmelCase__ = [negative_prompt] elif batch_size != len(lowerCamelCase ): raise ValueError( f'''`negative_prompt`: {negative_prompt} has batch size {len(lowerCamelCase )}, but `prompt`:''' f''' {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches''' " the batch size of `prompt`." ) else: UpperCAmelCase__ = negative_prompt UpperCAmelCase__ = text_input_ids.shape[-1] UpperCAmelCase__ = self.tokenizer( lowerCamelCase , padding="max_length" , max_length=lowerCamelCase , truncation=lowerCamelCase , return_tensors="pt" , ) UpperCAmelCase__ = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method UpperCAmelCase__ = uncond_embeddings.shape[1] UpperCAmelCase__ = uncond_embeddings.repeat(lowerCamelCase , lowerCamelCase , 1 ) UpperCAmelCase__ = uncond_embeddings.view(batch_size * num_images_per_prompt , lowerCamelCase , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes UpperCAmelCase__ = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. UpperCAmelCase__ = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) UpperCAmelCase__ = (batch_size * num_images_per_prompt, self.unet.config.in_channels, 64, 64) UpperCAmelCase__ = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps UpperCAmelCase__ = torch.randn( lowerCamelCase , generator=lowerCamelCase , device="cpu" , dtype=lowerCamelCase ).to(self.device ) UpperCAmelCase__ = torch.randn(lowerCamelCase , generator=lowerCamelCase , device="cpu" , dtype=lowerCamelCase ).to( self.device ) else: UpperCAmelCase__ = torch.randn( lowerCamelCase , generator=lowerCamelCase , device=self.device , dtype=lowerCamelCase ) UpperCAmelCase__ = torch.randn(lowerCamelCase , generator=lowerCamelCase , device=self.device , dtype=lowerCamelCase ) else: if latents_reference.shape != latents_shape: raise ValueError(f'''Unexpected latents shape, got {latents.shape}, expected {latents_shape}''' ) UpperCAmelCase__ = latents_reference.to(self.device ) UpperCAmelCase__ = latents.to(self.device ) # This is the key part of the pipeline where we # try to ensure that the generated images w/ the same seed # but different sizes actually result in similar images UpperCAmelCase__ = (latents_shape[3] - latents_shape_reference[3]) // 2 UpperCAmelCase__ = (latents_shape[2] - latents_shape_reference[2]) // 2 UpperCAmelCase__ = latents_shape_reference[3] if dx >= 0 else latents_shape_reference[3] + 2 * dx UpperCAmelCase__ = latents_shape_reference[2] if dy >= 0 else latents_shape_reference[2] + 2 * dy UpperCAmelCase__ = 0 if dx < 0 else dx UpperCAmelCase__ = 0 if dy < 0 else dy UpperCAmelCase__ = max(-dx , 0 ) UpperCAmelCase__ = max(-dy , 0 ) # import pdb # pdb.set_trace() UpperCAmelCase__ = latents_reference[:, :, dy : dy + h, dx : dx + w] # set timesteps self.scheduler.set_timesteps(lowerCamelCase ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand UpperCAmelCase__ = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler UpperCAmelCase__ = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] UpperCAmelCase__ = "eta" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) UpperCAmelCase__ = {} if accepts_eta: UpperCAmelCase__ = eta for i, t in enumerate(self.progress_bar(lowerCamelCase ) ): # expand the latents if we are doing classifier free guidance UpperCAmelCase__ = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents UpperCAmelCase__ = self.scheduler.scale_model_input(lowerCamelCase , lowerCamelCase ) # predict the noise residual UpperCAmelCase__ = self.unet(lowerCamelCase , lowerCamelCase , encoder_hidden_states=lowerCamelCase ).sample # perform guidance if do_classifier_free_guidance: UpperCAmelCase__ , UpperCAmelCase__ = noise_pred.chunk(2 ) UpperCAmelCase__ = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 UpperCAmelCase__ = self.scheduler.step(lowerCamelCase , lowerCamelCase , lowerCamelCase , **lowerCamelCase ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(lowerCamelCase , lowerCamelCase , lowerCamelCase ) UpperCAmelCase__ = 1 / 0.1_82_15 * latents UpperCAmelCase__ = self.vae.decode(lowerCamelCase ).sample UpperCAmelCase__ = (image / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 UpperCAmelCase__ = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if self.safety_checker is not None: UpperCAmelCase__ = self.feature_extractor(self.numpy_to_pil(lowerCamelCase ) , return_tensors="pt" ).to( self.device ) UpperCAmelCase__ , UpperCAmelCase__ = self.safety_checker( images=lowerCamelCase , clip_input=safety_checker_input.pixel_values.to(text_embeddings.dtype ) ) else: UpperCAmelCase__ = None if output_type == "pil": UpperCAmelCase__ = self.numpy_to_pil(lowerCamelCase ) if not return_dict: return (image, has_nsfw_concept) return StableDiffusionPipelineOutput(images=lowerCamelCase , nsfw_content_detected=lowerCamelCase )
169
0
'''simple docstring''' import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging _lowercase : str = logging.get_logger(__name__) _lowercase : Tuple = { 'RUCAIBox/mvp': 'https://huggingface.co/RUCAIBox/mvp/resolve/main/config.json', } class lowerCAmelCase__ ( lowerCAmelCase__ ): lowerCAmelCase_ = "mvp" lowerCAmelCase_ = ["past_key_values"] lowerCAmelCase_ = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__( self , __SCREAMING_SNAKE_CASE=5_02_67 , __SCREAMING_SNAKE_CASE=10_24 , __SCREAMING_SNAKE_CASE=12 , __SCREAMING_SNAKE_CASE=40_96 , __SCREAMING_SNAKE_CASE=16 , __SCREAMING_SNAKE_CASE=12 , __SCREAMING_SNAKE_CASE=40_96 , __SCREAMING_SNAKE_CASE=16 , __SCREAMING_SNAKE_CASE=0.0 , __SCREAMING_SNAKE_CASE=0.0 , __SCREAMING_SNAKE_CASE="gelu" , __SCREAMING_SNAKE_CASE=10_24 , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=0.0 , __SCREAMING_SNAKE_CASE=0.0 , __SCREAMING_SNAKE_CASE=0.02 , __SCREAMING_SNAKE_CASE=0.0 , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=1 , __SCREAMING_SNAKE_CASE=0 , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=1_00 , __SCREAMING_SNAKE_CASE=8_00 , **__SCREAMING_SNAKE_CASE , ): """simple docstring""" lowercase_ : Optional[Any] = vocab_size lowercase_ : List[Any] = max_position_embeddings lowercase_ : int = d_model lowercase_ : Optional[Any] = encoder_ffn_dim lowercase_ : List[Any] = encoder_layers lowercase_ : Any = encoder_attention_heads lowercase_ : Optional[int] = decoder_ffn_dim lowercase_ : Optional[int] = decoder_layers lowercase_ : List[Any] = decoder_attention_heads lowercase_ : str = dropout lowercase_ : List[Any] = attention_dropout lowercase_ : Optional[Any] = activation_dropout lowercase_ : List[Any] = activation_function lowercase_ : Optional[int] = init_std lowercase_ : Optional[Any] = encoder_layerdrop lowercase_ : List[Any] = decoder_layerdrop lowercase_ : Optional[Any] = classifier_dropout lowercase_ : str = use_cache lowercase_ : Any = encoder_layers lowercase_ : List[str] = scale_embedding # scale factor will be sqrt(d_model) if True lowercase_ : Optional[Any] = use_prompt lowercase_ : Optional[Any] = prompt_length lowercase_ : List[str] = prompt_mid_dim super().__init__( pad_token_id=_SCREAMING_SNAKE_CASE , bos_token_id=_SCREAMING_SNAKE_CASE , eos_token_id=_SCREAMING_SNAKE_CASE , is_encoder_decoder=_SCREAMING_SNAKE_CASE , decoder_start_token_id=_SCREAMING_SNAKE_CASE , forced_eos_token_id=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) if self.forced_bos_token_id is None and kwargs.get('''force_bos_token_to_be_generated''' , _SCREAMING_SNAKE_CASE ): lowercase_ : List[str] = self.bos_token_id warnings.warn( F'''Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. ''' '''The config can simply be saved and uploaded again to be fixed.''' )
355
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowercase : Tuple = {"configuration_vit_msn": ["VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP", "ViTMSNConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : str = [ "VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST", "ViTMSNModel", "ViTMSNForImageClassification", "ViTMSNPreTrainedModel", ] if TYPE_CHECKING: from .configuration_vit_msn import VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMSNConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_msn import ( VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMSNForImageClassification, ViTMSNModel, ViTMSNPreTrainedModel, ) else: import sys _lowercase : int = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
264
0
'''simple docstring''' from ...processing_utils import ProcessorMixin class lowerCAmelCase_ ( lowercase__ ): __lowerCamelCase : Union[str, Any] = """SpeechT5FeatureExtractor""" __lowerCamelCase : Tuple = """SpeechT5Tokenizer""" def __init__( self , _lowerCAmelCase , _lowerCAmelCase ) -> int: super().__init__(_A , _A ) def __call__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: _lowerCAmelCase = kwargs.pop("audio" , _A ) _lowerCAmelCase = kwargs.pop("text" , _A ) _lowerCAmelCase = kwargs.pop("text_target" , _A ) _lowerCAmelCase = kwargs.pop("audio_target" , _A ) _lowerCAmelCase = kwargs.pop("sampling_rate" , _A ) if audio is not None and text is not None: raise ValueError( "Cannot process both `audio` and `text` inputs. Did you mean `audio_target` or `text_target`?" ) if audio_target is not None and text_target is not None: raise ValueError( "Cannot process both `audio_target` and `text_target` inputs. Did you mean `audio` or `text`?" ) if audio is None and audio_target is None and text is None and text_target is None: raise ValueError( "You need to specify either an `audio`, `audio_target`, `text`, or `text_target` input to process." ) if audio is not None: _lowerCAmelCase = self.feature_extractor(_A , *_A , sampling_rate=_A , **_A ) elif text is not None: _lowerCAmelCase = self.tokenizer(_A , **_A ) else: _lowerCAmelCase = None if audio_target is not None: _lowerCAmelCase = self.feature_extractor(audio_target=_A , *_A , sampling_rate=_A , **_A ) _lowerCAmelCase = targets['input_values'] elif text_target is not None: _lowerCAmelCase = self.tokenizer(_A , **_A ) _lowerCAmelCase = targets['input_ids'] else: _lowerCAmelCase = None if inputs is None: return targets if targets is not None: _lowerCAmelCase = labels _lowerCAmelCase = targets.get("attention_mask" ) if decoder_attention_mask is not None: _lowerCAmelCase = decoder_attention_mask return inputs def _snake_case ( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: _lowerCAmelCase = kwargs.pop("input_values" , _A ) _lowerCAmelCase = kwargs.pop("input_ids" , _A ) _lowerCAmelCase = kwargs.pop("labels" , _A ) if input_values is not None and input_ids is not None: raise ValueError("Cannot process both `input_values` and `input_ids` inputs." ) if input_values is None and input_ids is None and labels is None: raise ValueError( "You need to specify either an `input_values`, `input_ids`, or `labels` input to be padded." ) if input_values is not None: _lowerCAmelCase = self.feature_extractor.pad(_A , *_A , **_A ) elif input_ids is not None: _lowerCAmelCase = self.tokenizer.pad(_A , **_A ) else: _lowerCAmelCase = None if labels is not None: if "input_ids" in labels or (isinstance(_A , _A ) and "input_ids" in labels[0]): _lowerCAmelCase = self.tokenizer.pad(_A , **_A ) _lowerCAmelCase = targets['input_ids'] else: _lowerCAmelCase = self.feature_extractor.feature_size _lowerCAmelCase = self.feature_extractor.num_mel_bins _lowerCAmelCase = self.feature_extractor.pad(_A , *_A , **_A ) _lowerCAmelCase = feature_size_hack _lowerCAmelCase = targets['input_values'] else: _lowerCAmelCase = None if inputs is None: return targets if targets is not None: _lowerCAmelCase = labels _lowerCAmelCase = targets.get("attention_mask" ) if decoder_attention_mask is not None: _lowerCAmelCase = decoder_attention_mask return inputs def _snake_case ( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Any: return self.tokenizer.batch_decode(*_A , **_A ) def _snake_case ( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Tuple: return self.tokenizer.decode(*_A , **_A )
158
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase :str = {'''configuration_xglm''': ['''XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XGLMConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase :Optional[Any] = ['''XGLMTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase :Dict = ['''XGLMTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase :Tuple = [ '''XGLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XGLMForCausalLM''', '''XGLMModel''', '''XGLMPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase :int = [ '''FlaxXGLMForCausalLM''', '''FlaxXGLMModel''', '''FlaxXGLMPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase :Any = [ '''TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFXGLMForCausalLM''', '''TFXGLMModel''', '''TFXGLMPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xglm import XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XGLMConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm import XGLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm_fast import XGLMTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xglm import XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, XGLMForCausalLM, XGLMModel, XGLMPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xglm import FlaxXGLMForCausalLM, FlaxXGLMModel, FlaxXGLMPreTrainedModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, TFXGLMPreTrainedModel, ) else: import sys lowerCAmelCase :int = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
331
0
"""simple docstring""" def __lowercase ( _a ): if not numbers: return 0 if not isinstance(_a , (list, tuple) ) or not all( isinstance(_a , _a ) for number in numbers ): raise ValueError('''numbers must be an iterable of integers''' ) snake_case_ : List[str] = numbers[0] for i in range(1 , len(_a ) ): # update the maximum and minimum subarray products snake_case_ : Tuple = numbers[i] if number < 0: snake_case_, snake_case_ : List[Any] = min_till_now, max_till_now snake_case_ : Optional[Any] = max(_a , max_till_now * number ) snake_case_ : Any = min(_a , min_till_now * number ) # update the maximum product found till now snake_case_ : Optional[Any] = max(_a , _a ) return max_prod
155
"""simple docstring""" import math import sys def __lowercase ( _a ): if number != int(_a ): raise ValueError('''the value of input must be a natural number''' ) if number < 0: raise ValueError('''the value of input must not be a negative number''' ) if number == 0: return 1 snake_case_ : int = [-1] * (number + 1) snake_case_ : int = 0 for i in range(1 , number + 1 ): snake_case_ : Tuple = sys.maxsize snake_case_ : List[Any] = int(math.sqrt(_a ) ) for j in range(1 , root + 1 ): snake_case_ : Dict = 1 + answers[i - (j**2)] snake_case_ : int = min(_a , _a ) snake_case_ : Any = answer return answers[number] if __name__ == "__main__": import doctest doctest.testmod()
155
1
import os from typing import Any, Callable, Dict, List, Optional, Tuple, Union import torch from torch import nn from ...models.controlnet import ControlNetModel, ControlNetOutput from ...models.modeling_utils import ModelMixin from ...utils import logging a_ = logging.get_logger(__name__) class lowercase__ ( _UpperCAmelCase ): def __init__( self , __UpperCAmelCase )-> List[Any]: '''simple docstring''' super().__init__() lowerCAmelCase__ = nn.ModuleList(__UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = False , __UpperCAmelCase = True , )-> Union[ControlNetOutput, Tuple]: '''simple docstring''' for i, (image, scale, controlnet) in enumerate(zip(__UpperCAmelCase , __UpperCAmelCase , self.nets ) ): lowerCAmelCase__ , lowerCAmelCase__ = controlnet( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) # merge samples if i == 0: lowerCAmelCase__ , lowerCAmelCase__ = down_samples, mid_sample else: lowerCAmelCase__ = [ samples_prev + samples_curr for samples_prev, samples_curr in zip(__UpperCAmelCase , __UpperCAmelCase ) ] mid_block_res_sample += mid_sample return down_block_res_samples, mid_block_res_sample def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = False , __UpperCAmelCase = None , )-> Any: '''simple docstring''' lowerCAmelCase__ = 0 lowerCAmelCase__ = save_directory for controlnet in self.nets: controlnet.save_pretrained( __UpperCAmelCase , is_main_process=__UpperCAmelCase , save_function=__UpperCAmelCase , safe_serialization=__UpperCAmelCase , variant=__UpperCAmelCase , ) idx += 1 lowerCAmelCase__ = model_path_to_save + F"_{idx}" @classmethod def UpperCAmelCase ( cls , __UpperCAmelCase , **__UpperCAmelCase )-> List[Any]: '''simple docstring''' lowerCAmelCase__ = 0 lowerCAmelCase__ = [] # load controlnet and append to list until no controlnet directory exists anymore # first controlnet has to be saved under `./mydirectory/controlnet` to be compliant with `DiffusionPipeline.from_prertained` # second, third, ... controlnets have to be saved under `./mydirectory/controlnet_1`, `./mydirectory/controlnet_2`, ... lowerCAmelCase__ = pretrained_model_path while os.path.isdir(__UpperCAmelCase ): lowerCAmelCase__ = ControlNetModel.from_pretrained(__UpperCAmelCase , **__UpperCAmelCase ) controlnets.append(__UpperCAmelCase ) idx += 1 lowerCAmelCase__ = pretrained_model_path + F"_{idx}" logger.info(F"{len(__UpperCAmelCase )} controlnets loaded from {pretrained_model_path}." ) if len(__UpperCAmelCase ) == 0: raise ValueError( F"No ControlNets found under {os.path.dirname(__UpperCAmelCase )}. Expected at least {pretrained_model_path + '_0'}." ) return cls(__UpperCAmelCase )
340
import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging a_ = logging.get_logger(__name__) a_ = { '''xlnet-base-cased''': '''https://huggingface.co/xlnet-base-cased/resolve/main/config.json''', '''xlnet-large-cased''': '''https://huggingface.co/xlnet-large-cased/resolve/main/config.json''', } class lowercase__ ( _UpperCAmelCase ): a_ ="""xlnet""" a_ =["""mems"""] a_ ={ """n_token""": """vocab_size""", # Backward compatibility """hidden_size""": """d_model""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self , __UpperCAmelCase=32000 , __UpperCAmelCase=1024 , __UpperCAmelCase=24 , __UpperCAmelCase=16 , __UpperCAmelCase=4096 , __UpperCAmelCase="gelu" , __UpperCAmelCase=True , __UpperCAmelCase="bi" , __UpperCAmelCase=0.02 , __UpperCAmelCase=1E-1_2 , __UpperCAmelCase=0.1 , __UpperCAmelCase=512 , __UpperCAmelCase=None , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase=False , __UpperCAmelCase=-1 , __UpperCAmelCase=False , __UpperCAmelCase="last" , __UpperCAmelCase=True , __UpperCAmelCase="tanh" , __UpperCAmelCase=0.1 , __UpperCAmelCase=5 , __UpperCAmelCase=5 , __UpperCAmelCase=5 , __UpperCAmelCase=1 , __UpperCAmelCase=2 , **__UpperCAmelCase , )-> int: '''simple docstring''' lowerCAmelCase__ = vocab_size lowerCAmelCase__ = d_model lowerCAmelCase__ = n_layer lowerCAmelCase__ = n_head if d_model % n_head != 0: raise ValueError(F"'d_model % n_head' ({d_model % n_head}) should be equal to 0" ) if "d_head" in kwargs: if kwargs["d_head"] != d_model // n_head: raise ValueError( F"`d_head` ({kwargs['d_head']}) should be equal to `d_model // n_head` ({d_model // n_head})" ) lowerCAmelCase__ = d_model // n_head lowerCAmelCase__ = ff_activation lowerCAmelCase__ = d_inner lowerCAmelCase__ = untie_r lowerCAmelCase__ = attn_type lowerCAmelCase__ = initializer_range lowerCAmelCase__ = layer_norm_eps lowerCAmelCase__ = dropout lowerCAmelCase__ = mem_len lowerCAmelCase__ = reuse_len lowerCAmelCase__ = bi_data lowerCAmelCase__ = clamp_len lowerCAmelCase__ = same_length lowerCAmelCase__ = summary_type lowerCAmelCase__ = summary_use_proj lowerCAmelCase__ = summary_activation lowerCAmelCase__ = summary_last_dropout lowerCAmelCase__ = start_n_top lowerCAmelCase__ = end_n_top lowerCAmelCase__ = bos_token_id lowerCAmelCase__ = pad_token_id lowerCAmelCase__ = eos_token_id if "use_cache" in kwargs: warnings.warn( "The `use_cache` argument is deprecated and will be removed in a future version, use `use_mems_eval`" " instead." , __UpperCAmelCase , ) lowerCAmelCase__ = kwargs["use_cache"] lowerCAmelCase__ = use_mems_eval lowerCAmelCase__ = use_mems_train super().__init__(pad_token_id=__UpperCAmelCase , bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , **__UpperCAmelCase ) @property def UpperCAmelCase ( self )-> Dict: '''simple docstring''' logger.info(F"The model {self.model_type} is one of the few models that has no sequence length limit." ) return -1 @max_position_embeddings.setter def UpperCAmelCase ( self , __UpperCAmelCase )-> Union[str, Any]: '''simple docstring''' raise NotImplementedError( F"The model {self.model_type} is one of the few models that has no sequence length limit." )
340
1
"""simple docstring""" import argparse import math import traceback import dateutil.parser as date_parser import requests def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' _a : List[str] = {} _a : List[str] = job["""started_at"""] _a : List[str] = job["""completed_at"""] _a : List[Any] = date_parser.parse(UpperCamelCase__ ) _a : Union[str, Any] = date_parser.parse(UpperCamelCase__ ) _a : Tuple = round((end_datetime - start_datetime).total_seconds() / 60.0 ) _a : List[Any] = start _a : Dict = end _a : Any = duration_in_min return job_info def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__=None ): '''simple docstring''' _a : Optional[int] = None if token is not None: _a : Dict = {"""Accept""": """application/vnd.github+json""", """Authorization""": F"""Bearer {token}"""} _a : List[Any] = F"""https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100""" _a : List[str] = requests.get(UpperCamelCase__ , headers=UpperCamelCase__ ).json() _a : int = {} try: job_time.update({job["""name"""]: extract_time_from_single_job(UpperCamelCase__ ) for job in result["""jobs"""]} ) _a : str = math.ceil((result["""total_count"""] - 1_0_0) / 1_0_0 ) for i in range(UpperCamelCase__ ): _a : Optional[int] = requests.get(url + F"""&page={i + 2}""" , headers=UpperCamelCase__ ).json() job_time.update({job["""name"""]: extract_time_from_single_job(UpperCamelCase__ ) for job in result["""jobs"""]} ) return job_time except Exception: print(F"""Unknown error, could not fetch links:\n{traceback.format_exc()}""" ) return {} if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument('--workflow_run_id', type=str, required=True, help='A GitHub Actions workflow run id.') _snake_case = parser.parse_args() _snake_case = get_job_time(args.workflow_run_id) _snake_case = dict(sorted(job_time.items(), key=lambda item: item[1]["duration"], reverse=True)) for k, v in job_time.items(): print(F'''{k}: {v['duration']}''')
324
"""simple docstring""" import unittest from transformers import CamembertTokenizer, CamembertTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import is_torch_available from ...test_tokenization_common import TokenizerTesterMixin _snake_case = get_tests_dir('fixtures/test_sentencepiece.model') _snake_case = get_tests_dir('fixtures/test_sentencepiece_bpe.model') _snake_case = 'pt' if is_torch_available() else 'tf' @require_sentencepiece @require_tokenizers class UpperCamelCase ( snake_case_ , unittest.TestCase ): UpperCamelCase : str = CamembertTokenizer UpperCamelCase : List[Any] = CamembertTokenizerFast UpperCamelCase : Optional[int] = True UpperCamelCase : Union[str, Any] = True def _lowercase ( self : List[Any] ) -> Union[str, Any]: super().setUp() # We have a SentencePiece fixture for testing _a : List[Any] = CamembertTokenizer(UpperCAmelCase__ ) tokenizer.save_pretrained(self.tmpdirname ) def _lowercase ( self : List[str] ) -> Tuple: _a : Optional[Any] = """<pad>""" _a : Tuple = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCAmelCase__ ) , UpperCAmelCase__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCAmelCase__ ) , UpperCAmelCase__ ) def _lowercase ( self : Union[str, Any] ) -> str: _a : List[str] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<s>NOTUSED""" ) self.assertEqual(vocab_keys[1] , """<pad>""" ) self.assertEqual(vocab_keys[-1] , """<mask>""" ) self.assertEqual(len(UpperCAmelCase__ ) , 1004 ) def _lowercase ( self : List[str] ) -> List[Any]: self.assertEqual(self.get_tokenizer().vocab_size , 1005 ) def _lowercase ( self : Union[str, Any] ) -> str: _a : Tuple = CamembertTokenizer(UpperCAmelCase__ ) tokenizer.save_pretrained(self.tmpdirname ) _a : List[Any] = CamembertTokenizerFast.from_pretrained(self.tmpdirname ) _a : Any = """I was born in 92000, and this is falsé.""" _a : Union[str, Any] = tokenizer.encode(UpperCAmelCase__ ) _a : Dict = rust_tokenizer.encode(UpperCAmelCase__ ) self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ ) _a : Tuple = tokenizer.encode(UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ ) _a : List[Any] = rust_tokenizer.encode(UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ ) self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ ) # <unk> tokens are not the same for `rust` than for `slow`. # Because spm gives back raw token instead of `unk` in EncodeAsPieces # tokens = tokenizer.tokenize(sequence) _a : List[str] = tokenizer.convert_ids_to_tokens(UpperCAmelCase__ ) _a : int = rust_tokenizer.tokenize(UpperCAmelCase__ ) self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ ) def _lowercase ( self : Dict ) -> List[str]: if not self.test_rust_tokenizer: return _a : Optional[int] = self.get_tokenizer() _a : Tuple = self.get_rust_tokenizer() _a : List[Any] = """I was born in 92000, and this is falsé.""" _a : List[str] = tokenizer.tokenize(UpperCAmelCase__ ) _a : Union[str, Any] = rust_tokenizer.tokenize(UpperCAmelCase__ ) self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ ) _a : int = tokenizer.encode(UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ ) _a : Optional[int] = rust_tokenizer.encode(UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ ) self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ ) _a : int = self.get_rust_tokenizer() _a : Optional[Any] = tokenizer.encode(UpperCAmelCase__ ) _a : Dict = rust_tokenizer.encode(UpperCAmelCase__ ) self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ ) @slow def _lowercase ( self : Tuple ) -> List[Any]: # fmt: off _a : Dict = {"""input_ids""": [[5, 54, 7196, 297, 30, 23, 776, 18, 11, 3215, 3705, 8252, 22, 3164, 1181, 2116, 29, 16, 813, 25, 791, 3314, 20, 3446, 38, 27575, 120, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [5, 468, 17, 11, 9088, 20, 1517, 8, 22804, 18818, 10, 38, 629, 607, 607, 142, 19, 7196, 867, 56, 10326, 24, 2267, 20, 416, 5072, 15612, 233, 734, 7, 2399, 27, 16, 3015, 1649, 7, 24, 20, 4338, 2399, 27, 13, 3400, 14, 13, 6189, 8, 930, 9, 6]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # camembert is a french model. So we also use french texts. _a : Union[str, Any] = [ """Le transformeur est un modèle d'apprentissage profond introduit en 2017, """ """utilisé principalement dans le domaine du traitement automatique des langues (TAL).""", """À l'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus """ """pour gérer des données séquentielles, telles que le langage naturel, pour des tâches """ """telles que la traduction et la synthèse de texte.""", ] self.tokenizer_integration_test_util( expected_encoding=UpperCAmelCase__ , model_name="""camembert-base""" , revision="""3a0641d9a1aeb7e848a74299e7e4c4bca216b4cf""" , sequences=UpperCAmelCase__ , )
324
1
class lowercase__ : '''simple docstring''' def __init__( self, __magic_name__ ) -> None: """simple docstring""" UpperCamelCase__ : int = size UpperCamelCase__ : Union[str, Any] = [0] * size UpperCamelCase__ : int = [0] * size @staticmethod def UpperCamelCase__ ( __magic_name__ ) -> int: """simple docstring""" return index | (index + 1) @staticmethod def UpperCamelCase__ ( __magic_name__ ) -> int: """simple docstring""" return (index & (index + 1)) - 1 def UpperCamelCase__ ( self, __magic_name__, __magic_name__ ) -> None: """simple docstring""" UpperCamelCase__ : List[str] = value while index < self.size: UpperCamelCase__ : Any = self.get_prev(__magic_name__ ) + 1 if current_left_border == index: UpperCamelCase__ : Union[str, Any] = value else: UpperCamelCase__ : List[str] = max(__magic_name__, __magic_name__, __magic_name__ ) UpperCamelCase__ : Union[str, Any] = self.get_next(__magic_name__ ) def UpperCamelCase__ ( self, __magic_name__, __magic_name__ ) -> int: """simple docstring""" right -= 1 # Because of right is exclusive UpperCamelCase__ : Union[str, Any] = 0 while left <= right: UpperCamelCase__ : Dict = self.get_prev(__magic_name__ ) if left <= current_left: UpperCamelCase__ : Dict = max(__magic_name__, self.tree[right] ) UpperCamelCase__ : Tuple = current_left else: UpperCamelCase__ : List[str] = max(__magic_name__, self.arr[right] ) right -= 1 return result if __name__ == "__main__": import doctest doctest.testmod()
201
def lowerCAmelCase_ ( __UpperCAmelCase: int ) -> int: if not isinstance(__UpperCAmelCase , __UpperCAmelCase ) or number < 0: raise ValueError('''Input must be a non-negative integer''' ) UpperCamelCase__ : Optional[Any] = 0 while number: # This way we arrive at next set bit (next 1) instead of looping # through each bit and checking for 1s hence the # loop won't run 32 times it will only run the number of `1` times number &= number - 1 count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
201
1
'''simple docstring''' from __future__ import annotations from math import pi, sqrt def UpperCAmelCase_ ( __lowerCamelCase : float ,__lowerCamelCase : float ): if inductance <= 0: raise ValueError("Inductance cannot be 0 or negative" ) elif capacitance <= 0: raise ValueError("Capacitance cannot be 0 or negative" ) else: return ( "Resonant frequency", float(1 / (2 * pi * (sqrt(inductance * capacitance ))) ), ) if __name__ == "__main__": import doctest doctest.testmod()
370
'''simple docstring''' import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class a_ ( _lowerCAmelCase ): __A = ["image_processor", "tokenizer"] __A = "LayoutLMv3ImageProcessor" __A = ("LayoutLMv3Tokenizer", "LayoutLMv3TokenizerFast") def __init__( self : int , lowercase : Optional[Any]=None , lowercase : List[str]=None , **lowercase : Optional[int] ): """simple docstring""" lowercase_ :int = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , lowercase , ) lowercase_ :Optional[int] = kwargs.pop("feature_extractor" ) lowercase_ :Union[str, Any] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(lowercase , lowercase ) def __call__( self : Optional[Any] , lowercase : List[str] , lowercase : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , lowercase : Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None , lowercase : Union[List[List[int]], List[List[List[int]]]] = None , lowercase : Optional[Union[List[int], List[List[int]]]] = None , lowercase : bool = True , lowercase : Union[bool, str, PaddingStrategy] = False , lowercase : Union[bool, str, TruncationStrategy] = None , lowercase : Optional[int] = None , lowercase : int = 0 , lowercase : Optional[int] = None , lowercase : Optional[bool] = None , lowercase : Optional[bool] = None , lowercase : bool = False , lowercase : bool = False , lowercase : bool = False , lowercase : bool = False , lowercase : bool = True , lowercase : Optional[Union[str, TensorType]] = None , **lowercase : List[Any] , ): """simple docstring""" if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( "You cannot provide bounding boxes if you initialized the image processor with apply_ocr set to True." ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( "You cannot provide word labels if you initialized the image processor with apply_ocr set to True." ) # first, apply the image processor lowercase_ :Dict = self.image_processor(images=lowercase , return_tensors=lowercase ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(lowercase , lowercase ): lowercase_ :str = [text] # add batch dimension (as the image processor always adds a batch dimension) lowercase_ :Union[str, Any] = features["words"] lowercase_ :Optional[Any] = self.tokenizer( text=text if text is not None else features["words"] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features["boxes"] , word_labels=lowercase , add_special_tokens=lowercase , padding=lowercase , truncation=lowercase , max_length=lowercase , stride=lowercase , pad_to_multiple_of=lowercase , return_token_type_ids=lowercase , return_attention_mask=lowercase , return_overflowing_tokens=lowercase , return_special_tokens_mask=lowercase , return_offsets_mapping=lowercase , return_length=lowercase , verbose=lowercase , return_tensors=lowercase , **lowercase , ) # add pixel values lowercase_ :Any = features.pop("pixel_values" ) if return_overflowing_tokens is True: lowercase_ :Any = self.get_overflowing_images(lowercase , encoded_inputs["overflow_to_sample_mapping"] ) lowercase_ :Any = images return encoded_inputs def lowercase__ ( self : List[Any] , lowercase : Any , lowercase : Optional[Any] ): """simple docstring""" lowercase_ :Union[str, Any] = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(lowercase ) != len(lowercase ): raise ValueError( "Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got" F' {len(lowercase )} and {len(lowercase )}' ) return images_with_overflow def lowercase__ ( self : Union[str, Any] , *lowercase : List[Any] , **lowercase : Optional[Any] ): """simple docstring""" return self.tokenizer.batch_decode(*lowercase , **lowercase ) def lowercase__ ( self : List[Any] , *lowercase : Any , **lowercase : str ): """simple docstring""" return self.tokenizer.decode(*lowercase , **lowercase ) @property def lowercase__ ( self : Optional[Any] ): """simple docstring""" return ["input_ids", "bbox", "attention_mask", "pixel_values"] @property def lowercase__ ( self : str ): """simple docstring""" warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , lowercase , ) return self.image_processor_class @property def lowercase__ ( self : Tuple ): """simple docstring""" warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , lowercase , ) return self.image_processor
147
0
from typing import TYPE_CHECKING from ...utils import _LazyModule lowercase = {"processing_wav2vec2_with_lm": ["Wav2Vec2ProcessorWithLM"]} if TYPE_CHECKING: from .processing_wavaveca_with_lm import WavaVecaProcessorWithLM else: import sys lowercase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
178
import collections import importlib.util import os import re from pathlib import Path lowercase = "src/transformers" # Matches is_xxx_available() lowercase = re.compile(r"is\_([a-z_]*)_available()") # Catches a one-line _import_struct = {xxx} lowercase = re.compile(r"^_import_structure\s+=\s+\{([^\}]+)\}") # Catches a line with a key-values pattern: "bla": ["foo", "bar"] lowercase = re.compile(r"\s+\"\S*\":\s+\[([^\]]*)\]") # Catches a line if not is_foo_available lowercase = re.compile(r"^\s*if\s+not\s+is\_[a-z_]*\_available\(\)") # Catches a line _import_struct["bla"].append("foo") lowercase = re.compile(r"^\s*_import_structure\[\"\S*\"\]\.append\(\"(\S*)\"\)") # Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"] lowercase = re.compile(r"^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]") # Catches a line with an object between quotes and a comma: "MyModel", lowercase = re.compile("^\s+\"([^\"]+)\",") # Catches a line with objects between brackets only: ["foo", "bar"], lowercase = re.compile("^\s+\[([^\]]+)\]") # Catches a line with from foo import bar, bla, boo lowercase = re.compile(r"\s+from\s+\S*\s+import\s+([^\(\s].*)\n") # Catches a line with try: lowercase = re.compile(r"^\s*try:") # Catches a line with else: lowercase = re.compile(r"^\s*else:") def __UpperCAmelCase ( a_): if _re_test_backend.search(a_) is None: return None snake_case_ = [b[0] for b in _re_backend.findall(a_)] backends.sort() return "_and_".join(a_) def __UpperCAmelCase ( a_): with open(a_ , 'r' , encoding='utf-8' , newline='\n') as f: snake_case_ = f.readlines() snake_case_ = 0 while line_index < len(a_) and not lines[line_index].startswith('_import_structure = {'): line_index += 1 # If this is a traditional init, just return. if line_index >= len(a_): return None # First grab the objects without a specific backend in _import_structure snake_case_ = [] while not lines[line_index].startswith('if TYPE_CHECKING') and find_backend(lines[line_index]) is None: snake_case_ = lines[line_index] # If we have everything on a single line, let's deal with it. if _re_one_line_import_struct.search(a_): snake_case_ = _re_one_line_import_struct.search(a_).groups()[0] snake_case_ = re.findall('\[([^\]]+)\]' , a_) for imp in imports: objects.extend([obj[1:-1] for obj in imp.split(', ')]) line_index += 1 continue snake_case_ = _re_import_struct_key_value.search(a_) if single_line_import_search is not None: snake_case_ = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(', ') if len(a_) > 0] objects.extend(a_) elif line.startswith(' ' * 8 + '"'): objects.append(line[9:-3]) line_index += 1 snake_case_ = {'none': objects} # Let's continue with backend-specific objects in _import_structure while not lines[line_index].startswith('if TYPE_CHECKING'): # If the line is an if not is_backend_available, we grab all objects associated. snake_case_ = find_backend(lines[line_index]) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1]) is None: snake_case_ = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index]) is None: line_index += 1 line_index += 1 snake_case_ = [] # Until we unindent, add backend objects to the list while len(lines[line_index]) <= 1 or lines[line_index].startswith(' ' * 4): snake_case_ = lines[line_index] if _re_import_struct_add_one.search(a_) is not None: objects.append(_re_import_struct_add_one.search(a_).groups()[0]) elif _re_import_struct_add_many.search(a_) is not None: snake_case_ = _re_import_struct_add_many.search(a_).groups()[0].split(', ') snake_case_ = [obj[1:-1] for obj in imports if len(a_) > 0] objects.extend(a_) elif _re_between_brackets.search(a_) is not None: snake_case_ = _re_between_brackets.search(a_).groups()[0].split(', ') snake_case_ = [obj[1:-1] for obj in imports if len(a_) > 0] objects.extend(a_) elif _re_quote_object.search(a_) is not None: objects.append(_re_quote_object.search(a_).groups()[0]) elif line.startswith(' ' * 8 + '"'): objects.append(line[9:-3]) elif line.startswith(' ' * 12 + '"'): objects.append(line[13:-3]) line_index += 1 snake_case_ = objects else: line_index += 1 # At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend snake_case_ = [] while ( line_index < len(a_) and find_backend(lines[line_index]) is None and not lines[line_index].startswith('else') ): snake_case_ = lines[line_index] snake_case_ = _re_import.search(a_) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(', ')) elif line.startswith(' ' * 8): objects.append(line[8:-2]) line_index += 1 snake_case_ = {'none': objects} # Let's continue with backend-specific objects while line_index < len(a_): # If the line is an if is_backend_available, we grab all objects associated. snake_case_ = find_backend(lines[line_index]) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1]) is None: snake_case_ = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index]) is None: line_index += 1 line_index += 1 snake_case_ = [] # Until we unindent, add backend objects to the list while len(lines[line_index]) <= 1 or lines[line_index].startswith(' ' * 8): snake_case_ = lines[line_index] snake_case_ = _re_import.search(a_) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(', ')) elif line.startswith(' ' * 12): objects.append(line[12:-2]) line_index += 1 snake_case_ = objects else: line_index += 1 return import_dict_objects, type_hint_objects def __UpperCAmelCase ( a_ , a_): def find_duplicates(a_): return [k for k, v in collections.Counter(a_).items() if v > 1] if list(import_dict_objects.keys()) != list(type_hint_objects.keys()): return ["Both sides of the init do not have the same backends!"] snake_case_ = [] for key in import_dict_objects.keys(): snake_case_ = find_duplicates(import_dict_objects[key]) if duplicate_imports: errors.append(f'''Duplicate _import_structure definitions for: {duplicate_imports}''') snake_case_ = find_duplicates(type_hint_objects[key]) if duplicate_type_hints: errors.append(f'''Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}''') if sorted(set(import_dict_objects[key])) != sorted(set(type_hint_objects[key])): snake_case_ = 'base imports' if key == 'none' else f'''{key} backend''' errors.append(f'''Differences for {name}:''') for a in type_hint_objects[key]: if a not in import_dict_objects[key]: errors.append(f''' {a} in TYPE_HINT but not in _import_structure.''') for a in import_dict_objects[key]: if a not in type_hint_objects[key]: errors.append(f''' {a} in _import_structure but not in TYPE_HINT.''') return errors def __UpperCAmelCase ( ): snake_case_ = [] for root, _, files in os.walk(a_): if "__init__.py" in files: snake_case_ = os.path.join(a_ , '__init__.py') snake_case_ = parse_init(a_) if objects is not None: snake_case_ = analyze_results(*a_) if len(a_) > 0: snake_case_ = f'''Problem in {fname}, both halves do not define the same objects.\n{errors[0]}''' failures.append('\n'.join(a_)) if len(a_) > 0: raise ValueError('\n\n'.join(a_)) def __UpperCAmelCase ( ): snake_case_ = [] for path, directories, files in os.walk(a_): for folder in directories: # Ignore private modules if folder.startswith('_'): directories.remove(a_) continue # Ignore leftovers from branches (empty folders apart from pycache) if len(list((Path(a_) / folder).glob('*.py'))) == 0: continue snake_case_ = str((Path(a_) / folder).relative_to(a_)) snake_case_ = short_path.replace(os.path.sep , '.') submodules.append(a_) for fname in files: if fname == "__init__.py": continue snake_case_ = str((Path(a_) / fname).relative_to(a_)) snake_case_ = short_path.replace('.py' , '').replace(os.path.sep , '.') if len(submodule.split('.')) == 1: submodules.append(a_) return submodules lowercase = [ "convert_pytorch_checkpoint_to_tf2", "modeling_flax_pytorch_utils", ] def __UpperCAmelCase ( ): # This is to make sure the transformers module imported is the one in the repo. snake_case_ = importlib.util.spec_from_file_location( 'transformers' , os.path.join(a_ , '__init__.py') , submodule_search_locations=[PATH_TO_TRANSFORMERS] , ) snake_case_ = spec.loader.load_module() snake_case_ = [ module for module in get_transformers_submodules() if module not in IGNORE_SUBMODULES and module not in transformers._import_structure.keys() ] if len(a_) > 0: snake_case_ = '\n'.join(f'''- {module}''' for module in module_not_registered) raise ValueError( 'The following submodules are not properly registered in the main init of Transformers:\n' f'''{list_of_modules}\n''' 'Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value.') if __name__ == "__main__": check_all_inits() check_submodules()
178
1
import numpy as np import skfuzzy as fuzz if __name__ == "__main__": # Create universe of discourse in Python using linspace () lowerCAmelCase__ : Optional[int] =np.linspace(start=0, stop=75, num=75, endpoint=True, retstep=False) # Create two fuzzy sets by defining any membership function # (trapmf(), gbellmf(), gaussmf(), etc). lowerCAmelCase__ : Optional[int] =[0, 25, 50] lowerCAmelCase__ : str =[25, 50, 75] lowerCAmelCase__ : List[Any] =fuzz.membership.trimf(X, abca) lowerCAmelCase__ : int =fuzz.membership.trimf(X, abca) # Compute the different operations using inbuilt functions. lowerCAmelCase__ : str =np.ones(75) lowerCAmelCase__ : List[Any] =np.zeros((75,)) # 1. Union = max(µA(x), µB(x)) lowerCAmelCase__ : Any =fuzz.fuzzy_or(X, young, X, middle_aged)[1] # 2. Intersection = min(µA(x), µB(x)) lowerCAmelCase__ : Any =fuzz.fuzzy_and(X, young, X, middle_aged)[1] # 3. Complement (A) = (1- min(µA(x)) lowerCAmelCase__ : Any =fuzz.fuzzy_not(young) # 4. Difference (A/B) = min(µA(x),(1- µB(x))) lowerCAmelCase__ : str =fuzz.fuzzy_and(X, young, X, fuzz.fuzzy_not(middle_aged)[1])[1] # 5. Algebraic Sum = [µA(x) + µB(x) – (µA(x) * µB(x))] lowerCAmelCase__ : Any =young + middle_aged - (young * middle_aged) # 6. Algebraic Product = (µA(x) * µB(x)) lowerCAmelCase__ : Any =young * middle_aged # 7. Bounded Sum = min[1,(µA(x), µB(x))] lowerCAmelCase__ : Union[str, Any] =fuzz.fuzzy_and(X, one, X, young + middle_aged)[1] # 8. Bounded difference = min[0,(µA(x), µB(x))] lowerCAmelCase__ : Any =fuzz.fuzzy_or(X, zero, X, young - middle_aged)[1] # max-min composition # max-product composition # Plot each set A, set B and each operation result using plot() and subplot(). from matplotlib import pyplot as plt plt.figure() plt.subplot(4, 3, 1) plt.plot(X, young) plt.title('''Young''') plt.grid(True) plt.subplot(4, 3, 2) plt.plot(X, middle_aged) plt.title('''Middle aged''') plt.grid(True) plt.subplot(4, 3, 3) plt.plot(X, union) plt.title('''union''') plt.grid(True) plt.subplot(4, 3, 4) plt.plot(X, intersection) plt.title('''intersection''') plt.grid(True) plt.subplot(4, 3, 5) plt.plot(X, complement_a) plt.title('''complement_a''') plt.grid(True) plt.subplot(4, 3, 6) plt.plot(X, difference) plt.title('''difference a/b''') plt.grid(True) plt.subplot(4, 3, 7) plt.plot(X, alg_sum) plt.title('''alg_sum''') plt.grid(True) plt.subplot(4, 3, 8) plt.plot(X, alg_product) plt.title('''alg_product''') plt.grid(True) plt.subplot(4, 3, 9) plt.plot(X, bdd_sum) plt.title('''bdd_sum''') plt.grid(True) plt.subplot(4, 3, 10) plt.plot(X, bdd_difference) plt.title('''bdd_difference''') plt.grid(True) plt.subplots_adjust(hspace=0.5) plt.show()
118
