code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
from __future__ import annotations def A ( lowercase , lowercase ) -> tuple[int, int]: '''simple docstring''' if b == 0: return (1, 0) ((UpperCamelCase) , (UpperCamelCase)) = extended_euclid(lowercase , a % b ) UpperCamelCase = a // b return (y, x - k * y) def A ( lowercase , lowercase , lowercase , lowercase ) -> int: '''simple docstring''' ((UpperCamelCase) , (UpperCamelCase)) = extended_euclid(lowercase , lowercase ) UpperCamelCase = na * na UpperCamelCase = ra * x * na + ra * y * na return (n % m + m) % m def A ( lowercase , lowercase ) -> int: '''simple docstring''' ((UpperCamelCase) , (UpperCamelCase)) = extended_euclid(lowercase , lowercase ) if b < 0: UpperCamelCase = (b % n + n) % n return b def A ( lowercase , lowercase , lowercase , lowercase ) -> int: '''simple docstring''' UpperCamelCase , UpperCamelCase = invert_modulo(lowercase , lowercase ), invert_modulo(lowercase , lowercase ) UpperCamelCase = na * na UpperCamelCase = ra * x * na + ra * y * na return (n % m + m) % m if __name__ == "__main__": from doctest import testmod testmod(name="chinese_remainder_theorem", verbose=True) testmod(name="chinese_remainder_theorem2", verbose=True) testmod(name="invert_modulo", verbose=True) testmod(name="extended_euclid", verbose=True)
222
import os import re from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _UpperCAmelCase : List[Any] = logging.get_logger(__name__) _UpperCAmelCase : Dict = {"vocab_file": "spiece.model"} _UpperCAmelCase : Dict = { "vocab_file": { "google/bigbird-roberta-base": "https://huggingface.co/google/bigbird-roberta-base/resolve/main/spiece.model", "google/bigbird-roberta-large": ( "https://huggingface.co/google/bigbird-roberta-large/resolve/main/spiece.model" ), "google/bigbird-base-trivia-itc": ( "https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/spiece.model" ), } } _UpperCAmelCase : int = { "google/bigbird-roberta-base": 4_096, "google/bigbird-roberta-large": 4_096, "google/bigbird-base-trivia-itc": 4_096, } class lowercase ( _SCREAMING_SNAKE_CASE ): __lowercase : List[str] = VOCAB_FILES_NAMES __lowercase : int = PRETRAINED_VOCAB_FILES_MAP __lowercase : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowercase : List[Any] = ["input_ids", "attention_mask"] __lowercase : List[int] = [] def __init__( self , A_ , A_="<unk>" , A_="<s>" , A_="</s>" , A_="<pad>" , A_="[SEP]" , A_="[MASK]" , A_="[CLS]" , A_ = None , **A_ , ) -> None: """simple docstring""" UpperCamelCase = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else bos_token UpperCamelCase = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else eos_token UpperCamelCase = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else unk_token UpperCamelCase = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else pad_token UpperCamelCase = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else cls_token UpperCamelCase = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else sep_token # Mask token behave like a normal word, i.e. include the space before it UpperCamelCase = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else mask_token UpperCamelCase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=A_ , eos_token=A_ , unk_token=A_ , pad_token=A_ , sep_token=A_ , mask_token=A_ , cls_token=A_ , sp_model_kwargs=self.sp_model_kwargs , **A_ , ) UpperCamelCase = vocab_file UpperCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(A_ ) @property def __UpperCamelCase ( self ) -> Dict: """simple docstring""" return self.sp_model.get_piece_size() def __UpperCamelCase ( self ) -> List[Any]: """simple docstring""" UpperCamelCase = {self.convert_ids_to_tokens(A_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> Optional[int]: """simple docstring""" UpperCamelCase = self.__dict__.copy() UpperCamelCase = None return state def __setstate__( self , A_ ) -> Optional[int]: """simple docstring""" UpperCamelCase = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): UpperCamelCase = {} UpperCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __UpperCamelCase ( self , A_ ) -> List[str]: """simple docstring""" return self.sp_model.encode(A_ , out_type=A_ ) def __UpperCamelCase ( self , A_ ) -> Optional[Any]: """simple docstring""" return self.sp_model.piece_to_id(A_ ) def __UpperCamelCase ( self , A_ ) -> Tuple: """simple docstring""" UpperCamelCase = self.sp_model.IdToPiece(A_ ) return token def __UpperCamelCase ( self , A_ ) -> List[Any]: """simple docstring""" UpperCamelCase = [] UpperCamelCase = '' UpperCamelCase = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(A_ ) + token UpperCamelCase = True UpperCamelCase = [] else: current_sub_tokens.append(A_ ) UpperCamelCase = False out_string += self.sp_model.decode(A_ ) return out_string.strip() def __UpperCamelCase ( self , A_ , A_ = False , A_ = None , A_ = True , **A_ , ) -> str: """simple docstring""" UpperCamelCase = kwargs.pop('use_source_tokenizer' , A_ ) UpperCamelCase = self.convert_ids_to_tokens(A_ , skip_special_tokens=A_ ) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 UpperCamelCase = [] UpperCamelCase = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(A_ ) ) UpperCamelCase = [] sub_texts.append(A_ ) else: current_sub_text.append(A_ ) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(A_ ) ) # Mimic the behavior of the Rust tokenizer: # No space before [MASK] and [SEP] if spaces_between_special_tokens: UpperCamelCase = re.sub(r' (\[(MASK|SEP)\])' , r'\1' , ' '.join(A_ ) ) else: UpperCamelCase = ''.join(A_ ) UpperCamelCase = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: UpperCamelCase = self.clean_up_tokenization(A_ ) return clean_text else: return text def __UpperCamelCase ( self , A_ , A_ = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(A_ ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return UpperCamelCase = os.path.join( A_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , A_ ) elif not os.path.isfile(self.vocab_file ): with open(A_ , 'wb' ) as fi: UpperCamelCase = self.sp_model.serialized_model_proto() fi.write(A_ ) return (out_vocab_file,) def __UpperCamelCase ( self , A_ , A_ = None ) -> List[int]: """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] UpperCamelCase = [self.cls_token_id] UpperCamelCase = [self.sep_token_id] return cls + token_ids_a + sep + token_ids_a + sep def __UpperCamelCase ( self , A_ , A_ = None , A_ = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=A_ , token_ids_a=A_ , already_has_special_tokens=A_ ) if token_ids_a is None: return [1] + ([0] * len(A_ )) + [1] return [1] + ([0] * len(A_ )) + [1] + ([0] * len(A_ )) + [1] def __UpperCamelCase ( self , A_ , A_ = None ) -> List[int]: """simple docstring""" UpperCamelCase = [self.sep_token_id] UpperCamelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
222
1
"""simple docstring""" from ...utils import logging from ..ta.modeling_tf_ta import TFTaEncoderModel, TFTaForConditionalGeneration, TFTaModel from .configuration_mta import MTaConfig _lowercase : str = logging.get_logger(__name__) _lowercase : List[str] = "T5Config" class __SCREAMING_SNAKE_CASE ( lowerCAmelCase_ ): '''simple docstring''' _a = 'mt5' _a = MTaConfig class __SCREAMING_SNAKE_CASE ( lowerCAmelCase_ ): '''simple docstring''' _a = 'mt5' _a = MTaConfig class __SCREAMING_SNAKE_CASE ( lowerCAmelCase_ ): '''simple docstring''' _a = 'mt5' _a = MTaConfig
272
"""simple docstring""" import gc import unittest from diffusers import FlaxControlNetModel, FlaxStableDiffusionControlNetPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def snake_case ( self : Union[str, Any] )-> Dict: # clean up the VRAM after each test super().tearDown() gc.collect() def snake_case ( self : str )-> Any: lowerCamelCase__ , lowerCamelCase__ : Optional[Any] =FlaxControlNetModel.from_pretrained( '''lllyasviel/sd-controlnet-canny''', from_pt=lowerCamelCase, dtype=jnp.bfloataa ) lowerCamelCase__ , lowerCamelCase__ : Optional[int] =FlaxStableDiffusionControlNetPipeline.from_pretrained( '''runwayml/stable-diffusion-v1-5''', controlnet=lowerCamelCase, from_pt=lowerCamelCase, dtype=jnp.bfloataa ) lowerCamelCase__ : Optional[int] =controlnet_params lowerCamelCase__ : Dict ='''bird''' lowerCamelCase__ : List[str] =jax.device_count() lowerCamelCase__ : Optional[Any] =pipe.prepare_text_inputs([prompts] * num_samples ) lowerCamelCase__ : Dict =load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png''' ) lowerCamelCase__ : List[Any] =pipe.prepare_image_inputs([canny_image] * num_samples ) lowerCamelCase__ : Optional[int] =jax.random.PRNGKey(0 ) lowerCamelCase__ : Dict =jax.random.split(lowerCamelCase, jax.device_count() ) lowerCamelCase__ : Tuple =replicate(lowerCamelCase ) lowerCamelCase__ : Tuple =shard(lowerCamelCase ) lowerCamelCase__ : Optional[int] =shard(lowerCamelCase ) lowerCamelCase__ : Tuple =pipe( prompt_ids=lowerCamelCase, image=lowerCamelCase, params=lowerCamelCase, prng_seed=lowerCamelCase, num_inference_steps=50, jit=lowerCamelCase, ).images assert images.shape == (jax.device_count(), 1, 768, 512, 3) lowerCamelCase__ : Dict =images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) lowerCamelCase__ : Any =images[0, 253:256, 253:256, -1] lowerCamelCase__ : Optional[Any] =jnp.asarray(jax.device_get(image_slice.flatten() ) ) lowerCamelCase__ : Dict =jnp.array( [0.167_969, 0.116_699, 0.081_543, 0.154_297, 0.132_812, 0.108_887, 0.169_922, 0.169_922, 0.205_078] ) print(F'''output_slice: {output_slice}''' ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2 def snake_case ( self : Optional[int] )-> Optional[int]: lowerCamelCase__ , lowerCamelCase__ : Dict =FlaxControlNetModel.from_pretrained( '''lllyasviel/sd-controlnet-openpose''', from_pt=lowerCamelCase, dtype=jnp.bfloataa ) lowerCamelCase__ , lowerCamelCase__ : List[Any] =FlaxStableDiffusionControlNetPipeline.from_pretrained( '''runwayml/stable-diffusion-v1-5''', controlnet=lowerCamelCase, from_pt=lowerCamelCase, dtype=jnp.bfloataa ) lowerCamelCase__ : Optional[Any] =controlnet_params lowerCamelCase__ : int ='''Chef in the kitchen''' lowerCamelCase__ : Optional[Any] =jax.device_count() lowerCamelCase__ : Any =pipe.prepare_text_inputs([prompts] * num_samples ) lowerCamelCase__ : Any =load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/pose.png''' ) lowerCamelCase__ : List[Any] =pipe.prepare_image_inputs([pose_image] * num_samples ) lowerCamelCase__ : Tuple =jax.random.PRNGKey(0 ) lowerCamelCase__ : Optional[Any] =jax.random.split(lowerCamelCase, jax.device_count() ) lowerCamelCase__ : int =replicate(lowerCamelCase ) lowerCamelCase__ : List[Any] =shard(lowerCamelCase ) lowerCamelCase__ : int =shard(lowerCamelCase ) lowerCamelCase__ : Tuple =pipe( prompt_ids=lowerCamelCase, image=lowerCamelCase, params=lowerCamelCase, prng_seed=lowerCamelCase, num_inference_steps=50, jit=lowerCamelCase, ).images assert images.shape == (jax.device_count(), 1, 768, 512, 3) lowerCamelCase__ : Dict =images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) lowerCamelCase__ : List[str] =images[0, 253:256, 253:256, -1] lowerCamelCase__ : int =jnp.asarray(jax.device_get(image_slice.flatten() ) ) lowerCamelCase__ : Any =jnp.array( [[0.271_484, 0.261_719, 0.275_391, 0.277_344, 0.279_297, 0.291_016, 0.294_922, 0.302_734, 0.302_734]] ) print(F'''output_slice: {output_slice}''' ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2
272
1
'''simple docstring''' def lowerCAmelCase (__A , __A): """simple docstring""" _a = int(__A) # Initialize Result _a = [] # Traverse through all denomination for denomination in reversed(__A): # Find denominations while int(__A) >= int(__A): total_value -= int(__A) answer.append(__A) # Append the "answers" array return answer # Driver Code if __name__ == "__main__": lowercase_ = [] lowercase_ = "0" if ( input("Do you want to enter your denominations ? (yY/n): ").strip().lower() == "y" ): lowercase_ = int(input("Enter the number of denominations you want to add: ").strip()) for i in range(0, n): denominations.append(int(input(F"""Denomination {i}: """).strip())) lowercase_ = input("Enter the change you want to make in Indian Currency: ").strip() else: # All denominations of Indian Currency if user does not enter lowercase_ = [1, 2, 5, 10, 20, 50, 100, 500, 2_000] lowercase_ = input("Enter the change you want to make: ").strip() if int(value) == 0 or int(value) < 0: print("The total value cannot be zero or negative.") else: print(F"""Following is minimal change for {value}: """) lowercase_ = find_minimum_change(denominations, value) # Print result for i in range(len(answer)): print(answer[i], end=" ")
211
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { "facebook/xmod-base": "https://huggingface.co/facebook/xmod-base/resolve/main/config.json", "facebook/xmod-large-prenorm": "https://huggingface.co/facebook/xmod-large-prenorm/resolve/main/config.json", "facebook/xmod-base-13-125k": "https://huggingface.co/facebook/xmod-base-13-125k/resolve/main/config.json", "facebook/xmod-base-30-125k": "https://huggingface.co/facebook/xmod-base-30-125k/resolve/main/config.json", "facebook/xmod-base-30-195k": "https://huggingface.co/facebook/xmod-base-30-195k/resolve/main/config.json", "facebook/xmod-base-60-125k": "https://huggingface.co/facebook/xmod-base-60-125k/resolve/main/config.json", "facebook/xmod-base-60-265k": "https://huggingface.co/facebook/xmod-base-60-265k/resolve/main/config.json", "facebook/xmod-base-75-125k": "https://huggingface.co/facebook/xmod-base-75-125k/resolve/main/config.json", "facebook/xmod-base-75-269k": "https://huggingface.co/facebook/xmod-base-75-269k/resolve/main/config.json", } class __A ( A ): '''simple docstring''' __lowerCamelCase : Any = 'xmod' def __init__(self , A=30_522 , A=768 , A=12 , A=12 , A=3_072 , A="gelu" , A=0.1 , A=0.1 , A=512 , A=2 , A=0.02 , A=1E-12 , A=1 , A=0 , A=2 , A="absolute" , A=True , A=None , A=False , A=2 , A=False , A=True , A=True , A=("en_XX",) , A=None , **A , ) -> List[str]: """simple docstring""" super().__init__(pad_token_id=A , bos_token_id=A , eos_token_id=A , **A ) _a = vocab_size _a = hidden_size _a = num_hidden_layers _a = num_attention_heads _a = hidden_act _a = intermediate_size _a = hidden_dropout_prob _a = attention_probs_dropout_prob _a = max_position_embeddings _a = type_vocab_size _a = initializer_range _a = layer_norm_eps _a = position_embedding_type _a = use_cache _a = classifier_dropout _a = pre_norm _a = adapter_reduction_factor _a = adapter_layer_norm _a = adapter_reuse_layer_norm _a = ln_before_adapter _a = list(A ) _a = default_language class __A ( A ): '''simple docstring''' @property def a__ (self ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": _a = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: _a = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
211
1
import torch from diffusers import UnCLIPScheduler from .test_schedulers import SchedulerCommonTest class _a ( lowerCamelCase__ ): """simple docstring""" _lowerCamelCase : Union[str, Any] = (UnCLIPScheduler,) def __A ( self : Optional[int] , **UpperCAmelCase : Union[str, Any] ): A_ = { '''num_train_timesteps''': 1000, '''variance_type''': '''fixed_small_log''', '''clip_sample''': True, '''clip_sample_range''': 1.0, '''prediction_type''': '''epsilon''', } config.update(**__A ) return config def __A ( self : Tuple ): for timesteps in [1, 5, 100, 1000]: self.check_over_configs(num_train_timesteps=__A ) def __A ( self : List[Any] ): for variance in ["fixed_small_log", "learned_range"]: self.check_over_configs(variance_type=__A ) def __A ( self : Optional[int] ): for clip_sample in [True, False]: self.check_over_configs(clip_sample=__A ) def __A ( self : Dict ): for clip_sample_range in [1, 5, 10, 20]: self.check_over_configs(clip_sample_range=__A ) def __A ( self : int ): for prediction_type in ["epsilon", "sample"]: self.check_over_configs(prediction_type=__A ) def __A ( self : int ): for time_step in [0, 500, 999]: for prev_timestep in [None, 5, 100, 250, 500, 750]: if prev_timestep is not None and prev_timestep >= time_step: continue self.check_over_forward(time_step=__A , prev_timestep=__A ) def __A ( self : int ): A_ = self.scheduler_classes[0] A_ = self.get_scheduler_config(variance_type="fixed_small_log" ) A_ = scheduler_class(**__A ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 1.0000E-10 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0_549_625 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.9_994_987 ) ) < 1E-5 def __A ( self : int ): A_ = self.scheduler_classes[0] A_ = self.get_scheduler_config(variance_type="learned_range" ) A_ = scheduler_class(**__A ) A_ = 0.5 assert scheduler._get_variance(1 , predicted_variance=__A ) - -10.1712790 < 1E-5 assert scheduler._get_variance(487 , predicted_variance=__A ) - -5.7_998_052 < 1E-5 assert scheduler._get_variance(999 , predicted_variance=__A ) - -0.0_010_011 < 1E-5 def __A ( self : List[str] ): A_ = self.scheduler_classes[0] A_ = self.get_scheduler_config() A_ = scheduler_class(**__A ) A_ = scheduler.timesteps A_ = self.dummy_model() A_ = self.dummy_sample_deter A_ = torch.manual_seed(0 ) for i, t in enumerate(__A ): # 1. predict noise residual A_ = model(__A , __A ) # 2. predict previous mean of sample x_t-1 A_ = scheduler.step(__A , __A , __A , generator=__A ).prev_sample A_ = pred_prev_sample A_ = torch.sum(torch.abs(__A ) ) A_ = torch.mean(torch.abs(__A ) ) assert abs(result_sum.item() - 252.2682495 ) < 1E-2 assert abs(result_mean.item() - 0.3_284_743 ) < 1E-3 def __A ( self : Tuple ): A_ = self.scheduler_classes[0] A_ = self.get_scheduler_config() A_ = scheduler_class(**__A ) scheduler.set_timesteps(25 ) A_ = scheduler.timesteps A_ = self.dummy_model() A_ = self.dummy_sample_deter A_ = torch.manual_seed(0 ) for i, t in enumerate(__A ): # 1. predict noise residual A_ = model(__A , __A ) if i + 1 == timesteps.shape[0]: A_ = None else: A_ = timesteps[i + 1] # 2. predict previous mean of sample x_t-1 A_ = scheduler.step( __A , __A , __A , prev_timestep=__A , generator=__A ).prev_sample A_ = pred_prev_sample A_ = torch.sum(torch.abs(__A ) ) A_ = torch.mean(torch.abs(__A ) ) assert abs(result_sum.item() - 258.2044983 ) < 1E-2 assert abs(result_mean.item() - 0.3_362_038 ) < 1E-3 def __A ( self : List[str] ): pass def __A ( self : List[Any] ): pass
361
import argparse import json from typing import List from ltp import LTP from transformers import BertTokenizer def __snake_case ( __UpperCamelCase : List[Any] ): """simple docstring""" if ( (cp >= 0X4_E_0_0 and cp <= 0X9_F_F_F) or (cp >= 0X3_4_0_0 and cp <= 0X4_D_B_F) # or (cp >= 0X2_0_0_0_0 and cp <= 0X2_A_6_D_F) # or (cp >= 0X2_A_7_0_0 and cp <= 0X2_B_7_3_F) # or (cp >= 0X2_B_7_4_0 and cp <= 0X2_B_8_1_F) # or (cp >= 0X2_B_8_2_0 and cp <= 0X2_C_E_A_F) # or (cp >= 0XF_9_0_0 and cp <= 0XF_A_F_F) or (cp >= 0X2_F_8_0_0 and cp <= 0X2_F_A_1_F) # ): # return True return False def __snake_case ( __UpperCamelCase : str ): """simple docstring""" for char in word: A_ = ord(__UpperCamelCase ) if not _is_chinese_char(__UpperCamelCase ): return 0 return 1 def __snake_case ( __UpperCamelCase : List[str] ): """simple docstring""" A_ = set() for token in tokens: A_ = len(__UpperCamelCase ) > 1 and is_chinese(__UpperCamelCase ) if chinese_word: word_set.add(__UpperCamelCase ) A_ = list(__UpperCamelCase ) return word_list def __snake_case ( __UpperCamelCase : List[str] ,__UpperCamelCase : set() ): """simple docstring""" if not chinese_word_set: return bert_tokens A_ = max([len(__UpperCamelCase ) for w in chinese_word_set] ) A_ = bert_tokens A_ , A_ = 0, len(__UpperCamelCase ) while start < end: A_ = True if is_chinese(bert_word[start] ): A_ = min(end - start ,__UpperCamelCase ) for i in range(__UpperCamelCase ,1 ,-1 ): A_ = "".join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1 ,start + i ): A_ = "##" + bert_word[j] A_ = start + i A_ = False break if single_word: start += 1 return bert_word def __snake_case ( __UpperCamelCase : List[str] ,__UpperCamelCase : LTP ,__UpperCamelCase : BertTokenizer ): """simple docstring""" A_ = [] for i in range(0 ,len(__UpperCamelCase ) ,100 ): A_ = ltp_tokenizer.seg(lines[i : i + 100] )[0] A_ = [get_chinese_word(__UpperCamelCase ) for r in res] ltp_res.extend(__UpperCamelCase ) assert len(__UpperCamelCase ) == len(__UpperCamelCase ) A_ = [] for i in range(0 ,len(__UpperCamelCase ) ,100 ): A_ = bert_tokenizer(lines[i : i + 100] ,add_special_tokens=__UpperCamelCase ,truncation=__UpperCamelCase ,max_length=512 ) bert_res.extend(res["input_ids"] ) assert len(__UpperCamelCase ) == len(__UpperCamelCase ) A_ = [] for input_ids, chinese_word in zip(__UpperCamelCase ,__UpperCamelCase ): A_ = [] for id in input_ids: A_ = bert_tokenizer._convert_id_to_token(__UpperCamelCase ) input_tokens.append(__UpperCamelCase ) A_ = add_sub_symbol(__UpperCamelCase ,__UpperCamelCase ) A_ = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(__UpperCamelCase ): if token[:2] == "##": A_ = token[2:] # save chinese tokens' pos if len(__UpperCamelCase ) == 1 and _is_chinese_char(ord(__UpperCamelCase ) ): ref_id.append(__UpperCamelCase ) ref_ids.append(__UpperCamelCase ) assert len(__UpperCamelCase ) == len(__UpperCamelCase ) return ref_ids def __snake_case ( __UpperCamelCase : Dict ): """simple docstring""" with open(args.file_name ,"r" ,encoding="utf-8" ) as f: A_ = f.readlines() A_ = [line.strip() for line in data if len(__UpperCamelCase ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' A_ = LTP(args.ltp ) # faster in GPU device A_ = BertTokenizer.from_pretrained(args.bert ) A_ = prepare_ref(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) with open(args.save_path ,"w" ,encoding="utf-8" ) as f: A_ = [json.dumps(__UpperCamelCase ) + "\n" for ref in ref_ids] f.writelines(__UpperCamelCase ) if __name__ == "__main__": __a :List[Any] = argparse.ArgumentParser(description='prepare_chinese_ref') parser.add_argument( '--file_name', type=str, default='./resources/chinese-demo.txt', help='file need process, same as training data in lm', ) parser.add_argument( '--ltp', type=str, default='./resources/ltp', help='resources for LTP tokenizer, usually a path' ) parser.add_argument('--bert', type=str, default='./resources/robert', help='resources for Bert tokenizer') parser.add_argument('--save_path', type=str, default='./resources/ref.txt', help='path to save res') __a :Dict = parser.parse_args() main(args)
329
0
'''simple docstring''' from __future__ import annotations import matplotlib.pyplot as plt # type: ignore import numpy # initial triangle of Koch snowflake snake_case_ : List[str] = numpy.array([0, 0]) snake_case_ : str = numpy.array([0.5, 0.8_66_02_54]) snake_case_ : Optional[int] = numpy.array([1, 0]) snake_case_ : List[Any] = [VECTOR_1, VECTOR_2, VECTOR_3, VECTOR_1] def A__ ( UpperCAmelCase_ , UpperCAmelCase_ ): _UpperCamelCase : Optional[int] = initial_vectors for _ in range(_A ): _UpperCamelCase : Optional[int] = iteration_step(_A ) return vectors def A__ ( UpperCAmelCase_ ): _UpperCamelCase : Any = [] for i, start_vector in enumerate(vectors[:-1] ): _UpperCamelCase : Union[str, Any] = vectors[i + 1] new_vectors.append(_A ) _UpperCamelCase : List[Any] = end_vector - start_vector new_vectors.append(start_vector + difference_vector / 3 ) new_vectors.append( start_vector + difference_vector / 3 + rotate(difference_vector / 3 , 6_0 ) ) new_vectors.append(start_vector + difference_vector * 2 / 3 ) new_vectors.append(vectors[-1] ) return new_vectors def A__ ( UpperCAmelCase_ , UpperCAmelCase_ ): _UpperCamelCase : Any = numpy.radians(_A ) _UpperCamelCase , _UpperCamelCase : Optional[int] = numpy.cos(_A ), numpy.sin(_A ) _UpperCamelCase : Dict = numpy.array(((c, -s), (s, c)) ) return numpy.dot(_A , _A ) def A__ ( UpperCAmelCase_ ): _UpperCamelCase : Optional[Any] = plt.gca() axes.set_aspect('equal' ) # matplotlib.pyplot.plot takes a list of all x-coordinates and a list of all # y-coordinates as inputs, which are constructed from the vector-list using # zip() _UpperCamelCase , _UpperCamelCase : str = zip(*_A ) plt.plot(_A , _A ) plt.show() if __name__ == "__main__": import doctest doctest.testmod() snake_case_ : List[str] = iterate(INITIAL_VECTORS, 5) plot(processed_vectors)
83
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowercase = { '''configuration_instructblip''': [ '''INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''InstructBlipConfig''', '''InstructBlipQFormerConfig''', '''InstructBlipVisionConfig''', ], '''processing_instructblip''': ['''InstructBlipProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase = [ '''INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''InstructBlipQFormerModel''', '''InstructBlipPreTrainedModel''', '''InstructBlipForConditionalGeneration''', '''InstructBlipVisionModel''', ] if TYPE_CHECKING: from .configuration_instructblip import ( INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, InstructBlipConfig, InstructBlipQFormerConfig, InstructBlipVisionConfig, ) from .processing_instructblip import InstructBlipProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_instructblip import ( INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST, InstructBlipForConditionalGeneration, InstructBlipPreTrainedModel, InstructBlipQFormerModel, InstructBlipVisionModel, ) else: import sys __lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
272
0
'''simple docstring''' import os from datetime import datetime as dt from github import Github _A : Tuple =[ "good first issue", "good second issue", "good difficult issue", "enhancement", "new pipeline/model", "new scheduler", "wip", ] def SCREAMING_SNAKE_CASE_ () -> Dict: lowerCamelCase__ : List[Any] = Github(os.environ["""GITHUB_TOKEN"""] ) lowerCamelCase__ : str = g.get_repo("""huggingface/diffusers""" ) lowerCamelCase__ : List[Any] = repo.get_issues(state="""open""" ) for issue in open_issues: lowerCamelCase__ : Optional[int] = sorted(issue.get_comments() , key=lambda UpperCamelCase : i.created_at , reverse=UpperCAmelCase_ ) lowerCamelCase__ : Optional[int] = comments[0] if len(UpperCAmelCase_ ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Closes the issue after 7 days of inactivity since the Stalebot notification. issue.edit(state="""closed""" ) elif ( "stale" in issue.get_labels() and last_comment is not None and last_comment.user.login != "github-actions[bot]" ): # Opens the issue if someone other than Stalebot commented. issue.edit(state="""open""" ) issue.remove_from_labels("""stale""" ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Post a Stalebot notification after 23 days of inactivity. issue.create_comment( """This issue has been automatically marked as stale because it has not had """ """recent activity. If you think this still needs to be addressed """ """please comment on this thread.\n\nPlease note that issues that do not follow the """ """[contributing guidelines](https://github.com/huggingface/diffusers/blob/main/CONTRIBUTING.md) """ """are likely to be ignored.""" ) issue.add_to_labels("""stale""" ) if __name__ == "__main__": main()
357
'''simple docstring''' import numpy as np from cva import COLOR_BGR2GRAY, cvtColor, imread from numpy import array, uinta from PIL import Image from digital_image_processing import change_contrast as cc from digital_image_processing import convert_to_negative as cn from digital_image_processing import sepia as sp from digital_image_processing.dithering import burkes as bs from digital_image_processing.edge_detection import canny from digital_image_processing.filters import convolve as conv from digital_image_processing.filters import gaussian_filter as gg from digital_image_processing.filters import local_binary_pattern as lbp from digital_image_processing.filters import median_filter as med from digital_image_processing.filters import sobel_filter as sob from digital_image_processing.resize import resize as rs _A : int =imread(r'''digital_image_processing/image_data/lena_small.jpg''') _A : Optional[Any] =cvtColor(img, COLOR_BGR2GRAY) def SCREAMING_SNAKE_CASE_ () -> Any: lowerCamelCase__ : int = cn.convert_to_negative(UpperCamelCase ) # assert negative_img array for at least one True assert negative_img.any() def SCREAMING_SNAKE_CASE_ () -> Optional[int]: with Image.open("""digital_image_processing/image_data/lena_small.jpg""" ) as img: # Work around assertion for response assert str(cc.change_contrast(UpperCamelCase , 110 ) ).startswith( """<PIL.Image.Image image mode=RGB size=100x100 at""" ) def SCREAMING_SNAKE_CASE_ () -> Union[str, Any]: lowerCamelCase__ : Optional[int] = canny.gen_gaussian_kernel(9 , sigma=1.4 ) # Assert ambiguous array assert resp.all() def SCREAMING_SNAKE_CASE_ () -> str: lowerCamelCase__ : int = imread("""digital_image_processing/image_data/lena_small.jpg""" , 0 ) # assert ambiguous array for all == True assert canny_img.all() lowerCamelCase__ : Union[str, Any] = canny.canny(UpperCamelCase ) # assert canny array for at least one True assert canny_array.any() def SCREAMING_SNAKE_CASE_ () -> str: assert gg.gaussian_filter(UpperCamelCase , 5 , sigma=0.9 ).all() def SCREAMING_SNAKE_CASE_ () -> int: # laplace diagonals lowerCamelCase__ : int = array([[0.25, 0.5, 0.25], [0.5, -3, 0.5], [0.25, 0.5, 0.25]] ) lowerCamelCase__ : int = conv.img_convolve(UpperCamelCase , UpperCamelCase ).astype(UpperCamelCase ) assert res.any() def SCREAMING_SNAKE_CASE_ () -> Any: assert med.median_filter(UpperCamelCase , 3 ).any() def SCREAMING_SNAKE_CASE_ () -> Any: lowerCamelCase__ , lowerCamelCase__ : Optional[Any] = sob.sobel_filter(UpperCamelCase ) assert grad.any() and theta.any() def SCREAMING_SNAKE_CASE_ () -> Tuple: lowerCamelCase__ : Union[str, Any] = sp.make_sepia(UpperCamelCase , 20 ) assert sepia.all() def SCREAMING_SNAKE_CASE_ (UpperCamelCase = "digital_image_processing/image_data/lena_small.jpg" ) -> Optional[Any]: lowerCamelCase__ : Union[str, Any] = bs.Burkes(imread(UpperCamelCase , 1 ) , 120 ) burkes.process() assert burkes.output_img.any() def SCREAMING_SNAKE_CASE_ (UpperCamelCase = "digital_image_processing/image_data/lena_small.jpg" , ) -> Optional[Any]: lowerCamelCase__ : int = rs.NearestNeighbour(imread(UpperCamelCase , 1 ) , 400 , 200 ) nn.process() assert nn.output.any() def SCREAMING_SNAKE_CASE_ () -> Optional[int]: lowerCamelCase__ : Union[str, Any] = """digital_image_processing/image_data/lena.jpg""" # Reading the image and converting it to grayscale. lowerCamelCase__ : Tuple = imread(UpperCamelCase , 0 ) # Test for get_neighbors_pixel function() return not None lowerCamelCase__ : int = 0 lowerCamelCase__ : Dict = 0 lowerCamelCase__ : Optional[Any] = image[x_coordinate][y_coordinate] lowerCamelCase__ : str = lbp.get_neighbors_pixel( UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) assert neighbors_pixels is not None # Test for local_binary_pattern function() # Create a numpy array as the same height and width of read image lowerCamelCase__ : List[str] = np.zeros((image.shape[0], image.shape[1]) ) # Iterating through the image and calculating the local binary pattern value # for each pixel. for i in range(0 , image.shape[0] ): for j in range(0 , image.shape[1] ): lowerCamelCase__ : List[str] = lbp.local_binary_value(UpperCamelCase , UpperCamelCase , UpperCamelCase ) assert lbp_image.any()
129
0
"""simple docstring""" from __future__ import annotations import typing from collections.abc import Iterable import numpy as np lowercase__ = typing.Union[Iterable[float], Iterable[int], np.ndarray] # noqa: UP007 lowercase__ = typing.Union[np.floataa, int, float] # noqa: UP007 def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->List[Any]: return np.sqrt(np.sum((np.asarray(lowercase__ ) - np.asarray(lowercase__ )) ** 2 ) ) def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->Tuple: return sum((va - va) ** 2 for va, va in zip(lowercase__ , lowercase__ ) ) ** (1 / 2) if __name__ == "__main__": def __a ( ) ->Tuple: from timeit import timeit print('Without Numpy' ) print( timeit( 'euclidean_distance_no_np([1, 2, 3], [4, 5, 6])' , number=10000 , globals=globals() , ) ) print('With Numpy' ) print( timeit( 'euclidean_distance([1, 2, 3], [4, 5, 6])' , number=10000 , globals=globals() , ) ) benchmark()
290
"""simple docstring""" import math def _snake_case ( lowercase__ ): return math.sqrt(lowercase__ ) * math.sqrt(lowercase__ ) == num def _snake_case ( lowercase__ ): _lowerCamelCase : Optional[int] = 0 _lowerCamelCase : List[Any] = n while left <= right: _lowerCamelCase : str = (left + right) // 2 if mid**2 == n: return True elif mid**2 > n: _lowerCamelCase : str = mid - 1 else: _lowerCamelCase : Optional[int] = mid + 1 return False if __name__ == "__main__": import doctest doctest.testmod()
96
0
import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized, parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv('''TEST_SAGEMAKER''' , '''False''' ) ) is not True , reason='''Skipping test because should only be run when releasing minor transformers version''' , ) @pytest.mark.usefixtures('''sm_env''' ) @parameterized_class( [ { '''framework''': '''pytorch''', '''script''': '''run_glue.py''', '''model_name_or_path''': '''distilbert-base-cased''', '''instance_type''': '''ml.p3.16xlarge''', '''results''': {'''train_runtime''': 6_50, '''eval_accuracy''': 0.7, '''eval_loss''': 0.6}, }, { '''framework''': '''pytorch''', '''script''': '''run_ddp.py''', '''model_name_or_path''': '''distilbert-base-cased''', '''instance_type''': '''ml.p3.16xlarge''', '''results''': {'''train_runtime''': 6_00, '''eval_accuracy''': 0.7, '''eval_loss''': 0.6}, }, { '''framework''': '''tensorflow''', '''script''': '''run_tf_dist.py''', '''model_name_or_path''': '''distilbert-base-cased''', '''instance_type''': '''ml.p3.16xlarge''', '''results''': {'''train_runtime''': 6_00, '''eval_accuracy''': 0.6, '''eval_loss''': 0.7}, }, ] ) class _a (unittest.TestCase ): '''simple docstring''' def __A ( self ): if self.framework == "pytorch": subprocess.run( F"""cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py""".split() , encoding="""utf-8""" , check=A__ , ) assert hasattr(self , """env""" ) def __A ( self , A__ ): A__ : str = F"""{self.env.base_job_name}-{instance_count}-{'ddp' if 'ddp' in self.script else 'smd'}""" # distributed data settings A__ : Tuple = {"""smdistributed""": {"""dataparallel""": {"""enabled""": True}}} if self.script != """run_ddp.py""" else None # creates estimator return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=A__ , instance_count=A__ , instance_type=self.instance_type , debugger_hook_config=A__ , hyperparameters={**self.env.distributed_hyperparameters, """model_name_or_path""": self.model_name_or_path} , metric_definitions=self.env.metric_definitions , distribution=A__ , py_version="""py36""" , ) def __A ( self , A__ ): TrainingJobAnalytics(A__ ).export_csv(F"""{self.env.test_path}/{job_name}_metrics.csv""" ) @parameterized.expand([(2,)] ) def __A ( self , A__ ): # create estimator A__ : Any = self.create_estimator(A__ ) # run training estimator.fit() # result dataframe A__ : Optional[Any] = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis A__ : Optional[Any] = list(result_metrics_df[result_metrics_df.metric_name == """eval_accuracy"""]["""value"""] ) A__ : Optional[int] = list(result_metrics_df[result_metrics_df.metric_name == """eval_loss"""]["""value"""] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping A__ : Optional[int] = ( Session().describe_training_job(estimator.latest_training_job.name ).get("""TrainingTimeInSeconds""" , 99_9999 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results["""eval_accuracy"""] for t in eval_accuracy ) assert all(t <= self.results["""eval_loss"""] for t in eval_loss ) # dump tests result into json file to share in PR with open(F"""{estimator.latest_training_job.name}.json""" , """w""" ) as outfile: json.dump({"""train_time""": train_runtime, """eval_accuracy""": eval_accuracy, """eval_loss""": eval_loss} , A__ )
141
import os import shutil from pathlib import Path from typing import Optional, Union import numpy as np from huggingface_hub import hf_hub_download from ..utils import ONNX_EXTERNAL_WEIGHTS_NAME, ONNX_WEIGHTS_NAME, is_onnx_available, logging if is_onnx_available(): import onnxruntime as ort A_ : Union[str, Any] = logging.get_logger(__name__) A_ : str = { 'tensor(bool)': np.bool_, 'tensor(int8)': np.inta, 'tensor(uint8)': np.uinta, 'tensor(int16)': np.intaa, 'tensor(uint16)': np.uintaa, 'tensor(int32)': np.intaa, 'tensor(uint32)': np.uintaa, 'tensor(int64)': np.intaa, 'tensor(uint64)': np.uintaa, 'tensor(float16)': np.floataa, 'tensor(float)': np.floataa, 'tensor(double)': np.floataa, } class _a : '''simple docstring''' def __init__( self , A__=None , **A__ ): logger.info("""`diffusers.OnnxRuntimeModel` is experimental and might change in the future.""" ) A__ : Dict = model A__ : Any = kwargs.get("""model_save_dir""" , A__ ) A__ : Optional[int] = kwargs.get("""latest_model_name""" , A__ ) def __call__( self , **A__ ): A__ : int = {k: np.array(A__ ) for k, v in kwargs.items()} return self.model.run(A__ , A__ ) @staticmethod def __A ( A__ , A__=None , A__=None ): if provider is None: logger.info("""No onnxruntime provider specified, using CPUExecutionProvider""" ) A__ : List[Any] = """CPUExecutionProvider""" return ort.InferenceSession(A__ , providers=[provider] , sess_options=A__ ) def __A ( self , A__ , A__ = None , **A__ ): A__ : List[Any] = file_name if file_name is not None else ONNX_WEIGHTS_NAME A__ : List[Any] = self.model_save_dir.joinpath(self.latest_model_name ) A__ : Optional[int] = Path(A__ ).joinpath(A__ ) try: shutil.copyfile(A__ , A__ ) except shutil.SameFileError: pass # copy external weights (for models >2GB) A__ : str = self.model_save_dir.joinpath(A__ ) if src_path.exists(): A__ : List[str] = Path(A__ ).joinpath(A__ ) try: shutil.copyfile(A__ , A__ ) except shutil.SameFileError: pass def __A ( self , A__ , **A__ , ): if os.path.isfile(A__ ): logger.error(F"""Provided path ({save_directory}) should be a directory, not a file""" ) return os.makedirs(A__ , exist_ok=A__ ) # saving model weights/files self._save_pretrained(A__ , **A__ ) @classmethod def __A ( cls , A__ , A__ = None , A__ = None , A__ = False , A__ = None , A__ = None , A__ = None , A__ = None , **A__ , ): A__ : str = file_name if file_name is not None else ONNX_WEIGHTS_NAME # load model from local directory if os.path.isdir(A__ ): A__ : Dict = OnnxRuntimeModel.load_model( os.path.join(A__ , A__ ) , provider=A__ , sess_options=A__ ) A__ : Optional[Any] = Path(A__ ) # load model from hub else: # download model A__ : Union[str, Any] = hf_hub_download( repo_id=A__ , filename=A__ , use_auth_token=A__ , revision=A__ , cache_dir=A__ , force_download=A__ , ) A__ : List[str] = Path(A__ ).parent A__ : str = Path(A__ ).name A__ : Optional[int] = OnnxRuntimeModel.load_model(A__ , provider=A__ , sess_options=A__ ) return cls(model=A__ , **A__ ) @classmethod def __A ( cls , A__ , A__ = True , A__ = None , A__ = None , **A__ , ): A__ : Optional[Any] = None if len(str(A__ ).split("""@""" ) ) == 2: A__ , A__ : Union[str, Any] = model_id.split("""@""" ) return cls._from_pretrained( model_id=A__ , revision=A__ , cache_dir=A__ , force_download=A__ , use_auth_token=A__ , **A__ , )
141
1
import socket def lowercase_ ( ): """simple docstring""" lowerCamelCase__ : List[str] = socket.socket(socket.AF_INET , socket.SOCK_STREAM ) lowerCamelCase__ : Optional[int] = socket.gethostname() lowerCamelCase__ : Optional[Any] = 12312 sock.connect((host, port) ) sock.send(B"Hello server!" ) with open("Received_file" , "wb" ) as out_file: print("File opened" ) print("Receiving data..." ) while True: lowerCamelCase__ : Union[str, Any] = sock.recv(1024 ) if not data: break out_file.write(UpperCamelCase__ ) print("Successfully received the file" ) sock.close() print("Connection closed" ) if __name__ == "__main__": main()
184
from __future__ import annotations import collections import pprint from pathlib import Path def __lowerCamelCase ( UpperCamelCase__ ): '''simple docstring''' return "".join(sorted(UpperCamelCase__ ) ) def __lowerCamelCase ( UpperCamelCase__ ): '''simple docstring''' return word_by_signature[signature(UpperCamelCase__ )] _UpperCAmelCase : str = Path(__file__).parent.joinpath("""words.txt""").read_text(encoding="""utf-8""") _UpperCAmelCase : Dict = sorted({word.strip().lower() for word in data.splitlines()}) _UpperCAmelCase : List[str] = collections.defaultdict(list) for word in word_list: word_by_signature[signature(word)].append(word) if __name__ == "__main__": _UpperCAmelCase : Dict = {word: anagram(word) for word in word_list if len(anagram(word)) > 1} with open("""anagrams.txt""", """w""") as file: file.write("""all_anagrams = \n """) file.write(pprint.pformat(all_anagrams))
285
0
'''simple docstring''' import heapq as hq import math from collections.abc import Iterator class SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self : Any , UpperCamelCase__ : Tuple ): """simple docstring""" UpperCamelCase = str(id_ ) UpperCamelCase = None UpperCamelCase = None UpperCamelCase = [] UpperCamelCase = {} # {vertex:distance} def __lt__( self : Optional[int] , UpperCamelCase__ : str ): """simple docstring""" return self.key < other.key def __repr__( self : Tuple ): """simple docstring""" return self.id def A ( self : Optional[int] , UpperCamelCase__ : str ): """simple docstring""" self.neighbors.append(UpperCamelCase__ ) def A ( self : str , UpperCamelCase__ : Tuple , UpperCamelCase__ : List[Any] ): """simple docstring""" UpperCamelCase = weight def __lowerCamelCase ( A__ , A__ , A__ , A__ ) -> str: """simple docstring""" # add the neighbors: graph[a - 1].add_neighbor(graph[b - 1] ) graph[b - 1].add_neighbor(graph[a - 1] ) # add the edges: graph[a - 1].add_edge(graph[b - 1] , A__ ) graph[b - 1].add_edge(graph[a - 1] , A__ ) def __lowerCamelCase ( A__ , A__ ) -> list: """simple docstring""" UpperCamelCase = [] for u in graph: UpperCamelCase = math.inf UpperCamelCase = None UpperCamelCase = 0 UpperCamelCase = graph[:] while q: UpperCamelCase = min(A__ ) q.remove(A__ ) for v in u.neighbors: if (v in q) and (u.edges[v.id] < v.key): UpperCamelCase = u UpperCamelCase = u.edges[v.id] for i in range(1 , len(A__ ) ): a.append((int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) ) return a def __lowerCamelCase ( A__ , A__ ) -> Iterator[tuple]: """simple docstring""" for u in graph: UpperCamelCase = math.inf UpperCamelCase = None UpperCamelCase = 0 UpperCamelCase = list(A__ ) hq.heapify(A__ ) while h: UpperCamelCase = hq.heappop(A__ ) for v in u.neighbors: if (v in h) and (u.edges[v.id] < v.key): UpperCamelCase = u UpperCamelCase = u.edges[v.id] hq.heapify(A__ ) for i in range(1 , len(A__ ) ): yield (int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) def __lowerCamelCase ( ) -> None: """simple docstring""" if __name__ == "__main__": import doctest doctest.testmod()
249
'''simple docstring''' from __future__ import annotations import unittest from transformers import XGLMConfig, XGLMTokenizer, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.xglm.modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, ) @require_tf class SCREAMING_SNAKE_CASE : """simple docstring""" _SCREAMING_SNAKE_CASE = XGLMConfig _SCREAMING_SNAKE_CASE = {} _SCREAMING_SNAKE_CASE = """gelu""" def __init__( self : List[str] , UpperCamelCase__ : int , UpperCamelCase__ : List[Any]=1_4 , UpperCamelCase__ : int=7 , UpperCamelCase__ : List[Any]=True , UpperCamelCase__ : Optional[Any]=True , UpperCamelCase__ : str=True , UpperCamelCase__ : List[str]=9_9 , UpperCamelCase__ : str=3_2 , UpperCamelCase__ : Any=2 , UpperCamelCase__ : Optional[int]=4 , UpperCamelCase__ : str=3_7 , UpperCamelCase__ : Tuple="gelu" , UpperCamelCase__ : str=0.1 , UpperCamelCase__ : List[str]=0.1 , UpperCamelCase__ : Union[str, Any]=5_1_2 , UpperCamelCase__ : Optional[Any]=0.0_2 , ): """simple docstring""" UpperCamelCase = parent UpperCamelCase = batch_size UpperCamelCase = seq_length UpperCamelCase = is_training UpperCamelCase = use_input_mask UpperCamelCase = use_labels UpperCamelCase = vocab_size UpperCamelCase = d_model UpperCamelCase = num_hidden_layers UpperCamelCase = num_attention_heads UpperCamelCase = ffn_dim UpperCamelCase = activation_function UpperCamelCase = activation_dropout UpperCamelCase = attention_dropout UpperCamelCase = max_position_embeddings UpperCamelCase = initializer_range UpperCamelCase = None UpperCamelCase = 0 UpperCamelCase = 2 UpperCamelCase = 1 def A ( self : Union[str, Any] ): """simple docstring""" return XGLMConfig.from_pretrained('facebook/xglm-564M' ) def A ( self : List[Any] ): """simple docstring""" UpperCamelCase = tf.clip_by_value( ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) , clip_value_min=0 , clip_value_max=3 ) UpperCamelCase = None if self.use_input_mask: UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) UpperCamelCase = self.get_config() UpperCamelCase = floats_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, input_mask, head_mask, ) def A ( self : Union[str, Any] ): """simple docstring""" return XGLMConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , num_layers=self.num_hidden_layers , attention_heads=self.num_attention_heads , ffn_dim=self.ffn_dim , activation_function=self.activation_function , activation_dropout=self.activation_dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , use_cache=UpperCamelCase__ , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , return_dict=UpperCamelCase__ , ) def A ( self : Tuple ): """simple docstring""" UpperCamelCase = self.prepare_config_and_inputs() ( ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ) = config_and_inputs UpperCamelCase = { 'input_ids': input_ids, 'head_mask': head_mask, } return config, inputs_dict @require_tf class SCREAMING_SNAKE_CASE ( _a , _a , unittest.TestCase ): """simple docstring""" _SCREAMING_SNAKE_CASE = (TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else () _SCREAMING_SNAKE_CASE = (TFXGLMForCausalLM,) if is_tf_available() else () _SCREAMING_SNAKE_CASE = ( {"""feature-extraction""": TFXGLMModel, """text-generation""": TFXGLMForCausalLM} if is_tf_available() else {} ) _SCREAMING_SNAKE_CASE = False _SCREAMING_SNAKE_CASE = False _SCREAMING_SNAKE_CASE = False def A ( self : Dict ): """simple docstring""" UpperCamelCase = TFXGLMModelTester(self ) UpperCamelCase = ConfigTester(self , config_class=UpperCamelCase__ , n_embd=3_7 ) def A ( self : Optional[Any] ): """simple docstring""" self.config_tester.run_common_tests() @slow def A ( self : List[str] ): """simple docstring""" for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase = TFXGLMModel.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) @unittest.skip(reason='Currently, model embeddings are going to undergo a major refactor.' ) def A ( self : Dict ): """simple docstring""" super().test_resize_token_embeddings() @require_tf class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" @slow def A ( self : Optional[int] , UpperCamelCase__ : Tuple=True ): """simple docstring""" UpperCamelCase = TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' ) UpperCamelCase = tf.convert_to_tensor([[2, 2_6_8, 9_8_6_5]] , dtype=tf.intaa ) # The dog # </s> The dog is a very friendly dog. He is very affectionate and loves to play with other # fmt: off UpperCamelCase = [2, 2_6_8, 9_8_6_5, 6_7, 1_1, 1_9_8_8, 5_7_2_5_2, 9_8_6_5, 5, 9_8_4, 6_7, 1_9_8_8, 2_1_3_8_3_8, 1_6_5_8, 5_3, 7_0_4_4_6, 3_3, 6_6_5_7, 2_7_8, 1_5_8_1] # fmt: on UpperCamelCase = model.generate(UpperCamelCase__ , do_sample=UpperCamelCase__ , num_beams=1 ) if verify_outputs: self.assertListEqual(output_ids[0].numpy().tolist() , UpperCamelCase__ ) @slow def A ( self : List[Any] ): """simple docstring""" UpperCamelCase = XGLMTokenizer.from_pretrained('facebook/xglm-564M' ) UpperCamelCase = TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' ) tf.random.set_seed(0 ) UpperCamelCase = tokenizer('Today is a nice day and' , return_tensors='tf' ) UpperCamelCase = tokenized.input_ids # forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices) with tf.device(':/CPU:0' ): UpperCamelCase = model.generate(UpperCamelCase__ , do_sample=UpperCamelCase__ , seed=[7, 0] ) UpperCamelCase = tokenizer.decode(output_ids[0] , skip_special_tokens=UpperCamelCase__ ) UpperCamelCase = ( 'Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due' ) self.assertEqual(UpperCamelCase__ , UpperCamelCase__ ) @slow def A ( self : Dict ): """simple docstring""" UpperCamelCase = TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' ) UpperCamelCase = XGLMTokenizer.from_pretrained('facebook/xglm-564M' ) UpperCamelCase = 'left' # use different length sentences to test batching UpperCamelCase = [ 'This is an extremelly long sentence that only exists to test the ability of the model to cope with ' 'left-padding, such as in batched generation. The output for the sequence below should be the same ' 'regardless of whether left padding is applied or not. When', 'Hello, my dog is a little', ] UpperCamelCase = tokenizer(UpperCamelCase__ , return_tensors='tf' , padding=UpperCamelCase__ ) UpperCamelCase = inputs['input_ids'] UpperCamelCase = model.generate(input_ids=UpperCamelCase__ , attention_mask=inputs['attention_mask'] , max_new_tokens=1_2 ) UpperCamelCase = tokenizer(sentences[0] , return_tensors='tf' ).input_ids UpperCamelCase = model.generate(input_ids=UpperCamelCase__ , max_new_tokens=1_2 ) UpperCamelCase = tokenizer(sentences[1] , return_tensors='tf' ).input_ids UpperCamelCase = model.generate(input_ids=UpperCamelCase__ , max_new_tokens=1_2 ) UpperCamelCase = tokenizer.batch_decode(UpperCamelCase__ , skip_special_tokens=UpperCamelCase__ ) UpperCamelCase = tokenizer.decode(output_non_padded[0] , skip_special_tokens=UpperCamelCase__ ) UpperCamelCase = tokenizer.decode(output_padded[0] , skip_special_tokens=UpperCamelCase__ ) UpperCamelCase = [ 'This is an extremelly long sentence that only exists to test the ability of the model to cope with ' 'left-padding, such as in batched generation. The output for the sequence below should be the same ' 'regardless of whether left padding is applied or not. When left padding is applied, the sequence will be ' 'a single', 'Hello, my dog is a little bit of a shy one, but he is very friendly', ] self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , [non_padded_sentence, padded_sentence] )
249
1
import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import datasets import datasets.config from .utils import require_beam class lowerCamelCase_ ( datasets.BeamBasedBuilder ): '''simple docstring''' def UpperCamelCase__ ( self) -> Union[str, Any]: return datasets.DatasetInfo( features=datasets.Features({'''content''': datasets.Value('''string''')}) , supervised_keys=__lowercase , ) def UpperCamelCase__ ( self , __lowercase , __lowercase) -> Optional[int]: return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''examples''': get_test_dummy_examples()})] def UpperCamelCase__ ( self , __lowercase , __lowercase) -> List[str]: import apache_beam as beam return pipeline | "Load Examples" >> beam.Create(__lowercase) class lowerCamelCase_ ( datasets.BeamBasedBuilder ): '''simple docstring''' def UpperCamelCase__ ( self) -> Dict: return datasets.DatasetInfo( features=datasets.Features({'''a''': datasets.Sequence({'''b''': datasets.Value('''string''')})}) , supervised_keys=__lowercase , ) def UpperCamelCase__ ( self , __lowercase , __lowercase) -> Dict: return [ datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''examples''': get_test_nested_examples()}) ] def UpperCamelCase__ ( self , __lowercase , __lowercase) -> Optional[int]: import apache_beam as beam return pipeline | "Load Examples" >> beam.Create(__lowercase) def lowerCamelCase ( ): '''simple docstring''' return [(i, {"content": content}) for i, content in enumerate(['''foo''', '''bar''', '''foobar'''] )] def lowerCamelCase ( ): '''simple docstring''' return [(i, {"a": {"b": [content]}}) for i, content in enumerate(['''foo''', '''bar''', '''foobar'''] )] class lowerCamelCase_ ( UpperCAmelCase_ ): '''simple docstring''' @require_beam def UpperCamelCase__ ( self) -> List[Any]: __UpperCamelCase :Any = len(get_test_dummy_examples()) with tempfile.TemporaryDirectory() as tmp_cache_dir: __UpperCamelCase :Optional[int] = DummyBeamDataset(cache_dir=__lowercase , beam_runner='''DirectRunner''') builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join(__lowercase , builder.name , '''default''' , '''0.0.0''' , f"""{builder.name}-train.arrow"""))) self.assertDictEqual(builder.info.features , datasets.Features({'''content''': datasets.Value('''string''')})) __UpperCamelCase :str = builder.as_dataset() self.assertEqual(dset['''train'''].num_rows , __lowercase) self.assertEqual(dset['''train'''].info.splits['''train'''].num_examples , __lowercase) self.assertDictEqual(dset['''train'''][0] , get_test_dummy_examples()[0][1]) self.assertDictEqual( dset['''train'''][expected_num_examples - 1] , get_test_dummy_examples()[expected_num_examples - 1][1]) self.assertTrue( os.path.exists(os.path.join(__lowercase , builder.name , '''default''' , '''0.0.0''' , '''dataset_info.json'''))) del dset @require_beam def UpperCamelCase__ ( self) -> Any: import apache_beam as beam __UpperCamelCase :int = beam.io.parquetio.WriteToParquet __UpperCamelCase :Optional[int] = len(get_test_dummy_examples()) with tempfile.TemporaryDirectory() as tmp_cache_dir: __UpperCamelCase :Optional[int] = DummyBeamDataset(cache_dir=__lowercase , beam_runner='''DirectRunner''') with patch('''apache_beam.io.parquetio.WriteToParquet''') as write_parquet_mock: __UpperCamelCase :List[Any] = partial(__lowercase , num_shards=2) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join( __lowercase , builder.name , '''default''' , '''0.0.0''' , f"""{builder.name}-train-00000-of-00002.arrow"""))) self.assertTrue( os.path.exists( os.path.join( __lowercase , builder.name , '''default''' , '''0.0.0''' , f"""{builder.name}-train-00000-of-00002.arrow"""))) self.assertDictEqual(builder.info.features , datasets.Features({'''content''': datasets.Value('''string''')})) __UpperCamelCase :Dict = builder.as_dataset() self.assertEqual(dset['''train'''].num_rows , __lowercase) self.assertEqual(dset['''train'''].info.splits['''train'''].num_examples , __lowercase) # Order is not preserved when sharding, so we just check that all the elements are there self.assertListEqual(sorted(dset['''train''']['''content''']) , sorted(['''foo''', '''bar''', '''foobar'''])) self.assertTrue( os.path.exists(os.path.join(__lowercase , builder.name , '''default''' , '''0.0.0''' , '''dataset_info.json'''))) del dset @require_beam def UpperCamelCase__ ( self) -> List[Any]: with tempfile.TemporaryDirectory() as tmp_cache_dir: __UpperCamelCase :Optional[int] = DummyBeamDataset(cache_dir=__lowercase) self.assertRaises(datasets.builder.MissingBeamOptions , builder.download_and_prepare) @require_beam def UpperCamelCase__ ( self) -> Optional[int]: __UpperCamelCase :Dict = len(get_test_nested_examples()) with tempfile.TemporaryDirectory() as tmp_cache_dir: __UpperCamelCase :Tuple = NestedBeamDataset(cache_dir=__lowercase , beam_runner='''DirectRunner''') builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join(__lowercase , builder.name , '''default''' , '''0.0.0''' , f"""{builder.name}-train.arrow"""))) self.assertDictEqual( builder.info.features , datasets.Features({'''a''': datasets.Sequence({'''b''': datasets.Value('''string''')})})) __UpperCamelCase :Union[str, Any] = builder.as_dataset() self.assertEqual(dset['''train'''].num_rows , __lowercase) self.assertEqual(dset['''train'''].info.splits['''train'''].num_examples , __lowercase) self.assertDictEqual(dset['''train'''][0] , get_test_nested_examples()[0][1]) self.assertDictEqual( dset['''train'''][expected_num_examples - 1] , get_test_nested_examples()[expected_num_examples - 1][1]) self.assertTrue( os.path.exists(os.path.join(__lowercase , builder.name , '''default''' , '''0.0.0''' , '''dataset_info.json'''))) del dset
43
'''simple docstring''' import warnings from ...utils import logging from .image_processing_flava import FlavaImageProcessor __snake_case =logging.get_logger(__name__) class UpperCAmelCase_ ( __lowercase ): def __init__( self : Dict , *UpperCAmelCase__ : Dict , **UpperCAmelCase__ : List[str] ) -> None: warnings.warn( 'The class FlavaFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use FlavaImageProcessor instead.' , UpperCAmelCase__ , ) super().__init__(*UpperCAmelCase__ , **UpperCAmelCase__ )
4
0
import os from typing import Dict, List, Union import tensorflow as tf from keras_nlp.tokenizers import BytePairTokenizer from tensorflow_text import pad_model_inputs from .tokenization_gpta import GPTaTokenizer class __magic_name__ (tf.keras.layers.Layer ): def __init__( self , _a , _a , _a = None , _a = None ) -> Union[str, Any]: super().__init__() lowerCAmelCase_ = pad_token_id lowerCAmelCase_ = max_length lowerCAmelCase_ = vocab lowerCAmelCase_ = merges lowerCAmelCase_ = BytePairTokenizer(_a , _a , sequence_length=_a ) @classmethod def __a ( cls , _a , *_a , **_a ) -> List[Any]: lowerCAmelCase_ = [" ".join(_a ) for m in tokenizer.bpe_ranks.keys()] lowerCAmelCase_ = tokenizer.get_vocab() return cls(_a , _a , *_a , **_a ) @classmethod def __a ( cls , _a , *_a , **_a ) -> List[str]: lowerCAmelCase_ = GPTaTokenizer.from_pretrained(_a , *_a , **_a ) return cls.from_tokenizer(_a , *_a , **_a ) @classmethod def __a ( cls , _a ) -> Tuple: return cls(**_a ) def __a ( self ) -> List[str]: return { "vocab": self.vocab, "merges": self.merges, "max_length": self.max_length, "pad_token_id": self.pad_token_id, } def __a ( self , _a , _a = None ) -> List[str]: lowerCAmelCase_ = self.tf_tokenizer(_a ) lowerCAmelCase_ = tf.ones_like(_a ) if self.pad_token_id is not None: # pad the tokens up to max length lowerCAmelCase_ = max_length if max_length is not None else self.max_length if max_length is not None: lowerCAmelCase_ , lowerCAmelCase_ = pad_model_inputs( _a , max_seq_length=_a , pad_value=self.pad_token_id ) return {"attention_mask": attention_mask, "input_ids": input_ids}
22
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) lowerCamelCase__ = { '''configuration_encodec''': [ '''ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''EncodecConfig''', ], '''feature_extraction_encodec''': ['''EncodecFeatureExtractor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ '''ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST''', '''EncodecModel''', '''EncodecPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_encodec import ( ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP, EncodecConfig, ) from .feature_extraction_encodec import EncodecFeatureExtractor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encodec import ( ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST, EncodecModel, EncodecPreTrainedModel, ) else: import sys lowerCamelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
22
1
import time from contextlib import contextmanager from pathlib import Path import pytest import requests from huggingface_hub.hf_api import HfApi, HfFolder snake_case : Tuple = "__DUMMY_TRANSFORMERS_USER__" snake_case : List[Any] = "Dummy User" snake_case : int = "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" snake_case : int = "https://hub-ci.huggingface.co" snake_case : Tuple = CI_HUB_ENDPOINT + "/datasets/{repo_id}/resolve/{revision}/{path}" snake_case : Tuple = CI_HUB_ENDPOINT + "/{repo_id}/resolve/{revision}/{filename}" snake_case : Union[str, Any] = Path("~/.huggingface/hub_ci_token").expanduser() @pytest.fixture def lowerCAmelCase_ ( _snake_case : Dict ) -> Any: '''simple docstring''' monkeypatch.setattr( "huggingface_hub.file_download.HUGGINGFACE_CO_URL_TEMPLATE" , _snake_case ) @pytest.fixture def lowerCAmelCase_ ( _snake_case : int ) -> List[str]: '''simple docstring''' monkeypatch.setattr("datasets.config.HF_ENDPOINT" , _snake_case ) monkeypatch.setattr("datasets.config.HUB_DATASETS_URL" , _snake_case ) @pytest.fixture def lowerCAmelCase_ ( _snake_case : Dict ) -> int: '''simple docstring''' monkeypatch.setattr("huggingface_hub.hf_api.HfFolder.path_token" , _snake_case ) @pytest.fixture def lowerCAmelCase_ ( _snake_case : int , _snake_case : str ) -> Optional[int]: '''simple docstring''' HfFolder.save_token(_snake_case ) yield HfFolder.delete_token() @pytest.fixture(scope="session" ) def lowerCAmelCase_ ( ) -> Dict: '''simple docstring''' return HfApi(endpoint=_snake_case ) @pytest.fixture(scope="session" ) def lowerCAmelCase_ ( _snake_case : HfApi ) -> Any: '''simple docstring''' __magic_name__ : List[Any] = HfFolder.get_token() HfFolder.save_token(_snake_case ) yield CI_HUB_USER_TOKEN if previous_token is not None: HfFolder.save_token(_snake_case ) @pytest.fixture def lowerCAmelCase_ ( _snake_case : Union[str, Any] ) -> Any: '''simple docstring''' def _cleanup_repo(_snake_case : Optional[Any] ): hf_api.delete_repo(_snake_case , token=_snake_case , repo_type="dataset" ) return _cleanup_repo @pytest.fixture def lowerCAmelCase_ ( _snake_case : Any ) -> Optional[Any]: '''simple docstring''' @contextmanager def _temporary_repo(_snake_case : Optional[Any] ): try: yield repo_id finally: cleanup_repo(_snake_case ) return _temporary_repo @pytest.fixture(scope="session" ) def lowerCAmelCase_ ( _snake_case : HfApi , _snake_case : Union[str, Any] , _snake_case : Union[str, Any] ) -> Tuple: '''simple docstring''' __magic_name__ : Union[str, Any] = F'''repo_txt_data-{int(time.time() * 10E3 )}''' __magic_name__ : List[Any] = F'''{CI_HUB_USER}/{repo_name}''' hf_api.create_repo(_snake_case , token=_snake_case , repo_type="dataset" , private=_snake_case ) hf_api.upload_file( token=_snake_case , path_or_fileobj=str(_snake_case ) , path_in_repo="data/text_data.txt" , repo_id=_snake_case , repo_type="dataset" , ) yield repo_id try: hf_api.delete_repo(_snake_case , token=_snake_case , repo_type="dataset" ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def lowerCAmelCase_ ( _snake_case : List[str] , _snake_case : Optional[int] , _snake_case : List[Any] ) -> Any: '''simple docstring''' return hf_private_dataset_repo_txt_data_ @pytest.fixture(scope="session" ) def lowerCAmelCase_ ( _snake_case : HfApi , _snake_case : Union[str, Any] , _snake_case : Optional[Any] ) -> int: '''simple docstring''' __magic_name__ : Union[str, Any] = F'''repo_zipped_txt_data-{int(time.time() * 10E3 )}''' __magic_name__ : List[str] = F'''{CI_HUB_USER}/{repo_name}''' hf_api.create_repo(_snake_case , token=_snake_case , repo_type="dataset" , private=_snake_case ) hf_api.upload_file( token=_snake_case , path_or_fileobj=str(_snake_case ) , path_in_repo="data.zip" , repo_id=_snake_case , repo_type="dataset" , ) yield repo_id try: hf_api.delete_repo(_snake_case , token=_snake_case , repo_type="dataset" ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def lowerCAmelCase_ ( _snake_case : Union[str, Any] , _snake_case : Dict , _snake_case : int ) -> Optional[Any]: '''simple docstring''' return hf_private_dataset_repo_zipped_txt_data_ @pytest.fixture(scope="session" ) def lowerCAmelCase_ ( _snake_case : HfApi , _snake_case : Tuple , _snake_case : Optional[int] ) -> int: '''simple docstring''' __magic_name__ : int = F'''repo_zipped_img_data-{int(time.time() * 10E3 )}''' __magic_name__ : int = F'''{CI_HUB_USER}/{repo_name}''' hf_api.create_repo(_snake_case , token=_snake_case , repo_type="dataset" , private=_snake_case ) hf_api.upload_file( token=_snake_case , path_or_fileobj=str(_snake_case ) , path_in_repo="data.zip" , repo_id=_snake_case , repo_type="dataset" , ) yield repo_id try: hf_api.delete_repo(_snake_case , token=_snake_case , repo_type="dataset" ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def lowerCAmelCase_ ( _snake_case : Union[str, Any] , _snake_case : int , _snake_case : Optional[Any] ) -> int: '''simple docstring''' return hf_private_dataset_repo_zipped_img_data_
281
import math def lowerCAmelCase_ ( _snake_case : float , _snake_case : float ) -> float: '''simple docstring''' return math.pow(_snake_case , 2 ) - a def lowerCAmelCase_ ( _snake_case : float ) -> float: '''simple docstring''' return 2 * x def lowerCAmelCase_ ( _snake_case : float ) -> float: '''simple docstring''' __magic_name__ : Optional[int] = 2.0 while start <= a: __magic_name__ : str = math.pow(_snake_case , 2 ) return start def lowerCAmelCase_ ( _snake_case : float , _snake_case : int = 9999 , _snake_case : float = 0.00_000_000_000_001 ) -> float: '''simple docstring''' if a < 0: raise ValueError("math domain error" ) __magic_name__ : Optional[int] = get_initial_point(_snake_case ) for _ in range(_snake_case ): __magic_name__ : int = value __magic_name__ : str = value - fx(_snake_case , _snake_case ) / fx_derivative(_snake_case ) if abs(prev_value - value ) < tolerance: return value return value if __name__ == "__main__": from doctest import testmod testmod()
281
1
"""simple docstring""" from random import randint from tempfile import TemporaryFile import numpy as np def UpperCAmelCase__ (snake_case__ : Optional[int] , snake_case__ : List[str] , snake_case__ : int ): """simple docstring""" _snake_case : Dict = 0 if start < end: _snake_case : Tuple = randint(snake_case__ , snake_case__ ) _snake_case : List[Any] = a[end] _snake_case : Dict = a[pivot] _snake_case : Any = temp _snake_case : Tuple = _in_place_partition(snake_case__ , snake_case__ , snake_case__ ) count += _in_place_quick_sort(snake_case__ , snake_case__ , p - 1 ) count += _in_place_quick_sort(snake_case__ , p + 1 , snake_case__ ) return count def UpperCAmelCase__ (snake_case__ : str , snake_case__ : Union[str, Any] , snake_case__ : Dict ): """simple docstring""" _snake_case : List[Any] = 0 _snake_case : Dict = randint(snake_case__ , snake_case__ ) _snake_case : Tuple = a[end] _snake_case : List[str] = a[pivot] _snake_case : Optional[int] = temp _snake_case : str = start - 1 for index in range(snake_case__ , snake_case__ ): count += 1 if a[index] < a[end]: # check if current val is less than pivot value _snake_case : Dict = new_pivot_index + 1 _snake_case : Optional[int] = a[new_pivot_index] _snake_case : Tuple = a[index] _snake_case : Dict = temp _snake_case : Any = a[new_pivot_index + 1] _snake_case : Union[str, Any] = a[end] _snake_case : int = temp return new_pivot_index + 1, count A_ = TemporaryFile() A_ = 1_00 # 1000 elements are to be sorted A_ , A_ = 0, 1 # mean and standard deviation A_ = np.random.normal(mu, sigma, p) np.save(outfile, X) print('''The array is''') print(X) outfile.seek(0) # using the same array A_ = np.load(outfile) A_ = len(M) - 1 A_ = _in_place_quick_sort(M, 0, r) print( '''No of Comparisons for 100 elements selected from a standard normal distribution''' '''is :''' ) print(z)
350
"""simple docstring""" def UpperCAmelCase__ (snake_case__ : Optional[Any] ): """simple docstring""" _snake_case : Union[str, Any] = [] _snake_case : Dict = set({"""(""", """[""", """{"""} ) _snake_case : Union[str, Any] = set({""")""", """]""", """}"""} ) _snake_case : Tuple = {"""{""": """}""", """[""": """]""", """(""": """)"""} for i in range(len(snake_case__ ) ): if s[i] in open_brackets: stack.append(s[i] ) elif s[i] in closed_brackets and ( len(snake_case__ ) == 0 or (len(snake_case__ ) > 0 and open_to_closed[stack.pop()] != s[i]) ): return False return len(snake_case__ ) == 0 def UpperCAmelCase__ (): """simple docstring""" _snake_case : Any = input("""Enter sequence of brackets: """ ) if is_balanced(snake_case__ ): print(snake_case__ , """is balanced""" ) else: print(snake_case__ , """is not balanced""" ) if __name__ == "__main__": main()
132
0
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import FEATURE_EXTRACTOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import ChineseCLIPImageProcessor, ChineseCLIPProcessor @require_vision class UpperCAmelCase_ ( unittest.TestCase): def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Dict = tempfile.mkdtemp() _lowerCAmelCase : List[Any] = [ "[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "的", "价", "格", "是", "15", "便", "alex", "##andra", ",", "。", "-", "t", "shirt", ] _lowerCAmelCase : Tuple = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"]) with open(self.vocab_file, "w", encoding="utf-8") as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens])) _lowerCAmelCase : str = { "do_resize": True, "size": {"height": 224, "width": 224}, "do_center_crop": True, "crop_size": {"height": 18, "width": 18}, "do_normalize": True, "image_mean": [0.48_145_466, 0.4_578_275, 0.40_821_073], "image_std": [0.26_862_954, 0.26_130_258, 0.27_577_711], "do_convert_rgb": True, } _lowerCAmelCase : Union[str, Any] = os.path.join(self.tmpdirname, __a) with open(self.image_processor_file, "w", encoding="utf-8") as fp: json.dump(__a, __a) def snake_case__ ( self, **__a): '''simple docstring''' return BertTokenizer.from_pretrained(self.tmpdirname, **__a) def snake_case__ ( self, **__a): '''simple docstring''' return BertTokenizerFast.from_pretrained(self.tmpdirname, **__a) def snake_case__ ( self, **__a): '''simple docstring''' return ChineseCLIPImageProcessor.from_pretrained(self.tmpdirname, **__a) def snake_case__ ( self): '''simple docstring''' shutil.rmtree(self.tmpdirname) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : str = [np.random.randint(255, size=(3, 30, 400), dtype=np.uinta)] _lowerCAmelCase : Any = [Image.fromarray(np.moveaxis(__a, 0, -1)) for x in image_inputs] return image_inputs def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[Any] = self.get_tokenizer() _lowerCAmelCase : Dict = self.get_rust_tokenizer() _lowerCAmelCase : Optional[int] = self.get_image_processor() _lowerCAmelCase : Tuple = ChineseCLIPProcessor(tokenizer=__a, image_processor=__a) processor_slow.save_pretrained(self.tmpdirname) _lowerCAmelCase : Optional[Any] = ChineseCLIPProcessor.from_pretrained(self.tmpdirname, use_fast=__a) _lowerCAmelCase : Tuple = ChineseCLIPProcessor(tokenizer=__a, image_processor=__a) processor_fast.save_pretrained(self.tmpdirname) _lowerCAmelCase : Tuple = ChineseCLIPProcessor.from_pretrained(self.tmpdirname) self.assertEqual(processor_slow.tokenizer.get_vocab(), tokenizer_slow.get_vocab()) self.assertEqual(processor_fast.tokenizer.get_vocab(), tokenizer_fast.get_vocab()) self.assertEqual(tokenizer_slow.get_vocab(), tokenizer_fast.get_vocab()) self.assertIsInstance(processor_slow.tokenizer, __a) self.assertIsInstance(processor_fast.tokenizer, __a) self.assertEqual(processor_slow.image_processor.to_json_string(), image_processor.to_json_string()) self.assertEqual(processor_fast.image_processor.to_json_string(), image_processor.to_json_string()) self.assertIsInstance(processor_slow.image_processor, __a) self.assertIsInstance(processor_fast.image_processor, __a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = ChineseCLIPProcessor(tokenizer=self.get_tokenizer(), image_processor=self.get_image_processor()) processor.save_pretrained(self.tmpdirname) _lowerCAmelCase : int = self.get_tokenizer(cls_token="(CLS)", sep_token="(SEP)") _lowerCAmelCase : Dict = self.get_image_processor(do_normalize=__a) _lowerCAmelCase : Tuple = ChineseCLIPProcessor.from_pretrained( self.tmpdirname, cls_token="(CLS)", sep_token="(SEP)", do_normalize=__a) self.assertEqual(processor.tokenizer.get_vocab(), tokenizer_add_kwargs.get_vocab()) self.assertIsInstance(processor.tokenizer, __a) self.assertEqual(processor.image_processor.to_json_string(), image_processor_add_kwargs.to_json_string()) self.assertIsInstance(processor.image_processor, __a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[str] = self.get_image_processor() _lowerCAmelCase : List[Any] = self.get_tokenizer() _lowerCAmelCase : List[Any] = ChineseCLIPProcessor(tokenizer=__a, image_processor=__a) _lowerCAmelCase : List[str] = self.prepare_image_inputs() _lowerCAmelCase : str = image_processor(__a, return_tensors="np") _lowerCAmelCase : Union[str, Any] = processor(images=__a, return_tensors="np") for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum(), input_processor[key].sum(), delta=1E-2) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Dict = self.get_image_processor() _lowerCAmelCase : int = self.get_tokenizer() _lowerCAmelCase : Optional[int] = ChineseCLIPProcessor(tokenizer=__a, image_processor=__a) _lowerCAmelCase : Optional[Any] = "Alexandra,T-shirt的价格是15便士。" _lowerCAmelCase : Union[str, Any] = processor(text=__a) _lowerCAmelCase : str = tokenizer(__a) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key], encoded_processor[key]) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[Any] = self.get_image_processor() _lowerCAmelCase : int = self.get_tokenizer() _lowerCAmelCase : Dict = ChineseCLIPProcessor(tokenizer=__a, image_processor=__a) _lowerCAmelCase : int = "Alexandra,T-shirt的价格是15便士。" _lowerCAmelCase : Any = self.prepare_image_inputs() _lowerCAmelCase : Dict = processor(text=__a, images=__a) self.assertListEqual(list(inputs.keys()), ["input_ids", "token_type_ids", "attention_mask", "pixel_values"]) # test if it raises when no input is passed with pytest.raises(__a): processor() def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : int = self.get_image_processor() _lowerCAmelCase : List[str] = self.get_tokenizer() _lowerCAmelCase : Union[str, Any] = ChineseCLIPProcessor(tokenizer=__a, image_processor=__a) _lowerCAmelCase : Tuple = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] _lowerCAmelCase : Union[str, Any] = processor.batch_decode(__a) _lowerCAmelCase : Tuple = tokenizer.batch_decode(__a) self.assertListEqual(__a, __a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[Any] = self.get_image_processor() _lowerCAmelCase : Dict = self.get_tokenizer() _lowerCAmelCase : Dict = ChineseCLIPProcessor(tokenizer=__a, image_processor=__a) _lowerCAmelCase : Any = "Alexandra,T-shirt的价格是15便士。" _lowerCAmelCase : Optional[Any] = self.prepare_image_inputs() _lowerCAmelCase : Any = processor(text=__a, images=__a) self.assertListEqual(list(inputs.keys()), processor.model_input_names)
36
from __future__ import annotations import numpy as np def a__ ( snake_case ): """simple docstring""" return np.maximum(0 , snake_case ) if __name__ == "__main__": print(np.array(relu([-1, 0, 5]))) # --> [0, 0, 5]
303
0
"""simple docstring""" def snake_case_ ( A_ : str, A_ : Union[str, Any], A_ : Union[str, Any], A_ : int ): '''simple docstring''' _lowerCamelCase : List[Any] = [False] * len(A_ ) _lowerCamelCase : Optional[Any] = [] queue.append(A_ ) _lowerCamelCase : Union[str, Any] = True while queue: _lowerCamelCase : Union[str, Any] = queue.pop(0 ) for ind in range(len(graph[u] ) ): if visited[ind] is False and graph[u][ind] > 0: queue.append(A_ ) _lowerCamelCase : Any = True _lowerCamelCase : List[str] = u return visited[t] def snake_case_ ( A_ : List[str], A_ : Tuple, A_ : str ): '''simple docstring''' _lowerCamelCase : Dict = [-1] * (len(A_ )) _lowerCamelCase : List[Any] = 0 while bfs(A_, A_, A_, A_ ): _lowerCamelCase : List[Any] = float('''Inf''' ) _lowerCamelCase : Tuple = sink while s != source: # Find the minimum value in select path _lowerCamelCase : Dict = min(A_, graph[parent[s]][s] ) _lowerCamelCase : Tuple = parent[s] max_flow += path_flow _lowerCamelCase : str = sink while v != source: _lowerCamelCase : Optional[Any] = parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow _lowerCamelCase : Union[str, Any] = parent[v] return max_flow lowerCAmelCase__ = [ [0, 16, 13, 0, 0, 0], [0, 0, 10, 12, 0, 0], [0, 4, 0, 0, 14, 0], [0, 0, 9, 0, 0, 20], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] lowerCAmelCase__ , lowerCAmelCase__ = 0, 5 print(ford_fulkerson(graph, source, sink))
175
"""simple docstring""" import logging import os from typing import List, Tuple import numpy as np import psutil import torch import torch.distributed as dist from transformers import RagRetriever lowerCAmelCase__ = logging.getLogger(__name__) class __snake_case ( _lowercase): def __init__( self : Union[str, Any] , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : List[str] , __lowerCAmelCase : int=None ): """simple docstring""" super().__init__( __lowerCAmelCase , question_encoder_tokenizer=__lowerCAmelCase , generator_tokenizer=__lowerCAmelCase , index=__lowerCAmelCase , init_retrieval=__lowerCAmelCase , ) _lowerCamelCase : Dict = None def SCREAMING_SNAKE_CASE ( self : Dict , __lowerCAmelCase : int ): """simple docstring""" logger.info('''initializing retrieval''' ) # initializing a separate process group for retrieval as the default # nccl backend doesn't support gather/scatter operations while gloo # is too slow to replace nccl for the core gpu communication if dist.is_initialized(): logger.info('''dist initialized''' ) # needs to be set manually _lowerCamelCase : List[str] = self._infer_socket_ifname() # avoid clash with the NCCL port _lowerCamelCase : Dict = str(distributed_port + 1 ) _lowerCamelCase : str = dist.new_group(ranks=__lowerCAmelCase , backend='''gloo''' ) # initialize retriever only on the main worker if not dist.is_initialized() or self._is_main(): logger.info('''dist not initialized / main''' ) self.index.init_index() # all processes wait untill the retriever is initialized by the main process if dist.is_initialized(): torch.distributed.barrier(group=self.process_group ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" return dist.get_rank(group=self.process_group ) == 0 def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Tuple=torch.floataa ): """simple docstring""" _lowerCamelCase : Optional[Any] = torch.empty(__lowerCAmelCase , dtype=__lowerCAmelCase ) dist.scatter(__lowerCAmelCase , src=0 , scatter_list=__lowerCAmelCase , group=self.process_group ) return target_tensor def SCREAMING_SNAKE_CASE ( self : Any ): """simple docstring""" _lowerCamelCase : List[str] = psutil.net_if_addrs() # a hacky way to deal with varying network interface names _lowerCamelCase : str = next((addr for addr in addrs if addr.startswith('''e''' )) , __lowerCAmelCase ) return ifname def SCREAMING_SNAKE_CASE ( self : str , __lowerCAmelCase : np.ndarray , __lowerCAmelCase : int ): """simple docstring""" if not dist.is_initialized(): _lowerCamelCase , _lowerCamelCase : Any = self._main_retrieve(__lowerCAmelCase , __lowerCAmelCase ) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(__lowerCAmelCase ) # distributed training _lowerCamelCase : Dict = dist.get_world_size(group=self.process_group ) # gather logic _lowerCamelCase : str = None if self._is_main(): _lowerCamelCase : List[Any] = [torch.empty(question_hidden_states.shape , dtype=torch.floataa ) for _ in range(__lowerCAmelCase )] dist.gather(torch.tensor(__lowerCAmelCase ) , dst=0 , gather_list=__lowerCAmelCase , group=self.process_group ) # scatter logic _lowerCamelCase : int = question_hidden_states.shape[0] _lowerCamelCase : str = [] _lowerCamelCase : Optional[int] = [] if self._is_main(): assert len(__lowerCAmelCase ) == world_size _lowerCamelCase , _lowerCamelCase : Tuple = self._main_retrieve(torch.cat(__lowerCAmelCase ).numpy() , __lowerCAmelCase ) _lowerCamelCase , _lowerCamelCase : List[str] = torch.tensor(__lowerCAmelCase ), torch.tensor(__lowerCAmelCase ) _lowerCamelCase : List[Any] = self._chunk_tensor(__lowerCAmelCase , __lowerCAmelCase ) _lowerCamelCase : Optional[Any] = self._chunk_tensor(__lowerCAmelCase , __lowerCAmelCase ) _lowerCamelCase : int = self._scattered(__lowerCAmelCase , [n_queries, n_docs] , target_type=torch.intaa ) _lowerCamelCase : str = self._scattered(__lowerCAmelCase , [n_queries, n_docs, question_hidden_states.shape[1]] ) return retrieved_doc_embeds.numpy(), doc_ids.numpy(), self.index.get_doc_dicts(__lowerCAmelCase )
175
1
"""simple docstring""" from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, flip_channel_order, get_resize_output_image_size, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, is_vision_available, logging if is_vision_available(): import PIL if is_torch_available(): import torch a : Tuple = logging.get_logger(__name__) class __UpperCamelCase ( a__ ): lowerCamelCase : Tuple =["""pixel_values"""] def __init__( self , lowerCAmelCase__ = True , lowerCAmelCase__ = None , lowerCAmelCase__ = PILImageResampling.BILINEAR , lowerCAmelCase__ = True , lowerCAmelCase__ = 1 / 255 , lowerCAmelCase__ = True , lowerCAmelCase__ = None , lowerCAmelCase__ = True , **lowerCAmelCase__ , ) -> None: super().__init__(**lowerCAmelCase__ ) a : Union[str, Any] = size if size is not None else {"shortest_edge": 224} a : int = get_size_dict(lowerCAmelCase__ , default_to_square=lowerCAmelCase__ ) a : int = crop_size if crop_size is not None else {"height": 256, "width": 256} a : str = get_size_dict(lowerCAmelCase__ , param_name="crop_size" ) a : Dict = do_resize a : List[Any] = size a : Any = resample a : Dict = do_rescale a : Optional[Any] = rescale_factor a : List[Any] = do_center_crop a : List[str] = crop_size a : int = do_flip_channel_order def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = PIL.Image.BILINEAR , lowerCAmelCase__ = None , **lowerCAmelCase__ , ) -> np.ndarray: a : int = get_size_dict(lowerCAmelCase__ , default_to_square=lowerCAmelCase__ ) if "shortest_edge" not in size: raise ValueError(f"""The `size` dictionary must contain the key `shortest_edge`. Got {size.keys()}""" ) a : Optional[int] = get_resize_output_image_size(lowerCAmelCase__ , size=size["shortest_edge"] , default_to_square=lowerCAmelCase__ ) return resize(lowerCAmelCase__ , size=lowerCAmelCase__ , resample=lowerCAmelCase__ , data_format=lowerCAmelCase__ , **lowerCAmelCase__ ) def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = None , **lowerCAmelCase__ , ) -> np.ndarray: a : Union[str, Any] = get_size_dict(lowerCAmelCase__ ) if "height" not in size or "width" not in size: raise ValueError(f"""The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}""" ) return center_crop(lowerCAmelCase__ , size=(size["height"], size["width"]) , data_format=lowerCAmelCase__ , **lowerCAmelCase__ ) def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = None , **lowerCAmelCase__ , ) -> Optional[Any]: return rescale(lowerCAmelCase__ , scale=lowerCAmelCase__ , data_format=lowerCAmelCase__ , **lowerCAmelCase__ ) def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> np.ndarray: return flip_channel_order(lowerCAmelCase__ , data_format=lowerCAmelCase__ ) def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = ChannelDimension.FIRST , **lowerCAmelCase__ , ) -> PIL.Image.Image: a : Dict = do_resize if do_resize is not None else self.do_resize a : int = resample if resample is not None else self.resample a : Optional[int] = do_rescale if do_rescale is not None else self.do_rescale a : Any = rescale_factor if rescale_factor is not None else self.rescale_factor a : Optional[int] = do_center_crop if do_center_crop is not None else self.do_center_crop a : List[str] = ( do_flip_channel_order if do_flip_channel_order is not None else self.do_flip_channel_order ) a : str = size if size is not None else self.size a : Optional[int] = get_size_dict(lowerCAmelCase__ , default_to_square=lowerCAmelCase__ ) a : Tuple = crop_size if crop_size is not None else self.crop_size a : Union[str, Any] = get_size_dict(lowerCAmelCase__ , param_name="crop_size" ) a : Tuple = make_list_of_images(lowerCAmelCase__ ) if not valid_images(lowerCAmelCase__ ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) # All transformations expect numpy arrays. a : Optional[Any] = [to_numpy_array(lowerCAmelCase__ ) for image in images] if do_resize: a : Any = [self.resize(image=lowerCAmelCase__ , size=lowerCAmelCase__ , resample=lowerCAmelCase__ ) for image in images] if do_center_crop: a : Optional[int] = [self.center_crop(image=lowerCAmelCase__ , size=lowerCAmelCase__ ) for image in images] if do_rescale: a : Optional[Any] = [self.rescale(image=lowerCAmelCase__ , scale=lowerCAmelCase__ ) for image in images] # the pretrained checkpoints assume images are BGR, not RGB if do_flip_channel_order: a : Union[str, Any] = [self.flip_channel_order(image=lowerCAmelCase__ ) for image in images] a : int = [to_channel_dimension_format(lowerCAmelCase__ , lowerCAmelCase__ ) for image in images] a : Optional[int] = {"pixel_values": images} return BatchFeature(data=lowerCAmelCase__ , tensor_type=lowerCAmelCase__ ) def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> Tuple: a : Optional[Any] = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(lowerCAmelCase__ ) != len(lowerCAmelCase__ ): raise ValueError( "Make sure that you pass in as many target sizes as the batch dimension of the logits" ) if is_torch_tensor(lowerCAmelCase__ ): a : Dict = target_sizes.numpy() a : int = [] for idx in range(len(lowerCAmelCase__ ) ): a : str = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode="bilinear" , align_corners=lowerCAmelCase__ ) a : Optional[int] = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(lowerCAmelCase__ ) else: a : List[str] = logits.argmax(dim=1 ) a : str = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
105
