code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
from math import loga def lowerCamelCase__ ( snake_case_ : int ) -> int: if a < 0: raise ValueError('''Input value must be a positive integer''' ) elif isinstance(snake_case_ , snake_case_ ): raise TypeError('''Input value must be a \'int\' type''' ) return 0 if (a == 0) else int(loga(a & -a ) ) if __name__ == "__main__": import doctest doctest.testmod()
24
import unittest from transformers import MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING, AutoTokenizer, is_vision_available from transformers.pipelines import pipeline from transformers.pipelines.document_question_answering import apply_tesseract from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_detectrona, require_pytesseract, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image from transformers.image_utils import load_image else: class SCREAMING_SNAKE_CASE__ : @staticmethod def a (*a__ : List[str] , **a__ : List[str] ): """simple docstring""" pass def lowerCamelCase__ ( snake_case_ : int ) -> Optional[int]: return None # This is a pinned image from a specific revision of a document question answering space, hosted by HuggingFace, # so we can expect it to be available. snake_case_ = ( 'https://huggingface.co/spaces/impira/docquery/resolve/2f6c96314dc84dfda62d40de9da55f2f5165d403/invoice.png' ) @is_pipeline_test @require_torch @require_vision class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): A_ : Optional[Any] = MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING @require_pytesseract @require_vision def a (self : List[Any] , a__ : Tuple , a__ : Union[str, Any] , a__ : Any ): """simple docstring""" __snake_case = pipeline( '''document-question-answering''' , model=a__ , tokenizer=a__ , image_processor=a__ ) __snake_case = INVOICE_URL __snake_case = list(zip(*apply_tesseract(load_image(a__ ) , a__ , '''''' ) ) ) __snake_case = '''What is the placebo?''' __snake_case = [ { '''image''': load_image(a__ ), '''question''': question, }, { '''image''': image, '''question''': question, }, { '''image''': image, '''question''': question, '''word_boxes''': word_boxes, }, ] return dqa_pipeline, examples def a (self : Union[str, Any] , a__ : Optional[int] , a__ : Dict ): """simple docstring""" __snake_case = dqa_pipeline(a__ , top_k=2 ) self.assertEqual( a__ , [ [ {'''score''': ANY(a__ ), '''answer''': ANY(a__ ), '''start''': ANY(a__ ), '''end''': ANY(a__ )}, {'''score''': ANY(a__ ), '''answer''': ANY(a__ ), '''start''': ANY(a__ ), '''end''': ANY(a__ )}, ] ] * 3 , ) @require_torch @require_detectrona @require_pytesseract def a (self : Dict ): """simple docstring""" __snake_case = pipeline('''document-question-answering''' , model='''hf-internal-testing/tiny-random-layoutlmv2''' ) __snake_case = INVOICE_URL __snake_case = '''How many cats are there?''' __snake_case = [ {'''score''': 0.0_0_0_1, '''answer''': '''oy 2312/2019''', '''start''': 38, '''end''': 39}, {'''score''': 0.0_0_0_1, '''answer''': '''oy 2312/2019 DUE''', '''start''': 38, '''end''': 40}, ] __snake_case = dqa_pipeline(image=a__ , question=a__ , top_k=2 ) self.assertEqual(nested_simplify(a__ , decimals=4 ) , a__ ) __snake_case = dqa_pipeline({'''image''': image, '''question''': question} , top_k=2 ) self.assertEqual(nested_simplify(a__ , decimals=4 ) , a__ ) # This image does not detect ANY text in it, meaning layoutlmv2 should fail. # Empty answer probably __snake_case = '''./tests/fixtures/tests_samples/COCO/000000039769.png''' __snake_case = dqa_pipeline(image=a__ , question=a__ , top_k=2 ) self.assertEqual(a__ , [] ) # We can optionnally pass directly the words and bounding boxes __snake_case = '''./tests/fixtures/tests_samples/COCO/000000039769.png''' __snake_case = [] __snake_case = [] __snake_case = dqa_pipeline(image=a__ , question=a__ , words=a__ , boxes=a__ , top_k=2 ) self.assertEqual(a__ , [] ) @slow @require_torch @require_detectrona @require_pytesseract def a (self : str ): """simple docstring""" __snake_case = pipeline( '''document-question-answering''' , model='''tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa''' , revision='''9977165''' , ) __snake_case = INVOICE_URL __snake_case = '''What is the invoice number?''' __snake_case = dqa_pipeline(image=a__ , question=a__ , top_k=2 ) self.assertEqual( nested_simplify(a__ , decimals=4 ) , [ {'''score''': 0.9_9_4_4, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0_0_0_9, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) __snake_case = dqa_pipeline({'''image''': image, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(a__ , decimals=4 ) , [ {'''score''': 0.9_9_4_4, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0_0_0_9, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) __snake_case = dqa_pipeline( [{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2 ) self.assertEqual( nested_simplify(a__ , decimals=4 ) , [ [ {'''score''': 0.9_9_4_4, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0_0_0_9, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ], ] * 2 , ) @slow @require_torch @require_detectrona @require_pytesseract def a (self : List[Any] ): """simple docstring""" __snake_case = pipeline( '''document-question-answering''' , model='''tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa''' , revision='''9977165''' , max_seq_len=50 , ) __snake_case = INVOICE_URL __snake_case = '''What is the invoice number?''' __snake_case = dqa_pipeline(image=a__ , question=a__ , top_k=2 ) self.assertEqual( nested_simplify(a__ , decimals=4 ) , [ {'''score''': 0.9_9_7_4, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, {'''score''': 0.9_9_4_8, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) __snake_case = dqa_pipeline({'''image''': image, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(a__ , decimals=4 ) , [ {'''score''': 0.9_9_7_4, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, {'''score''': 0.9_9_4_8, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) __snake_case = dqa_pipeline( [{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2 ) self.assertEqual( nested_simplify(a__ , decimals=4 ) , [ [ {'''score''': 0.9_9_7_4, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, {'''score''': 0.9_9_4_8, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] ] * 2 , ) @slow @require_torch @require_pytesseract @require_vision def a (self : Tuple ): """simple docstring""" __snake_case = AutoTokenizer.from_pretrained( '''impira/layoutlm-document-qa''' , revision='''3dc6de3''' , add_prefix_space=a__ ) __snake_case = pipeline( '''document-question-answering''' , model='''impira/layoutlm-document-qa''' , tokenizer=a__ , revision='''3dc6de3''' , ) __snake_case = INVOICE_URL __snake_case = '''What is the invoice number?''' __snake_case = dqa_pipeline(image=a__ , question=a__ , top_k=2 ) self.assertEqual( nested_simplify(a__ , decimals=4 ) , [ {'''score''': 0.4_2_5_1, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0_8_1_9, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, ] , ) __snake_case = dqa_pipeline({'''image''': image, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(a__ , decimals=4 ) , [ {'''score''': 0.4_2_5_1, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0_8_1_9, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, ] , ) __snake_case = dqa_pipeline( [{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2 ) self.assertEqual( nested_simplify(a__ , decimals=4 ) , [ [ {'''score''': 0.4_2_5_1, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0_8_1_9, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, ] ] * 2 , ) __snake_case = list(zip(*apply_tesseract(load_image(a__ ) , a__ , '''''' ) ) ) # This model should also work if `image` is set to None __snake_case = dqa_pipeline({'''image''': None, '''word_boxes''': word_boxes, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(a__ , decimals=4 ) , [ {'''score''': 0.4_2_5_1, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0_8_1_9, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, ] , ) @slow @require_torch @require_pytesseract @require_vision def a (self : Dict ): """simple docstring""" __snake_case = AutoTokenizer.from_pretrained( '''impira/layoutlm-document-qa''' , revision='''3dc6de3''' , add_prefix_space=a__ ) __snake_case = pipeline( '''document-question-answering''' , model='''impira/layoutlm-document-qa''' , tokenizer=a__ , revision='''3dc6de3''' , max_seq_len=50 , ) __snake_case = INVOICE_URL __snake_case = '''What is the invoice number?''' __snake_case = dqa_pipeline(image=a__ , question=a__ , top_k=2 ) self.assertEqual( nested_simplify(a__ , decimals=4 ) , [ {'''score''': 0.9_9_9_9, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.9_9_9_8, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) __snake_case = dqa_pipeline( [{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2 ) self.assertEqual( nested_simplify(a__ , decimals=4 ) , [ [ {'''score''': 0.9_9_9_9, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.9_9_9_8, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] ] * 2 , ) __snake_case = list(zip(*apply_tesseract(load_image(a__ ) , a__ , '''''' ) ) ) # This model should also work if `image` is set to None __snake_case = dqa_pipeline({'''image''': None, '''word_boxes''': word_boxes, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(a__ , decimals=4 ) , [ {'''score''': 0.9_9_9_9, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.9_9_9_8, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) @slow @require_torch def a (self : Tuple ): """simple docstring""" __snake_case = pipeline( '''document-question-answering''' , model='''naver-clova-ix/donut-base-finetuned-docvqa''' , tokenizer=AutoTokenizer.from_pretrained('''naver-clova-ix/donut-base-finetuned-docvqa''' ) , feature_extractor='''naver-clova-ix/donut-base-finetuned-docvqa''' , ) __snake_case = INVOICE_URL __snake_case = '''What is the invoice number?''' __snake_case = dqa_pipeline(image=a__ , question=a__ , top_k=2 ) self.assertEqual(nested_simplify(a__ , decimals=4 ) , [{'''answer''': '''us-001'''}] ) @require_tf @unittest.skip('''Document question answering not implemented in TF''' ) def a (self : List[str] ): """simple docstring""" pass
24
1
"""simple docstring""" import argparse from collections import defaultdict def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> List[str]: _lowerCAmelCase =F'''{file}_{class_name}_{test_name}''' done_test[_id] += 1 with open(__UpperCamelCase , """r""" ) as f: _lowerCAmelCase =f.readlines() _lowerCAmelCase =F'''class {class_name}(''' _lowerCAmelCase =F'''{4 * ' '}def {test_name}(''' _lowerCAmelCase =F'''{8 * ' '}{correct_line.split()[0]}''' _lowerCAmelCase =F'''{16 * ' '}{correct_line.split()[0]}''' _lowerCAmelCase =False _lowerCAmelCase =False _lowerCAmelCase =False _lowerCAmelCase =False _lowerCAmelCase =0 _lowerCAmelCase =0 _lowerCAmelCase =[] for line in lines: if line.startswith(__UpperCamelCase ): _lowerCAmelCase =True elif in_class and line.startswith(__UpperCamelCase ): _lowerCAmelCase =True elif in_class and in_func and (line.startswith(__UpperCamelCase ) or line.startswith(__UpperCamelCase )): _lowerCAmelCase =len(line.split(correct_line.split()[0] )[0] ) count += 1 if count == done_test[_id]: _lowerCAmelCase =True if in_class and in_func and in_line: if ")" not in line: continue else: _lowerCAmelCase =True if in_class and in_func and in_line and insert_line: new_lines.append(F'''{spaces * ' '}{correct_line}''' ) _lowerCAmelCase =_lowerCAmelCase =_lowerCAmelCase =_lowerCAmelCase =False else: new_lines.append(__UpperCamelCase ) with open(__UpperCamelCase , """w""" ) as f: for line in new_lines: f.write(__UpperCamelCase ) def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase=None ) -> Dict: if fail is not None: with open(__UpperCamelCase , """r""" ) as f: _lowerCAmelCase ={l.strip() for l in f.readlines()} else: _lowerCAmelCase =None with open(__UpperCamelCase , """r""" ) as f: _lowerCAmelCase =f.readlines() _lowerCAmelCase =defaultdict(__UpperCamelCase ) for line in correct_lines: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase =line.split(""";""" ) if test_failures is None or "::".join([file, class_name, test_name] ) in test_failures: overwrite_file(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) if __name__ == "__main__": __A = argparse.ArgumentParser() parser.add_argument('--correct_filename', help='filename of tests with expected result') parser.add_argument('--fail_filename', help='filename of test failures', type=str, default=None) __A = parser.parse_args() main(args.correct_filename, args.fail_filename)
341
"""simple docstring""" import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class lowerCamelCase__ ( __magic_name__ ): '''simple docstring''' lowerCamelCase = ['''image_processor''', '''tokenizer'''] lowerCamelCase = '''CLIPImageProcessor''' lowerCamelCase = ('''XLMRobertaTokenizer''', '''XLMRobertaTokenizerFast''') def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , **__UpperCAmelCase ) -> Union[str, Any]: _lowerCAmelCase =None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" , __UpperCAmelCase , ) _lowerCAmelCase =kwargs.pop("""feature_extractor""" ) _lowerCAmelCase =image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) super().__init__(__UpperCAmelCase , __UpperCAmelCase ) def __call__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , **__UpperCAmelCase ) -> Optional[Any]: if text is None and images is None: raise ValueError("""You have to specify either text or images. Both cannot be none.""" ) if text is not None: _lowerCAmelCase =self.tokenizer(__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase ) if images is not None: _lowerCAmelCase =self.image_processor(__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase ) if text is not None and images is not None: _lowerCAmelCase =image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**__UpperCAmelCase ) , tensor_type=__UpperCAmelCase ) def _lowerCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[Any]: return self.tokenizer.batch_decode(*__UpperCAmelCase , **__UpperCAmelCase ) def _lowerCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[int]: return self.tokenizer.decode(*__UpperCAmelCase , **__UpperCAmelCase ) @property def _lowerCAmelCase ( self ) -> int: _lowerCAmelCase =self.tokenizer.model_input_names _lowerCAmelCase =self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
341
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) lowerCAmelCase__ = { '''configuration_vision_encoder_decoder''': ['''VisionEncoderDecoderConfig''', '''VisionEncoderDecoderOnnxConfig'''] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = ['''VisionEncoderDecoderModel'''] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = ['''TFVisionEncoderDecoderModel'''] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = ['''FlaxVisionEncoderDecoderModel'''] if TYPE_CHECKING: from .configuration_vision_encoder_decoder import VisionEncoderDecoderConfig, VisionEncoderDecoderOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vision_encoder_decoder import VisionEncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vision_encoder_decoder import TFVisionEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vision_encoder_decoder import FlaxVisionEncoderDecoderModel else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
108
def snake_case_ ( snake_case , snake_case ) -> bool: return numa ^ numa < 0 if __name__ == "__main__": import doctest doctest.testmod()
196
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available UpperCamelCase_ = { "configuration_poolformer": [ "POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "PoolFormerConfig", "PoolFormerOnnxConfig", ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = ["PoolFormerFeatureExtractor"] UpperCamelCase_ = ["PoolFormerImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ "POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "PoolFormerForImageClassification", "PoolFormerModel", "PoolFormerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_poolformer import ( POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, PoolFormerConfig, PoolFormerOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_poolformer import PoolFormerFeatureExtractor from .image_processing_poolformer import PoolFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_poolformer import ( POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, PoolFormerForImageClassification, PoolFormerModel, PoolFormerPreTrainedModel, ) else: import sys UpperCamelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure)
354
from typing import Dict import numpy as np import torch from . import residue_constants as rc from .tensor_utils import tensor_tree_map, tree_map def A ( __UpperCAmelCase ) -> Dict[str, torch.Tensor]: '''simple docstring''' UpperCAmelCase_ = [] UpperCAmelCase_ = [] UpperCAmelCase_ = [] for rt in rc.restypes: UpperCAmelCase_ = rc.restype_name_to_atomaa_names[rc.restype_atoa[rt]] restype_atomaa_to_atomaa_list.append([(rc.atom_order[name] if name else 0) for name in atom_names] ) UpperCAmelCase_ = {name: i for i, name in enumerate(__UpperCAmelCase )} restype_atomaa_to_atomaa_list.append( [(atom_name_to_idxaa[name] if name in atom_name_to_idxaa else 0) for name in rc.atom_types] ) restype_atomaa_mask_list.append([(1.0 if name else 0.0) for name in atom_names] ) # Add dummy mapping for restype 'UNK' restype_atomaa_to_atomaa_list.append([0] * 14 ) restype_atomaa_to_atomaa_list.append([0] * 37 ) restype_atomaa_mask_list.append([0.0] * 14 ) UpperCAmelCase_ = torch.tensor( __UpperCAmelCase , dtype=torch.intaa , device=protein['''aatype'''].device , ) UpperCAmelCase_ = torch.tensor( __UpperCAmelCase , dtype=torch.intaa , device=protein['''aatype'''].device , ) UpperCAmelCase_ = torch.tensor( __UpperCAmelCase , dtype=torch.floataa , device=protein['''aatype'''].device , ) UpperCAmelCase_ = protein['''aatype'''].to(torch.long ) # create the mapping for (residx, atom14) --> atom37, i.e. an array # with shape (num_res, 14) containing the atom37 indices for this protein UpperCAmelCase_ = restype_atomaa_to_atomaa[protein_aatype] UpperCAmelCase_ = restype_atomaa_mask[protein_aatype] UpperCAmelCase_ = residx_atomaa_mask UpperCAmelCase_ = residx_atomaa_to_atomaa.long() # create the gather indices for mapping back UpperCAmelCase_ = restype_atomaa_to_atomaa[protein_aatype] UpperCAmelCase_ = residx_atomaa_to_atomaa.long() # create the corresponding mask UpperCAmelCase_ = torch.zeros([21, 37] , dtype=torch.floataa , device=protein['''aatype'''].device ) for restype, restype_letter in enumerate(rc.restypes ): UpperCAmelCase_ = rc.restype_atoa[restype_letter] UpperCAmelCase_ = rc.residue_atoms[restype_name] for atom_name in atom_names: UpperCAmelCase_ = rc.atom_order[atom_name] UpperCAmelCase_ = 1 UpperCAmelCase_ = restype_atomaa_mask[protein_aatype] UpperCAmelCase_ = residx_atomaa_mask return protein def A ( __UpperCAmelCase ) -> Dict[str, np.ndarray]: '''simple docstring''' UpperCAmelCase_ = tree_map(lambda __UpperCAmelCase : torch.tensor(__UpperCAmelCase , device=batch['''aatype'''].device ) , __UpperCAmelCase , np.ndarray ) UpperCAmelCase_ = tensor_tree_map(lambda __UpperCAmelCase : np.array(__UpperCAmelCase ) , make_atomaa_masks(__UpperCAmelCase ) ) return out
344
0
from __future__ import annotations from typing import Any class A : def __init__(self : Union[str, Any] , __UpperCAmelCase : int , __UpperCAmelCase : int , __UpperCAmelCase : float = 0 ) -> List[str]: """simple docstring""" UpperCAmelCase__ , UpperCAmelCase__ = row, column UpperCAmelCase__ = [[default_value for c in range(_lowercase )] for r in range(_lowercase )] def __str__(self : Optional[Any] ) -> str: """simple docstring""" UpperCAmelCase__ = f"""Matrix consist of {self.row} rows and {self.column} columns\n""" # Make string identifier UpperCAmelCase__ = 0 for row_vector in self.array: for obj in row_vector: UpperCAmelCase__ = max(_lowercase , len(str(_lowercase ) ) ) UpperCAmelCase__ = f"""%{max_element_length}s""" # Make string and return def single_line(__UpperCAmelCase : list[float] ) -> str: nonlocal string_format_identifier UpperCAmelCase__ = "[" line += ", ".join(string_format_identifier % (obj,) for obj in row_vector ) line += "]" return line s += "\n".join(single_line(_lowercase ) for row_vector in self.array ) return s def __repr__(self : Tuple ) -> Any: """simple docstring""" return str(self ) def lowercase_ (self : Union[str, Any] , __UpperCAmelCase : tuple[int, int] ) -> Optional[int]: """simple docstring""" if not (isinstance(_lowercase , (list, tuple) ) and len(_lowercase ) == 2): return False elif not (0 <= loc[0] < self.row and 0 <= loc[1] < self.column): return False else: return True def __getitem__(self : str , __UpperCAmelCase : tuple[int, int] ) -> List[Any]: """simple docstring""" assert self.validate_indicies(_lowercase ) return self.array[loc[0]][loc[1]] def __setitem__(self : Any , __UpperCAmelCase : tuple[int, int] , __UpperCAmelCase : float ) -> List[Any]: """simple docstring""" assert self.validate_indicies(_lowercase ) UpperCAmelCase__ = value def __add__(self : Dict , __UpperCAmelCase : Matrix ) -> List[str]: """simple docstring""" assert isinstance(_lowercase , _lowercase ) assert self.row == another.row and self.column == another.column # Add UpperCAmelCase__ = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): UpperCAmelCase__ = self[r, c] + another[r, c] return result def __neg__(self : List[Any] ) -> Dict: """simple docstring""" UpperCAmelCase__ = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): UpperCAmelCase__ = -self[r, c] return result def __sub__(self : Optional[int] , __UpperCAmelCase : Matrix ) -> int: """simple docstring""" return self + (-another) def __mul__(self : Optional[Any] , __UpperCAmelCase : int | float | Matrix ) -> Tuple: """simple docstring""" if isinstance(_lowercase , (int, float) ): # Scalar multiplication UpperCAmelCase__ = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): UpperCAmelCase__ = self[r, c] * another return result elif isinstance(_lowercase , _lowercase ): # Matrix multiplication assert self.column == another.row UpperCAmelCase__ = Matrix(self.row , another.column ) for r in range(self.row ): for c in range(another.column ): for i in range(self.column ): result[r, c] += self[r, i] * another[i, c] return result else: UpperCAmelCase__ = f"""Unsupported type given for another ({type(_lowercase )})""" raise TypeError(_lowercase ) def lowercase_ (self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" UpperCAmelCase__ = Matrix(self.column , self.row ) for r in range(self.row ): for c in range(self.column ): UpperCAmelCase__ = self[r, c] return result def lowercase_ (self : Optional[Any] , __UpperCAmelCase : Matrix , __UpperCAmelCase : Matrix ) -> Optional[Any]: """simple docstring""" assert isinstance(_lowercase , _lowercase ) and isinstance(_lowercase , _lowercase ) assert self.row == self.column == u.row == v.row # u, v should be column vector assert u.column == v.column == 1 # u, v should be column vector # Calculate UpperCAmelCase__ = v.transpose() UpperCAmelCase__ = (v_t * self * u)[0, 0] + 1 if numerator_factor == 0: return None # It's not invertable return self - ((self * u) * (v_t * self) * (1.0 / numerator_factor)) # Testing if __name__ == "__main__": def lowerCAmelCase_ ( ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase__ = Matrix(3, 3, 0 ) for i in range(3 ): UpperCAmelCase__ = 1 print(f"""a^(-1) is {ainv}""" ) # u, v UpperCAmelCase__ = Matrix(3, 1, 0 ) UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = 1, 2, -3 UpperCAmelCase__ = Matrix(3, 1, 0 ) UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = 4, -2, 5 print(f"""u is {u}""" ) print(f"""v is {v}""" ) print(f"""uv^T is {u * v.transpose()}""" ) # Sherman Morrison print(f"""(a + uv^T)^(-1) is {ainv.sherman_morrison(snake_case_, snake_case_ )}""" ) def lowerCAmelCase_ ( ) -> Dict: '''simple docstring''' import doctest doctest.testmod() testa()
65