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ : Dict =logging.get_logger(__name__) lowerCAmelCase__ : Optional[int] ={ '''asapp/sew-tiny-100k''': '''https://huggingface.co/asapp/sew-tiny-100k/resolve/main/config.json''', # See all SEW models at https://huggingface.co/models?filter=sew } class UpperCAmelCase_ ( UpperCamelCase_ ): '''simple docstring''' UpperCamelCase__ : Optional[Any] = '''sew''' def __init__( self , _A=32 , _A=768 , _A=12 , _A=12 , _A=3_072 , _A=2 , _A="gelu" , _A=0.1 , _A=0.1 , _A=0.1 , _A=0.0 , _A=0.1 , _A=0.1 , _A=0.0_2 , _A=1e-5 , _A="group" , _A="gelu" , _A=(64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512) , _A=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , _A=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , _A=False , _A=128 , _A=16 , _A=True , _A=0.0_5 , _A=10 , _A=2 , _A=0.0 , _A=10 , _A=0 , _A="mean" , _A=False , _A=False , _A=256 , _A=0 , _A=1 , _A=2 , **_A , ): '''simple docstring''' super().__init__(**_A , pad_token_id=_A , bos_token_id=_A , eos_token_id=_A ) __SCREAMING_SNAKE_CASE = hidden_size __SCREAMING_SNAKE_CASE = feat_extract_norm __SCREAMING_SNAKE_CASE = feat_extract_activation __SCREAMING_SNAKE_CASE = list(_A ) __SCREAMING_SNAKE_CASE = list(_A ) __SCREAMING_SNAKE_CASE = list(_A ) __SCREAMING_SNAKE_CASE = conv_bias __SCREAMING_SNAKE_CASE = num_conv_pos_embeddings __SCREAMING_SNAKE_CASE = num_conv_pos_embedding_groups __SCREAMING_SNAKE_CASE = len(self.conv_dim ) __SCREAMING_SNAKE_CASE = num_hidden_layers __SCREAMING_SNAKE_CASE = intermediate_size __SCREAMING_SNAKE_CASE = squeeze_factor __SCREAMING_SNAKE_CASE = hidden_act __SCREAMING_SNAKE_CASE = num_attention_heads __SCREAMING_SNAKE_CASE = hidden_dropout __SCREAMING_SNAKE_CASE = attention_dropout __SCREAMING_SNAKE_CASE = activation_dropout __SCREAMING_SNAKE_CASE = feat_proj_dropout __SCREAMING_SNAKE_CASE = final_dropout __SCREAMING_SNAKE_CASE = layerdrop __SCREAMING_SNAKE_CASE = layer_norm_eps __SCREAMING_SNAKE_CASE = initializer_range __SCREAMING_SNAKE_CASE = vocab_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( 'Configuration for convolutional layers is incorrect.' 'It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,' f"""but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)""" f"""= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __SCREAMING_SNAKE_CASE = apply_spec_augment __SCREAMING_SNAKE_CASE = mask_time_prob __SCREAMING_SNAKE_CASE = mask_time_length __SCREAMING_SNAKE_CASE = mask_time_min_masks __SCREAMING_SNAKE_CASE = mask_feature_prob __SCREAMING_SNAKE_CASE = mask_feature_length __SCREAMING_SNAKE_CASE = mask_feature_min_masks # ctc loss __SCREAMING_SNAKE_CASE = ctc_loss_reduction __SCREAMING_SNAKE_CASE = ctc_zero_infinity # sequence classification __SCREAMING_SNAKE_CASE = use_weighted_layer_sum __SCREAMING_SNAKE_CASE = classifier_proj_size @property def _A ( self ): '''simple docstring''' return functools.reduce(operator.mul , self.conv_stride , 1 )
118
1
"""simple docstring""" import argparse from collections import defaultdict import yaml _UpperCamelCase : str = 'docs/source/en/_toctree.yml' def _SCREAMING_SNAKE_CASE ( __snake_case : List[Any] ): '''simple docstring''' lowercase = defaultdict(__snake_case ) lowercase = [] lowercase = [] for doc in doc_list: if "local" in doc: counts[doc["local"]] += 1 if doc["title"].lower() == "overview": overview_doc.append({'local': doc['local'], 'title': doc['title']} ) else: new_doc_list.append(__snake_case ) lowercase = new_doc_list lowercase = [key for key, value in counts.items() if value > 1] lowercase = [] for duplicate_key in duplicates: lowercase = list({doc['title'] for doc in doc_list if doc['local'] == duplicate_key} ) if len(__snake_case ) > 1: raise ValueError( f'{duplicate_key} is present several times in the documentation table of content at ' '`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the ' 'others.' ) # Only add this once new_doc.append({'local': duplicate_key, 'title': titles[0]} ) # Add none duplicate-keys new_doc.extend([doc for doc in doc_list if 'local' not in counts or counts[doc['local']] == 1] ) lowercase = sorted(__snake_case , key=lambda __snake_case : s["title"].lower() ) # "overview" gets special treatment and is always first if len(__snake_case ) > 1: raise ValueError('{doc_list} has two \'overview\' docs which is not allowed.' ) overview_doc.extend(__snake_case ) # Sort return overview_doc def _SCREAMING_SNAKE_CASE ( __snake_case : Optional[int]=False ): '''simple docstring''' with open(__snake_case , encoding='utf-8' ) as f: lowercase = yaml.safe_load(f.read() ) # Get to the API doc lowercase = 0 while content[api_idx]["title"] != "API": api_idx += 1 lowercase = content[api_idx]['sections'] # Then to the model doc lowercase = 0 while api_doc[scheduler_idx]["title"] != "Schedulers": scheduler_idx += 1 lowercase = api_doc[scheduler_idx]['sections'] lowercase = clean_doc_toc(__snake_case ) lowercase = False if new_scheduler_doc != scheduler_doc: lowercase = True if overwrite: lowercase = new_scheduler_doc if diff: if overwrite: lowercase = api_doc with open(__snake_case , 'w' , encoding='utf-8' ) as f: f.write(yaml.dump(__snake_case , allow_unicode=__snake_case ) ) else: raise ValueError( 'The model doc part of the table of content is not properly sorted, run `make style` to fix this.' ) def _SCREAMING_SNAKE_CASE ( __snake_case : int=False ): '''simple docstring''' with open(__snake_case , encoding='utf-8' ) as f: lowercase = yaml.safe_load(f.read() ) # Get to the API doc lowercase = 0 while content[api_idx]["title"] != "API": api_idx += 1 lowercase = content[api_idx]['sections'] # Then to the model doc lowercase = 0 while api_doc[pipeline_idx]["title"] != "Pipelines": pipeline_idx += 1 lowercase = False lowercase = api_doc[pipeline_idx]['sections'] lowercase = [] # sort sub pipeline docs for pipeline_doc in pipeline_docs: if "section" in pipeline_doc: lowercase = pipeline_doc['section'] lowercase = clean_doc_toc(__snake_case ) if overwrite: lowercase = new_sub_pipeline_doc new_pipeline_docs.append(__snake_case ) # sort overall pipeline doc lowercase = clean_doc_toc(__snake_case ) if new_pipeline_docs != pipeline_docs: lowercase = True if overwrite: lowercase = new_pipeline_docs if diff: if overwrite: lowercase = api_doc with open(__snake_case , 'w' , encoding='utf-8' ) as f: f.write(yaml.dump(__snake_case , allow_unicode=__snake_case ) ) else: raise ValueError( 'The model doc part of the table of content is not properly sorted, run `make style` to fix this.' ) if __name__ == "__main__": _UpperCamelCase : Optional[Any] = argparse.ArgumentParser() parser.add_argument('--fix_and_overwrite', action='store_true', help='Whether to fix inconsistencies.') _UpperCamelCase : Any = parser.parse_args() check_scheduler_doc(args.fix_and_overwrite) check_pipeline_doc(args.fix_and_overwrite)
220
"""simple docstring""" import argparse import json from tqdm import tqdm def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowercase = argparse.ArgumentParser() # Required parameters parser.add_argument( '--src_path' , type=__snake_case , default='biencoder-nq-dev.json' , help='Path to raw DPR training data' , ) parser.add_argument( '--evaluation_set' , type=__snake_case , help='where to store parsed evaluation_set file' , ) parser.add_argument( '--gold_data_path' , type=__snake_case , help='where to store parsed gold_data_path file' , ) lowercase = parser.parse_args() with open(args.src_path , 'r' ) as src_file, open(args.evaluation_set , 'w' ) as eval_file, open( args.gold_data_path , 'w' ) as gold_file: lowercase = json.load(__snake_case ) for dpr_record in tqdm(__snake_case ): lowercase = dpr_record['question'] lowercase = [context['title'] for context in dpr_record['positive_ctxs']] eval_file.write(question + '\n' ) gold_file.write('\t'.join(__snake_case ) + '\n' ) if __name__ == "__main__": main()
220
1
"""simple docstring""" from typing import List import datasets from datasets.tasks import AudioClassification from ..folder_based_builder import folder_based_builder _a : str = datasets.utils.logging.get_logger(__name__) class __A ( folder_based_builder.FolderBasedBuilderConfig ): _UpperCamelCase : bool = None _UpperCamelCase : bool = None class __A ( folder_based_builder.FolderBasedBuilder ): _UpperCamelCase : str = datasets.Audio() _UpperCamelCase : Optional[int] = "audio" _UpperCamelCase : int = AudioFolderConfig _UpperCamelCase : List[str] # definition at the bottom of the script _UpperCamelCase : Optional[int] = AudioClassification(audio_column="audio" , label_column="label" ) _a : Any = [ '.aiff', '.au', '.avr', '.caf', '.flac', '.htk', '.svx', '.mat4', '.mat5', '.mpc2k', '.ogg', '.paf', '.pvf', '.raw', '.rf64', '.sd2', '.sds', '.ircam', '.voc', '.w64', '.wav', '.nist', '.wavex', '.wve', '.xi', '.mp3', '.opus', ] _a : Optional[int] = AUDIO_EXTENSIONS
126
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _a : Any = logging.get_logger(__name__) _a : Any = { 'uclanlp/visualbert-vqa': 'https://huggingface.co/uclanlp/visualbert-vqa/resolve/main/config.json', 'uclanlp/visualbert-vqa-pre': 'https://huggingface.co/uclanlp/visualbert-vqa-pre/resolve/main/config.json', 'uclanlp/visualbert-vqa-coco-pre': ( 'https://huggingface.co/uclanlp/visualbert-vqa-coco-pre/resolve/main/config.json' ), 'uclanlp/visualbert-vcr': 'https://huggingface.co/uclanlp/visualbert-vcr/resolve/main/config.json', 'uclanlp/visualbert-vcr-pre': 'https://huggingface.co/uclanlp/visualbert-vcr-pre/resolve/main/config.json', 'uclanlp/visualbert-vcr-coco-pre': ( 'https://huggingface.co/uclanlp/visualbert-vcr-coco-pre/resolve/main/config.json' ), 'uclanlp/visualbert-nlvr2': 'https://huggingface.co/uclanlp/visualbert-nlvr2/resolve/main/config.json', 'uclanlp/visualbert-nlvr2-pre': 'https://huggingface.co/uclanlp/visualbert-nlvr2-pre/resolve/main/config.json', 'uclanlp/visualbert-nlvr2-coco-pre': ( 'https://huggingface.co/uclanlp/visualbert-nlvr2-coco-pre/resolve/main/config.json' ) # See all VisualBERT models at https://huggingface.co/models?filter=visual_bert } class __A ( SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : List[Any] = "visual_bert" def __init__( self , a__=30522 , a__=768 , a__=512 , a__=12 , a__=12 , a__=3072 , a__="gelu" , a__=0.1 , a__=0.1 , a__=512 , a__=2 , a__=0.0_2 , a__=1e-12 , a__=False , a__=True , a__=1 , a__=0 , a__=2 , **a__ , ): super().__init__(pad_token_id=a__ , bos_token_id=a__ , eos_token_id=a__ , **a__ ) _lowerCAmelCase : Optional[Any] = vocab_size _lowerCAmelCase : int = max_position_embeddings _lowerCAmelCase : Optional[Any] = hidden_size _lowerCAmelCase : Optional[int] = visual_embedding_dim _lowerCAmelCase : Optional[int] = num_hidden_layers _lowerCAmelCase : List[Any] = num_attention_heads _lowerCAmelCase : Any = intermediate_size _lowerCAmelCase : List[Any] = hidden_act _lowerCAmelCase : int = hidden_dropout_prob _lowerCAmelCase : Optional[Any] = attention_probs_dropout_prob _lowerCAmelCase : Any = initializer_range _lowerCAmelCase : List[Any] = type_vocab_size _lowerCAmelCase : Union[str, Any] = layer_norm_eps _lowerCAmelCase : Optional[Any] = bypass_transformer _lowerCAmelCase : List[Any] = special_visual_initialize
126
1
import json import os from functools import lru_cache from typing import TYPE_CHECKING, List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation __lowerCAmelCase : Tuple =logging.get_logger(__name__) __lowerCAmelCase : List[Any] ={ 'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_config_file': 'tokenizer_config.json', } __lowerCAmelCase : Dict ={ 'vocab_file': {'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json'}, 'merges_file': {'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt'}, 'tokenizer_config_file': { 'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json' }, } __lowerCAmelCase : Optional[int] ={'facebook/blenderbot-3B': 1_2_8} @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def _UpperCamelCase ( ): __SCREAMING_SNAKE_CASE : int = ( list(range(ord('''!''' ) , ord('''~''' ) + 1 ) ) + list(range(ord('''¡''' ) , ord('''¬''' ) + 1 ) ) + list(range(ord('''®''' ) , ord('''ÿ''' ) + 1 ) ) ) __SCREAMING_SNAKE_CASE : List[Any] = bs[:] __SCREAMING_SNAKE_CASE : str = 0 for b in range(2**8 ): if b not in bs: bs.append(lowercase__ ) cs.append(2**8 + n ) n += 1 __SCREAMING_SNAKE_CASE : str = [chr(lowercase__ ) for n in cs] return dict(zip(lowercase__ , lowercase__ ) ) def _UpperCamelCase ( lowercase__ ): __SCREAMING_SNAKE_CASE : int = set() __SCREAMING_SNAKE_CASE : int = word[0] for char in word[1:]: pairs.add((prev_char, char) ) __SCREAMING_SNAKE_CASE : str = char return pairs class _lowercase ( A__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[Any] = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE__ : Any = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE__ : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE__ : List[str] = ['''input_ids''', '''attention_mask'''] def __init__( self :List[Any] , lowerCAmelCase__ :str , lowerCAmelCase__ :str , lowerCAmelCase__ :Optional[Any]="replace" , lowerCAmelCase__ :List[str]="<s>" , lowerCAmelCase__ :Union[str, Any]="</s>" , lowerCAmelCase__ :Optional[Any]="</s>" , lowerCAmelCase__ :Optional[Any]="<s>" , lowerCAmelCase__ :str="<unk>" , lowerCAmelCase__ :int="<pad>" , lowerCAmelCase__ :Tuple="<mask>" , lowerCAmelCase__ :int=False , **lowerCAmelCase__ :int , ) -> Dict: __SCREAMING_SNAKE_CASE : Optional[Any] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else bos_token __SCREAMING_SNAKE_CASE : List[str] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else eos_token __SCREAMING_SNAKE_CASE : Tuple = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else sep_token __SCREAMING_SNAKE_CASE : Dict = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else cls_token __SCREAMING_SNAKE_CASE : Any = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else unk_token __SCREAMING_SNAKE_CASE : Union[str, Any] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it __SCREAMING_SNAKE_CASE : Tuple = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else mask_token super().__init__( errors=lowerCAmelCase__ , bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , add_prefix_space=lowerCAmelCase__ , **lowerCAmelCase__ , ) with open(lowerCAmelCase__ , encoding='''utf-8''' ) as vocab_handle: __SCREAMING_SNAKE_CASE : str = json.load(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Any = {v: k for k, v in self.encoder.items()} __SCREAMING_SNAKE_CASE : Dict = errors # how to handle errors in decoding __SCREAMING_SNAKE_CASE : int = bytes_to_unicode() __SCREAMING_SNAKE_CASE : int = {v: k for k, v in self.byte_encoder.items()} with open(lowerCAmelCase__ , encoding='''utf-8''' ) as merges_handle: __SCREAMING_SNAKE_CASE : Tuple = merges_handle.read().split('''\n''' )[1:-1] __SCREAMING_SNAKE_CASE : List[str] = [tuple(merge.split() ) for merge in bpe_merges] __SCREAMING_SNAKE_CASE : Tuple = dict(zip(lowerCAmelCase__ , range(len(lowerCAmelCase__ ) ) ) ) __SCREAMING_SNAKE_CASE : Any = {} __SCREAMING_SNAKE_CASE : Tuple = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions __SCREAMING_SNAKE_CASE : Any = re.compile(r'''\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+''' ) @property # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.vocab_size with Roberta->Blenderbot, RoBERTa->Blenderbot def __magic_name__( self :Optional[int] ) -> Tuple: return len(self.encoder ) def __magic_name__( self :Optional[Any] ) -> Tuple: return dict(self.encoder , **self.added_tokens_encoder ) def __magic_name__( self :Dict , lowerCAmelCase__ :Optional[Any] ) -> Dict: if token in self.cache: return self.cache[token] __SCREAMING_SNAKE_CASE : Union[str, Any] = tuple(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[Any] = get_pairs(lowerCAmelCase__ ) if not pairs: return token while True: __SCREAMING_SNAKE_CASE : List[Any] = min(lowerCAmelCase__ , key=lambda lowerCAmelCase__ : self.bpe_ranks.get(lowerCAmelCase__ , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Tuple = bigram __SCREAMING_SNAKE_CASE : Optional[Any] = [] __SCREAMING_SNAKE_CASE : Any = 0 while i < len(lowerCAmelCase__ ): try: __SCREAMING_SNAKE_CASE : Tuple = word.index(lowerCAmelCase__ , lowerCAmelCase__ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) __SCREAMING_SNAKE_CASE : Optional[int] = j if word[i] == first and i < len(lowerCAmelCase__ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 __SCREAMING_SNAKE_CASE : Any = tuple(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[str] = new_word if len(lowerCAmelCase__ ) == 1: break else: __SCREAMING_SNAKE_CASE : Tuple = get_pairs(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Tuple = ''' '''.join(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Dict = word return word def __magic_name__( self :Any , lowerCAmelCase__ :Union[str, Any] ) -> List[Any]: __SCREAMING_SNAKE_CASE : List[str] = [] for token in re.findall(self.pat , lowerCAmelCase__ ): __SCREAMING_SNAKE_CASE : int = ''''''.join( self.byte_encoder[b] for b in token.encode('''utf-8''' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(lowerCAmelCase__ ).split(''' ''' ) ) return bpe_tokens def __magic_name__( self :str , lowerCAmelCase__ :List[str] ) -> int: return self.encoder.get(lowerCAmelCase__ , self.encoder.get(self.unk_token ) ) def __magic_name__( self :Any , lowerCAmelCase__ :Optional[int] ) -> List[Any]: return self.decoder.get(lowerCAmelCase__ ) def __magic_name__( self :Union[str, Any] , lowerCAmelCase__ :List[Any] ) -> Dict: __SCREAMING_SNAKE_CASE : Optional[int] = ''''''.join(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Tuple = bytearray([self.byte_decoder[c] for c in text] ).decode('''utf-8''' , errors=self.errors ) return text def __magic_name__( self :Union[str, Any] , lowerCAmelCase__ :str , lowerCAmelCase__ :Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(lowerCAmelCase__ ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return __SCREAMING_SNAKE_CASE : List[str] = os.path.join( lowerCAmelCase__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) __SCREAMING_SNAKE_CASE : List[Any] = os.path.join( lowerCAmelCase__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(lowerCAmelCase__ , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowerCAmelCase__ , ensure_ascii=lowerCAmelCase__ ) + '''\n''' ) __SCREAMING_SNAKE_CASE : Dict = 0 with open(lowerCAmelCase__ , '''w''' , encoding='''utf-8''' ) as writer: writer.write('''#version: 0.2\n''' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowerCAmelCase__ : kv[1] ): if index != token_index: logger.warning( f'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' ''' Please check that the tokenizer is not corrupted!''' ) __SCREAMING_SNAKE_CASE : Any = token_index writer.write(''' '''.join(lowerCAmelCase__ ) + '''\n''' ) index += 1 return vocab_file, merge_file def __magic_name__( self :Optional[int] , lowerCAmelCase__ :List[int] , lowerCAmelCase__ :Optional[List[int]] = None , lowerCAmelCase__ :bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase__ , token_ids_a=lowerCAmelCase__ , already_has_special_tokens=lowerCAmelCase__ ) if token_ids_a is None: return [1] + ([0] * len(lowerCAmelCase__ )) + [1] return [1] + ([0] * len(lowerCAmelCase__ )) + [1, 1] + ([0] * len(lowerCAmelCase__ )) + [1] def __magic_name__( self :Any , lowerCAmelCase__ :List[int] , lowerCAmelCase__ :Optional[List[int]] = None ) -> List[int]: __SCREAMING_SNAKE_CASE : Tuple = [self.sep_token_id] __SCREAMING_SNAKE_CASE : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __magic_name__( self :Optional[Any] , lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :Tuple=False , **lowerCAmelCase__ :int ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE : List[str] = kwargs.pop('''add_prefix_space''' , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(lowerCAmelCase__ ) > 0 and not text[0].isspace()): __SCREAMING_SNAKE_CASE : List[Any] = ''' ''' + text return (text, kwargs) def __magic_name__( self :List[str] , lowerCAmelCase__ :List[int] , lowerCAmelCase__ :Optional[List[int]] = None ) -> Tuple: return token_ids_a + [self.eos_token_id] def __magic_name__( self :Any , lowerCAmelCase__ :"Conversation" ) -> List[int]: __SCREAMING_SNAKE_CASE : Optional[int] = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(''' ''' + text ) else: # Generated responses should contain them already. inputs.append(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Any = ''' '''.join(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[Any] = self.encode(lowerCAmelCase__ ) if len(lowerCAmelCase__ ) > self.model_max_length: __SCREAMING_SNAKE_CASE : Optional[int] = input_ids[-self.model_max_length :] logger.warning(f'''Trimmed input from conversation as it was longer than {self.model_max_length} tokens.''' ) return input_ids
9
def _UpperCamelCase ( lowercase__ , lowercase__ , lowercase__=False ): if isinstance(lowercase__ , lowercase__ ) and isinstance(lowercase__ , lowercase__ ): __SCREAMING_SNAKE_CASE : List[str] = len(set_a.intersection(lowercase__ ) ) if alternative_union: __SCREAMING_SNAKE_CASE : int = len(lowercase__ ) + len(lowercase__ ) else: __SCREAMING_SNAKE_CASE : int = len(set_a.union(lowercase__ ) ) return intersection / union if isinstance(lowercase__ , (list, tuple) ) and isinstance(lowercase__ , (list, tuple) ): __SCREAMING_SNAKE_CASE : Dict = [element for element in set_a if element in set_b] if alternative_union: __SCREAMING_SNAKE_CASE : Optional[int] = len(lowercase__ ) + len(lowercase__ ) return len(lowercase__ ) / union else: __SCREAMING_SNAKE_CASE : Tuple = set_a + [element for element in set_b if element not in set_a] return len(lowercase__ ) / len(lowercase__ ) return len(lowercase__ ) / len(lowercase__ ) return None if __name__ == "__main__": __lowerCAmelCase : List[Any] ={'a', 'b', 'c', 'd', 'e'} __lowerCAmelCase : Optional[Any] ={'c', 'd', 'e', 'f', 'h', 'i'} print(jaccard_similarity(set_a, set_b))
9
1
'''simple docstring''' def __a ( _UpperCamelCase: int , _UpperCamelCase: int ) -> str: """simple docstring""" return "\n".join( F"""{number} * {i} = {number * i}""" for i in range(1 , number_of_terms + 1 ) ) if __name__ == "__main__": print(multiplication_table(number=5, number_of_terms=10))
350
'''simple docstring''' from __future__ import annotations from typing import Any def __a ( _UpperCamelCase: list[Any] ) -> None: """simple docstring""" create_state_space_tree(_UpperCamelCase , [] , 0 ) def __a ( _UpperCamelCase: list[Any] , _UpperCamelCase: list[Any] , _UpperCamelCase: int ) -> None: """simple docstring""" if index == len(_UpperCamelCase ): print(_UpperCamelCase ) return create_state_space_tree(_UpperCamelCase , _UpperCamelCase , index + 1 ) current_subsequence.append(sequence[index] ) create_state_space_tree(_UpperCamelCase , _UpperCamelCase , index + 1 ) current_subsequence.pop() if __name__ == "__main__": UpperCamelCase_ : list[Any] = [3, 1, 2, 4] generate_all_subsequences(seq) seq.clear() seq.extend(['''A''', '''B''', '''C''']) generate_all_subsequences(seq)
142
0
"""simple docstring""" from __future__ import annotations from random import choice def __lowercase ( _a ): return choice(_lowerCAmelCase ) def __lowercase ( _a , _a ): snake_case_ : Any = random_pivot(_lowerCAmelCase ) # partition based on pivot # linear time snake_case_ : Any = [e for e in lst if e < pivot] snake_case_ : str = [e for e in lst if e > pivot] # if we get lucky, pivot might be the element we want. # we can easily see this: # small (elements smaller than k) # + pivot (kth element) # + big (elements larger than k) if len(_lowerCAmelCase ) == k - 1: return pivot # pivot is in elements bigger than k elif len(_lowerCAmelCase ) < k - 1: return kth_number(_lowerCAmelCase , k - len(_lowerCAmelCase ) - 1 ) # pivot is in elements smaller than k else: return kth_number(_lowerCAmelCase , _lowerCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod()
264
def _lowerCAmelCase (_lowerCAmelCase): UpperCamelCase_ = len(_lowerCAmelCase) UpperCamelCase_ = len(matrix[0]) UpperCamelCase_ = min(_lowerCAmelCase , _lowerCAmelCase) for row in range(_lowerCAmelCase): # Check if diagonal element is not zero if matrix[row][row] != 0: # Eliminate all the elements below the diagonal for col in range(row + 1 , _lowerCAmelCase): UpperCamelCase_ = matrix[col][row] / matrix[row][row] for i in range(_lowerCAmelCase , _lowerCAmelCase): matrix[col][i] -= multiplier * matrix[row][i] else: # Find a non-zero diagonal element to swap rows UpperCamelCase_ = True for i in range(row + 1 , _lowerCAmelCase): if matrix[i][row] != 0: UpperCamelCase_ , UpperCamelCase_ = matrix[i], matrix[row] UpperCamelCase_ = False break if reduce: rank -= 1 for i in range(_lowerCAmelCase): UpperCamelCase_ = matrix[i][rank] # Reduce the row pointer by one to stay on the same row row -= 1 return rank if __name__ == "__main__": import doctest doctest.testmod()
128
0
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyInpaintPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class __snake_case ( __lowerCamelCase , unittest.TestCase ): '''simple docstring''' lowerCAmelCase__ = KandinskyInpaintPipeline lowerCAmelCase__ = ['prompt', 'image_embeds', 'negative_image_embeds', 'image', 'mask_image'] lowerCAmelCase__ = [ 'prompt', 'negative_prompt', 'image_embeds', 'negative_image_embeds', 'image', 'mask_image', ] lowerCAmelCase__ = [ 'generator', 'height', 'width', 'latents', 'guidance_scale', 'negative_prompt', 'num_inference_steps', 'return_dict', 'guidance_scale', 'num_images_per_prompt', 'output_type', 'return_dict', ] lowerCAmelCase__ = False @property def UpperCAmelCase__ ( self : Dict ): return 32 @property def UpperCAmelCase__ ( self : Optional[int] ): return 32 @property def UpperCAmelCase__ ( self : str ): return self.time_input_dim @property def UpperCAmelCase__ ( self : List[str] ): return self.time_input_dim * 4 @property def UpperCAmelCase__ ( self : List[str] ): return 100 @property def UpperCAmelCase__ ( self : Union[str, Any] ): __snake_case: List[str] = XLMRobertaTokenizerFast.from_pretrained("""YiYiXu/tiny-random-mclip-base""" ) return tokenizer @property def UpperCAmelCase__ ( self : List[Any] ): torch.manual_seed(0 ) __snake_case: Optional[Any] = MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=1_005 , ) __snake_case: Optional[Any] = MultilingualCLIP(UpperCamelCase_ ) __snake_case: Tuple = text_encoder.eval() return text_encoder @property def UpperCAmelCase__ ( self : Optional[Any] ): torch.manual_seed(0 ) __snake_case: Tuple = { """in_channels""": 9, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """text_image""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """text_image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } __snake_case: Any = UNetaDConditionModel(**UpperCamelCase_ ) return model @property def UpperCAmelCase__ ( self : Dict ): return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def UpperCAmelCase__ ( self : List[Any] ): torch.manual_seed(0 ) __snake_case: Tuple = VQModel(**self.dummy_movq_kwargs ) return model def UpperCAmelCase__ ( self : Dict ): __snake_case: Union[str, Any] = self.dummy_text_encoder __snake_case: List[str] = self.dummy_tokenizer __snake_case: str = self.dummy_unet __snake_case: List[Any] = self.dummy_movq __snake_case: int = DDIMScheduler( num_train_timesteps=1_000 , beta_schedule="""linear""" , beta_start=0.0_0085 , beta_end=0.012 , clip_sample=UpperCamelCase_ , set_alpha_to_one=UpperCamelCase_ , steps_offset=1 , prediction_type="""epsilon""" , thresholding=UpperCamelCase_ , ) __snake_case: Union[str, Any] = { """text_encoder""": text_encoder, """tokenizer""": tokenizer, """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def UpperCAmelCase__ ( self : Union[str, Any] , A : Optional[Any] , A : Optional[Any]=0 ): __snake_case: List[str] = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(UpperCamelCase_ ) ).to(UpperCamelCase_ ) __snake_case: Tuple = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(UpperCamelCase_ ) # create init_image __snake_case: Union[str, Any] = floats_tensor((1, 3, 64, 64) , rng=random.Random(UpperCamelCase_ ) ).to(UpperCamelCase_ ) __snake_case: Tuple = image.cpu().permute(0 , 2 , 3 , 1 )[0] __snake_case: Optional[int] = Image.fromarray(np.uinta(UpperCamelCase_ ) ).convert("""RGB""" ).resize((256, 256) ) # create mask __snake_case: int = np.ones((64, 64) , dtype=np.floataa ) __snake_case: Tuple = 0 if str(UpperCamelCase_ ).startswith("""mps""" ): __snake_case: List[str] = torch.manual_seed(UpperCamelCase_ ) else: __snake_case: List[str] = torch.Generator(device=UpperCamelCase_ ).manual_seed(UpperCamelCase_ ) __snake_case: int = { """prompt""": """horse""", """image""": init_image, """mask_image""": mask, """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """generator""": generator, """height""": 64, """width""": 64, """num_inference_steps""": 2, """guidance_scale""": 4.0, """output_type""": """np""", } return inputs def UpperCAmelCase__ ( self : List[Any] ): __snake_case: Tuple = """cpu""" __snake_case: int = self.get_dummy_components() __snake_case: str = self.pipeline_class(**UpperCamelCase_ ) __snake_case: Dict = pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) __snake_case: List[str] = pipe(**self.get_dummy_inputs(UpperCamelCase_ ) ) __snake_case: List[Any] = output.images __snake_case: str = pipe( **self.get_dummy_inputs(UpperCamelCase_ ) , return_dict=UpperCamelCase_ , )[0] __snake_case: Tuple = image[0, -3:, -3:, -1] __snake_case: Dict = image_from_tuple[0, -3:, -3:, -1] print(f'''image.shape {image.shape}''' ) assert image.shape == (1, 64, 64, 3) __snake_case: Optional[int] = np.array( [0.832_6919, 0.7379_0467, 0.2091_8581, 0.930_9612, 0.551_1791, 0.4371_3328, 0.551_3321, 0.4992_2934, 0.5949_7786] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), f''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), f''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' def UpperCAmelCase__ ( self : Optional[Any] ): super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class __snake_case ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase__ ( self : Optional[int] ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase__ ( self : Dict ): __snake_case: List[Any] = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/kandinsky_inpaint_cat_with_hat_fp16.npy""" ) __snake_case: List[str] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/cat.png""" ) __snake_case: Union[str, Any] = np.ones((768, 768) , dtype=np.floataa ) __snake_case: Union[str, Any] = 0 __snake_case: Tuple = """a hat""" __snake_case: Optional[int] = KandinskyPriorPipeline.from_pretrained( """kandinsky-community/kandinsky-2-1-prior""" , torch_dtype=torch.floataa ) pipe_prior.to(UpperCamelCase_ ) __snake_case: str = KandinskyInpaintPipeline.from_pretrained( """kandinsky-community/kandinsky-2-1-inpaint""" , torch_dtype=torch.floataa ) __snake_case: Any = pipeline.to(UpperCamelCase_ ) pipeline.set_progress_bar_config(disable=UpperCamelCase_ ) __snake_case: Union[str, Any] = torch.Generator(device="""cpu""" ).manual_seed(0 ) __snake_case , __snake_case: List[Any] = pipe_prior( UpperCamelCase_ , generator=UpperCamelCase_ , num_inference_steps=5 , negative_prompt="""""" , ).to_tuple() __snake_case: Tuple = pipeline( UpperCamelCase_ , image=UpperCamelCase_ , mask_image=UpperCamelCase_ , image_embeds=UpperCamelCase_ , negative_image_embeds=UpperCamelCase_ , generator=UpperCamelCase_ , num_inference_steps=100 , height=768 , width=768 , output_type="""np""" , ) __snake_case: Union[str, Any] = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(UpperCamelCase_ , UpperCamelCase_ )
357
import warnings from diffusers import StableDiffusionImgaImgPipeline # noqa F401 warnings.warn( "The `image_to_image.py` script is outdated. Please use directly `from diffusers import" " StableDiffusionImg2ImgPipeline` instead." )
293
0
def snake_case_ ( snake_case , snake_case ) -> int: return x if y == 0 else greatest_common_divisor(snake_case , x % y ) def snake_case_ ( snake_case , snake_case ) -> int: return (x * y) // greatest_common_divisor(snake_case , snake_case ) def snake_case_ ( snake_case = 20 ) -> int: lowercase__: Union[str, Any] = 1 for i in range(1 , n + 1 ): lowercase__: List[str] = lcm(snake_case , snake_case ) return g if __name__ == "__main__": print(F'''{solution() = }''')
196
import numpy as np import torch from torch.utils.data import Dataset from utils import logger class __a ( __UpperCamelCase ): def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> Any: '''simple docstring''' lowercase__: Any = params lowercase__: List[Any] = np.array(lowerCAmelCase__ ) lowercase__: Optional[Any] = np.array([len(lowerCAmelCase__ ) for t in data] ) self.check() self.remove_long_sequences() self.remove_empty_sequences() self.remove_unknown_sequences() self.check() self.print_statistics() def __getitem__( self , lowerCAmelCase__ ) -> List[Any]: '''simple docstring''' return (self.token_ids[index], self.lengths[index]) def __len__( self ) -> List[Any]: '''simple docstring''' return len(self.lengths ) def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple: '''simple docstring''' assert len(self.token_ids ) == len(self.lengths ) assert all(self.lengths[i] == len(self.token_ids[i] ) for i in range(len(self.lengths ) ) ) def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: '''simple docstring''' lowercase__: Any = self.params.max_model_input_size lowercase__: Dict = self.lengths > max_len logger.info(F'Splitting {sum(lowerCAmelCase__ )} too long sequences.' ) def divide_chunks(lowerCAmelCase__ , lowerCAmelCase__ ): return [l[i : i + n] for i in range(0 , len(lowerCAmelCase__ ) , lowerCAmelCase__ )] lowercase__: str = [] lowercase__: List[str] = [] if self.params.mlm: lowercase__ , lowercase__: str = self.params.special_tok_ids['cls_token'], self.params.special_tok_ids['sep_token'] else: lowercase__ , lowercase__: int = self.params.special_tok_ids['bos_token'], self.params.special_tok_ids['eos_token'] for seq_, len_ in zip(self.token_ids , self.lengths ): assert (seq_[0] == cls_id) and (seq_[-1] == sep_id), seq_ if len_ <= max_len: new_tok_ids.append(seq_ ) new_lengths.append(len_ ) else: lowercase__: Optional[Any] = [] for sub_s in divide_chunks(seq_ , max_len - 2 ): if sub_s[0] != cls_id: lowercase__: int = np.insert(lowerCAmelCase__ , 0 , lowerCAmelCase__ ) if sub_s[-1] != sep_id: lowercase__: Union[str, Any] = np.insert(lowerCAmelCase__ , len(lowerCAmelCase__ ) , lowerCAmelCase__ ) assert len(lowerCAmelCase__ ) <= max_len assert (sub_s[0] == cls_id) and (sub_s[-1] == sep_id), sub_s sub_seqs.append(lowerCAmelCase__ ) new_tok_ids.extend(lowerCAmelCase__ ) new_lengths.extend([len(lowerCAmelCase__ ) for l in sub_seqs] ) lowercase__: Union[str, Any] = np.array(lowerCAmelCase__ ) lowercase__: Union[str, Any] = np.array(lowerCAmelCase__ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple: '''simple docstring''' lowercase__: Dict = len(self ) lowercase__: Union[str, Any] = self.lengths > 11 lowercase__: List[Any] = self.token_ids[indices] lowercase__: Optional[Any] = self.lengths[indices] lowercase__: List[str] = len(self ) logger.info(F'Remove {init_size - new_size} too short (<=11 tokens) sequences.' ) def SCREAMING_SNAKE_CASE__ ( self ) -> int: '''simple docstring''' if "unk_token" not in self.params.special_tok_ids: return else: lowercase__: List[str] = self.params.special_tok_ids['unk_token'] lowercase__: str = len(self ) lowercase__: Tuple = np.array([np.count_nonzero(a == unk_token_id ) for a in self.token_ids] ) lowercase__: Any = (unk_occs / self.lengths) < 0.5 lowercase__: Tuple = self.token_ids[indices] lowercase__: str = self.lengths[indices] lowercase__: Dict = len(self ) logger.info(F'Remove {init_size - new_size} sequences with a high level of unknown tokens (50%).' ) def SCREAMING_SNAKE_CASE__ ( self ) -> str: '''simple docstring''' if not self.params.is_master: return logger.info(F'{len(self )} sequences' ) # data_len = sum(self.lengths) # nb_unique_tokens = len(Counter(list(chain(*self.token_ids)))) # logger.info(f'{data_len} tokens ({nb_unique_tokens} unique)') # unk_idx = self.params.special_tok_ids['unk_token'] # nb_unknown = sum([(t==unk_idx).sum() for t in self.token_ids]) # logger.info(f'{nb_unknown} unknown tokens (covering {100*nb_unknown/data_len:.2f}% of the data)') def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ ) -> int: '''simple docstring''' lowercase__: Union[str, Any] = [t[0] for t in batch] lowercase__: Dict = [t[1] for t in batch] assert len(lowerCAmelCase__ ) == len(lowerCAmelCase__ ) # Max for paddings lowercase__: List[Any] = max(lowerCAmelCase__ ) # Pad token ids if self.params.mlm: lowercase__: Dict = self.params.special_tok_ids['pad_token'] else: lowercase__: Optional[Any] = self.params.special_tok_ids['unk_token'] lowercase__: int = [list(t.astype(lowerCAmelCase__ ) ) + [pad_idx] * (max_seq_len_ - len(lowerCAmelCase__ )) for t in token_ids] assert len(tk_ ) == len(lowerCAmelCase__ ) assert all(len(lowerCAmelCase__ ) == max_seq_len_ for t in tk_ ) lowercase__: Tuple = torch.tensor(tk_ ) # (bs, max_seq_len_) lowercase__: Optional[Any] = torch.tensor(lowerCAmelCase__ ) # (bs) return tk_t, lg_t
196
1
from __future__ import annotations from math import pi def UpperCAmelCase__ ( lowerCamelCase, lowerCamelCase, lowerCamelCase ): if (inductance, frequency, reactance).count(0 ) != 1: raise ValueError("One and only one argument must be 0" ) if inductance < 0: raise ValueError("Inductance cannot be negative" ) if frequency < 0: raise ValueError("Frequency cannot be negative" ) if reactance < 0: raise ValueError("Inductive reactance cannot be negative" ) if inductance == 0: return {"inductance": reactance / (2 * pi * frequency)} elif frequency == 0: return {"frequency": reactance / (2 * pi * inductance)} elif reactance == 0: return {"reactance": 2 * pi * frequency * inductance} else: raise ValueError("Exactly one argument must be 0" ) if __name__ == "__main__": import doctest doctest.testmod()
158
from . import __version__ # Backward compatibility imports, to make sure all those objects can be found in file_utils from .utils import ( CLOUDFRONT_DISTRIB_PREFIX, CONFIG_NAME, DISABLE_TELEMETRY, DUMMY_INPUTS, DUMMY_MASK, ENV_VARS_TRUE_AND_AUTO_VALUES, ENV_VARS_TRUE_VALUES, FEATURE_EXTRACTOR_NAME, FLAX_WEIGHTS_NAME, HF_MODULES_CACHE, HUGGINGFACE_CO_PREFIX, HUGGINGFACE_CO_RESOLVE_ENDPOINT, MODEL_CARD_NAME, MULTIPLE_CHOICE_DUMMY_INPUTS, PYTORCH_PRETRAINED_BERT_CACHE, PYTORCH_TRANSFORMERS_CACHE, S3_BUCKET_PREFIX, SENTENCEPIECE_UNDERLINE, SPIECE_UNDERLINE, TF2_WEIGHTS_NAME, TF_WEIGHTS_NAME, TORCH_FX_REQUIRED_VERSION, TRANSFORMERS_CACHE, TRANSFORMERS_DYNAMIC_MODULE_NAME, USE_JAX, USE_TF, USE_TORCH, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ContextManagers, DummyObject, EntryNotFoundError, ExplicitEnum, ModelOutput, PaddingStrategy, PushToHubMixin, RepositoryNotFoundError, RevisionNotFoundError, TensorType, _LazyModule, add_code_sample_docstrings, add_end_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, cached_property, copy_func, default_cache_path, define_sagemaker_information, get_cached_models, get_file_from_repo, get_full_repo_name, get_torch_version, has_file, http_user_agent, is_apex_available, is_bsa_available, is_coloredlogs_available, is_datasets_available, is_detectrona_available, is_faiss_available, is_flax_available, is_ftfy_available, is_in_notebook, is_ipex_available, is_librosa_available, is_offline_mode, is_onnx_available, is_pandas_available, is_phonemizer_available, is_protobuf_available, is_psutil_available, is_pyanvml_available, is_pyctcdecode_available, is_pytesseract_available, is_pytorch_quantization_available, is_rjieba_available, is_sagemaker_dp_enabled, is_sagemaker_mp_enabled, is_scipy_available, is_sentencepiece_available, is_seqio_available, is_sklearn_available, is_soundfile_availble, is_spacy_available, is_speech_available, is_tensor, is_tensorflow_probability_available, is_tfaonnx_available, is_tf_available, is_timm_available, is_tokenizers_available, is_torch_available, is_torch_bfaa_available, is_torch_cuda_available, is_torch_fx_available, is_torch_fx_proxy, is_torch_mps_available, is_torch_tfaa_available, is_torch_tpu_available, is_torchaudio_available, is_training_run_on_sagemaker, is_vision_available, replace_return_docstrings, requires_backends, to_numpy, to_py_obj, torch_only_method, )
158
1
'''simple docstring''' from collections.abc import Sequence def UpperCAmelCase ( a_ , a_ ) -> float: """simple docstring""" return sum(c * (x**i) for i, c in enumerate(a_ ) ) def UpperCAmelCase ( a_ , a_ ) -> float: """simple docstring""" A_ : List[str] = 0.0 for coeff in reversed(a_ ): A_ : List[Any] = result * x + coeff return result if __name__ == "__main__": UpperCamelCase__ : List[str] = (0.0, 0.0, 5.0, 9.3, 7.0) UpperCamelCase__ : List[str] = 1_0.0 print(evaluate_poly(poly, x)) print(horner(poly, x))
344
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available UpperCamelCase__ : Any = { 'configuration_data2vec_audio': ['DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Data2VecAudioConfig'], 'configuration_data2vec_text': [ 'DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Data2VecTextConfig', 'Data2VecTextOnnxConfig', ], 'configuration_data2vec_vision': [ 'DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Data2VecVisionConfig', 'Data2VecVisionOnnxConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : Optional[Any] = [ 'DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST', 'Data2VecAudioForAudioFrameClassification', 'Data2VecAudioForCTC', 'Data2VecAudioForSequenceClassification', 'Data2VecAudioForXVector', 'Data2VecAudioModel', 'Data2VecAudioPreTrainedModel', ] UpperCamelCase__ : List[str] = [ 'DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST', 'Data2VecTextForCausalLM', 'Data2VecTextForMaskedLM', 'Data2VecTextForMultipleChoice', 'Data2VecTextForQuestionAnswering', 'Data2VecTextForSequenceClassification', 'Data2VecTextForTokenClassification', 'Data2VecTextModel', 'Data2VecTextPreTrainedModel', ] UpperCamelCase__ : str = [ 'DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST', 'Data2VecVisionForImageClassification', 'Data2VecVisionForMaskedImageModeling', 'Data2VecVisionForSemanticSegmentation', 'Data2VecVisionModel', 'Data2VecVisionPreTrainedModel', ] if is_tf_available(): UpperCamelCase__ : List[str] = [ 'TFData2VecVisionForImageClassification', 'TFData2VecVisionForSemanticSegmentation', 'TFData2VecVisionModel', 'TFData2VecVisionPreTrainedModel', ] if TYPE_CHECKING: from .configuration_dataavec_audio import DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecAudioConfig from .configuration_dataavec_text import ( DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecTextConfig, DataaVecTextOnnxConfig, ) from .configuration_dataavec_vision import ( DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecVisionConfig, DataaVecVisionOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dataavec_audio import ( DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecAudioForAudioFrameClassification, DataaVecAudioForCTC, DataaVecAudioForSequenceClassification, DataaVecAudioForXVector, DataaVecAudioModel, DataaVecAudioPreTrainedModel, ) from .modeling_dataavec_text import ( DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecTextForCausalLM, DataaVecTextForMaskedLM, DataaVecTextForMultipleChoice, DataaVecTextForQuestionAnswering, DataaVecTextForSequenceClassification, DataaVecTextForTokenClassification, DataaVecTextModel, DataaVecTextPreTrainedModel, ) from .modeling_dataavec_vision import ( DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecVisionForImageClassification, DataaVecVisionForMaskedImageModeling, DataaVecVisionForSemanticSegmentation, DataaVecVisionModel, DataaVecVisionPreTrainedModel, ) if is_tf_available(): from .modeling_tf_dataavec_vision import ( TFDataaVecVisionForImageClassification, TFDataaVecVisionForSemanticSegmentation, TFDataaVecVisionModel, TFDataaVecVisionPreTrainedModel, ) else: import sys UpperCamelCase__ : int = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
344
1
from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE :Optional[int] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE :Union[str, Any] = { 'weiweishi/roc-bert-base-zh': 'https://huggingface.co/weiweishi/roc-bert-base-zh/resolve/main/config.json', } class UpperCAmelCase ( _lowerCamelCase ): '''simple docstring''' snake_case_ = "roc_bert" def __init__( self : Union[str, Any] ,A : str=3_05_22 ,A : int=7_68 ,A : Dict=12 ,A : int=12 ,A : Dict=30_72 ,A : Dict="gelu" ,A : Optional[Any]=0.1 ,A : int=0.1 ,A : Dict=5_12 ,A : int=2 ,A : Union[str, Any]=0.02 ,A : str=1E-12 ,A : Any=True ,A : Any=0 ,A : Optional[int]="absolute" ,A : Dict=None ,A : Tuple=True ,A : Tuple=True ,A : Tuple=7_68 ,A : str=9_10 ,A : Tuple=5_12 ,A : Tuple=2_48_58 ,A : List[str]=True ,**A : int ,): __A = vocab_size __A = max_position_embeddings __A = hidden_size __A = num_hidden_layers __A = num_attention_heads __A = intermediate_size __A = hidden_act __A = hidden_dropout_prob __A = attention_probs_dropout_prob __A = initializer_range __A = type_vocab_size __A = layer_norm_eps __A = use_cache __A = enable_pronunciation __A = enable_shape __A = pronunciation_embed_dim __A = pronunciation_vocab_size __A = shape_embed_dim __A = shape_vocab_size __A = concat_input __A = position_embedding_type __A = classifier_dropout super().__init__(pad_token_id=A ,**A )
353
import warnings from ...utils import logging from .image_processing_clip import CLIPImageProcessor SCREAMING_SNAKE_CASE :Any = logging.get_logger(__name__) class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : int ,*A : Dict ,**A : Dict ): warnings.warn( "The class CLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use CLIPImageProcessor instead." ,A ,) super().__init__(*A ,**A )
124
0