import argparse import logging import os import sys import numpy as np import onnxruntime import torch from bart_onnx.generation_onnx import BARTBeamSearchGenerator from bart_onnx.reduce_onnx_size import remove_dup_initializers import transformers from transformers import BartForConditionalGeneration, BartTokenizer logging.basicConfig( format="""%(asctime)s | %(levelname)s | %(name)s | [%(filename)s:%(lineno)d] %(message)s""", datefmt="""%Y-%m-%d %H:%M:%S""", level=os.environ.get("""LOGLEVEL""", """INFO""").upper(), stream=sys.stdout, ) __snake_case : Any = logging.getLogger(__name__) __snake_case : Any = {"""facebook/bart-base""": BartForConditionalGeneration} __snake_case : Tuple = {"""facebook/bart-base""": BartTokenizer} def _UpperCAmelCase ( ): '''simple docstring''' a_ : List[str] = argparse.ArgumentParser(description="""Export Bart model + Beam Search to ONNX graph.""") parser.add_argument( """--validation_file""" , type=a__ , default=a__ , help="""A csv or a json file containing the validation data.""") parser.add_argument( """--max_length""" , type=a__ , default=5 , help="""The maximum total input sequence length after tokenization.""" , ) parser.add_argument( """--num_beams""" , type=a__ , default=a__ , help=( """Number of beams to use for evaluation. This argument will be """ """passed to ``model.generate``, which is used during ``evaluate`` and ``predict``.""" ) , ) parser.add_argument( """--model_name_or_path""" , type=a__ , help="""Path to pretrained model or model identifier from huggingface.co/models.""" , required=a__ , ) parser.add_argument( """--config_name""" , type=a__ , default=a__ , help="""Pretrained config name or path if not the same as model_name""" , ) parser.add_argument( """--device""" , type=a__ , default="""cpu""" , help="""Device where the model will be run""" , ) parser.add_argument("""--output_file_path""" , type=a__ , default=a__ , help="""Where to store the final ONNX file.""") a_ : Any = parser.parse_args() return args def _UpperCAmelCase ( a__ , a__="cpu"): '''simple docstring''' a_ : Optional[int] = model_dict[model_name].from_pretrained(a__).to(a__) a_ : List[str] = tokenizer_dict[model_name].from_pretrained(a__) if model_name in ["facebook/bart-base"]: a_ : Tuple = 0 a_ : Optional[int] = None a_ : Union[str, Any] = 0 return huggingface_model, tokenizer def _UpperCAmelCase ( a__ , a__ , a__ , a__ , a__): '''simple docstring''' model.eval() a_ : Optional[Any] = None a_ : Optional[Any] = torch.jit.script(BARTBeamSearchGenerator(a__)) with torch.no_grad(): a_ : Any = """My friends are cool but they eat too many carbs.""" a_ : Dict = tokenizer([ARTICLE_TO_SUMMARIZE] , max_length=1_0_2_4 , return_tensors="""pt""").to(model.device) a_ : Optional[int] = model.generate( inputs["""input_ids"""] , attention_mask=inputs["""attention_mask"""] , num_beams=a__ , max_length=a__ , early_stopping=a__ , decoder_start_token_id=model.config.decoder_start_token_id , ) torch.onnx.export( a__ , ( inputs["""input_ids"""], inputs["""attention_mask"""], num_beams, max_length, model.config.decoder_start_token_id, ) , a__ , opset_version=1_4 , input_names=["""input_ids""", """attention_mask""", """num_beams""", """max_length""", """decoder_start_token_id"""] , output_names=["""output_ids"""] , dynamic_axes={ """input_ids""": {0: """batch""", 1: """seq"""}, """output_ids""": {0: """batch""", 1: """seq_out"""}, } , example_outputs=a__ , ) logger.info("""Model exported to {}""".format(a__)) a_ : List[str] = remove_dup_initializers(os.path.abspath(a__)) logger.info("""Deduplicated and optimized model written to {}""".format(a__)) a_ : Union[str, Any] = onnxruntime.InferenceSession(a__) a_ : Any = ort_sess.run( a__ , { """input_ids""": inputs["""input_ids"""].cpu().numpy(), """attention_mask""": inputs["""attention_mask"""].cpu().numpy(), """num_beams""": np.array(a__), """max_length""": np.array(a__), """decoder_start_token_id""": np.array(model.config.decoder_start_token_id), } , ) np.testing.assert_allclose(summary_ids.cpu().numpy() , ort_out[0] , rtol=1e-3 , atol=1e-3) logger.info("""Model outputs from torch and ONNX Runtime are similar.""") logger.info("""Success.""") def _UpperCAmelCase ( ): '''simple docstring''' a_ : List[str] = parse_args() a_ : str = 5 a_ : Union[str, Any] = 4 # Make one log on every process with the configuration for debugging. logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO , ) logger.setLevel(logging.INFO) transformers.utils.logging.set_verbosity_error() a_ : int = torch.device(args.device) a_ , a_ : Optional[Any] = load_model_tokenizer(args.model_name_or_path , a__) if model.config.decoder_start_token_id is None: raise ValueError("""Make sure that `config.decoder_start_token_id` is correctly defined""") model.to(a__) if args.max_length: a_ : List[str] = args.max_length if args.num_beams: a_ : Optional[Any] = args.num_beams if args.output_file_path: a_ : Optional[int] = args.output_file_path else: a_ : Tuple = """BART.onnx""" logger.info("""Exporting model to ONNX""") export_and_validate_model(a__ , a__ , a__ , a__ , a__) if __name__ == "__main__": main()
248
0
import cmath import math def __magic_name__ ( __lowerCAmelCase : float , __lowerCAmelCase : float , __lowerCAmelCase : float , __lowerCAmelCase : float ) -> complex: __lowerCamelCase = math.radians(__lowerCAmelCase ) __lowerCamelCase = math.radians(__lowerCAmelCase ) # Convert voltage and current to rectangular form __lowerCamelCase = cmath.rect(__lowerCAmelCase , __lowerCAmelCase ) __lowerCamelCase = cmath.rect(__lowerCAmelCase , __lowerCAmelCase ) # Calculate apparent power return voltage_rect * current_rect if __name__ == "__main__": import doctest doctest.testmod()
370
from __future__ import annotations def __magic_name__ ( __lowerCAmelCase : list[int] ) -> bool: return len(set(__lowerCAmelCase ) ) == len(__lowerCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod()
339
0
from __future__ import annotations from collections.abc import Iterator class lowerCAmelCase : def __init__( self : int , UpperCAmelCase : int ) -> None: lowerCamelCase__ : Dict = value lowerCamelCase__ : Node | None = None lowerCamelCase__ : Node | None = None class lowerCAmelCase : def __init__( self : Optional[int] , UpperCAmelCase : Node ) -> None: lowerCamelCase__ : Union[str, Any] = tree def A_ ( self : Union[str, Any] , UpperCAmelCase : Node | None ) -> int: if node is None: return 0 return node.value + ( self.depth_first_search(node.left ) + self.depth_first_search(node.right ) ) def __iter__( self : Tuple ) -> Iterator[int]: yield self.depth_first_search(self.tree ) if __name__ == "__main__": import doctest doctest.testmod()
50
'''simple docstring''' from statistics import mean, stdev def UpperCamelCase_( snake_case : list , snake_case : int = 3 ): '''simple docstring''' snake_case_ = min(snake_case ) snake_case_ = max(snake_case ) # normalize data return [round((x - x_min) / (x_max - x_min) , snake_case ) for x in data] def UpperCamelCase_( snake_case : list , snake_case : int = 3 ): '''simple docstring''' snake_case_ = mean(snake_case ) snake_case_ = stdev(snake_case ) # standardize data return [round((x - mu) / (sigma) , snake_case ) for x in data]
85
0
"""simple docstring""" import argparse from collections import defaultdict def snake_case__ ( __lowerCamelCase : List[Any] , __lowerCamelCase : List[Any] , __lowerCamelCase : Dict , __lowerCamelCase : Optional[int] , __lowerCamelCase : Any ): """simple docstring""" lowerCamelCase__ : Union[str, Any] =f'''{file}_{class_name}_{test_name}''' done_test[_id] += 1 with open(__lowerCamelCase , '''r''' ) as f: lowerCamelCase__ : Any =f.readlines() lowerCamelCase__ : Optional[Any] =f'''class {class_name}(''' lowerCamelCase__ : List[str] =f'''{4 * " "}def {test_name}(''' lowerCamelCase__ : Tuple =f'''{8 * " "}{correct_line.split()[0]}''' lowerCamelCase__ : List[Any] =f'''{16 * " "}{correct_line.split()[0]}''' lowerCamelCase__ : Union[str, Any] =False lowerCamelCase__ : Union[str, Any] =False lowerCamelCase__ : int =False lowerCamelCase__ : Tuple =False lowerCamelCase__ : Any =0 lowerCamelCase__ : Union[str, Any] =0 lowerCamelCase__ : str =[] for line in lines: if line.startswith(__lowerCamelCase ): lowerCamelCase__ : Optional[int] =True elif in_class and line.startswith(__lowerCamelCase ): lowerCamelCase__ : Any =True elif in_class and in_func and (line.startswith(__lowerCamelCase ) or line.startswith(__lowerCamelCase )): lowerCamelCase__ : Dict =len(line.split(correct_line.split()[0] )[0] ) count += 1 if count == done_test[_id]: lowerCamelCase__ : List[str] =True if in_class and in_func and in_line: if ")" not in line: continue else: lowerCamelCase__ : Tuple =True if in_class and in_func and in_line and insert_line: new_lines.append(f'''{spaces * " "}{correct_line}''' ) lowerCamelCase__ : Tuple =False else: new_lines.append(__lowerCamelCase ) with open(__lowerCamelCase , '''w''' ) as f: for line in new_lines: f.write(__lowerCamelCase ) def snake_case__ ( __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Union[str, Any]=None ): """simple docstring""" if fail is not None: with open(__lowerCamelCase , '''r''' ) as f: lowerCamelCase__ : List[Any] ={l.strip() for l in f.readlines()} else: lowerCamelCase__ : List[str] =None with open(__lowerCamelCase , '''r''' ) as f: lowerCamelCase__ : Union[str, Any] =f.readlines() lowerCamelCase__ : List[Any] =defaultdict(__lowerCamelCase ) for line in correct_lines: lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : Dict =line.split(''';''' ) if test_failures is None or "::".join([file, class_name, test_name] ) in test_failures: overwrite_file(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) if __name__ == "__main__": _lowercase : Tuple = argparse.ArgumentParser() parser.add_argument("--correct_filename", help="filename of tests with expected result") parser.add_argument("--fail_filename", help="filename of test failures", type=str, default=None) _lowercase : Optional[Any] = parser.parse_args() main(args.correct_filename, args.fail_filename)
272
"""simple docstring""" from collections import defaultdict class __SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : Union[str, Any], lowerCamelCase : List[Any], lowerCamelCase : List[str] )-> Optional[int]: lowerCamelCase__ : List[Any] =total # total no of tasks (N) # DP table will have a dimension of (2^M)*N # initially all values are set to -1 lowerCamelCase__ : Optional[Any] =[ [-1 for i in range(total + 1 )] for j in range(2 ** len(lowerCamelCase ) ) ] lowerCamelCase__ : Any =defaultdict(lowerCamelCase ) # stores the list of persons for each task # final_mask is used to check if all persons are included by setting all bits # to 1 lowerCamelCase__ : List[Any] =(1 << len(lowerCamelCase )) - 1 def snake_case ( self : int, lowerCamelCase : str, lowerCamelCase : Any )-> Any: # if mask == self.finalmask all persons are distributed tasks, return 1 if mask == self.final_mask: return 1 # if not everyone gets the task and no more tasks are available, return 0 if task_no > self.total_tasks: return 0 # if case already considered if self.dp[mask][task_no] != -1: return self.dp[mask][task_no] # Number of ways when we don't this task in the arrangement lowerCamelCase__ : Optional[int] =self.count_ways_until(lowerCamelCase, task_no + 1 ) # now assign the tasks one by one to all possible persons and recursively # assign for the remaining tasks. if task_no in self.task: for p in self.task[task_no]: # if p is already given a task if mask & (1 << p): continue # assign this task to p and change the mask value. And recursively # assign tasks with the new mask value. total_ways_util += self.count_ways_until(mask | (1 << p), task_no + 1 ) # save the value. lowerCamelCase__ : int =total_ways_util return self.dp[mask][task_no] def snake_case ( self : Dict, lowerCamelCase : Dict )-> int: # Store the list of persons for each task for i in range(len(lowerCamelCase ) ): for j in task_performed[i]: self.task[j].append(lowerCamelCase ) # call the function to fill the DP table, final answer is stored in dp[0][1] return self.count_ways_until(0, 1 ) if __name__ == "__main__": _lowercase : Tuple = 5 # total no of tasks (the value of N) # the list of tasks that can be done by M persons. _lowercase : Dict = [[1, 3, 4], [1, 2, 5], [3, 4]] print( AssignmentUsingBitmask(task_performed, total_tasks).count_no_of_ways( task_performed ) )
272
1
"""simple docstring""" import argparse import logging import os import sys import numpy as np import onnxruntime import torch from bart_onnx.generation_onnx import BARTBeamSearchGenerator from bart_onnx.reduce_onnx_size import remove_dup_initializers import transformers from transformers import BartForConditionalGeneration, BartTokenizer logging.basicConfig( format='%(asctime)s | %(levelname)s | %(name)s | [%(filename)s:%(lineno)d] %(message)s', datefmt='%Y-%m-%d %H:%M:%S', level=os.environ.get('LOGLEVEL', 'INFO').upper(), stream=sys.stdout, ) _lowerCAmelCase :Dict = logging.getLogger(__name__) _lowerCAmelCase :Union[str, Any] = {'facebook/bart-base': BartForConditionalGeneration} _lowerCAmelCase :Dict = {'facebook/bart-base': BartTokenizer} def lowerCamelCase_ (): _UpperCAmelCase : Any = argparse.ArgumentParser(description='''Export Bart model + Beam Search to ONNX graph.''' ) parser.add_argument( '''--validation_file''' , type=UpperCamelCase__ , default=UpperCamelCase__ , help='''A csv or a json file containing the validation data.''' ) parser.add_argument( '''--max_length''' , type=UpperCamelCase__ , default=5 , help='''The maximum total input sequence length after tokenization.''' , ) parser.add_argument( '''--num_beams''' , type=UpperCamelCase__ , default=UpperCamelCase__ , help=( '''Number of beams to use for evaluation. This argument will be ''' '''passed to ``model.generate``, which is used during ``evaluate`` and ``predict``.''' ) , ) parser.add_argument( '''--model_name_or_path''' , type=UpperCamelCase__ , help='''Path to pretrained model or model identifier from huggingface.co/models.''' , required=UpperCamelCase__ , ) parser.add_argument( '''--config_name''' , type=UpperCamelCase__ , default=UpperCamelCase__ , help='''Pretrained config name or path if not the same as model_name''' , ) parser.add_argument( '''--device''' , type=UpperCamelCase__ , default='''cpu''' , help='''Device where the model will be run''' , ) parser.add_argument('''--output_file_path''' , type=UpperCamelCase__ , default=UpperCamelCase__ , help='''Where to store the final ONNX file.''' ) _UpperCAmelCase : Optional[int] = parser.parse_args() return args def lowerCamelCase_ (UpperCamelCase__ : Dict , UpperCamelCase__ : Optional[int]="cpu" ): _UpperCAmelCase : Tuple = model_dict[model_name].from_pretrained(UpperCamelCase__ ).to(UpperCamelCase__ ) _UpperCAmelCase : Union[str, Any] = tokenizer_dict[model_name].from_pretrained(UpperCamelCase__ ) if model_name in ["facebook/bart-base"]: _UpperCAmelCase : Union[str, Any] = 0 _UpperCAmelCase : List[Any] = None _UpperCAmelCase : Optional[Any] = 0 return huggingface_model, tokenizer def lowerCamelCase_ (UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Dict , UpperCamelCase__ : Dict , UpperCamelCase__ : List[str] , UpperCamelCase__ : Optional[Any] ): model.eval() _UpperCAmelCase : str = None _UpperCAmelCase : List[str] = torch.jit.script(BARTBeamSearchGenerator(UpperCamelCase__ ) ) with torch.no_grad(): _UpperCAmelCase : Optional[Any] = '''My friends are cool but they eat too many carbs.''' _UpperCAmelCase : Tuple = tokenizer([ARTICLE_TO_SUMMARIZE] , max_length=1024 , return_tensors='''pt''' ).to(model.device ) _UpperCAmelCase : Optional[int] = model.generate( inputs['''input_ids'''] , attention_mask=inputs['''attention_mask'''] , num_beams=UpperCamelCase__ , max_length=UpperCamelCase__ , early_stopping=UpperCamelCase__ , decoder_start_token_id=model.config.decoder_start_token_id , ) torch.onnx.export( UpperCamelCase__ , ( inputs['''input_ids'''], inputs['''attention_mask'''], num_beams, max_length, model.config.decoder_start_token_id, ) , UpperCamelCase__ , opset_version=14 , input_names=['''input_ids''', '''attention_mask''', '''num_beams''', '''max_length''', '''decoder_start_token_id'''] , output_names=['''output_ids'''] , dynamic_axes={ '''input_ids''': {0: '''batch''', 1: '''seq'''}, '''output_ids''': {0: '''batch''', 1: '''seq_out'''}, } , example_outputs=UpperCamelCase__ , ) logger.info('''Model exported to {}'''.format(UpperCamelCase__ ) ) _UpperCAmelCase : int = remove_dup_initializers(os.path.abspath(UpperCamelCase__ ) ) logger.info('''Deduplicated and optimized model written to {}'''.format(UpperCamelCase__ ) ) _UpperCAmelCase : Optional[Any] = onnxruntime.InferenceSession(UpperCamelCase__ ) _UpperCAmelCase : Dict = ort_sess.run( UpperCamelCase__ , { '''input_ids''': inputs['''input_ids'''].cpu().numpy(), '''attention_mask''': inputs['''attention_mask'''].cpu().numpy(), '''num_beams''': np.array(UpperCamelCase__ ), '''max_length''': np.array(UpperCamelCase__ ), '''decoder_start_token_id''': np.array(model.config.decoder_start_token_id ), } , ) np.testing.assert_allclose(summary_ids.cpu().numpy() , ort_out[0] , rtol=1E-3 , atol=1E-3 ) logger.info('''Model outputs from torch and ONNX Runtime are similar.''' ) logger.info('''Success.''' ) def lowerCamelCase_ (): _UpperCAmelCase : Union[str, Any] = parse_args() _UpperCAmelCase : Optional[Any] = 5 _UpperCAmelCase : Optional[int] = 4 # Make one log on every process with the configuration for debugging. logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO , ) logger.setLevel(logging.INFO ) transformers.utils.logging.set_verbosity_error() _UpperCAmelCase : Union[str, Any] = torch.device(args.device ) _UpperCAmelCase , _UpperCAmelCase : Dict = load_model_tokenizer(args.model_name_or_path , UpperCamelCase__ ) if model.config.decoder_start_token_id is None: raise ValueError('''Make sure that `config.decoder_start_token_id` is correctly defined''' ) model.to(UpperCamelCase__ ) if args.max_length: _UpperCAmelCase : Dict = args.max_length if args.num_beams: _UpperCAmelCase : Any = args.num_beams if args.output_file_path: _UpperCAmelCase : Optional[int] = args.output_file_path else: _UpperCAmelCase : Optional[Any] = '''BART.onnx''' logger.info('''Exporting model to ONNX''' ) export_and_validate_model(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) if __name__ == "__main__": main()
263
"""simple docstring""" import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, StableDiffusionAttendAndExcitePipeline, UNetaDConditionModel, ) from diffusers.utils import load_numpy, skip_mps, slow from diffusers.utils.testing_utils import require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin _lowerCAmelCase :Any = False @skip_mps class _UpperCAmelCase ( a ,a ,a ,unittest.TestCase ): '''simple docstring''' a__ =StableDiffusionAttendAndExcitePipeline a__ =False a__ =TEXT_TO_IMAGE_PARAMS a__ =TEXT_TO_IMAGE_BATCH_PARAMS.union({'''token_indices'''} ) a__ =TEXT_TO_IMAGE_IMAGE_PARAMS a__ =TEXT_TO_IMAGE_IMAGE_PARAMS @classmethod def __lowerCAmelCase ( cls ) -> List[str]: super().setUpClass() torch.use_deterministic_algorithms(A ) @classmethod def __lowerCAmelCase ( cls ) -> Union[str, Any]: super().tearDownClass() torch.use_deterministic_algorithms(A ) def __lowerCAmelCase ( self ) -> Tuple: torch.manual_seed(0 ) _UpperCAmelCase : Optional[int] = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=1 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=3_2 , attention_head_dim=(2, 4) , use_linear_projection=A , ) _UpperCAmelCase : List[Any] = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , clip_sample=A , set_alpha_to_one=A , ) torch.manual_seed(0 ) _UpperCAmelCase : int = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , sample_size=1_2_8 , ) torch.manual_seed(0 ) _UpperCAmelCase : int = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , hidden_act='''gelu''' , projection_dim=5_1_2 , ) _UpperCAmelCase : List[str] = CLIPTextModel(A ) _UpperCAmelCase : str = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) _UpperCAmelCase : Union[str, Any] = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def __lowerCAmelCase ( self , A , A=0 ) -> List[Any]: if str(A ).startswith('''mps''' ): _UpperCAmelCase : Optional[int] = torch.manual_seed(A ) else: _UpperCAmelCase : Union[str, Any] = torch.Generator(device=A ).manual_seed(A ) _UpperCAmelCase : List[str] = { '''prompt''': '''a cat and a frog''', '''token_indices''': [2, 5], '''generator''': generator, '''num_inference_steps''': 1, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', '''max_iter_to_alter''': 2, '''thresholds''': {0: 0.7}, } return inputs def __lowerCAmelCase ( self ) -> int: _UpperCAmelCase : List[str] = '''cpu''' _UpperCAmelCase : Tuple = self.get_dummy_components() _UpperCAmelCase : int = self.pipeline_class(**A ) pipe.to(A ) pipe.set_progress_bar_config(disable=A ) _UpperCAmelCase : Dict = self.get_dummy_inputs(A ) _UpperCAmelCase : Union[str, Any] = pipe(**A ).images _UpperCAmelCase : Tuple = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 6_4, 6_4, 3) ) _UpperCAmelCase : int = np.array( [0.63_905_364, 0.62_897_307, 0.48_599_017, 0.5_133_624, 0.5_550_048, 0.45_769_516, 0.50_326_973, 0.5_023_139, 0.45_384_496] ) _UpperCAmelCase : Tuple = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(A , 1E-3 ) def __lowerCAmelCase ( self ) -> Dict: super().test_cpu_offload_forward_pass(expected_max_diff=5E-4 ) def __lowerCAmelCase ( self ) -> List[str]: # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def __lowerCAmelCase ( self ) -> Union[str, Any]: self._test_inference_batch_single_identical(batch_size=2 , expected_max_diff=7E-4 ) def __lowerCAmelCase ( self ) -> List[str]: super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 ) def __lowerCAmelCase ( self ) -> List[str]: super().test_pt_np_pil_outputs_equivalent(expected_max_diff=5E-4 ) def __lowerCAmelCase ( self ) -> str: super().test_save_load_local(expected_max_difference=5E-4 ) def __lowerCAmelCase ( self ) -> Optional[int]: super().test_save_load_optional_components(expected_max_difference=4E-4 ) @require_torch_gpu @slow class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @classmethod def __lowerCAmelCase ( cls ) -> Union[str, Any]: super().setUpClass() torch.use_deterministic_algorithms(A ) @classmethod def __lowerCAmelCase ( cls ) -> Optional[int]: super().tearDownClass() torch.use_deterministic_algorithms(A ) def __lowerCAmelCase ( self ) -> List[str]: super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCAmelCase ( self ) -> str: _UpperCAmelCase : Any = torch.manual_seed(5_1 ) _UpperCAmelCase : Optional[Any] = StableDiffusionAttendAndExcitePipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , safety_checker=A , torch_dtype=torch.floataa ) pipe.to('''cuda''' ) _UpperCAmelCase : Optional[int] = '''a painting of an elephant with glasses''' _UpperCAmelCase : int = [5, 7] _UpperCAmelCase : Dict = pipe( prompt=A , token_indices=A , guidance_scale=7.5 , generator=A , num_inference_steps=5 , max_iter_to_alter=5 , output_type='''numpy''' , ).images[0] _UpperCAmelCase : List[Any] = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/attend-and-excite/elephant_glasses.npy''' ) assert np.abs((expected_image - image).max() ) < 5E-1
263
1
def lowercase_ ( _lowerCamelCase : dict): lowercase__ : int = set() # edges = list of graph's edges lowercase__ : Union[str, Any] = get_edges(_lowerCamelCase) # While there are still elements in edges list, take an arbitrary edge # (from_node, to_node) and add his extremity to chosen_vertices and then # remove all arcs adjacent to the from_node and to_node while edges: lowercase__ , lowercase__ : List[str] = edges.pop() chosen_vertices.add(_lowerCamelCase) chosen_vertices.add(_lowerCamelCase) for edge in edges.copy(): if from_node in edge or to_node in edge: edges.discard(_lowerCamelCase) return chosen_vertices def lowercase_ ( _lowerCamelCase : dict): lowercase__ : List[Any] = set() for from_node, to_nodes in graph.items(): for to_node in to_nodes: edges.add((from_node, to_node)) return edges if __name__ == "__main__": import doctest doctest.testmod() # graph = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} # print(f"Matching vertex cover:\n{matching_min_vertex_cover(graph)}")
333
import os import re import shutil import sys import tempfile import unittest import black UpperCamelCase = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, '''utils''')) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If DDPMSchedulerOutput is changed in scheduling_ddpm.py, this code needs to be manually updated. UpperCamelCase = ''' \""" Output class for the scheduler\'s step function output. Args: prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the denoising loop. pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): The predicted denoised sample (x_{0}) based on the model output from the current timestep. `pred_original_sample` can be used to preview progress or for guidance. \""" prev_sample: torch.FloatTensor pred_original_sample: Optional[torch.FloatTensor] = None ''' class snake_case_ ( unittest.TestCase ): def __UpperCamelCase ( self : str ) -> List[str]: lowercase__ : str = tempfile.mkdtemp() os.makedirs(os.path.join(self.diffusers_dir , "schedulers/" ) ) lowercase__ : List[Any] = self.diffusers_dir shutil.copy( os.path.join(lowercase_ , "src/diffusers/schedulers/scheduling_ddpm.py" ) , os.path.join(self.diffusers_dir , "schedulers/scheduling_ddpm.py" ) , ) def __UpperCamelCase ( self : Optional[int] ) -> List[str]: lowercase__ : Dict = "src/diffusers" shutil.rmtree(self.diffusers_dir ) def __UpperCamelCase ( self : Tuple , lowercase_ : Optional[Any] , lowercase_ : Any , lowercase_ : str , lowercase_ : Tuple=None ) -> Tuple: lowercase__ : Optional[int] = comment + F'''\nclass {class_name}(nn.Module):\n''' + class_code if overwrite_result is not None: lowercase__ : Optional[int] = comment + F'''\nclass {class_name}(nn.Module):\n''' + overwrite_result lowercase__ : Optional[Any] = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=1_19 ) lowercase__ : List[str] = black.format_str(lowercase_ , mode=lowercase_ ) lowercase__ : Optional[int] = os.path.join(self.diffusers_dir , "new_code.py" ) with open(lowercase_ , "w" , newline="\n" ) as f: f.write(lowercase_ ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(lowercase_ ) ) == 0 ) else: check_copies.is_copy_consistent(f.name , overwrite=lowercase_ ) with open(lowercase_ , "r" ) as f: self.assertTrue(f.read() , lowercase_ ) def __UpperCamelCase ( self : str ) -> Optional[int]: lowercase__ : Optional[Any] = check_copies.find_code_in_diffusers("schedulers.scheduling_ddpm.DDPMSchedulerOutput" ) self.assertEqual(lowercase_ , lowercase_ ) def __UpperCamelCase ( self : int ) -> str: # Base copy consistency self.check_copy_consistency( "# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput" , "DDPMSchedulerOutput" , REFERENCE_CODE + "\n" , ) # With no empty line at the end self.check_copy_consistency( "# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput" , "DDPMSchedulerOutput" , lowercase_ , ) # Copy consistency with rename self.check_copy_consistency( "# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test" , "TestSchedulerOutput" , re.sub("DDPM" , "Test" , lowercase_ ) , ) # Copy consistency with a really long name lowercase__ : Optional[int] = "TestClassWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason" self.check_copy_consistency( F'''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->{long_class_name}''' , F'''{long_class_name}SchedulerOutput''' , re.sub("Bert" , lowercase_ , lowercase_ ) , ) # Copy consistency with overwrite self.check_copy_consistency( "# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test" , "TestSchedulerOutput" , lowercase_ , overwrite_result=re.sub("DDPM" , "Test" , lowercase_ ) , )
333
1
'''simple docstring''' import re from typing import Callable, List, Optional, Union import tensorflow as tf try: from tensorflow.keras.optimizers.legacy import Adam except ImportError: from tensorflow.keras.optimizers import Adam class a_ (tf.keras.optimizers.schedules.LearningRateSchedule ): def __init__( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ = 1.0 , snake_case_ = None , ): super().__init__() _lowerCAmelCase : List[Any] = initial_learning_rate _lowerCAmelCase : Optional[int] = warmup_steps _lowerCAmelCase : Tuple = power _lowerCAmelCase : Optional[Any] = decay_schedule_fn _lowerCAmelCase : List[Any] = name def __call__( self , snake_case_ ): with tf.name_scope(self.name or """WarmUp""" ) as name: # Implements polynomial warmup. i.e., if global_step < warmup_steps, the # learning rate will be `global_step/num_warmup_steps * init_lr`. _lowerCAmelCase : List[str] = tf.cast(snake_case_ , tf.floataa ) _lowerCAmelCase : Optional[int] = tf.cast(self.warmup_steps , tf.floataa ) _lowerCAmelCase : Tuple = global_step_float / warmup_steps_float _lowerCAmelCase : Union[str, Any] = self.initial_learning_rate * tf.math.pow(snake_case_ , self.power ) return tf.cond( global_step_float < warmup_steps_float , lambda: warmup_learning_rate , lambda: self.decay_schedule_fn(step - self.warmup_steps ) , name=snake_case_ , ) def __UpperCamelCase ( self ): return { "initial_learning_rate": self.initial_learning_rate, "decay_schedule_fn": self.decay_schedule_fn, "warmup_steps": self.warmup_steps, "power": self.power, "name": self.name, } def _UpperCAmelCase ( _lowerCamelCase : float , _lowerCamelCase : int , _lowerCamelCase : int , _lowerCamelCase : float = 0.0 , _lowerCamelCase : float = 0.9 , _lowerCamelCase : float = 0.999 , _lowerCamelCase : float = 1e-8 , _lowerCamelCase : Optional[float] = None , _lowerCamelCase : Optional[float] = None , _lowerCamelCase : float = 0.0 , _lowerCamelCase : float = 1.0 , _lowerCamelCase : Optional[List[str]] = None , ) -> List[str]: _lowerCAmelCase : Optional[Any] = tf.keras.optimizers.schedules.PolynomialDecay( initial_learning_rate=_lowerCamelCase , decay_steps=num_train_steps - num_warmup_steps , end_learning_rate=init_lr * min_lr_ratio , power=_lowerCamelCase , ) if num_warmup_steps: _lowerCAmelCase : Tuple = WarmUp( initial_learning_rate=_lowerCamelCase , decay_schedule_fn=_lowerCamelCase , warmup_steps=_lowerCamelCase , ) if weight_decay_rate > 0.0: _lowerCAmelCase : int = AdamWeightDecay( learning_rate=_lowerCamelCase , weight_decay_rate=_lowerCamelCase , beta_a=_lowerCamelCase , beta_a=_lowerCamelCase , epsilon=_lowerCamelCase , clipnorm=_lowerCamelCase , global_clipnorm=_lowerCamelCase , exclude_from_weight_decay=["""LayerNorm""", """layer_norm""", """bias"""] , include_in_weight_decay=_lowerCamelCase , ) else: _lowerCAmelCase : int = tf.keras.optimizers.Adam( learning_rate=_lowerCamelCase , beta_a=_lowerCamelCase , beta_a=_lowerCamelCase , epsilon=_lowerCamelCase , clipnorm=_lowerCamelCase , global_clipnorm=_lowerCamelCase , ) # We return the optimizer and the LR scheduler in order to better track the # evolution of the LR independently of the optimizer. return optimizer, lr_schedule class a_ (_a ): def __init__( self , snake_case_ = 0.001 , snake_case_ = 0.9 , snake_case_ = 0.999 , snake_case_ = 1E-7 , snake_case_ = False , snake_case_ = 0.0 , snake_case_ = None , snake_case_ = None , snake_case_ = "AdamWeightDecay" , **snake_case_ , ): super().__init__(snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , **snake_case_ ) _lowerCAmelCase : List[str] = weight_decay_rate _lowerCAmelCase : Union[str, Any] = include_in_weight_decay _lowerCAmelCase : Tuple = exclude_from_weight_decay @classmethod def __UpperCamelCase ( cls , snake_case_ ): _lowerCAmelCase : Dict = {"""WarmUp""": WarmUp} return super(snake_case_ , cls ).from_config(snake_case_ , custom_objects=snake_case_ ) def __UpperCamelCase ( self , snake_case_ , snake_case_ , snake_case_ ): super(snake_case_ , self )._prepare_local(snake_case_ , snake_case_ , snake_case_ ) _lowerCAmelCase : Tuple = tf.constant( self.weight_decay_rate , name="""adam_weight_decay_rate""" ) def __UpperCamelCase ( self , snake_case_ , snake_case_ , snake_case_ ): _lowerCAmelCase : List[str] = self._do_use_weight_decay(var.name ) if do_decay: return var.assign_sub( learning_rate * var * apply_state[(var.device, var.dtype.base_dtype)]["""weight_decay_rate"""] , use_locking=self._use_locking , ) return tf.no_op() def __UpperCamelCase ( self , snake_case_ , snake_case_=None , **snake_case_ ): _lowerCAmelCase , _lowerCAmelCase : str = list(zip(*snake_case_ ) ) return super(snake_case_ , self ).apply_gradients(zip(snake_case_ , snake_case_ ) , name=snake_case_ , **snake_case_ ) def __UpperCamelCase ( self , snake_case_ , snake_case_ , snake_case_ ): if apply_state is None: return self._decayed_lr_t[var_dtype], {} _lowerCAmelCase : str = apply_state or {} _lowerCAmelCase : Dict = apply_state.get((var_device, var_dtype) ) if coefficients is None: _lowerCAmelCase : Tuple = self._fallback_apply_state(snake_case_ , snake_case_ ) _lowerCAmelCase : str = coefficients return coefficients["lr_t"], {"apply_state": apply_state} def __UpperCamelCase ( self , snake_case_ , snake_case_ , snake_case_=None ): _lowerCAmelCase , _lowerCAmelCase : Optional[int] = self._get_lr(var.device , var.dtype.base_dtype , snake_case_ ) _lowerCAmelCase : List[str] = self._decay_weights_op(snake_case_ , snake_case_ , snake_case_ ) with tf.control_dependencies([decay] ): return super(snake_case_ , self )._resource_apply_dense(snake_case_ , snake_case_ , **snake_case_ ) def __UpperCamelCase ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_=None ): _lowerCAmelCase , _lowerCAmelCase : Any = self._get_lr(var.device , var.dtype.base_dtype , snake_case_ ) _lowerCAmelCase : int = self._decay_weights_op(snake_case_ , snake_case_ , snake_case_ ) with tf.control_dependencies([decay] ): return super(snake_case_ , self )._resource_apply_sparse(snake_case_ , snake_case_ , snake_case_ , **snake_case_ ) def __UpperCamelCase ( self ): _lowerCAmelCase : int = super().get_config() config.update({"""weight_decay_rate""": self.weight_decay_rate} ) return config def __UpperCamelCase ( self , snake_case_ ): if self.weight_decay_rate == 0: return False if self._include_in_weight_decay: for r in self._include_in_weight_decay: if re.search(snake_case_ , snake_case_ ) is not None: return True if self._exclude_from_weight_decay: for r in self._exclude_from_weight_decay: if re.search(snake_case_ , snake_case_ ) is not None: return False return True class a_ (_a ): def __init__( self ): _lowerCAmelCase : Optional[Any] = [] _lowerCAmelCase : Dict = None @property def __UpperCamelCase ( self ): if self._accum_steps is None: _lowerCAmelCase : Dict = tf.Variable( tf.constant(0 , dtype=tf.intaa ) , trainable=snake_case_ , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , ) return self._accum_steps.value() @property def __UpperCamelCase ( self ): if not self._gradients: raise ValueError("""The accumulator should be called first to initialize the gradients""" ) return [gradient.value() if gradient is not None else gradient for gradient in self._gradients] def __call__( self , snake_case_ ): if not self._gradients: _lowerCAmelCase : Optional[int] = self.step # Create the step variable. self._gradients.extend( [ tf.Variable( tf.zeros_like(snake_case_ ) , trainable=snake_case_ , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , ) if gradient is not None else gradient for gradient in gradients ] ) if len(snake_case_ ) != len(self._gradients ): raise ValueError(f'Expected {len(self._gradients )} gradients, but got {len(snake_case_ )}' ) for accum_gradient, gradient in zip(self._gradients , snake_case_ ): if accum_gradient is not None and gradient is not None: accum_gradient.assign_add(snake_case_ ) self._accum_steps.assign_add(1 ) def __UpperCamelCase ( self ): if not self._gradients: return self._accum_steps.assign(0 ) for gradient in self._gradients: if gradient is not None: gradient.assign(tf.zeros_like(snake_case_ ) )
309
'''simple docstring''' import argparse import os import re UpperCamelCase_ = """src/diffusers""" # Pattern that looks at the indentation in a line. UpperCamelCase_ = re.compile(r"""^(\s*)\S""") # Pattern that matches `"key":" and puts `key` in group 0. UpperCamelCase_ = re.compile(r"""^\s*\"([^\"]+)\":""") # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. UpperCamelCase_ = re.compile(r"""^\s*_import_structure\[\"([^\"]+)\"\]""") # Pattern that matches `"key",` and puts `key` in group 0. UpperCamelCase_ = re.compile(r"""^\s*\"([^\"]+)\",\s*$""") # Pattern that matches any `[stuff]` and puts `stuff` in group 0. UpperCamelCase_ = re.compile(r"""\[([^\]]+)\]""") def _UpperCAmelCase ( _lowerCamelCase : List[Any] ) -> str: _lowerCAmelCase : Dict = _re_indent.search(_lowerCamelCase ) return "" if search is None else search.groups()[0] def _UpperCAmelCase ( _lowerCamelCase : Optional[Any] , _lowerCamelCase : List[str]="" , _lowerCamelCase : str=None , _lowerCamelCase : List[Any]=None ) -> str: _lowerCAmelCase : Union[str, Any] = 0 _lowerCAmelCase : Tuple = code.split("""\n""" ) if start_prompt is not None: while not lines[index].startswith(_lowerCamelCase ): index += 1 _lowerCAmelCase : List[Any] = ["""\n""".join(lines[:index] )] else: _lowerCAmelCase : List[str] = [] # We split into blocks until we get to the `end_prompt` (or the end of the block). _lowerCAmelCase : Union[str, Any] = [lines[index]] index += 1 while index < len(_lowerCamelCase ) and (end_prompt is None or not lines[index].startswith(_lowerCamelCase )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(_lowerCamelCase ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + """ """ ): current_block.append(lines[index] ) blocks.append("""\n""".join(_lowerCamelCase ) ) if index < len(_lowerCamelCase ) - 1: _lowerCAmelCase : Union[str, Any] = [lines[index + 1]] index += 1 else: _lowerCAmelCase : Dict = [] else: blocks.append("""\n""".join(_lowerCamelCase ) ) _lowerCAmelCase : Tuple = [lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(_lowerCamelCase ) > 0: blocks.append("""\n""".join(_lowerCamelCase ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(_lowerCamelCase ): blocks.append("""\n""".join(lines[index:] ) ) return blocks def _UpperCAmelCase ( _lowerCamelCase : Optional[Any] ) -> Any: def _inner(_lowerCamelCase : Any ): return key(_lowerCamelCase ).lower().replace("""_""" , """""" ) return _inner def _UpperCAmelCase ( _lowerCamelCase : Union[str, Any] , _lowerCamelCase : Tuple=None ) -> Union[str, Any]: # If no key is provided, we use a noop. def noop(_lowerCamelCase : List[Any] ): return x if key is None: _lowerCAmelCase : Union[str, Any] = noop # Constants are all uppercase, they go first. _lowerCAmelCase : Any = [obj for obj in objects if key(_lowerCamelCase ).isupper()] # Classes are not all uppercase but start with a capital, they go second. _lowerCAmelCase : Union[str, Any] = [obj for obj in objects if key(_lowerCamelCase )[0].isupper() and not key(_lowerCamelCase ).isupper()] # Functions begin with a lowercase, they go last. _lowerCAmelCase : Optional[Any] = [obj for obj in objects if not key(_lowerCamelCase )[0].isupper()] _lowerCAmelCase : List[str] = ignore_underscore(_lowerCamelCase ) return sorted(_lowerCamelCase , key=_lowerCamelCase ) + sorted(_lowerCamelCase , key=_lowerCamelCase ) + sorted(_lowerCamelCase , key=_lowerCamelCase ) def _UpperCAmelCase ( _lowerCamelCase : str ) -> str: # This inner function sort imports between [ ]. def _replace(_lowerCamelCase : Union[str, Any] ): _lowerCAmelCase : Optional[Any] = match.groups()[0] if "," not in imports: return f'[{imports}]' _lowerCAmelCase : List[str] = [part.strip().replace("""\"""" , """""" ) for part in imports.split(""",""" )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: _lowerCAmelCase : int = keys[:-1] return "[" + ", ".join([f'"{k}"' for k in sort_objects(_lowerCamelCase )] ) + "]" _lowerCAmelCase : Optional[int] = import_statement.split("""\n""" ) if len(_lowerCamelCase ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. _lowerCAmelCase : Dict = 2 if lines[1].strip() == """[""" else 1 _lowerCAmelCase : Tuple = [(i, _re_strip_line.search(_lowerCamelCase ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] _lowerCAmelCase : Tuple = sort_objects(_lowerCamelCase , key=lambda _lowerCamelCase : x[1] ) _lowerCAmelCase : Optional[Any] = [lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(_lowerCamelCase ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: _lowerCAmelCase : str = _re_bracket_content.sub(_replace , lines[1] ) else: _lowerCAmelCase : Tuple = [part.strip().replace("""\"""" , """""" ) for part in lines[1].split(""",""" )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: _lowerCAmelCase : Dict = keys[:-1] _lowerCAmelCase : Optional[Any] = get_indent(lines[1] ) + """, """.join([f'"{k}"' for k in sort_objects(_lowerCamelCase )] ) return "\n".join(_lowerCamelCase ) else: # Finally we have to deal with imports fitting on one line _lowerCAmelCase : Dict = _re_bracket_content.sub(_replace , _lowerCamelCase ) return import_statement def _UpperCAmelCase ( _lowerCamelCase : int , _lowerCamelCase : Union[str, Any]=True ) -> List[str]: with open(_lowerCamelCase , """r""" ) as f: _lowerCAmelCase : Optional[Any] = f.read() if "_import_structure" not in code: return # Blocks of indent level 0 _lowerCAmelCase : Optional[Any] = split_code_in_indented_blocks( _lowerCamelCase , start_prompt="""_import_structure = {""" , end_prompt="""if TYPE_CHECKING:""" ) # We ignore block 0 (everything until start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 , len(_lowerCamelCase ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. _lowerCAmelCase : List[str] = main_blocks[block_idx] _lowerCAmelCase : int = block.split("""\n""" ) # Get to the start of the imports. _lowerCAmelCase : Any = 0 while line_idx < len(_lowerCamelCase ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: _lowerCAmelCase : Optional[int] = len(_lowerCamelCase ) else: line_idx += 1 if line_idx >= len(_lowerCamelCase ): continue # Ignore beginning and last line: they don't contain anything. _lowerCAmelCase : Any = """\n""".join(block_lines[line_idx:-1] ) _lowerCAmelCase : Tuple = get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. _lowerCAmelCase : Optional[Any] = split_code_in_indented_blocks(_lowerCamelCase , indent_level=_lowerCamelCase ) # We have two categories of import key: list or _import_structure[key].append/extend _lowerCAmelCase : List[Any] = _re_direct_key if """_import_structure""" in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. _lowerCAmelCase : Tuple = [(pattern.search(_lowerCamelCase ).groups()[0] if pattern.search(_lowerCamelCase ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. _lowerCAmelCase : List[str] = [(i, key) for i, key in enumerate(_lowerCamelCase ) if key is not None] _lowerCAmelCase : List[str] = [x[0] for x in sorted(_lowerCamelCase , key=lambda _lowerCamelCase : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. _lowerCAmelCase : List[Any] = 0 _lowerCAmelCase : List[str] = [] for i in range(len(_lowerCamelCase ) ): if keys[i] is None: reordered_blocks.append(internal_blocks[i] ) else: _lowerCAmelCase : Any = sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reordered_blocks.append(_lowerCamelCase ) count += 1 # And we put our main block back together with its first and last line. _lowerCAmelCase : str = """\n""".join(block_lines[:line_idx] + reordered_blocks + [block_lines[-1]] ) if code != "\n".join(_lowerCamelCase ): if check_only: return True else: print(f'Overwriting {file}.' ) with open(_lowerCamelCase , """w""" ) as f: f.write("""\n""".join(_lowerCamelCase ) ) def _UpperCAmelCase ( _lowerCamelCase : Optional[Any]=True ) -> Any: _lowerCAmelCase : List[Any] = [] for root, _, files in os.walk(_lowerCamelCase ): if "__init__.py" in files: _lowerCAmelCase : List[Any] = sort_imports(os.path.join(_lowerCamelCase , """__init__.py""" ) , check_only=_lowerCamelCase ) if result: _lowerCAmelCase : str = [os.path.join(_lowerCamelCase , """__init__.py""" )] if len(_lowerCamelCase ) > 0: raise ValueError(f'Would overwrite {len(_lowerCamelCase )} files, run `make style`.' ) if __name__ == "__main__": UpperCamelCase_ = argparse.ArgumentParser() parser.add_argument("""--check_only""", action="""store_true""", help="""Whether to only check or fix style.""") UpperCamelCase_ = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
309
1
"""simple docstring""" import unittest from transformers import ( MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TextGenerationPipeline, logging, pipeline, ) from transformers.testing_utils import ( CaptureLogger, is_pipeline_test, require_accelerate, require_tf, require_torch, require_torch_gpu, require_torch_or_tf, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): lowercase__ = MODEL_FOR_CAUSAL_LM_MAPPING lowercase__ = TF_MODEL_FOR_CAUSAL_LM_MAPPING @require_torch def _UpperCAmelCase ( self : int): """simple docstring""" lowercase_ = pipeline(task="""text-generation""" , model="""sshleifer/tiny-ctrl""" , framework="""pt""") # Using `do_sample=False` to force deterministic output lowercase_ = text_generator("""This is a test""" , do_sample=lowerCAmelCase_) self.assertEqual( lowerCAmelCase_ , [ { """generated_text""": ( """This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope.""" """ oscope. FiliFili@@""" ) } ] , ) lowercase_ = text_generator(["""This is a test""", """This is a second test"""]) self.assertEqual( lowerCAmelCase_ , [ [ { """generated_text""": ( """This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope.""" """ oscope. FiliFili@@""" ) } ], [ { """generated_text""": ( """This is a second test ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy""" """ oscope. oscope. FiliFili@@""" ) } ], ] , ) lowercase_ = text_generator("""This is a test""" , do_sample=lowerCAmelCase_ , num_return_sequences=2 , return_tensors=lowerCAmelCase_) self.assertEqual( lowerCAmelCase_ , [ {"""generated_token_ids""": ANY(lowerCAmelCase_)}, {"""generated_token_ids""": ANY(lowerCAmelCase_)}, ] , ) lowercase_ = text_generator.model.config.eos_token_id lowercase_ = """<pad>""" lowercase_ = text_generator( ["""This is a test""", """This is a second test"""] , do_sample=lowerCAmelCase_ , num_return_sequences=2 , batch_size=2 , return_tensors=lowerCAmelCase_ , ) self.assertEqual( lowerCAmelCase_ , [ [ {"""generated_token_ids""": ANY(lowerCAmelCase_)}, {"""generated_token_ids""": ANY(lowerCAmelCase_)}, ], [ {"""generated_token_ids""": ANY(lowerCAmelCase_)}, {"""generated_token_ids""": ANY(lowerCAmelCase_)}, ], ] , ) @require_tf def _UpperCAmelCase ( self : Tuple): """simple docstring""" lowercase_ = pipeline(task="""text-generation""" , model="""sshleifer/tiny-ctrl""" , framework="""tf""") # Using `do_sample=False` to force deterministic output lowercase_ = text_generator("""This is a test""" , do_sample=lowerCAmelCase_) self.assertEqual( lowerCAmelCase_ , [ { """generated_text""": ( """This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵""" """ please,""" ) } ] , ) lowercase_ = text_generator(["""This is a test""", """This is a second test"""] , do_sample=lowerCAmelCase_) self.assertEqual( lowerCAmelCase_ , [ [ { """generated_text""": ( """This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵""" """ please,""" ) } ], [ { """generated_text""": ( """This is a second test Chieftain Chieftain prefecture prefecture prefecture Cannes Cannes""" """ Cannes 閲閲Cannes Cannes Cannes 攵 please,""" ) } ], ] , ) def _UpperCAmelCase ( self : List[str] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[Any]): """simple docstring""" lowercase_ = TextGenerationPipeline(model=lowerCAmelCase_ , tokenizer=lowerCAmelCase_) return text_generator, ["This is a test", "Another test"] def _UpperCAmelCase ( self : List[str]): """simple docstring""" lowercase_ = """Hello I believe in""" lowercase_ = pipeline("""text-generation""" , model="""hf-internal-testing/tiny-random-gpt2""") lowercase_ = text_generator(lowerCAmelCase_) self.assertEqual( lowerCAmelCase_ , [{"""generated_text""": """Hello I believe in fe fe fe fe fe fe fe fe fe fe fe fe"""}] , ) lowercase_ = text_generator(lowerCAmelCase_ , stop_sequence=""" fe""") self.assertEqual(lowerCAmelCase_ , [{"""generated_text""": """Hello I believe in fe"""}]) def _UpperCAmelCase ( self : int , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Any): """simple docstring""" lowercase_ = text_generator.model lowercase_ = text_generator.tokenizer lowercase_ = text_generator("""This is a test""") self.assertEqual(lowerCAmelCase_ , [{"""generated_text""": ANY(lowerCAmelCase_)}]) self.assertTrue(outputs[0]["""generated_text"""].startswith("""This is a test""")) lowercase_ = text_generator("""This is a test""" , return_full_text=lowerCAmelCase_) self.assertEqual(lowerCAmelCase_ , [{"""generated_text""": ANY(lowerCAmelCase_)}]) self.assertNotIn("""This is a test""" , outputs[0]["""generated_text"""]) lowercase_ = pipeline(task="""text-generation""" , model=lowerCAmelCase_ , tokenizer=lowerCAmelCase_ , return_full_text=lowerCAmelCase_) lowercase_ = text_generator("""This is a test""") self.assertEqual(lowerCAmelCase_ , [{"""generated_text""": ANY(lowerCAmelCase_)}]) self.assertNotIn("""This is a test""" , outputs[0]["""generated_text"""]) lowercase_ = text_generator("""This is a test""" , return_full_text=lowerCAmelCase_) self.assertEqual(lowerCAmelCase_ , [{"""generated_text""": ANY(lowerCAmelCase_)}]) self.assertTrue(outputs[0]["""generated_text"""].startswith("""This is a test""")) lowercase_ = text_generator(["""This is great !""", """Something else"""] , num_return_sequences=2 , do_sample=lowerCAmelCase_) self.assertEqual( lowerCAmelCase_ , [ [{"""generated_text""": ANY(lowerCAmelCase_)}, {"""generated_text""": ANY(lowerCAmelCase_)}], [{"""generated_text""": ANY(lowerCAmelCase_)}, {"""generated_text""": ANY(lowerCAmelCase_)}], ] , ) if text_generator.tokenizer.pad_token is not None: lowercase_ = text_generator( ["""This is great !""", """Something else"""] , num_return_sequences=2 , batch_size=2 , do_sample=lowerCAmelCase_) self.assertEqual( lowerCAmelCase_ , [ [{"""generated_text""": ANY(lowerCAmelCase_)}, {"""generated_text""": ANY(lowerCAmelCase_)}], [{"""generated_text""": ANY(lowerCAmelCase_)}, {"""generated_text""": ANY(lowerCAmelCase_)}], ] , ) with self.assertRaises(lowerCAmelCase_): lowercase_ = text_generator("""test""" , return_full_text=lowerCAmelCase_ , return_text=lowerCAmelCase_) with self.assertRaises(lowerCAmelCase_): lowercase_ = text_generator("""test""" , return_full_text=lowerCAmelCase_ , return_tensors=lowerCAmelCase_) with self.assertRaises(lowerCAmelCase_): lowercase_ = text_generator("""test""" , return_text=lowerCAmelCase_ , return_tensors=lowerCAmelCase_) # Empty prompt is slighly special # it requires BOS token to exist. # Special case for Pegasus which will always append EOS so will # work even without BOS. if ( text_generator.tokenizer.bos_token_id is not None or "Pegasus" in tokenizer.__class__.__name__ or "Git" in model.__class__.__name__ ): lowercase_ = text_generator("""""") self.assertEqual(lowerCAmelCase_ , [{"""generated_text""": ANY(lowerCAmelCase_)}]) else: with self.assertRaises((ValueError, AssertionError)): lowercase_ = text_generator("""""") if text_generator.framework == "tf": # TF generation does not support max_new_tokens, and it's impossible # to control long generation with only max_length without # fancy calculation, dismissing tests for now. return # We don't care about infinite range models. # They already work. # Skip this test for XGLM, since it uses sinusoidal positional embeddings which are resized on-the-fly. lowercase_ = ["""RwkvForCausalLM""", """XGLMForCausalLM""", """GPTNeoXForCausalLM"""] if ( tokenizer.model_max_length < 1_0_0_0_0 and text_generator.model.__class__.__name__ not in EXTRA_MODELS_CAN_HANDLE_LONG_INPUTS ): # Handling of large generations with self.assertRaises((RuntimeError, IndexError, ValueError, AssertionError)): text_generator("""This is a test""" * 5_0_0 , max_new_tokens=2_0) lowercase_ = text_generator("""This is a test""" * 5_0_0 , handle_long_generation="""hole""" , max_new_tokens=2_0) # Hole strategy cannot work with self.assertRaises(lowerCAmelCase_): text_generator( """This is a test""" * 5_0_0 , handle_long_generation="""hole""" , max_new_tokens=tokenizer.model_max_length + 1_0 , ) @require_torch @require_accelerate @require_torch_gpu def _UpperCAmelCase ( self : Optional[Any]): """simple docstring""" import torch # Classic `model_kwargs` lowercase_ = pipeline( model="""hf-internal-testing/tiny-random-bloom""" , model_kwargs={"""device_map""": """auto""", """torch_dtype""": torch.bfloataa} , ) self.assertEqual(pipe.model.device , torch.device(0)) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa) lowercase_ = pipe("""This is a test""") self.assertEqual( lowerCAmelCase_ , [ { """generated_text""": ( """This is a test test test test test test test test test test test test test test test test""" """ test""" ) } ] , ) # Upgraded those two to real pipeline arguments (they just get sent for the model as they're unlikely to mean anything else.) lowercase_ = pipeline(model="""hf-internal-testing/tiny-random-bloom""" , device_map="""auto""" , torch_dtype=torch.bfloataa) self.assertEqual(pipe.model.device , torch.device(0)) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa) lowercase_ = pipe("""This is a test""") self.assertEqual( lowerCAmelCase_ , [ { """generated_text""": ( """This is a test test test test test test test test test test test test test test test test""" """ test""" ) } ] , ) # torch_dtype will be automatically set to float32 if not provided - check: https://github.com/huggingface/transformers/pull/20602 lowercase_ = pipeline(model="""hf-internal-testing/tiny-random-bloom""" , device_map="""auto""") self.assertEqual(pipe.model.device , torch.device(0)) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.floataa) lowercase_ = pipe("""This is a test""") self.assertEqual( lowerCAmelCase_ , [ { """generated_text""": ( """This is a test test test test test test test test test test test test test test test test""" """ test""" ) } ] , ) @require_torch @require_torch_gpu def _UpperCAmelCase ( self : Any): """simple docstring""" import torch lowercase_ = pipeline(model="""hf-internal-testing/tiny-random-bloom""" , device=0 , torch_dtype=torch.floataa) pipe("""This is a test""") @require_torch @require_accelerate @require_torch_gpu def _UpperCAmelCase ( self : str): """simple docstring""" import torch lowercase_ = pipeline(model="""hf-internal-testing/tiny-random-bloom""" , device_map="""auto""" , torch_dtype=torch.floataa) pipe("""This is a test""" , do_sample=lowerCAmelCase_ , top_p=0.5) def _UpperCAmelCase ( self : List[str]): """simple docstring""" lowercase_ = """Hello world""" lowercase_ = pipeline("""text-generation""" , model="""hf-internal-testing/tiny-random-gpt2""") if text_generator.model.framework == "tf": lowercase_ = logging.get_logger("""transformers.generation.tf_utils""") else: lowercase_ = logging.get_logger("""transformers.generation.utils""") lowercase_ = """Both `max_new_tokens`""" # The beggining of the message to be checked in this test # Both are set by the user -> log warning with CaptureLogger(lowerCAmelCase_) as cl: lowercase_ = text_generator(lowerCAmelCase_ , max_length=1_0 , max_new_tokens=1) self.assertIn(lowerCAmelCase_ , cl.out) # The user only sets one -> no warning with CaptureLogger(lowerCAmelCase_) as cl: lowercase_ = text_generator(lowerCAmelCase_ , max_new_tokens=1) self.assertNotIn(lowerCAmelCase_ , cl.out) with CaptureLogger(lowerCAmelCase_) as cl: lowercase_ = text_generator(lowerCAmelCase_ , max_length=1_0) self.assertNotIn(lowerCAmelCase_ , cl.out)
313
"""simple docstring""" import unittest from transformers import BarthezTokenizer, BarthezTokenizerFast, BatchEncoding from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers @require_sentencepiece @slow # see https://github.com/huggingface/transformers/issues/11457 class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , unittest.TestCase ): lowercase__ = BarthezTokenizer lowercase__ = BarthezTokenizerFast lowercase__ = True lowercase__ = True def _UpperCAmelCase ( self : List[Any]): """simple docstring""" super().setUp() lowercase_ = BarthezTokenizerFast.from_pretrained("""moussaKam/mbarthez""") tokenizer.save_pretrained(self.tmpdirname) tokenizer.save_pretrained(self.tmpdirname , legacy_format=lowerCAmelCase_) lowercase_ = tokenizer def _UpperCAmelCase ( self : Any): """simple docstring""" lowercase_ = """<pad>""" lowercase_ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCAmelCase_) , lowerCAmelCase_) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCAmelCase_) , lowerCAmelCase_) def _UpperCAmelCase ( self : Dict): """simple docstring""" lowercase_ = list(self.get_tokenizer().get_vocab().keys()) self.assertEqual(vocab_keys[0] , """<s>""") self.assertEqual(vocab_keys[1] , """<pad>""") self.assertEqual(vocab_keys[-1] , """<mask>""") self.assertEqual(len(lowerCAmelCase_) , 1_0_1_1_2_2) def _UpperCAmelCase ( self : Optional[int]): """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1_0_1_1_2_2) @require_torch def _UpperCAmelCase ( self : List[str]): """simple docstring""" lowercase_ = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] lowercase_ = [0, 5_7, 3_0_1_8, 7_0_3_0_7, 9_1, 2] lowercase_ = self.tokenizer( lowerCAmelCase_ , max_length=len(lowerCAmelCase_) , padding=lowerCAmelCase_ , truncation=lowerCAmelCase_ , return_tensors="""pt""") self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_) self.assertEqual((2, 6) , batch.input_ids.shape) self.assertEqual((2, 6) , batch.attention_mask.shape) lowercase_ = batch.input_ids.tolist()[0] self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_) def _UpperCAmelCase ( self : List[Any]): """simple docstring""" if not self.test_rust_tokenizer: return lowercase_ = self.get_tokenizer() lowercase_ = self.get_rust_tokenizer() lowercase_ = """I was born in 92000, and this is falsé.""" lowercase_ = tokenizer.tokenize(lowerCAmelCase_) lowercase_ = rust_tokenizer.tokenize(lowerCAmelCase_) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_) lowercase_ = tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_) lowercase_ = rust_tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_) lowercase_ = self.get_rust_tokenizer() lowercase_ = tokenizer.encode(lowerCAmelCase_) lowercase_ = rust_tokenizer.encode(lowerCAmelCase_) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_) @slow def _UpperCAmelCase ( self : int): """simple docstring""" lowercase_ = {"""input_ids""": [[0, 4_9_0, 1_4_3_2_8, 4_5_0_7, 3_5_4, 4_7, 4_3_6_6_9, 9_5, 2_5, 7_8_1_1_7, 2_0_2_1_5, 1_9_7_7_9, 1_9_0, 2_2, 4_0_0, 4, 3_5_3_4_3, 8_0_3_1_0, 6_0_3, 8_6, 2_4_9_3_7, 1_0_5, 3_3_4_3_8, 9_4_7_6_2, 1_9_6, 3_9_6_4_2, 7, 1_5, 1_5_9_3_3, 1_7_3, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 1_0_5_3_4, 8_7, 2_5, 6_6, 3_3_5_8, 1_9_6, 5_5_2_8_9, 8, 8_2_9_6_1, 8_1, 2_2_0_4, 7_5_2_0_3, 7, 1_5, 7_6_3, 1_2_9_5_6, 2_1_6, 1_7_8, 1_4_3_2_8, 9_5_9_5, 1_3_7_7, 6_9_6_9_3, 7, 4_4_8, 7_1_0_2_1, 1_9_6, 1_8_1_0_6, 1_4_3_7, 1_3_9_7_4, 1_0_8, 9_0_8_3, 4, 4_9_3_1_5, 7, 3_9, 8_6, 1_3_2_6, 2_7_9_3, 4_6_3_3_3, 4, 4_4_8, 1_9_6, 7_4_5_8_8, 7, 4_9_3_1_5, 7, 3_9, 2_1, 8_2_2, 3_8_4_7_0, 7_4, 2_1, 6_6_7_2_3, 6_2_4_8_0, 8, 2_2_0_5_0, 5, 2]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # moussaKam/mbarthez is a french model. So we also use french texts. lowercase_ = [ """Le transformeur est un modèle d'apprentissage profond introduit en 2017, """ """utilisé principalement dans le domaine du traitement automatique des langues (TAL).""", """À l'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus """ """pour gérer des données séquentielles, telles que le langage naturel, pour des tâches """ """telles que la traduction et la synthèse de texte.""", ] self.tokenizer_integration_test_util( expected_encoding=lowerCAmelCase_ , model_name="""moussaKam/mbarthez""" , revision="""c2e4ecbca5e3cd2c37fe1ac285ca4fbdf1366fb6""" , sequences=lowerCAmelCase_ , )
313
1
'''simple docstring''' import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging __SCREAMING_SNAKE_CASE :Union[str, Any] = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE :Tuple = { '''asapp/sew-d-tiny-100k''': '''https://huggingface.co/asapp/sew-d-tiny-100k/resolve/main/config.json''', # See all SEW-D models at https://huggingface.co/models?filter=sew-d } class A_ ( lowerCAmelCase_ ): _lowerCamelCase : List[str] = """sew-d""" def __init__( self : Optional[Any] , snake_case_ : Tuple=3_2 , snake_case_ : Optional[Any]=7_6_8 , snake_case_ : Tuple=1_2 , snake_case_ : Union[str, Any]=1_2 , snake_case_ : Tuple=3_0_7_2 , snake_case_ : Tuple=2 , snake_case_ : int=5_1_2 , snake_case_ : Optional[int]=2_5_6 , snake_case_ : Union[str, Any]=True , snake_case_ : Any=True , snake_case_ : str=("p2c", "c2p") , snake_case_ : Dict="layer_norm" , snake_case_ : str="gelu_python" , snake_case_ : Dict=0.1 , snake_case_ : List[str]=0.1 , snake_case_ : Tuple=0.1 , snake_case_ : Any=0.0 , snake_case_ : Tuple=0.1 , snake_case_ : Union[str, Any]=0.0_2 , snake_case_ : str=1e-7 , snake_case_ : Optional[Any]=1e-5 , snake_case_ : Optional[Any]="group" , snake_case_ : Tuple="gelu" , snake_case_ : Tuple=(6_4, 1_2_8, 1_2_8, 1_2_8, 1_2_8, 2_5_6, 2_5_6, 2_5_6, 2_5_6, 5_1_2, 5_1_2, 5_1_2, 5_1_2) , snake_case_ : Dict=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , snake_case_ : Dict=(1_0, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , snake_case_ : int=False , snake_case_ : Union[str, Any]=1_2_8 , snake_case_ : int=1_6 , snake_case_ : Any=True , snake_case_ : Tuple=0.0_5 , snake_case_ : Tuple=1_0 , snake_case_ : Dict=2 , snake_case_ : Tuple=0.0 , snake_case_ : List[Any]=1_0 , snake_case_ : Union[str, Any]=0 , snake_case_ : Any="mean" , snake_case_ : Optional[Any]=False , snake_case_ : Any=False , snake_case_ : Tuple=2_5_6 , snake_case_ : int=0 , snake_case_ : Optional[Any]=1 , snake_case_ : List[str]=2 , **snake_case_ : List[str] , ): super().__init__(**snake_case_ , pad_token_id=snake_case_ , bos_token_id=snake_case_ , eos_token_id=snake_case_ ) _UpperCAmelCase = hidden_size _UpperCAmelCase = feat_extract_norm _UpperCAmelCase = feat_extract_activation _UpperCAmelCase = list(snake_case_ ) _UpperCAmelCase = list(snake_case_ ) _UpperCAmelCase = list(snake_case_ ) _UpperCAmelCase = conv_bias _UpperCAmelCase = num_conv_pos_embeddings _UpperCAmelCase = num_conv_pos_embedding_groups _UpperCAmelCase = len(self.conv_dim ) _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = intermediate_size _UpperCAmelCase = squeeze_factor _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = position_buckets _UpperCAmelCase = share_att_key _UpperCAmelCase = relative_attention _UpperCAmelCase = norm_rel_ebd _UpperCAmelCase = list(snake_case_ ) _UpperCAmelCase = hidden_act _UpperCAmelCase = num_attention_heads _UpperCAmelCase = hidden_dropout _UpperCAmelCase = attention_dropout _UpperCAmelCase = activation_dropout _UpperCAmelCase = feat_proj_dropout _UpperCAmelCase = final_dropout _UpperCAmelCase = layer_norm_eps _UpperCAmelCase = feature_layer_norm_eps _UpperCAmelCase = initializer_range _UpperCAmelCase = vocab_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( "Configuration for convolutional layers is incorrect." "It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`," f'but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)' f'= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`.' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 _UpperCAmelCase = apply_spec_augment _UpperCAmelCase = mask_time_prob _UpperCAmelCase = mask_time_length _UpperCAmelCase = mask_time_min_masks _UpperCAmelCase = mask_feature_prob _UpperCAmelCase = mask_feature_length _UpperCAmelCase = mask_feature_min_masks # ctc loss _UpperCAmelCase = ctc_loss_reduction _UpperCAmelCase = ctc_zero_infinity # sequence classification _UpperCAmelCase = use_weighted_layer_sum _UpperCAmelCase = classifier_proj_size @property def lowercase ( self : Any ): return functools.reduce(operator.mul , self.conv_stride , 1 )
22
'''simple docstring''' import inspect from typing import List, Optional, Tuple, Union import numpy as np import PIL import torch import torch.utils.checkpoint from ...models import UNetaDModel, VQModel from ...schedulers import ( DDIMScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, ) from ...utils import PIL_INTERPOLATION, randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput def UpperCAmelCase_ ( __lowercase : str ) -> List[str]: '''simple docstring''' _UpperCAmelCase , _UpperCAmelCase = image.size _UpperCAmelCase , _UpperCAmelCase = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32 _UpperCAmelCase = image.resize((w, h) , resample=PIL_INTERPOLATION["lanczos"] ) _UpperCAmelCase = np.array(__lowercase ).astype(np.floataa ) / 255.0 _UpperCAmelCase = image[None].transpose(0 , 3 , 1 , 2 ) _UpperCAmelCase = torch.from_numpy(__lowercase ) return 2.0 * image - 1.0 class A_ ( lowerCAmelCase_ ): def __init__( self : Optional[Any] , snake_case_ : VQModel , snake_case_ : UNetaDModel , snake_case_ : Union[ DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler, EulerDiscreteScheduler, EulerAncestralDiscreteScheduler, DPMSolverMultistepScheduler, ] , ): super().__init__() self.register_modules(vqvae=snake_case_ , unet=snake_case_ , scheduler=snake_case_ ) @torch.no_grad() def __call__( self : Any , snake_case_ : Union[torch.Tensor, PIL.Image.Image] = None , snake_case_ : Optional[int] = 1 , snake_case_ : Optional[int] = 1_0_0 , snake_case_ : Optional[float] = 0.0 , snake_case_ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , snake_case_ : Optional[str] = "pil" , snake_case_ : bool = True , ): if isinstance(snake_case_ , PIL.Image.Image ): _UpperCAmelCase = 1 elif isinstance(snake_case_ , torch.Tensor ): _UpperCAmelCase = image.shape[0] else: raise ValueError(f'`image` has to be of type `PIL.Image.Image` or `torch.Tensor` but is {type(snake_case_ )}' ) if isinstance(snake_case_ , PIL.Image.Image ): _UpperCAmelCase = preprocess(snake_case_ ) _UpperCAmelCase , _UpperCAmelCase = image.shape[-2:] # in_channels should be 6: 3 for latents, 3 for low resolution image _UpperCAmelCase = (batch_size, self.unet.config.in_channels // 2, height, width) _UpperCAmelCase = next(self.unet.parameters() ).dtype _UpperCAmelCase = randn_tensor(snake_case_ , generator=snake_case_ , device=self.device , dtype=snake_case_ ) _UpperCAmelCase = image.to(device=self.device , dtype=snake_case_ ) # set timesteps and move to the correct device self.scheduler.set_timesteps(snake_case_ , device=self.device ) _UpperCAmelCase = self.scheduler.timesteps # scale the initial noise by the standard deviation required by the scheduler _UpperCAmelCase = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature. # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] _UpperCAmelCase = "eta" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) _UpperCAmelCase = {} if accepts_eta: _UpperCAmelCase = eta for t in self.progress_bar(snake_case_ ): # concat latents and low resolution image in the channel dimension. _UpperCAmelCase = torch.cat([latents, image] , dim=1 ) _UpperCAmelCase = self.scheduler.scale_model_input(snake_case_ , snake_case_ ) # predict the noise residual _UpperCAmelCase = self.unet(snake_case_ , snake_case_ ).sample # compute the previous noisy sample x_t -> x_t-1 _UpperCAmelCase = self.scheduler.step(snake_case_ , snake_case_ , snake_case_ , **snake_case_ ).prev_sample # decode the image latents with the VQVAE _UpperCAmelCase = self.vqvae.decode(snake_case_ ).sample _UpperCAmelCase = torch.clamp(snake_case_ , -1.0 , 1.0 ) _UpperCAmelCase = image / 2 + 0.5 _UpperCAmelCase = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": _UpperCAmelCase = self.numpy_to_pil(snake_case_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=snake_case_ )
22
1
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import PoolFormerImageProcessor class a ( unittest.TestCase ): def __init__( self :Optional[Any] ,__lowercase :List[Any] ,__lowercase :Tuple=7 ,__lowercase :Optional[Any]=3 ,__lowercase :Dict=3_0 ,__lowercase :Union[str, Any]=4_0_0 ,__lowercase :Optional[int]=True ,__lowercase :int=None ,__lowercase :int=0.9 ,__lowercase :Optional[int]=None ,__lowercase :Dict=True ,__lowercase :str=[0.5, 0.5, 0.5] ,__lowercase :str=[0.5, 0.5, 0.5] ,): snake_case__ : List[Any] = size if size is not None else {'''shortest_edge''': 3_0} snake_case__ : Any = crop_size if crop_size is not None else {'''height''': 3_0, '''width''': 3_0} snake_case__ : Dict = parent snake_case__ : Optional[int] = batch_size snake_case__ : Tuple = num_channels snake_case__ : List[Any] = min_resolution snake_case__ : int = max_resolution snake_case__ : str = do_resize_and_center_crop snake_case__ : Dict = size snake_case__ : Union[str, Any] = crop_pct snake_case__ : List[str] = crop_size snake_case__ : Optional[Any] = do_normalize snake_case__ : Tuple = image_mean snake_case__ : List[str] = image_std def __lowerCamelCase ( self :Any ): return { "size": self.size, "do_resize_and_center_crop": self.do_resize_and_center_crop, "crop_pct": self.crop_pct, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class a ( __lowerCamelCase , unittest.TestCase ): __lowerCAmelCase : Any = PoolFormerImageProcessor if is_vision_available() else None def __lowerCamelCase ( self :List[str] ): snake_case__ : Tuple = PoolFormerImageProcessingTester(self ) @property def __lowerCamelCase ( self :Any ): return self.image_processor_tester.prepare_image_processor_dict() def __lowerCamelCase ( self :Tuple ): snake_case__ : Optional[int] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__lowercase ,'''do_resize_and_center_crop''' ) ) self.assertTrue(hasattr(__lowercase ,'''size''' ) ) self.assertTrue(hasattr(__lowercase ,'''crop_pct''' ) ) self.assertTrue(hasattr(__lowercase ,'''do_normalize''' ) ) self.assertTrue(hasattr(__lowercase ,'''image_mean''' ) ) self.assertTrue(hasattr(__lowercase ,'''image_std''' ) ) def __lowerCamelCase ( self :Optional[int] ): snake_case__ : Optional[int] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size ,{'''shortest_edge''': 3_0} ) self.assertEqual(image_processor.crop_size ,{'''height''': 3_0, '''width''': 3_0} ) snake_case__ : int = self.image_processing_class.from_dict(self.image_processor_dict ,size=4_2 ,crop_size=8_4 ) self.assertEqual(image_processor.size ,{'''shortest_edge''': 4_2} ) self.assertEqual(image_processor.crop_size ,{'''height''': 8_4, '''width''': 8_4} ) def __lowerCamelCase ( self :int ): pass def __lowerCamelCase ( self :Optional[Any] ): # Initialize image_processing snake_case__ : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images snake_case__ : List[Any] = prepare_image_inputs(self.image_processor_tester ,equal_resolution=__lowercase ) for image in image_inputs: self.assertIsInstance(__lowercase ,Image.Image ) # Test not batched input snake_case__ : Tuple = image_processing(image_inputs[0] ,return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) ,) # Test batched snake_case__ : Union[str, Any] = image_processing(__lowercase ,return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) ,) def __lowerCamelCase ( self :List[str] ): # Initialize image_processing snake_case__ : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors snake_case__ : List[Any] = prepare_image_inputs(self.image_processor_tester ,equal_resolution=__lowercase ,numpify=__lowercase ) for image in image_inputs: self.assertIsInstance(__lowercase ,np.ndarray ) # Test not batched input snake_case__ : Union[str, Any] = image_processing(image_inputs[0] ,return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) ,) # Test batched snake_case__ : str = image_processing(__lowercase ,return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) ,) def __lowerCamelCase ( self :Optional[Any] ): # Initialize image_processing snake_case__ : str = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors snake_case__ : str = prepare_image_inputs(self.image_processor_tester ,equal_resolution=__lowercase ,torchify=__lowercase ) for image in image_inputs: self.assertIsInstance(__lowercase ,torch.Tensor ) # Test not batched input snake_case__ : Dict = image_processing(image_inputs[0] ,return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) ,) # Test batched snake_case__ : str = image_processing(__lowercase ,return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) ,)
357
def _lowerCAmelCase ( __lowerCAmelCase ) -> int: """simple docstring""" if divisor % 5 == 0 or divisor % 2 == 0: return 0 snake_case__ : List[str] = 1 snake_case__ : int = 1 while repunit: snake_case__ : Dict = (10 * repunit + 1) % divisor repunit_index += 1 return repunit_index def _lowerCAmelCase ( __lowerCAmelCase = 1000000 ) -> int: """simple docstring""" snake_case__ : str = limit - 1 if divisor % 2 == 0: divisor += 1 while least_divisible_repunit(__lowerCAmelCase ) <= limit: divisor += 2 return divisor if __name__ == "__main__": print(f"""{solution() = }""")
44
0
import multiprocessing from typing import TYPE_CHECKING, Optional, Union from .. import Dataset, Features, config from ..formatting import query_table from ..packaged_modules.sql.sql import Sql from ..utils import logging from .abc import AbstractDatasetInputStream if TYPE_CHECKING: import sqlitea import sqlalchemy class _lowercase ( lowercase_ ): '''simple docstring''' def __init__( self :List[Any] , lowerCAmelCase__ :Union[str, "sqlalchemy.sql.Selectable"] , lowerCAmelCase__ :Union[str, "sqlalchemy.engine.Connection", "sqlalchemy.engine.Engine", "sqlite3.Connection"] , lowerCAmelCase__ :Optional[Features] = None , lowerCAmelCase__ :str = None , lowerCAmelCase__ :bool = False , **lowerCAmelCase__ :Union[str, Any] , ) -> Union[str, Any]: super().__init__(features=lowerCAmelCase_ , cache_dir=lowerCAmelCase_ , keep_in_memory=lowerCAmelCase_ , **lowerCAmelCase_ ) __SCREAMING_SNAKE_CASE : Optional[Any] = Sql( cache_dir=lowerCAmelCase_ , features=lowerCAmelCase_ , sql=lowerCAmelCase_ , con=lowerCAmelCase_ , **lowerCAmelCase_ , ) def __magic_name__( self :str ) -> Any: __SCREAMING_SNAKE_CASE : List[str] = None __SCREAMING_SNAKE_CASE : List[str] = None __SCREAMING_SNAKE_CASE : str = None __SCREAMING_SNAKE_CASE : Tuple = None self.builder.download_and_prepare( download_config=lowerCAmelCase_ , download_mode=lowerCAmelCase_ , verification_mode=lowerCAmelCase_ , base_path=lowerCAmelCase_ , ) # Build dataset for splits __SCREAMING_SNAKE_CASE : int = self.builder.as_dataset( split='''train''' , verification_mode=lowerCAmelCase_ , in_memory=self.keep_in_memory ) return dataset class _lowercase : '''simple docstring''' def __init__( self :Dict , lowerCAmelCase__ :Dataset , lowerCAmelCase__ :str , lowerCAmelCase__ :Union[str, "sqlalchemy.engine.Connection", "sqlalchemy.engine.Engine", "sqlite3.Connection"] , lowerCAmelCase__ :Optional[int] = None , lowerCAmelCase__ :Optional[int] = None , **lowerCAmelCase__ :List[Any] , ) -> Tuple: if num_proc is not None and num_proc <= 0: raise ValueError(f'''num_proc {num_proc} must be an integer > 0.''' ) __SCREAMING_SNAKE_CASE : List[Any] = dataset __SCREAMING_SNAKE_CASE : Dict = name __SCREAMING_SNAKE_CASE : List[str] = con __SCREAMING_SNAKE_CASE : Tuple = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE __SCREAMING_SNAKE_CASE : Any = num_proc __SCREAMING_SNAKE_CASE : Optional[Any] = to_sql_kwargs def __magic_name__( self :Any ) -> int: __SCREAMING_SNAKE_CASE : List[str] = self.to_sql_kwargs.pop('''sql''' , lowerCAmelCase_ ) __SCREAMING_SNAKE_CASE : Union[str, Any] = self.to_sql_kwargs.pop('''con''' , lowerCAmelCase_ ) __SCREAMING_SNAKE_CASE : Dict = self.to_sql_kwargs.pop('''index''' , lowerCAmelCase_ ) __SCREAMING_SNAKE_CASE : Tuple = self._write(index=lowerCAmelCase_ , **self.to_sql_kwargs ) return written def __magic_name__( self :Union[str, Any] , lowerCAmelCase__ :int ) -> Any: __SCREAMING_SNAKE_CASE : Optional[Any] = args __SCREAMING_SNAKE_CASE : Optional[Any] = {**to_sql_kwargs, """if_exists""": """append"""} if offset > 0 else to_sql_kwargs __SCREAMING_SNAKE_CASE : Optional[int] = query_table( table=self.dataset.data , key=slice(lowerCAmelCase_ , offset + self.batch_size ) , indices=self.dataset._indices , ) __SCREAMING_SNAKE_CASE : Dict = batch.to_pandas() __SCREAMING_SNAKE_CASE : Optional[Any] = df.to_sql(self.name , self.con , index=lowerCAmelCase_ , **lowerCAmelCase_ ) return num_rows or len(lowerCAmelCase_ ) def __magic_name__( self :Optional[Any] , lowerCAmelCase__ :Optional[int] , **lowerCAmelCase__ :str ) -> int: __SCREAMING_SNAKE_CASE : Any = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 , len(self.dataset ) , self.batch_size ) , unit='''ba''' , disable=not logging.is_progress_bar_enabled() , desc='''Creating SQL from Arrow format''' , ): written += self._batch_sql((offset, index, to_sql_kwargs) ) else: __SCREAMING_SNAKE_CASE : Tuple = len(self.dataset ), self.batch_size with multiprocessing.Pool(self.num_proc ) as pool: for num_rows in logging.tqdm( pool.imap( self._batch_sql , [(offset, index, to_sql_kwargs) for offset in range(0 , lowerCAmelCase_ , lowerCAmelCase_ )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit='''ba''' , disable=not logging.is_progress_bar_enabled() , desc='''Creating SQL from Arrow format''' , ): written += num_rows return written
9
'''simple docstring''' import os from typing import Dict, List, Union import tensorflow as tf from keras_nlp.tokenizers import BytePairTokenizer from tensorflow_text import pad_model_inputs from .tokenization_gpta import GPTaTokenizer class lowerCamelCase ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self : int , lowerCAmelCase_ : Dict[str, int] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : int = None , lowerCAmelCase_ : int = None ) -> str: '''simple docstring''' super().__init__() A__ : Optional[Any] =pad_token_id A__ : int =max_length A__ : Optional[int] =vocab A__ : Any =merges A__ : Optional[Any] =BytePairTokenizer(lowerCAmelCase_ , lowerCAmelCase_ , sequence_length=lowerCAmelCase_ ) @classmethod def lowercase__ ( cls : Optional[int] , lowerCAmelCase_ : GPTaTokenizer , *lowerCAmelCase_ : str , **lowerCAmelCase_ : Dict ) -> List[Any]: '''simple docstring''' A__ : Any =[""" """.join(lowerCAmelCase_ ) for m in tokenizer.bpe_ranks.keys()] A__ : List[str] =tokenizer.get_vocab() return cls(lowerCAmelCase_ , lowerCAmelCase_ , *lowerCAmelCase_ , **lowerCAmelCase_ ) @classmethod def lowercase__ ( cls : Tuple , lowerCAmelCase_ : Union[str, os.PathLike] , *lowerCAmelCase_ : Any , **lowerCAmelCase_ : List[Any] ) -> List[str]: '''simple docstring''' A__ : Any =GPTaTokenizer.from_pretrained(lowerCAmelCase_ , *lowerCAmelCase_ , **lowerCAmelCase_ ) return cls.from_tokenizer(lowerCAmelCase_ , *lowerCAmelCase_ , **lowerCAmelCase_ ) @classmethod def lowercase__ ( cls : str , lowerCAmelCase_ : Union[str, Any] ) -> Tuple: '''simple docstring''' return cls(**lowerCAmelCase_ ) def lowercase__ ( self : List[Any] ) -> Optional[Any]: '''simple docstring''' return { "vocab": self.vocab, "merges": self.merges, "max_length": self.max_length, "pad_token_id": self.pad_token_id, } def lowercase__ ( self : int , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : int = None ) -> Tuple: '''simple docstring''' A__ : Optional[int] =self.tf_tokenizer(lowerCAmelCase_ ) A__ : List[Any] =tf.ones_like(lowerCAmelCase_ ) if self.pad_token_id is not None: # pad the tokens up to max length A__ : Union[str, Any] =max_length if max_length is not None else self.max_length if max_length is not None: A__ , A__ : Any =pad_model_inputs( lowerCAmelCase_ , max_seq_length=lowerCAmelCase_ , pad_value=self.pad_token_id ) return {"attention_mask": attention_mask, "input_ids": input_ids}
134
0
'''simple docstring''' import baseaa def UpperCAmelCase_ ( __lowercase : str ) -> bytes: '''simple docstring''' return baseaa.aaaencode(string.encode("utf-8" ) ) def UpperCAmelCase_ ( __lowercase : bytes ) -> str: '''simple docstring''' return baseaa.aaadecode(__lowercase ).decode("utf-8" ) if __name__ == "__main__": import doctest doctest.testmod()
156
'''simple docstring''' import os import re import unicodedata from shutil import copyfile from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import is_torch_available, logging if is_torch_available(): import torch if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation __SCREAMING_SNAKE_CASE :Optional[int] = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE :Dict = {'''vocab_file''': '''spiece.model'''} __SCREAMING_SNAKE_CASE :Any = { '''vocab_file''': { '''AI-Sweden/gpt-sw3-126m''': '''https://huggingface.co/AI-Sweden/gpt-sw3-126m/resolve/main/spiece.model''', '''AI-Sweden/gpt-sw3-350m''': '''https://huggingface.co/AI-Sweden/gpt-sw3-350m/resolve/main/spiece.model''', '''AI-Sweden/gpt-sw3-1.6b''': '''https://huggingface.co/AI-Sweden/gpt-sw3-1.6b/resolve/main/spiece.model''', '''AI-Sweden/gpt-sw3-6.7b''': '''https://huggingface.co/AI-Sweden/gpt-sw3-6.7b/resolve/main/spiece.model''', '''AI-Sweden/gpt-sw3-20b''': '''https://huggingface.co/AI-Sweden/gpt-sw3-20b/resolve/main/spiece.model''', } } __SCREAMING_SNAKE_CASE :int = { '''AI-Sweden/gpt-sw3-126m''': 2048, '''AI-Sweden/gpt-sw3-350m''': 2048, '''AI-Sweden/gpt-sw3-1.6b''': 2048, '''AI-Sweden/gpt-sw3-6.7b''': 2048, '''AI-Sweden/gpt-sw3-20b''': 2048, } class A_ ( lowerCAmelCase_ ): _lowerCamelCase : Any = VOCAB_FILES_NAMES _lowerCamelCase : Dict = PRETRAINED_VOCAB_FILES_MAP _lowerCamelCase : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCamelCase : Optional[int] = ["""input_ids""", """attention_mask"""] def __init__( self : List[str] , snake_case_ : Any , snake_case_ : Optional[Any]=False , snake_case_ : int=False , snake_case_ : Any=False , snake_case_ : Optional[Any]=None , snake_case_ : List[Any]=None , snake_case_ : Tuple=None , snake_case_ : Any=None , snake_case_ : Optional[Dict[str, Any]] = None , **snake_case_ : Any , ): _UpperCAmelCase = {} if sp_model_kwargs is None else sp_model_kwargs _UpperCAmelCase = kwargs.get("name_or_path" ) if name_or_path is None: logger.warning( "name_or_path not provided, will work for all GPTSw3 models except gpt-sw3-7b," " you are testing the model, this can safely be ignored" ) _UpperCAmelCase = "None" # Default definitions for our 2 tokenizer versions, with None-checks to enable proper testing _UpperCAmelCase = "<|endoftext|>" if eos_token is None else eos_token _UpperCAmelCase = "<unk>" if unk_token is None else unk_token if "gpt-sw3-7b" in name_or_path: _UpperCAmelCase = unk_token if pad_token is None else pad_token _UpperCAmelCase = eos_token if bos_token is None else bos_token else: _UpperCAmelCase = "<pad>" if pad_token is None else pad_token _UpperCAmelCase = "<s>" if bos_token is None else bos_token super().__init__( do_lower_case=snake_case_ , remove_space=snake_case_ , keep_accents=snake_case_ , bos_token=snake_case_ , eos_token=snake_case_ , unk_token=snake_case_ , pad_token=snake_case_ , sp_model_kwargs=self.sp_model_kwargs , **snake_case_ , ) _UpperCAmelCase = do_lower_case _UpperCAmelCase = remove_space _UpperCAmelCase = keep_accents _UpperCAmelCase = vocab_file _UpperCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(snake_case_ ) # Used for whitespace normalization in input texts # fmt : off _UpperCAmelCase = {" ", " ", " ", " ", " ", " ", " ", " ", " ", " ", "", "„"} # fmt : on # Regular expression to remove non-printing characters (e.g. some unicode control chars) in preprocessing _UpperCAmelCase = re.compile( f'[{"".join(map(snake_case_ , list(range(0 , 9 ) ) + list(range(1_1 , 3_2 ) ) + list(range(1_2_7 , 1_6_0 ) ) + [1_6_0, 1_7_3, 8_2_0_3] ) )}]' ) def __getstate__( self : Optional[Any] ): _UpperCAmelCase = self.__dict__.copy() _UpperCAmelCase = None return state def __setstate__( self : Any , snake_case_ : Union[str, Any] ): _UpperCAmelCase = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): _UpperCAmelCase = {} _UpperCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) @property # Copied from transformers.models.albert.tokenization_albert.AlbertTokenizer.vocab_size def lowercase ( self : Dict ): return len(self.sp_model ) def lowercase ( self : Optional[Any] , snake_case_ : str ): _UpperCAmelCase = self.non_printing_characters_re.sub("" , snake_case_ ) # Normalize whitespaces _UpperCAmelCase = "".join([char if char not in self.whitespaces else " " for char in text] ) # NFC Unicode normalization _UpperCAmelCase = unicodedata.normalize("NFC" , snake_case_ ) return text def lowercase ( self : List[str] , snake_case_ : str , **snake_case_ : List[str] ): _UpperCAmelCase = self.preprocess_text(snake_case_ ) return self.sp_model.encode(snake_case_ , out_type=snake_case_ ) def lowercase ( self : str , snake_case_ : str ): return self.sp_model.PieceToId(snake_case_ ) def lowercase ( self : int , snake_case_ : int ): return self.sp_model.IdToPiece(snake_case_ ) @staticmethod def lowercase ( snake_case_ : str ): return out_string def lowercase ( self : Any , snake_case_ : List[str] ): _UpperCAmelCase = [] _UpperCAmelCase = "" _UpperCAmelCase = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: # TODO: Check if this is needed, as it ensures that decode(encode(doc)) != doc by adding extra whitespace in the decoded document if not prev_is_special: out_string += " " out_string += self.sp_model.decode(snake_case_ ) + token _UpperCAmelCase = True _UpperCAmelCase = [] else: current_sub_tokens.append(snake_case_ ) _UpperCAmelCase = False out_string += self.sp_model.decode(snake_case_ ) return out_string def lowercase ( self : Optional[Any] ): _UpperCAmelCase = {self.convert_ids_to_tokens(snake_case_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def lowercase ( self : Optional[int] , snake_case_ : str , snake_case_ : Optional[str] = None ): if not os.path.isdir(snake_case_ ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return _UpperCAmelCase = os.path.join( snake_case_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , snake_case_ ) elif not os.path.isfile(self.vocab_file ): with open(snake_case_ , "wb" ) as fi: _UpperCAmelCase = self.sp_model.serialized_model_proto() fi.write(snake_case_ ) return (out_vocab_file,) def lowercase ( self : Any , snake_case_ : Union[str, List[str]] , snake_case_ : Union[str, bool] = False ): if isinstance(snake_case_ , snake_case_ ): _UpperCAmelCase = self.preprocess_text(snake_case_ ) _UpperCAmelCase = self.sp_model.encode(snake_case_ ) else: _UpperCAmelCase = [self.preprocess_text(snake_case_ ) for t in text] _UpperCAmelCase = self.sp_model.encode(snake_case_ ) if return_tensors is True or return_tensors == "pt": _UpperCAmelCase = torch.tensor(snake_case_ ) return token_ids def lowercase ( self : Optional[Any] , snake_case_ : Union[int, List[int]] ): return self.sp_model.decode(snake_case_ ) def lowercase ( self : List[str] , snake_case_ : "Conversation" ): _UpperCAmelCase = [f'User: {text}' if is_user else f'Bot: {text}' for is_user, text in conversation.iter_texts()] _UpperCAmelCase = ( f'{self.eos_token}{self.bos_token}' + f'{self.bos_token}'.join(snake_case_ ) + f'{self.bos_token}Bot:' ) return self.encode(text=snake_case_ )
156
1