"""simple docstring""" # Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import platform import numpy as np import psutil import torch from accelerate import __version__ as version from accelerate.commands.config import default_config_file, load_config_from_file from ..utils import is_npu_available, is_xpu_available def lowercase__ ( snake_case_ :Union[str, Any]=None ): if subparsers is not None: __UpperCAmelCase = subparsers.add_parser('''env''' ) else: __UpperCAmelCase = argparse.ArgumentParser('''Accelerate env command''' ) parser.add_argument( '''--config_file''' , default=snake_case_ , help='''The config file to use for the default values in the launching script.''' ) if subparsers is not None: parser.set_defaults(func=snake_case_ ) return parser def lowercase__ ( snake_case_ :List[Any] ): __UpperCAmelCase = torch.__version__ __UpperCAmelCase = torch.cuda.is_available() __UpperCAmelCase = is_xpu_available() __UpperCAmelCase = is_npu_available() __UpperCAmelCase = '''Not found''' # Get the default from the config file. if args.config_file is not None or os.path.isfile(snake_case_ ): __UpperCAmelCase = load_config_from_file(args.config_file ).to_dict() __UpperCAmelCase = { '''`Accelerate` version''': version, '''Platform''': platform.platform(), '''Python version''': platform.python_version(), '''Numpy version''': np.__version__, '''PyTorch version (GPU?)''': F'''{pt_version} ({pt_cuda_available})''', '''PyTorch XPU available''': str(snake_case_ ), '''PyTorch NPU available''': str(snake_case_ ), '''System RAM''': F'''{psutil.virtual_memory().total / 1_024 ** 3:.2f} GB''', } if pt_cuda_available: __UpperCAmelCase = torch.cuda.get_device_name() print('''\nCopy-and-paste the text below in your GitHub issue\n''' ) print('''\n'''.join([F'''- {prop}: {val}''' for prop, val in info.items()] ) ) print('''- `Accelerate` default config:''' if args.config_file is None else '''- `Accelerate` config passed:''' ) __UpperCAmelCase = ( '''\n'''.join([F'''\t- {prop}: {val}''' for prop, val in accelerate_config.items()] ) if isinstance(snake_case_ , snake_case_ ) else F'''\t{accelerate_config}''' ) print(snake_case_ ) __UpperCAmelCase = accelerate_config return info def lowercase__ ( ): __UpperCAmelCase = env_command_parser() __UpperCAmelCase = parser.parse_args() env_command(snake_case_ ) return 0 if __name__ == "__main__": raise SystemExit(main())
332
0
'''simple docstring''' from .testing import ( are_the_same_tensors, execute_subprocess_async, require_bnb, require_cpu, require_cuda, require_huggingface_suite, require_mps, require_multi_gpu, require_multi_xpu, require_safetensors, require_single_gpu, require_single_xpu, require_torch_min_version, require_tpu, require_xpu, skip, slow, ) from .training import RegressionDataset, RegressionModel, RegressionModelaXPU from .scripts import test_script, test_sync, test_ops # isort: skip
322
'''simple docstring''' def __lowerCAmelCase (__lowerCAmelCase = 4_000_000 ): _UpperCAmelCase : List[Any] = [] _UpperCAmelCase , _UpperCAmelCase : Dict = 0, 1 while b <= n: if b % 2 == 0: even_fibs.append(__lowerCAmelCase ) _UpperCAmelCase , _UpperCAmelCase : Any = b, a + b return sum(__lowerCAmelCase ) if __name__ == "__main__": print(F'''{solution() = }''')
322
1
from dataclasses import dataclass from enum import Enum from typing import List, Optional, Union import numpy as np import PIL from PIL import Image from ...utils import BaseOutput, is_torch_available, is_transformers_available @dataclass class __magic_name__ ( UpperCAmelCase__ ): SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 42 if is_transformers_available() and is_torch_available(): from .pipeline_semantic_stable_diffusion import SemanticStableDiffusionPipeline
218
'''simple docstring''' import re from filelock import FileLock try: import nltk __UpperCAmelCase =True except (ImportError, ModuleNotFoundError): __UpperCAmelCase =False if NLTK_AVAILABLE: with FileLock(".lock") as lock: nltk.download("punkt", quiet=True) def __lowerCAmelCase ( UpperCamelCase__ ) -> str: re.sub('''<n>''' , '''''' , UpperCamelCase__ ) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(UpperCamelCase__ ) )
67
0
'''simple docstring''' import argparse import datetime def UpperCAmelCase ( lowerCamelCase_ :str ): '''simple docstring''' snake_case_ : List[str] = { """0""": """Sunday""", """1""": """Monday""", """2""": """Tuesday""", """3""": """Wednesday""", """4""": """Thursday""", """5""": """Friday""", """6""": """Saturday""", } snake_case_ : Optional[Any] = {0: 1, 1: 2, 2: 3, 3: 4, 4: 5, 5: 6, 6: 0} # Validate if not 0 < len(lowerCamelCase_ ) < 11: raise ValueError("""Must be 10 characters long""" ) # Get month snake_case_ : int = int(date_input[0] + date_input[1] ) # Validate if not 0 < m < 13: raise ValueError("""Month must be between 1 - 12""" ) snake_case_ : str = date_input[2] # Validate if sep_a not in ["-", "/"]: raise ValueError("""Date separator must be '-' or '/'""" ) # Get day snake_case_ : int = int(date_input[3] + date_input[4] ) # Validate if not 0 < d < 32: raise ValueError("""Date must be between 1 - 31""" ) # Get second separator snake_case_ : str = date_input[5] # Validate if sep_a not in ["-", "/"]: raise ValueError("""Date separator must be '-' or '/'""" ) # Get year snake_case_ : int = int(date_input[6] + date_input[7] + date_input[8] + date_input[9] ) # Arbitrary year range if not 45 < y < 85_00: raise ValueError( """Year out of range. There has to be some sort of limit...right?""" ) # Get datetime obj for validation snake_case_ : List[str] = datetime.date(int(lowerCamelCase_ ) , int(lowerCamelCase_ ) , int(lowerCamelCase_ ) ) # Start math if m <= 2: snake_case_ : List[Any] = y - 1 snake_case_ : str = m + 12 # maths var snake_case_ : int = int(str(lowerCamelCase_ )[:2] ) snake_case_ : int = int(str(lowerCamelCase_ )[2:] ) snake_case_ : int = int(2.6 * m - 5.39 ) snake_case_ : int = int(c / 4 ) snake_case_ : int = int(k / 4 ) snake_case_ : int = int(d + k ) snake_case_ : int = int(t + u + v + x ) snake_case_ : int = int(z - (2 * c) ) snake_case_ : int = round(w % 7 ) # End math # Validate math if f != convert_datetime_days[dt_ck.weekday()]: raise AssertionError("""The date was evaluated incorrectly. Contact developer.""" ) # Response snake_case_ : str = F'''Your date {date_input}, is a {days[str(lowerCamelCase_ )]}!''' return response if __name__ == "__main__": import doctest doctest.testmod() __A : Any = argparse.ArgumentParser( description=( 'Find out what day of the week nearly any date is or was. Enter ' 'date as a string in the mm-dd-yyyy or mm/dd/yyyy format' ) ) parser.add_argument( 'date_input', type=str, help='Date as a string (mm-dd-yyyy or mm/dd/yyyy)' ) __A : Union[str, Any] = parser.parse_args() zeller(args.date_input)
8
'''simple docstring''' from typing import List, Optional from tokenizers import ByteLevelBPETokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot_small import BlenderbotSmallTokenizer __A : Tuple = logging.get_logger(__name__) __A : List[Any] = { 'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_config_file': 'tokenizer_config.json', } __A : str = { 'vocab_file': { 'facebook/blenderbot_small-90M': 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json' }, 'merges_file': { 'facebook/blenderbot_small-90M': 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt' }, 'tokenizer_config_file': { 'facebook/blenderbot_small-90M': ( 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json' ) }, } __A : Optional[Any] = { 'facebook/blenderbot_small-90M': 512, } class __UpperCamelCase ( lowercase__ ): lowercase : str = VOCAB_FILES_NAMES lowercase : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP lowercase : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase : Dict = BlenderbotSmallTokenizer def __init__( self :str ,_UpperCamelCase :Optional[int]=None ,_UpperCamelCase :Union[str, Any]=None ,_UpperCamelCase :Tuple="<|endoftext|>" ,_UpperCamelCase :int="<|endoftext|>" ,_UpperCamelCase :Dict="<|endoftext|>" ,_UpperCamelCase :Optional[Any]=False ,_UpperCamelCase :List[Any]=True ,**_UpperCamelCase :Any ,): super().__init__( ByteLevelBPETokenizer( vocab=_UpperCamelCase ,merges=_UpperCamelCase ,add_prefix_space=_UpperCamelCase ,trim_offsets=_UpperCamelCase ,) ,bos_token=_UpperCamelCase ,eos_token=_UpperCamelCase ,unk_token=_UpperCamelCase ,**_UpperCamelCase ,) snake_case_ : Any = add_prefix_space def a__ ( self :Optional[Any] ,_UpperCamelCase :int ,_UpperCamelCase :Optional[Any]=None ): snake_case_ : List[Any] = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def a__ ( self :int ,_UpperCamelCase :List[int] ,_UpperCamelCase :Optional[List[int]] = None ): snake_case_ : int = [self.sep_token_id] snake_case_ : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
8
1
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot import BlenderbotTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation __A =logging.get_logger(__name__) __A ={ '''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_config_file''': '''tokenizer_config.json''', } __A ={ '''vocab_file''': {'''facebook/blenderbot-3B''': '''https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json'''}, '''merges_file''': {'''facebook/blenderbot-3B''': '''https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt'''}, '''tokenizer_config_file''': { '''facebook/blenderbot-3B''': '''https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json''' }, } __A ={'''facebook/blenderbot-3B''': 1_2_8} class _SCREAMING_SNAKE_CASE ( snake_case_ ): lowerCAmelCase__ = VOCAB_FILES_NAMES lowerCAmelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase__ = ['input_ids', 'attention_mask'] lowerCAmelCase__ = BlenderbotTokenizer def __init__( self , lowercase=None , lowercase=None , lowercase=None , lowercase="replace" , lowercase="<s>" , lowercase="</s>" , lowercase="</s>" , lowercase="<s>" , lowercase="<unk>" , lowercase="<pad>" , lowercase="<mask>" , lowercase=False , lowercase=True , **lowercase , ) -> Any: super().__init__( lowercase , lowercase , tokenizer_file=lowercase , errors=lowercase , bos_token=lowercase , eos_token=lowercase , sep_token=lowercase , cls_token=lowercase , unk_token=lowercase , pad_token=lowercase , mask_token=lowercase , add_prefix_space=lowercase , trim_offsets=lowercase , **lowercase , ) lowerCamelCase_ = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , lowercase ) != add_prefix_space: lowerCamelCase_ = getattr(lowercase , pre_tok_state.pop("type" ) ) lowerCamelCase_ = add_prefix_space lowerCamelCase_ = pre_tok_class(**lowercase ) lowerCamelCase_ = add_prefix_space lowerCamelCase_ = "post_processor" lowerCamelCase_ = getattr(self.backend_tokenizer , lowercase , lowercase ) if tokenizer_component_instance: lowerCamelCase_ = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: lowerCamelCase_ = tuple(state["sep"] ) if "cls" in state: lowerCamelCase_ = tuple(state["cls"] ) lowerCamelCase_ = False if state.get("add_prefix_space" , lowercase ) != add_prefix_space: lowerCamelCase_ = add_prefix_space lowerCamelCase_ = True if state.get("trim_offsets" , lowercase ) != trim_offsets: lowerCamelCase_ = trim_offsets lowerCamelCase_ = True if changes_to_apply: lowerCamelCase_ = getattr(lowercase , state.pop("type" ) ) lowerCamelCase_ = component_class(**lowercase ) setattr(self.backend_tokenizer , lowercase , lowercase ) @property # Copied from transformers.models.roberta.tokenization_roberta_fast.RobertaTokenizerFast.mask_token with Roberta->Blenderbot, RoBERTa->Blenderbot def SCREAMING_SNAKE_CASE_( self ) -> str: if self._mask_token is None: if self.verbose: logger.error("Using mask_token, but it is not set yet." ) return None return str(self._mask_token ) @mask_token.setter def SCREAMING_SNAKE_CASE_( self , lowercase ) -> List[str]: lowerCamelCase_ = AddedToken(lowercase , lstrip=lowercase , rstrip=lowercase ) if isinstance(lowercase , lowercase ) else value lowerCamelCase_ = value def SCREAMING_SNAKE_CASE_( self , *lowercase , **lowercase ) -> BatchEncoding: lowerCamelCase_ = kwargs.get("is_split_into_words" , lowercase ) assert self.add_prefix_space or not is_split_into_words, ( f'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*lowercase , **lowercase ) def SCREAMING_SNAKE_CASE_( self , *lowercase , **lowercase ) -> BatchEncoding: lowerCamelCase_ = kwargs.get("is_split_into_words" , lowercase ) assert self.add_prefix_space or not is_split_into_words, ( f'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._encode_plus(*lowercase , **lowercase ) def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase = None ) -> Tuple[str]: lowerCamelCase_ = self._tokenizer.model.save(lowercase , name=lowercase ) return tuple(lowercase ) def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase = None ) -> List[int]: lowerCamelCase_ = [self.sep_token_id] lowerCamelCase_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase = None ) -> int: return token_ids_a + [self.eos_token_id] def SCREAMING_SNAKE_CASE_( self , lowercase ) -> List[int]: lowerCamelCase_ = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(" " + text ) else: # Generated responses should contain them already. inputs.append(lowercase ) lowerCamelCase_ = " ".join(lowercase ) lowerCamelCase_ = self.encode(lowercase ) if len(lowercase ) > self.model_max_length: lowerCamelCase_ = input_ids[-self.model_max_length :] logger.warning(f'Trimmed input from conversation as it was longer than {self.model_max_length} tokens.' ) return input_ids
19
import gc import unittest import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DDPMScheduler, PriorTransformer, StableUnCLIPPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.testing_utils import enable_full_determinism, load_numpy, require_torch_gpu, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class A_ ( _a , _a , _a , unittest.TestCase ): '''simple docstring''' a__ = StableUnCLIPPipeline a__ = TEXT_TO_IMAGE_PARAMS a__ = TEXT_TO_IMAGE_BATCH_PARAMS a__ = TEXT_TO_IMAGE_IMAGE_PARAMS a__ = TEXT_TO_IMAGE_IMAGE_PARAMS # TODO(will) Expected attn_bias.stride(1) == 0 to be true, but got false a__ = False def lowerCAmelCase_ (self ) -> int: __UpperCAmelCase = 32 __UpperCAmelCase = embedder_hidden_size # prior components torch.manual_seed(0 ) __UpperCAmelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) torch.manual_seed(0 ) __UpperCAmelCase = CLIPTextModelWithProjection( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=lowercase__ , projection_dim=lowercase__ , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) ) torch.manual_seed(0 ) __UpperCAmelCase = PriorTransformer( num_attention_heads=2 , attention_head_dim=12 , embedding_dim=lowercase__ , num_layers=1 , ) torch.manual_seed(0 ) __UpperCAmelCase = DDPMScheduler( variance_type='''fixed_small_log''' , prediction_type='''sample''' , num_train_timesteps=1_000 , clip_sample=lowercase__ , clip_sample_range=5.0 , beta_schedule='''squaredcos_cap_v2''' , ) # regular denoising components torch.manual_seed(0 ) __UpperCAmelCase = StableUnCLIPImageNormalizer(embedding_dim=lowercase__ ) __UpperCAmelCase = DDPMScheduler(beta_schedule='''squaredcos_cap_v2''' ) torch.manual_seed(0 ) __UpperCAmelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) torch.manual_seed(0 ) __UpperCAmelCase = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=lowercase__ , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) ) torch.manual_seed(0 ) __UpperCAmelCase = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''CrossAttnDownBlock2D''', '''DownBlock2D''') , up_block_types=('''UpBlock2D''', '''CrossAttnUpBlock2D''') , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type='''projection''' , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=lowercase__ , layers_per_block=1 , upcast_attention=lowercase__ , use_linear_projection=lowercase__ , ) torch.manual_seed(0 ) __UpperCAmelCase = DDIMScheduler( beta_schedule='''scaled_linear''' , beta_start=0.00085 , beta_end=0.012 , prediction_type='''v_prediction''' , set_alpha_to_one=lowercase__ , steps_offset=1 , ) torch.manual_seed(0 ) __UpperCAmelCase = AutoencoderKL() __UpperCAmelCase = { # prior components '''prior_tokenizer''': prior_tokenizer, '''prior_text_encoder''': prior_text_encoder, '''prior''': prior, '''prior_scheduler''': prior_scheduler, # image noising components '''image_normalizer''': image_normalizer, '''image_noising_scheduler''': image_noising_scheduler, # regular denoising components '''tokenizer''': tokenizer, '''text_encoder''': text_encoder, '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, } return components def lowerCAmelCase_ (self , lowercase__ , lowercase__=0 ) -> List[Any]: if str(lowercase__ ).startswith('''mps''' ): __UpperCAmelCase = torch.manual_seed(lowercase__ ) else: __UpperCAmelCase = torch.Generator(device=lowercase__ ).manual_seed(lowercase__ ) __UpperCAmelCase = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''prior_num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def lowerCAmelCase_ (self ) -> Optional[Any]: __UpperCAmelCase = torch_device == '''cpu''' self._test_attention_slicing_forward_pass(test_max_difference=lowercase__ ) def lowerCAmelCase_ (self ) -> int: __UpperCAmelCase = torch_device in ['''cpu''', '''mps'''] self._test_inference_batch_single_identical(test_max_difference=lowercase__ ) @slow @require_torch_gpu class A_ ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase_ (self ) -> Dict: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase_ (self ) -> Union[str, Any]: __UpperCAmelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_anime_turtle_fp16.npy''' ) __UpperCAmelCase = StableUnCLIPPipeline.from_pretrained('''fusing/stable-unclip-2-1-l''' , torch_dtype=torch.floataa ) pipe.to(lowercase__ ) pipe.set_progress_bar_config(disable=lowercase__ ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() __UpperCAmelCase = torch.Generator(device='''cpu''' ).manual_seed(0 ) __UpperCAmelCase = pipe('''anime turle''' , generator=lowercase__ , output_type='''np''' ) __UpperCAmelCase = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(lowercase__ , lowercase__ ) def lowerCAmelCase_ (self ) -> Tuple: torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() __UpperCAmelCase = StableUnCLIPPipeline.from_pretrained('''fusing/stable-unclip-2-1-l''' , torch_dtype=torch.floataa ) __UpperCAmelCase = pipe.to(lowercase__ ) pipe.set_progress_bar_config(disable=lowercase__ ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() __UpperCAmelCase = pipe( '''anime turtle''' , prior_num_inference_steps=2 , num_inference_steps=2 , output_type='''np''' , ) __UpperCAmelCase = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
333
0
import json import os import tempfile from unittest.mock import patch import torch from torch.utils.data import DataLoader, TensorDataset from accelerate import DistributedType, infer_auto_device_map, init_empty_weights from accelerate.accelerator import Accelerator from accelerate.state import GradientState, PartialState from accelerate.test_utils import require_bnb, require_multi_gpu, slow from accelerate.test_utils.testing import AccelerateTestCase, require_cuda from accelerate.utils import patch_environment def UpperCAmelCase__ (): """simple docstring""" snake_case = torch.nn.Linear(2 ,4 ) snake_case = torch.optim.AdamW(model.parameters() ,lr=1.0 ) snake_case = torch.optim.lr_scheduler.OneCycleLR(UpperCamelCase_ ,max_lr=0.01 ,steps_per_epoch=2 ,epochs=1 ) snake_case = DataLoader(TensorDataset(torch.tensor([1, 2, 3] ) ) ) snake_case = DataLoader(TensorDataset(torch.tensor([4, 5, 6] ) ) ) return model, optimizer, scheduler, train_dl, valid_dl def UpperCAmelCase__ (UpperCamelCase_ ): """simple docstring""" return (model.weight.abs().sum() + model.bias.abs().sum()).item() def UpperCAmelCase__ (UpperCamelCase_ ): """simple docstring""" snake_case = torch.nn.Linear(*tuple(model.weight.T.shape ) ).state_dict() model.load_state_dict(UpperCamelCase_ ) class A__ ( snake_case__ ): """simple docstring""" @require_cuda def a_ ( self ): snake_case = Accelerator() assert PartialState._shared_state["_cpu"] is False assert PartialState._shared_state["device"].type == "cuda" with self.assertRaises(__snake_case ): snake_case = Accelerator(cpu=__snake_case ) def a_ ( self ): snake_case = Accelerator() snake_case = GradientState() assert state.num_steps == 1 snake_case = 4 assert state.num_steps == 4 assert state.sync_gradients is True snake_case = False assert state.sync_gradients is False GradientState._reset_state() def a_ ( self ): snake_case = Accelerator() snake_case , snake_case , snake_case , snake_case , snake_case = create_components() ( ( snake_case ) , ( snake_case ) , ( snake_case ) , ( snake_case ) , ( snake_case ) , ) = accelerator.prepare(__snake_case , __snake_case , __snake_case , __snake_case , __snake_case ) self.assertTrue(prepared_model in accelerator._models ) self.assertTrue(prepared_optimizer in accelerator._optimizers ) self.assertTrue(prepared_scheduler in accelerator._schedulers ) self.assertTrue(prepared_train_dl in accelerator._dataloaders ) self.assertTrue(prepared_valid_dl in accelerator._dataloaders ) def a_ ( self ): snake_case = Accelerator() snake_case , snake_case , snake_case , snake_case , snake_case = create_components() accelerator.prepare(__snake_case , __snake_case , __snake_case , __snake_case , __snake_case ) accelerator.free_memory() self.assertTrue(len(accelerator._models ) == 0 ) self.assertTrue(len(accelerator._optimizers ) == 0 ) self.assertTrue(len(accelerator._schedulers ) == 0 ) self.assertTrue(len(accelerator._dataloaders ) == 0 ) def a_ ( self ): PartialState._reset_state() # Mock torch.cuda.set_device to avoid an exception as the device doesn't exist def noop(*__snake_case , **__snake_case ): pass with patch('''torch.cuda.set_device''' , __snake_case ), patch_environment(ACCELERATE_TORCH_DEVICE='''cuda:64''' ): snake_case = Accelerator() self.assertEqual(str(accelerator.state.device ) , '''cuda:64''' ) def a_ ( self ): snake_case = Accelerator() snake_case , snake_case , snake_case , snake_case , snake_case = create_components() accelerator.prepare(__snake_case , __snake_case , __snake_case , __snake_case , __snake_case ) snake_case = get_signature(__snake_case ) with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(__snake_case ) # make sure random weights don't match load_random_weights(__snake_case ) self.assertTrue(abs(model_signature - get_signature(__snake_case ) ) > 1E-3 ) # make sure loaded weights match accelerator.load_state(__snake_case ) self.assertTrue(abs(model_signature - get_signature(__snake_case ) ) < 1E-3 ) def a_ ( self ): snake_case = Accelerator() snake_case , snake_case , snake_case , snake_case , snake_case = create_components() accelerator.prepare(__snake_case , __snake_case , __snake_case , __snake_case , __snake_case ) snake_case = get_signature(__snake_case ) # saving hook def save_config(__snake_case , __snake_case , __snake_case ): snake_case = {'''class_name''': models[0].__class__.__name__} with open(os.path.join(__snake_case , '''data.json''' ) , '''w''' ) as f: json.dump(__snake_case , __snake_case ) # loading hook def load_config(__snake_case , __snake_case ): with open(os.path.join(__snake_case , '''data.json''' ) , '''r''' ) as f: snake_case = json.load(__snake_case ) snake_case = config['''class_name'''] snake_case = accelerator.register_save_state_pre_hook(__snake_case ) snake_case = accelerator.register_load_state_pre_hook(__snake_case ) with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(__snake_case ) # make sure random weights don't match with hooks load_random_weights(__snake_case ) self.assertTrue(abs(model_signature - get_signature(__snake_case ) ) > 1E-3 ) # random class name to verify correct one is loaded snake_case = '''random''' # make sure loaded weights match with hooks accelerator.load_state(__snake_case ) self.assertTrue(abs(model_signature - get_signature(__snake_case ) ) < 1E-3 ) # mode.class_name is loaded from config self.assertTrue(model.class_name == model.__class__.__name__ ) # remove hooks save_hook.remove() load_hook.remove() with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(__snake_case ) # make sure random weights don't match with hooks removed load_random_weights(__snake_case ) self.assertTrue(abs(model_signature - get_signature(__snake_case ) ) > 1E-3 ) # random class name to verify correct one is loaded snake_case = '''random''' # make sure loaded weights match with hooks removed accelerator.load_state(__snake_case ) self.assertTrue(abs(model_signature - get_signature(__snake_case ) ) < 1E-3 ) # mode.class_name is NOT loaded from config self.assertTrue(model.class_name != model.__class__.__name__ ) def a_ ( self ): snake_case = Accelerator() snake_case , snake_case , snake_case , snake_case , snake_case = create_components() snake_case = None # This should work snake_case , snake_case , snake_case , snake_case , snake_case , snake_case = accelerator.prepare( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case ) self.assertTrue(dummy_obj is None ) def a_ ( self ): snake_case = Accelerator() snake_case , snake_case , snake_case , snake_case , snake_case = create_components() snake_case = [1, 2, 3] # This should work snake_case , snake_case , snake_case , snake_case , snake_case , snake_case = accelerator.prepare( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case ) self.assertEqual( getattr(__snake_case , '''_is_accelerate_prepared''' , __snake_case ) , __snake_case , '''Dummy object should have `_is_accelerate_prepared` set to `True`''' , ) self.assertEqual( getattr(__snake_case , '''_is_accelerate_prepared''' , __snake_case ) , __snake_case , '''Model is missing `_is_accelerator_prepared` or is set to `False`''' , ) self.assertEqual( getattr(__snake_case , '''_is_accelerate_prepared''' , __snake_case ) , __snake_case , '''Optimizer is missing `_is_accelerator_prepared` or is set to `False`''' , ) self.assertEqual( getattr(__snake_case , '''_is_accelerate_prepared''' , __snake_case ) , __snake_case , '''Scheduler is missing `_is_accelerator_prepared` or is set to `False`''' , ) self.assertEqual( getattr(__snake_case , '''_is_accelerate_prepared''' , __snake_case ) , __snake_case , '''Train Dataloader is missing `_is_accelerator_prepared` or is set to `False`''' , ) self.assertEqual( getattr(__snake_case , '''_is_accelerate_prepared''' , __snake_case ) , __snake_case , '''Valid Dataloader is missing `_is_accelerator_prepared` or is set to `False`''' , ) @slow @require_bnb def a_ ( self ): from transformers import AutoModelForCausalLM snake_case = AutoModelForCausalLM.from_pretrained( '''EleutherAI/gpt-neo-125m''' , load_in_abit=__snake_case , device_map={'''''': 0} , ) snake_case = Accelerator() # This should work snake_case = accelerator.prepare(__snake_case ) @slow @require_bnb def a_ ( self ): from transformers import AutoModelForCausalLM snake_case = Accelerator() with init_empty_weights(): snake_case = AutoModelForCausalLM.from_pretrained( '''EleutherAI/gpt-neo-125m''' , ) model.tie_weights() snake_case = infer_auto_device_map(__snake_case ) snake_case = '''cpu''' snake_case = AutoModelForCausalLM.from_pretrained( '''EleutherAI/gpt-neo-125m''' , device_map=__snake_case , load_in_abit=__snake_case , llm_inta_enable_fpaa_cpu_offload=__snake_case ) # This should not work and get value error with self.assertRaises(__snake_case ): snake_case = accelerator.prepare(__snake_case ) @slow @require_bnb @require_multi_gpu def a_ ( self ): from transformers import AutoModelForCausalLM snake_case = {'''distributed_type''': DistributedType.MULTI_GPU} with init_empty_weights(): snake_case = AutoModelForCausalLM.from_pretrained( '''EleutherAI/gpt-neo-125m''' , ) model.tie_weights() snake_case = infer_auto_device_map(__snake_case ) snake_case = 1 snake_case = AutoModelForCausalLM.from_pretrained( '''EleutherAI/gpt-neo-125m''' , load_in_abit=__snake_case , device_map=__snake_case , ) snake_case = Accelerator() # This should not work and get value error with self.assertRaises(__snake_case ): snake_case = accelerator.prepare(__snake_case ) PartialState._reset_state() @slow @require_bnb @require_multi_gpu def a_ ( self ): from transformers import AutoModelForCausalLM with init_empty_weights(): snake_case = AutoModelForCausalLM.from_pretrained( '''EleutherAI/gpt-neo-125m''' , ) snake_case = infer_auto_device_map(__snake_case ) snake_case = 1 snake_case = AutoModelForCausalLM.from_pretrained( '''EleutherAI/gpt-neo-125m''' , load_in_abit=__snake_case , device_map=__snake_case , ) snake_case = Accelerator() # This should work snake_case = accelerator.prepare(__snake_case ) @require_cuda def a_ ( self ): snake_case = torch.nn.Linear(1_0 , 1_0 ) snake_case = torch.optim.SGD(model.parameters() , lr=0.01 ) snake_case = Accelerator(cpu=__snake_case ) snake_case = accelerator.prepare(__snake_case )