UpperCAmelCase_ = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' def lowerCamelCase__ ( ): '''simple docstring''' __lowerCamelCase = input("""Enter message: """ ) __lowerCamelCase = input("""Enter key [alphanumeric]: """ ) __lowerCamelCase = input("""Encrypt/Decrypt [e/d]: """ ) if mode.lower().startswith("""e""" ): __lowerCamelCase = """encrypt""" __lowerCamelCase = encrypt_message(A__ , A__ ) elif mode.lower().startswith("""d""" ): __lowerCamelCase = """decrypt""" __lowerCamelCase = decrypt_message(A__ , A__ ) print(f'\n{mode.title()}ed message:' ) print(A__ ) def lowerCamelCase__ ( A__ : str , A__ : str ): '''simple docstring''' return translate_message(A__ , A__ , """encrypt""" ) def lowerCamelCase__ ( A__ : str , A__ : str ): '''simple docstring''' return translate_message(A__ , A__ , """decrypt""" ) def lowerCamelCase__ ( A__ : str , A__ : str , A__ : str ): '''simple docstring''' __lowerCamelCase = [] __lowerCamelCase = 0 __lowerCamelCase = key.upper() for symbol in message: __lowerCamelCase = LETTERS.find(symbol.upper() ) if num != -1: if mode == "encrypt": num += LETTERS.find(key[key_index] ) elif mode == "decrypt": num -= LETTERS.find(key[key_index] ) num %= len(A__ ) if symbol.isupper(): translated.append(LETTERS[num] ) elif symbol.islower(): translated.append(LETTERS[num].lower() ) key_index += 1 if key_index == len(A__ ): __lowerCamelCase = 0 else: translated.append(A__ ) return "".join(A__ ) if __name__ == "__main__": main()
12
'''simple docstring''' from dataclasses import dataclass from typing import Optional import numpy as np import torch import torch.nn as nn from ..utils import BaseOutput, is_torch_version, randn_tensor from .attention_processor import SpatialNorm from .unet_ad_blocks import UNetMidBlockaD, get_down_block, get_up_block @dataclass class __UpperCAmelCase ( _lowerCamelCase ): __lowercase = 42 class __UpperCAmelCase ( nn.Module ): def __init__( self , lowerCAmelCase_=3 , lowerCAmelCase_=3 , lowerCAmelCase_=("DownEncoderBlock2D",) , lowerCAmelCase_=(64,) , lowerCAmelCase_=2 , lowerCAmelCase_=32 , lowerCAmelCase_="silu" , lowerCAmelCase_=True , ): """simple docstring""" super().__init__() _snake_case = layers_per_block _snake_case = torch.nn.Convad( lowerCAmelCase_ , block_out_channels[0] , kernel_size=3 , stride=1 , padding=1 , ) _snake_case = None _snake_case = nn.ModuleList([] ) # down _snake_case = block_out_channels[0] for i, down_block_type in enumerate(lowerCAmelCase_ ): _snake_case = output_channel _snake_case = block_out_channels[i] _snake_case = i == len(lowerCAmelCase_ ) - 1 _snake_case = get_down_block( lowerCAmelCase_ , num_layers=self.layers_per_block , in_channels=lowerCAmelCase_ , out_channels=lowerCAmelCase_ , add_downsample=not is_final_block , resnet_eps=1E-6 , downsample_padding=0 , resnet_act_fn=lowerCAmelCase_ , resnet_groups=lowerCAmelCase_ , attention_head_dim=lowerCAmelCase_ , temb_channels=lowerCAmelCase_ , ) self.down_blocks.append(lowerCAmelCase_ ) # mid _snake_case = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1E-6 , resnet_act_fn=lowerCAmelCase_ , output_scale_factor=1 , resnet_time_scale_shift='default' , attention_head_dim=block_out_channels[-1] , resnet_groups=lowerCAmelCase_ , temb_channels=lowerCAmelCase_ , ) # out _snake_case = nn.GroupNorm(num_channels=block_out_channels[-1] , num_groups=lowerCAmelCase_ , eps=1E-6 ) _snake_case = nn.SiLU() _snake_case = 2 * out_channels if double_z else out_channels _snake_case = nn.Convad(block_out_channels[-1] , lowerCAmelCase_ , 3 , padding=1 ) _snake_case = False def lowerCamelCase ( self , lowerCAmelCase_ ): """simple docstring""" _snake_case = x _snake_case = self.conv_in(lowerCAmelCase_ ) if self.training and self.gradient_checkpointing: def create_custom_forward(lowerCAmelCase_ ): def custom_forward(*lowerCAmelCase_ ): return module(*lowerCAmelCase_ ) return custom_forward # down if is_torch_version('>=' , '1.11.0' ): for down_block in self.down_blocks: _snake_case = torch.utils.checkpoint.checkpoint( create_custom_forward(lowerCAmelCase_ ) , lowerCAmelCase_ , use_reentrant=lowerCAmelCase_ ) # middle _snake_case = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , lowerCAmelCase_ , use_reentrant=lowerCAmelCase_ ) else: for down_block in self.down_blocks: _snake_case = torch.utils.checkpoint.checkpoint(create_custom_forward(lowerCAmelCase_ ) , lowerCAmelCase_ ) # middle _snake_case = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block ) , lowerCAmelCase_ ) else: # down for down_block in self.down_blocks: _snake_case = down_block(lowerCAmelCase_ ) # middle _snake_case = self.mid_block(lowerCAmelCase_ ) # post-process _snake_case = self.conv_norm_out(lowerCAmelCase_ ) _snake_case = self.conv_act(lowerCAmelCase_ ) _snake_case = self.conv_out(lowerCAmelCase_ ) return sample class __UpperCAmelCase ( nn.Module ): def __init__( self , lowerCAmelCase_=3 , lowerCAmelCase_=3 , lowerCAmelCase_=("UpDecoderBlock2D",) , lowerCAmelCase_=(64,) , lowerCAmelCase_=2 , lowerCAmelCase_=32 , lowerCAmelCase_="silu" , lowerCAmelCase_="group" , ): """simple docstring""" super().__init__() _snake_case = layers_per_block _snake_case = nn.Convad( lowerCAmelCase_ , block_out_channels[-1] , kernel_size=3 , stride=1 , padding=1 , ) _snake_case = None _snake_case = nn.ModuleList([] ) _snake_case = in_channels if norm_type == 'spatial' else None # mid _snake_case = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1E-6 , resnet_act_fn=lowerCAmelCase_ , output_scale_factor=1 , resnet_time_scale_shift='default' if norm_type == 'group' else norm_type , attention_head_dim=block_out_channels[-1] , resnet_groups=lowerCAmelCase_ , temb_channels=lowerCAmelCase_ , ) # up _snake_case = list(reversed(lowerCAmelCase_ ) ) _snake_case = reversed_block_out_channels[0] for i, up_block_type in enumerate(lowerCAmelCase_ ): _snake_case = output_channel _snake_case = reversed_block_out_channels[i] _snake_case = i == len(lowerCAmelCase_ ) - 1 _snake_case = get_up_block( lowerCAmelCase_ , num_layers=self.layers_per_block + 1 , in_channels=lowerCAmelCase_ , out_channels=lowerCAmelCase_ , prev_output_channel=lowerCAmelCase_ , add_upsample=not is_final_block , resnet_eps=1E-6 , resnet_act_fn=lowerCAmelCase_ , resnet_groups=lowerCAmelCase_ , attention_head_dim=lowerCAmelCase_ , temb_channels=lowerCAmelCase_ , resnet_time_scale_shift=lowerCAmelCase_ , ) self.up_blocks.append(lowerCAmelCase_ ) _snake_case = output_channel # out if norm_type == "spatial": _snake_case = SpatialNorm(block_out_channels[0] , lowerCAmelCase_ ) else: _snake_case = nn.GroupNorm(num_channels=block_out_channels[0] , num_groups=lowerCAmelCase_ , eps=1E-6 ) _snake_case = nn.SiLU() _snake_case = nn.Convad(block_out_channels[0] , lowerCAmelCase_ , 3 , padding=1 ) _snake_case = False def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_=None ): """simple docstring""" _snake_case = z _snake_case = self.conv_in(lowerCAmelCase_ ) _snake_case = next(iter(self.up_blocks.parameters() ) ).dtype if self.training and self.gradient_checkpointing: def create_custom_forward(lowerCAmelCase_ ): def custom_forward(*lowerCAmelCase_ ): return module(*lowerCAmelCase_ ) return custom_forward if is_torch_version('>=' , '1.11.0' ): # middle _snake_case = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , lowerCAmelCase_ , lowerCAmelCase_ , use_reentrant=lowerCAmelCase_ ) _snake_case = sample.to(lowerCAmelCase_ ) # up for up_block in self.up_blocks: _snake_case = torch.utils.checkpoint.checkpoint( create_custom_forward(lowerCAmelCase_ ) , lowerCAmelCase_ , lowerCAmelCase_ , use_reentrant=lowerCAmelCase_ ) else: # middle _snake_case = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , lowerCAmelCase_ , lowerCAmelCase_ ) _snake_case = sample.to(lowerCAmelCase_ ) # up for up_block in self.up_blocks: _snake_case = torch.utils.checkpoint.checkpoint(create_custom_forward(lowerCAmelCase_ ) , lowerCAmelCase_ , lowerCAmelCase_ ) else: # middle _snake_case = self.mid_block(lowerCAmelCase_ , lowerCAmelCase_ ) _snake_case = sample.to(lowerCAmelCase_ ) # up for up_block in self.up_blocks: _snake_case = up_block(lowerCAmelCase_ , lowerCAmelCase_ ) # post-process if latent_embeds is None: _snake_case = self.conv_norm_out(lowerCAmelCase_ ) else: _snake_case = self.conv_norm_out(lowerCAmelCase_ , lowerCAmelCase_ ) _snake_case = self.conv_act(lowerCAmelCase_ ) _snake_case = self.conv_out(lowerCAmelCase_ ) return sample class __UpperCAmelCase ( nn.Module ): def __init__( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=None , lowerCAmelCase_="random" , lowerCAmelCase_=False , lowerCAmelCase_=True ): """simple docstring""" super().__init__() _snake_case = n_e _snake_case = vq_embed_dim _snake_case = beta _snake_case = legacy _snake_case = nn.Embedding(self.n_e , self.vq_embed_dim ) self.embedding.weight.data.uniform_(-1.0 / self.n_e , 1.0 / self.n_e ) _snake_case = remap if self.remap is not None: self.register_buffer('used' , torch.tensor(np.load(self.remap ) ) ) _snake_case = self.used.shape[0] _snake_case = unknown_index # "random" or "extra" or integer if self.unknown_index == "extra": _snake_case = self.re_embed _snake_case = self.re_embed + 1 print( F'Remapping {self.n_e} indices to {self.re_embed} indices. ' F'Using {self.unknown_index} for unknown indices.' ) else: _snake_case = n_e _snake_case = sane_index_shape def lowerCamelCase ( self , lowerCAmelCase_ ): """simple docstring""" _snake_case = inds.shape assert len(lowerCAmelCase_ ) > 1 _snake_case = inds.reshape(ishape[0] , -1 ) _snake_case = self.used.to(lowerCAmelCase_ ) _snake_case = (inds[:, :, None] == used[None, None, ...]).long() _snake_case = match.argmax(-1 ) _snake_case = match.sum(2 ) < 1 if self.unknown_index == "random": _snake_case = torch.randint(0 , self.re_embed , size=new[unknown].shape ).to(device=new.device ) else: _snake_case = self.unknown_index return new.reshape(lowerCAmelCase_ ) def lowerCamelCase ( self , lowerCAmelCase_ ): """simple docstring""" _snake_case = inds.shape assert len(lowerCAmelCase_ ) > 1 _snake_case = inds.reshape(ishape[0] , -1 ) _snake_case = self.used.to(lowerCAmelCase_ ) if self.re_embed > self.used.shape[0]: # extra token _snake_case = 0 # simply set to zero _snake_case = torch.gather(used[None, :][inds.shape[0] * [0], :] , 1 , lowerCAmelCase_ ) return back.reshape(lowerCAmelCase_ ) def lowerCamelCase ( self , lowerCAmelCase_ ): """simple docstring""" _snake_case = z.permute(0 , 2 , 3 , 1 ).contiguous() _snake_case = z.view(-1 , self.vq_embed_dim ) # distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z _snake_case = torch.argmin(torch.cdist(lowerCAmelCase_ , self.embedding.weight ) , dim=1 ) _snake_case = self.embedding(lowerCAmelCase_ ).view(z.shape ) _snake_case = None _snake_case = None # compute loss for embedding if not self.legacy: _snake_case = self.beta * torch.mean((z_q.detach() - z) ** 2 ) + torch.mean((z_q - z.detach()) ** 2 ) else: _snake_case = torch.mean((z_q.detach() - z) ** 2 ) + self.beta * torch.mean((z_q - z.detach()) ** 2 ) # preserve gradients _snake_case = z + (z_q - z).detach() # reshape back to match original input shape _snake_case = z_q.permute(0 , 3 , 1 , 2 ).contiguous() if self.remap is not None: _snake_case = min_encoding_indices.reshape(z.shape[0] , -1 ) # add batch axis _snake_case = self.remap_to_used(lowerCAmelCase_ ) _snake_case = min_encoding_indices.reshape(-1 , 1 ) # flatten if self.sane_index_shape: _snake_case = min_encoding_indices.reshape(z_q.shape[0] , z_q.shape[2] , z_q.shape[3] ) return z_q, loss, (perplexity, min_encodings, min_encoding_indices) def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" if self.remap is not None: _snake_case = indices.reshape(shape[0] , -1 ) # add batch axis _snake_case = self.unmap_to_all(lowerCAmelCase_ ) _snake_case = indices.reshape(-1 ) # flatten again # get quantized latent vectors _snake_case = self.embedding(lowerCAmelCase_ ) if shape is not None: _snake_case = z_q.view(lowerCAmelCase_ ) # reshape back to match original input shape _snake_case = z_q.permute(0 , 3 , 1 , 2 ).contiguous() return z_q class __UpperCAmelCase ( _lowerCamelCase ): def __init__( self , lowerCAmelCase_ , lowerCAmelCase_=False ): """simple docstring""" _snake_case = parameters _snake_case , _snake_case = torch.chunk(lowerCAmelCase_ , 2 , dim=1 ) _snake_case = torch.clamp(self.logvar , -30.0 , 20.0 ) _snake_case = deterministic _snake_case = torch.exp(0.5 * self.logvar ) _snake_case = torch.exp(self.logvar ) if self.deterministic: _snake_case = _snake_case = torch.zeros_like( self.mean , device=self.parameters.device , dtype=self.parameters.dtype ) def lowerCamelCase ( self , lowerCAmelCase_ = None ): """simple docstring""" _snake_case = randn_tensor( self.mean.shape , generator=lowerCAmelCase_ , device=self.parameters.device , dtype=self.parameters.dtype ) _snake_case = self.mean + self.std * sample return x def lowerCamelCase ( self , lowerCAmelCase_=None ): """simple docstring""" if self.deterministic: return torch.Tensor([0.0] ) else: if other is None: return 0.5 * torch.sum(torch.pow(self.mean , 2 ) + self.var - 1.0 - self.logvar , dim=[1, 2, 3] ) else: return 0.5 * torch.sum( torch.pow(self.mean - other.mean , 2 ) / other.var + self.var / other.var - 1.0 - self.logvar + other.logvar , dim=[1, 2, 3] , ) def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_=[1, 2, 3] ): """simple docstring""" if self.deterministic: return torch.Tensor([0.0] ) _snake_case = np.log(2.0 * np.pi ) return 0.5 * torch.sum(logtwopi + self.logvar + torch.pow(sample - self.mean , 2 ) / self.var , dim=lowerCAmelCase_ ) def lowerCamelCase ( self ): """simple docstring""" return self.mean
42
0
'''simple docstring''' import os from itertools import chain from random import randrange, shuffle import pytest from .sola import PokerHand A : List[str] = ( '''4S 3H 2C 7S 5H''', '''9D 8H 2C 6S 7H''', '''2D 6D 9D TH 7D''', '''TC 8C 2S JH 6C''', '''JH 8S TH AH QH''', '''TS KS 5S 9S AC''', '''KD 6S 9D TH AD''', '''KS 8D 4D 9S 4S''', # pair '''8C 4S KH JS 4D''', # pair '''QH 8H KD JH 8S''', # pair '''KC 4H KS 2H 8D''', # pair '''KD 4S KC 3H 8S''', # pair '''AH 8S AS KC JH''', # pair '''3H 4C 4H 3S 2H''', # 2 pairs '''5S 5D 2C KH KH''', # 2 pairs '''3C KH 5D 5S KH''', # 2 pairs '''AS 3C KH AD KH''', # 2 pairs '''7C 7S 3S 7H 5S''', # 3 of a kind '''7C 7S KH 2H 7H''', # 3 of a kind '''AC KH QH AH AS''', # 3 of a kind '''2H 4D 3C AS 5S''', # straight (low ace) '''3C 5C 4C 2C 6H''', # straight '''6S 8S 7S 5H 9H''', # straight '''JS QS 9H TS KH''', # straight '''QC KH TS JS AH''', # straight (high ace) '''8C 9C 5C 3C TC''', # flush '''3S 8S 9S 5S KS''', # flush '''4C 5C 9C 8C KC''', # flush '''JH 8H AH KH QH''', # flush '''3D 2H 3H 2C 2D''', # full house '''2H 2C 3S 3H 3D''', # full house '''KH KC 3S 3H 3D''', # full house '''JC 6H JS JD JH''', # 4 of a kind '''JC 7H JS JD JH''', # 4 of a kind '''JC KH JS JD JH''', # 4 of a kind '''2S AS 4S 5S 3S''', # straight flush (low ace) '''2D 6D 3D 4D 5D''', # straight flush '''5C 6C 3C 7C 4C''', # straight flush '''JH 9H TH KH QH''', # straight flush '''JH AH TH KH QH''', # royal flush (high ace straight flush) ) A : Any = ( ('''2H 3H 4H 5H 6H''', '''KS AS TS QS JS''', '''Loss'''), ('''2H 3H 4H 5H 6H''', '''AS AD AC AH JD''', '''Win'''), ('''AS AH 2H AD AC''', '''JS JD JC JH 3D''', '''Win'''), ('''2S AH 2H AS AC''', '''JS JD JC JH AD''', '''Loss'''), ('''2S AH 2H AS AC''', '''2H 3H 5H 6H 7H''', '''Win'''), ('''AS 3S 4S 8S 2S''', '''2H 3H 5H 6H 7H''', '''Win'''), ('''2H 3H 5H 6H 7H''', '''2S 3H 4H 5S 6C''', '''Win'''), ('''2S 3H 4H 5S 6C''', '''3D 4C 5H 6H 2S''', '''Tie'''), ('''2S 3H 4H 5S 6C''', '''AH AC 5H 6H AS''', '''Win'''), ('''2S 2H 4H 5S 4C''', '''AH AC 5H 6H AS''', '''Loss'''), ('''2S 2H 4H 5S 4C''', '''AH AC 5H 6H 7S''', '''Win'''), ('''6S AD 7H 4S AS''', '''AH AC 5H 6H 7S''', '''Loss'''), ('''2S AH 4H 5S KC''', '''AH AC 5H 6H 7S''', '''Loss'''), ('''2S 3H 6H 7S 9C''', '''7H 3C TH 6H 9S''', '''Loss'''), ('''4S 5H 6H TS AC''', '''3S 5H 6H TS AC''', '''Win'''), ('''2S AH 4H 5S 6C''', '''AD 4C 5H 6H 2C''', '''Tie'''), ('''AS AH 3H AD AC''', '''AS AH 2H AD AC''', '''Win'''), ('''AH AC 5H 5C QS''', '''AH AC 5H 5C KS''', '''Loss'''), ('''AH AC 5H 5C QS''', '''KH KC 5H 5C QS''', '''Win'''), ('''7C 7S KH 2H 7H''', '''3C 3S AH 2H 3H''', '''Win'''), ('''3C 3S AH 2H 3H''', '''7C 7S KH 2H 7H''', '''Loss'''), ('''6H 5H 4H 3H 2H''', '''5H 4H 3H 2H AH''', '''Win'''), ('''5H 4H 3H 2H AH''', '''5H 4H 3H 2H AH''', '''Tie'''), ('''5H 4H 3H 2H AH''', '''6H 5H 4H 3H 2H''', '''Loss'''), ('''AH AD KS KC AC''', '''AH KD KH AC KC''', '''Win'''), ('''2H 4D 3C AS 5S''', '''2H 4D 3C 6S 5S''', '''Loss'''), ('''2H 3S 3C 3H 2S''', '''3S 3C 2S 2H 2D''', '''Win'''), ('''4D 6D 5D 2D JH''', '''3S 8S 3H TC KH''', '''Loss'''), ('''4S 6C 8S 3S 7S''', '''AD KS 2D 7D 7C''', '''Loss'''), ('''6S 4C 7H 8C 3H''', '''5H JC AH 9D 9C''', '''Loss'''), ('''9D 9H JH TC QH''', '''3C 2S JS 5C 7H''', '''Win'''), ('''2H TC 8S AD 9S''', '''4H TS 7H 2C 5C''', '''Win'''), ('''9D 3S 2C 7S 7C''', '''JC TD 3C TC 9H''', '''Loss'''), ) A : Optional[Any] = ( ('''2H 3H 4H 5H 6H''', True), ('''AS AH 2H AD AC''', False), ('''2H 3H 5H 6H 7H''', True), ('''KS AS TS QS JS''', True), ('''8H 9H QS JS TH''', False), ('''AS 3S 4S 8S 2S''', True), ) A : List[Any] = ( ('''2H 3H 4H 5H 6H''', True), ('''AS AH 2H AD AC''', False), ('''2H 3H 5H 6H 7H''', False), ('''KS AS TS QS JS''', True), ('''8H 9H QS JS TH''', True), ) A : List[str] = ( ('''2H 4D 3C AS 5S''', True, [5, 4, 3, 2, 14]), ('''2H 5D 3C AS 5S''', False, [14, 5, 5, 3, 2]), ('''JH QD KC AS TS''', False, [14, 13, 12, 11, 10]), ('''9D 3S 2C 7S 7C''', False, [9, 7, 7, 3, 2]), ) A : Optional[Any] = ( ('''JH AH TH KH QH''', 0), ('''JH 9H TH KH QH''', 0), ('''JC KH JS JD JH''', 7), ('''KH KC 3S 3H 3D''', 6), ('''8C 9C 5C 3C TC''', 0), ('''JS QS 9H TS KH''', 0), ('''7C 7S KH 2H 7H''', 3), ('''3C KH 5D 5S KH''', 2), ('''QH 8H KD JH 8S''', 1), ('''2D 6D 9D TH 7D''', 0), ) A : str = ( ('''JH AH TH KH QH''', 23), ('''JH 9H TH KH QH''', 22), ('''JC KH JS JD JH''', 21), ('''KH KC 3S 3H 3D''', 20), ('''8C 9C 5C 3C TC''', 19), ('''JS QS 9H TS KH''', 18), ('''7C 7S KH 2H 7H''', 17), ('''3C KH 5D 5S KH''', 16), ('''QH 8H KD JH 8S''', 15), ('''2D 6D 9D TH 7D''', 14), ) def lowerCAmelCase__ ( ): _A , _A : Dict = randrange(len(lowerCamelCase ) ), randrange(len(lowerCamelCase ) ) _A : Dict = ['Loss', 'Tie', 'Win'][(play >= oppo) + (play > oppo)] _A , _A : Any = SORTED_HANDS[play], SORTED_HANDS[oppo] return hand, other, expected def lowerCAmelCase__ ( lowerCamelCase : int = 100 ): return (generate_random_hand() for _ in range(lowerCamelCase )) @pytest.mark.parametrize('hand, expected' ,lowerCamelCase ) def lowerCAmelCase__ ( lowerCamelCase : Dict ,lowerCamelCase : Dict ): assert PokerHand(lowerCamelCase )._is_flush() == expected @pytest.mark.parametrize('hand, expected' ,lowerCamelCase ) def lowerCAmelCase__ ( lowerCamelCase : Dict ,lowerCamelCase : Dict ): assert PokerHand(lowerCamelCase )._is_straight() == expected @pytest.mark.parametrize('hand, expected, card_values' ,lowerCamelCase ) def lowerCAmelCase__ ( lowerCamelCase : Dict ,lowerCamelCase : Any ,lowerCamelCase : List[Any] ): _A : List[Any] = PokerHand(lowerCamelCase ) assert player._is_five_high_straight() == expected assert player._card_values == card_values @pytest.mark.parametrize('hand, expected' ,lowerCamelCase ) def lowerCAmelCase__ ( lowerCamelCase : int ,lowerCamelCase : Optional[int] ): assert PokerHand(lowerCamelCase )._is_same_kind() == expected @pytest.mark.parametrize('hand, expected' ,lowerCamelCase ) def lowerCAmelCase__ ( lowerCamelCase : Dict ,lowerCamelCase : str ): assert PokerHand(lowerCamelCase )._hand_type == expected @pytest.mark.parametrize('hand, other, expected' ,lowerCamelCase ) def lowerCAmelCase__ ( lowerCamelCase : Union[str, Any] ,lowerCamelCase : str ,lowerCamelCase : List[Any] ): assert PokerHand(lowerCamelCase ).compare_with(PokerHand(lowerCamelCase ) ) == expected @pytest.mark.parametrize('hand, other, expected' ,generate_random_hands() ) def lowerCAmelCase__ ( lowerCamelCase : Union[str, Any] ,lowerCamelCase : Optional[Any] ,lowerCamelCase : Dict ): assert PokerHand(lowerCamelCase ).compare_with(PokerHand(lowerCamelCase ) ) == expected def lowerCAmelCase__ ( ): _A : int = [PokerHand(lowerCamelCase ) for hand in SORTED_HANDS] _A : str = poker_hands.copy() shuffle(lowerCamelCase ) _A : List[str] = chain(sorted(lowerCamelCase ) ) for index, hand in enumerate(lowerCamelCase ): assert hand == poker_hands[index] def lowerCAmelCase__ ( ): # Test that five high straights are compared correctly. _A : Tuple = [PokerHand('2D AC 3H 4H 5S' ), PokerHand('2S 3H 4H 5S 6C' )] pokerhands.sort(reverse=lowerCamelCase ) assert pokerhands[0].__str__() == "2S 3H 4H 5S 6C" def lowerCAmelCase__ ( ): # Multiple calls to five_high_straight function should still return True # and shouldn't mutate the list in every call other than the first. _A : List[Any] = PokerHand('2C 4S AS 3D 5C' ) _A : List[Any] = True _A : int = [5, 4, 3, 2, 14] for _ in range(10 ): assert pokerhand._is_five_high_straight() == expected assert pokerhand._card_values == expected_card_values def lowerCAmelCase__ ( ): # Problem number 54 from Project Euler # Testing from poker_hands.txt file _A : Union[str, Any] = 0 _A : List[Any] = os.path.abspath(os.path.dirname(lowerCamelCase ) ) _A : Tuple = os.path.join(lowerCamelCase ,'poker_hands.txt' ) with open(lowerCamelCase ) as file_hand: for line in file_hand: _A : str = line[:14].strip() _A : Tuple = line[15:].strip() _A , _A : Union[str, Any] = PokerHand(lowerCamelCase ), PokerHand(lowerCamelCase ) _A : Optional[int] = player.compare_with(lowerCamelCase ) if output == "Win": answer += 1 assert answer == 376
227
'''simple docstring''' class __lowerCamelCase : # Public class to implement a graph """simple docstring""" def __init__( self : Optional[Any] , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : list[list[bool]]): _A : List[Any] = row _A : Union[str, Any] = col _A : List[str] = graph def A ( self : Any , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : list[list[bool]]): return ( 0 <= i < self.ROW and 0 <= j < self.COL and not visited[i][j] and self.graph[i][j] ) def A ( self : Tuple , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : list[list[bool]]): # Checking all 8 elements surrounding nth element _A : Tuple = [-1, -1, -1, 0, 0, 1, 1, 1] # Coordinate order _A : Dict = [-1, 0, 1, -1, 1, -1, 0, 1] _A : List[Any] = True # Make those cells visited for k in range(8): if self.is_safe(i + row_nbr[k] , j + col_nbr[k] , SCREAMING_SNAKE_CASE): self.diffs(i + row_nbr[k] , j + col_nbr[k] , SCREAMING_SNAKE_CASE) def A ( self : int): # And finally, count all islands. _A : Dict = [[False for j in range(self.COL)] for i in range(self.ROW)] _A : Union[str, Any] = 0 for i in range(self.ROW): for j in range(self.COL): if visited[i][j] is False and self.graph[i][j] == 1: self.diffs(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE) count += 1 return count
227
1
"""simple docstring""" import inspect import unittest from transformers import BitConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import BitBackbone, BitForImageClassification, BitImageProcessor, BitModel from transformers.models.bit.modeling_bit import BIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class A_ : """simple docstring""" def __init__( self :Tuple , lowercase_ :str , lowercase_ :Optional[Any]=3 , lowercase_ :List[str]=32 , lowercase_ :str=3 , lowercase_ :Optional[int]=10 , lowercase_ :Union[str, Any]=[8, 16, 32, 64] , lowercase_ :Any=[1, 1, 2, 1] , lowercase_ :Dict=True , lowercase_ :Optional[int]=True , lowercase_ :List[Any]="relu" , lowercase_ :List[str]=3 , lowercase_ :Optional[Any]=None , lowercase_ :Dict=["stage2", "stage3", "stage4"] , lowercase_ :str=[2, 3, 4] , lowercase_ :Union[str, Any]=1 , ) -> Union[str, Any]: UpperCAmelCase = parent UpperCAmelCase = batch_size UpperCAmelCase = image_size UpperCAmelCase = num_channels UpperCAmelCase = embeddings_size UpperCAmelCase = hidden_sizes UpperCAmelCase = depths UpperCAmelCase = is_training UpperCAmelCase = use_labels UpperCAmelCase = hidden_act UpperCAmelCase = num_labels UpperCAmelCase = scope UpperCAmelCase = len(lowercase_ ) UpperCAmelCase = out_features UpperCAmelCase = out_indices UpperCAmelCase = num_groups def UpperCAmelCase__ ( self :Optional[int] ) -> List[str]: UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase = None if self.use_labels: UpperCAmelCase = ids_tensor([self.batch_size] , self.num_labels ) UpperCAmelCase = self.get_config() return config, pixel_values, labels def UpperCAmelCase__ ( self :Union[str, Any] ) -> List[str]: return BitConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , out_features=self.out_features , out_indices=self.out_indices , num_groups=self.num_groups , ) def UpperCAmelCase__ ( self :List[str] , lowercase_ :str , lowercase_ :List[str] , lowercase_ :Dict ) -> List[Any]: UpperCAmelCase = BitModel(config=lowercase_ ) model.to(lowercase_ ) model.eval() UpperCAmelCase = model(lowercase_ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def UpperCAmelCase__ ( self :Tuple , lowercase_ :List[str] , lowercase_ :Optional[int] , lowercase_ :Tuple ) -> List[str]: UpperCAmelCase = self.num_labels UpperCAmelCase = BitForImageClassification(lowercase_ ) model.to(lowercase_ ) model.eval() UpperCAmelCase = model(lowercase_ , labels=lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCAmelCase__ ( self :Union[str, Any] , lowercase_ :Optional[int] , lowercase_ :Tuple , lowercase_ :Optional[Any] ) -> List[str]: UpperCAmelCase = BitBackbone(config=lowercase_ ) model.to(lowercase_ ) model.eval() UpperCAmelCase = model(lowercase_ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None UpperCAmelCase = None UpperCAmelCase = BitBackbone(config=lowercase_ ) model.to(lowercase_ ) model.eval() UpperCAmelCase = model(lowercase_ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def UpperCAmelCase__ ( self :int ) -> int: UpperCAmelCase = self.prepare_config_and_inputs() UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = config_and_inputs UpperCAmelCase = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class A_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ): """simple docstring""" __UpperCamelCase = (BitModel, BitForImageClassification, BitBackbone) if is_torch_available() else () __UpperCamelCase = ( {"""feature-extraction""": BitModel, """image-classification""": BitForImageClassification} if is_torch_available() else {} ) __UpperCamelCase = False __UpperCamelCase = False __UpperCamelCase = False __UpperCamelCase = False __UpperCamelCase = False def UpperCAmelCase__ ( self :Tuple ) -> Union[str, Any]: UpperCAmelCase = BitModelTester(self ) UpperCAmelCase = ConfigTester(self , config_class=lowercase_ , has_text_modality=lowercase_ ) def UpperCAmelCase__ ( self :Optional[int] ) -> str: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCAmelCase__ ( self :int ) -> Tuple: return @unittest.skip(reason='Bit does not output attentions' ) def UpperCAmelCase__ ( self :Dict ) -> int: pass @unittest.skip(reason='Bit does not use inputs_embeds' ) def UpperCAmelCase__ ( self :str ) -> Dict: pass @unittest.skip(reason='Bit does not support input and output embeddings' ) def UpperCAmelCase__ ( self :str ) -> Optional[Any]: pass def UpperCAmelCase__ ( self :List[Any] ) -> Union[str, Any]: UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase = model_class(lowercase_ ) UpperCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase = [*signature.parameters.keys()] UpperCAmelCase = ['pixel_values'] self.assertListEqual(arg_names[:1] , lowercase_ ) def UpperCAmelCase__ ( self :int ) -> List[Any]: UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase_ ) def UpperCAmelCase__ ( self :int ) -> List[Any]: UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*lowercase_ ) def UpperCAmelCase__ ( self :int ) -> Optional[Any]: UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase = model_class(config=lowercase_ ) for name, module in model.named_modules(): if isinstance(lowercase_ , (nn.BatchNormad, nn.GroupNorm) ): self.assertTrue( torch.all(module.weight == 1 ) , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , ) self.assertTrue( torch.all(module.bias == 0 ) , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , ) def UpperCAmelCase__ ( self :List[Any] ) -> str: def check_hidden_states_output(lowercase_ :int , lowercase_ :Optional[Any] , lowercase_ :List[str] ): UpperCAmelCase = model_class(lowercase_ ) model.to(lowercase_ ) model.eval() with torch.no_grad(): UpperCAmelCase = model(**self._prepare_for_class(lowercase_ , lowercase_ ) ) UpperCAmelCase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states UpperCAmelCase = self.model_tester.num_stages self.assertEqual(len(lowercase_ ) , expected_num_stages + 1 ) # Bit's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase = ['preactivation', 'bottleneck'] for model_class in self.all_model_classes: for layer_type in layers_type: UpperCAmelCase = layer_type UpperCAmelCase = True check_hidden_states_output(lowercase_ , lowercase_ , lowercase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase = True check_hidden_states_output(lowercase_ , lowercase_ , lowercase_ ) @unittest.skip(reason='Bit does not use feedforward chunking' ) def UpperCAmelCase__ ( self :Optional[int] ) -> List[Any]: pass def UpperCAmelCase__ ( self :Union[str, Any] ) -> Union[str, Any]: UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowercase_ ) @slow def UpperCAmelCase__ ( self :Optional[int] ) -> Union[str, Any]: for model_name in BIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase = BitModel.from_pretrained(lowercase_ ) self.assertIsNotNone(lowercase_ ) def _lowerCAmelCase ( ): UpperCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class A_ ( unittest.TestCase ): """simple docstring""" @cached_property def UpperCAmelCase__ ( self :Tuple ) -> Tuple: return ( BitImageProcessor.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def UpperCAmelCase__ ( self :List[str] ) -> List[Any]: UpperCAmelCase = BitForImageClassification.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(lowercase_ ) UpperCAmelCase = self.default_image_processor UpperCAmelCase = prepare_img() UpperCAmelCase = image_processor(images=lowercase_ , return_tensors='pt' ).to(lowercase_ ) # forward pass with torch.no_grad(): UpperCAmelCase = model(**lowercase_ ) # verify the logits UpperCAmelCase = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , lowercase_ ) UpperCAmelCase = torch.tensor([[-0.6526, -0.5263, -1.4398]] ).to(lowercase_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowercase_ , atol=1E-4 ) ) @require_torch class A_ ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): """simple docstring""" __UpperCamelCase = (BitBackbone,) if is_torch_available() else () __UpperCamelCase = BitConfig __UpperCamelCase = False def UpperCAmelCase__ ( self :Optional[int] ) -> List[str]: UpperCAmelCase = BitModelTester(self )
78
"""simple docstring""" import os from typing import Dict, List, Tuple, TypeVar, Union UpperCAmelCase : Union[str, Any] = TypeVar("T") UpperCAmelCase : Dict = Union[List[T], Tuple[T, ...]] UpperCAmelCase : int = Union[T, List[T], Dict[str, T]] UpperCAmelCase : Tuple = Union[str, bytes, os.PathLike]
136
0
def SCREAMING_SNAKE_CASE_ (UpperCamelCase , UpperCamelCase , UpperCamelCase ) -> int: def update_area_of_max_square(UpperCamelCase , UpperCamelCase ) -> int: # BASE CASE if row >= rows or col >= cols: return 0 lowerCamelCase__ : Union[str, Any] = update_area_of_max_square(UpperCamelCase , col + 1 ) lowerCamelCase__ : Tuple = update_area_of_max_square(row + 1 , col + 1 ) lowerCamelCase__ : str = update_area_of_max_square(row + 1 , UpperCamelCase ) if mat[row][col]: lowerCamelCase__ : Optional[Any] = 1 + min([right, diagonal, down] ) lowerCamelCase__ : Optional[Any] = max(largest_square_area[0] , UpperCamelCase ) return sub_problem_sol else: return 0 lowerCamelCase__ : Optional[int] = [0] update_area_of_max_square(0 , 0 ) return largest_square_area[0] def SCREAMING_SNAKE_CASE_ (UpperCamelCase , UpperCamelCase , UpperCamelCase ) -> int: def update_area_of_max_square_using_dp_array( UpperCamelCase , UpperCamelCase , UpperCamelCase ) -> int: if row >= rows or col >= cols: return 0 if dp_array[row][col] != -1: return dp_array[row][col] lowerCamelCase__ : Union[str, Any] = update_area_of_max_square_using_dp_array(UpperCamelCase , col + 1 , UpperCamelCase ) lowerCamelCase__ : List[Any] = update_area_of_max_square_using_dp_array(row + 1 , col + 1 , UpperCamelCase ) lowerCamelCase__ : List[Any] = update_area_of_max_square_using_dp_array(row + 1 , UpperCamelCase , UpperCamelCase ) if mat[row][col]: lowerCamelCase__ : str = 1 + min([right, diagonal, down] ) lowerCamelCase__ : int = max(largest_square_area[0] , UpperCamelCase ) lowerCamelCase__ : Tuple = sub_problem_sol return sub_problem_sol else: return 0 lowerCamelCase__ : Tuple = [0] lowerCamelCase__ : Optional[int] = [[-1] * cols for _ in range(UpperCamelCase )] update_area_of_max_square_using_dp_array(0 , 0 , UpperCamelCase ) return largest_square_area[0] def SCREAMING_SNAKE_CASE_ (UpperCamelCase , UpperCamelCase , UpperCamelCase ) -> int: lowerCamelCase__ : str = [[0] * (cols + 1) for _ in range(rows + 1 )] lowerCamelCase__ : int = 0 for row in range(rows - 1 , -1 , -1 ): for col in range(cols - 1 , -1 , -1 ): lowerCamelCase__ : Tuple = dp_array[row][col + 1] lowerCamelCase__ : Optional[Any] = dp_array[row + 1][col + 1] lowerCamelCase__ : int = dp_array[row + 1][col] if mat[row][col] == 1: lowerCamelCase__ : List[Any] = 1 + min(UpperCamelCase , UpperCamelCase , UpperCamelCase ) lowerCamelCase__ : int = max(dp_array[row][col] , UpperCamelCase ) else: lowerCamelCase__ : Union[str, Any] = 0 return largest_square_area def SCREAMING_SNAKE_CASE_ (UpperCamelCase , UpperCamelCase , UpperCamelCase ) -> int: lowerCamelCase__ : List[str] = [0] * (cols + 1) lowerCamelCase__ : Optional[int] = [0] * (cols + 1) lowerCamelCase__ : Dict = 0 for row in range(rows - 1 , -1 , -1 ): for col in range(cols - 1 , -1 , -1 ): lowerCamelCase__ : List[str] = current_row[col + 1] lowerCamelCase__ : Tuple = next_row[col + 1] lowerCamelCase__ : Any = next_row[col] if mat[row][col] == 1: lowerCamelCase__ : Dict = 1 + min(UpperCamelCase , UpperCamelCase , UpperCamelCase ) lowerCamelCase__ : str = max(current_row[col] , UpperCamelCase ) else: lowerCamelCase__ : List[str] = 0 lowerCamelCase__ : Optional[Any] = current_row return largest_square_area if __name__ == "__main__": import doctest doctest.testmod() print(largest_square_area_in_matrix_bottom_up(2, 2, [[1, 1], [1, 1]]))
367
'''simple docstring''' import argparse from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection from diffusers import UnCLIPImageVariationPipeline, UnCLIPPipeline if __name__ == "__main__": _A : List[Any] =argparse.ArgumentParser() parser.add_argument('''--dump_path''', default=None, type=str, required=True, help='''Path to the output model.''') parser.add_argument( '''--txt2img_unclip''', default='''kakaobrain/karlo-v1-alpha''', type=str, required=False, help='''The pretrained txt2img unclip.''', ) _A : Dict =parser.parse_args() _A : List[str] =UnCLIPPipeline.from_pretrained(args.txtaimg_unclip) _A : Any =CLIPImageProcessor() _A : Union[str, Any] =CLIPVisionModelWithProjection.from_pretrained('''openai/clip-vit-large-patch14''') _A : Union[str, Any] =UnCLIPImageVariationPipeline( decoder=txtaimg.decoder, text_encoder=txtaimg.text_encoder, tokenizer=txtaimg.tokenizer, text_proj=txtaimg.text_proj, feature_extractor=feature_extractor, image_encoder=image_encoder, super_res_first=txtaimg.super_res_first, super_res_last=txtaimg.super_res_last, decoder_scheduler=txtaimg.decoder_scheduler, super_res_scheduler=txtaimg.super_res_scheduler, ) imgaimg.save_pretrained(args.dump_path)
129
0
'''simple docstring''' from __future__ import annotations def lowerCamelCase__ ( _A ): a : List[str] = 0.00 a : List[Any] = 0 for resistor in resistors: if resistor <= 0: a : int = f"""Resistor at index {index} has a negative or zero value!""" raise ValueError(SCREAMING_SNAKE_CASE_ ) first_sum += 1 / float(SCREAMING_SNAKE_CASE_ ) index += 1 return 1 / first_sum def lowerCamelCase__ ( _A ): a : Optional[Any] = 0.00 a : Any = 0 for resistor in resistors: sum_r += resistor if resistor < 0: a : Dict = f"""Resistor at index {index} has a negative value!""" raise ValueError(SCREAMING_SNAKE_CASE_ ) index += 1 return sum_r if __name__ == "__main__": import doctest doctest.testmod()
297
import argparse import os import re import packaging.version UpperCamelCase__ = """examples/""" UpperCamelCase__ = { """examples""": (re.compile(R"""^check_min_version\(\"[^\"]+\"\)\s*$""", re.MULTILINE), """check_min_version(\"VERSION\")\n"""), """init""": (re.compile(R"""^__version__\s+=\s+\"([^\"]+)\"\s*$""", re.MULTILINE), """__version__ = \"VERSION\"\n"""), """setup""": (re.compile(R"""^(\s*)version\s*=\s*\"[^\"]+\",""", re.MULTILINE), R"""\1version=\"VERSION\","""), """doc""": (re.compile(R"""^(\s*)release\s*=\s*\"[^\"]+\"$""", re.MULTILINE), """release = \"VERSION\"\n"""), } UpperCamelCase__ = { """init""": """src/transformers/__init__.py""", """setup""": """setup.py""", } UpperCamelCase__ = """README.md""" def _a ( SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : List[str] ): with open(SCREAMING_SNAKE_CASE_ , "r" , encoding="utf-8" , newline="\n" ) as f: __lowerCAmelCase = f.read() __lowerCAmelCase , __lowerCAmelCase = REPLACE_PATTERNS[pattern] __lowerCAmelCase = replace.replace("VERSION" , SCREAMING_SNAKE_CASE_ ) __lowerCAmelCase = re_pattern.sub(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) with open(SCREAMING_SNAKE_CASE_ , "w" , encoding="utf-8" , newline="\n" ) as f: f.write(SCREAMING_SNAKE_CASE_ ) def _a ( SCREAMING_SNAKE_CASE_ : List[Any] ): for folder, directories, fnames in os.walk(SCREAMING_SNAKE_CASE_ ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove("research_projects" ) if "legacy" in directories: directories.remove("legacy" ) for fname in fnames: if fname.endswith(".py" ): update_version_in_file(os.path.join(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ , pattern="examples" ) def _a ( SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : Optional[int]=False ): for pattern, fname in REPLACE_FILES.items(): update_version_in_file(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if not patch: update_version_in_examples(SCREAMING_SNAKE_CASE_ ) def _a ( ): __lowerCAmelCase = "🤗 Transformers currently provides the following architectures" __lowerCAmelCase = "1. Want to contribute a new model?" with open(SCREAMING_SNAKE_CASE_ , "r" , encoding="utf-8" , newline="\n" ) as f: __lowerCAmelCase = f.readlines() # Find the start of the list. __lowerCAmelCase = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 __lowerCAmelCase = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith("1." ): __lowerCAmelCase = lines[index].replace( "https://huggingface.co/docs/transformers/main/model_doc" , "https://huggingface.co/docs/transformers/model_doc" , ) index += 1 with open(SCREAMING_SNAKE_CASE_ , "w" , encoding="utf-8" , newline="\n" ) as f: f.writelines(SCREAMING_SNAKE_CASE_ ) def _a ( ): with open(REPLACE_FILES["init"] , "r" ) as f: __lowerCAmelCase = f.read() __lowerCAmelCase = REPLACE_PATTERNS["init"][0].search(SCREAMING_SNAKE_CASE_ ).groups()[0] return packaging.version.parse(SCREAMING_SNAKE_CASE_ ) def _a ( SCREAMING_SNAKE_CASE_ : List[Any]=False ): __lowerCAmelCase = get_version() if patch and default_version.is_devrelease: raise ValueError("Can't create a patch version from the dev branch, checkout a released version!" ) if default_version.is_devrelease: __lowerCAmelCase = default_version.base_version elif patch: __lowerCAmelCase = F"""{default_version.major}.{default_version.minor}.{default_version.micro + 1}""" else: __lowerCAmelCase = F"""{default_version.major}.{default_version.minor + 1}.0""" # Now let's ask nicely if that's the right one. __lowerCAmelCase = input(F"""Which version are you releasing? [{default_version}]""" ) if len(SCREAMING_SNAKE_CASE_ ) == 0: __lowerCAmelCase = default_version print(F"""Updating version to {version}.""" ) global_version_update(SCREAMING_SNAKE_CASE_ , patch=SCREAMING_SNAKE_CASE_ ) if not patch: print("Cleaning main README, don't forget to run `make fix-copies`." ) clean_main_ref_in_model_list() def _a ( ): __lowerCAmelCase = get_version() __lowerCAmelCase = F"""{current_version.major}.{current_version.minor + 1}.0.dev0""" __lowerCAmelCase = current_version.base_version # Check with the user we got that right. __lowerCAmelCase = input(F"""Which version are we developing now? [{dev_version}]""" ) if len(SCREAMING_SNAKE_CASE_ ) == 0: __lowerCAmelCase = dev_version print(F"""Updating version to {version}.""" ) global_version_update(SCREAMING_SNAKE_CASE_ ) print("Cleaning main README, don't forget to run `make fix-copies`." ) clean_main_ref_in_model_list() if __name__ == "__main__": UpperCamelCase__ = argparse.ArgumentParser() parser.add_argument("""--post_release""", action="""store_true""", help="""Whether this is pre or post release.""") parser.add_argument("""--patch""", action="""store_true""", help="""Whether or not this is a patch release.""") UpperCamelCase__ = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print("""Nothing to do after a patch :-)""") else: post_release_work()
92
0
import os import string import sys __UpperCamelCase : Any = 1 << 8 __UpperCamelCase : Optional[Any] = { "tab": ord("\t"), "newline": ord("\r"), "esc": 27, "up": 65 + ARROW_KEY_FLAG, "down": 66 + ARROW_KEY_FLAG, "right": 67 + ARROW_KEY_FLAG, "left": 68 + ARROW_KEY_FLAG, "mod_int": 91, "undefined": sys.maxsize, "interrupt": 3, "insert": 50, "delete": 51, "pg_up": 53, "pg_down": 54, } __UpperCamelCase : Union[str, Any] = KEYMAP["up"] __UpperCamelCase : int = KEYMAP["left"] if sys.platform == "win32": __UpperCamelCase : Tuple = [] __UpperCamelCase : List[Any] = { b"\xe0H": KEYMAP["up"] - ARROW_KEY_FLAG, b"\x00H": KEYMAP["up"] - ARROW_KEY_FLAG, b"\xe0P": KEYMAP["down"] - ARROW_KEY_FLAG, b"\x00P": KEYMAP["down"] - ARROW_KEY_FLAG, b"\xe0M": KEYMAP["right"] - ARROW_KEY_FLAG, b"\x00M": KEYMAP["right"] - ARROW_KEY_FLAG, b"\xe0K": KEYMAP["left"] - ARROW_KEY_FLAG, b"\x00K": KEYMAP["left"] - ARROW_KEY_FLAG, } for i in range(10): __UpperCamelCase : Any = ord(str(i)) def __A ( ) -> List[str]: if os.name == "nt": import msvcrt a = """mbcs""" # Flush the keyboard buffer while msvcrt.kbhit(): msvcrt.getch() if len(UpperCAmelCase__ ) == 0: # Read the keystroke a = msvcrt.getch() # If it is a prefix char, get second part if ch in (b"\x00", b"\xe0"): a = ch + msvcrt.getch() # Translate actual Win chars to bullet char types try: a = chr(WIN_KEYMAP[cha] ) WIN_CH_BUFFER.append(chr(KEYMAP["""mod_int"""] ) ) WIN_CH_BUFFER.append(UpperCAmelCase__ ) if ord(UpperCAmelCase__ ) in ( KEYMAP["insert"] - 1 << 9, KEYMAP["delete"] - 1 << 9, KEYMAP["pg_up"] - 1 << 9, KEYMAP["pg_down"] - 1 << 9, ): WIN_CH_BUFFER.append(chr(126 ) ) a = chr(KEYMAP["""esc"""] ) except KeyError: a = cha[1] else: a = ch.decode(UpperCAmelCase__ ) else: a = WIN_CH_BUFFER.pop(0 ) elif os.name == "posix": import termios import tty a = sys.stdin.fileno() a = termios.tcgetattr(UpperCAmelCase__ ) try: tty.setraw(UpperCAmelCase__ ) a = sys.stdin.read(1 ) finally: termios.tcsetattr(UpperCAmelCase__ , termios.TCSADRAIN , UpperCAmelCase__ ) return ch def __A ( ) -> Union[str, Any]: a = get_raw_chars() if ord(UpperCAmelCase__ ) in [KEYMAP["interrupt"], KEYMAP["newline"]]: return char elif ord(UpperCAmelCase__ ) == KEYMAP["esc"]: a = get_raw_chars() if ord(UpperCAmelCase__ ) == KEYMAP["mod_int"]: a = get_raw_chars() if ord(UpperCAmelCase__ ) >= KEYMAP["arrow_begin"] - ARROW_KEY_FLAG and ord(UpperCAmelCase__ ) <= KEYMAP["arrow_end"] - ARROW_KEY_FLAG: return chr(ord(UpperCAmelCase__ ) + ARROW_KEY_FLAG ) else: return KEYMAP["undefined"] else: return get_raw_chars() else: if char in string.printable: return char else: return KEYMAP["undefined"]
371
import unittest import numpy as np from transformers import RobertaConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.roberta.modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, ) class __lowerCAmelCase ( unittest.TestCase ): def __init__( self :Optional[int] , __magic_name__ :Tuple , __magic_name__ :Tuple=13 , __magic_name__ :List[Any]=7 , __magic_name__ :Optional[Any]=True , __magic_name__ :List[Any]=True , __magic_name__ :Union[str, Any]=True , __magic_name__ :List[str]=True , __magic_name__ :str=99 , __magic_name__ :Optional[Any]=32 , __magic_name__ :Union[str, Any]=5 , __magic_name__ :Any=4 , __magic_name__ :int=37 , __magic_name__ :Tuple="gelu" , __magic_name__ :List[str]=0.1 , __magic_name__ :Dict=0.1 , __magic_name__ :Tuple=512 , __magic_name__ :Dict=16 , __magic_name__ :Optional[int]=2 , __magic_name__ :Optional[int]=0.02 , __magic_name__ :Optional[Any]=4 , ): '''simple docstring''' a = parent a = batch_size a = seq_length a = is_training a = use_attention_mask a = use_token_type_ids a = use_labels a = vocab_size a = hidden_size a = num_hidden_layers a = num_attention_heads a = intermediate_size a = hidden_act a = hidden_dropout_prob a = attention_probs_dropout_prob a = max_position_embeddings a = type_vocab_size a = type_sequence_label_size a = initializer_range a = num_choices def lowerCamelCase__ ( self :int ): '''simple docstring''' a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) a = None if self.use_attention_mask: a = random_attention_mask([self.batch_size, self.seq_length] ) a = None if self.use_token_type_ids: a = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) a = RobertaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__magic_name__ , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def lowerCamelCase__ ( self :List[Any] ): '''simple docstring''' a = self.prepare_config_and_inputs() a , a , a , a = config_and_inputs a = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask} return config, inputs_dict def lowerCamelCase__ ( self :Dict ): '''simple docstring''' a = self.prepare_config_and_inputs() a , a , a , a = config_and_inputs a = True a = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) a = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ): UpperCamelCase__ = True UpperCamelCase__ = ( ( FlaxRobertaModel, FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, ) if is_flax_available() else () ) def lowerCamelCase__ ( self :Dict ): '''simple docstring''' a = FlaxRobertaModelTester(self ) @slow def lowerCamelCase__ ( self :Optional[Any] ): '''simple docstring''' for model_class_name in self.all_model_classes: a = model_class_name.from_pretrained("""roberta-base""" , from_pt=__magic_name__ ) a = model(np.ones((1, 1) ) ) self.assertIsNotNone(__magic_name__ )