from __future__ import annotations from math import ceil, floor, sqrt def lowerCamelCase_ ( UpperCamelCase__ : int = 200_0000 ) -> int: """simple docstring""" __lowerCamelCase = [0] __lowerCamelCase = 42 for idx in range(1 , ceil(sqrt(target * 2 ) * 1.1 ) ): triangle_numbers.append(triangle_numbers[-1] + idx ) # we want this to be as close as possible to target __lowerCamelCase = 0 # the area corresponding to the grid that gives the product closest to target __lowerCamelCase = 0 # an estimate of b, using the quadratic formula __lowerCamelCase = 42 # the largest integer less than b_estimate __lowerCamelCase = 42 # the largest integer less than b_estimate __lowerCamelCase = 42 # the triangle number corresponding to b_floor __lowerCamelCase = 42 # the triangle number corresponding to b_ceil __lowerCamelCase = 42 for idx_a, triangle_a in enumerate(triangle_numbers[1:] , 1 ): __lowerCamelCase = (-1 + sqrt(1 + 8 * target / triangle_a )) / 2 __lowerCamelCase = floor(UpperCamelCase__ ) __lowerCamelCase = ceil(UpperCamelCase__ ) __lowerCamelCase = triangle_numbers[b_floor] __lowerCamelCase = triangle_numbers[b_ceil] if abs(target - triangle_b_first_guess * triangle_a ) < abs( target - best_product ): __lowerCamelCase = triangle_b_first_guess * triangle_a __lowerCamelCase = idx_a * b_floor if abs(target - triangle_b_second_guess * triangle_a ) < abs( target - best_product ): __lowerCamelCase = triangle_b_second_guess * triangle_a __lowerCamelCase = idx_a * b_ceil return area if __name__ == "__main__": print(f'''{solution() = }''')
90
import unittest import numpy as np from transformers.testing_utils import require_flax, require_tf, require_torch from transformers.utils import ( expand_dims, flatten_dict, is_flax_available, is_tf_available, is_torch_available, reshape, squeeze, transpose, ) if is_flax_available(): import jax.numpy as jnp if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def lowercase_ ( self ) -> Tuple: '''simple docstring''' __lowerCamelCase = { 'task_specific_params': { 'summarization': {'length_penalty': 1.0, 'max_length': 128, 'min_length': 12, 'num_beams': 4}, 'summarization_cnn': {'length_penalty': 2.0, 'max_length': 142, 'min_length': 56, 'num_beams': 4}, 'summarization_xsum': {'length_penalty': 1.0, 'max_length': 62, 'min_length': 11, 'num_beams': 6}, } } __lowerCamelCase = { 'task_specific_params.summarization.length_penalty': 1.0, 'task_specific_params.summarization.max_length': 128, 'task_specific_params.summarization.min_length': 12, 'task_specific_params.summarization.num_beams': 4, 'task_specific_params.summarization_cnn.length_penalty': 2.0, 'task_specific_params.summarization_cnn.max_length': 142, 'task_specific_params.summarization_cnn.min_length': 56, 'task_specific_params.summarization_cnn.num_beams': 4, 'task_specific_params.summarization_xsum.length_penalty': 1.0, 'task_specific_params.summarization_xsum.max_length': 62, 'task_specific_params.summarization_xsum.min_length': 11, 'task_specific_params.summarization_xsum.num_beams': 6, } self.assertEqual(flatten_dict(lowerCamelCase__ ) , lowerCamelCase__ ) def lowercase_ ( self ) -> Tuple: '''simple docstring''' __lowerCamelCase = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(transpose(lowerCamelCase__ ) , x.transpose() ) ) __lowerCamelCase = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(transpose(lowerCamelCase__ , axes=(1, 2, 0) ) , x.transpose((1, 2, 0) ) ) ) @require_torch def lowercase_ ( self ) -> int: '''simple docstring''' __lowerCamelCase = np.random.randn(3 , 4 ) __lowerCamelCase = torch.tensor(lowerCamelCase__ ) self.assertTrue(np.allclose(transpose(lowerCamelCase__ ) , transpose(lowerCamelCase__ ).numpy() ) ) __lowerCamelCase = np.random.randn(3 , 4 , 5 ) __lowerCamelCase = torch.tensor(lowerCamelCase__ ) self.assertTrue(np.allclose(transpose(lowerCamelCase__ , axes=(1, 2, 0) ) , transpose(lowerCamelCase__ , axes=(1, 2, 0) ).numpy() ) ) @require_tf def lowercase_ ( self ) -> Union[str, Any]: '''simple docstring''' __lowerCamelCase = np.random.randn(3 , 4 ) __lowerCamelCase = tf.constant(lowerCamelCase__ ) self.assertTrue(np.allclose(transpose(lowerCamelCase__ ) , transpose(lowerCamelCase__ ).numpy() ) ) __lowerCamelCase = np.random.randn(3 , 4 , 5 ) __lowerCamelCase = tf.constant(lowerCamelCase__ ) self.assertTrue(np.allclose(transpose(lowerCamelCase__ , axes=(1, 2, 0) ) , transpose(lowerCamelCase__ , axes=(1, 2, 0) ).numpy() ) ) @require_flax def lowercase_ ( self ) -> Optional[int]: '''simple docstring''' __lowerCamelCase = np.random.randn(3 , 4 ) __lowerCamelCase = jnp.array(lowerCamelCase__ ) self.assertTrue(np.allclose(transpose(lowerCamelCase__ ) , np.asarray(transpose(lowerCamelCase__ ) ) ) ) __lowerCamelCase = np.random.randn(3 , 4 , 5 ) __lowerCamelCase = jnp.array(lowerCamelCase__ ) self.assertTrue(np.allclose(transpose(lowerCamelCase__ , axes=(1, 2, 0) ) , np.asarray(transpose(lowerCamelCase__ , axes=(1, 2, 0) ) ) ) ) def lowercase_ ( self ) -> int: '''simple docstring''' __lowerCamelCase = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(reshape(lowerCamelCase__ , (4, 3) ) , np.reshape(lowerCamelCase__ , (4, 3) ) ) ) __lowerCamelCase = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(reshape(lowerCamelCase__ , (12, 5) ) , np.reshape(lowerCamelCase__ , (12, 5) ) ) ) @require_torch def lowercase_ ( self ) -> List[Any]: '''simple docstring''' __lowerCamelCase = np.random.randn(3 , 4 ) __lowerCamelCase = torch.tensor(lowerCamelCase__ ) self.assertTrue(np.allclose(reshape(lowerCamelCase__ , (4, 3) ) , reshape(lowerCamelCase__ , (4, 3) ).numpy() ) ) __lowerCamelCase = np.random.randn(3 , 4 , 5 ) __lowerCamelCase = torch.tensor(lowerCamelCase__ ) self.assertTrue(np.allclose(reshape(lowerCamelCase__ , (12, 5) ) , reshape(lowerCamelCase__ , (12, 5) ).numpy() ) ) @require_tf def lowercase_ ( self ) -> Optional[int]: '''simple docstring''' __lowerCamelCase = np.random.randn(3 , 4 ) __lowerCamelCase = tf.constant(lowerCamelCase__ ) self.assertTrue(np.allclose(reshape(lowerCamelCase__ , (4, 3) ) , reshape(lowerCamelCase__ , (4, 3) ).numpy() ) ) __lowerCamelCase = np.random.randn(3 , 4 , 5 ) __lowerCamelCase = tf.constant(lowerCamelCase__ ) self.assertTrue(np.allclose(reshape(lowerCamelCase__ , (12, 5) ) , reshape(lowerCamelCase__ , (12, 5) ).numpy() ) ) @require_flax def lowercase_ ( self ) -> Tuple: '''simple docstring''' __lowerCamelCase = np.random.randn(3 , 4 ) __lowerCamelCase = jnp.array(lowerCamelCase__ ) self.assertTrue(np.allclose(reshape(lowerCamelCase__ , (4, 3) ) , np.asarray(reshape(lowerCamelCase__ , (4, 3) ) ) ) ) __lowerCamelCase = np.random.randn(3 , 4 , 5 ) __lowerCamelCase = jnp.array(lowerCamelCase__ ) self.assertTrue(np.allclose(reshape(lowerCamelCase__ , (12, 5) ) , np.asarray(reshape(lowerCamelCase__ , (12, 5) ) ) ) ) def lowercase_ ( self ) -> int: '''simple docstring''' __lowerCamelCase = np.random.randn(1 , 3 , 4 ) self.assertTrue(np.allclose(squeeze(lowerCamelCase__ ) , np.squeeze(lowerCamelCase__ ) ) ) __lowerCamelCase = np.random.randn(1 , 4 , 1 , 5 ) self.assertTrue(np.allclose(squeeze(lowerCamelCase__ , axis=2 ) , np.squeeze(lowerCamelCase__ , axis=2 ) ) ) @require_torch def lowercase_ ( self ) -> int: '''simple docstring''' __lowerCamelCase = np.random.randn(1 , 3 , 4 ) __lowerCamelCase = torch.tensor(lowerCamelCase__ ) self.assertTrue(np.allclose(squeeze(lowerCamelCase__ ) , squeeze(lowerCamelCase__ ).numpy() ) ) __lowerCamelCase = np.random.randn(1 , 4 , 1 , 5 ) __lowerCamelCase = torch.tensor(lowerCamelCase__ ) self.assertTrue(np.allclose(squeeze(lowerCamelCase__ , axis=2 ) , squeeze(lowerCamelCase__ , axis=2 ).numpy() ) ) @require_tf def lowercase_ ( self ) -> Union[str, Any]: '''simple docstring''' __lowerCamelCase = np.random.randn(1 , 3 , 4 ) __lowerCamelCase = tf.constant(lowerCamelCase__ ) self.assertTrue(np.allclose(squeeze(lowerCamelCase__ ) , squeeze(lowerCamelCase__ ).numpy() ) ) __lowerCamelCase = np.random.randn(1 , 4 , 1 , 5 ) __lowerCamelCase = tf.constant(lowerCamelCase__ ) self.assertTrue(np.allclose(squeeze(lowerCamelCase__ , axis=2 ) , squeeze(lowerCamelCase__ , axis=2 ).numpy() ) ) @require_flax def lowercase_ ( self ) -> List[str]: '''simple docstring''' __lowerCamelCase = np.random.randn(1 , 3 , 4 ) __lowerCamelCase = jnp.array(lowerCamelCase__ ) self.assertTrue(np.allclose(squeeze(lowerCamelCase__ ) , np.asarray(squeeze(lowerCamelCase__ ) ) ) ) __lowerCamelCase = np.random.randn(1 , 4 , 1 , 5 ) __lowerCamelCase = jnp.array(lowerCamelCase__ ) self.assertTrue(np.allclose(squeeze(lowerCamelCase__ , axis=2 ) , np.asarray(squeeze(lowerCamelCase__ , axis=2 ) ) ) ) def lowercase_ ( self ) -> int: '''simple docstring''' __lowerCamelCase = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(expand_dims(lowerCamelCase__ , axis=1 ) , np.expand_dims(lowerCamelCase__ , axis=1 ) ) ) @require_torch def lowercase_ ( self ) -> Any: '''simple docstring''' __lowerCamelCase = np.random.randn(3 , 4 ) __lowerCamelCase = torch.tensor(lowerCamelCase__ ) self.assertTrue(np.allclose(expand_dims(lowerCamelCase__ , axis=1 ) , expand_dims(lowerCamelCase__ , axis=1 ).numpy() ) ) @require_tf def lowercase_ ( self ) -> Any: '''simple docstring''' __lowerCamelCase = np.random.randn(3 , 4 ) __lowerCamelCase = tf.constant(lowerCamelCase__ ) self.assertTrue(np.allclose(expand_dims(lowerCamelCase__ , axis=1 ) , expand_dims(lowerCamelCase__ , axis=1 ).numpy() ) ) @require_flax def lowercase_ ( self ) -> List[Any]: '''simple docstring''' __lowerCamelCase = np.random.randn(3 , 4 ) __lowerCamelCase = jnp.array(lowerCamelCase__ ) self.assertTrue(np.allclose(expand_dims(lowerCamelCase__ , axis=1 ) , np.asarray(expand_dims(lowerCamelCase__ , axis=1 ) ) ) )
90
1
import math import time from transformers import Trainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class UpperCAmelCase_ ( _a): '''simple docstring''' def __init__( self , *__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , **__SCREAMING_SNAKE_CASE ): """simple docstring""" super().__init__(*__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) UpperCamelCase : Any = eval_examples UpperCamelCase : Optional[Any] = post_process_function def _lowercase ( self , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE = "eval" ): """simple docstring""" UpperCamelCase : int = self.eval_dataset if eval_dataset is None else eval_dataset UpperCamelCase : int = self.get_eval_dataloader(__SCREAMING_SNAKE_CASE ) UpperCamelCase : str = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. UpperCamelCase : Any = self.compute_metrics UpperCamelCase : List[Any] = None UpperCamelCase : str = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop UpperCamelCase : Dict = time.time() try: UpperCamelCase : str = eval_loop( __SCREAMING_SNAKE_CASE , description='''Evaluation''' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=__SCREAMING_SNAKE_CASE , metric_key_prefix=__SCREAMING_SNAKE_CASE , ) finally: UpperCamelCase : Union[str, Any] = compute_metrics UpperCamelCase : Any = self.args.eval_batch_size * self.args.world_size if f"""{metric_key_prefix}_jit_compilation_time""" in output.metrics: start_time += output.metrics[f"""{metric_key_prefix}_jit_compilation_time"""] output.metrics.update( speed_metrics( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default UpperCamelCase : Dict = self.post_process_function(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , output.predictions ) UpperCamelCase : Optional[Any] = self.compute_metrics(__SCREAMING_SNAKE_CASE ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f"""{metric_key_prefix}_""" ): UpperCamelCase : Dict = metrics.pop(__SCREAMING_SNAKE_CASE ) metrics.update(output.metrics ) else: UpperCamelCase : List[Any] = output.metrics if self.args.should_log: # Only the main node log the results by default self.log(__SCREAMING_SNAKE_CASE ) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) UpperCamelCase : Any = self.callback_handler.on_evaluate(self.args , self.state , self.control , __SCREAMING_SNAKE_CASE ) return metrics def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE = "test" ): """simple docstring""" UpperCamelCase : Tuple = self.get_test_dataloader(__SCREAMING_SNAKE_CASE ) # Temporarily disable metric computation, we will do it in the loop here. UpperCamelCase : Union[str, Any] = self.compute_metrics UpperCamelCase : Tuple = None UpperCamelCase : str = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop UpperCamelCase : Optional[int] = time.time() try: UpperCamelCase : int = eval_loop( __SCREAMING_SNAKE_CASE , description='''Prediction''' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=__SCREAMING_SNAKE_CASE , metric_key_prefix=__SCREAMING_SNAKE_CASE , ) finally: UpperCamelCase : int = compute_metrics UpperCamelCase : Dict = self.args.eval_batch_size * self.args.world_size if f"""{metric_key_prefix}_jit_compilation_time""" in output.metrics: start_time += output.metrics[f"""{metric_key_prefix}_jit_compilation_time"""] output.metrics.update( speed_metrics( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is None or self.compute_metrics is None: return output UpperCamelCase : Dict = self.post_process_function(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , output.predictions , '''predict''' ) UpperCamelCase : Union[str, Any] = self.compute_metrics(__SCREAMING_SNAKE_CASE ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f"""{metric_key_prefix}_""" ): UpperCamelCase : Any = metrics.pop(__SCREAMING_SNAKE_CASE ) metrics.update(output.metrics ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=__SCREAMING_SNAKE_CASE )
315
import qiskit def a ( SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int ): """simple docstring""" UpperCamelCase : List[str] = qiskit.Aer.get_backend('''aer_simulator''' ) UpperCamelCase : Any = qiskit.QuantumCircuit(4 , 2 ) # encode inputs in qubits 0 and 1 if bita == 1: qc_ha.x(0 ) if bita == 1: qc_ha.x(1 ) qc_ha.barrier() # use cnots to write XOR of the inputs on qubit2 qc_ha.cx(0 , 2 ) qc_ha.cx(1 , 2 ) # use ccx / toffoli gate to write AND of the inputs on qubit3 qc_ha.ccx(0 , 1 , 3 ) qc_ha.barrier() # extract outputs qc_ha.measure(2 , 0 ) # extract XOR value qc_ha.measure(3 , 1 ) # extract AND value # Execute the circuit on the qasm simulator UpperCamelCase : Any = qiskit.execute(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , shots=1_0_0_0 ) # Return the histogram data of the results of the experiment return job.result().get_counts(SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": __UpperCAmelCase : int = half_adder(1, 1) print(f'''Half Adder Output Qubit Counts: {counts}''')
315
1
import doctest import logging import os import unittest from pathlib import Path from typing import List, Union import transformers from transformers.testing_utils import require_tf, require_torch, slow lowercase : Optional[Any] = logging.getLogger() @unittest.skip('Temporarily disable the doc tests.') @require_torch @require_tf @slow class lowerCamelCase__ ( unittest.TestCase): '''simple docstring''' def _lowerCamelCase ( self :List[Any] , a :Path , a :Union[str, None] = None , a :Union[List[str], None] = None , a :Union[str, List[str], None] = None , a :bool = True , ) -> Union[str, Any]: __UpperCamelCase : List[Any] = [file for file in os.listdir(a ) if os.path.isfile(os.path.join(a , a ) )] if identifier is not None: __UpperCamelCase : List[str] = [file for file in files if identifier in file] if n_identifier is not None: if isinstance(a , a ): for n_ in n_identifier: __UpperCamelCase : Any = [file for file in files if n_ not in file] else: __UpperCamelCase : Any = [file for file in files if n_identifier not in file] __UpperCamelCase : Any = ignore_files or [] ignore_files.append("__init__.py" ) __UpperCamelCase : Dict = [file for file in files if file not in ignore_files] for file in files: # Open all files print("Testing" , a ) if only_modules: __UpperCamelCase : Optional[int] = file.split("." )[0] try: __UpperCamelCase : Optional[int] = getattr(a , a ) __UpperCamelCase : Tuple = doctest.DocTestSuite(a ) __UpperCamelCase : Union[str, Any] = unittest.TextTestRunner().run(a ) self.assertIs(len(result.failures ) , 0 ) except AttributeError: logger.info(f'{module_identifier} is not a module.' ) else: __UpperCamelCase : int = doctest.testfile(str(".." / directory / file ) , optionflags=doctest.ELLIPSIS ) self.assertIs(result.failed , 0 ) def _lowerCamelCase ( self :Dict ) -> str: __UpperCamelCase : int = Path("src/transformers" ) __UpperCamelCase : int = "modeling" __UpperCamelCase : Optional[int] = [ "modeling_ctrl.py", "modeling_tf_ctrl.py", ] self.analyze_directory(a , identifier=a , ignore_files=a ) def _lowerCamelCase ( self :Optional[Any] ) -> Tuple: __UpperCamelCase : str = Path("src/transformers" ) __UpperCamelCase : List[Any] = "tokenization" self.analyze_directory(a , identifier=a ) def _lowerCamelCase ( self :str ) -> List[str]: __UpperCamelCase : Optional[int] = Path("src/transformers" ) __UpperCamelCase : Optional[int] = "configuration" self.analyze_directory(a , identifier=a ) def _lowerCamelCase ( self :Optional[int] ) -> Optional[int]: __UpperCamelCase : Tuple = Path("src/transformers" ) __UpperCamelCase : Dict = ["configuration", "modeling", "tokenization"] self.analyze_directory(a , n_identifier=a ) def _lowerCamelCase ( self :Union[str, Any] ) -> Tuple: __UpperCamelCase : Dict = Path("docs/source" ) __UpperCamelCase : List[str] = ["favicon.ico"] self.analyze_directory(a , ignore_files=a , only_modules=a )
232
from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase : List[Any] = logging.get_logger(__name__) lowercase : Any = { 'google/pegasus-large': 'https://huggingface.co/google/pegasus-large/resolve/main/config.json', # See all PEGASUS models at https://huggingface.co/models?filter=pegasus } class lowerCamelCase__ ( __lowercase): '''simple docstring''' _A = 'pegasus' _A = ['past_key_values'] _A = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self :Dict , a :Dict=5_0_2_6_5 , a :Dict=1_0_2_4 , a :Union[str, Any]=1_2 , a :Any=4_0_9_6 , a :str=1_6 , a :str=1_2 , a :Optional[Any]=4_0_9_6 , a :int=1_6 , a :Optional[int]=0.0 , a :Optional[int]=0.0 , a :List[Any]=True , a :Union[str, Any]=True , a :int="gelu" , a :Dict=1_0_2_4 , a :List[Any]=0.1 , a :List[str]=0.0 , a :List[Any]=0.0 , a :str=0.02 , a :int=0 , a :Any=False , a :Dict=0 , a :int=1 , a :Optional[Any]=1 , **a :Optional[int] , ) -> str: __UpperCamelCase : List[Any] = vocab_size __UpperCamelCase : Union[str, Any] = max_position_embeddings __UpperCamelCase : str = d_model __UpperCamelCase : Dict = encoder_ffn_dim __UpperCamelCase : int = encoder_layers __UpperCamelCase : int = encoder_attention_heads __UpperCamelCase : List[Any] = decoder_ffn_dim __UpperCamelCase : List[Any] = decoder_layers __UpperCamelCase : List[str] = decoder_attention_heads __UpperCamelCase : str = dropout __UpperCamelCase : Union[str, Any] = attention_dropout __UpperCamelCase : List[str] = activation_dropout __UpperCamelCase : Optional[Any] = activation_function __UpperCamelCase : Tuple = init_std __UpperCamelCase : Optional[int] = encoder_layerdrop __UpperCamelCase : Union[str, Any] = decoder_layerdrop __UpperCamelCase : Optional[Any] = use_cache __UpperCamelCase : Union[str, Any] = encoder_layers __UpperCamelCase : int = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=a , eos_token_id=a , is_encoder_decoder=a , decoder_start_token_id=a , forced_eos_token_id=a , **a , ) @property def _lowerCamelCase ( self :Dict ) -> int: return self.encoder_attention_heads @property def _lowerCamelCase ( self :Optional[Any] ) -> int: return self.d_model
232
1
'''simple docstring''' from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __lowercase: List[str] = {'configuration_mra': ['MRA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MraConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase: Optional[int] = [ 'MRA_PRETRAINED_MODEL_ARCHIVE_LIST', 'MraForMaskedLM', 'MraForMultipleChoice', 'MraForQuestionAnswering', 'MraForSequenceClassification', 'MraForTokenClassification', 'MraLayer', 'MraModel', 'MraPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mra import MRA_PRETRAINED_CONFIG_ARCHIVE_MAP, MraConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mra import ( MRA_PRETRAINED_MODEL_ARCHIVE_LIST, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraLayer, MraModel, MraPreTrainedModel, ) else: import sys __lowercase: Union[str, Any] = _LazyModule(__name__, globals()["__file__"], _import_structure)
369
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowercase: Dict = { "configuration_time_series_transformer": [ "TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "TimeSeriesTransformerConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase: Optional[int] = [ "TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TimeSeriesTransformerForPrediction", "TimeSeriesTransformerModel", "TimeSeriesTransformerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimeSeriesTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimeSeriesTransformerForPrediction, TimeSeriesTransformerModel, TimeSeriesTransformerPreTrainedModel, ) else: import sys __lowercase: Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
31
0
import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def lowerCAmelCase__(__snake_case ) -> List[Any]: '''simple docstring''' lowerCamelCase__ = filter(lambda __snake_case : p.requires_grad ,model.parameters() ) lowerCamelCase__ = sum([np.prod(p.size() ) for p in model_parameters] ) return params _a = logging.getLogger(__name__) def lowerCAmelCase__(__snake_case ,__snake_case ) -> List[str]: '''simple docstring''' if metric == "rouge2": lowerCamelCase__ = '''{val_avg_rouge2:.4f}-{step_count}''' elif metric == "bleu": lowerCamelCase__ = '''{val_avg_bleu:.4f}-{step_count}''' elif metric == "em": lowerCamelCase__ = '''{val_avg_em:.4f}-{step_count}''' else: raise NotImplementedError( F'seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this' ''' function.''' ) lowerCamelCase__ = ModelCheckpoint( dirpath=__snake_case ,filename=__snake_case ,monitor=F'val_{metric}' ,mode='''max''' ,save_top_k=3 ,every_n_epochs=1 ,) return checkpoint_callback def lowerCAmelCase__(__snake_case ,__snake_case ) -> str: '''simple docstring''' return EarlyStopping( monitor=F'val_{metric}' ,mode='''min''' if '''loss''' in metric else '''max''' ,patience=__snake_case ,verbose=__snake_case ,) class __A ( pl.Callback ): '''simple docstring''' def __lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase ): '''simple docstring''' lowerCamelCase__ = {F'lr_group_{i}': param['''lr'''] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )} pl_module.logger.log_metrics(__lowerCAmelCase ) @rank_zero_only def __lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=True ): '''simple docstring''' logger.info(F'***** {type_path} results at step {trainer.global_step:05d} *****' ) lowerCamelCase__ = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ['''log''', '''progress_bar''', '''preds''']} ) # Log results lowerCamelCase__ = Path(pl_module.hparams.output_dir ) if type_path == "test": lowerCamelCase__ = od / '''test_results.txt''' lowerCamelCase__ = od / '''test_generations.txt''' else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. lowerCamelCase__ = od / F'{type_path}_results/{trainer.global_step:05d}.txt' lowerCamelCase__ = od / F'{type_path}_generations/{trainer.global_step:05d}.txt' results_file.parent.mkdir(exist_ok=__lowerCAmelCase ) generations_file.parent.mkdir(exist_ok=__lowerCAmelCase ) with open(__lowerCAmelCase , '''a+''' ) as writer: for key in sorted(__lowerCAmelCase ): if key in ["log", "progress_bar", "preds"]: continue lowerCamelCase__ = metrics[key] if isinstance(__lowerCAmelCase , torch.Tensor ): lowerCamelCase__ = val.item() lowerCamelCase__ = F'{key}: {val:.6f}\n' writer.write(__lowerCAmelCase ) if not save_generations: return if "preds" in metrics: lowerCamelCase__ = '''\n'''.join(metrics['''preds'''] ) generations_file.open('''w+''' ).write(__lowerCAmelCase ) @rank_zero_only def __lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase ): '''simple docstring''' try: lowerCamelCase__ = pl_module.model.model.num_parameters() except AttributeError: lowerCamelCase__ = pl_module.model.num_parameters() lowerCamelCase__ = count_trainable_parameters(__lowerCAmelCase ) # mp stands for million parameters trainer.logger.log_metrics({'''n_params''': npars, '''mp''': npars / 1E6, '''grad_mp''': n_trainable_pars / 1E6} ) @rank_zero_only def __lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase ): '''simple docstring''' save_json(pl_module.metrics , pl_module.metrics_save_path ) return self._write_logs(__lowerCAmelCase , __lowerCAmelCase , '''test''' ) @rank_zero_only def __lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase ): '''simple docstring''' save_json(pl_module.metrics , pl_module.metrics_save_path ) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
209
import numpy as np from transformers import Pipeline def lowerCAmelCase__(__snake_case ) -> Tuple: '''simple docstring''' lowerCamelCase__ = np.max(__snake_case ,axis=-1 ,keepdims=__snake_case ) lowerCamelCase__ = np.exp(outputs - maxes ) return shifted_exp / shifted_exp.sum(axis=-1 ,keepdims=__snake_case ) class __A ( lowerCAmelCase ): '''simple docstring''' def __lowerCamelCase ( self , **__lowerCAmelCase ): '''simple docstring''' lowerCamelCase__ = {} if "second_text" in kwargs: lowerCamelCase__ = kwargs['''second_text'''] return preprocess_kwargs, {}, {} def __lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase=None ): '''simple docstring''' return self.tokenizer(__lowerCAmelCase , text_pair=__lowerCAmelCase , return_tensors=self.framework ) def __lowerCamelCase ( self , __lowerCAmelCase ): '''simple docstring''' return self.model(**__lowerCAmelCase ) def __lowerCamelCase ( self , __lowerCAmelCase ): '''simple docstring''' lowerCamelCase__ = model_outputs.logits[0].numpy() lowerCamelCase__ = softmax(__lowerCAmelCase ) lowerCamelCase__ = np.argmax(__lowerCAmelCase ) lowerCamelCase__ = self.model.config.idalabel[best_class] lowerCamelCase__ = probabilities[best_class].item() lowerCamelCase__ = logits.tolist() return {"label": label, "score": score, "logits": logits}
209
1
'''simple docstring''' def __magic_name__( lowerCamelCase = 4_0_0_0_0_0_0): __lowerCAmelCase = [0, 1] __lowerCAmelCase = 0 while fib[i] <= n: fib.append(fib[i] + fib[i + 1]) if fib[i + 2] > n: break i += 1 __lowerCAmelCase = 0 for j in range(len(__SCREAMING_SNAKE_CASE) - 1): if fib[j] % 2 == 0: total += fib[j] return total if __name__ == "__main__": print(f"""{solution() = }""")
369
'''simple docstring''' from math import sqrt def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase) and ( number >= 0 ), "'number' must been an int and positive" __lowerCAmelCase = True # 0 and 1 are none primes. if number <= 1: __lowerCAmelCase = False for divisor in range(2, int(round(sqrt(lowerCamelCase))) + 1): # if 'number' divisible by 'divisor' then sets 'status' # of false and break up the loop. if number % divisor == 0: __lowerCAmelCase = False break # precondition assert isinstance(lowerCamelCase, lowerCamelCase), "'status' must been from type bool" return status def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase) and (n > 2), "'N' must been an int and > 2" # beginList: contains all natural numbers from 2 up to N __lowerCAmelCase = list(range(2, n + 1)) __lowerCAmelCase = [] # this list will be returns. # actual sieve of erathostenes for i in range(len(lowerCamelCase)): for j in range(i + 1, len(lowerCamelCase)): if (begin_list[i] != 0) and (begin_list[j] % begin_list[i] == 0): __lowerCAmelCase = 0 # filters actual prime numbers. __lowerCAmelCase = [x for x in begin_list if x != 0] # precondition assert isinstance(lowerCamelCase, lowerCamelCase), "'ans' must been from type list" return ans def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase) and (n > 2), "'N' must been an int and > 2" __lowerCAmelCase = [] # iterates over all numbers between 2 up to N+1 # if a number is prime then appends to list 'ans' for number in range(2, n + 1): if is_prime(lowerCamelCase): ans.append(lowerCamelCase) # precondition assert isinstance(lowerCamelCase, lowerCamelCase), "'ans' must been from type list" return ans def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase) and number >= 0, "'number' must been an int and >= 0" __lowerCAmelCase = [] # this list will be returns of the function. # potential prime number factors. __lowerCAmelCase = 2 __lowerCAmelCase = number if number == 0 or number == 1: ans.append(lowerCamelCase) # if 'number' not prime then builds the prime factorization of 'number' elif not is_prime(lowerCamelCase): while quotient != 1: if is_prime(lowerCamelCase) and (quotient % factor == 0): ans.append(lowerCamelCase) quotient /= factor else: factor += 1 else: ans.append(lowerCamelCase) # precondition assert isinstance(lowerCamelCase, lowerCamelCase), "'ans' must been from type list" return ans def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase) and ( number >= 0 ), "'number' bust been an int and >= 0" __lowerCAmelCase = 0 # prime factorization of 'number' __lowerCAmelCase = prime_factorization(lowerCamelCase) __lowerCAmelCase = max(lowerCamelCase) # precondition assert isinstance(lowerCamelCase, lowerCamelCase), "'ans' must been from type int" return ans def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase) and ( number >= 0 ), "'number' bust been an int and >= 0" __lowerCAmelCase = 0 # prime factorization of 'number' __lowerCAmelCase = prime_factorization(lowerCamelCase) __lowerCAmelCase = min(lowerCamelCase) # precondition assert isinstance(lowerCamelCase, lowerCamelCase), "'ans' must been from type int" return ans def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase), "'number' must been an int" assert isinstance(number % 2 == 0, lowerCamelCase), "compare bust been from type bool" return number % 2 == 0 def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase), "'number' must been an int" assert isinstance(number % 2 != 0, lowerCamelCase), "compare bust been from type bool" return number % 2 != 0 def __magic_name__( lowerCamelCase): assert ( isinstance(lowerCamelCase, lowerCamelCase) and (number > 2) and is_even(lowerCamelCase) ), "'number' must been an int, even and > 2" __lowerCAmelCase = [] # this list will returned # creates a list of prime numbers between 2 up to 'number' __lowerCAmelCase = get_prime_numbers(lowerCamelCase) __lowerCAmelCase = len(lowerCamelCase) # run variable for while-loops. __lowerCAmelCase = 0 __lowerCAmelCase = None # exit variable. for break up the loops __lowerCAmelCase = True while i < len_pn and loop: __lowerCAmelCase = i + 1 while j < len_pn and loop: if prime_numbers[i] + prime_numbers[j] == number: __lowerCAmelCase = False ans.append(prime_numbers[i]) ans.append(prime_numbers[j]) j += 1 i += 1 # precondition assert ( isinstance(lowerCamelCase, lowerCamelCase) and (len(lowerCamelCase) == 2) and (ans[0] + ans[1] == number) and is_prime(ans[0]) and is_prime(ans[1]) ), "'ans' must contains two primes. And sum of elements must been eq 'number'" return ans def __magic_name__( lowerCamelCase, lowerCamelCase): assert ( isinstance(lowerCamelCase, lowerCamelCase) and isinstance(lowerCamelCase, lowerCamelCase) and (numbera >= 0) and (numbera >= 0) ), "'number1' and 'number2' must been positive integer." __lowerCAmelCase = 0 while numbera != 0: __lowerCAmelCase = numbera % numbera __lowerCAmelCase = numbera __lowerCAmelCase = rest # precondition assert isinstance(lowerCamelCase, lowerCamelCase) and ( numbera >= 0 ), "'number' must been from type int and positive" return numbera def __magic_name__( lowerCamelCase, lowerCamelCase): assert ( isinstance(lowerCamelCase, lowerCamelCase) and isinstance(lowerCamelCase, lowerCamelCase) and (numbera >= 1) and (numbera >= 1) ), "'number1' and 'number2' must been positive integer." __lowerCAmelCase = 1 # actual answer that will be return. # for kgV (x,1) if numbera > 1 and numbera > 1: # builds the prime factorization of 'number1' and 'number2' __lowerCAmelCase = prime_factorization(lowerCamelCase) __lowerCAmelCase = prime_factorization(lowerCamelCase) elif numbera == 1 or numbera == 1: __lowerCAmelCase = [] __lowerCAmelCase = [] __lowerCAmelCase = max(lowerCamelCase, lowerCamelCase) __lowerCAmelCase = 0 __lowerCAmelCase = 0 __lowerCAmelCase = [] # captured numbers int both 'primeFac1' and 'primeFac2' # iterates through primeFac1 for n in prime_fac_a: if n not in done: if n in prime_fac_a: __lowerCAmelCase = prime_fac_a.count(lowerCamelCase) __lowerCAmelCase = prime_fac_a.count(lowerCamelCase) for _ in range(max(lowerCamelCase, lowerCamelCase)): ans *= n else: __lowerCAmelCase = prime_fac_a.count(lowerCamelCase) for _ in range(lowerCamelCase): ans *= n done.append(lowerCamelCase) # iterates through primeFac2 for n in prime_fac_a: if n not in done: __lowerCAmelCase = prime_fac_a.count(lowerCamelCase) for _ in range(lowerCamelCase): ans *= n done.append(lowerCamelCase) # precondition assert isinstance(lowerCamelCase, lowerCamelCase) and ( ans >= 0 ), "'ans' must been from type int and positive" return ans def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase) and (n >= 0), "'number' must been a positive int" __lowerCAmelCase = 0 __lowerCAmelCase = 2 # this variable holds the answer while index < n: index += 1 ans += 1 # counts to the next number # if ans not prime then # runs to the next prime number. while not is_prime(lowerCamelCase): ans += 1 # precondition assert isinstance(lowerCamelCase, lowerCamelCase) and is_prime( lowerCamelCase), "'ans' must been a prime number and from type int" return ans def __magic_name__( lowerCamelCase, lowerCamelCase): assert ( is_prime(lowerCamelCase) and is_prime(lowerCamelCase) and (p_number_a < p_number_a) ), "The arguments must been prime numbers and 'pNumber1' < 'pNumber2'" __lowerCAmelCase = p_number_a + 1 # jump to the next number __lowerCAmelCase = [] # this list will be returns. # if number is not prime then # fetch the next prime number. while not is_prime(lowerCamelCase): number += 1 while number < p_number_a: ans.append(lowerCamelCase) number += 1 # fetch the next prime number. while not is_prime(lowerCamelCase): number += 1 # precondition assert ( isinstance(lowerCamelCase, lowerCamelCase) and ans[0] != p_number_a and ans[len(lowerCamelCase) - 1] != p_number_a ), "'ans' must been a list without the arguments" # 'ans' contains not 'pNumber1' and 'pNumber2' ! return ans def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase) and (n >= 1), "'n' must been int and >= 1" __lowerCAmelCase = [] # will be returned. for divisor in range(1, n + 1): if n % divisor == 0: ans.append(lowerCamelCase) # precondition assert ans[0] == 1 and ans[len(lowerCamelCase) - 1] == n, "Error in function getDivisiors(...)" return ans def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase) and ( number > 1 ), "'number' must been an int and >= 1" __lowerCAmelCase = get_divisors(lowerCamelCase) # precondition assert ( isinstance(lowerCamelCase, lowerCamelCase) and (divisors[0] == 1) and (divisors[len(lowerCamelCase) - 1] == number) ), "Error in help-function getDivisiors(...)" # summed all divisors up to 'number' (exclusive), hence [:-1] return sum(divisors[:-1]) == number def __magic_name__( lowerCamelCase, lowerCamelCase): assert ( isinstance(lowerCamelCase, lowerCamelCase) and isinstance(lowerCamelCase, lowerCamelCase) and (denominator != 0) ), "The arguments must been from type int and 'denominator' != 0" # build the greatest common divisor of numerator and denominator. __lowerCAmelCase = gcd(abs(lowerCamelCase), abs(lowerCamelCase)) # precondition assert ( isinstance(lowerCamelCase, lowerCamelCase) and (numerator % gcd_of_fraction == 0) and (denominator % gcd_of_fraction == 0) ), "Error in function gcd(...,...)" return (numerator // gcd_of_fraction, denominator // gcd_of_fraction) def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase) and (n >= 0), "'n' must been a int and >= 0" __lowerCAmelCase = 1 # this will be return. for factor in range(1, n + 1): ans *= factor return ans def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase) and (n >= 0), "'n' must been an int and >= 0" __lowerCAmelCase = 0 __lowerCAmelCase = 1 __lowerCAmelCase = 1 # this will be return for _ in range(n - 1): __lowerCAmelCase = ans ans += fiba __lowerCAmelCase = tmp return ans
9
0
"""simple docstring""" import unittest from diffusers import FlaxAutoencoderKL from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax from .test_modeling_common_flax import FlaxModelTesterMixin if is_flax_available(): import jax @require_flax class lowerCAmelCase_ ( _lowercase , unittest.TestCase ): '''simple docstring''' _lowerCamelCase: Dict = FlaxAutoencoderKL @property def _SCREAMING_SNAKE_CASE ( self : str ) -> Optional[int]: A = 4 A = 3 A = (32, 32) A = jax.random.PRNGKey(0 ) A = jax.random.uniform(A_ ,((batch_size, num_channels) + sizes) ) return {"sample": image, "prng_key": prng_key} def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Tuple: A = { 'block_out_channels': [32, 64], 'in_channels': 3, 'out_channels': 3, 'down_block_types': ['DownEncoderBlock2D', 'DownEncoderBlock2D'], 'up_block_types': ['UpDecoderBlock2D', 'UpDecoderBlock2D'], 'latent_channels': 4, } A = self.dummy_input return init_dict, inputs_dict
74
"""simple docstring""" import argparse import torch from torch import nn from transformers import MBartConfig, MBartForConditionalGeneration def _snake_case ( snake_case__ : Dict ): A = [ 'encoder.version', 'decoder.version', 'model.encoder.version', 'model.decoder.version', '_float_tensor', 'decoder.output_projection.weight', ] for k in ignore_keys: state_dict.pop(snake_case__ , snake_case__ ) def _snake_case ( snake_case__ : int ): A , A = emb.weight.shape A = nn.Linear(snake_case__ , snake_case__ , bias=snake_case__ ) A = emb.weight.data return lin_layer def _snake_case ( snake_case__ : List[str] , snake_case__ : Any="facebook/mbart-large-en-ro" , snake_case__ : Optional[int]=False , snake_case__ : List[str]=False ): A = torch.load(snake_case__ , map_location='cpu' )['model'] remove_ignore_keys_(snake_case__ ) A = state_dict['encoder.embed_tokens.weight'].shape[0] A = MBartConfig.from_pretrained(snake_case__ , vocab_size=snake_case__ ) if mbart_aa and finetuned: A = 'relu' A = state_dict['decoder.embed_tokens.weight'] A = MBartForConditionalGeneration(snake_case__ ) model.model.load_state_dict(snake_case__ ) if finetuned: A = make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": _lowercase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''fairseq_path''', type=str, help='''bart.large, bart.large.cnn or a path to a model.pt on local filesystem.''' ) parser.add_argument('''pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument( '''--hf_config''', default='''facebook/mbart-large-cc25''', type=str, help='''Which huggingface architecture to use: mbart-large''', ) parser.add_argument('''--mbart_50''', action='''store_true''', help='''whether the model is mMART-50 checkpoint''') parser.add_argument('''--finetuned''', action='''store_true''', help='''whether the model is a fine-tuned checkpoint''') _lowercase = parser.parse_args() _lowercase = convert_fairseq_mbart_checkpoint_from_disk( args.fairseq_path, hf_config_path=args.hf_config, finetuned=args.finetuned, mbart_aa=args.mbart_aa ) model.save_pretrained(args.pytorch_dump_folder_path)
74
1
import collections import tempfile import unittest import numpy as np from transformers.testing_utils import ( is_pt_flax_cross_test, require_flax, require_torch, require_vision, slow, torch_device, ) from transformers.utils import is_flax_available, is_torch_available, is_vision_available from ...test_modeling_flax_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_flax_bert import FlaxBertModelTester from ..clip.test_modeling_flax_clip import FlaxCLIPVisionModelTester from ..vit.test_modeling_flax_vit import FlaxViTModelTester if is_flax_available(): from transformers import ( FlaxBertModel, FlaxCLIPVisionModel, FlaxVisionTextDualEncoderModel, FlaxViTModel, VisionTextDualEncoderConfig, VisionTextDualEncoderProcessor, ) from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) if is_torch_available(): import torch from transformers import VisionTextDualEncoderModel if is_vision_available(): from PIL import Image def lowerCAmelCase( SCREAMING_SNAKE_CASE_ )-> Tuple: """simple docstring""" if isinstance(SCREAMING_SNAKE_CASE_ , collections.abc.Iterable ): return x return (x, x) @require_flax class __magic_name__ : def UpperCAmelCase_ ( self , _lowercase , _lowercase )-> List[str]: pass def UpperCAmelCase_ ( self )-> List[Any]: pass def UpperCAmelCase_ ( self )-> Any: pass def UpperCAmelCase_ ( self , _lowercase , _lowercase , _lowercase )-> Dict: UpperCamelCase_ = np.abs((a - b) ).max() self.assertLessEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , F"Difference between torch and flax is {diff} (>= {tol})." ) def UpperCAmelCase_ ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase=None , **_lowercase )-> Optional[Any]: UpperCamelCase_ = VisionTextDualEncoderConfig.from_vision_text_configs(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) UpperCamelCase_ = FlaxVisionTextDualEncoderModel(__SCREAMING_SNAKE_CASE ) UpperCamelCase_ = model(input_ids=__SCREAMING_SNAKE_CASE , pixel_values=__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE ) self.assertEqual(output["text_embeds"].shape , (input_ids.shape[0], config.projection_dim) ) self.assertEqual(output["image_embeds"].shape , (pixel_values.shape[0], config.projection_dim) ) def UpperCAmelCase_ ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase=None , **_lowercase )-> List[Any]: UpperCamelCase_ , UpperCamelCase_ = self.get_vision_text_model(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) UpperCamelCase_ = {"vision_model": vision_model, "text_model": text_model} UpperCamelCase_ = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**__SCREAMING_SNAKE_CASE ) UpperCamelCase_ = model(input_ids=__SCREAMING_SNAKE_CASE , pixel_values=__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE ) self.assertEqual(output["text_embeds"].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output["image_embeds"].shape , (pixel_values.shape[0], model.config.projection_dim) ) def UpperCAmelCase_ ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase=None , **_lowercase )-> Optional[Any]: UpperCamelCase_ , UpperCamelCase_ = self.get_vision_text_model(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) UpperCamelCase_ = {"vision_model": vision_model, "text_model": text_model} UpperCamelCase_ = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**__SCREAMING_SNAKE_CASE ) UpperCamelCase_ = model(input_ids=__SCREAMING_SNAKE_CASE , pixel_values=__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE ) UpperCamelCase_ = output[0] with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__SCREAMING_SNAKE_CASE ) UpperCamelCase_ = FlaxVisionTextDualEncoderModel.from_pretrained(__SCREAMING_SNAKE_CASE ) UpperCamelCase_ = model(input_ids=__SCREAMING_SNAKE_CASE , pixel_values=__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE ) UpperCamelCase_ = after_output[0] UpperCamelCase_ = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(__SCREAMING_SNAKE_CASE , 1e-3 ) def UpperCAmelCase_ ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase=None , **_lowercase )-> Dict: UpperCamelCase_ , UpperCamelCase_ = self.get_vision_text_model(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) UpperCamelCase_ = {"vision_model": vision_model, "text_model": text_model} UpperCamelCase_ = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**__SCREAMING_SNAKE_CASE ) UpperCamelCase_ = model( input_ids=__SCREAMING_SNAKE_CASE , pixel_values=__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , output_attentions=__SCREAMING_SNAKE_CASE ) UpperCamelCase_ = output.vision_model_output.attentions self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , vision_config.num_hidden_layers ) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) UpperCamelCase_ = to_atuple(vision_model.config.image_size ) UpperCamelCase_ = to_atuple(vision_model.config.patch_size ) UpperCamelCase_ = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) UpperCamelCase_ = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) UpperCamelCase_ = output.text_model_output.attentions self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def UpperCAmelCase_ ( self , _lowercase , _lowercase , _lowercase )-> List[Any]: pt_model.to(__SCREAMING_SNAKE_CASE ) pt_model.eval() # prepare inputs UpperCamelCase_ = inputs_dict UpperCamelCase_ = {k: torch.tensor(v.tolist() ) for k, v in flax_inputs.items()} with torch.no_grad(): UpperCamelCase_ = pt_model(**__SCREAMING_SNAKE_CASE ).to_tuple() UpperCamelCase_ = fx_model(**__SCREAMING_SNAKE_CASE ).to_tuple() self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , len(__SCREAMING_SNAKE_CASE ) , "Output lengths differ between Flax and PyTorch" ) for fx_output, pt_output in zip(fx_outputs[:4] , pt_outputs[:4] ): self.assert_almost_equals(__SCREAMING_SNAKE_CASE , pt_output.numpy() , 4e-2 ) # PT -> Flax with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(__SCREAMING_SNAKE_CASE ) UpperCamelCase_ = FlaxVisionTextDualEncoderModel.from_pretrained(__SCREAMING_SNAKE_CASE , from_pt=__SCREAMING_SNAKE_CASE ) UpperCamelCase_ = fx_model_loaded(**__SCREAMING_SNAKE_CASE ).to_tuple() self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , len(__SCREAMING_SNAKE_CASE ) , "Output lengths differ between Flax and PyTorch" ) for fx_output_loaded, pt_output in zip(fx_outputs_loaded[:4] , pt_outputs[:4] ): self.assert_almost_equals(__SCREAMING_SNAKE_CASE , pt_output.numpy() , 4e-2 ) # Flax -> PT with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(__SCREAMING_SNAKE_CASE ) UpperCamelCase_ = VisionTextDualEncoderModel.from_pretrained(__SCREAMING_SNAKE_CASE , from_flax=__SCREAMING_SNAKE_CASE ) pt_model_loaded.to(__SCREAMING_SNAKE_CASE ) pt_model_loaded.eval() with torch.no_grad(): UpperCamelCase_ = pt_model_loaded(**__SCREAMING_SNAKE_CASE ).to_tuple() self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , len(__SCREAMING_SNAKE_CASE ) , "Output lengths differ between Flax and PyTorch" ) for fx_output, pt_output_loaded in zip(fx_outputs[:4] , pt_outputs_loaded[:4] ): self.assert_almost_equals(__SCREAMING_SNAKE_CASE , pt_output_loaded.numpy() , 4e-2 ) def UpperCAmelCase_ ( self , _lowercase , _lowercase , _lowercase )-> Tuple: UpperCamelCase_ = VisionTextDualEncoderConfig.from_vision_text_configs(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) UpperCamelCase_ = VisionTextDualEncoderModel(__SCREAMING_SNAKE_CASE ) UpperCamelCase_ = FlaxVisionTextDualEncoderModel(__SCREAMING_SNAKE_CASE ) UpperCamelCase_ = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , __SCREAMING_SNAKE_CASE ) UpperCamelCase_ = fx_state self.check_pt_flax_equivalence(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def UpperCAmelCase_ ( self , _lowercase , _lowercase , _lowercase )-> Optional[Any]: UpperCamelCase_ = VisionTextDualEncoderConfig.from_vision_text_configs(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) UpperCamelCase_ = VisionTextDualEncoderModel(__SCREAMING_SNAKE_CASE ) UpperCamelCase_ = FlaxVisionTextDualEncoderModel(__SCREAMING_SNAKE_CASE ) UpperCamelCase_ = load_flax_weights_in_pytorch_model(__SCREAMING_SNAKE_CASE , fx_model.params ) self.check_pt_flax_equivalence(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def UpperCAmelCase_ ( self )-> Optional[int]: UpperCamelCase_ = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**__SCREAMING_SNAKE_CASE ) def UpperCAmelCase_ ( self )-> Dict: UpperCamelCase_ = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**__SCREAMING_SNAKE_CASE ) def UpperCAmelCase_ ( self )-> Dict: UpperCamelCase_ = self.prepare_config_and_inputs() self.check_save_load(**__SCREAMING_SNAKE_CASE ) def UpperCAmelCase_ ( self )-> Dict: UpperCamelCase_ = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**__SCREAMING_SNAKE_CASE ) @is_pt_flax_cross_test def UpperCAmelCase_ ( self )-> Any: UpperCamelCase_ = self.prepare_config_and_inputs() UpperCamelCase_ = config_inputs_dict.pop("vision_config" ) UpperCamelCase_ = config_inputs_dict.pop("text_config" ) UpperCamelCase_ = config_inputs_dict self.check_equivalence_pt_to_flax(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) self.check_equivalence_flax_to_pt(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) @slow def UpperCAmelCase_ ( self )-> Tuple: UpperCamelCase_ , UpperCamelCase_ = self.get_pretrained_model_and_inputs() UpperCamelCase_ = model_a(**__SCREAMING_SNAKE_CASE ) UpperCamelCase_ = outputs[0] with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(__SCREAMING_SNAKE_CASE ) UpperCamelCase_ = FlaxVisionTextDualEncoderModel.from_pretrained(__SCREAMING_SNAKE_CASE ) UpperCamelCase_ = model_a(**__SCREAMING_SNAKE_CASE ) UpperCamelCase_ = after_outputs[0] UpperCamelCase_ = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(__SCREAMING_SNAKE_CASE , 1e-5 ) @require_flax class __magic_name__ ( lowerCAmelCase_ , unittest.TestCase ): def UpperCAmelCase_ ( self )-> Any: UpperCamelCase_ = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( "hf-internal-testing/tiny-random-vit" , "hf-internal-testing/tiny-bert" , vision_from_pt=__SCREAMING_SNAKE_CASE , text_from_pt=__SCREAMING_SNAKE_CASE , ) UpperCamelCase_ = 13 UpperCamelCase_ = floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ] ) UpperCamelCase_ = ids_tensor([batch_size, 4] , model.config.text_config.vocab_size ) UpperCamelCase_ = random_attention_mask([batch_size, 4] ) UpperCamelCase_ = {"pixel_values": pixel_values, "input_ids": input_ids, "attention_mask": attention_mask} return model, inputs def UpperCAmelCase_ ( self , _lowercase , _lowercase )-> int: UpperCamelCase_ = FlaxViTModel(__SCREAMING_SNAKE_CASE ) UpperCamelCase_ = FlaxBertModel(__SCREAMING_SNAKE_CASE ) return vision_model, text_model def UpperCAmelCase_ ( self )-> Dict: UpperCamelCase_ = FlaxViTModelTester(self ) UpperCamelCase_ = FlaxBertModelTester(self ) UpperCamelCase_ = vit_model_tester.prepare_config_and_inputs() UpperCamelCase_ = bert_model_tester.prepare_config_and_inputs() UpperCamelCase_ , UpperCamelCase_ = vision_config_and_inputs UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_torch class __magic_name__ ( lowerCAmelCase_ , unittest.TestCase ): def UpperCAmelCase_ ( self )-> List[Any]: UpperCamelCase_ = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( "hf-internal-testing/tiny-random-clip" , "hf-internal-testing/tiny-bert" , vision_from_pt=__SCREAMING_SNAKE_CASE , text_from_pt=__SCREAMING_SNAKE_CASE , ) UpperCamelCase_ = 13 UpperCamelCase_ = floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ] ) UpperCamelCase_ = ids_tensor([batch_size, 4] , model.config.text_config.vocab_size ) UpperCamelCase_ = random_attention_mask([batch_size, 4] ) UpperCamelCase_ = {"pixel_values": pixel_values, "input_ids": input_ids, "attention_mask": attention_mask} return model, inputs def UpperCAmelCase_ ( self , _lowercase , _lowercase )-> List[Any]: UpperCamelCase_ = FlaxCLIPVisionModel(__SCREAMING_SNAKE_CASE ) UpperCamelCase_ = FlaxBertModel(__SCREAMING_SNAKE_CASE ) return vision_model, text_model def UpperCAmelCase_ ( self )-> str: UpperCamelCase_ = FlaxCLIPVisionModelTester(self ) UpperCamelCase_ = FlaxBertModelTester(self ) UpperCamelCase_ = clip_model_tester.prepare_config_and_inputs() UpperCamelCase_ = bert_model_tester.prepare_config_and_inputs() UpperCamelCase_ , UpperCamelCase_ = vision_config_and_inputs UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_flax @require_vision class __magic_name__ ( unittest.TestCase ): @slow def UpperCAmelCase_ ( self )-> Union[str, Any]: UpperCamelCase_ = FlaxVisionTextDualEncoderModel.from_pretrained("clip-italian/clip-italian" , logit_scale_init_value=1.0 ) UpperCamelCase_ = VisionTextDualEncoderProcessor.from_pretrained("clip-italian/clip-italian" ) UpperCamelCase_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) UpperCamelCase_ = processor( text=["una foto di un gatto", "una foto di un cane"] , images=__SCREAMING_SNAKE_CASE , padding=__SCREAMING_SNAKE_CASE , return_tensors="np" ) UpperCamelCase_ = model(**__SCREAMING_SNAKE_CASE ) # verify the logits self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) ) self.assertEqual( outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , ) UpperCamelCase_ = np.array([[1.2_284_727, 0.3_104_122]] ) self.assertTrue(np.allclose(outputs.logits_per_image , __SCREAMING_SNAKE_CASE , atol=1e-3 ) )
352
import unittest from transformers import PegasusConfig, PegasusTokenizer, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html SCREAMING_SNAKE_CASE :int = """platform""" import jax import jax.numpy as jnp import numpy as np from transformers import FlaxPegasusForConditionalGeneration, FlaxPegasusModel @require_flax class __magic_name__ : UpperCamelCase_ :str = PegasusConfig UpperCamelCase_ :List[str] = {} UpperCamelCase_ :str = """gelu""" def __init__( self , _lowercase , _lowercase=13 , _lowercase=7 , _lowercase=True , _lowercase=False , _lowercase=99 , _lowercase=32 , _lowercase=5 , _lowercase=4 , _lowercase=37 , _lowercase=0.1 , _lowercase=0.1 , _lowercase=20 , _lowercase=2 , _lowercase=1 , _lowercase=0 , )-> Tuple: UpperCamelCase_ = parent UpperCamelCase_ = batch_size UpperCamelCase_ = seq_length UpperCamelCase_ = is_training UpperCamelCase_ = use_labels UpperCamelCase_ = vocab_size UpperCamelCase_ = hidden_size UpperCamelCase_ = num_hidden_layers UpperCamelCase_ = num_attention_heads UpperCamelCase_ = intermediate_size UpperCamelCase_ = hidden_dropout_prob UpperCamelCase_ = attention_probs_dropout_prob UpperCamelCase_ = max_position_embeddings UpperCamelCase_ = eos_token_id UpperCamelCase_ = pad_token_id UpperCamelCase_ = bos_token_id def UpperCAmelCase_ ( self )-> List[str]: UpperCamelCase_ = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ).clip(3 , self.vocab_size ) UpperCamelCase_ = np.expand_dims(np.array([self.eos_token_id] * self.batch_size ) , 1 ) UpperCamelCase_ = np.concatenate([input_ids, eos_tensor] , axis=1 ) UpperCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase_ = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) UpperCamelCase_ = prepare_pegasus_inputs_dict(_lowercase , _lowercase , _lowercase ) return config, inputs_dict def UpperCAmelCase_ ( self , _lowercase , _lowercase , _lowercase )-> Optional[Any]: UpperCamelCase_ = 20 UpperCamelCase_ = model_class_name(_lowercase ) UpperCamelCase_ = model.encode(inputs_dict["input_ids"] ) UpperCamelCase_ , UpperCamelCase_ = ( inputs_dict["decoder_input_ids"], inputs_dict["decoder_attention_mask"], ) UpperCamelCase_ = model.init_cache(decoder_input_ids.shape[0] , _lowercase , _lowercase ) UpperCamelCase_ = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype="i4" ) UpperCamelCase_ = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) UpperCamelCase_ = model.decode( decoder_input_ids[:, :-1] , _lowercase , decoder_attention_mask=_lowercase , past_key_values=_lowercase , decoder_position_ids=_lowercase , ) UpperCamelCase_ = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="i4" ) UpperCamelCase_ = model.decode( decoder_input_ids[:, -1:] , _lowercase , decoder_attention_mask=_lowercase , past_key_values=outputs_cache.past_key_values , decoder_position_ids=_lowercase , ) UpperCamelCase_ = model.decode(_lowercase , _lowercase ) UpperCamelCase_ = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=F"Max diff is {diff}" ) def UpperCAmelCase_ ( self , _lowercase , _lowercase , _lowercase )-> Tuple: UpperCamelCase_ = 20 UpperCamelCase_ = model_class_name(_lowercase ) UpperCamelCase_ = model.encode(inputs_dict["input_ids"] ) UpperCamelCase_ , UpperCamelCase_ = ( inputs_dict["decoder_input_ids"], inputs_dict["decoder_attention_mask"], ) UpperCamelCase_ = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] , axis=-1 , ) UpperCamelCase_ = model.init_cache(decoder_input_ids.shape[0] , _lowercase , _lowercase ) UpperCamelCase_ = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) UpperCamelCase_ = model.decode( decoder_input_ids[:, :-1] , _lowercase , decoder_attention_mask=_lowercase , past_key_values=_lowercase , decoder_position_ids=_lowercase , ) UpperCamelCase_ = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="i4" ) UpperCamelCase_ = model.decode( decoder_input_ids[:, -1:] , _lowercase , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=_lowercase , decoder_position_ids=_lowercase , ) UpperCamelCase_ = model.decode(_lowercase , _lowercase , decoder_attention_mask=_lowercase ) UpperCamelCase_ = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=F"Max diff is {diff}" ) def lowerCAmelCase( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , )-> Tuple: """simple docstring""" if attention_mask is None: UpperCamelCase_ = np.not_equal(SCREAMING_SNAKE_CASE_ , config.pad_token_id ).astype(np.inta ) if decoder_attention_mask is None: UpperCamelCase_ = np.concatenate( [ np.ones(decoder_input_ids[:, :1].shape , dtype=np.inta ), np.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ).astype(np.inta ), ] , axis=-1 , ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, } @require_flax class __magic_name__ ( snake_case , unittest.TestCase ): UpperCamelCase_ :Dict = ( ( FlaxPegasusForConditionalGeneration, FlaxPegasusModel, ) if is_flax_available() else () ) UpperCamelCase_ :Optional[int] = (FlaxPegasusForConditionalGeneration,) if is_flax_available() else () UpperCamelCase_ :List[str] = True UpperCamelCase_ :Any = False UpperCamelCase_ :Union[str, Any] = False UpperCamelCase_ :Tuple = False def UpperCAmelCase_ ( self )-> List[str]: UpperCamelCase_ = FlaxPegasusModelTester(self ) UpperCamelCase_ = ConfigTester(self , config_class=_lowercase ) def UpperCAmelCase_ ( self )-> Optional[int]: self.config_tester.run_common_tests() def UpperCAmelCase_ ( self )-> int: UpperCamelCase_ , UpperCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(_lowercase , _lowercase , _lowercase ) def UpperCAmelCase_ ( self )-> Any: UpperCamelCase_ , UpperCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(_lowercase , _lowercase , _lowercase ) def UpperCAmelCase_ ( self )-> int: UpperCamelCase_ , UpperCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): UpperCamelCase_ = self._prepare_for_class(_lowercase , _lowercase ) UpperCamelCase_ = model_class(_lowercase ) @jax.jit def encode_jitted(_lowercase , _lowercase=None , **_lowercase ): return model.encode(input_ids=_lowercase , attention_mask=_lowercase ) with self.subTest("JIT Enabled" ): UpperCamelCase_ = encode_jitted(**_lowercase ).to_tuple() with self.subTest("JIT Disabled" ): with jax.disable_jit(): UpperCamelCase_ = encode_jitted(**_lowercase ).to_tuple() self.assertEqual(len(_lowercase ) , len(_lowercase ) ) for jitted_output, output in zip(_lowercase , _lowercase ): self.assertEqual(jitted_output.shape , output.shape ) def UpperCAmelCase_ ( self )-> Optional[Any]: UpperCamelCase_ , UpperCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): UpperCamelCase_ = model_class(_lowercase ) UpperCamelCase_ = model.encode(inputs_dict["input_ids"] , inputs_dict["attention_mask"] ) UpperCamelCase_ = { "decoder_input_ids": inputs_dict["decoder_input_ids"], "decoder_attention_mask": inputs_dict["decoder_attention_mask"], "encoder_outputs": encoder_outputs, } @jax.jit def decode_jitted(_lowercase , _lowercase , _lowercase ): return model.decode( decoder_input_ids=_lowercase , decoder_attention_mask=_lowercase , encoder_outputs=_lowercase , ) with self.subTest("JIT Enabled" ): UpperCamelCase_ = decode_jitted(**_lowercase ).to_tuple() with self.subTest("JIT Disabled" ): with jax.disable_jit(): UpperCamelCase_ = decode_jitted(**_lowercase ).to_tuple() self.assertEqual(len(_lowercase ) , len(_lowercase ) ) for jitted_output, output in zip(_lowercase , _lowercase ): self.assertEqual(jitted_output.shape , output.shape ) @slow def UpperCAmelCase_ ( self )-> int: for model_class_name in self.all_model_classes: UpperCamelCase_ = model_class_name.from_pretrained("google/pegasus-large" , from_pt=_lowercase ) UpperCamelCase_ = np.ones((1, 1) ) UpperCamelCase_ = model(_lowercase ) self.assertIsNotNone(_lowercase ) @slow def UpperCAmelCase_ ( self )-> str: UpperCamelCase_ = FlaxPegasusForConditionalGeneration.from_pretrained("google/pegasus-xsum" ) UpperCamelCase_ = PegasusTokenizer.from_pretrained("google/pegasus-xsum" ) UpperCamelCase_ = [ " PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.", " The London trio are up for best UK act and best album, as well as getting two nominations in the best song category.\"We got told like this morning 'Oh I think you're nominated'\", said Dappy.\"And I was like 'Oh yeah, which one?' And now we've got nominated for four awards. I mean, wow!\"Bandmate Fazer added: \"We thought it's best of us to come down and mingle with everyone and say hello to the cameras. And now we find we've got four nominations.\"The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn't be too disappointed if they didn't win this time around.\"At the end of the day we're grateful to be where we are in our careers.\"If it don't happen then it don't happen - live to fight another day and keep on making albums and hits for the fans.\"Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers' All These Things That I've Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year's Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border.\"We just done Edinburgh the other day,\" said Dappy.\"We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!\" ", ] UpperCamelCase_ = [ "California's largest electricity provider has turned off power to hundreds of thousands of customers.", "Pop group N-Dubz have revealed they were surprised to get four nominations for this year's Mobo Awards.", ] UpperCamelCase_ = tokenizer(_lowercase , return_tensors="np" , truncation=_lowercase , max_length=512 , padding=_lowercase ) UpperCamelCase_ = model.generate(**_lowercase , num_beams=2 ).sequences UpperCamelCase_ = tokenizer.batch_decode(_lowercase , skip_special_tokens=_lowercase ) assert tgt_text == decoded
60
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __A ={'''configuration_wavlm''': ['''WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''WavLMConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A =[ '''WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''WavLMForAudioFrameClassification''', '''WavLMForCTC''', '''WavLMForSequenceClassification''', '''WavLMForXVector''', '''WavLMModel''', '''WavLMPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_wavlm import WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP, WavLMConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavlm import ( WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST, WavLMForAudioFrameClassification, WavLMForCTC, WavLMForSequenceClassification, WavLMForXVector, WavLMModel, WavLMPreTrainedModel, ) else: import sys __A =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
19
"""simple docstring""" import unittest import numpy as np from transformers.file_utils import is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class a ( unittest.TestCase ): def __init__( self , _lowerCamelCase , _lowerCamelCase=7 , _lowerCamelCase=3 , _lowerCamelCase=1_8 , _lowerCamelCase=3_0 , _lowerCamelCase=4_0_0 , _lowerCamelCase=True , _lowerCamelCase=None , _lowerCamelCase=True , _lowerCamelCase=[0.5, 0.5, 0.5] , _lowerCamelCase=[0.5, 0.5, 0.5] , ): lowercase = size if size is not None else {'height': 1_8, 'width': 1_8} lowercase = parent lowercase = batch_size lowercase = num_channels lowercase = image_size lowercase = min_resolution lowercase = max_resolution lowercase = do_resize lowercase = size lowercase = do_normalize lowercase = image_mean lowercase = image_std def UpperCamelCase_ ( self ): return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, } @require_torch @require_vision class a ( a_, unittest.TestCase ): UpperCAmelCase_ : Optional[int] =DPTImageProcessor if is_vision_available() else None def UpperCamelCase_ ( self ): lowercase = DPTImageProcessingTester(self ) @property def UpperCamelCase_ ( self ): return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase_ ( self ): lowercase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_lowerCamelCase , 'image_mean' ) ) self.assertTrue(hasattr(_lowerCamelCase , 'image_std' ) ) self.assertTrue(hasattr(_lowerCamelCase , 'do_normalize' ) ) self.assertTrue(hasattr(_lowerCamelCase , 'do_resize' ) ) self.assertTrue(hasattr(_lowerCamelCase , 'size' ) ) def UpperCamelCase_ ( self ): lowercase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'height': 1_8, 'width': 1_8} ) lowercase = self.image_processing_class.from_dict(self.image_processor_dict , size=4_2 ) self.assertEqual(image_processor.size , {'height': 4_2, 'width': 4_2} ) def UpperCamelCase_ ( self ): # Initialize image_processing lowercase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowercase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCamelCase ) for image in image_inputs: self.assertIsInstance(_lowerCamelCase , Image.Image ) # Test not batched input lowercase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched lowercase = image_processing(_lowerCamelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def UpperCamelCase_ ( self ): # Initialize image_processing lowercase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowercase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCamelCase , numpify=_lowerCamelCase ) for image in image_inputs: self.assertIsInstance(_lowerCamelCase , np.ndarray ) # Test not batched input lowercase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched lowercase = image_processing(_lowerCamelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def UpperCamelCase_ ( self ): # Initialize image_processing lowercase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowercase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCamelCase , torchify=_lowerCamelCase ) for image in image_inputs: self.assertIsInstance(_lowerCamelCase , torch.Tensor ) # Test not batched input lowercase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched lowercase = image_processing(_lowerCamelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , )
220
0
'''simple docstring''' from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import tensorflow as tf from transformers import AutoTokenizer, TFAutoModelForSeqaSeqLM @require_tf @require_sentencepiece @require_tokenizers class A__ ( unittest.TestCase ): @slow def A ( self : Optional[Any] ) -> List[str]: '''simple docstring''' _SCREAMING_SNAKE_CASE =TFAutoModelForSeqaSeqLM.from_pretrained('google/mt5-small' ) _SCREAMING_SNAKE_CASE =AutoTokenizer.from_pretrained('google/mt5-small' ) _SCREAMING_SNAKE_CASE =tokenizer('Hello there' , return_tensors='tf' ).input_ids _SCREAMING_SNAKE_CASE =tokenizer('Hi I am' , return_tensors='tf' ).input_ids _SCREAMING_SNAKE_CASE =model(_a , labels=_a ).loss _SCREAMING_SNAKE_CASE =-tf.math.reduce_mean(_a ).numpy() _SCREAMING_SNAKE_CASE =-21.22_81_68 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 2e-4 )
114
'''simple docstring''' # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCamelCase : Optional[int] = { "configuration_efficientnet": [ "EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "EfficientNetConfig", "EfficientNetOnnxConfig", ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : str = ["EfficientNetImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Tuple = [ "EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST", "EfficientNetForImageClassification", "EfficientNetModel", "EfficientNetPreTrainedModel", ] if TYPE_CHECKING: from .configuration_efficientnet import ( EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientNetConfig, EfficientNetOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientnet import EfficientNetImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientnet import ( EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientNetForImageClassification, EfficientNetModel, EfficientNetPreTrainedModel, ) else: import sys lowerCamelCase : int = _LazyModule(__name__, globals()["__file__"], _import_structure)
114
1
import argparse import os from pathlib import Path import torch from bark.generation import _load_model as _bark_load_model from huggingface_hub import hf_hub_download from transformers import EncodecConfig, EncodecModel, set_seed from transformers.models.bark.configuration_bark import ( BarkCoarseConfig, BarkConfig, BarkFineConfig, BarkSemanticConfig, ) from transformers.models.bark.generation_configuration_bark import ( BarkCoarseGenerationConfig, BarkFineGenerationConfig, BarkGenerationConfig, BarkSemanticGenerationConfig, ) from transformers.models.bark.modeling_bark import BarkCoarseModel, BarkFineModel, BarkModel, BarkSemanticModel from transformers.utils import logging logging.set_verbosity_info() __lowercase = logging.get_logger(__name__) set_seed(770) __lowercase = { '''c_attn''': '''att_proj''', '''c_proj''': '''out_proj''', '''c_fc''': '''in_proj''', '''transformer.''': '''''', '''h.''': '''layers.''', '''ln_1''': '''layernorm_1''', '''ln_2''': '''layernorm_2''', '''ln_f''': '''layernorm_final''', '''wpe''': '''position_embeds_layer''', '''wte''': '''input_embeds_layer''', } __lowercase = { '''text_small''': { '''repo_id''': '''suno/bark''', '''file_name''': '''text.pt''', }, '''coarse_small''': { '''repo_id''': '''suno/bark''', '''file_name''': '''coarse.pt''', }, '''fine_small''': { '''repo_id''': '''suno/bark''', '''file_name''': '''fine.pt''', }, '''text''': { '''repo_id''': '''suno/bark''', '''file_name''': '''text_2.pt''', }, '''coarse''': { '''repo_id''': '''suno/bark''', '''file_name''': '''coarse_2.pt''', }, '''fine''': { '''repo_id''': '''suno/bark''', '''file_name''': '''fine_2.pt''', }, } __lowercase = os.path.dirname(os.path.abspath(__file__)) __lowercase = os.path.join(os.path.expanduser('''~'''), '''.cache''') __lowercase = os.path.join(os.getenv('''XDG_CACHE_HOME''', default_cache_dir), '''suno''', '''bark_v0''') def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=False ): '''simple docstring''' __UpperCamelCase :str = model_type if use_small: key += "_small" return os.path.join(SCREAMING_SNAKE_CASE , REMOTE_MODEL_PATHS[key]['''file_name'''] ) def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' os.makedirs(SCREAMING_SNAKE_CASE , exist_ok=SCREAMING_SNAKE_CASE ) hf_hub_download(repo_id=SCREAMING_SNAKE_CASE , filename=SCREAMING_SNAKE_CASE , local_dir=SCREAMING_SNAKE_CASE ) def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE="text" ): '''simple docstring''' if model_type == "text": __UpperCamelCase :Tuple = BarkSemanticModel __UpperCamelCase :List[str] = BarkSemanticConfig __UpperCamelCase :Any = BarkSemanticGenerationConfig elif model_type == "coarse": __UpperCamelCase :int = BarkCoarseModel __UpperCamelCase :Optional[Any] = BarkCoarseConfig __UpperCamelCase :Tuple = BarkCoarseGenerationConfig elif model_type == "fine": __UpperCamelCase :Any = BarkFineModel __UpperCamelCase :Union[str, Any] = BarkFineConfig __UpperCamelCase :Any = BarkFineGenerationConfig else: raise NotImplementedError() __UpperCamelCase :Union[str, Any] = f"""{model_type}_small""" if use_small else model_type __UpperCamelCase :Tuple = REMOTE_MODEL_PATHS[model_key] if not os.path.exists(SCREAMING_SNAKE_CASE ): logger.info(f"""{model_type} model not found, downloading into `{CACHE_DIR}`.""" ) _download(model_info['''repo_id'''] , model_info['''file_name'''] ) __UpperCamelCase :List[str] = torch.load(SCREAMING_SNAKE_CASE , map_location=SCREAMING_SNAKE_CASE ) # this is a hack __UpperCamelCase :str = checkpoint['''model_args'''] if "input_vocab_size" not in model_args: __UpperCamelCase :Dict = model_args['''vocab_size'''] __UpperCamelCase :Dict = model_args['''vocab_size'''] del model_args["vocab_size"] # convert Bark model arguments to HF Bark model arguments __UpperCamelCase :Tuple = model_args.pop('''n_head''' ) __UpperCamelCase :Optional[Any] = model_args.pop('''n_embd''' ) __UpperCamelCase :List[Any] = model_args.pop('''n_layer''' ) __UpperCamelCase :Union[str, Any] = ConfigClass(**checkpoint['''model_args'''] ) __UpperCamelCase :str = ModelClass(config=SCREAMING_SNAKE_CASE ) __UpperCamelCase :str = GenerationConfigClass() __UpperCamelCase :Tuple = model_generation_config __UpperCamelCase :str = checkpoint['''model'''] # fixup checkpoint __UpperCamelCase :List[Any] = '''_orig_mod.''' for k, v in list(state_dict.items() ): if k.startswith(SCREAMING_SNAKE_CASE ): # replace part of the key with corresponding layer name in HF implementation __UpperCamelCase :Optional[Any] = k[len(SCREAMING_SNAKE_CASE ) :] for old_layer_name in new_layer_name_dict: __UpperCamelCase :Union[str, Any] = new_k.replace(SCREAMING_SNAKE_CASE , new_layer_name_dict[old_layer_name] ) __UpperCamelCase :List[str] = state_dict.pop(SCREAMING_SNAKE_CASE ) __UpperCamelCase :Tuple = set(state_dict.keys() ) - set(model.state_dict().keys() ) __UpperCamelCase :int = {k for k in extra_keys if not k.endswith('''.attn.bias''' )} __UpperCamelCase :int = set(model.state_dict().keys() ) - set(state_dict.keys() ) __UpperCamelCase :int = {k for k in missing_keys if not k.endswith('''.attn.bias''' )} if len(SCREAMING_SNAKE_CASE ) != 0: raise ValueError(f"""extra keys found: {extra_keys}""" ) if len(SCREAMING_SNAKE_CASE ) != 0: raise ValueError(f"""missing keys: {missing_keys}""" ) model.load_state_dict(SCREAMING_SNAKE_CASE , strict=SCREAMING_SNAKE_CASE ) __UpperCamelCase :List[Any] = model.num_parameters(exclude_embeddings=SCREAMING_SNAKE_CASE ) __UpperCamelCase :Tuple = checkpoint['''best_val_loss'''].item() logger.info(f"""model loaded: {round(n_params/1e6 , 1 )}M params, {round(SCREAMING_SNAKE_CASE , 3 )} loss""" ) model.eval() model.to(SCREAMING_SNAKE_CASE ) del checkpoint, state_dict return model def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE="text" ): '''simple docstring''' if model_type not in ("text", "coarse", "fine"): raise NotImplementedError() __UpperCamelCase :List[Any] = '''cpu''' # do conversion on cpu __UpperCamelCase :List[Any] = _get_ckpt_path(SCREAMING_SNAKE_CASE , use_small=SCREAMING_SNAKE_CASE ) __UpperCamelCase :int = _load_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , model_type=SCREAMING_SNAKE_CASE , use_small=SCREAMING_SNAKE_CASE ) # load bark initial model __UpperCamelCase :Optional[Any] = _bark_load_model(SCREAMING_SNAKE_CASE , '''cpu''' , model_type=SCREAMING_SNAKE_CASE , use_small=SCREAMING_SNAKE_CASE ) if model_type == "text": __UpperCamelCase :Dict = bark_model['''model'''] if model.num_parameters(exclude_embeddings=SCREAMING_SNAKE_CASE ) != bark_model.get_num_params(): raise ValueError('''initial and new models don\'t have the same number of parameters''' ) # check if same output as the bark model __UpperCamelCase :List[str] = 5 __UpperCamelCase :List[str] = 10 if model_type in ["text", "coarse"]: __UpperCamelCase :Dict = torch.randint(256 , (batch_size, sequence_length) , dtype=torch.int ) __UpperCamelCase :str = bark_model(SCREAMING_SNAKE_CASE )[0] __UpperCamelCase :Optional[int] = model(SCREAMING_SNAKE_CASE ) # take last logits __UpperCamelCase :str = output_new_model_total.logits[:, [-1], :] else: __UpperCamelCase :Any = 3 __UpperCamelCase :List[Any] = 8 __UpperCamelCase :Tuple = torch.randint(256 , (batch_size, sequence_length, n_codes_total) , dtype=torch.int ) __UpperCamelCase :Tuple = model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __UpperCamelCase :str = bark_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __UpperCamelCase :str = output_new_model_total.logits # output difference should come from the difference of self-attention implementation design if output_new_model.shape != output_old_model.shape: raise ValueError('''initial and new outputs don\'t have the same shape''' ) if (output_new_model - output_old_model).abs().max().item() > 1e-3: raise ValueError('''initial and new outputs are not equal''' ) Path(SCREAMING_SNAKE_CASE ).mkdir(exist_ok=SCREAMING_SNAKE_CASE ) model.save_pretrained(SCREAMING_SNAKE_CASE ) def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , ): '''simple docstring''' __UpperCamelCase :List[str] = os.path.join(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __UpperCamelCase :str = BarkSemanticConfig.from_pretrained(os.path.join(SCREAMING_SNAKE_CASE , '''config.json''' ) ) __UpperCamelCase :Optional[int] = BarkCoarseConfig.from_pretrained(os.path.join(SCREAMING_SNAKE_CASE , '''config.json''' ) ) __UpperCamelCase :Tuple = BarkFineConfig.from_pretrained(os.path.join(SCREAMING_SNAKE_CASE , '''config.json''' ) ) __UpperCamelCase :List[Any] = EncodecConfig.from_pretrained('''facebook/encodec_24khz''' ) __UpperCamelCase :Union[str, Any] = BarkSemanticModel.from_pretrained(SCREAMING_SNAKE_CASE ) __UpperCamelCase :Dict = BarkCoarseModel.from_pretrained(SCREAMING_SNAKE_CASE ) __UpperCamelCase :List[Any] = BarkFineModel.from_pretrained(SCREAMING_SNAKE_CASE ) __UpperCamelCase :str = EncodecModel.from_pretrained('''facebook/encodec_24khz''' ) __UpperCamelCase :Tuple = BarkConfig.from_sub_model_configs( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __UpperCamelCase :Union[str, Any] = BarkGenerationConfig.from_sub_model_configs( semantic.generation_config , coarseAcoustic.generation_config , fineAcoustic.generation_config ) __UpperCamelCase :int = BarkModel(SCREAMING_SNAKE_CASE ) __UpperCamelCase :List[str] = semantic __UpperCamelCase :Any = coarseAcoustic __UpperCamelCase :Tuple = fineAcoustic __UpperCamelCase :List[Any] = codec __UpperCamelCase :int = bark_generation_config Path(SCREAMING_SNAKE_CASE ).mkdir(exist_ok=SCREAMING_SNAKE_CASE ) bark.save_pretrained(SCREAMING_SNAKE_CASE , repo_id=SCREAMING_SNAKE_CASE , push_to_hub=SCREAMING_SNAKE_CASE ) if __name__ == "__main__": __lowercase = argparse.ArgumentParser() # Required parameters parser.add_argument('''model_type''', type=str, help='''text, coarse or fine.''') parser.add_argument('''pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--is_small''', action='''store_true''', help='''convert the small version instead of the large.''') __lowercase = parser.parse_args() load_model(args.pytorch_dump_folder_path, model_type=args.model_type, use_small=args.is_small)
43
import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DPMSolverMultistepScheduler, TextToVideoSDPipeline, UNetaDConditionModel, ) from diffusers.utils import is_xformers_available, load_numpy, skip_mps, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() @skip_mps class UpperCamelCase__ ( lowerCAmelCase_ , unittest.TestCase ): '''simple docstring''' __snake_case : List[str] = TextToVideoSDPipeline __snake_case : int = TEXT_TO_IMAGE_PARAMS __snake_case : Tuple = TEXT_TO_IMAGE_BATCH_PARAMS # No `output_type`. __snake_case : Dict = frozenset( [ "num_inference_steps", "generator", "latents", "return_dict", "callback", "callback_steps", ] ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ) -> Optional[int]: '''simple docstring''' torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = UNetaDConditionModel( block_out_channels=(32, 64, 64, 64) ,layers_per_block=2 ,sample_size=32 ,in_channels=4 ,out_channels=4 ,down_block_types=("""CrossAttnDownBlock3D""", """CrossAttnDownBlock3D""", """CrossAttnDownBlock3D""", """DownBlock3D""") ,up_block_types=("""UpBlock3D""", """CrossAttnUpBlock3D""", """CrossAttnUpBlock3D""", """CrossAttnUpBlock3D""") ,cross_attention_dim=32 ,attention_head_dim=4 ,) SCREAMING_SNAKE_CASE = DDIMScheduler( beta_start=0.00085 ,beta_end=0.012 ,beta_schedule="""scaled_linear""" ,clip_sample=lowerCamelCase__ ,set_alpha_to_one=lowerCamelCase__ ,) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = AutoencoderKL( block_out_channels=[32, 64] ,in_channels=3 ,out_channels=3 ,down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] ,up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] ,latent_channels=4 ,sample_size=128 ,) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=32 ,intermediate_size=37 ,layer_norm_eps=1e-0_5 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1000 ,hidden_act="""gelu""" ,projection_dim=512 ,) SCREAMING_SNAKE_CASE = CLIPTextModel(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) SCREAMING_SNAKE_CASE = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, } return components def SCREAMING_SNAKE_CASE__ ( self : int ,lowerCamelCase__ : Optional[Any] ,lowerCamelCase__ : int=0 ) -> List[Any]: '''simple docstring''' if str(lowerCamelCase__ ).startswith("""mps""" ): SCREAMING_SNAKE_CASE = torch.manual_seed(lowerCamelCase__ ) else: SCREAMING_SNAKE_CASE = torch.Generator(device=lowerCamelCase__ ).manual_seed(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """output_type""": """pt""", } return inputs def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE = """cpu""" # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE = self.get_dummy_components() SCREAMING_SNAKE_CASE = TextToVideoSDPipeline(**lowerCamelCase__ ) SCREAMING_SNAKE_CASE = sd_pipe.to(lowerCamelCase__ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase__ ) SCREAMING_SNAKE_CASE = self.get_dummy_inputs(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = """np""" SCREAMING_SNAKE_CASE = sd_pipe(**lowerCamelCase__ ).frames SCREAMING_SNAKE_CASE = frames[0][-3:, -3:, -1] assert frames[0].shape == (64, 64, 3) SCREAMING_SNAKE_CASE = np.array([158.0, 160.0, 153.0, 125.0, 100.0, 121.0, 111.0, 93.0, 113.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def SCREAMING_SNAKE_CASE__ ( self : Dict ) -> int: '''simple docstring''' self._test_attention_slicing_forward_pass(test_mean_pixel_difference=lowerCamelCase__ ,expected_max_diff=3e-3 ) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() ,reason="""XFormers attention is only available with CUDA and `xformers` installed""" ,) def SCREAMING_SNAKE_CASE__ ( self : Tuple ) -> Any: '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=lowerCamelCase__ ,expected_max_diff=1e-2 ) @unittest.skip(reason="""Batching needs to be properly figured out first for this pipeline.""" ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ) -> List[Any]: '''simple docstring''' pass @unittest.skip(reason="""Batching needs to be properly figured out first for this pipeline.""" ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ) -> Any: '''simple docstring''' pass @unittest.skip(reason="""`num_images_per_prompt` argument is not supported for this pipeline.""" ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ) -> Tuple: '''simple docstring''' pass def SCREAMING_SNAKE_CASE__ ( self : List[str] ) -> Optional[Any]: '''simple docstring''' return super().test_progress_bar() @slow @skip_mps class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self : Any ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video.npy""" ) SCREAMING_SNAKE_CASE = TextToVideoSDPipeline.from_pretrained("""damo-vilab/text-to-video-ms-1.7b""" ) SCREAMING_SNAKE_CASE = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) SCREAMING_SNAKE_CASE = pipe.to("""cuda""" ) SCREAMING_SNAKE_CASE = """Spiderman is surfing""" SCREAMING_SNAKE_CASE = torch.Generator(device="""cpu""" ).manual_seed(0 ) SCREAMING_SNAKE_CASE = pipe(lowerCamelCase__ ,generator=lowerCamelCase__ ,num_inference_steps=25 ,output_type="""pt""" ).frames SCREAMING_SNAKE_CASE = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5e-2 def SCREAMING_SNAKE_CASE__ ( self : Any ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video_2step.npy""" ) SCREAMING_SNAKE_CASE = TextToVideoSDPipeline.from_pretrained("""damo-vilab/text-to-video-ms-1.7b""" ) SCREAMING_SNAKE_CASE = pipe.to("""cuda""" ) SCREAMING_SNAKE_CASE = """Spiderman is surfing""" SCREAMING_SNAKE_CASE = torch.Generator(device="""cpu""" ).manual_seed(0 ) SCREAMING_SNAKE_CASE = pipe(lowerCamelCase__ ,generator=lowerCamelCase__ ,num_inference_steps=2 ,output_type="""pt""" ).frames SCREAMING_SNAKE_CASE = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5e-2
296
0
'''simple docstring''' import random from typing import Any def _UpperCAmelCase ( _UpperCamelCase : list ) -> list[Any]: for _ in range(len(_UpperCamelCase ) ): A_ = random.randint(0, len(_UpperCamelCase ) - 1 ) A_ = random.randint(0, len(_UpperCamelCase ) - 1 ) A_ ,A_ = data[b], data[a] return data if __name__ == "__main__": __snake_case : List[Any] = [0, 1, 2, 3, 4, 5, 6, 7] __snake_case : Optional[int] = ['python', 'says', 'hello', '!'] print('Fisher-Yates Shuffle:') print('List', integers, strings) print('FY Shuffle', fisher_yates_shuffle(integers), fisher_yates_shuffle(strings))
371
'''simple docstring''' from statistics import mean, stdev def _UpperCAmelCase ( _UpperCamelCase : list, _UpperCamelCase : int = 3 ) -> list: A_ = min(_UpperCamelCase ) A_ = max(_UpperCamelCase ) # normalize data return [round((x - x_min) / (x_max - x_min), _UpperCamelCase ) for x in data] def _UpperCAmelCase ( _UpperCamelCase : list, _UpperCamelCase : int = 3 ) -> list: A_ = mean(_UpperCamelCase ) A_ = stdev(_UpperCamelCase ) # standardize data return [round((x - mu) / (sigma), _UpperCamelCase ) for x in data]
18
0