213
def UpperCAmelCase__ (UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_ ): """simple docstring""" snake_case = len(UpperCamelCase_ ) snake_case = [[0] * n for i in range(UpperCamelCase_ )] for i in range(UpperCamelCase_ ): snake_case = y_points[i] for i in range(2 ,UpperCamelCase_ ): for j in range(UpperCamelCase_ ,UpperCamelCase_ ): snake_case = ( (xa - x_points[j - i + 1]) * q[j][i - 1] - (xa - x_points[j]) * q[j - 1][i - 1] ) / (x_points[j] - x_points[j - i + 1]) return [q[n - 1][n - 1], q] if __name__ == "__main__": import doctest doctest.testmod()
213
1
import warnings from ...utils import logging from .image_processing_owlvit import OwlViTImageProcessor _lowerCamelCase =logging.get_logger(__name__) class A__ ( __SCREAMING_SNAKE_CASE): def __init__( self , *__magic_name__ , **__magic_name__ ): warnings.warn( """The class OwlViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use OwlViTImageProcessor instead.""" , __magic_name__ , ) super().__init__(*__magic_name__ , **__magic_name__ )
287
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCamelCase =logging.get_logger(__name__) _lowerCamelCase ={ """BridgeTower/bridgetower-base""": """https://huggingface.co/BridgeTower/bridgetower-base/blob/main/config.json""", """BridgeTower/bridgetower-base-itm-mlm""": ( """https://huggingface.co/BridgeTower/bridgetower-base-itm-mlm/blob/main/config.json""" ), } class A__ ( __SCREAMING_SNAKE_CASE): _UpperCAmelCase : Dict = """bridgetower_vision_model""" def __init__( self , __magic_name__=7_6_8 , __magic_name__=1_2 , __magic_name__=3 , __magic_name__=1_6 , __magic_name__=2_8_8 , __magic_name__=1 , __magic_name__=1e-05 , __magic_name__=False , __magic_name__=True , __magic_name__=False , **__magic_name__ , ): super().__init__(**__magic_name__ ) lowerCamelCase : Dict = hidden_size lowerCamelCase : str = num_hidden_layers lowerCamelCase : Optional[int] = num_channels lowerCamelCase : List[str] = patch_size lowerCamelCase : Tuple = image_size lowerCamelCase : Any = initializer_factor lowerCamelCase : Tuple = layer_norm_eps lowerCamelCase : Tuple = stop_gradient lowerCamelCase : Optional[int] = share_layernorm lowerCamelCase : str = remove_last_layer @classmethod def UpperCamelCase__ ( cls , __magic_name__ , **__magic_name__ ): lowerCamelCase , lowerCamelCase : int = cls.get_config_dict(__magic_name__ , **__magic_name__ ) if config_dict.get("""model_type""" ) == "bridgetower": lowerCamelCase : str = config_dict["""text_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(__magic_name__ , **__magic_name__ ) class A__ ( __SCREAMING_SNAKE_CASE): _UpperCAmelCase : Union[str, Any] = """bridgetower_text_model""" def __init__( self , __magic_name__=5_0_2_6_5 , __magic_name__=7_6_8 , __magic_name__=1_2 , __magic_name__=1_2 , __magic_name__=1 , __magic_name__=3_0_7_2 , __magic_name__="gelu" , __magic_name__=0.1 , __magic_name__=0.1 , __magic_name__=5_1_4 , __magic_name__=1 , __magic_name__=1e-05 , __magic_name__=1 , __magic_name__=0 , __magic_name__=2 , __magic_name__="absolute" , __magic_name__=True , **__magic_name__ , ): super().__init__(**__magic_name__ ) lowerCamelCase : int = vocab_size lowerCamelCase : int = hidden_size lowerCamelCase : Any = num_hidden_layers lowerCamelCase : Union[str, Any] = num_attention_heads lowerCamelCase : Tuple = hidden_act lowerCamelCase : Optional[int] = initializer_factor lowerCamelCase : Any = intermediate_size lowerCamelCase : List[str] = hidden_dropout_prob lowerCamelCase : Dict = attention_probs_dropout_prob lowerCamelCase : str = max_position_embeddings lowerCamelCase : Union[str, Any] = type_vocab_size lowerCamelCase : Optional[int] = layer_norm_eps lowerCamelCase : Optional[int] = position_embedding_type lowerCamelCase : List[str] = use_cache lowerCamelCase : List[str] = pad_token_id lowerCamelCase : List[str] = bos_token_id lowerCamelCase : Optional[int] = eos_token_id @classmethod def UpperCamelCase__ ( cls , __magic_name__ , **__magic_name__ ): lowerCamelCase , lowerCamelCase : int = cls.get_config_dict(__magic_name__ , **__magic_name__ ) if config_dict.get("""model_type""" ) == "bridgetower": lowerCamelCase : Optional[int] = config_dict["""text_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(__magic_name__ , **__magic_name__ ) class A__ ( __SCREAMING_SNAKE_CASE): _UpperCAmelCase : Dict = """bridgetower""" def __init__( self , __magic_name__=True , __magic_name__="gelu" , __magic_name__=7_6_8 , __magic_name__=1 , __magic_name__=1e-05 , __magic_name__=False , __magic_name__="add" , __magic_name__=1_2 , __magic_name__=6 , __magic_name__=False , __magic_name__=False , __magic_name__=None , __magic_name__=None , **__magic_name__ , ): # TODO: remove this once the Hub files are updated. lowerCamelCase : int = kwargs.pop("""text_config_dict""" , __magic_name__ ) lowerCamelCase : str = kwargs.pop("""vision_config_dict""" , __magic_name__ ) super().__init__(**__magic_name__ ) lowerCamelCase : str = share_cross_modal_transformer_layers lowerCamelCase : Union[str, Any] = hidden_act lowerCamelCase : str = hidden_size lowerCamelCase : Tuple = initializer_factor lowerCamelCase : List[str] = layer_norm_eps lowerCamelCase : int = share_link_tower_layers lowerCamelCase : List[Any] = link_tower_type lowerCamelCase : Tuple = num_attention_heads lowerCamelCase : int = num_hidden_layers lowerCamelCase : Union[str, Any] = tie_word_embeddings lowerCamelCase : Tuple = init_layernorm_from_vision_encoder if text_config is None: lowerCamelCase : Any = {} logger.info("""`text_config` is `None`. Initializing the `BridgeTowerTextConfig` with default values.""" ) if vision_config is None: lowerCamelCase : int = {} logger.info("""`vision_config` is `None`. Initializing the `BridgeTowerVisionConfig` with default values.""" ) lowerCamelCase : Any = BridgeTowerTextConfig(**__magic_name__ ) lowerCamelCase : Optional[Any] = BridgeTowerVisionConfig(**__magic_name__ ) @classmethod def UpperCamelCase__ ( cls , __magic_name__ , __magic_name__ , **__magic_name__ ): return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **__magic_name__ ) def UpperCamelCase__ ( self ): lowerCamelCase : str = copy.deepcopy(self.__dict__ ) lowerCamelCase : int = self.text_config.to_dict() lowerCamelCase : Dict = self.vision_config.to_dict() lowerCamelCase : List[str] = self.__class__.model_type return output
287
1
from __future__ import annotations from itertools import permutations from random import randint from timeit import repeat def A_ ( ) -> tuple[list[int], int]: a__ : Tuple = [randint(-1000 , 1000 ) for i in range(10 )] a__ : Dict = randint(-5000 , 5000 ) return (arr, r) lowercase : Dict = make_dataset() def A_ ( A__ , A__ ) -> tuple[int, ...]: for triplet in permutations(A__ , 3 ): if sum(A__ ) == target: return tuple(sorted(A__ ) ) return (0, 0, 0) def A_ ( A__ , A__ ) -> tuple[int, int, int]: arr.sort() a__ : Optional[Any] = len(A__ ) for i in range(n - 1 ): a__ , a__ : Dict = i + 1, n - 1 while left < right: if arr[i] + arr[left] + arr[right] == target: return (arr[i], arr[left], arr[right]) elif arr[i] + arr[left] + arr[right] < target: left += 1 elif arr[i] + arr[left] + arr[right] > target: right -= 1 return (0, 0, 0) def A_ ( ) -> tuple[float, float]: a__ : int = '\nfrom __main__ import dataset, triplet_sum1, triplet_sum2\n' a__ : List[Any] = '\ntriplet_sum1(*dataset)\n' a__ : Optional[Any] = '\ntriplet_sum2(*dataset)\n' a__ : Union[str, Any] = repeat(setup=A__ , stmt=A__ , repeat=5 , number=1_0000 ) a__ : Optional[int] = repeat(setup=A__ , stmt=A__ , repeat=5 , number=1_0000 ) return (min(A__ ), min(A__ )) if __name__ == "__main__": from doctest import testmod testmod() lowercase : Optional[int] = solution_times() print(F"""The time for naive implementation is {times[0]}.""") print(F"""The time for optimized implementation is {times[1]}.""")
225
import os import socket from contextlib import contextmanager import torch from ..commands.config.default import write_basic_config # noqa: F401 from ..state import PartialState from .dataclasses import DistributedType from .imports import is_deepspeed_available, is_tpu_available from .transformer_engine import convert_model from .versions import is_torch_version if is_deepspeed_available(): from deepspeed import DeepSpeedEngine if is_tpu_available(check_device=False): import torch_xla.core.xla_model as xm def A_ ( A__ ) -> Optional[int]: if is_torch_version('<' , '2.0.0' ) or not hasattr(A__ , '_dynamo' ): return False return isinstance(A__ , torch._dynamo.eval_frame.OptimizedModule ) def A_ ( A__ , A__ = True ) -> int: a__ : Optional[Any] = (torch.nn.parallel.DistributedDataParallel, torch.nn.DataParallel) a__ : Union[str, Any] = is_compiled_module(A__ ) if is_compiled: a__ : List[str] = model a__ : Dict = model._orig_mod if is_deepspeed_available(): options += (DeepSpeedEngine,) while isinstance(A__ , A__ ): a__ : str = model.module if not keep_fpaa_wrapper: a__ : Union[str, Any] = getattr(A__ , 'forward' ) a__ : List[Any] = model.__dict__.pop('_original_forward' , A__ ) if original_forward is not None: while hasattr(A__ , '__wrapped__' ): a__ : int = forward.__wrapped__ if forward == original_forward: break a__ : List[Any] = forward if getattr(A__ , '_converted_to_transformer_engine' , A__ ): convert_model(A__ , to_transformer_engine=A__ ) if is_compiled: a__ : List[str] = model a__ : Any = compiled_model return model def A_ ( ) -> int: PartialState().wait_for_everyone() def A_ ( A__ , A__ ) -> Dict: if PartialState().distributed_type == DistributedType.TPU: xm.save(A__ , A__ ) elif PartialState().local_process_index == 0: torch.save(A__ , A__ ) @contextmanager def A_ ( **A__ ) -> Any: for key, value in kwargs.items(): a__ : Optional[int] = str(A__ ) yield for key in kwargs: if key.upper() in os.environ: del os.environ[key.upper()] def A_ ( A__ ) -> List[str]: if not hasattr(A__ , '__qualname__' ) and not hasattr(A__ , '__name__' ): a__ : Dict = getattr(A__ , '__class__' , A__ ) if hasattr(A__ , '__qualname__' ): return obj.__qualname__ if hasattr(A__ , '__name__' ): return obj.__name__ return str(A__ ) def A_ ( A__ , A__ ) -> Dict: for key, value in source.items(): if isinstance(A__ , A__ ): a__ : Optional[Any] = destination.setdefault(A__ , {} ) merge_dicts(A__ , A__ ) else: a__ : Optional[int] = value return destination def A_ ( A__ = None ) -> bool: if port is None: a__ : List[Any] = 2_9500 with socket.socket(socket.AF_INET , socket.SOCK_STREAM ) as s: return s.connect_ex(('localhost', port) ) == 0
225
1
'''simple docstring''' import unittest from transformers import load_tool from .test_tools_common import ToolTesterMixin __SCREAMING_SNAKE_CASE : Optional[int] = """ Hugging Face was founded in 2016 by French entrepreneurs Clément Delangue, Julien Chaumond, and Thomas Wolf originally as a company that developed a chatbot app targeted at teenagers.[2] After open-sourcing the model behind the chatbot, the company pivoted to focus on being a platform for machine learning. In March 2021, Hugging Face raised $40 million in a Series B funding round.[3] On April 28, 2021, the company launched the BigScience Research Workshop in collaboration with several other research groups to release an open large language model.[4] In 2022, the workshop concluded with the announcement of BLOOM, a multilingual large language model with 176 billion parameters.[5] """ class lowerCamelCase_ (unittest.TestCase , snake_case__ ): '''simple docstring''' def _A ( self : int ): _UpperCAmelCase : Optional[Any] = load_tool("text-question-answering" ) self.tool.setup() _UpperCAmelCase : Dict = load_tool("text-question-answering" , remote=A ) def _A ( self : List[Any] ): _UpperCAmelCase : Optional[int] = self.tool(A , "What did Hugging Face do in April 2021?" ) self.assertEqual(A , "launched the BigScience Research Workshop" ) def _A ( self : int ): _UpperCAmelCase : Dict = self.remote_tool(A , "What did Hugging Face do in April 2021?" ) self.assertEqual(A , "launched the BigScience Research Workshop" ) def _A ( self : int ): _UpperCAmelCase : Optional[Any] = self.tool(text=A , question="What did Hugging Face do in April 2021?" ) self.assertEqual(A , "launched the BigScience Research Workshop" ) def _A ( self : Tuple ): _UpperCAmelCase : Any = self.remote_tool(text=A , question="What did Hugging Face do in April 2021?" ) self.assertEqual(A , "launched the BigScience Research Workshop" )
31
'''simple docstring''' from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available from ...utils import OptionalDependencyNotAvailable __SCREAMING_SNAKE_CASE : Optional[int] = {"""configuration_gpt_neox""": ["""GPT_NEOX_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GPTNeoXConfig"""]} try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE : Tuple = ["""GPTNeoXTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE : Dict = [ """GPT_NEOX_PRETRAINED_MODEL_ARCHIVE_LIST""", """GPTNeoXForCausalLM""", """GPTNeoXForQuestionAnswering""", """GPTNeoXForSequenceClassification""", """GPTNeoXForTokenClassification""", """GPTNeoXLayer""", """GPTNeoXModel""", """GPTNeoXPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_gpt_neox import GPT_NEOX_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoXConfig try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_gpt_neox_fast import GPTNeoXTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neox import ( GPT_NEOX_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, GPTNeoXLayer, GPTNeoXModel, GPTNeoXPreTrainedModel, ) else: import sys __SCREAMING_SNAKE_CASE : Any = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
31
1
"""simple docstring""" import math def snake_case ( A__ ,A__ = 0 ,A__ = 0 ): UpperCAmelCase_ : Union[str, Any] = end or len(A__ ) for i in range(A__ ,A__ ): UpperCAmelCase_ : Tuple = i UpperCAmelCase_ : Tuple = array[i] while temp_index != start and temp_index_value < array[temp_index - 1]: UpperCAmelCase_ : Optional[int] = array[temp_index - 1] temp_index -= 1 UpperCAmelCase_ : Dict = temp_index_value return array def snake_case ( A__ ,A__ ,A__ ): # Max Heap UpperCAmelCase_ : Union[str, Any] = index UpperCAmelCase_ : Any = 2 * index + 1 # Left Node UpperCAmelCase_ : List[str] = 2 * index + 2 # Right Node if left_index < heap_size and array[largest] < array[left_index]: UpperCAmelCase_ : Tuple = left_index if right_index < heap_size and array[largest] < array[right_index]: UpperCAmelCase_ : Dict = right_index if largest != index: UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = array[largest], array[index] heapify(A__ ,A__ ,A__ ) def snake_case ( A__ ): UpperCAmelCase_ : int = len(A__ ) for i in range(n // 2 ,-1 ,-1 ): heapify(A__ ,A__ ,A__ ) for i in range(n - 1 ,0 ,-1 ): UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = array[0], array[i] heapify(A__ ,0 ,A__ ) return array def snake_case ( A__ ,A__ ,A__ ,A__ ): if (array[first_index] > array[middle_index]) != ( array[first_index] > array[last_index] ): return array[first_index] elif (array[middle_index] > array[first_index]) != ( array[middle_index] > array[last_index] ): return array[middle_index] else: return array[last_index] def snake_case ( A__ ,A__ ,A__ ,A__ ): UpperCAmelCase_ : int = low UpperCAmelCase_ : Optional[int] = high while True: while array[i] < pivot: i += 1 j -= 1 while pivot < array[j]: j -= 1 if i >= j: return i UpperCAmelCase_ , UpperCAmelCase_ : Dict = array[j], array[i] i += 1 def snake_case ( A__ ): if len(A__ ) == 0: return array UpperCAmelCase_ : Optional[Any] = 2 * math.ceil(math.loga(len(A__ ) ) ) UpperCAmelCase_ : Union[str, Any] = 16 return intro_sort(A__ ,0 ,len(A__ ) ,A__ ,A__ ) def snake_case ( A__ ,A__ ,A__ ,A__ ,A__ ): while end - start > size_threshold: if max_depth == 0: return heap_sort(A__ ) max_depth -= 1 UpperCAmelCase_ : Tuple = median_of_a(A__ ,A__ ,start + ((end - start) // 2) + 1 ,end - 1 ) UpperCAmelCase_ : List[str] = partition(A__ ,A__ ,A__ ,A__ ) intro_sort(A__ ,A__ ,A__ ,A__ ,A__ ) UpperCAmelCase_ : Optional[int] = p return insertion_sort(A__ ,A__ ,A__ ) if __name__ == "__main__": import doctest doctest.testmod() lowerCamelCase_ = input('''Enter numbers separated by a comma : ''').strip() lowerCamelCase_ = [float(item) for item in user_input.split(''',''')] print(sort(unsorted))
253
"""simple docstring""" import json import os import tempfile import unittest import unittest.mock as mock from pathlib import Path from requests.exceptions import HTTPError from transformers.utils import ( CONFIG_NAME, FLAX_WEIGHTS_NAME, TF2_WEIGHTS_NAME, TRANSFORMERS_CACHE, WEIGHTS_NAME, cached_file, get_file_from_repo, has_file, ) lowerCamelCase_ = '''hf-internal-testing/tiny-random-bert''' lowerCamelCase_ = os.path.join(TRANSFORMERS_CACHE, '''models--hf-internal-testing--tiny-random-bert''') lowerCamelCase_ = '''9b8c223d42b2188cb49d29af482996f9d0f3e5a6''' class UpperCamelCase_ (unittest.TestCase ): def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> List[str]: UpperCAmelCase_ : List[Any] = cached_file(lowerCAmelCase_ , lowerCAmelCase_ ) # Should have downloaded the file in here self.assertTrue(os.path.isdir(lowerCAmelCase_ ) ) # Cache should contain at least those three subfolders: for subfolder in ["blobs", "refs", "snapshots"]: self.assertTrue(os.path.isdir(os.path.join(lowerCAmelCase_ , lowerCAmelCase_ ) ) ) with open(os.path.join(lowerCAmelCase_ , "refs" , "main" ) ) as f: UpperCAmelCase_ : Optional[int] = f.read() self.assertEqual(lowerCAmelCase_ , os.path.join(lowerCAmelCase_ , "snapshots" , lowerCAmelCase_ , lowerCAmelCase_ ) ) self.assertTrue(os.path.isfile(lowerCAmelCase_ ) ) # File is cached at the same place the second time. UpperCAmelCase_ : List[str] = cached_file(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ ) # Using a specific revision to test the full commit hash. UpperCAmelCase_ : int = cached_file(lowerCAmelCase_ , lowerCAmelCase_ , revision="9b8c223" ) self.assertEqual(lowerCAmelCase_ , os.path.join(lowerCAmelCase_ , "snapshots" , lowerCAmelCase_ , lowerCAmelCase_ ) ) def _SCREAMING_SNAKE_CASE ( self : Any ) -> Union[str, Any]: with self.assertRaisesRegex(lowerCAmelCase_ , "is not a valid model identifier" ): UpperCAmelCase_ : List[Any] = cached_file("tiny-random-bert" , lowerCAmelCase_ ) with self.assertRaisesRegex(lowerCAmelCase_ , "is not a valid git identifier" ): UpperCAmelCase_ : Optional[Any] = cached_file(lowerCAmelCase_ , lowerCAmelCase_ , revision="aaaa" ) with self.assertRaisesRegex(lowerCAmelCase_ , "does not appear to have a file named" ): UpperCAmelCase_ : Union[str, Any] = cached_file(lowerCAmelCase_ , "conf" ) def _SCREAMING_SNAKE_CASE ( self : Any ) -> List[str]: with self.assertRaisesRegex(lowerCAmelCase_ , "does not appear to have a file named" ): UpperCAmelCase_ : Any = cached_file(lowerCAmelCase_ , "conf" ) with open(os.path.join(lowerCAmelCase_ , "refs" , "main" ) ) as f: UpperCAmelCase_ : List[str] = f.read() self.assertTrue(os.path.isfile(os.path.join(lowerCAmelCase_ , ".no_exist" , lowerCAmelCase_ , "conf" ) ) ) UpperCAmelCase_ : str = cached_file(lowerCAmelCase_ , "conf" , _raise_exceptions_for_missing_entries=lowerCAmelCase_ ) self.assertIsNone(lowerCAmelCase_ ) UpperCAmelCase_ : List[Any] = cached_file(lowerCAmelCase_ , "conf" , local_files_only=lowerCAmelCase_ , _raise_exceptions_for_missing_entries=lowerCAmelCase_ ) self.assertIsNone(lowerCAmelCase_ ) UpperCAmelCase_ : Any = mock.Mock() UpperCAmelCase_ : List[str] = 500 UpperCAmelCase_ : Optional[Any] = {} UpperCAmelCase_ : List[Any] = HTTPError UpperCAmelCase_ : List[str] = {} # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch("requests.Session.request" , return_value=lowerCAmelCase_ ) as mock_head: UpperCAmelCase_ : List[Any] = cached_file(lowerCAmelCase_ , "conf" , _raise_exceptions_for_connection_errors=lowerCAmelCase_ ) self.assertIsNone(lowerCAmelCase_ ) # This check we did call the fake head request mock_head.assert_called() def _SCREAMING_SNAKE_CASE ( self : Dict ) -> Dict: self.assertTrue(has_file("hf-internal-testing/tiny-bert-pt-only" , lowerCAmelCase_ ) ) self.assertFalse(has_file("hf-internal-testing/tiny-bert-pt-only" , lowerCAmelCase_ ) ) self.assertFalse(has_file("hf-internal-testing/tiny-bert-pt-only" , lowerCAmelCase_ ) ) def _SCREAMING_SNAKE_CASE ( self : Dict ) -> Union[str, Any]: # `get_file_from_repo` returns None if the file does not exist self.assertIsNone(get_file_from_repo("bert-base-cased" , "ahah.txt" ) ) # The function raises if the repository does not exist. with self.assertRaisesRegex(lowerCAmelCase_ , "is not a valid model identifier" ): get_file_from_repo("bert-base-case" , lowerCAmelCase_ ) # The function raises if the revision does not exist. with self.assertRaisesRegex(lowerCAmelCase_ , "is not a valid git identifier" ): get_file_from_repo("bert-base-cased" , lowerCAmelCase_ , revision="ahaha" ) UpperCAmelCase_ : int = get_file_from_repo("bert-base-cased" , lowerCAmelCase_ ) # The name is the cached name which is not very easy to test, so instead we load the content. UpperCAmelCase_ : Optional[int] = json.loads(open(lowerCAmelCase_ , "r" ).read() ) self.assertEqual(config["hidden_size"] , 768 ) def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> List[Any]: with tempfile.TemporaryDirectory() as tmp_dir: UpperCAmelCase_ : Union[str, Any] = Path(lowerCAmelCase_ ) / "a.txt" filename.touch() self.assertEqual(get_file_from_repo(lowerCAmelCase_ , "a.txt" ) , str(lowerCAmelCase_ ) ) self.assertIsNone(get_file_from_repo(lowerCAmelCase_ , "b.txt" ) )
253
1