347
0
import gc import inspect import unittest import torch from parameterized import parameterized from diffusers import PriorTransformer from diffusers.utils import floats_tensor, slow, torch_all_close, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin enable_full_determinism() class __snake_case ( a , unittest.TestCase ): UpperCAmelCase__ : Tuple = PriorTransformer UpperCAmelCase__ : Tuple = '''hidden_states''' @property def lowerCamelCase ( self : Any): """simple docstring""" UpperCAmelCase_ = 4 UpperCAmelCase_ = 8 UpperCAmelCase_ = 7 UpperCAmelCase_ = floats_tensor((batch_size, embedding_dim)).to(_snake_case) UpperCAmelCase_ = floats_tensor((batch_size, embedding_dim)).to(_snake_case) UpperCAmelCase_ = floats_tensor((batch_size, num_embeddings, embedding_dim)).to(_snake_case) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } def lowerCamelCase ( self : int , _snake_case : List[str]=0): """simple docstring""" torch.manual_seed(_snake_case) UpperCAmelCase_ = 4 UpperCAmelCase_ = 8 UpperCAmelCase_ = 7 UpperCAmelCase_ = torch.randn((batch_size, embedding_dim)).to(_snake_case) UpperCAmelCase_ = torch.randn((batch_size, embedding_dim)).to(_snake_case) UpperCAmelCase_ = torch.randn((batch_size, num_embeddings, embedding_dim)).to(_snake_case) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } @property def lowerCamelCase ( self : List[Any]): """simple docstring""" return (4, 8) @property def lowerCamelCase ( self : str): """simple docstring""" return (4, 8) def lowerCamelCase ( self : List[Any]): """simple docstring""" UpperCAmelCase_ = { '''num_attention_heads''': 2, '''attention_head_dim''': 4, '''num_layers''': 2, '''embedding_dim''': 8, '''num_embeddings''': 7, '''additional_embeddings''': 4, } UpperCAmelCase_ = self.dummy_input return init_dict, inputs_dict def lowerCamelCase ( self : int): """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ = PriorTransformer.from_pretrained( '''hf-internal-testing/prior-dummy''' , output_loading_info=_snake_case) self.assertIsNotNone(_snake_case) self.assertEqual(len(loading_info['''missing_keys''']) , 0) model.to(_snake_case) UpperCAmelCase_ = model(**self.dummy_input)[0] assert hidden_states is not None, "Make sure output is not None" def lowerCamelCase ( self : List[str]): """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ = self.prepare_init_args_and_inputs_for_common() UpperCAmelCase_ = self.model_class(**_snake_case) UpperCAmelCase_ = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase_ = [*signature.parameters.keys()] UpperCAmelCase_ = ['''hidden_states''', '''timestep'''] self.assertListEqual(arg_names[:2] , _snake_case) def lowerCamelCase ( self : str): """simple docstring""" UpperCAmelCase_ = PriorTransformer.from_pretrained('''hf-internal-testing/prior-dummy''') UpperCAmelCase_ = model.to(_snake_case) if hasattr(_snake_case , '''set_default_attn_processor'''): model.set_default_attn_processor() UpperCAmelCase_ = self.get_dummy_seed_input() with torch.no_grad(): UpperCAmelCase_ = model(**_snake_case)[0] UpperCAmelCase_ = output[0, :5].flatten().cpu() print(_snake_case) # Since the VAE Gaussian prior's generator is seeded on the appropriate device, # the expected output slices are not the same for CPU and GPU. UpperCAmelCase_ = torch.tensor([-1.3_4_3_6, -0.2_8_7_0, 0.7_5_3_8, 0.4_3_6_8, -0.0_2_3_9]) self.assertTrue(torch_all_close(_snake_case , _snake_case , rtol=1e-2)) @slow class __snake_case ( unittest.TestCase ): def lowerCamelCase ( self : Union[str, Any] , _snake_case : Optional[Any]=1 , _snake_case : Any=768 , _snake_case : Optional[Any]=77 , _snake_case : Optional[int]=0): """simple docstring""" torch.manual_seed(_snake_case) UpperCAmelCase_ = batch_size UpperCAmelCase_ = embedding_dim UpperCAmelCase_ = num_embeddings UpperCAmelCase_ = torch.randn((batch_size, embedding_dim)).to(_snake_case) UpperCAmelCase_ = torch.randn((batch_size, embedding_dim)).to(_snake_case) UpperCAmelCase_ = torch.randn((batch_size, num_embeddings, embedding_dim)).to(_snake_case) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } def lowerCamelCase ( self : str): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() @parameterized.expand( [ # fmt: off [13, [-0.5_8_6_1, 0.1_2_8_3, -0.0_9_3_1, 0.0_8_8_2, 0.4_4_7_6, 0.1_3_2_9, -0.0_4_9_8, 0.0_6_4_0]], [37, [-0.4_9_1_3, 0.0_1_1_0, -0.0_4_8_3, 0.0_5_4_1, 0.4_9_5_4, -0.0_1_7_0, 0.0_3_5_4, 0.1_6_5_1]], # fmt: on ]) def lowerCamelCase ( self : List[str] , _snake_case : List[Any] , _snake_case : List[Any]): """simple docstring""" UpperCAmelCase_ = PriorTransformer.from_pretrained('''kandinsky-community/kandinsky-2-1-prior''' , subfolder='''prior''') model.to(_snake_case) UpperCAmelCase_ = self.get_dummy_seed_input(seed=_snake_case) with torch.no_grad(): UpperCAmelCase_ = model(**_snake_case)[0] assert list(sample.shape) == [1, 768] UpperCAmelCase_ = sample[0, :8].flatten().cpu() print(_snake_case) UpperCAmelCase_ = torch.tensor(_snake_case) assert torch_all_close(_snake_case , _snake_case , atol=1e-3)
51
from __future__ import annotations import numpy as np def __lowerCamelCase ( UpperCamelCase__ ): '''simple docstring''' snake_case_ , snake_case_ = np.shape(UpperCamelCase__ ) if rows != columns: snake_case_ = ( '\'table\' has to be of square shaped array but got a ' F'''{rows}x{columns} array:\n{table}''' ) raise ValueError(UpperCamelCase__ ) snake_case_ = np.zeros((rows, columns) ) snake_case_ = np.zeros((rows, columns) ) for i in range(UpperCamelCase__ ): for j in range(UpperCamelCase__ ): snake_case_ = sum(lower[i][k] * upper[k][j] for k in range(UpperCamelCase__ ) ) if upper[j][j] == 0: raise ArithmeticError('No LU decomposition exists' ) snake_case_ = (table[i][j] - total) / upper[j][j] snake_case_ = 1 for j in range(UpperCamelCase__ , UpperCamelCase__ ): snake_case_ = sum(lower[i][k] * upper[k][j] for k in range(UpperCamelCase__ ) ) snake_case_ = table[i][j] - total return lower, upper if __name__ == "__main__": import doctest doctest.testmod()
285
0
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ : List[Any] =logging.get_logger(__name__) lowerCAmelCase__ : Optional[int] ={ 'facebook/timesformer': 'https://huggingface.co/facebook/timesformer/resolve/main/config.json', } class __lowercase (__SCREAMING_SNAKE_CASE ): """simple docstring""" _UpperCAmelCase = """timesformer""" def __init__( self , lowerCAmelCase__=2_2_4 , lowerCAmelCase__=1_6 , lowerCAmelCase__=3 , lowerCAmelCase__=8 , lowerCAmelCase__=7_6_8 , lowerCAmelCase__=1_2 , lowerCAmelCase__=1_2 , lowerCAmelCase__=3_0_7_2 , lowerCAmelCase__="gelu" , lowerCAmelCase__=0.0 , lowerCAmelCase__=0.0 , lowerCAmelCase__=0.02 , lowerCAmelCase__=1E-6 , lowerCAmelCase__=True , lowerCAmelCase__="divided_space_time" , lowerCAmelCase__=0 , **lowerCAmelCase__ , ): """simple docstring""" super().__init__(**lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Tuple = image_size SCREAMING_SNAKE_CASE_ : int = patch_size SCREAMING_SNAKE_CASE_ : Tuple = num_channels SCREAMING_SNAKE_CASE_ : Optional[Any] = num_frames SCREAMING_SNAKE_CASE_ : int = hidden_size SCREAMING_SNAKE_CASE_ : Union[str, Any] = num_hidden_layers SCREAMING_SNAKE_CASE_ : str = num_attention_heads SCREAMING_SNAKE_CASE_ : List[str] = intermediate_size SCREAMING_SNAKE_CASE_ : Optional[int] = hidden_act SCREAMING_SNAKE_CASE_ : Tuple = hidden_dropout_prob SCREAMING_SNAKE_CASE_ : Tuple = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ : Optional[Any] = initializer_range SCREAMING_SNAKE_CASE_ : Optional[int] = layer_norm_eps SCREAMING_SNAKE_CASE_ : int = qkv_bias SCREAMING_SNAKE_CASE_ : Any = attention_type SCREAMING_SNAKE_CASE_ : Tuple = drop_path_rate
162
import unittest import torch from torch import nn from accelerate.test_utils import require_cuda from accelerate.utils.memory import find_executable_batch_size, release_memory def a__ ( ): raise RuntimeError('CUDA out of memory.' ) class __lowercase (nn.Module ): """simple docstring""" def __init__( self ): """simple docstring""" super().__init__() SCREAMING_SNAKE_CASE_ : int = nn.Linear(3 , 4 ) SCREAMING_SNAKE_CASE_ : Tuple = nn.BatchNormad(4 ) SCREAMING_SNAKE_CASE_ : str = nn.Linear(4 , 5 ) def UpperCamelCase__ ( self , lowerCAmelCase__ ): """simple docstring""" return self.lineara(self.batchnorm(self.lineara(lowerCAmelCase__ ) ) ) class __lowercase (unittest.TestCase ): """simple docstring""" def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = [] @find_executable_batch_size(starting_batch_size=1_2_8 ) def mock_training_loop_function(lowerCAmelCase__ ): nonlocal batch_sizes batch_sizes.append(lowerCAmelCase__ ) if batch_size != 8: raise_fake_out_of_memory() mock_training_loop_function() self.assertListEqual(lowerCAmelCase__ , [1_2_8, 6_4, 3_2, 1_6, 8] ) def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = [] @find_executable_batch_size(starting_batch_size=1_2_8 ) def mock_training_loop_function(lowerCAmelCase__ , lowerCAmelCase__ ): nonlocal batch_sizes batch_sizes.append(lowerCAmelCase__ ) if batch_size != 8: raise_fake_out_of_memory() return batch_size, arga SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Dict = mock_training_loop_function('hello' ) self.assertListEqual(lowerCAmelCase__ , [1_2_8, 6_4, 3_2, 1_6, 8] ) self.assertListEqual([bs, arga] , [8, 'hello'] ) def UpperCamelCase__ ( self ): """simple docstring""" @find_executable_batch_size(starting_batch_size=0 ) def mock_training_loop_function(lowerCAmelCase__ ): pass with self.assertRaises(lowerCAmelCase__ ) as cm: mock_training_loop_function() self.assertIn('No executable batch size found, reached zero.' , cm.exception.args[0] ) def UpperCamelCase__ ( self ): """simple docstring""" @find_executable_batch_size(starting_batch_size=1_6 ) def mock_training_loop_function(lowerCAmelCase__ ): if batch_size > 0: raise_fake_out_of_memory() pass with self.assertRaises(lowerCAmelCase__ ) as cm: mock_training_loop_function() self.assertIn('No executable batch size found, reached zero.' , cm.exception.args[0] ) def UpperCamelCase__ ( self ): """simple docstring""" @find_executable_batch_size(starting_batch_size=1_2_8 ) def mock_training_loop_function(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): if batch_size != 8: raise raise_fake_out_of_memory() with self.assertRaises(lowerCAmelCase__ ) as cm: mock_training_loop_function(1_2_8 , 'hello' , 'world' ) self.assertIn('Batch size was passed into `f`' , cm.exception.args[0] ) self.assertIn('`f(arg1=\'hello\', arg2=\'world\')' , cm.exception.args[0] ) def UpperCamelCase__ ( self ): """simple docstring""" @find_executable_batch_size(starting_batch_size=1_6 ) def mock_training_loop_function(lowerCAmelCase__ ): raise ValueError('Oops, we had an error!' ) with self.assertRaises(lowerCAmelCase__ ) as cm: mock_training_loop_function() self.assertIn('Oops, we had an error!' , cm.exception.args[0] ) @require_cuda def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = torch.cuda.memory_allocated() SCREAMING_SNAKE_CASE_ : Optional[int] = ModelForTest() model.cuda() self.assertGreater(torch.cuda.memory_allocated() , lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : List[Any] = release_memory(lowerCAmelCase__ ) self.assertEqual(torch.cuda.memory_allocated() , lowerCAmelCase__ )
162
1
"""simple docstring""" import math def UpperCAmelCase__ ( ): """simple docstring""" A_ : List[str] = input('Enter message: ' ) A_ : str = int(input(f"""Enter key [2-{len(_UpperCAmelCase ) - 1}]: """ ) ) A_ : Optional[int] = input('Encryption/Decryption [e/d]: ' ) if mode.lower().startswith('e' ): A_ : Any = encrypt_message(_UpperCAmelCase , _UpperCAmelCase ) elif mode.lower().startswith('d' ): A_ : int = decrypt_message(_UpperCAmelCase , _UpperCAmelCase ) # Append pipe symbol (vertical bar) to identify spaces at the end. print(f"""Output:\n{text + "|"}""" ) def UpperCAmelCase__ ( _UpperCAmelCase , _UpperCAmelCase ): """simple docstring""" A_ : List[str] = [''] * key for col in range(_UpperCAmelCase ): A_ : Optional[Any] = col while pointer < len(_UpperCAmelCase ): cipher_text[col] += message[pointer] pointer += key return "".join(_UpperCAmelCase ) def UpperCAmelCase__ ( _UpperCAmelCase , _UpperCAmelCase ): """simple docstring""" A_ : str = math.ceil(len(_UpperCAmelCase ) / key ) A_ : Optional[Any] = key A_ : Any = (num_cols * num_rows) - len(_UpperCAmelCase ) A_ : Any = [''] * num_cols A_ : Dict = 0 A_ : str = 0 for symbol in message: plain_text[col] += symbol col += 1 if ( (col == num_cols) or (col == num_cols - 1) and (row >= num_rows - num_shaded_boxes) ): A_ : str = 0 row += 1 return "".join(_UpperCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod() main()
286
"""simple docstring""" from transformers import BertTokenizerFast from .custom_tokenization import CustomTokenizer class _UpperCAmelCase ( UpperCAmelCase__ ): '''simple docstring''' lowercase_ : List[str] = CustomTokenizer pass
286
1
"""simple docstring""" import unittest from .lib import ( Matrix, Vector, axpy, square_zero_matrix, unit_basis_vector, zero_vector, ) class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Dict = Vector([1, 2, 3] ) self.assertEqual(x.component(0 ) , 1 ) self.assertEqual(x.component(2 ) , 3 ) lowerCAmelCase : Dict = Vector() def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : List[Any] = Vector([0, 0, 0, 0, 0, 1] ) self.assertEqual(str(snake_case__ ) , "(0,0,0,0,0,1)" ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : List[Any] = Vector([1, 2, 3, 4] ) self.assertEqual(len(snake_case__ ) , 4 ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : List[str] = Vector([1, 2] ) lowerCAmelCase : str = Vector([1, 2, 3, 4, 5] ) lowerCAmelCase : Any = Vector([0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ) lowerCAmelCase : Tuple = Vector([1, -1, 1, -1, 2, -3, 4, -5] ) self.assertAlmostEqual(x.euclidean_length() , 2.236 , 3 ) self.assertAlmostEqual(y.euclidean_length() , 7.416 , 3 ) self.assertEqual(z.euclidean_length() , 0 ) self.assertAlmostEqual(w.euclidean_length() , 7.616 , 3 ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : List[str] = Vector([1, 2, 3] ) lowerCAmelCase : str = Vector([1, 1, 1] ) self.assertEqual((x + y).component(0 ) , 2 ) self.assertEqual((x + y).component(1 ) , 3 ) self.assertEqual((x + y).component(2 ) , 4 ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Optional[int] = Vector([1, 2, 3] ) lowerCAmelCase : Tuple = Vector([1, 1, 1] ) self.assertEqual((x - y).component(0 ) , 0 ) self.assertEqual((x - y).component(1 ) , 1 ) self.assertEqual((x - y).component(2 ) , 2 ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : List[Any] = Vector([1, 2, 3] ) lowerCAmelCase : Optional[int] = Vector([2, -1, 4] ) # for test of dot product lowerCAmelCase : Any = Vector([1, -2, -1] ) self.assertEqual(str(x * 3.0 ) , "(3.0,6.0,9.0)" ) self.assertEqual((a * b) , 0 ) def lowercase__ ( self ): """simple docstring""" self.assertEqual(str(zero_vector(10 ) ).count("0" ) , 10 ) def lowercase__ ( self ): """simple docstring""" self.assertEqual(str(unit_basis_vector(3 , 1 ) ) , "(0,1,0)" ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Optional[Any] = Vector([1, 2, 3] ) lowerCAmelCase : Union[str, Any] = Vector([1, 0, 1] ) self.assertEqual(str(axpy(2 , snake_case__ , snake_case__ ) ) , "(3,4,7)" ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Tuple = Vector([1, 0, 0, 0, 0, 0] ) lowerCAmelCase : Union[str, Any] = x.copy() self.assertEqual(str(snake_case__ ) , str(snake_case__ ) ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Optional[Any] = Vector([1, 0, 0] ) x.change_component(0 , 0 ) x.change_component(1 , 1 ) self.assertEqual(str(snake_case__ ) , "(0,1,0)" ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Union[str, Any] = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual("|1,2,3|\n|2,4,5|\n|6,7,8|\n" , str(snake_case__ ) ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Any = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) lowerCAmelCase : str = [[-3, -14, -10], [-5, -10, -5], [-2, -1, 0]] for x in range(a.height() ): for y in range(a.width() ): self.assertEqual(minors[x][y] , a.minor(snake_case__ , snake_case__ ) ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : List[str] = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) lowerCAmelCase : List[Any] = [[-3, 14, -10], [5, -10, 5], [-2, 1, 0]] for x in range(a.height() ): for y in range(a.width() ): self.assertEqual(cofactors[x][y] , a.cofactor(snake_case__ , snake_case__ ) ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Dict = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual(-5 , a.determinant() ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Dict = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]] , 3 , 3 ) lowerCAmelCase : int = Vector([1, 2, 3] ) self.assertEqual("(14,32,50)" , str(a * x ) ) self.assertEqual("|2,4,6|\n|8,10,12|\n|14,16,18|\n" , str(a * 2 ) ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Any = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) a.change_component(0 , 2 , 5 ) self.assertEqual("|1,2,5|\n|2,4,5|\n|6,7,8|\n" , str(snake_case__ ) ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : List[str] = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual(7 , a.component(2 , 1 ) , 0.01 ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Any = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) lowerCAmelCase : int = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]] , 3 , 3 ) self.assertEqual("|2,4,10|\n|4,8,10|\n|12,14,18|\n" , str(a + b ) ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Any = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) lowerCAmelCase : Dict = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]] , 3 , 3 ) self.assertEqual("|0,0,-4|\n|0,0,0|\n|0,0,-2|\n" , str(a - b ) ) def lowercase__ ( self ): """simple docstring""" self.assertEqual( "|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n" , str(square_zero_matrix(5 ) ) , ) if __name__ == "__main__": unittest.main()
368
"""simple docstring""" import argparse import glob import importlib.util import os import re import black from doc_builder.style_doc import style_docstrings_in_code # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py lowerCAmelCase__ = '''src/diffusers''' lowerCAmelCase__ = '''.''' # This is to make sure the diffusers module imported is the one in the repo. lowerCAmelCase__ = importlib.util.spec_from_file_location( '''diffusers''', os.path.join(DIFFUSERS_PATH, '''__init__.py'''), submodule_search_locations=[DIFFUSERS_PATH], ) lowerCAmelCase__ = spec.loader.load_module() def a__ ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int ): '''simple docstring''' return line.startswith(SCREAMING_SNAKE_CASE ) or len(SCREAMING_SNAKE_CASE ) <= 1 or re.search(r"^\s*\)(\s*->.*:|:)\s*$" , SCREAMING_SNAKE_CASE ) is not None def a__ ( SCREAMING_SNAKE_CASE : Tuple ): '''simple docstring''' lowerCAmelCase : Dict = object_name.split("." ) lowerCAmelCase : Optional[int] = 0 # First let's find the module where our object lives. lowerCAmelCase : Any = parts[i] while i < len(SCREAMING_SNAKE_CASE ) and not os.path.isfile(os.path.join(SCREAMING_SNAKE_CASE , f"""{module}.py""" ) ): i += 1 if i < len(SCREAMING_SNAKE_CASE ): lowerCAmelCase : Optional[Any] = os.path.join(SCREAMING_SNAKE_CASE , parts[i] ) if i >= len(SCREAMING_SNAKE_CASE ): raise ValueError(f"""`object_name` should begin with the name of a module of diffusers but got {object_name}.""" ) with open(os.path.join(SCREAMING_SNAKE_CASE , f"""{module}.py""" ) , "r" , encoding="utf-8" , newline="\n" ) as f: lowerCAmelCase : List[Any] = f.readlines() # Now let's find the class / func in the code! lowerCAmelCase : List[str] = "" lowerCAmelCase : int = 0 for name in parts[i + 1 :]: while ( line_index < len(SCREAMING_SNAKE_CASE ) and re.search(rf"""^{indent}(class|def)\s+{name}(\(|\:)""" , lines[line_index] ) is None ): line_index += 1 indent += " " line_index += 1 if line_index >= len(SCREAMING_SNAKE_CASE ): raise ValueError(f""" {object_name} does not match any function or class in {module}.""" ) # We found the beginning of the class / func, now let's find the end (when the indent diminishes). lowerCAmelCase : List[str] = line_index while line_index < len(SCREAMING_SNAKE_CASE ) and _should_continue(lines[line_index] , SCREAMING_SNAKE_CASE ): line_index += 1 # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 lowerCAmelCase : List[Any] = lines[start_index:line_index] return "".join(SCREAMING_SNAKE_CASE ) lowerCAmelCase__ = re.compile(r'''^(\s*)#\s*Copied from\s+diffusers\.(\S+\.\S+)\s*($|\S.*$)''') lowerCAmelCase__ = re.compile(r'''^\s*(\S+)->(\S+)(\s+.*|$)''') lowerCAmelCase__ = re.compile(r'''<FILL\s+[^>]*>''') def a__ ( SCREAMING_SNAKE_CASE : str ): '''simple docstring''' lowerCAmelCase : int = code.split("\n" ) lowerCAmelCase : List[str] = 0 while idx < len(SCREAMING_SNAKE_CASE ) and len(lines[idx] ) == 0: idx += 1 if idx < len(SCREAMING_SNAKE_CASE ): return re.search(r"^(\s*)\S" , lines[idx] ).groups()[0] return "" def a__ ( SCREAMING_SNAKE_CASE : Optional[int] ): '''simple docstring''' lowerCAmelCase : List[Any] = len(get_indent(SCREAMING_SNAKE_CASE ) ) > 0 if has_indent: lowerCAmelCase : Tuple = f"""class Bla:\n{code}""" lowerCAmelCase : Optional[Any] = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=1_1_9 , preview=SCREAMING_SNAKE_CASE ) lowerCAmelCase : Dict = black.format_str(SCREAMING_SNAKE_CASE , mode=SCREAMING_SNAKE_CASE ) lowerCAmelCase , lowerCAmelCase : List[Any] = style_docstrings_in_code(SCREAMING_SNAKE_CASE ) return result[len("class Bla:\n" ) :] if has_indent else result def a__ ( SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : int=False ): '''simple docstring''' with open(SCREAMING_SNAKE_CASE , "r" , encoding="utf-8" , newline="\n" ) as f: lowerCAmelCase : int = f.readlines() lowerCAmelCase : List[str] = [] lowerCAmelCase : str = 0 # Not a for loop cause `lines` is going to change (if `overwrite=True`). while line_index < len(SCREAMING_SNAKE_CASE ): lowerCAmelCase : List[Any] = _re_copy_warning.search(lines[line_index] ) if search is None: line_index += 1 continue # There is some copied code here, let's retrieve the original. lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : List[Any] = search.groups() lowerCAmelCase : List[str] = find_code_in_diffusers(SCREAMING_SNAKE_CASE ) lowerCAmelCase : Optional[Any] = get_indent(SCREAMING_SNAKE_CASE ) lowerCAmelCase : Dict = line_index + 1 if indent == theoretical_indent else line_index + 2 lowerCAmelCase : Optional[int] = theoretical_indent lowerCAmelCase : List[str] = start_index # Loop to check the observed code, stop when indentation diminishes or if we see a End copy comment. lowerCAmelCase : str = True while line_index < len(SCREAMING_SNAKE_CASE ) and should_continue: line_index += 1 if line_index >= len(SCREAMING_SNAKE_CASE ): break lowerCAmelCase : Tuple = lines[line_index] lowerCAmelCase : str = _should_continue(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and re.search(f"""^{indent}# End copy""" , SCREAMING_SNAKE_CASE ) is None # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 lowerCAmelCase : Tuple = lines[start_index:line_index] lowerCAmelCase : List[str] = "".join(SCREAMING_SNAKE_CASE ) # Remove any nested `Copied from` comments to avoid circular copies lowerCAmelCase : List[str] = [line for line in theoretical_code.split("\n" ) if _re_copy_warning.search(SCREAMING_SNAKE_CASE ) is None] lowerCAmelCase : Union[str, Any] = "\n".join(SCREAMING_SNAKE_CASE ) # Before comparing, use the `replace_pattern` on the original code. if len(SCREAMING_SNAKE_CASE ) > 0: lowerCAmelCase : str = replace_pattern.replace("with" , "" ).split("," ) lowerCAmelCase : List[str] = [_re_replace_pattern.search(SCREAMING_SNAKE_CASE ) for p in patterns] for pattern in patterns: if pattern is None: continue lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : List[str] = pattern.groups() lowerCAmelCase : List[Any] = re.sub(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if option.strip() == "all-casing": lowerCAmelCase : Optional[Any] = re.sub(obja.lower() , obja.lower() , SCREAMING_SNAKE_CASE ) lowerCAmelCase : Dict = re.sub(obja.upper() , obja.upper() , SCREAMING_SNAKE_CASE ) # Blackify after replacement. To be able to do that, we need the header (class or function definition) # from the previous line lowerCAmelCase : Union[str, Any] = blackify(lines[start_index - 1] + theoretical_code ) lowerCAmelCase : List[str] = theoretical_code[len(lines[start_index - 1] ) :] # Test for a diff and act accordingly. if observed_code != theoretical_code: diffs.append([object_name, start_index] ) if overwrite: lowerCAmelCase : Tuple = lines[:start_index] + [theoretical_code] + lines[line_index:] lowerCAmelCase : int = start_index + 1 if overwrite and len(SCREAMING_SNAKE_CASE ) > 0: # Warn the user a file has been modified. print(f"""Detected changes, rewriting {filename}.""" ) with open(SCREAMING_SNAKE_CASE , "w" , encoding="utf-8" , newline="\n" ) as f: f.writelines(SCREAMING_SNAKE_CASE ) return diffs def a__ ( SCREAMING_SNAKE_CASE : bool = False ): '''simple docstring''' lowerCAmelCase : List[Any] = glob.glob(os.path.join(SCREAMING_SNAKE_CASE , "**/*.py" ) , recursive=SCREAMING_SNAKE_CASE ) lowerCAmelCase : str = [] for filename in all_files: lowerCAmelCase : List[Any] = is_copy_consistent(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) diffs += [f"""- {filename}: copy does not match {d[0]} at line {d[1]}""" for d in new_diffs] if not overwrite and len(SCREAMING_SNAKE_CASE ) > 0: lowerCAmelCase : List[Any] = "\n".join(SCREAMING_SNAKE_CASE ) raise Exception( "Found the following copy inconsistencies:\n" + diff + "\nRun `make fix-copies` or `python utils/check_copies.py --fix_and_overwrite` to fix them." ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''') lowerCAmelCase__ = parser.parse_args() check_copies(args.fix_and_overwrite)
133
0
import unittest from pathlib import Path from shutil import copyfile from transformers import SPIECE_UNDERLINE, is_sentencepiece_available from transformers.models.speech_to_text import SpeechaTextTokenizer from transformers.models.speech_to_text.tokenization_speech_to_text import VOCAB_FILES_NAMES, save_json from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin UpperCAmelCase : Any =get_tests_dir("""fixtures/test_sentencepiece.model""") if is_sentencepiece_available(): import sentencepiece as sp UpperCAmelCase : List[str] =5 UpperCAmelCase : Tuple =10 @require_sentencepiece @require_tokenizers class _lowercase (a_ , unittest.TestCase ): '''simple docstring''' lowercase__ = SpeechaTextTokenizer lowercase__ = False lowercase__ = True def _lowerCamelCase ( self ): '''simple docstring''' super().setUp() UpperCamelCase_ = sp.SentencePieceProcessor() spm_model.Load(snake_case__ ) UpperCamelCase_ = ["<s>", "<pad>", "</s>", "<unk>"] vocab += [spm_model.IdToPiece(id_ ) for id_ in range(len(snake_case__ ) )] UpperCamelCase_ = dict(zip(snake_case__ , range(len(snake_case__ ) ) ) ) UpperCamelCase_ = Path(self.tmpdirname ) save_json(snake_case__ , save_dir / VOCAB_FILES_NAMES["vocab_file"] ) if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists(): copyfile(snake_case__ , save_dir / VOCAB_FILES_NAMES["spm_file"] ) UpperCamelCase_ = SpeechaTextTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def _lowerCamelCase ( self ): '''simple docstring''' UpperCamelCase_ = "<pad>" UpperCamelCase_ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(snake_case__ ) , snake_case__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(snake_case__ ) , snake_case__ ) def _lowerCamelCase ( self ): '''simple docstring''' UpperCamelCase_ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<s>" ) self.assertEqual(vocab_keys[1] , "<pad>" ) self.assertEqual(vocab_keys[-1] , "j" ) self.assertEqual(len(snake_case__ ) , 1001 ) def _lowerCamelCase ( self ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 1001 ) def _lowerCamelCase ( self ): '''simple docstring''' UpperCamelCase_ = SpeechaTextTokenizer.from_pretrained(self.tmpdirname ) UpperCamelCase_ = tokenizer.tokenize("This is a test" ) self.assertListEqual(snake_case__ , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(snake_case__ ) , [289, 50, 14, 174, 386] , ) UpperCamelCase_ = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( snake_case__ , [SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", "."] , ) UpperCamelCase_ = tokenizer.convert_tokens_to_ids(snake_case__ ) self.assertListEqual(snake_case__ , [12, 25, 88, 59, 28, 23, 11, 4, 606, 351, 351, 351, 7, 16, 70, 50, 76, 84, 10, 4, 8] ) UpperCamelCase_ = tokenizer.convert_ids_to_tokens(snake_case__ ) self.assertListEqual( snake_case__ , [SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", "."] , ) @slow def _lowerCamelCase ( self ): '''simple docstring''' UpperCamelCase_ = {"input_ids": [[3791, 797, 31, 11, 64, 797, 31, 2429, 433, 12, 1176, 12, 20, 786, 915, 142, 2413, 240, 37, 3238, 797, 31, 11, 35, 93, 915, 142, 2413, 240, 37, 5540, 567, 1276, 93, 37, 610, 40, 62, 455, 657, 1042, 123, 780, 177, 37, 309, 241, 1298, 514, 20, 292, 2737, 114, 2469, 241, 85, 64, 302, 548, 528, 423, 4, 509, 406, 423, 37, 601, 4, 777, 302, 548, 528, 423, 284, 4, 3388, 511, 459, 4, 3555, 40, 321, 302, 705, 4, 3388, 511, 583, 326, 5, 5, 5, 62, 3310, 560, 177, 2680, 217, 1508, 32, 31, 853, 418, 64, 583, 511, 1605, 62, 35, 93, 560, 177, 2680, 217, 1508, 1521, 64, 583, 511, 519, 62, 20, 1515, 764, 20, 149, 261, 5625, 7972, 20, 5540, 567, 1276, 93, 3925, 1675, 11, 15, 802, 7972, 576, 217, 1508, 11, 35, 93, 1253, 2441, 15, 289, 652, 31, 416, 321, 3842, 115, 40, 911, 8, 476, 619, 4, 380, 142, 423, 335, 240, 35, 93, 264, 8, 11, 335, 569, 420, 163, 5, 2], [260, 548, 528, 423, 20, 451, 20, 2681, 1153, 3434, 20, 5540, 37, 567, 126, 1253, 2441, 3376, 449, 210, 431, 1563, 177, 767, 5540, 11, 1203, 472, 11, 2953, 685, 285, 364, 706, 1153, 20, 6799, 20, 2869, 20, 4464, 126, 40, 2429, 20, 1040, 866, 2664, 418, 20, 318, 20, 1726, 186, 20, 265, 522, 35, 93, 2191, 4634, 20, 1040, 12, 6799, 15, 228, 2356, 142, 31, 11, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [2575, 2666, 684, 1582, 1176, 12, 627, 149, 619, 20, 4902, 563, 11, 20, 149, 261, 3420, 2356, 174, 142, 4714, 131, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=snake_case__ , model_name="facebook/s2t-small-mustc-en-de-st" , revision="a14f04cf0776c02f62a8cb800cf7909e15ea23ad" , ) @require_sentencepiece class _lowercase (unittest.TestCase ): '''simple docstring''' lowercase__ = """valhalla/s2t_mustc_multilinguial_medium""" lowercase__ = """C'est trop cool""" lowercase__ = """Esto es genial""" @classmethod def _lowerCamelCase ( cls ): '''simple docstring''' UpperCamelCase_ = SpeechaTextTokenizer.from_pretrained(cls.checkpoint_name ) return cls def _lowerCamelCase ( self ): '''simple docstring''' self.assertEqual(self.tokenizer.lang_code_to_id["pt"] , 4 ) self.assertEqual(self.tokenizer.lang_code_to_id["ru"] , 6 ) self.assertEqual(self.tokenizer.lang_code_to_id["it"] , 9 ) self.assertEqual(self.tokenizer.lang_code_to_id["de"] , 11 ) def _lowerCamelCase ( self ): '''simple docstring''' self.assertEqual(self.tokenizer.vocab_size , 1_0000 ) def _lowerCamelCase ( self ): '''simple docstring''' self.assertIn(snake_case__ , self.tokenizer.all_special_ids ) UpperCamelCase_ = [ES_CODE, 4, 1601, 47, 7647, 2] UpperCamelCase_ = self.tokenizer.decode(snake_case__ , skip_special_tokens=snake_case__ ) UpperCamelCase_ = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=snake_case__ ) self.assertEqual(snake_case__ , snake_case__ ) self.assertNotIn(self.tokenizer.eos_token , snake_case__ ) def _lowerCamelCase ( self ): '''simple docstring''' UpperCamelCase_ = "fr" UpperCamelCase_ = self.tokenizer(self.french_text ).input_ids self.assertEqual(encoded[0] , snake_case__ ) self.assertEqual(encoded[-1] , self.tokenizer.eos_token_id ) def _lowerCamelCase ( self ): '''simple docstring''' UpperCamelCase_ = "fr" self.assertListEqual(self.tokenizer.prefix_tokens , [FR_CODE] ) UpperCamelCase_ = "es" self.assertListEqual(self.tokenizer.prefix_tokens , [ES_CODE] )
128
import tempfile import torch from diffusers import IPNDMScheduler from .test_schedulers import SchedulerCommonTest class _lowercase (a_ ): '''simple docstring''' lowercase__ = (IPNDMScheduler,) lowercase__ = (("""num_inference_steps""", 50),) def _lowerCamelCase ( self , **snake_case__ ): '''simple docstring''' UpperCamelCase_ = {"num_train_timesteps": 1000} config.update(**snake_case__ ) return config def _lowerCamelCase ( self , snake_case__=0 , **snake_case__ ): '''simple docstring''' UpperCamelCase_ = dict(self.forward_default_kwargs ) UpperCamelCase_ = kwargs.pop("num_inference_steps" , snake_case__ ) UpperCamelCase_ = self.dummy_sample UpperCamelCase_ = 0.1 * sample UpperCamelCase_ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: UpperCamelCase_ = self.get_scheduler_config(**snake_case__ ) UpperCamelCase_ = scheduler_class(**snake_case__ ) scheduler.set_timesteps(snake_case__ ) # copy over dummy past residuals UpperCamelCase_ = dummy_past_residuals[:] if time_step is None: UpperCamelCase_ = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(snake_case__ ) UpperCamelCase_ = scheduler_class.from_pretrained(snake_case__ ) new_scheduler.set_timesteps(snake_case__ ) # copy over dummy past residuals UpperCamelCase_ = dummy_past_residuals[:] UpperCamelCase_ = scheduler.step(snake_case__ , snake_case__ , snake_case__ , **snake_case__ ).prev_sample UpperCamelCase_ = new_scheduler.step(snake_case__ , snake_case__ , snake_case__ , **snake_case__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" UpperCamelCase_ = scheduler.step(snake_case__ , snake_case__ , snake_case__ , **snake_case__ ).prev_sample UpperCamelCase_ = new_scheduler.step(snake_case__ , snake_case__ , snake_case__ , **snake_case__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def _lowerCamelCase ( self ): '''simple docstring''' pass def _lowerCamelCase ( self , snake_case__=0 , **snake_case__ ): '''simple docstring''' UpperCamelCase_ = dict(self.forward_default_kwargs ) UpperCamelCase_ = kwargs.pop("num_inference_steps" , snake_case__ ) UpperCamelCase_ = self.dummy_sample UpperCamelCase_ = 0.1 * sample UpperCamelCase_ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: UpperCamelCase_ = self.get_scheduler_config() UpperCamelCase_ = scheduler_class(**snake_case__ ) scheduler.set_timesteps(snake_case__ ) # copy over dummy past residuals (must be after setting timesteps) UpperCamelCase_ = dummy_past_residuals[:] if time_step is None: UpperCamelCase_ = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(snake_case__ ) UpperCamelCase_ = scheduler_class.from_pretrained(snake_case__ ) # copy over dummy past residuals new_scheduler.set_timesteps(snake_case__ ) # copy over dummy past residual (must be after setting timesteps) UpperCamelCase_ = dummy_past_residuals[:] UpperCamelCase_ = scheduler.step(snake_case__ , snake_case__ , snake_case__ , **snake_case__ ).prev_sample UpperCamelCase_ = new_scheduler.step(snake_case__ , snake_case__ , snake_case__ , **snake_case__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" UpperCamelCase_ = scheduler.step(snake_case__ , snake_case__ , snake_case__ , **snake_case__ ).prev_sample UpperCamelCase_ = new_scheduler.step(snake_case__ , snake_case__ , snake_case__ , **snake_case__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def _lowerCamelCase ( self , **snake_case__ ): '''simple docstring''' UpperCamelCase_ = self.scheduler_classes[0] UpperCamelCase_ = self.get_scheduler_config(**snake_case__ ) UpperCamelCase_ = scheduler_class(**snake_case__ ) UpperCamelCase_ = 10 UpperCamelCase_ = self.dummy_model() UpperCamelCase_ = self.dummy_sample_deter scheduler.set_timesteps(snake_case__ ) for i, t in enumerate(scheduler.timesteps ): UpperCamelCase_ = model(snake_case__ , snake_case__ ) UpperCamelCase_ = scheduler.step(snake_case__ , snake_case__ , snake_case__ ).prev_sample for i, t in enumerate(scheduler.timesteps ): UpperCamelCase_ = model(snake_case__ , snake_case__ ) UpperCamelCase_ = scheduler.step(snake_case__ , snake_case__ , snake_case__ ).prev_sample return sample def _lowerCamelCase ( self ): '''simple docstring''' UpperCamelCase_ = dict(self.forward_default_kwargs ) UpperCamelCase_ = kwargs.pop("num_inference_steps" , snake_case__ ) for scheduler_class in self.scheduler_classes: UpperCamelCase_ = self.get_scheduler_config() UpperCamelCase_ = scheduler_class(**snake_case__ ) UpperCamelCase_ = self.dummy_sample UpperCamelCase_ = 0.1 * sample if num_inference_steps is not None and hasattr(snake_case__ , "set_timesteps" ): scheduler.set_timesteps(snake_case__ ) elif num_inference_steps is not None and not hasattr(snake_case__ , "set_timesteps" ): UpperCamelCase_ = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) UpperCamelCase_ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] UpperCamelCase_ = dummy_past_residuals[:] UpperCamelCase_ = scheduler.timesteps[5] UpperCamelCase_ = scheduler.timesteps[6] UpperCamelCase_ = scheduler.step(snake_case__ , snake_case__ , snake_case__ , **snake_case__ ).prev_sample UpperCamelCase_ = scheduler.step(snake_case__ , snake_case__ , snake_case__ , **snake_case__ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) UpperCamelCase_ = scheduler.step(snake_case__ , snake_case__ , snake_case__ , **snake_case__ ).prev_sample UpperCamelCase_ = scheduler.step(snake_case__ , snake_case__ , snake_case__ , **snake_case__ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def _lowerCamelCase ( self ): '''simple docstring''' for timesteps in [100, 1000]: self.check_over_configs(num_train_timesteps=snake_case__ , time_step=snake_case__ ) def _lowerCamelCase ( self ): '''simple docstring''' for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 100] ): self.check_over_forward(num_inference_steps=snake_case__ , time_step=snake_case__ ) def _lowerCamelCase ( self ): '''simple docstring''' UpperCamelCase_ = self.full_loop() UpperCamelCase_ = torch.mean(torch.abs(snake_case__ ) ) assert abs(result_mean.item() - 254_0529 ) < 10
128
1
from math import isqrt def snake_case (UpperCAmelCase__ ) -> bool: return all(number % divisor != 0 for divisor in range(2 , isqrt(UpperCAmelCase__ ) + 1 ) ) def snake_case (UpperCAmelCase__ = 1_0**6 ) -> int: UpperCamelCase_: str = 0 UpperCamelCase_: Union[str, Any] = 1 UpperCamelCase_: Dict = 7 while prime_candidate < max_prime: primes_count += is_prime(UpperCAmelCase__ ) cube_index += 1 prime_candidate += 6 * cube_index return primes_count if __name__ == "__main__": print(F'''{solution() = }''')
292
def snake_case (UpperCAmelCase__ ) -> int: assert isinstance(UpperCAmelCase__ , UpperCAmelCase__ ), F'''The input value of [n={number}] is not an integer''' if number == 1: return 2 elif number < 1: UpperCamelCase_: List[Any] = F'''The input value of [n={number}] has to be > 0''' raise ValueError(UpperCAmelCase__ ) else: UpperCamelCase_: str = sylvester(number - 1 ) UpperCamelCase_: str = num - 1 UpperCamelCase_: Any = num return lower * upper + 1 if __name__ == "__main__": print(F'''The 8th number in Sylvester\'s sequence: {sylvester(8)}''')
292
1
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class __snake_case ( unittest.TestCase ): def __init__( self : int , _lowercase : str , _lowercase : Optional[Any]=7 , _lowercase : Tuple=3 , _lowercase : Union[str, Any]=18 , _lowercase : Optional[int]=30 , _lowercase : Tuple=4_00 , _lowercase : Optional[Any]=True , _lowercase : Optional[Any]=None , _lowercase : List[Any]=True , _lowercase : Optional[int]=None , _lowercase : str=True , ): """simple docstring""" SCREAMING_SNAKE_CASE__ = size if size is not None else {"shortest_edge": 20} SCREAMING_SNAKE_CASE__ = crop_size if crop_size is not None else {"height": 18, "width": 18} SCREAMING_SNAKE_CASE__ = parent SCREAMING_SNAKE_CASE__ = batch_size SCREAMING_SNAKE_CASE__ = num_channels SCREAMING_SNAKE_CASE__ = image_size SCREAMING_SNAKE_CASE__ = min_resolution SCREAMING_SNAKE_CASE__ = max_resolution SCREAMING_SNAKE_CASE__ = do_resize SCREAMING_SNAKE_CASE__ = size SCREAMING_SNAKE_CASE__ = do_center_crop SCREAMING_SNAKE_CASE__ = crop_size SCREAMING_SNAKE_CASE__ = do_flip_channel_order def __a ( self : Optional[Any] ): """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_flip_channel_order": self.do_flip_channel_order, } @require_torch @require_vision class __snake_case ( lowerCamelCase_ , unittest.TestCase ): lowerCAmelCase_ = MobileViTImageProcessor if is_vision_available() else None def __a ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE__ = MobileViTImageProcessingTester(self ) @property def __a ( self : Optional[int] ): """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def __a ( self : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE__ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_a , """do_resize""" ) ) self.assertTrue(hasattr(_a , """size""" ) ) self.assertTrue(hasattr(_a , """do_center_crop""" ) ) self.assertTrue(hasattr(_a , """center_crop""" ) ) self.assertTrue(hasattr(_a , """do_flip_channel_order""" ) ) def __a ( self : Optional[int] ): """simple docstring""" SCREAMING_SNAKE_CASE__ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""shortest_edge""": 20} ) self.assertEqual(image_processor.crop_size , {"""height""": 18, """width""": 18} ) SCREAMING_SNAKE_CASE__ = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {"""shortest_edge""": 42} ) self.assertEqual(image_processor.crop_size , {"""height""": 84, """width""": 84} ) def __a ( self : str ): """simple docstring""" pass def __a ( self : Any ): """simple docstring""" SCREAMING_SNAKE_CASE__ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images SCREAMING_SNAKE_CASE__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_a ) for image in image_inputs: self.assertIsInstance(_a , Image.Image ) # Test not batched input SCREAMING_SNAKE_CASE__ = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched SCREAMING_SNAKE_CASE__ = image_processing(_a , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def __a ( self : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE__ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors SCREAMING_SNAKE_CASE__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_a , numpify=_a ) for image in image_inputs: self.assertIsInstance(_a , np.ndarray ) # Test not batched input SCREAMING_SNAKE_CASE__ = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched SCREAMING_SNAKE_CASE__ = image_processing(_a , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def __a ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE__ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors SCREAMING_SNAKE_CASE__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_a , torchify=_a ) for image in image_inputs: self.assertIsInstance(_a , torch.Tensor ) # Test not batched input SCREAMING_SNAKE_CASE__ = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched SCREAMING_SNAKE_CASE__ = image_processing(_a , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , )
219
from __future__ import annotations class _snake_case : def __init__( self , _a ): __magic_name__ : Optional[Any] = data __magic_name__ : Node | None = None __magic_name__ : Node | None = None def lowerCAmelCase_ ( _snake_case : Node | None ) -> None: # In Order traversal of the tree '''simple docstring''' if tree: display(tree.left ) print(tree.data ) display(tree.right ) def lowerCAmelCase_ ( _snake_case : Node | None ) -> int: '''simple docstring''' return 1 + max(depth_of_tree(tree.left ) , depth_of_tree(tree.right ) ) if tree else 0 def lowerCAmelCase_ ( _snake_case : Node ) -> bool: '''simple docstring''' if not tree: return True if tree.left and tree.right: return is_full_binary_tree(tree.left ) and is_full_binary_tree(tree.right ) else: return not tree.left and not tree.right def lowerCAmelCase_ ( ) -> None: # Main function for testing. '''simple docstring''' __magic_name__ : int = Node(1 ) __magic_name__ : Union[str, Any] = Node(2 ) __magic_name__ : Tuple = Node(3 ) __magic_name__ : Optional[Any] = Node(4 ) __magic_name__ : Union[str, Any] = Node(5 ) __magic_name__ : Any = Node(6 ) __magic_name__ : int = Node(7 ) __magic_name__ : List[str] = Node(8 ) __magic_name__ : Union[str, Any] = Node(9 ) print(is_full_binary_tree(_snake_case ) ) print(depth_of_tree(_snake_case ) ) print("Tree is: " ) display(_snake_case ) if __name__ == "__main__": main()
281
0