import sacrebleu as scb from packaging import version from sacrebleu import CHRF import datasets lowerCamelCase__ = """\ @inproceedings{popovic-2015-chrf, title = \"chr{F}: character n-gram {F}-score for automatic {MT} evaluation\", author = \"Popovi{\'c}, Maja\", booktitle = \"Proceedings of the Tenth Workshop on Statistical Machine Translation\", month = sep, year = \"2015\", address = \"Lisbon, Portugal\", publisher = \"Association for Computational Linguistics\", url = \"https://aclanthology.org/W15-3049\", doi = \"10.18653/v1/W15-3049\", pages = \"392--395\", } @inproceedings{popovic-2017-chrf, title = \"chr{F}++: words helping character n-grams\", author = \"Popovi{\'c}, Maja\", booktitle = \"Proceedings of the Second Conference on Machine Translation\", month = sep, year = \"2017\", address = \"Copenhagen, Denmark\", publisher = \"Association for Computational Linguistics\", url = \"https://aclanthology.org/W17-4770\", doi = \"10.18653/v1/W17-4770\", pages = \"612--618\", } @inproceedings{post-2018-call, title = \"A Call for Clarity in Reporting {BLEU} Scores\", author = \"Post, Matt\", booktitle = \"Proceedings of the Third Conference on Machine Translation: Research Papers\", month = oct, year = \"2018\", address = \"Belgium, Brussels\", publisher = \"Association for Computational Linguistics\", url = \"https://www.aclweb.org/anthology/W18-6319\", pages = \"186--191\", } """ lowerCamelCase__ = """\ ChrF and ChrF++ are two MT evaluation metrics. They both use the F-score statistic for character n-gram matches, and ChrF++ adds word n-grams as well which correlates more strongly with direct assessment. We use the implementation that is already present in sacrebleu. The implementation here is slightly different from sacrebleu in terms of the required input format. The length of the references and hypotheses lists need to be the same, so you may need to transpose your references compared to sacrebleu's required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534 See the README.md file at https://github.com/mjpost/sacreBLEU#chrf--chrf for more information. """ lowerCamelCase__ = """ Produces ChrF(++) scores for hypotheses given reference translations. Args: predictions (list of str): The predicted sentences. references (list of list of str): The references. There should be one reference sub-list for each prediction sentence. char_order (int): Character n-gram order. Defaults to `6`. word_order (int): Word n-gram order. If equals to `2`, the metric is referred to as chrF++. Defaults to `0`. beta (int): Determine the importance of recall w.r.t precision. Defaults to `2`. lowercase (bool): if `True`, enables case-insensitivity. Defaults to `False`. whitespace (bool): If `True`, include whitespaces when extracting character n-grams. eps_smoothing (bool): If `True`, applies epsilon smoothing similar to reference chrF++.py, NLTK and Moses implementations. If `False`, it takes into account effective match order similar to sacreBLEU < 2.0.0. Defaults to `False`. Returns: 'score' (float): The chrF (chrF++) score, 'char_order' (int): The character n-gram order, 'word_order' (int): The word n-gram order. If equals to 2, the metric is referred to as chrF++, 'beta' (int): Determine the importance of recall w.r.t precision Examples: Example 1--a simple example of calculating chrF: >>> prediction = [\"The relationship between cats and dogs is not exactly friendly.\", \"a good bookshop is just a genteel black hole that knows how to read.\"] >>> reference = [[\"The relationship between dogs and cats is not exactly friendly.\"], [\"A good bookshop is just a genteel Black Hole that knows how to read.\"]] >>> chrf = datasets.load_metric(\"chrf\") >>> results = chrf.compute(predictions=prediction, references=reference) >>> print(results) {'score': 84.64214891738334, 'char_order': 6, 'word_order': 0, 'beta': 2} Example 2--the same example, but with the argument word_order=2, to calculate chrF++ instead of chrF: >>> prediction = [\"The relationship between cats and dogs is not exactly friendly.\", \"a good bookshop is just a genteel black hole that knows how to read.\"] >>> reference = [[\"The relationship between dogs and cats is not exactly friendly.\"], [\"A good bookshop is just a genteel Black Hole that knows how to read.\"]] >>> chrf = datasets.load_metric(\"chrf\") >>> results = chrf.compute(predictions=prediction, ... references=reference, ... word_order=2) >>> print(results) {'score': 82.87263732906315, 'char_order': 6, 'word_order': 2, 'beta': 2} Example 3--the same chrF++ example as above, but with `lowercase=True` to normalize all case: >>> prediction = [\"The relationship between cats and dogs is not exactly friendly.\", \"a good bookshop is just a genteel black hole that knows how to read.\"] >>> reference = [[\"The relationship between dogs and cats is not exactly friendly.\"], [\"A good bookshop is just a genteel Black Hole that knows how to read.\"]] >>> chrf = datasets.load_metric(\"chrf\") >>> results = chrf.compute(predictions=prediction, ... references=reference, ... word_order=2, ... lowercase=True) >>> print(results) {'score': 92.12853119829202, 'char_order': 6, 'word_order': 2, 'beta': 2} """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE ( datasets.Metric ): def UpperCamelCase_ ( self : int ): '''simple docstring''' if version.parse(scb.__version__ ) < version.parse("""1.4.12""" ): raise ImportWarning( """To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn't match this condition.\n""" """You can install it with `pip install \"sacrebleu>=1.4.12\"`.""" ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage="""https://github.com/mjpost/sacreBLEU#chrf--chrf""" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" , id="""sequence""" ), """references""": datasets.Sequence(datasets.Value("""string""" , id="""sequence""" ) , id="""references""" ), } ) , codebase_urls=["""https://github.com/mjpost/sacreBLEU#chrf--chrf"""] , reference_urls=[ """https://github.com/m-popovic/chrF""", ] , ) def UpperCamelCase_ ( self : List[Any] , __lowercase : Any , __lowercase : Any , __lowercase : int = CHRF.CHAR_ORDER , __lowercase : int = CHRF.WORD_ORDER , __lowercase : int = CHRF.BETA , __lowercase : bool = False , __lowercase : bool = False , __lowercase : bool = False , ): '''simple docstring''' __a = len(references[0] ) if any(len(__lowercase ) != references_per_prediction for refs in references ): raise ValueError("""Sacrebleu requires the same number of references for each prediction""" ) __a = [[refs[i] for refs in references] for i in range(__lowercase )] __a = CHRF(__lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase ) __a = sb_chrf.corpus_score(__lowercase , __lowercase ) return { "score": output.score, "char_order": output.char_order, "word_order": output.word_order, "beta": output.beta, }
302
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCamelCase__ = { """configuration_electra""": ["""ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ElectraConfig""", """ElectraOnnxConfig"""], """tokenization_electra""": ["""ElectraTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = ["""ElectraTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ """ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST""", """ElectraForCausalLM""", """ElectraForMaskedLM""", """ElectraForMultipleChoice""", """ElectraForPreTraining""", """ElectraForQuestionAnswering""", """ElectraForSequenceClassification""", """ElectraForTokenClassification""", """ElectraModel""", """ElectraPreTrainedModel""", """load_tf_weights_in_electra""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ """TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFElectraForMaskedLM""", """TFElectraForMultipleChoice""", """TFElectraForPreTraining""", """TFElectraForQuestionAnswering""", """TFElectraForSequenceClassification""", """TFElectraForTokenClassification""", """TFElectraModel""", """TFElectraPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ """FlaxElectraForCausalLM""", """FlaxElectraForMaskedLM""", """FlaxElectraForMultipleChoice""", """FlaxElectraForPreTraining""", """FlaxElectraForQuestionAnswering""", """FlaxElectraForSequenceClassification""", """FlaxElectraForTokenClassification""", """FlaxElectraModel""", """FlaxElectraPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_electra import ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, ElectraConfig, ElectraOnnxConfig from .tokenization_electra import ElectraTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_electra_fast import ElectraTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_electra import ( ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, ElectraForCausalLM, ElectraForMaskedLM, ElectraForMultipleChoice, ElectraForPreTraining, ElectraForQuestionAnswering, ElectraForSequenceClassification, ElectraForTokenClassification, ElectraModel, ElectraPreTrainedModel, load_tf_weights_in_electra, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_electra import ( TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, TFElectraForMaskedLM, TFElectraForMultipleChoice, TFElectraForPreTraining, TFElectraForQuestionAnswering, TFElectraForSequenceClassification, TFElectraForTokenClassification, TFElectraModel, TFElectraPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_electra import ( FlaxElectraForCausalLM, FlaxElectraForMaskedLM, FlaxElectraForMultipleChoice, FlaxElectraForPreTraining, FlaxElectraForQuestionAnswering, FlaxElectraForSequenceClassification, FlaxElectraForTokenClassification, FlaxElectraModel, FlaxElectraPreTrainedModel, ) else: import sys lowerCamelCase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
302
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available _lowerCAmelCase : List[Any] = { '''configuration_longt5''': ['''LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''LongT5Config''', '''LongT5OnnxConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : int = [ '''LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST''', '''LongT5EncoderModel''', '''LongT5ForConditionalGeneration''', '''LongT5Model''', '''LongT5PreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : List[str] = [ '''FlaxLongT5ForConditionalGeneration''', '''FlaxLongT5Model''', '''FlaxLongT5PreTrainedModel''', ] if TYPE_CHECKING: from .configuration_longta import LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP, LongTaConfig, LongTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_longta import ( LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST, LongTaEncoderModel, LongTaForConditionalGeneration, LongTaModel, LongTaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_longta import ( FlaxLongTaForConditionalGeneration, FlaxLongTaModel, FlaxLongTaPreTrainedModel, ) else: import sys _lowerCAmelCase : Any = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
70
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowerCAmelCase : Union[str, Any] = {'''configuration_focalnet''': ['''FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''FocalNetConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : str = [ '''FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''FocalNetForImageClassification''', '''FocalNetForMaskedImageModeling''', '''FocalNetBackbone''', '''FocalNetModel''', '''FocalNetPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_focalnet import FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FocalNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_focalnet import ( FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST, FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, FocalNetPreTrainedModel, ) else: import sys _lowerCAmelCase : Optional[int] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
70
1
'''simple docstring''' import argparse import json import os import re import shutil import torch from transformers import BioGptConfig, BioGptForCausalLM from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE from transformers.utils import WEIGHTS_NAME, logging logging.set_verbosity_warning() A =2 class _a : def __init__( self : Any , *, # begin keyword-only arguments lowercase : str="<s>" , lowercase : Optional[Any]="<pad>" , lowercase : str="</s>" , lowercase : str="<unk>" , lowercase : List[str]=None , ): '''simple docstring''' UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = bos, unk, pad, eos UpperCAmelCase = [] UpperCAmelCase = [] UpperCAmelCase = {} UpperCAmelCase = self.add_symbol(lowercase ) UpperCAmelCase = self.add_symbol(lowercase ) UpperCAmelCase = self.add_symbol(lowercase ) UpperCAmelCase = self.add_symbol(lowercase ) if extra_special_symbols: for s in extra_special_symbols: self.add_symbol(lowercase ) UpperCAmelCase = len(self.symbols ) def __eq__( self : Optional[Any] , lowercase : str ): '''simple docstring''' return self.indices == other.indices def __getitem__( self : Tuple , lowercase : Union[str, Any] ): '''simple docstring''' if idx < len(self.symbols ): return self.symbols[idx] return self.unk_word def __len__( self : int ): '''simple docstring''' return len(self.symbols ) def __contains__( self : List[Any] , lowercase : List[str] ): '''simple docstring''' return sym in self.indices @classmethod def A ( cls : Optional[int] , lowercase : List[str] ): '''simple docstring''' UpperCAmelCase = cls() d.add_from_file(lowercase ) return d def A ( self : int , lowercase : Union[str, Any] , lowercase : str=1 , lowercase : List[Any]=False ): '''simple docstring''' if word in self.indices and not overwrite: UpperCAmelCase = self.indices[word] UpperCAmelCase = self.count[idx] + n return idx else: UpperCAmelCase = len(self.symbols ) UpperCAmelCase = idx self.symbols.append(lowercase ) self.count.append(lowercase ) return idx def A ( self : Optional[int] , lowercase : int ): '''simple docstring''' return 0 def A ( self : Tuple , lowercase : Optional[int] ): '''simple docstring''' if isinstance(lowercase , lowercase ): try: with open(lowercase , '''r''' , encoding='''utf-8''' ) as fd: self.add_from_file(lowercase ) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception('''Incorrect encoding detected in {}, please rebuild the dataset'''.format(lowercase ) ) return UpperCAmelCase = f.readlines() UpperCAmelCase = self._load_meta(lowercase ) for line in lines[indices_start_line:]: try: UpperCAmelCase , UpperCAmelCase = line.rstrip().rsplit(''' ''' , 1 ) if field == "#fairseq:overwrite": UpperCAmelCase = True UpperCAmelCase , UpperCAmelCase = line.rsplit(''' ''' , 1 ) else: UpperCAmelCase = False UpperCAmelCase = int(lowercase ) UpperCAmelCase = line if word in self and not overwrite: raise RuntimeError( '''Duplicate word found when loading Dictionary: \'{}\'. ''' '''Duplicate words can overwrite earlier ones by adding the ''' '''#fairseq:overwrite flag at the end of the corresponding row ''' '''in the dictionary file. If using the Camembert model, please ''' '''download an updated copy of the model file.'''.format(lowercase ) ) self.add_symbol(lowercase , n=lowercase , overwrite=lowercase ) except ValueError: raise ValueError('''Incorrect dictionary format, expected \'<token> <cnt> [flags]\'''' ) def snake_case_ (_a : int ): # (1) remove word breaking symbol, (2) add word ending symbol where the word is not broken up, # e.g.: d = {'le@@': 5, 'tt@@': 6, 'er': 7} => {'le': 5, 'tt': 6, 'er</w>': 7} UpperCAmelCase = dict((re.sub(R'''@@$''' , '''''' , _a ), v) if k.endswith('''@@''' ) else (re.sub(R'''$''' , '''</w>''' , _a ), v) for k, v in d.items() ) UpperCAmelCase = '''<s> <pad> </s> <unk>'''.split() # restore the special tokens for k in keep_keys: del da[F"{k}</w>"] UpperCAmelCase = d[k] # restore return da def snake_case_ (_a : str , _a : str ): # prep if not os.path.exists(_a ): raise ValueError(F"path {biogpt_checkpoint_path} does not exist!" ) os.makedirs(_a , exist_ok=_a ) print(F"Writing results to {pytorch_dump_folder_path}" ) # handle various types of models UpperCAmelCase = os.path.join(_a , '''checkpoint.pt''' ) if not os.path.isfile(_a ): raise ValueError(F"path to the file {checkpoint_file} does not exist!" ) UpperCAmelCase = torch.load(_a , map_location='''cpu''' ) UpperCAmelCase = chkpt['''cfg''']['''model'''] # dicts UpperCAmelCase = os.path.join(_a , '''dict.txt''' ) if not os.path.isfile(_a ): raise ValueError(F"path to the file {dict_file} does not exist!" ) UpperCAmelCase = Dictionary.load(_a ) UpperCAmelCase = rewrite_dict_keys(src_dict.indices ) UpperCAmelCase = len(_a ) UpperCAmelCase = os.path.join(_a , VOCAB_FILES_NAMES['''vocab_file'''] ) print(F"Generating {src_vocab_file} of {src_vocab_size} records" ) with open(_a , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(_a , ensure_ascii=_a , indent=_a ) ) # merges_file (bpecodes) UpperCAmelCase = os.path.join(_a , '''bpecodes''' ) if not os.path.isfile(_a ): raise ValueError(F"path to the file {bpecodes_file} does not exist!" ) UpperCAmelCase = os.path.join(_a , VOCAB_FILES_NAMES['''merges_file'''] ) shutil.copyfile(_a , _a ) # model config UpperCAmelCase = os.path.join(_a , '''config.json''' ) UpperCAmelCase = { '''activation_dropout''': args['''activation_dropout'''], '''architectures''': ['''BioGptForCausalLM'''], '''attention_probs_dropout_prob''': args['''attention_dropout'''], '''bos_token_id''': 0, '''eos_token_id''': 2, '''hidden_act''': args['''activation_fn'''], '''hidden_dropout_prob''': args['''dropout'''], '''hidden_size''': args['''decoder_embed_dim'''], '''initializer_range''': 0.02, '''intermediate_size''': args['''decoder_ffn_embed_dim'''], '''layer_norm_eps''': 1E-12, '''layerdrop''': args['''decoder_layerdrop'''], '''max_position_embeddings''': args['''max_target_positions'''], '''model_type''': '''biogpt''', '''num_attention_heads''': args['''decoder_attention_heads'''], '''num_hidden_layers''': args['''decoder_layers'''], '''pad_token_id''': 1, '''scale_embedding''': not args['''no_scale_embedding'''], '''tie_word_embeddings''': args['''share_decoder_input_output_embed'''], '''vocab_size''': src_vocab_size, } # good hparam defaults to start with print(F"Generating {biogpt_model_config_file}" ) with open(_a , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(_a , ensure_ascii=_a , indent=_a ) ) # tokenizer config UpperCAmelCase = os.path.join(_a , _a ) UpperCAmelCase = { '''bos_token''': '''<s>''', '''eos_token''': '''</s>''', '''model_max_length''': 1_0_2_4, '''pad_token''': '''<pad>''', '''special_tokens_map_file''': None, '''tokenizer_class''': '''BioGptTokenizer''', '''unk_token''': '''<unk>''', } print(F"Generating {biogpt_tokenizer_config_file}" ) with open(_a , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(_a , ensure_ascii=_a , indent=_a ) ) # model UpperCAmelCase = chkpt['''model'''] # remove unneeded keys UpperCAmelCase = [ '''decoder.version''', ] for k in ignore_keys: model_state_dict.pop(_a , _a ) UpperCAmelCase = list(model_state_dict.keys() ) for layer_name in layer_names: if layer_name.endswith('''output_projection.weight''' ): UpperCAmelCase = model_state_dict.pop(_a ) else: UpperCAmelCase = model_state_dict.pop(_a ) UpperCAmelCase = BioGptConfig.from_pretrained(_a ) UpperCAmelCase = BioGptForCausalLM(_a ) # check that it loads ok model_new.load_state_dict(_a ) # save UpperCAmelCase = os.path.join(_a , _a ) print(F"Generating {pytorch_weights_dump_path}" ) torch.save(_a , _a ) print('''Conversion is done!''' ) if __name__ == "__main__": A =argparse.ArgumentParser() # Required parameters parser.add_argument( '--biogpt_checkpoint_path', default=None, type=str, required=True, help=( 'Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts,' ' bpecodes, etc.' ), ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) A =parser.parse_args() convert_biogpt_checkpoint_to_pytorch(args.biogpt_checkpoint_path, args.pytorch_dump_folder_path)
34
'''simple docstring''' from collections import UserDict from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax a__ : Any = logging.get_logger(__name__) @add_end_docstrings(SCREAMING_SNAKE_CASE) class UpperCamelCase__ ( SCREAMING_SNAKE_CASE): def __init__( self :List[str] , **_A :Any ) -> Tuple: '''simple docstring''' super().__init__(**_A ) requires_backends(self , 'vision' ) self.check_model_type( TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if self.framework == 'tf' else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING ) def __call__( self :Any , _A :Union[str, List[str], "Image", List["Image"]] , **_A :Optional[int] ) -> Union[str, Any]: '''simple docstring''' return super().__call__(_A , **_A ) def lowercase_ ( self :Optional[int] , **_A :Dict ) -> Optional[Any]: '''simple docstring''' __A = {} if "candidate_labels" in kwargs: __A = kwargs['candidate_labels'] if "hypothesis_template" in kwargs: __A = kwargs['hypothesis_template'] return preprocess_params, {}, {} def lowercase_ ( self :Optional[int] , _A :str , _A :str=None , _A :Tuple="This is a photo of {}." ) -> Optional[int]: '''simple docstring''' __A = load_image(_A ) __A = self.image_processor(images=[image] , return_tensors=self.framework ) __A = candidate_labels __A = [hypothesis_template.format(_A ) for x in candidate_labels] __A = self.tokenizer(_A , return_tensors=self.framework , padding=_A ) __A = [text_inputs] return inputs def lowercase_ ( self :List[str] , _A :Tuple ) -> Tuple: '''simple docstring''' __A = model_inputs.pop('candidate_labels' ) __A = model_inputs.pop('text_inputs' ) if isinstance(text_inputs[0] , _A ): __A = text_inputs[0] else: # Batching case. __A = text_inputs[0][0] __A = self.model(**_A , **_A ) __A = { 'candidate_labels': candidate_labels, 'logits': outputs.logits_per_image, } return model_outputs def lowercase_ ( self :List[str] , _A :Optional[int] ) -> Dict: '''simple docstring''' __A = model_outputs.pop('candidate_labels' ) __A = model_outputs['logits'][0] if self.framework == "pt": __A = logits.softmax(dim=-1 ).squeeze(-1 ) __A = probs.tolist() if not isinstance(_A , _A ): __A = [scores] elif self.framework == "tf": __A = stable_softmax(_A , axis=-1 ) __A = probs.numpy().tolist() else: raise ValueError(F'Unsupported framework: {self.framework}' ) __A = [ {'score': score, 'label': candidate_label} for score, candidate_label in sorted(zip(_A , _A ) , key=lambda _A : -x[0] ) ] return result
161
0
import json import os from typing import Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging snake_case_ = logging.get_logger(__name__) snake_case_ = { 'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', } snake_case_ = { 'vocab_file': {'ctrl': 'https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-vocab.json'}, 'merges_file': {'ctrl': 'https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-merges.txt'}, } snake_case_ = { 'ctrl': 256, } snake_case_ = { 'Pregnancy': 168629, 'Christianity': 7675, 'Explain': 106423, 'Fitness': 63440, 'Saving': 63163, 'Ask': 27171, 'Ass': 95985, 'Joke': 163509, 'Questions': 45622, 'Thoughts': 49605, 'Retail': 52342, 'Feminism': 164338, 'Writing': 11992, 'Atheism': 192263, 'Netflix': 48616, 'Computing': 39639, 'Opinion': 43213, 'Alone': 44967, 'Funny': 58917, 'Gaming': 40358, 'Human': 4088, 'India': 1331, 'Joker': 77138, 'Diet': 36206, 'Legal': 11859, 'Norman': 4939, 'Tip': 72689, 'Weight': 52343, 'Movies': 46273, 'Running': 23425, 'Science': 2090, 'Horror': 37793, 'Confession': 60572, 'Finance': 12250, 'Politics': 16360, 'Scary': 191985, 'Support': 12654, 'Technologies': 32516, 'Teenage': 66160, 'Event': 32769, 'Learned': 67460, 'Notion': 182770, 'Wikipedia': 37583, 'Books': 6665, 'Extract': 76050, 'Confessions': 102701, 'Conspiracy': 75932, 'Links': 63674, 'Narcissus': 150425, 'Relationship': 54766, 'Relationships': 134796, 'Reviews': 41671, 'News': 4256, 'Translation': 26820, 'multilingual': 128406, } def lowerCamelCase__ ( snake_case_ : List[Any] ) -> str: __snake_case = set() __snake_case = word[0] for char in word[1:]: pairs.add((prev_char, char) ) __snake_case = char __snake_case = set(snake_case_ ) return pairs class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ): A_ : List[Any] = VOCAB_FILES_NAMES A_ : str = PRETRAINED_VOCAB_FILES_MAP A_ : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A_ : Tuple = CONTROL_CODES def __init__(self : Dict , a__ : Dict , a__ : Optional[int] , a__ : Union[str, Any]="<unk>" , **a__ : Dict ): """simple docstring""" super().__init__(unk_token=a__ , **a__ ) with open(a__ , encoding='''utf-8''' ) as vocab_handle: __snake_case = json.load(a__ ) __snake_case = {v: k for k, v in self.encoder.items()} with open(a__ , encoding='''utf-8''' ) as merges_handle: __snake_case = merges_handle.read().split('''\n''' )[1:-1] __snake_case = [tuple(merge.split() ) for merge in merges] __snake_case = dict(zip(a__ , range(len(a__ ) ) ) ) __snake_case = {} @property def a (self : Dict ): """simple docstring""" return len(self.encoder ) def a (self : Optional[int] ): """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder ) def a (self : str , a__ : str ): """simple docstring""" if token in self.cache: return self.cache[token] __snake_case = tuple(a__ ) __snake_case = tuple(list(word[:-1] ) + [word[-1] + '''</w>'''] ) __snake_case = get_pairs(a__ ) if not pairs: return token while True: __snake_case = min(a__ , key=lambda a__ : self.bpe_ranks.get(a__ , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break __snake_case , __snake_case = bigram __snake_case = [] __snake_case = 0 while i < len(a__ ): try: __snake_case = word.index(a__ , a__ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) __snake_case = j if word[i] == first and i < len(a__ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 __snake_case = tuple(a__ ) __snake_case = new_word if len(a__ ) == 1: break else: __snake_case = get_pairs(a__ ) __snake_case = '''@@ '''.join(a__ ) __snake_case = word[:-4] __snake_case = word return word def a (self : Optional[Any] , a__ : Tuple ): """simple docstring""" __snake_case = [] __snake_case = re.findall(R'''\S+\n?''' , a__ ) for token in words: split_tokens.extend(list(self.bpe(a__ ).split(''' ''' ) ) ) return split_tokens def a (self : Optional[Any] , a__ : Dict ): """simple docstring""" return self.encoder.get(a__ , self.encoder.get(self.unk_token ) ) def a (self : Optional[Any] , a__ : str ): """simple docstring""" return self.decoder.get(a__ , self.unk_token ) def a (self : int , a__ : str ): """simple docstring""" __snake_case = ''' '''.join(a__ ).replace('''@@ ''' , '''''' ).strip() return out_string def a (self : int , a__ : str , a__ : Optional[str] = None ): """simple docstring""" if not os.path.isdir(a__ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return __snake_case = os.path.join( a__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) __snake_case = os.path.join( a__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(a__ , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=a__ , ensure_ascii=a__ ) + '''\n''' ) __snake_case = 0 with open(a__ , '''w''' , encoding='''utf-8''' ) as writer: writer.write('''#version: 0.2\n''' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda a__ : kv[1] ): if index != token_index: logger.warning( f"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" ''' Please check that the tokenizer is not corrupted!''' ) __snake_case = token_index writer.write(''' '''.join(a__ ) + '''\n''' ) index += 1 return vocab_file, merge_file # def decode(self, token_ids, skip_special_tokens=False, clean_up_tokenization_spaces=True): # filtered_tokens = ' '.join(self.convert_ids_to_tokens(token_ids, skip_special_tokens=skip_special_tokens)) # tokens_generated_so_far = re.sub('(@@ )', '', string=filtered_tokens) # tokens_generated_so_far = re.sub('(@@ ?$)', '', string=tokens_generated_so_far) # return ''.join(tokens_generated_so_far)
367
def lowerCamelCase__ ( snake_case_ : int = 1000 ) -> int: __snake_case = 2**power __snake_case = str(snake_case_ ) __snake_case = list(snake_case_ ) __snake_case = 0 for i in list_num: sum_of_num += int(snake_case_ ) return sum_of_num if __name__ == "__main__": snake_case_ = int(input('Enter the power of 2: ').strip()) print('2 ^ ', power, ' = ', 2**power) snake_case_ = solution(power) print('Sum of the digits is: ', result)
238
0
'''simple docstring''' import numpy as np import torch import torch.nn as nn from transformers import CLIPConfig, CLIPVisionModelWithProjection, PreTrainedModel from ...utils import logging _SCREAMING_SNAKE_CASE : Tuple = logging.get_logger(__name__) class _snake_case ( lowercase_ ): lowerCAmelCase_ : Dict = CLIPConfig lowerCAmelCase_ : Dict = ["CLIPEncoderLayer"] def __init__( self , a__ ) -> Dict: '''simple docstring''' super().__init__(a__ ) snake_case_ = CLIPVisionModelWithProjection(config.vision_config ) snake_case_ = nn.Linear(config.vision_config.projection_dim , 1 ) snake_case_ = nn.Linear(config.vision_config.projection_dim , 1 ) @torch.no_grad() def lowerCAmelCase__ ( self , a__ , a__ , a__=0.5 , a__=0.5 ) -> Any: '''simple docstring''' snake_case_ = self.vision_model(a__ )[0] snake_case_ = self.p_head(a__ ) snake_case_ = nsfw_detected.flatten() snake_case_ = nsfw_detected > p_threshold snake_case_ = nsfw_detected.tolist() if any(a__ ): logger.warning( "Potential NSFW content was detected in one or more images. A black image will be returned instead." " Try again with a different prompt and/or seed." ) for idx, nsfw_detected_ in enumerate(a__ ): if nsfw_detected_: snake_case_ = np.zeros(images[idx].shape ) snake_case_ = self.w_head(a__ ) snake_case_ = watermark_detected.flatten() snake_case_ = watermark_detected > w_threshold snake_case_ = watermark_detected.tolist() if any(a__ ): logger.warning( "Potential watermarked content was detected in one or more images. A black image will be returned instead." " Try again with a different prompt and/or seed." ) for idx, watermark_detected_ in enumerate(a__ ): if watermark_detected_: snake_case_ = np.zeros(images[idx].shape ) return images, nsfw_detected, watermark_detected
85
'''simple docstring''' import copy from typing import Any, Dict, List, Optional, Union import numpy as np import torch from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging __SCREAMING_SNAKE_CASE : List[str] = logging.get_logger(__name__) class lowerCamelCase_ (snake_case__ ): '''simple docstring''' __UpperCamelCase: Optional[int] = ["input_features", "is_longer"] def __init__( self : str , A : int=64 , A : Dict=48000 , A : str=480 , A : List[Any]=10 , A : Optional[Any]=1024 , A : Tuple=0.0 , A : List[Any]=False , A : float = 0 , A : float = 14000 , A : int = None , A : str = "fusion" , A : str = "repeatpad" , **A : Dict , ): super().__init__( feature_size=A , sampling_rate=A , padding_value=A , return_attention_mask=A , **A , ) _UpperCAmelCase : Optional[Any] = top_db _UpperCAmelCase : Dict = truncation _UpperCAmelCase : List[Any] = padding _UpperCAmelCase : Optional[Any] = fft_window_size _UpperCAmelCase : Dict = (fft_window_size >> 1) + 1 _UpperCAmelCase : Any = hop_length _UpperCAmelCase : Tuple = max_length_s _UpperCAmelCase : str = max_length_s * sampling_rate _UpperCAmelCase : Any = sampling_rate _UpperCAmelCase : Optional[int] = frequency_min _UpperCAmelCase : str = frequency_max _UpperCAmelCase : Union[str, Any] = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=A , min_frequency=A , max_frequency=A , sampling_rate=A , norm=A , mel_scale="htk" , ) _UpperCAmelCase : Tuple = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=A , min_frequency=A , max_frequency=A , sampling_rate=A , norm="slaney" , mel_scale="slaney" , ) def _A ( self : List[str] ): _UpperCAmelCase : Union[str, Any] = copy.deepcopy(self.__dict__ ) _UpperCAmelCase : Dict = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] if "mel_filters_slaney" in output: del output["mel_filters_slaney"] return output def _A ( self : Optional[Any] , A : np.array , A : Optional[np.array] = None ): _UpperCAmelCase : Dict = spectrogram( A , window_function(self.fft_window_size , "hann" ) , frame_length=self.fft_window_size , hop_length=self.hop_length , power=2.0 , mel_filters=A , log_mel="dB" , ) return log_mel_spectrogram.T def _A ( self : str , A : str , A : List[str] , A : List[Any] ): _UpperCAmelCase : List[str] = np.array_split(list(range(0 , total_frames - chunk_frames + 1 ) ) , 3 ) if len(ranges[1] ) == 0: # if the audio is too short, we just use the first chunk _UpperCAmelCase : Optional[Any] = [0] if len(ranges[2] ) == 0: # if the audio is too short, we just use the first chunk _UpperCAmelCase : Tuple = [0] # randomly choose index for each part _UpperCAmelCase : Dict = np.random.choice(ranges[0] ) _UpperCAmelCase : str = np.random.choice(ranges[1] ) _UpperCAmelCase : Tuple = np.random.choice(ranges[2] ) _UpperCAmelCase : str = mel[idx_front : idx_front + chunk_frames, :] _UpperCAmelCase : str = mel[idx_middle : idx_middle + chunk_frames, :] _UpperCAmelCase : List[Any] = mel[idx_back : idx_back + chunk_frames, :] _UpperCAmelCase : Dict = torch.tensor(mel[None, None, :] ) _UpperCAmelCase : Optional[Any] = torch.nn.functional.interpolate( A , size=[chunk_frames, 64] , mode="bilinear" , align_corners=A ) _UpperCAmelCase : List[str] = mel_shrink[0][0].numpy() _UpperCAmelCase : str = np.stack([mel_shrink, mel_chunk_front, mel_chunk_middle, mel_chunk_back] , axis=0 ) return mel_fusion def _A ( self : List[Any] , A : np.array , A : List[str] , A : Any , A : Optional[int] ): if waveform.shape[0] > max_length: if truncation == "rand_trunc": _UpperCAmelCase : int = True # random crop to max_length (for compatibility) -> this should be handled by self.pad _UpperCAmelCase : str = len(A ) - max_length _UpperCAmelCase : str = np.random.randint(0 , overflow + 1 ) _UpperCAmelCase : int = waveform[idx : idx + max_length] _UpperCAmelCase : Any = self._np_extract_fbank_features(A , self.mel_filters_slaney )[None, :] elif truncation == "fusion": _UpperCAmelCase : Tuple = self._np_extract_fbank_features(A , self.mel_filters ) _UpperCAmelCase : List[str] = max_length // self.hop_length + 1 # the +1 related to how the spectrogram is computed _UpperCAmelCase : Optional[Any] = mel.shape[0] if chunk_frames == total_frames: # there is a corner case where the audio length is larger than max_length but smaller than max_length+hop_length. # In this case, we just use the whole audio. _UpperCAmelCase : Any = np.stack([mel, mel, mel, mel] , axis=0 ) _UpperCAmelCase : int = False else: _UpperCAmelCase : Tuple = self._random_mel_fusion(A , A , A ) _UpperCAmelCase : Any = True else: raise NotImplementedError(F"""data_truncating {truncation} not implemented""" ) else: _UpperCAmelCase : Optional[Any] = False # only use repeat as a new possible value for padding. you repeat the audio before applying the usual max_length padding if waveform.shape[0] < max_length: if padding == "repeat": _UpperCAmelCase : str = int(max_length / len(A ) ) _UpperCAmelCase : Dict = np.stack(np.tile(A , n_repeat + 1 ) )[:max_length] if padding == "repeatpad": _UpperCAmelCase : Dict = int(max_length / len(A ) ) _UpperCAmelCase : List[str] = np.stack(np.tile(A , A ) ) _UpperCAmelCase : Optional[Any] = np.pad(A , (0, max_length - waveform.shape[0]) , mode="constant" , constant_values=0 ) if truncation == "fusion": _UpperCAmelCase : str = self._np_extract_fbank_features(A , self.mel_filters ) _UpperCAmelCase : Optional[int] = np.stack([input_mel, input_mel, input_mel, input_mel] , axis=0 ) else: _UpperCAmelCase : List[str] = self._np_extract_fbank_features(A , self.mel_filters_slaney )[None, :] return input_mel, longer def __call__( self : Union[str, Any] , A : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , A : str = None , A : Optional[str] = None , A : Optional[int] = None , A : Optional[int] = None , A : Optional[Union[str, TensorType]] = None , **A : List[str] , ): _UpperCAmelCase : int = truncation if truncation is not None else self.truncation _UpperCAmelCase : Optional[int] = padding if padding else self.padding if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F"""The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a""" F""" sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input""" F""" was sampled with {self.sampling_rate} and not {sampling_rate}.""" ) else: logger.warning( "It is strongly recommended to pass the `sampling_rate` argument to this function. " "Failing to do so can result in silent errors that might be hard to debug." ) _UpperCAmelCase : Any = isinstance(A , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F"""Only mono-channel audio is supported for input to {self}""" ) _UpperCAmelCase : Optional[Any] = is_batched_numpy or ( isinstance(A , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: _UpperCAmelCase : int = [np.asarray(A , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(A , np.ndarray ): _UpperCAmelCase : List[str] = np.asarray(A , dtype=np.floataa ) elif isinstance(A , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): _UpperCAmelCase : Any = raw_speech.astype(np.floataa ) # always return batch if not is_batched: _UpperCAmelCase : List[str] = [np.asarray(A )] # convert to mel spectrogram, truncate and pad if needed. _UpperCAmelCase : Dict = [ self._get_input_mel(A , max_length if max_length else self.nb_max_samples , A , A ) for waveform in raw_speech ] _UpperCAmelCase : int = [] _UpperCAmelCase : Optional[Any] = [] for mel, longer in padded_inputs: input_mel.append(A ) is_longer.append(A ) if truncation == "fusion" and sum(A ) == 0: # if no audio is longer than 10s, then randomly select one audio to be longer _UpperCAmelCase : Union[str, Any] = np.random.randint(0 , len(A ) ) _UpperCAmelCase : Optional[Any] = True if isinstance(input_mel[0] , A ): _UpperCAmelCase : List[str] = [np.asarray(A , dtype=np.floataa ) for feature in input_mel] # is_longer is a list of bool _UpperCAmelCase : Tuple = [[longer] for longer in is_longer] _UpperCAmelCase : Optional[Any] = {"input_features": input_mel, "is_longer": is_longer} _UpperCAmelCase : Tuple = BatchFeature(A ) if return_tensors is not None: _UpperCAmelCase : List[Any] = input_features.convert_to_tensors(A ) return input_features
31
0
'''simple docstring''' import inspect import unittest from transformers import ViTMSNConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMSNForImageClassification, ViTMSNModel from transformers.models.vit_msn.modeling_vit_msn import VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class a : def __init__( self , __magic_name__ , __magic_name__=13 , __magic_name__=30 , __magic_name__=2 , __magic_name__=3 , __magic_name__=True , __magic_name__=True , __magic_name__=32 , __magic_name__=5 , __magic_name__=4 , __magic_name__=37 , __magic_name__="gelu" , __magic_name__=0.1 , __magic_name__=0.1 , __magic_name__=10 , __magic_name__=0.0_2 , __magic_name__=None , ) -> Dict: _a = parent _a = batch_size _a = image_size _a = patch_size _a = num_channels _a = is_training _a = use_labels _a = hidden_size _a = num_hidden_layers _a = num_attention_heads _a = intermediate_size _a = hidden_act _a = hidden_dropout_prob _a = attention_probs_dropout_prob _a = type_sequence_label_size _a = initializer_range _a = scope # in ViT MSN, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) _a = (image_size // patch_size) ** 2 _a = num_patches + 1 def __UpperCAmelCase ( self ) -> List[str]: _a = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _a = None if self.use_labels: _a = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _a = self.get_config() return config, pixel_values, labels def __UpperCAmelCase ( self ) -> Optional[Any]: return ViTMSNConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , ) def __UpperCAmelCase ( self , __magic_name__ , __magic_name__ , __magic_name__ ) -> List[Any]: _a = ViTMSNModel(config=__magic_name__ ) model.to(__magic_name__ ) model.eval() _a = model(__magic_name__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __UpperCAmelCase ( self , __magic_name__ , __magic_name__ , __magic_name__ ) -> Union[str, Any]: _a = self.type_sequence_label_size _a = ViTMSNForImageClassification(__magic_name__ ) model.to(__magic_name__ ) model.eval() _a = model(__magic_name__ , labels=__magic_name__ ) print('Pixel and labels shape: {pixel_values.shape}, {labels.shape}' ) print('Labels: {labels}' ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images _a = 1 _a = ViTMSNForImageClassification(__magic_name__ ) model.to(__magic_name__ ) model.eval() _a = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _a = model(__magic_name__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __UpperCAmelCase ( self ) -> Union[str, Any]: _a = self.prepare_config_and_inputs() _a , _a , _a = config_and_inputs _a = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , unittest.TestCase ): _lowerCAmelCase = (ViTMSNModel, ViTMSNForImageClassification) if is_torch_available() else () _lowerCAmelCase = ( {"""feature-extraction""": ViTMSNModel, """image-classification""": ViTMSNForImageClassification} if is_torch_available() else {} ) _lowerCAmelCase = False _lowerCAmelCase = False _lowerCAmelCase = False _lowerCAmelCase = False def __UpperCAmelCase ( self ) -> int: _a = ViTMSNModelTester(self ) _a = ConfigTester(self , config_class=__magic_name__ , has_text_modality=__magic_name__ , hidden_size=37 ) def __UpperCAmelCase ( self ) -> Optional[int]: self.config_tester.run_common_tests() @unittest.skip(reason='ViTMSN does not use inputs_embeds' ) def __UpperCAmelCase ( self ) -> Optional[int]: pass def __UpperCAmelCase ( self ) -> Union[str, Any]: _a , _a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a = model_class(__magic_name__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _a = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__magic_name__ , nn.Linear ) ) def __UpperCAmelCase ( self ) -> List[str]: _a , _a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a = model_class(__magic_name__ ) _a = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _a = [*signature.parameters.keys()] _a = ['pixel_values'] self.assertListEqual(arg_names[:1] , __magic_name__ ) def __UpperCAmelCase ( self ) -> Any: _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__magic_name__ ) def __UpperCAmelCase ( self ) -> Any: _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__magic_name__ ) @slow def __UpperCAmelCase ( self ) -> int: for model_name in VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _a = ViTMSNModel.from_pretrained(__magic_name__ ) self.assertIsNotNone(__magic_name__ ) def _A () -> Dict: '''simple docstring''' _a = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class a ( unittest.TestCase ): @cached_property def __UpperCAmelCase ( self ) -> Any: return ViTImageProcessor.from_pretrained('facebook/vit-msn-small' ) if is_vision_available() else None @slow def __UpperCAmelCase ( self ) -> int: torch.manual_seed(2 ) _a = ViTMSNForImageClassification.from_pretrained('facebook/vit-msn-small' ).to(__magic_name__ ) _a = self.default_image_processor _a = prepare_img() _a = image_processor(images=__magic_name__ , return_tensors='pt' ).to(__magic_name__ ) # forward pass with torch.no_grad(): _a = model(**__magic_name__ ) # verify the logits _a = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , __magic_name__ ) _a = torch.tensor([-0.0_8_0_3, -0.4_4_5_4, -0.2_3_7_5] ).to(__magic_name__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __magic_name__ , atol=1e-4 ) )
104
'''simple docstring''' import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging a_ : List[str] = logging.get_logger(__name__) a_ : str = { "microsoft/git-base": "https://huggingface.co/microsoft/git-base/resolve/main/config.json", } class a ( _SCREAMING_SNAKE_CASE ): _lowerCAmelCase = """git_vision_model""" def __init__( self , __magic_name__=7_68 , __magic_name__=30_72 , __magic_name__=12 , __magic_name__=12 , __magic_name__=3 , __magic_name__=2_24 , __magic_name__=16 , __magic_name__="quick_gelu" , __magic_name__=1e-5 , __magic_name__=0.0 , __magic_name__=0.0_2 , **__magic_name__ , ) -> Union[str, Any]: super().__init__(**__magic_name__ ) _a = hidden_size _a = intermediate_size _a = num_hidden_layers _a = num_attention_heads _a = num_channels _a = patch_size _a = image_size _a = initializer_range _a = attention_dropout _a = layer_norm_eps _a = hidden_act @classmethod def __UpperCAmelCase ( cls , __magic_name__ , **__magic_name__ ) -> "PretrainedConfig": cls._set_token_in_kwargs(__magic_name__ ) _a , _a = cls.get_config_dict(__magic_name__ , **__magic_name__ ) # get the vision config dict if we are loading from GITConfig if config_dict.get('model_type' ) == "git": _a = config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(__magic_name__ , **__magic_name__ ) class a ( _SCREAMING_SNAKE_CASE ): _lowerCAmelCase = """git""" def __init__( self , __magic_name__=None , __magic_name__=3_05_22 , __magic_name__=7_68 , __magic_name__=6 , __magic_name__=12 , __magic_name__=30_72 , __magic_name__="gelu" , __magic_name__=0.1 , __magic_name__=0.1 , __magic_name__=10_24 , __magic_name__=0.0_2 , __magic_name__=1e-12 , __magic_name__=0 , __magic_name__="absolute" , __magic_name__=True , __magic_name__=False , __magic_name__=1_01 , __magic_name__=1_02 , __magic_name__=None , **__magic_name__ , ) -> Optional[int]: super().__init__(bos_token_id=__magic_name__ , eos_token_id=__magic_name__ , pad_token_id=__magic_name__ , **__magic_name__ ) if vision_config is None: _a = {} logger.info('vision_config is None. initializing the GitVisionConfig with default values.' ) _a = GitVisionConfig(**__magic_name__ ) _a = vocab_size _a = hidden_size _a = num_hidden_layers _a = num_attention_heads _a = hidden_act _a = intermediate_size _a = hidden_dropout_prob _a = attention_probs_dropout_prob _a = max_position_embeddings _a = initializer_range _a = layer_norm_eps _a = position_embedding_type _a = use_cache _a = tie_word_embeddings _a = num_image_with_embedding _a = bos_token_id _a = eos_token_id def __UpperCAmelCase ( self ) -> List[str]: _a = copy.deepcopy(self.__dict__ ) _a = self.vision_config.to_dict() _a = self.__class__.model_type return output
104
1
import json import os from dataclasses import dataclass from functools import partial from typing import Callable import flax.linen as nn import jax import jax.numpy as jnp import joblib import optax import wandb from flax import jax_utils, struct, traverse_util from flax.serialization import from_bytes, to_bytes from flax.training import train_state from flax.training.common_utils import shard from tqdm.auto import tqdm from transformers import BigBirdConfig, FlaxBigBirdForQuestionAnswering from transformers.models.big_bird.modeling_flax_big_bird import FlaxBigBirdForQuestionAnsweringModule class __snake_case ( lowerCAmelCase ): _a : BigBirdConfig _a : jnp.dtype= jnp.floataa _a : bool= True def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' super().setup() lowercase : List[str] = nn.Dense(5 ,dtype=self.dtype ) def __call__( self ,*snake_case ,**snake_case ): '''simple docstring''' lowercase : int = super().__call__(*snake_case ,**snake_case ) lowercase : Any = self.cls(outputs[2] ) return outputs[:2] + (cls_out,) class __snake_case ( lowerCAmelCase ): _a : List[Any]= FlaxBigBirdForNaturalQuestionsModule def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> List[str]: def cross_entropy(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=None ): lowercase : int = logits.shape[-1] lowercase : Dict = (labels[..., None] == jnp.arange(SCREAMING_SNAKE_CASE__ )[None]).astype("""f4""" ) lowercase : Any = jax.nn.log_softmax(SCREAMING_SNAKE_CASE__ , axis=-1 ) lowercase : Optional[Any] = -jnp.sum(labels * logits , axis=-1 ) if reduction is not None: lowercase : Any = reduction(SCREAMING_SNAKE_CASE__ ) return loss lowercase : Optional[Any] = partial(SCREAMING_SNAKE_CASE__ , reduction=jnp.mean ) lowercase : Optional[int] = cross_entropy(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowercase : Dict = cross_entropy(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowercase : int = cross_entropy(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return (start_loss + end_loss + pooled_loss) / 3 @dataclass class __snake_case : _a : str= "google/bigbird-roberta-base" _a : int= 3000 _a : int= 1_0500 _a : int= 128 _a : int= 3 _a : int= 1 _a : int= 5 # tx_args _a : float= 3E-5 _a : float= 0.0 _a : int= 2_0000 _a : float= 0.00_95 _a : str= "bigbird-roberta-natural-questions" _a : str= "training-expt" _a : str= "data/nq-training.jsonl" _a : str= "data/nq-validation.jsonl" def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' os.makedirs(self.base_dir ,exist_ok=snake_case ) lowercase : Optional[int] = os.path.join(self.base_dir ,self.save_dir ) lowercase : Optional[int] = self.batch_size_per_device * jax.device_count() @dataclass class __snake_case : _a : int _a : int= 4096 # no dynamic padding on TPUs def __call__( self ,snake_case ): '''simple docstring''' lowercase : int = self.collate_fn(snake_case ) lowercase : Union[str, Any] = jax.tree_util.tree_map(snake_case ,snake_case ) return batch def _SCREAMING_SNAKE_CASE ( self ,snake_case ): '''simple docstring''' lowercase , lowercase : Union[str, Any] = self.fetch_inputs(features["""input_ids"""] ) lowercase : Tuple = { """input_ids""": jnp.array(snake_case ,dtype=jnp.intaa ), """attention_mask""": jnp.array(snake_case ,dtype=jnp.intaa ), """start_labels""": jnp.array(features["""start_token"""] ,dtype=jnp.intaa ), """end_labels""": jnp.array(features["""end_token"""] ,dtype=jnp.intaa ), """pooled_labels""": jnp.array(features["""category"""] ,dtype=jnp.intaa ), } return batch def _SCREAMING_SNAKE_CASE ( self ,snake_case ): '''simple docstring''' lowercase : Tuple = [self._fetch_inputs(snake_case ) for ids in input_ids] return zip(*snake_case ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ): '''simple docstring''' lowercase : Union[str, Any] = [1 for _ in range(len(snake_case ) )] while len(snake_case ) < self.max_length: input_ids.append(self.pad_id ) attention_mask.append(0 ) return input_ids, attention_mask def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=None ) -> Any: if seed is not None: lowercase : Optional[int] = dataset.shuffle(seed=SCREAMING_SNAKE_CASE__ ) for i in range(len(SCREAMING_SNAKE_CASE__ ) // batch_size ): lowercase : Optional[Any] = dataset[i * batch_size : (i + 1) * batch_size] yield dict(SCREAMING_SNAKE_CASE__ ) @partial(jax.pmap , axis_name="""batch""" ) def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) -> List[Any]: def loss_fn(SCREAMING_SNAKE_CASE__ ): lowercase : List[str] = model_inputs.pop("""start_labels""" ) lowercase : Optional[int] = model_inputs.pop("""end_labels""" ) lowercase : str = model_inputs.pop("""pooled_labels""" ) lowercase : Union[str, Any] = state.apply_fn(**SCREAMING_SNAKE_CASE__ , params=SCREAMING_SNAKE_CASE__ , dropout_rng=SCREAMING_SNAKE_CASE__ , train=SCREAMING_SNAKE_CASE__ ) lowercase , lowercase , lowercase : List[str] = outputs return state.loss_fn( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , ) lowercase , lowercase : int = jax.random.split(SCREAMING_SNAKE_CASE__ ) lowercase : Dict = jax.value_and_grad(SCREAMING_SNAKE_CASE__ ) lowercase , lowercase : Union[str, Any] = grad_fn(state.params ) lowercase : List[Any] = jax.lax.pmean({"""loss""": loss} , axis_name="""batch""" ) lowercase : List[Any] = jax.lax.pmean(SCREAMING_SNAKE_CASE__ , """batch""" ) lowercase : str = state.apply_gradients(grads=SCREAMING_SNAKE_CASE__ ) return state, metrics, new_drp_rng @partial(jax.pmap , axis_name="""batch""" ) def _snake_case( SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) -> List[str]: lowercase : int = model_inputs.pop("""start_labels""" ) lowercase : Dict = model_inputs.pop("""end_labels""" ) lowercase : Optional[Any] = model_inputs.pop("""pooled_labels""" ) lowercase : Optional[int] = state.apply_fn(**SCREAMING_SNAKE_CASE__ , params=state.params , train=SCREAMING_SNAKE_CASE__ ) lowercase , lowercase , lowercase : List[Any] = outputs lowercase : Dict = state.loss_fn(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowercase : str = jax.lax.pmean({"""loss""": loss} , axis_name="""batch""" ) return metrics class __snake_case ( train_state.TrainState ): _a : Callable= struct.field(pytree_node=lowerCAmelCase ) @dataclass class __snake_case : _a : Args _a : Callable _a : Callable _a : Callable _a : Callable _a : wandb _a : Callable= None def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case ,snake_case=None ): '''simple docstring''' lowercase : Tuple = model.params lowercase : Any = TrainState.create( apply_fn=model.__call__ ,params=snake_case ,tx=snake_case ,loss_fn=snake_case ,) if ckpt_dir is not None: lowercase , lowercase , lowercase , lowercase , lowercase : Tuple = restore_checkpoint(snake_case ,snake_case ) lowercase : List[str] = { """lr""": args.lr, """init_lr""": args.init_lr, """warmup_steps""": args.warmup_steps, """num_train_steps""": num_train_steps, """weight_decay""": args.weight_decay, } lowercase , lowercase : Tuple = build_tx(**snake_case ) lowercase : str = train_state.TrainState( step=snake_case ,apply_fn=model.__call__ ,params=snake_case ,tx=snake_case ,opt_state=snake_case ,) lowercase : Any = args lowercase : Optional[Any] = data_collator lowercase : List[str] = lr lowercase : str = params lowercase : Tuple = jax_utils.replicate(snake_case ) return state def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case ): '''simple docstring''' lowercase : Dict = self.args lowercase : Optional[Any] = len(snake_case ) // args.batch_size lowercase : int = jax.random.PRNGKey(0 ) lowercase : List[str] = jax.random.split(snake_case ,jax.device_count() ) for epoch in range(args.max_epochs ): lowercase : List[Any] = jnp.array(0 ,dtype=jnp.floataa ) lowercase : List[str] = get_batched_dataset(snake_case ,args.batch_size ,seed=snake_case ) lowercase : int = 0 for batch in tqdm(snake_case ,total=snake_case ,desc=f"Running EPOCH-{epoch}" ): lowercase : Dict = self.data_collator(snake_case ) lowercase , lowercase , lowercase : Optional[int] = self.train_step_fn(snake_case ,snake_case ,**snake_case ) running_loss += jax_utils.unreplicate(metrics["""loss"""] ) i += 1 if i % args.logging_steps == 0: lowercase : Optional[Any] = jax_utils.unreplicate(state.step ) lowercase : List[str] = running_loss.item() / i lowercase : List[str] = self.scheduler_fn(state_step - 1 ) lowercase : int = self.evaluate(snake_case ,snake_case ) lowercase : Tuple = { """step""": state_step.item(), """eval_loss""": eval_loss.item(), """tr_loss""": tr_loss, """lr""": lr.item(), } tqdm.write(str(snake_case ) ) self.logger.log(snake_case ,commit=snake_case ) if i % args.save_steps == 0: self.save_checkpoint(args.save_dir + f"-e{epoch}-s{i}" ,state=snake_case ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ): '''simple docstring''' lowercase : List[str] = get_batched_dataset(snake_case ,self.args.batch_size ) lowercase : Any = len(snake_case ) // self.args.batch_size lowercase : List[Any] = jnp.array(0 ,dtype=jnp.floataa ) lowercase : Optional[int] = 0 for batch in tqdm(snake_case ,total=snake_case ,desc="""Evaluating ... """ ): lowercase : Tuple = self.data_collator(snake_case ) lowercase : Optional[int] = self.val_step_fn(snake_case ,**snake_case ) running_loss += jax_utils.unreplicate(metrics["""loss"""] ) i += 1 return running_loss / i def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ): '''simple docstring''' lowercase : str = jax_utils.unreplicate(snake_case ) print(f"SAVING CHECKPOINT IN {save_dir}" ,end=""" ... """ ) self.model_save_fn(snake_case ,params=state.params ) with open(os.path.join(snake_case ,"""opt_state.msgpack""" ) ,"""wb""" ) as f: f.write(to_bytes(state.opt_state ) ) joblib.dump(self.args ,os.path.join(snake_case ,"""args.joblib""" ) ) joblib.dump(self.data_collator ,os.path.join(snake_case ,"""data_collator.joblib""" ) ) with open(os.path.join(snake_case ,"""training_state.json""" ) ,"""w""" ) as f: json.dump({"""step""": state.step.item()} ,snake_case ) print("""DONE""" ) def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Union[str, Any]: print(f"RESTORING CHECKPOINT FROM {save_dir}" , end=""" ... """ ) with open(os.path.join(SCREAMING_SNAKE_CASE__ , """flax_model.msgpack""" ) , """rb""" ) as f: lowercase : str = from_bytes(state.params , f.read() ) with open(os.path.join(SCREAMING_SNAKE_CASE__ , """opt_state.msgpack""" ) , """rb""" ) as f: lowercase : Optional[int] = from_bytes(state.opt_state , f.read() ) lowercase : Optional[Any] = joblib.load(os.path.join(SCREAMING_SNAKE_CASE__ , """args.joblib""" ) ) lowercase : int = joblib.load(os.path.join(SCREAMING_SNAKE_CASE__ , """data_collator.joblib""" ) ) with open(os.path.join(SCREAMING_SNAKE_CASE__ , """training_state.json""" ) , """r""" ) as f: lowercase : Tuple = json.load(SCREAMING_SNAKE_CASE__ ) lowercase : Tuple = training_state["""step"""] print("""DONE""" ) return params, opt_state, step, args, data_collator def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> List[Any]: lowercase : List[str] = num_train_steps - warmup_steps lowercase : Dict = optax.linear_schedule(init_value=SCREAMING_SNAKE_CASE__ , end_value=SCREAMING_SNAKE_CASE__ , transition_steps=SCREAMING_SNAKE_CASE__ ) lowercase : List[str] = optax.linear_schedule(init_value=SCREAMING_SNAKE_CASE__ , end_value=1e-7 , transition_steps=SCREAMING_SNAKE_CASE__ ) lowercase : Tuple = optax.join_schedules(schedules=[warmup_fn, decay_fn] , boundaries=[warmup_steps] ) return lr def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Optional[Any]: def weight_decay_mask(SCREAMING_SNAKE_CASE__ ): lowercase : List[Any] = traverse_util.flatten_dict(SCREAMING_SNAKE_CASE__ ) lowercase : List[Any] = {k: (v[-1] != """bias""" and v[-2:] != ("""LayerNorm""", """scale""")) for k, v in params.items()} return traverse_util.unflatten_dict(SCREAMING_SNAKE_CASE__ ) lowercase : List[str] = scheduler_fn(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowercase : List[str] = optax.adamw(learning_rate=SCREAMING_SNAKE_CASE__ , weight_decay=SCREAMING_SNAKE_CASE__ , mask=SCREAMING_SNAKE_CASE__ ) return tx, lr
20
import importlib.metadata import operator import re import sys from typing import Optional from packaging import version __lowerCAmelCase : Union[str, Any] ={ '<': operator.lt, '<=': operator.le, '==': operator.eq, '!=': operator.ne, '>=': operator.ge, '>': operator.gt, } def _UpperCamelCase ( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ): if got_ver is None or want_ver is None: raise ValueError( F'''Unable to compare versions for {requirement}: need={want_ver} found={got_ver}. This is unusual. Consider''' F''' reinstalling {pkg}.''' ) if not ops[op](version.parse(lowercase__ ) , version.parse(lowercase__ ) ): raise ImportError( F'''{requirement} is required for a normal functioning of this module, but found {pkg}=={got_ver}.{hint}''' ) def _UpperCamelCase ( lowercase__ , lowercase__ = None ): __SCREAMING_SNAKE_CASE : Union[str, Any] = F'''\n{hint}''' if hint is not None else '''''' # non-versioned check if re.match(R'''^[\w_\-\d]+$''' , lowercase__ ): __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : str = requirement, None, None else: __SCREAMING_SNAKE_CASE : List[Any] = re.findall(R'''^([^!=<>\s]+)([\s!=<>]{1,2}.+)''' , lowercase__ ) if not match: raise ValueError( '''requirement needs to be in the pip package format, .e.g., package_a==1.23, or package_b>=1.23, but''' F''' got {requirement}''' ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Tuple = match[0] __SCREAMING_SNAKE_CASE : Optional[int] = want_full.split(''',''' ) # there could be multiple requirements __SCREAMING_SNAKE_CASE : Optional[Any] = {} for w in want_range: __SCREAMING_SNAKE_CASE : Any = re.findall(R'''^([\s!=<>]{1,2})(.+)''' , lowercase__ ) if not match: raise ValueError( '''requirement needs to be in the pip package format, .e.g., package_a==1.23, or package_b>=1.23,''' F''' but got {requirement}''' ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Tuple = match[0] __SCREAMING_SNAKE_CASE : List[Any] = want_ver if op not in ops: raise ValueError(F'''{requirement}: need one of {list(ops.keys() )}, but got {op}''' ) # special case if pkg == "python": __SCREAMING_SNAKE_CASE : Optional[Any] = '''.'''.join([str(lowercase__ ) for x in sys.version_info[:3]] ) for op, want_ver in wanted.items(): _compare_versions(lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) return # check if any version is installed try: __SCREAMING_SNAKE_CASE : Optional[int] = importlib.metadata.version(lowercase__ ) except importlib.metadata.PackageNotFoundError: raise importlib.metadata.PackageNotFoundError( F'''The \'{requirement}\' distribution was not found and is required by this application. {hint}''' ) # check that the right version is installed if version number or a range was provided if want_ver is not None: for op, want_ver in wanted.items(): _compare_versions(lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) def _UpperCamelCase ( lowercase__ ): __SCREAMING_SNAKE_CASE : Union[str, Any] = '''Try: pip install transformers -U or pip install -e \'.[dev]\' if you\'re working with git main''' return require_version(lowercase__ , lowercase__ )
9
0
'''simple docstring''' import logging import os import sys import warnings from dataclasses import dataclass, field from random import randint from typing import Optional import datasets import evaluate import numpy as np from datasets import DatasetDict, load_dataset import transformers from transformers import ( AutoConfig, AutoFeatureExtractor, AutoModelForAudioClassification, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version __snake_case = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('''4.31.0''') require_version('''datasets>=1.14.0''', '''To fix: pip install -r examples/pytorch/audio-classification/requirements.txt''') def a ( __a , __a , __a = 16000 ) -> Tuple: '''simple docstring''' UpperCamelCase__ :Union[str, Any] = int(round(sample_rate * max_length ) ) if len(__a ) <= sample_length: return wav UpperCamelCase__ :List[Any] = randint(0 , len(__a ) - sample_length - 1 ) return wav[random_offset : random_offset + sample_length] @dataclass class lowercase : """simple docstring""" _a = field(default=A__ , metadata={'help': 'Name of a dataset from the datasets package'} ) _a = field( default=A__ , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'} ) _a = field( default=A__ , metadata={'help': 'A file containing the training audio paths and labels.'} ) _a = field( default=A__ , metadata={'help': 'A file containing the validation audio paths and labels.'} ) _a = field( default='train' , metadata={ 'help': 'The name of the training data set split to use (via the datasets library). Defaults to \'train\'' } , ) _a = field( default='validation' , metadata={ 'help': ( 'The name of the training data set split to use (via the datasets library). Defaults to \'validation\'' ) } , ) _a = field( default='audio' , metadata={'help': 'The name of the dataset column containing the audio data. Defaults to \'audio\''} , ) _a = field( default='label' , metadata={'help': 'The name of the dataset column containing the labels. Defaults to \'label\''} ) _a = field( default=A__ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) } , ) _a = field( default=A__ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of evaluation examples to this ' 'value if set.' ) } , ) _a = field( default=20 , metadata={'help': 'Audio clips will be randomly cut to this length during training if the value is set.'} , ) @dataclass class lowercase : """simple docstring""" _a = field( default='facebook/wav2vec2-base' , metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} , ) _a = field( default=A__ , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) _a = field( default=A__ , metadata={'help': 'Where do you want to store the pretrained models downloaded from the Hub'} ) _a = field( default='main' , metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} , ) _a = field( default=A__ , metadata={'help': 'Name or path of preprocessor config.'} ) _a = field( default=A__ , metadata={'help': 'Whether to freeze the feature encoder layers of the model.'} ) _a = field( default=A__ , metadata={'help': 'Whether to generate an attention mask in the feature extractor.'} ) _a = field( default=A__ , metadata={ 'help': ( 'Will use the token generated when running `huggingface-cli login` (necessary to use this script ' 'with private models).' ) } , ) _a = field( default=A__ , metadata={'help': 'Whether to freeze the feature extractor layers of the model.'} ) _a = field( default=A__ , metadata={'help': 'Will enable to load a pretrained model whose head dimensions are different.'} , ) def lowerCAmelCase__ ( self ): '''simple docstring''' if not self.freeze_feature_extractor and self.freeze_feature_encoder: warnings.warn( '''The argument `--freeze_feature_extractor` is deprecated and ''' '''will be removed in a future version. Use `--freeze_feature_encoder`''' '''instead. Setting `freeze_feature_encoder==True`.''' , UpperCamelCase_ , ) if self.freeze_feature_extractor and not self.freeze_feature_encoder: raise ValueError( '''The argument `--freeze_feature_extractor` is deprecated and ''' '''should not be used in combination with `--freeze_feature_encoder`.''' '''Only make use of `--freeze_feature_encoder`.''' ) def a ( ) -> Optional[Any]: '''simple docstring''' UpperCamelCase__ :Optional[int] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ :str = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ :Optional[int] = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('''run_audio_classification''' , __a , __a ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() UpperCamelCase__ :Dict = training_args.get_process_log_level() logger.setLevel(__a ) transformers.utils.logging.set_verbosity(__a ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu} ''' + f'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) logger.info(f'''Training/evaluation parameters {training_args}''' ) # Set seed before initializing model. set_seed(training_args.seed ) # Detecting last checkpoint. UpperCamelCase__ :Union[str, Any] = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: UpperCamelCase__ :str = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' '''Use --overwrite_output_dir to train from scratch.''' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Initialize our dataset and prepare it for the audio classification task. UpperCamelCase__ :List[Any] = DatasetDict() UpperCamelCase__ :str = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=data_args.train_split_name , use_auth_token=True if model_args.use_auth_token else None , ) UpperCamelCase__ :Union[str, Any] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=data_args.eval_split_name , use_auth_token=True if model_args.use_auth_token else None , ) if data_args.audio_column_name not in raw_datasets["train"].column_names: raise ValueError( f'''--audio_column_name {data_args.audio_column_name} not found in dataset \'{data_args.dataset_name}\'. ''' '''Make sure to set `--audio_column_name` to the correct audio column - one of ''' f'''{", ".join(raw_datasets["train"].column_names )}.''' ) if data_args.label_column_name not in raw_datasets["train"].column_names: raise ValueError( f'''--label_column_name {data_args.label_column_name} not found in dataset \'{data_args.dataset_name}\'. ''' '''Make sure to set `--label_column_name` to the correct text column - one of ''' f'''{", ".join(raw_datasets["train"].column_names )}.''' ) # Setting `return_attention_mask=True` is the way to get a correctly masked mean-pooling over # transformer outputs in the classifier, but it doesn't always lead to better accuracy UpperCamelCase__ :Tuple = AutoFeatureExtractor.from_pretrained( model_args.feature_extractor_name or model_args.model_name_or_path , return_attention_mask=model_args.attention_mask , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # `datasets` takes care of automatically loading and resampling the audio, # so we just need to set the correct target sampling rate. UpperCamelCase__ :Optional[int] = raw_datasets.cast_column( data_args.audio_column_name , datasets.features.Audio(sampling_rate=feature_extractor.sampling_rate ) ) UpperCamelCase__ :str = feature_extractor.model_input_names[0] def train_transforms(__a ): UpperCamelCase__ :Optional[int] = [] for audio in batch[data_args.audio_column_name]: UpperCamelCase__ :Union[str, Any] = random_subsample( audio['''array'''] , max_length=data_args.max_length_seconds , sample_rate=feature_extractor.sampling_rate ) subsampled_wavs.append(__a ) UpperCamelCase__ :List[str] = feature_extractor(__a , sampling_rate=feature_extractor.sampling_rate ) UpperCamelCase__ :Dict = {model_input_name: inputs.get(__a )} UpperCamelCase__ :List[Any] = list(batch[data_args.label_column_name] ) return output_batch def val_transforms(__a ): UpperCamelCase__ :Optional[Any] = [audio['''array'''] for audio in batch[data_args.audio_column_name]] UpperCamelCase__ :Union[str, Any] = feature_extractor(__a , sampling_rate=feature_extractor.sampling_rate ) UpperCamelCase__ :List[Any] = {model_input_name: inputs.get(__a )} UpperCamelCase__ :Tuple = list(batch[data_args.label_column_name] ) return output_batch # Prepare label mappings. # We'll include these in the model's config to get human readable labels in the Inference API. UpperCamelCase__ :Optional[int] = raw_datasets['''train'''].features[data_args.label_column_name].names UpperCamelCase__ , UpperCamelCase__ :Optional[int] = {}, {} for i, label in enumerate(__a ): UpperCamelCase__ :int = str(__a ) UpperCamelCase__ :Tuple = label # Load the accuracy metric from the datasets package UpperCamelCase__ :str = evaluate.load('''accuracy''' ) # Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with # `predictions` and `label_ids` fields) and has to return a dictionary string to float. def compute_metrics(__a ): UpperCamelCase__ :int = np.argmax(eval_pred.predictions , axis=1 ) return metric.compute(predictions=__a , references=eval_pred.label_ids ) UpperCamelCase__ :str = AutoConfig.from_pretrained( model_args.config_name or model_args.model_name_or_path , num_labels=len(__a ) , labelaid=__a , idalabel=__a , finetuning_task='''audio-classification''' , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) UpperCamelCase__ :List[str] = AutoModelForAudioClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=__a , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , ) # freeze the convolutional waveform encoder if model_args.freeze_feature_encoder: model.freeze_feature_encoder() if training_args.do_train: if data_args.max_train_samples is not None: UpperCamelCase__ :int = ( raw_datasets['''train'''].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) ) # Set the training transforms raw_datasets["train"].set_transform(__a , output_all_columns=__a ) if training_args.do_eval: if data_args.max_eval_samples is not None: UpperCamelCase__ :List[Any] = ( raw_datasets['''eval'''].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms raw_datasets["eval"].set_transform(__a , output_all_columns=__a ) # Initialize our trainer UpperCamelCase__ :Dict = Trainer( model=__a , args=__a , train_dataset=raw_datasets['''train'''] if training_args.do_train else None , eval_dataset=raw_datasets['''eval'''] if training_args.do_eval else None , compute_metrics=__a , tokenizer=__a , ) # Training if training_args.do_train: UpperCamelCase__ :Optional[Any] = None if training_args.resume_from_checkpoint is not None: UpperCamelCase__ :Union[str, Any] = training_args.resume_from_checkpoint elif last_checkpoint is not None: UpperCamelCase__ :Optional[int] = last_checkpoint UpperCamelCase__ :int = trainer.train(resume_from_checkpoint=__a ) trainer.save_model() trainer.log_metrics('''train''' , train_result.metrics ) trainer.save_metrics('''train''' , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: UpperCamelCase__ :Tuple = trainer.evaluate() trainer.log_metrics('''eval''' , __a ) trainer.save_metrics('''eval''' , __a ) # Write model card and (optionally) push to hub UpperCamelCase__ :int = { '''finetuned_from''': model_args.model_name_or_path, '''tasks''': '''audio-classification''', '''dataset''': data_args.dataset_name, '''tags''': ['''audio-classification'''], } if training_args.push_to_hub: trainer.push_to_hub(**__a ) else: trainer.create_model_card(**__a ) if __name__ == "__main__": main()
219
'''simple docstring''' from math import ceil def a ( __a , __a ) -> Any: '''simple docstring''' UpperCamelCase__ :str = list(range(0 , __a ) ) UpperCamelCase__ :Optional[int] = [item for sublist in list(device_map.values() ) for item in sublist] # Duplicate check UpperCamelCase__ :Optional[int] = [] for i in device_map_blocks: if device_map_blocks.count(__a ) > 1 and i not in duplicate_blocks: duplicate_blocks.append(__a ) # Missing blocks UpperCamelCase__ :List[str] = [i for i in blocks if i not in device_map_blocks] UpperCamelCase__ :Optional[Any] = [i for i in device_map_blocks if i not in blocks] if len(__a ) != 0: raise ValueError( '''Duplicate attention blocks specified in device_map. Attention blocks must be specified to one device.''' ''' These attention blocks were specified more than once: ''' + str(__a ) ) if len(__a ) != 0: raise ValueError( '''There are attention blocks for this model that are not specified in the device_map. Add these attention ''' '''blocks to a device on the device_map: ''' + str(__a ) ) if len(__a ) != 0: raise ValueError( '''The device_map contains more attention blocks than this model has. Remove these from the device_map:''' + str(__a ) ) def a ( __a , __a ) -> Tuple: '''simple docstring''' UpperCamelCase__ :Optional[Any] = list(range(__a ) ) UpperCamelCase__ :Any = int(ceil(n_layers / len(__a ) ) ) UpperCamelCase__ :List[Any] = [layers[i : i + n_blocks] for i in range(0 , __a , __a )] return dict(zip(__a , __a ) )
219
1
import unittest from transformers import ( MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TextGenerationPipeline, logging, pipeline, ) from transformers.testing_utils import ( CaptureLogger, is_pipeline_test, require_accelerate, require_tf, require_torch, require_torch_gpu, require_torch_or_tf, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf class A__ ( unittest.TestCase ): lowerCAmelCase__ : List[Any] = MODEL_FOR_CAUSAL_LM_MAPPING lowerCAmelCase__ : str = TF_MODEL_FOR_CAUSAL_LM_MAPPING @require_torch def a__ ( self : Any ) -> int: """simple docstring""" __lowercase = pipeline(task='text-generation' , model='sshleifer/tiny-ctrl' , framework='pt' ) # Using `do_sample=False` to force deterministic output __lowercase = text_generator('This is a test' , do_sample=_UpperCAmelCase ) self.assertEqual( _UpperCAmelCase , [ { 'generated_text': ( 'This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope.' ' oscope. FiliFili@@' ) } ] , ) __lowercase = text_generator(['This is a test', 'This is a second test'] ) self.assertEqual( _UpperCAmelCase , [ [ { 'generated_text': ( 'This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope.' ' oscope. FiliFili@@' ) } ], [ { 'generated_text': ( 'This is a second test ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy' ' oscope. oscope. FiliFili@@' ) } ], ] , ) __lowercase = text_generator('This is a test' , do_sample=_UpperCAmelCase , num_return_sequences=2 , return_tensors=_UpperCAmelCase ) self.assertEqual( _UpperCAmelCase , [ {'generated_token_ids': ANY(_UpperCAmelCase )}, {'generated_token_ids': ANY(_UpperCAmelCase )}, ] , ) __lowercase = text_generator.model.config.eos_token_id __lowercase = '<pad>' __lowercase = text_generator( ['This is a test', 'This is a second test'] , do_sample=_UpperCAmelCase , num_return_sequences=2 , batch_size=2 , return_tensors=_UpperCAmelCase , ) self.assertEqual( _UpperCAmelCase , [ [ {'generated_token_ids': ANY(_UpperCAmelCase )}, {'generated_token_ids': ANY(_UpperCAmelCase )}, ], [ {'generated_token_ids': ANY(_UpperCAmelCase )}, {'generated_token_ids': ANY(_UpperCAmelCase )}, ], ] , ) @require_tf def a__ ( self : Optional[int] ) -> Any: """simple docstring""" __lowercase = pipeline(task='text-generation' , model='sshleifer/tiny-ctrl' , framework='tf' ) # Using `do_sample=False` to force deterministic output __lowercase = text_generator('This is a test' , do_sample=_UpperCAmelCase ) self.assertEqual( _UpperCAmelCase , [ { 'generated_text': ( 'This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵' ' please,' ) } ] , ) __lowercase = text_generator(['This is a test', 'This is a second test'] , do_sample=_UpperCAmelCase ) self.assertEqual( _UpperCAmelCase , [ [ { 'generated_text': ( 'This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵' ' please,' ) } ], [ { 'generated_text': ( 'This is a second test Chieftain Chieftain prefecture prefecture prefecture Cannes Cannes' ' Cannes 閲閲Cannes Cannes Cannes 攵 please,' ) } ], ] , ) def a__ ( self : List[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : List[str] , _UpperCAmelCase : int ) -> Any: """simple docstring""" __lowercase = TextGenerationPipeline(model=_UpperCAmelCase , tokenizer=_UpperCAmelCase ) return text_generator, ["This is a test", "Another test"] def a__ ( self : List[str] ) -> Optional[int]: """simple docstring""" __lowercase = 'Hello I believe in' __lowercase = pipeline('text-generation' , model='hf-internal-testing/tiny-random-gpt2' ) __lowercase = text_generator(_UpperCAmelCase ) self.assertEqual( _UpperCAmelCase , [{'generated_text': 'Hello I believe in fe fe fe fe fe fe fe fe fe fe fe fe'}] , ) __lowercase = text_generator(_UpperCAmelCase , stop_sequence=' fe' ) self.assertEqual(_UpperCAmelCase , [{'generated_text': 'Hello I believe in fe'}] ) def a__ ( self : Dict , _UpperCAmelCase : Any , _UpperCAmelCase : Tuple ) -> List[str]: """simple docstring""" __lowercase = text_generator.model __lowercase = text_generator.tokenizer __lowercase = text_generator('This is a test' ) self.assertEqual(_UpperCAmelCase , [{'generated_text': ANY(_UpperCAmelCase )}] ) self.assertTrue(outputs[0]['generated_text'].startswith('This is a test' ) ) __lowercase = text_generator('This is a test' , return_full_text=_UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , [{'generated_text': ANY(_UpperCAmelCase )}] ) self.assertNotIn('This is a test' , outputs[0]['generated_text'] ) __lowercase = pipeline(task='text-generation' , model=_UpperCAmelCase , tokenizer=_UpperCAmelCase , return_full_text=_UpperCAmelCase ) __lowercase = text_generator('This is a test' ) self.assertEqual(_UpperCAmelCase , [{'generated_text': ANY(_UpperCAmelCase )}] ) self.assertNotIn('This is a test' , outputs[0]['generated_text'] ) __lowercase = text_generator('This is a test' , return_full_text=_UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , [{'generated_text': ANY(_UpperCAmelCase )}] ) self.assertTrue(outputs[0]['generated_text'].startswith('This is a test' ) ) __lowercase = text_generator(['This is great !', 'Something else'] , num_return_sequences=2 , do_sample=_UpperCAmelCase ) self.assertEqual( _UpperCAmelCase , [ [{'generated_text': ANY(_UpperCAmelCase )}, {'generated_text': ANY(_UpperCAmelCase )}], [{'generated_text': ANY(_UpperCAmelCase )}, {'generated_text': ANY(_UpperCAmelCase )}], ] , ) if text_generator.tokenizer.pad_token is not None: __lowercase = text_generator( ['This is great !', 'Something else'] , num_return_sequences=2 , batch_size=2 , do_sample=_UpperCAmelCase ) self.assertEqual( _UpperCAmelCase , [ [{'generated_text': ANY(_UpperCAmelCase )}, {'generated_text': ANY(_UpperCAmelCase )}], [{'generated_text': ANY(_UpperCAmelCase )}, {'generated_text': ANY(_UpperCAmelCase )}], ] , ) with self.assertRaises(_UpperCAmelCase ): __lowercase = text_generator('test' , return_full_text=_UpperCAmelCase , return_text=_UpperCAmelCase ) with self.assertRaises(_UpperCAmelCase ): __lowercase = text_generator('test' , return_full_text=_UpperCAmelCase , return_tensors=_UpperCAmelCase ) with self.assertRaises(_UpperCAmelCase ): __lowercase = text_generator('test' , return_text=_UpperCAmelCase , return_tensors=_UpperCAmelCase ) # Empty prompt is slighly special # it requires BOS token to exist. # Special case for Pegasus which will always append EOS so will # work even without BOS. if ( text_generator.tokenizer.bos_token_id is not None or "Pegasus" in tokenizer.__class__.__name__ or "Git" in model.__class__.__name__ ): __lowercase = text_generator('' ) self.assertEqual(_UpperCAmelCase , [{'generated_text': ANY(_UpperCAmelCase )}] ) else: with self.assertRaises((ValueError, AssertionError) ): __lowercase = text_generator('' ) if text_generator.framework == "tf": # TF generation does not support max_new_tokens, and it's impossible # to control long generation with only max_length without # fancy calculation, dismissing tests for now. return # We don't care about infinite range models. # They already work. # Skip this test for XGLM, since it uses sinusoidal positional embeddings which are resized on-the-fly. __lowercase = ['RwkvForCausalLM', 'XGLMForCausalLM', 'GPTNeoXForCausalLM'] if ( tokenizer.model_max_length < 1_00_00 and text_generator.model.__class__.__name__ not in EXTRA_MODELS_CAN_HANDLE_LONG_INPUTS ): # Handling of large generations with self.assertRaises((RuntimeError, IndexError, ValueError, AssertionError) ): text_generator('This is a test' * 5_00 , max_new_tokens=20 ) __lowercase = text_generator('This is a test' * 5_00 , handle_long_generation='hole' , max_new_tokens=20 ) # Hole strategy cannot work with self.assertRaises(_UpperCAmelCase ): text_generator( 'This is a test' * 5_00 , handle_long_generation='hole' , max_new_tokens=tokenizer.model_max_length + 10 , ) @require_torch @require_accelerate @require_torch_gpu def a__ ( self : str ) -> Optional[int]: """simple docstring""" import torch # Classic `model_kwargs` __lowercase = pipeline( model='hf-internal-testing/tiny-random-bloom' , model_kwargs={'device_map': 'auto', 'torch_dtype': torch.bfloataa} , ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa ) __lowercase = pipe('This is a test' ) self.assertEqual( _UpperCAmelCase , [ { 'generated_text': ( 'This is a test test test test test test test test test test test test test test test test' ' test' ) } ] , ) # Upgraded those two to real pipeline arguments (they just get sent for the model as they're unlikely to mean anything else.) __lowercase = pipeline(model='hf-internal-testing/tiny-random-bloom' , device_map='auto' , torch_dtype=torch.bfloataa ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa ) __lowercase = pipe('This is a test' ) self.assertEqual( _UpperCAmelCase , [ { 'generated_text': ( 'This is a test test test test test test test test test test test test test test test test' ' test' ) } ] , ) # torch_dtype will be automatically set to float32 if not provided - check: https://github.com/huggingface/transformers/pull/20602 __lowercase = pipeline(model='hf-internal-testing/tiny-random-bloom' , device_map='auto' ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.floataa ) __lowercase = pipe('This is a test' ) self.assertEqual( _UpperCAmelCase , [ { 'generated_text': ( 'This is a test test test test test test test test test test test test test test test test' ' test' ) } ] , ) @require_torch @require_torch_gpu def a__ ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" import torch __lowercase = pipeline(model='hf-internal-testing/tiny-random-bloom' , device=0 , torch_dtype=torch.floataa ) pipe('This is a test' ) @require_torch @require_accelerate @require_torch_gpu def a__ ( self : List[Any] ) -> List[str]: """simple docstring""" import torch __lowercase = pipeline(model='hf-internal-testing/tiny-random-bloom' , device_map='auto' , torch_dtype=torch.floataa ) pipe('This is a test' , do_sample=_UpperCAmelCase , top_p=0.5 ) def a__ ( self : Dict ) -> str: """simple docstring""" __lowercase = 'Hello world' __lowercase = pipeline('text-generation' , model='hf-internal-testing/tiny-random-gpt2' ) if text_generator.model.framework == "tf": __lowercase = logging.get_logger('transformers.generation.tf_utils' ) else: __lowercase = logging.get_logger('transformers.generation.utils' ) __lowercase = 'Both `max_new_tokens`' # The beggining of the message to be checked in this test # Both are set by the user -> log warning with CaptureLogger(_UpperCAmelCase ) as cl: __lowercase = text_generator(_UpperCAmelCase , max_length=10 , max_new_tokens=1 ) self.assertIn(_UpperCAmelCase , cl.out ) # The user only sets one -> no warning with CaptureLogger(_UpperCAmelCase ) as cl: __lowercase = text_generator(_UpperCAmelCase , max_new_tokens=1 ) self.assertNotIn(_UpperCAmelCase , cl.out ) with CaptureLogger(_UpperCAmelCase ) as cl: __lowercase = text_generator(_UpperCAmelCase , max_length=10 ) self.assertNotIn(_UpperCAmelCase , cl.out )
325
from __future__ import annotations # This is the precision for this function which can be altered. # It is recommended for users to keep this number greater than or equal to 10. SCREAMING_SNAKE_CASE__ = 10 def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : list[int] , SCREAMING_SNAKE_CASE : int ) -> int: for i in range(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): if array[i] == target: return i return -1 def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : list[int] , SCREAMING_SNAKE_CASE : int ) -> int: __lowercase = 0 __lowercase = len(SCREAMING_SNAKE_CASE ) while left <= right: if right - left < precision: return lin_search(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __lowercase = (left + right) // 3 + 1 __lowercase = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: __lowercase = one_third - 1 elif array[two_third] < target: __lowercase = two_third + 1 else: __lowercase = one_third + 1 __lowercase = two_third - 1 else: return -1 def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : list[int] , SCREAMING_SNAKE_CASE : int ) -> int: if left < right: if right - left < precision: return lin_search(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __lowercase = (left + right) // 3 + 1 __lowercase = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: return rec_ternary_search(SCREAMING_SNAKE_CASE , one_third - 1 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) elif array[two_third] < target: return rec_ternary_search(two_third + 1 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) else: return rec_ternary_search(one_third + 1 , two_third - 1 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) else: return -1 if __name__ == "__main__": import doctest doctest.testmod() SCREAMING_SNAKE_CASE__ = input("""Enter numbers separated by comma:\n""").strip() SCREAMING_SNAKE_CASE__ = [int(item.strip()) for item in user_input.split(""",""")] assert collection == sorted(collection), F"List must be ordered.\n{collection}." SCREAMING_SNAKE_CASE__ = int(input("""Enter the number to be found in the list:\n""").strip()) SCREAMING_SNAKE_CASE__ = ite_ternary_search(collection, target) SCREAMING_SNAKE_CASE__ = rec_ternary_search(0, len(collection) - 1, collection, target) if resulta != -1: print(F'''Iterative search: {target} found at positions: {resulta}''') print(F'''Recursive search: {target} found at positions: {resulta}''') else: print("""Not found""")
325
1