import unittest import numpy as np import torch from diffusers import KarrasVePipeline, KarrasVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class A (unittest.TestCase ): '''simple docstring''' @property def a_ ( self : str ) -> int: """simple docstring""" torch.manual_seed(0 ) A__ = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=("""DownBlock2D""", """AttnDownBlock2D""") , up_block_types=("""AttnUpBlock2D""", """UpBlock2D""") , ) return model def a_ ( self : int ) -> Union[str, Any]: """simple docstring""" A__ = self.dummy_uncond_unet A__ = KarrasVeScheduler() A__ = KarrasVePipeline(unet=snake_case__ , scheduler=snake_case__ ) pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) A__ = torch.manual_seed(0 ) A__ = pipe(num_inference_steps=2 , generator=snake_case__ , output_type="""numpy""" ).images A__ = torch.manual_seed(0 ) A__ = pipe(num_inference_steps=2 , generator=snake_case__ , output_type="""numpy""" , return_dict=snake_case__ )[0] A__ = image[0, -3:, -3:, -1] A__ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) A__ = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch class A (unittest.TestCase ): '''simple docstring''' def a_ ( self : int ) -> List[Any]: """simple docstring""" A__ = '''google/ncsnpp-celebahq-256''' A__ = UNetaDModel.from_pretrained(snake_case__ ) A__ = KarrasVeScheduler() A__ = KarrasVePipeline(unet=snake_case__ , scheduler=snake_case__ ) pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) A__ = torch.manual_seed(0 ) A__ = pipe(num_inference_steps=20 , generator=snake_case__ , output_type="""numpy""" ).images A__ = image[0, -3:, -3:, -1] assert image.shape == (1, 2_56, 2_56, 3) A__ = np.array([0.5_7_8, 0.5_8_1_1, 0.5_9_2_4, 0.5_8_0_9, 0.5_8_7, 0.5_8_8_6, 0.5_8_6_1, 0.5_8_0_2, 0.5_8_6] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
274
from typing import Callable, List, Optional, Tuple, Union import torch from transformers import CLIPTextModel, CLIPTokenizer from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin, TransformeraDModel, VQModel from ...schedulers import VQDiffusionScheduler from ...utils import logging from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput __snake_case = logging.get_logger(__name__) # pylint: disable=invalid-name class __snake_case ( lowerCamelCase__ , lowerCamelCase__ ): @register_to_config def __init__( self , snake_case__ , snake_case__ = None , snake_case__ = None ) -> str: '''simple docstring''' super().__init__() UpperCAmelCase : Optional[Any] =learnable if self.learnable: assert hidden_size is not None, "learnable=True requires `hidden_size` to be set" assert length is not None, "learnable=True requires `length` to be set" UpperCAmelCase : Any =torch.zeros(snake_case__ , snake_case__ ) else: UpperCAmelCase : Union[str, Any] =None UpperCAmelCase : Optional[int] =torch.nn.Parameter(snake_case__ ) class __snake_case ( lowerCamelCase__ ): __lowerCamelCase : VQModel __lowerCamelCase : CLIPTextModel __lowerCamelCase : CLIPTokenizer __lowerCamelCase : TransformeraDModel __lowerCamelCase : LearnedClassifierFreeSamplingEmbeddings __lowerCamelCase : VQDiffusionScheduler def __init__( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ) -> int: '''simple docstring''' super().__init__() self.register_modules( vqvae=snake_case__ , transformer=snake_case__ , text_encoder=snake_case__ , tokenizer=snake_case__ , scheduler=snake_case__ , learned_classifier_free_sampling_embeddings=snake_case__ , ) def UpperCAmelCase__ ( self , snake_case__ , snake_case__ , snake_case__ ) -> Optional[int]: '''simple docstring''' UpperCAmelCase : int =len(snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else 1 # get prompt text embeddings UpperCAmelCase : Optional[int] =self.tokenizer( snake_case__ , padding='''max_length''' , max_length=self.tokenizer.model_max_length , return_tensors='''pt''' , ) UpperCAmelCase : int =text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: UpperCAmelCase : List[str] =self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( '''The following part of your input was truncated because CLIP can only handle sequences up to''' f''' {self.tokenizer.model_max_length} tokens: {removed_text}''' ) UpperCAmelCase : Optional[Any] =text_input_ids[:, : self.tokenizer.model_max_length] UpperCAmelCase : List[Any] =self.text_encoder(text_input_ids.to(self.device ) )[0] # NOTE: This additional step of normalizing the text embeddings is from VQ-Diffusion. # While CLIP does normalize the pooled output of the text transformer when combining # the image and text embeddings, CLIP does not directly normalize the last hidden state. # # CLIP normalizing the pooled output. # https://github.com/huggingface/transformers/blob/d92e22d1f28324f513f3080e5c47c071a3916721/src/transformers/models/clip/modeling_clip.py#L1052-L1053 UpperCAmelCase : int =prompt_embeds / prompt_embeds.norm(dim=-1 , keepdim=snake_case__ ) # duplicate text embeddings for each generation per prompt UpperCAmelCase : int =prompt_embeds.repeat_interleave(snake_case__ , dim=0 ) if do_classifier_free_guidance: if self.learned_classifier_free_sampling_embeddings.learnable: UpperCAmelCase : Optional[int] =self.learned_classifier_free_sampling_embeddings.embeddings UpperCAmelCase : str =negative_prompt_embeds.unsqueeze(0 ).repeat(snake_case__ , 1 , 1 ) else: UpperCAmelCase : str =[''''''] * batch_size UpperCAmelCase : Tuple =text_input_ids.shape[-1] UpperCAmelCase : Optional[Any] =self.tokenizer( snake_case__ , padding='''max_length''' , max_length=snake_case__ , truncation=snake_case__ , return_tensors='''pt''' , ) UpperCAmelCase : Optional[Any] =self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # See comment for normalizing text embeddings UpperCAmelCase : Optional[int] =negative_prompt_embeds / negative_prompt_embeds.norm(dim=-1 , keepdim=snake_case__ ) # duplicate unconditional embeddings for each generation per prompt, using mps friendly method UpperCAmelCase : Optional[Any] =negative_prompt_embeds.shape[1] UpperCAmelCase : Union[str, Any] =negative_prompt_embeds.repeat(1 , snake_case__ , 1 ) UpperCAmelCase : Optional[Any] =negative_prompt_embeds.view(batch_size * num_images_per_prompt , snake_case__ , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes UpperCAmelCase : int =torch.cat([negative_prompt_embeds, prompt_embeds] ) return prompt_embeds @torch.no_grad() def __call__( self , snake_case__ , snake_case__ = 100 , snake_case__ = 5.0 , snake_case__ = 1.0 , snake_case__ = 1 , snake_case__ = None , snake_case__ = None , snake_case__ = "pil" , snake_case__ = True , snake_case__ = None , snake_case__ = 1 , ) -> Union[ImagePipelineOutput, Tuple]: '''simple docstring''' if isinstance(snake_case__ , snake_case__ ): UpperCAmelCase : Optional[int] =1 elif isinstance(snake_case__ , snake_case__ ): UpperCAmelCase : Tuple =len(snake_case__ ) else: raise ValueError(f'''`prompt` has to be of type `str` or `list` but is {type(snake_case__ )}''' ) UpperCAmelCase : Tuple =batch_size * num_images_per_prompt UpperCAmelCase : List[str] =guidance_scale > 1.0 UpperCAmelCase : List[Any] =self._encode_prompt(snake_case__ , snake_case__ , snake_case__ ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(snake_case__ , snake_case__ ) or callback_steps <= 0) ): raise ValueError( f'''`callback_steps` has to be a positive integer but is {callback_steps} of type''' f''' {type(snake_case__ )}.''' ) # get the initial completely masked latents unless the user supplied it UpperCAmelCase : int =(batch_size, self.transformer.num_latent_pixels) if latents is None: UpperCAmelCase : Union[str, Any] =self.transformer.num_vector_embeds - 1 UpperCAmelCase : str =torch.full(snake_case__ , snake_case__ ).to(self.device ) else: if latents.shape != latents_shape: raise ValueError(f'''Unexpected latents shape, got {latents.shape}, expected {latents_shape}''' ) if (latents < 0).any() or (latents >= self.transformer.num_vector_embeds).any(): raise ValueError( '''Unexpected latents value(s). All latents be valid embedding indices i.e. in the range 0,''' f''' {self.transformer.num_vector_embeds - 1} (inclusive).''' ) UpperCAmelCase : Any =latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(snake_case__ , device=self.device ) UpperCAmelCase : Any =self.scheduler.timesteps.to(self.device ) UpperCAmelCase : Optional[int] =latents for i, t in enumerate(self.progress_bar(snake_case__ ) ): # expand the sample if we are doing classifier free guidance UpperCAmelCase : Optional[Any] =torch.cat([sample] * 2 ) if do_classifier_free_guidance else sample # predict the un-noised image # model_output == `log_p_x_0` UpperCAmelCase : Optional[int] =self.transformer(snake_case__ , encoder_hidden_states=snake_case__ , timestep=snake_case__ ).sample if do_classifier_free_guidance: UpperCAmelCase , UpperCAmelCase : str =model_output.chunk(2 ) UpperCAmelCase : Optional[int] =model_output_uncond + guidance_scale * (model_output_text - model_output_uncond) model_output -= torch.logsumexp(snake_case__ , dim=1 , keepdim=snake_case__ ) UpperCAmelCase : Tuple =self.truncate(snake_case__ , snake_case__ ) # remove `log(0)`'s (`-inf`s) UpperCAmelCase : Optional[Any] =model_output.clamp(-70 ) # compute the previous noisy sample x_t -> x_t-1 UpperCAmelCase : int =self.scheduler.step(snake_case__ , timestep=snake_case__ , sample=snake_case__ , generator=snake_case__ ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(snake_case__ , snake_case__ , snake_case__ ) UpperCAmelCase : Optional[int] =self.vqvae.config.vq_embed_dim UpperCAmelCase : Optional[Any] =(batch_size, self.transformer.height, self.transformer.width, embedding_channels) UpperCAmelCase : Dict =self.vqvae.quantize.get_codebook_entry(snake_case__ , shape=snake_case__ ) UpperCAmelCase : Tuple =self.vqvae.decode(snake_case__ , force_not_quantize=snake_case__ ).sample UpperCAmelCase : Union[str, Any] =(image / 2 + 0.5).clamp(0 , 1 ) UpperCAmelCase : Any =image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": UpperCAmelCase : List[str] =self.numpy_to_pil(snake_case__ ) if not return_dict: return (image,) return ImagePipelineOutput(images=snake_case__ ) def UpperCAmelCase__ ( self , snake_case__ , snake_case__ ) -> torch.FloatTensor: '''simple docstring''' UpperCAmelCase , UpperCAmelCase : int =torch.sort(snake_case__ , 1 , descending=snake_case__ ) UpperCAmelCase : Union[str, Any] =torch.exp(snake_case__ ) UpperCAmelCase : Union[str, Any] =sorted_p_x_0.cumsum(dim=1 ) < truncation_rate # Ensure that at least the largest probability is not zeroed out UpperCAmelCase : Optional[Any] =torch.full_like(keep_mask[:, 0:1, :] , snake_case__ ) UpperCAmelCase : Tuple =torch.cat((all_true, keep_mask) , dim=1 ) UpperCAmelCase : int =keep_mask[:, :-1, :] UpperCAmelCase : int =keep_mask.gather(1 , indices.argsort(1 ) ) UpperCAmelCase : Dict =log_p_x_0.clone() UpperCAmelCase : List[Any] =-torch.inf # -inf = log(0) return rv
348
0
"""simple docstring""" import argparse import logging import os import sys import numpy as np import onnxruntime import torch from bart_onnx.generation_onnx import BARTBeamSearchGenerator from bart_onnx.reduce_onnx_size import remove_dup_initializers import transformers from transformers import BartForConditionalGeneration, BartTokenizer logging.basicConfig( format="%(asctime)s | %(levelname)s | %(name)s | [%(filename)s:%(lineno)d] %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=os.environ.get("LOGLEVEL", "INFO").upper(), stream=sys.stdout, ) UpperCamelCase : str = logging.getLogger(__name__) UpperCamelCase : Optional[int] = {"facebook/bart-base": BartForConditionalGeneration} UpperCamelCase : Any = {"facebook/bart-base": BartTokenizer} def A ( ) -> Tuple: __UpperCamelCase = argparse.ArgumentParser(description='Export Bart model + Beam Search to ONNX graph.' ) parser.add_argument( '--validation_file' , type=snake_case , default=snake_case , help='A csv or a json file containing the validation data.' ) parser.add_argument( '--max_length' , type=snake_case , default=5 , help='The maximum total input sequence length after tokenization.' , ) parser.add_argument( '--num_beams' , type=snake_case , default=snake_case , help=( 'Number of beams to use for evaluation. This argument will be ' 'passed to ``model.generate``, which is used during ``evaluate`` and ``predict``.' ) , ) parser.add_argument( '--model_name_or_path' , type=snake_case , help='Path to pretrained model or model identifier from huggingface.co/models.' , required=snake_case , ) parser.add_argument( '--config_name' , type=snake_case , default=snake_case , help='Pretrained config name or path if not the same as model_name' , ) parser.add_argument( '--device' , type=snake_case , default='cpu' , help='Device where the model will be run' , ) parser.add_argument('--output_file_path' , type=snake_case , default=snake_case , help='Where to store the final ONNX file.' ) __UpperCamelCase = parser.parse_args() return args def A ( snake_case :Tuple , snake_case :List[Any]="cpu" ) -> int: __UpperCamelCase = model_dict[model_name].from_pretrained(snake_case ).to(snake_case ) __UpperCamelCase = tokenizer_dict[model_name].from_pretrained(snake_case ) if model_name in ["facebook/bart-base"]: __UpperCamelCase = 0 __UpperCamelCase = None __UpperCamelCase = 0 return huggingface_model, tokenizer def A ( snake_case :List[str] , snake_case :Union[str, Any] , snake_case :Optional[int] , snake_case :Union[str, Any] , snake_case :List[str] ) -> Any: model.eval() __UpperCamelCase = None __UpperCamelCase = torch.jit.script(BARTBeamSearchGenerator(snake_case ) ) with torch.no_grad(): __UpperCamelCase = 'My friends are cool but they eat too many carbs.' __UpperCamelCase = tokenizer([ARTICLE_TO_SUMMARIZE] , max_length=1_0_2_4 , return_tensors='pt' ).to(model.device ) __UpperCamelCase = model.generate( inputs['input_ids'] , attention_mask=inputs['attention_mask'] , num_beams=snake_case , max_length=snake_case , early_stopping=snake_case , decoder_start_token_id=model.config.decoder_start_token_id , ) torch.onnx.export( snake_case , ( inputs['input_ids'], inputs['attention_mask'], num_beams, max_length, model.config.decoder_start_token_id, ) , snake_case , opset_version=1_4 , input_names=['input_ids', 'attention_mask', 'num_beams', 'max_length', 'decoder_start_token_id'] , output_names=['output_ids'] , dynamic_axes={ 'input_ids': {0: 'batch', 1: 'seq'}, 'output_ids': {0: 'batch', 1: 'seq_out'}, } , example_outputs=snake_case , ) logger.info('Model exported to {}'.format(snake_case ) ) __UpperCamelCase = remove_dup_initializers(os.path.abspath(snake_case ) ) logger.info('Deduplicated and optimized model written to {}'.format(snake_case ) ) __UpperCamelCase = onnxruntime.InferenceSession(snake_case ) __UpperCamelCase = ort_sess.run( snake_case , { 'input_ids': inputs['input_ids'].cpu().numpy(), 'attention_mask': inputs['attention_mask'].cpu().numpy(), 'num_beams': np.array(snake_case ), 'max_length': np.array(snake_case ), 'decoder_start_token_id': np.array(model.config.decoder_start_token_id ), } , ) np.testing.assert_allclose(summary_ids.cpu().numpy() , ort_out[0] , rtol=1e-3 , atol=1e-3 ) logger.info('Model outputs from torch and ONNX Runtime are similar.' ) logger.info('Success.' ) def A ( ) -> Any: __UpperCamelCase = parse_args() __UpperCamelCase = 5 __UpperCamelCase = 4 # Make one log on every process with the configuration for debugging. logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO , ) logger.setLevel(logging.INFO ) transformers.utils.logging.set_verbosity_error() __UpperCamelCase = torch.device(args.device ) __UpperCamelCase , __UpperCamelCase = load_model_tokenizer(args.model_name_or_path , snake_case ) if model.config.decoder_start_token_id is None: raise ValueError('Make sure that `config.decoder_start_token_id` is correctly defined' ) model.to(snake_case ) if args.max_length: __UpperCamelCase = args.max_length if args.num_beams: __UpperCamelCase = args.num_beams if args.output_file_path: __UpperCamelCase = args.output_file_path else: __UpperCamelCase = 'BART.onnx' logger.info('Exporting model to ONNX' ) export_and_validate_model(snake_case , snake_case , snake_case , snake_case , snake_case ) if __name__ == "__main__": main()
357
"""simple docstring""" from argparse import ArgumentParser from .add_new_model import AddNewModelCommand from .add_new_model_like import AddNewModelLikeCommand from .convert import ConvertCommand from .download import DownloadCommand from .env import EnvironmentCommand from .lfs import LfsCommands from .pt_to_tf import PTtoTFCommand from .run import RunCommand from .serving import ServeCommand from .user import UserCommands def A ( ) -> Union[str, Any]: __UpperCamelCase = ArgumentParser('Transformers CLI tool' , usage='transformers-cli <command> [<args>]' ) __UpperCamelCase = parser.add_subparsers(help='transformers-cli command helpers' ) # Register commands ConvertCommand.register_subcommand(snake_case ) DownloadCommand.register_subcommand(snake_case ) EnvironmentCommand.register_subcommand(snake_case ) RunCommand.register_subcommand(snake_case ) ServeCommand.register_subcommand(snake_case ) UserCommands.register_subcommand(snake_case ) AddNewModelCommand.register_subcommand(snake_case ) AddNewModelLikeCommand.register_subcommand(snake_case ) LfsCommands.register_subcommand(snake_case ) PTtoTFCommand.register_subcommand(snake_case ) # Let's go __UpperCamelCase = parser.parse_args() if not hasattr(snake_case , 'func' ): parser.print_help() exit(1 ) # Run __UpperCamelCase = args.func(snake_case ) service.run() if __name__ == "__main__": main()
263
0
"""simple docstring""" import collections import importlib.util import os import re from pathlib import Path lowercase__ = """src/transformers""" # Matches is_xxx_available() lowercase__ = re.compile(R"""is\_([a-z_]*)_available()""") # Catches a one-line _import_struct = {xxx} lowercase__ = re.compile(R"""^_import_structure\s+=\s+\{([^\}]+)\}""") # Catches a line with a key-values pattern: "bla": ["foo", "bar"] lowercase__ = re.compile(R"""\s+\"\S*\":\s+\[([^\]]*)\]""") # Catches a line if not is_foo_available lowercase__ = re.compile(R"""^\s*if\s+not\s+is\_[a-z_]*\_available\(\)""") # Catches a line _import_struct["bla"].append("foo") lowercase__ = re.compile(R"""^\s*_import_structure\[\"\S*\"\]\.append\(\"(\S*)\"\)""") # Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"] lowercase__ = re.compile(R"""^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]""") # Catches a line with an object between quotes and a comma: "MyModel", lowercase__ = re.compile("""^\s+\"([^\"]+)\",""") # Catches a line with objects between brackets only: ["foo", "bar"], lowercase__ = re.compile("""^\s+\[([^\]]+)\]""") # Catches a line with from foo import bar, bla, boo lowercase__ = re.compile(R"""\s+from\s+\S*\s+import\s+([^\(\s].*)\n""") # Catches a line with try: lowercase__ = re.compile(R"""^\s*try:""") # Catches a line with else: lowercase__ = re.compile(R"""^\s*else:""") def _snake_case ( lowercase__ ): if _re_test_backend.search(lowercase__ ) is None: return None _lowerCamelCase : Optional[Any] = [b[0] for b in _re_backend.findall(lowercase__ )] backends.sort() return "_and_".join(lowercase__ ) def _snake_case ( lowercase__ ): with open(lowercase__ , 'r' , encoding='utf-8' , newline='\n' ) as f: _lowerCamelCase : Dict = f.readlines() _lowerCamelCase : Optional[Any] = 0 while line_index < len(lowercase__ ) and not lines[line_index].startswith('_import_structure = {' ): line_index += 1 # If this is a traditional init, just return. if line_index >= len(lowercase__ ): return None # First grab the objects without a specific backend in _import_structure _lowerCamelCase : str = [] while not lines[line_index].startswith('if TYPE_CHECKING' ) and find_backend(lines[line_index] ) is None: _lowerCamelCase : Optional[int] = lines[line_index] # If we have everything on a single line, let's deal with it. if _re_one_line_import_struct.search(lowercase__ ): _lowerCamelCase : Optional[Any] = _re_one_line_import_struct.search(lowercase__ ).groups()[0] _lowerCamelCase : Optional[Any] = re.findall('\[([^\]]+)\]' , lowercase__ ) for imp in imports: objects.extend([obj[1:-1] for obj in imp.split(', ' )] ) line_index += 1 continue _lowerCamelCase : int = _re_import_struct_key_value.search(lowercase__ ) if single_line_import_search is not None: _lowerCamelCase : Optional[Any] = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(', ' ) if len(lowercase__ ) > 0] objects.extend(lowercase__ ) elif line.startswith(' ' * 8 + '"' ): objects.append(line[9:-3] ) line_index += 1 _lowerCamelCase : Optional[int] = {'none': objects} # Let's continue with backend-specific objects in _import_structure while not lines[line_index].startswith('if TYPE_CHECKING' ): # If the line is an if not is_backend_available, we grab all objects associated. _lowerCamelCase : Optional[int] = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: _lowerCamelCase : Union[str, Any] = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 _lowerCamelCase : Tuple = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(' ' * 4 ): _lowerCamelCase : Optional[int] = lines[line_index] if _re_import_struct_add_one.search(lowercase__ ) is not None: objects.append(_re_import_struct_add_one.search(lowercase__ ).groups()[0] ) elif _re_import_struct_add_many.search(lowercase__ ) is not None: _lowerCamelCase : Dict = _re_import_struct_add_many.search(lowercase__ ).groups()[0].split(', ' ) _lowerCamelCase : str = [obj[1:-1] for obj in imports if len(lowercase__ ) > 0] objects.extend(lowercase__ ) elif _re_between_brackets.search(lowercase__ ) is not None: _lowerCamelCase : Optional[Any] = _re_between_brackets.search(lowercase__ ).groups()[0].split(', ' ) _lowerCamelCase : Optional[Any] = [obj[1:-1] for obj in imports if len(lowercase__ ) > 0] objects.extend(lowercase__ ) elif _re_quote_object.search(lowercase__ ) is not None: objects.append(_re_quote_object.search(lowercase__ ).groups()[0] ) elif line.startswith(' ' * 8 + '"' ): objects.append(line[9:-3] ) elif line.startswith(' ' * 12 + '"' ): objects.append(line[13:-3] ) line_index += 1 _lowerCamelCase : Optional[int] = objects else: line_index += 1 # At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend _lowerCamelCase : List[str] = [] while ( line_index < len(lowercase__ ) and find_backend(lines[line_index] ) is None and not lines[line_index].startswith('else' ) ): _lowerCamelCase : Tuple = lines[line_index] _lowerCamelCase : Optional[int] = _re_import.search(lowercase__ ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(', ' ) ) elif line.startswith(' ' * 8 ): objects.append(line[8:-2] ) line_index += 1 _lowerCamelCase : Optional[int] = {'none': objects} # Let's continue with backend-specific objects while line_index < len(lowercase__ ): # If the line is an if is_backend_available, we grab all objects associated. _lowerCamelCase : Tuple = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: _lowerCamelCase : List[Any] = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 _lowerCamelCase : Tuple = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(' ' * 8 ): _lowerCamelCase : List[str] = lines[line_index] _lowerCamelCase : List[Any] = _re_import.search(lowercase__ ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(', ' ) ) elif line.startswith(' ' * 12 ): objects.append(line[12:-2] ) line_index += 1 _lowerCamelCase : Dict = objects else: line_index += 1 return import_dict_objects, type_hint_objects def _snake_case ( lowercase__ , lowercase__ ): def find_duplicates(lowercase__ ): return [k for k, v in collections.Counter(lowercase__ ).items() if v > 1] if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ): return ["Both sides of the init do not have the same backends!"] _lowerCamelCase : Optional[Any] = [] for key in import_dict_objects.keys(): _lowerCamelCase : int = find_duplicates(import_dict_objects[key] ) if duplicate_imports: errors.append(f'''Duplicate _import_structure definitions for: {duplicate_imports}''' ) _lowerCamelCase : Any = find_duplicates(type_hint_objects[key] ) if duplicate_type_hints: errors.append(f'''Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}''' ) if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ): _lowerCamelCase : Dict = 'base imports' if key == 'none' else f'''{key} backend''' errors.append(f'''Differences for {name}:''' ) for a in type_hint_objects[key]: if a not in import_dict_objects[key]: errors.append(f''' {a} in TYPE_HINT but not in _import_structure.''' ) for a in import_dict_objects[key]: if a not in type_hint_objects[key]: errors.append(f''' {a} in _import_structure but not in TYPE_HINT.''' ) return errors def _snake_case ( ): _lowerCamelCase : int = [] for root, _, files in os.walk(lowercase__ ): if "__init__.py" in files: _lowerCamelCase : Dict = os.path.join(lowercase__ , '__init__.py' ) _lowerCamelCase : Any = parse_init(lowercase__ ) if objects is not None: _lowerCamelCase : str = analyze_results(*lowercase__ ) if len(lowercase__ ) > 0: _lowerCamelCase : Tuple = f'''Problem in {fname}, both halves do not define the same objects.\n{errors[0]}''' failures.append('\n'.join(lowercase__ ) ) if len(lowercase__ ) > 0: raise ValueError('\n\n'.join(lowercase__ ) ) def _snake_case ( ): _lowerCamelCase : Dict = [] for path, directories, files in os.walk(lowercase__ ): for folder in directories: # Ignore private modules if folder.startswith('_' ): directories.remove(lowercase__ ) continue # Ignore leftovers from branches (empty folders apart from pycache) if len(list((Path(lowercase__ ) / folder).glob('*.py' ) ) ) == 0: continue _lowerCamelCase : Tuple = str((Path(lowercase__ ) / folder).relative_to(lowercase__ ) ) _lowerCamelCase : str = short_path.replace(os.path.sep , '.' ) submodules.append(lowercase__ ) for fname in files: if fname == "__init__.py": continue _lowerCamelCase : List[str] = str((Path(lowercase__ ) / fname).relative_to(lowercase__ ) ) _lowerCamelCase : int = short_path.replace('.py' , '' ).replace(os.path.sep , '.' ) if len(submodule.split('.' ) ) == 1: submodules.append(lowercase__ ) return submodules lowercase__ = [ """convert_pytorch_checkpoint_to_tf2""", """modeling_flax_pytorch_utils""", ] def _snake_case ( ): # This is to make sure the transformers module imported is the one in the repo. _lowerCamelCase : int = importlib.util.spec_from_file_location( 'transformers' , os.path.join(lowercase__ , '__init__.py' ) , submodule_search_locations=[PATH_TO_TRANSFORMERS] , ) _lowerCamelCase : List[str] = spec.loader.load_module() _lowerCamelCase : Dict = [ module for module in get_transformers_submodules() if module not in IGNORE_SUBMODULES and module not in transformers._import_structure.keys() ] if len(lowercase__ ) > 0: _lowerCamelCase : List[Any] = '\n'.join(f'''- {module}''' for module in module_not_registered ) raise ValueError( 'The following submodules are not properly registered in the main init of Transformers:\n' f'''{list_of_modules}\n''' 'Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value.' ) if __name__ == "__main__": check_all_inits() check_submodules()