"""simple docstring""" A = {'''a''': ['''c''', '''b'''], '''b''': ['''d''', '''e'''], '''c''': [], '''d''': [], '''e''': []} A = ['''a''', '''b''', '''c''', '''d''', '''e'''] def __A ( a_ :Union[str, Any] , a_ :Tuple , a_ :Union[str, Any]) -> int: __a : Dict = start # add current to visited visited.append(a_) __a : Any = edges[current] for neighbor in neighbors: # if neighbor not in visited, visit if neighbor not in visited: __a : str = topological_sort(a_ , a_ , a_) # if all neighbors visited add current to sort sort.append(a_) # if all vertices haven't been visited select a new one to visit if len(a_) != len(a_): for vertice in vertices: if vertice not in visited: __a : int = topological_sort(a_ , a_ , a_) # return sort return sort if __name__ == "__main__": A = topological_sort('''a''', [], []) print(sort)
188
"""simple docstring""" import hashlib import unittest from typing import Dict import numpy as np from transformers import ( MODEL_FOR_MASK_GENERATION_MAPPING, TF_MODEL_FOR_MASK_GENERATION_MAPPING, is_vision_available, pipeline, ) from transformers.pipelines import MaskGenerationPipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) if is_vision_available(): from PIL import Image else: class __lowercase : '''simple docstring''' @staticmethod def _lowerCamelCase ( *_UpperCAmelCase , **_UpperCAmelCase ): pass def __A ( a_ :Image) -> str: __a : List[str] = hashlib.mda(image.tobytes()) return m.hexdigest()[:10] def __A ( a_ :Image) -> Dict: __a : Any = np.array(a_) __a : Tuple = npimg.shape return {"hash": hashimage(a_), "shape": shape} @is_pipeline_test @require_vision @require_torch class __lowercase ( unittest.TestCase ): '''simple docstring''' __lowerCAmelCase = dict( (list(MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if MODEL_FOR_MASK_GENERATION_MAPPING else []) ) __lowerCAmelCase = dict( (list(TF_MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if TF_MODEL_FOR_MASK_GENERATION_MAPPING else []) ) def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __a : List[str] = MaskGenerationPipeline(model=_UpperCAmelCase , image_processor=_UpperCAmelCase ) return image_segmenter, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase ): pass @require_tf @unittest.skip('''Image segmentation not implemented in TF''' ) def _lowerCamelCase ( self ): pass @slow @require_torch def _lowerCamelCase ( self ): __a : Dict = pipeline('''mask-generation''' , model='''facebook/sam-vit-huge''' ) __a : Optional[Any] = image_segmenter('''http://images.cocodataset.org/val2017/000000039769.jpg''' , points_per_batch=256 ) # Shortening by hashing __a : Optional[int] = [] for i, o in enumerate(outputs['''masks'''] ): new_outupt += [{"mask": mask_to_test_readable(_UpperCAmelCase ), "scores": outputs["scores"][i]}] # fmt: off self.assertEqual( nested_simplify(_UpperCAmelCase , decimals=4 ) , [ {'''mask''': {'''hash''': '''115ad19f5f''', '''shape''': (480, 640)}, '''scores''': 1.0_4_4_4}, {'''mask''': {'''hash''': '''6affa964c6''', '''shape''': (480, 640)}, '''scores''': 1.0_2_1}, {'''mask''': {'''hash''': '''dfe28a0388''', '''shape''': (480, 640)}, '''scores''': 1.0_1_6_7}, {'''mask''': {'''hash''': '''c0a5f4a318''', '''shape''': (480, 640)}, '''scores''': 1.0_1_3_2}, {'''mask''': {'''hash''': '''fe8065c197''', '''shape''': (480, 640)}, '''scores''': 1.0_0_5_3}, {'''mask''': {'''hash''': '''e2d0b7a0b7''', '''shape''': (480, 640)}, '''scores''': 0.9_9_6_7}, {'''mask''': {'''hash''': '''453c7844bd''', '''shape''': (480, 640)}, '''scores''': 0.9_9_3}, {'''mask''': {'''hash''': '''3d44f2926d''', '''shape''': (480, 640)}, '''scores''': 0.9_9_0_9}, {'''mask''': {'''hash''': '''64033ddc3f''', '''shape''': (480, 640)}, '''scores''': 0.9_8_7_9}, {'''mask''': {'''hash''': '''801064ff79''', '''shape''': (480, 640)}, '''scores''': 0.9_8_3_4}, {'''mask''': {'''hash''': '''6172f276ef''', '''shape''': (480, 640)}, '''scores''': 0.9_7_1_6}, {'''mask''': {'''hash''': '''b49e60e084''', '''shape''': (480, 640)}, '''scores''': 0.9_6_1_2}, {'''mask''': {'''hash''': '''a811e775fd''', '''shape''': (480, 640)}, '''scores''': 0.9_5_9_9}, {'''mask''': {'''hash''': '''a6a8ebcf4b''', '''shape''': (480, 640)}, '''scores''': 0.9_5_5_2}, {'''mask''': {'''hash''': '''9d8257e080''', '''shape''': (480, 640)}, '''scores''': 0.9_5_3_2}, {'''mask''': {'''hash''': '''32de6454a8''', '''shape''': (480, 640)}, '''scores''': 0.9_5_1_6}, {'''mask''': {'''hash''': '''af3d4af2c8''', '''shape''': (480, 640)}, '''scores''': 0.9_4_9_9}, {'''mask''': {'''hash''': '''3c6db475fb''', '''shape''': (480, 640)}, '''scores''': 0.9_4_8_3}, {'''mask''': {'''hash''': '''c290813fb9''', '''shape''': (480, 640)}, '''scores''': 0.9_4_6_4}, {'''mask''': {'''hash''': '''b6f0b8f606''', '''shape''': (480, 640)}, '''scores''': 0.9_4_3}, {'''mask''': {'''hash''': '''92ce16bfdf''', '''shape''': (480, 640)}, '''scores''': 0.9_4_3}, {'''mask''': {'''hash''': '''c749b25868''', '''shape''': (480, 640)}, '''scores''': 0.9_4_0_8}, {'''mask''': {'''hash''': '''efb6cab859''', '''shape''': (480, 640)}, '''scores''': 0.9_3_3_5}, {'''mask''': {'''hash''': '''1ff2eafb30''', '''shape''': (480, 640)}, '''scores''': 0.9_3_2_6}, {'''mask''': {'''hash''': '''788b798e24''', '''shape''': (480, 640)}, '''scores''': 0.9_2_6_2}, {'''mask''': {'''hash''': '''abea804f0e''', '''shape''': (480, 640)}, '''scores''': 0.8_9_9_9}, {'''mask''': {'''hash''': '''7b9e8ddb73''', '''shape''': (480, 640)}, '''scores''': 0.8_9_8_6}, {'''mask''': {'''hash''': '''cd24047c8a''', '''shape''': (480, 640)}, '''scores''': 0.8_9_8_4}, {'''mask''': {'''hash''': '''6943e6bcbd''', '''shape''': (480, 640)}, '''scores''': 0.8_8_7_3}, {'''mask''': {'''hash''': '''b5f47c9191''', '''shape''': (480, 640)}, '''scores''': 0.8_8_7_1} ] , ) # fmt: on @require_torch @slow def _lowerCamelCase ( self ): __a : Dict = '''facebook/sam-vit-huge''' __a : Tuple = pipeline('''mask-generation''' , model=_UpperCAmelCase ) __a : List[Any] = image_segmenter( '''http://images.cocodataset.org/val2017/000000039769.jpg''' , pred_iou_thresh=1 , points_per_batch=256 ) # Shortening by hashing __a : Optional[int] = [] for i, o in enumerate(outputs['''masks'''] ): new_outupt += [{"mask": mask_to_test_readable(_UpperCAmelCase ), "scores": outputs["scores"][i]}] self.assertEqual( nested_simplify(_UpperCAmelCase , decimals=4 ) , [ {'''mask''': {'''hash''': '''115ad19f5f''', '''shape''': (480, 640)}, '''scores''': 1.0_4_4_4}, {'''mask''': {'''hash''': '''6affa964c6''', '''shape''': (480, 640)}, '''scores''': 1.0_2_1_0}, {'''mask''': {'''hash''': '''dfe28a0388''', '''shape''': (480, 640)}, '''scores''': 1.0_1_6_7}, {'''mask''': {'''hash''': '''c0a5f4a318''', '''shape''': (480, 640)}, '''scores''': 1.0_1_3_2}, {'''mask''': {'''hash''': '''fe8065c197''', '''shape''': (480, 640)}, '''scores''': 1.0_0_5_3}, ] , )
188
1
"""simple docstring""" def a_ ( lowerCamelCase , lowerCamelCase ): UpperCAmelCase__ = len(lowerCamelCase ) + 1 UpperCAmelCase__ = len(lowerCamelCase ) + 1 # dp is a 2d matrix where dp[i][j] denotes whether prefix string of # length i of input_string matches with prefix string of length j of # given pattern. # "dp" stands for dynamic programming. UpperCAmelCase__ = [[0 for i in range(lowerCamelCase )] for j in range(lowerCamelCase )] # since string of zero length match pattern of zero length UpperCAmelCase__ = 1 # since pattern of zero length will never match with string of non-zero length for i in range(1 , lowerCamelCase ): UpperCAmelCase__ = 0 # since string of zero length will match with pattern where there # is at least one * alternatively for j in range(1 , lowerCamelCase ): UpperCAmelCase__ = dp[0][j - 2] if pattern[j - 1] == '*' else 0 # now using bottom-up approach to find for all remaining lengths for i in range(1 , lowerCamelCase ): for j in range(1 , lowerCamelCase ): if input_string[i - 1] == pattern[j - 1] or pattern[j - 1] == ".": UpperCAmelCase__ = dp[i - 1][j - 1] elif pattern[j - 1] == "*": if dp[i][j - 2] == 1: UpperCAmelCase__ = 1 elif pattern[j - 2] in (input_string[i - 1], "."): UpperCAmelCase__ = dp[i - 1][j] else: UpperCAmelCase__ = 0 else: UpperCAmelCase__ = 0 return bool(dp[-1][-1] ) if __name__ == "__main__": import doctest doctest.testmod() # inputing the strings # input_string = input("input a string :") # pattern = input("input a pattern :") lowerCAmelCase__ : List[Any] = 'aab' lowerCAmelCase__ : List[Any] = 'c*a*b' # using function to check whether given string matches the given pattern if match_pattern(input_string, pattern): print(F"""{input_string} matches the given pattern {pattern}""") else: print(F"""{input_string} does not match with the given pattern {pattern}""")
98
"""simple docstring""" import functools def a_ ( lowerCamelCase , lowerCamelCase ): UpperCAmelCase__ = len(lowerCamelCase ) UpperCAmelCase__ = len(lowerCamelCase ) @functools.cache def min_distance(lowerCamelCase , lowerCamelCase ) -> int: # if first word index is overflow - delete all from the second word if indexa >= len_worda: return len_worda - indexa # if second word index is overflow - delete all from the first word if indexa >= len_worda: return len_worda - indexa UpperCAmelCase__ = int(worda[indexa] != worda[indexa] ) # current letters not identical return min( 1 + min_distance(indexa + 1 , lowerCamelCase ) , 1 + min_distance(lowerCamelCase , indexa + 1 ) , diff + min_distance(indexa + 1 , indexa + 1 ) , ) return min_distance(0 , 0 ) if __name__ == "__main__": import doctest doctest.testmod()
98
1
import gc import unittest from diffusers import FlaxControlNetModel, FlaxStableDiffusionControlNetPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class a ( unittest.TestCase ): def _UpperCAmelCase ( self ): '''simple docstring''' super().tearDown() gc.collect() def _UpperCAmelCase ( self ): '''simple docstring''' _UpperCAmelCase , _UpperCAmelCase : Any = FlaxControlNetModel.from_pretrained( "lllyasviel/sd-controlnet-canny" , from_pt=A_ , dtype=jnp.bfloataa ) _UpperCAmelCase , _UpperCAmelCase : Tuple = FlaxStableDiffusionControlNetPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5" , controlnet=A_ , from_pt=A_ , dtype=jnp.bfloataa ) _UpperCAmelCase : Optional[int] = controlnet_params _UpperCAmelCase : List[Any] = "bird" _UpperCAmelCase : List[Any] = jax.device_count() _UpperCAmelCase : str = pipe.prepare_text_inputs([prompts] * num_samples ) _UpperCAmelCase : Optional[int] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png" ) _UpperCAmelCase : Tuple = pipe.prepare_image_inputs([canny_image] * num_samples ) _UpperCAmelCase : str = jax.random.PRNGKey(0 ) _UpperCAmelCase : Optional[int] = jax.random.split(A_ , jax.device_count() ) _UpperCAmelCase : str = replicate(A_ ) _UpperCAmelCase : Tuple = shard(A_ ) _UpperCAmelCase : Any = shard(A_ ) _UpperCAmelCase : List[Any] = pipe( prompt_ids=A_ , image=A_ , params=A_ , prng_seed=A_ , num_inference_steps=50 , jit=A_ , ).images assert images.shape == (jax.device_count(), 1, 768, 512, 3) _UpperCAmelCase : Optional[int] = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) _UpperCAmelCase : Optional[int] = images[0, 253:256, 253:256, -1] _UpperCAmelCase : Dict = jnp.asarray(jax.device_get(image_slice.flatten() ) ) _UpperCAmelCase : str = jnp.array( [0.16_79_69, 0.11_66_99, 0.08_15_43, 0.15_42_97, 0.13_28_12, 0.10_88_87, 0.16_99_22, 0.16_99_22, 0.20_50_78] ) print(f'output_slice: {output_slice}' ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2 def _UpperCAmelCase ( self ): '''simple docstring''' _UpperCAmelCase , _UpperCAmelCase : Optional[Any] = FlaxControlNetModel.from_pretrained( "lllyasviel/sd-controlnet-openpose" , from_pt=A_ , dtype=jnp.bfloataa ) _UpperCAmelCase , _UpperCAmelCase : Dict = FlaxStableDiffusionControlNetPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5" , controlnet=A_ , from_pt=A_ , dtype=jnp.bfloataa ) _UpperCAmelCase : str = controlnet_params _UpperCAmelCase : Dict = "Chef in the kitchen" _UpperCAmelCase : Union[str, Any] = jax.device_count() _UpperCAmelCase : List[Any] = pipe.prepare_text_inputs([prompts] * num_samples ) _UpperCAmelCase : Dict = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/pose.png" ) _UpperCAmelCase : List[Any] = pipe.prepare_image_inputs([pose_image] * num_samples ) _UpperCAmelCase : Optional[int] = jax.random.PRNGKey(0 ) _UpperCAmelCase : str = jax.random.split(A_ , jax.device_count() ) _UpperCAmelCase : Tuple = replicate(A_ ) _UpperCAmelCase : List[str] = shard(A_ ) _UpperCAmelCase : Tuple = shard(A_ ) _UpperCAmelCase : Union[str, Any] = pipe( prompt_ids=A_ , image=A_ , params=A_ , prng_seed=A_ , num_inference_steps=50 , jit=A_ , ).images assert images.shape == (jax.device_count(), 1, 768, 512, 3) _UpperCAmelCase : str = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) _UpperCAmelCase : Dict = images[0, 253:256, 253:256, -1] _UpperCAmelCase : Optional[int] = jnp.asarray(jax.device_get(image_slice.flatten() ) ) _UpperCAmelCase : Tuple = jnp.array( [[0.27_14_84, 0.26_17_19, 0.27_53_91, 0.27_73_44, 0.27_92_97, 0.29_10_16, 0.29_49_22, 0.30_27_34, 0.30_27_34]] ) print(f'output_slice: {output_slice}' ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2
189
from typing import Optional import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import ( BackboneOutput, BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, ) from ...modeling_utils import PreTrainedModel from ...utils import ( add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from ...utils.backbone_utils import BackboneMixin from .configuration_resnet import ResNetConfig SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) # General docstring SCREAMING_SNAKE_CASE_ = 'ResNetConfig' # Base docstring SCREAMING_SNAKE_CASE_ = 'microsoft/resnet-50' SCREAMING_SNAKE_CASE_ = [1, 2048, 7, 7] # Image classification docstring SCREAMING_SNAKE_CASE_ = 'microsoft/resnet-50' SCREAMING_SNAKE_CASE_ = 'tiger cat' SCREAMING_SNAKE_CASE_ = [ 'microsoft/resnet-50', # See all resnet models at https://huggingface.co/models?filter=resnet ] class a ( nn.Module ): def __init__( self , A_ , A_ , A_ = 3 , A_ = 1 , A_ = "relu" ): '''simple docstring''' super().__init__() _UpperCAmelCase : Union[str, Any] = nn.Convad( A_ , A_ , kernel_size=A_ , stride=A_ , padding=kernel_size // 2 , bias=A_ ) _UpperCAmelCase : List[Any] = nn.BatchNormad(A_ ) _UpperCAmelCase : Union[str, Any] = ACTaFN[activation] if activation is not None else nn.Identity() def _UpperCAmelCase ( self , A_ ): '''simple docstring''' _UpperCAmelCase : List[Any] = self.convolution(A_ ) _UpperCAmelCase : Optional[int] = self.normalization(A_ ) _UpperCAmelCase : Optional[Any] = self.activation(A_ ) return hidden_state class a ( nn.Module ): def __init__( self , A_ ): '''simple docstring''' super().__init__() _UpperCAmelCase : Any = ResNetConvLayer( config.num_channels , config.embedding_size , kernel_size=7 , stride=2 , activation=config.hidden_act ) _UpperCAmelCase : List[str] = nn.MaxPoolad(kernel_size=3 , stride=2 , padding=1 ) _UpperCAmelCase : List[Any] = config.num_channels def _UpperCAmelCase ( self , A_ ): '''simple docstring''' _UpperCAmelCase : int = pixel_values.shape[1] if num_channels != self.num_channels: raise ValueError( "Make sure that the channel dimension of the pixel values match with the one set in the configuration." ) _UpperCAmelCase : int = self.embedder(A_ ) _UpperCAmelCase : int = self.pooler(A_ ) return embedding class a ( nn.Module ): def __init__( self , A_ , A_ , A_ = 2 ): '''simple docstring''' super().__init__() _UpperCAmelCase : Union[str, Any] = nn.Convad(A_ , A_ , kernel_size=1 , stride=A_ , bias=A_ ) _UpperCAmelCase : Optional[int] = nn.BatchNormad(A_ ) def _UpperCAmelCase ( self , A_ ): '''simple docstring''' _UpperCAmelCase : str = self.convolution(A_ ) _UpperCAmelCase : List[str] = self.normalization(A_ ) return hidden_state class a ( nn.Module ): def __init__( self , A_ , A_ , A_ = 1 , A_ = "relu" ): '''simple docstring''' super().__init__() _UpperCAmelCase : Optional[int] = in_channels != out_channels or stride != 1 _UpperCAmelCase : Dict = ( ResNetShortCut(A_ , A_ , stride=A_ ) if should_apply_shortcut else nn.Identity() ) _UpperCAmelCase : int = nn.Sequential( ResNetConvLayer(A_ , A_ , stride=A_ ) , ResNetConvLayer(A_ , A_ , activation=A_ ) , ) _UpperCAmelCase : Dict = ACTaFN[activation] def _UpperCAmelCase ( self , A_ ): '''simple docstring''' _UpperCAmelCase : Optional[Any] = hidden_state _UpperCAmelCase : Any = self.layer(A_ ) _UpperCAmelCase : Optional[int] = self.shortcut(A_ ) hidden_state += residual _UpperCAmelCase : Optional[int] = self.activation(A_ ) return hidden_state class a ( nn.Module ): def __init__( self , A_ , A_ , A_ = 1 , A_ = "relu" , A_ = 4 ): '''simple docstring''' super().__init__() _UpperCAmelCase : Optional[Any] = in_channels != out_channels or stride != 1 _UpperCAmelCase : Optional[int] = out_channels // reduction _UpperCAmelCase : List[str] = ( ResNetShortCut(A_ , A_ , stride=A_ ) if should_apply_shortcut else nn.Identity() ) _UpperCAmelCase : Dict = nn.Sequential( ResNetConvLayer(A_ , A_ , kernel_size=1 ) , ResNetConvLayer(A_ , A_ , stride=A_ ) , ResNetConvLayer(A_ , A_ , kernel_size=1 , activation=A_ ) , ) _UpperCAmelCase : List[str] = ACTaFN[activation] def _UpperCAmelCase ( self , A_ ): '''simple docstring''' _UpperCAmelCase : List[Any] = hidden_state _UpperCAmelCase : List[str] = self.layer(A_ ) _UpperCAmelCase : List[str] = self.shortcut(A_ ) hidden_state += residual _UpperCAmelCase : Dict = self.activation(A_ ) return hidden_state class a ( nn.Module ): def __init__( self , A_ , A_ , A_ , A_ = 2 , A_ = 2 , ): '''simple docstring''' super().__init__() _UpperCAmelCase : Any = ResNetBottleNeckLayer if config.layer_type == "bottleneck" else ResNetBasicLayer _UpperCAmelCase : Optional[Any] = nn.Sequential( # downsampling is done in the first layer with stride of 2 layer(A_ , A_ , stride=A_ , activation=config.hidden_act ) , *[layer(A_ , A_ , activation=config.hidden_act ) for _ in range(depth - 1 )] , ) def _UpperCAmelCase ( self , A_ ): '''simple docstring''' _UpperCAmelCase : List[Any] = input for layer in self.layers: _UpperCAmelCase : Optional[Any] = layer(A_ ) return hidden_state class a ( nn.Module ): def __init__( self , A_ ): '''simple docstring''' super().__init__() _UpperCAmelCase : Any = nn.ModuleList([] ) # based on `downsample_in_first_stage` the first layer of the first stage may or may not downsample the input self.stages.append( ResNetStage( A_ , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , ) ) _UpperCAmelCase : Union[str, Any] = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for (in_channels, out_channels), depth in zip(A_ , config.depths[1:] ): self.stages.append(ResNetStage(A_ , A_ , A_ , depth=A_ ) ) def _UpperCAmelCase ( self , A_ , A_ = False , A_ = True ): '''simple docstring''' _UpperCAmelCase : List[Any] = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: _UpperCAmelCase : Dict = hidden_states + (hidden_state,) _UpperCAmelCase : str = stage_module(A_ ) if output_hidden_states: _UpperCAmelCase : int = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return BaseModelOutputWithNoAttention( last_hidden_state=A_ , hidden_states=A_ , ) class a ( UpperCAmelCase ): _lowercase = ResNetConfig _lowercase = "resnet" _lowercase = "pixel_values" _lowercase = True def _UpperCAmelCase ( self , A_ ): '''simple docstring''' if isinstance(A_ , nn.Convad ): nn.init.kaiming_normal_(module.weight , mode="fan_out" , nonlinearity="relu" ) elif isinstance(A_ , (nn.BatchNormad, nn.GroupNorm) ): nn.init.constant_(module.weight , 1 ) nn.init.constant_(module.bias , 0 ) def _UpperCAmelCase ( self , A_ , A_=False ): '''simple docstring''' if isinstance(A_ , A_ ): _UpperCAmelCase : Optional[Any] = value SCREAMING_SNAKE_CASE_ = R'\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it\n as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`ResNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n' SCREAMING_SNAKE_CASE_ = R'\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConvNextImageProcessor.__call__`] for details.\n\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n' @add_start_docstrings( "The bare ResNet model outputting raw features without any specific head on top." , UpperCAmelCase , ) class a ( UpperCAmelCase ): def __init__( self , A_ ): '''simple docstring''' super().__init__(A_ ) _UpperCAmelCase : List[str] = config _UpperCAmelCase : Any = ResNetEmbeddings(A_ ) _UpperCAmelCase : str = ResNetEncoder(A_ ) _UpperCAmelCase : Any = nn.AdaptiveAvgPoolad((1, 1) ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(A_ ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=A_ , config_class=_CONFIG_FOR_DOC , modality="vision" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def _UpperCAmelCase ( self , A_ , A_ = None , A_ = None ): '''simple docstring''' _UpperCAmelCase : Optional[int] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _UpperCAmelCase : List[str] = return_dict if return_dict is not None else self.config.use_return_dict _UpperCAmelCase : List[Any] = self.embedder(A_ ) _UpperCAmelCase : str = self.encoder( A_ , output_hidden_states=A_ , return_dict=A_ ) _UpperCAmelCase : List[Any] = encoder_outputs[0] _UpperCAmelCase : int = self.pooler(A_ ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=A_ , pooler_output=A_ , hidden_states=encoder_outputs.hidden_states , ) @add_start_docstrings( "\n ResNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n " , UpperCAmelCase , ) class a ( UpperCAmelCase ): def __init__( self , A_ ): '''simple docstring''' super().__init__(A_ ) _UpperCAmelCase : Optional[int] = config.num_labels _UpperCAmelCase : str = ResNetModel(A_ ) # classification head _UpperCAmelCase : int = nn.Sequential( nn.Flatten() , nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() , ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(A_ ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=A_ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def _UpperCAmelCase ( self , A_ = None , A_ = None , A_ = None , A_ = None , ): '''simple docstring''' _UpperCAmelCase : Optional[int] = return_dict if return_dict is not None else self.config.use_return_dict _UpperCAmelCase : Tuple = self.resnet(A_ , output_hidden_states=A_ , return_dict=A_ ) _UpperCAmelCase : Optional[int] = outputs.pooler_output if return_dict else outputs[1] _UpperCAmelCase : int = self.classifier(A_ ) _UpperCAmelCase : Dict = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: _UpperCAmelCase : Optional[Any] = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): _UpperCAmelCase : Optional[Any] = "single_label_classification" else: _UpperCAmelCase : Any = "multi_label_classification" if self.config.problem_type == "regression": _UpperCAmelCase : str = MSELoss() if self.num_labels == 1: _UpperCAmelCase : Any = loss_fct(logits.squeeze() , labels.squeeze() ) else: _UpperCAmelCase : Optional[int] = loss_fct(A_ , A_ ) elif self.config.problem_type == "single_label_classification": _UpperCAmelCase : Any = CrossEntropyLoss() _UpperCAmelCase : Any = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": _UpperCAmelCase : Any = BCEWithLogitsLoss() _UpperCAmelCase : Tuple = loss_fct(A_ , A_ ) if not return_dict: _UpperCAmelCase : Any = (logits,) + outputs[2:] return (loss,) + output if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=A_ , logits=A_ , hidden_states=outputs.hidden_states ) @add_start_docstrings( "\n ResNet backbone, to be used with frameworks like DETR and MaskFormer.\n " , UpperCAmelCase , ) class a ( UpperCAmelCase , UpperCAmelCase ): def __init__( self , A_ ): '''simple docstring''' super().__init__(A_ ) super()._init_backbone(A_ ) _UpperCAmelCase : Optional[int] = [config.embedding_size] + config.hidden_sizes _UpperCAmelCase : str = ResNetEmbeddings(A_ ) _UpperCAmelCase : List[Any] = ResNetEncoder(A_ ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(A_ ) @replace_return_docstrings(output_type=A_ , config_class=_CONFIG_FOR_DOC ) def _UpperCAmelCase ( self , A_ , A_ = None , A_ = None ): '''simple docstring''' _UpperCAmelCase : Tuple = return_dict if return_dict is not None else self.config.use_return_dict _UpperCAmelCase : Tuple = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _UpperCAmelCase : Tuple = self.embedder(A_ ) _UpperCAmelCase : Optional[int] = self.encoder(A_ , output_hidden_states=A_ , return_dict=A_ ) _UpperCAmelCase : Optional[int] = outputs.hidden_states _UpperCAmelCase : Any = () for idx, stage in enumerate(self.stage_names ): if stage in self.out_features: feature_maps += (hidden_states[idx],) if not return_dict: _UpperCAmelCase : Union[str, Any] = (feature_maps,) if output_hidden_states: output += (outputs.hidden_states,) return output return BackboneOutput( feature_maps=A_ , hidden_states=outputs.hidden_states if output_hidden_states else None , attentions=A_ , )
189
1
"""simple docstring""" import os import unittest from transformers import FunnelTokenizer, FunnelTokenizerFast from transformers.models.funnel.tokenization_funnel import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCAmelCase_ ( _lowercase , unittest.TestCase): snake_case__ = FunnelTokenizer snake_case__ = FunnelTokenizerFast snake_case__ = True snake_case__ = True def _UpperCamelCase ( self : int ) -> Union[str, Any]: super().setUp() _UpperCamelCase = [ '''<unk>''', '''<cls>''', '''<sep>''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] _UpperCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def _UpperCamelCase ( self : Union[str, Any] , **__UpperCamelCase : Tuple ) -> Tuple: return FunnelTokenizer.from_pretrained(self.tmpdirname , **__UpperCamelCase ) def _UpperCamelCase ( self : str , **__UpperCamelCase : str ) -> int: return FunnelTokenizerFast.from_pretrained(self.tmpdirname , **__UpperCamelCase ) def _UpperCamelCase ( self : Tuple , __UpperCamelCase : Optional[int] ) -> List[str]: _UpperCamelCase = '''UNwant\u00E9d,running''' _UpperCamelCase = '''unwanted, running''' return input_text, output_text def _UpperCamelCase ( self : List[Any] ) -> Tuple: _UpperCamelCase = self.tokenizer_class(self.vocab_file ) _UpperCamelCase = tokenizer.tokenize('''UNwant\u00E9d,running''' ) self.assertListEqual(__UpperCamelCase , ['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__UpperCamelCase ) , [7, 4, 5, 10, 8, 9] ) def _UpperCamelCase ( self : Optional[Any] ) -> Any: _UpperCamelCase = self.get_tokenizers(do_lower_case=__UpperCamelCase ) for tokenizer in tokenizers: _UpperCamelCase = tokenizer('''UNwant\u00E9d,running''' ) _UpperCamelCase = len(inputs['''input_ids'''] ) - 1 self.assertListEqual(inputs['''token_type_ids'''] , [2] + [0] * sentence_len ) _UpperCamelCase = tokenizer('''UNwant\u00E9d,running''' , '''UNwant\u00E9d,running''' ) self.assertListEqual(inputs['''token_type_ids'''] , [2] + [0] * sentence_len + [1] * sentence_len )
256
"""simple docstring""" from queue import Queue from typing import TYPE_CHECKING, Optional if TYPE_CHECKING: from ..models.auto import AutoTokenizer class UpperCAmelCase_ : def _UpperCamelCase ( self : List[str] , __UpperCamelCase : Any ) -> Tuple: raise NotImplementedError() def _UpperCamelCase ( self : List[Any] ) -> Dict: raise NotImplementedError() class UpperCAmelCase_ ( _lowercase): def __init__( self : Dict , __UpperCamelCase : "AutoTokenizer" , __UpperCamelCase : bool = False , **__UpperCamelCase : Tuple ) -> str: _UpperCamelCase = tokenizer _UpperCamelCase = skip_prompt _UpperCamelCase = decode_kwargs # variables used in the streaming process _UpperCamelCase = [] _UpperCamelCase = 0 _UpperCamelCase = True def _UpperCamelCase ( self : List[str] , __UpperCamelCase : Dict ) -> Optional[Any]: if len(value.shape ) > 1 and value.shape[0] > 1: raise ValueError('''TextStreamer only supports batch size 1''' ) elif len(value.shape ) > 1: _UpperCamelCase = value[0] if self.skip_prompt and self.next_tokens_are_prompt: _UpperCamelCase = False return # Add the new token to the cache and decodes the entire thing. self.token_cache.extend(value.tolist() ) _UpperCamelCase = self.tokenizer.decode(self.token_cache , **self.decode_kwargs ) # After the symbol for a new line, we flush the cache. if text.endswith('''\n''' ): _UpperCamelCase = text[self.print_len :] _UpperCamelCase = [] _UpperCamelCase = 0 # If the last token is a CJK character, we print the characters. elif len(__UpperCamelCase ) > 0 and self._is_chinese_char(ord(text[-1] ) ): _UpperCamelCase = text[self.print_len :] self.print_len += len(__UpperCamelCase ) # Otherwise, prints until the last space char (simple heuristic to avoid printing incomplete words, # which may change with the subsequent token -- there are probably smarter ways to do this!) else: _UpperCamelCase = text[self.print_len : text.rfind(''' ''' ) + 1] self.print_len += len(__UpperCamelCase ) self.on_finalized_text(__UpperCamelCase ) def _UpperCamelCase ( self : List[Any] ) -> Optional[Any]: # Flush the cache, if it exists if len(self.token_cache ) > 0: _UpperCamelCase = self.tokenizer.decode(self.token_cache , **self.decode_kwargs ) _UpperCamelCase = text[self.print_len :] _UpperCamelCase = [] _UpperCamelCase = 0 else: _UpperCamelCase = '''''' _UpperCamelCase = True self.on_finalized_text(__UpperCamelCase , stream_end=__UpperCamelCase ) def _UpperCamelCase ( self : int , __UpperCamelCase : str , __UpperCamelCase : bool = False ) -> Tuple: print(__UpperCamelCase , flush=__UpperCamelCase , end='''''' if not stream_end else None ) def _UpperCamelCase ( self : Tuple , __UpperCamelCase : Dict ) -> str: # This defines a "chinese character" as anything in the CJK Unicode block: # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) # # Note that the CJK Unicode block is NOT all Japanese and Korean characters, # despite its name. The modern Korean Hangul alphabet is a different block, # as is Japanese Hiragana and Katakana. Those alphabets are used to write # space-separated words, so they are not treated specially and handled # like the all of the other languages. if ( (cp >= 0x4e00 and cp <= 0x9fff) or (cp >= 0x3400 and cp <= 0x4dbf) # or (cp >= 0x2_0000 and cp <= 0x2_a6df) # or (cp >= 0x2_a700 and cp <= 0x2_b73f) # or (cp >= 0x2_b740 and cp <= 0x2_b81f) # or (cp >= 0x2_b820 and cp <= 0x2_ceaf) # or (cp >= 0xf900 and cp <= 0xfaff) or (cp >= 0x2_f800 and cp <= 0x2_fa1f) # ): # return True return False class UpperCAmelCase_ ( _lowercase): def __init__( self : Union[str, Any] , __UpperCamelCase : "AutoTokenizer" , __UpperCamelCase : bool = False , __UpperCamelCase : Optional[float] = None , **__UpperCamelCase : Optional[int] ) -> Optional[Any]: super().__init__(__UpperCamelCase , __UpperCamelCase , **__UpperCamelCase ) _UpperCamelCase = Queue() _UpperCamelCase = None _UpperCamelCase = timeout def _UpperCamelCase ( self : Dict , __UpperCamelCase : str , __UpperCamelCase : bool = False ) -> Any: self.text_queue.put(__UpperCamelCase , timeout=self.timeout ) if stream_end: self.text_queue.put(self.stop_signal , timeout=self.timeout ) def __iter__( self : Optional[Any] ) -> List[str]: return self def _UpperCamelCase ( self : int ) -> Dict: _UpperCamelCase = self.text_queue.get(timeout=self.timeout ) if value == self.stop_signal: raise StopIteration() else: return value
256
1
'''simple docstring''' import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConfig, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaForPreTraining, WavaVecaProcessor, logging, ) from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification logging.set_verbosity_info() __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { '''post_extract_proj''': '''feature_projection.projection''', '''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''', '''self_attn.k_proj''': '''encoder.layers.*.attention.k_proj''', '''self_attn.v_proj''': '''encoder.layers.*.attention.v_proj''', '''self_attn.q_proj''': '''encoder.layers.*.attention.q_proj''', '''self_attn.out_proj''': '''encoder.layers.*.attention.out_proj''', '''self_attn_layer_norm''': '''encoder.layers.*.layer_norm''', '''fc1''': '''encoder.layers.*.feed_forward.intermediate_dense''', '''fc2''': '''encoder.layers.*.feed_forward.output_dense''', '''final_layer_norm''': '''encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''encoder.layer_norm''', '''adapter_layer''': '''encoder.layers.*.adapter_layer''', '''w2v_model.layer_norm''': '''feature_projection.layer_norm''', '''quantizer.weight_proj''': '''quantizer.weight_proj''', '''quantizer.vars''': '''quantizer.codevectors''', '''project_q''': '''project_q''', '''final_proj''': '''project_hid''', '''w2v_encoder.proj''': '''lm_head''', '''mask_emb''': '''masked_spec_embed''', '''pooling_layer.linear''': '''projector''', '''pooling_layer.projection''': '''classifier''', } __UpperCAmelCase = [ '''lm_head''', '''quantizer.weight_proj''', '''quantizer.codevectors''', '''project_q''', '''project_hid''', '''projector''', '''classifier''', ] def _snake_case ( A ) -> int: lowerCAmelCase__ = {} with open(A , '''r''' ) as file: for line_number, line in enumerate(A ): lowerCAmelCase__ = line.strip() if line: lowerCAmelCase__ = line.split() lowerCAmelCase__ = line_number lowerCAmelCase__ = words[0] lowerCAmelCase__ = value return result def _snake_case ( A , A , A , A , A ) -> Dict: for attribute in key.split('''.''' ): lowerCAmelCase__ = getattr(A , A ) lowerCAmelCase__ = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(A ): lowerCAmelCase__ = PARAM_MAPPING[full_name.split('''.''' )[-1]] lowerCAmelCase__ = '''param''' if weight_type is not None and weight_type != "param": lowerCAmelCase__ = getattr(A , A ).shape elif weight_type is not None and weight_type == "param": lowerCAmelCase__ = hf_pointer for attribute in hf_param_name.split('''.''' ): lowerCAmelCase__ = getattr(A , A ) lowerCAmelCase__ = shape_pointer.shape # let's reduce dimension lowerCAmelCase__ = value[0] else: lowerCAmelCase__ = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": lowerCAmelCase__ = value elif weight_type == "weight_g": lowerCAmelCase__ = value elif weight_type == "weight_v": lowerCAmelCase__ = value elif weight_type == "bias": lowerCAmelCase__ = value elif weight_type == "param": for attribute in hf_param_name.split('''.''' ): lowerCAmelCase__ = getattr(A , A ) lowerCAmelCase__ = value else: lowerCAmelCase__ = value logger.info(F"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" ) def _snake_case ( A , A , A , A , A ) -> int: lowerCAmelCase__ = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(A ): lowerCAmelCase__ = PARAM_MAPPING[full_name.split('''.''' )[-1]] lowerCAmelCase__ = '''param''' if weight_type is not None and weight_type != "param": lowerCAmelCase__ = '''.'''.join([key, weight_type] ) elif weight_type is not None and weight_type == "param": lowerCAmelCase__ = '''.'''.join([key, hf_param_name] ) else: lowerCAmelCase__ = key lowerCAmelCase__ = value if '''lm_head''' in full_key else value[0] __UpperCAmelCase = { '''W_a''': '''linear_1.weight''', '''W_b''': '''linear_2.weight''', '''b_a''': '''linear_1.bias''', '''b_b''': '''linear_2.bias''', '''ln_W''': '''norm.weight''', '''ln_b''': '''norm.bias''', } def _snake_case ( A , A , A=None , A=None ) -> str: lowerCAmelCase__ = False for key, mapped_key in MAPPING.items(): lowerCAmelCase__ = '''wav2vec2.''' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: lowerCAmelCase__ = True if "*" in mapped_key: lowerCAmelCase__ = name.split(A )[0].split('''.''' )[-2] lowerCAmelCase__ = mapped_key.replace('''*''' , A ) if "weight_g" in name: lowerCAmelCase__ = '''weight_g''' elif "weight_v" in name: lowerCAmelCase__ = '''weight_v''' elif "bias" in name: lowerCAmelCase__ = '''bias''' elif "weight" in name: # TODO: don't match quantizer.weight_proj lowerCAmelCase__ = '''weight''' else: lowerCAmelCase__ = None if hf_dict is not None: rename_dict(A , A , A , A , A ) else: set_recursively(A , A , A , A , A ) return is_used return is_used def _snake_case ( A , A , A ) -> Union[str, Any]: lowerCAmelCase__ = [] lowerCAmelCase__ = fairseq_model.state_dict() lowerCAmelCase__ = hf_model.wavaveca.feature_extractor for name, value in fairseq_dict.items(): lowerCAmelCase__ = False if "conv_layers" in name: load_conv_layer( A , A , A , A , hf_model.config.feat_extract_norm == '''group''' , ) lowerCAmelCase__ = True else: lowerCAmelCase__ = load_wavaveca_layer(A , A , A ) if not is_used: unused_weights.append(A ) logger.warning(F"""Unused weights: {unused_weights}""" ) def _snake_case ( A , A , A , A , A ) -> List[Any]: lowerCAmelCase__ = full_name.split('''conv_layers.''' )[-1] lowerCAmelCase__ = name.split('''.''' ) lowerCAmelCase__ = int(items[0] ) lowerCAmelCase__ = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) lowerCAmelCase__ = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) lowerCAmelCase__ = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.""" ) lowerCAmelCase__ = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.""" ) lowerCAmelCase__ = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(A ) @torch.no_grad() def _snake_case ( A , A , A=None , A=None , A=True , A=False ) -> List[Any]: if config_path is not None: lowerCAmelCase__ = WavaVecaConfig.from_pretrained(A ) else: lowerCAmelCase__ = WavaVecaConfig() if is_seq_class: lowerCAmelCase__ = read_txt_into_dict(A ) lowerCAmelCase__ = idalabel lowerCAmelCase__ = WavaVecaForSequenceClassification(A ) lowerCAmelCase__ = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=A , return_attention_mask=A , ) feature_extractor.save_pretrained(A ) elif is_finetuned: if dict_path: lowerCAmelCase__ = Dictionary.load(A ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq lowerCAmelCase__ = target_dict.pad_index lowerCAmelCase__ = target_dict.bos_index lowerCAmelCase__ = target_dict.eos_index lowerCAmelCase__ = len(target_dict.symbols ) lowerCAmelCase__ = os.path.join(A , '''vocab.json''' ) if not os.path.isdir(A ): logger.error('''--pytorch_dump_folder_path ({}) should be a directory'''.format(A ) ) return os.makedirs(A , exist_ok=A ) lowerCAmelCase__ = target_dict.indices # fairseq has the <pad> and <s> switched lowerCAmelCase__ = 0 lowerCAmelCase__ = 1 with open(A , '''w''' , encoding='''utf-8''' ) as vocab_handle: json.dump(A , A ) lowerCAmelCase__ = WavaVecaCTCTokenizer( A , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='''|''' , do_lower_case=A , ) lowerCAmelCase__ = True if config.feat_extract_norm == '''layer''' else False lowerCAmelCase__ = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=A , return_attention_mask=A , ) lowerCAmelCase__ = WavaVecaProcessor(feature_extractor=A , tokenizer=A ) processor.save_pretrained(A ) lowerCAmelCase__ = WavaVecaForCTC(A ) else: lowerCAmelCase__ = WavaVecaForPreTraining(A ) if is_finetuned or is_seq_class: lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} ) else: lowerCAmelCase__ = argparse.Namespace(task='''audio_pretraining''' ) lowerCAmelCase__ = fairseq.tasks.setup_task(A ) lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=A ) lowerCAmelCase__ = model[0].eval() recursively_load_weights(A , A , not is_finetuned ) hf_wavavec.save_pretrained(A ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--dict_path''', default=None, type=str, help='''Path to dict of fine-tuned model''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--not_finetuned''', action='''store_true''', help='''Whether the model to convert is a fine-tuned model or not''' ) parser.add_argument( '''--is_seq_class''', action='''store_true''', help='''Whether the model to convert is a fine-tuned sequence classification model or not''', ) __UpperCAmelCase = parser.parse_args() __UpperCAmelCase = not args.not_finetuned and not args.is_seq_class convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, is_finetuned, args.is_seq_class, )
228
'''simple docstring''' from __future__ import annotations class a__ : '''simple docstring''' def __init__( self , lowerCamelCase_ ) -> None: lowerCAmelCase__ = order # a_{0} ... a_{k} lowerCAmelCase__ = [1.0] + [0.0] * order # b_{0} ... b_{k} lowerCAmelCase__ = [1.0] + [0.0] * order # x[n-1] ... x[n-k] lowerCAmelCase__ = [0.0] * self.order # y[n-1] ... y[n-k] lowerCAmelCase__ = [0.0] * self.order def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ , lowerCamelCase_ ) -> None: if len(lowerCamelCase_ ) < self.order: lowerCAmelCase__ = [1.0, *a_coeffs] if len(lowerCamelCase_ ) != self.order + 1: lowerCAmelCase__ = ( F"""Expected a_coeffs to have {self.order + 1} elements """ F"""for {self.order}-order filter, got {len(lowerCamelCase_ )}""" ) raise ValueError(lowerCamelCase_ ) if len(lowerCamelCase_ ) != self.order + 1: lowerCAmelCase__ = ( F"""Expected b_coeffs to have {self.order + 1} elements """ F"""for {self.order}-order filter, got {len(lowerCamelCase_ )}""" ) raise ValueError(lowerCamelCase_ ) lowerCAmelCase__ = a_coeffs lowerCAmelCase__ = b_coeffs def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ ) -> float: lowerCAmelCase__ = 0.0 # Start at index 1 and do index 0 at the end. for i in range(1 , self.order + 1 ): result += ( self.b_coeffs[i] * self.input_history[i - 1] - self.a_coeffs[i] * self.output_history[i - 1] ) lowerCAmelCase__ = (result + self.b_coeffs[0] * sample) / self.a_coeffs[0] lowerCAmelCase__ = self.input_history[:-1] lowerCAmelCase__ = self.output_history[:-1] lowerCAmelCase__ = sample lowerCAmelCase__ = result return result
228
1
import math class UpperCAmelCase : '''simple docstring''' def __init__( self : Optional[int] ,A : Dict=0 ): # a graph with Node 0,1,...,N-1 __A = n __A = [ [math.inf for j in range(0 ,A )] for i in range(0 ,A ) ] # adjacency matrix for weight __A = [ [math.inf for j in range(0 ,A )] for i in range(0 ,A ) ] # dp[i][j] stores minimum distance from i to j def UpperCamelCase_ ( self : List[str] ,A : Tuple ,A : Union[str, Any] ,A : Optional[int] ): __A = w def UpperCamelCase_ ( self : int ): for k in range(0 ,self.n ): for i in range(0 ,self.n ): for j in range(0 ,self.n ): __A = min(self.dp[i][j] ,self.dp[i][k] + self.dp[k][j] ) def UpperCamelCase_ ( self : Optional[int] ,A : str ,A : Union[str, Any] ): return self.dp[u][v] if __name__ == "__main__": SCREAMING_SNAKE_CASE :Optional[int] = Graph(5) graph.add_edge(0, 2, 9) graph.add_edge(0, 4, 10) graph.add_edge(1, 3, 5) graph.add_edge(2, 3, 7) graph.add_edge(3, 0, 10) graph.add_edge(3, 1, 2) graph.add_edge(3, 2, 1) graph.add_edge(3, 4, 6) graph.add_edge(4, 1, 3) graph.add_edge(4, 2, 4) graph.add_edge(4, 3, 9) graph.floyd_warshall() graph.show_min(1, 4) graph.show_min(0, 3)
15
# This code is adapted from OpenAI's release # https://github.com/openai/human-eval/blob/master/human_eval/execution.py import contextlib import faulthandler import io import multiprocessing import os import platform import signal import tempfile def __lowerCamelCase ( __a :List[str] , __a :List[Any] , __a :Union[str, Any] , __a :List[Any] ) -> Dict: """simple docstring""" A__ = multiprocessing.Manager() A__ = manager.list() A__ = multiprocessing.Process(target=__a , args=(check_program, result, timeout) ) p.start() p.join(timeout=timeout + 1 ) if p.is_alive(): p.kill() if not result: result.append("""timed out""" ) return { "task_id": task_id, "passed": result[0] == "passed", "result": result[0], "completion_id": completion_id, } def __lowerCamelCase ( __a :Optional[Any] , __a :Any , __a :List[Any] ) -> Union[str, Any]: """simple docstring""" with create_tempdir(): # These system calls are needed when cleaning up tempdir. import os import shutil A__ = shutil.rmtree A__ = os.rmdir A__ = os.chdir # Disable functionalities that can make destructive changes to the test. reliability_guard() # Run program. try: A__ = {} with swallow_io(): with time_limit(__a ): exec(__a , __a ) result.append("""passed""" ) except TimeoutException: result.append("""timed out""" ) except BaseException as e: result.append(F'failed: {e}' ) # Needed for cleaning up. A__ = rmtree A__ = rmdir A__ = chdir @contextlib.contextmanager def __lowerCamelCase ( __a :List[str] ) -> Dict: """simple docstring""" def signal_handler(__a :List[Any] , __a :Optional[Any] ): raise TimeoutException("""Timed out!""" ) signal.setitimer(signal.ITIMER_REAL , __a ) signal.signal(signal.SIGALRM , __a ) try: yield finally: signal.setitimer(signal.ITIMER_REAL , 0 ) @contextlib.contextmanager def __lowerCamelCase ( ) -> Union[str, Any]: """simple docstring""" A__ = WriteOnlyStringIO() with contextlib.redirect_stdout(__a ): with contextlib.redirect_stderr(__a ): with redirect_stdin(__a ): yield @contextlib.contextmanager def __lowerCamelCase ( ) -> Dict: """simple docstring""" with tempfile.TemporaryDirectory() as dirname: with chdir(__a ): yield dirname class A (SCREAMING_SNAKE_CASE ): '''simple docstring''' pass class A (io.StringIO ): '''simple docstring''' def a_ ( self : Any , *__lowerCAmelCase : List[str] , **__lowerCAmelCase : str ) -> Dict: """simple docstring""" raise OSError def a_ ( self : Optional[Any] , *__lowerCAmelCase : Any , **__lowerCAmelCase : Optional[int] ) -> str: """simple docstring""" raise OSError def a_ ( self : Optional[Any] , *__lowerCAmelCase : Any , **__lowerCAmelCase : Any ) -> int: """simple docstring""" raise OSError def a_ ( self : str , *__lowerCAmelCase : Any , **__lowerCAmelCase : Union[str, Any] ) -> int: """simple docstring""" return False class A (contextlib._RedirectStream ): # type: ignore '''simple docstring''' __lowerCamelCase : Union[str, Any] = '''stdin''' @contextlib.contextmanager def __lowerCamelCase ( __a :Union[str, Any] ) -> List[str]: """simple docstring""" if root == ".": yield return A__ = os.getcwd() os.chdir(__a ) try: yield except BaseException as exc: raise exc finally: os.chdir(__a ) def __lowerCamelCase ( __a :Union[str, Any]=None ) -> Dict: """simple docstring""" if maximum_memory_bytes is not None: import resource resource.setrlimit(resource.RLIMIT_AS , (maximum_memory_bytes, maximum_memory_bytes) ) resource.setrlimit(resource.RLIMIT_DATA , (maximum_memory_bytes, maximum_memory_bytes) ) if not platform.uname().system == "Darwin": resource.setrlimit(resource.RLIMIT_STACK , (maximum_memory_bytes, maximum_memory_bytes) ) faulthandler.disable() import builtins A__ = None A__ = None import os A__ = """1""" A__ = None A__ = None A__ = None A__ = None A__ = None A__ = None A__ = None A__ = None A__ = None A__ = None A__ = None A__ = None A__ = None A__ = None A__ = None A__ = None A__ = None A__ = None A__ = None A__ = None A__ = None A__ = None A__ = None A__ = None A__ = None A__ = None A__ = None import shutil A__ = None A__ = None A__ = None import subprocess A__ = None # type: ignore A__ = None import sys A__ = None A__ = None A__ = None A__ = None A__ = None
274