'''simple docstring''' from math import factorial def snake_case__ ( lowerCamelCase__ : int = 1_0_0 ) -> int: return sum(int(lowerCamelCase__ ) for x in str(factorial(lowerCamelCase__ ) ) ) if __name__ == "__main__": print(solution(int(input("""Enter the Number: """).strip())))
4
'''simple docstring''' import logging import os from dataclasses import dataclass from typing import List, Optional, Union import tqdm from filelock import FileLock from transformers import ( BartTokenizer, BartTokenizerFast, DataProcessor, PreTrainedTokenizer, RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, is_tf_available, is_torch_available, ) snake_case__ = logging.getLogger(__name__) @dataclass(frozen=a__ ) class UpperCamelCase_ : """simple docstring""" _lowerCAmelCase = 42 _lowerCAmelCase = 42 _lowerCAmelCase = None _lowerCAmelCase = None _lowerCAmelCase = None @dataclass(frozen=a__ ) class UpperCamelCase_ : """simple docstring""" _lowerCAmelCase = 42 _lowerCAmelCase = None _lowerCAmelCase = None _lowerCAmelCase = None _lowerCAmelCase = None if is_torch_available(): import torch from torch.utils.data import Dataset class UpperCamelCase_ (a__ ): """simple docstring""" _lowerCAmelCase = 42 def __init__( self : Optional[int] , _lowerCamelCase : str , _lowerCamelCase : PreTrainedTokenizer , _lowerCamelCase : str , _lowerCamelCase : Optional[int] = None , _lowerCamelCase : List[Any]=False , _lowerCamelCase : bool = False , ): """simple docstring""" A_ : Optional[int] = hans_processors[task]() A_ : int = os.path.join( _lowerCamelCase , '''cached_{}_{}_{}_{}'''.format( '''dev''' if evaluate else '''train''' , tokenizer.__class__.__name__ , str(_lowerCamelCase ) , _lowerCamelCase , ) , ) A_ : Dict = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) A_ ,A_ : List[str] = label_list[2], label_list[1] A_ : Optional[int] = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. A_ : str = cached_features_file + '''.lock''' with FileLock(_lowerCamelCase ): if os.path.exists(_lowerCamelCase ) and not overwrite_cache: logger.info(f'Loading features from cached file {cached_features_file}' ) A_ : List[str] = torch.load(_lowerCamelCase ) else: logger.info(f'Creating features from dataset file at {data_dir}' ) A_ : Optional[int] = ( processor.get_dev_examples(_lowerCamelCase ) if evaluate else processor.get_train_examples(_lowerCamelCase ) ) logger.info('''Training examples: %s''' , len(_lowerCamelCase ) ) A_ : Optional[int] = hans_convert_examples_to_features(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) logger.info('''Saving features into cached file %s''' , _lowerCamelCase ) torch.save(self.features , _lowerCamelCase ) def __len__( self : List[str] ): """simple docstring""" return len(self.features ) def __getitem__( self : List[str] , _lowerCamelCase : Optional[int] ): """simple docstring""" return self.features[i] def _a ( self : str ): """simple docstring""" return self.label_list if is_tf_available(): import tensorflow as tf class UpperCamelCase_ : """simple docstring""" _lowerCAmelCase = 42 def __init__( self : Optional[int] , _lowerCamelCase : str , _lowerCamelCase : PreTrainedTokenizer , _lowerCamelCase : str , _lowerCamelCase : Optional[int] = 128 , _lowerCamelCase : Dict=False , _lowerCamelCase : bool = False , ): """simple docstring""" A_ : Optional[int] = hans_processors[task]() A_ : Optional[int] = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) A_ ,A_ : Union[str, Any] = label_list[2], label_list[1] A_ : Tuple = label_list A_ : Optional[int] = processor.get_dev_examples(_lowerCamelCase ) if evaluate else processor.get_train_examples(_lowerCamelCase ) A_ : Tuple = hans_convert_examples_to_features(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) def gen(): for ex_index, ex in tqdm.tqdm(enumerate(self.features ) , desc='''convert examples to features''' ): if ex_index % 10000 == 0: logger.info('''Writing example %d of %d''' % (ex_index, len(_lowerCamelCase )) ) yield ( { "example_id": 0, "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label, ) A_ : List[Any] = tf.data.Dataset.from_generator( _lowerCamelCase , ( { '''example_id''': tf.intaa, '''input_ids''': tf.intaa, '''attention_mask''': tf.intaa, '''token_type_ids''': tf.intaa, }, tf.intaa, ) , ( { '''example_id''': tf.TensorShape([] ), '''input_ids''': tf.TensorShape([None, None] ), '''attention_mask''': tf.TensorShape([None, None] ), '''token_type_ids''': tf.TensorShape([None, None] ), }, tf.TensorShape([] ), ) , ) def _a ( self : Any ): """simple docstring""" return self.dataset def __len__( self : Dict ): """simple docstring""" return len(self.features ) def __getitem__( self : Optional[int] , _lowerCamelCase : List[str] ): """simple docstring""" return self.features[i] def _a ( self : Tuple ): """simple docstring""" return self.label_list class UpperCamelCase_ (a__ ): """simple docstring""" def _a ( self : List[str] , _lowerCamelCase : Union[str, Any] ): """simple docstring""" return self._create_examples(self._read_tsv(os.path.join(_lowerCamelCase , '''heuristics_train_set.txt''' ) ) , '''train''' ) def _a ( self : List[str] , _lowerCamelCase : Tuple ): """simple docstring""" return self._create_examples(self._read_tsv(os.path.join(_lowerCamelCase , '''heuristics_evaluation_set.txt''' ) ) , '''dev''' ) def _a ( self : Any ): """simple docstring""" return ["contradiction", "entailment", "neutral"] def _a ( self : Optional[Any] , _lowerCamelCase : Optional[Any] , _lowerCamelCase : Any ): """simple docstring""" A_ : Tuple = [] for i, line in enumerate(_lowerCamelCase ): if i == 0: continue A_ : str = '''%s-%s''' % (set_type, line[0]) A_ : Optional[Any] = line[5] A_ : Union[str, Any] = line[6] A_ : List[str] = line[7][2:] if line[7].startswith('''ex''' ) else line[7] A_ : str = line[0] examples.append(InputExample(guid=_lowerCamelCase , text_a=_lowerCamelCase , text_b=_lowerCamelCase , label=_lowerCamelCase , pairID=_lowerCamelCase ) ) return examples def snake_case__ ( lowerCamelCase__ : List[InputExample] , lowerCamelCase__ : List[str] , lowerCamelCase__ : int , lowerCamelCase__ : PreTrainedTokenizer , ) -> int: A_ : Union[str, Any] = {label: i for i, label in enumerate(lowerCamelCase__ )} A_ : Optional[Any] = [] for ex_index, example in tqdm.tqdm(enumerate(lowerCamelCase__ ) , desc='''convert examples to features''' ): if ex_index % 1_0_0_0_0 == 0: logger.info('''Writing example %d''' % (ex_index) ) A_ : Optional[int] = tokenizer( example.text_a , example.text_b , add_special_tokens=lowerCamelCase__ , max_length=lowerCamelCase__ , padding='''max_length''' , truncation=lowerCamelCase__ , return_overflowing_tokens=lowerCamelCase__ , ) A_ : List[str] = label_map[example.label] if example.label in label_map else 0 A_ : Tuple = int(example.pairID ) features.append(InputFeatures(**lowerCamelCase__ , label=lowerCamelCase__ , pairID=lowerCamelCase__ ) ) for i, example in enumerate(examples[:5] ): logger.info('''*** Example ***''' ) logger.info(f'guid: {example}' ) logger.info(f'features: {features[i]}' ) return features snake_case__ = { """hans""": 3, } snake_case__ = { """hans""": HansProcessor, }
4
1
from __future__ import annotations def A__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__) -> list[list[int]]: __snake_case: list[list[int]] = [] create_all_state(1 , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , [] , SCREAMING_SNAKE_CASE__) return result def A__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , ) -> None: if level == 0: total_list.append(current_list[:]) return for i in range(SCREAMING_SNAKE_CASE__ , total_number - level + 2): current_list.append(SCREAMING_SNAKE_CASE__) create_all_state(i + 1 , SCREAMING_SNAKE_CASE__ , level - 1 , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__) current_list.pop() def A__ ( SCREAMING_SNAKE_CASE__) -> None: for i in total_list: print(*SCREAMING_SNAKE_CASE__) if __name__ == "__main__": __UpperCAmelCase : int = 4 __UpperCAmelCase : List[Any] = 2 __UpperCAmelCase : Optional[int] = generate_all_combinations(n, k) print_all_state(total_list)
111
from dataclasses import dataclass from typing import Optional, Tuple import torch from torch import nn from transformers import RobertaPreTrainedModel, XLMRobertaConfig, XLMRobertaModel from transformers.utils import ModelOutput @dataclass class __snake_case ( __lowerCamelCase ): '''simple docstring''' lowerCAmelCase__ = None lowerCAmelCase__ = None lowerCAmelCase__ = None lowerCAmelCase__ = None class __snake_case ( __lowerCamelCase ): '''simple docstring''' def __init__( self : Any , A : List[str]=1 , A : str=0 , A : List[Any]=2 , A : Union[str, Any]=512 , A : Tuple="cls" , A : Union[str, Any]=False , A : Optional[Any]=True , **A : Optional[int] , ): super().__init__(pad_token_id=A , bos_token_id=A , eos_token_id=A , **A ) __snake_case: str = project_dim __snake_case: Optional[int] = pooler_fn __snake_case: Dict = learn_encoder __snake_case: str = use_attention_mask class __snake_case ( __lowerCamelCase ): '''simple docstring''' lowerCAmelCase__ = [R"""pooler""", R"""logit_scale"""] lowerCAmelCase__ = [R"""position_ids""", R"""predictions.decoder.bias"""] lowerCAmelCase__ = """roberta""" lowerCAmelCase__ = RobertaSeriesConfig def __init__( self : Dict , A : Dict ): super().__init__(A ) __snake_case: Optional[Any] = XLMRobertaModel(A ) __snake_case: List[Any] = nn.Linear(config.hidden_size , config.project_dim ) __snake_case: Optional[int] = getattr(A , """has_pre_transformation""" , A ) if self.has_pre_transformation: __snake_case: Optional[Any] = nn.Linear(config.hidden_size , config.project_dim ) __snake_case: Optional[Any] = nn.LayerNorm(config.hidden_size , eps=config.layer_norm_eps ) self.post_init() def UpperCAmelCase__ ( self : Optional[Any] , A : Optional[torch.Tensor] = None , A : Optional[torch.Tensor] = None , A : Optional[torch.Tensor] = None , A : Optional[torch.Tensor] = None , A : Optional[torch.Tensor] = None , A : Optional[torch.Tensor] = None , A : Optional[torch.Tensor] = None , A : Optional[torch.Tensor] = None , A : Optional[bool] = None , A : Optional[bool] = None , A : Optional[bool] = None , ): __snake_case: Any = return_dict if return_dict is not None else self.config.use_return_dict __snake_case: Optional[int] = self.base_model( input_ids=A , attention_mask=A , token_type_ids=A , position_ids=A , head_mask=A , inputs_embeds=A , encoder_hidden_states=A , encoder_attention_mask=A , output_attentions=A , output_hidden_states=True if self.has_pre_transformation else output_hidden_states , return_dict=A , ) if self.has_pre_transformation: __snake_case: int = outputs["""hidden_states"""][-2] __snake_case: List[str] = self.pre_LN(A ) __snake_case: List[str] = self.transformation_pre(A ) return TransformationModelOutput( projection_state=A , last_hidden_state=outputs.last_hidden_state , hidden_states=outputs.hidden_states , attentions=outputs.attentions , ) else: __snake_case: Optional[int] = self.transformation(outputs.last_hidden_state ) return TransformationModelOutput( projection_state=A , last_hidden_state=outputs.last_hidden_state , hidden_states=outputs.hidden_states , attentions=outputs.attentions , )
111
1
import numpy as np from matplotlib import pyplot as plt from sklearn.datasets import load_iris from sklearn.metrics import ConfusionMatrixDisplay from sklearn.model_selection import train_test_split from xgboost import XGBClassifier def UpperCAmelCase__ ( lowerCamelCase ): return (data["data"], data["target"]) def UpperCAmelCase__ ( lowerCamelCase, lowerCamelCase ): lowercase :Optional[int] = XGBClassifier() classifier.fit(lowerCamelCase, lowerCamelCase ) return classifier def UpperCAmelCase__ ( ): lowercase :List[str] = load_iris() lowercase , lowercase :Union[str, Any] = data_handling(lowerCamelCase ) lowercase , lowercase , lowercase , lowercase :int = train_test_split( lowerCamelCase, lowerCamelCase, test_size=0.25 ) lowercase :List[str] = iris["target_names"] # Create an XGBoost Classifier from the training data lowercase :Union[str, Any] = xgboost(lowerCamelCase, lowerCamelCase ) # Display the confusion matrix of the classifier with both training and test sets ConfusionMatrixDisplay.from_estimator( lowerCamelCase, lowerCamelCase, lowerCamelCase, display_labels=lowerCamelCase, cmap="Blues", normalize="true", ) plt.title("Normalized Confusion Matrix - IRIS Dataset" ) plt.show() if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
158
import pytest _UpperCAmelCase : List[Any] = "__dummy_dataset1__" _UpperCAmelCase : Union[str, Any] = "\nimport json\nimport os\n\nimport datasets\n\n\nREPO_URL = \"https://huggingface.co/datasets/albertvillanova/tests-raw-jsonl/resolve/main/\"\nURLS = {\"train\": REPO_URL + \"wikiann-bn-train.jsonl\", \"validation\": REPO_URL + \"wikiann-bn-validation.jsonl\"}\n\n\nclass __DummyDataset1__(datasets.GeneratorBasedBuilder):\n\n def _info(self):\n features = datasets.Features(\n {\n \"tokens\": datasets.Sequence(datasets.Value(\"string\")),\n \"ner_tags\": datasets.Sequence(\n datasets.features.ClassLabel(\n names=[\n \"O\",\n \"B-PER\",\n \"I-PER\",\n \"B-ORG\",\n \"I-ORG\",\n \"B-LOC\",\n \"I-LOC\",\n ]\n )\n ),\n \"langs\": datasets.Sequence(datasets.Value(\"string\")),\n \"spans\": datasets.Sequence(datasets.Value(\"string\")),\n }\n )\n return datasets.DatasetInfo(features=features)\n\n def _split_generators(self, dl_manager):\n dl_path = dl_manager.download(URLS)\n return [\n datasets.SplitGenerator(datasets.Split.TRAIN, gen_kwargs={\"filepath\": dl_path[\"train\"]}),\n datasets.SplitGenerator(datasets.Split.VALIDATION, gen_kwargs={\"filepath\": dl_path[\"validation\"]}),\n ]\n\n def _generate_examples(self, filepath):\n with open(filepath, \"r\", encoding=\"utf-8\") as f:\n for i, line in enumerate(f):\n yield i, json.loads(line)\n" @pytest.fixture def UpperCAmelCase__ ( ): return DATASET_LOADING_SCRIPT_NAME @pytest.fixture def UpperCAmelCase__ ( ): return DATASET_LOADING_SCRIPT_CODE @pytest.fixture def UpperCAmelCase__ ( lowerCamelCase, lowerCamelCase, lowerCamelCase ): lowercase :Tuple = dataset_loading_script_name lowercase :Dict = tmp_path / "datasets" / script_name script_dir.mkdir(parents=lowerCamelCase ) lowercase :int = script_dir / F"{script_name}.py" with open(lowerCamelCase, "w" ) as f: f.write(lowerCamelCase ) return str(lowerCamelCase )
158
1
from __future__ import annotations def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE ): A_ : Optional[int] = len(SCREAMING_SNAKE_CASE ) # We need to create solution object to save path. A_ : str = [[0 for _ in range(SCREAMING_SNAKE_CASE )] for _ in range(SCREAMING_SNAKE_CASE )] A_ : Union[str, Any] = run_maze(SCREAMING_SNAKE_CASE , 0 , 0 , SCREAMING_SNAKE_CASE ) if solved: print('''\n'''.join(str(SCREAMING_SNAKE_CASE ) for row in solutions ) ) else: print('''No solution exists!''' ) return solved def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): A_ : Optional[Any] = len(SCREAMING_SNAKE_CASE ) # Final check point. if i == j == (size - 1): A_ : List[str] = 1 return True A_ : List[Any] = (not i < 0) and (not j < 0) # Check lower bounds A_ : List[str] = (i < size) and (j < size) # Check upper bounds if lower_flag and upper_flag: # check for already visited and block points. A_ : int = (not solutions[i][j]) and (not maze[i][j]) if block_flag: # check visited A_ : Union[str, Any] = 1 # check for directions if ( run_maze(SCREAMING_SNAKE_CASE , i + 1 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) or run_maze(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , j + 1 , SCREAMING_SNAKE_CASE ) or run_maze(SCREAMING_SNAKE_CASE , i - 1 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) or run_maze(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , j - 1 , SCREAMING_SNAKE_CASE ) ): return True A_ : List[str] = 0 return False return False if __name__ == "__main__": import doctest doctest.testmod()
186
from __future__ import annotations import os import tempfile import unittest from transformers import ConvBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertModel, ) class a__ : def __init__( self : Optional[int],_A : Dict,_A : List[str]=13,_A : List[str]=7,_A : int=True,_A : str=True,_A : Union[str, Any]=True,_A : Tuple=True,_A : Dict=99,_A : Tuple=32,_A : Tuple=2,_A : Tuple=4,_A : Optional[Any]=37,_A : str="gelu",_A : Dict=0.1,_A : List[Any]=0.1,_A : List[str]=512,_A : str=16,_A : int=2,_A : Dict=0.02,_A : List[Any]=3,_A : Optional[Any]=4,_A : Optional[int]=None,): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = parent SCREAMING_SNAKE_CASE_ : Any = 13 SCREAMING_SNAKE_CASE_ : List[str] = 7 SCREAMING_SNAKE_CASE_ : Dict = True SCREAMING_SNAKE_CASE_ : Optional[Any] = True SCREAMING_SNAKE_CASE_ : Tuple = True SCREAMING_SNAKE_CASE_ : List[str] = True SCREAMING_SNAKE_CASE_ : List[str] = 99 SCREAMING_SNAKE_CASE_ : Tuple = 384 SCREAMING_SNAKE_CASE_ : Optional[Any] = 2 SCREAMING_SNAKE_CASE_ : Any = 4 SCREAMING_SNAKE_CASE_ : str = 37 SCREAMING_SNAKE_CASE_ : Optional[Any] = "gelu" SCREAMING_SNAKE_CASE_ : List[Any] = 0.1 SCREAMING_SNAKE_CASE_ : Union[str, Any] = 0.1 SCREAMING_SNAKE_CASE_ : Dict = 512 SCREAMING_SNAKE_CASE_ : int = 16 SCREAMING_SNAKE_CASE_ : Optional[int] = 2 SCREAMING_SNAKE_CASE_ : Any = 0.02 SCREAMING_SNAKE_CASE_ : str = 3 SCREAMING_SNAKE_CASE_ : int = 4 SCREAMING_SNAKE_CASE_ : Dict = 128 SCREAMING_SNAKE_CASE_ : Any = 2 SCREAMING_SNAKE_CASE_ : Tuple = 9 SCREAMING_SNAKE_CASE_ : List[Any] = 1 SCREAMING_SNAKE_CASE_ : Any = None def __UpperCamelCase ( self : str ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = ids_tensor([self.batch_size, self.seq_length],self.vocab_size ) SCREAMING_SNAKE_CASE_ : Any = None if self.use_input_mask: SCREAMING_SNAKE_CASE_ : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE_ : List[str] = None if self.use_token_type_ids: SCREAMING_SNAKE_CASE_ : List[Any] = ids_tensor([self.batch_size, self.seq_length],self.type_vocab_size ) SCREAMING_SNAKE_CASE_ : Dict = None SCREAMING_SNAKE_CASE_ : Dict = None SCREAMING_SNAKE_CASE_ : str = None if self.use_labels: SCREAMING_SNAKE_CASE_ : List[str] = ids_tensor([self.batch_size],self.type_sequence_label_size ) SCREAMING_SNAKE_CASE_ : Dict = ids_tensor([self.batch_size, self.seq_length],self.num_labels ) SCREAMING_SNAKE_CASE_ : List[str] = ids_tensor([self.batch_size],self.num_choices ) SCREAMING_SNAKE_CASE_ : Any = ConvBertConfig( vocab_size=self.vocab_size,hidden_size=self.hidden_size,num_hidden_layers=self.num_hidden_layers,num_attention_heads=self.num_attention_heads,intermediate_size=self.intermediate_size,hidden_act=self.hidden_act,hidden_dropout_prob=self.hidden_dropout_prob,attention_probs_dropout_prob=self.attention_probs_dropout_prob,max_position_embeddings=self.max_position_embeddings,type_vocab_size=self.type_vocab_size,initializer_range=self.initializer_range,return_dict=_A,) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __UpperCamelCase ( self : Optional[int],_A : List[Any],_A : int,_A : Tuple,_A : Optional[int],_A : Union[str, Any],_A : Union[str, Any],_A : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = TFConvBertModel(config=_A ) SCREAMING_SNAKE_CASE_ : Optional[int] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} SCREAMING_SNAKE_CASE_ : str = [input_ids, input_mask] SCREAMING_SNAKE_CASE_ : List[str] = model(_A ) SCREAMING_SNAKE_CASE_ : Dict = model(_A ) self.parent.assertEqual(result.last_hidden_state.shape,(self.batch_size, self.seq_length, self.hidden_size) ) def __UpperCamelCase ( self : Dict,_A : Dict,_A : int,_A : Union[str, Any],_A : List[Any],_A : int,_A : str,_A : int ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = TFConvBertForMaskedLM(config=_A ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } SCREAMING_SNAKE_CASE_ : List[Any] = model(_A ) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.seq_length, self.vocab_size) ) def __UpperCamelCase ( self : Any,_A : Optional[int],_A : List[Any],_A : Union[str, Any],_A : List[Any],_A : Union[str, Any],_A : Optional[int],_A : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = self.num_labels SCREAMING_SNAKE_CASE_ : Any = TFConvBertForSequenceClassification(config=_A ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } SCREAMING_SNAKE_CASE_ : Optional[Any] = model(_A ) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.num_labels) ) def __UpperCamelCase ( self : int,_A : int,_A : Dict,_A : List[str],_A : Tuple,_A : Dict,_A : Optional[int],_A : int ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = self.num_choices SCREAMING_SNAKE_CASE_ : Optional[int] = TFConvBertForMultipleChoice(config=_A ) SCREAMING_SNAKE_CASE_ : Any = tf.tile(tf.expand_dims(_A,1 ),(1, self.num_choices, 1) ) SCREAMING_SNAKE_CASE_ : Any = tf.tile(tf.expand_dims(_A,1 ),(1, self.num_choices, 1) ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = tf.tile(tf.expand_dims(_A,1 ),(1, self.num_choices, 1) ) SCREAMING_SNAKE_CASE_ : int = { "input_ids": multiple_choice_inputs_ids, "attention_mask": multiple_choice_input_mask, "token_type_ids": multiple_choice_token_type_ids, } SCREAMING_SNAKE_CASE_ : int = model(_A ) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.num_choices) ) def __UpperCamelCase ( self : List[Any],_A : Union[str, Any],_A : int,_A : Optional[int],_A : str,_A : str,_A : Tuple,_A : str ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = self.num_labels SCREAMING_SNAKE_CASE_ : Union[str, Any] = TFConvBertForTokenClassification(config=_A ) SCREAMING_SNAKE_CASE_ : Tuple = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } SCREAMING_SNAKE_CASE_ : str = model(_A ) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.seq_length, self.num_labels) ) def __UpperCamelCase ( self : List[Any],_A : int,_A : List[str],_A : List[Any],_A : Any,_A : Optional[int],_A : List[str],_A : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = TFConvBertForQuestionAnswering(config=_A ) SCREAMING_SNAKE_CASE_ : Dict = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } SCREAMING_SNAKE_CASE_ : Any = model(_A ) self.parent.assertEqual(result.start_logits.shape,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape,(self.batch_size, self.seq_length) ) def __UpperCamelCase ( self : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ) : List[Any] = config_and_inputs SCREAMING_SNAKE_CASE_ : Any = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_tf class a__ ( A__ , A__ , unittest.TestCase ): A = ( ( TFConvBertModel, TFConvBertForMaskedLM, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertForMultipleChoice, ) if is_tf_available() else () ) A = ( { 'feature-extraction': TFConvBertModel, 'fill-mask': TFConvBertForMaskedLM, 'question-answering': TFConvBertForQuestionAnswering, 'text-classification': TFConvBertForSequenceClassification, 'token-classification': TFConvBertForTokenClassification, 'zero-shot': TFConvBertForSequenceClassification, } if is_tf_available() else {} ) A = False A = False A = False def __UpperCamelCase ( self : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = TFConvBertModelTester(self ) SCREAMING_SNAKE_CASE_ : Tuple = ConfigTester(self,config_class=_A,hidden_size=37 ) def __UpperCamelCase ( self : Optional[int] ): """simple docstring""" self.config_tester.run_common_tests() def __UpperCamelCase ( self : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A ) def __UpperCamelCase ( self : Optional[int] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_A ) def __UpperCamelCase ( self : Optional[int] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*_A ) def __UpperCamelCase ( self : str ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_A ) def __UpperCamelCase ( self : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_A ) def __UpperCamelCase ( self : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_A ) @slow def __UpperCamelCase ( self : Optional[int] ): """simple docstring""" SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE_ : List[str] = True SCREAMING_SNAKE_CASE_ : Any = True if hasattr(_A,"use_cache" ): SCREAMING_SNAKE_CASE_ : List[Any] = True SCREAMING_SNAKE_CASE_ : int = getattr(self.model_tester,"encoder_seq_length",self.model_tester.seq_length ) SCREAMING_SNAKE_CASE_ : Optional[Any] = getattr(self.model_tester,"key_length",_A ) for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_ : List[str] = self._prepare_for_class(_A,_A ) SCREAMING_SNAKE_CASE_ : List[Any] = model_class(_A ) SCREAMING_SNAKE_CASE_ : Optional[int] = len(model(_A ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_A,saved_model=_A ) SCREAMING_SNAKE_CASE_ : Optional[Any] = os.path.join(_A,"saved_model","1" ) SCREAMING_SNAKE_CASE_ : Tuple = tf.keras.models.load_model(_A ) SCREAMING_SNAKE_CASE_ : str = model(_A ) if self.is_encoder_decoder: SCREAMING_SNAKE_CASE_ : Optional[Any] = outputs["encoder_hidden_states"] SCREAMING_SNAKE_CASE_ : str = outputs["encoder_attentions"] else: SCREAMING_SNAKE_CASE_ : Any = outputs["hidden_states"] SCREAMING_SNAKE_CASE_ : List[str] = outputs["attentions"] self.assertEqual(len(_A ),_A ) SCREAMING_SNAKE_CASE_ : Any = getattr( self.model_tester,"expected_num_hidden_layers",self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(_A ),_A ) self.assertListEqual( list(output_hidden_states[0].shape[-2:] ),[self.model_tester.seq_length, self.model_tester.hidden_size],) self.assertEqual(len(_A ),self.model_tester.num_hidden_layers ) self.assertListEqual( list(output_attentions[0].shape[-3:] ),[self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length],) @slow def __UpperCamelCase ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = TFConvBertModel.from_pretrained("YituTech/conv-bert-base" ) self.assertIsNotNone(_A ) def __UpperCamelCase ( self : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Any = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE_ : List[str] = True SCREAMING_SNAKE_CASE_ : List[str] = getattr(self.model_tester,"decoder_seq_length",self.model_tester.seq_length ) SCREAMING_SNAKE_CASE_ : Any = getattr(self.model_tester,"encoder_seq_length",self.model_tester.seq_length ) SCREAMING_SNAKE_CASE_ : Optional[int] = getattr(self.model_tester,"key_length",_A ) SCREAMING_SNAKE_CASE_ : int = getattr(self.model_tester,"key_length",_A ) def check_decoder_attentions_output(_A : Dict ): SCREAMING_SNAKE_CASE_ : int = len(_A ) self.assertEqual(out_len % 2,0 ) SCREAMING_SNAKE_CASE_ : Tuple = outputs.decoder_attentions self.assertEqual(len(_A ),self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ),[self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length],) def check_encoder_attentions_output(_A : Tuple ): SCREAMING_SNAKE_CASE_ : int = [ t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions) ] self.assertEqual(len(_A ),self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ),[self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length],) for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_ : Optional[Any] = True SCREAMING_SNAKE_CASE_ : Optional[Any] = False SCREAMING_SNAKE_CASE_ : Tuple = model_class(_A ) SCREAMING_SNAKE_CASE_ : Any = model(self._prepare_for_class(_A,_A ) ) SCREAMING_SNAKE_CASE_ : Tuple = len(_A ) self.assertEqual(config.output_hidden_states,_A ) check_encoder_attentions_output(_A ) if self.is_encoder_decoder: SCREAMING_SNAKE_CASE_ : Optional[Any] = model_class(_A ) SCREAMING_SNAKE_CASE_ : int = model(self._prepare_for_class(_A,_A ) ) self.assertEqual(config.output_hidden_states,_A ) check_decoder_attentions_output(_A ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] SCREAMING_SNAKE_CASE_ : str = True SCREAMING_SNAKE_CASE_ : int = model_class(_A ) SCREAMING_SNAKE_CASE_ : List[str] = model(self._prepare_for_class(_A,_A ) ) self.assertEqual(config.output_hidden_states,_A ) check_encoder_attentions_output(_A ) # Check attention is always last and order is fine SCREAMING_SNAKE_CASE_ : str = True SCREAMING_SNAKE_CASE_ : int = True SCREAMING_SNAKE_CASE_ : Dict = model_class(_A ) SCREAMING_SNAKE_CASE_ : str = model(self._prepare_for_class(_A,_A ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1),len(_A ) ) self.assertEqual(model.config.output_hidden_states,_A ) check_encoder_attentions_output(_A ) @require_tf class a__ ( unittest.TestCase ): @slow def __UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = TFConvBertModel.from_pretrained("YituTech/conv-bert-base" ) SCREAMING_SNAKE_CASE_ : int = tf.constant([[0, 1, 2, 3, 4, 5]] ) SCREAMING_SNAKE_CASE_ : Tuple = model(_A )[0] SCREAMING_SNAKE_CASE_ : List[Any] = [1, 6, 768] self.assertEqual(output.shape,_A ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = tf.constant( [ [ [-0.03475493, -0.4686034, -0.30638832], [0.22637248, -0.26988646, -0.7423424], [0.10324868, -0.45013508, -0.58280784], ] ] ) tf.debugging.assert_near(output[:, :3, :3],_A,atol=1E-4 )
18
0
import os from pathlib import Path import numpy as np import pytest from pack_dataset import pack_data_dir from parameterized import parameterized from save_len_file import save_len_file from torch.utils.data import DataLoader from transformers import AutoTokenizer from transformers.models.mbart.modeling_mbart import shift_tokens_right from transformers.testing_utils import TestCasePlus, slow from utils import FAIRSEQ_AVAILABLE, DistributedSortishSampler, LegacySeqaSeqDataset, SeqaSeqDataset snake_case_ = 'bert-base-cased' snake_case_ = 'google/pegasus-xsum' snake_case_ = [' Sam ate lunch today.', 'Sams lunch ingredients.'] snake_case_ = ['A very interesting story about what I ate for lunch.', 'Avocado, celery, turkey, coffee'] snake_case_ = 'patrickvonplaten/t5-tiny-random' snake_case_ = 'sshleifer/bart-tiny-random' snake_case_ = 'sshleifer/tiny-mbart' snake_case_ = 'sshleifer/tiny-marian-en-de' def lowerCamelCase__ ( snake_case_ : Path , snake_case_ : list ) -> Dict: __snake_case = '''\n'''.join(snake_case_ ) Path(snake_case_ ).open('''w''' ).writelines(snake_case_ ) def lowerCamelCase__ ( snake_case_ : List[Any] ) -> int: for split in ["train", "val", "test"]: _dump_articles(os.path.join(snake_case_ , f"""{split}.source""" ) , snake_case_ ) _dump_articles(os.path.join(snake_case_ , f"""{split}.target""" ) , snake_case_ ) return tmp_dir class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ): @parameterized.expand( [ MBART_TINY, MARIAN_TINY, T5_TINY, BART_TINY, PEGASUS_XSUM, ] , ) @slow def a (self : Union[str, Any] , a__ : Optional[int] ): """simple docstring""" __snake_case = AutoTokenizer.from_pretrained(a__ ) __snake_case = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) __snake_case = max(len(tokenizer.encode(a__ ) ) for a in ARTICLES ) __snake_case = max(len(tokenizer.encode(a__ ) ) for a in SUMMARIES ) __snake_case = 4 __snake_case = 8 assert max_len_target > max_src_len # Will be truncated assert max_len_source > max_src_len # Will be truncated __snake_case , __snake_case = '''ro_RO''', '''de_DE''' # ignored for all but mbart, but never causes error. __snake_case = SeqaSeqDataset( a__ , data_dir=a__ , type_path='''train''' , max_source_length=a__ , max_target_length=a__ , src_lang=a__ , tgt_lang=a__ , ) __snake_case = DataLoader(a__ , batch_size=2 , collate_fn=train_dataset.collate_fn ) for batch in dataloader: assert isinstance(a__ , a__ ) assert batch["attention_mask"].shape == batch["input_ids"].shape # show that articles were trimmed. assert batch["input_ids"].shape[1] == max_src_len # show that targets are the same len assert batch["labels"].shape[1] == max_tgt_len if tok_name != MBART_TINY: continue # check language codes in correct place __snake_case = shift_tokens_right(batch['''labels'''] , tokenizer.pad_token_id ) assert batch["decoder_input_ids"][0, 0].item() == tokenizer.lang_code_to_id[tgt_lang] assert batch["decoder_input_ids"][0, -1].item() == tokenizer.eos_token_id assert batch["input_ids"][0, -2].item() == tokenizer.eos_token_id assert batch["input_ids"][0, -1].item() == tokenizer.lang_code_to_id[src_lang] break # No need to test every batch @parameterized.expand([BART_TINY, BERT_BASE_CASED] ) def a (self : Tuple , a__ : Optional[int] ): """simple docstring""" __snake_case = AutoTokenizer.from_pretrained(a__ ) __snake_case = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) __snake_case = max(len(tokenizer.encode(a__ ) ) for a in ARTICLES ) __snake_case = max(len(tokenizer.encode(a__ ) ) for a in SUMMARIES ) __snake_case = 4 __snake_case = LegacySeqaSeqDataset( a__ , data_dir=a__ , type_path='''train''' , max_source_length=20 , max_target_length=a__ , ) __snake_case = DataLoader(a__ , batch_size=2 , collate_fn=train_dataset.collate_fn ) for batch in dataloader: assert batch["attention_mask"].shape == batch["input_ids"].shape # show that articles were trimmed. assert batch["input_ids"].shape[1] == max_len_source assert 20 >= batch["input_ids"].shape[1] # trimmed significantly # show that targets were truncated assert batch["labels"].shape[1] == trunc_target # Truncated assert max_len_target > trunc_target # Truncated break # No need to test every batch def a (self : int ): """simple docstring""" __snake_case = AutoTokenizer.from_pretrained('''facebook/mbart-large-cc25''' ) __snake_case = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) ) __snake_case = tmp_dir.joinpath('''train.source''' ).open().readlines() __snake_case = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) ) pack_data_dir(a__ , a__ , 128 , a__ ) __snake_case = {x.name for x in tmp_dir.iterdir()} __snake_case = {x.name for x in save_dir.iterdir()} __snake_case = save_dir.joinpath('''train.source''' ).open().readlines() # orig: [' Sam ate lunch today.\n', 'Sams lunch ingredients.'] # desired_packed: [' Sam ate lunch today.\n Sams lunch ingredients.'] assert len(a__ ) < len(a__ ) assert len(a__ ) == 1 assert len(packed_examples[0] ) == sum(len(a__ ) for x in orig_examples ) assert orig_paths == new_paths @pytest.mark.skipif(not FAIRSEQ_AVAILABLE , reason='''This test requires fairseq''' ) def a (self : Any ): """simple docstring""" if not FAIRSEQ_AVAILABLE: return __snake_case , __snake_case , __snake_case = self._get_dataset(max_len=64 ) __snake_case = 64 __snake_case = ds.make_dynamic_sampler(a__ , required_batch_size_multiple=a__ ) __snake_case = [len(a__ ) for x in batch_sampler] assert len(set(a__ ) ) > 1 # it's not dynamic batch size if every batch is the same length assert sum(a__ ) == len(a__ ) # no dropped or added examples __snake_case = DataLoader(a__ , batch_sampler=a__ , collate_fn=ds.collate_fn , num_workers=2 ) __snake_case = [] __snake_case = [] for batch in data_loader: __snake_case = batch['''input_ids'''].shape __snake_case = src_shape[0] assert bs % required_batch_size_multiple == 0 or bs < required_batch_size_multiple __snake_case = np.product(batch['''input_ids'''].shape ) num_src_per_batch.append(a__ ) if num_src_tokens > (max_tokens * 1.1): failures.append(a__ ) assert num_src_per_batch[0] == max(a__ ) if failures: raise AssertionError(f"""too many tokens in {len(a__ )} batches""" ) def a (self : List[str] ): """simple docstring""" __snake_case , __snake_case , __snake_case = self._get_dataset(max_len=512 ) __snake_case = 2 __snake_case = ds.make_sortish_sampler(a__ , shuffle=a__ ) __snake_case = DataLoader(a__ , batch_size=a__ , collate_fn=ds.collate_fn , num_workers=2 ) __snake_case = DataLoader(a__ , batch_size=a__ , collate_fn=ds.collate_fn , num_workers=2 , sampler=a__ ) __snake_case = tokenizer.pad_token_id def count_pad_tokens(a__ : List[str] , a__ : List[Any]="input_ids" ): return [batch[k].eq(a__ ).sum().item() for batch in data_loader] assert sum(count_pad_tokens(a__ , k='''labels''' ) ) < sum(count_pad_tokens(a__ , k='''labels''' ) ) assert sum(count_pad_tokens(a__ ) ) < sum(count_pad_tokens(a__ ) ) assert len(a__ ) == len(a__ ) def a (self : int , a__ : Optional[Any]=1000 , a__ : Optional[Any]=128 ): """simple docstring""" if os.getenv('''USE_REAL_DATA''' , a__ ): __snake_case = '''examples/seq2seq/wmt_en_ro''' __snake_case = max_len * 2 * 64 if not Path(a__ ).joinpath('''train.len''' ).exists(): save_len_file(a__ , a__ ) else: __snake_case = '''examples/seq2seq/test_data/wmt_en_ro''' __snake_case = max_len * 4 save_len_file(a__ , a__ ) __snake_case = AutoTokenizer.from_pretrained(a__ ) __snake_case = SeqaSeqDataset( a__ , data_dir=a__ , type_path='''train''' , max_source_length=a__ , max_target_length=a__ , n_obs=a__ , ) return ds, max_tokens, tokenizer def a (self : List[str] ): """simple docstring""" __snake_case , __snake_case , __snake_case = self._get_dataset() __snake_case = set(DistributedSortishSampler(a__ , 256 , num_replicas=2 , rank=0 , add_extra_examples=a__ ) ) __snake_case = set(DistributedSortishSampler(a__ , 256 , num_replicas=2 , rank=1 , add_extra_examples=a__ ) ) assert idsa.intersection(a__ ) == set() @parameterized.expand( [ MBART_TINY, MARIAN_TINY, T5_TINY, BART_TINY, PEGASUS_XSUM, ] , ) def a (self : Optional[int] , a__ : Optional[int] ): """simple docstring""" __snake_case = AutoTokenizer.from_pretrained(a__ , use_fast=a__ ) if tok_name == MBART_TINY: __snake_case = SeqaSeqDataset( a__ , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) , type_path='''train''' , max_source_length=4 , max_target_length=8 , src_lang='''EN''' , tgt_lang='''FR''' , ) __snake_case = train_dataset.dataset_kwargs assert "src_lang" in kwargs and "tgt_lang" in kwargs else: __snake_case = SeqaSeqDataset( a__ , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) , type_path='''train''' , max_source_length=4 , max_target_length=8 , ) __snake_case = train_dataset.dataset_kwargs assert "add_prefix_space" not in kwargs if tok_name != BART_TINY else "add_prefix_space" in kwargs assert len(a__ ) == 1 if tok_name == BART_TINY else len(a__ ) == 0
352
from typing import List, Union import numpy as np from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_DEPTH_ESTIMATION_MAPPING snake_case_ = logging.get_logger(__name__) @add_end_docstrings(_UpperCAmelCase ) class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ): def __init__(self : int , *a__ : List[Any] , **a__ : Dict ): """simple docstring""" super().__init__(*a__ , **a__ ) requires_backends(self , '''vision''' ) self.check_model_type(a__ ) def __call__(self : Optional[Any] , a__ : Union[str, List[str], "Image.Image", List["Image.Image"]] , **a__ : List[str] ): """simple docstring""" return super().__call__(a__ , **a__ ) def a (self : int , **a__ : int ): """simple docstring""" return {}, {}, {} def a (self : Optional[int] , a__ : Optional[int] ): """simple docstring""" __snake_case = load_image(a__ ) __snake_case = image.size __snake_case = self.image_processor(images=a__ , return_tensors=self.framework ) return model_inputs def a (self : List[Any] , a__ : Union[str, Any] ): """simple docstring""" __snake_case = self.model(**a__ ) return model_outputs def a (self : int , a__ : str ): """simple docstring""" __snake_case = model_outputs.predicted_depth __snake_case = torch.nn.functional.interpolate( predicted_depth.unsqueeze(1 ) , size=self.image_size[::-1] , mode='''bicubic''' , align_corners=a__ ) __snake_case = prediction.squeeze().cpu().numpy() __snake_case = (output * 255 / np.max(a__ )).astype('''uint8''' ) __snake_case = Image.fromarray(a__ ) __snake_case = {} __snake_case = predicted_depth __snake_case = depth return output_dict
238
0
import argparse from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import BigBirdPegasusConfig, BigBirdPegasusForConditionalGeneration SCREAMING_SNAKE_CASE_:str = [ # tf -> hf ("""/""", """."""), ("""layer_""", """layers."""), ("""kernel""", """weight"""), ("""beta""", """bias"""), ("""gamma""", """weight"""), ("""pegasus""", """model"""), ] SCREAMING_SNAKE_CASE_:Dict = [ (""".output.dense""", """.fc2"""), ("""intermediate.LayerNorm""", """final_layer_norm"""), ("""intermediate.dense""", """fc1"""), ] SCREAMING_SNAKE_CASE_:Tuple = ( INIT_COMMON + [ ("""attention.self.LayerNorm""", """self_attn_layer_norm"""), ("""attention.output.dense""", """self_attn.out_proj"""), ("""attention.self""", """self_attn"""), ("""attention.encdec.LayerNorm""", """encoder_attn_layer_norm"""), ("""attention.encdec_output.dense""", """encoder_attn.out_proj"""), ("""attention.encdec""", """encoder_attn"""), ("""key""", """k_proj"""), ("""value""", """v_proj"""), ("""query""", """q_proj"""), ("""decoder.LayerNorm""", """decoder.layernorm_embedding"""), ] + END_COMMON ) SCREAMING_SNAKE_CASE_:Union[str, Any] = ( INIT_COMMON + [ ("""embeddings.word_embeddings""", """shared.weight"""), ("""embeddings.position_embeddings""", """embed_positions.weight"""), ("""attention.self.LayerNorm""", """self_attn_layer_norm"""), ("""attention.output.dense""", """self_attn.output"""), ("""attention.self""", """self_attn.self"""), ("""encoder.LayerNorm""", """encoder.layernorm_embedding"""), ] + END_COMMON ) SCREAMING_SNAKE_CASE_:Any = [ """encdec/key/bias""", """encdec/query/bias""", """encdec/value/bias""", """self/key/bias""", """self/query/bias""", """self/value/bias""", """encdec_output/dense/bias""", """attention/output/dense/bias""", ] def __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase ) -> Dict: """simple docstring""" for tf_name, hf_name in patterns: A : List[Any] = k.replace(_lowerCAmelCase , _lowerCAmelCase ) return k def __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase ) -> BigBirdPegasusForConditionalGeneration: """simple docstring""" A : int = BigBirdPegasusConfig(**_lowerCAmelCase ) A : Tuple = BigBirdPegasusForConditionalGeneration(_lowerCAmelCase ) A : int = torch_model.state_dict() A : Any = {} # separating decoder weights A : List[Any] = {k: tf_weights[k] for k in tf_weights if k.startswith("""pegasus/decoder""" )} A : List[Any] = {k: tf_weights[k] for k in tf_weights if not k.startswith("""pegasus/decoder""" )} for k, v in tqdm(decoder_weights.items() , """tf -> hf conversion""" ): A : Any = [k.endswith(_lowerCAmelCase ) for ending in KEYS_TO_IGNORE] if any(_lowerCAmelCase ): continue A : Tuple = DECODER_PATTERNS A : Union[str, Any] = rename_state_dict_key(_lowerCAmelCase , _lowerCAmelCase ) if new_k not in state_dict: raise ValueError(f'''could not find new key {new_k} in state dict. (converted from {k})''' ) if any(True if i in k else False for i in ["""dense""", """query""", """key""", """value"""] ): A : int = v.T A : Dict = torch.from_numpy(_lowerCAmelCase ) assert v.shape == state_dict[new_k].shape, f'''{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}''' for k, v in tqdm(remaining_weights.items() , """tf -> hf conversion""" ): A : Dict = [k.endswith(_lowerCAmelCase ) for ending in KEYS_TO_IGNORE] if any(_lowerCAmelCase ): continue A : Optional[Any] = REMAINING_PATTERNS A : Tuple = rename_state_dict_key(_lowerCAmelCase , _lowerCAmelCase ) if new_k not in state_dict and k != "pegasus/embeddings/position_embeddings": raise ValueError(f'''could not find new key {new_k} in state dict. (converted from {k})''' ) if any(True if i in k else False for i in ["""dense""", """query""", """key""", """value"""] ): A : List[str] = v.T A : str = torch.from_numpy(_lowerCAmelCase ) if k != "pegasus/embeddings/position_embeddings": assert v.shape == state_dict[new_k].shape, f'''{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}''' A : Dict = mapping["""model.embed_positions.weight"""] A : List[Any] = mapping.pop("""model.embed_positions.weight""" ) A , A : int = torch_model.load_state_dict(_lowerCAmelCase , strict=_lowerCAmelCase ) A : Tuple = [ k for k in missing if k not in [ """final_logits_bias""", """model.encoder.embed_tokens.weight""", """model.decoder.embed_tokens.weight""", """lm_head.weight""", ] ] assert unexpected_missing == [], f'''no matches found for the following torch keys {unexpected_missing}''' assert extra == [], f'''no matches found for the following tf keys {extra}''' return torch_model def __UpperCamelCase ( _lowerCAmelCase ) -> Dict: """simple docstring""" A : Any = tf.train.list_variables(_lowerCAmelCase ) A : Union[str, Any] = {} A : List[str] = ["""global_step"""] for name, shape in tqdm(_lowerCAmelCase , desc="""converting tf checkpoint to dict""" ): A : Tuple = any(pat in name for pat in ignore_name ) if skip_key: continue A : Union[str, Any] = tf.train.load_variable(_lowerCAmelCase , _lowerCAmelCase ) A : Dict = array return tf_weights def __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Union[str, Any]: """simple docstring""" A : Any = get_tf_weights_as_numpy(_lowerCAmelCase ) A : Optional[Any] = convert_bigbird_pegasus(_lowerCAmelCase , _lowerCAmelCase ) torch_model.save_pretrained(_lowerCAmelCase ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_:Optional[int] = argparse.ArgumentParser() parser.add_argument("""--tf_ckpt_path""", type=str, help="""passed to tf.train.list_variables""") parser.add_argument("""--save_dir""", default=None, type=str, help="""Path to the output PyTorch model.""") SCREAMING_SNAKE_CASE_:Optional[int] = parser.parse_args() SCREAMING_SNAKE_CASE_:Optional[Any] = {} convert_bigbird_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir, config_update=config_update)
116
def __UpperCamelCase ( _lowerCAmelCase ) -> list: """simple docstring""" return [ txt[:a] + txt[a].upper() + txt[a + 1 :] for a in range(len(_lowerCAmelCase ) ) if txt[a].isalpha() ] if __name__ == "__main__": __import__("""doctest""").testmod()
116
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging a :Optional[Any] = logging.get_logger(__name__) a :str = { "funnel-transformer/small": "https://huggingface.co/funnel-transformer/small/resolve/main/config.json", "funnel-transformer/small-base": "https://huggingface.co/funnel-transformer/small-base/resolve/main/config.json", "funnel-transformer/medium": "https://huggingface.co/funnel-transformer/medium/resolve/main/config.json", "funnel-transformer/medium-base": "https://huggingface.co/funnel-transformer/medium-base/resolve/main/config.json", "funnel-transformer/intermediate": ( "https://huggingface.co/funnel-transformer/intermediate/resolve/main/config.json" ), "funnel-transformer/intermediate-base": ( "https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/config.json" ), "funnel-transformer/large": "https://huggingface.co/funnel-transformer/large/resolve/main/config.json", "funnel-transformer/large-base": "https://huggingface.co/funnel-transformer/large-base/resolve/main/config.json", "funnel-transformer/xlarge": "https://huggingface.co/funnel-transformer/xlarge/resolve/main/config.json", "funnel-transformer/xlarge-base": "https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/config.json", } class __a (UpperCamelCase_): '''simple docstring''' _SCREAMING_SNAKE_CASE :str = """funnel""" _SCREAMING_SNAKE_CASE :str = { """hidden_size""": """d_model""", """num_attention_heads""": """n_head""", } def __init__( self , _a=30_522 , _a=[4, 4, 4] , _a=None , _a=2 , _a=768 , _a=12 , _a=64 , _a=3_072 , _a="gelu_new" , _a=0.1 , _a=0.1 , _a=0.0 , _a=0.1 , _a=None , _a=1E-9 , _a="mean" , _a="relative_shift" , _a=True , _a=True , _a=True , **_a , ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = vocab_size SCREAMING_SNAKE_CASE__ : Tuple = block_sizes SCREAMING_SNAKE_CASE__ : str = [1] * len(_a ) if block_repeats is None else block_repeats assert len(_a ) == len( self.block_repeats ), "`block_sizes` and `block_repeats` should have the same length." SCREAMING_SNAKE_CASE__ : List[str] = num_decoder_layers SCREAMING_SNAKE_CASE__ : Any = d_model SCREAMING_SNAKE_CASE__ : List[str] = n_head SCREAMING_SNAKE_CASE__ : Union[str, Any] = d_head SCREAMING_SNAKE_CASE__ : str = d_inner SCREAMING_SNAKE_CASE__ : Union[str, Any] = hidden_act SCREAMING_SNAKE_CASE__ : List[Any] = hidden_dropout SCREAMING_SNAKE_CASE__ : Any = attention_dropout SCREAMING_SNAKE_CASE__ : List[Any] = activation_dropout SCREAMING_SNAKE_CASE__ : Optional[Any] = initializer_range SCREAMING_SNAKE_CASE__ : Union[str, Any] = initializer_std SCREAMING_SNAKE_CASE__ : Optional[int] = layer_norm_eps assert pooling_type in [ "mean", "max", ], f'''Got {pooling_type} for `pooling_type` but only \'mean\' and \'max\' are supported.''' SCREAMING_SNAKE_CASE__ : Union[str, Any] = pooling_type assert attention_type in [ "relative_shift", "factorized", ], f'''Got {attention_type} for `attention_type` but only \'relative_shift\' and \'factorized\' are supported.''' SCREAMING_SNAKE_CASE__ : Optional[Any] = attention_type SCREAMING_SNAKE_CASE__ : Dict = separate_cls SCREAMING_SNAKE_CASE__ : Optional[int] = truncate_seq SCREAMING_SNAKE_CASE__ : List[Any] = pool_q_only super().__init__(**_a ) @property def _a ( self ) -> int: """simple docstring""" return sum(self.block_sizes ) @num_hidden_layers.setter def _a ( self , _a ) -> Dict: """simple docstring""" raise NotImplementedError( """This model does not support the setting of `num_hidden_layers`. Please set `block_sizes`.""" ) @property def _a ( self ) -> Tuple: """simple docstring""" return len(self.block_sizes ) @num_blocks.setter def _a ( self , _a ) -> Any: """simple docstring""" raise NotImplementedError("""This model does not support the setting of `num_blocks`. Please set `block_sizes`.""" )
56
"""simple docstring""" import math from collections.abc import Iterator from itertools import takewhile def _lowercase ( __lowerCAmelCase ) -> bool: if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(__lowerCAmelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def _lowercase ( ) -> Iterator[int]: SCREAMING_SNAKE_CASE__ : List[Any] = 2 while True: if is_prime(__lowerCAmelCase ): yield num num += 1 def _lowercase ( __lowerCAmelCase = 200_0000 ) -> int: return sum(takewhile(lambda __lowerCAmelCase : x < n , prime_generator() ) ) if __name__ == "__main__": print(f'{solution() = }')
56
1
import unittest from transformers import AlbertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForPreTraining, AlbertForQuestionAnswering, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertModel, ) from transformers.models.albert.modeling_albert import ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST class __a : def __init__( self , lowerCAmelCase__ , lowerCAmelCase__=13 , lowerCAmelCase__=7 , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__=99 , lowerCAmelCase__=16 , lowerCAmelCase__=36 , lowerCAmelCase__=6 , lowerCAmelCase__=6 , lowerCAmelCase__=6 , lowerCAmelCase__=37 , lowerCAmelCase__="gelu" , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.1 , lowerCAmelCase__=512 , lowerCAmelCase__=16 , lowerCAmelCase__=2 , lowerCAmelCase__=0.0_2 , lowerCAmelCase__=3 , lowerCAmelCase__=4 , lowerCAmelCase__=None , ) -> Tuple: '''simple docstring''' lowercase__: List[str] = parent lowercase__: List[Any] = batch_size lowercase__: List[str] = seq_length lowercase__: Any = is_training lowercase__: Dict = use_input_mask lowercase__: List[str] = use_token_type_ids lowercase__: str = use_labels lowercase__: int = vocab_size lowercase__: List[str] = embedding_size lowercase__: Dict = hidden_size lowercase__: Any = num_hidden_layers lowercase__: List[str] = num_hidden_groups lowercase__: int = num_attention_heads lowercase__: int = intermediate_size lowercase__: Optional[int] = hidden_act lowercase__: List[Any] = hidden_dropout_prob lowercase__: Dict = attention_probs_dropout_prob lowercase__: Optional[Any] = max_position_embeddings lowercase__: Optional[Any] = type_vocab_size lowercase__: List[Any] = type_sequence_label_size lowercase__: List[str] = initializer_range lowercase__: Any = num_labels lowercase__: Optional[Any] = num_choices lowercase__: str = scope def SCREAMING_SNAKE_CASE__ ( self ) -> int: '''simple docstring''' lowercase__: List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase__: Tuple = None if self.use_input_mask: lowercase__: Dict = random_attention_mask([self.batch_size, self.seq_length] ) lowercase__: List[str] = None if self.use_token_type_ids: lowercase__: Dict = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowercase__: int = None lowercase__: Union[str, Any] = None lowercase__: str = None if self.use_labels: lowercase__: Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase__: List[str] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase__: Dict = ids_tensor([self.batch_size] , self.num_choices ) lowercase__: int = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple: '''simple docstring''' return AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , num_hidden_groups=self.num_hidden_groups , ) def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> int: '''simple docstring''' lowercase__: Any = AlbertModel(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() lowercase__: Tuple = model(__lowerCAmelCase , attention_mask=__lowerCAmelCase , token_type_ids=__lowerCAmelCase ) lowercase__: Any = model(__lowerCAmelCase , token_type_ids=__lowerCAmelCase ) lowercase__: List[str] = model(__lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Tuple: '''simple docstring''' lowercase__: Dict = AlbertForPreTraining(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() lowercase__: Optional[Any] = model( __lowerCAmelCase , attention_mask=__lowerCAmelCase , token_type_ids=__lowerCAmelCase , labels=__lowerCAmelCase , sentence_order_label=__lowerCAmelCase , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.sop_logits.shape , (self.batch_size, config.num_labels) ) def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> str: '''simple docstring''' lowercase__: Dict = AlbertForMaskedLM(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() lowercase__: List[Any] = model(__lowerCAmelCase , attention_mask=__lowerCAmelCase , token_type_ids=__lowerCAmelCase , labels=__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> List[str]: '''simple docstring''' lowercase__: Optional[int] = AlbertForQuestionAnswering(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() lowercase__: str = model( __lowerCAmelCase , attention_mask=__lowerCAmelCase , token_type_ids=__lowerCAmelCase , start_positions=__lowerCAmelCase , end_positions=__lowerCAmelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Tuple: '''simple docstring''' lowercase__: Optional[Any] = self.num_labels lowercase__: str = AlbertForSequenceClassification(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() lowercase__: Optional[Any] = model(__lowerCAmelCase , attention_mask=__lowerCAmelCase , token_type_ids=__lowerCAmelCase , labels=__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> List[Any]: '''simple docstring''' lowercase__: List[str] = self.num_labels lowercase__: Optional[int] = AlbertForTokenClassification(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() lowercase__: str = model(__lowerCAmelCase , attention_mask=__lowerCAmelCase , token_type_ids=__lowerCAmelCase , labels=__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Optional[int]: '''simple docstring''' lowercase__: List[Any] = self.num_choices lowercase__: Dict = AlbertForMultipleChoice(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() lowercase__: Tuple = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase__: List[str] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase__: Optional[Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase__: Optional[Any] = model( __lowerCAmelCase , attention_mask=__lowerCAmelCase , token_type_ids=__lowerCAmelCase , labels=__lowerCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: '''simple docstring''' lowercase__: int = self.prepare_config_and_inputs() ( ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ): Union[str, Any] = config_and_inputs lowercase__: str = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class __a ( lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ): __lowercase : str = ( ( AlbertModel, AlbertForPreTraining, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertForQuestionAnswering, ) if is_torch_available() else () ) __lowercase : Tuple = ( { 'feature-extraction': AlbertModel, 'fill-mask': AlbertForMaskedLM, 'question-answering': AlbertForQuestionAnswering, 'text-classification': AlbertForSequenceClassification, 'token-classification': AlbertForTokenClassification, 'zero-shot': AlbertForSequenceClassification, } if is_torch_available() else {} ) __lowercase : Dict = True def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=False ) -> int: '''simple docstring''' lowercase__: List[str] = super()._prepare_for_class(__lowerCAmelCase , __lowerCAmelCase , return_labels=__lowerCAmelCase ) if return_labels: if model_class in get_values(__lowerCAmelCase ): lowercase__: Optional[Any] = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=__lowerCAmelCase ) lowercase__: List[str] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__lowerCAmelCase ) return inputs_dict def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple: '''simple docstring''' lowercase__: Dict = AlbertModelTester(self ) lowercase__: Union[str, Any] = ConfigTester(self , config_class=__lowerCAmelCase , hidden_size=37 ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[Any]: '''simple docstring''' self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: '''simple docstring''' lowercase__: Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: '''simple docstring''' lowercase__: Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*__lowerCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple: '''simple docstring''' lowercase__: Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__lowerCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: '''simple docstring''' lowercase__: Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*__lowerCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self ) -> List[str]: '''simple docstring''' lowercase__: Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__lowerCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self ) -> int: '''simple docstring''' lowercase__: Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__lowerCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[Any]: '''simple docstring''' lowercase__: Any = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: lowercase__: List[str] = type self.model_tester.create_and_check_model(*__lowerCAmelCase ) @slow def SCREAMING_SNAKE_CASE__ ( self ) -> List[str]: '''simple docstring''' for model_name in ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__: Tuple = AlbertModel.from_pretrained(__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) @require_torch class __a ( unittest.TestCase ): @slow def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: '''simple docstring''' lowercase__: Tuple = AlbertModel.from_pretrained('albert-base-v2' ) lowercase__: Union[str, Any] = torch.tensor([[0, 345, 232, 328, 740, 140, 1_695, 69, 6_078, 1_588, 2]] ) lowercase__: str = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): lowercase__: Optional[Any] = model(__lowerCAmelCase , attention_mask=__lowerCAmelCase )[0] lowercase__: List[Any] = torch.Size((1, 11, 768) ) self.assertEqual(output.shape , __lowerCAmelCase ) lowercase__: Union[str, Any] = torch.tensor( [[[-0.6_5_1_3, 1.5_0_3_5, -0.2_7_6_6], [-0.6_5_1_5, 1.5_0_4_6, -0.2_7_8_0], [-0.6_5_1_2, 1.5_0_4_9, -0.2_7_8_4]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , __lowerCAmelCase , atol=1E-4 ) )
196
"""simple docstring""" import random import timeit from functools import wraps from typing import Callable, Optional from ..configuration_utils import PretrainedConfig from ..models.auto.modeling_tf_auto import TF_MODEL_MAPPING, TF_MODEL_WITH_LM_HEAD_MAPPING from ..utils import is_pyanvml_available, is_tf_available, logging from .benchmark_utils import ( Benchmark, Memory, MemorySummary, measure_peak_memory_cpu, start_memory_tracing, stop_memory_tracing, ) if is_tf_available(): import tensorflow as tf from tensorflow.python.framework.errors_impl import ResourceExhaustedError from .benchmark_args_tf import TensorFlowBenchmarkArguments if is_pyanvml_available(): import pyanvml.pyanvml as nvml UpperCAmelCase__ = logging.get_logger(__name__) def __UpperCAmelCase ( lowercase ,lowercase ): """simple docstring""" def run_func(lowercase ): @wraps(lowercase ) def run_in_eager_mode(*lowercase ,**lowercase ): return func(*lowercase ,**lowercase ) @wraps(lowercase ) @tf.function(experimental_compile=lowercase ) def run_in_graph_mode(*lowercase ,**lowercase ): return func(*lowercase ,**lowercase ) if do_eager_mode is True: if use_xla is not False: raise ValueError( """Cannot run model in XLA, if `args.eager_mode` is set to `True`. Please set `args.eager_mode=False`.""" ) return run_in_eager_mode else: return run_in_graph_mode return run_func def __UpperCAmelCase ( lowercase ,lowercase ,lowercase ): """simple docstring""" _UpperCAmelCase = random.Random() _UpperCAmelCase = [rng.randint(0 ,vocab_size - 1 ) for i in range(batch_size * sequence_length )] return tf.constant(lowercase ,shape=(batch_size, sequence_length) ,dtype=tf.intaa ) class a ( lowerCAmelCase_ ): _snake_case : TensorFlowBenchmarkArguments _snake_case : PretrainedConfig _snake_case : str = "TensorFlow" @property def lowerCAmelCase_ ( self : Union[str, Any] ): return tf.__version__ def lowerCAmelCase_ ( self : List[str] , __lowerCAmelCase : str , __lowerCAmelCase : int , __lowerCAmelCase : int ): # initialize GPU on separate process _UpperCAmelCase = self.args.strategy if strategy is None: raise ValueError("""A device strategy has to be initialized before using TensorFlow.""" ) _UpperCAmelCase = self._prepare_inference_func(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) return self._measure_speed(_inference ) def lowerCAmelCase_ ( self : Optional[int] , __lowerCAmelCase : str , __lowerCAmelCase : int , __lowerCAmelCase : int ): _UpperCAmelCase = self.args.strategy if strategy is None: raise ValueError("""A device strategy has to be initialized before using TensorFlow.""" ) _UpperCAmelCase = self._prepare_train_func(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) return self._measure_speed(_train ) def lowerCAmelCase_ ( self : Optional[Any] , __lowerCAmelCase : str , __lowerCAmelCase : int , __lowerCAmelCase : int ): # initialize GPU on separate process if self.args.is_gpu: tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx] , __lowerCAmelCase ) _UpperCAmelCase = self.args.strategy if strategy is None: raise ValueError("""A device strategy has to be initialized before using TensorFlow.""" ) _UpperCAmelCase = self._prepare_inference_func(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) return self._measure_memory(_inference ) def lowerCAmelCase_ ( self : str , __lowerCAmelCase : str , __lowerCAmelCase : int , __lowerCAmelCase : int ): if self.args.is_gpu: tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx] , __lowerCAmelCase ) _UpperCAmelCase = self.args.strategy if strategy is None: raise ValueError("""A device strategy has to be initialized before using TensorFlow.""" ) _UpperCAmelCase = self._prepare_train_func(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) return self._measure_memory(_train ) def lowerCAmelCase_ ( self : List[Any] , __lowerCAmelCase : str , __lowerCAmelCase : int , __lowerCAmelCase : int ): _UpperCAmelCase = self.config_dict[model_name] if self.args.fpaa: raise NotImplementedError("""Mixed precision is currently not supported.""" ) _UpperCAmelCase = ( hasattr(__lowerCAmelCase , """architectures""" ) and isinstance(config.architectures , __lowerCAmelCase ) and len(config.architectures ) > 0 ) if not self.args.only_pretrain_model and has_model_class_in_config: try: _UpperCAmelCase = """TF""" + config.architectures[0] # prepend 'TF' for tensorflow model _UpperCAmelCase = __import__("""transformers""" , fromlist=[model_class] ) _UpperCAmelCase = getattr(__lowerCAmelCase , __lowerCAmelCase ) _UpperCAmelCase = model_cls(__lowerCAmelCase ) except ImportError: raise ImportError( f'''{model_class} does not exist. If you just want to test the pretrained model, you might want to''' """ set `--only_pretrain_model` or `args.only_pretrain_model=True`.""" ) else: _UpperCAmelCase = TF_MODEL_MAPPING[config.__class__](__lowerCAmelCase ) # encoder-decoder has vocab size saved differently _UpperCAmelCase = config.vocab_size if hasattr(__lowerCAmelCase , """vocab_size""" ) else config.encoder.vocab_size _UpperCAmelCase = random_input_ids(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_decoder_forward(): return model(__lowerCAmelCase , decoder_input_ids=__lowerCAmelCase , training=__lowerCAmelCase ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_forward(): return model(__lowerCAmelCase , training=__lowerCAmelCase ) _UpperCAmelCase = encoder_decoder_forward if config.is_encoder_decoder else encoder_forward return _inference def lowerCAmelCase_ ( self : List[str] , __lowerCAmelCase : str , __lowerCAmelCase : int , __lowerCAmelCase : int ): _UpperCAmelCase = self.config_dict[model_name] if self.args.eager_mode is not False: raise ValueError("""Training cannot be done in eager mode. Please make sure that `args.eager_mode = False`.""" ) if self.args.fpaa: raise NotImplementedError("""Mixed precision is currently not supported.""" ) _UpperCAmelCase = ( hasattr(__lowerCAmelCase , """architectures""" ) and isinstance(config.architectures , __lowerCAmelCase ) and len(config.architectures ) > 0 ) if not self.args.only_pretrain_model and has_model_class_in_config: try: _UpperCAmelCase = """TF""" + config.architectures[0] # prepend 'TF' for tensorflow model _UpperCAmelCase = __import__("""transformers""" , fromlist=[model_class] ) _UpperCAmelCase = getattr(__lowerCAmelCase , __lowerCAmelCase ) _UpperCAmelCase = model_cls(__lowerCAmelCase ) except ImportError: raise ImportError( f'''{model_class} does not exist. If you just want to test the pretrained model, you might want to''' """ set `--only_pretrain_model` or `args.only_pretrain_model=True`.""" ) else: _UpperCAmelCase = TF_MODEL_WITH_LM_HEAD_MAPPING[config.__class__](__lowerCAmelCase ) # encoder-decoder has vocab size saved differently _UpperCAmelCase = config.vocab_size if hasattr(__lowerCAmelCase , """vocab_size""" ) else config.encoder.vocab_size _UpperCAmelCase = random_input_ids(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_decoder_train(): _UpperCAmelCase = model(__lowerCAmelCase , decoder_input_ids=__lowerCAmelCase , labels=__lowerCAmelCase , training=__lowerCAmelCase )[0] _UpperCAmelCase = tf.gradients(__lowerCAmelCase , model.trainable_variables ) return gradients @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_train(): _UpperCAmelCase = model(__lowerCAmelCase , labels=__lowerCAmelCase , training=__lowerCAmelCase )[0] _UpperCAmelCase = tf.gradients(__lowerCAmelCase , model.trainable_variables ) return gradients _UpperCAmelCase = encoder_decoder_train if config.is_encoder_decoder else encoder_train return _train def lowerCAmelCase_ ( self : Union[str, Any] , __lowerCAmelCase : Any ): with self.args.strategy.scope(): try: if self.args.is_tpu or self.args.use_xla: # run additional 10 times to stabilize compilation for tpu logger.info("""Do inference on TPU. Running model 5 times to stabilize compilation""" ) timeit.repeat(__lowerCAmelCase , repeat=1 , number=5 ) # as written in https://docs.python.org/2/library/timeit.html#timeit.Timer.repeat, min should be taken rather than the average _UpperCAmelCase = timeit.repeat( __lowerCAmelCase , repeat=self.args.repeat , number=10 , ) return min(__lowerCAmelCase ) / 10.0 except ResourceExhaustedError as e: self.print_fn(f'''Doesn\'t fit on GPU. {e}''' ) def lowerCAmelCase_ ( self : List[Any] , __lowerCAmelCase : Callable[[], None] ): logger.info( """Note that TensorFlow allocates more memory than """ """it might need to speed up computation. """ """The memory reported here corresponds to the memory """ """reported by `nvidia-smi`, which can vary depending """ """on total available memory on the GPU that is used.""" ) with self.args.strategy.scope(): try: if self.args.trace_memory_line_by_line: if not self.args.eager_mode: raise ValueError( """`args.eager_mode` is set to `False`. Make sure to run model in eager mode to measure memory""" """ consumption line by line.""" ) _UpperCAmelCase = start_memory_tracing("""transformers""" ) if self.args.is_tpu: # tpu raise NotImplementedError( """Memory Benchmarking is currently not implemented for TPU. Please disable memory benchmarking""" """ with `args.memory=False`""" ) elif self.args.is_gpu: # gpu if not is_pyanvml_available(): logger.warning( """py3nvml not installed, we won't log GPU memory usage. """ """Install py3nvml (pip install py3nvml) to log information about GPU.""" ) _UpperCAmelCase = """N/A""" else: logger.info( """Measuring total GPU usage on GPU device. Make sure to not have additional processes""" """ running on the same GPU.""" ) # init nvml nvml.nvmlInit() func() _UpperCAmelCase = nvml.nvmlDeviceGetHandleByIndex(self.args.device_idx ) _UpperCAmelCase = nvml.nvmlDeviceGetMemoryInfo(__lowerCAmelCase ) _UpperCAmelCase = meminfo.used _UpperCAmelCase = Memory(__lowerCAmelCase ) # shutdown nvml nvml.nvmlShutdown() else: # cpu if self.args.trace_memory_line_by_line: logger.info( """When enabling line by line tracing, the max peak memory for CPU is inaccurate in""" """ TensorFlow.""" ) _UpperCAmelCase = None else: _UpperCAmelCase = measure_peak_memory_cpu(__lowerCAmelCase ) _UpperCAmelCase = Memory(__lowerCAmelCase ) if isinstance(__lowerCAmelCase , __lowerCAmelCase ) else memory_bytes if self.args.trace_memory_line_by_line: _UpperCAmelCase = stop_memory_tracing(__lowerCAmelCase ) if memory is None: _UpperCAmelCase = summary.total else: _UpperCAmelCase = None return memory, summary except ResourceExhaustedError as e: self.print_fn(f'''Doesn\'t fit on GPU. {e}''' ) return "N/A", None
289
0
from collections import namedtuple __lowerCamelCase : Union[str, Any] = namedtuple('''from_to''', '''from_ to''') __lowerCamelCase : Optional[Any] = { '''cubicmeter''': from_to(1, 1), '''litre''': from_to(0.001, 1000), '''kilolitre''': from_to(1, 1), '''gallon''': from_to(0.00454, 264.172), '''cubicyard''': from_to(0.76455, 1.30795), '''cubicfoot''': from_to(0.028, 35.3147), '''cup''': from_to(0.000236588, 4226.75), } def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : float , __UpperCamelCase : str , __UpperCamelCase : str ) -> float: """simple docstring""" if from_type not in METRIC_CONVERSION: raise ValueError( f"""Invalid 'from_type' value: {from_type!r} Supported values are:\n""" + """, """.join(__UpperCamelCase ) ) if to_type not in METRIC_CONVERSION: raise ValueError( f"""Invalid 'to_type' value: {to_type!r}. Supported values are:\n""" + """, """.join(__UpperCamelCase ) ) return value * METRIC_CONVERSION[from_type].from_ * METRIC_CONVERSION[to_type].to if __name__ == "__main__": import doctest doctest.testmod()
370
import unittest from .lib import ( Matrix, Vector, axpy, square_zero_matrix, unit_basis_vector, zero_vector, ) class __snake_case ( unittest.TestCase ): def __a ( self : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE__ = Vector([1, 2, 3] ) self.assertEqual(x.component(0 ) , 1 ) self.assertEqual(x.component(2 ) , 3 ) SCREAMING_SNAKE_CASE__ = Vector() def __a ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE__ = Vector([0, 0, 0, 0, 0, 1] ) self.assertEqual(str(_lowercase ) , """(0,0,0,0,0,1)""" ) def __a ( self : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE__ = Vector([1, 2, 3, 4] ) self.assertEqual(len(_lowercase ) , 4 ) def __a ( self : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE__ = Vector([1, 2] ) SCREAMING_SNAKE_CASE__ = Vector([1, 2, 3, 4, 5] ) SCREAMING_SNAKE_CASE__ = Vector([0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ) SCREAMING_SNAKE_CASE__ = Vector([1, -1, 1, -1, 2, -3, 4, -5] ) self.assertAlmostEqual(x.euclidean_length() , 2.2_36 , 3 ) self.assertAlmostEqual(y.euclidean_length() , 7.4_16 , 3 ) self.assertEqual(z.euclidean_length() , 0 ) self.assertAlmostEqual(w.euclidean_length() , 7.6_16 , 3 ) def __a ( self : Optional[int] ): """simple docstring""" SCREAMING_SNAKE_CASE__ = Vector([1, 2, 3] ) SCREAMING_SNAKE_CASE__ = Vector([1, 1, 1] ) self.assertEqual((x + y).component(0 ) , 2 ) self.assertEqual((x + y).component(1 ) , 3 ) self.assertEqual((x + y).component(2 ) , 4 ) def __a ( self : Any ): """simple docstring""" SCREAMING_SNAKE_CASE__ = Vector([1, 2, 3] ) SCREAMING_SNAKE_CASE__ = Vector([1, 1, 1] ) self.assertEqual((x - y).component(0 ) , 0 ) self.assertEqual((x - y).component(1 ) , 1 ) self.assertEqual((x - y).component(2 ) , 2 ) def __a ( self : str ): """simple docstring""" SCREAMING_SNAKE_CASE__ = Vector([1, 2, 3] ) SCREAMING_SNAKE_CASE__ = Vector([2, -1, 4] ) # for test of dot product SCREAMING_SNAKE_CASE__ = Vector([1, -2, -1] ) self.assertEqual(str(x * 3.0 ) , """(3.0,6.0,9.0)""" ) self.assertEqual((a * b) , 0 ) def __a ( self : Union[str, Any] ): """simple docstring""" self.assertEqual(str(zero_vector(10 ) ).count("""0""" ) , 10 ) def __a ( self : str ): """simple docstring""" self.assertEqual(str(unit_basis_vector(3 , 1 ) ) , """(0,1,0)""" ) def __a ( self : Any ): """simple docstring""" SCREAMING_SNAKE_CASE__ = Vector([1, 2, 3] ) SCREAMING_SNAKE_CASE__ = Vector([1, 0, 1] ) self.assertEqual(str(axpy(2 , _lowercase , _lowercase ) ) , """(3,4,7)""" ) def __a ( self : str ): """simple docstring""" SCREAMING_SNAKE_CASE__ = Vector([1, 0, 0, 0, 0, 0] ) SCREAMING_SNAKE_CASE__ = x.copy() self.assertEqual(str(_lowercase ) , str(_lowercase ) ) def __a ( self : str ): """simple docstring""" SCREAMING_SNAKE_CASE__ = Vector([1, 0, 0] ) x.change_component(0 , 0 ) x.change_component(1 , 1 ) self.assertEqual(str(_lowercase ) , """(0,1,0)""" ) def __a ( self : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE__ = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual("""|1,2,3|\n|2,4,5|\n|6,7,8|\n""" , str(_lowercase ) ) def __a ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE__ = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) SCREAMING_SNAKE_CASE__ = [[-3, -14, -10], [-5, -10, -5], [-2, -1, 0]] for x in range(a.height() ): for y in range(a.width() ): self.assertEqual(minors[x][y] , a.minor(_lowercase , _lowercase ) ) def __a ( self : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE__ = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) SCREAMING_SNAKE_CASE__ = [[-3, 14, -10], [5, -10, 5], [-2, 1, 0]] for x in range(a.height() ): for y in range(a.width() ): self.assertEqual(cofactors[x][y] , a.cofactor(_lowercase , _lowercase ) ) def __a ( self : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE__ = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual(-5 , a.determinant() ) def __a ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE__ = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]] , 3 , 3 ) SCREAMING_SNAKE_CASE__ = Vector([1, 2, 3] ) self.assertEqual("""(14,32,50)""" , str(a * x ) ) self.assertEqual("""|2,4,6|\n|8,10,12|\n|14,16,18|\n""" , str(a * 2 ) ) def __a ( self : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE__ = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) a.change_component(0 , 2 , 5 ) self.assertEqual("""|1,2,5|\n|2,4,5|\n|6,7,8|\n""" , str(_lowercase ) ) def __a ( self : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE__ = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual(7 , a.component(2 , 1 ) , 0.01 ) def __a ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE__ = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) SCREAMING_SNAKE_CASE__ = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]] , 3 , 3 ) self.assertEqual("""|2,4,10|\n|4,8,10|\n|12,14,18|\n""" , str(a + b ) ) def __a ( self : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE__ = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) SCREAMING_SNAKE_CASE__ = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]] , 3 , 3 ) self.assertEqual("""|0,0,-4|\n|0,0,0|\n|0,0,-2|\n""" , str(a - b ) ) def __a ( self : Any ): """simple docstring""" self.assertEqual( """|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n""" , str(square_zero_matrix(5 ) ) , ) if __name__ == "__main__": unittest.main()
204
0
'''simple docstring''' from __future__ import annotations from collections import deque class __A : def __init__(self : List[Any] , __a : list[str] ): UpperCAmelCase_ = [] self.adlist.append( {"value": "", "next_states": [], "fail_state": 0, "output": []} ) for keyword in keywords: self.add_keyword(__a ) self.set_fail_transitions() def _lowercase (self : Union[str, Any] , __a : int , __a : str ): for state in self.adlist[current_state]["next_states"]: if char == self.adlist[state]["value"]: return state return None def _lowercase (self : Optional[Any] , __a : str ): UpperCAmelCase_ = 0 for character in keyword: UpperCAmelCase_ = self.find_next_state(__a , __a ) if next_state is None: self.adlist.append( { "value": character, "next_states": [], "fail_state": 0, "output": [], } ) self.adlist[current_state]["next_states"].append(len(self.adlist ) - 1 ) UpperCAmelCase_ = len(self.adlist ) - 1 else: UpperCAmelCase_ = next_state self.adlist[current_state]["output"].append(__a ) def _lowercase (self : int ): UpperCAmelCase_ = deque() for node in self.adlist[0]["next_states"]: q.append(__a ) UpperCAmelCase_ = 0 while q: UpperCAmelCase_ = q.popleft() for child in self.adlist[r]["next_states"]: q.append(__a ) UpperCAmelCase_ = self.adlist[r]["fail_state"] while ( self.find_next_state(__a , self.adlist[child]["value"] ) is None and state != 0 ): UpperCAmelCase_ = self.adlist[state]["fail_state"] UpperCAmelCase_ = self.find_next_state( __a , self.adlist[child]["value"] ) if self.adlist[child]["fail_state"] is None: UpperCAmelCase_ = 0 UpperCAmelCase_ = ( self.adlist[child]["output"] + self.adlist[self.adlist[child]["fail_state"]]["output"] ) def _lowercase (self : Dict , __a : str ): UpperCAmelCase_ = {} # returns a dict with keywords and list of its occurrences UpperCAmelCase_ = 0 for i in range(len(__a ) ): while ( self.find_next_state(__a , string[i] ) is None and current_state != 0 ): UpperCAmelCase_ = self.adlist[current_state]["fail_state"] UpperCAmelCase_ = self.find_next_state(__a , string[i] ) if next_state is None: UpperCAmelCase_ = 0 else: UpperCAmelCase_ = next_state for key in self.adlist[current_state]["output"]: if key not in result: UpperCAmelCase_ = [] result[key].append(i - len(__a ) + 1 ) return result if __name__ == "__main__": import doctest doctest.testmod()
1
'''simple docstring''' import collections import tempfile import unittest import numpy as np from transformers.testing_utils import ( is_pt_flax_cross_test, require_flax, require_torch, require_vision, slow, torch_device, ) from transformers.utils import is_flax_available, is_torch_available, is_vision_available from ...test_modeling_flax_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_flax_bert import FlaxBertModelTester from ..clip.test_modeling_flax_clip import FlaxCLIPVisionModelTester from ..vit.test_modeling_flax_vit import FlaxViTModelTester if is_flax_available(): from transformers import ( FlaxBertModel, FlaxCLIPVisionModel, FlaxVisionTextDualEncoderModel, FlaxViTModel, VisionTextDualEncoderConfig, VisionTextDualEncoderProcessor, ) from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) if is_torch_available(): import torch from transformers import VisionTextDualEncoderModel if is_vision_available(): from PIL import Image def _A (lowerCAmelCase__ :Dict ) -> Optional[Any]: '''simple docstring''' if isinstance(lowerCAmelCase__ , collections.abc.Iterable ): return x return (x, x) @require_flax class a : def __UpperCAmelCase ( self , __magic_name__ , __magic_name__ ) -> Union[str, Any]: pass def __UpperCAmelCase ( self ) -> Any: pass def __UpperCAmelCase ( self ) -> List[Any]: pass def __UpperCAmelCase ( self , __magic_name__ , __magic_name__ , __magic_name__ ) -> Union[str, Any]: _a = np.abs((a - b) ).max() self.assertLessEqual(__magic_name__ , __magic_name__ , f'Difference between torch and flax is {diff} (>= {tol}).' ) def __UpperCAmelCase ( self , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__=None , **__magic_name__ ) -> Tuple: _a = VisionTextDualEncoderConfig.from_vision_text_configs(__magic_name__ , __magic_name__ ) _a = FlaxVisionTextDualEncoderModel(__magic_name__ ) _a = model(input_ids=__magic_name__ , pixel_values=__magic_name__ , attention_mask=__magic_name__ ) self.assertEqual(output['text_embeds'].shape , (input_ids.shape[0], config.projection_dim) ) self.assertEqual(output['image_embeds'].shape , (pixel_values.shape[0], config.projection_dim) ) def __UpperCAmelCase ( self , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__=None , **__magic_name__ ) -> Optional[Any]: _a , _a = self.get_vision_text_model(__magic_name__ , __magic_name__ ) _a = {'vision_model': vision_model, 'text_model': text_model} _a = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**__magic_name__ ) _a = model(input_ids=__magic_name__ , pixel_values=__magic_name__ , attention_mask=__magic_name__ ) self.assertEqual(output['text_embeds'].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output['image_embeds'].shape , (pixel_values.shape[0], model.config.projection_dim) ) def __UpperCAmelCase ( self , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__=None , **__magic_name__ ) -> Union[str, Any]: _a , _a = self.get_vision_text_model(__magic_name__ , __magic_name__ ) _a = {'vision_model': vision_model, 'text_model': text_model} _a = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**__magic_name__ ) _a = model(input_ids=__magic_name__ , pixel_values=__magic_name__ , attention_mask=__magic_name__ ) _a = output[0] with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__magic_name__ ) _a = FlaxVisionTextDualEncoderModel.from_pretrained(__magic_name__ ) _a = model(input_ids=__magic_name__ , pixel_values=__magic_name__ , attention_mask=__magic_name__ ) _a = after_output[0] _a = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(__magic_name__ , 1e-3 ) def __UpperCAmelCase ( self , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__=None , **__magic_name__ ) -> Any: _a , _a = self.get_vision_text_model(__magic_name__ , __magic_name__ ) _a = {'vision_model': vision_model, 'text_model': text_model} _a = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**__magic_name__ ) _a = model( input_ids=__magic_name__ , pixel_values=__magic_name__ , attention_mask=__magic_name__ , output_attentions=__magic_name__ ) _a = output.vision_model_output.attentions self.assertEqual(len(__magic_name__ ) , vision_config.num_hidden_layers ) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) _a = to_atuple(vision_model.config.image_size ) _a = to_atuple(vision_model.config.patch_size ) _a = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) _a = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) _a = output.text_model_output.attentions self.assertEqual(len(__magic_name__ ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def __UpperCAmelCase ( self , __magic_name__ , __magic_name__ , __magic_name__ ) -> int: pt_model.to(__magic_name__ ) pt_model.eval() # prepare inputs _a = inputs_dict _a = {k: torch.tensor(v.tolist() ) for k, v in flax_inputs.items()} with torch.no_grad(): _a = pt_model(**__magic_name__ ).to_tuple() _a = fx_model(**__magic_name__ ).to_tuple() self.assertEqual(len(__magic_name__ ) , len(__magic_name__ ) , 'Output lengths differ between Flax and PyTorch' ) for fx_output, pt_output in zip(fx_outputs[:4] , pt_outputs[:4] ): self.assert_almost_equals(__magic_name__ , pt_output.numpy() , 4e-2 ) # PT -> Flax with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(__magic_name__ ) _a = FlaxVisionTextDualEncoderModel.from_pretrained(__magic_name__ , from_pt=__magic_name__ ) _a = fx_model_loaded(**__magic_name__ ).to_tuple() self.assertEqual(len(__magic_name__ ) , len(__magic_name__ ) , 'Output lengths differ between Flax and PyTorch' ) for fx_output_loaded, pt_output in zip(fx_outputs_loaded[:4] , pt_outputs[:4] ): self.assert_almost_equals(__magic_name__ , pt_output.numpy() , 4e-2 ) # Flax -> PT with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(__magic_name__ ) _a = VisionTextDualEncoderModel.from_pretrained(__magic_name__ , from_flax=__magic_name__ ) pt_model_loaded.to(__magic_name__ ) pt_model_loaded.eval() with torch.no_grad(): _a = pt_model_loaded(**__magic_name__ ).to_tuple() self.assertEqual(len(__magic_name__ ) , len(__magic_name__ ) , 'Output lengths differ between Flax and PyTorch' ) for fx_output, pt_output_loaded in zip(fx_outputs[:4] , pt_outputs_loaded[:4] ): self.assert_almost_equals(__magic_name__ , pt_output_loaded.numpy() , 4e-2 ) def __UpperCAmelCase ( self , __magic_name__ , __magic_name__ , __magic_name__ ) -> Any: _a = VisionTextDualEncoderConfig.from_vision_text_configs(__magic_name__ , __magic_name__ ) _a = VisionTextDualEncoderModel(__magic_name__ ) _a = FlaxVisionTextDualEncoderModel(__magic_name__ ) _a = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , __magic_name__ ) _a = fx_state self.check_pt_flax_equivalence(__magic_name__ , __magic_name__ , __magic_name__ ) def __UpperCAmelCase ( self , __magic_name__ , __magic_name__ , __magic_name__ ) -> Union[str, Any]: _a = VisionTextDualEncoderConfig.from_vision_text_configs(__magic_name__ , __magic_name__ ) _a = VisionTextDualEncoderModel(__magic_name__ ) _a = FlaxVisionTextDualEncoderModel(__magic_name__ ) _a = load_flax_weights_in_pytorch_model(__magic_name__ , fx_model.params ) self.check_pt_flax_equivalence(__magic_name__ , __magic_name__ , __magic_name__ ) def __UpperCAmelCase ( self ) -> Union[str, Any]: _a = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**__magic_name__ ) def __UpperCAmelCase ( self ) -> Dict: _a = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**__magic_name__ ) def __UpperCAmelCase ( self ) -> Optional[Any]: _a = self.prepare_config_and_inputs() self.check_save_load(**__magic_name__ ) def __UpperCAmelCase ( self ) -> Dict: _a = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**__magic_name__ ) @is_pt_flax_cross_test def __UpperCAmelCase ( self ) -> Union[str, Any]: _a = self.prepare_config_and_inputs() _a = config_inputs_dict.pop('vision_config' ) _a = config_inputs_dict.pop('text_config' ) _a = config_inputs_dict self.check_equivalence_pt_to_flax(__magic_name__ , __magic_name__ , __magic_name__ ) self.check_equivalence_flax_to_pt(__magic_name__ , __magic_name__ , __magic_name__ ) @slow def __UpperCAmelCase ( self ) -> Optional[Any]: _a , _a = self.get_pretrained_model_and_inputs() _a = model_a(**__magic_name__ ) _a = outputs[0] with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(__magic_name__ ) _a = FlaxVisionTextDualEncoderModel.from_pretrained(__magic_name__ ) _a = model_a(**__magic_name__ ) _a = after_outputs[0] _a = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(__magic_name__ , 1e-5 ) @require_flax class a ( _SCREAMING_SNAKE_CASE , unittest.TestCase ): def __UpperCAmelCase ( self ) -> List[str]: _a = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( 'hf-internal-testing/tiny-random-vit' , 'hf-internal-testing/tiny-bert' , vision_from_pt=__magic_name__ , text_from_pt=__magic_name__ , ) _a = 13 _a = floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ] ) _a = ids_tensor([batch_size, 4] , model.config.text_config.vocab_size ) _a = random_attention_mask([batch_size, 4] ) _a = {'pixel_values': pixel_values, 'input_ids': input_ids, 'attention_mask': attention_mask} return model, inputs def __UpperCAmelCase ( self , __magic_name__ , __magic_name__ ) -> Optional[int]: _a = FlaxViTModel(__magic_name__ ) _a = FlaxBertModel(__magic_name__ ) return vision_model, text_model def __UpperCAmelCase ( self ) -> Optional[Any]: _a = FlaxViTModelTester(self ) _a = FlaxBertModelTester(self ) _a = vit_model_tester.prepare_config_and_inputs() _a = bert_model_tester.prepare_config_and_inputs() _a , _a = vision_config_and_inputs _a , _a , _a , _a = text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_torch class a ( _SCREAMING_SNAKE_CASE , unittest.TestCase ): def __UpperCAmelCase ( self ) -> Any: _a = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( 'hf-internal-testing/tiny-random-clip' , 'hf-internal-testing/tiny-bert' , vision_from_pt=__magic_name__ , text_from_pt=__magic_name__ , ) _a = 13 _a = floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ] ) _a = ids_tensor([batch_size, 4] , model.config.text_config.vocab_size ) _a = random_attention_mask([batch_size, 4] ) _a = {'pixel_values': pixel_values, 'input_ids': input_ids, 'attention_mask': attention_mask} return model, inputs def __UpperCAmelCase ( self , __magic_name__ , __magic_name__ ) -> Union[str, Any]: _a = FlaxCLIPVisionModel(__magic_name__ ) _a = FlaxBertModel(__magic_name__ ) return vision_model, text_model def __UpperCAmelCase ( self ) -> Tuple: _a = FlaxCLIPVisionModelTester(self ) _a = FlaxBertModelTester(self ) _a = clip_model_tester.prepare_config_and_inputs() _a = bert_model_tester.prepare_config_and_inputs() _a , _a = vision_config_and_inputs _a , _a , _a , _a = text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_flax @require_vision class a ( unittest.TestCase ): @slow def __UpperCAmelCase ( self ) -> Tuple: _a = FlaxVisionTextDualEncoderModel.from_pretrained('clip-italian/clip-italian' , logit_scale_init_value=1.0 ) _a = VisionTextDualEncoderProcessor.from_pretrained('clip-italian/clip-italian' ) _a = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) _a = processor( text=['una foto di un gatto', 'una foto di un cane'] , images=__magic_name__ , padding=__magic_name__ , return_tensors='np' ) _a = model(**__magic_name__ ) # verify the logits self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) ) self.assertEqual( outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , ) _a = np.array([[1.2_2_8_4_7_2_7, 0.3_1_0_4_1_2_2]] ) self.assertTrue(np.allclose(outputs.logits_per_image , __magic_name__ , atol=1e-3 ) )