96
'''simple docstring''' def lowercase_ ( lowerCAmelCase__ : str ): """simple docstring""" return credit_card_number.startswith(("""34""", """35""", """37""", """4""", """5""", """6""") ) def lowercase_ ( lowerCAmelCase__ : str ): """simple docstring""" __UpperCAmelCase : Optional[Any] = credit_card_number __UpperCAmelCase : List[str] = 0 __UpperCAmelCase : Dict = len(lowerCAmelCase__ ) - 2 for i in range(lowerCAmelCase__ , -1 , -2 ): # double the value of every second digit __UpperCAmelCase : Optional[int] = int(cc_number[i] ) digit *= 2 # If doubling of a number results in a two digit number # i.e greater than 9(e.g., 6 × 2 = 12), # then add the digits of the product (e.g., 12: 1 + 2 = 3, 15: 1 + 5 = 6), # to get a single digit number. if digit > 9: digit %= 10 digit += 1 __UpperCAmelCase : Optional[int] = cc_number[:i] + str(lowerCAmelCase__ ) + cc_number[i + 1 :] total += digit # Sum up the remaining digits for i in range(len(lowerCAmelCase__ ) - 1 , -1 , -2 ): total += int(cc_number[i] ) return total % 10 == 0 def lowercase_ ( lowerCAmelCase__ : str ): """simple docstring""" __UpperCAmelCase : Optional[int] = f'{credit_card_number} is an invalid credit card number because' if not credit_card_number.isdigit(): print(f'{error_message} it has nonnumerical characters.' ) return False if not 13 <= len(lowerCAmelCase__ ) <= 16: print(f'{error_message} of its length.' ) return False if not validate_initial_digits(lowerCAmelCase__ ): print(f'{error_message} of its first two digits.' ) return False if not luhn_validation(lowerCAmelCase__ ): print(f'{error_message} it fails the Luhn check.' ) return False print(f'{credit_card_number} is a valid credit card number.' ) return True if __name__ == "__main__": import doctest doctest.testmod() validate_credit_card_number('''4111111111111111''') validate_credit_card_number('''32323''')
254
0
"""simple docstring""" import unittest from parameterized import parameterized from transformers import AutoTokenizer, GPTNeoXConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, GPTNeoXModel, ) class __magic_name__ : def __init__( self : str , snake_case__ : List[str] , snake_case__ : Optional[int]=1_3 , snake_case__ : Dict=7 , snake_case__ : List[str]=True , snake_case__ : Dict=True , snake_case__ : Optional[Any]=True , snake_case__ : int=True , snake_case__ : str=9_9 , snake_case__ : Optional[Any]=6_4 , snake_case__ : Tuple=5 , snake_case__ : Dict=4 , snake_case__ : Optional[int]=3_7 , snake_case__ : Optional[Any]="gelu" , snake_case__ : int=0.1 , snake_case__ : Dict=0.1 , snake_case__ : Optional[int]=5_1_2 , snake_case__ : str=1_6 , snake_case__ : Union[str, Any]=2 , snake_case__ : Optional[int]=0.02 , snake_case__ : Tuple=3 , snake_case__ : List[Any]=4 , snake_case__ : Optional[int]=None , ): '''simple docstring''' lowercase :Optional[int] = parent lowercase :Dict = batch_size lowercase :Optional[int] = seq_length lowercase :List[str] = is_training lowercase :Tuple = use_input_mask lowercase :str = use_token_type_ids lowercase :Optional[int] = use_labels lowercase :Optional[int] = vocab_size lowercase :str = hidden_size lowercase :Union[str, Any] = num_hidden_layers lowercase :Optional[int] = num_attention_heads lowercase :str = intermediate_size lowercase :List[str] = hidden_act lowercase :Optional[int] = hidden_dropout_prob lowercase :Dict = attention_probs_dropout_prob lowercase :List[str] = max_position_embeddings lowercase :Optional[int] = type_vocab_size lowercase :Dict = type_sequence_label_size lowercase :int = initializer_range lowercase :List[str] = num_labels lowercase :Optional[int] = num_choices lowercase :List[Any] = scope lowercase :Union[str, Any] = vocab_size - 1 def __snake_case ( self : Dict ): '''simple docstring''' lowercase :str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase :Union[str, Any] = None if self.use_input_mask: lowercase :Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) lowercase :Optional[int] = None if self.use_labels: lowercase :Any = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase :str = self.get_config() return config, input_ids, input_mask, token_labels def __snake_case ( self : Any ): '''simple docstring''' return GPTNeoXConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__lowercase , initializer_range=self.initializer_range , pad_token_id=self.pad_token_id , ) def __snake_case ( self : Union[str, Any] ): '''simple docstring''' lowercase :str = self.prepare_config_and_inputs() lowercase :int = True return config, input_ids, input_mask, token_labels def __snake_case ( self : int , snake_case__ : List[Any] , snake_case__ : Dict , snake_case__ : Tuple ): '''simple docstring''' lowercase :Any = GPTNeoXModel(config=__lowercase ) model.to(__lowercase ) model.eval() lowercase :int = model(__lowercase , attention_mask=__lowercase ) lowercase :Tuple = model(__lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __snake_case ( self : Optional[int] , snake_case__ : Optional[int] , snake_case__ : int , snake_case__ : Union[str, Any] ): '''simple docstring''' lowercase :str = True lowercase :Union[str, Any] = GPTNeoXModel(__lowercase ) model.to(__lowercase ) model.eval() lowercase :Optional[int] = model(__lowercase , attention_mask=__lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __snake_case ( self : Dict , snake_case__ : Optional[Any] , snake_case__ : Union[str, Any] , snake_case__ : Union[str, Any] , snake_case__ : Dict ): '''simple docstring''' lowercase :int = GPTNeoXForCausalLM(config=__lowercase ) model.to(__lowercase ) model.eval() lowercase :Dict = model(__lowercase , attention_mask=__lowercase , labels=__lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __snake_case ( self : Any , snake_case__ : Any , snake_case__ : Tuple , snake_case__ : List[Any] , snake_case__ : List[Any] ): '''simple docstring''' lowercase :Any = self.num_labels lowercase :List[Any] = GPTNeoXForQuestionAnswering(__lowercase ) model.to(__lowercase ) model.eval() lowercase :str = model(__lowercase , attention_mask=__lowercase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __snake_case ( self : Union[str, Any] , snake_case__ : Any , snake_case__ : int , snake_case__ : List[str] , snake_case__ : Optional[int] ): '''simple docstring''' lowercase :Optional[Any] = self.num_labels lowercase :Any = GPTNeoXForSequenceClassification(__lowercase ) model.to(__lowercase ) model.eval() lowercase :Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase :Optional[Any] = model(__lowercase , attention_mask=__lowercase , labels=__lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __snake_case ( self : Union[str, Any] , snake_case__ : List[Any] , snake_case__ : Optional[int] , snake_case__ : List[str] , snake_case__ : int ): '''simple docstring''' lowercase :Optional[Any] = self.num_labels lowercase :Any = GPTNeoXForTokenClassification(__lowercase ) model.to(__lowercase ) model.eval() lowercase :int = model(__lowercase , attention_mask=__lowercase , labels=__lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __snake_case ( self : List[str] , snake_case__ : Optional[Any] , snake_case__ : List[Any] , snake_case__ : List[Any] ): '''simple docstring''' lowercase :Optional[int] = True lowercase :List[str] = GPTNeoXForCausalLM(config=__lowercase ) model.to(__lowercase ) model.eval() # first forward pass lowercase :Tuple = model(__lowercase , attention_mask=__lowercase , use_cache=__lowercase ) lowercase :str = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids lowercase :int = ids_tensor((self.batch_size, 3) , config.vocab_size ) lowercase :Dict = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and lowercase :Any = torch.cat([input_ids, next_tokens] , dim=-1 ) lowercase :Optional[int] = torch.cat([input_mask, next_mask] , dim=-1 ) lowercase :Optional[int] = model(__lowercase , attention_mask=__lowercase , output_hidden_states=__lowercase ) lowercase :List[str] = output_from_no_past['''hidden_states'''][0] lowercase :Dict = model( __lowercase , attention_mask=__lowercase , past_key_values=__lowercase , output_hidden_states=__lowercase , )['''hidden_states'''][0] # select random slice lowercase :List[str] = ids_tensor((1,) , output_from_past.shape[-1] ).item() lowercase :Optional[int] = output_from_no_past[:, -3:, random_slice_idx].detach() lowercase :Dict = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__lowercase , __lowercase , atol=1e-3 ) ) def __snake_case ( self : str ): '''simple docstring''' lowercase :Optional[Any] = self.prepare_config_and_inputs() lowercase :Optional[int] = config_and_inputs lowercase :List[Any] = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class __magic_name__ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): __A : str = ( ( GPTNeoXModel, GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, ) if is_torch_available() else () ) __A : Union[str, Any] = (GPTNeoXForCausalLM,) if is_torch_available() else () __A : Tuple = ( { """feature-extraction""": GPTNeoXModel, """question-answering""": GPTNeoXForQuestionAnswering, """text-classification""": GPTNeoXForSequenceClassification, """text-generation""": GPTNeoXForCausalLM, """token-classification""": GPTNeoXForTokenClassification, """zero-shot""": GPTNeoXForSequenceClassification, } if is_torch_available() else {} ) __A : Optional[int] = False __A : Union[str, Any] = False __A : Any = False __A : str = False def __snake_case ( self : Tuple ): '''simple docstring''' lowercase :str = GPTNeoXModelTester(self ) lowercase :Union[str, Any] = ConfigTester(self , config_class=__lowercase , hidden_size=6_4 , num_attention_heads=8 ) def __snake_case ( self : Union[str, Any] ): '''simple docstring''' self.config_tester.run_common_tests() def __snake_case ( self : Any ): '''simple docstring''' lowercase :Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(__lowercase , __lowercase , __lowercase ) def __snake_case ( self : str ): '''simple docstring''' lowercase :Optional[int] = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(__lowercase , __lowercase , __lowercase ) def __snake_case ( self : Dict ): '''simple docstring''' lowercase :str = self.model_tester.prepare_config_and_inputs_for_decoder() lowercase :int = None self.model_tester.create_and_check_model_as_decoder(__lowercase , __lowercase , __lowercase ) def __snake_case ( self : int ): '''simple docstring''' lowercase :Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(__lowercase , __lowercase , __lowercase ) def __snake_case ( self : int ): '''simple docstring''' lowercase :Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_causal_lm(*__lowercase ) def __snake_case ( self : str ): '''simple docstring''' lowercase :Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__lowercase ) def __snake_case ( self : Union[str, Any] ): '''simple docstring''' lowercase :str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__lowercase ) def __snake_case ( self : Union[str, Any] ): '''simple docstring''' lowercase :List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__lowercase ) @unittest.skip(reason='''Feed forward chunking is not implemented''' ) def __snake_case ( self : int ): '''simple docstring''' pass @parameterized.expand([('''linear''',), ('''dynamic''',)] ) def __snake_case ( self : Optional[int] , snake_case__ : Dict ): '''simple docstring''' lowercase :Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() lowercase :Tuple = ids_tensor([1, 1_0] , config.vocab_size ) lowercase :List[str] = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(4_2 ) # Fixed seed at init time so the two models get the same random weights lowercase :Tuple = GPTNeoXModel(__lowercase ) original_model.to(__lowercase ) original_model.eval() lowercase :Dict = original_model(__lowercase ).last_hidden_state lowercase :Tuple = original_model(__lowercase ).last_hidden_state set_seed(4_2 ) # Fixed seed at init time so the two models get the same random weights lowercase :Optional[Any] = {'''type''': scaling_type, '''factor''': 10.0} lowercase :str = GPTNeoXModel(__lowercase ) scaled_model.to(__lowercase ) scaled_model.eval() lowercase :List[Any] = scaled_model(__lowercase ).last_hidden_state lowercase :int = scaled_model(__lowercase ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(__lowercase , __lowercase , atol=1e-5 ) ) else: self.assertFalse(torch.allclose(__lowercase , __lowercase , atol=1e-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(__lowercase , __lowercase , atol=1e-5 ) ) @require_torch class __magic_name__ ( unittest.TestCase ): @slow def __snake_case ( self : Dict ): '''simple docstring''' lowercase :Union[str, Any] = AutoTokenizer.from_pretrained('''EleutherAI/pythia-410m-deduped''' ) for checkpointing in [True, False]: lowercase :Optional[int] = GPTNeoXForCausalLM.from_pretrained('''EleutherAI/pythia-410m-deduped''' ) if checkpointing: model.gradient_checkpointing_enable() else: model.gradient_checkpointing_disable() model.to(__lowercase ) lowercase :List[Any] = tokenizer('''My favorite food is''' , return_tensors='''pt''' ).to(__lowercase ) # The hub repo. is updated on 2023-04-04, resulting in poor outputs. # See: https://github.com/huggingface/transformers/pull/24193 lowercase :Dict = '''My favorite food is a good old-fashioned, old-fashioned, old-fashioned.\n\nI\'m not sure''' lowercase :List[str] = model.generate(**__lowercase , do_sample=__lowercase , max_new_tokens=2_0 ) lowercase :Union[str, Any] = tokenizer.batch_decode(__lowercase )[0] self.assertEqual(__lowercase , __lowercase )
367
"""simple docstring""" def lowerCamelCase (a_ :int) -> None: lowercase :Tuple = generate_pascal_triangle(a_) for row_idx in range(a_): # Print left spaces for _ in range(num_rows - row_idx - 1): print(end=''' ''') # Print row values for col_idx in range(row_idx + 1): if col_idx != row_idx: print(triangle[row_idx][col_idx] , end=''' ''') else: print(triangle[row_idx][col_idx] , end='''''') print() def lowerCamelCase (a_ :int) -> list[list[int]]: if not isinstance(a_ , a_): raise TypeError('''The input value of \'num_rows\' should be \'int\'''') if num_rows == 0: return [] elif num_rows < 0: raise ValueError( '''The input value of \'num_rows\' should be greater than or equal to 0''') lowercase :list[list[int]] = [] for current_row_idx in range(a_): lowercase :Union[str, Any] = populate_current_row(a_ , a_) triangle.append(a_) return triangle def lowerCamelCase (a_ :list[list[int]] , a_ :int) -> list[int]: lowercase :List[str] = [-1] * (current_row_idx + 1) # first and last elements of current row are equal to 1 lowercase , lowercase :Dict = 1, 1 for current_col_idx in range(1 , a_): calculate_current_element( a_ , a_ , a_ , a_) return current_row def lowerCamelCase (a_ :list[list[int]] , a_ :list[int] , a_ :int , a_ :int , ) -> None: lowercase :str = triangle[current_row_idx - 1][current_col_idx - 1] lowercase :Dict = triangle[current_row_idx - 1][current_col_idx] lowercase :Any = above_to_left_elt + above_to_right_elt def lowerCamelCase (a_ :int) -> list[list[int]]: if not isinstance(a_ , a_): raise TypeError('''The input value of \'num_rows\' should be \'int\'''') if num_rows == 0: return [] elif num_rows < 0: raise ValueError( '''The input value of \'num_rows\' should be greater than or equal to 0''') lowercase :list[list[int]] = [[1]] for row_index in range(1 , a_): lowercase :Union[str, Any] = [0] + result[-1] + [0] lowercase :Union[str, Any] = row_index + 1 # Calculate the number of distinct elements in a row lowercase :List[str] = sum(divmod(a_ , 2)) lowercase :Dict = [ temp_row[i - 1] + temp_row[i] for i in range(1 , distinct_elements + 1) ] lowercase :Optional[int] = row_first_half[: (row_index + 1) // 2] row_second_half.reverse() lowercase :Dict = row_first_half + row_second_half result.append(a_) return result def lowerCamelCase () -> None: from collections.abc import Callable from timeit import timeit def benchmark_a_function(a_ :Callable , a_ :int) -> None: lowercase :int = F"""{func.__name__}({value})""" lowercase :Union[str, Any] = timeit(F"""__main__.{call}""" , setup='''import __main__''') # print(f"{call:38} = {func(value)} -- {timing:.4f} seconds") print(F"""{call:38} -- {timing:.4f} seconds""") for value in range(15): # (1, 7, 14): for func in (generate_pascal_triangle, generate_pascal_triangle_optimized): benchmark_a_function(a_ , a_) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
172
0
"""simple docstring""" import doctest import logging import os import unittest from pathlib import Path from typing import List, Union import transformers from transformers.testing_utils import require_tf, require_torch, slow _UpperCamelCase : Union[str, Any] = logging.getLogger() @unittest.skip("Temporarily disable the doc tests." ) @require_torch @require_tf @slow class a ( unittest.TestCase ): def UpperCamelCase_ ( self , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = True , ): lowercase = [file for file in os.listdir(_lowerCamelCase ) if os.path.isfile(os.path.join(_lowerCamelCase , _lowerCamelCase ) )] if identifier is not None: lowercase = [file for file in files if identifier in file] if n_identifier is not None: if isinstance(_lowerCamelCase , _lowerCamelCase ): for n_ in n_identifier: lowercase = [file for file in files if n_ not in file] else: lowercase = [file for file in files if n_identifier not in file] lowercase = ignore_files or [] ignore_files.append('__init__.py' ) lowercase = [file for file in files if file not in ignore_files] for file in files: # Open all files print('Testing' , _lowerCamelCase ) if only_modules: lowercase = file.split('.' )[0] try: lowercase = getattr(_lowerCamelCase , _lowerCamelCase ) lowercase = doctest.DocTestSuite(_lowerCamelCase ) lowercase = unittest.TextTestRunner().run(_lowerCamelCase ) self.assertIs(len(result.failures ) , 0 ) except AttributeError: logger.info(F'{module_identifier} is not a module.' ) else: lowercase = doctest.testfile(str('..' / directory / file ) , optionflags=doctest.ELLIPSIS ) self.assertIs(result.failed , 0 ) def UpperCamelCase_ ( self ): lowercase = Path('src/transformers' ) lowercase = 'modeling' lowercase = [ 'modeling_ctrl.py', 'modeling_tf_ctrl.py', ] self.analyze_directory(_lowerCamelCase , identifier=_lowerCamelCase , ignore_files=_lowerCamelCase ) def UpperCamelCase_ ( self ): lowercase = Path('src/transformers' ) lowercase = 'tokenization' self.analyze_directory(_lowerCamelCase , identifier=_lowerCamelCase ) def UpperCamelCase_ ( self ): lowercase = Path('src/transformers' ) lowercase = 'configuration' self.analyze_directory(_lowerCamelCase , identifier=_lowerCamelCase ) def UpperCamelCase_ ( self ): lowercase = Path('src/transformers' ) lowercase = ['configuration', 'modeling', 'tokenization'] self.analyze_directory(_lowerCamelCase , n_identifier=_lowerCamelCase ) def UpperCamelCase_ ( self ): lowercase = Path('docs/source' ) lowercase = ['favicon.ico'] self.analyze_directory(_lowerCamelCase , ignore_files=_lowerCamelCase , only_modules=_lowerCamelCase )
220
"""simple docstring""" import argparse import json from tqdm import tqdm def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowercase = argparse.ArgumentParser() # Required parameters parser.add_argument( '--src_path' , type=__snake_case , default='biencoder-nq-dev.json' , help='Path to raw DPR training data' , ) parser.add_argument( '--evaluation_set' , type=__snake_case , help='where to store parsed evaluation_set file' , ) parser.add_argument( '--gold_data_path' , type=__snake_case , help='where to store parsed gold_data_path file' , ) lowercase = parser.parse_args() with open(args.src_path , 'r' ) as src_file, open(args.evaluation_set , 'w' ) as eval_file, open( args.gold_data_path , 'w' ) as gold_file: lowercase = json.load(__snake_case ) for dpr_record in tqdm(__snake_case ): lowercase = dpr_record['question'] lowercase = [context['title'] for context in dpr_record['positive_ctxs']] eval_file.write(question + '\n' ) gold_file.write('\t'.join(__snake_case ) + '\n' ) if __name__ == "__main__": main()
220
1
import gc import unittest import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DDPMScheduler, PriorTransformer, StableUnCLIPPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.testing_utils import enable_full_determinism, load_numpy, require_torch_gpu, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class __UpperCAmelCase (_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,unittest.TestCase ): __snake_case : int = StableUnCLIPPipeline __snake_case : Optional[int] = TEXT_TO_IMAGE_PARAMS __snake_case : int = TEXT_TO_IMAGE_BATCH_PARAMS __snake_case : Dict = TEXT_TO_IMAGE_IMAGE_PARAMS __snake_case : Dict = TEXT_TO_IMAGE_IMAGE_PARAMS # TODO(will) Expected attn_bias.stride(1) == 0 to be true, but got false __snake_case : Tuple = False def UpperCamelCase ( self: Tuple ): '''simple docstring''' _SCREAMING_SNAKE_CASE = 32 _SCREAMING_SNAKE_CASE = embedder_hidden_size # prior components torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE = CLIPTextModelWithProjection( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=UpperCAmelCase_ , projection_dim=UpperCAmelCase_ , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) ) torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE = PriorTransformer( num_attention_heads=2 , attention_head_dim=12 , embedding_dim=UpperCAmelCase_ , num_layers=1 , ) torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE = DDPMScheduler( variance_type="""fixed_small_log""" , prediction_type="""sample""" , num_train_timesteps=1_000 , clip_sample=UpperCAmelCase_ , clip_sample_range=5.0 , beta_schedule="""squaredcos_cap_v2""" , ) # regular denoising components torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE = StableUnCLIPImageNormalizer(embedding_dim=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = DDPMScheduler(beta_schedule="""squaredcos_cap_v2""" ) torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=UpperCAmelCase_ , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) ) torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""CrossAttnDownBlock2D""", """DownBlock2D""") , up_block_types=("""UpBlock2D""", """CrossAttnUpBlock2D""") , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type="""projection""" , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=UpperCAmelCase_ , layers_per_block=1 , upcast_attention=UpperCAmelCase_ , use_linear_projection=UpperCAmelCase_ , ) torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE = DDIMScheduler( beta_schedule="""scaled_linear""" , beta_start=0.0_00_85 , beta_end=0.0_12 , prediction_type="""v_prediction""" , set_alpha_to_one=UpperCAmelCase_ , steps_offset=1 , ) torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE = AutoencoderKL() _SCREAMING_SNAKE_CASE = { # prior components """prior_tokenizer""": prior_tokenizer, """prior_text_encoder""": prior_text_encoder, """prior""": prior, """prior_scheduler""": prior_scheduler, # image noising components """image_normalizer""": image_normalizer, """image_noising_scheduler""": image_noising_scheduler, # regular denoising components """tokenizer""": tokenizer, """text_encoder""": text_encoder, """unet""": unet, """scheduler""": scheduler, """vae""": vae, } return components def UpperCamelCase ( self: str , UpperCAmelCase_: int , UpperCAmelCase_: Tuple=0 ): '''simple docstring''' if str(UpperCAmelCase_ ).startswith("""mps""" ): _SCREAMING_SNAKE_CASE = torch.manual_seed(UpperCAmelCase_ ) else: _SCREAMING_SNAKE_CASE = torch.Generator(device=UpperCAmelCase_ ).manual_seed(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """prior_num_inference_steps""": 2, """output_type""": """numpy""", } return inputs def UpperCamelCase ( self: str ): '''simple docstring''' _SCREAMING_SNAKE_CASE = torch_device == """cpu""" self._test_attention_slicing_forward_pass(test_max_difference=UpperCAmelCase_ ) def UpperCamelCase ( self: Tuple ): '''simple docstring''' _SCREAMING_SNAKE_CASE = torch_device in ["""cpu""", """mps"""] self._test_inference_batch_single_identical(test_max_difference=UpperCAmelCase_ ) @slow @require_torch_gpu class __UpperCAmelCase (unittest.TestCase ): def UpperCamelCase ( self: str ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase ( self: str ): '''simple docstring''' _SCREAMING_SNAKE_CASE = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_anime_turtle_fp16.npy""" ) _SCREAMING_SNAKE_CASE = StableUnCLIPPipeline.from_pretrained("""fusing/stable-unclip-2-1-l""" , torch_dtype=torch.floataa ) pipe.to(UpperCAmelCase_ ) pipe.set_progress_bar_config(disable=UpperCAmelCase_ ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() _SCREAMING_SNAKE_CASE = torch.Generator(device="""cpu""" ).manual_seed(0 ) _SCREAMING_SNAKE_CASE = pipe("""anime turle""" , generator=UpperCAmelCase_ , output_type="""np""" ) _SCREAMING_SNAKE_CASE = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(UpperCAmelCase_ , UpperCAmelCase_ ) def UpperCamelCase ( self: Union[str, Any] ): '''simple docstring''' torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() _SCREAMING_SNAKE_CASE = StableUnCLIPPipeline.from_pretrained("""fusing/stable-unclip-2-1-l""" , torch_dtype=torch.floataa ) _SCREAMING_SNAKE_CASE = pipe.to(UpperCAmelCase_ ) pipe.set_progress_bar_config(disable=UpperCAmelCase_ ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() _SCREAMING_SNAKE_CASE = pipe( """anime turtle""" , prior_num_inference_steps=2 , num_inference_steps=2 , output_type="""np""" , ) _SCREAMING_SNAKE_CASE = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