0
import mpmath # for roots of unity import numpy as np class __magic_name__ : def __init__( self , _lowercase=None , _lowercase=None )-> Optional[int]: # Input as list UpperCamelCase_ = list(poly_a or [0] )[:] UpperCamelCase_ = list(poly_b or [0] )[:] # Remove leading zero coefficients while self.polyA[-1] == 0: self.polyA.pop() UpperCamelCase_ = len(self.polyA ) while self.polyB[-1] == 0: self.polyB.pop() UpperCamelCase_ = len(self.polyB ) # Add 0 to make lengths equal a power of 2 UpperCamelCase_ = int( 2 ** np.ceil(np.loga(len(self.polyA ) + len(self.polyB ) - 1 ) ) ) while len(self.polyA ) < self.c_max_length: self.polyA.append(0 ) while len(self.polyB ) < self.c_max_length: self.polyB.append(0 ) # A complex root used for the fourier transform UpperCamelCase_ = complex(mpmath.root(x=1 , n=self.c_max_length , k=1 ) ) # The product UpperCamelCase_ = self.__multiply() def UpperCAmelCase_ ( self , _lowercase )-> str: UpperCamelCase_ = [[x] for x in self.polyA] if which == "A" else [[x] for x in self.polyB] # Corner case if len(_lowercase ) <= 1: return dft[0] # UpperCamelCase_ = self.c_max_length // 2 while next_ncol > 0: UpperCamelCase_ = [[] for i in range(_lowercase )] UpperCamelCase_ = self.root**next_ncol # First half of next step UpperCamelCase_ = 1 for j in range(self.c_max_length // (next_ncol * 2) ): for i in range(_lowercase ): new_dft[i].append(dft[i][j] + current_root * dft[i + next_ncol][j] ) current_root *= root # Second half of next step UpperCamelCase_ = 1 for j in range(self.c_max_length // (next_ncol * 2) ): for i in range(_lowercase ): new_dft[i].append(dft[i][j] - current_root * dft[i + next_ncol][j] ) current_root *= root # Update UpperCamelCase_ = new_dft UpperCamelCase_ = next_ncol // 2 return dft[0] def UpperCAmelCase_ ( self )-> Any: UpperCamelCase_ = self.__dft("A" ) UpperCamelCase_ = self.__dft("B" ) UpperCamelCase_ = [[dft_a[i] * dft_b[i] for i in range(self.c_max_length )]] del dft_a del dft_b # Corner Case if len(inverce_c[0] ) <= 1: return inverce_c[0] # Inverse DFT UpperCamelCase_ = 2 while next_ncol <= self.c_max_length: UpperCamelCase_ = [[] for i in range(_lowercase )] UpperCamelCase_ = self.root ** (next_ncol // 2) UpperCamelCase_ = 1 # First half of next step for j in range(self.c_max_length // next_ncol ): for i in range(next_ncol // 2 ): # Even positions new_inverse_c[i].append( ( inverce_c[i][j] + inverce_c[i][j + self.c_max_length // next_ncol] ) / 2 ) # Odd positions new_inverse_c[i + next_ncol // 2].append( ( inverce_c[i][j] - inverce_c[i][j + self.c_max_length // next_ncol] ) / (2 * current_root) ) current_root *= root # Update UpperCamelCase_ = new_inverse_c next_ncol *= 2 # Unpack UpperCamelCase_ = [round(x[0].real , 8 ) + round(x[0].imag , 8 ) * 1j for x in inverce_c] # Remove leading 0's while inverce_c[-1] == 0: inverce_c.pop() return inverce_c def __str__( self )-> List[str]: UpperCamelCase_ = "A = " + " + ".join( F"{coef}*x^{i}" for coef, i in enumerate(self.polyA[: self.len_A] ) ) UpperCamelCase_ = "B = " + " + ".join( F"{coef}*x^{i}" for coef, i in enumerate(self.polyB[: self.len_B] ) ) UpperCamelCase_ = "A*B = " + " + ".join( F"{coef}*x^{i}" for coef, i in enumerate(self.product ) ) return F"{a}\n{b}\n{c}" # Unit tests if __name__ == "__main__": import doctest doctest.testmod()
351
import unittest from transformers import is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class __magic_name__ : @staticmethod def UpperCAmelCase_ ( *_lowercase , **_lowercase )-> Optional[int]: pass @is_pipeline_test @require_vision class __magic_name__ ( unittest.TestCase ): @require_torch def UpperCAmelCase_ ( self )-> int: UpperCamelCase_ = pipeline( model="hf-internal-testing/tiny-random-clip-zero-shot-image-classification" , ) UpperCamelCase_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) UpperCamelCase_ = image_classifier(_lowercase , candidate_labels=["a", "b", "c"] ) # The floating scores are so close, we enter floating error approximation and the order is not guaranteed across # python and torch versions. self.assertIn( nested_simplify(_lowercase ) , [ [{"score": 0.333, "label": "a"}, {"score": 0.333, "label": "b"}, {"score": 0.333, "label": "c"}], [{"score": 0.333, "label": "a"}, {"score": 0.333, "label": "c"}, {"score": 0.333, "label": "b"}], ] , ) UpperCamelCase_ = image_classifier([image] * 5 , candidate_labels=["A", "B", "C"] , batch_size=2 ) self.assertEqual( nested_simplify(_lowercase ) , [ [ {"score": 0.333, "label": ANY(_lowercase )}, {"score": 0.333, "label": ANY(_lowercase )}, {"score": 0.333, "label": ANY(_lowercase )}, ], [ {"score": 0.333, "label": ANY(_lowercase )}, {"score": 0.333, "label": ANY(_lowercase )}, {"score": 0.333, "label": ANY(_lowercase )}, ], [ {"score": 0.333, "label": ANY(_lowercase )}, {"score": 0.333, "label": ANY(_lowercase )}, {"score": 0.333, "label": ANY(_lowercase )}, ], [ {"score": 0.333, "label": ANY(_lowercase )}, {"score": 0.333, "label": ANY(_lowercase )}, {"score": 0.333, "label": ANY(_lowercase )}, ], [ {"score": 0.333, "label": ANY(_lowercase )}, {"score": 0.333, "label": ANY(_lowercase )}, {"score": 0.333, "label": ANY(_lowercase )}, ], ] , ) @require_tf def UpperCAmelCase_ ( self )-> Optional[Any]: UpperCamelCase_ = pipeline( model="hf-internal-testing/tiny-random-clip-zero-shot-image-classification" , framework="tf" ) UpperCamelCase_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) UpperCamelCase_ = image_classifier(_lowercase , candidate_labels=["a", "b", "c"] ) self.assertEqual( nested_simplify(_lowercase ) , [{"score": 0.333, "label": "a"}, {"score": 0.333, "label": "b"}, {"score": 0.333, "label": "c"}] , ) UpperCamelCase_ = image_classifier([image] * 5 , candidate_labels=["A", "B", "C"] , batch_size=2 ) self.assertEqual( nested_simplify(_lowercase ) , [ [ {"score": 0.333, "label": ANY(_lowercase )}, {"score": 0.333, "label": ANY(_lowercase )}, {"score": 0.333, "label": ANY(_lowercase )}, ], [ {"score": 0.333, "label": ANY(_lowercase )}, {"score": 0.333, "label": ANY(_lowercase )}, {"score": 0.333, "label": ANY(_lowercase )}, ], [ {"score": 0.333, "label": ANY(_lowercase )}, {"score": 0.333, "label": ANY(_lowercase )}, {"score": 0.333, "label": ANY(_lowercase )}, ], [ {"score": 0.333, "label": ANY(_lowercase )}, {"score": 0.333, "label": ANY(_lowercase )}, {"score": 0.333, "label": ANY(_lowercase )}, ], [ {"score": 0.333, "label": ANY(_lowercase )}, {"score": 0.333, "label": ANY(_lowercase )}, {"score": 0.333, "label": ANY(_lowercase )}, ], ] , ) @slow @require_torch def UpperCAmelCase_ ( self )-> Optional[Any]: UpperCamelCase_ = pipeline( task="zero-shot-image-classification" , model="openai/clip-vit-base-patch32" , ) # This is an image of 2 cats with remotes and no planes UpperCamelCase_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) UpperCamelCase_ = image_classifier(_lowercase , candidate_labels=["cat", "plane", "remote"] ) self.assertEqual( nested_simplify(_lowercase ) , [ {"score": 0.511, "label": "remote"}, {"score": 0.485, "label": "cat"}, {"score": 0.004, "label": "plane"}, ] , ) UpperCamelCase_ = image_classifier([image] * 5 , candidate_labels=["cat", "plane", "remote"] , batch_size=2 ) self.assertEqual( nested_simplify(_lowercase ) , [ [ {"score": 0.511, "label": "remote"}, {"score": 0.485, "label": "cat"}, {"score": 0.004, "label": "plane"}, ], ] * 5 , ) @slow @require_tf def UpperCAmelCase_ ( self )-> List[str]: UpperCamelCase_ = pipeline( task="zero-shot-image-classification" , model="openai/clip-vit-base-patch32" , framework="tf" ) # This is an image of 2 cats with remotes and no planes UpperCamelCase_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) UpperCamelCase_ = image_classifier(_lowercase , candidate_labels=["cat", "plane", "remote"] ) self.assertEqual( nested_simplify(_lowercase ) , [ {"score": 0.511, "label": "remote"}, {"score": 0.485, "label": "cat"}, {"score": 0.004, "label": "plane"}, ] , ) UpperCamelCase_ = image_classifier([image] * 5 , candidate_labels=["cat", "plane", "remote"] , batch_size=2 ) self.assertEqual( nested_simplify(_lowercase ) , [ [ {"score": 0.511, "label": "remote"}, {"score": 0.485, "label": "cat"}, {"score": 0.004, "label": "plane"}, ], ] * 5 , )
60
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) __UpperCamelCase = {'''configuration_unispeech''': ['''UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''UniSpeechConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = [ '''UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST''', '''UniSpeechForCTC''', '''UniSpeechForPreTraining''', '''UniSpeechForSequenceClassification''', '''UniSpeechModel''', '''UniSpeechPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_unispeech import UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP, UniSpeechConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_unispeech import ( UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST, UniSpeechForCTC, UniSpeechForPreTraining, UniSpeechForSequenceClassification, UniSpeechModel, UniSpeechPreTrainedModel, ) else: import sys __UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
113
"""simple docstring""" import argparse import json from pathlib import Path import torch import torchaudio from datasets import load_dataset from huggingface_hub import hf_hub_download from transformers import ASTConfig, ASTFeatureExtractor, ASTForAudioClassification from transformers.utils import logging logging.set_verbosity_info() __UpperCamelCase = logging.get_logger(__name__) def lowercase (SCREAMING_SNAKE_CASE_ : int ) -> List[str]: SCREAMING_SNAKE_CASE = ASTConfig() if "10-10" in model_name: pass elif "speech-commands" in model_name: SCREAMING_SNAKE_CASE = 1_28 elif "12-12" in model_name: SCREAMING_SNAKE_CASE = 12 SCREAMING_SNAKE_CASE = 12 elif "14-14" in model_name: SCREAMING_SNAKE_CASE = 14 SCREAMING_SNAKE_CASE = 14 elif "16-16" in model_name: SCREAMING_SNAKE_CASE = 16 SCREAMING_SNAKE_CASE = 16 else: raise ValueError('Model not supported' ) SCREAMING_SNAKE_CASE = 'huggingface/label-files' if "speech-commands" in model_name: SCREAMING_SNAKE_CASE = 35 SCREAMING_SNAKE_CASE = 'speech-commands-v2-id2label.json' else: SCREAMING_SNAKE_CASE = 5_27 SCREAMING_SNAKE_CASE = 'audioset-id2label.json' SCREAMING_SNAKE_CASE = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , repo_type='dataset' ) , 'r' ) ) SCREAMING_SNAKE_CASE = {int(SCREAMING_SNAKE_CASE_ ): v for k, v in idalabel.items()} SCREAMING_SNAKE_CASE = idalabel SCREAMING_SNAKE_CASE = {v: k for k, v in idalabel.items()} return config def lowercase (SCREAMING_SNAKE_CASE_ : str ) -> List[Any]: if "module.v" in name: SCREAMING_SNAKE_CASE = name.replace('module.v' , 'audio_spectrogram_transformer' ) if "cls_token" in name: SCREAMING_SNAKE_CASE = name.replace('cls_token' , 'embeddings.cls_token' ) if "dist_token" in name: SCREAMING_SNAKE_CASE = name.replace('dist_token' , 'embeddings.distillation_token' ) if "pos_embed" in name: SCREAMING_SNAKE_CASE = name.replace('pos_embed' , 'embeddings.position_embeddings' ) if "patch_embed.proj" in name: SCREAMING_SNAKE_CASE = name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' ) # transformer blocks if "blocks" in name: SCREAMING_SNAKE_CASE = name.replace('blocks' , 'encoder.layer' ) if "attn.proj" in name: SCREAMING_SNAKE_CASE = name.replace('attn.proj' , 'attention.output.dense' ) if "attn" in name: SCREAMING_SNAKE_CASE = name.replace('attn' , 'attention.self' ) if "norm1" in name: SCREAMING_SNAKE_CASE = name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: SCREAMING_SNAKE_CASE = name.replace('norm2' , 'layernorm_after' ) if "mlp.fc1" in name: SCREAMING_SNAKE_CASE = name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: SCREAMING_SNAKE_CASE = name.replace('mlp.fc2' , 'output.dense' ) # final layernorm if "audio_spectrogram_transformer.norm" in name: SCREAMING_SNAKE_CASE = name.replace('audio_spectrogram_transformer.norm' , 'audio_spectrogram_transformer.layernorm' ) # classifier head if "module.mlp_head.0" in name: SCREAMING_SNAKE_CASE = name.replace('module.mlp_head.0' , 'classifier.layernorm' ) if "module.mlp_head.1" in name: SCREAMING_SNAKE_CASE = name.replace('module.mlp_head.1' , 'classifier.dense' ) return name def lowercase (SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : Dict ) -> Dict: for key in orig_state_dict.copy().keys(): SCREAMING_SNAKE_CASE = orig_state_dict.pop(SCREAMING_SNAKE_CASE_ ) if "qkv" in key: SCREAMING_SNAKE_CASE = key.split('.' ) SCREAMING_SNAKE_CASE = int(key_split[3] ) SCREAMING_SNAKE_CASE = config.hidden_size if "weight" in key: SCREAMING_SNAKE_CASE = val[:dim, :] SCREAMING_SNAKE_CASE = val[dim : dim * 2, :] SCREAMING_SNAKE_CASE = val[-dim:, :] else: SCREAMING_SNAKE_CASE = val[:dim] SCREAMING_SNAKE_CASE = val[dim : dim * 2] SCREAMING_SNAKE_CASE = val[-dim:] else: SCREAMING_SNAKE_CASE = val return orig_state_dict def lowercase (SCREAMING_SNAKE_CASE_ : int ) -> List[Any]: SCREAMING_SNAKE_CASE = [ 'module.v.head.weight', 'module.v.head.bias', 'module.v.head_dist.weight', 'module.v.head_dist.bias', ] for k in ignore_keys: state_dict.pop(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) @torch.no_grad() def lowercase (SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Union[str, Any]=False ) -> Optional[int]: SCREAMING_SNAKE_CASE = get_audio_spectrogram_transformer_config(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE = { 'ast-finetuned-audioset-10-10-0.4593': ( 'https://www.dropbox.com/s/ca0b1v2nlxzyeb4/audioset_10_10_0.4593.pth?dl=1' ), 'ast-finetuned-audioset-10-10-0.450': ( 'https://www.dropbox.com/s/1tv0hovue1bxupk/audioset_10_10_0.4495.pth?dl=1' ), 'ast-finetuned-audioset-10-10-0.448': ( 'https://www.dropbox.com/s/6u5sikl4b9wo4u5/audioset_10_10_0.4483.pth?dl=1' ), 'ast-finetuned-audioset-10-10-0.448-v2': ( 'https://www.dropbox.com/s/kt6i0v9fvfm1mbq/audioset_10_10_0.4475.pth?dl=1' ), 'ast-finetuned-audioset-12-12-0.447': ( 'https://www.dropbox.com/s/snfhx3tizr4nuc8/audioset_12_12_0.4467.pth?dl=1' ), 'ast-finetuned-audioset-14-14-0.443': ( 'https://www.dropbox.com/s/z18s6pemtnxm4k7/audioset_14_14_0.4431.pth?dl=1' ), 'ast-finetuned-audioset-16-16-0.442': ( 'https://www.dropbox.com/s/mdsa4t1xmcimia6/audioset_16_16_0.4422.pth?dl=1' ), 'ast-finetuned-speech-commands-v2': ( 'https://www.dropbox.com/s/q0tbqpwv44pquwy/speechcommands_10_10_0.9812.pth?dl=1' ), } # load original state_dict SCREAMING_SNAKE_CASE = model_name_to_url[model_name] SCREAMING_SNAKE_CASE = torch.hub.load_state_dict_from_url(SCREAMING_SNAKE_CASE_ , map_location='cpu' ) # remove some keys remove_keys(SCREAMING_SNAKE_CASE_ ) # rename some keys SCREAMING_SNAKE_CASE = convert_state_dict(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # load 🤗 model SCREAMING_SNAKE_CASE = ASTForAudioClassification(SCREAMING_SNAKE_CASE_ ) model.eval() model.load_state_dict(SCREAMING_SNAKE_CASE_ ) # verify outputs on dummy input # source: https://github.com/YuanGongND/ast/blob/79e873b8a54d0a3b330dd522584ff2b9926cd581/src/run.py#L62 SCREAMING_SNAKE_CASE = -4.2_67_73_93 if 'speech-commands' not in model_name else -6.84_59_78 SCREAMING_SNAKE_CASE = 4.5_68_99_74 if 'speech-commands' not in model_name else 5.5_65_45_26 SCREAMING_SNAKE_CASE = 10_24 if 'speech-commands' not in model_name else 1_28 SCREAMING_SNAKE_CASE = ASTFeatureExtractor(mean=SCREAMING_SNAKE_CASE_ , std=SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ ) if "speech-commands" in model_name: SCREAMING_SNAKE_CASE = load_dataset('speech_commands' , 'v0.02' , split='validation' ) SCREAMING_SNAKE_CASE = dataset[0]['audio']['array'] else: SCREAMING_SNAKE_CASE = hf_hub_download( repo_id='nielsr/audio-spectogram-transformer-checkpoint' , filename='sample_audio.flac' , repo_type='dataset' , ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = torchaudio.load(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE = waveform.squeeze().numpy() SCREAMING_SNAKE_CASE = feature_extractor(SCREAMING_SNAKE_CASE_ , sampling_rate=1_60_00 , return_tensors='pt' ) # forward pass SCREAMING_SNAKE_CASE = model(**SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE = outputs.logits if model_name == "ast-finetuned-audioset-10-10-0.4593": SCREAMING_SNAKE_CASE = torch.tensor([-0.87_60, -7.00_42, -8.66_02] ) elif model_name == "ast-finetuned-audioset-10-10-0.450": SCREAMING_SNAKE_CASE = torch.tensor([-1.19_86, -7.09_03, -8.27_18] ) elif model_name == "ast-finetuned-audioset-10-10-0.448": SCREAMING_SNAKE_CASE = torch.tensor([-2.61_28, -8.00_80, -9.43_44] ) elif model_name == "ast-finetuned-audioset-10-10-0.448-v2": SCREAMING_SNAKE_CASE = torch.tensor([-1.50_80, -7.45_34, -8.89_17] ) elif model_name == "ast-finetuned-audioset-12-12-0.447": SCREAMING_SNAKE_CASE = torch.tensor([-0.50_50, -6.58_33, -8.08_43] ) elif model_name == "ast-finetuned-audioset-14-14-0.443": SCREAMING_SNAKE_CASE = torch.tensor([-0.38_26, -7.03_36, -8.24_13] ) elif model_name == "ast-finetuned-audioset-16-16-0.442": SCREAMING_SNAKE_CASE = torch.tensor([-1.21_13, -6.91_01, -8.34_70] ) elif model_name == "ast-finetuned-speech-commands-v2": SCREAMING_SNAKE_CASE = torch.tensor([6.15_89, -8.05_66, -8.79_84] ) else: raise ValueError('Unknown model name' ) if not torch.allclose(logits[0, :3] , SCREAMING_SNAKE_CASE_ , atol=1E-4 ): raise ValueError('Logits don\'t match' ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: Path(SCREAMING_SNAKE_CASE_ ).mkdir(exist_ok=SCREAMING_SNAKE_CASE_ ) print(F'Saving model {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(SCREAMING_SNAKE_CASE_ ) print(F'Saving feature extractor to {pytorch_dump_folder_path}' ) feature_extractor.save_pretrained(SCREAMING_SNAKE_CASE_ ) if push_to_hub: print('Pushing model and feature extractor to the hub...' ) model.push_to_hub(F'MIT/{model_name}' ) feature_extractor.push_to_hub(F'MIT/{model_name}' ) if __name__ == "__main__": __UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''ast-finetuned-audioset-10-10-0.4593''', type=str, help='''Name of the Audio Spectrogram Transformer model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) __UpperCamelCase = parser.parse_args() convert_audio_spectrogram_transformer_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
113
1
import os from math import logaa def SCREAMING_SNAKE_CASE__ ( lowercase = "base_exp.txt" ) -> int: snake_case : float = 0 snake_case : Optional[Any] = 0 for i, line in enumerate(open(os.path.join(os.path.dirname(lowercase ) ,lowercase ) ) ): snake_case : str = list(map(lowercase ,line.split(""",""" ) ) ) if x * logaa(lowercase ) > largest: snake_case : Union[str, Any] = x * logaa(lowercase ) snake_case : Any = i + 1 return result if __name__ == "__main__": print(solution())
371
def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> int: return int((input_a, input_a).count(1 ) != 0 ) def SCREAMING_SNAKE_CASE__ ( ) -> None: assert or_gate(0 ,0 ) == 0 assert or_gate(0 ,1 ) == 1 assert or_gate(1 ,0 ) == 1 assert or_gate(1 ,1 ) == 1 if __name__ == "__main__": print(or_gate(0, 1)) print(or_gate(1, 0)) print(or_gate(0, 0)) print(or_gate(1, 1))
176
0
'''simple docstring''' from __future__ import annotations from statistics import mean def __lowercase ( __lowercase , __lowercase , __lowercase ) -> list[int]: '''simple docstring''' _A = [0] * no_of_processes _A = [0] * no_of_processes # Initialize remaining_time to waiting_time. for i in range(__lowercase ): _A = burst_time[i] _A = [] _A = 0 _A = 0 # When processes are not completed, # A process whose arrival time has passed \ # and has remaining execution time is put into the ready_process. # The shortest process in the ready_process, target_process is executed. while completed != no_of_processes: _A = [] _A = -1 for i in range(__lowercase ): if (arrival_time[i] <= total_time) and (remaining_time[i] > 0): ready_process.append(__lowercase ) if len(__lowercase ) > 0: _A = ready_process[0] for i in ready_process: if remaining_time[i] < remaining_time[target_process]: _A = i total_time += burst_time[target_process] completed += 1 _A = 0 _A = ( total_time - arrival_time[target_process] - burst_time[target_process] ) else: total_time += 1 return waiting_time def __lowercase ( __lowercase , __lowercase , __lowercase ) -> list[int]: '''simple docstring''' _A = [0] * no_of_processes for i in range(__lowercase ): _A = burst_time[i] + waiting_time[i] return turn_around_time if __name__ == "__main__": print('''[TEST CASE 01]''') lowerCamelCase_ = 4 lowerCamelCase_ = [2, 5, 3, 7] lowerCamelCase_ = [0, 0, 0, 0] lowerCamelCase_ = calculate_waitingtime(arrival_time, burst_time, no_of_processes) lowerCamelCase_ = calculate_turnaroundtime( burst_time, no_of_processes, waiting_time ) # Printing the Result print('''PID\tBurst Time\tArrival Time\tWaiting Time\tTurnaround Time''') for i, process_id in enumerate(list(range(1, 5))): print( F"""{process_id}\t{burst_time[i]}\t\t\t{arrival_time[i]}\t\t\t\t""" F"""{waiting_time[i]}\t\t\t\t{turn_around_time[i]}""" ) print(F"""\nAverage waiting time = {mean(waiting_time):.5f}""") print(F"""Average turnaround time = {mean(turn_around_time):.5f}""")
79
'''simple docstring''' from collections.abc import Sequence def __UpperCamelCase ( lowercase__ : Sequence[float], lowercase__ : float ): '''simple docstring''' return sum(c * (x**i) for i, c in enumerate(lowercase__ ) ) def __UpperCamelCase ( lowercase__ : Sequence[float], lowercase__ : float ): '''simple docstring''' __lowercase =0.0 for coeff in reversed(lowercase__ ): __lowercase =result * x + coeff return result if __name__ == "__main__": UpperCAmelCase = (0.0, 0.0, 5.0, 9.3, 7.0) UpperCAmelCase = 10.0 print(evaluate_poly(poly, x)) print(horner(poly, x))
141
0
from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCamelCase : List[Any] = logging.get_logger(__name__) _lowerCamelCase : Any = { '''google/vivit-b-16x2-kinetics400''': ( '''https://huggingface.co/google/vivit-b-16x2-kinetics400/resolve/main/config.json''' ), # See all Vivit models at https://huggingface.co/models?filter=vivit } class lowerCamelCase (__lowerCamelCase ): """simple docstring""" UpperCAmelCase_ = "vivit" def __init__( self : List[str], _UpperCAmelCase : Optional[int]=2_2_4, _UpperCAmelCase : Any=3_2, _UpperCAmelCase : Dict=[2, 1_6, 1_6], _UpperCAmelCase : int=3, _UpperCAmelCase : List[Any]=7_6_8, _UpperCAmelCase : int=1_2, _UpperCAmelCase : Tuple=1_2, _UpperCAmelCase : Any=3_0_7_2, _UpperCAmelCase : Tuple="gelu_fast", _UpperCAmelCase : Dict=0.0, _UpperCAmelCase : List[str]=0.0, _UpperCAmelCase : Tuple=0.02, _UpperCAmelCase : List[Any]=1E-06, _UpperCAmelCase : Dict=True, **_UpperCAmelCase : Optional[Any], ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ : Tuple = hidden_size SCREAMING_SNAKE_CASE__ : Optional[Any] = num_hidden_layers SCREAMING_SNAKE_CASE__ : Dict = num_attention_heads SCREAMING_SNAKE_CASE__ : Any = intermediate_size SCREAMING_SNAKE_CASE__ : Dict = hidden_act SCREAMING_SNAKE_CASE__ : Dict = hidden_dropout_prob SCREAMING_SNAKE_CASE__ : Union[str, Any] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ : List[str] = initializer_range SCREAMING_SNAKE_CASE__ : Tuple = layer_norm_eps SCREAMING_SNAKE_CASE__ : Optional[int] = image_size SCREAMING_SNAKE_CASE__ : str = num_frames SCREAMING_SNAKE_CASE__ : Union[str, Any] = tubelet_size SCREAMING_SNAKE_CASE__ : str = num_channels SCREAMING_SNAKE_CASE__ : int = qkv_bias super().__init__(**_UpperCAmelCase )
191
from queue import PriorityQueue from typing import Any import numpy as np def _a ( SCREAMING_SNAKE_CASE__ : dict , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : set , SCREAMING_SNAKE_CASE__ : set , SCREAMING_SNAKE_CASE__ : dict , SCREAMING_SNAKE_CASE__ : dict , SCREAMING_SNAKE_CASE__ : PriorityQueue , SCREAMING_SNAKE_CASE__ : dict , SCREAMING_SNAKE_CASE__ : float | int , ) -> float | int: '''simple docstring''' for nxt, d in graph[v]: if nxt in visited_forward: continue SCREAMING_SNAKE_CASE__ : Union[str, Any] = cst_fwd.get(SCREAMING_SNAKE_CASE__ , np.inf ) SCREAMING_SNAKE_CASE__ : Optional[int] = cst_fwd[v] + d if new_cost_f < old_cost_f: queue.put((new_cost_f, nxt) ) SCREAMING_SNAKE_CASE__ : List[Any] = new_cost_f SCREAMING_SNAKE_CASE__ : Union[str, Any] = v if nxt in visited_backward: if cst_fwd[v] + d + cst_bwd[nxt] < shortest_distance: SCREAMING_SNAKE_CASE__ : Optional[int] = cst_fwd[v] + d + cst_bwd[nxt] return shortest_distance def _a ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : dict , SCREAMING_SNAKE_CASE__ : dict ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE__ : Union[str, Any] = -1 SCREAMING_SNAKE_CASE__ : List[str] = set() SCREAMING_SNAKE_CASE__ : List[Any] = set() SCREAMING_SNAKE_CASE__ : int = {source: 0} SCREAMING_SNAKE_CASE__ : Union[str, Any] = {destination: 0} SCREAMING_SNAKE_CASE__ : List[Any] = {source: None} SCREAMING_SNAKE_CASE__ : Union[str, Any] = {destination: None} SCREAMING_SNAKE_CASE__ : PriorityQueue[Any] = PriorityQueue() SCREAMING_SNAKE_CASE__ : PriorityQueue[Any] = PriorityQueue() SCREAMING_SNAKE_CASE__ : Dict = np.inf queue_forward.put((0, source) ) queue_backward.put((0, destination) ) if source == destination: return 0 while not queue_forward.empty() and not queue_backward.empty(): SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ : List[str] = queue_forward.get() visited_forward.add(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ : List[Any] = queue_backward.get() visited_backward.add(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Any = pass_and_relaxation( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , ) SCREAMING_SNAKE_CASE__ : List[Any] = pass_and_relaxation( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , ) if cst_fwd[v_fwd] + cst_bwd[v_bwd] >= shortest_distance: break if shortest_distance != np.inf: SCREAMING_SNAKE_CASE__ : int = shortest_distance return shortest_path_distance _lowerCamelCase : Optional[Any] = { '''B''': [['''C''', 1]], '''C''': [['''D''', 1]], '''D''': [['''F''', 1]], '''E''': [['''B''', 1], ['''G''', 2]], '''F''': [], '''G''': [['''F''', 1]], } _lowerCamelCase : Tuple = { '''B''': [['''E''', 1]], '''C''': [['''B''', 1]], '''D''': [['''C''', 1]], '''F''': [['''D''', 1], ['''G''', 1]], '''E''': [[None, np.inf]], '''G''': [['''E''', 2]], } if __name__ == "__main__": import doctest doctest.testmod()
191
1
"""simple docstring""" import itertools import json import os import unittest from transformers import AddedToken, RobertaTokenizer, RobertaTokenizerFast from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __magic_name__ ( UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' __UpperCamelCase = RobertaTokenizer __UpperCamelCase = RobertaTokenizerFast __UpperCamelCase = True __UpperCamelCase = {"cls_token": "<s>"} def _lowerCAmelCase ( self ): """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt lowerCamelCase = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """<unk>""", ] lowerCamelCase = dict(zip(_a , range(len(_a ) ) ) ) lowerCamelCase = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] lowerCamelCase = {"""unk_token""": """<unk>"""} lowerCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) lowerCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(_a ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(_a ) ) def _lowerCAmelCase ( self , **_a ): """simple docstring""" kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **_a ) def _lowerCAmelCase ( self , **_a ): """simple docstring""" kwargs.update(self.special_tokens_map ) return RobertaTokenizerFast.from_pretrained(self.tmpdirname , **_a ) def _lowerCAmelCase ( self , _a ): """simple docstring""" lowerCamelCase = """lower newer""" lowerCamelCase = """lower newer""" return input_text, output_text def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map ) lowerCamelCase = """lower newer""" lowerCamelCase = ["""l""", """o""", """w""", """er""", """\u0120""", """n""", """e""", """w""", """er"""] lowerCamelCase = tokenizer.tokenize(_a ) # , add_prefix_space=True) self.assertListEqual(_a , _a ) lowerCamelCase = tokens + [tokenizer.unk_token] lowerCamelCase = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(_a ) , _a ) def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase = self.get_tokenizer() self.assertListEqual(tokenizer.encode("""Hello world!""" , add_special_tokens=_a ) , [0, 31_414, 232, 328, 2] ) self.assertListEqual( tokenizer.encode("""Hello world! cécé herlolip 418""" , add_special_tokens=_a ) , [0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2] , ) @slow def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase = self.tokenizer_class.from_pretrained("""roberta-base""" ) lowerCamelCase = tokenizer.encode("""sequence builders""" , add_special_tokens=_a ) lowerCamelCase = tokenizer.encode("""multi-sequence build""" , add_special_tokens=_a ) lowerCamelCase = tokenizer.encode( """sequence builders""" , add_special_tokens=_a , add_prefix_space=_a ) lowerCamelCase = tokenizer.encode( """sequence builders""" , """multi-sequence build""" , add_special_tokens=_a , add_prefix_space=_a ) lowerCamelCase = tokenizer.build_inputs_with_special_tokens(_a ) lowerCamelCase = tokenizer.build_inputs_with_special_tokens(_a , _a ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase = self.get_tokenizer() lowerCamelCase = """Encode this sequence.""" lowerCamelCase = tokenizer.byte_encoder[""" """.encode("""utf-8""" )[0]] # Testing encoder arguments lowerCamelCase = tokenizer.encode(_a , add_special_tokens=_a , add_prefix_space=_a ) lowerCamelCase = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(_a , _a ) lowerCamelCase = tokenizer.encode(_a , add_special_tokens=_a , add_prefix_space=_a ) lowerCamelCase = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(_a , _a ) tokenizer.add_special_tokens({"""bos_token""": """<s>"""} ) lowerCamelCase = tokenizer.encode(_a , add_special_tokens=_a ) lowerCamelCase = tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(_a , _a ) # Testing spaces after special tokens lowerCamelCase = """<mask>""" tokenizer.add_special_tokens( {"""mask_token""": AddedToken(_a , lstrip=_a , rstrip=_a )} ) # mask token has a left space lowerCamelCase = tokenizer.convert_tokens_to_ids(_a ) lowerCamelCase = """Encode <mask> sequence""" lowerCamelCase = """Encode <mask>sequence""" lowerCamelCase = tokenizer.encode(_a ) lowerCamelCase = encoded.index(_a ) lowerCamelCase = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(_a , _a ) lowerCamelCase = tokenizer.encode(_a ) lowerCamelCase = encoded.index(_a ) lowerCamelCase = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(_a , _a ) def _lowerCAmelCase ( self ): """simple docstring""" pass def _lowerCAmelCase ( self ): """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): lowerCamelCase = self.rust_tokenizer_class.from_pretrained(_a , **_a ) lowerCamelCase = self.tokenizer_class.from_pretrained(_a , **_a ) lowerCamelCase = """A, <mask> AllenNLP sentence.""" lowerCamelCase = tokenizer_r.encode_plus(_a , add_special_tokens=_a , return_token_type_ids=_a ) lowerCamelCase = tokenizer_p.encode_plus(_a , add_special_tokens=_a , return_token_type_ids=_a ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r["""token_type_ids"""] ) , sum(tokens_p["""token_type_ids"""] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r["""attention_mask"""] ) / len(tokens_r["""attention_mask"""] ) , sum(tokens_p["""attention_mask"""] ) / len(tokens_p["""attention_mask"""] ) , ) lowerCamelCase = tokenizer_r.convert_ids_to_tokens(tokens_r["""input_ids"""] ) lowerCamelCase = tokenizer_p.convert_ids_to_tokens(tokens_p["""input_ids"""] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p["""input_ids"""] , [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] ) self.assertSequenceEqual(tokens_r["""input_ids"""] , [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] ) self.assertSequenceEqual( _a , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] ) self.assertSequenceEqual( _a , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] ) def _lowerCAmelCase ( self ): """simple docstring""" for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ): lowerCamelCase = self.rust_tokenizer_class.from_pretrained( self.tmpdirname , use_fast=_a , add_prefix_space=_a , trim_offsets=_a ) lowerCamelCase = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) lowerCamelCase = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state["""add_prefix_space"""] , _a ) self.assertEqual(post_processor_state["""add_prefix_space"""] , _a ) self.assertEqual(post_processor_state["""trim_offsets"""] , _a ) def _lowerCAmelCase ( self ): """simple docstring""" # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` and # `trim_offsets` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): lowerCamelCase = """hello""" # `hello` is a token in the vocabulary of `pretrained_name` lowerCamelCase = f'{text_of_1_token} {text_of_1_token}' lowerCamelCase = self.rust_tokenizer_class.from_pretrained( _a , use_fast=_a , add_prefix_space=_a , trim_offsets=_a ) lowerCamelCase = tokenizer_r(_a , return_offsets_mapping=_a , add_special_tokens=_a ) self.assertEqual(encoding.offset_mapping[0] , (0, len(_a )) ) self.assertEqual( encoding.offset_mapping[1] , (len(_a ) + 1, len(_a ) + 1 + len(_a )) , ) lowerCamelCase = self.rust_tokenizer_class.from_pretrained( _a , use_fast=_a , add_prefix_space=_a , trim_offsets=_a ) lowerCamelCase = tokenizer_r(_a , return_offsets_mapping=_a , add_special_tokens=_a ) self.assertEqual(encoding.offset_mapping[0] , (0, len(_a )) ) self.assertEqual( encoding.offset_mapping[1] , (len(_a ) + 1, len(_a ) + 1 + len(_a )) , ) lowerCamelCase = self.rust_tokenizer_class.from_pretrained( _a , use_fast=_a , add_prefix_space=_a , trim_offsets=_a ) lowerCamelCase = tokenizer_r(_a , return_offsets_mapping=_a , add_special_tokens=_a ) self.assertEqual(encoding.offset_mapping[0] , (0, len(_a )) ) self.assertEqual( encoding.offset_mapping[1] , (len(_a ), len(_a ) + 1 + len(_a )) , ) lowerCamelCase = self.rust_tokenizer_class.from_pretrained( _a , use_fast=_a , add_prefix_space=_a , trim_offsets=_a ) lowerCamelCase = tokenizer_r(_a , return_offsets_mapping=_a , add_special_tokens=_a ) self.assertEqual(encoding.offset_mapping[0] , (0, len(_a )) ) self.assertEqual( encoding.offset_mapping[1] , (len(_a ), len(_a ) + 1 + len(_a )) , ) lowerCamelCase = f' {text}' # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) lowerCamelCase = self.rust_tokenizer_class.from_pretrained( _a , use_fast=_a , add_prefix_space=_a , trim_offsets=_a ) lowerCamelCase = tokenizer_r(_a , return_offsets_mapping=_a , add_special_tokens=_a ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(_a )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(_a ) + 1, 1 + len(_a ) + 1 + len(_a )) , ) lowerCamelCase = self.rust_tokenizer_class.from_pretrained( _a , use_fast=_a , add_prefix_space=_a , trim_offsets=_a ) lowerCamelCase = tokenizer_r(_a , return_offsets_mapping=_a , add_special_tokens=_a ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(_a )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(_a ), 1 + len(_a ) + 1 + len(_a )) , ) lowerCamelCase = self.rust_tokenizer_class.from_pretrained( _a , use_fast=_a , add_prefix_space=_a , trim_offsets=_a ) lowerCamelCase = tokenizer_r(_a , return_offsets_mapping=_a , add_special_tokens=_a ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(_a )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(_a ), 1 + len(_a ) + 1 + len(_a )) , )
291
"""simple docstring""" from __future__ import annotations def a__ ( snake_case__ , snake_case__ ) -> bool: if len(snake_case__ ) == 0: return False lowerCamelCase = len(snake_case__ ) // 2 if a_list[midpoint] == item: return True if item < a_list[midpoint]: return binary_search(a_list[:midpoint] , snake_case__ ) else: return binary_search(a_list[midpoint + 1 :] , snake_case__ ) if __name__ == "__main__": lowerCAmelCase : List[Any] = input("""Enter numbers separated by comma:\n""").strip() lowerCAmelCase : Optional[Any] = [int(item.strip()) for item in user_input.split(""",""")] lowerCAmelCase : Optional[int] = int(input("""Enter the number to be found in the list:\n""").strip()) lowerCAmelCase : Union[str, Any] = """""" if binary_search(sequence, target) else """not """ print(F"""{target} was {not_str}found in {sequence}""")
291
1
'''simple docstring''' import copy from typing import Any, Dict, List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging a_ : Tuple = logging.get_logger(__name__) class a ( _SCREAMING_SNAKE_CASE ): _lowerCAmelCase = ["""input_features"""] def __init__( self , __magic_name__=80 , __magic_name__=1_60_00 , __magic_name__=1_60 , __magic_name__=30 , __magic_name__=4_00 , __magic_name__=0.0 , __magic_name__=False , **__magic_name__ , ) -> Optional[int]: super().__init__( feature_size=__magic_name__ , sampling_rate=__magic_name__ , padding_value=__magic_name__ , return_attention_mask=__magic_name__ , **__magic_name__ , ) _a = n_fft _a = hop_length _a = chunk_length _a = chunk_length * sampling_rate _a = self.n_samples // hop_length _a = sampling_rate _a = mel_filter_bank( num_frequency_bins=1 + n_fft // 2 , num_mel_filters=__magic_name__ , min_frequency=0.0 , max_frequency=80_00.0 , sampling_rate=__magic_name__ , norm='slaney' , mel_scale='slaney' , ) def __UpperCAmelCase ( self , __magic_name__ ) -> np.ndarray: _a = spectrogram( __magic_name__ , window_function(self.n_fft , 'hann' ) , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters , log_mel='log10' , ) _a = log_spec[:, :-1] _a = np.maximum(__magic_name__ , log_spec.max() - 8.0 ) _a = (log_spec + 4.0) / 4.0 return log_spec @staticmethod # Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm def __UpperCAmelCase ( __magic_name__ , __magic_name__ , __magic_name__ = 0.0 ) -> List[np.ndarray]: if attention_mask is not None: _a = np.array(__magic_name__ , np.intaa ) _a = [] for vector, length in zip(__magic_name__ , attention_mask.sum(-1 ) ): _a = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1e-7 ) if length < normed_slice.shape[0]: _a = padding_value normed_input_values.append(__magic_name__ ) else: _a = [(x - x.mean()) / np.sqrt(x.var() + 1e-7 ) for x in input_values] return normed_input_values def __call__( self , __magic_name__ , __magic_name__ = True , __magic_name__ = None , __magic_name__ = None , __magic_name__ = None , __magic_name__ = "max_length" , __magic_name__ = None , __magic_name__ = None , __magic_name__ = None , **__magic_name__ , ) -> BatchFeature: if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f'The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a' f' sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input' f' was sampled with {self.sampling_rate} and not {sampling_rate}.' ) else: logger.warning( 'It is strongly recommended to pass the `sampling_rate` argument to this function. ' 'Failing to do so can result in silent errors that might be hard to debug.' ) _a = isinstance(__magic_name__ , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f'Only mono-channel audio is supported for input to {self}' ) _a = is_batched_numpy or ( isinstance(__magic_name__ , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: _a = [np.asarray([speech] , dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(__magic_name__ , np.ndarray ): _a = np.asarray(__magic_name__ , dtype=np.floataa ) elif isinstance(__magic_name__ , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): _a = raw_speech.astype(np.floataa ) # always return batch if not is_batched: _a = [np.asarray([raw_speech] ).T] _a = BatchFeature({'input_features': raw_speech} ) # convert into correct format for padding _a = self.pad( __magic_name__ , padding=__magic_name__ , max_length=max_length if max_length else self.n_samples , truncation=__magic_name__ , pad_to_multiple_of=__magic_name__ , return_attention_mask=return_attention_mask or do_normalize , ) # zero-mean and unit-variance normalization if do_normalize: _a = self.zero_mean_unit_var_norm( padded_inputs['input_features'] , attention_mask=padded_inputs['attention_mask'] , padding_value=self.padding_value , ) _a = np.stack(padded_inputs['input_features'] , axis=0 ) # make sure list is in array format _a = padded_inputs.get('input_features' ).transpose(2 , 0 , 1 ) _a = [self._np_extract_fbank_features(__magic_name__ ) for waveform in input_features[0]] if isinstance(input_features[0] , __magic_name__ ): _a = [np.asarray(__magic_name__ , dtype=np.floataa ) for feature in input_features] else: _a = input_features if return_attention_mask: # rescale from sample (48000) to feature (3000) _a = padded_inputs['attention_mask'][:, :: self.hop_length] if return_tensors is not None: _a = padded_inputs.convert_to_tensors(__magic_name__ ) return padded_inputs def __UpperCAmelCase ( self ) -> Dict[str, Any]: _a = copy.deepcopy(self.__dict__ ) _a = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] return output
365
'''simple docstring''' import pytest import requests from datasets.utils.file_utils import http_head from .utils import OfflineSimulationMode, RequestWouldHangIndefinitelyError, offline @pytest.mark.integration def _A () -> Optional[Any]: '''simple docstring''' with offline(OfflineSimulationMode.CONNECTION_TIMES_OUT ): with pytest.raises(lowerCAmelCase__ ): requests.request('GET' , 'https://huggingface.co' ) with pytest.raises(requests.exceptions.ConnectTimeout ): requests.request('GET' , 'https://huggingface.co' , timeout=1.0 ) @pytest.mark.integration def _A () -> Any: '''simple docstring''' with offline(OfflineSimulationMode.CONNECTION_FAILS ): with pytest.raises(requests.exceptions.ConnectionError ): requests.request('GET' , 'https://huggingface.co' ) def _A () -> Dict: '''simple docstring''' with offline(OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1 ): with pytest.raises(lowerCAmelCase__ ): http_head('https://huggingface.co' )
104
0
import functools import logging import os import sys import threading from logging import ( CRITICAL, # NOQA DEBUG, # NOQA ERROR, # NOQA FATAL, # NOQA INFO, # NOQA NOTSET, # NOQA WARN, # NOQA WARNING, # NOQA ) from typing import Optional import huggingface_hub.utils as hf_hub_utils from tqdm import auto as tqdm_lib lowerCamelCase = threading.Lock() lowerCamelCase = None lowerCamelCase = { '''debug''': logging.DEBUG, '''info''': logging.INFO, '''warning''': logging.WARNING, '''error''': logging.ERROR, '''critical''': logging.CRITICAL, } lowerCamelCase = logging.WARNING lowerCamelCase = True def UpperCAmelCase__ ( ): '''simple docstring''' a__ =os.getenv('''TRANSFORMERS_VERBOSITY''' , _A ) if env_level_str: if env_level_str in log_levels: return log_levels[env_level_str] else: logging.getLogger().warning( F"""Unknown option TRANSFORMERS_VERBOSITY={env_level_str}, """ F"""has to be one of: { ", ".join(log_levels.keys() ) }""" ) return _default_log_level def UpperCAmelCase__ ( ): '''simple docstring''' return __name__.split('''.''' )[0] def UpperCAmelCase__ ( ): '''simple docstring''' return logging.getLogger(_get_library_name() ) def UpperCAmelCase__ ( ): '''simple docstring''' global _default_handler with _lock: if _default_handler: # This library has already configured the library root logger. return a__ =logging.StreamHandler() # Set sys.stderr as stream. a__ =sys.stderr.flush # Apply our default configuration to the library root logger. a__ =_get_library_root_logger() library_root_logger.addHandler(_default_handler ) library_root_logger.setLevel(_get_default_logging_level() ) a__ =False def UpperCAmelCase__ ( ): '''simple docstring''' global _default_handler with _lock: if not _default_handler: return a__ =_get_library_root_logger() library_root_logger.removeHandler(_default_handler ) library_root_logger.setLevel(logging.NOTSET ) a__ =None def UpperCAmelCase__ ( ): '''simple docstring''' return log_levels def UpperCAmelCase__ ( _A : Optional[str] = None ): '''simple docstring''' if name is None: a__ =_get_library_name() _configure_library_root_logger() return logging.getLogger(_A ) def UpperCAmelCase__ ( ): '''simple docstring''' _configure_library_root_logger() return _get_library_root_logger().getEffectiveLevel() def UpperCAmelCase__ ( _A : int ): '''simple docstring''' _configure_library_root_logger() _get_library_root_logger().setLevel(_A ) def UpperCAmelCase__ ( ): '''simple docstring''' return set_verbosity(_A ) def UpperCAmelCase__ ( ): '''simple docstring''' return set_verbosity(_A ) def UpperCAmelCase__ ( ): '''simple docstring''' return set_verbosity(_A ) def UpperCAmelCase__ ( ): '''simple docstring''' return set_verbosity(_A ) def UpperCAmelCase__ ( ): '''simple docstring''' _configure_library_root_logger() assert _default_handler is not None _get_library_root_logger().removeHandler(_default_handler ) def UpperCAmelCase__ ( ): '''simple docstring''' _configure_library_root_logger() assert _default_handler is not None _get_library_root_logger().addHandler(_default_handler ) def UpperCAmelCase__ ( _A : logging.Handler ): '''simple docstring''' _configure_library_root_logger() assert handler is not None _get_library_root_logger().addHandler(_A ) def UpperCAmelCase__ ( _A : logging.Handler ): '''simple docstring''' _configure_library_root_logger() assert handler is not None and handler not in _get_library_root_logger().handlers _get_library_root_logger().removeHandler(_A ) def UpperCAmelCase__ ( ): '''simple docstring''' _configure_library_root_logger() a__ =False def UpperCAmelCase__ ( ): '''simple docstring''' _configure_library_root_logger() a__ =True def UpperCAmelCase__ ( ): '''simple docstring''' a__ =_get_library_root_logger().handlers for handler in handlers: a__ =logging.Formatter('''[%(levelname)s|%(filename)s:%(lineno)s] %(asctime)s >> %(message)s''' ) handler.setFormatter(_A ) def UpperCAmelCase__ ( ): '''simple docstring''' a__ =_get_library_root_logger().handlers for handler in handlers: handler.setFormatter(_A ) def UpperCAmelCase__ ( self : List[Any] , *_A : Optional[Any] , **_A : Union[str, Any] ): '''simple docstring''' a__ =os.getenv('''TRANSFORMERS_NO_ADVISORY_WARNINGS''' , _A ) if no_advisory_warnings: return self.warning(*_A , **_A ) lowerCamelCase = warning_advice @functools.lru_cache(_A ) def UpperCAmelCase__ ( self : List[Any] , *_A : str , **_A : Any ): '''simple docstring''' self.warning(*_A , **_A ) lowerCamelCase = warning_once class __magic_name__ : '''simple docstring''' def __init__( self, *lowercase_, **lowercase_ ) -> Union[str, Any]: # pylint: disable=unused-argument """simple docstring""" a__ =args[0] if args else None def __iter__( self ) -> int: """simple docstring""" return iter(self._iterator ) def __getattr__( self, lowercase_ ) -> Union[str, Any]: """simple docstring""" def empty_fn(*lowercase_, **lowercase_ ): # pylint: disable=unused-argument return return empty_fn def __enter__( self ) -> int: """simple docstring""" return self def __exit__( self, lowercase_, lowercase_, lowercase_ ) -> Optional[int]: """simple docstring""" return class __magic_name__ : '''simple docstring''' def __call__( self, *lowercase_, **lowercase_ ) -> Tuple: """simple docstring""" if _tqdm_active: return tqdm_lib.tqdm(*lowercase_, **lowercase_ ) else: return EmptyTqdm(*lowercase_, **lowercase_ ) def _UpperCAmelCase ( self, *lowercase_, **lowercase_ ) -> str: """simple docstring""" a__ =None if _tqdm_active: return tqdm_lib.tqdm.set_lock(*lowercase_, **lowercase_ ) def _UpperCAmelCase ( self ) -> Optional[Any]: """simple docstring""" if _tqdm_active: return tqdm_lib.tqdm.get_lock() lowerCamelCase = _tqdm_cls() def UpperCAmelCase__ ( ): '''simple docstring''' global _tqdm_active return bool(_tqdm_active ) def UpperCAmelCase__ ( ): '''simple docstring''' global _tqdm_active a__ =True hf_hub_utils.enable_progress_bars() def UpperCAmelCase__ ( ): '''simple docstring''' global _tqdm_active a__ =False hf_hub_utils.disable_progress_bars()