168
0
import gc import unittest import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DDPMScheduler, PriorTransformer, StableUnCLIPPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.testing_utils import enable_full_determinism, load_numpy, require_torch_gpu, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class __UpperCAmelCase (_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,unittest.TestCase ): __snake_case : int = StableUnCLIPPipeline __snake_case : Optional[int] = TEXT_TO_IMAGE_PARAMS __snake_case : int = TEXT_TO_IMAGE_BATCH_PARAMS __snake_case : Dict = TEXT_TO_IMAGE_IMAGE_PARAMS __snake_case : Dict = TEXT_TO_IMAGE_IMAGE_PARAMS # TODO(will) Expected attn_bias.stride(1) == 0 to be true, but got false __snake_case : Tuple = False def UpperCamelCase ( self: Tuple ): '''simple docstring''' _SCREAMING_SNAKE_CASE = 32 _SCREAMING_SNAKE_CASE = embedder_hidden_size # prior components torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE = CLIPTextModelWithProjection( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=UpperCAmelCase_ , projection_dim=UpperCAmelCase_ , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) ) torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE = PriorTransformer( num_attention_heads=2 , attention_head_dim=12 , embedding_dim=UpperCAmelCase_ , num_layers=1 , ) torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE = DDPMScheduler( variance_type="""fixed_small_log""" , prediction_type="""sample""" , num_train_timesteps=1_000 , clip_sample=UpperCAmelCase_ , clip_sample_range=5.0 , beta_schedule="""squaredcos_cap_v2""" , ) # regular denoising components torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE = StableUnCLIPImageNormalizer(embedding_dim=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = DDPMScheduler(beta_schedule="""squaredcos_cap_v2""" ) torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=UpperCAmelCase_ , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) ) torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""CrossAttnDownBlock2D""", """DownBlock2D""") , up_block_types=("""UpBlock2D""", """CrossAttnUpBlock2D""") , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type="""projection""" , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=UpperCAmelCase_ , layers_per_block=1 , upcast_attention=UpperCAmelCase_ , use_linear_projection=UpperCAmelCase_ , ) torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE = DDIMScheduler( beta_schedule="""scaled_linear""" , beta_start=0.0_00_85 , beta_end=0.0_12 , prediction_type="""v_prediction""" , set_alpha_to_one=UpperCAmelCase_ , steps_offset=1 , ) torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE = AutoencoderKL() _SCREAMING_SNAKE_CASE = { # prior components """prior_tokenizer""": prior_tokenizer, """prior_text_encoder""": prior_text_encoder, """prior""": prior, """prior_scheduler""": prior_scheduler, # image noising components """image_normalizer""": image_normalizer, """image_noising_scheduler""": image_noising_scheduler, # regular denoising components """tokenizer""": tokenizer, """text_encoder""": text_encoder, """unet""": unet, """scheduler""": scheduler, """vae""": vae, } return components def UpperCamelCase ( self: str , UpperCAmelCase_: int , UpperCAmelCase_: Tuple=0 ): '''simple docstring''' if str(UpperCAmelCase_ ).startswith("""mps""" ): _SCREAMING_SNAKE_CASE = torch.manual_seed(UpperCAmelCase_ ) else: _SCREAMING_SNAKE_CASE = torch.Generator(device=UpperCAmelCase_ ).manual_seed(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """prior_num_inference_steps""": 2, """output_type""": """numpy""", } return inputs def UpperCamelCase ( self: str ): '''simple docstring''' _SCREAMING_SNAKE_CASE = torch_device == """cpu""" self._test_attention_slicing_forward_pass(test_max_difference=UpperCAmelCase_ ) def UpperCamelCase ( self: Tuple ): '''simple docstring''' _SCREAMING_SNAKE_CASE = torch_device in ["""cpu""", """mps"""] self._test_inference_batch_single_identical(test_max_difference=UpperCAmelCase_ ) @slow @require_torch_gpu class __UpperCAmelCase (unittest.TestCase ): def UpperCamelCase ( self: str ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase ( self: str ): '''simple docstring''' _SCREAMING_SNAKE_CASE = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_anime_turtle_fp16.npy""" ) _SCREAMING_SNAKE_CASE = StableUnCLIPPipeline.from_pretrained("""fusing/stable-unclip-2-1-l""" , torch_dtype=torch.floataa ) pipe.to(UpperCAmelCase_ ) pipe.set_progress_bar_config(disable=UpperCAmelCase_ ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() _SCREAMING_SNAKE_CASE = torch.Generator(device="""cpu""" ).manual_seed(0 ) _SCREAMING_SNAKE_CASE = pipe("""anime turle""" , generator=UpperCAmelCase_ , output_type="""np""" ) _SCREAMING_SNAKE_CASE = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(UpperCAmelCase_ , UpperCAmelCase_ ) def UpperCamelCase ( self: Union[str, Any] ): '''simple docstring''' torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() _SCREAMING_SNAKE_CASE = StableUnCLIPPipeline.from_pretrained("""fusing/stable-unclip-2-1-l""" , torch_dtype=torch.floataa ) _SCREAMING_SNAKE_CASE = pipe.to(UpperCAmelCase_ ) pipe.set_progress_bar_config(disable=UpperCAmelCase_ ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() _SCREAMING_SNAKE_CASE = pipe( """anime turtle""" , prior_num_inference_steps=2 , num_inference_steps=2 , output_type="""np""" , ) _SCREAMING_SNAKE_CASE = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
125
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) UpperCamelCase = { '''configuration_layoutlmv3''': [ '''LAYOUTLMV3_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''LayoutLMv3Config''', '''LayoutLMv3OnnxConfig''', ], '''processing_layoutlmv3''': ['''LayoutLMv3Processor'''], '''tokenization_layoutlmv3''': ['''LayoutLMv3Tokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ['''LayoutLMv3TokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ '''LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST''', '''LayoutLMv3ForQuestionAnswering''', '''LayoutLMv3ForSequenceClassification''', '''LayoutLMv3ForTokenClassification''', '''LayoutLMv3Model''', '''LayoutLMv3PreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ '''TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFLayoutLMv3ForQuestionAnswering''', '''TFLayoutLMv3ForSequenceClassification''', '''TFLayoutLMv3ForTokenClassification''', '''TFLayoutLMv3Model''', '''TFLayoutLMv3PreTrainedModel''', ] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ['''LayoutLMv3FeatureExtractor'''] UpperCamelCase = ['''LayoutLMv3ImageProcessor'''] if TYPE_CHECKING: from .configuration_layoutlmva import ( LAYOUTLMV3_PRETRAINED_CONFIG_ARCHIVE_MAP, LayoutLMvaConfig, LayoutLMvaOnnxConfig, ) from .processing_layoutlmva import LayoutLMvaProcessor from .tokenization_layoutlmva import LayoutLMvaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutlmva_fast import LayoutLMvaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_layoutlmva import ( LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaModel, LayoutLMvaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_layoutlmva import ( TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, TFLayoutLMvaModel, TFLayoutLMvaPreTrainedModel, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_layoutlmva import LayoutLMvaFeatureExtractor from .image_processing_layoutlmva import LayoutLMvaImageProcessor else: import sys UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
125
1
"""simple docstring""" import json import multiprocessing as mp import re from collections import defaultdict from functools import partial from typing import Dict, List, Optional, Set, Tuple, Type from datasets import Dataset from datasketch import MinHash, MinHashLSH from dpu_utils.utils.iterators import ThreadedIterator from tqdm import tqdm _a : Union[str, Any] = re.compile('[^A-Za-z_0-9]') # parameters used in DuplicationIndex _a : List[str] = 10 _a : List[Any] = 256 def SCREAMING_SNAKE_CASE ( _lowerCamelCase : List[str] ) -> Optional[MinHash]: if len(_lowerCamelCase ) < MIN_NUM_TOKENS: return None _lowerCAmelCase : Optional[Any] = MinHash(num_perm=_lowerCamelCase ) for token in set(_lowerCamelCase ): min_hash.update(token.encode() ) return min_hash def SCREAMING_SNAKE_CASE ( _lowerCamelCase : str ) -> Set[str]: return {t for t in NON_ALPHA.split(_lowerCamelCase ) if len(t.strip() ) > 0} class __A : def __init__( self , *, a__ = 0.8_5 , ): _lowerCAmelCase : List[Any] = duplication_jaccard_threshold _lowerCAmelCase : Union[str, Any] = NUM_PERM _lowerCAmelCase : Optional[int] = MinHashLSH(threshold=self._duplication_jaccard_threshold , num_perm=self._num_perm ) _lowerCAmelCase : Optional[int] = defaultdict(a__ ) def __A ( self , a__ , a__ ): _lowerCAmelCase : Optional[Any] = self._index.query(a__ ) if code_key in self._index.keys: print(F"Duplicate key {code_key}" ) return self._index.insert(a__ , a__ ) if len(a__ ) > 0: for base_duplicate in close_duplicates: if base_duplicate in self._duplicate_clusters: self._duplicate_clusters[base_duplicate].add(a__ ) break else: self._duplicate_clusters[close_duplicates[0]].add(a__ ) def __A ( self ): _lowerCAmelCase : int = [] for base, duplicates in self._duplicate_clusters.items(): _lowerCAmelCase : List[str] = [base] + list(a__ ) # reformat the cluster to be a list of dict _lowerCAmelCase : List[Any] = [{"""base_index""": el[0], """repo_name""": el[1], """path""": el[2]} for el in cluster] duplicate_clusters.append(a__ ) return duplicate_clusters def __A ( self , a__ ): _lowerCAmelCase : Dict = self.get_duplicate_clusters() with open(a__ , """w""" ) as f: json.dump(a__ , a__ ) def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Optional[Any] ) -> Tuple: _lowerCAmelCase , _lowerCAmelCase : Union[str, Any] = element _lowerCAmelCase : Tuple = get_min_hash([t for t in NON_ALPHA.split(data["""content"""] ) if len(t.strip() ) > 0] ) if min_hash is not None: return (index, data["repo_name"], data["path"]), min_hash def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Type[Dataset] ) -> Optional[Any]: with mp.Pool() as pool: for data in pool.imap_unordered( _compute_min_hash ,ThreadedIterator(_lowerCamelCase ,max_queue_size=10000 ) ,chunksize=100 ,): if data is not None: yield data def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Type[Dataset] ,_lowerCamelCase : float ) -> List[str]: _lowerCAmelCase : Optional[Any] = DuplicationIndex(duplication_jaccard_threshold=_lowerCamelCase ) for filename, min_hash in tqdm(ThreadedIterator(minhash_iter(enumerate(_lowerCamelCase ) ) ,max_queue_size=100 ) ): di.add(_lowerCamelCase ,_lowerCamelCase ) # Returns a List[Cluster] where Cluster is List[str] with the filenames. return di.get_duplicate_clusters() def SCREAMING_SNAKE_CASE ( _lowerCamelCase : str ,_lowerCamelCase : str ) -> float: _lowerCAmelCase : Any = get_tokens(_lowerCamelCase ) _lowerCAmelCase : Optional[int] = get_tokens(_lowerCamelCase ) return len(tokensa & tokensa ) / len(tokensa | tokensa ) _a : str = None def SCREAMING_SNAKE_CASE ( _lowerCamelCase : int ,_lowerCamelCase : List[Any] ) -> Dict: _lowerCAmelCase : int = [] for elementa in cluster: _lowerCAmelCase : Dict = _shared_dataset[elementa["""base_index"""]]["""content"""] for elementa in extremes: _lowerCAmelCase : Any = _shared_dataset[elementa["""base_index"""]]["""content"""] if jaccard_similarity(_lowerCamelCase ,_lowerCamelCase ) >= jaccard_threshold: elementa["copies"] += 1 break else: _lowerCAmelCase : Any = 1 extremes.append(_lowerCamelCase ) return extremes def SCREAMING_SNAKE_CASE ( _lowerCamelCase : List[Any] ,_lowerCamelCase : Optional[Any] ,_lowerCamelCase : Any ) -> str: global _shared_dataset _lowerCAmelCase : Tuple = dataset _lowerCAmelCase : Optional[Any] = [] _lowerCAmelCase : Optional[Any] = partial(_find_cluster_extremes_shared ,jaccard_threshold=_lowerCamelCase ) with mp.Pool() as pool: for extremes in tqdm( pool.imap_unordered( _lowerCamelCase ,_lowerCamelCase ,) ,total=len(_lowerCamelCase ) ,): extremes_list.append(_lowerCamelCase ) return extremes_list def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Type[Dataset] ,_lowerCamelCase : float = 0.85 ) -> Tuple[Type[Dataset], List[List[Dict]]]: _lowerCAmelCase : Tuple = make_duplicate_clusters(_lowerCamelCase ,_lowerCamelCase ) _lowerCAmelCase : str = {x["""base_index"""] for cluster in duplicate_clusters for x in cluster} _lowerCAmelCase : Optional[int] = {} _lowerCAmelCase : Tuple = find_extremes(_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) for extremes in extremes_clusters: for element in extremes: _lowerCAmelCase : Union[str, Any] = element _lowerCAmelCase : List[Any] = duplicate_indices - set(extreme_dict.keys() ) _lowerCAmelCase : List[Any] = dataset.filter(lambda _lowerCamelCase ,_lowerCamelCase : idx not in remove_indices ,with_indices=_lowerCamelCase ) # update duplicate_clusters for cluster in duplicate_clusters: for element in cluster: _lowerCAmelCase : Tuple = element["""base_index"""] in extreme_dict if element["is_extreme"]: _lowerCAmelCase : Dict = extreme_dict[element["""base_index"""]]["""copies"""] print(f"Original dataset size: {len(_lowerCamelCase )}" ) print(f"Number of duplicate clusters: {len(_lowerCamelCase )}" ) print(f"Files in duplicate cluster: {len(_lowerCamelCase )}" ) print(f"Unique files in duplicate cluster: {len(_lowerCamelCase )}" ) print(f"Filtered dataset size: {len(_lowerCamelCase )}" ) return ds_filter, duplicate_clusters
44
"""simple docstring""" from pathlib import PurePosixPath from typing import Optional import fsspec from fsspec import AbstractFileSystem from huggingface_hub.hf_api import DatasetInfo from ..utils.file_utils import get_authentication_headers_for_url from ..utils.hub import hf_hub_url class __A ( SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : Union[str, Any] = "" _UpperCamelCase : str = "hf-legacy" # "hf://"" is reserved for hffs def __init__( self , a__ = None , a__ = None , **a__ , ): super().__init__(self , **a__ ) _lowerCAmelCase : Any = repo_info _lowerCAmelCase : Optional[Any] = token _lowerCAmelCase : Optional[int] = None def __A ( self ): if self.dir_cache is None: _lowerCAmelCase : Optional[Any] = {} for hf_file in self.repo_info.siblings: # TODO(QL): add sizes _lowerCAmelCase : Any = { """name""": hf_file.rfilename, """size""": None, """type""": """file""", } self.dir_cache.update( { str(a__ ): {"""name""": str(a__ ), """size""": None, """type""": """directory"""} for d in list(PurePosixPath(hf_file.rfilename ).parents )[:-1] } ) def __A ( self , a__ , a__ = "rb" , **a__ , ): if not isinstance(self.repo_info , a__ ): raise NotImplementedError(F"Open is only implemented for dataset repositories, but got {self.repo_info}" ) _lowerCAmelCase : Tuple = hf_hub_url(self.repo_info.id , a__ , revision=self.repo_info.sha ) return fsspec.open( a__ , mode=a__ , headers=get_authentication_headers_for_url(a__ , use_auth_token=self.token ) , client_kwargs={"""trust_env""": True} , ).open() def __A ( self , a__ , **a__ ): self._get_dirs() _lowerCAmelCase : Union[str, Any] = self._strip_protocol(a__ ) if path in self.dir_cache: return self.dir_cache[path] else: raise FileNotFoundError(a__ ) def __A ( self , a__ , a__=False , **a__ ): self._get_dirs() _lowerCAmelCase : Any = PurePosixPath(path.strip("""/""" ) ) _lowerCAmelCase : List[str] = {} for p, f in self.dir_cache.items(): _lowerCAmelCase : Any = PurePosixPath(p.strip("""/""" ) ) _lowerCAmelCase : Optional[int] = p.parent if root == path: _lowerCAmelCase : Dict = f _lowerCAmelCase : Union[str, Any] = list(paths.values() ) if detail: return out else: return sorted(f["""name"""] for f in out )
44
1
from __future__ import annotations def lowerCAmelCase__ ( a__: list[int] ) -> list[int]: # This function is recursive '''simple docstring''' _UpperCAmelCase = len(a__ ) # If the array contains only one element, we return it (it's the stop condition of # recursion) if array_length <= 1: return array # Else _UpperCAmelCase = array[0] _UpperCAmelCase = False _UpperCAmelCase = 1 _UpperCAmelCase = [] while not is_found and i < array_length: if array[i] < pivot: _UpperCAmelCase = True _UpperCAmelCase = [element for element in array[i:] if element >= array[i]] _UpperCAmelCase = longest_subsequence(a__ ) if len(a__ ) > len(a__ ): _UpperCAmelCase = temp_array else: i += 1 _UpperCAmelCase = [element for element in array[1:] if element >= pivot] _UpperCAmelCase = [pivot, *longest_subsequence(a__ )] if len(a__ ) > len(a__ ): return temp_array else: return longest_subseq if __name__ == "__main__": import doctest doctest.testmod()
185
from __future__ import annotations from PIL import Image # Define glider example lowerCAmelCase__ :str = [ [0, 1, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], ] # Define blinker example lowerCAmelCase__ :Any = [[0, 1, 0], [0, 1, 0], [0, 1, 0]] def lowerCAmelCase__ ( a__: list[list[int]] ) -> list[list[int]]: '''simple docstring''' _UpperCAmelCase = [] for i in range(len(a__ ) ): _UpperCAmelCase = [] for j in range(len(cells[i] ) ): # Get the number of live neighbours _UpperCAmelCase = 0 if i > 0 and j > 0: neighbour_count += cells[i - 1][j - 1] if i > 0: neighbour_count += cells[i - 1][j] if i > 0 and j < len(cells[i] ) - 1: neighbour_count += cells[i - 1][j + 1] if j > 0: neighbour_count += cells[i][j - 1] if j < len(cells[i] ) - 1: neighbour_count += cells[i][j + 1] if i < len(a__ ) - 1 and j > 0: neighbour_count += cells[i + 1][j - 1] if i < len(a__ ) - 1: neighbour_count += cells[i + 1][j] if i < len(a__ ) - 1 and j < len(cells[i] ) - 1: neighbour_count += cells[i + 1][j + 1] # Rules of the game of life (excerpt from Wikipedia): # 1. Any live cell with two or three live neighbours survives. # 2. Any dead cell with three live neighbours becomes a live cell. # 3. All other live cells die in the next generation. # Similarly, all other dead cells stay dead. _UpperCAmelCase = cells[i][j] == 1 if ( (alive and 2 <= neighbour_count <= 3) or not alive and neighbour_count == 3 ): next_generation_row.append(1 ) else: next_generation_row.append(0 ) next_generation.append(a__ ) return next_generation def lowerCAmelCase__ ( a__: list[list[int]] , a__: int ) -> list[Image.Image]: '''simple docstring''' _UpperCAmelCase = [] for _ in range(a__ ): # Create output image _UpperCAmelCase = Image.new('RGB' , (len(cells[0] ), len(a__ )) ) _UpperCAmelCase = img.load() # Save cells to image for x in range(len(a__ ) ): for y in range(len(cells[0] ) ): _UpperCAmelCase = 2_5_5 - cells[y][x] * 2_5_5 _UpperCAmelCase = (colour, colour, colour) # Save image images.append(a__ ) _UpperCAmelCase = new_generation(a__ ) return images if __name__ == "__main__": lowerCAmelCase__ :Tuple = generate_images(GLIDER, 1_6) images[0].save('''out.gif''', save_all=True, append_images=images[1:])
185
1
'''simple docstring''' from math import factorial def a_ ( lowerCamelCase : int = 100 ): return sum(int(lowerCamelCase ) for x in str(factorial(lowerCamelCase ) ) ) if __name__ == "__main__": print(solution(int(input("""Enter the Number: """).strip())))
4
'''simple docstring''' from __future__ import annotations from bisect import bisect_left from functools import total_ordering from heapq import merge @total_ordering class UpperCAmelCase_ ( __lowercase ): def __lt__( self : Optional[int] , UpperCAmelCase__ : List[str] ) -> List[Any]: return self[-1] < other[-1] def __eq__( self : str , UpperCAmelCase__ : List[str] ) -> Tuple: return self[-1] == other[-1] def a_ ( lowerCamelCase : list ): lowerCAmelCase = [] # sort into stacks for element in collection: lowerCAmelCase = Stack([element] ) lowerCAmelCase = bisect_left(lowerCamelCase , lowerCamelCase ) if i != len(lowerCamelCase ): stacks[i].append(lowerCamelCase ) else: stacks.append(lowerCamelCase ) # use a heap-based merge to merge stack efficiently lowerCAmelCase = merge(*(reversed(lowerCamelCase ) for stack in stacks) ) return collection if __name__ == "__main__": __snake_case =input("""Enter numbers separated by a comma:\n""").strip() __snake_case =[int(item) for item in user_input.split(""",""")] print(patience_sort(unsorted))
4
1
'''simple docstring''' from __future__ import annotations import inspect import unittest import numpy as np from transformers import ResNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFResNetForImageClassification, TFResNetModel from transformers.models.resnet.modeling_tf_resnet import TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowercase__ : def __init__( self : Any ,lowerCamelCase__ : Dict ,lowerCamelCase__ : Union[str, Any]=3 ,lowerCamelCase__ : Union[str, Any]=32 ,lowerCamelCase__ : List[str]=3 ,lowerCamelCase__ : Dict=10 ,lowerCamelCase__ : Optional[int]=[10, 20, 30, 40] ,lowerCamelCase__ : int=[1, 1, 2, 1] ,lowerCamelCase__ : Dict=True ,lowerCamelCase__ : Optional[Any]=True ,lowerCamelCase__ : Tuple="relu" ,lowerCamelCase__ : Optional[Any]=3 ,lowerCamelCase__ : int=None ,): '''simple docstring''' _UpperCamelCase : Optional[Any] = parent _UpperCamelCase : List[Any] = batch_size _UpperCamelCase : Optional[int] = image_size _UpperCamelCase : Dict = num_channels _UpperCamelCase : Optional[Any] = embeddings_size _UpperCamelCase : Union[str, Any] = hidden_sizes _UpperCamelCase : List[Any] = depths _UpperCamelCase : Any = is_training _UpperCamelCase : Any = use_labels _UpperCamelCase : Optional[int] = hidden_act _UpperCamelCase : Optional[int] = num_labels _UpperCamelCase : int = scope _UpperCamelCase : Any = len(__A ) def UpperCamelCase_ ( self : int ): '''simple docstring''' _UpperCamelCase : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _UpperCamelCase : Optional[Any] = None if self.use_labels: _UpperCamelCase : Tuple = ids_tensor([self.batch_size] ,self.num_labels ) _UpperCamelCase : Optional[Any] = self.get_config() return config, pixel_values, labels def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' return ResNetConfig( num_channels=self.num_channels ,embeddings_size=self.embeddings_size ,hidden_sizes=self.hidden_sizes ,depths=self.depths ,hidden_act=self.hidden_act ,num_labels=self.num_labels ,image_size=self.image_size ,) def UpperCamelCase_ ( self : Optional[Any] ,lowerCamelCase__ : Optional[Any] ,lowerCamelCase__ : Union[str, Any] ,lowerCamelCase__ : int ): '''simple docstring''' _UpperCamelCase : Union[str, Any] = TFResNetModel(config=__A ) _UpperCamelCase : Optional[int] = model(__A ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape ,(self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) ,) def UpperCamelCase_ ( self : int ,lowerCamelCase__ : Optional[Any] ,lowerCamelCase__ : Dict ,lowerCamelCase__ : List[Any] ): '''simple docstring''' _UpperCamelCase : List[Any] = self.num_labels _UpperCamelCase : Optional[int] = TFResNetForImageClassification(__A ) _UpperCamelCase : int = model(__A ,labels=__A ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def UpperCamelCase_ ( self : Dict ): '''simple docstring''' _UpperCamelCase : Optional[Any] = self.prepare_config_and_inputs() _UpperCamelCase : Union[str, Any] = config_and_inputs _UpperCamelCase : Tuple = {"""pixel_values""": pixel_values} return config, inputs_dict @require_tf class lowercase__ ( A__ , A__ , unittest.TestCase ): lowercase__ = (TFResNetModel, TFResNetForImageClassification) if is_tf_available() else () lowercase__ = ( {"feature-extraction": TFResNetModel, "image-classification": TFResNetForImageClassification} if is_tf_available() else {} ) lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = False def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' _UpperCamelCase : Dict = TFResNetModelTester(self ) _UpperCamelCase : Union[str, Any] = ConfigTester(self ,config_class=__A ,has_text_modality=__A ) def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' return @unittest.skip(reason='ResNet does not use inputs_embeds' ) def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' pass @unittest.skip(reason='ResNet does not support input and output embeddings' ) def UpperCamelCase_ ( self : int ): '''simple docstring''' pass def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' _UpperCamelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase : Union[str, Any] = model_class(__A ) _UpperCamelCase : Tuple = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCamelCase : Optional[int] = [*signature.parameters.keys()] _UpperCamelCase : Union[str, Any] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] ,__A ) def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' _UpperCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__A ) def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' def check_hidden_states_output(lowerCamelCase__ : int ,lowerCamelCase__ : str ,lowerCamelCase__ : List[Any] ): _UpperCamelCase : Any = model_class(__A ) _UpperCamelCase : List[str] = model(**self._prepare_for_class(__A ,__A ) ) _UpperCamelCase : Optional[int] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _UpperCamelCase : Optional[Any] = self.model_tester.num_stages self.assertEqual(len(__A ) ,expected_num_stages + 1 ) # ResNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) ,[self.model_tester.image_size // 4, self.model_tester.image_size // 4] ,) _UpperCamelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() _UpperCamelCase : Any = ["""basic""", """bottleneck"""] for model_class in self.all_model_classes: for layer_type in layers_type: _UpperCamelCase : List[Any] = layer_type _UpperCamelCase : Dict = True check_hidden_states_output(__A ,__A ,__A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _UpperCamelCase : int = True check_hidden_states_output(__A ,__A ,__A ) def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' _UpperCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__A ) @slow def UpperCamelCase_ ( self : Any ): '''simple docstring''' for model_name in TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase : List[Any] = TFResNetModel.from_pretrained(__A ) self.assertIsNotNone(__A ) def A__ ( ): _UpperCamelCase : Dict = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_tf @require_vision class lowercase__ ( unittest.TestCase ): @cached_property def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' return ( AutoImageProcessor.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def UpperCamelCase_ ( self : int ): '''simple docstring''' _UpperCamelCase : List[str] = TFResNetForImageClassification.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) _UpperCamelCase : Union[str, Any] = self.default_image_processor _UpperCamelCase : Any = prepare_img() _UpperCamelCase : Optional[Any] = image_processor(images=__A ,return_tensors='tf' ) # forward pass _UpperCamelCase : Union[str, Any] = model(**__A ) # verify the logits _UpperCamelCase : Tuple = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape ,__A ) _UpperCamelCase : List[Any] = tf.constant([-11.1069, -9.7_8_7_7, -8.3_7_7_7] ) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() ,__A ,atol=1E-4 ) )
351
'''simple docstring''' import tempfile import unittest from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from transformers.testing_utils import ( is_torch_available, require_optimum, require_torch, slow, ) if is_torch_available(): import torch @require_torch @require_optimum @slow class lowercase__ ( unittest.TestCase ): def UpperCamelCase_ ( self : str ): '''simple docstring''' _UpperCamelCase : Any = 'hf-internal-testing/tiny-random-t5' _UpperCamelCase : str = AutoTokenizer.from_pretrained(lowerCamelCase__ ) _UpperCamelCase : int = AutoModelForSeqaSeqLM.from_pretrained(lowerCamelCase__ ) _UpperCamelCase : List[str] = tokenizer('This is me' ,return_tensors='pt' ) _UpperCamelCase : str = model.to_bettertransformer() self.assertTrue(any('BetterTransformer' in mod.__class__.__name__ for _, mod in model.named_modules() ) ) _UpperCamelCase : Optional[Any] = model.generate(**lowerCamelCase__ ) _UpperCamelCase : Union[str, Any] = model.reverse_bettertransformer() self.assertFalse(any('BetterTransformer' in mod.__class__.__name__ for _, mod in model.named_modules() ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(lowerCamelCase__ ) _UpperCamelCase : List[Any] = AutoModelForSeqaSeqLM.from_pretrained(lowerCamelCase__ ) self.assertFalse( any('BetterTransformer' in mod.__class__.__name__ for _, mod in model_reloaded.named_modules() ) ) _UpperCamelCase : Optional[Any] = model_reloaded.generate(**lowerCamelCase__ ) self.assertTrue(torch.allclose(lowerCamelCase__ ,lowerCamelCase__ ) ) def UpperCamelCase_ ( self : Any ): '''simple docstring''' _UpperCamelCase : List[Any] = 'hf-internal-testing/tiny-random-t5' _UpperCamelCase : List[Any] = AutoModelForSeqaSeqLM.from_pretrained(lowerCamelCase__ ) _UpperCamelCase : List[str] = model.to_bettertransformer() with tempfile.TemporaryDirectory() as tmpdirname: with self.assertRaises(lowerCamelCase__ ): model.save_pretrained(lowerCamelCase__ ) _UpperCamelCase : str = model.reverse_bettertransformer() model.save_pretrained(lowerCamelCase__ )
236
0
'''simple docstring''' def __lowerCAmelCase ( UpperCamelCase__ ) -> int: if not head: return True # split the list to two parts __lowerCamelCase , __lowerCamelCase = head.next, head while fast and fast.next: __lowerCamelCase = fast.next.next __lowerCamelCase = slow.next __lowerCamelCase = slow.next __lowerCamelCase = None # Don't forget here! But forget still works! # reverse the second part __lowerCamelCase = None while second: __lowerCamelCase = second.next __lowerCamelCase = node __lowerCamelCase = second __lowerCamelCase = nxt # compare two parts # second part has the same or one less node while node: if node.val != head.val: return False __lowerCamelCase = node.next __lowerCamelCase = head.next return True def __lowerCAmelCase ( UpperCamelCase__ ) -> Optional[int]: if not head or not head.next: return True # 1. Get the midpoint (slow) __lowerCamelCase = __lowerCamelCase = __lowerCamelCase = head while fast and fast.next: __lowerCamelCase , __lowerCamelCase = fast.next.next, slow.next # 2. Push the second half into the stack __lowerCamelCase = [slow.val] while slow.next: __lowerCamelCase = slow.next stack.append(slow.val ) # 3. Comparison while stack: if stack.pop() != cur.val: return False __lowerCamelCase = cur.next return True def __lowerCAmelCase ( UpperCamelCase__ ) -> str: if not head or not head.next: return True __lowerCamelCase = {} __lowerCamelCase = 0 while head: if head.val in d: d[head.val].append(UpperCamelCase__ ) else: __lowerCamelCase = [pos] __lowerCamelCase = head.next pos += 1 __lowerCamelCase = pos - 1 __lowerCamelCase = 0 for v in d.values(): if len(UpperCamelCase__ ) % 2 != 0: middle += 1 else: __lowerCamelCase = 0 for i in range(0 , len(UpperCamelCase__ ) ): if v[i] + v[len(UpperCamelCase__ ) - 1 - step] != checksum: return False step += 1 if middle > 1: return False return True
67
'''simple docstring''' import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class a__ ( UpperCAmelCase__ ): lowerCamelCase : Optional[int] =["image_processor", "tokenizer"] lowerCamelCase : Union[str, Any] ="LayoutLMv2ImageProcessor" lowerCamelCase : int =("LayoutXLMTokenizer", "LayoutXLMTokenizerFast") def __init__( self : Optional[int] , a : Any=None , a : Any=None , **a : Union[str, Any] ): """simple docstring""" if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , a , ) __lowerCamelCase = kwargs.pop('''feature_extractor''' ) __lowerCamelCase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(a , a ) def __call__( self : Tuple , a : Optional[int] , a : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , a : Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None , a : Union[List[List[int]], List[List[List[int]]]] = None , a : Optional[Union[List[int], List[List[int]]]] = None , a : bool = True , a : Union[bool, str, PaddingStrategy] = False , a : Union[bool, str, TruncationStrategy] = None , a : Optional[int] = None , a : int = 0 , a : Optional[int] = None , a : Optional[bool] = None , a : Optional[bool] = None , a : bool = False , a : bool = False , a : bool = False , a : bool = False , a : bool = True , a : Optional[Union[str, TensorType]] = None , **a : Tuple , ): """simple docstring""" if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( '''You cannot provide bounding boxes ''' '''if you initialized the image processor with apply_ocr set to True.''' ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( '''You cannot provide word labels if you initialized the image processor with apply_ocr set to True.''' ) if return_overflowing_tokens is True and return_offsets_mapping is False: raise ValueError('''You cannot return overflowing tokens without returning the offsets mapping.''' ) # first, apply the image processor __lowerCamelCase = self.image_processor(images=a , return_tensors=a ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(a , a ): __lowerCamelCase = [text] # add batch dimension (as the image processor always adds a batch dimension) __lowerCamelCase = features['''words'''] __lowerCamelCase = self.tokenizer( text=text if text is not None else features['''words'''] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features['''boxes'''] , word_labels=a , add_special_tokens=a , padding=a , truncation=a , max_length=a , stride=a , pad_to_multiple_of=a , return_token_type_ids=a , return_attention_mask=a , return_overflowing_tokens=a , return_special_tokens_mask=a , return_offsets_mapping=a , return_length=a , verbose=a , return_tensors=a , **a , ) # add pixel values __lowerCamelCase = features.pop('''pixel_values''' ) if return_overflowing_tokens is True: __lowerCamelCase = self.get_overflowing_images(a , encoded_inputs['''overflow_to_sample_mapping'''] ) __lowerCamelCase = images return encoded_inputs def SCREAMING_SNAKE_CASE__ ( self : Tuple , a : Optional[Any] , a : str ): """simple docstring""" __lowerCamelCase = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(a ) != len(a ): raise ValueError( '''Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got''' f""" {len(a )} and {len(a )}""" ) return images_with_overflow def SCREAMING_SNAKE_CASE__ ( self : List[str] , *a : Optional[Any] , **a : Union[str, Any] ): """simple docstring""" return self.tokenizer.batch_decode(*a , **a ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , *a : Union[str, Any] , **a : Tuple ): """simple docstring""" return self.tokenizer.decode(*a , **a ) @property def SCREAMING_SNAKE_CASE__ ( self : Dict ): """simple docstring""" return ["input_ids", "bbox", "attention_mask", "image"] @property def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): """simple docstring""" warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , a , ) return self.image_processor_class @property def SCREAMING_SNAKE_CASE__ ( self : Any ): """simple docstring""" warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , a , ) return self.image_processor
67
1
import warnings from ..trainer import Trainer from ..utils import logging UpperCamelCase__ = logging.get_logger(__name__) class a__ ( __lowerCAmelCase ): def __init__( self , _A=None , **_A ): """simple docstring""" warnings.warn( "`SageMakerTrainer` is deprecated and will be removed in v5 of Transformers. You can use `Trainer` " "instead." , lowerCamelCase__ , ) super().__init__(args=lowerCamelCase__ , **lowerCamelCase__ )
357
from __future__ import annotations def _a ( SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : float , ): if (electron_conc, hole_conc, intrinsic_conc).count(0 ) != 1: raise ValueError("You cannot supply more or less than 2 values" ) elif electron_conc < 0: raise ValueError("Electron concentration cannot be negative in a semiconductor" ) elif hole_conc < 0: raise ValueError("Hole concentration cannot be negative in a semiconductor" ) elif intrinsic_conc < 0: raise ValueError( "Intrinsic concentration cannot be negative in a semiconductor" ) elif electron_conc == 0: return ( "electron_conc", intrinsic_conc**2 / hole_conc, ) elif hole_conc == 0: return ( "hole_conc", intrinsic_conc**2 / electron_conc, ) elif intrinsic_conc == 0: return ( "intrinsic_conc", (electron_conc * hole_conc) ** 0.5, ) else: return (-1, -1) if __name__ == "__main__": import doctest doctest.testmod()
102
0
import numpy as np from nltk.translate import meteor_score import datasets from datasets.config import importlib_metadata, version _SCREAMING_SNAKE_CASE = version.parse(importlib_metadata.version("""nltk""")) if NLTK_VERSION >= version.Version("""3.6.4"""): from nltk import word_tokenize _SCREAMING_SNAKE_CASE = "\\n@inproceedings{banarjee2005,\n title = {{METEOR}: An Automatic Metric for {MT} Evaluation with Improved Correlation with Human Judgments},\n author = {Banerjee, Satanjeev and Lavie, Alon},\n booktitle = {Proceedings of the {ACL} Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine Translation and/or Summarization},\n month = jun,\n year = {2005},\n address = {Ann Arbor, Michigan},\n publisher = {Association for Computational Linguistics},\n url = {https://www.aclweb.org/anthology/W05-0909},\n pages = {65--72},\n}\n" _SCREAMING_SNAKE_CASE = "\\nMETEOR, an automatic metric for machine translation evaluation\nthat is based on a generalized concept of unigram matching between the\nmachine-produced translation and human-produced reference translations.\nUnigrams can be matched based on their surface forms, stemmed forms,\nand meanings; furthermore, METEOR can be easily extended to include more\nadvanced matching strategies. Once all generalized unigram matches\nbetween the two strings have been found, METEOR computes a score for\nthis matching using a combination of unigram-precision, unigram-recall, and\na measure of fragmentation that is designed to directly capture how\nwell-ordered the matched words in the machine translation are in relation\nto the reference.\n\nMETEOR gets an R correlation value of 0.347 with human evaluation on the Arabic\ndata and 0.331 on the Chinese data. This is shown to be an improvement on\nusing simply unigram-precision, unigram-recall and their harmonic F1\ncombination.\n" _SCREAMING_SNAKE_CASE = "\nComputes METEOR score of translated segments against one or more references.\nArgs:\n predictions: list of predictions to score. Each prediction\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\n alpha: Parameter for controlling relative weights of precision and recall. default: 0.9\n beta: Parameter for controlling shape of penalty as a function of fragmentation. default: 3\n gamma: Relative weight assigned to fragmentation penalty. default: 0.5\nReturns:\n 'meteor': meteor score.\nExamples:\n\n >>> meteor = datasets.load_metric('meteor')\n >>> predictions = [\"It is a guide to action which ensures that the military always obeys the commands of the party\"]\n >>> references = [\"It is a guide to action that ensures that the military will forever heed Party commands\"]\n >>> results = meteor.compute(predictions=predictions, references=references)\n >>> print(round(results[\"meteor\"], 4))\n 0.6944\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE_ ( datasets.Metric ): def lowerCamelCase_ ( self : List[Any] ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" , id="""sequence""" ), """references""": datasets.Value("""string""" , id="""sequence""" ), } ) , codebase_urls=["""https://github.com/nltk/nltk/blob/develop/nltk/translate/meteor_score.py"""] , reference_urls=[ """https://www.nltk.org/api/nltk.translate.html#module-nltk.translate.meteor_score""", """https://en.wikipedia.org/wiki/METEOR""", ] , ) def lowerCamelCase_ ( self : Any , lowerCamelCase_ : List[str] ): """simple docstring""" import nltk nltk.download("""wordnet""" ) if NLTK_VERSION >= version.Version("""3.6.5""" ): nltk.download("""punkt""" ) if NLTK_VERSION >= version.Version("""3.6.6""" ): nltk.download("""omw-1.4""" ) def lowerCamelCase_ ( self : int , lowerCamelCase_ : List[Any] , lowerCamelCase_ : List[str] , lowerCamelCase_ : Tuple=0.9 , lowerCamelCase_ : int=3 , lowerCamelCase_ : List[Any]=0.5 ): """simple docstring""" if NLTK_VERSION >= version.Version("""3.6.5""" ): UpperCamelCase = [ meteor_score.single_meteor_score( word_tokenize(lowerCamelCase_ ) , word_tokenize(lowerCamelCase_ ) , alpha=lowerCamelCase_ , beta=lowerCamelCase_ , gamma=lowerCamelCase_ ) for ref, pred in zip(lowerCamelCase_ , lowerCamelCase_ ) ] else: UpperCamelCase = [ meteor_score.single_meteor_score(lowerCamelCase_ , lowerCamelCase_ , alpha=lowerCamelCase_ , beta=lowerCamelCase_ , gamma=lowerCamelCase_ ) for ref, pred in zip(lowerCamelCase_ , lowerCamelCase_ ) ] return {"meteor": np.mean(lowerCamelCase_ )}
343
"""simple docstring""" import argparse import torch from transformers import GPTaConfig, GPTaModel, load_tf_weights_in_gpta from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def snake_case__ ( __lowerCamelCase : List[Any] , __lowerCamelCase : List[str] , __lowerCamelCase : List[Any] ): """simple docstring""" # Construct model if gpta_config_file == "": lowerCamelCase__ : Dict =GPTaConfig() else: lowerCamelCase__ : Tuple =GPTaConfig.from_json_file(__lowerCamelCase ) lowerCamelCase__ : Optional[Any] =GPTaModel(__lowerCamelCase ) # Load weights from numpy load_tf_weights_in_gpta(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # Save pytorch-model lowerCamelCase__ : List[str] =pytorch_dump_folder_path + '''/''' + WEIGHTS_NAME lowerCamelCase__ : int =pytorch_dump_folder_path + '''/''' + CONFIG_NAME print(f'''Save PyTorch model to {pytorch_weights_dump_path}''' ) torch.save(model.state_dict() , __lowerCamelCase ) print(f'''Save configuration file to {pytorch_config_dump_path}''' ) with open(__lowerCamelCase , '''w''' , encoding='''utf-8''' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": _lowercase : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--gpt2_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--gpt2_config_file", default="", type=str, help=( "An optional config json file corresponding to the pre-trained OpenAI model. \n" "This specifies the model architecture." ), ) _lowercase : Any = parser.parse_args() convert_gpta_checkpoint_to_pytorch(args.gpta_checkpoint_path, args.gpta_config_file, args.pytorch_dump_folder_path)
238
0
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_rembert import RemBertTokenizer else: __lowerCAmelCase = None __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = {'vocab_file': 'sentencepiece.model', 'tokenizer_file': 'tokenizer.json'} __lowerCAmelCase = { 'vocab_file': { 'google/rembert': 'https://huggingface.co/google/rembert/resolve/main/sentencepiece.model', }, 'tokenizer_file': { 'google/rembert': 'https://huggingface.co/google/rembert/resolve/main/tokenizer.json', }, } __lowerCAmelCase = { 'google/rembert': 256, } __lowerCAmelCase = '▁' class _lowerCAmelCase ( __snake_case ): '''simple docstring''' lowerCAmelCase_ = VOCAB_FILES_NAMES lowerCAmelCase_ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ = RemBertTokenizer def __init__(self , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=False , UpperCAmelCase="[CLS]" , UpperCAmelCase="[SEP]" , UpperCAmelCase="<unk>" , UpperCAmelCase="[SEP]" , UpperCAmelCase="<pad>" , UpperCAmelCase="[CLS]" , UpperCAmelCase="[MASK]" , **UpperCAmelCase , ) -> Optional[Any]: # Mask token behave like a normal word, i.e. include the space before it _snake_case = AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else mask_token super().__init__( UpperCAmelCase , tokenizer_file=UpperCAmelCase , do_lower_case=UpperCAmelCase , remove_space=UpperCAmelCase , keep_accents=UpperCAmelCase , bos_token=UpperCAmelCase , eos_token=UpperCAmelCase , unk_token=UpperCAmelCase , sep_token=UpperCAmelCase , pad_token=UpperCAmelCase , cls_token=UpperCAmelCase , mask_token=UpperCAmelCase , **UpperCAmelCase , ) _snake_case = do_lower_case _snake_case = remove_space _snake_case = keep_accents _snake_case = vocab_file _snake_case = False if not self.vocab_file else True def lowercase (self , UpperCAmelCase , UpperCAmelCase = None ) -> List[int]: _snake_case = [self.sep_token_id] _snake_case = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def lowercase (self , UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase = False ) -> List[int]: if already_has_special_tokens: if token_ids_a is not None: raise ValueError( """You should not supply a second sequence if the provided sequence of """ """ids is already formatted with special tokens for the model.""" ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(UpperCAmelCase )) + [1] + ([0] * len(UpperCAmelCase )) + [1] return [1] + ([0] * len(UpperCAmelCase )) + [1] def lowercase (self , UpperCAmelCase , UpperCAmelCase = None ) -> List[int]: _snake_case = [self.sep_token_id] _snake_case = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowercase (self , UpperCAmelCase , UpperCAmelCase = None ) -> Tuple[str]: if not os.path.isdir(UpperCAmelCase ): logger.error("""Vocabulary path ({}) should be a directory""".format(UpperCAmelCase ) ) return _snake_case = os.path.join( UpperCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCAmelCase ): copyfile(self.vocab_file , UpperCAmelCase ) return (out_vocab_file,)
270
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = { 'shi-labs/nat-mini-in1k-224': 'https://huggingface.co/shi-labs/nat-mini-in1k-224/resolve/main/config.json', # See all Nat models at https://huggingface.co/models?filter=nat } class _lowerCAmelCase ( __snake_case , __snake_case ): '''simple docstring''' lowerCAmelCase_ = "nat" lowerCAmelCase_ = { "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__(self , UpperCAmelCase=4 , UpperCAmelCase=3 , UpperCAmelCase=64 , UpperCAmelCase=[3, 4, 6, 5] , UpperCAmelCase=[2, 4, 8, 16] , UpperCAmelCase=7 , UpperCAmelCase=3.0 , UpperCAmelCase=True , UpperCAmelCase=0.0 , UpperCAmelCase=0.0 , UpperCAmelCase=0.1 , UpperCAmelCase="gelu" , UpperCAmelCase=0.02 , UpperCAmelCase=1e-5 , UpperCAmelCase=0.0 , UpperCAmelCase=None , UpperCAmelCase=None , **UpperCAmelCase , ) -> str: super().__init__(**UpperCAmelCase ) _snake_case = patch_size _snake_case = num_channels _snake_case = embed_dim _snake_case = depths _snake_case = len(UpperCAmelCase ) _snake_case = num_heads _snake_case = kernel_size _snake_case = mlp_ratio _snake_case = qkv_bias _snake_case = hidden_dropout_prob _snake_case = attention_probs_dropout_prob _snake_case = drop_path_rate _snake_case = hidden_act _snake_case = layer_norm_eps _snake_case = initializer_range # we set the hidden_size attribute in order to make Nat work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model _snake_case = int(embed_dim * 2 ** (len(UpperCAmelCase ) - 1) ) _snake_case = layer_scale_init_value _snake_case = ["""stem"""] + [f"""stage{idx}""" for idx in range(1 , len(UpperCAmelCase ) + 1 )] _snake_case, _snake_case = get_aligned_output_features_output_indices( out_features=UpperCAmelCase , out_indices=UpperCAmelCase , stage_names=self.stage_names )
270
1
from typing import List, Optional, Tuple, Union import torch from ...utils import logging, randn_tensor from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline lowercase_ = logging.get_logger(__name__) # pylint: disable=invalid-name class __UpperCamelCase ( lowerCAmelCase__ ): """simple docstring""" def __init__( self : List[str] , _A : Dict , _A : List[Any] ): """simple docstring""" super().__init__() self.register_modules(unet=_A , scheduler=_A ) @torch.no_grad() def __call__( self : List[str] , _A : int = 1 , _A : int = 100 , _A : Optional[Union[torch.Generator, List[torch.Generator]]] = None , _A : Optional[float] = None , _A : bool = True , ): """simple docstring""" if audio_length_in_s is None: __SCREAMING_SNAKE_CASE : Optional[Any] = self.unet.config.sample_size / self.unet.config.sample_rate __SCREAMING_SNAKE_CASE : List[Any] = audio_length_in_s * self.unet.config.sample_rate __SCREAMING_SNAKE_CASE : Any = 2 ** len(self.unet.up_blocks ) if sample_size < 3 * down_scale_factor: raise ValueError( F'''{audio_length_in_s} is too small. Make sure it\'s bigger or equal to''' F''' {3 * down_scale_factor / self.unet.config.sample_rate}.''' ) __SCREAMING_SNAKE_CASE : int = int(_A ) if sample_size % down_scale_factor != 0: __SCREAMING_SNAKE_CASE : Optional[int] = ( (audio_length_in_s * self.unet.config.sample_rate) // down_scale_factor + 1 ) * down_scale_factor logger.info( F'''{audio_length_in_s} is increased to {sample_size / self.unet.config.sample_rate} so that it can be handled''' F''' by the model. It will be cut to {original_sample_size / self.unet.config.sample_rate} after the denoising''' ''' process.''' ) __SCREAMING_SNAKE_CASE : List[Any] = int(_A ) __SCREAMING_SNAKE_CASE : Union[str, Any] = next(iter(self.unet.parameters() ) ).dtype __SCREAMING_SNAKE_CASE : int = (batch_size, self.unet.config.in_channels, sample_size) if isinstance(_A , _A ) and len(_A ) != batch_size: raise ValueError( F'''You have passed a list of generators of length {len(_A )}, but requested an effective batch''' F''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' ) __SCREAMING_SNAKE_CASE : Dict = randn_tensor(_A , generator=_A , device=self.device , dtype=_A ) # set step values self.scheduler.set_timesteps(_A , device=audio.device ) __SCREAMING_SNAKE_CASE : Dict = self.scheduler.timesteps.to(_A ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output __SCREAMING_SNAKE_CASE : List[Any] = self.unet(_A , _A ).sample # 2. compute previous image: x_t -> t_t-1 __SCREAMING_SNAKE_CASE : Optional[int] = self.scheduler.step(_A , _A , _A ).prev_sample __SCREAMING_SNAKE_CASE : str = audio.clamp(-1 , 1 ).float().cpu().numpy() __SCREAMING_SNAKE_CASE : str = audio[:, :, :original_sample_size] if not return_dict: return (audio,) return AudioPipelineOutput(audios=_A )
303
from __future__ import annotations import matplotlib.pyplot as plt # type: ignore import numpy # initial triangle of Koch snowflake lowercase_ = numpy.array([0, 0]) lowercase_ = numpy.array([0.5, 0.866_0254]) lowercase_ = numpy.array([1, 0]) lowercase_ = [VECTOR_1, VECTOR_2, VECTOR_3, VECTOR_1] def a__ ( snake_case , snake_case ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[str] = initial_vectors for _ in range(snake_case ): __SCREAMING_SNAKE_CASE : Dict = iteration_step(snake_case ) return vectors def a__ ( snake_case ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = [] for i, start_vector in enumerate(vectors[:-1] ): __SCREAMING_SNAKE_CASE : str = vectors[i + 1] new_vectors.append(snake_case ) __SCREAMING_SNAKE_CASE : List[str] = end_vector - start_vector new_vectors.append(start_vector + difference_vector / 3 ) new_vectors.append( start_vector + difference_vector / 3 + rotate(difference_vector / 3 , 60 ) ) new_vectors.append(start_vector + difference_vector * 2 / 3 ) new_vectors.append(vectors[-1] ) return new_vectors def a__ ( snake_case , snake_case ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = numpy.radians(snake_case ) __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : str = numpy.cos(snake_case ), numpy.sin(snake_case ) __SCREAMING_SNAKE_CASE : Any = numpy.array(((c, -s), (s, c)) ) return numpy.dot(snake_case , snake_case ) def a__ ( snake_case ): """simple docstring""" __SCREAMING_SNAKE_CASE : int = plt.gca() axes.set_aspect('''equal''' ) # matplotlib.pyplot.plot takes a list of all x-coordinates and a list of all # y-coordinates as inputs, which are constructed from the vector-list using # zip() __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Tuple = zip(*snake_case ) plt.plot(snake_case , snake_case ) plt.show() if __name__ == "__main__": import doctest doctest.testmod() lowercase_ = iterate(INITIAL_VECTORS, 5) plot(processed_vectors)
303
1
"""simple docstring""" from __future__ import annotations import os from typing import Any import requests UpperCAmelCase: Optional[Any] = """https://api.github.com""" # https://docs.github.com/en/free-pro-team@latest/rest/reference/users#get-the-authenticated-user UpperCAmelCase: Union[str, Any] = BASE_URL + """/user""" # https://github.com/settings/tokens UpperCAmelCase: List[str] = os.environ.get("""USER_TOKEN""", """""") def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): _lowercase : List[Any] = { """Authorization""": F"""token {auth_token}""", """Accept""": """application/vnd.github.v3+json""", } return requests.get(__UpperCAmelCase , headers=__UpperCAmelCase ).json() if __name__ == "__main__": # pragma: no cover if USER_TOKEN: for key, value in fetch_github_info(USER_TOKEN).items(): print(F'{key}: {value}') else: raise ValueError("""'USER_TOKEN' field cannot be empty.""")
336
"""simple docstring""" import json import os import unittest from transformers import BatchEncoding, LEDTokenizer, LEDTokenizerFast from transformers.models.led.tokenization_led import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, require_torch from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCamelCase ( snake_case , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = LEDTokenizer SCREAMING_SNAKE_CASE_ : List[str] = LEDTokenizerFast SCREAMING_SNAKE_CASE_ : List[str] = True def lowerCamelCase__ ( self ): super().setUp() _lowercase : Union[str, Any] = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """<unk>""", ] _lowercase : List[Any] = dict(zip(UpperCAmelCase_ ,range(len(UpperCAmelCase_ ) ) ) ) _lowercase : Optional[int] = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] _lowercase : Dict = {"""unk_token""": """<unk>"""} _lowercase : Optional[Any] = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["""vocab_file"""] ) _lowercase : List[str] = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file ,"""w""" ,encoding="""utf-8""" ) as fp: fp.write(json.dumps(UpperCAmelCase_ ) + """\n""" ) with open(self.merges_file ,"""w""" ,encoding="""utf-8""" ) as fp: fp.write("""\n""".join(UpperCAmelCase_ ) ) def lowerCamelCase__ ( self ,**UpperCAmelCase_ ): kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname ,**UpperCAmelCase_ ) def lowerCamelCase__ ( self ,**UpperCAmelCase_ ): kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname ,**UpperCAmelCase_ ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ): return "lower newer", "lower newer" @cached_property def lowerCamelCase__ ( self ): return LEDTokenizer.from_pretrained("""allenai/led-base-16384""" ) @cached_property def lowerCamelCase__ ( self ): return LEDTokenizerFast.from_pretrained("""allenai/led-base-16384""" ) @require_torch def lowerCamelCase__ ( self ): _lowercase : Tuple = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] _lowercase : Any = [0, 2_50, 2_51, 1_78_18, 13, 3_91_86, 19_38, 4, 2] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _lowercase : Tuple = tokenizer(UpperCAmelCase_ ,max_length=len(UpperCAmelCase_ ) ,padding=UpperCAmelCase_ ,return_tensors="""pt""" ) self.assertIsInstance(UpperCAmelCase_ ,UpperCAmelCase_ ) self.assertEqual((2, 9) ,batch.input_ids.shape ) self.assertEqual((2, 9) ,batch.attention_mask.shape ) _lowercase : Optional[Any] = batch.input_ids.tolist()[0] self.assertListEqual(UpperCAmelCase_ ,UpperCAmelCase_ ) @require_torch def lowerCamelCase__ ( self ): _lowercase : Tuple = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _lowercase : Dict = tokenizer(UpperCAmelCase_ ,padding=UpperCAmelCase_ ,return_tensors="""pt""" ) self.assertIn("""input_ids""" ,UpperCAmelCase_ ) self.assertIn("""attention_mask""" ,UpperCAmelCase_ ) self.assertNotIn("""labels""" ,UpperCAmelCase_ ) self.assertNotIn("""decoder_attention_mask""" ,UpperCAmelCase_ ) @require_torch def lowerCamelCase__ ( self ): _lowercase : Dict = [ """Summary of the text.""", """Another summary.""", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _lowercase : Tuple = tokenizer(text_target=UpperCAmelCase_ ,max_length=32 ,padding="""max_length""" ,return_tensors="""pt""" ) self.assertEqual(32 ,targets["""input_ids"""].shape[1] ) @require_torch def lowerCamelCase__ ( self ): for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _lowercase : List[Any] = tokenizer( ["""I am a small frog""" * 10_24, """I am a small frog"""] ,padding=UpperCAmelCase_ ,truncation=UpperCAmelCase_ ,return_tensors="""pt""" ) self.assertIsInstance(UpperCAmelCase_ ,UpperCAmelCase_ ) self.assertEqual(batch.input_ids.shape ,(2, 51_22) ) @require_torch def lowerCamelCase__ ( self ): _lowercase : List[Any] = ["""A long paragraph for summarization."""] _lowercase : Dict = [ """Summary of the text.""", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _lowercase : Dict = tokenizer(UpperCAmelCase_ ,return_tensors="""pt""" ) _lowercase : List[str] = tokenizer(text_target=UpperCAmelCase_ ,return_tensors="""pt""" ) _lowercase : Union[str, Any] = inputs["""input_ids"""] _lowercase : List[str] = targets["""input_ids"""] self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() ) self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() ) @require_torch def lowerCamelCase__ ( self ): for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _lowercase : str = ["""Summary of the text.""", """Another summary."""] _lowercase : Optional[int] = [[0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, -1, -1]] _lowercase : Any = tokenizer(UpperCAmelCase_ ,padding=UpperCAmelCase_ ) _lowercase : str = [[0] * len(UpperCAmelCase_ ) for x in encoded_output["""input_ids"""]] _lowercase : Optional[int] = tokenizer.pad(UpperCAmelCase_ ) self.assertSequenceEqual(outputs["""global_attention_mask"""] ,UpperCAmelCase_ ) def lowerCamelCase__ ( self ): pass def lowerCamelCase__ ( self ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): _lowercase : int = self.rust_tokenizer_class.from_pretrained(UpperCAmelCase_ ,**UpperCAmelCase_ ) _lowercase : Optional[int] = self.tokenizer_class.from_pretrained(UpperCAmelCase_ ,**UpperCAmelCase_ ) _lowercase : Dict = """A, <mask> AllenNLP sentence.""" _lowercase : List[Any] = tokenizer_r.encode_plus(UpperCAmelCase_ ,add_special_tokens=UpperCAmelCase_ ,return_token_type_ids=UpperCAmelCase_ ) _lowercase : Any = tokenizer_p.encode_plus(UpperCAmelCase_ ,add_special_tokens=UpperCAmelCase_ ,return_token_type_ids=UpperCAmelCase_ ) self.assertEqual(sum(tokens_r["""token_type_ids"""] ) ,sum(tokens_p["""token_type_ids"""] ) ) self.assertEqual( sum(tokens_r["""attention_mask"""] ) / len(tokens_r["""attention_mask"""] ) ,sum(tokens_p["""attention_mask"""] ) / len(tokens_p["""attention_mask"""] ) ,) _lowercase : str = tokenizer_r.convert_ids_to_tokens(tokens_r["""input_ids"""] ) _lowercase : str = tokenizer_p.convert_ids_to_tokens(tokens_p["""input_ids"""] ) self.assertSequenceEqual(tokens_p["""input_ids"""] ,[0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2] ) self.assertSequenceEqual(tokens_r["""input_ids"""] ,[0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2] ) self.assertSequenceEqual( UpperCAmelCase_ ,["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] ) self.assertSequenceEqual( UpperCAmelCase_ ,["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] )
336
1
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..bit import BitConfig _snake_case = logging.get_logger(__name__) _snake_case = { "Intel/dpt-large": "https://huggingface.co/Intel/dpt-large/resolve/main/config.json", # See all DPT models at https://huggingface.co/models?filter=dpt } class lowercase ( UpperCamelCase__ ): _a = "dpt" def __init__( self , _a=768 , _a=12 , _a=12 , _a=3072 , _a="gelu" , _a=0.0 , _a=0.0 , _a=0.02 , _a=1e-12 , _a=384 , _a=16 , _a=3 , _a=False , _a=True , _a=[2, 5, 8, 11] , _a="project" , _a=[4, 2, 1, 0.5] , _a=[96, 192, 384, 768] , _a=256 , _a=-1 , _a=False , _a=True , _a=0.4 , _a=255 , _a=0.1 , _a=[1, 1024, 24, 24] , _a=[0, 1] , _a=None , **_a , ) -> Optional[Any]: super().__init__(**_a ) _A : Any = hidden_size _A : Optional[int] = is_hybrid if self.is_hybrid: if backbone_config is None: logger.info("""Initializing the config with a `BiT` backbone.""" ) _A : Union[str, Any] = { """global_padding""": """same""", """layer_type""": """bottleneck""", """depths""": [3, 4, 9], """out_features""": ["""stage1""", """stage2""", """stage3"""], """embedding_dynamic_padding""": True, } _A : Union[str, Any] = BitConfig(**_a ) elif isinstance(_a , _a ): logger.info("""Initializing the config with a `BiT` backbone.""" ) _A : Union[str, Any] = BitConfig(**_a ) elif isinstance(_a , _a ): _A : Optional[Any] = backbone_config else: raise ValueError( F'''backbone_config must be a dictionary or a `PretrainedConfig`, got {backbone_config.__class__}.''' ) _A : Any = backbone_featmap_shape _A : Optional[Any] = neck_ignore_stages if readout_type != "project": raise ValueError("""Readout type must be 'project' when using `DPT-hybrid` mode.""" ) else: _A : Tuple = None _A : Union[str, Any] = None _A : Dict = [] _A : Union[str, Any] = num_hidden_layers _A : List[str] = num_attention_heads _A : Union[str, Any] = intermediate_size _A : Tuple = hidden_act _A : int = hidden_dropout_prob _A : Tuple = attention_probs_dropout_prob _A : List[str] = initializer_range _A : List[Any] = layer_norm_eps _A : str = image_size _A : str = patch_size _A : List[str] = num_channels _A : int = qkv_bias _A : Dict = backbone_out_indices if readout_type not in ["ignore", "add", "project"]: raise ValueError("""Readout_type must be one of ['ignore', 'add', 'project']""" ) _A : int = readout_type _A : List[str] = reassemble_factors _A : str = neck_hidden_sizes _A : Union[str, Any] = fusion_hidden_size _A : List[Any] = head_in_index _A : List[Any] = use_batch_norm_in_fusion_residual # auxiliary head attributes (semantic segmentation) _A : Tuple = use_auxiliary_head _A : Union[str, Any] = auxiliary_loss_weight _A : Tuple = semantic_loss_ignore_index _A : List[Any] = semantic_classifier_dropout def a__ ( self ) -> Union[str, Any]: _A : str = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: _A : Tuple = self.backbone_config.to_dict() _A : Tuple = self.__class__.model_type return output
26
"""simple docstring""" import os import re import unicodedata from shutil import copyfile from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import is_torch_available, logging if is_torch_available(): import torch if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation _lowercase : Optional[int] = logging.get_logger(__name__) _lowercase : Optional[int] = {"vocab_file": "spiece.model"} _lowercase : str = { "vocab_file": { "AI-Sweden/gpt-sw3-126m": "https://huggingface.co/AI-Sweden/gpt-sw3-126m/resolve/main/spiece.model", "AI-Sweden/gpt-sw3-350m": "https://huggingface.co/AI-Sweden/gpt-sw3-350m/resolve/main/spiece.model", "AI-Sweden/gpt-sw3-1.6b": "https://huggingface.co/AI-Sweden/gpt-sw3-1.6b/resolve/main/spiece.model", "AI-Sweden/gpt-sw3-6.7b": "https://huggingface.co/AI-Sweden/gpt-sw3-6.7b/resolve/main/spiece.model", "AI-Sweden/gpt-sw3-20b": "https://huggingface.co/AI-Sweden/gpt-sw3-20b/resolve/main/spiece.model", } } _lowercase : Optional[Any] = { "AI-Sweden/gpt-sw3-126m": 2_0_4_8, "AI-Sweden/gpt-sw3-350m": 2_0_4_8, "AI-Sweden/gpt-sw3-1.6b": 2_0_4_8, "AI-Sweden/gpt-sw3-6.7b": 2_0_4_8, "AI-Sweden/gpt-sw3-20b": 2_0_4_8, } class __SCREAMING_SNAKE_CASE ( lowerCAmelCase_ ): '''simple docstring''' _a = VOCAB_FILES_NAMES _a = PRETRAINED_VOCAB_FILES_MAP _a = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _a = ['input_ids', 'attention_mask'] def __init__( self : Dict, lowerCamelCase : Tuple, lowerCamelCase : List[str]=False, lowerCamelCase : str=False, lowerCamelCase : List[Any]=False, lowerCamelCase : List[str]=None, lowerCamelCase : Optional[Any]=None, lowerCamelCase : List[str]=None, lowerCamelCase : Optional[int]=None, lowerCamelCase : Optional[Dict[str, Any]] = None, **lowerCamelCase : Dict, )-> None: lowerCamelCase__ : Any ={} if sp_model_kwargs is None else sp_model_kwargs lowerCamelCase__ : Optional[int] =kwargs.get('''name_or_path''' ) if name_or_path is None: logger.warning( '''name_or_path not provided, will work for all GPTSw3 models except gpt-sw3-7b,''' ''' you are testing the model, this can safely be ignored''' ) lowerCamelCase__ : List[Any] ='''None''' # Default definitions for our 2 tokenizer versions, with None-checks to enable proper testing lowerCamelCase__ : Tuple ='''<|endoftext|>''' if eos_token is None else eos_token lowerCamelCase__ : Dict ='''<unk>''' if unk_token is None else unk_token if "gpt-sw3-7b" in name_or_path: lowerCamelCase__ : int =unk_token if pad_token is None else pad_token lowerCamelCase__ : str =eos_token if bos_token is None else bos_token else: lowerCamelCase__ : Any ='''<pad>''' if pad_token is None else pad_token lowerCamelCase__ : str ='''<s>''' if bos_token is None else bos_token super().__init__( do_lower_case=lowerCamelCase, remove_space=lowerCamelCase, keep_accents=lowerCamelCase, bos_token=lowerCamelCase, eos_token=lowerCamelCase, unk_token=lowerCamelCase, pad_token=lowerCamelCase, sp_model_kwargs=self.sp_model_kwargs, **lowerCamelCase, ) lowerCamelCase__ : Union[str, Any] =do_lower_case lowerCamelCase__ : Union[str, Any] =remove_space lowerCamelCase__ : int =keep_accents lowerCamelCase__ : Tuple =vocab_file lowerCamelCase__ : List[str] =spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(lowerCamelCase ) # Used for whitespace normalization in input texts # fmt : off lowerCamelCase__ : List[Any] ={''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', '''''', '''„'''} # fmt : on # Regular expression to remove non-printing characters (e.g. some unicode control chars) in preprocessing lowerCamelCase__ : int =re.compile( F'''[{"".join(map(lowerCamelCase, list(range(0, 9 ) ) + list(range(11, 32 ) ) + list(range(127, 160 ) ) + [160, 173, 8203] ) )}]''' ) def __getstate__( self : Any )-> Optional[Any]: lowerCamelCase__ : List[str] =self.__dict__.copy() lowerCamelCase__ : List[Any] =None return state def __setstate__( self : Optional[Any], lowerCamelCase : Dict )-> int: lowerCamelCase__ : List[str] =d # for backward compatibility if not hasattr(self, '''sp_model_kwargs''' ): lowerCamelCase__ : Union[str, Any] ={} lowerCamelCase__ : str =spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) @property # Copied from transformers.models.albert.tokenization_albert.AlbertTokenizer.vocab_size def snake_case ( self : List[str] )-> int: return len(self.sp_model ) def snake_case ( self : List[str], lowerCamelCase : str )-> str: lowerCamelCase__ : Dict =self.non_printing_characters_re.sub('''''', lowerCamelCase ) # Normalize whitespaces lowerCamelCase__ : List[Any] =''''''.join([char if char not in self.whitespaces else ''' ''' for char in text] ) # NFC Unicode normalization lowerCamelCase__ : Union[str, Any] =unicodedata.normalize('''NFC''', lowerCamelCase ) return text def snake_case ( self : int, lowerCamelCase : str, **lowerCamelCase : str )-> List[str]: lowerCamelCase__ : int =self.preprocess_text(lowerCamelCase ) return self.sp_model.encode(lowerCamelCase, out_type=lowerCamelCase ) def snake_case ( self : Any, lowerCamelCase : str )-> int: return self.sp_model.PieceToId(lowerCamelCase ) def snake_case ( self : Optional[int], lowerCamelCase : int )-> str: return self.sp_model.IdToPiece(lowerCamelCase ) @staticmethod def snake_case ( lowerCamelCase : str )-> str: return out_string def snake_case ( self : List[Any], lowerCamelCase : List[str] )-> str: lowerCamelCase__ : Dict =[] lowerCamelCase__ : int ='''''' lowerCamelCase__ : Any =False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: # TODO: Check if this is needed, as it ensures that decode(encode(doc)) != doc by adding extra whitespace in the decoded document if not prev_is_special: out_string += " " out_string += self.sp_model.decode(lowerCamelCase ) + token lowerCamelCase__ : Tuple =True lowerCamelCase__ : Tuple =[] else: current_sub_tokens.append(lowerCamelCase ) lowerCamelCase__ : Optional[Any] =False out_string += self.sp_model.decode(lowerCamelCase ) return out_string def snake_case ( self : Union[str, Any] )-> Dict[str, int]: lowerCamelCase__ : Tuple ={self.convert_ids_to_tokens(lowerCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def snake_case ( self : Optional[Any], lowerCamelCase : str, lowerCamelCase : Optional[str] = None )-> Tuple[str]: if not os.path.isdir(lowerCamelCase ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return lowerCamelCase__ : List[str] =os.path.join( lowerCamelCase, (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file, lowerCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(lowerCamelCase, '''wb''' ) as fi: lowerCamelCase__ : Dict =self.sp_model.serialized_model_proto() fi.write(lowerCamelCase ) return (out_vocab_file,) def snake_case ( self : int, lowerCamelCase : Union[str, List[str]], lowerCamelCase : Union[str, bool] = False )-> Union[List[int], List[List[int]], "torch.Tensor"]: if isinstance(lowerCamelCase, lowerCamelCase ): lowerCamelCase__ : str =self.preprocess_text(lowerCamelCase ) lowerCamelCase__ : Union[str, Any] =self.sp_model.encode(lowerCamelCase ) else: lowerCamelCase__ : int =[self.preprocess_text(lowerCamelCase ) for t in text] lowerCamelCase__ : Tuple =self.sp_model.encode(lowerCamelCase ) if return_tensors is True or return_tensors == "pt": lowerCamelCase__ : Union[str, Any] =torch.tensor(lowerCamelCase ) return token_ids def snake_case ( self : int, lowerCamelCase : Union[int, List[int]] )-> str: return self.sp_model.decode(lowerCamelCase ) def snake_case ( self : Tuple, lowerCamelCase : "Conversation" )-> List[int]: lowerCamelCase__ : Any =[F'''User: {text}''' if is_user else F'''Bot: {text}''' for is_user, text in conversation.iter_texts()] lowerCamelCase__ : str =( F'''{self.eos_token}{self.bos_token}''' + F'''{self.bos_token}'''.join(lowerCamelCase ) + F'''{self.bos_token}Bot:''' ) return self.encode(text=lowerCamelCase )
238
0
'''simple docstring''' import os import tempfile import unittest import uuid from pathlib import Path from transformers.testing_utils import get_tests_dir, require_soundfile, require_torch, require_vision from transformers.tools.agent_types import AgentAudio, AgentImage, AgentText from transformers.utils import is_soundfile_availble, is_torch_available, is_vision_available if is_torch_available(): import torch if is_soundfile_availble(): import soundfile as sf if is_vision_available(): from PIL import Image def snake_case_ ( __SCREAMING_SNAKE_CASE : Optional[int]="" ): """simple docstring""" lowercase_ : List[str] = tempfile.mkdtemp() return os.path.join(__SCREAMING_SNAKE_CASE , str(uuid.uuida() ) + suffix ) @require_soundfile @require_torch class lowerCAmelCase__ ( unittest.TestCase ): def _snake_case ( self ): """simple docstring""" lowercase_ : List[Any] = torch.rand(12 , dtype=torch.floataa ) - 0.5 lowercase_ : Union[str, Any] = AgentAudio(__SCREAMING_SNAKE_CASE ) lowercase_ : Optional[Any] = str(agent_type.to_string() ) # Ensure that the tensor and the agent_type's tensor are the same self.assertTrue(torch.allclose(__SCREAMING_SNAKE_CASE , agent_type.to_raw() , atol=1E-4 ) ) del agent_type # Ensure the path remains even after the object deletion self.assertTrue(os.path.exists(__SCREAMING_SNAKE_CASE ) ) # Ensure that the file contains the same value as the original tensor lowercase_ , lowercase_ : Optional[int] = sf.read(__SCREAMING_SNAKE_CASE ) self.assertTrue(torch.allclose(__SCREAMING_SNAKE_CASE , torch.tensor(__SCREAMING_SNAKE_CASE ) , atol=1E-4 ) ) def _snake_case ( self ): """simple docstring""" lowercase_ : Optional[int] = torch.rand(12 , dtype=torch.floataa ) - 0.5 lowercase_ : str = get_new_path(suffix='''.wav''' ) sf.write(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , 1_60_00 ) lowercase_ : Optional[Any] = AgentAudio(__SCREAMING_SNAKE_CASE ) self.assertTrue(torch.allclose(__SCREAMING_SNAKE_CASE , agent_type.to_raw() , atol=1E-4 ) ) self.assertEqual(agent_type.to_string() , __SCREAMING_SNAKE_CASE ) @require_vision @require_torch class lowerCAmelCase__ ( unittest.TestCase ): def _snake_case ( self ): """simple docstring""" lowercase_ : Tuple = torch.randint(0 , 2_56 , (64, 64, 3) ) lowercase_ : Optional[Any] = AgentImage(__SCREAMING_SNAKE_CASE ) lowercase_ : Optional[int] = str(agent_type.to_string() ) # Ensure that the tensor and the agent_type's tensor are the same self.assertTrue(torch.allclose(__SCREAMING_SNAKE_CASE , agent_type._tensor , atol=1E-4 ) ) self.assertIsInstance(agent_type.to_raw() , Image.Image ) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(__SCREAMING_SNAKE_CASE ) ) def _snake_case ( self ): """simple docstring""" lowercase_ : str = Path(get_tests_dir('''fixtures/tests_samples/COCO''' ) ) / '''000000039769.png''' lowercase_ : Optional[Any] = Image.open(__SCREAMING_SNAKE_CASE ) lowercase_ : Any = AgentImage(__SCREAMING_SNAKE_CASE ) self.assertTrue(path.samefile(agent_type.to_string() ) ) self.assertTrue(image == agent_type.to_raw() ) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(__SCREAMING_SNAKE_CASE ) ) def _snake_case ( self ): """simple docstring""" lowercase_ : Any = Path(get_tests_dir('''fixtures/tests_samples/COCO''' ) ) / '''000000039769.png''' lowercase_ : Union[str, Any] = Image.open(__SCREAMING_SNAKE_CASE ) lowercase_ : Dict = AgentImage(__SCREAMING_SNAKE_CASE ) self.assertFalse(path.samefile(agent_type.to_string() ) ) self.assertTrue(image == agent_type.to_raw() ) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(__SCREAMING_SNAKE_CASE ) ) class lowerCAmelCase__ ( unittest.TestCase ): def _snake_case ( self ): """simple docstring""" lowercase_ : Optional[int] = '''Hey!''' lowercase_ : Dict = AgentText(__SCREAMING_SNAKE_CASE ) self.assertEqual(__SCREAMING_SNAKE_CASE , agent_type.to_string() ) self.assertEqual(__SCREAMING_SNAKE_CASE , agent_type.to_raw() ) self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
264
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _lowercase : Any = logging.get_logger(__name__) _lowercase : Dict = { "EleutherAI/gpt-neox-20b": "https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/config.json", # See all GPTNeoX models at https://huggingface.co/models?filter=gpt_neox } class lowerCAmelCase__ ( lowerCamelCase_ ): lowerCAmelCase_ = '''gpt_neox''' def __init__( self , __SCREAMING_SNAKE_CASE=5_04_32 , __SCREAMING_SNAKE_CASE=61_44 , __SCREAMING_SNAKE_CASE=44 , __SCREAMING_SNAKE_CASE=64 , __SCREAMING_SNAKE_CASE=2_45_76 , __SCREAMING_SNAKE_CASE="gelu" , __SCREAMING_SNAKE_CASE=0.25 , __SCREAMING_SNAKE_CASE=1_00_00 , __SCREAMING_SNAKE_CASE=0.0 , __SCREAMING_SNAKE_CASE=0.0 , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=20_48 , __SCREAMING_SNAKE_CASE=0.02 , __SCREAMING_SNAKE_CASE=1E-5 , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=0 , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=None , **__SCREAMING_SNAKE_CASE , ): """simple docstring""" super().__init__(bos_token_id=__SCREAMING_SNAKE_CASE , eos_token_id=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) lowercase_ : Optional[Any] = vocab_size lowercase_ : Optional[Any] = max_position_embeddings lowercase_ : Optional[int] = hidden_size lowercase_ : Tuple = num_hidden_layers lowercase_ : Any = num_attention_heads lowercase_ : str = intermediate_size lowercase_ : Any = hidden_act lowercase_ : Tuple = rotary_pct lowercase_ : Optional[Any] = rotary_emb_base lowercase_ : Any = attention_dropout lowercase_ : str = hidden_dropout lowercase_ : Dict = classifier_dropout lowercase_ : Tuple = initializer_range lowercase_ : List[str] = layer_norm_eps lowercase_ : Union[str, Any] = use_cache lowercase_ : int = tie_word_embeddings lowercase_ : Tuple = use_parallel_residual lowercase_ : Optional[Any] = rope_scaling self._rope_scaling_validation() if self.hidden_size % self.num_attention_heads != 0: raise ValueError( '''The hidden size is not divisble by the number of attention heads! Make sure to update them!''' ) def _snake_case ( self ): """simple docstring""" if self.rope_scaling is None: return if not isinstance(self.rope_scaling , __SCREAMING_SNAKE_CASE ) or len(self.rope_scaling ) != 2: raise ValueError( '''`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, ''' F'''got {self.rope_scaling}''' ) lowercase_ : List[Any] = self.rope_scaling.get('''type''' , __SCREAMING_SNAKE_CASE ) lowercase_ : int = self.rope_scaling.get('''factor''' , __SCREAMING_SNAKE_CASE ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( F'''`rope_scaling`\'s name field must be one of [\'linear\', \'dynamic\'], got {rope_scaling_type}''' ) if rope_scaling_factor is None or not isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) or rope_scaling_factor <= 1.0: raise ValueError(F'''`rope_scaling`\'s factor field must be an float > 1, got {rope_scaling_factor}''' )
264
1
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A__ : str = {'''configuration_focalnet''': ['''FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''FocalNetConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : Optional[int] = [ '''FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''FocalNetForImageClassification''', '''FocalNetForMaskedImageModeling''', '''FocalNetBackbone''', '''FocalNetModel''', '''FocalNetPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_focalnet import FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FocalNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_focalnet import ( FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST, FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, FocalNetPreTrainedModel, ) else: import sys A__ : Union[str, Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
103
'''simple docstring''' def _A ( ): lowercase__ = [31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31] lowercase__ = 6 lowercase__ = 1 lowercase__ = 1901 lowercase__ = 0 while year < 2001: day += 7 if (year % 4 == 0 and year % 100 != 0) or (year % 400 == 0): if day > days_per_month[month - 1] and month != 2: month += 1 lowercase__ = day - days_per_month[month - 2] elif day > 29 and month == 2: month += 1 lowercase__ = day - 29 else: if day > days_per_month[month - 1]: month += 1 lowercase__ = day - days_per_month[month - 2] if month > 12: year += 1 lowercase__ = 1 if year < 2001 and day == 1: sundays += 1 return sundays if __name__ == "__main__": print(solution())
164
0
'''simple docstring''' import unittest import numpy as np from transformers import BertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.bert.modeling_flax_bert import ( FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForNextSentencePrediction, FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertModel, ) class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" def __init__( self : List[Any] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : List[Any]=1_3 , UpperCamelCase__ : Tuple=7 , UpperCamelCase__ : Optional[int]=True , UpperCamelCase__ : Union[str, Any]=True , UpperCamelCase__ : str=True , UpperCamelCase__ : Optional[Any]=True , UpperCamelCase__ : Dict=9_9 , UpperCamelCase__ : Optional[int]=3_2 , UpperCamelCase__ : Dict=5 , UpperCamelCase__ : int=4 , UpperCamelCase__ : List[Any]=3_7 , UpperCamelCase__ : str="gelu" , UpperCamelCase__ : List[str]=0.1 , UpperCamelCase__ : List[Any]=0.1 , UpperCamelCase__ : str=5_1_2 , UpperCamelCase__ : List[str]=1_6 , UpperCamelCase__ : Optional[Any]=2 , UpperCamelCase__ : Union[str, Any]=0.0_2 , UpperCamelCase__ : Dict=4 , ): """simple docstring""" UpperCamelCase = parent UpperCamelCase = batch_size UpperCamelCase = seq_length UpperCamelCase = is_training UpperCamelCase = use_attention_mask UpperCamelCase = use_token_type_ids UpperCamelCase = use_labels UpperCamelCase = vocab_size UpperCamelCase = hidden_size UpperCamelCase = num_hidden_layers UpperCamelCase = num_attention_heads UpperCamelCase = intermediate_size UpperCamelCase = hidden_act UpperCamelCase = hidden_dropout_prob UpperCamelCase = attention_probs_dropout_prob UpperCamelCase = max_position_embeddings UpperCamelCase = type_vocab_size UpperCamelCase = type_sequence_label_size UpperCamelCase = initializer_range UpperCamelCase = num_choices def A ( self : int ): """simple docstring""" UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase = None if self.use_attention_mask: UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) UpperCamelCase = None if self.use_token_type_ids: UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCamelCase = BertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCamelCase__ , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def A ( self : str ): """simple docstring""" UpperCamelCase = self.prepare_config_and_inputs() UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase = config_and_inputs UpperCamelCase = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': attention_mask} return config, inputs_dict def A ( self : Union[str, Any] ): """simple docstring""" UpperCamelCase = self.prepare_config_and_inputs() UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase = config_and_inputs UpperCamelCase = True UpperCamelCase = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, attention_mask, encoder_hidden_states, encoder_attention_mask, ) @require_flax class SCREAMING_SNAKE_CASE ( _a , unittest.TestCase ): """simple docstring""" _SCREAMING_SNAKE_CASE = True _SCREAMING_SNAKE_CASE = ( ( FlaxBertModel, FlaxBertForPreTraining, FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForQuestionAnswering, FlaxBertForNextSentencePrediction, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertForQuestionAnswering, ) if is_flax_available() else () ) def A ( self : str ): """simple docstring""" UpperCamelCase = FlaxBertModelTester(self ) @slow def A ( self : Any ): """simple docstring""" UpperCamelCase = FlaxBertModel.from_pretrained('bert-base-cased' ) UpperCamelCase = model(np.ones((1, 1) ) ) self.assertIsNotNone(UpperCamelCase__ )
361
'''simple docstring''' from __future__ import annotations def __lowerCamelCase ( A__ ) -> int: """simple docstring""" UpperCamelCase = len(A__ ) // 2 # choose the middle 3 elements UpperCamelCase = lst[m - 1 : m + 2] # if middle element is peak if three[1] > three[0] and three[1] > three[2]: return three[1] # if increasing, recurse on right elif three[0] < three[2]: if len(lst[:m] ) == 2: m -= 1 return peak(lst[m:] ) # decreasing else: if len(lst[:m] ) == 2: m += 1 return peak(lst[:m] ) if __name__ == "__main__": import doctest doctest.testmod()
249
0
'''simple docstring''' from math import pi, sqrt def _UpperCamelCase ( __A ) -> float: '''simple docstring''' if num <= 0: raise ValueError("math domain error" ) if num > 171.5: raise OverflowError("math range error" ) elif num - int(__A ) not in (0, 0.5): raise NotImplementedError("num must be an integer or a half-integer" ) elif num == 0.5: return sqrt(__A ) else: return 1.0 if num == 1 else (num - 1) * gamma(num - 1 ) def _UpperCamelCase ( ) -> None: '''simple docstring''' assert gamma(0.5 ) == sqrt(__A ) assert gamma(1 ) == 1.0 assert gamma(2 ) == 1.0 if __name__ == "__main__": from doctest import testmod testmod() a__ : Any = 1.0 while num: a__ : List[str] = float(input('Gamma of: ')) print(F"""gamma({num}) = {gamma(num)}""") print('\nEnter 0 to exit...')