357
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) UpperCamelCase = { '''configuration_layoutlmv3''': [ '''LAYOUTLMV3_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''LayoutLMv3Config''', '''LayoutLMv3OnnxConfig''', ], '''processing_layoutlmv3''': ['''LayoutLMv3Processor'''], '''tokenization_layoutlmv3''': ['''LayoutLMv3Tokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ['''LayoutLMv3TokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ '''LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST''', '''LayoutLMv3ForQuestionAnswering''', '''LayoutLMv3ForSequenceClassification''', '''LayoutLMv3ForTokenClassification''', '''LayoutLMv3Model''', '''LayoutLMv3PreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ '''TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFLayoutLMv3ForQuestionAnswering''', '''TFLayoutLMv3ForSequenceClassification''', '''TFLayoutLMv3ForTokenClassification''', '''TFLayoutLMv3Model''', '''TFLayoutLMv3PreTrainedModel''', ] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ['''LayoutLMv3FeatureExtractor'''] UpperCamelCase = ['''LayoutLMv3ImageProcessor'''] if TYPE_CHECKING: from .configuration_layoutlmva import ( LAYOUTLMV3_PRETRAINED_CONFIG_ARCHIVE_MAP, LayoutLMvaConfig, LayoutLMvaOnnxConfig, ) from .processing_layoutlmva import LayoutLMvaProcessor from .tokenization_layoutlmva import LayoutLMvaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutlmva_fast import LayoutLMvaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_layoutlmva import ( LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaModel, LayoutLMvaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_layoutlmva import ( TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, TFLayoutLMvaModel, TFLayoutLMvaPreTrainedModel, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_layoutlmva import LayoutLMvaFeatureExtractor from .image_processing_layoutlmva import LayoutLMvaImageProcessor else: import sys UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
125
0
from typing import Dict from .base import GenericTensor, Pipeline class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def UpperCamelCase_ ( self : int ,A : Optional[int]=None ,A : Tuple=None ,A : List[str]=None ,**A : List[str] ): if tokenize_kwargs is None: __A = {} if truncation is not None: if "truncation" in tokenize_kwargs: raise ValueError( "truncation parameter defined twice (given as keyword argument as well as in tokenize_kwargs)" ) __A = truncation __A = tokenize_kwargs __A = {} if return_tensors is not None: __A = return_tensors return preprocess_params, {}, postprocess_params def UpperCamelCase_ ( self : List[str] ,A : str ,**A : str ): __A = self.framework __A = self.tokenizer(A ,return_tensors=A ,**A ) return model_inputs def UpperCamelCase_ ( self : Any ,A : Dict ): __A = self.model(**A ) return model_outputs def UpperCamelCase_ ( self : str ,A : List[str] ,A : int=False ): # [0] is the first available tensor, logits or last_hidden_state. if return_tensors: return model_outputs[0] if self.framework == "pt": return model_outputs[0].tolist() elif self.framework == "tf": return model_outputs[0].numpy().tolist() def __call__( self : int ,*A : Tuple ,**A : Optional[Any] ): return super().__call__(*A ,**A )
15
SCREAMING_SNAKE_CASE :Any = 256 # Modulus to hash a string SCREAMING_SNAKE_CASE :Union[str, Any] = 100_0003 def UpperCAmelCase ( a_ , a_ ) -> bool: """simple docstring""" __A = len(a_ ) __A = len(a_ ) if p_len > t_len: return False __A = 0 __A = 0 __A = 1 # Calculating the hash of pattern and substring of text for i in range(a_ ): __A = (ord(pattern[i] ) + p_hash * alphabet_size) % modulus __A = (ord(text[i] ) + text_hash * alphabet_size) % modulus if i == p_len - 1: continue __A = (modulus_power * alphabet_size) % modulus for i in range(0 , t_len - p_len + 1 ): if text_hash == p_hash and text[i : i + p_len] == pattern: return True if i == t_len - p_len: continue # Calculate the https://en.wikipedia.org/wiki/Rolling_hash __A = ( (text_hash - ord(text[i] ) * modulus_power) * alphabet_size + ord(text[i + p_len] ) ) % modulus return False def UpperCAmelCase ( ) -> None: """simple docstring""" __A = "abc1abc12" __A = "alskfjaldsabc1abc1abc12k23adsfabcabc" __A = "alskfjaldsk23adsfabcabc" assert rabin_karp(a_ , a_ ) and not rabin_karp(a_ , a_ ) # Test 2) __A = "ABABX" __A = "ABABZABABYABABX" assert rabin_karp(a_ , a_ ) # Test 3) __A = "AAAB" __A = "ABAAAAAB" assert rabin_karp(a_ , a_ ) # Test 4) __A = "abcdabcy" __A = "abcxabcdabxabcdabcdabcy" assert rabin_karp(a_ , a_ ) # Test 5) __A = "Lü" __A = "Lüsai" assert rabin_karp(a_ , a_ ) __A = "Lue" assert not rabin_karp(a_ , a_ ) print("Success." ) if __name__ == "__main__": test_rabin_karp()
15
1
"""simple docstring""" from argparse import ArgumentParser from . import BaseTransformersCLICommand def lowercase__ ( _UpperCAmelCase ) -> Dict: '''simple docstring''' return DownloadCommand(args.model , args.cache_dir , args.force , args.trust_remote_code ) class a__ ( __UpperCamelCase ): @staticmethod def lowercase ( lowerCAmelCase : ArgumentParser ) -> Optional[int]: lowercase : Optional[Any] = parser.add_parser('download' ) download_parser.add_argument( '--cache-dir', type=lowerCAmelCase, default=lowerCAmelCase, help='Path to location to store the models' ) download_parser.add_argument( '--force', action='store_true', help='Force the model to be download even if already in cache-dir' ) download_parser.add_argument( '--trust-remote-code', action='store_true', help='Whether or not to allow for custom models defined on the Hub in their own modeling files. Use only if you\'ve reviewed the code as it will execute on your local machine', ) download_parser.add_argument('model', type=lowerCAmelCase, help='Name of the model to download' ) download_parser.set_defaults(func=lowerCAmelCase ) def __init__( self : Union[str, Any], lowerCAmelCase : str, lowerCAmelCase : str, lowerCAmelCase : bool, lowerCAmelCase : bool ) -> str: lowercase : Union[str, Any] = model lowercase : Optional[int] = cache lowercase : str = force lowercase : Any = trust_remote_code def lowercase ( self : Tuple ) -> Tuple: from ..models.auto import AutoModel, AutoTokenizer AutoModel.from_pretrained( self._model, cache_dir=self._cache, force_download=self._force, trust_remote_code=self._trust_remote_code ) AutoTokenizer.from_pretrained( self._model, cache_dir=self._cache, force_download=self._force, trust_remote_code=self._trust_remote_code )
351
"""simple docstring""" import argparse import requests import torch # pip3 install salesforce-lavis # I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis from lavis.models import load_model_and_preprocess from PIL import Image from transformers import ( AutoTokenizer, BlipaConfig, BlipaForConditionalGeneration, BlipaProcessor, BlipaVisionConfig, BlipImageProcessor, OPTConfig, TaConfig, ) from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD def lowercase__ ( ) -> Dict: '''simple docstring''' lowercase : List[Any] = 'https://storage.googleapis.com/sfr-vision-language-research/LAVIS/assets/merlion.png' lowercase : int = Image.open(requests.get(_UpperCAmelCase , stream=_UpperCAmelCase ).raw ).convert('RGB' ) return image def lowercase__ ( _UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' lowercase : str = [] # fmt: off # vision encoder rename_keys.append(('visual_encoder.cls_token', 'vision_model.embeddings.class_embedding') ) rename_keys.append(('visual_encoder.pos_embed', 'vision_model.embeddings.position_embedding') ) rename_keys.append(('visual_encoder.patch_embed.proj.weight', 'vision_model.embeddings.patch_embedding.weight') ) rename_keys.append(('visual_encoder.patch_embed.proj.bias', 'vision_model.embeddings.patch_embedding.bias') ) rename_keys.append(('ln_vision.weight', 'vision_model.post_layernorm.weight') ) rename_keys.append(('ln_vision.bias', 'vision_model.post_layernorm.bias') ) for i in range(config.vision_config.num_hidden_layers ): rename_keys.append((f'''visual_encoder.blocks.{i}.norm1.weight''', f'''vision_model.encoder.layers.{i}.layer_norm1.weight''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.norm1.bias''', f'''vision_model.encoder.layers.{i}.layer_norm1.bias''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.norm2.weight''', f'''vision_model.encoder.layers.{i}.layer_norm2.weight''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.norm2.bias''', f'''vision_model.encoder.layers.{i}.layer_norm2.bias''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.attn.qkv.weight''', f'''vision_model.encoder.layers.{i}.self_attn.qkv.weight''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.attn.proj.weight''', f'''vision_model.encoder.layers.{i}.self_attn.projection.weight''',) ) rename_keys.append((f'''visual_encoder.blocks.{i}.attn.proj.bias''', f'''vision_model.encoder.layers.{i}.self_attn.projection.bias''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.mlp.fc1.weight''', f'''vision_model.encoder.layers.{i}.mlp.fc1.weight''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.mlp.fc1.bias''', f'''vision_model.encoder.layers.{i}.mlp.fc1.bias''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.mlp.fc2.weight''', f'''vision_model.encoder.layers.{i}.mlp.fc2.weight''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.mlp.fc2.bias''', f'''vision_model.encoder.layers.{i}.mlp.fc2.bias''') ) # QFormer rename_keys.append(('Qformer.bert.embeddings.LayerNorm.weight', 'qformer.layernorm.weight') ) rename_keys.append(('Qformer.bert.embeddings.LayerNorm.bias', 'qformer.layernorm.bias') ) # fmt: on return rename_keys def lowercase__ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' lowercase : Tuple = dct.pop(_UpperCAmelCase ) lowercase : Tuple = val def lowercase__ ( _UpperCAmelCase , _UpperCAmelCase ) -> str: '''simple docstring''' for i in range(config.vision_config.num_hidden_layers ): # read in original q and v biases lowercase : Optional[int] = state_dict.pop(f'''visual_encoder.blocks.{i}.attn.q_bias''' ) lowercase : int = state_dict.pop(f'''visual_encoder.blocks.{i}.attn.v_bias''' ) # next, set bias in the state dict lowercase : List[Any] = torch.cat((q_bias, torch.zeros_like(_UpperCAmelCase , requires_grad=_UpperCAmelCase ), v_bias) ) lowercase : Optional[Any] = qkv_bias def lowercase__ ( _UpperCAmelCase , _UpperCAmelCase ) -> List[Any]: '''simple docstring''' lowercase : List[str] = 3_64 if 'coco' in model_name else 2_24 lowercase : int = BlipaVisionConfig(image_size=_UpperCAmelCase ).to_dict() # make sure the models have proper bos_token_id and eos_token_id set (important for generation) # seems like flan-T5 models don't have bos_token_id properly set? if "opt-2.7b" in model_name: lowercase : Optional[int] = OPTConfig.from_pretrained('facebook/opt-2.7b' , eos_token_id=_UpperCAmelCase ).to_dict() elif "opt-6.7b" in model_name: lowercase : List[str] = OPTConfig.from_pretrained('facebook/opt-6.7b' , eos_token_id=_UpperCAmelCase ).to_dict() elif "t5-xl" in model_name: lowercase : int = TaConfig.from_pretrained('google/flan-t5-xl' , dense_act_fn='gelu' , bos_token_id=1 ).to_dict() elif "t5-xxl" in model_name: lowercase : Optional[Any] = TaConfig.from_pretrained('google/flan-t5-xxl' , dense_act_fn='gelu' , bos_token_id=1 ).to_dict() lowercase : int = BlipaConfig(vision_config=_UpperCAmelCase , text_config=_UpperCAmelCase ) return config, image_size @torch.no_grad() def lowercase__ ( _UpperCAmelCase , _UpperCAmelCase=None , _UpperCAmelCase=False ) -> Optional[int]: '''simple docstring''' lowercase : Any = ( AutoTokenizer.from_pretrained('facebook/opt-2.7b' ) if 'opt' in model_name else AutoTokenizer.from_pretrained('google/flan-t5-xl' ) ) lowercase : Any = tokenizer('\n' , add_special_tokens=_UpperCAmelCase ).input_ids[0] lowercase , lowercase : Union[str, Any] = get_blipa_config(_UpperCAmelCase , eos_token_id=_UpperCAmelCase ) lowercase : Any = BlipaForConditionalGeneration(_UpperCAmelCase ).eval() lowercase : Any = { 'blip2-opt-2.7b': ('blip2_opt', 'pretrain_opt2.7b'), 'blip2-opt-6.7b': ('blip2_opt', 'pretrain_opt6.7b'), 'blip2-opt-2.7b-coco': ('blip2_opt', 'caption_coco_opt2.7b'), 'blip2-opt-6.7b-coco': ('blip2_opt', 'caption_coco_opt6.7b'), 'blip2-flan-t5-xl': ('blip2_t5', 'pretrain_flant5xl'), 'blip2-flan-t5-xl-coco': ('blip2_t5', 'caption_coco_flant5xl'), 'blip2-flan-t5-xxl': ('blip2_t5', 'pretrain_flant5xxl'), } lowercase , lowercase : Optional[int] = model_name_to_original[model_name] # load original model print('Loading original model...' ) lowercase : Dict = 'cuda' if torch.cuda.is_available() else 'cpu' lowercase , lowercase , lowercase : List[str] = load_model_and_preprocess( name=_UpperCAmelCase , model_type=_UpperCAmelCase , is_eval=_UpperCAmelCase , device=_UpperCAmelCase ) original_model.eval() print('Done!' ) # update state dict keys lowercase : int = original_model.state_dict() lowercase : str = create_rename_keys(_UpperCAmelCase ) for src, dest in rename_keys: rename_key(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # some keys can be renamed efficiently for key, val in state_dict.copy().items(): lowercase : Dict = state_dict.pop(_UpperCAmelCase ) if key.startswith('Qformer.bert' ): lowercase : List[Any] = key.replace('Qformer.bert' , 'qformer' ) if "attention.self" in key: lowercase : List[Any] = key.replace('self' , 'attention' ) if "opt_proj" in key: lowercase : Any = key.replace('opt_proj' , 'language_projection' ) if "t5_proj" in key: lowercase : List[Any] = key.replace('t5_proj' , 'language_projection' ) if key.startswith('opt' ): lowercase : Optional[Any] = key.replace('opt' , 'language' ) if key.startswith('t5' ): lowercase : Optional[Any] = key.replace('t5' , 'language' ) lowercase : Tuple = val # read in qv biases read_in_q_v_bias(_UpperCAmelCase , _UpperCAmelCase ) lowercase , lowercase : str = hf_model.load_state_dict(_UpperCAmelCase , strict=_UpperCAmelCase ) assert len(_UpperCAmelCase ) == 0 assert unexpected_keys == ["qformer.embeddings.position_ids"] lowercase : List[Any] = load_demo_image() lowercase : Optional[Any] = vis_processors['eval'](_UpperCAmelCase ).unsqueeze(0 ).to(_UpperCAmelCase ) lowercase : str = tokenizer(['\n'] , return_tensors='pt' ).input_ids.to(_UpperCAmelCase ) # create processor lowercase : List[Any] = BlipImageProcessor( size={'height': image_size, 'width': image_size} , image_mean=_UpperCAmelCase , image_std=_UpperCAmelCase ) lowercase : Union[str, Any] = BlipaProcessor(image_processor=_UpperCAmelCase , tokenizer=_UpperCAmelCase ) lowercase : Tuple = processor(images=_UpperCAmelCase , return_tensors='pt' ).pixel_values.to(_UpperCAmelCase ) # make sure processor creates exact same pixel values assert torch.allclose(_UpperCAmelCase , _UpperCAmelCase ) original_model.to(_UpperCAmelCase ) hf_model.to(_UpperCAmelCase ) with torch.no_grad(): if "opt" in model_name: lowercase : Any = original_model({'image': original_pixel_values, 'text_input': ['']} ).logits lowercase : str = hf_model(_UpperCAmelCase , _UpperCAmelCase ).logits else: lowercase : Tuple = original_model( {'image': original_pixel_values, 'text_input': ['\n'], 'text_output': ['\n']} ).logits lowercase : Dict = input_ids.masked_fill(input_ids == tokenizer.pad_token_id , -1_00 ) lowercase : Tuple = hf_model(_UpperCAmelCase , _UpperCAmelCase , labels=_UpperCAmelCase ).logits assert original_logits.shape == logits.shape print('First values of original logits:' , original_logits[0, :3, :3] ) print('First values of HF logits:' , logits[0, :3, :3] ) # assert values if model_name == "blip2-flan-t5-xl": lowercase : str = torch.tensor( [[-4_1.5_8_5_0, -4.4_4_4_0, -8.9_9_2_2], [-4_7.4_3_2_2, -5.9_1_4_3, -1.7_3_4_0]] , device=_UpperCAmelCase ) assert torch.allclose(logits[0, :3, :3] , _UpperCAmelCase , atol=1e-4 ) elif model_name == "blip2-flan-t5-xl-coco": lowercase : Any = torch.tensor( [[-5_7.0_1_0_9, -9.8_9_6_7, -1_2.6_2_8_0], [-6_8.6_5_7_8, -1_2.7_1_9_1, -1_0.5_0_6_5]] , device=_UpperCAmelCase ) else: # cast to same type lowercase : Dict = logits.dtype assert torch.allclose(original_logits.to(_UpperCAmelCase ) , _UpperCAmelCase , atol=1e-2 ) print('Looks ok!' ) print('Generating a caption...' ) lowercase : str = '' lowercase : List[str] = tokenizer(_UpperCAmelCase , return_tensors='pt' ).input_ids.to(_UpperCAmelCase ) lowercase : Any = original_model.generate({'image': original_pixel_values} ) lowercase : Union[str, Any] = hf_model.generate( _UpperCAmelCase , _UpperCAmelCase , do_sample=_UpperCAmelCase , num_beams=5 , max_length=30 , min_length=1 , top_p=0.9 , repetition_penalty=1.0 , length_penalty=1.0 , temperature=1 , ) print('Original generation:' , _UpperCAmelCase ) lowercase : str = input_ids.shape[1] lowercase : Dict = processor.batch_decode(outputs[:, prompt_length:] , skip_special_tokens=_UpperCAmelCase ) lowercase : Optional[int] = [text.strip() for text in output_text] print('HF generation:' , _UpperCAmelCase ) if pytorch_dump_folder_path is not None: processor.save_pretrained(_UpperCAmelCase ) hf_model.save_pretrained(_UpperCAmelCase ) if push_to_hub: processor.push_to_hub(f'''nielsr/{model_name}''' ) hf_model.push_to_hub(f'''nielsr/{model_name}''' ) if __name__ == "__main__": _UpperCamelCase: Optional[Any] = argparse.ArgumentParser() _UpperCamelCase: Dict = [ 'blip2-opt-2.7b', 'blip2-opt-6.7b', 'blip2-opt-2.7b-coco', 'blip2-opt-6.7b-coco', 'blip2-flan-t5-xl', 'blip2-flan-t5-xl-coco', 'blip2-flan-t5-xxl', ] parser.add_argument( '--model_name', default='blip2-opt-2.7b', choices=choices, type=str, help='Path to hf config.json of model to convert', ) parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument( '--push_to_hub', action='store_true', help='Whether to push the model and processor to the hub after converting', ) _UpperCamelCase: int = parser.parse_args() convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
53
0
"""simple docstring""" from __future__ import annotations import time from math import sqrt # 1 for manhattan, 0 for euclidean __UpperCamelCase = 0 __UpperCamelCase = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] __UpperCamelCase = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right __UpperCamelCase = tuple[int, int] class UpperCamelCase : def __init__( self, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, ) -> None: snake_case_ = pos_x snake_case_ = pos_y snake_case_ = (pos_y, pos_x) snake_case_ = goal_x snake_case_ = goal_y snake_case_ = g_cost snake_case_ = parent snake_case_ = self.calculate_heuristic() snake_case_ = self.g_cost + self.h_cost def a_ ( self) -> float: snake_case_ = self.pos_x - self.goal_x snake_case_ = self.pos_y - self.goal_y if HEURISTIC == 1: return abs(lowerCAmelCase__) + abs(lowerCAmelCase__) else: return sqrt(dy**2 + dx**2) def __lt__( self, lowerCAmelCase__) -> bool: return self.f_cost < other.f_cost class UpperCamelCase : def __init__( self, lowerCAmelCase__, lowerCAmelCase__) -> Union[str, Any]: snake_case_ = Node(start[1], start[0], goal[1], goal[0], 0, lowerCAmelCase__) snake_case_ = Node(goal[1], goal[0], goal[1], goal[0], 9_9999, lowerCAmelCase__) snake_case_ = [self.start] snake_case_ = [] snake_case_ = False def a_ ( self) -> list[TPosition]: while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() snake_case_ = self.open_nodes.pop(0) if current_node.pos == self.target.pos: return self.retrace_path(lowerCAmelCase__) self.closed_nodes.append(lowerCAmelCase__) snake_case_ = self.get_successors(lowerCAmelCase__) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(lowerCAmelCase__) else: # retrieve the best current path snake_case_ = self.open_nodes.pop(self.open_nodes.index(lowerCAmelCase__)) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(lowerCAmelCase__) else: self.open_nodes.append(lowerCAmelCase__) return [self.start.pos] def a_ ( self, lowerCAmelCase__) -> list[Node]: snake_case_ = [] for action in delta: snake_case_ = parent.pos_x + action[1] snake_case_ = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0]) - 1 and 0 <= pos_y <= len(lowerCAmelCase__) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( lowerCAmelCase__, lowerCAmelCase__, self.target.pos_y, self.target.pos_x, parent.g_cost + 1, lowerCAmelCase__, )) return successors def a_ ( self, lowerCAmelCase__) -> list[TPosition]: snake_case_ = node snake_case_ = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x)) snake_case_ = current_node.parent path.reverse() return path class UpperCamelCase : def __init__( self, lowerCAmelCase__, lowerCAmelCase__) -> None: snake_case_ = AStar(lowerCAmelCase__, lowerCAmelCase__) snake_case_ = AStar(lowerCAmelCase__, lowerCAmelCase__) snake_case_ = False def a_ ( self) -> list[TPosition]: while self.fwd_astar.open_nodes or self.bwd_astar.open_nodes: self.fwd_astar.open_nodes.sort() self.bwd_astar.open_nodes.sort() snake_case_ = self.fwd_astar.open_nodes.pop(0) snake_case_ = self.bwd_astar.open_nodes.pop(0) if current_bwd_node.pos == current_fwd_node.pos: return self.retrace_bidirectional_path( lowerCAmelCase__, lowerCAmelCase__) self.fwd_astar.closed_nodes.append(lowerCAmelCase__) self.bwd_astar.closed_nodes.append(lowerCAmelCase__) snake_case_ = current_bwd_node snake_case_ = current_fwd_node snake_case_ = { self.fwd_astar: self.fwd_astar.get_successors(lowerCAmelCase__), self.bwd_astar: self.bwd_astar.get_successors(lowerCAmelCase__), } for astar in [self.fwd_astar, self.bwd_astar]: for child_node in successors[astar]: if child_node in astar.closed_nodes: continue if child_node not in astar.open_nodes: astar.open_nodes.append(lowerCAmelCase__) else: # retrieve the best current path snake_case_ = astar.open_nodes.pop( astar.open_nodes.index(lowerCAmelCase__)) if child_node.g_cost < better_node.g_cost: astar.open_nodes.append(lowerCAmelCase__) else: astar.open_nodes.append(lowerCAmelCase__) return [self.fwd_astar.start.pos] def a_ ( self, lowerCAmelCase__, lowerCAmelCase__) -> list[TPosition]: snake_case_ = self.fwd_astar.retrace_path(lowerCAmelCase__) snake_case_ = self.bwd_astar.retrace_path(lowerCAmelCase__) bwd_path.pop() bwd_path.reverse() snake_case_ = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] __UpperCamelCase = (0, 0) __UpperCamelCase = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) __UpperCamelCase = time.time() __UpperCamelCase = AStar(init, goal) __UpperCamelCase = a_star.search() __UpperCamelCase = time.time() - start_time print(F"""AStar execution time = {end_time:f} seconds""") __UpperCamelCase = time.time() __UpperCamelCase = BidirectionalAStar(init, goal) __UpperCamelCase = time.time() - bd_start_time print(F"""BidirectionalAStar execution time = {bd_end_time:f} seconds""")
69