188
import os import tempfile import unittest from transformers import FlaubertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( FlaubertForMultipleChoice, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertModel, FlaubertWithLMHeadModel, ) from transformers.models.flaubert.modeling_flaubert import FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST class __magic_name__ ( lowerCamelCase__ ): '''simple docstring''' def __init__( self, lowercase_, lowercase_=13, lowercase_=7, lowercase_=True, lowercase_=True, lowercase_=True, lowercase_=True, lowercase_=True, lowercase_=False, lowercase_=False, lowercase_=False, lowercase_=2, lowercase_=99, lowercase_=0, lowercase_=32, lowercase_=5, lowercase_=4, lowercase_=0.1, lowercase_=0.1, lowercase_=512, lowercase_=12, lowercase_=2, lowercase_=0.02, lowercase_=3, lowercase_=4, lowercase_="last", lowercase_=None, lowercase_=None, ) -> List[Any]: """simple docstring""" a__ =parent a__ =batch_size a__ =seq_length a__ =is_training a__ =use_input_lengths a__ =use_token_type_ids a__ =use_labels a__ =gelu_activation a__ =sinusoidal_embeddings a__ =causal a__ =asm a__ =n_langs a__ =vocab_size a__ =n_special a__ =hidden_size a__ =num_hidden_layers a__ =num_attention_heads a__ =hidden_dropout_prob a__ =attention_probs_dropout_prob a__ =max_position_embeddings a__ =type_vocab_size a__ =type_sequence_label_size a__ =initializer_range a__ =num_labels a__ =num_choices a__ =summary_type a__ =use_proj a__ =scope def _UpperCAmelCase ( self ) -> Any: """simple docstring""" a__ =ids_tensor([self.batch_size, self.seq_length], self.vocab_size ) a__ =random_attention_mask([self.batch_size, self.seq_length] ) a__ =None if self.use_input_lengths: a__ =( ids_tensor([self.batch_size], vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length a__ =None if self.use_token_type_ids: a__ =ids_tensor([self.batch_size, self.seq_length], self.n_langs ) a__ =None a__ =None a__ =None if self.use_labels: a__ =ids_tensor([self.batch_size], self.type_sequence_label_size ) a__ =ids_tensor([self.batch_size, self.seq_length], self.num_labels ) a__ =ids_tensor([self.batch_size], 2 ).float() a__ =ids_tensor([self.batch_size], self.num_choices ) a__ =self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def _UpperCAmelCase ( self ) -> Any: """simple docstring""" return FlaubertConfig( vocab_size=self.vocab_size, n_special=self.n_special, emb_dim=self.hidden_size, n_layers=self.num_hidden_layers, n_heads=self.num_attention_heads, dropout=self.hidden_dropout_prob, attention_dropout=self.attention_probs_dropout_prob, gelu_activation=self.gelu_activation, sinusoidal_embeddings=self.sinusoidal_embeddings, asm=self.asm, causal=self.causal, n_langs=self.n_langs, max_position_embeddings=self.max_position_embeddings, initializer_range=self.initializer_range, summary_type=self.summary_type, use_proj=self.use_proj, ) def _UpperCAmelCase ( self, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, ) -> Dict: """simple docstring""" a__ =FlaubertModel(config=lowercase_ ) model.to(lowercase_ ) model.eval() a__ =model(lowercase_, lengths=lowercase_, langs=lowercase_ ) a__ =model(lowercase_, langs=lowercase_ ) a__ =model(lowercase_ ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def _UpperCAmelCase ( self, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, ) -> str: """simple docstring""" a__ =FlaubertWithLMHeadModel(lowercase_ ) model.to(lowercase_ ) model.eval() a__ =model(lowercase_, token_type_ids=lowercase_, labels=lowercase_ ) self.parent.assertEqual(result.loss.shape, () ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size) ) def _UpperCAmelCase ( self, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, ) -> Dict: """simple docstring""" a__ =FlaubertForQuestionAnsweringSimple(lowercase_ ) model.to(lowercase_ ) model.eval() a__ =model(lowercase_ ) a__ =model(lowercase_, start_positions=lowercase_, end_positions=lowercase_ ) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length) ) def _UpperCAmelCase ( self, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, ) -> Optional[Any]: """simple docstring""" a__ =FlaubertForQuestionAnswering(lowercase_ ) model.to(lowercase_ ) model.eval() a__ =model(lowercase_ ) a__ =model( lowercase_, start_positions=lowercase_, end_positions=lowercase_, cls_index=lowercase_, is_impossible=lowercase_, p_mask=lowercase_, ) a__ =model( lowercase_, start_positions=lowercase_, end_positions=lowercase_, cls_index=lowercase_, is_impossible=lowercase_, ) ((a__), ) =result_with_labels.to_tuple() a__ =model(lowercase_, start_positions=lowercase_, end_positions=lowercase_ ) ((a__), ) =result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape, () ) self.parent.assertEqual(result.start_top_log_probs.shape, (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape, (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape, (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape, (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape, (self.batch_size,) ) def _UpperCAmelCase ( self, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, ) -> Optional[Any]: """simple docstring""" a__ =FlaubertForSequenceClassification(lowercase_ ) model.to(lowercase_ ) model.eval() a__ =model(lowercase_ ) a__ =model(lowercase_, labels=lowercase_ ) self.parent.assertEqual(result.loss.shape, () ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size) ) def _UpperCAmelCase ( self, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, ) -> Optional[int]: """simple docstring""" a__ =self.num_labels a__ =FlaubertForTokenClassification(lowercase_ ) model.to(lowercase_ ) model.eval() a__ =model(lowercase_, attention_mask=lowercase_, labels=lowercase_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels) ) def _UpperCAmelCase ( self, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, ) -> Dict: """simple docstring""" a__ =self.num_choices a__ =FlaubertForMultipleChoice(config=lowercase_ ) model.to(lowercase_ ) model.eval() a__ =input_ids.unsqueeze(1 ).expand(-1, self.num_choices, -1 ).contiguous() a__ =token_type_ids.unsqueeze(1 ).expand(-1, self.num_choices, -1 ).contiguous() a__ =input_mask.unsqueeze(1 ).expand(-1, self.num_choices, -1 ).contiguous() a__ =model( lowercase_, attention_mask=lowercase_, token_type_ids=lowercase_, labels=lowercase_, ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices) ) def _UpperCAmelCase ( self ) -> Dict: """simple docstring""" a__ =self.prepare_config_and_inputs() ( ( a__ ), ( a__ ), ( a__ ), ( a__ ), ( a__ ), ( a__ ), ( a__ ), ( a__ ), ( a__ ), ) =config_and_inputs a__ ={ '''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''lengths''': input_lengths, '''attention_mask''': input_mask, } return config, inputs_dict @require_torch class __magic_name__ ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ : str = ( ( FlaubertModel, FlaubertWithLMHeadModel, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertForMultipleChoice, ) if is_torch_available() else () ) lowerCamelCase__ : Dict = ( { 'feature-extraction': FlaubertModel, 'fill-mask': FlaubertWithLMHeadModel, 'question-answering': FlaubertForQuestionAnsweringSimple, 'text-classification': FlaubertForSequenceClassification, 'token-classification': FlaubertForTokenClassification, 'zero-shot': FlaubertForSequenceClassification, } if is_torch_available() else {} ) def _UpperCAmelCase ( self, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_ ) -> str: """simple docstring""" if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('''Fast''' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def _UpperCAmelCase ( self, lowercase_, lowercase_, lowercase_=False ) -> str: """simple docstring""" a__ =super()._prepare_for_class(lowercase_, lowercase_, return_labels=lowercase_ ) if return_labels: if model_class.__name__ == "FlaubertForQuestionAnswering": a__ =torch.zeros( self.model_tester.batch_size, dtype=torch.long, device=lowercase_ ) a__ =torch.zeros( self.model_tester.batch_size, dtype=torch.long, device=lowercase_ ) return inputs_dict def _UpperCAmelCase ( self ) -> Optional[int]: """simple docstring""" a__ =FlaubertModelTester(self ) a__ =ConfigTester(self, config_class=lowercase_, emb_dim=37 ) def _UpperCAmelCase ( self ) -> Optional[Any]: """simple docstring""" self.config_tester.run_common_tests() def _UpperCAmelCase ( self ) -> Any: """simple docstring""" a__ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*lowercase_ ) def _UpperCAmelCase ( self ) -> str: """simple docstring""" a__ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*lowercase_ ) def _UpperCAmelCase ( self ) -> Dict: """simple docstring""" a__ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_simple_qa(*lowercase_ ) def _UpperCAmelCase ( self ) -> Dict: """simple docstring""" a__ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*lowercase_ ) def _UpperCAmelCase ( self ) -> Any: """simple docstring""" a__ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*lowercase_ ) def _UpperCAmelCase ( self ) -> Any: """simple docstring""" a__ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_token_classif(*lowercase_ ) def _UpperCAmelCase ( self ) -> Tuple: """simple docstring""" a__ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_multiple_choice(*lowercase_ ) @slow def _UpperCAmelCase ( self ) -> Tuple: """simple docstring""" for model_name in FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a__ =FlaubertModel.from_pretrained(lowercase_ ) self.assertIsNotNone(lowercase_ ) @slow @require_torch_gpu def _UpperCAmelCase ( self ) -> int: """simple docstring""" a__, a__ =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # FlauBertForMultipleChoice behaves incorrectly in JIT environments. if model_class == FlaubertForMultipleChoice: return a__ =True a__ =model_class(config=lowercase_ ) a__ =self._prepare_for_class(lowercase_, lowercase_ ) a__ =torch.jit.trace( lowercase_, (inputs_dict['''input_ids'''].to('''cpu''' ), inputs_dict['''attention_mask'''].to('''cpu''' )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(lowercase_, os.path.join(lowercase_, '''traced_model.pt''' ) ) a__ =torch.jit.load(os.path.join(lowercase_, '''traced_model.pt''' ), map_location=lowercase_ ) loaded(inputs_dict['''input_ids'''].to(lowercase_ ), inputs_dict['''attention_mask'''].to(lowercase_ ) ) @require_torch class __magic_name__ ( unittest.TestCase ): '''simple docstring''' @slow def _UpperCAmelCase ( self ) -> List[str]: """simple docstring""" a__ =FlaubertModel.from_pretrained('''flaubert/flaubert_base_cased''' ) a__ =torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) with torch.no_grad(): a__ =model(lowercase_ )[0] a__ =torch.Size((1, 11, 768) ) self.assertEqual(output.shape, lowercase_ ) a__ =torch.tensor( [[[-2.6251, -1.4298, -0.0227], [-2.8510, -1.6387, 0.2258], [-2.8114, -1.1832, -0.3066]]] ) self.assertTrue(torch.allclose(output[:, :3, :3], lowercase_, atol=1E-4 ) )
188
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available lowerCAmelCase__ = {'''configuration_swin''': ['''SWIN_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''SwinConfig''', '''SwinOnnxConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ '''SWIN_PRETRAINED_MODEL_ARCHIVE_LIST''', '''SwinForImageClassification''', '''SwinForMaskedImageModeling''', '''SwinModel''', '''SwinPreTrainedModel''', '''SwinBackbone''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ '''TF_SWIN_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFSwinForImageClassification''', '''TFSwinForMaskedImageModeling''', '''TFSwinModel''', '''TFSwinPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_swin import SWIN_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinConfig, SwinOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swin import ( SWIN_PRETRAINED_MODEL_ARCHIVE_LIST, SwinBackbone, SwinForImageClassification, SwinForMaskedImageModeling, SwinModel, SwinPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_swin import ( TF_SWIN_PRETRAINED_MODEL_ARCHIVE_LIST, TFSwinForImageClassification, TFSwinForMaskedImageModeling, TFSwinModel, TFSwinPreTrainedModel, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
352
import inspect import unittest import numpy as np from transformers import BeitConfig from transformers.testing_utils import require_flax, require_vision, slow from transformers.utils import cached_property, is_flax_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor if is_flax_available(): import jax from transformers import FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling, FlaxBeitModel if is_vision_available(): from PIL import Image from transformers import BeitImageProcessor class snake_case__(unittest.TestCase ): """simple docstring""" def __init__( self : List[Any] , SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Optional[int]=100 , SCREAMING_SNAKE_CASE : Tuple=13 , SCREAMING_SNAKE_CASE : str=30 , SCREAMING_SNAKE_CASE : Union[str, Any]=2 , SCREAMING_SNAKE_CASE : Tuple=3 , SCREAMING_SNAKE_CASE : List[Any]=True , SCREAMING_SNAKE_CASE : int=True , SCREAMING_SNAKE_CASE : Dict=32 , SCREAMING_SNAKE_CASE : str=5 , SCREAMING_SNAKE_CASE : Any=4 , SCREAMING_SNAKE_CASE : str=37 , SCREAMING_SNAKE_CASE : Any="gelu" , SCREAMING_SNAKE_CASE : Tuple=0.1 , SCREAMING_SNAKE_CASE : Optional[Any]=0.1 , SCREAMING_SNAKE_CASE : Union[str, Any]=10 , SCREAMING_SNAKE_CASE : Dict=0.02 , SCREAMING_SNAKE_CASE : Any=3 , ): lowercase__ : Optional[int] = parent lowercase__ : Optional[int] = vocab_size lowercase__ : Dict = batch_size lowercase__ : List[Any] = image_size lowercase__ : List[Any] = patch_size lowercase__ : Tuple = num_channels lowercase__ : Any = is_training lowercase__ : str = use_labels lowercase__ : List[Any] = hidden_size lowercase__ : Optional[int] = num_hidden_layers lowercase__ : Dict = num_attention_heads lowercase__ : Optional[int] = intermediate_size lowercase__ : int = hidden_act lowercase__ : str = hidden_dropout_prob lowercase__ : Union[str, Any] = attention_probs_dropout_prob lowercase__ : int = type_sequence_label_size lowercase__ : Optional[int] = initializer_range # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) lowercase__ : str = (image_size // patch_size) ** 2 lowercase__ : List[str] = num_patches + 1 def snake_case ( self : Tuple ): lowercase__ : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase__ : Union[str, Any] = None if self.use_labels: lowercase__ : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase__ : int = BeitConfig( vocab_size=self.vocab_size , image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=SCREAMING_SNAKE_CASE , initializer_range=self.initializer_range , ) return config, pixel_values, labels def snake_case ( self : Optional[Any] , SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : List[Any] ): lowercase__ : Optional[Any] = FlaxBeitModel(config=SCREAMING_SNAKE_CASE ) lowercase__ : Optional[int] = model(SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def snake_case ( self : Union[str, Any] , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : List[str] ): lowercase__ : int = FlaxBeitForMaskedImageModeling(config=SCREAMING_SNAKE_CASE ) lowercase__ : Union[str, Any] = model(SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length - 1, self.vocab_size) ) def snake_case ( self : Optional[int] , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Any ): lowercase__ : Tuple = self.type_sequence_label_size lowercase__ : Optional[int] = FlaxBeitForImageClassification(config=SCREAMING_SNAKE_CASE ) lowercase__ : str = model(SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images lowercase__ : int = 1 lowercase__ : List[str] = FlaxBeitForImageClassification(SCREAMING_SNAKE_CASE ) lowercase__ : int = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowercase__ : List[str] = model(SCREAMING_SNAKE_CASE ) def snake_case ( self : Any ): lowercase__ : Optional[Any] = self.prepare_config_and_inputs() ( ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ) : str = config_and_inputs lowercase__ : Dict = {"pixel_values": pixel_values} return config, inputs_dict @require_flax class snake_case__(_UpperCamelCase , unittest.TestCase ): """simple docstring""" lowercase_ = ( (FlaxBeitModel, FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling) if is_flax_available() else () ) def snake_case ( self : Any ): lowercase__ : List[Any] = FlaxBeitModelTester(self ) lowercase__ : str = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE , has_text_modality=SCREAMING_SNAKE_CASE , hidden_size=37 ) def snake_case ( self : int ): self.config_tester.run_common_tests() def snake_case ( self : int ): lowercase__ , lowercase__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ : List[str] = model_class(SCREAMING_SNAKE_CASE ) lowercase__ : str = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__ : Optional[int] = [*signature.parameters.keys()] lowercase__ : str = ["pixel_values"] self.assertListEqual(arg_names[:1] , SCREAMING_SNAKE_CASE ) def snake_case ( self : List[Any] ): lowercase__ , lowercase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): lowercase__ : Optional[int] = self._prepare_for_class(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) lowercase__ : List[str] = model_class(SCREAMING_SNAKE_CASE ) @jax.jit def model_jitted(SCREAMING_SNAKE_CASE : Optional[Any] , **SCREAMING_SNAKE_CASE : List[Any] ): return model(pixel_values=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) with self.subTest("JIT Enabled" ): lowercase__ : Union[str, Any] = model_jitted(**SCREAMING_SNAKE_CASE ).to_tuple() with self.subTest("JIT Disabled" ): with jax.disable_jit(): lowercase__ : Optional[int] = model_jitted(**SCREAMING_SNAKE_CASE ).to_tuple() self.assertEqual(len(SCREAMING_SNAKE_CASE ) , len(SCREAMING_SNAKE_CASE ) ) for jitted_output, output in zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): self.assertEqual(jitted_output.shape , output.shape ) def snake_case ( self : Optional[int] ): lowercase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE ) def snake_case ( self : int ): lowercase__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*SCREAMING_SNAKE_CASE ) def snake_case ( self : Optional[Any] ): lowercase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*SCREAMING_SNAKE_CASE ) @slow def snake_case ( self : Optional[int] ): for model_class_name in self.all_model_classes: lowercase__ : Any = model_class_name.from_pretrained("microsoft/beit-base-patch16-224" ) lowercase__ : Optional[int] = model(np.ones((1, 3, 224, 224) ) ) self.assertIsNotNone(SCREAMING_SNAKE_CASE ) def __lowerCamelCase ( ): """simple docstring""" lowercase__ : Dict = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_vision @require_flax class snake_case__(unittest.TestCase ): """simple docstring""" @cached_property def snake_case ( self : int ): return BeitImageProcessor.from_pretrained("microsoft/beit-base-patch16-224" ) if is_vision_available() else None @slow def snake_case ( self : Union[str, Any] ): lowercase__ : Tuple = FlaxBeitForMaskedImageModeling.from_pretrained("microsoft/beit-base-patch16-224-pt22k" ) lowercase__ : int = self.default_image_processor lowercase__ : Union[str, Any] = prepare_img() lowercase__ : str = image_processor(images=SCREAMING_SNAKE_CASE , return_tensors="np" ).pixel_values # prepare bool_masked_pos lowercase__ : Optional[Any] = np.ones((1, 196) , dtype=SCREAMING_SNAKE_CASE ) # forward pass lowercase__ : Any = model(pixel_values=SCREAMING_SNAKE_CASE , bool_masked_pos=SCREAMING_SNAKE_CASE ) lowercase__ : Tuple = outputs.logits # verify the logits lowercase__ : List[str] = (1, 196, 8_192) self.assertEqual(logits.shape , SCREAMING_SNAKE_CASE ) lowercase__ : Dict = np.array( [[-3.2_437, 0.5_072, -13.9_174], [-3.2_456, 0.4_948, -13.9_401], [-3.2_033, 0.5_121, -13.8_550]] ) self.assertTrue(np.allclose(logits[bool_masked_pos][:3, :3] , SCREAMING_SNAKE_CASE , atol=1E-2 ) ) @slow def snake_case ( self : Any ): lowercase__ : Union[str, Any] = FlaxBeitForImageClassification.from_pretrained("microsoft/beit-base-patch16-224" ) lowercase__ : Tuple = self.default_image_processor lowercase__ : List[Any] = prepare_img() lowercase__ : Optional[Any] = image_processor(images=SCREAMING_SNAKE_CASE , return_tensors="np" ) # forward pass lowercase__ : str = model(**SCREAMING_SNAKE_CASE ) lowercase__ : Dict = outputs.logits # verify the logits lowercase__ : List[str] = (1, 1_000) self.assertEqual(logits.shape , SCREAMING_SNAKE_CASE ) lowercase__ : Tuple = np.array([-1.2_385, -1.0_987, -1.0_108] ) self.assertTrue(np.allclose(logits[0, :3] , SCREAMING_SNAKE_CASE , atol=1E-4 ) ) lowercase__ : str = 281 self.assertEqual(logits.argmax(-1 ).item() , SCREAMING_SNAKE_CASE ) @slow def snake_case ( self : str ): lowercase__ : List[Any] = FlaxBeitForImageClassification.from_pretrained("microsoft/beit-large-patch16-224-pt22k-ft22k" ) lowercase__ : Dict = self.default_image_processor lowercase__ : Dict = prepare_img() lowercase__ : List[Any] = image_processor(images=SCREAMING_SNAKE_CASE , return_tensors="np" ) # forward pass lowercase__ : Union[str, Any] = model(**SCREAMING_SNAKE_CASE ) lowercase__ : Optional[Any] = outputs.logits # verify the logits lowercase__ : int = (1, 21_841) self.assertEqual(logits.shape , SCREAMING_SNAKE_CASE ) lowercase__ : str = np.array([1.6_881, -0.2_787, 0.5_901] ) self.assertTrue(np.allclose(logits[0, :3] , SCREAMING_SNAKE_CASE , atol=1E-4 ) ) lowercase__ : Union[str, Any] = 2_396 self.assertEqual(logits.argmax(-1 ).item() , SCREAMING_SNAKE_CASE )
121
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig UpperCAmelCase : List[str] = { """albert-base-v1""": """https://huggingface.co/albert-base-v1/resolve/main/config.json""", """albert-large-v1""": """https://huggingface.co/albert-large-v1/resolve/main/config.json""", """albert-xlarge-v1""": """https://huggingface.co/albert-xlarge-v1/resolve/main/config.json""", """albert-xxlarge-v1""": """https://huggingface.co/albert-xxlarge-v1/resolve/main/config.json""", """albert-base-v2""": """https://huggingface.co/albert-base-v2/resolve/main/config.json""", """albert-large-v2""": """https://huggingface.co/albert-large-v2/resolve/main/config.json""", """albert-xlarge-v2""": """https://huggingface.co/albert-xlarge-v2/resolve/main/config.json""", """albert-xxlarge-v2""": """https://huggingface.co/albert-xxlarge-v2/resolve/main/config.json""", } class __lowerCAmelCase ( UpperCamelCase__): _lowercase : List[str] = """albert""" def __init__( self , lowerCAmelCase__=3_0_0_0_0 , lowerCAmelCase__=1_2_8 , lowerCAmelCase__=4_0_9_6 , lowerCAmelCase__=1_2 , lowerCAmelCase__=1 , lowerCAmelCase__=6_4 , lowerCAmelCase__=1_6_3_8_4 , lowerCAmelCase__=1 , lowerCAmelCase__="gelu_new" , lowerCAmelCase__=0 , lowerCAmelCase__=0 , lowerCAmelCase__=5_1_2 , lowerCAmelCase__=2 , lowerCAmelCase__=0.02 , lowerCAmelCase__=1E-12 , lowerCAmelCase__=0.1 , lowerCAmelCase__="absolute" , lowerCAmelCase__=0 , lowerCAmelCase__=2 , lowerCAmelCase__=3 , **lowerCAmelCase__ , ) -> int: '''simple docstring''' super().__init__(pad_token_id=lowerCAmelCase__ , bos_token_id=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__ , **lowerCAmelCase__ ) a__ : str =vocab_size a__ : Optional[int] =embedding_size a__ : Optional[Any] =hidden_size a__ : List[str] =num_hidden_layers a__ : Any =num_hidden_groups a__ : int =num_attention_heads a__ : int =inner_group_num a__ : List[str] =hidden_act a__ : Tuple =intermediate_size a__ : List[Any] =hidden_dropout_prob a__ : List[str] =attention_probs_dropout_prob a__ : str =max_position_embeddings a__ : str =type_vocab_size a__ : List[str] =initializer_range a__ : List[Any] =layer_norm_eps a__ : Optional[Any] =classifier_dropout_prob a__ : Tuple =position_embedding_type class __lowerCAmelCase ( UpperCamelCase__): @property def _lowercase ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": a__ : Any ={0: "batch", 1: "choice", 2: "sequence"} else: a__ : Dict ={0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ("token_type_ids", dynamic_axis), ] )
95
"""simple docstring""" from math import ceil from typing import List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import BatchFeature, SequenceFeatureExtractor from ...utils import TensorType, logging lowerCAmelCase = logging.get_logger(__name__) class A_ ( A__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ = ["""audio_values""", """audio_mask"""] def __init__( self :List[str] , lowerCamelCase_ :List[str]=2_048 , lowerCamelCase_ :Dict=1 , lowerCamelCase_ :int=[16, 16] , lowerCamelCase_ :str=128 , lowerCamelCase_ :Union[str, Any]=44_100 , lowerCamelCase_ :Optional[Any]=86 , lowerCamelCase_ :Dict=2_048 , lowerCamelCase_ :Union[str, Any]=0.0 , **lowerCamelCase_ :Tuple , ): """simple docstring""" super().__init__( feature_size=lowerCamelCase_ , sampling_rate=lowerCamelCase_ , padding_value=lowerCamelCase_ , **lowerCamelCase_ , ) lowerCamelCase__ : List[str] =spectrogram_length lowerCamelCase__ : Dict =num_channels lowerCamelCase__ : List[Any] =patch_size lowerCamelCase__ : Union[str, Any] =feature_size // self.patch_size[1] lowerCamelCase__ : int =n_fft lowerCamelCase__ : List[str] =sampling_rate // hop_length_to_sampling_rate lowerCamelCase__ : str =sampling_rate lowerCamelCase__ : int =padding_value lowerCamelCase__ : Dict =mel_filter_bank( num_frequency_bins=1 + n_fft // 2 , num_mel_filters=lowerCamelCase_ , min_frequency=0.0 , max_frequency=2_20_50.0 , sampling_rate=lowerCamelCase_ , norm='slaney' , mel_scale='slaney' , ).T def UpperCAmelCase__ ( self :Dict , lowerCamelCase_ :np.array ): """simple docstring""" lowerCamelCase__ : List[Any] =spectrogram( lowerCamelCase_ , window_function(self.n_fft , 'hann' ) , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters.T , log_mel='dB' , db_range=80.0 , ) lowerCamelCase__ : Any =log_spec[:, :-1] lowerCamelCase__ : Tuple =log_spec - 20.0 lowerCamelCase__ : List[str] =np.clip(log_spec / 40.0 , -2.0 , 0.0 ) + 1.0 return log_spec def __call__( self :Optional[Any] , lowerCamelCase_ :Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , lowerCamelCase_ :Optional[Union[str, TensorType]] = None , lowerCamelCase_ :Optional[bool] = True , lowerCamelCase_ :Optional[int] = None , lowerCamelCase_ :bool = False , lowerCamelCase_ :bool = False , **lowerCamelCase_ :Tuple , ): """simple docstring""" if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( 'This feature extractor is set to support sampling rate' f""" of {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled""" f""" with {self.sampling_rate} and not {sampling_rate}.""" ) else: logger.warning( 'It is strongly recommended to pass the `sampling_rate` argument to this function. ' 'Failing to do so can result in silent errors that might be hard to debug.' ) lowerCamelCase__ : Dict =isinstance(lowerCamelCase_ , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f"""Only mono-channel audio is supported for input to {self}""" ) lowerCamelCase__ : Union[str, Any] =is_batched_numpy or ( isinstance(lowerCamelCase_ , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: lowerCamelCase__ : Optional[Any] =[np.asarray([speech] , dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(lowerCamelCase_ , np.ndarray ): lowerCamelCase__ : Optional[Any] =np.asarray(lowerCamelCase_ , dtype=np.floataa ) elif isinstance(lowerCamelCase_ , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): lowerCamelCase__ : Union[str, Any] =raw_speech.astype(np.floataa ) # always return batch if not is_batched: lowerCamelCase__ : List[str] =[np.asarray([raw_speech] ).T] # Convert audio signals to log mel spectrograms, truncate by time axis lowerCamelCase__ : Any =[ self._np_extract_fbank_features(waveform.squeeze() ).T[: self.spectrogram_length] for waveform in raw_speech ] if isinstance(audio_features[0] , lowerCamelCase_ ): lowerCamelCase__ : Dict =[np.asarray(lowerCamelCase_ , dtype=np.floataa ) for feature in audio_features] # Create audio attention mask lowerCamelCase__ : Optional[Any] =max( [ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len for feature in audio_features] ) # The maximum number of audio patches in a batch if return_attention_mask: lowerCamelCase__ : Any =[ (ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [1] + (max_patch_len - ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [0] for feature in audio_features ] lowerCamelCase__ : Union[str, Any] =np.array(lowerCamelCase_ ).astype(np.floataa ) # convert into correct format for padding lowerCamelCase__ : Tuple =max_patch_len // self.freq_len * self.patch_size[0] # The maximum audio size in a batch lowerCamelCase__ : str =np.ones([len(lowerCamelCase_ ), 1, max_time_len, self.feature_size] ).astype(np.floataa ) lowerCamelCase__ : Dict =padded_audio_features * self.padding_value for i in range(len(lowerCamelCase_ ) ): lowerCamelCase__ : Union[str, Any] =audio_features[i] lowerCamelCase__ : Union[str, Any] =feature # return as BatchFeature if return_attention_mask: lowerCamelCase__ : int ={'audio_values': padded_audio_features, 'audio_mask': audio_mask} else: lowerCamelCase__ : Tuple ={'audio_values': padded_audio_features} lowerCamelCase__ : Union[str, Any] =BatchFeature(data=lowerCamelCase_ , tensor_type=lowerCamelCase_ ) return encoded_inputs
126
0
"""simple docstring""" import operator as op A = '''scaler.pt''' A = '''pytorch_model''' A = '''random_states''' A = '''optimizer''' A = '''scheduler''' A = '''pytorch_model.bin''' A = '''pytorch_model.bin.index.json''' A = '''model.safetensors''' A = '''model.safetensors.index.json''' A = '''1.10.2''' A = '''py38''' A = '''4.17.0''' A = ['''ml.p3.16xlarge''', '''ml.p3dn.24xlarge''', '''ml.p4dn.24xlarge'''] A = ['''FULL_SHARD''', '''SHARD_GRAD_OP''', '''NO_SHARD''', '''HYBRID_SHARD''', '''HYBRID_SHARD_ZERO2'''] A = ['''TRANSFORMER_BASED_WRAP''', '''SIZE_BASED_WRAP''', '''NO_WRAP'''] A = ['''BACKWARD_PRE''', '''BACKWARD_POST''', '''NO_PREFETCH'''] A = ['''FULL_STATE_DICT''', '''LOCAL_STATE_DICT''', '''SHARDED_STATE_DICT'''] A = '''2.0.1''' A = ['''pdsh''', '''standard''', '''openmpi''', '''mvapich'''] A = ['''default''', '''reduce-overhead''', '''max-autotune'''] A = {'''>''': op.gt, '''>=''': op.ge, '''==''': op.eq, '''!=''': op.ne, '''<=''': op.le, '''<''': op.lt} # These are the args for `torch.distributed.launch` for pytorch < 1.9 A = [ '''nnodes''', '''nproc_per_node''', '''rdzv_backend''', '''rdzv_endpoint''', '''rdzv_id''', '''rdzv_conf''', '''standalone''', '''max_restarts''', '''monitor_interval''', '''start_method''', '''role''', '''module''', '''m''', '''no_python''', '''run_path''', '''log_dir''', '''r''', '''redirects''', '''t''', '''tee''', '''node_rank''', '''master_addr''', '''master_port''', ] A = ['''DEEPSPEED''', '''MULTI_GPU''', '''FSDP''', '''MEGATRON_LM'''] A = ['''DEEPSPEED''', '''MULTI_XPU''', '''FSDP''']
359
"""simple docstring""" def __A ( a_ :int) -> Union[str, Any]: __a : int = [] __a : Dict = [] __a : str = { '''^''': 3, '''*''': 2, '''/''': 2, '''%''': 2, '''+''': 1, '''-''': 1, } # Priority of each operator __a : Tuple = len(a_) if (len(a_) > 7) else 7 # Print table header for output print( '''Symbol'''.center(8) , '''Stack'''.center(a_) , '''Postfix'''.center(a_) , sep=''' | ''' , ) print('''-''' * (print_width * 3 + 7)) for x in infix: if x.isalpha() or x.isdigit(): post_fix.append(a_) # if x is Alphabet / Digit, add it to Postfix elif x == "(": stack.append(a_) # if x is "(" push to Stack elif x == ")": # if x is ")" pop stack until "(" is encountered while stack[-1] != "(": post_fix.append(stack.pop()) # Pop stack & add the content to Postfix stack.pop() else: if len(a_) == 0: stack.append(a_) # If stack is empty, push x to stack else: # while priority of x is not > priority of element in the stack while len(a_) > 0 and priority[x] <= priority[stack[-1]]: post_fix.append(stack.pop()) # pop stack & add to Postfix stack.append(a_) # push x to stack print( x.center(8) , (''''''.join(a_)).ljust(a_) , (''''''.join(a_)).ljust(a_) , sep=''' | ''' , ) # Output in tabular format while len(a_) > 0: # while stack is not empty post_fix.append(stack.pop()) # pop stack & add to Postfix print( ''' '''.center(8) , (''''''.join(a_)).ljust(a_) , (''''''.join(a_)).ljust(a_) , sep=''' | ''' , ) # Output in tabular format return "".join(a_) # return Postfix as str def __A ( a_ :int) -> List[Any]: __a : Dict = list(infix[::-1]) # reverse the infix equation for i in range(len(a_)): if infix[i] == "(": __a : Union[str, Any] = ''')''' # change "(" to ")" elif infix[i] == ")": __a : List[str] = '''(''' # change ")" to "(" return (infix_2_postfix(''''''.join(a_)))[ ::-1 ] # call infix_2_postfix on Infix, return reverse of Postfix if __name__ == "__main__": A = input('''\nEnter an Infix Equation = ''') # Input an Infix equation A = ''''''.join(Infix.split()) # Remove spaces from the input print('''\n\t''', Infix, '''(Infix) -> ''', infix_2_prefix(Infix), '''(Prefix)''')
188
0
"""simple docstring""" # flake8: noqa # Lint as: python3 _UpperCAmelCase = [ """VerificationMode""", """Version""", """disable_progress_bar""", """enable_progress_bar""", """is_progress_bar_enabled""", """experimental""", ] from .info_utils import VerificationMode from .logging import disable_progress_bar, enable_progress_bar, is_progress_bar_enabled from .version import Version from .experimental import experimental
173
"""simple docstring""" from __future__ import annotations import numpy as np def __magic_name__ ( lowercase ): return np.maximum(0 , lowercase ) if __name__ == "__main__": print(np.array(relu([-1, 0, 5]))) # --> [0, 0, 5]
173
1
from sympy import diff, lambdify, symbols from sympy.functions import * # noqa: F403 def __lowerCamelCase ( lowerCamelCase__ : Optional[int] , lowerCamelCase__ : List[Any] , lowerCamelCase__ : List[str] = "x" , lowerCamelCase__ : str = 10**-10 , lowerCamelCase__ : str = 1 , ): '''simple docstring''' lowerCamelCase = symbols(lowerCamelCase__ ) lowerCamelCase = lambdify(lowerCamelCase__ , lowerCamelCase__ ) lowerCamelCase = lambdify(lowerCamelCase__ , diff(lowerCamelCase__ , lowerCamelCase__ ) ) lowerCamelCase = starting_point while True: if diff_function(lowerCamelCase__ ) != 0: lowerCamelCase = prev_guess - multiplicity * func(lowerCamelCase__ ) / diff_function( lowerCamelCase__ ) else: raise ZeroDivisionError("""Could not find root""" ) from None # Precision is checked by comparing the difference of consecutive guesses if abs(next_guess - prev_guess ) < precision: return next_guess lowerCamelCase = next_guess # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(f"""The root of sin(x) = 0 is {newton_raphson("sin(x)", 2)}""") # Find root of polynomial # Find fourth Root of 5 print(f"""The root of x**4 - 5 = 0 is {newton_raphson("x**4 -5", 0.4 +5J)}""") # Find value of e print( "The root of log(y) - 1 = 0 is ", f"""{newton_raphson("log(y) - 1", 2, variable="y")}""", ) # Exponential Roots print( "The root of exp(x) - 1 = 0 is", f"""{newton_raphson("exp(x) - 1", 10, precision=0.0_0_5)}""", ) # Find root of cos(x) print(f"""The root of cos(x) = 0 is {newton_raphson("cos(x)", 0)}""")
359
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase : Dict = logging.get_logger(__name__) UpperCAmelCase : Any = { "google/switch-base-8": "https://huggingface.co/google/switch-base-8/blob/main/config.json", } class __lowercase ( a_ ): """simple docstring""" UpperCamelCase : Tuple = "switch_transformers" UpperCamelCase : Tuple = ["past_key_values"] UpperCamelCase : Any = {"hidden_size": "d_model", "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers"} def __init__( self , A=3_21_28 , A=7_68 , A=64 , A=20_48 , A=64 , A=12 , A=3 , A=12 , A=3 , A=12 , A=8 , A=False , A=0.01 , A="float32" , A=False , A=32 , A=1_28 , A=0.1 , A=1e-6 , A=0.001 , A=0.001 , A=1.0 , A="relu" , A=True , A=False , A=True , A=0 , A=1 , **A , ) -> str: '''simple docstring''' lowerCamelCase = vocab_size lowerCamelCase = d_model lowerCamelCase = d_kv lowerCamelCase = d_ff lowerCamelCase = num_sparse_encoder_layers lowerCamelCase = num_layers lowerCamelCase = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry lowerCamelCase = num_sparse_decoder_layers # This tells us, each how many encoder layer we'll have to set a sparse layer. if self.num_sparse_encoder_layers > 0: lowerCamelCase = self.num_layers // self.num_sparse_encoder_layers else: lowerCamelCase = self.num_layers # HACK: this will create 0 sparse layers # This tells us, each how many encoder layer we'll have to set a sparse layer. if self.num_sparse_decoder_layers > 0: lowerCamelCase = self.num_decoder_layers // self.num_sparse_decoder_layers else: lowerCamelCase = self.num_decoder_layers # HACK: this will create 0 sparse layers lowerCamelCase = num_heads lowerCamelCase = num_experts lowerCamelCase = expert_capacity lowerCamelCase = router_bias lowerCamelCase = router_jitter_noise if router_dtype not in ["float32", "float16", "bfloat16"]: raise ValueError(F'`router_dtype` must be one of \'float32\', \'float16\' or \'bfloat16\', got {router_dtype}' ) lowerCamelCase = router_dtype lowerCamelCase = router_ignore_padding_tokens lowerCamelCase = relative_attention_num_buckets lowerCamelCase = relative_attention_max_distance lowerCamelCase = dropout_rate lowerCamelCase = layer_norm_epsilon lowerCamelCase = initializer_factor lowerCamelCase = feed_forward_proj lowerCamelCase = use_cache lowerCamelCase = add_router_probs lowerCamelCase = router_z_loss_coef lowerCamelCase = router_aux_loss_coef lowerCamelCase = self.feed_forward_proj.split("""-""" ) lowerCamelCase = act_info[-1] lowerCamelCase = act_info[0] == """gated""" if len(A ) > 1 and act_info[0] != "gated" or len(A ) > 2: raise ValueError( F'`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.' """Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. """ """'gated-gelu' or 'relu'""" ) # for backwards compatibility if feed_forward_proj == "gated-gelu": lowerCamelCase = """gelu_new""" super().__init__( pad_token_id=A , eos_token_id=A , is_encoder_decoder=A , **A , )
66
0
"""simple docstring""" import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging __lowercase = logging.get_logger(__name__) __lowercase = { """microsoft/wavlm-base""": """https://huggingface.co/microsoft/wavlm-base/resolve/main/config.json""", # See all WavLM models at https://huggingface.co/models?filter=wavlm } class _A ( _a ): """simple docstring""" UpperCAmelCase : Optional[int] = "wavlm" def __init__( self : Any , __UpperCAmelCase : Tuple=32 , __UpperCAmelCase : Dict=768 , __UpperCAmelCase : Tuple=12 , __UpperCAmelCase : Dict=12 , __UpperCAmelCase : List[Any]=3072 , __UpperCAmelCase : Any="gelu" , __UpperCAmelCase : Optional[Any]=0.1 , __UpperCAmelCase : Union[str, Any]=0.1 , __UpperCAmelCase : Any=0.1 , __UpperCAmelCase : Any=0.0 , __UpperCAmelCase : Any=0.1 , __UpperCAmelCase : Any=0.1 , __UpperCAmelCase : Dict=0.02 , __UpperCAmelCase : List[str]=1e-5 , __UpperCAmelCase : Any="group" , __UpperCAmelCase : Dict="gelu" , __UpperCAmelCase : Optional[int]=(512, 512, 512, 512, 512, 512, 512) , __UpperCAmelCase : int=(5, 2, 2, 2, 2, 2, 2) , __UpperCAmelCase : Dict=(10, 3, 3, 3, 3, 2, 2) , __UpperCAmelCase : Union[str, Any]=False , __UpperCAmelCase : int=128 , __UpperCAmelCase : Union[str, Any]=16 , __UpperCAmelCase : int=320 , __UpperCAmelCase : int=800 , __UpperCAmelCase : Dict=False , __UpperCAmelCase : Tuple=True , __UpperCAmelCase : Optional[int]=0.05 , __UpperCAmelCase : Tuple=10 , __UpperCAmelCase : Any=2 , __UpperCAmelCase : Any=0.0 , __UpperCAmelCase : Optional[Any]=10 , __UpperCAmelCase : Any=320 , __UpperCAmelCase : Tuple=2 , __UpperCAmelCase : Tuple=0.1 , __UpperCAmelCase : List[str]=100 , __UpperCAmelCase : Tuple=256 , __UpperCAmelCase : Optional[Any]=256 , __UpperCAmelCase : str=0.1 , __UpperCAmelCase : int="mean" , __UpperCAmelCase : Tuple=False , __UpperCAmelCase : Union[str, Any]=False , __UpperCAmelCase : int=256 , __UpperCAmelCase : List[Any]=(512, 512, 512, 512, 1500) , __UpperCAmelCase : Any=(5, 3, 3, 1, 1) , __UpperCAmelCase : str=(1, 2, 3, 1, 1) , __UpperCAmelCase : Optional[int]=512 , __UpperCAmelCase : int=80 , __UpperCAmelCase : List[Any]=0 , __UpperCAmelCase : Optional[Any]=1 , __UpperCAmelCase : Dict=2 , __UpperCAmelCase : List[Any]=False , __UpperCAmelCase : Union[str, Any]=3 , __UpperCAmelCase : Union[str, Any]=2 , __UpperCAmelCase : Tuple=3 , __UpperCAmelCase : str=None , **__UpperCAmelCase : int , ): super().__init__(**_lowerCAmelCase , pad_token_id=_lowerCAmelCase , bos_token_id=_lowerCAmelCase , eos_token_id=_lowerCAmelCase) a : Tuple = hidden_size a : List[str] = feat_extract_norm a : str = feat_extract_activation a : str = list(_lowerCAmelCase) a : Dict = list(_lowerCAmelCase) a : Dict = list(_lowerCAmelCase) a : List[Any] = conv_bias a : Union[str, Any] = num_buckets a : Union[str, Any] = max_bucket_distance a : Optional[Any] = num_conv_pos_embeddings a : Dict = num_conv_pos_embedding_groups a : Dict = len(self.conv_dim) a : Dict = num_hidden_layers a : List[Any] = intermediate_size a : Union[str, Any] = hidden_act a : Dict = num_attention_heads a : List[Any] = hidden_dropout a : Optional[int] = attention_dropout a : Optional[int] = activation_dropout a : Union[str, Any] = feat_proj_dropout a : List[Any] = final_dropout a : int = layerdrop a : Optional[int] = layer_norm_eps a : Optional[int] = initializer_range a : Optional[Any] = num_ctc_classes a : int = vocab_size a : Dict = do_stable_layer_norm a : Union[str, Any] = use_weighted_layer_sum a : str = classifier_proj_size if ( (len(self.conv_stride) != self.num_feat_extract_layers) or (len(self.conv_kernel) != self.num_feat_extract_layers) or (len(self.conv_dim) != self.num_feat_extract_layers) ): raise ValueError( "Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==" " `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =" f''' {len(self.conv_dim)}`, `len(config.conv_stride) = {len(self.conv_stride)}`,''' f''' `len(config.conv_kernel) = {len(self.conv_kernel)}`.''') # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 a : str = apply_spec_augment a : int = mask_time_prob a : Optional[int] = mask_time_length a : Optional[int] = mask_time_min_masks a : str = mask_feature_prob a : Union[str, Any] = mask_feature_length # parameters for pretraining with codevector quantized representations a : Union[str, Any] = num_codevectors_per_group a : str = num_codevector_groups a : str = contrastive_logits_temperature a : Any = num_negatives a : Union[str, Any] = codevector_dim a : Union[str, Any] = proj_codevector_dim a : Tuple = diversity_loss_weight # ctc loss a : List[Any] = ctc_loss_reduction a : Union[str, Any] = ctc_zero_infinity # adapter a : Any = add_adapter a : Tuple = adapter_kernel_size a : Dict = adapter_stride a : int = num_adapter_layers a : Optional[Any] = output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. a : Union[str, Any] = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. a : Union[str, Any] = list(_lowerCAmelCase) a : Dict = list(_lowerCAmelCase) a : List[str] = list(_lowerCAmelCase) a : Optional[Any] = xvector_output_dim @property def __snake_case ( self : str): return functools.reduce(operator.mul , self.conv_stride , 1)