80
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_squeezebert import SqueezeBertTokenizer lowerCamelCase__ : Union[str, Any] = logging.get_logger(__name__) lowerCamelCase__ : Dict = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} lowerCamelCase__ : Tuple = { 'vocab_file': { 'squeezebert/squeezebert-uncased': ( 'https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/vocab.txt' ), 'squeezebert/squeezebert-mnli': 'https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/vocab.txt', 'squeezebert/squeezebert-mnli-headless': ( 'https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'squeezebert/squeezebert-uncased': ( 'https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/tokenizer.json' ), 'squeezebert/squeezebert-mnli': ( 'https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/tokenizer.json' ), 'squeezebert/squeezebert-mnli-headless': ( 'https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/tokenizer.json' ), }, } lowerCamelCase__ : int = { 'squeezebert/squeezebert-uncased': 512, 'squeezebert/squeezebert-mnli': 512, 'squeezebert/squeezebert-mnli-headless': 512, } lowerCamelCase__ : str = { 'squeezebert/squeezebert-uncased': {'do_lower_case': True}, 'squeezebert/squeezebert-mnli': {'do_lower_case': True}, 'squeezebert/squeezebert-mnli-headless': {'do_lower_case': True}, } class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = VOCAB_FILES_NAMES lowercase_ = PRETRAINED_VOCAB_FILES_MAP lowercase_ = PRETRAINED_INIT_CONFIGURATION lowercase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase_ = SqueezeBertTokenizer def __init__( self : Tuple , _lowerCAmelCase : Dict=None , _lowerCAmelCase : int=None , _lowerCAmelCase : List[str]=True , _lowerCAmelCase : str="[UNK]" , _lowerCAmelCase : Union[str, Any]="[SEP]" , _lowerCAmelCase : List[Any]="[PAD]" , _lowerCAmelCase : str="[CLS]" , _lowerCAmelCase : Dict="[MASK]" , _lowerCAmelCase : Optional[int]=True , _lowerCAmelCase : Dict=None , **_lowerCAmelCase : str , ): super().__init__( _lowerCAmelCase , tokenizer_file=_lowerCAmelCase , do_lower_case=_lowerCAmelCase , unk_token=_lowerCAmelCase , sep_token=_lowerCAmelCase , pad_token=_lowerCAmelCase , cls_token=_lowerCAmelCase , mask_token=_lowerCAmelCase , tokenize_chinese_chars=_lowerCAmelCase , strip_accents=_lowerCAmelCase , **_lowerCAmelCase , ) SCREAMING_SNAKE_CASE_ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , _lowerCAmelCase ) != do_lower_case or normalizer_state.get('strip_accents' , _lowerCAmelCase ) != strip_accents or normalizer_state.get('handle_chinese_chars' , _lowerCAmelCase ) != tokenize_chinese_chars ): SCREAMING_SNAKE_CASE_ = getattr(_lowerCAmelCase , normalizer_state.pop('type' ) ) SCREAMING_SNAKE_CASE_ = do_lower_case SCREAMING_SNAKE_CASE_ = strip_accents SCREAMING_SNAKE_CASE_ = tokenize_chinese_chars SCREAMING_SNAKE_CASE_ = normalizer_class(**_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = do_lower_case def lowerCAmelCase_ ( self : Tuple , _lowerCAmelCase : str , _lowerCAmelCase : Optional[int]=None ): SCREAMING_SNAKE_CASE_ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowerCAmelCase_ ( self : Optional[int] , _lowerCAmelCase : List[int] , _lowerCAmelCase : Optional[List[int]] = None ): SCREAMING_SNAKE_CASE_ = [self.sep_token_id] SCREAMING_SNAKE_CASE_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCAmelCase_ ( self : Tuple , _lowerCAmelCase : str , _lowerCAmelCase : Optional[str] = None ): SCREAMING_SNAKE_CASE_ = self._tokenizer.model.save(_lowerCAmelCase , name=_lowerCAmelCase ) return tuple(_lowerCAmelCase )
225
0
'''simple docstring''' from dataclasses import dataclass, field from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import pyarrow as pa if TYPE_CHECKING: from .features import FeatureType @dataclass class __magic_name__ : lowerCAmelCase : List[str] lowerCAmelCase : Optional[str] = None # Automatically constructed lowerCAmelCase : ClassVar[str] = "dict" lowerCAmelCase : ClassVar[Any] = None lowerCAmelCase : str = field(default='Translation' , init=_UpperCamelCase , repr=_UpperCamelCase ) def __call__( self : Optional[Any] ): return pa.struct({lang: pa.string() for lang in sorted(self.languages )} ) def __lowercase ( self : Optional[int] ): from .features import Value return {k: Value('string' ) for k in sorted(self.languages )} @dataclass class __magic_name__ : lowerCAmelCase : Optional[List] = None lowerCAmelCase : Optional[int] = None lowerCAmelCase : Optional[str] = None # Automatically constructed lowerCAmelCase : ClassVar[str] = "dict" lowerCAmelCase : ClassVar[Any] = None lowerCAmelCase : str = field(default='TranslationVariableLanguages' , init=_UpperCamelCase , repr=_UpperCamelCase ) def __lowercase ( self : List[Any] ): _a : List[Any] = sorted(set(self.languages ) ) if self.languages else None _a : List[str] = len(self.languages ) if self.languages else None def __call__( self : Any ): return pa.struct({'language': pa.list_(pa.string() ), 'translation': pa.list_(pa.string() )} ) def __lowercase ( self : Optional[int] ,_UpperCAmelCase : Tuple ): _a : Optional[Any] = set(self.languages ) if self.languages and set(_UpperCAmelCase ) - lang_set: raise ValueError( F"""Some languages in example ({', '.join(sorted(set(_UpperCAmelCase ) - lang_set ) )}) are not in valid set ({', '.join(_UpperCAmelCase )}).""" ) # Convert dictionary into tuples, splitting out cases where there are # multiple translations for a single language. _a : Any = [] for lang, text in translation_dict.items(): if isinstance(_UpperCAmelCase ,_UpperCAmelCase ): translation_tuples.append((lang, text) ) else: translation_tuples.extend([(lang, el) for el in text] ) # Ensure translations are in ascending order by language code. _a , _a : List[Any] = zip(*sorted(_UpperCAmelCase ) ) return {"language": languages, "translation": translations} def __lowercase ( self : Optional[Any] ): from .features import Sequence, Value return { "language": Sequence(Value('string' ) ), "translation": Sequence(Value('string' ) ), }
107
'''simple docstring''' import os import random import sys from . import cryptomath_module as cryptomath from . import rabin_miller __lowerCAmelCase = 3 def __lowerCamelCase ( lowerCAmelCase_ ) -> int: print('Generating primitive root of p' ) while True: _a : List[Any] = random.randrange(3 , lowerCAmelCase_ ) if pow(lowerCAmelCase_ , 2 , lowerCAmelCase_ ) == 1: continue if pow(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) == 1: continue return g def __lowerCamelCase ( lowerCAmelCase_ ) -> tuple[tuple[int, int, int, int], tuple[int, int]]: print('Generating prime p...' ) _a : int = rabin_miller.generate_large_prime(lowerCAmelCase_ ) # select large prime number. _a : List[str] = primitive_root(lowerCAmelCase_ ) # one primitive root on modulo p. _a : Any = random.randrange(3 , lowerCAmelCase_ ) # private_key -> have to be greater than 2 for safety. _a : List[Any] = cryptomath.find_mod_inverse(pow(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) , lowerCAmelCase_ ) _a : Tuple = (key_size, e_a, e_a, p) _a : str = (key_size, d) return public_key, private_key def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ ) -> None: if os.path.exists(f"""{name}_pubkey.txt""" ) or os.path.exists(f"""{name}_privkey.txt""" ): print('\nWARNING:' ) print( f"""\"{name}_pubkey.txt\" or \"{name}_privkey.txt\" already exists. \n""" 'Use a different name or delete these files and re-run this program.' ) sys.exit() _a , _a : Dict = generate_key(lowerCAmelCase_ ) print(f"""\nWriting public key to file {name}_pubkey.txt...""" ) with open(f"""{name}_pubkey.txt""" , 'w' ) as fo: fo.write(f"""{public_key[0]},{public_key[1]},{public_key[2]},{public_key[3]}""" ) print(f"""Writing private key to file {name}_privkey.txt...""" ) with open(f"""{name}_privkey.txt""" , 'w' ) as fo: fo.write(f"""{private_key[0]},{private_key[1]}""" ) def __lowerCamelCase ( ) -> None: print('Making key files...' ) make_key_files('elgamal' , 2048 ) print('Key files generation successful' ) if __name__ == "__main__": main()
107
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) __A = { "configuration_convbert": ["CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "ConvBertConfig", "ConvBertOnnxConfig"], "tokenization_convbert": ["ConvBertTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = ["ConvBertTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ "CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "ConvBertForMaskedLM", "ConvBertForMultipleChoice", "ConvBertForQuestionAnswering", "ConvBertForSequenceClassification", "ConvBertForTokenClassification", "ConvBertLayer", "ConvBertModel", "ConvBertPreTrainedModel", "load_tf_weights_in_convbert", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ "TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFConvBertForMaskedLM", "TFConvBertForMultipleChoice", "TFConvBertForQuestionAnswering", "TFConvBertForSequenceClassification", "TFConvBertForTokenClassification", "TFConvBertLayer", "TFConvBertModel", "TFConvBertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_convbert import CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvBertConfig, ConvBertOnnxConfig from .tokenization_convbert import ConvBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_convbert_fast import ConvBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convbert import ( CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvBertForMaskedLM, ConvBertForMultipleChoice, ConvBertForQuestionAnswering, ConvBertForSequenceClassification, ConvBertForTokenClassification, ConvBertLayer, ConvBertModel, ConvBertPreTrainedModel, load_tf_weights_in_convbert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convbert import ( TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertLayer, TFConvBertModel, TFConvBertPreTrainedModel, ) else: import sys __A = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
10
import itertools from dataclasses import dataclass from typing import Optional import pandas as pd import pyarrow as pa import datasets from datasets.table import table_cast @dataclass class __lowerCAmelCase ( datasets.BuilderConfig): _a = None class __lowerCAmelCase ( datasets.ArrowBasedBuilder): _a = PandasConfig def SCREAMING_SNAKE_CASE ( self: Any ): return datasets.DatasetInfo(features=self.config.features ) def SCREAMING_SNAKE_CASE ( self: str , _lowerCAmelCase: List[str] ): if not self.config.data_files: raise ValueError(F"At least one data file must be specified, but got data_files={self.config.data_files}" ) lowercase :int = dl_manager.download_and_extract(self.config.data_files ) if isinstance(_lowerCAmelCase , (str, list, tuple) ): lowercase :Union[str, Any] = data_files if isinstance(_lowerCAmelCase , _lowerCAmelCase ): lowercase :str = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive lowercase :Optional[int] = [dl_manager.iter_files(_lowerCAmelCase ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"files": files} )] lowercase :List[Any] = [] for split_name, files in data_files.items(): if isinstance(_lowerCAmelCase , _lowerCAmelCase ): lowercase :Optional[Any] = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive lowercase :Optional[Any] = [dl_manager.iter_files(_lowerCAmelCase ) for file in files] splits.append(datasets.SplitGenerator(name=_lowerCAmelCase , gen_kwargs={"files": files} ) ) return splits def SCREAMING_SNAKE_CASE ( self: int , _lowerCAmelCase: pa.Table ): if self.config.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example lowercase :Any = table_cast(_lowerCAmelCase , self.config.features.arrow_schema ) return pa_table def SCREAMING_SNAKE_CASE ( self: Optional[int] , _lowerCAmelCase: Union[str, Any] ): for i, file in enumerate(itertools.chain.from_iterable(_lowerCAmelCase ) ): with open(_lowerCAmelCase , "rb" ) as f: lowercase :int = pa.Table.from_pandas(pd.read_pickle(_lowerCAmelCase ) ) yield i, self._cast_table(_lowerCAmelCase )
236
0
import requests __A = '''YOUR API KEY''' def __a ( lowerCAmelCase_ : str ,lowerCAmelCase_ : str = giphy_api_key ) -> list: '''simple docstring''' UpperCAmelCase_= """+""".join(query.split() ) UpperCAmelCase_= F"""https://api.giphy.com/v1/gifs/search?q={formatted_query}&api_key={api_key}""" UpperCAmelCase_= requests.get(lowerCAmelCase_ ).json()["""data"""] return [gif["url"] for gif in gifs] if __name__ == "__main__": print('''\n'''.join(get_gifs('''space ship''')))
359
import dataclasses import json import warnings from dataclasses import dataclass, field from time import time from typing import List from ..utils import logging __A = logging.get_logger(__name__) def __a ( lowerCAmelCase_ : Tuple=None ,lowerCAmelCase_ : Optional[Any]=None ) -> Tuple: '''simple docstring''' return field(default_factory=lambda: default ,metadata=lowerCAmelCase_ ) @dataclass class lowercase : """simple docstring""" a__ : List[str] = list_field( default=[] , metadata={ "help": ( "Model checkpoints to be provided to the AutoModel classes. Leave blank to benchmark the base version" " of all available models" ) } , ) a__ : List[int] = list_field( default=[8] , metadata={"help": "List of batch sizes for which memory and time performance will be evaluated"}) a__ : List[int] = list_field( default=[8, 32, 128, 512] , metadata={"help": "List of sequence lengths for which memory and time performance will be evaluated"} , ) a__ : bool = field( default=snake_case__ , metadata={"help": "Whether to benchmark inference of model. Inference can be disabled via --no-inference."} , ) a__ : bool = field( default=snake_case__ , metadata={"help": "Whether to run on available cuda devices. Cuda can be disabled via --no-cuda."} , ) a__ : bool = field( default=snake_case__ , metadata={"help": "Whether to run on available tpu devices. TPU can be disabled via --no-tpu."}) a__ : bool = field(default=snake_case__ , metadata={"help": "Use FP16 to accelerate inference."}) a__ : bool = field(default=snake_case__ , metadata={"help": "Benchmark training of model"}) a__ : bool = field(default=snake_case__ , metadata={"help": "Verbose memory tracing"}) a__ : bool = field( default=snake_case__ , metadata={"help": "Whether to perform speed measurements. Speed measurements can be disabled via --no-speed."} , ) a__ : bool = field( default=snake_case__ , metadata={ "help": "Whether to perform memory measurements. Memory measurements can be disabled via --no-memory" } , ) a__ : bool = field(default=snake_case__ , metadata={"help": "Trace memory line by line"}) a__ : bool = field(default=snake_case__ , metadata={"help": "Save result to a CSV file"}) a__ : bool = field(default=snake_case__ , metadata={"help": "Save all print statements in a log file"}) a__ : bool = field(default=snake_case__ , metadata={"help": "Whether to print environment information"}) a__ : bool = field( default=snake_case__ , metadata={ "help": ( "Whether to use multiprocessing for memory and speed measurement. It is highly recommended to use" " multiprocessing for accurate CPU and GPU memory measurements. This option should only be disabled" " for debugging / testing and on TPU." ) } , ) a__ : str = field( default=F'inference_time_{round(time())}.csv' , metadata={"help": "CSV filename used if saving time results to csv."} , ) a__ : str = field( default=F'inference_memory_{round(time())}.csv' , metadata={"help": "CSV filename used if saving memory results to csv."} , ) a__ : str = field( default=F'train_time_{round(time())}.csv' , metadata={"help": "CSV filename used if saving time results to csv for training."} , ) a__ : str = field( default=F'train_memory_{round(time())}.csv' , metadata={"help": "CSV filename used if saving memory results to csv for training."} , ) a__ : str = field( default=F'env_info_{round(time())}.csv' , metadata={"help": "CSV filename used if saving environment information."} , ) a__ : str = field( default=F'log_{round(time())}.csv' , metadata={"help": "Log filename used if print statements are saved in log."} , ) a__ : int = field(default=3 , metadata={"help": "Times an experiment will be run."}) a__ : bool = field( default=snake_case__ , metadata={ "help": ( "Instead of loading the model as defined in `config.architectures` if exists, just load the pretrain" " model weights." ) } , ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> str: warnings.warn( F"""The class {self.__class__} is deprecated. Hugging Face Benchmarking utils""" """ are deprecated in general and it is advised to use external Benchmarking libraries """ """ to benchmark Transformer models.""" , __UpperCAmelCase , ) def _SCREAMING_SNAKE_CASE ( self : Dict ) -> List[str]: return json.dumps(dataclasses.asdict(self ) , indent=2 ) @property def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> List[str]: if len(self.models ) <= 0: raise ValueError( """Please make sure you provide at least one model name / model identifier, *e.g.* `--models""" """ bert-base-cased` or `args.models = ['bert-base-cased'].""" ) return self.models @property def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Tuple: if not self.multi_process: return False elif self.is_tpu: logger.info("""Multiprocessing is currently not possible on TPU.""" ) return False else: return True
277
0
'''simple docstring''' import os def SCREAMING_SNAKE_CASE__ ( __A = "input.txt" ) -> int: with open(os.path.join(os.path.dirname(__A ) , __A ) ) as input_file: _snake_case = [ [int(__A ) for element in line.split(',' )] for line in input_file.readlines() ] _snake_case = len(__A ) _snake_case = len(matrix[0] ) _snake_case = [[-1 for _ in range(__A )] for _ in range(__A )] for i in range(__A ): _snake_case = matrix[i][0] for j in range(1 , __A ): for i in range(__A ): _snake_case = minimal_path_sums[i][j - 1] + matrix[i][j] for i in range(1 , __A ): _snake_case = min( minimal_path_sums[i][j] , minimal_path_sums[i - 1][j] + matrix[i][j] ) for i in range(rows - 2 , -1 , -1 ): _snake_case = min( minimal_path_sums[i][j] , minimal_path_sums[i + 1][j] + matrix[i][j] ) return min(minimal_path_sums_row[-1] for minimal_path_sums_row in minimal_path_sums ) if __name__ == "__main__": print(F'''{solution() = }''')
42
'''simple docstring''' import tensorflow as tf from ...tf_utils import shape_list class __UpperCAmelCase ( tf.keras.layers.Layer ): def __init__( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=1 , lowerCAmelCase_=False , **lowerCAmelCase_ ): """simple docstring""" super().__init__(**lowerCAmelCase_ ) _snake_case = vocab_size _snake_case = d_embed _snake_case = d_proj _snake_case = cutoffs + [vocab_size] _snake_case = [0] + self.cutoffs _snake_case = div_val _snake_case = self.cutoffs[0] _snake_case = len(self.cutoffs ) - 1 _snake_case = self.shortlist_size + self.n_clusters _snake_case = keep_order _snake_case = [] _snake_case = [] def lowerCamelCase ( self , lowerCAmelCase_ ): """simple docstring""" if self.n_clusters > 0: _snake_case = self.add_weight( shape=(self.n_clusters, self.d_embed) , initializer='zeros' , trainable=lowerCAmelCase_ , name='cluster_weight' ) _snake_case = self.add_weight( shape=(self.n_clusters,) , initializer='zeros' , trainable=lowerCAmelCase_ , name='cluster_bias' ) if self.div_val == 1: for i in range(len(self.cutoffs ) ): if self.d_proj != self.d_embed: _snake_case = self.add_weight( shape=(self.d_embed, self.d_proj) , initializer='zeros' , trainable=lowerCAmelCase_ , name=F'out_projs_._{i}' , ) self.out_projs.append(lowerCAmelCase_ ) else: self.out_projs.append(lowerCAmelCase_ ) _snake_case = self.add_weight( shape=(self.vocab_size, self.d_embed) , initializer='zeros' , trainable=lowerCAmelCase_ , name=F'out_layers_._{i}_._weight' , ) _snake_case = self.add_weight( shape=(self.vocab_size,) , initializer='zeros' , trainable=lowerCAmelCase_ , name=F'out_layers_._{i}_._bias' , ) self.out_layers.append((weight, bias) ) else: for i in range(len(self.cutoffs ) ): _snake_case , _snake_case = self.cutoff_ends[i], self.cutoff_ends[i + 1] _snake_case = self.d_embed // (self.div_val**i) _snake_case = self.add_weight( shape=(d_emb_i, self.d_proj) , initializer='zeros' , trainable=lowerCAmelCase_ , name=F'out_projs_._{i}' ) self.out_projs.append(lowerCAmelCase_ ) _snake_case = self.add_weight( shape=(r_idx - l_idx, d_emb_i) , initializer='zeros' , trainable=lowerCAmelCase_ , name=F'out_layers_._{i}_._weight' , ) _snake_case = self.add_weight( shape=(r_idx - l_idx,) , initializer='zeros' , trainable=lowerCAmelCase_ , name=F'out_layers_._{i}_._bias' , ) self.out_layers.append((weight, bias) ) super().build(lowerCAmelCase_ ) @staticmethod def lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=None ): """simple docstring""" _snake_case = x if proj is not None: _snake_case = tf.einsum('ibd,ed->ibe' , lowerCAmelCase_ , lowerCAmelCase_ ) return tf.einsum('ibd,nd->ibn' , lowerCAmelCase_ , lowerCAmelCase_ ) + b @staticmethod def lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case = shape_list(lowerCAmelCase_ ) _snake_case = tf.range(lp_size[0] , dtype=target.dtype ) _snake_case = tf.stack([r, target] , 1 ) return tf.gather_nd(lowerCAmelCase_ , lowerCAmelCase_ ) def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=True , lowerCAmelCase_=False ): """simple docstring""" _snake_case = 0 if self.n_clusters == 0: _snake_case = self._logit(lowerCAmelCase_ , self.out_layers[0][0] , self.out_layers[0][1] , self.out_projs[0] ) if target is not None: _snake_case = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=lowerCAmelCase_ , logits=lowerCAmelCase_ ) _snake_case = tf.nn.log_softmax(lowerCAmelCase_ , axis=-1 ) else: _snake_case = shape_list(lowerCAmelCase_ ) _snake_case = [] _snake_case = tf.zeros(hidden_sizes[:2] ) for i in range(len(self.cutoffs ) ): _snake_case , _snake_case = self.cutoff_ends[i], self.cutoff_ends[i + 1] if target is not None: _snake_case = (target >= l_idx) & (target < r_idx) _snake_case = tf.where(lowerCAmelCase_ ) _snake_case = tf.boolean_mask(lowerCAmelCase_ , lowerCAmelCase_ ) - l_idx if self.div_val == 1: _snake_case = self.out_layers[0][0][l_idx:r_idx] _snake_case = self.out_layers[0][1][l_idx:r_idx] else: _snake_case = self.out_layers[i][0] _snake_case = self.out_layers[i][1] if i == 0: _snake_case = tf.concat([cur_W, self.cluster_weight] , 0 ) _snake_case = tf.concat([cur_b, self.cluster_bias] , 0 ) _snake_case = self._logit(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , self.out_projs[0] ) _snake_case = tf.nn.log_softmax(lowerCAmelCase_ ) out.append(head_logprob[..., : self.cutoffs[0]] ) if target is not None: _snake_case = tf.boolean_mask(lowerCAmelCase_ , lowerCAmelCase_ ) _snake_case = self._gather_logprob(lowerCAmelCase_ , lowerCAmelCase_ ) else: _snake_case = self._logit(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , self.out_projs[i] ) _snake_case = tf.nn.log_softmax(lowerCAmelCase_ ) _snake_case = self.cutoffs[0] + i - 1 # No probability for the head cluster _snake_case = head_logprob[..., cluster_prob_idx, None] + tail_logprob out.append(lowerCAmelCase_ ) if target is not None: _snake_case = tf.boolean_mask(lowerCAmelCase_ , lowerCAmelCase_ ) _snake_case = tf.boolean_mask(lowerCAmelCase_ , lowerCAmelCase_ ) _snake_case = self._gather_logprob(lowerCAmelCase_ , lowerCAmelCase_ ) cur_logprob += cur_head_logprob[:, self.cutoff_ends[1] + i - 1] if target is not None: loss += tf.scatter_nd(lowerCAmelCase_ , -cur_logprob , shape_list(lowerCAmelCase_ ) ) _snake_case = tf.concat(lowerCAmelCase_ , axis=-1 ) if target is not None: if return_mean: _snake_case = tf.reduce_mean(lowerCAmelCase_ ) # Add the training-time loss value to the layer using `self.add_loss()`. self.add_loss(lowerCAmelCase_ ) # Log the loss as a metric (we could log arbitrary metrics, # including different metrics for training and inference. self.add_metric(lowerCAmelCase_ , name=self.name , aggregation='mean' if return_mean else '' ) return out
42
1
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_lxmert import LxmertTokenizer lowercase : List[Any] = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} lowercase : Any = { '''vocab_file''': { '''unc-nlp/lxmert-base-uncased''': '''https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/vocab.txt''', }, '''tokenizer_file''': { '''unc-nlp/lxmert-base-uncased''': ( '''https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/tokenizer.json''' ), }, } lowercase : List[Any] = { '''unc-nlp/lxmert-base-uncased''': 5_1_2, } lowercase : List[str] = { '''unc-nlp/lxmert-base-uncased''': {'''do_lower_case''': True}, } class A__ ( a__ ): """simple docstring""" __A : Union[str, Any] = VOCAB_FILES_NAMES __A : Optional[int] = PRETRAINED_VOCAB_FILES_MAP __A : Tuple = PRETRAINED_INIT_CONFIGURATION __A : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __A : Tuple = LxmertTokenizer def __init__( self , lowercase=None , lowercase=None , lowercase=True , lowercase="[UNK]" , lowercase="[SEP]" , lowercase="[PAD]" , lowercase="[CLS]" , lowercase="[MASK]" , lowercase=True , lowercase=None , **lowercase , ) -> int: '''simple docstring''' super().__init__( _lowerCamelCase , tokenizer_file=_lowerCamelCase , do_lower_case=_lowerCamelCase , unk_token=_lowerCamelCase , sep_token=_lowerCamelCase , pad_token=_lowerCamelCase , cls_token=_lowerCamelCase , mask_token=_lowerCamelCase , tokenize_chinese_chars=_lowerCamelCase , strip_accents=_lowerCamelCase , **_lowerCamelCase , ) a__ : int = json.loads(self.backend_tokenizer.normalizer.__getstate__()) if ( normalizer_state.get('lowercase' , _lowerCamelCase) != do_lower_case or normalizer_state.get('strip_accents' , _lowerCamelCase) != strip_accents or normalizer_state.get('handle_chinese_chars' , _lowerCamelCase) != tokenize_chinese_chars ): a__ : List[Any] = getattr(_lowerCamelCase , normalizer_state.pop('type')) a__ : Optional[int] = do_lower_case a__ : str = strip_accents a__ : Tuple = tokenize_chinese_chars a__ : List[Any] = normalizer_class(**_lowerCamelCase) a__ : str = do_lower_case def __lowercase ( self , lowercase , lowercase=None) -> List[Any]: '''simple docstring''' a__ : Tuple = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __lowercase ( self , lowercase , lowercase = None) -> List[int]: '''simple docstring''' a__ : Any = [self.sep_token_id] a__ : Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] def __lowercase ( self , lowercase , lowercase = None) -> Tuple[str]: '''simple docstring''' a__ : Union[str, Any] = self._tokenizer.model.save(_lowerCamelCase , name=_lowerCamelCase) return tuple(_lowerCamelCase)
369
import logging import os import sys from dataclasses import dataclass, field from importlib import import_module from typing import Dict, List, Optional, Tuple import numpy as np from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score from torch import nn from utils_ner import Split, TokenClassificationDataset, TokenClassificationTask import transformers from transformers import ( AutoConfig, AutoModelForTokenClassification, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process lowercase : Union[str, Any] = logging.getLogger(__name__) @dataclass class A__ : """simple docstring""" __A : str = field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) __A : Optional[str] = field( default=__UpperCAmelCase , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) __A : Optional[str] = field( default='''NER''' , metadata={'''help''': '''Task type to fine tune in training (e.g. NER, POS, etc)'''} ) __A : Optional[str] = field( default=__UpperCAmelCase , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) __A : bool = field(default=__UpperCAmelCase , metadata={'''help''': '''Set this flag to use fast tokenization.'''} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. __A : Optional[str] = field( default=__UpperCAmelCase , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) @dataclass class A__ : """simple docstring""" __A : str = field( metadata={'''help''': '''The input data dir. Should contain the .txt files for a CoNLL-2003-formatted task.'''} ) __A : Optional[str] = field( default=__UpperCAmelCase , metadata={'''help''': '''Path to a file containing all labels. If not specified, CoNLL-2003 labels are used.'''} , ) __A : int = field( default=1_2_8 , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) __A : bool = field( default=__UpperCAmelCase , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) def A_ ( ) -> Dict: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. a__ : List[str] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. a__ , a__ , a__ : int = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: a__ , a__ , a__ : List[Any] = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F'Output directory ({training_args.output_dir}) already exists and is not empty. Use' ' --overwrite_output_dir to overcome.' ) a__ : Optional[Any] = import_module('tasks' ) try: a__ : List[Any] = getattr(A__ , model_args.task_type ) a__ : TokenClassificationTask = token_classification_task_clazz() except AttributeError: raise ValueError( F'Task {model_args.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. ' F'Available tasks classes are: {TokenClassificationTask.__subclasses__()}' ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( 'Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('Training/evaluation parameters %s' , A__ ) # Set seed set_seed(training_args.seed ) # Prepare CONLL-2003 task a__ : Tuple = token_classification_task.get_labels(data_args.labels ) a__ : Dict[int, str] = dict(enumerate(A__ ) ) a__ : Union[str, Any] = len(A__ ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. a__ : Optional[Any] = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=A__ , idalabel=A__ , labelaid={label: i for i, label in enumerate(A__ )} , cache_dir=model_args.cache_dir , ) a__ : str = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast , ) a__ : List[Any] = AutoModelForTokenClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=A__ , cache_dir=model_args.cache_dir , ) # Get datasets a__ : int = ( TokenClassificationDataset( token_classification_task=A__ , data_dir=data_args.data_dir , tokenizer=A__ , labels=A__ , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) a__ : Optional[int] = ( TokenClassificationDataset( token_classification_task=A__ , data_dir=data_args.data_dir , tokenizer=A__ , labels=A__ , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def align_predictions(A__ , A__ ) -> Tuple[List[int], List[int]]: a__ : Union[str, Any] = np.argmax(A__ , axis=2 ) a__ , a__ : Dict = preds.shape a__ : Union[str, Any] = [[] for _ in range(A__ )] a__ : Optional[int] = [[] for _ in range(A__ )] for i in range(A__ ): for j in range(A__ ): if label_ids[i, j] != nn.CrossEntropyLoss().ignore_index: out_label_list[i].append(label_map[label_ids[i][j]] ) preds_list[i].append(label_map[preds[i][j]] ) return preds_list, out_label_list def compute_metrics(A__ ) -> Dict: a__ , a__ : Union[str, Any] = align_predictions(p.predictions , p.label_ids ) return { "accuracy_score": accuracy_score(A__ , A__ ), "precision": precision_score(A__ , A__ ), "recall": recall_score(A__ , A__ ), "f1": fa_score(A__ , A__ ), } # Data collator a__ : Union[str, Any] = DataCollatorWithPadding(A__ , pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer a__ : List[str] = Trainer( model=A__ , args=A__ , train_dataset=A__ , eval_dataset=A__ , compute_metrics=A__ , data_collator=A__ , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_process_zero(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation a__ : Any = {} if training_args.do_eval: logger.info('*** Evaluate ***' ) a__ : Optional[Any] = trainer.evaluate() a__ : List[Any] = os.path.join(training_args.output_dir , 'eval_results.txt' ) if trainer.is_world_process_zero(): with open(A__ , 'w' ) as writer: logger.info('***** Eval results *****' ) for key, value in result.items(): logger.info(' %s = %s' , A__ , A__ ) writer.write('%s = %s\n' % (key, value) ) results.update(A__ ) # Predict if training_args.do_predict: a__ : Optional[Any] = TokenClassificationDataset( token_classification_task=A__ , data_dir=data_args.data_dir , tokenizer=A__ , labels=A__ , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.test , ) a__ , a__ , a__ : Any = trainer.predict(A__ ) a__ , a__ : Union[str, Any] = align_predictions(A__ , A__ ) a__ : Optional[int] = os.path.join(training_args.output_dir , 'test_results.txt' ) if trainer.is_world_process_zero(): with open(A__ , 'w' ) as writer: for key, value in metrics.items(): logger.info(' %s = %s' , A__ , A__ ) writer.write('%s = %s\n' % (key, value) ) # Save predictions a__ : Tuple = os.path.join(training_args.output_dir , 'test_predictions.txt' ) if trainer.is_world_process_zero(): with open(A__ , 'w' ) as writer: with open(os.path.join(data_args.data_dir , 'test.txt' ) , 'r' ) as f: token_classification_task.write_predictions_to_file(A__ , A__ , A__ ) return results def A_ ( A__ ) -> Tuple: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
225
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available _SCREAMING_SNAKE_CASE = { "configuration_ctrl": ["CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP", "CTRLConfig"], "tokenization_ctrl": ["CTRLTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ "CTRL_PRETRAINED_MODEL_ARCHIVE_LIST", "CTRLForSequenceClassification", "CTRLLMHeadModel", "CTRLModel", "CTRLPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ "TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST", "TFCTRLForSequenceClassification", "TFCTRLLMHeadModel", "TFCTRLModel", "TFCTRLPreTrainedModel", ] if TYPE_CHECKING: from .configuration_ctrl import CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, CTRLConfig from .tokenization_ctrl import CTRLTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ctrl import ( CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, CTRLForSequenceClassification, CTRLLMHeadModel, CTRLModel, CTRLPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_ctrl import ( TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, TFCTRLForSequenceClassification, TFCTRLLMHeadModel, TFCTRLModel, TFCTRLPreTrainedModel, ) else: import sys _SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
158
import json import logging import os import sys from pathlib import Path import finetune_rag from transformers.file_utils import is_apex_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, require_ray, require_torch_gpu, require_torch_multi_gpu, ) logging.basicConfig(level=logging.DEBUG) _a = logging.getLogger() _a = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class __lowerCamelCase ( snake_case__): """simple docstring""" def UpperCamelCase ( self , UpperCAmelCase ): """simple docstring""" os.makedirs(UpperCAmelCase , exist_ok=UpperCAmelCase ) _UpperCAmelCase = {'source': 'What is love ?', 'target': 'life'} _UpperCAmelCase = {'train': 12, 'val': 2, 'test': 2} for split in ["train", "test", "val"]: for field in ["source", "target"]: _UpperCAmelCase = '\n'.join([contents[field]] * n_lines[split] ) with open(os.path.join(UpperCAmelCase , F"""{split}.{field}""" ) , 'w' ) as f: f.write(UpperCAmelCase ) def UpperCamelCase ( self , UpperCAmelCase , UpperCAmelCase = "pytorch" ): """simple docstring""" _UpperCAmelCase = self.get_auto_remove_tmp_dir() _UpperCAmelCase = os.path.join(UpperCAmelCase , 'output' ) _UpperCAmelCase = os.path.join(UpperCAmelCase , 'data' ) self._create_dummy_data(data_dir=UpperCAmelCase ) _UpperCAmelCase = F""" --data_dir {data_dir} \ --output_dir {output_dir} \ --model_name_or_path facebook/rag-sequence-base \ --model_type rag_sequence \ --do_train \ --do_predict \ --n_val -1 \ --val_check_interval 1.0 \ --train_batch_size 2 \ --eval_batch_size 1 \ --max_source_length 25 \ --max_target_length 25 \ --val_max_target_length 25 \ --test_max_target_length 25 \ --label_smoothing 0.1 \ --dropout 0.1 \ --attention_dropout 0.1 \ --weight_decay 0.001 \ --adam_epsilon 1e-08 \ --max_grad_norm 0.1 \ --lr_scheduler polynomial \ --learning_rate 3e-04 \ --num_train_epochs 1 \ --warmup_steps 4 \ --gradient_accumulation_steps 1 \ --distributed-port 8787 \ --use_dummy_dataset 1 \ --distributed_retriever {distributed_retriever} \ """.split() if gpus > 0: testargs.append(F"""--gpus={gpus}""" ) if is_apex_available(): testargs.append('--fp16' ) else: testargs.append('--gpus=0' ) testargs.append('--distributed_backend=ddp_cpu' ) testargs.append('--num_processes=2' ) _UpperCAmelCase = [sys.executable, str(Path(finetune_rag.__file__ ).resolve() )] + testargs execute_subprocess_async(UpperCAmelCase , env=self.get_env() ) _UpperCAmelCase = os.path.join(UpperCAmelCase , 'metrics.json' ) with open(UpperCAmelCase ) as f: _UpperCAmelCase = json.load(UpperCAmelCase ) return result @require_torch_gpu def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = self._run_finetune(gpus=1 ) self.assertGreaterEqual(result['test'][0]['test_avg_em'] , 0.2 ) @require_torch_multi_gpu def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = self._run_finetune(gpus=2 ) self.assertGreaterEqual(result['test'][0]['test_avg_em'] , 0.2 ) @require_torch_gpu @require_ray def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = self._run_finetune(gpus=1 , distributed_retriever='ray' ) self.assertGreaterEqual(result['test'][0]['test_avg_em'] , 0.2 ) @require_torch_multi_gpu @require_ray def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = self._run_finetune(gpus=1 , distributed_retriever='ray' ) self.assertGreaterEqual(result['test'][0]['test_avg_em'] , 0.2 )
39
0
import json import os import shutil import warnings from argparse import ArgumentParser, Namespace from pathlib import Path from typing import List from ..utils import logging from . import BaseTransformersCLICommand try: from cookiecutter.main import cookiecutter snake_case : Any = True except ImportError: snake_case : Optional[Any] = False snake_case : List[str] = logging.get_logger(__name__) # pylint: disable=invalid-name def lowerCAmelCase_ ( _snake_case : Namespace ) -> Dict: '''simple docstring''' return AddNewModelCommand(args.testing , args.testing_file , path=args.path ) class _snake_case ( snake_case ): @staticmethod def SCREAMING_SNAKE_CASE ( _a ): __magic_name__ : Any = parser.add_parser("add-new-model" ) add_new_model_parser.add_argument("--testing" , action="store_true" , help="If in testing mode." ) add_new_model_parser.add_argument("--testing_file" , type=_a , help="Configuration file on which to run." ) add_new_model_parser.add_argument( "--path" , type=_a , help="Path to cookiecutter. Should only be used for testing purposes." ) add_new_model_parser.set_defaults(func=_a ) def __init__( self , _a , _a , _a=None , *_a ): __magic_name__ : Dict = testing __magic_name__ : Tuple = testing_file __magic_name__ : int = path def SCREAMING_SNAKE_CASE ( self ): warnings.warn( "The command `transformers-cli add-new-model` is deprecated and will be removed in v5 of Transformers. " "It is not actively maintained anymore, so might give a result that won't pass all tests and quality " "checks, you should use `transformers-cli add-new-model-like` instead." ) if not _has_cookiecutter: raise ImportError( "Model creation dependencies are required to use the `add_new_model` command. Install them by running " "the following at the root of your `transformers` clone:\n\n\t$ pip install -e .[modelcreation]\n" ) # Ensure that there is no other `cookiecutter-template-xxx` directory in the current working directory __magic_name__ : Any = [directory for directory in os.listdir() if "cookiecutter-template-" == directory[:22]] if len(_a ) > 0: raise ValueError( "Several directories starting with `cookiecutter-template-` in current working directory. " "Please clean your directory by removing all folders starting with `cookiecutter-template-` or " "change your working directory." ) __magic_name__ : Tuple = ( Path(_a ).parent.parent.parent.parent if self._path is None else Path(self._path ).parent.parent ) __magic_name__ : List[Any] = path_to_transformer_root / "templates" / "adding_a_new_model" # Execute cookiecutter if not self._testing: cookiecutter(str(_a ) ) else: with open(self._testing_file , "r" ) as configuration_file: __magic_name__ : int = json.load(_a ) cookiecutter( str(path_to_cookiecutter if self._path is None else self._path ) , no_input=_a , extra_context=_a , ) __magic_name__ : Optional[Any] = [directory for directory in os.listdir() if "cookiecutter-template-" in directory[:22]][0] # Retrieve configuration with open(directory + "/configuration.json" , "r" ) as configuration_file: __magic_name__ : Any = json.load(_a ) __magic_name__ : Tuple = configuration["lowercase_modelname"] __magic_name__ : Optional[Any] = configuration["generate_tensorflow_pytorch_and_flax"] os.remove(f'''{directory}/configuration.json''' ) __magic_name__ : List[Any] = "PyTorch" in generate_tensorflow_pytorch_and_flax __magic_name__ : int = "TensorFlow" in generate_tensorflow_pytorch_and_flax __magic_name__ : List[Any] = "Flax" in generate_tensorflow_pytorch_and_flax __magic_name__ : Tuple = f'''{path_to_transformer_root}/src/transformers/models/{lowercase_model_name}''' os.makedirs(_a , exist_ok=_a ) os.makedirs(f'''{path_to_transformer_root}/tests/models/{lowercase_model_name}''' , exist_ok=_a ) # Tests require submodules as they have parent imports with open(f'''{path_to_transformer_root}/tests/models/{lowercase_model_name}/__init__.py''' , "w" ): pass shutil.move( f'''{directory}/__init__.py''' , f'''{model_dir}/__init__.py''' , ) shutil.move( f'''{directory}/configuration_{lowercase_model_name}.py''' , f'''{model_dir}/configuration_{lowercase_model_name}.py''' , ) def remove_copy_lines(_a ): with open(_a , "r" ) as f: __magic_name__ : int = f.readlines() with open(_a , "w" ) as f: for line in lines: if "# Copied from transformers." not in line: f.write(_a ) if output_pytorch: if not self._testing: remove_copy_lines(f'''{directory}/modeling_{lowercase_model_name}.py''' ) shutil.move( f'''{directory}/modeling_{lowercase_model_name}.py''' , f'''{model_dir}/modeling_{lowercase_model_name}.py''' , ) shutil.move( f'''{directory}/test_modeling_{lowercase_model_name}.py''' , f'''{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_{lowercase_model_name}.py''' , ) else: os.remove(f'''{directory}/modeling_{lowercase_model_name}.py''' ) os.remove(f'''{directory}/test_modeling_{lowercase_model_name}.py''' ) if output_tensorflow: if not self._testing: remove_copy_lines(f'''{directory}/modeling_tf_{lowercase_model_name}.py''' ) shutil.move( f'''{directory}/modeling_tf_{lowercase_model_name}.py''' , f'''{model_dir}/modeling_tf_{lowercase_model_name}.py''' , ) shutil.move( f'''{directory}/test_modeling_tf_{lowercase_model_name}.py''' , f'''{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_tf_{lowercase_model_name}.py''' , ) else: os.remove(f'''{directory}/modeling_tf_{lowercase_model_name}.py''' ) os.remove(f'''{directory}/test_modeling_tf_{lowercase_model_name}.py''' ) if output_flax: if not self._testing: remove_copy_lines(f'''{directory}/modeling_flax_{lowercase_model_name}.py''' ) shutil.move( f'''{directory}/modeling_flax_{lowercase_model_name}.py''' , f'''{model_dir}/modeling_flax_{lowercase_model_name}.py''' , ) shutil.move( f'''{directory}/test_modeling_flax_{lowercase_model_name}.py''' , f'''{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_flax_{lowercase_model_name}.py''' , ) else: os.remove(f'''{directory}/modeling_flax_{lowercase_model_name}.py''' ) os.remove(f'''{directory}/test_modeling_flax_{lowercase_model_name}.py''' ) shutil.move( f'''{directory}/{lowercase_model_name}.md''' , f'''{path_to_transformer_root}/docs/source/en/model_doc/{lowercase_model_name}.md''' , ) shutil.move( f'''{directory}/tokenization_{lowercase_model_name}.py''' , f'''{model_dir}/tokenization_{lowercase_model_name}.py''' , ) shutil.move( f'''{directory}/tokenization_fast_{lowercase_model_name}.py''' , f'''{model_dir}/tokenization_{lowercase_model_name}_fast.py''' , ) from os import fdopen, remove from shutil import copymode, move from tempfile import mkstemp def replace(_a , _a , _a ): # Create temp file __magic_name__ , __magic_name__ : List[str] = mkstemp() __magic_name__ : Tuple = False with fdopen(_a , "w" ) as new_file: with open(_a ) as old_file: for line in old_file: new_file.write(_a ) if line_to_copy_below in line: __magic_name__ : str = True for line_to_copy in lines_to_copy: new_file.write(_a ) if not line_found: raise ValueError(f'''Line {line_to_copy_below} was not found in file.''' ) # Copy the file permissions from the old file to the new file copymode(_a , _a ) # Remove original file remove(_a ) # Move new file move(_a , _a ) def skip_units(_a ): return ( ("generating PyTorch" in line and not output_pytorch) or ("generating TensorFlow" in line and not output_tensorflow) or ("generating Flax" in line and not output_flax) ) def replace_in_files(_a ): with open(_a ) as datafile: __magic_name__ : Tuple = [] __magic_name__ : str = False __magic_name__ : Tuple = False for line in datafile: if "# To replace in: " in line and "##" not in line: __magic_name__ : int = line.split("\"" )[1] __magic_name__ : Optional[Any] = skip_units(_a ) elif "# Below: " in line and "##" not in line: __magic_name__ : Any = line.split("\"" )[1] __magic_name__ : str = skip_units(_a ) elif "# End." in line and "##" not in line: if not skip_file and not skip_snippet: replace(_a , _a , _a ) __magic_name__ : Optional[Any] = [] elif "# Replace with" in line and "##" not in line: __magic_name__ : Dict = [] elif "##" not in line: lines_to_copy.append(_a ) remove(_a ) replace_in_files(f'''{directory}/to_replace_{lowercase_model_name}.py''' ) os.rmdir(_a )
41
from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case : Optional[Any] = logging.get_logger(__name__) snake_case : Union[str, Any] = { "transfo-xl-wt103": "https://huggingface.co/transfo-xl-wt103/resolve/main/config.json", } class _snake_case ( snake_case ): UpperCamelCase__ = 'transfo-xl' UpperCamelCase__ = ['mems'] UpperCamelCase__ = { 'n_token': 'vocab_size', 'hidden_size': 'd_model', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self , _a=267_735 , _a=[20_000, 40_000, 200_000] , _a=1_024 , _a=1_024 , _a=16 , _a=64 , _a=4_096 , _a=4 , _a=False , _a=18 , _a=1_600 , _a=1_000 , _a=True , _a=True , _a=0 , _a=-1 , _a=True , _a=0.1 , _a=0.0 , _a=True , _a="normal" , _a=0.01 , _a=0.01 , _a=0.02 , _a=1e-5 , _a=0 , **_a , ): __magic_name__ : List[Any] = vocab_size __magic_name__ : Dict = [] self.cutoffs.extend(_a ) if proj_share_all_but_first: __magic_name__ : List[str] = [False] + [True] * len(self.cutoffs ) else: __magic_name__ : Optional[Any] = [False] + [False] * len(self.cutoffs ) __magic_name__ : Optional[int] = d_model __magic_name__ : str = d_embed __magic_name__ : Optional[Any] = d_head __magic_name__ : Optional[int] = d_inner __magic_name__ : List[str] = div_val __magic_name__ : List[str] = pre_lnorm __magic_name__ : Union[str, Any] = n_layer __magic_name__ : Optional[int] = n_head __magic_name__ : str = mem_len __magic_name__ : int = same_length __magic_name__ : Dict = attn_type __magic_name__ : int = clamp_len __magic_name__ : Optional[int] = sample_softmax __magic_name__ : List[Any] = adaptive __magic_name__ : Optional[int] = dropout __magic_name__ : Optional[int] = dropatt __magic_name__ : Optional[Any] = untie_r __magic_name__ : List[str] = init __magic_name__ : Any = init_range __magic_name__ : Optional[int] = proj_init_std __magic_name__ : List[Any] = init_std __magic_name__ : List[Any] = layer_norm_epsilon super().__init__(eos_token_id=_a , **_a ) @property def SCREAMING_SNAKE_CASE ( self ): # Message copied from Transformer-XL documentation logger.info(f'''The model {self.model_type} is one of the few models that has no sequence length limit.''' ) return -1 @max_position_embeddings.setter def SCREAMING_SNAKE_CASE ( self , _a ): # Message copied from Transformer-XL documentation raise NotImplementedError( f'''The model {self.model_type} is one of the few models that has no sequence length limit.''' )
41
1
'''simple docstring''' import json import os import unittest from transformers import OpenAIGPTTokenizer, OpenAIGPTTokenizerFast from transformers.models.openai.tokenization_openai import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_spacy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _lowercase ( __lowerCAmelCase , unittest.TestCase ): '''simple docstring''' _SCREAMING_SNAKE_CASE : List[Any] = OpenAIGPTTokenizer _SCREAMING_SNAKE_CASE : Optional[int] = OpenAIGPTTokenizerFast _SCREAMING_SNAKE_CASE : str = True _SCREAMING_SNAKE_CASE : Dict = False def a ( self : str ) -> List[Any]: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __lowerCAmelCase = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''w</w>''', '''r</w>''', '''t</w>''', '''lo''', '''low''', '''er</w>''', '''low</w>''', '''lowest</w>''', '''newer</w>''', '''wider</w>''', '''<unk>''', ] __lowerCAmelCase = dict(zip(lowerCamelCase__ , range(len(lowerCamelCase__ ) ) ) ) __lowerCAmelCase = ['''#version: 0.2''', '''l o''', '''lo w''', '''e r</w>''', ''''''] __lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) __lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" ) as fp: fp.write(json.dumps(lowerCamelCase__ ) ) with open(self.merges_file , """w""" ) as fp: fp.write("""\n""".join(lowerCamelCase__ ) ) def a ( self : Tuple , SCREAMING_SNAKE_CASE__ : Any ) -> List[Any]: return "lower newer", "lower newer" def a ( self : Optional[Any] ) -> Union[str, Any]: __lowerCAmelCase = OpenAIGPTTokenizer(self.vocab_file , self.merges_file ) __lowerCAmelCase = '''lower''' __lowerCAmelCase = ['''low''', '''er</w>'''] __lowerCAmelCase = tokenizer.tokenize(lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) __lowerCAmelCase = tokens + ['''<unk>'''] __lowerCAmelCase = [14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCamelCase__ ) , lowerCamelCase__ ) def a ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[Any]=15 ) -> Tuple: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): __lowerCAmelCase = self.rust_tokenizer_class.from_pretrained(lowerCamelCase__ , **lowerCamelCase__ ) # Simple input __lowerCAmelCase = '''This is a simple input''' __lowerCAmelCase = ['''This is a simple input 1''', '''This is a simple input 2'''] __lowerCAmelCase = ('''This is a simple input''', '''This is a pair''') __lowerCAmelCase = [ ('''This is a simple input 1''', '''This is a simple input 2'''), ('''This is a simple pair 1''', '''This is a simple pair 2'''), ] # Simple input tests self.assertRaises(lowerCamelCase__ , tokenizer_r.encode , lowerCamelCase__ , max_length=lowerCamelCase__ , padding="""max_length""" ) # Simple input self.assertRaises(lowerCamelCase__ , tokenizer_r.encode_plus , lowerCamelCase__ , max_length=lowerCamelCase__ , padding="""max_length""" ) # Simple input self.assertRaises( lowerCamelCase__ , tokenizer_r.batch_encode_plus , lowerCamelCase__ , max_length=lowerCamelCase__ , padding="""max_length""" , ) # Pair input self.assertRaises(lowerCamelCase__ , tokenizer_r.encode , lowerCamelCase__ , max_length=lowerCamelCase__ , padding="""max_length""" ) # Pair input self.assertRaises(lowerCamelCase__ , tokenizer_r.encode_plus , lowerCamelCase__ , max_length=lowerCamelCase__ , padding="""max_length""" ) # Pair input self.assertRaises( lowerCamelCase__ , tokenizer_r.batch_encode_plus , lowerCamelCase__ , max_length=lowerCamelCase__ , padding="""max_length""" , ) def a ( self : Dict ) -> Union[str, Any]: pass @require_ftfy @require_spacy @require_tokenizers class _lowercase ( __lowerCAmelCase ): '''simple docstring''' pass
229
from collections.abc import Callable def _a ( SCREAMING_SNAKE_CASE : Callable[[float], float] , SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : float ): """simple docstring""" UpperCamelCase__ : float = a UpperCamelCase__ : float = b if function(SCREAMING_SNAKE_CASE ) == 0: # one of the a or b is a root for the function return a elif function(SCREAMING_SNAKE_CASE ) == 0: return b elif ( function(SCREAMING_SNAKE_CASE ) * function(SCREAMING_SNAKE_CASE ) > 0 ): # if none of these are root and they are both positive or negative, # then this algorithm can't find the root raise ValueError('''could not find root in given interval.''' ) else: UpperCamelCase__ : float = start + (end - start) / 2.0 while abs(start - mid ) > 10**-7: # until precisely equals to 10^-7 if function(SCREAMING_SNAKE_CASE ) == 0: return mid elif function(SCREAMING_SNAKE_CASE ) * function(SCREAMING_SNAKE_CASE ) < 0: UpperCamelCase__ : Tuple = mid else: UpperCamelCase__ : Dict = mid UpperCamelCase__ : List[str] = start + (end - start) / 2.0 return mid def _a ( SCREAMING_SNAKE_CASE : float ): """simple docstring""" return x**3 - 2 * x - 5 if __name__ == "__main__": print(bisection(f, 1, 1000)) import doctest doctest.testmod()
146
0
'''simple docstring''' import warnings from ..trainer import Trainer from ..utils import logging __snake_case = logging.get_logger(__name__) class lowercase ( A__ ): """simple docstring""" def __init__( self , UpperCamelCase_=None , **UpperCamelCase_ ): '''simple docstring''' warnings.warn( '''`SageMakerTrainer` is deprecated and will be removed in v5 of Transformers. You can use `Trainer` ''' '''instead.''' , UpperCamelCase_ , ) super().__init__(args=UpperCamelCase_ , **UpperCamelCase_ )
219
'''simple docstring''' import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler __snake_case = 16 __snake_case = 32 def a ( __a , __a = 16 , __a = "bert-base-cased" ) -> Any: '''simple docstring''' UpperCamelCase__ :List[str] = AutoTokenizer.from_pretrained(__a ) UpperCamelCase__ :List[Any] = load_dataset('''glue''' , '''mrpc''' ) def tokenize_function(__a ): # max_length=None => use the model max length (it's actually the default) UpperCamelCase__ :Tuple = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=__a , max_length=__a ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset UpperCamelCase__ :Optional[int] = datasets.map( __a , batched=__a , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , load_from_cache_file=__a ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library UpperCamelCase__ :Optional[int] = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(__a ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(__a , padding='''max_length''' , max_length=128 , return_tensors='''pt''' ) return tokenizer.pad(__a , padding='''longest''' , return_tensors='''pt''' ) # Instantiate dataloaders. UpperCamelCase__ :Dict = DataLoader( tokenized_datasets['''train'''] , shuffle=__a , collate_fn=__a , batch_size=__a ) UpperCamelCase__ :str = DataLoader( tokenized_datasets['''validation'''] , shuffle=__a , collate_fn=__a , batch_size=__a ) return train_dataloader, eval_dataloader def a ( __a , __a , __a , __a ) -> str: '''simple docstring''' model.eval() UpperCamelCase__ :List[str] = 0 for step, batch in enumerate(__a ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): UpperCamelCase__ :int = model(**__a ) UpperCamelCase__ :Tuple = outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times UpperCamelCase__ , UpperCamelCase__ :int = accelerator.gather( (predictions, batch['''labels''']) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(__a ) - 1: UpperCamelCase__ :Union[str, Any] = predictions[: len(eval_dataloader.dataset ) - samples_seen] UpperCamelCase__ :List[str] = references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=__a , references=__a , ) UpperCamelCase__ :Union[str, Any] = metric.compute() return eval_metric["accuracy"] def a ( __a , __a ) -> List[Any]: '''simple docstring''' UpperCamelCase__ :Any = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs UpperCamelCase__ :Any = config['''lr'''] UpperCamelCase__ :Optional[int] = int(config['''num_epochs'''] ) UpperCamelCase__ :List[Any] = int(config['''seed'''] ) UpperCamelCase__ :List[Any] = int(config['''batch_size'''] ) UpperCamelCase__ :List[Any] = args.model_name_or_path set_seed(__a ) UpperCamelCase__ , UpperCamelCase__ :Any = get_dataloaders(__a , __a , __a ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) UpperCamelCase__ :Union[str, Any] = AutoModelForSequenceClassification.from_pretrained(__a , return_dict=__a ) # Instantiate optimizer UpperCamelCase__ :Any = ( AdamW if accelerator.state.deepspeed_plugin is None or '''optimizer''' not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) UpperCamelCase__ :Optional[Any] = optimizer_cls(params=model.parameters() , lr=__a ) if accelerator.state.deepspeed_plugin is not None: UpperCamelCase__ :Tuple = accelerator.state.deepspeed_plugin.deepspeed_config[ '''gradient_accumulation_steps''' ] else: UpperCamelCase__ :Dict = 1 UpperCamelCase__ :Tuple = (len(__a ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): UpperCamelCase__ :Any = get_linear_schedule_with_warmup( optimizer=__a , num_warmup_steps=0 , num_training_steps=__a , ) else: UpperCamelCase__ :Any = DummyScheduler(__a , total_num_steps=__a , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ :Dict = accelerator.prepare( __a , __a , __a , __a , __a ) # We need to keep track of how many total steps we have iterated over UpperCamelCase__ :Tuple = 0 # We also need to keep track of the stating epoch so files are named properly UpperCamelCase__ :Optional[Any] = 0 UpperCamelCase__ :Optional[int] = evaluate.load('''glue''' , '''mrpc''' ) UpperCamelCase__ :List[Any] = num_epochs if args.partial_train_epoch is not None: UpperCamelCase__ :Optional[Any] = args.partial_train_epoch if args.resume_from_checkpoint: accelerator.load_state(args.resume_from_checkpoint ) UpperCamelCase__ :Dict = args.resume_from_checkpoint.split('''epoch_''' )[1] UpperCamelCase__ :Tuple = '''''' for char in epoch_string: if char.isdigit(): state_epoch_num += char else: break UpperCamelCase__ :Any = int(__a ) + 1 UpperCamelCase__ :Dict = evaluation_loop(__a , __a , __a , __a ) accelerator.print('''resumed checkpoint performance:''' , __a ) accelerator.print('''resumed checkpoint\'s scheduler\'s lr:''' , lr_scheduler.get_lr()[0] ) accelerator.print('''resumed optimizers\'s lr:''' , optimizer.param_groups[0]['''lr'''] ) with open(os.path.join(args.output_dir , f'''state_{starting_epoch-1}.json''' ) , '''r''' ) as f: UpperCamelCase__ :Optional[int] = json.load(__a ) assert resumed_state["accuracy"] == accuracy, "Accuracy mismatch, loading from checkpoint failed" assert ( resumed_state["lr"] == lr_scheduler.get_lr()[0] ), "Scheduler learning rate mismatch, loading from checkpoint failed" assert ( resumed_state["optimizer_lr"] == optimizer.param_groups[0]["lr"] ), "Optimizer learning rate mismatch, loading from checkpoint failed" assert resumed_state["epoch"] == starting_epoch - 1, "Epoch mismatch, loading from checkpoint failed" return # Now we train the model UpperCamelCase__ :Optional[Any] = {} for epoch in range(__a , __a ): model.train() for step, batch in enumerate(__a ): UpperCamelCase__ :Optional[int] = model(**__a ) UpperCamelCase__ :Optional[int] = outputs.loss UpperCamelCase__ :str = loss / gradient_accumulation_steps accelerator.backward(__a ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 UpperCamelCase__ :Union[str, Any] = f'''epoch_{epoch}''' UpperCamelCase__ :List[Any] = os.path.join(args.output_dir , __a ) accelerator.save_state(__a ) UpperCamelCase__ :List[Any] = evaluation_loop(__a , __a , __a , __a ) UpperCamelCase__ :int = accuracy UpperCamelCase__ :List[Any] = lr_scheduler.get_lr()[0] UpperCamelCase__ :Any = optimizer.param_groups[0]['''lr'''] UpperCamelCase__ :int = epoch UpperCamelCase__ :Tuple = overall_step accelerator.print(f'''epoch {epoch}:''' , __a ) accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , f'''state_{epoch}.json''' ) , '''w''' ) as f: json.dump(__a , __a ) def a ( ) -> Tuple: '''simple docstring''' UpperCamelCase__ :List[Any] = argparse.ArgumentParser(description='''Simple example of training script tracking peak GPU memory usage.''' ) parser.add_argument( '''--model_name_or_path''' , type=__a , default='''bert-base-cased''' , help='''Path to pretrained model or model identifier from huggingface.co/models.''' , required=__a , ) parser.add_argument( '''--output_dir''' , type=__a , default='''.''' , help='''Optional save directory where all checkpoint folders will be stored. Default is the current working directory.''' , ) parser.add_argument( '''--resume_from_checkpoint''' , type=__a , default=__a , help='''If the training should continue from a checkpoint folder.''' , ) parser.add_argument( '''--partial_train_epoch''' , type=__a , default=__a , help='''If passed, the training will stop after this number of epochs.''' , ) parser.add_argument( '''--num_epochs''' , type=__a , default=2 , help='''Number of train epochs.''' , ) UpperCamelCase__ :Optional[int] = parser.parse_args() UpperCamelCase__ :List[str] = {'''lr''': 2e-5, '''num_epochs''': args.num_epochs, '''seed''': 42, '''batch_size''': 16} training_function(__a , __a ) if __name__ == "__main__": main()
219
1
import argparse import math import traceback import dateutil.parser as date_parser import requests def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ) -> Tuple: lowerCAmelCase__ : int = {} lowerCAmelCase__ : List[Any] = job["""started_at"""] lowerCAmelCase__ : int = job["""completed_at"""] lowerCAmelCase__ : str = date_parser.parse(_lowercase ) lowerCAmelCase__ : Tuple = date_parser.parse(_lowercase ) lowerCAmelCase__ : Optional[int] = round((end_datetime - start_datetime).total_seconds() / 60.0 ) lowerCAmelCase__ : int = start lowerCAmelCase__ : Optional[int] = end lowerCAmelCase__ : Optional[Any] = duration_in_min return job_info def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None ) -> Union[str, Any]: lowerCAmelCase__ : Optional[Any] = None if token is not None: lowerCAmelCase__ : Optional[Any] = {"""Accept""": """application/vnd.github+json""", """Authorization""": F'''Bearer {token}'''} lowerCAmelCase__ : Union[str, Any] = F'''https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100''' lowerCAmelCase__ : Optional[int] = requests.get(_lowercase , headers=_lowercase ).json() lowerCAmelCase__ : Optional[Any] = {} try: job_time.update({job['name']: extract_time_from_single_job(_lowercase ) for job in result['jobs']} ) lowerCAmelCase__ : int = math.ceil((result['total_count'] - 100) / 100 ) for i in range(_lowercase ): lowerCAmelCase__ : Union[str, Any] = requests.get(url + F'''&page={i + 2}''' , headers=_lowercase ).json() job_time.update({job['name']: extract_time_from_single_job(_lowercase ) for job in result['jobs']} ) return job_time except Exception: print(F'''Unknown error, could not fetch links:\n{traceback.format_exc()}''' ) return {} if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument("""--workflow_run_id""", type=str, required=True, help="""A GitHub Actions workflow run id.""") lowerCamelCase__ = parser.parse_args() lowerCamelCase__ = get_job_time(args.workflow_run_id) lowerCamelCase__ = dict(sorted(job_time.items(), key=lambda item: item[1]["duration"], reverse=True)) for k, v in job_time.items(): print(F"""{k}: {v["duration"]}""")
212
"""simple docstring""" import argparse import json import os from collections import OrderedDict import numpy as np import tensorflow as tf import torch def A_ ( _lowercase ): '''simple docstring''' snake_case_ :Union[str, Any] = os.path.join(args.tf_model_dir, """parameters.json""" ) snake_case_ :Any = json.loads(open(_lowercase ).read() ) if not params: raise ValueError( f"""It seems that the json file at {parameter_file} is empty. Make sure you have a correct json file.""" ) if not args.output.endswith(""".pt""" ): snake_case_ :Optional[int] = args.output + """.pt""" snake_case_ :List[str] = OrderedDict() with tf.device("""/CPU:0""" ): snake_case_ :Dict = tf.train.load_checkpoint(args.tf_model_dir ) snake_case_ :str = reader.get_variable_to_shape_map() for key_name in shapes.keys(): snake_case_ :List[Any] = reader.get_tensor(_lowercase ).astype(np.floataa ) if key_name.endswith("""/adam_m""" ) or key_name.endswith("""/adam_v""" ): continue if key_name.startswith("""pasts/""" ): if key_name.startswith("""pasts/mlp""" ): snake_case_ :Any = int(key_name[9] ) elif key_name.startswith("""pasts/out""" ): snake_case_ :Optional[int] = 8 snake_case_ :List[str] = """model.sqout.%d.weight""" % (player * 2) # enter to nn.Sequencial with Tanh, so 2 at a time snake_case_ :Optional[Any] = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix snake_case_ :List[str] = torch.tensor(_lowercase ) elif key_name.startswith("""model/moe""" ): snake_case_ :Tuple = int(key_name[9:].split("""/""" )[0] ) if key_name.endswith("""/switch_gating/kernel""" ): snake_case_ :Union[str, Any] = """model.blocks.%d.feed_forward.mlp.router.classifier.weight""" % player snake_case_ :Optional[Any] = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix snake_case_ :Optional[Any] = torch.tensor(_lowercase ) elif key_name.endswith("""/softmlp/kernel""" ): snake_case_ :List[Any] = """model.blocks.%d.feed_forward.soft_bypass_mlp.weight""" % player snake_case_ :Optional[int] = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix snake_case_ :Optional[Any] = torch.tensor(_lowercase ) elif key_name.endswith("""/wo/kernel""" ) or key_name.endswith("""/wi/kernel""" ): snake_case_ :Dict = key_name[-9:-7] for i in range(16 ): snake_case_ :str = """model.blocks.%d.feed_forward.mlp.experts.expert_%d.%s.weight""" % (player, i, nlayer) snake_case_ :Tuple = ( vnp[i].transpose([1, 0] ).copy() ) # In Mesh-Tensorflow, it is one array, so it is divided snake_case_ :Optional[int] = torch.tensor(_lowercase ) elif key_name.startswith("""model/mlp""" ): snake_case_ :Optional[int] = int(key_name[9:].split("""/""" )[0] ) if key_name.endswith("""/p1/kernel""" ): snake_case_ :Union[str, Any] = """model.blocks.%d.feed_forward.mlp.wi.weight""" % player snake_case_ :Dict = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix snake_case_ :Optional[Any] = torch.tensor(_lowercase ) elif key_name.endswith("""/p1/bias""" ): snake_case_ :List[Any] = """model.blocks.%d.feed_forward.mlp.wi.bias""" % player snake_case_ :str = vnp.copy() # same because it is one dimensional snake_case_ :Optional[Any] = torch.tensor(_lowercase ) elif key_name.endswith("""/p2/kernel""" ): snake_case_ :Union[str, Any] = """model.blocks.%d.feed_forward.mlp.wo.weight""" % player snake_case_ :Dict = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix snake_case_ :Tuple = torch.tensor(_lowercase ) elif key_name.endswith("""/p2/bias""" ): snake_case_ :Dict = """model.blocks.%d.feed_forward.mlp.wo.bias""" % player snake_case_ :Any = vnp.copy() # same because it is one dimensional snake_case_ :Optional[int] = torch.tensor(_lowercase ) elif key_name.startswith("""model/ln""" ): snake_case_ :Union[str, Any] = int(key_name[8:].split("""/""" )[0] ) if key_name.endswith("""/b""" ): snake_case_ :str = """model.blocks.%d.feed_forward.norm.bias""" % player snake_case_ :Dict = vnp.copy() # same because it is one dimensional snake_case_ :int = torch.tensor(_lowercase ) elif key_name.endswith("""/g""" ): snake_case_ :Dict = """model.blocks.%d.feed_forward.norm.weight""" % player snake_case_ :Dict = vnp.copy() # same because it is one dimensional snake_case_ :Tuple = torch.tensor(_lowercase ) elif key_name.startswith("""model/att""" ): snake_case_ :List[str] = int(key_name[9:].split("""/""" )[0] ) if key_name.endswith("""/qkv/kernel""" ): snake_case_ :Optional[int] = vnp.copy() # Compute same dimension as Mesh-tensorflow using einsum snake_case_ :Dict = state[:, 0, :, :] snake_case_ :int = state[:, 1, :, :] snake_case_ :List[str] = state[:, 2, :, :] snake_case_ :str = ( state_q.reshape([state_q.shape[0], state_q.shape[1] * state_q.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix snake_case_ :Any = ( state_k.reshape([state_k.shape[0], state_k.shape[1] * state_k.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix snake_case_ :Optional[int] = ( state_v.reshape([state_v.shape[0], state_v.shape[1] * state_v.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix snake_case_ :int = """model.blocks.%d.self_attn.self_attn.q_proj.weight""" % player snake_case_ :int = torch.tensor(_lowercase ) snake_case_ :Optional[Any] = """model.blocks.%d.self_attn.self_attn.k_proj.weight""" % player snake_case_ :Dict = torch.tensor(_lowercase ) snake_case_ :Dict = """model.blocks.%d.self_attn.self_attn.v_proj.weight""" % player snake_case_ :Optional[Any] = torch.tensor(_lowercase ) elif key_name.endswith("""/o/kernel""" ): snake_case_ :str = """model.blocks.%d.self_attn.self_attn.out_proj.weight""" % player snake_case_ :str = ( vnp.reshape([vnp.shape[0] * vnp.shape[1], vnp.shape[2]] ).transpose([1, 0] ).copy() ) # Mesh-Tensorflow is a diagonal matrix snake_case_ :Any = torch.tensor(_lowercase ) elif key_name.startswith("""model/an""" ): snake_case_ :Optional[int] = int(key_name[8:].split("""/""" )[0] ) if key_name.endswith("""/b""" ): snake_case_ :Any = """model.blocks.%d.self_attn.norm.bias""" % player snake_case_ :Optional[int] = vnp.copy() # same because it is one dimensional snake_case_ :Tuple = torch.tensor(_lowercase ) elif key_name.endswith("""/g""" ): snake_case_ :Union[str, Any] = """model.blocks.%d.self_attn.norm.weight""" % player snake_case_ :Dict = vnp.copy() # same because it is one dimensional snake_case_ :Optional[int] = torch.tensor(_lowercase ) elif ( key_name.startswith("""model/wte""" ) or key_name.startswith("""model/wpe""" ) or key_name.startswith("""model/ete""" ) ): snake_case_ :List[Any] = {"""wte""": """embed_tokens""", """wpe""": """position_embeddings""", """ete""": """extra_position_embeddings"""}[ key_name[-3:] ] snake_case_ :Optional[Any] = """model.%s.weight""" % nlayer snake_case_ :Any = vnp.copy() # same in embedded snake_case_ :List[Any] = torch.tensor(_lowercase ) if key_name.startswith("""model/wte""" ): snake_case_ :Tuple = """lm_head.weight""" snake_case_ :List[str] = vnp.copy() # same in embedded snake_case_ :List[Any] = torch.tensor(_lowercase ) elif key_name.startswith("""model/wob""" ): snake_case_ :str = """final_logits_bias""" snake_case_ :Any = vnp.copy() # same in embedded snake_case_ :List[Any] = state.reshape((1, -1) ) snake_case_ :Union[str, Any] = torch.tensor(_lowercase ) elif key_name == "model/dense/kernel": snake_case_ :str = """model.last_project.weight""" snake_case_ :Dict = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix snake_case_ :int = torch.tensor(_lowercase ) elif key_name == "model/dense_1/bias": snake_case_ :Optional[int] = """model.last_project.bias""" snake_case_ :Tuple = vnp.copy() # same because it is one dimensional snake_case_ :Any = torch.tensor(_lowercase ) torch.save(_lowercase, args.output ) if __name__ == "__main__": __a = argparse.ArgumentParser( description="model converter.", formatter_class=argparse.ArgumentDefaultsHelpFormatter ) parser.add_argument("--tf_model_dir", metavar="PATH", type=str, required=True, help="import model") parser.add_argument("--output", metavar="PATH", type=str, required=True, help="output model") __a = parser.parse_args() convert_tf_gptsan_to_pt(args)
66
0
import argparse import re from typing import Dict import torch from datasets import Audio, Dataset, load_dataset, load_metric from transformers import AutoFeatureExtractor, pipeline def UpperCamelCase_ ( lowerCAmelCase__ : Dataset , lowerCAmelCase__ : Dict[str, str] ) -> str: """simple docstring""" lowerCAmelCase_ : str = args.log_outputs lowerCAmelCase_ : List[str] = '''_'''.join(args.dataset.split('/' ) + [args.config, args.split] ) # load metric lowerCAmelCase_ : List[Any] = load_metric('wer' ) lowerCAmelCase_ : str = load_metric('cer' ) # compute metrics lowerCAmelCase_ : List[Any] = wer.compute(references=result['target'] , predictions=result['prediction'] ) lowerCAmelCase_ : Any = cer.compute(references=result['target'] , predictions=result['prediction'] ) # print & log results lowerCAmelCase_ : Union[str, Any] = f"WER: {wer_result}\nCER: {cer_result}" print(UpperCamelCase__ ) with open(f"{dataset_id}_eval_results.txt" , 'w' ) as f: f.write(UpperCamelCase__ ) # log all results in text file. Possibly interesting for analysis if log_outputs is not None: lowerCAmelCase_ : str = f"log_{dataset_id}_predictions.txt" lowerCAmelCase_ : Tuple = f"log_{dataset_id}_targets.txt" with open(UpperCamelCase__ , 'w' ) as p, open(UpperCamelCase__ , 'w' ) as t: # mapping function to write output def write_to_file(lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : List[Any] ): p.write(f"{i}" + '\n' ) p.write(batch['prediction'] + '\n' ) t.write(f"{i}" + '\n' ) t.write(batch['target'] + '\n' ) result.map(UpperCamelCase__ , with_indices=UpperCamelCase__ ) def UpperCamelCase_ ( lowerCAmelCase__ : str ) -> List[Any]: """simple docstring""" lowerCAmelCase_ : int = '''[,?.!\-\;\:"“%‘”�—’…–]''' # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training lowerCAmelCase_ : Any = re.sub(UpperCamelCase__ , '' , text.lower() ) # In addition, we can normalize the target text, e.g. removing new lines characters etc... # note that order is important here! lowerCAmelCase_ : Optional[int] = ['''\n\n''', '''\n''', ''' ''', ''' '''] for t in token_sequences_to_ignore: lowerCAmelCase_ : List[str] = ''' '''.join(text.split(UpperCamelCase__ ) ) return text def UpperCamelCase_ ( lowerCAmelCase__ : List[str] ) -> str: """simple docstring""" lowerCAmelCase_ : Tuple = load_dataset(args.dataset , args.config , split=args.split , use_auth_token=UpperCamelCase__ ) # for testing: only process the first two examples as a test # dataset = dataset.select(range(10)) # load processor lowerCAmelCase_ : Any = AutoFeatureExtractor.from_pretrained(args.model_id ) lowerCAmelCase_ : int = feature_extractor.sampling_rate # resample audio lowerCAmelCase_ : Optional[int] = dataset.cast_column('audio' , Audio(sampling_rate=UpperCamelCase__ ) ) # load eval pipeline if args.device is None: lowerCAmelCase_ : Tuple = 0 if torch.cuda.is_available() else -1 lowerCAmelCase_ : Any = pipeline('automatic-speech-recognition' , model=args.model_id , device=args.device ) # map function to decode audio def map_to_pred(lowerCAmelCase__ : List[Any] ): lowerCAmelCase_ : Dict = asr( batch['audio']['array'] , chunk_length_s=args.chunk_length_s , stride_length_s=args.stride_length_s ) lowerCAmelCase_ : Tuple = prediction['''text'''] lowerCAmelCase_ : Tuple = normalize_text(batch['sentence'] ) return batch # run inference on all examples lowerCAmelCase_ : Dict = dataset.map(UpperCamelCase__ , remove_columns=dataset.column_names ) # compute and log_results # do not change function below log_results(UpperCamelCase__ , UpperCamelCase__ ) if __name__ == "__main__": lowercase__ : Optional[Any] = argparse.ArgumentParser() parser.add_argument( """--model_id""", type=str, required=True, help="""Model identifier. Should be loadable with 🤗 Transformers""" ) parser.add_argument( """--dataset""", type=str, required=True, help="""Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets""", ) parser.add_argument( """--config""", type=str, required=True, help="""Config of the dataset. *E.g.* `\'en\'` for Common Voice""" ) parser.add_argument("""--split""", type=str, required=True, help="""Split of the dataset. *E.g.* `\'test\'`""") parser.add_argument( """--chunk_length_s""", type=float, default=None, help="""Chunk length in seconds. Defaults to 5 seconds.""" ) parser.add_argument( """--stride_length_s""", type=float, default=None, help="""Stride of the audio chunks. Defaults to 1 second.""" ) parser.add_argument( """--log_outputs""", action="""store_true""", help="""If defined, write outputs to log file for analysis.""" ) parser.add_argument( """--device""", type=int, default=None, help="""The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.""", ) lowercase__ : Any = parser.parse_args() main(args)
352
"""simple docstring""" import random import timeit from functools import wraps from typing import Callable, Optional from ..configuration_utils import PretrainedConfig from ..models.auto.modeling_tf_auto import TF_MODEL_MAPPING, TF_MODEL_WITH_LM_HEAD_MAPPING from ..utils import is_pyanvml_available, is_tf_available, logging from .benchmark_utils import ( Benchmark, Memory, MemorySummary, measure_peak_memory_cpu, start_memory_tracing, stop_memory_tracing, ) if is_tf_available(): import tensorflow as tf from tensorflow.python.framework.errors_impl import ResourceExhaustedError from .benchmark_args_tf import TensorFlowBenchmarkArguments if is_pyanvml_available(): import pyanvml.pyanvml as nvml lowercase__ : str = logging.get_logger(__name__) def UpperCamelCase_ ( lowerCAmelCase__ : bool , lowerCAmelCase__ : bool ) -> List[Any]: """simple docstring""" def run_func(lowerCAmelCase__ : int ): @wraps(lowerCAmelCase__ ) def run_in_eager_mode(*lowerCAmelCase__ : List[Any] , **lowerCAmelCase__ : int ): return func(*lowerCAmelCase__ , **lowerCAmelCase__ ) @wraps(lowerCAmelCase__ ) @tf.function(experimental_compile=lowerCAmelCase__ ) def run_in_graph_mode(*lowerCAmelCase__ : Dict , **lowerCAmelCase__ : Any ): return func(*lowerCAmelCase__ , **lowerCAmelCase__ ) if do_eager_mode is True: if use_xla is not False: raise ValueError( 'Cannot run model in XLA, if `args.eager_mode` is set to `True`. Please set `args.eager_mode=False`.' ) return run_in_eager_mode else: return run_in_graph_mode return run_func def UpperCamelCase_ ( lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : int ) -> ["tf.Tensor"]: """simple docstring""" lowerCAmelCase_ : Dict = random.Random() lowerCAmelCase_ : List[str] = [rng.randint(0 , vocab_size - 1 ) for i in range(batch_size * sequence_length )] return tf.constant(lowerCAmelCase__ , shape=(batch_size, sequence_length) , dtype=tf.intaa ) class UpperCamelCase__ ( lowercase_ ): """simple docstring""" _SCREAMING_SNAKE_CASE = 42 _SCREAMING_SNAKE_CASE = 42 _SCREAMING_SNAKE_CASE = "TensorFlow" @property def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): return tf.__version__ def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int ): # initialize GPU on separate process lowerCAmelCase_ : List[Any] = self.args.strategy if strategy is None: raise ValueError('A device strategy has to be initialized before using TensorFlow.' ) lowerCAmelCase_ : List[str] = self._prepare_inference_func(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) return self._measure_speed(_inference ) def SCREAMING_SNAKE_CASE__ ( self : Any , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int ): lowerCAmelCase_ : Optional[int] = self.args.strategy if strategy is None: raise ValueError('A device strategy has to be initialized before using TensorFlow.' ) lowerCAmelCase_ : Any = self._prepare_train_func(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) return self._measure_speed(_train ) def SCREAMING_SNAKE_CASE__ ( self : List[str] , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int ): # initialize GPU on separate process if self.args.is_gpu: tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx] , SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : Any = self.args.strategy if strategy is None: raise ValueError('A device strategy has to be initialized before using TensorFlow.' ) lowerCAmelCase_ : Optional[Any] = self._prepare_inference_func(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) return self._measure_memory(_inference ) def SCREAMING_SNAKE_CASE__ ( self : Any , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int ): if self.args.is_gpu: tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx] , SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : Any = self.args.strategy if strategy is None: raise ValueError('A device strategy has to be initialized before using TensorFlow.' ) lowerCAmelCase_ : Optional[int] = self._prepare_train_func(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) return self._measure_memory(_train ) def SCREAMING_SNAKE_CASE__ ( self : Any , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int ): lowerCAmelCase_ : Any = self.config_dict[model_name] if self.args.fpaa: raise NotImplementedError('Mixed precision is currently not supported.' ) lowerCAmelCase_ : Union[str, Any] = ( hasattr(SCREAMING_SNAKE_CASE_ , 'architectures' ) and isinstance(config.architectures , SCREAMING_SNAKE_CASE_ ) and len(config.architectures ) > 0 ) if not self.args.only_pretrain_model and has_model_class_in_config: try: lowerCAmelCase_ : Any = 'TF' + config.architectures[0] # prepend 'TF' for tensorflow model lowerCAmelCase_ : Any = __import__('transformers' , fromlist=[model_class] ) lowerCAmelCase_ : Dict = getattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : List[str] = model_cls(SCREAMING_SNAKE_CASE_ ) except ImportError: raise ImportError( F"{model_class} does not exist. If you just want to test the pretrained model, you might want to" ' set `--only_pretrain_model` or `args.only_pretrain_model=True`.' ) else: lowerCAmelCase_ : str = TF_MODEL_MAPPING[config.__class__](SCREAMING_SNAKE_CASE_ ) # encoder-decoder has vocab size saved differently lowerCAmelCase_ : List[Any] = config.vocab_size if hasattr(SCREAMING_SNAKE_CASE_ , 'vocab_size' ) else config.encoder.vocab_size lowerCAmelCase_ : Tuple = random_input_ids(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_decoder_forward(): return model(SCREAMING_SNAKE_CASE_ , decoder_input_ids=SCREAMING_SNAKE_CASE_ , training=SCREAMING_SNAKE_CASE_ ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_forward(): return model(SCREAMING_SNAKE_CASE_ , training=SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : List[Any] = encoder_decoder_forward if config.is_encoder_decoder else encoder_forward return _inference def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int ): lowerCAmelCase_ : Union[str, Any] = self.config_dict[model_name] if self.args.eager_mode is not False: raise ValueError('Training cannot be done in eager mode. Please make sure that `args.eager_mode = False`.' ) if self.args.fpaa: raise NotImplementedError('Mixed precision is currently not supported.' ) lowerCAmelCase_ : Dict = ( hasattr(SCREAMING_SNAKE_CASE_ , 'architectures' ) and isinstance(config.architectures , SCREAMING_SNAKE_CASE_ ) and len(config.architectures ) > 0 ) if not self.args.only_pretrain_model and has_model_class_in_config: try: lowerCAmelCase_ : Optional[Any] = 'TF' + config.architectures[0] # prepend 'TF' for tensorflow model lowerCAmelCase_ : int = __import__('transformers' , fromlist=[model_class] ) lowerCAmelCase_ : Any = getattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : Optional[Any] = model_cls(SCREAMING_SNAKE_CASE_ ) except ImportError: raise ImportError( F"{model_class} does not exist. If you just want to test the pretrained model, you might want to" ' set `--only_pretrain_model` or `args.only_pretrain_model=True`.' ) else: lowerCAmelCase_ : Union[str, Any] = TF_MODEL_WITH_LM_HEAD_MAPPING[config.__class__](SCREAMING_SNAKE_CASE_ ) # encoder-decoder has vocab size saved differently lowerCAmelCase_ : int = config.vocab_size if hasattr(SCREAMING_SNAKE_CASE_ , 'vocab_size' ) else config.encoder.vocab_size lowerCAmelCase_ : Optional[Any] = random_input_ids(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_decoder_train(): lowerCAmelCase_ : str = model(SCREAMING_SNAKE_CASE_ , decoder_input_ids=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ , training=SCREAMING_SNAKE_CASE_ )[0] lowerCAmelCase_ : Optional[int] = tf.gradients(SCREAMING_SNAKE_CASE_ , model.trainable_variables ) return gradients @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_train(): lowerCAmelCase_ : Dict = model(SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ , training=SCREAMING_SNAKE_CASE_ )[0] lowerCAmelCase_ : str = tf.gradients(SCREAMING_SNAKE_CASE_ , model.trainable_variables ) return gradients lowerCAmelCase_ : int = encoder_decoder_train if config.is_encoder_decoder else encoder_train return _train def SCREAMING_SNAKE_CASE__ ( self : List[str] , SCREAMING_SNAKE_CASE_ : Tuple ): with self.args.strategy.scope(): try: if self.args.is_tpu or self.args.use_xla: # run additional 10 times to stabilize compilation for tpu logger.info('Do inference on TPU. Running model 5 times to stabilize compilation' ) timeit.repeat(SCREAMING_SNAKE_CASE_ , repeat=1 , number=5 ) # as written in https://docs.python.org/2/library/timeit.html#timeit.Timer.repeat, min should be taken rather than the average lowerCAmelCase_ : Dict = timeit.repeat( SCREAMING_SNAKE_CASE_ , repeat=self.args.repeat , number=1_0 , ) return min(SCREAMING_SNAKE_CASE_ ) / 10.0 except ResourceExhaustedError as e: self.print_fn(F"Doesn't fit on GPU. {e}" ) def SCREAMING_SNAKE_CASE__ ( self : int , SCREAMING_SNAKE_CASE_ : Callable[[], None] ): logger.info( 'Note that TensorFlow allocates more memory than ' 'it might need to speed up computation. ' 'The memory reported here corresponds to the memory ' 'reported by `nvidia-smi`, which can vary depending ' 'on total available memory on the GPU that is used.' ) with self.args.strategy.scope(): try: if self.args.trace_memory_line_by_line: if not self.args.eager_mode: raise ValueError( '`args.eager_mode` is set to `False`. Make sure to run model in eager mode to measure memory' ' consumption line by line.' ) lowerCAmelCase_ : Union[str, Any] = start_memory_tracing('transformers' ) if self.args.is_tpu: # tpu raise NotImplementedError( 'Memory Benchmarking is currently not implemented for TPU. Please disable memory benchmarking' ' with `args.memory=False`' ) elif self.args.is_gpu: # gpu if not is_pyanvml_available(): logger.warning( 'py3nvml not installed, we won\'t log GPU memory usage. ' 'Install py3nvml (pip install py3nvml) to log information about GPU.' ) lowerCAmelCase_ : Tuple = 'N/A' else: logger.info( 'Measuring total GPU usage on GPU device. Make sure to not have additional processes' ' running on the same GPU.' ) # init nvml nvml.nvmlInit() func() lowerCAmelCase_ : int = nvml.nvmlDeviceGetHandleByIndex(self.args.device_idx ) lowerCAmelCase_ : Union[str, Any] = nvml.nvmlDeviceGetMemoryInfo(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : List[Any] = meminfo.used lowerCAmelCase_ : int = Memory(SCREAMING_SNAKE_CASE_ ) # shutdown nvml nvml.nvmlShutdown() else: # cpu if self.args.trace_memory_line_by_line: logger.info( 'When enabling line by line tracing, the max peak memory for CPU is inaccurate in' ' TensorFlow.' ) lowerCAmelCase_ : Optional[int] = None else: lowerCAmelCase_ : Union[str, Any] = measure_peak_memory_cpu(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : Any = Memory(SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else memory_bytes if self.args.trace_memory_line_by_line: lowerCAmelCase_ : List[Any] = stop_memory_tracing(SCREAMING_SNAKE_CASE_ ) if memory is None: lowerCAmelCase_ : Union[str, Any] = summary.total else: lowerCAmelCase_ : List[str] = None return memory, summary except ResourceExhaustedError as e: self.print_fn(F"Doesn't fit on GPU. {e}" ) return "N/A", None
289
0
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_big_bird import BigBirdTokenizer else: UpperCamelCase = None UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = {'''vocab_file''': '''spiece.model''', '''tokenizer_file''': '''tokenizer.json'''} UpperCamelCase = { '''vocab_file''': { '''google/bigbird-roberta-base''': '''https://huggingface.co/google/bigbird-roberta-base/resolve/main/spiece.model''', '''google/bigbird-roberta-large''': ( '''https://huggingface.co/google/bigbird-roberta-large/resolve/main/spiece.model''' ), '''google/bigbird-base-trivia-itc''': ( '''https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/spiece.model''' ), }, '''tokenizer_file''': { '''google/bigbird-roberta-base''': ( '''https://huggingface.co/google/bigbird-roberta-base/resolve/main/tokenizer.json''' ), '''google/bigbird-roberta-large''': ( '''https://huggingface.co/google/bigbird-roberta-large/resolve/main/tokenizer.json''' ), '''google/bigbird-base-trivia-itc''': ( '''https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/tokenizer.json''' ), }, } UpperCamelCase = { '''google/bigbird-roberta-base''': 4_096, '''google/bigbird-roberta-large''': 4_096, '''google/bigbird-base-trivia-itc''': 4_096, } UpperCamelCase = '''▁''' class __UpperCAmelCase (lowerCamelCase_ ): __snake_case : List[Any] = VOCAB_FILES_NAMES __snake_case : str = PRETRAINED_VOCAB_FILES_MAP __snake_case : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __snake_case : str = BigBirdTokenizer __snake_case : Tuple = ["input_ids", "attention_mask"] __snake_case : int = [] def __init__( self: Dict , UpperCAmelCase_: Optional[Any]=None , UpperCAmelCase_: int=None , UpperCAmelCase_: Dict="<unk>" , UpperCAmelCase_: Optional[Any]="<s>" , UpperCAmelCase_: str="</s>" , UpperCAmelCase_: int="<pad>" , UpperCAmelCase_: Any="[SEP]" , UpperCAmelCase_: Any="[MASK]" , UpperCAmelCase_: Tuple="[CLS]" , **UpperCAmelCase_: Dict , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = AddedToken(_lowercase , lstrip=_lowercase , rstrip=_lowercase ) if isinstance(_lowercase , _lowercase ) else bos_token _SCREAMING_SNAKE_CASE = AddedToken(_lowercase , lstrip=_lowercase , rstrip=_lowercase ) if isinstance(_lowercase , _lowercase ) else eos_token _SCREAMING_SNAKE_CASE = AddedToken(_lowercase , lstrip=_lowercase , rstrip=_lowercase ) if isinstance(_lowercase , _lowercase ) else unk_token _SCREAMING_SNAKE_CASE = AddedToken(_lowercase , lstrip=_lowercase , rstrip=_lowercase ) if isinstance(_lowercase , _lowercase ) else pad_token _SCREAMING_SNAKE_CASE = AddedToken(_lowercase , lstrip=_lowercase , rstrip=_lowercase ) if isinstance(_lowercase , _lowercase ) else cls_token _SCREAMING_SNAKE_CASE = AddedToken(_lowercase , lstrip=_lowercase , rstrip=_lowercase ) if isinstance(_lowercase , _lowercase ) else sep_token # Mask token behave like a normal word, i.e. include the space before it _SCREAMING_SNAKE_CASE = AddedToken(_lowercase , lstrip=_lowercase , rstrip=_lowercase ) if isinstance(_lowercase , _lowercase ) else mask_token super().__init__( _lowercase , tokenizer_file=_lowercase , bos_token=_lowercase , eos_token=_lowercase , unk_token=_lowercase , sep_token=_lowercase , pad_token=_lowercase , cls_token=_lowercase , mask_token=_lowercase , **_lowercase , ) _SCREAMING_SNAKE_CASE = vocab_file _SCREAMING_SNAKE_CASE = False if not self.vocab_file else True def UpperCamelCase ( self: Any , UpperCAmelCase_: List[int] , UpperCAmelCase_: Optional[List[int]] = None ): '''simple docstring''' _SCREAMING_SNAKE_CASE = [self.sep_token_id] _SCREAMING_SNAKE_CASE = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def UpperCamelCase ( self: Optional[Any] , UpperCAmelCase_: List[int] , UpperCAmelCase_: Optional[List[int]] = None , UpperCAmelCase_: bool = False ): '''simple docstring''' if already_has_special_tokens: if token_ids_a is not None: raise ValueError( """You should not supply a second sequence if the provided sequence of """ """ids is already formatted with special tokens for the model.""" ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is None: return [1] + ([0] * len(_lowercase )) + [1] return [1] + ([0] * len(_lowercase )) + [1] + ([0] * len(_lowercase )) + [1] def UpperCamelCase ( self: Union[str, Any] , UpperCAmelCase_: List[int] , UpperCAmelCase_: Optional[List[int]] = None ): '''simple docstring''' _SCREAMING_SNAKE_CASE = [self.sep_token_id] _SCREAMING_SNAKE_CASE = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCamelCase ( self: Optional[int] , UpperCAmelCase_: str , UpperCAmelCase_: Optional[str] = None ): '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(_lowercase ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return _SCREAMING_SNAKE_CASE = os.path.join( _lowercase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowercase ): copyfile(self.vocab_file , _lowercase ) return (out_vocab_file,)
306