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { '''YituTech/conv-bert-base''': '''https://huggingface.co/YituTech/conv-bert-base/resolve/main/config.json''', '''YituTech/conv-bert-medium-small''': ( '''https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/config.json''' ), '''YituTech/conv-bert-small''': '''https://huggingface.co/YituTech/conv-bert-small/resolve/main/config.json''', # See all ConvBERT models at https://huggingface.co/models?filter=convbert } class lowerCAmelCase_ ( UpperCAmelCase_ ): '''simple docstring''' UpperCamelCase_ : Optional[Any] = """convbert""" def __init__( self : Dict , SCREAMING_SNAKE_CASE_ : Dict=3_05_22 , SCREAMING_SNAKE_CASE_ : int=7_68 , SCREAMING_SNAKE_CASE_ : List[str]=12 , SCREAMING_SNAKE_CASE_ : List[str]=12 , SCREAMING_SNAKE_CASE_ : Dict=30_72 , SCREAMING_SNAKE_CASE_ : Optional[int]="gelu" , SCREAMING_SNAKE_CASE_ : List[Any]=0.1 , SCREAMING_SNAKE_CASE_ : int=0.1 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=5_12 , SCREAMING_SNAKE_CASE_ : List[Any]=2 , SCREAMING_SNAKE_CASE_ : List[str]=0.02 , SCREAMING_SNAKE_CASE_ : int=1E-12 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=1 , SCREAMING_SNAKE_CASE_ : int=0 , SCREAMING_SNAKE_CASE_ : str=2 , SCREAMING_SNAKE_CASE_ : List[Any]=7_68 , SCREAMING_SNAKE_CASE_ : Optional[Any]=2 , SCREAMING_SNAKE_CASE_ : Any=9 , SCREAMING_SNAKE_CASE_ : Tuple=1 , SCREAMING_SNAKE_CASE_ : List[Any]=None , **SCREAMING_SNAKE_CASE_ : List[str] , ) -> List[Any]: '''simple docstring''' super().__init__( pad_token_id=SCREAMING_SNAKE_CASE_ , bos_token_id=SCREAMING_SNAKE_CASE_ , eos_token_id=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) A: Dict = vocab_size A: Tuple = hidden_size A: Optional[int] = num_hidden_layers A: List[str] = num_attention_heads A: int = intermediate_size A: int = hidden_act A: List[str] = hidden_dropout_prob A: int = attention_probs_dropout_prob A: Tuple = max_position_embeddings A: Any = type_vocab_size A: str = initializer_range A: Union[str, Any] = layer_norm_eps A: str = embedding_size A: Optional[int] = head_ratio A: List[Any] = conv_kernel_size A: List[Any] = num_groups A: Optional[int] = classifier_dropout class lowerCAmelCase_ ( UpperCAmelCase_ ): '''simple docstring''' @property def _snake_case ( self : Optional[Any] ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": A: Tuple = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: A: List[str] = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''token_type_ids''', dynamic_axis), ] )
319
0
import gc import random import unittest import numpy as np import torch from diffusers import DDIMScheduler, KandinskyVaaPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel from diffusers.utils import floats_tensor, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class _snake_case ( A__ , unittest.TestCase ): _lowercase : int = KandinskyVaaPipeline _lowercase : Optional[int] = [ '''image_embeds''', '''negative_image_embeds''', ] _lowercase : Union[str, Any] = ['''image_embeds''', '''negative_image_embeds'''] _lowercase : List[str] = [ '''generator''', '''height''', '''width''', '''latents''', '''guidance_scale''', '''num_inference_steps''', '''return_dict''', '''guidance_scale''', '''num_images_per_prompt''', '''output_type''', '''return_dict''', ] _lowercase : Optional[int] = False @property def SCREAMING_SNAKE_CASE__ ( self) -> Optional[Any]: return 32 @property def SCREAMING_SNAKE_CASE__ ( self) -> Optional[int]: return 32 @property def SCREAMING_SNAKE_CASE__ ( self) -> Union[str, Any]: return self.time_input_dim @property def SCREAMING_SNAKE_CASE__ ( self) -> List[str]: return self.time_input_dim * 4 @property def SCREAMING_SNAKE_CASE__ ( self) -> Dict: return 100 @property def SCREAMING_SNAKE_CASE__ ( self) -> Tuple: torch.manual_seed(0) SCREAMING_SNAKE_CASE = { 'in_channels': 4, # Out channels is double in channels because predicts mean and variance 'out_channels': 8, 'addition_embed_type': 'image', 'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'), 'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'), 'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn', 'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2), 'layers_per_block': 1, 'encoder_hid_dim': self.text_embedder_hidden_size, 'encoder_hid_dim_type': 'image_proj', 'cross_attention_dim': self.cross_attention_dim, 'attention_head_dim': 4, 'resnet_time_scale_shift': 'scale_shift', 'class_embed_type': None, } SCREAMING_SNAKE_CASE = UNetaDConditionModel(**a) return model @property def SCREAMING_SNAKE_CASE__ ( self) -> Any: return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def SCREAMING_SNAKE_CASE__ ( self) -> int: torch.manual_seed(0) SCREAMING_SNAKE_CASE = VQModel(**self.dummy_movq_kwargs) return model def SCREAMING_SNAKE_CASE__ ( self) -> Dict: SCREAMING_SNAKE_CASE = self.dummy_unet SCREAMING_SNAKE_CASE = self.dummy_movq SCREAMING_SNAKE_CASE = DDIMScheduler( num_train_timesteps=1000 , beta_schedule='linear' , beta_start=0.0_00_85 , beta_end=0.0_12 , clip_sample=a , set_alpha_to_one=a , steps_offset=1 , prediction_type='epsilon' , thresholding=a , ) SCREAMING_SNAKE_CASE = { 'unet': unet, 'scheduler': scheduler, 'movq': movq, } return components def SCREAMING_SNAKE_CASE__ ( self , a , a=0) -> int: SCREAMING_SNAKE_CASE = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(a)).to(a) SCREAMING_SNAKE_CASE = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1)).to( a) if str(a).startswith('mps'): SCREAMING_SNAKE_CASE = torch.manual_seed(a) else: SCREAMING_SNAKE_CASE = torch.Generator(device=a).manual_seed(a) SCREAMING_SNAKE_CASE = { 'image_embeds': image_embeds, 'negative_image_embeds': negative_image_embeds, 'generator': generator, 'height': 64, 'width': 64, 'guidance_scale': 4.0, 'num_inference_steps': 2, 'output_type': 'np', } return inputs def SCREAMING_SNAKE_CASE__ ( self) -> Optional[int]: SCREAMING_SNAKE_CASE = 'cpu' SCREAMING_SNAKE_CASE = self.get_dummy_components() SCREAMING_SNAKE_CASE = self.pipeline_class(**a) SCREAMING_SNAKE_CASE = pipe.to(a) pipe.set_progress_bar_config(disable=a) SCREAMING_SNAKE_CASE = pipe(**self.get_dummy_inputs(a)) SCREAMING_SNAKE_CASE = output.images SCREAMING_SNAKE_CASE = pipe( **self.get_dummy_inputs(a) , return_dict=a , )[0] SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) SCREAMING_SNAKE_CASE = np.array( [0.6_23_79_76, 1.0, 0.36_44_13_32, 1.0, 0.70_63_96_34, 0.29_87_71_86, 0.85_65_21_25, 0.5_21_68_43, 0.54_45_40_46]) assert ( np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 ), f''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1E-2 ), f''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' @slow @require_torch_gpu class _snake_case ( unittest.TestCase ): def SCREAMING_SNAKE_CASE__ ( self) -> Optional[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE__ ( self) -> List[Any]: SCREAMING_SNAKE_CASE = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinskyv22/kandinskyv22_text2img_cat_fp16.npy') SCREAMING_SNAKE_CASE = KandinskyVaaPriorPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-prior' , torch_dtype=torch.floataa) pipe_prior.to(a) SCREAMING_SNAKE_CASE = KandinskyVaaPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-decoder' , torch_dtype=torch.floataa) SCREAMING_SNAKE_CASE = pipeline.to(a) pipeline.set_progress_bar_config(disable=a) SCREAMING_SNAKE_CASE = 'red cat, 4k photo' SCREAMING_SNAKE_CASE = torch.Generator(device='cuda').manual_seed(0) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = pipe_prior( a , generator=a , num_inference_steps=5 , negative_prompt='' , ).to_tuple() SCREAMING_SNAKE_CASE = torch.Generator(device='cuda').manual_seed(0) SCREAMING_SNAKE_CASE = pipeline( image_embeds=a , negative_image_embeds=a , generator=a , num_inference_steps=100 , output_type='np' , ) SCREAMING_SNAKE_CASE = output.images[0] assert image.shape == (512, 512, 3) assert_mean_pixel_difference(a , a)
327
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available a_ : Optional[Any] = { 'configuration_efficientnet': [ 'EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP', 'EfficientNetConfig', 'EfficientNetOnnxConfig', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : List[str] = ['EfficientNetImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : Union[str, Any] = [ 'EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'EfficientNetForImageClassification', 'EfficientNetModel', 'EfficientNetPreTrainedModel', ] if TYPE_CHECKING: from .configuration_efficientnet import ( EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientNetConfig, EfficientNetOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientnet import EfficientNetImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientnet import ( EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientNetForImageClassification, EfficientNetModel, EfficientNetPreTrainedModel, ) else: import sys a_ : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure)
327
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tensorflow_text_available, is_torch_available SCREAMING_SNAKE_CASE : List[str] = { """configuration_ernie""": ["""ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ErnieConfig""", """ErnieOnnxConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : Optional[Any] = [ """ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST""", """ErnieForCausalLM""", """ErnieForMaskedLM""", """ErnieForMultipleChoice""", """ErnieForNextSentencePrediction""", """ErnieForPreTraining""", """ErnieForQuestionAnswering""", """ErnieForSequenceClassification""", """ErnieForTokenClassification""", """ErnieModel""", """ErniePreTrainedModel""", ] if TYPE_CHECKING: from .configuration_ernie import ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP, ErnieConfig, ErnieOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ernie import ( ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST, ErnieForCausalLM, ErnieForMaskedLM, ErnieForMultipleChoice, ErnieForNextSentencePrediction, ErnieForPreTraining, ErnieForQuestionAnswering, ErnieForSequenceClassification, ErnieForTokenClassification, ErnieModel, ErniePreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE : Any = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
102
import argparse from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_controlnet_from_original_ckpt if __name__ == "__main__": __snake_case = argparse.ArgumentParser() parser.add_argument( """--checkpoint_path""", default=None, type=str, required=True, help="""Path to the checkpoint to convert.""" ) parser.add_argument( """--original_config_file""", type=str, required=True, help="""The YAML config file corresponding to the original architecture.""", ) parser.add_argument( """--num_in_channels""", default=None, type=int, help="""The number of input channels. If `None` number of input channels will be automatically inferred.""", ) parser.add_argument( """--image_size""", default=5_12, type=int, help=( """The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2""" """ Base. Use 768 for Stable Diffusion v2.""" ), ) parser.add_argument( """--extract_ema""", action="""store_true""", help=( """Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights""" """ or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield""" """ higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning.""" ), ) parser.add_argument( """--upcast_attention""", action="""store_true""", help=( """Whether the attention computation should always be upcasted. This is necessary when running stable""" """ diffusion 2.1.""" ), ) parser.add_argument( """--from_safetensors""", action="""store_true""", help="""If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.""", ) parser.add_argument( """--to_safetensors""", action="""store_true""", help="""Whether to store pipeline in safetensors format or not.""", ) parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the output model.""") parser.add_argument("""--device""", type=str, help="""Device to use (e.g. cpu, cuda:0, cuda:1, etc.)""") def _lowercase ( UpperCamelCase_ ) -> Dict: '''simple docstring''' if string == "True": return True elif string == "False": return False else: raise ValueError(F'could not parse string as bool {string}' ) parser.add_argument( """--use_linear_projection""", help="""Override for use linear projection""", required=False, type=parse_bool ) parser.add_argument("""--cross_attention_dim""", help="""Override for cross attention_dim""", required=False, type=int) __snake_case = parser.parse_args() __snake_case = download_controlnet_from_original_ckpt( checkpoint_path=args.checkpoint_path, original_config_file=args.original_config_file, image_size=args.image_size, extract_ema=args.extract_ema, num_in_channels=args.num_in_channels, upcast_attention=args.upcast_attention, from_safetensors=args.from_safetensors, device=args.device, use_linear_projection=args.use_linear_projection, cross_attention_dim=args.cross_attention_dim, ) controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
176
0
'''simple docstring''' from .imports import is_rich_available if is_rich_available(): from rich.traceback import install install(show_locals=False) else: raise ModuleNotFoundError('''To use the rich extension, install rich with `pip install rich`''')
228
'''simple docstring''' from __future__ import annotations import math from collections.abc import Callable def _snake_case ( A , A , A , A = 100 , ) -> float: lowerCAmelCase__ = x_start lowerCAmelCase__ = fnc(A ) lowerCAmelCase__ = 0.0 for _ in range(A ): # Approximates curve as a sequence of linear lines and sums their length lowerCAmelCase__ = (x_end - x_start) / steps + xa lowerCAmelCase__ = fnc(A ) length += math.hypot(xa - xa , fxa - fxa ) # Increment step lowerCAmelCase__ = xa lowerCAmelCase__ = fxa return length if __name__ == "__main__": def _snake_case ( A ) -> List[Any]: return math.sin(10 * x ) print('''f(x) = sin(10 * x)''') print('''The length of the curve from x = -10 to x = 10 is:''') __UpperCAmelCase = 10 while i <= 100_000: print(f"""With {i} steps: {line_length(f, -10, 10, i)}""") i *= 10
228
1
import re from typing import Callable, List, Optional, Union import tensorflow as tf try: from tensorflow.keras.optimizers.legacy import Adam except ImportError: from tensorflow.keras.optimizers import Adam class _A ( tf.keras.optimizers.schedules.LearningRateSchedule ): def __init__( self : Union[str, Any] , _A : float , _A : Callable , _A : int , _A : float = 1.0 , _A : str = None , ) -> List[Any]: """simple docstring""" super().__init__() lowercase : Dict = initial_learning_rate lowercase : str = warmup_steps lowercase : str = power lowercase : Dict = decay_schedule_fn lowercase : str = name def __call__( self : Any , _A : List[str] ) -> Optional[Any]: """simple docstring""" with tf.name_scope(self.name or '''WarmUp''' ) as name: # Implements polynomial warmup. i.e., if global_step < warmup_steps, the # learning rate will be `global_step/num_warmup_steps * init_lr`. lowercase : Any = tf.cast(_A , tf.floataa ) lowercase : Optional[Any] = tf.cast(self.warmup_steps , tf.floataa ) lowercase : List[Any] = global_step_float / warmup_steps_float lowercase : List[str] = self.initial_learning_rate * tf.math.pow(_A , self.power ) return tf.cond( global_step_float < warmup_steps_float , lambda: warmup_learning_rate , lambda: self.decay_schedule_fn(step - self.warmup_steps ) , name=_A , ) def __a ( self : Optional[int] ) -> List[str]: """simple docstring""" return { "initial_learning_rate": self.initial_learning_rate, "decay_schedule_fn": self.decay_schedule_fn, "warmup_steps": self.warmup_steps, "power": self.power, "name": self.name, } def snake_case( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ = 0.0 , __magic_name__ = 0.9 , __magic_name__ = 0.9_9_9 , __magic_name__ = 1e-8 , __magic_name__ = None , __magic_name__ = None , __magic_name__ = 0.0 , __magic_name__ = 1.0 , __magic_name__ = None , ) -> Optional[int]: '''simple docstring''' lowercase : List[Any] = tf.keras.optimizers.schedules.PolynomialDecay( initial_learning_rate=__magic_name__ , decay_steps=num_train_steps - num_warmup_steps , end_learning_rate=init_lr * min_lr_ratio , power=__magic_name__ , ) if num_warmup_steps: lowercase : List[Any] = WarmUp( initial_learning_rate=__magic_name__ , decay_schedule_fn=__magic_name__ , warmup_steps=__magic_name__ , ) if weight_decay_rate > 0.0: lowercase : List[str] = AdamWeightDecay( learning_rate=__magic_name__ , weight_decay_rate=__magic_name__ , beta_a=__magic_name__ , beta_a=__magic_name__ , epsilon=__magic_name__ , clipnorm=__magic_name__ , global_clipnorm=__magic_name__ , exclude_from_weight_decay=['''LayerNorm''', '''layer_norm''', '''bias'''] , include_in_weight_decay=__magic_name__ , ) else: lowercase : Any = tf.keras.optimizers.Adam( learning_rate=__magic_name__ , beta_a=__magic_name__ , beta_a=__magic_name__ , epsilon=__magic_name__ , clipnorm=__magic_name__ , global_clipnorm=__magic_name__ , ) # We return the optimizer and the LR scheduler in order to better track the # evolution of the LR independently of the optimizer. return optimizer, lr_schedule class _A ( _lowerCamelCase ): def __init__( self : Optional[Any] , _A : Union[float, tf.keras.optimizers.schedules.LearningRateSchedule] = 0.001 , _A : float = 0.9 , _A : float = 0.999 , _A : float = 1E-7 , _A : bool = False , _A : float = 0.0 , _A : Optional[List[str]] = None , _A : Optional[List[str]] = None , _A : str = "AdamWeightDecay" , **_A : Dict , ) -> str: """simple docstring""" super().__init__(_A , _A , _A , _A , _A , _A , **_A ) lowercase : Any = weight_decay_rate lowercase : Union[str, Any] = include_in_weight_decay lowercase : Optional[Any] = exclude_from_weight_decay @classmethod def __a ( cls : Tuple , _A : Optional[Any] ) -> Optional[Any]: """simple docstring""" lowercase : Union[str, Any] = {'''WarmUp''': WarmUp} return super(_A , cls ).from_config(_A , custom_objects=_A ) def __a ( self : Dict , _A : Optional[int] , _A : List[Any] , _A : Optional[int] ) -> List[str]: """simple docstring""" super(_A , self )._prepare_local(_A , _A , _A ) lowercase : Dict = tf.constant( self.weight_decay_rate , name='''adam_weight_decay_rate''' ) def __a ( self : List[Any] , _A : str , _A : Union[str, Any] , _A : Optional[int] ) -> List[str]: """simple docstring""" lowercase : Dict = self._do_use_weight_decay(var.name ) if do_decay: return var.assign_sub( learning_rate * var * apply_state[(var.device, var.dtype.base_dtype)]['''weight_decay_rate'''] , use_locking=self._use_locking , ) return tf.no_op() def __a ( self : int , _A : int , _A : List[Any]=None , **_A : List[Any] ) -> List[str]: """simple docstring""" lowercase , lowercase : Dict = list(zip(*_A ) ) return super(_A , self ).apply_gradients(zip(_A , _A ) , name=_A , **_A ) def __a ( self : Union[str, Any] , _A : Optional[int] , _A : List[str] , _A : List[Any] ) -> List[str]: """simple docstring""" if apply_state is None: return self._decayed_lr_t[var_dtype], {} lowercase : Any = apply_state or {} lowercase : Dict = apply_state.get((var_device, var_dtype) ) if coefficients is None: lowercase : List[Any] = self._fallback_apply_state(_A , _A ) lowercase : int = coefficients return coefficients["lr_t"], {"apply_state": apply_state} def __a ( self : Any , _A : List[Any] , _A : Optional[int] , _A : int=None ) -> Tuple: """simple docstring""" lowercase , lowercase : Optional[Any] = self._get_lr(var.device , var.dtype.base_dtype , _A ) lowercase : Any = self._decay_weights_op(_A , _A , _A ) with tf.control_dependencies([decay] ): return super(_A , self )._resource_apply_dense(_A , _A , **_A ) def __a ( self : Tuple , _A : Tuple , _A : Dict , _A : Tuple , _A : int=None ) -> List[Any]: """simple docstring""" lowercase , lowercase : Any = self._get_lr(var.device , var.dtype.base_dtype , _A ) lowercase : Optional[Any] = self._decay_weights_op(_A , _A , _A ) with tf.control_dependencies([decay] ): return super(_A , self )._resource_apply_sparse(_A , _A , _A , **_A ) def __a ( self : int ) -> Any: """simple docstring""" lowercase : int = super().get_config() config.update({'''weight_decay_rate''': self.weight_decay_rate} ) return config def __a ( self : Any , _A : int ) -> Union[str, Any]: """simple docstring""" if self.weight_decay_rate == 0: return False if self._include_in_weight_decay: for r in self._include_in_weight_decay: if re.search(_A , _A ) is not None: return True if self._exclude_from_weight_decay: for r in self._exclude_from_weight_decay: if re.search(_A , _A ) is not None: return False return True class _A ( _lowerCamelCase ): def __init__( self : List[Any] ) -> Any: """simple docstring""" lowercase : Optional[int] = [] lowercase : Any = None @property def __a ( self : Dict ) -> int: """simple docstring""" if self._accum_steps is None: lowercase : Optional[int] = tf.Variable( tf.constant(0 , dtype=tf.intaa ) , trainable=_A , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , ) return self._accum_steps.value() @property def __a ( self : Tuple ) -> Any: """simple docstring""" if not self._gradients: raise ValueError('''The accumulator should be called first to initialize the gradients''' ) return [gradient.value() if gradient is not None else gradient for gradient in self._gradients] def __call__( self : int , _A : Optional[int] ) -> Dict: """simple docstring""" if not self._gradients: lowercase : str = self.step # Create the step variable. self._gradients.extend( [ tf.Variable( tf.zeros_like(_A ) , trainable=_A , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , ) if gradient is not None else gradient for gradient in gradients ] ) if len(_A ) != len(self._gradients ): raise ValueError(f"""Expected {len(self._gradients )} gradients, but got {len(_A )}""" ) for accum_gradient, gradient in zip(self._gradients , _A ): if accum_gradient is not None and gradient is not None: accum_gradient.assign_add(_A ) self._accum_steps.assign_add(1 ) def __a ( self : List[Any] ) -> Dict: """simple docstring""" if not self._gradients: return self._accum_steps.assign(0 ) for gradient in self._gradients: if gradient is not None: gradient.assign(tf.zeros_like(_A ) )
308
import collections import os from typing import List, Optional, Tuple from transformers.utils import is_jieba_available, requires_backends if is_jieba_available(): import jieba from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = {'vocab_file': 'vocab.txt'} lowerCAmelCase_ = { 'vocab_file': { 'openbmb/cpm-ant-10b': 'https://huggingface.co/openbmb/cpm-ant-10b/blob/main/vocab.txt', }, } lowerCAmelCase_ = { 'openbmb/cpm-ant-10b': 10_24, } def snake_case( __magic_name__ ) -> int: '''simple docstring''' lowercase : Optional[int] = collections.OrderedDict() with open(__magic_name__ , '''r''' , encoding='''utf-8''' ) as reader: lowercase : str = reader.readlines() for index, token in enumerate(__magic_name__ ): lowercase : Union[str, Any] = token.rstrip('''\n''' ) lowercase : List[Any] = index return vocab class _A ( _lowerCamelCase ): def __init__( self : List[str] , _A : Any , _A : List[str]="<unk>" , _A : Union[str, Any]=200 ) -> List[Any]: """simple docstring""" lowercase : Optional[int] = vocab lowercase : List[str] = unk_token lowercase : Any = max_input_chars_per_word def __a ( self : List[str] , _A : Tuple ) -> str: """simple docstring""" lowercase : Dict = list(_A ) if len(_A ) > self.max_input_chars_per_word: return [self.unk_token] lowercase : int = 0 lowercase : Dict = [] while start < len(_A ): lowercase : Optional[Any] = len(_A ) lowercase : List[str] = None while start < end: lowercase : List[Any] = ''''''.join(chars[start:end] ) if substr in self.vocab: lowercase : Union[str, Any] = substr break end -= 1 if cur_substr is None: sub_tokens.append(self.unk_token ) start += 1 else: sub_tokens.append(_A ) lowercase : Dict = end return sub_tokens class _A ( _lowerCamelCase ): _UpperCamelCase : List[str] = VOCAB_FILES_NAMES _UpperCamelCase : Optional[int] = PRETRAINED_VOCAB_FILES_MAP _UpperCamelCase : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCamelCase : List[Any] = ['''input_ids''', '''attention_mask'''] _UpperCamelCase : int = False def __init__( self : List[str] , _A : int , _A : Optional[Any]="<d>" , _A : Any="</d>" , _A : Optional[Any]="<s>" , _A : Any="</s>" , _A : Any="<pad>" , _A : List[Any]="<unk>" , _A : Optional[Any]="</n>" , _A : List[str]="</_>" , _A : Optional[Any]="left" , **_A : str , ) -> Tuple: """simple docstring""" requires_backends(self , ['''jieba'''] ) super().__init__( bod_token=_A , eod_token=_A , bos_token=_A , eos_token=_A , pad_token=_A , unk_token=_A , line_token=_A , space_token=_A , padding_side=_A , **_A , ) lowercase : str = bod_token lowercase : str = eod_token lowercase : Any = load_vocab(_A ) lowercase : List[Any] = self.encoder[space_token] lowercase : Tuple = self.encoder[line_token] del self.encoder[space_token] del self.encoder[line_token] lowercase : Any = collections.OrderedDict(sorted(self.encoder.items() , key=lambda _A : x[1] ) ) lowercase : int = {v: k for k, v in self.encoder.items()} lowercase : Optional[Any] = WordpieceTokenizer(vocab=self.encoder , unk_token=self.unk_token ) @property def __a ( self : Dict ) -> Optional[int]: """simple docstring""" return self.encoder[self.bod_token] @property def __a ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" return self.encoder[self.eod_token] @property def __a ( self : List[str] ) -> List[str]: """simple docstring""" return self.encoder["\n"] @property def __a ( self : List[Any] ) -> int: """simple docstring""" return len(self.encoder ) def __a ( self : Union[str, Any] ) -> Dict: """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder ) def __a ( self : str , _A : List[str] ) -> Tuple: """simple docstring""" lowercase : int = [] for x in jieba.cut(_A , cut_all=_A ): output_tokens.extend(self.wordpiece_tokenizer.tokenize(_A ) ) return output_tokens def __a ( self : List[Any] , _A : Tuple , **_A : Optional[int] ) -> Any: """simple docstring""" lowercase : List[str] = [i for i in token_ids if i >= 0] lowercase : Any = [ x for x in token_ids if x != self.pad_token_id and x != self.eos_token_id and x != self.bos_token_id ] return super()._decode(_A , **_A ) def __a ( self : List[Any] , _A : int ) -> Optional[Any]: """simple docstring""" return token in self.encoder def __a ( self : Dict , _A : List[str] ) -> str: """simple docstring""" return "".join(_A ) def __a ( self : List[str] , _A : List[str] ) -> Any: """simple docstring""" return self.encoder.get(_A , self.encoder.get(self.unk_token ) ) def __a ( self : Tuple , _A : Union[str, Any] ) -> Tuple: """simple docstring""" return self.decoder.get(_A , self.unk_token ) def __a ( self : List[Any] , _A : str , _A : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if os.path.isdir(_A ): lowercase : str = os.path.join( _A , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) else: lowercase : Optional[int] = (filename_prefix + '''-''' if filename_prefix else '''''') + save_directory lowercase : Any = 0 if " " in self.encoder: lowercase : List[Any] = self.encoder[''' '''] del self.encoder[" "] if "\n" in self.encoder: lowercase : Dict = self.encoder['''\n'''] del self.encoder["\n"] lowercase : Union[str, Any] = collections.OrderedDict(sorted(self.encoder.items() , key=lambda _A : x[1] ) ) with open(_A , '''w''' , encoding='''utf-8''' ) as writer: for token, token_index in self.encoder.items(): if index != token_index: logger.warning( f"""Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.""" ''' Please check that the vocabulary is not corrupted!''' ) lowercase : Any = token_index writer.write(token + '''\n''' ) index += 1 return (vocab_file,) def __a ( self : str , _A : List[int] , _A : List[int] = None ) -> List[int]: """simple docstring""" if token_ids_a is None: return [self.bos_token_id] + token_ids_a return [self.bos_token_id] + token_ids_a + [self.bos_token_id] + token_ids_a def __a ( self : int , _A : List[int] , _A : Optional[List[int]] = None , _A : bool = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_A , token_ids_a=_A , already_has_special_tokens=_A ) if token_ids_a is not None: return [1] + ([0] * len(_A )) + [1] + ([0] * len(_A )) return [1] + ([0] * len(_A ))