40
'''simple docstring''' from __future__ import annotations def __a(SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : float ): '''simple docstring''' if days_between_payments <= 0: raise ValueError("days_between_payments must be > 0" ) if daily_interest_rate < 0: raise ValueError("daily_interest_rate must be >= 0" ) if principal <= 0: raise ValueError("principal must be > 0" ) return principal * daily_interest_rate * days_between_payments def __a(SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : float , ): '''simple docstring''' if number_of_compounding_periods <= 0: raise ValueError("number_of_compounding_periods must be > 0" ) if nominal_annual_interest_rate_percentage < 0: raise ValueError("nominal_annual_interest_rate_percentage must be >= 0" ) if principal <= 0: raise ValueError("principal must be > 0" ) return principal * ( (1 + nominal_annual_interest_rate_percentage) ** number_of_compounding_periods - 1 ) def __a(SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : float , ): '''simple docstring''' if number_of_years <= 0: raise ValueError("number_of_years must be > 0" ) if nominal_annual_percentage_rate < 0: raise ValueError("nominal_annual_percentage_rate must be >= 0" ) if principal <= 0: raise ValueError("principal must be > 0" ) return compound_interest( SCREAMING_SNAKE_CASE_ , nominal_annual_percentage_rate / 365 , number_of_years * 365 ) if __name__ == "__main__": import doctest doctest.testmod()
158
0
'''simple docstring''' def __a ( UpperCAmelCase ) ->bool: """simple docstring""" return str(UpperCAmelCase ) == str(UpperCAmelCase )[::-1] def __a ( UpperCAmelCase ) ->int: """simple docstring""" return int(UpperCAmelCase ) + int(str(UpperCAmelCase )[::-1] ) def __a ( UpperCAmelCase = 10000 ) ->int: """simple docstring""" A = [] for num in range(1 , UpperCAmelCase ): A = 0 A = num while iterations < 50: A = sum_reverse(UpperCAmelCase ) iterations += 1 if is_palindrome(UpperCAmelCase ): break else: lychrel_nums.append(UpperCAmelCase ) return len(UpperCAmelCase ) if __name__ == "__main__": print(f"{solution() = }")
365
'''simple docstring''' import heapq as hq import math from collections.abc import Iterator class __UpperCAmelCase : '''simple docstring''' def __init__(self : Any , _lowerCAmelCase : List[Any] ): A = str(id_ ) A = None A = None A = [] A = {} # {vertex:distance} def __lt__(self : List[Any] , _lowerCAmelCase : Tuple ): return self.key < other.key def __repr__(self : str ): return self.id def A (self : Union[str, Any] , _lowerCAmelCase : List[str] ): self.neighbors.append(_lowerCAmelCase ) def A (self : str , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Union[str, Any] ): A = weight def __a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ->List[Any]: """simple docstring""" graph[a - 1].add_neighbor(graph[b - 1] ) graph[b - 1].add_neighbor(graph[a - 1] ) # add the edges: graph[a - 1].add_edge(graph[b - 1] , UpperCAmelCase ) graph[b - 1].add_edge(graph[a - 1] , UpperCAmelCase ) def __a ( UpperCAmelCase , UpperCAmelCase ) ->list: """simple docstring""" A = [] for u in graph: A = math.inf A = None A = 0 A = graph[:] while q: A = min(UpperCAmelCase ) q.remove(UpperCAmelCase ) for v in u.neighbors: if (v in q) and (u.edges[v.id] < v.key): A = u A = u.edges[v.id] for i in range(1 , len(UpperCAmelCase ) ): a.append((int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) ) return a def __a ( UpperCAmelCase , UpperCAmelCase ) ->Iterator[tuple]: """simple docstring""" for u in graph: A = math.inf A = None A = 0 A = list(UpperCAmelCase ) hq.heapify(UpperCAmelCase ) while h: A = hq.heappop(UpperCAmelCase ) for v in u.neighbors: if (v in h) and (u.edges[v.id] < v.key): A = u A = u.edges[v.id] hq.heapify(UpperCAmelCase ) for i in range(1 , len(UpperCAmelCase ) ): yield (int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) def __a ( ) ->None: """simple docstring""" if __name__ == "__main__": import doctest doctest.testmod()
337
0
"""simple docstring""" import cva import numpy as np class UpperCAmelCase : """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase ): if k in (0.04, 0.06): lowercase__: Tuple = k lowercase__: Tuple = window_size else: raise ValueError('''invalid k value''' ) def __str__( self ): return str(self.k ) def _snake_case ( self , _UpperCAmelCase ): lowercase__: List[str] = cva.imread(_UpperCAmelCase , 0 ) lowercase__, lowercase__: List[str] = img.shape lowercase__: list[list[int]] = [] lowercase__: Union[str, Any] = img.copy() lowercase__: List[str] = cva.cvtColor(_UpperCAmelCase , cva.COLOR_GRAY2RGB ) lowercase__, lowercase__: List[str] = np.gradient(_UpperCAmelCase ) lowercase__: str = dx**2 lowercase__: List[Any] = dy**2 lowercase__: List[str] = dx * dy lowercase__: int = 0.04 lowercase__: List[Any] = self.window_size // 2 for y in range(_UpperCAmelCase , h - offset ): for x in range(_UpperCAmelCase , w - offset ): lowercase__: int = ixx[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() lowercase__: int = iyy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() lowercase__: str = ixy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() lowercase__: List[Any] = (wxx * wyy) - (wxy**2) lowercase__: int = wxx + wyy lowercase__: List[str] = det - k * (trace**2) # Can change the value if r > 0.5: corner_list.append([x, y, r] ) color_img.itemset((y, x, 0) , 0 ) color_img.itemset((y, x, 1) , 0 ) color_img.itemset((y, x, 2) , 255 ) return color_img, corner_list if __name__ == "__main__": __A = HarrisCorner(0.04, 3) __A ,__A = edge_detect.detect("path_to_image") cva.imwrite("detect.png", color_img)
177
"""simple docstring""" from __future__ import annotations from math import pi, sqrt def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase ) -> tuple: if inductance <= 0: raise ValueError('''Inductance cannot be 0 or negative''' ) elif capacitance <= 0: raise ValueError('''Capacitance cannot be 0 or negative''' ) else: return ( "Resonant frequency", float(1 / (2 * pi * (sqrt(inductance * capacitance ))) ), ) if __name__ == "__main__": import doctest doctest.testmod()
177
1
import torch from diffusers import DDIMParallelScheduler from .test_schedulers import SchedulerCommonTest class A( UpperCamelCase ): '''simple docstring''' UpperCamelCase = (DDIMParallelScheduler,) UpperCamelCase = (('''eta''', 0.0), ('''num_inference_steps''', 50)) def a__ ( self : Union[str, Any] , **A_ : Union[str, Any] ) -> List[Any]: """simple docstring""" lowerCamelCase_ = { 'num_train_timesteps': 1000, 'beta_start': 0.0001, 'beta_end': 0.02, 'beta_schedule': 'linear', 'clip_sample': True, } config.update(**A_ ) return config def a__ ( self : List[Any] , **A_ : Dict ) -> List[str]: """simple docstring""" lowerCamelCase_ = self.scheduler_classes[0] lowerCamelCase_ = self.get_scheduler_config(**A_ ) lowerCamelCase_ = scheduler_class(**A_ ) lowerCamelCase_ , lowerCamelCase_ = 10, 0.0 lowerCamelCase_ = self.dummy_model() lowerCamelCase_ = self.dummy_sample_deter scheduler.set_timesteps(A_ ) for t in scheduler.timesteps: lowerCamelCase_ = model(A_ , A_ ) lowerCamelCase_ = scheduler.step(A_ , A_ , A_ , A_ ).prev_sample return sample def a__ ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" for timesteps in [100, 500, 1000]: self.check_over_configs(num_train_timesteps=A_ ) def a__ ( self : int ) -> List[str]: """simple docstring""" for steps_offset in [0, 1]: self.check_over_configs(steps_offset=A_ ) lowerCamelCase_ = self.scheduler_classes[0] lowerCamelCase_ = self.get_scheduler_config(steps_offset=1 ) lowerCamelCase_ = scheduler_class(**A_ ) scheduler.set_timesteps(5 ) assert torch.equal(scheduler.timesteps , torch.LongTensor([801, 601, 401, 201, 1] ) ) def a__ ( self : List[str] ) -> Union[str, Any]: """simple docstring""" for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=A_ , beta_end=A_ ) def a__ ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=A_ ) def a__ ( self : int ) -> Optional[int]: """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=A_ ) def a__ ( self : str ) -> List[Any]: """simple docstring""" for clip_sample in [True, False]: self.check_over_configs(clip_sample=A_ ) def a__ ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" for timestep_spacing in ["trailing", "leading"]: self.check_over_configs(timestep_spacing=A_ ) def a__ ( self : str ) -> List[str]: """simple docstring""" for rescale_betas_zero_snr in [True, False]: self.check_over_configs(rescale_betas_zero_snr=A_ ) def a__ ( self : Any ) -> Optional[Any]: """simple docstring""" self.check_over_configs(thresholding=A_ ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs( thresholding=A_ , prediction_type=A_ , sample_max_value=A_ , ) def a__ ( self : Union[str, Any] ) -> Tuple: """simple docstring""" for t in [1, 10, 49]: self.check_over_forward(time_step=A_ ) def a__ ( self : List[str] ) -> str: """simple docstring""" for t, num_inference_steps in zip([1, 10, 50] , [10, 50, 500] ): self.check_over_forward(time_step=A_ , num_inference_steps=A_ ) def a__ ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" for t, eta in zip([1, 10, 49] , [0.0, 0.5, 1.0] ): self.check_over_forward(time_step=A_ , eta=A_ ) def a__ ( self : Optional[int] ) -> Optional[int]: """simple docstring""" lowerCamelCase_ = self.scheduler_classes[0] lowerCamelCase_ = self.get_scheduler_config() lowerCamelCase_ = scheduler_class(**A_ ) assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(420 , 400 ) - 0.14771 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(980 , 960 ) - 0.32460 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(487 , 486 ) - 0.00979 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(999 , 998 ) - 0.02 ) ) < 1E-5 def a__ ( self : Optional[int] ) -> List[Any]: """simple docstring""" lowerCamelCase_ = self.scheduler_classes[0] lowerCamelCase_ = self.get_scheduler_config() lowerCamelCase_ = scheduler_class(**A_ ) lowerCamelCase_ , lowerCamelCase_ = 10, 0.0 scheduler.set_timesteps(A_ ) lowerCamelCase_ = self.dummy_model() lowerCamelCase_ = self.dummy_sample_deter lowerCamelCase_ = self.dummy_sample_deter + 0.1 lowerCamelCase_ = self.dummy_sample_deter - 0.1 lowerCamelCase_ = samplea.shape[0] lowerCamelCase_ = torch.stack([samplea, samplea, samplea] , dim=0 ) lowerCamelCase_ = torch.arange(A_ )[0:3, None].repeat(1 , A_ ) lowerCamelCase_ = model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) ) lowerCamelCase_ = scheduler.batch_step_no_noise(A_ , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) , A_ ) lowerCamelCase_ = torch.sum(torch.abs(A_ ) ) lowerCamelCase_ = torch.mean(torch.abs(A_ ) ) assert abs(result_sum.item() - 1147.7904 ) < 1E-2 assert abs(result_mean.item() - 0.4982 ) < 1E-3 def a__ ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ = self.full_loop() lowerCamelCase_ = torch.sum(torch.abs(A_ ) ) lowerCamelCase_ = torch.mean(torch.abs(A_ ) ) assert abs(result_sum.item() - 172.0067 ) < 1E-2 assert abs(result_mean.item() - 0.223967 ) < 1E-3 def a__ ( self : List[Any] ) -> Optional[int]: """simple docstring""" lowerCamelCase_ = self.full_loop(prediction_type='v_prediction' ) lowerCamelCase_ = torch.sum(torch.abs(A_ ) ) lowerCamelCase_ = torch.mean(torch.abs(A_ ) ) assert abs(result_sum.item() - 52.5302 ) < 1E-2 assert abs(result_mean.item() - 0.0684 ) < 1E-3 def a__ ( self : Tuple ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ = self.full_loop(set_alpha_to_one=A_ , beta_start=0.01 ) lowerCamelCase_ = torch.sum(torch.abs(A_ ) ) lowerCamelCase_ = torch.mean(torch.abs(A_ ) ) assert abs(result_sum.item() - 149.8295 ) < 1E-2 assert abs(result_mean.item() - 0.1951 ) < 1E-3 def a__ ( self : Any ) -> Dict: """simple docstring""" lowerCamelCase_ = self.full_loop(set_alpha_to_one=A_ , beta_start=0.01 ) lowerCamelCase_ = torch.sum(torch.abs(A_ ) ) lowerCamelCase_ = torch.mean(torch.abs(A_ ) ) assert abs(result_sum.item() - 149.0784 ) < 1E-2 assert abs(result_mean.item() - 0.1941 ) < 1E-3
208
import copy from ...configuration_utils import PretrainedConfig from ...utils import add_start_docstrings lowerCamelCase : Any = r"\n [`RagConfig`] stores the configuration of a *RagModel*. Configuration objects inherit from [`PretrainedConfig`] and\n can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information.\n\n Args:\n title_sep (`str`, *optional*, defaults to `\" / \"`):\n Separator inserted between the title and the text of the retrieved document when calling [`RagRetriever`].\n doc_sep (`str`, *optional*, defaults to `\" // \"`):\n Separator inserted between the text of the retrieved document and the original input when calling\n [`RagRetriever`].\n n_docs (`int`, *optional*, defaults to 5):\n Number of documents to retrieve.\n max_combined_length (`int`, *optional*, defaults to 300):\n Max length of contextualized input returned by [`~RagRetriever.__call__`].\n retrieval_vector_size (`int`, *optional*, defaults to 768):\n Dimensionality of the document embeddings indexed by [`RagRetriever`].\n retrieval_batch_size (`int`, *optional*, defaults to 8):\n Retrieval batch size, defined as the number of queries issues concurrently to the faiss index encapsulated\n [`RagRetriever`].\n dataset (`str`, *optional*, defaults to `\"wiki_dpr\"`):\n A dataset identifier of the indexed dataset in HuggingFace Datasets (list all available datasets and ids\n using `datasets.list_datasets()`).\n dataset_split (`str`, *optional*, defaults to `\"train\"`)\n Which split of the `dataset` to load.\n index_name (`str`, *optional*, defaults to `\"compressed\"`)\n The index name of the index associated with the `dataset`. One can choose between `\"legacy\"`, `\"exact\"` and\n `\"compressed\"`.\n index_path (`str`, *optional*)\n The path to the serialized faiss index on disk.\n passages_path (`str`, *optional*):\n A path to text passages compatible with the faiss index. Required if using\n [`~models.rag.retrieval_rag.LegacyIndex`]\n use_dummy_dataset (`bool`, *optional*, defaults to `False`)\n Whether to load a \"dummy\" variant of the dataset specified by `dataset`.\n label_smoothing (`float`, *optional*, defaults to 0.0):\n Only relevant if `return_loss` is set to `True`. Controls the `epsilon` parameter value for label smoothing\n in the loss calculation. If set to 0, no label smoothing is performed.\n do_marginalize (`bool`, *optional*, defaults to `False`):\n If `True`, the logits are marginalized over all documents by making use of\n `torch.nn.functional.log_softmax`.\n reduce_loss (`bool`, *optional*, defaults to `False`):\n Whether or not to reduce the NLL loss using the `torch.Tensor.sum` operation.\n do_deduplication (`bool`, *optional*, defaults to `True`):\n Whether or not to deduplicate the generations from different context documents for a given input. Has to be\n set to `False` if used while training with distributed backend.\n exclude_bos_score (`bool`, *optional*, defaults to `False`):\n Whether or not to disregard the BOS token when computing the loss.\n output_retrieved(`bool`, *optional*, defaults to `False`):\n If set to `True`, `retrieved_doc_embeds`, `retrieved_doc_ids`, `context_input_ids` and\n `context_attention_mask` are returned. See returned tensors for more detail.\n use_cache (`bool`, *optional*, defaults to `True`):\n Whether or not the model should return the last key/values attentions (not used by all models).\n forced_eos_token_id (`int`, *optional*):\n The id of the token to force as the last generated token when `max_length` is reached. Usually set to\n `eos_token_id`.\n" @add_start_docstrings(UpperCamelCase ) class A( UpperCamelCase ): '''simple docstring''' UpperCamelCase = '''rag''' UpperCamelCase = True def __init__( self : Optional[Any] , A_ : Optional[Any]=None , A_ : Any=True , A_ : Dict=None , A_ : Optional[int]=None , A_ : str=None , A_ : int=None , A_ : List[Any]=None , A_ : List[str]=" / " , A_ : Tuple=" // " , A_ : Union[str, Any]=5 , A_ : Optional[Any]=300 , A_ : int=768 , A_ : Dict=8 , A_ : int="wiki_dpr" , A_ : int="train" , A_ : List[str]="compressed" , A_ : Tuple=None , A_ : Optional[Any]=None , A_ : Optional[int]=False , A_ : str=False , A_ : Optional[Any]=0.0 , A_ : Union[str, Any]=True , A_ : List[Any]=False , A_ : Union[str, Any]=False , A_ : Dict=False , A_ : str=True , A_ : List[str]=None , **A_ : Optional[Any] , ) -> str: """simple docstring""" super().__init__( bos_token_id=A_ , pad_token_id=A_ , eos_token_id=A_ , decoder_start_token_id=A_ , forced_eos_token_id=A_ , is_encoder_decoder=A_ , prefix=A_ , vocab_size=A_ , **A_ , ) assert ( "question_encoder" in kwargs and "generator" in kwargs ), "Config has to be initialized with question_encoder and generator config" lowerCamelCase_ = kwargs.pop('question_encoder' ) lowerCamelCase_ = question_encoder_config.pop('model_type' ) lowerCamelCase_ = kwargs.pop('generator' ) lowerCamelCase_ = decoder_config.pop('model_type' ) from ..auto.configuration_auto import AutoConfig lowerCamelCase_ = AutoConfig.for_model(A_ , **A_ ) lowerCamelCase_ = AutoConfig.for_model(A_ , **A_ ) lowerCamelCase_ = reduce_loss lowerCamelCase_ = label_smoothing lowerCamelCase_ = exclude_bos_score lowerCamelCase_ = do_marginalize lowerCamelCase_ = title_sep lowerCamelCase_ = doc_sep lowerCamelCase_ = n_docs lowerCamelCase_ = max_combined_length lowerCamelCase_ = dataset lowerCamelCase_ = dataset_split lowerCamelCase_ = index_name lowerCamelCase_ = retrieval_vector_size lowerCamelCase_ = retrieval_batch_size lowerCamelCase_ = passages_path lowerCamelCase_ = index_path lowerCamelCase_ = use_dummy_dataset lowerCamelCase_ = output_retrieved lowerCamelCase_ = do_deduplication lowerCamelCase_ = use_cache if self.forced_eos_token_id is None: lowerCamelCase_ = getattr(self.generator , 'forced_eos_token_id' , A_ ) @classmethod def a__ ( cls : str , A_ : PretrainedConfig , A_ : PretrainedConfig , **A_ : List[str] ) -> PretrainedConfig: """simple docstring""" return cls(question_encoder=question_encoder_config.to_dict() , generator=generator_config.to_dict() , **A_ ) def a__ ( self : Tuple ) -> int: """simple docstring""" lowerCamelCase_ = copy.deepcopy(self.__dict__ ) lowerCamelCase_ = self.question_encoder.to_dict() lowerCamelCase_ = self.generator.to_dict() lowerCamelCase_ = self.__class__.model_type return output
208
1
def _A ( SCREAMING_SNAKE_CASE : str ): """simple docstring""" return credit_card_number.startswith(("34", "35", "37", "4", "5", "6") ) def _A ( SCREAMING_SNAKE_CASE : str ): """simple docstring""" a__ : Tuple =credit_card_number a__ : Union[str, Any] =0 a__ : List[str] =len(SCREAMING_SNAKE_CASE ) - 2 for i in range(SCREAMING_SNAKE_CASE , -1 , -2 ): # double the value of every second digit a__ : List[Any] =int(cc_number[i] ) digit *= 2 # If doubling of a number results in a two digit number # i.e greater than 9(e.g., 6 × 2 = 12), # then add the digits of the product (e.g., 12: 1 + 2 = 3, 15: 1 + 5 = 6), # to get a single digit number. if digit > 9: digit %= 10 digit += 1 a__ : List[str] =cc_number[:i] + str(SCREAMING_SNAKE_CASE ) + cc_number[i + 1 :] total += digit # Sum up the remaining digits for i in range(len(SCREAMING_SNAKE_CASE ) - 1 , -1 , -2 ): total += int(cc_number[i] ) return total % 10 == 0 def _A ( SCREAMING_SNAKE_CASE : str ): """simple docstring""" a__ : List[Any] =f'''{credit_card_number} is an invalid credit card number because''' if not credit_card_number.isdigit(): print(f'''{error_message} it has nonnumerical characters.''' ) return False if not 13 <= len(SCREAMING_SNAKE_CASE ) <= 16: print(f'''{error_message} of its length.''' ) return False if not validate_initial_digits(SCREAMING_SNAKE_CASE ): print(f'''{error_message} of its first two digits.''' ) return False if not luhn_validation(SCREAMING_SNAKE_CASE ): print(f'''{error_message} it fails the Luhn check.''' ) return False print(f'''{credit_card_number} is a valid credit card number.''' ) return True if __name__ == "__main__": import doctest doctest.testmod() validate_credit_card_number("""4111111111111111""") validate_credit_card_number("""32323""")
95
"""simple docstring""" def __A (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->bool: """simple docstring""" return numa ^ numa < 0 if __name__ == "__main__": import doctest doctest.testmod()
293
0
"""simple docstring""" import warnings from ...utils import logging from .image_processing_beit import BeitImageProcessor A: Any = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase__ ): def __init__( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> None: '''simple docstring''' warnings.warn( """The class BeitFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use BeitImageProcessor instead.""" , _SCREAMING_SNAKE_CASE , ) super().__init__(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )
76
"""simple docstring""" from transformers import BertTokenizer, EncoderDecoderModel, SeqaSeqTrainer, SeqaSeqTrainingArguments from transformers.testing_utils import TestCasePlus, require_torch, slow from transformers.utils import is_datasets_available if is_datasets_available(): import datasets class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase__ ): @slow @require_torch def SCREAMING_SNAKE_CASE ( self ) -> Tuple: '''simple docstring''' UpperCAmelCase : Any = EncoderDecoderModel.from_encoder_decoder_pretrained("""prajjwal1/bert-tiny""" , """prajjwal1/bert-tiny""" ) UpperCAmelCase : Optional[int] = BertTokenizer.from_pretrained("""bert-base-uncased""" ) UpperCAmelCase : Tuple = bertabert.config.encoder.vocab_size UpperCAmelCase : int = tokenizer.sep_token_id UpperCAmelCase : Dict = tokenizer.cls_token_id UpperCAmelCase : int = 128 UpperCAmelCase : List[str] = datasets.load_dataset("""cnn_dailymail""" , """3.0.0""" , split="""train[:1%]""" ) UpperCAmelCase : Union[str, Any] = datasets.load_dataset("""cnn_dailymail""" , """3.0.0""" , split="""validation[:1%]""" ) UpperCAmelCase : Optional[int] = train_dataset.select(range(32 ) ) UpperCAmelCase : int = val_dataset.select(range(16 ) ) UpperCAmelCase : List[str] = 4 def _map_to_encoder_decoder_inputs(_SCREAMING_SNAKE_CASE ): # Tokenizer will automatically set [BOS] <text> [EOS] UpperCAmelCase : str = tokenizer(batch["""article"""] , padding="""max_length""" , truncation=_SCREAMING_SNAKE_CASE , max_length=512 ) UpperCAmelCase : str = tokenizer(batch["""highlights"""] , padding="""max_length""" , truncation=_SCREAMING_SNAKE_CASE , max_length=128 ) UpperCAmelCase : Optional[Any] = inputs.input_ids UpperCAmelCase : Union[str, Any] = inputs.attention_mask UpperCAmelCase : Union[str, Any] = outputs.input_ids UpperCAmelCase : Any = outputs.input_ids.copy() UpperCAmelCase : Tuple = [ [-100 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch["""labels"""] ] UpperCAmelCase : List[Any] = outputs.attention_mask assert all(len(_SCREAMING_SNAKE_CASE ) == 512 for x in inputs.input_ids ) assert all(len(_SCREAMING_SNAKE_CASE ) == 128 for x in outputs.input_ids ) return batch def _compute_metrics(_SCREAMING_SNAKE_CASE ): UpperCAmelCase : Optional[Any] = pred.label_ids UpperCAmelCase : Tuple = pred.predictions # all unnecessary tokens are removed UpperCAmelCase : Union[str, Any] = tokenizer.batch_decode(_SCREAMING_SNAKE_CASE , skip_special_tokens=_SCREAMING_SNAKE_CASE ) UpperCAmelCase : str = tokenizer.batch_decode(_SCREAMING_SNAKE_CASE , skip_special_tokens=_SCREAMING_SNAKE_CASE ) UpperCAmelCase : Optional[Any] = sum([int(pred_str[i] == label_str[i] ) for i in range(len(_SCREAMING_SNAKE_CASE ) )] ) / len(_SCREAMING_SNAKE_CASE ) return {"accuracy": accuracy} # map train dataset UpperCAmelCase : List[Any] = train_dataset.map( _map_to_encoder_decoder_inputs , batched=_SCREAMING_SNAKE_CASE , batch_size=_SCREAMING_SNAKE_CASE , remove_columns=["""article""", """highlights"""] , ) train_dataset.set_format( type="""torch""" , columns=["""input_ids""", """attention_mask""", """decoder_input_ids""", """decoder_attention_mask""", """labels"""] , ) # same for validation dataset UpperCAmelCase : List[str] = val_dataset.map( _map_to_encoder_decoder_inputs , batched=_SCREAMING_SNAKE_CASE , batch_size=_SCREAMING_SNAKE_CASE , remove_columns=["""article""", """highlights"""] , ) val_dataset.set_format( type="""torch""" , columns=["""input_ids""", """attention_mask""", """decoder_input_ids""", """decoder_attention_mask""", """labels"""] , ) UpperCAmelCase : Dict = self.get_auto_remove_tmp_dir() UpperCAmelCase : Dict = SeqaSeqTrainingArguments( output_dir=_SCREAMING_SNAKE_CASE , per_device_train_batch_size=_SCREAMING_SNAKE_CASE , per_device_eval_batch_size=_SCREAMING_SNAKE_CASE , predict_with_generate=_SCREAMING_SNAKE_CASE , evaluation_strategy="""steps""" , do_train=_SCREAMING_SNAKE_CASE , do_eval=_SCREAMING_SNAKE_CASE , warmup_steps=0 , eval_steps=2 , logging_steps=2 , ) # instantiate trainer UpperCAmelCase : List[str] = SeqaSeqTrainer( model=_SCREAMING_SNAKE_CASE , args=_SCREAMING_SNAKE_CASE , compute_metrics=_compute_metrics , train_dataset=_SCREAMING_SNAKE_CASE , eval_dataset=_SCREAMING_SNAKE_CASE , tokenizer=_SCREAMING_SNAKE_CASE , ) # start training trainer.train()
76
1
import math from typing import Callable, List, Optional, Union import numpy as np import PIL import torch from PIL import Image from transformers import CLIPTextModel, CLIPTokenizer from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale import StableDiffusionUpscalePipeline from diffusers.schedulers import DDIMScheduler, DDPMScheduler, LMSDiscreteScheduler, PNDMScheduler def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase=[] ) -> Union[str, Any]: """simple docstring""" snake_case_ : str = size[0] - overlap_pixels * 2 snake_case_ : Optional[Any] = size[1] - overlap_pixels * 2 for letter in ["l", "r"]: if letter in remove_borders: size_x += overlap_pixels for letter in ["t", "b"]: if letter in remove_borders: size_y += overlap_pixels snake_case_ : List[Any] = np.ones((size_y, size_x) , dtype=np.uinta ) * 255 snake_case_ : List[Any] = np.pad(lowercase__ , mode='''linear_ramp''' , pad_width=lowercase__ , end_values=0 ) if "l" in remove_borders: snake_case_ : List[Any] = mask[:, overlap_pixels : mask.shape[1]] if "r" in remove_borders: snake_case_ : List[Any] = mask[:, 0 : mask.shape[1] - overlap_pixels] if "t" in remove_borders: snake_case_ : Union[str, Any] = mask[overlap_pixels : mask.shape[0], :] if "b" in remove_borders: snake_case_ : Dict = mask[0 : mask.shape[0] - overlap_pixels, :] return mask def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> Optional[Any]: """simple docstring""" return max(lowercase__ , min(lowercase__ , lowercase__ ) ) def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> Union[str, Any]: """simple docstring""" return ( clamp(rect[0] , min[0] , max[0] ), clamp(rect[1] , min[1] , max[1] ), clamp(rect[2] , min[0] , max[0] ), clamp(rect[3] , min[1] , max[1] ), ) def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> Any: """simple docstring""" snake_case_ : Any = list(lowercase__ ) rect[0] -= overlap rect[1] -= overlap rect[2] += overlap rect[3] += overlap snake_case_ : List[str] = clamp_rect(lowercase__ , [0, 0] , [image_size[0], image_size[1]] ) return rect def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> List[str]: """simple docstring""" snake_case_ : List[str] = Image.new('''RGB''' , (tile.size[0] + original_slice, tile.size[1]) ) result.paste( original_image.resize((tile.size[0], tile.size[1]) , Image.BICUBIC ).crop( (slice_x, 0, slice_x + original_slice, tile.size[1]) ) , (0, 0) , ) result.paste(lowercase__ , (original_slice, 0) ) return result def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase ) -> Optional[int]: """simple docstring""" snake_case_ : Optional[Any] = (original_image_slice * 4, 0, tile.size[0], tile.size[1]) snake_case_ : Tuple = tile.crop(lowercase__ ) return tile def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase ) -> Dict: """simple docstring""" snake_case_ : str = n % d return n - divisor class __lowerCAmelCase ( _a ): def __init__(self , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ = 350 , ) -> List[str]: '''simple docstring''' super().__init__( vae=__lowercase , text_encoder=__lowercase , tokenizer=__lowercase , unet=__lowercase , low_res_scheduler=__lowercase , scheduler=__lowercase , max_noise_level=__lowercase , ) def lowerCamelCase (self , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , **__magic_name__ ) -> int: '''simple docstring''' torch.manual_seed(0 ) snake_case_ : Tuple = ( min(image.size[0] - (tile_size + original_image_slice) , x * tile_size ), min(image.size[1] - (tile_size + original_image_slice) , y * tile_size ), min(image.size[0] , (x + 1) * tile_size ), min(image.size[1] , (y + 1) * tile_size ), ) snake_case_ : List[str] = add_overlap_rect(__lowercase , __lowercase , image.size ) snake_case_ : int = image.crop(__lowercase ) snake_case_ : List[str] = ((crop_rect[0] + ((crop_rect[2] - crop_rect[0]) / 2)) / image.size[0]) * tile.size[0] snake_case_ : str = translated_slice_x - (original_image_slice / 2) snake_case_ : int = max(0 , __lowercase ) snake_case_ : Union[str, Any] = squeeze_tile(__lowercase , __lowercase , __lowercase , __lowercase ) snake_case_ : str = to_input.size snake_case_ : str = to_input.resize((tile_size, tile_size) , Image.BICUBIC ) snake_case_ : List[Any] = super(__lowercase , self ).__call__(image=__lowercase , **__lowercase ).images[0] snake_case_ : str = upscaled_tile.resize((orig_input_size[0] * 4, orig_input_size[1] * 4) , Image.BICUBIC ) snake_case_ : int = unsqueeze_tile(__lowercase , __lowercase ) snake_case_ : Tuple = upscaled_tile.resize((tile.size[0] * 4, tile.size[1] * 4) , Image.BICUBIC ) snake_case_ : Dict = [] if x == 0: remove_borders.append('''l''' ) elif crop_rect[2] == image.size[0]: remove_borders.append('''r''' ) if y == 0: remove_borders.append('''t''' ) elif crop_rect[3] == image.size[1]: remove_borders.append('''b''' ) snake_case_ : List[Any] = Image.fromarray( make_transparency_mask( (upscaled_tile.size[0], upscaled_tile.size[1]) , tile_border * 4 , remove_borders=__lowercase ) , mode='''L''' , ) final_image.paste( __lowercase , (crop_rect_with_overlap[0] * 4, crop_rect_with_overlap[1] * 4) , __lowercase ) @torch.no_grad() def __call__(self , __magic_name__ , __magic_name__ , __magic_name__ = 75 , __magic_name__ = 9.0 , __magic_name__ = 50 , __magic_name__ = None , __magic_name__ = 1 , __magic_name__ = 0.0 , __magic_name__ = None , __magic_name__ = None , __magic_name__ = None , __magic_name__ = 1 , __magic_name__ = 128 , __magic_name__ = 32 , __magic_name__ = 32 , ) -> Any: '''simple docstring''' snake_case_ : List[str] = Image.new('''RGB''' , (image.size[0] * 4, image.size[1] * 4) ) snake_case_ : Union[str, Any] = math.ceil(image.size[0] / tile_size ) snake_case_ : Any = math.ceil(image.size[1] / tile_size ) snake_case_ : Optional[int] = tcx * tcy snake_case_ : List[Any] = 0 for y in range(__lowercase ): for x in range(__lowercase ): self._process_tile( __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , prompt=__lowercase , num_inference_steps=__lowercase , guidance_scale=__lowercase , noise_level=__lowercase , negative_prompt=__lowercase , num_images_per_prompt=__lowercase , eta=__lowercase , generator=__lowercase , latents=__lowercase , ) current_count += 1 if callback is not None: callback({'''progress''': current_count / total_tile_count, '''image''': final_image} ) return final_image def lowerCamelCase_ ( ) -> Optional[int]: """simple docstring""" snake_case_ : Tuple = '''stabilityai/stable-diffusion-x4-upscaler''' snake_case_ : Any = StableDiffusionTiledUpscalePipeline.from_pretrained(lowercase__ , revision='''fp16''' , torch_dtype=torch.floataa ) snake_case_ : str = pipe.to('''cuda''' ) snake_case_ : Any = Image.open('''../../docs/source/imgs/diffusers_library.jpg''' ) def callback(_UpperCamelCase ): print(f'''progress: {obj["progress"]:.4f}''' ) obj["image"].save('''diffusers_library_progress.jpg''' ) snake_case_ : str = pipe(image=lowercase__ , prompt='''Black font, white background, vector''' , noise_level=40 , callback=lowercase__ ) final_image.save('''diffusers_library.jpg''' ) if __name__ == "__main__": main()
279
'''simple docstring''' def __UpperCamelCase ( lowercase__ : Union[str, Any]=2_81_23 ): '''simple docstring''' __lowercase =[1] * (limit + 1) for i in range(2, int(limit**0.5 ) + 1 ): sum_divs[i * i] += i for k in range(i + 1, limit // i + 1 ): sum_divs[k * i] += k + i __lowercase =set() __lowercase =0 for n in range(1, limit + 1 ): if sum_divs[n] > n: abundants.add(lowercase__ ) if not any((n - a in abundants) for a in abundants ): res += n return res if __name__ == "__main__": print(solution())
141
0
from typing import List, Union import numpy as np from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_DEPTH_ESTIMATION_MAPPING _snake_case : Dict = logging.get_logger(__name__) @add_end_docstrings(a__ ) class A ( a__ ): def __init__( self : List[str] , *lowerCAmelCase_ : Tuple , **lowerCAmelCase_ : Optional[Any] ) -> Dict: """simple docstring""" super().__init__(*lowerCAmelCase__ , **lowerCAmelCase__ ) requires_backends(self , '''vision''' ) self.check_model_type(lowerCAmelCase__ ) def __call__( self : Any , lowerCAmelCase_ : int , **lowerCAmelCase_ : Tuple ) -> str: """simple docstring""" return super().__call__(lowerCAmelCase__ , **lowerCAmelCase__ ) def __lowerCAmelCase ( self : List[str] , **lowerCAmelCase_ : str ) -> Any: """simple docstring""" return {}, {}, {} def __lowerCAmelCase ( self : str , lowerCAmelCase_ : Optional[Any] ) -> Tuple: """simple docstring""" _a = load_image(lowerCAmelCase__ ) _a = image.size _a = self.image_processor(images=lowerCAmelCase__ , return_tensors=self.framework ) return model_inputs def __lowerCAmelCase ( self : Dict , lowerCAmelCase_ : Dict ) -> Dict: """simple docstring""" _a = self.model(**lowerCAmelCase__ ) return model_outputs def __lowerCAmelCase ( self : List[Any] , lowerCAmelCase_ : List[str] ) -> Optional[Any]: """simple docstring""" _a = model_outputs.predicted_depth _a = torch.nn.functional.interpolate( predicted_depth.unsqueeze(1 ) , size=self.image_size[::-1] , mode='''bicubic''' , align_corners=lowerCAmelCase__ ) _a = prediction.squeeze().cpu().numpy() _a = (output * 2_55 / np.max(lowerCAmelCase__ )).astype('''uint8''' ) _a = Image.fromarray(lowerCAmelCase__ ) _a = {} _a = predicted_depth _a = depth return output_dict
363
'''simple docstring''' import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import VideoMAEConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEForPreTraining, VideoMAEForVideoClassification, VideoMAEModel, ) from transformers.models.videomae.modeling_videomae import VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import VideoMAEImageProcessor class A : def __init__( self : Any , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[str]=13 , lowerCAmelCase_ : Optional[Any]=10 , lowerCAmelCase_ : Optional[int]=3 , lowerCAmelCase_ : Union[str, Any]=2 , lowerCAmelCase_ : Tuple=2 , lowerCAmelCase_ : Dict=2 , lowerCAmelCase_ : str=True , lowerCAmelCase_ : Optional[Any]=True , lowerCAmelCase_ : Dict=32 , lowerCAmelCase_ : Tuple=5 , lowerCAmelCase_ : Optional[int]=4 , lowerCAmelCase_ : int=37 , lowerCAmelCase_ : int="gelu" , lowerCAmelCase_ : List[str]=0.1 , lowerCAmelCase_ : str=0.1 , lowerCAmelCase_ : Dict=10 , lowerCAmelCase_ : int=0.0_2 , lowerCAmelCase_ : Union[str, Any]=0.9 , lowerCAmelCase_ : str=None , ) -> int: """simple docstring""" _a = parent _a = batch_size _a = image_size _a = num_channels _a = patch_size _a = tubelet_size _a = num_frames _a = is_training _a = use_labels _a = hidden_size _a = num_hidden_layers _a = num_attention_heads _a = intermediate_size _a = hidden_act _a = hidden_dropout_prob _a = attention_probs_dropout_prob _a = type_sequence_label_size _a = initializer_range _a = mask_ratio _a = scope # in VideoMAE, the number of tokens equals num_frames/tubelet_size * num_patches per frame _a = (image_size // patch_size) ** 2 _a = (num_frames // tubelet_size) * self.num_patches_per_frame # use this variable to define bool_masked_pos _a = int(mask_ratio * self.seq_length ) def __lowerCAmelCase ( self : Any ) -> Optional[int]: """simple docstring""" _a = floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] ) _a = None if self.use_labels: _a = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _a = self.get_config() return config, pixel_values, labels def __lowerCAmelCase ( self : List[str] ) -> Any: """simple docstring""" return VideoMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , tubelet_size=self.tubelet_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowerCAmelCase_ , initializer_range=self.initializer_range , ) def __lowerCAmelCase ( self : List[str] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Union[str, Any] ) -> Optional[int]: """simple docstring""" _a = VideoMAEModel(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() _a = model(lowerCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __lowerCAmelCase ( self : Any , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Optional[Any] ) -> Optional[Any]: """simple docstring""" _a = VideoMAEForPreTraining(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch _a = torch.ones((self.num_masks,) ) _a = torch.cat([mask, torch.zeros(self.seq_length - mask.size(0 ) )] ) _a = mask.expand(self.batch_size , -1 ).bool() _a = model(lowerCAmelCase_ , lowerCAmelCase_ ) # model only returns predictions for masked patches _a = mask.sum().item() _a = 3 * self.tubelet_size * self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_masked_patches, decoder_num_labels) ) def __lowerCAmelCase ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" _a = self.prepare_config_and_inputs() _a , _a , _a = config_and_inputs _a = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class A ( _a ,_a ,unittest.TestCase ): lowercase_ = ( (VideoMAEModel, VideoMAEForPreTraining, VideoMAEForVideoClassification) if is_torch_available() else () ) lowercase_ = ( {'feature-extraction': VideoMAEModel, 'video-classification': VideoMAEForVideoClassification} if is_torch_available() else {} ) lowercase_ = False lowercase_ = False lowercase_ = False lowercase_ = False def __lowerCAmelCase ( self : Dict ) -> int: """simple docstring""" _a = VideoMAEModelTester(self ) _a = ConfigTester(self , config_class=lowerCAmelCase_ , has_text_modality=lowerCAmelCase_ , hidden_size=37 ) def __lowerCAmelCase ( self : Optional[int] , lowerCAmelCase_ : Any , lowerCAmelCase_ : int , lowerCAmelCase_ : List[Any]=False ) -> Tuple: """simple docstring""" _a = copy.deepcopy(lowerCAmelCase_ ) if model_class == VideoMAEForPreTraining: # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch _a = torch.ones((self.model_tester.num_masks,) ) _a = torch.cat([mask, torch.zeros(self.model_tester.seq_length - mask.size(0 ) )] ) _a = mask.expand(self.model_tester.batch_size , -1 ).bool() _a = bool_masked_pos.to(lowerCAmelCase_ ) if return_labels: if model_class in [ *get_values(lowerCAmelCase_ ), ]: _a = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowerCAmelCase_ ) return inputs_dict def __lowerCAmelCase ( self : List[Any] ) -> Optional[int]: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason='''VideoMAE does not use inputs_embeds''' ) def __lowerCAmelCase ( self : Any ) -> Any: """simple docstring""" pass def __lowerCAmelCase ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" _a , _a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a = model_class(lowerCAmelCase_ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _a = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCAmelCase_ , nn.Linear ) ) def __lowerCAmelCase ( self : Any ) -> Any: """simple docstring""" _a , _a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a = model_class(lowerCAmelCase_ ) _a = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _a = [*signature.parameters.keys()] _a = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , lowerCAmelCase_ ) def __lowerCAmelCase ( self : int ) -> Any: """simple docstring""" _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase_ ) def __lowerCAmelCase ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*lowerCAmelCase_ ) @slow def __lowerCAmelCase ( self : Dict ) -> Optional[int]: """simple docstring""" for model_name in VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _a = VideoMAEModel.from_pretrained(lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) def __lowerCAmelCase ( self : int ) -> Any: """simple docstring""" if not self.has_attentions: pass else: _a , _a = self.model_tester.prepare_config_and_inputs_for_common() _a = True for model_class in self.all_model_classes: _a = self.model_tester.seq_length - self.model_tester.num_masks _a = ( num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length ) _a = True _a = False _a = True _a = model_class(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() with torch.no_grad(): _a = model(**self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) ) _a = outputs.attentions self.assertEqual(len(lowerCAmelCase_ ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] _a = True _a = model_class(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() with torch.no_grad(): _a = model(**self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) ) _a = outputs.attentions self.assertEqual(len(lowerCAmelCase_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) _a = len(lowerCAmelCase_ ) # Check attention is always last and order is fine _a = True _a = True _a = model_class(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() with torch.no_grad(): _a = model(**self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) ) self.assertEqual(out_len + 1 , len(lowerCAmelCase_ ) ) _a = outputs.attentions self.assertEqual(len(lowerCAmelCase_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) def __lowerCAmelCase ( self : Tuple ) -> Tuple: """simple docstring""" def check_hidden_states_output(lowerCAmelCase_ : str , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Tuple ): _a = model_class(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() with torch.no_grad(): _a = model(**self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) ) _a = outputs.hidden_states _a = self.model_tester.num_hidden_layers + 1 self.assertEqual(len(lowerCAmelCase_ ) , lowerCAmelCase_ ) _a = self.model_tester.seq_length - self.model_tester.num_masks _a = num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) _a , _a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a = True check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _a = True check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def __lowerCAmelCase ( self : Optional[int] ) -> Dict: """simple docstring""" pass def snake_case_ (): '''simple docstring''' _a = hf_hub_download( repo_id='''hf-internal-testing/spaghetti-video''' , filename='''eating_spaghetti.npy''' , repo_type='''dataset''' ) _a = np.load(UpperCamelCase ) return list(UpperCamelCase ) @require_torch @require_vision class A ( unittest.TestCase ): @cached_property def __lowerCAmelCase ( self : str ) -> List[Any]: """simple docstring""" return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) if is_vision_available() else None ) @slow def __lowerCAmelCase ( self : Dict ) -> Dict: """simple docstring""" _a = VideoMAEForVideoClassification.from_pretrained('''MCG-NJU/videomae-base-finetuned-kinetics''' ).to( lowerCAmelCase_ ) _a = self.default_image_processor _a = prepare_video() _a = image_processor(lowerCAmelCase_ , return_tensors='''pt''' ).to(lowerCAmelCase_ ) # forward pass with torch.no_grad(): _a = model(**lowerCAmelCase_ ) # verify the logits _a = torch.Size((1, 4_00) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase_ ) _a = torch.tensor([0.3_6_6_9, -0.0_6_8_8, -0.2_4_2_1] ).to(lowerCAmelCase_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCAmelCase_ , atol=1e-4 ) ) @slow def __lowerCAmelCase ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" _a = VideoMAEForPreTraining.from_pretrained('''MCG-NJU/videomae-base-short''' ).to(lowerCAmelCase_ ) _a = self.default_image_processor _a = prepare_video() _a = image_processor(lowerCAmelCase_ , return_tensors='''pt''' ).to(lowerCAmelCase_ ) # add boolean mask, indicating which patches to mask _a = hf_hub_download(repo_id='''hf-internal-testing/bool-masked-pos''' , filename='''bool_masked_pos.pt''' ) _a = torch.load(lowerCAmelCase_ ) # forward pass with torch.no_grad(): _a = model(**lowerCAmelCase_ ) # verify the logits _a = torch.Size([1, 14_08, 15_36] ) _a = torch.tensor( [[0.7_9_9_4, 0.9_6_1_2, 0.8_5_0_8], [0.7_4_0_1, 0.8_9_5_8, 0.8_3_0_2], [0.5_8_6_2, 0.7_4_6_8, 0.7_3_2_5]] , device=lowerCAmelCase_ ) self.assertEqual(outputs.logits.shape , lowerCAmelCase_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , lowerCAmelCase_ , atol=1e-4 ) ) # verify the loss (`config.norm_pix_loss` = `True`) _a = torch.tensor([0.5_1_4_2] , device=lowerCAmelCase_ ) self.assertTrue(torch.allclose(outputs.loss , lowerCAmelCase_ , atol=1e-4 ) ) # verify the loss (`config.norm_pix_loss` = `False`) _a = VideoMAEForPreTraining.from_pretrained('''MCG-NJU/videomae-base-short''' , norm_pix_loss=lowerCAmelCase_ ).to( lowerCAmelCase_ ) with torch.no_grad(): _a = model(**lowerCAmelCase_ ) _a = torch.tensor(torch.tensor([0.6_4_6_9] ) , device=lowerCAmelCase_ ) self.assertTrue(torch.allclose(outputs.loss , lowerCAmelCase_ , atol=1e-4 ) )
179
0