import unittest from pathlib import Path from shutil import copyfile from transformers import SPIECE_UNDERLINE, is_sentencepiece_available from transformers.models.speech_to_text import SpeechaTextTokenizer from transformers.models.speech_to_text.tokenization_speech_to_text import VOCAB_FILES_NAMES, save_json from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin __lowerCamelCase : str = get_tests_dir('''fixtures/test_sentencepiece.model''') if is_sentencepiece_available(): import sentencepiece as sp __lowerCamelCase : Any = 5 __lowerCamelCase : Dict = 10 @require_sentencepiece @require_tokenizers class __snake_case ( lowerCamelCase_ , unittest.TestCase ): lowerCAmelCase_ = SpeechaTextTokenizer lowerCAmelCase_ = False lowerCAmelCase_ = True def __a ( self : Tuple ): """simple docstring""" super().setUp() SCREAMING_SNAKE_CASE__ = sp.SentencePieceProcessor() spm_model.Load(_lowercase ) SCREAMING_SNAKE_CASE__ = ["""<s>""", """<pad>""", """</s>""", """<unk>"""] vocab += [spm_model.IdToPiece(id_ ) for id_ in range(len(_lowercase ) )] SCREAMING_SNAKE_CASE__ = dict(zip(_lowercase , range(len(_lowercase ) ) ) ) SCREAMING_SNAKE_CASE__ = Path(self.tmpdirname ) save_json(_lowercase , save_dir / VOCAB_FILES_NAMES["""vocab_file"""] ) if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists(): copyfile(_lowercase , save_dir / VOCAB_FILES_NAMES["""spm_file"""] ) SCREAMING_SNAKE_CASE__ = SpeechaTextTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def __a ( self : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE__ = """<pad>""" SCREAMING_SNAKE_CASE__ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_lowercase ) , _lowercase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_lowercase ) , _lowercase ) def __a ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE__ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<s>""" ) self.assertEqual(vocab_keys[1] , """<pad>""" ) self.assertEqual(vocab_keys[-1] , """j""" ) self.assertEqual(len(_lowercase ) , 10_01 ) def __a ( self : List[Any] ): """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 10_01 ) def __a ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE__ = SpeechaTextTokenizer.from_pretrained(self.tmpdirname ) SCREAMING_SNAKE_CASE__ = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(_lowercase , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_lowercase ) , [2_89, 50, 14, 1_74, 3_86] , ) SCREAMING_SNAKE_CASE__ = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( _lowercase , [SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """."""] , ) SCREAMING_SNAKE_CASE__ = tokenizer.convert_tokens_to_ids(_lowercase ) self.assertListEqual(_lowercase , [12, 25, 88, 59, 28, 23, 11, 4, 6_06, 3_51, 3_51, 3_51, 7, 16, 70, 50, 76, 84, 10, 4, 8] ) SCREAMING_SNAKE_CASE__ = tokenizer.convert_ids_to_tokens(_lowercase ) self.assertListEqual( _lowercase , [SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """."""] , ) @slow def __a ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE__ = {"""input_ids""": [[37_91, 7_97, 31, 11, 64, 7_97, 31, 24_29, 4_33, 12, 11_76, 12, 20, 7_86, 9_15, 1_42, 24_13, 2_40, 37, 32_38, 7_97, 31, 11, 35, 93, 9_15, 1_42, 24_13, 2_40, 37, 55_40, 5_67, 12_76, 93, 37, 6_10, 40, 62, 4_55, 6_57, 10_42, 1_23, 7_80, 1_77, 37, 3_09, 2_41, 12_98, 5_14, 20, 2_92, 27_37, 1_14, 24_69, 2_41, 85, 64, 3_02, 5_48, 5_28, 4_23, 4, 5_09, 4_06, 4_23, 37, 6_01, 4, 7_77, 3_02, 5_48, 5_28, 4_23, 2_84, 4, 33_88, 5_11, 4_59, 4, 35_55, 40, 3_21, 3_02, 7_05, 4, 33_88, 5_11, 5_83, 3_26, 5, 5, 5, 62, 33_10, 5_60, 1_77, 26_80, 2_17, 15_08, 32, 31, 8_53, 4_18, 64, 5_83, 5_11, 16_05, 62, 35, 93, 5_60, 1_77, 26_80, 2_17, 15_08, 15_21, 64, 5_83, 5_11, 5_19, 62, 20, 15_15, 7_64, 20, 1_49, 2_61, 56_25, 79_72, 20, 55_40, 5_67, 12_76, 93, 39_25, 16_75, 11, 15, 8_02, 79_72, 5_76, 2_17, 15_08, 11, 35, 93, 12_53, 24_41, 15, 2_89, 6_52, 31, 4_16, 3_21, 38_42, 1_15, 40, 9_11, 8, 4_76, 6_19, 4, 3_80, 1_42, 4_23, 3_35, 2_40, 35, 93, 2_64, 8, 11, 3_35, 5_69, 4_20, 1_63, 5, 2], [2_60, 5_48, 5_28, 4_23, 20, 4_51, 20, 26_81, 11_53, 34_34, 20, 55_40, 37, 5_67, 1_26, 12_53, 24_41, 33_76, 4_49, 2_10, 4_31, 15_63, 1_77, 7_67, 55_40, 11, 12_03, 4_72, 11, 29_53, 6_85, 2_85, 3_64, 7_06, 11_53, 20, 67_99, 20, 28_69, 20, 44_64, 1_26, 40, 24_29, 20, 10_40, 8_66, 26_64, 4_18, 20, 3_18, 20, 17_26, 1_86, 20, 2_65, 5_22, 35, 93, 21_91, 46_34, 20, 10_40, 12, 67_99, 15, 2_28, 23_56, 1_42, 31, 11, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [25_75, 26_66, 6_84, 15_82, 11_76, 12, 6_27, 1_49, 6_19, 20, 49_02, 5_63, 11, 20, 1_49, 2_61, 34_20, 23_56, 1_74, 1_42, 47_14, 1_31, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_lowercase , model_name="""facebook/s2t-small-mustc-en-de-st""" , revision="""a14f04cf0776c02f62a8cb800cf7909e15ea23ad""" , ) @require_sentencepiece class __snake_case ( unittest.TestCase ): lowerCAmelCase_ = "valhalla/s2t_mustc_multilinguial_medium" lowerCAmelCase_ = "C'est trop cool" lowerCAmelCase_ = "Esto es genial" @classmethod def __a ( cls : Any ): """simple docstring""" SCREAMING_SNAKE_CASE__ = SpeechaTextTokenizer.from_pretrained(cls.checkpoint_name ) return cls def __a ( self : Dict ): """simple docstring""" self.assertEqual(self.tokenizer.lang_code_to_id["""pt"""] , 4 ) self.assertEqual(self.tokenizer.lang_code_to_id["""ru"""] , 6 ) self.assertEqual(self.tokenizer.lang_code_to_id["""it"""] , 9 ) self.assertEqual(self.tokenizer.lang_code_to_id["""de"""] , 11 ) def __a ( self : Union[str, Any] ): """simple docstring""" self.assertEqual(self.tokenizer.vocab_size , 1_00_00 ) def __a ( self : int ): """simple docstring""" self.assertIn(_lowercase , self.tokenizer.all_special_ids ) SCREAMING_SNAKE_CASE__ = [ES_CODE, 4, 16_01, 47, 76_47, 2] SCREAMING_SNAKE_CASE__ = self.tokenizer.decode(_lowercase , skip_special_tokens=_lowercase ) SCREAMING_SNAKE_CASE__ = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=_lowercase ) self.assertEqual(_lowercase , _lowercase ) self.assertNotIn(self.tokenizer.eos_token , _lowercase ) def __a ( self : Any ): """simple docstring""" SCREAMING_SNAKE_CASE__ = """fr""" SCREAMING_SNAKE_CASE__ = self.tokenizer(self.french_text ).input_ids self.assertEqual(encoded[0] , _lowercase ) self.assertEqual(encoded[-1] , self.tokenizer.eos_token_id ) def __a ( self : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE__ = """fr""" self.assertListEqual(self.tokenizer.prefix_tokens , [FR_CODE] ) SCREAMING_SNAKE_CASE__ = """es""" self.assertListEqual(self.tokenizer.prefix_tokens , [ES_CODE] )
219
0
from __future__ import annotations lowercase_ = list[tuple[int, int]] lowercase_ = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] lowercase_ = ([-1, 0], [0, -1], [1, 0], [0, 1]) # up, left, down, right class _snake_case : def __init__( self : List[str], __lowercase : List[str], __lowercase : int, __lowercase : Optional[int], __lowercase : str, __lowercase : Union[str, Any], __lowercase : List[Any], ): lowercase__ = pos_x lowercase__ = pos_y lowercase__ = (pos_y, pos_x) lowercase__ = goal_x lowercase__ = goal_y lowercase__ = g_cost lowercase__ = parent lowercase__ = self.calculate_heuristic() def A__ ( self : int ): lowercase__ = abs(self.pos_x - self.goal_x ) lowercase__ = abs(self.pos_y - self.goal_y ) return dx + dy def __lt__( self : Optional[Any], __lowercase : Optional[int] ): return self.f_cost < other.f_cost class _snake_case : def __init__( self : Union[str, Any], __lowercase : List[str], __lowercase : str ): lowercase__ = Node(start[1], start[0], goal[1], goal[0], 0, _SCREAMING_SNAKE_CASE ) lowercase__ = Node(goal[1], goal[0], goal[1], goal[0], 9_9999, _SCREAMING_SNAKE_CASE ) lowercase__ = [self.start] lowercase__ = [] lowercase__ = False def A__ ( self : Union[str, Any] ): while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() lowercase__ = self.open_nodes.pop(0 ) if current_node.pos == self.target.pos: lowercase__ = True return self.retrace_path(_SCREAMING_SNAKE_CASE ) self.closed_nodes.append(_SCREAMING_SNAKE_CASE ) lowercase__ = self.get_successors(_SCREAMING_SNAKE_CASE ) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(_SCREAMING_SNAKE_CASE ) else: # retrieve the best current path lowercase__ = self.open_nodes.pop(self.open_nodes.index(_SCREAMING_SNAKE_CASE ) ) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(_SCREAMING_SNAKE_CASE ) else: self.open_nodes.append(_SCREAMING_SNAKE_CASE ) if not self.reached: return [self.start.pos] return None def A__ ( self : Optional[int], __lowercase : int ): lowercase__ = [] for action in delta: lowercase__ = parent.pos_x + action[1] lowercase__ = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(_SCREAMING_SNAKE_CASE ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE, self.target.pos_y, self.target.pos_x, parent.g_cost + 1, _SCREAMING_SNAKE_CASE, ) ) return successors def A__ ( self : List[str], __lowercase : Optional[Any] ): lowercase__ = node lowercase__ = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) lowercase__ = current_node.parent path.reverse() return path if __name__ == "__main__": lowercase_ = (0, 0) lowercase_ = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) print("""------""") lowercase_ = GreedyBestFirst(init, goal) lowercase_ = greedy_bf.search() if path: for pos_x, pos_y in path: lowercase_ = 2 for elem in grid: print(elem)
368
import re import jax.numpy as jnp from flax.traverse_util import flatten_dict, unflatten_dict from jax.random import PRNGKey from ..utils import logging lowercase_ = logging.get_logger(__name__) def __lowerCAmelCase ( SCREAMING_SNAKE_CASE_ ): lowercase__ = r"\w+[.]\d+" lowercase__ = re.findall(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for pat in pats: lowercase__ = key.replace(SCREAMING_SNAKE_CASE_ , "_".join(pat.split("." ) ) ) return key def __lowerCAmelCase ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): lowercase__ = pt_tuple_key[:-1] + ("scale",) if ( any("norm" in str_ for str_ in pt_tuple_key ) and (pt_tuple_key[-1] == "bias") and (pt_tuple_key[:-1] + ("bias",) not in random_flax_state_dict) and (pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict) ): lowercase__ = pt_tuple_key[:-1] + ("scale",) return renamed_pt_tuple_key, pt_tensor elif pt_tuple_key[-1] in ["weight", "gamma"] and pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict: lowercase__ = pt_tuple_key[:-1] + ("scale",) return renamed_pt_tuple_key, pt_tensor # embedding if pt_tuple_key[-1] == "weight" and pt_tuple_key[:-1] + ("embedding",) in random_flax_state_dict: lowercase__ = pt_tuple_key[:-1] + ("embedding",) return renamed_pt_tuple_key, pt_tensor # conv layer lowercase__ = pt_tuple_key[:-1] + ("kernel",) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4: lowercase__ = pt_tensor.transpose(2 , 3 , 1 , 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer lowercase__ = pt_tuple_key[:-1] + ("kernel",) if pt_tuple_key[-1] == "weight": lowercase__ = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight lowercase__ = pt_tuple_key[:-1] + ("weight",) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias lowercase__ = pt_tuple_key[:-1] + ("bias",) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def __lowerCAmelCase ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=42 ): # Step 1: Convert pytorch tensor to numpy lowercase__ = {k: v.numpy() for k, v in pt_state_dict.items()} # Step 2: Since the model is stateless, get random Flax params lowercase__ = flax_model.init_weights(PRNGKey(SCREAMING_SNAKE_CASE_ ) ) lowercase__ = flatten_dict(SCREAMING_SNAKE_CASE_ ) lowercase__ = {} # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): lowercase__ = rename_key(SCREAMING_SNAKE_CASE_ ) lowercase__ = tuple(renamed_pt_key.split("." ) ) # Correctly rename weight parameters lowercase__ , lowercase__ = rename_key_and_reshape_tensor(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( f'''PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape ''' f'''{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.''' ) # also add unexpected weight so that warning is thrown lowercase__ = jnp.asarray(SCREAMING_SNAKE_CASE_ ) return unflatten_dict(SCREAMING_SNAKE_CASE_ )
224
0
"""simple docstring""" import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( UniSpeechConfig, UniSpeechForCTC, UniSpeechForPreTraining, WavaVecaFeatureExtractor, WavaVecaPhonemeCTCTokenizer, WavaVecaProcessor, logging, ) logging.set_verbosity_info() __a = logging.get_logger(__name__) __a = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "ctc_proj", "mask_emb": "masked_spec_embed", } __a = [ "ctc_proj", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", ] def A_ ( _lowercase, _lowercase, _lowercase, _lowercase, _lowercase, _lowercase ): '''simple docstring''' for attribute in key.split(""".""" ): if is_finetuned: if attribute in ["quantizer", "project_q", "project_hid"]: # those layers are only relevant for pretraining and should be dropped return if attribute == "ctc_proj": # we should rename `ctc_proj` to `lm_head` for fine-tuned phoneme models snake_case_ :List[Any] = """lm_head""" snake_case_ :Union[str, Any] = getattr(_lowercase, _lowercase ) if weight_type is not None: snake_case_ :str = getattr(_lowercase, _lowercase ).shape else: snake_case_ :Optional[Any] = hf_pointer.shape assert hf_shape == value.shape, ( f"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": snake_case_ :Any = value elif weight_type == "weight_g": snake_case_ :Tuple = value elif weight_type == "weight_v": snake_case_ :Optional[int] = value elif weight_type == "bias": snake_case_ :Tuple = value else: snake_case_ :List[Any] = value logger.info(f"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" ) def A_ ( _lowercase, _lowercase, _lowercase ): '''simple docstring''' snake_case_ :Dict = [] snake_case_ :Union[str, Any] = fairseq_model.state_dict() snake_case_ :str = hf_model.unispeech.feature_extractor for name, value in fairseq_dict.items(): snake_case_ :Dict = False if "conv_layers" in name: load_conv_layer( _lowercase, _lowercase, _lowercase, _lowercase, hf_model.config.feat_extract_norm == """group""", ) snake_case_ :Dict = True else: for key, mapped_key in MAPPING.items(): snake_case_ :List[str] = """unispeech.""" + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: snake_case_ :List[str] = True if "*" in mapped_key: snake_case_ :Tuple = name.split(_lowercase )[0].split(""".""" )[-2] snake_case_ :Tuple = mapped_key.replace("""*""", _lowercase ) if "weight_g" in name: snake_case_ :Dict = """weight_g""" elif "weight_v" in name: snake_case_ :Dict = """weight_v""" elif "bias" in name: snake_case_ :Optional[Any] = """bias""" elif "weight" in name: # TODO: don't match quantizer.weight_proj snake_case_ :List[str] = """weight""" else: snake_case_ :Optional[Any] = None set_recursively(_lowercase, _lowercase, _lowercase, _lowercase, _lowercase, _lowercase ) continue if not is_used: unused_weights.append(_lowercase ) logger.warning(f"""Unused weights: {unused_weights}""" ) def A_ ( _lowercase, _lowercase, _lowercase, _lowercase, _lowercase ): '''simple docstring''' snake_case_ :Dict = full_name.split("""conv_layers.""" )[-1] snake_case_ :List[str] = name.split(""".""" ) snake_case_ :Any = int(items[0] ) snake_case_ :str = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) snake_case_ :Union[str, Any] = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) snake_case_ :List[str] = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was""" " found." ) snake_case_ :int = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) snake_case_ :int = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(_lowercase ) @torch.no_grad() def A_ ( _lowercase, _lowercase, _lowercase=None, _lowercase=None, _lowercase=True ): '''simple docstring''' if config_path is not None: snake_case_ :str = UniSpeechConfig.from_pretrained(_lowercase ) else: snake_case_ :Tuple = UniSpeechConfig() if is_finetuned: if dict_path: snake_case_ :Optional[int] = Dictionary.load_from_json(_lowercase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq snake_case_ :Optional[int] = target_dict.pad_index snake_case_ :Optional[int] = target_dict.bos_index snake_case_ :Dict = target_dict.eos_index snake_case_ :List[str] = len(target_dict.symbols ) snake_case_ :int = os.path.join(_lowercase, """vocab.json""" ) if not os.path.isdir(_lowercase ): logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(_lowercase ) ) return os.makedirs(_lowercase, exist_ok=_lowercase ) snake_case_ :List[str] = target_dict.indices # fairseq has the <pad> and <s> switched snake_case_ :Optional[Any] = 42 snake_case_ :List[Any] = 43 with open(_lowercase, """w""", encoding="""utf-8""" ) as vocab_handle: json.dump(_lowercase, _lowercase ) snake_case_ :Union[str, Any] = WavaVecaPhonemeCTCTokenizer( _lowercase, unk_token=target_dict.unk_word, pad_token=target_dict.pad_word, bos_token=target_dict.bos_word, eos_token=target_dict.eos_word, word_delimiter_token="""|""", do_lower_case=_lowercase, ) snake_case_ :List[Any] = True if config.feat_extract_norm == """layer""" else False snake_case_ :Any = WavaVecaFeatureExtractor( feature_size=1, sampling_rate=16000, padding_value=0, do_normalize=_lowercase, return_attention_mask=_lowercase, ) snake_case_ :str = WavaVecaProcessor(feature_extractor=_lowercase, tokenizer=_lowercase ) processor.save_pretrained(_lowercase ) snake_case_ :Optional[Any] = UniSpeechForCTC(_lowercase ) else: snake_case_ :str = UniSpeechForPreTraining(_lowercase ) if is_finetuned: snake_case_, snake_case_, snake_case_ :int = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path], arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] ), """w2v_path""": checkpoint_path} ) else: snake_case_, snake_case_, snake_case_ :Dict = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) snake_case_ :Any = model[0].eval() recursively_load_weights(_lowercase, _lowercase, _lowercase ) hf_unispeech.save_pretrained(_lowercase ) if __name__ == "__main__": __a = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) __a = parser.parse_args() convert_unispeech_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
66
'''simple docstring''' import argparse from pathlib import Path from transformers import AutoConfig, AutoTokenizer, RagConfig, RagSequenceForGeneration, RagTokenForGeneration def a_ ( _lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase = None ,_lowerCAmelCase = None ,_lowerCAmelCase = None ,) -> Optional[int]: if config_name_or_path is None: __lowerCamelCase : List[Any] = 'facebook/rag-token-base' if model_type == 'rag_token' else 'facebook/rag-sequence-base' if generator_tokenizer_name_or_path is None: __lowerCamelCase : Optional[int] = generator_name_or_path if question_encoder_tokenizer_name_or_path is None: __lowerCamelCase : Tuple = question_encoder_name_or_path __lowerCamelCase : Union[str, Any] = RagTokenForGeneration if model_type == 'rag_token' else RagSequenceForGeneration # Save model. __lowerCamelCase : Tuple = RagConfig.from_pretrained(_lowerCAmelCase ) __lowerCamelCase : List[Any] = AutoConfig.from_pretrained(_lowerCAmelCase ) __lowerCamelCase : Union[str, Any] = AutoConfig.from_pretrained(_lowerCAmelCase ) __lowerCamelCase : Tuple = gen_config __lowerCamelCase : List[Any] = question_encoder_config __lowerCamelCase : str = model_class.from_pretrained_question_encoder_generator( _lowerCAmelCase ,_lowerCAmelCase ,config=_lowerCAmelCase ) rag_model.save_pretrained(_lowerCAmelCase ) # Sanity check. model_class.from_pretrained(_lowerCAmelCase ) # Save tokenizers. __lowerCamelCase : List[str] = AutoTokenizer.from_pretrained(_lowerCAmelCase ) gen_tokenizer.save_pretrained(dest_dir / 'generator_tokenizer/' ) __lowerCamelCase : Optional[int] = AutoTokenizer.from_pretrained(_lowerCAmelCase ) question_encoder_tokenizer.save_pretrained(dest_dir / 'question_encoder_tokenizer/' ) if __name__ == "__main__": _UpperCamelCase = argparse.ArgumentParser() parser.add_argument( '--model_type', choices=['rag_sequence', 'rag_token'], required=True, type=str, help='RAG model type: rag_sequence, rag_token', ) parser.add_argument('--dest', type=str, required=True, help='Path to the output checkpoint directory.') parser.add_argument('--generator_name_or_path', type=str, required=True, help='Generator model identifier') parser.add_argument( '--question_encoder_name_or_path', type=str, required=True, help='Question encoder model identifier' ) parser.add_argument( '--generator_tokenizer_name_or_path', type=str, help='Generator tokenizer identifier, if not specified, resolves to ``generator_name_or_path``', ) parser.add_argument( '--question_encoder_tokenizer_name_or_path', type=str, help='Question encoder tokenizer identifier, if not specified, resolves to ``question_encoder_name_or_path``', ) parser.add_argument( '--config_name_or_path', type=str, help=( 'Identifier of the model config to use, if not provided, resolves to a base config for a given' ' ``model_type``' ), ) _UpperCamelCase = parser.parse_args() _UpperCamelCase = Path(args.dest) dest_dir.mkdir(exist_ok=True) consolidate( args.model_type, args.generator_name_or_path, args.question_encoder_name_or_path, dest_dir, args.config_name_or_path, args.generator_tokenizer_name_or_path, args.question_encoder_tokenizer_name_or_path, )
208
0
import torch from torch import nn class _lowerCamelCase ( nn.Module ): """simple docstring""" def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=1 , _SCREAMING_SNAKE_CASE=False )->List[str]: '''simple docstring''' super().__init__() A_ : List[str] = n_token A_ : Optional[Any] = d_embed A_ : Dict = d_proj A_ : Optional[int] = cutoffs + [n_token] A_ : Any = [0] + self.cutoffs A_ : List[str] = div_val A_ : str = self.cutoffs[0] A_ : Union[str, Any] = len(self.cutoffs ) - 1 A_ : Optional[int] = self.shortlist_size + self.n_clusters if self.n_clusters > 0: A_ : Dict = nn.Parameter(torch.zeros(self.n_clusters , self.d_embed ) ) A_ : Tuple = nn.Parameter(torch.zeros(self.n_clusters ) ) A_ : Tuple = nn.ModuleList() A_ : Optional[int] = nn.ParameterList() if div_val == 1: for i in range(len(self.cutoffs ) ): if d_proj != d_embed: self.out_projs.append(nn.Parameter(torch.FloatTensor(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) ) else: self.out_projs.append(_SCREAMING_SNAKE_CASE ) self.out_layers.append(nn.Linear(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) else: for i in range(len(self.cutoffs ) ): A_ , A_ : Optional[int] = self.cutoff_ends[i], self.cutoff_ends[i + 1] A_ : List[str] = d_embed // (div_val**i) self.out_projs.append(nn.Parameter(torch.FloatTensor(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) ) self.out_layers.append(nn.Linear(_SCREAMING_SNAKE_CASE , r_idx - l_idx ) ) A_ : List[str] = keep_order def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )->List[Any]: '''simple docstring''' if proj is None: A_ : Optional[int] = nn.functional.linear(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , bias=_SCREAMING_SNAKE_CASE ) else: # if CUDA_MAJOR <= 9 and CUDA_MINOR <= 1: A_ : Optional[Any] = nn.functional.linear(_SCREAMING_SNAKE_CASE , proj.t().contiguous() ) A_ : Optional[int] = nn.functional.linear(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , bias=_SCREAMING_SNAKE_CASE ) # else: # logit = torch.einsum('bd,de,ev->bv', (hidden, proj, weight.t())) # if bias is not None: # logit = logit + bias return logit def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=False )->Union[str, Any]: '''simple docstring''' if labels is not None: # Shift so that tokens < n predict n A_ : Optional[int] = hidden[..., :-1, :].contiguous() A_ : Union[str, Any] = labels[..., 1:].contiguous() A_ : Union[str, Any] = hidden.view(-1 , hidden.size(-1 ) ) A_ : str = labels.view(-1 ) if hidden.size(0 ) != labels.size(0 ): raise RuntimeError('''Input and labels should have the same size in the batch dimension.''' ) else: A_ : Tuple = hidden.view(-1 , hidden.size(-1 ) ) if self.n_clusters == 0: A_ : str = self._compute_logit(_SCREAMING_SNAKE_CASE , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0] ) if labels is not None: A_ : Union[str, Any] = labels != -100 A_ : str = torch.zeros_like(_SCREAMING_SNAKE_CASE , dtype=hidden.dtype , device=hidden.device ) A_ : Union[str, Any] = ( -nn.functional.log_softmax(_SCREAMING_SNAKE_CASE , dim=-1 )[mask].gather(1 , labels[mask].unsqueeze(1 ) ).squeeze(1 ) ) else: A_ : List[str] = nn.functional.log_softmax(_SCREAMING_SNAKE_CASE , dim=-1 ) else: # construct weights and biases A_ , A_ : List[Any] = [], [] for i in range(len(self.cutoffs ) ): if self.div_val == 1: A_ , A_ : Union[str, Any] = self.cutoff_ends[i], self.cutoff_ends[i + 1] A_ : Tuple = self.out_layers[0].weight[l_idx:r_idx] A_ : str = self.out_layers[0].bias[l_idx:r_idx] else: A_ : Optional[Any] = self.out_layers[i].weight A_ : str = self.out_layers[i].bias if i == 0: A_ : List[str] = torch.cat([weight_i, self.cluster_weight] , dim=0 ) A_ : List[str] = torch.cat([bias_i, self.cluster_bias] , dim=0 ) weights.append(_SCREAMING_SNAKE_CASE ) biases.append(_SCREAMING_SNAKE_CASE ) A_ , A_ , A_ : Optional[int] = weights[0], biases[0], self.out_projs[0] A_ : Union[str, Any] = self._compute_logit(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) A_ : Optional[int] = nn.functional.log_softmax(_SCREAMING_SNAKE_CASE , dim=1 ) if labels is None: A_ : str = hidden.new_empty((head_logit.size(0 ), self.n_token) ) else: A_ : Tuple = torch.zeros_like(_SCREAMING_SNAKE_CASE , dtype=hidden.dtype , device=hidden.device ) A_ : Any = 0 A_ : Union[str, Any] = [0] + self.cutoffs for i in range(len(_SCREAMING_SNAKE_CASE ) - 1 ): A_ , A_ : Any = cutoff_values[i], cutoff_values[i + 1] if labels is not None: A_ : int = (labels >= l_idx) & (labels < r_idx) A_ : Union[str, Any] = mask_i.nonzero().squeeze() if indices_i.numel() == 0: continue A_ : Tuple = labels.index_select(0 , _SCREAMING_SNAKE_CASE ) - l_idx A_ : List[str] = head_logprob.index_select(0 , _SCREAMING_SNAKE_CASE ) A_ : Optional[int] = hidden.index_select(0 , _SCREAMING_SNAKE_CASE ) else: A_ : Optional[Any] = hidden if i == 0: if labels is not None: A_ : Tuple = head_logprob_i.gather(1 , target_i[:, None] ).squeeze(1 ) else: A_ : Optional[int] = head_logprob[:, : self.cutoffs[0]] else: A_ , A_ , A_ : Any = weights[i], biases[i], self.out_projs[i] A_ : str = self._compute_logit(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) A_ : List[str] = nn.functional.log_softmax(_SCREAMING_SNAKE_CASE , dim=1 ) A_ : Optional[int] = self.cutoffs[0] + i - 1 # No probability for the head cluster if labels is not None: A_ : Optional[Any] = head_logprob_i[:, cluster_prob_idx] + tail_logprob_i.gather( 1 , target_i[:, None] ).squeeze(1 ) else: A_ : Union[str, Any] = head_logprob[:, cluster_prob_idx, None] + tail_logprob_i A_ : Optional[Any] = logprob_i if labels is not None: if (hasattr(self , '''keep_order''' ) and self.keep_order) or keep_order: out.index_copy_(0 , _SCREAMING_SNAKE_CASE , -logprob_i ) else: out[offset : offset + logprob_i.size(0 )].copy_(-logprob_i ) offset += logprob_i.size(0 ) return out def _snake_case ( self , _SCREAMING_SNAKE_CASE )->Any: '''simple docstring''' if self.n_clusters == 0: A_ : Optional[int] = self._compute_logit(_SCREAMING_SNAKE_CASE , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0] ) return nn.functional.log_softmax(_SCREAMING_SNAKE_CASE , dim=-1 ) else: # construct weights and biases A_ , A_ : Any = [], [] for i in range(len(self.cutoffs ) ): if self.div_val == 1: A_ , A_ : Optional[int] = self.cutoff_ends[i], self.cutoff_ends[i + 1] A_ : Tuple = self.out_layers[0].weight[l_idx:r_idx] A_ : List[str] = self.out_layers[0].bias[l_idx:r_idx] else: A_ : str = self.out_layers[i].weight A_ : int = self.out_layers[i].bias if i == 0: A_ : Optional[int] = torch.cat([weight_i, self.cluster_weight] , dim=0 ) A_ : Optional[int] = torch.cat([bias_i, self.cluster_bias] , dim=0 ) weights.append(_SCREAMING_SNAKE_CASE ) biases.append(_SCREAMING_SNAKE_CASE ) A_ , A_ , A_ : str = weights[0], biases[0], self.out_projs[0] A_ : str = self._compute_logit(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) A_ : int = hidden.new_empty((head_logit.size(0 ), self.n_token) ) A_ : Union[str, Any] = nn.functional.log_softmax(_SCREAMING_SNAKE_CASE , dim=1 ) A_ : Any = [0] + self.cutoffs for i in range(len(_SCREAMING_SNAKE_CASE ) - 1 ): A_ , A_ : Union[str, Any] = cutoff_values[i], cutoff_values[i + 1] if i == 0: A_ : List[str] = head_logprob[:, : self.cutoffs[0]] else: A_ , A_ , A_ : Optional[Any] = weights[i], biases[i], self.out_projs[i] A_ : Tuple = self._compute_logit(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) A_ : Tuple = nn.functional.log_softmax(_SCREAMING_SNAKE_CASE , dim=1 ) A_ : int = head_logprob[:, -i] + tail_logprob_i A_ : List[Any] = logprob_i return out
65
import importlib.util import os import platform from argparse import ArgumentParser import huggingface_hub from .. import __version__ as version from ..utils import ( is_accelerate_available, is_flax_available, is_safetensors_available, is_tf_available, is_torch_available, ) from . import BaseTransformersCLICommand def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE ): return EnvironmentCommand() def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE ): return EnvironmentCommand(args.accelerate_config_file ) class _lowerCamelCase ( UpperCamelCase ): """simple docstring""" @staticmethod def _snake_case ( _SCREAMING_SNAKE_CASE )->List[Any]: '''simple docstring''' A_ : str = parser.add_parser('''env''' ) download_parser.set_defaults(func=_SCREAMING_SNAKE_CASE ) download_parser.add_argument( '''--accelerate-config_file''' , default=_SCREAMING_SNAKE_CASE , help='''The accelerate config file to use for the default values in the launching script.''' , ) download_parser.set_defaults(func=_SCREAMING_SNAKE_CASE ) def __init__( self , _SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE )->None: '''simple docstring''' A_ : Optional[Any] = accelerate_config_file def _snake_case ( self )->Optional[int]: '''simple docstring''' A_ : Tuple = '''not installed''' if is_safetensors_available(): import safetensors A_ : Any = safetensors.__version__ elif importlib.util.find_spec('''safetensors''' ) is not None: import safetensors A_ : Optional[Any] = F'''{safetensors.__version__} but is ignored because of PyTorch version too old.''' A_ : Union[str, Any] = '''not installed''' A_ : List[Any] = '''not found''' if is_accelerate_available(): import accelerate from accelerate.commands.config import default_config_file, load_config_from_file A_ : int = accelerate.__version__ # Get the default from the config file. if self._accelerate_config_file is not None or os.path.isfile(_SCREAMING_SNAKE_CASE ): A_ : str = load_config_from_file(self._accelerate_config_file ).to_dict() A_ : List[Any] = ( '''\n'''.join([F'''\t- {prop}: {val}''' for prop, val in accelerate_config.items()] ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else F'''\t{accelerate_config}''' ) A_ : Optional[int] = '''not installed''' A_ : str = '''NA''' if is_torch_available(): import torch A_ : Tuple = torch.__version__ A_ : List[Any] = torch.cuda.is_available() A_ : int = '''not installed''' A_ : Any = '''NA''' if is_tf_available(): import tensorflow as tf A_ : str = tf.__version__ try: # deprecated in v2.1 A_ : List[str] = tf.test.is_gpu_available() except AttributeError: # returns list of devices, convert to bool A_ : Any = bool(tf.config.list_physical_devices('''GPU''' ) ) A_ : Union[str, Any] = '''not installed''' A_ : Tuple = '''not installed''' A_ : Tuple = '''not installed''' A_ : Union[str, Any] = '''NA''' if is_flax_available(): import flax import jax import jaxlib A_ : Tuple = flax.__version__ A_ : List[Any] = jax.__version__ A_ : List[Any] = jaxlib.__version__ A_ : Dict = jax.lib.xla_bridge.get_backend().platform A_ : Union[str, Any] = { '''`transformers` version''': version, '''Platform''': platform.platform(), '''Python version''': platform.python_version(), '''Huggingface_hub version''': huggingface_hub.__version__, '''Safetensors version''': F'''{safetensors_version}''', '''Accelerate version''': F'''{accelerate_version}''', '''Accelerate config''': F'''{accelerate_config_str}''', '''PyTorch version (GPU?)''': F'''{pt_version} ({pt_cuda_available})''', '''Tensorflow version (GPU?)''': F'''{tf_version} ({tf_cuda_available})''', '''Flax version (CPU?/GPU?/TPU?)''': F'''{flax_version} ({jax_backend})''', '''Jax version''': F'''{jax_version}''', '''JaxLib version''': F'''{jaxlib_version}''', '''Using GPU in script?''': '''<fill in>''', '''Using distributed or parallel set-up in script?''': '''<fill in>''', } print('''\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n''' ) print(self.format_dict(_SCREAMING_SNAKE_CASE ) ) return info @staticmethod def _snake_case ( _SCREAMING_SNAKE_CASE )->Dict: '''simple docstring''' return "\n".join([F'''- {prop}: {val}''' for prop, val in d.items()] ) + "\n"
65
1
import torch from diffusers import KDPMaDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class _lowercase ( lowerCAmelCase ): """simple docstring""" __A = (KDPMaDiscreteScheduler,) __A = 10 def UpperCamelCase_ (self , **lowerCamelCase_ ): """simple docstring""" a = { "num_train_timesteps": 1100, "beta_start": 0.0001, "beta_end": 0.02, "beta_schedule": "linear", } config.update(**lowerCamelCase_ ) return config def UpperCamelCase_ (self ): """simple docstring""" for timesteps in [10, 50, 100, 1000]: self.check_over_configs(num_train_timesteps=lowerCamelCase_ ) def UpperCamelCase_ (self ): """simple docstring""" for beta_start, beta_end in zip([0.0_0001, 0.0001, 0.001] , [0.0002, 0.002, 0.02] ): self.check_over_configs(beta_start=lowerCamelCase_ , beta_end=lowerCamelCase_ ) def UpperCamelCase_ (self ): """simple docstring""" for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=lowerCamelCase_ ) def UpperCamelCase_ (self ): """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowerCamelCase_ ) def UpperCamelCase_ (self ): """simple docstring""" a = self.scheduler_classes[0] a = self.get_scheduler_config(prediction_type="v_prediction" ) a = scheduler_class(**lowerCamelCase_ ) scheduler.set_timesteps(self.num_inference_steps ) a = self.dummy_model() a = self.dummy_sample_deter * scheduler.init_noise_sigma a = sample.to(lowerCamelCase_ ) for i, t in enumerate(scheduler.timesteps ): a = scheduler.scale_model_input(lowerCamelCase_ , lowerCamelCase_ ) a = model(lowerCamelCase_ , lowerCamelCase_ ) a = scheduler.step(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) a = output.prev_sample a = torch.sum(torch.abs(lowerCamelCase_ ) ) a = torch.mean(torch.abs(lowerCamelCase_ ) ) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 4.6_9_3_4E-0_7 ) < 1E-2 assert abs(result_mean.item() - 6.1_1_1_2E-1_0 ) < 1E-3 else: # CUDA assert abs(result_sum.item() - 4.6_9_3_4_2_8_6_5_0_1_7_0_9_7_2E-0_7 ) < 1E-2 assert abs(result_mean.item() - 0.0002 ) < 1E-3 def UpperCamelCase_ (self ): """simple docstring""" if torch_device == "mps": return a = self.scheduler_classes[0] a = self.get_scheduler_config() a = scheduler_class(**lowerCamelCase_ ) scheduler.set_timesteps(self.num_inference_steps ) a = self.dummy_model() a = self.dummy_sample_deter * scheduler.init_noise_sigma a = sample.to(lowerCamelCase_ ) for i, t in enumerate(scheduler.timesteps ): a = scheduler.scale_model_input(lowerCamelCase_ , lowerCamelCase_ ) a = model(lowerCamelCase_ , lowerCamelCase_ ) a = scheduler.step(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) a = output.prev_sample a = torch.sum(torch.abs(lowerCamelCase_ ) ) a = torch.mean(torch.abs(lowerCamelCase_ ) ) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 20.4125 ) < 1E-2 assert abs(result_mean.item() - 0.0266 ) < 1E-3 else: # CUDA assert abs(result_sum.item() - 20.4125 ) < 1E-2 assert abs(result_mean.item() - 0.0266 ) < 1E-3 def UpperCamelCase_ (self ): """simple docstring""" if torch_device == "mps": return a = self.scheduler_classes[0] a = self.get_scheduler_config() a = scheduler_class(**lowerCamelCase_ ) scheduler.set_timesteps(self.num_inference_steps , device=lowerCamelCase_ ) a = self.dummy_model() a = self.dummy_sample_deter.to(lowerCamelCase_ ) * scheduler.init_noise_sigma for t in scheduler.timesteps: a = scheduler.scale_model_input(lowerCamelCase_ , lowerCamelCase_ ) a = model(lowerCamelCase_ , lowerCamelCase_ ) a = scheduler.step(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) a = output.prev_sample a = torch.sum(torch.abs(lowerCamelCase_ ) ) a = torch.mean(torch.abs(lowerCamelCase_ ) ) if str(lowerCamelCase_ ).startswith("cpu" ): # The following sum varies between 148 and 156 on mps. Why? assert abs(result_sum.item() - 20.4125 ) < 1E-2 assert abs(result_mean.item() - 0.0266 ) < 1E-3 else: # CUDA assert abs(result_sum.item() - 20.4125 ) < 1E-2 assert abs(result_mean.item() - 0.0266 ) < 1E-3
227
import argparse import ast import logging import os import sys import pandas as pd import torch from tqdm import tqdm from transformers import BartForConditionalGeneration, RagRetriever, RagSequenceForGeneration, RagTokenForGeneration from transformers import logging as transformers_logging sys.path.append(os.path.join(os.getcwd())) # noqa: E402 # isort:skip from utils_rag import exact_match_score, fa_score # noqa: E402 # isort:skip _lowercase: Tuple = logging.getLogger(__name__) logging.basicConfig(level=logging.INFO) transformers_logging.set_verbosity_info() def a( A : Optional[Any] ) -> str: """simple docstring""" if "token" in model_name_or_path: return "rag_token" if "sequence" in model_name_or_path: return "rag_sequence" if "bart" in model_name_or_path: return "bart" return None def a( A : Dict , A : List[Any] , A : str ) -> List[str]: """simple docstring""" return max(metric_fn(A , A ) for gt in ground_truths ) def a( A : str , A : Optional[Any] , A : Optional[Any] ) -> Optional[int]: """simple docstring""" a = [line.strip() for line in open(A , "r" ).readlines()] a = [] if args.gold_data_mode == "qa": a = pd.read_csv(A , sep="\t" , header=A ) for answer_list in data[1]: a = ast.literal_eval(A ) answers.append(A ) else: a = [line.strip() for line in open(A , "r" ).readlines()] a = [[reference] for reference in references] a = a = a = 0 for prediction, ground_truths in zip(A , A ): total += 1 em += metric_max_over_ground_truths(A , A , A ) fa += metric_max_over_ground_truths(A , A , A ) a = 100.0 * em / total a = 100.0 * fa / total logger.info(f'''F1: {fa:.2f}''' ) logger.info(f'''EM: {em:.2f}''' ) def a( A : Dict , A : str , A : List[str] ) -> List[Any]: """simple docstring""" a = args.k a = [line.strip() for line in open(A , "r" ).readlines()] a = [line.strip() for line in open(A , "r" ).readlines()] a = a = 0 for hypo, reference in zip(A , A ): a = set(hypo.split("\t" )[:k] ) a = set(reference.split("\t" ) ) total += 1 em += len(hypo_provenance & ref_provenance ) / k a = 100.0 * em / total logger.info(f'''Precision@{k}: {em: .2f}''' ) def a( A : Dict , A : Any , A : List[Any] ) -> Any: """simple docstring""" def strip_title(A : Any ): if title.startswith("\"" ): a = title[1:] if title.endswith("\"" ): a = title[:-1] return title a = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( A , return_tensors="pt" , padding=A , truncation=A , )["input_ids"].to(args.device ) a = rag_model.rag.question_encoder(A ) a = question_enc_outputs[0] a = rag_model.retriever( A , question_enc_pool_output.cpu().detach().to(torch.floataa ).numpy() , prefix=rag_model.rag.generator.config.prefix , n_docs=rag_model.config.n_docs , return_tensors="pt" , ) a = rag_model.retriever.index.get_doc_dicts(result.doc_ids ) a = [] for docs in all_docs: a = [strip_title(A ) for title in docs["title"]] provenance_strings.append("\t".join(A ) ) return provenance_strings def a( A : Union[str, Any] , A : Optional[int] , A : Tuple ) -> Tuple: """simple docstring""" with torch.no_grad(): a = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( A , return_tensors="pt" , padding=A , truncation=A ) a = inputs_dict.input_ids.to(args.device ) a = inputs_dict.attention_mask.to(args.device ) a = rag_model.generate( # rag_model overwrites generate A , attention_mask=A , num_beams=args.num_beams , min_length=args.min_length , max_length=args.max_length , early_stopping=A , num_return_sequences=1 , bad_words_ids=[[0, 0]] , ) a = rag_model.retriever.generator_tokenizer.batch_decode(A , skip_special_tokens=A ) if args.print_predictions: for q, a in zip(A , A ): logger.info("Q: {} - A: {}".format(A , A ) ) return answers def a( ) -> Any: """simple docstring""" a = argparse.ArgumentParser() parser.add_argument( "--model_type" , choices=["rag_sequence", "rag_token", "bart"] , type=A , help=( "RAG model type: rag_sequence, rag_token or bart, if none specified, the type is inferred from the" " model_name_or_path" ) , ) parser.add_argument( "--index_name" , default=A , choices=["exact", "compressed", "legacy"] , type=A , help="RAG model retriever type" , ) parser.add_argument( "--index_path" , default=A , type=A , help="Path to the retrieval index" , ) parser.add_argument("--n_docs" , default=5 , type=A , help="Number of retrieved docs" ) parser.add_argument( "--model_name_or_path" , default=A , type=A , required=A , help="Path to pretrained checkpoints or model identifier from huggingface.co/models" , ) parser.add_argument( "--eval_mode" , choices=["e2e", "retrieval"] , default="e2e" , type=A , help=( "Evaluation mode, e2e calculates exact match and F1 of the downstream task, retrieval calculates" " precision@k." ) , ) parser.add_argument("--k" , default=1 , type=A , help="k for the precision@k calculation" ) parser.add_argument( "--evaluation_set" , default=A , type=A , required=A , help="Path to a file containing evaluation samples" , ) parser.add_argument( "--gold_data_path" , default=A , type=A , required=A , help="Path to a tab-separated file with gold samples" , ) parser.add_argument( "--gold_data_mode" , default="qa" , type=A , choices=["qa", "ans"] , help=( "Format of the gold data file" "qa - a single line in the following format: question [tab] answer_list" "ans - a single line of the gold file contains the expected answer string" ) , ) parser.add_argument( "--predictions_path" , type=A , default="predictions.txt" , help="Name of the predictions file, to be stored in the checkpoints directory" , ) parser.add_argument( "--eval_all_checkpoints" , action="store_true" , help="Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number" , ) parser.add_argument( "--eval_batch_size" , default=8 , type=A , help="Batch size per GPU/CPU for evaluation." , ) parser.add_argument( "--recalculate" , help="Recalculate predictions even if the prediction file exists" , action="store_true" , ) parser.add_argument( "--num_beams" , default=4 , type=A , help="Number of beams to be used when generating answers" , ) parser.add_argument("--min_length" , default=1 , type=A , help="Min length of the generated answers" ) parser.add_argument("--max_length" , default=50 , type=A , help="Max length of the generated answers" ) parser.add_argument( "--print_predictions" , action="store_true" , help="If True, prints predictions while evaluating." , ) parser.add_argument( "--print_docs" , action="store_true" , help="If True, prints docs retried while generating." , ) a = parser.parse_args() a = torch.device("cuda" if torch.cuda.is_available() else "cpu" ) return args def a( A : Any ) -> Optional[Any]: """simple docstring""" a = {} if args.model_type is None: a = infer_model_type(args.model_name_or_path ) assert args.model_type is not None if args.model_type.startswith("rag" ): a = RagTokenForGeneration if args.model_type == "rag_token" else RagSequenceForGeneration a = args.n_docs if args.index_name is not None: a = args.index_name if args.index_path is not None: a = args.index_path else: a = BartForConditionalGeneration a = ( [f.path for f in os.scandir(args.model_name_or_path ) if f.is_dir()] if args.eval_all_checkpoints else [args.model_name_or_path] ) logger.info("Evaluate the following checkpoints: %s" , A ) a = get_scores if args.eval_mode == "e2e" else get_precision_at_k a = evaluate_batch_eae if args.eval_mode == "e2e" else evaluate_batch_retrieval for checkpoint in checkpoints: if os.path.exists(args.predictions_path ) and (not args.recalculate): logger.info("Calculating metrics based on an existing predictions file: {}".format(args.predictions_path ) ) score_fn(A , args.predictions_path , args.gold_data_path ) continue logger.info("***** Running evaluation for {} *****".format(A ) ) logger.info(" Batch size = %d" , args.eval_batch_size ) logger.info(" Predictions will be stored under {}".format(args.predictions_path ) ) if args.model_type.startswith("rag" ): a = RagRetriever.from_pretrained(A , **A ) a = model_class.from_pretrained(A , retriever=A , **A ) model.retriever.init_retrieval() else: a = model_class.from_pretrained(A , **A ) model.to(args.device ) with open(args.evaluation_set , "r" ) as eval_file, open(args.predictions_path , "w" ) as preds_file: a = [] for line in tqdm(A ): questions.append(line.strip() ) if len(A ) == args.eval_batch_size: a = evaluate_batch_fn(A , A , A ) preds_file.write("\n".join(A ) + "\n" ) preds_file.flush() a = [] if len(A ) > 0: a = evaluate_batch_fn(A , A , A ) preds_file.write("\n".join(A ) ) preds_file.flush() score_fn(A , args.predictions_path , args.gold_data_path ) if __name__ == "__main__": _lowercase: Optional[int] = get_args() main(args)
227
1
def UpperCAmelCase ( a_ ) -> str: """simple docstring""" if isinstance(a_ , a_ ): raise TypeError("'float' object cannot be interpreted as an integer" ) if isinstance(a_ , a_ ): raise TypeError("'str' object cannot be interpreted as an integer" ) if num == 0: return "0b0" __A = False if num < 0: __A = True __A = -num __A = [] while num > 0: binary.insert(0 , num % 2 ) num >>= 1 if negative: return "-0b" + "".join(str(a_ ) for e in binary ) return "0b" + "".join(str(a_ ) for e in binary ) if __name__ == "__main__": import doctest doctest.testmod()
124
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.auto import AutoModelForSequenceClassification, AutoTokenizer from .base import PipelineTool class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' snake_case_ = "facebook/bart-large-mnli" snake_case_ = ( "This is a tool that classifies an English text using provided labels. It takes two inputs: `text`, which " "should be the text to classify, and `labels`, which should be the list of labels to use for classification. " "It returns the most likely label in the list of provided `labels` for the input text." ) snake_case_ = "text_classifier" snake_case_ = AutoTokenizer snake_case_ = AutoModelForSequenceClassification snake_case_ = ["text", ["text"]] snake_case_ = ["text"] def UpperCamelCase_ ( self : str ): super().setup() __A = self.model.config __A = -1 for idx, label in config.idalabel.items(): if label.lower().startswith("entail" ): __A = int(A ) if self.entailment_id == -1: raise ValueError("Could not determine the entailment ID from the model config, please pass it at init." ) def UpperCamelCase_ ( self : int ,A : Optional[Any] ,A : Dict ): __A = labels return self.pre_processor( [text] * len(A ) ,[f'''This example is {label}''' for label in labels] ,return_tensors="pt" ,padding="max_length" ,) def UpperCamelCase_ ( self : Union[str, Any] ,A : Tuple ): __A = outputs.logits __A = torch.argmax(logits[:, 2] ).item() return self._labels[label_id]
124
1
def A_ ( a , a , a=False ): """simple docstring""" if isinstance(a , a ) and isinstance(a , a ): SCREAMING_SNAKE_CASE_ : int = len(set_a.intersection(a ) ) if alternative_union: SCREAMING_SNAKE_CASE_ : Dict = len(a ) + len(a ) else: SCREAMING_SNAKE_CASE_ : Optional[int] = len(set_a.union(a ) ) return intersection / union if isinstance(a , (list, tuple) ) and isinstance(a , (list, tuple) ): SCREAMING_SNAKE_CASE_ : Tuple = [element for element in set_a if element in set_b] if alternative_union: SCREAMING_SNAKE_CASE_ : List[str] = len(a ) + len(a ) return len(a ) / union else: SCREAMING_SNAKE_CASE_ : List[str] = set_a + [element for element in set_b if element not in set_a] return len(a ) / len(a ) return len(a ) / len(a ) return None if __name__ == "__main__": lowerCAmelCase : Any = {"""a""", """b""", """c""", """d""", """e"""} lowerCAmelCase : List[Any] = {"""c""", """d""", """e""", """f""", """h""", """i"""} print(jaccard_similarity(set_a, set_b))
253
'''simple docstring''' import doctest from collections import deque import numpy as np class UpperCAmelCase : '''simple docstring''' def __init__( self ) -> None: lowercase__ : str = [2, 1, 2, -1] lowercase__ : str = [1, 2, 3, 4] def _lowerCAmelCase( self ) -> list[float]: lowercase__ : Optional[Any] = len(self.first_signal ) lowercase__ : Union[str, Any] = len(self.second_signal ) lowercase__ : int = max(__lowerCAmelCase , __lowerCAmelCase ) # create a zero matrix of max_length x max_length lowercase__ : List[str] = [[0] * max_length for i in range(__lowerCAmelCase )] # fills the smaller signal with zeros to make both signals of same length if length_first_signal < length_second_signal: self.first_signal += [0] * (max_length - length_first_signal) elif length_first_signal > length_second_signal: self.second_signal += [0] * (max_length - length_second_signal) for i in range(__lowerCAmelCase ): lowercase__ : int = deque(self.second_signal ) rotated_signal.rotate(__lowerCAmelCase ) for j, item in enumerate(__lowerCAmelCase ): matrix[i][j] += item # multiply the matrix with the first signal lowercase__ : Optional[int] = np.matmul(np.transpose(__lowerCAmelCase ) , np.transpose(self.first_signal ) ) # rounding-off to two decimal places return [round(__lowerCAmelCase , 2 ) for i in final_signal] if __name__ == "__main__": doctest.testmod()
198
0
import unittest from transformers.models.xlm_prophetnet.tokenization_xlm_prophetnet import SPIECE_UNDERLINE, XLMProphetNetTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin a__ : Optional[Any] = get_tests_dir('''fixtures/test_sentencepiece.model''') @require_sentencepiece class a_ ( a__ , unittest.TestCase ): """simple docstring""" __SCREAMING_SNAKE_CASE : Any = XLMProphetNetTokenizer __SCREAMING_SNAKE_CASE : List[str] = False __SCREAMING_SNAKE_CASE : Dict = True def __lowerCAmelCase ( self ) ->Dict: super().setUp() # We have a SentencePiece fixture for testing SCREAMING_SNAKE_CASE : Optional[Any] = XLMProphetNetTokenizer(_lowerCamelCase , keep_accents=_lowerCamelCase ) tokenizer.save_pretrained(self.tmpdirname ) def __lowerCAmelCase ( self ) ->Tuple: SCREAMING_SNAKE_CASE : List[str] = '''[PAD]''' SCREAMING_SNAKE_CASE : Tuple = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_lowerCamelCase ) , _lowerCamelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_lowerCamelCase ) , _lowerCamelCase ) def __lowerCAmelCase ( self ) ->List[Any]: SCREAMING_SNAKE_CASE : Optional[Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''[PAD]''' ) self.assertEqual(vocab_keys[1] , '''[CLS]''' ) self.assertEqual(vocab_keys[-1] , '''j''' ) self.assertEqual(len(_lowerCamelCase ) , 1012 ) def __lowerCAmelCase ( self ) ->List[str]: self.assertEqual(self.get_tokenizer().vocab_size , 1012 ) def __lowerCAmelCase ( self ) ->Optional[int]: SCREAMING_SNAKE_CASE : Union[str, Any] = XLMProphetNetTokenizer(_lowerCamelCase , keep_accents=_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(_lowerCamelCase , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_lowerCamelCase ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( _lowerCamelCase , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer.convert_tokens_to_ids(_lowerCamelCase ) self.assertListEqual( _lowerCamelCase , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, -9, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, -9, 4] ] , ) SCREAMING_SNAKE_CASE : str = tokenizer.convert_ids_to_tokens(_lowerCamelCase ) self.assertListEqual( _lowerCamelCase , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''[UNK]''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''[UNK]''', '''.''', ] , ) @cached_property def __lowerCAmelCase ( self ) ->List[str]: return XLMProphetNetTokenizer.from_pretrained('''microsoft/xprophetnet-large-wiki100-cased''' ) @slow def __lowerCAmelCase ( self ) ->Any: SCREAMING_SNAKE_CASE : Union[str, Any] = '''Hello World!''' SCREAMING_SNAKE_CASE : int = [3_5389, 6672, 49, 2] self.assertListEqual(_lowerCamelCase , self.big_tokenizer.encode(_lowerCamelCase ) ) @slow def __lowerCAmelCase ( self ) ->int: # fmt: off SCREAMING_SNAKE_CASE : str = {'''input_ids''': [[1_1073, 8_2783, 18, 26, 8_2783, 549, 5_1540, 248, 1_7209, 1301, 217, 20, 21_5186, 1325, 147, 1_7209, 1301, 217, 20, 5_6370, 53, 12_2020, 20, 1_6477, 27, 8_7355, 4548, 20, 4728, 7_8392, 17, 15_9969, 18, 26, 2_4491, 629, 15, 538, 2_2704, 5439, 15, 2788, 2_4491, 9885, 15, 4_3534, 605, 15, 814, 1_8403, 3_3200, 29, 15, 4_3534, 2_4458, 1_2410, 111, 2_4966, 8_3669, 9637, 14_4068, 26, 850, 2_2346, 27, 147, 2_4966, 8_3669, 8_3490, 26, 3_9113, 735, 27, 689, 656, 2800, 1339, 4600, 53, 12_2020, 11_5785, 34, 816, 1339, 4_6887, 18, 147, 5_3905, 1951, 4_2238, 4_1170, 1_7732, 834, 436, 15, 2_7523, 9_8733, 217, 147, 5542, 4981, 930, 1_7347, 16, 2], [2_0091, 629, 94, 8_2786, 58, 490, 20, 1528, 84, 5_3905, 344, 8_0592, 11_0128, 1_8822, 5267, 1306, 62, 15_2537, 308, 7997, 401, 12_4427, 549, 3_5442, 225, 109, 1_5055, 2_5748, 147, 7119, 4_3712, 34, 767, 13_5366, 18, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [592, 6_3784, 11_9466, 17, 14_7808, 8_8214, 18, 656, 81, 32, 3296, 1_0280, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_lowerCamelCase , model_name='''microsoft/xprophetnet-large-wiki100-cased''' , revision='''1acad1643ddd54a44df6a1b797ada8373685d90e''' , )
19
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) a__ : Optional[Any] = {'''configuration_deit''': ['''DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''DeiTConfig''', '''DeiTOnnxConfig''']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Optional[Any] = ['''DeiTFeatureExtractor'''] a__ : Any = ['''DeiTImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Tuple = [ '''DEIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''DeiTForImageClassification''', '''DeiTForImageClassificationWithTeacher''', '''DeiTForMaskedImageModeling''', '''DeiTModel''', '''DeiTPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : List[str] = [ '''TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFDeiTForImageClassification''', '''TFDeiTForImageClassificationWithTeacher''', '''TFDeiTForMaskedImageModeling''', '''TFDeiTModel''', '''TFDeiTPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_deit import DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, DeiTConfig, DeiTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_deit import DeiTFeatureExtractor from .image_processing_deit import DeiTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deit import ( DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, DeiTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deit import ( TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, TFDeiTPreTrainedModel, ) else: import sys a__ : List[str] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
19
1
"""simple docstring""" from __future__ import annotations _a : Union[str, Any]= [-10, -5, 0, 5, 5.1, 11, 13, 21, 3, 4, -21, -10, -5, -1, 0] _a : Union[str, Any]= [-5, 0, 5, 5.1, 11, 13, 21, -1, 4, -1, -10, -5, -1, 0, -1] def __UpperCAmelCase ( UpperCAmelCase_ : list[float] ) -> list[float]: '''simple docstring''' __snake_case : Union[str, Any] = [] __snake_case : List[Any] = len(UpperCAmelCase_ ) for i in range(UpperCAmelCase_ ): __snake_case : float = -1 for j in range(i + 1 , UpperCAmelCase_ ): if arr[i] < arr[j]: __snake_case : Any = arr[j] break result.append(UpperCAmelCase_ ) return result def __UpperCAmelCase ( UpperCAmelCase_ : list[float] ) -> list[float]: '''simple docstring''' __snake_case : str = [] for i, outer in enumerate(UpperCAmelCase_ ): __snake_case : float = -1 for inner in arr[i + 1 :]: if outer < inner: __snake_case : Optional[int] = inner break result.append(UpperCAmelCase_ ) return result def __UpperCAmelCase ( UpperCAmelCase_ : list[float] ) -> list[float]: '''simple docstring''' __snake_case : List[Any] = len(UpperCAmelCase_ ) __snake_case : list[float] = [] __snake_case : list[float] = [-1] * arr_size for index in reversed(range(UpperCAmelCase_ ) ): if stack: while stack[-1] <= arr[index]: stack.pop() if not stack: break if stack: __snake_case : List[str] = stack[-1] stack.append(arr[index] ) return result if __name__ == "__main__": from doctest import testmod from timeit import timeit testmod() print(next_greatest_element_slow(arr)) print(next_greatest_element_fast(arr)) print(next_greatest_element(arr)) _a : Optional[Any]= ( "from __main__ import arr, next_greatest_element_slow, " "next_greatest_element_fast, next_greatest_element" ) print( "next_greatest_element_slow():", timeit("next_greatest_element_slow(arr)", setup=setup), ) print( "next_greatest_element_fast():", timeit("next_greatest_element_fast(arr)", setup=setup), ) print( " next_greatest_element():", timeit("next_greatest_element(arr)", setup=setup), )
172
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _a : Union[str, Any]= logging.get_logger(__name__) _a : str= { "alibaba-damo/mgp-str-base": "https://huggingface.co/alibaba-damo/mgp-str-base/resolve/main/config.json", } class UpperCamelCase ( lowercase ): UpperCAmelCase : List[str] = """mgp-str""" def __init__(self : List[Any] , _A : Dict=[32, 1_28] , _A : Any=4 , _A : int=3 , _A : Any=27 , _A : List[str]=38 , _A : str=5_02_57 , _A : Optional[int]=3_05_22 , _A : Union[str, Any]=7_68 , _A : Tuple=12 , _A : List[str]=12 , _A : List[str]=4.0 , _A : Optional[int]=True , _A : Optional[Any]=False , _A : Dict=1E-5 , _A : Optional[int]=0.0 , _A : str=0.0 , _A : int=0.0 , _A : str=False , _A : List[Any]=0.02 , **_A : Union[str, Any] , ) -> Tuple: super().__init__(**_A) __snake_case : Union[str, Any] = image_size __snake_case : Optional[int] = patch_size __snake_case : int = num_channels __snake_case : int = max_token_length __snake_case : List[Any] = num_character_labels __snake_case : Optional[int] = num_bpe_labels __snake_case : Optional[Any] = num_wordpiece_labels __snake_case : int = hidden_size __snake_case : List[Any] = num_hidden_layers __snake_case : List[str] = num_attention_heads __snake_case : Any = mlp_ratio __snake_case : List[str] = distilled __snake_case : List[Any] = layer_norm_eps __snake_case : List[Any] = drop_rate __snake_case : Optional[int] = qkv_bias __snake_case : Optional[int] = attn_drop_rate __snake_case : int = drop_path_rate __snake_case : List[str] = output_aa_attentions __snake_case : Optional[Any] = initializer_range
172
1
import os lowerCAmelCase : int = {'I': 1, 'V': 5, 'X': 10, 'L': 50, 'C': 1_00, 'D': 5_00, 'M': 10_00} def A_( A : str): UpperCamelCase = 0 UpperCamelCase = 0 while index < len(lowerCamelCase__) - 1: UpperCamelCase = SYMBOLS[numerals[index]] UpperCamelCase = SYMBOLS[numerals[index + 1]] if current_value < next_value: total_value -= current_value else: total_value += current_value index += 1 total_value += SYMBOLS[numerals[index]] return total_value def A_( A : int): UpperCamelCase = '''''' UpperCamelCase = num // 1000 numerals += m_count * "M" num %= 1000 UpperCamelCase = num // 100 if c_count == 9: numerals += "CM" c_count -= 9 elif c_count == 4: numerals += "CD" c_count -= 4 if c_count >= 5: numerals += "D" c_count -= 5 numerals += c_count * "C" num %= 100 UpperCamelCase = num // 10 if x_count == 9: numerals += "XC" x_count -= 9 elif x_count == 4: numerals += "XL" x_count -= 4 if x_count >= 5: numerals += "L" x_count -= 5 numerals += x_count * "X" num %= 10 if num == 9: numerals += "IX" num -= 9 elif num == 4: numerals += "IV" num -= 4 if num >= 5: numerals += "V" num -= 5 numerals += num * "I" return numerals def A_( A : str = "/p089_roman.txt"): UpperCamelCase = 0 with open(os.path.dirname(lowerCamelCase__) + roman_numerals_filename) as filea: UpperCamelCase = filea.readlines() for line in lines: UpperCamelCase = line.strip() UpperCamelCase = parse_roman_numerals(lowerCamelCase__) UpperCamelCase = generate_roman_numerals(lowerCamelCase__) savings += len(lowerCamelCase__) - len(lowerCamelCase__) return savings if __name__ == "__main__": print(f"""{solution() = }""")
354
'''simple docstring''' import json import os from collections import Counter import torch import torchvision import torchvision.transforms as transforms from PIL import Image from torch import nn from torch.utils.data import Dataset lowerCAmelCase : str = {1: (1, 1), 2: (2, 1), 3: (3, 1), 4: (2, 2), 5: (5, 1), 6: (3, 2), 7: (7, 1), 8: (4, 2), 9: (3, 3)} class SCREAMING_SNAKE_CASE__ ( nn.Module): def __init__( self , A_ )-> int: '''simple docstring''' super().__init__() UpperCamelCase = torchvision.models.resnetaaa(pretrained=A_ ) UpperCamelCase = list(model.children() )[:-2] UpperCamelCase = nn.Sequential(*A_ ) UpperCamelCase = nn.AdaptiveAvgPoolad(POOLING_BREAKDOWN[args.num_image_embeds] ) def UpperCAmelCase_ ( self , A_ )-> List[Any]: '''simple docstring''' UpperCamelCase = self.pool(self.model(A_ ) ) UpperCamelCase = torch.flatten(A_ , start_dim=2 ) UpperCamelCase = out.transpose(1 , 2 ).contiguous() return out # BxNx2048 class SCREAMING_SNAKE_CASE__ ( snake_case_): def __init__( self , A_ , A_ , A_ , A_ , A_ )-> Dict: '''simple docstring''' UpperCamelCase = [json.loads(A_ ) for l in open(A_ )] UpperCamelCase = os.path.dirname(A_ ) UpperCamelCase = tokenizer UpperCamelCase = labels UpperCamelCase = len(A_ ) UpperCamelCase = max_seq_length UpperCamelCase = transforms def __len__( self )-> Union[str, Any]: '''simple docstring''' return len(self.data ) def __getitem__( self , A_ )-> Any: '''simple docstring''' UpperCamelCase = torch.LongTensor(self.tokenizer.encode(self.data[index]['text'] , add_special_tokens=A_ ) ) UpperCamelCase , UpperCamelCase , UpperCamelCase = sentence[0], sentence[1:-1], sentence[-1] UpperCamelCase = sentence[: self.max_seq_length] UpperCamelCase = torch.zeros(self.n_classes ) UpperCamelCase = 1 UpperCamelCase = Image.open(os.path.join(self.data_dir , self.data[index]['img'] ) ).convert('RGB' ) UpperCamelCase = self.transforms(A_ ) return { "image_start_token": start_token, "image_end_token": end_token, "sentence": sentence, "image": image, "label": label, } def UpperCAmelCase_ ( self )-> List[Any]: '''simple docstring''' UpperCamelCase = Counter() for row in self.data: label_freqs.update(row['label'] ) return label_freqs def A_( A : Union[str, Any]): UpperCamelCase = [len(row['sentence']) for row in batch] UpperCamelCase , UpperCamelCase = len(A), max(A) UpperCamelCase = torch.zeros(A , A , dtype=torch.long) UpperCamelCase = torch.zeros(A , A , dtype=torch.long) for i_batch, (input_row, length) in enumerate(zip(A , A)): UpperCamelCase = input_row['sentence'] UpperCamelCase = 1 UpperCamelCase = torch.stack([row['image'] for row in batch]) UpperCamelCase = torch.stack([row['label'] for row in batch]) UpperCamelCase = torch.stack([row['image_start_token'] for row in batch]) UpperCamelCase = torch.stack([row['image_end_token'] for row in batch]) return text_tensor, mask_tensor, img_tensor, img_start_token, img_end_token, tgt_tensor def A_( ): return [ "Crime", "Drama", "Thriller", "Action", "Comedy", "Romance", "Documentary", "Short", "Mystery", "History", "Family", "Adventure", "Fantasy", "Sci-Fi", "Western", "Horror", "Sport", "War", "Music", "Musical", "Animation", "Biography", "Film-Noir", ] def A_( ): return transforms.Compose( [ transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(), transforms.Normalize( mean=[0.46_777_044, 0.44_531_429, 0.40_661_017] , std=[0.12_221_994, 0.12_145_835, 0.14_380_469] , ), ])
251
0
import argparse import OmegaConf import torch from diffusers import DDIMScheduler, LDMPipeline, UNetLDMModel, VQModel def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : Any , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Dict ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = OmegaConf.load(__UpperCamelCase ) SCREAMING_SNAKE_CASE__ = torch.load(__UpperCamelCase , map_location="""cpu""" )["""model"""] SCREAMING_SNAKE_CASE__ = list(state_dict.keys() ) # extract state_dict for VQVAE SCREAMING_SNAKE_CASE__ = {} SCREAMING_SNAKE_CASE__ = """first_stage_model.""" for key in keys: if key.startswith(__UpperCamelCase ): SCREAMING_SNAKE_CASE__ = state_dict[key] # extract state_dict for UNetLDM SCREAMING_SNAKE_CASE__ = {} SCREAMING_SNAKE_CASE__ = """model.diffusion_model.""" for key in keys: if key.startswith(__UpperCamelCase ): SCREAMING_SNAKE_CASE__ = state_dict[key] SCREAMING_SNAKE_CASE__ = config.model.params.first_stage_config.params SCREAMING_SNAKE_CASE__ = config.model.params.unet_config.params SCREAMING_SNAKE_CASE__ = VQModel(**__UpperCamelCase ).eval() vqvae.load_state_dict(__UpperCamelCase ) SCREAMING_SNAKE_CASE__ = UNetLDMModel(**__UpperCamelCase ).eval() unet.load_state_dict(__UpperCamelCase ) SCREAMING_SNAKE_CASE__ = DDIMScheduler( timesteps=config.model.params.timesteps , beta_schedule="""scaled_linear""" , beta_start=config.model.params.linear_start , beta_end=config.model.params.linear_end , clip_sample=__UpperCamelCase , ) SCREAMING_SNAKE_CASE__ = LDMPipeline(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) pipeline.save_pretrained(__UpperCamelCase ) if __name__ == "__main__": __lowerCamelCase : Optional[Any] = argparse.ArgumentParser() parser.add_argument('''--checkpoint_path''', type=str, required=True) parser.add_argument('''--config_path''', type=str, required=True) parser.add_argument('''--output_path''', type=str, required=True) __lowerCamelCase : str = parser.parse_args() convert_ldm_original(args.checkpoint_path, args.config_path, args.output_path)
219
import doctest from collections import deque import numpy as np class __snake_case : def __init__( self : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE__ = [2, 1, 2, -1] SCREAMING_SNAKE_CASE__ = [1, 2, 3, 4] def __a ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE__ = len(self.first_signal ) SCREAMING_SNAKE_CASE__ = len(self.second_signal ) SCREAMING_SNAKE_CASE__ = max(_lowercase , _lowercase ) # create a zero matrix of max_length x max_length SCREAMING_SNAKE_CASE__ = [[0] * max_length for i in range(_lowercase )] # fills the smaller signal with zeros to make both signals of same length if length_first_signal < length_second_signal: self.first_signal += [0] * (max_length - length_first_signal) elif length_first_signal > length_second_signal: self.second_signal += [0] * (max_length - length_second_signal) for i in range(_lowercase ): SCREAMING_SNAKE_CASE__ = deque(self.second_signal ) rotated_signal.rotate(_lowercase ) for j, item in enumerate(_lowercase ): matrix[i][j] += item # multiply the matrix with the first signal SCREAMING_SNAKE_CASE__ = np.matmul(np.transpose(_lowercase ) , np.transpose(self.first_signal ) ) # rounding-off to two decimal places return [round(_lowercase , 2 ) for i in final_signal] if __name__ == "__main__": doctest.testmod()
219
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _SCREAMING_SNAKE_CASE = { """configuration_roc_bert""": ["""ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """RoCBertConfig"""], """tokenization_roc_bert""": ["""RoCBertTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: pass try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ """ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """RoCBertForCausalLM""", """RoCBertForMaskedLM""", """RoCBertForMultipleChoice""", """RoCBertForPreTraining""", """RoCBertForQuestionAnswering""", """RoCBertForSequenceClassification""", """RoCBertForTokenClassification""", """RoCBertLayer""", """RoCBertModel""", """RoCBertPreTrainedModel""", """load_tf_weights_in_roc_bert""", ] if TYPE_CHECKING: from .configuration_roc_bert import ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RoCBertConfig from .tokenization_roc_bert import RoCBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: raise OptionalDependencyNotAvailable() try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roc_bert import ( ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, RoCBertForCausalLM, RoCBertForMaskedLM, RoCBertForMultipleChoice, RoCBertForPreTraining, RoCBertForQuestionAnswering, RoCBertForSequenceClassification, RoCBertForTokenClassification, RoCBertLayer, RoCBertModel, RoCBertPreTrainedModel, load_tf_weights_in_roc_bert, ) else: import sys _SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
367
# Author: OMKAR PATHAK, Nwachukwu Chidiebere # Use a Python dictionary to construct the graph. from __future__ import annotations from pprint import pformat from typing import Generic, TypeVar _SCREAMING_SNAKE_CASE = TypeVar("""T""") class SCREAMING_SNAKE_CASE_ ( Generic[T] ): def __init__( self : Optional[Any] , lowerCamelCase_ : bool = True ): """simple docstring""" UpperCamelCase = {} # dictionary of lists UpperCamelCase = directed def lowerCamelCase_ ( self : int , lowerCamelCase_ : T , lowerCamelCase_ : T ): """simple docstring""" if not self.directed: # For undirected graphs # if both source vertex and destination vertex are both present in the # adjacency list, add destination vertex to source vertex list of adjacent # vertices and add source vertex to destination vertex list of adjacent # vertices. if source_vertex in self.adj_list and destination_vertex in self.adj_list: self.adj_list[source_vertex].append(lowerCamelCase_ ) self.adj_list[destination_vertex].append(lowerCamelCase_ ) # if only source vertex is present in adjacency list, add destination vertex # to source vertex list of adjacent vertices, then create a new vertex with # destination vertex as key and assign a list containing the source vertex # as it's first adjacent vertex. elif source_vertex in self.adj_list: self.adj_list[source_vertex].append(lowerCamelCase_ ) UpperCamelCase = [source_vertex] # if only destination vertex is present in adjacency list, add source vertex # to destination vertex list of adjacent vertices, then create a new vertex # with source vertex as key and assign a list containing the source vertex # as it's first adjacent vertex. elif destination_vertex in self.adj_list: self.adj_list[destination_vertex].append(lowerCamelCase_ ) UpperCamelCase = [destination_vertex] # if both source vertex and destination vertex are not present in adjacency # list, create a new vertex with source vertex as key and assign a list # containing the destination vertex as it's first adjacent vertex also # create a new vertex with destination vertex as key and assign a list # containing the source vertex as it's first adjacent vertex. else: UpperCamelCase = [destination_vertex] UpperCamelCase = [source_vertex] else: # For directed graphs # if both source vertex and destination vertex are present in adjacency # list, add destination vertex to source vertex list of adjacent vertices. if source_vertex in self.adj_list and destination_vertex in self.adj_list: self.adj_list[source_vertex].append(lowerCamelCase_ ) # if only source vertex is present in adjacency list, add destination # vertex to source vertex list of adjacent vertices and create a new vertex # with destination vertex as key, which has no adjacent vertex elif source_vertex in self.adj_list: self.adj_list[source_vertex].append(lowerCamelCase_ ) UpperCamelCase = [] # if only destination vertex is present in adjacency list, create a new # vertex with source vertex as key and assign a list containing destination # vertex as first adjacent vertex elif destination_vertex in self.adj_list: UpperCamelCase = [destination_vertex] # if both source vertex and destination vertex are not present in adjacency # list, create a new vertex with source vertex as key and a list containing # destination vertex as it's first adjacent vertex. Then create a new vertex # with destination vertex as key, which has no adjacent vertex else: UpperCamelCase = [destination_vertex] UpperCamelCase = [] return self def __repr__( self : Optional[int] ): """simple docstring""" return pformat(self.adj_list )
165
0
"""simple docstring""" from dataclasses import dataclass, field from typing import Optional @dataclass class __A : """simple docstring""" __lowerCAmelCase = field( default="codeparrot/codeparrot", metadata={"help": "Model name or path of model to be trained."} ) __lowerCAmelCase = field( default="./", metadata={"help": "Save dir where model repo is cloned and models updates are saved to."} ) __lowerCAmelCase = field( default="codeparrot/codeparrot-clean-train", metadata={"help": "Name or path of training dataset."} ) __lowerCAmelCase = field( default="codeparrot/codeparrot-clean-valid", metadata={"help": "Name or path of validation dataset."} ) __lowerCAmelCase = field(default=2, metadata={"help": "Batch size for training."} ) __lowerCAmelCase = field(default=2, metadata={"help": "Batch size for evaluation."} ) __lowerCAmelCase = field(default=0.1, metadata={"help": "Value of weight decay."} ) __lowerCAmelCase = field( default=10000, metadata={"help": "Size of buffer used to shuffle streaming dataset."} ) __lowerCAmelCase = field(default=2e-4, metadata={"help": "Learning rate fo training."} ) __lowerCAmelCase = field(default="cosine", metadata={"help": "Learning rate."} ) __lowerCAmelCase = field( default=750, metadata={"help": "Number of warmup steps in the learning rate schedule."} ) __lowerCAmelCase = field( default=16, metadata={"help": "Number of gradient accumulation steps."} ) __lowerCAmelCase = field( default=_SCREAMING_SNAKE_CASE, metadata={"help": "Use gradient checkpointing to reduce memory footprint."} ) __lowerCAmelCase = field(default=50000, metadata={"help": "Maximum number of training steps."} ) __lowerCAmelCase = field( default=-1, metadata={"help": "Maximum number of evaluation steps. If -1 the full dataset is evaluated."} ) __lowerCAmelCase = field(default=1024, metadata={"help": "Sequence lengths used for training."} ) __lowerCAmelCase = field(default=1, metadata={"help": "Training seed."} ) __lowerCAmelCase = field( default=1024, metadata={"help": "Interval to save checkpoints. Measured as number of forward passes not training steps."}, ) __lowerCAmelCase = field( default=_SCREAMING_SNAKE_CASE, metadata={"help": "States path if the training should continue from a checkpoint folder."} ) __lowerCAmelCase = field(default=_SCREAMING_SNAKE_CASE, metadata={"help": "If True the data is pretokenized."} ) @dataclass class __A : """simple docstring""" __lowerCAmelCase = field( default="codeparrot/codeparrot", metadata={"help": "Model name or path of model to be evaluated."} ) __lowerCAmelCase = field( default="codeparrot/codeparrot-clean-valid", metadata={"help": "Name or path of validation dataset."} ) __lowerCAmelCase = field(default=2, metadata={"help": "Batch size used for evaluation."} ) __lowerCAmelCase = field( default=-1, metadata={"help": "Maximum number of evaluation steps. If -1 the full dataset is evaluated."} ) __lowerCAmelCase = field(default=1024, metadata={"help": "Length of sequences to be evaluated."} ) __lowerCAmelCase = field(default=1, metadata={"help": "Random seed used for evaluation."} ) @dataclass class __A : """simple docstring""" __lowerCAmelCase = field( default="codeparrot/codeparrot", metadata={"help": "Model name or path of model to be evaluated."} ) __lowerCAmelCase = field(default=_SCREAMING_SNAKE_CASE, metadata={"help": "Number of workers used for code evaluation."} ) __lowerCAmelCase = field( default=_SCREAMING_SNAKE_CASE, metadata={"help": "The number of human-eval tasks to run. If not included all tasks are evaluated."}, ) __lowerCAmelCase = field( default=_SCREAMING_SNAKE_CASE, metadata={"help": "Sample from the language model's output distribution."} ) __lowerCAmelCase = field(default=0.2, metadata={"help": "Sampling temperature used for generation."} ) __lowerCAmelCase = field(default=256, metadata={"help": "Maximum number of newly generated tokens."} ) __lowerCAmelCase = field(default=0, metadata={"help": "Top-k parameter used for generation."} ) __lowerCAmelCase = field(default=0.9_5, metadata={"help": "Top-p parameter used for nucleus sampling."} ) __lowerCAmelCase = field(default=10, metadata={"help": "Number of generations to run in parallel."} ) __lowerCAmelCase = field( default=200, metadata={"help": "Number of completions to generate for each sample."} ) __lowerCAmelCase = field(default=1, metadata={"help": "Random seed used for evaluation."} ) __lowerCAmelCase = field( default="eval_results.json", metadata={"help": "Random seed used for evaluation."} ) __lowerCAmelCase = field( default="0", metadata={"help": "Allow `code_eval` to execute Python code on machine"} ) __lowerCAmelCase = field( default=-1, metadata={ "help": ( "Determine which device to run the `text-generation` Pipeline on. -1 is CPU and any zero or positive" " number corresponds to which GPU device id to run on." ) }, ) @dataclass class __A : """simple docstring""" __lowerCAmelCase = field( default=_SCREAMING_SNAKE_CASE, metadata={ "help": "The number of CPU cores to use for parallel preprocessing. Default uses the maximum available." }, ) __lowerCAmelCase = field( default="transformersbook/codeparrot", metadata={"help": "Folder or name of dataset to process."} ) __lowerCAmelCase = field( default="codeparrot-clean", metadata={"help": "Folder to save processed processed dataset."} ) __lowerCAmelCase = field( default=100000, metadata={"help": "Number of files to save per JSON output file."} ) __lowerCAmelCase = field(default="content", metadata={"help": "Column containing text data to process."} ) __lowerCAmelCase = field( default=1000, metadata={"help": "Maximum line length in file, otherwise file is filtered."} ) __lowerCAmelCase = field( default=100, metadata={"help": "Maximum mean line length in file, otherwise file is filtered."} ) __lowerCAmelCase = field( default=0.2_5, metadata={"help": "Maximum fraction of non-alphanumeric characters, otherwise file is filtered."} ) __lowerCAmelCase = field( default=1.5, metadata={"help": "Minimum character token ratio for the file, otherwise file is filtered."} ) __lowerCAmelCase = field( default=0.7, metadata={"help": "Probability for filtering config, test and uncommon files."} ) __lowerCAmelCase = field( default="codeparrot/codeparrot", metadata={"help": "Name or path to the tokenizer."}, ) __lowerCAmelCase = field( default=_SCREAMING_SNAKE_CASE, metadata={"help": "If True, near-duplicate samples are removed."} ) __lowerCAmelCase = field( default=0.8_5, metadata={"help": "Jaccard threshold for near-duplicate samples."} ) @dataclass class __A : """simple docstring""" __lowerCAmelCase = field( default="gpt2", metadata={"help": "Base tokenizer to build new tokenizer from."} ) __lowerCAmelCase = field( default="transformersbook/codeparrot-train", metadata={"help": "Dataset to train tokenizer on."} ) __lowerCAmelCase = field(default="content", metadata={"help": "Column containing text data to process."} ) __lowerCAmelCase = field(default=200000, metadata={"help": "Number of examples to train tokenizer on."} ) __lowerCAmelCase = field( default=32768, metadata={"help": "Number of examples to train the tokenizer on."} ) __lowerCAmelCase = field(default="codeparrot", metadata={"help": "Name of new tokenizer."} ) __lowerCAmelCase = field(default=_SCREAMING_SNAKE_CASE, metadata={"help": "Push saved tokenizer to the hub."} ) @dataclass class __A : """simple docstring""" __lowerCAmelCase = field( default="codeparrot/codeparrot", metadata={"help": "Name or path to the tokenizer."} ) __lowerCAmelCase = field( default="codeparrot/codeparrot-clean-train", metadata={"help": "Name or path to the dataset to pretokenize."} ) __lowerCAmelCase = field( default="tokenized-codeparrot-train", metadata={"help": "Repo name of the pretokenized data."} ) __lowerCAmelCase = field(default=_SCREAMING_SNAKE_CASE, metadata={"help": "Number of workers used for code evaluation."} ) @dataclass class __A : """simple docstring""" __lowerCAmelCase = field( default="gpt2-large", metadata={"help": "Configuration to use for model initialization."} ) __lowerCAmelCase = field( default="codeparrot/codeparrot", metadata={"help": "Tokenizer attached to model."} ) __lowerCAmelCase = field(default="codeparrot", metadata={"help": "Name of the created model."} ) __lowerCAmelCase = field(default=_SCREAMING_SNAKE_CASE, metadata={"help": "Push saved tokenizer to the hub."} )
81
"""simple docstring""" from collections import OrderedDict from typing import List, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = { """google/efficientnet-b7""": """https://huggingface.co/google/efficientnet-b7/resolve/main/config.json""", } class a ( lowerCAmelCase_ ): _snake_case : Any = 'efficientnet' def __init__( self : Any , __lowerCAmelCase : int = 3 , __lowerCAmelCase : int = 600 , __lowerCAmelCase : float = 2.0 , __lowerCAmelCase : float = 3.1 , __lowerCAmelCase : int = 8 , __lowerCAmelCase : List[int] = [3, 3, 5, 3, 5, 5, 3] , __lowerCAmelCase : List[int] = [32, 16, 24, 40, 80, 112, 192] , __lowerCAmelCase : List[int] = [16, 24, 40, 80, 112, 192, 320] , __lowerCAmelCase : List[int] = [] , __lowerCAmelCase : List[int] = [1, 2, 2, 2, 1, 2, 1] , __lowerCAmelCase : List[int] = [1, 2, 2, 3, 3, 4, 1] , __lowerCAmelCase : List[int] = [1, 6, 6, 6, 6, 6, 6] , __lowerCAmelCase : float = 0.25 , __lowerCAmelCase : str = "swish" , __lowerCAmelCase : int = 2560 , __lowerCAmelCase : str = "mean" , __lowerCAmelCase : float = 0.02 , __lowerCAmelCase : float = 0.001 , __lowerCAmelCase : float = 0.99 , __lowerCAmelCase : float = 0.5 , __lowerCAmelCase : float = 0.2 , **__lowerCAmelCase : List[Any] , ): super().__init__(**__lowerCAmelCase ) _UpperCAmelCase = num_channels _UpperCAmelCase = image_size _UpperCAmelCase = width_coefficient _UpperCAmelCase = depth_coefficient _UpperCAmelCase = depth_divisor _UpperCAmelCase = kernel_sizes _UpperCAmelCase = in_channels _UpperCAmelCase = out_channels _UpperCAmelCase = depthwise_padding _UpperCAmelCase = strides _UpperCAmelCase = num_block_repeats _UpperCAmelCase = expand_ratios _UpperCAmelCase = squeeze_expansion_ratio _UpperCAmelCase = hidden_act _UpperCAmelCase = hidden_dim _UpperCAmelCase = pooling_type _UpperCAmelCase = initializer_range _UpperCAmelCase = batch_norm_eps _UpperCAmelCase = batch_norm_momentum _UpperCAmelCase = dropout_rate _UpperCAmelCase = drop_connect_rate _UpperCAmelCase = sum(__lowerCAmelCase ) * 4 class a ( lowerCAmelCase_ ): _snake_case : Dict = version.parse('1.11' ) @property def lowerCAmelCase_ ( self : Any ): return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def lowerCAmelCase_ ( self : int ): return 1e-5
289
0
from __future__ import annotations import unittest from transformers import AutoTokenizer, MBartConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFMBartForConditionalGeneration, TFMBartModel @require_tf class _snake_case : '''simple docstring''' A__ : Any = MBartConfig A__ : Tuple = {} A__ : Optional[Any] = '''gelu''' def __init__( self: Optional[Any] ,lowerCamelCase_: Union[str, Any] ,lowerCamelCase_: Optional[int]=13 ,lowerCamelCase_: List[str]=7 ,lowerCamelCase_: str=True ,lowerCamelCase_: Optional[Any]=False ,lowerCamelCase_: Union[str, Any]=99 ,lowerCamelCase_: Optional[Any]=32 ,lowerCamelCase_: Union[str, Any]=2 ,lowerCamelCase_: Union[str, Any]=4 ,lowerCamelCase_: Union[str, Any]=37 ,lowerCamelCase_: List[Any]=0.1 ,lowerCamelCase_: str=0.1 ,lowerCamelCase_: List[str]=20 ,lowerCamelCase_: List[Any]=2 ,lowerCamelCase_: int=1 ,lowerCamelCase_: Tuple=0 ,) -> List[str]: UpperCAmelCase_ : List[str] = parent UpperCAmelCase_ : List[Any] = batch_size UpperCAmelCase_ : Tuple = seq_length UpperCAmelCase_ : Tuple = is_training UpperCAmelCase_ : Optional[int] = use_labels UpperCAmelCase_ : Any = vocab_size UpperCAmelCase_ : List[str] = hidden_size UpperCAmelCase_ : List[Any] = num_hidden_layers UpperCAmelCase_ : Union[str, Any] = num_attention_heads UpperCAmelCase_ : List[Any] = intermediate_size UpperCAmelCase_ : Tuple = hidden_dropout_prob UpperCAmelCase_ : int = attention_probs_dropout_prob UpperCAmelCase_ : Optional[Any] = max_position_embeddings UpperCAmelCase_ : Optional[int] = eos_token_id UpperCAmelCase_ : Dict = pad_token_id UpperCAmelCase_ : Optional[Any] = bos_token_id def A__ ( self: Dict ) -> Optional[int]: UpperCAmelCase_ : List[str] = ids_tensor([self.batch_size, self.seq_length - 1] ,self.vocab_size ) UpperCAmelCase_ : Optional[Any] = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) ,1 ) UpperCAmelCase_ : Tuple = tf.concat([input_ids, eos_tensor] ,axis=1 ) UpperCAmelCase_ : Tuple = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) UpperCAmelCase_ : List[Any] = self.config_cls( vocab_size=self.vocab_size ,d_model=self.hidden_size ,encoder_layers=self.num_hidden_layers ,decoder_layers=self.num_hidden_layers ,encoder_attention_heads=self.num_attention_heads ,decoder_attention_heads=self.num_attention_heads ,encoder_ffn_dim=self.intermediate_size ,decoder_ffn_dim=self.intermediate_size ,dropout=self.hidden_dropout_prob ,attention_dropout=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,eos_token_ids=[2] ,bos_token_id=self.bos_token_id ,pad_token_id=self.pad_token_id ,decoder_start_token_id=self.pad_token_id ,**self.config_updates ,) UpperCAmelCase_ : Tuple = prepare_mbart_inputs_dict(UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_ ) return config, inputs_dict def A__ ( self: Tuple ,lowerCamelCase_: Optional[Any] ,lowerCamelCase_: Optional[Any] ) -> Optional[Any]: UpperCAmelCase_ : Dict = TFMBartModel(config=UpperCamelCase_ ).get_decoder() UpperCAmelCase_ : Dict = inputs_dict["""input_ids"""] UpperCAmelCase_ : List[str] = input_ids[:1, :] UpperCAmelCase_ : Optional[Any] = inputs_dict["""attention_mask"""][:1, :] UpperCAmelCase_ : Optional[int] = inputs_dict["""head_mask"""] UpperCAmelCase_ : int = 1 # first forward pass UpperCAmelCase_ : Any = model(UpperCamelCase_ ,attention_mask=UpperCamelCase_ ,head_mask=UpperCamelCase_ ,use_cache=UpperCamelCase_ ) UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = outputs.to_tuple() UpperCAmelCase_ : Optional[int] = past_key_values[1] def lowerCamelCase_ ( _a : List[str] , _a : Optional[Any] , _a : Union[str, Any] , _a : Optional[int]=None , _a : Any=None , _a : List[Any]=None , _a : Any=None , _a : str=None , ): '''simple docstring''' if attention_mask is None: UpperCAmelCase_ : Optional[int] = tf.cast(tf.math.not_equal(_a , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: UpperCAmelCase_ : List[Any] = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: UpperCAmelCase_ : Union[str, Any] = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: UpperCAmelCase_ : Optional[int] = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: UpperCAmelCase_ : Union[str, Any] = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class _snake_case ( UpperCamelCase__ , UpperCamelCase__ , unittest.TestCase ): '''simple docstring''' A__ : Tuple = (TFMBartForConditionalGeneration, TFMBartModel) if is_tf_available() else () A__ : Dict = (TFMBartForConditionalGeneration,) if is_tf_available() else () A__ : Optional[int] = ( { '''conversational''': TFMBartForConditionalGeneration, '''feature-extraction''': TFMBartModel, '''summarization''': TFMBartForConditionalGeneration, '''text2text-generation''': TFMBartForConditionalGeneration, '''translation''': TFMBartForConditionalGeneration, } if is_tf_available() else {} ) A__ : Optional[Any] = True A__ : Tuple = False A__ : Any = False def A__ ( self: Union[str, Any] ,lowerCamelCase_: Dict ,lowerCamelCase_: Tuple ,lowerCamelCase_: Union[str, Any] ,lowerCamelCase_: str ,lowerCamelCase_: str ) -> int: if pipeline_test_casse_name != "FeatureExtractionPipelineTests": # Exception encountered when calling layer '...' return True return False def A__ ( self: int ) -> Union[str, Any]: UpperCAmelCase_ : Dict = TFMBartModelTester(self ) UpperCAmelCase_ : Dict = ConfigTester(self ,config_class=UpperCamelCase_ ) def A__ ( self: Union[str, Any] ) -> Dict: self.config_tester.run_common_tests() def A__ ( self: int ) -> Dict: UpperCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*UpperCamelCase_ ) @require_sentencepiece @require_tokenizers @require_tf class _snake_case ( unittest.TestCase ): '''simple docstring''' A__ : Dict = [ ''' UN Chief Says There Is No Military Solution in Syria''', ] A__ : Dict = [ '''Şeful ONU declară că nu există o soluţie militară în Siria''', ] A__ : int = '''facebook/mbart-large-en-ro''' @cached_property def A__ ( self: str ) -> Optional[Any]: return AutoTokenizer.from_pretrained(self.model_name ) @cached_property def A__ ( self: Any ) -> Dict: UpperCAmelCase_ : Union[str, Any] = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model def A__ ( self: List[Any] ,**lowerCamelCase_: Tuple ) -> Tuple: UpperCAmelCase_ : Tuple = self.translate_src_text(**UpperCamelCase_ ) self.assertListEqual(self.expected_text ,UpperCamelCase_ ) def A__ ( self: int ,**lowerCamelCase_: Tuple ) -> Tuple: UpperCAmelCase_ : Union[str, Any] = self.tokenizer(self.src_text ,**UpperCamelCase_ ,return_tensors="""tf""" ) UpperCAmelCase_ : List[str] = self.model.generate( model_inputs.input_ids ,attention_mask=model_inputs.attention_mask ,num_beams=2 ) UpperCAmelCase_ : str = self.tokenizer.batch_decode(UpperCamelCase_ ,skip_special_tokens=UpperCamelCase_ ) return generated_words @slow def A__ ( self: Optional[Any] ) -> List[Any]: self._assert_generated_batch_equal_expected()
354
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, is_batched, to_numpy_array, valid_images, ) from ...utils import TensorType, logging UpperCamelCase_ = logging.get_logger(__name__) class _snake_case ( __snake_case ): '''simple docstring''' A__ : str = ["pixel_values"] def __init__( self: Optional[Any] ,lowerCamelCase_: bool = True ,lowerCamelCase_: Optional[Dict[str, int]] = None ,lowerCamelCase_: PILImageResampling = PILImageResampling.BICUBIC ,lowerCamelCase_: bool = True ,lowerCamelCase_: bool = True ,lowerCamelCase_: Union[int, float] = 1 / 255 ,lowerCamelCase_: Dict[str, int] = None ,lowerCamelCase_: bool = True ,lowerCamelCase_: Optional[Union[float, List[float]]] = None ,lowerCamelCase_: Optional[Union[float, List[float]]] = None ,**lowerCamelCase_: Union[str, Any] ,) -> None: super().__init__(**lowerCamelCase_ ) UpperCAmelCase_ : Optional[int] = size if size is not None else {"""height""": 224, """width""": 224} UpperCAmelCase_ : Union[str, Any] = get_size_dict(lowerCamelCase_ ) UpperCAmelCase_ : Union[str, Any] = crop_size if crop_size is not None else {"""height""": 224, """width""": 224} UpperCAmelCase_ : Tuple = get_size_dict(lowerCamelCase_ ,default_to_square=lowerCamelCase_ ,param_name="""crop_size""" ) UpperCAmelCase_ : Union[str, Any] = do_resize UpperCAmelCase_ : Union[str, Any] = do_rescale UpperCAmelCase_ : str = do_normalize UpperCAmelCase_ : Optional[int] = do_center_crop UpperCAmelCase_ : str = crop_size UpperCAmelCase_ : List[str] = size UpperCAmelCase_ : Any = resample UpperCAmelCase_ : Tuple = rescale_factor UpperCAmelCase_ : int = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN UpperCAmelCase_ : str = image_std if image_std is not None else IMAGENET_DEFAULT_STD def A__ ( self: List[Any] ,lowerCamelCase_: np.ndarray ,lowerCamelCase_: Dict[str, int] ,lowerCamelCase_: PILImageResampling = PILImageResampling.BILINEAR ,lowerCamelCase_: Optional[Union[str, ChannelDimension]] = None ,**lowerCamelCase_: Optional[int] ,) -> np.ndarray: UpperCAmelCase_ : Tuple = get_size_dict(lowerCamelCase_ ) if "shortest_edge" in size: UpperCAmelCase_ : Optional[Any] = get_resize_output_image_size(lowerCamelCase_ ,size=size["""shortest_edge"""] ,default_to_square=lowerCamelCase_ ) # size = get_resize_output_image_size(image, size["shortest_edge"], size["longest_edge"]) elif "height" in size and "width" in size: UpperCAmelCase_ : Tuple = (size["""height"""], size["""width"""]) else: raise ValueError(F'''Size must contain \'height\' and \'width\' keys or \'shortest_edge\' key. Got {size.keys()}''' ) return resize(lowerCamelCase_ ,size=lowerCamelCase_ ,resample=lowerCamelCase_ ,data_format=lowerCamelCase_ ,**lowerCamelCase_ ) def A__ ( self: List[Any] ,lowerCamelCase_: np.ndarray ,lowerCamelCase_: Dict[str, int] ,lowerCamelCase_: Optional[Union[str, ChannelDimension]] = None ,**lowerCamelCase_: str ,) -> np.ndarray: UpperCAmelCase_ : Dict = get_size_dict(lowerCamelCase_ ) if "height" not in size or "width" not in size: raise ValueError(F'''The `size` parameter must contain the keys (height, width). Got {size.keys()}''' ) return center_crop(lowerCamelCase_ ,size=(size["""height"""], size["""width"""]) ,data_format=lowerCamelCase_ ,**lowerCamelCase_ ) def A__ ( self: Optional[int] ,lowerCamelCase_: np.ndarray ,lowerCamelCase_: float ,lowerCamelCase_: Optional[Union[str, ChannelDimension]] = None ,**lowerCamelCase_: List[str] ) -> np.ndarray: return rescale(lowerCamelCase_ ,scale=lowerCamelCase_ ,data_format=lowerCamelCase_ ,**lowerCamelCase_ ) def A__ ( self: List[str] ,lowerCamelCase_: np.ndarray ,lowerCamelCase_: Union[float, List[float]] ,lowerCamelCase_: Union[float, List[float]] ,lowerCamelCase_: Optional[Union[str, ChannelDimension]] = None ,**lowerCamelCase_: Union[str, Any] ,) -> np.ndarray: return normalize(lowerCamelCase_ ,mean=lowerCamelCase_ ,std=lowerCamelCase_ ,data_format=lowerCamelCase_ ,**lowerCamelCase_ ) def A__ ( self: Any ,lowerCamelCase_: ImageInput ,lowerCamelCase_: Optional[bool] = None ,lowerCamelCase_: Dict[str, int] = None ,lowerCamelCase_: PILImageResampling = None ,lowerCamelCase_: bool = None ,lowerCamelCase_: int = None ,lowerCamelCase_: Optional[bool] = None ,lowerCamelCase_: Optional[float] = None ,lowerCamelCase_: Optional[bool] = None ,lowerCamelCase_: Optional[Union[float, List[float]]] = None ,lowerCamelCase_: Optional[Union[float, List[float]]] = None ,lowerCamelCase_: Optional[Union[str, TensorType]] = None ,lowerCamelCase_: Union[str, ChannelDimension] = ChannelDimension.FIRST ,**lowerCamelCase_: List[str] ,) -> BatchFeature: UpperCAmelCase_ : Tuple = do_resize if do_resize is not None else self.do_resize UpperCAmelCase_ : List[Any] = do_rescale if do_rescale is not None else self.do_rescale UpperCAmelCase_ : Union[str, Any] = do_normalize if do_normalize is not None else self.do_normalize UpperCAmelCase_ : List[str] = do_center_crop if do_center_crop is not None else self.do_center_crop UpperCAmelCase_ : List[Any] = crop_size if crop_size is not None else self.crop_size UpperCAmelCase_ : str = get_size_dict(lowerCamelCase_ ,param_name="""crop_size""" ,default_to_square=lowerCamelCase_ ) UpperCAmelCase_ : Optional[int] = resample if resample is not None else self.resample UpperCAmelCase_ : Optional[int] = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCAmelCase_ : Optional[Any] = image_mean if image_mean is not None else self.image_mean UpperCAmelCase_ : int = image_std if image_std is not None else self.image_std UpperCAmelCase_ : Dict = size if size is not None else self.size UpperCAmelCase_ : List[str] = get_size_dict(lowerCamelCase_ ) if not is_batched(lowerCamelCase_ ): UpperCAmelCase_ : Optional[int] = [images] if not valid_images(lowerCamelCase_ ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) # All transformations expect numpy arrays. UpperCAmelCase_ : Tuple = [to_numpy_array(lowerCamelCase_ ) for image in images] if do_resize: UpperCAmelCase_ : int = [self.resize(image=lowerCamelCase_ ,size=lowerCamelCase_ ,resample=lowerCamelCase_ ) for image in images] if do_center_crop: UpperCAmelCase_ : Optional[int] = [self.center_crop(image=lowerCamelCase_ ,size=lowerCamelCase_ ) for image in images] if do_rescale: UpperCAmelCase_ : str = [self.rescale(image=lowerCamelCase_ ,scale=lowerCamelCase_ ) for image in images] if do_normalize: UpperCAmelCase_ : Dict = [self.normalize(image=lowerCamelCase_ ,mean=lowerCamelCase_ ,std=lowerCamelCase_ ) for image in images] UpperCAmelCase_ : Dict = [to_channel_dimension_format(lowerCamelCase_ ,lowerCamelCase_ ) for image in images] UpperCAmelCase_ : Tuple = {"""pixel_values""": images} return BatchFeature(data=lowerCamelCase_ ,tensor_type=lowerCamelCase_ )
59
0