308
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCAmelCase__ : Tuple ={ '''configuration_roformer''': ['''ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''RoFormerConfig''', '''RoFormerOnnxConfig'''], '''tokenization_roformer''': ['''RoFormerTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : str =['''RoFormerTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : Tuple =[ '''ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''RoFormerForCausalLM''', '''RoFormerForMaskedLM''', '''RoFormerForMultipleChoice''', '''RoFormerForQuestionAnswering''', '''RoFormerForSequenceClassification''', '''RoFormerForTokenClassification''', '''RoFormerLayer''', '''RoFormerModel''', '''RoFormerPreTrainedModel''', '''load_tf_weights_in_roformer''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : Optional[int] =[ '''TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFRoFormerForCausalLM''', '''TFRoFormerForMaskedLM''', '''TFRoFormerForMultipleChoice''', '''TFRoFormerForQuestionAnswering''', '''TFRoFormerForSequenceClassification''', '''TFRoFormerForTokenClassification''', '''TFRoFormerLayer''', '''TFRoFormerModel''', '''TFRoFormerPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : Optional[int] =[ '''FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''FlaxRoFormerForMaskedLM''', '''FlaxRoFormerForMultipleChoice''', '''FlaxRoFormerForQuestionAnswering''', '''FlaxRoFormerForSequenceClassification''', '''FlaxRoFormerForTokenClassification''', '''FlaxRoFormerModel''', '''FlaxRoFormerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_roformer import ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, RoFormerConfig, RoFormerOnnxConfig from .tokenization_roformer import RoFormerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roformer_fast import RoFormerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roformer import ( ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, RoFormerForCausalLM, RoFormerForMaskedLM, RoFormerForMultipleChoice, RoFormerForQuestionAnswering, RoFormerForSequenceClassification, RoFormerForTokenClassification, RoFormerLayer, RoFormerModel, RoFormerPreTrainedModel, load_tf_weights_in_roformer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roformer import ( TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerLayer, TFRoFormerModel, TFRoFormerPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roformer import ( FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, FlaxRoFormerPreTrainedModel, ) else: import sys UpperCAmelCase__ : int =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
262
from .glue import glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels from .squad import SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features from .utils import DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor from .xnli import xnli_output_modes, xnli_processors, xnli_tasks_num_labels
262
1
from __future__ import annotations from random import random class UpperCAmelCase_ : '''simple docstring''' def __init__( self , _A = None ): '''simple docstring''' __SCREAMING_SNAKE_CASE = value __SCREAMING_SNAKE_CASE = random() __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None def __repr__( self ): '''simple docstring''' from pprint import pformat if self.left is None and self.right is None: return f"""'{self.value}: {self.prior:.5}'""" else: return pformat( {f"""{self.value}: {self.prior:.5}""": (self.left, self.right)} , indent=1 ) def __str__( self ): '''simple docstring''' __SCREAMING_SNAKE_CASE = str(self.value ) + ' ' __SCREAMING_SNAKE_CASE = str(self.left or '' ) __SCREAMING_SNAKE_CASE = str(self.right or '' ) return value + left + right def __lowercase ( a__ , a__ ) -> tuple[Node | None, Node | None]: if root is None: # None tree is split into 2 Nones return None, None elif root.value is None: return None, None else: if value < root.value: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = split(root.left , a__ ) return left, root else: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = split(root.right , a__ ) return root, right def __lowercase ( a__ , a__ ) -> Node | None: if (not left) or (not right): # If one node is None, return the other return left or right elif left.prior < right.prior: __SCREAMING_SNAKE_CASE = merge(left.right , a__ ) return left else: __SCREAMING_SNAKE_CASE = merge(a__ , right.left ) return right def __lowercase ( a__ , a__ ) -> Node | None: __SCREAMING_SNAKE_CASE = Node(a__ ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = split(a__ , a__ ) return merge(merge(a__ , a__ ) , a__ ) def __lowercase ( a__ , a__ ) -> Node | None: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = split(a__ , value - 1 ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = split(a__ , a__ ) return merge(a__ , a__ ) def __lowercase ( a__ ) -> None: if not root: # None return else: inorder(root.left ) print(root.value , end=',' ) inorder(root.right ) def __lowercase ( a__ , a__ ) -> Node | None: for arg in args.split(): if arg[0] == "+": __SCREAMING_SNAKE_CASE = insert(a__ , int(arg[1:] ) ) elif arg[0] == "-": __SCREAMING_SNAKE_CASE = erase(a__ , int(arg[1:] ) ) else: print('Unknown command' ) return root def __lowercase ( ) -> None: __SCREAMING_SNAKE_CASE = None print( 'enter numbers to create a tree, + value to add value into treap, ' '- value to erase all nodes with value. \'q\' to quit. ' ) __SCREAMING_SNAKE_CASE = input() while args != "q": __SCREAMING_SNAKE_CASE = interact_treap(a__ , a__ ) print(a__ ) __SCREAMING_SNAKE_CASE = input() print('good by!' ) if __name__ == "__main__": import doctest doctest.testmod() main()
257
from datetime import datetime import requests from bsa import BeautifulSoup if __name__ == "__main__": lowerCAmelCase__ : List[Any] =input('''Enter image url: ''').strip() print(F'''Downloading image from {url} ...''') lowerCAmelCase__ : int =BeautifulSoup(requests.get(url).content, '''html.parser''') # The image URL is in the content field of the first meta tag with property og:image lowerCAmelCase__ : Union[str, Any] =soup.find('''meta''', {'''property''': '''og:image'''})['''content'''] lowerCAmelCase__ : int =requests.get(image_url).content lowerCAmelCase__ : Optional[int] =F'''{datetime.now():%Y-%m-%d_%H:%M:%S}.jpg''' with open(file_name, '''wb''') as fp: fp.write(image_data) print(F'''Done. Image saved to disk as {file_name}.''')
257
1
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mobilebert import MobileBertTokenizer lowerCamelCase_ : List[Any] = logging.get_logger(__name__) lowerCamelCase_ : Any = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} lowerCamelCase_ : Dict = { "vocab_file": {"mobilebert-uncased": "https://huggingface.co/google/mobilebert-uncased/resolve/main/vocab.txt"}, "tokenizer_file": { "mobilebert-uncased": "https://huggingface.co/google/mobilebert-uncased/resolve/main/tokenizer.json" }, } lowerCamelCase_ : Dict = {"mobilebert-uncased": 512} lowerCamelCase_ : Tuple = {} class a__ ( UpperCamelCase_ ): A__ : str = VOCAB_FILES_NAMES A__ : List[str] = PRETRAINED_VOCAB_FILES_MAP A__ : Any = PRETRAINED_INIT_CONFIGURATION A__ : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A__ : Tuple = MobileBertTokenizer def __init__( self , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=True , UpperCAmelCase="[UNK]" , UpperCAmelCase="[SEP]" , UpperCAmelCase="[PAD]" , UpperCAmelCase="[CLS]" , UpperCAmelCase="[MASK]" , UpperCAmelCase=True , UpperCAmelCase=None , **UpperCAmelCase , ) -> Optional[int]: super().__init__( _a , tokenizer_file=_a , do_lower_case=_a , unk_token=_a , sep_token=_a , pad_token=_a , cls_token=_a , mask_token=_a , tokenize_chinese_chars=_a , strip_accents=_a , **_a , ) __a = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , _a ) != do_lower_case or normalizer_state.get('strip_accents' , _a ) != strip_accents or normalizer_state.get('handle_chinese_chars' , _a ) != tokenize_chinese_chars ): __a = getattr(_a , normalizer_state.pop('type' ) ) __a = do_lower_case __a = strip_accents __a = tokenize_chinese_chars __a = normalizer_class(**_a ) __a = do_lower_case def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase , UpperCAmelCase=None ) -> Dict: __a = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase , UpperCAmelCase = None ) -> List[int]: __a = [self.sep_token_id] __a = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase , UpperCAmelCase = None ) -> Tuple[str]: __a = self._tokenizer.model.save(_a , name=_a ) return tuple(_a )
362
from .glue import glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels from .squad import SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features from .utils import DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor from .xnli import xnli_output_modes, xnli_processors, xnli_tasks_num_labels
197
0
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_electra import ElectraTokenizer _UpperCamelCase = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} _UpperCamelCase = { "vocab_file": { "google/electra-small-generator": ( "https://huggingface.co/google/electra-small-generator/resolve/main/vocab.txt" ), "google/electra-base-generator": "https://huggingface.co/google/electra-base-generator/resolve/main/vocab.txt", "google/electra-large-generator": ( "https://huggingface.co/google/electra-large-generator/resolve/main/vocab.txt" ), "google/electra-small-discriminator": ( "https://huggingface.co/google/electra-small-discriminator/resolve/main/vocab.txt" ), "google/electra-base-discriminator": ( "https://huggingface.co/google/electra-base-discriminator/resolve/main/vocab.txt" ), "google/electra-large-discriminator": ( "https://huggingface.co/google/electra-large-discriminator/resolve/main/vocab.txt" ), }, "tokenizer_file": { "google/electra-small-generator": ( "https://huggingface.co/google/electra-small-generator/resolve/main/tokenizer.json" ), "google/electra-base-generator": ( "https://huggingface.co/google/electra-base-generator/resolve/main/tokenizer.json" ), "google/electra-large-generator": ( "https://huggingface.co/google/electra-large-generator/resolve/main/tokenizer.json" ), "google/electra-small-discriminator": ( "https://huggingface.co/google/electra-small-discriminator/resolve/main/tokenizer.json" ), "google/electra-base-discriminator": ( "https://huggingface.co/google/electra-base-discriminator/resolve/main/tokenizer.json" ), "google/electra-large-discriminator": ( "https://huggingface.co/google/electra-large-discriminator/resolve/main/tokenizer.json" ), }, } _UpperCamelCase = { "google/electra-small-generator": 512, "google/electra-base-generator": 512, "google/electra-large-generator": 512, "google/electra-small-discriminator": 512, "google/electra-base-discriminator": 512, "google/electra-large-discriminator": 512, } _UpperCamelCase = { "google/electra-small-generator": {"do_lower_case": True}, "google/electra-base-generator": {"do_lower_case": True}, "google/electra-large-generator": {"do_lower_case": True}, "google/electra-small-discriminator": {"do_lower_case": True}, "google/electra-base-discriminator": {"do_lower_case": True}, "google/electra-large-discriminator": {"do_lower_case": True}, } class _lowerCamelCase ( lowercase__ ): """simple docstring""" UpperCAmelCase_ : Union[str, Any] =VOCAB_FILES_NAMES UpperCAmelCase_ : List[Any] =PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase_ : Any =PRETRAINED_INIT_CONFIGURATION UpperCAmelCase_ : Optional[Any] =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase_ : List[str] =ElectraTokenizer def __init__( self , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=True , UpperCAmelCase="[UNK]" , UpperCAmelCase="[SEP]" , UpperCAmelCase="[PAD]" , UpperCAmelCase="[CLS]" , UpperCAmelCase="[MASK]" , UpperCAmelCase=True , UpperCAmelCase=None , **UpperCAmelCase , ) -> Optional[Any]: '''simple docstring''' super().__init__( __lowerCamelCase , tokenizer_file=__lowerCamelCase , do_lower_case=__lowerCamelCase , unk_token=__lowerCamelCase , sep_token=__lowerCamelCase , pad_token=__lowerCamelCase , cls_token=__lowerCamelCase , mask_token=__lowerCamelCase , tokenize_chinese_chars=__lowerCamelCase , strip_accents=__lowerCamelCase , **__lowerCamelCase , ) __snake_case : Optional[int] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("lowercase" , __lowerCamelCase ) != do_lower_case or normalizer_state.get("strip_accents" , __lowerCamelCase ) != strip_accents or normalizer_state.get("handle_chinese_chars" , __lowerCamelCase ) != tokenize_chinese_chars ): __snake_case : List[str] = getattr(__lowerCamelCase , normalizer_state.pop("type" ) ) __snake_case : Union[str, Any] = do_lower_case __snake_case : Tuple = strip_accents __snake_case : Optional[Any] = tokenize_chinese_chars __snake_case : Union[str, Any] = normalizer_class(**__lowerCamelCase ) __snake_case : Dict = do_lower_case def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase=None ) -> Any: '''simple docstring''' __snake_case : Optional[int] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase = None ) -> Any: '''simple docstring''' __snake_case : Optional[int] = [self.sep_token_id] __snake_case : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase = None ) -> int: '''simple docstring''' __snake_case : Optional[int] = self._tokenizer.model.save(__lowerCamelCase , name=__lowerCamelCase ) return tuple(__lowerCamelCase )
326
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, Features, Value from .base import TaskTemplate @dataclass(frozen=lowercase__) class _lowercase ( lowercase__): """simple docstring""" A__ = field(default="automatic-speech-recognition" , metadata={"include_in_asdict_even_if_is_default": True}) A__ = Features({"audio": Audio()}) A__ = Features({"transcription": Value("string")}) A__ = "audio" A__ = "transcription" def lowerCAmelCase ( self : Any , __lowerCamelCase : int ): '''simple docstring''' if self.audio_column not in features: raise ValueError(f"Column {self.audio_column} is not present in features." ) if not isinstance(features[self.audio_column] , __lowerCamelCase ): raise ValueError(f"Column {self.audio_column} is not an Audio type." ) lowerCamelCase__ : Tuple = copy.deepcopy(self ) lowerCamelCase__ : Tuple = self.input_schema.copy() lowerCamelCase__ : Optional[int] = features[self.audio_column] lowerCamelCase__ : int = input_schema return task_template @property def lowerCAmelCase ( self : int ): '''simple docstring''' return {self.audio_column: "audio", self.transcription_column: "transcription"}
184
0
import collections import os from typing import List, Optional, Tuple from transformers.utils import is_jieba_available, requires_backends if is_jieba_available(): import jieba from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowerCAmelCase__ : List[str] =logging.get_logger(__name__) lowerCAmelCase__ : str ={'''vocab_file''': '''vocab.txt'''} lowerCAmelCase__ : List[Any] ={ '''vocab_file''': { '''openbmb/cpm-ant-10b''': '''https://huggingface.co/openbmb/cpm-ant-10b/blob/main/vocab.txt''', }, } lowerCAmelCase__ : Optional[Any] ={ '''openbmb/cpm-ant-10b''': 1024, } def __lowercase ( a__ ) -> Optional[Any]: __SCREAMING_SNAKE_CASE = collections.OrderedDict() with open(a__ , 'r' , encoding='utf-8' ) as reader: __SCREAMING_SNAKE_CASE = reader.readlines() for index, token in enumerate(a__ ): __SCREAMING_SNAKE_CASE = token.rstrip('\n' ) __SCREAMING_SNAKE_CASE = index return vocab class UpperCAmelCase_ ( UpperCamelCase_ ): '''simple docstring''' def __init__( self , _A , _A="<unk>" , _A=200 ): '''simple docstring''' __SCREAMING_SNAKE_CASE = vocab __SCREAMING_SNAKE_CASE = unk_token __SCREAMING_SNAKE_CASE = max_input_chars_per_word def _A ( self , _A ): '''simple docstring''' __SCREAMING_SNAKE_CASE = list(_A ) if len(_A ) > self.max_input_chars_per_word: return [self.unk_token] __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = [] while start < len(_A ): __SCREAMING_SNAKE_CASE = len(_A ) __SCREAMING_SNAKE_CASE = None while start < end: __SCREAMING_SNAKE_CASE = ''.join(chars[start:end] ) if substr in self.vocab: __SCREAMING_SNAKE_CASE = substr break end -= 1 if cur_substr is None: sub_tokens.append(self.unk_token ) start += 1 else: sub_tokens.append(_A ) __SCREAMING_SNAKE_CASE = end return sub_tokens class UpperCAmelCase_ ( UpperCamelCase_ ): '''simple docstring''' UpperCamelCase__ : Tuple = VOCAB_FILES_NAMES UpperCamelCase__ : Any = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase__ : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase__ : Any = ['''input_ids''', '''attention_mask'''] UpperCamelCase__ : Dict = False def __init__( self , _A , _A="<d>" , _A="</d>" , _A="<s>" , _A="</s>" , _A="<pad>" , _A="<unk>" , _A="</n>" , _A="</_>" , _A="left" , **_A , ): '''simple docstring''' requires_backends(self , ['jieba'] ) super().__init__( bod_token=_A , eod_token=_A , bos_token=_A , eos_token=_A , pad_token=_A , unk_token=_A , line_token=_A , space_token=_A , padding_side=_A , **_A , ) __SCREAMING_SNAKE_CASE = bod_token __SCREAMING_SNAKE_CASE = eod_token __SCREAMING_SNAKE_CASE = load_vocab(_A ) __SCREAMING_SNAKE_CASE = self.encoder[space_token] __SCREAMING_SNAKE_CASE = self.encoder[line_token] del self.encoder[space_token] del self.encoder[line_token] __SCREAMING_SNAKE_CASE = collections.OrderedDict(sorted(self.encoder.items() , key=lambda _A : x[1] ) ) __SCREAMING_SNAKE_CASE = {v: k for k, v in self.encoder.items()} __SCREAMING_SNAKE_CASE = WordpieceTokenizer(vocab=self.encoder , unk_token=self.unk_token ) @property def _A ( self ): '''simple docstring''' return self.encoder[self.bod_token] @property def _A ( self ): '''simple docstring''' return self.encoder[self.eod_token] @property def _A ( self ): '''simple docstring''' return self.encoder["\n"] @property def _A ( self ): '''simple docstring''' return len(self.encoder ) def _A ( self ): '''simple docstring''' return dict(self.encoder , **self.added_tokens_encoder ) def _A ( self , _A ): '''simple docstring''' __SCREAMING_SNAKE_CASE = [] for x in jieba.cut(_A , cut_all=_A ): output_tokens.extend(self.wordpiece_tokenizer.tokenize(_A ) ) return output_tokens def _A ( self , _A , **_A ): '''simple docstring''' __SCREAMING_SNAKE_CASE = [i for i in token_ids if i >= 0] __SCREAMING_SNAKE_CASE = [ x for x in token_ids if x != self.pad_token_id and x != self.eos_token_id and x != self.bos_token_id ] return super()._decode(_A , **_A ) def _A ( self , _A ): '''simple docstring''' return token in self.encoder def _A ( self , _A ): '''simple docstring''' return "".join(_A ) def _A ( self , _A ): '''simple docstring''' return self.encoder.get(_A , self.encoder.get(self.unk_token ) ) def _A ( self , _A ): '''simple docstring''' return self.decoder.get(_A , self.unk_token ) def _A ( self , _A , _A = None ): '''simple docstring''' if os.path.isdir(_A ): __SCREAMING_SNAKE_CASE = os.path.join( _A , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) else: __SCREAMING_SNAKE_CASE = (filename_prefix + '-' if filename_prefix else '') + save_directory __SCREAMING_SNAKE_CASE = 0 if " " in self.encoder: __SCREAMING_SNAKE_CASE = self.encoder[' '] del self.encoder[" "] if "\n" in self.encoder: __SCREAMING_SNAKE_CASE = self.encoder['\n'] del self.encoder["\n"] __SCREAMING_SNAKE_CASE = collections.OrderedDict(sorted(self.encoder.items() , key=lambda _A : x[1] ) ) with open(_A , 'w' , encoding='utf-8' ) as writer: for token, token_index in self.encoder.items(): if index != token_index: logger.warning( f"""Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.""" ' Please check that the vocabulary is not corrupted!' ) __SCREAMING_SNAKE_CASE = token_index writer.write(token + '\n' ) index += 1 return (vocab_file,) def _A ( self , _A , _A = None ): '''simple docstring''' if token_ids_a is None: return [self.bos_token_id] + token_ids_a return [self.bos_token_id] + token_ids_a + [self.bos_token_id] + token_ids_a def _A ( self , _A , _A = None , _A = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_A , token_ids_a=_A , already_has_special_tokens=_A ) if token_ids_a is not None: return [1] + ([0] * len(_A )) + [1] + ([0] * len(_A )) return [1] + ([0] * len(_A ))
358
import os import unittest from transformers import LayoutLMTokenizer, LayoutLMTokenizerFast from transformers.models.layoutlm.tokenization_layoutlm import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCAmelCase_ ( UpperCamelCase_ , unittest.TestCase ): '''simple docstring''' UpperCamelCase__ : Optional[int] = LayoutLMTokenizer UpperCamelCase__ : Any = LayoutLMTokenizerFast UpperCamelCase__ : Optional[int] = True UpperCamelCase__ : int = True def _A ( self ): '''simple docstring''' super().setUp() __SCREAMING_SNAKE_CASE = [ '[UNK]', '[CLS]', '[SEP]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing', ',', 'low', 'lowest', ] __SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) def _A ( self , **_A ): '''simple docstring''' return LayoutLMTokenizer.from_pretrained(self.tmpdirname , **_A ) def _A ( self , _A ): '''simple docstring''' __SCREAMING_SNAKE_CASE = 'UNwant\u00E9d,running' __SCREAMING_SNAKE_CASE = 'unwanted, running' return input_text, output_text def _A ( self ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.tokenizer_class(self.vocab_file ) __SCREAMING_SNAKE_CASE = tokenizer.tokenize('UNwant\u00E9d,running' ) self.assertListEqual(_A , ['un', '##want', '##ed', ',', 'runn', '##ing'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_A ) , [7, 4, 5, 10, 8, 9] ) def _A ( self ): '''simple docstring''' pass
118
0
def lowerCAmelCase ( lowerCAmelCase_ = 4_000_000 )-> int: lowerCAmelCase_ : Tuple = [0, 1] lowerCAmelCase_ : List[Any] = 0 while fib[i] <= n: fib.append(fib[i] + fib[i + 1] ) if fib[i + 2] > n: break i += 1 lowerCAmelCase_ : str = 0 for j in range(len(lowerCAmelCase_ ) - 1 ): if fib[j] % 2 == 0: total += fib[j] return total if __name__ == "__main__": print(f"""{solution() = }""")
262
import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartTokenizer, MBartTokenizerFast, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin _UpperCAmelCase : List[str] =get_tests_dir("""fixtures/test_sentencepiece.model""") if is_torch_available(): from transformers.models.mbart.modeling_mbart import shift_tokens_right _UpperCAmelCase : Optional[int] =25_0004 _UpperCAmelCase : Tuple =25_0020 @require_sentencepiece @require_tokenizers class snake_case__( UpperCAmelCase__, unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Tuple = MBartTokenizer SCREAMING_SNAKE_CASE__ : Dict = MBartTokenizerFast SCREAMING_SNAKE_CASE__ : Tuple = True SCREAMING_SNAKE_CASE__ : List[str] = True def lowercase_ ( self ) -> Dict: super().setUp() # We have a SentencePiece fixture for testing lowerCAmelCase_ : str = MBartTokenizer(__lowercase , keep_accents=__lowercase ) tokenizer.save_pretrained(self.tmpdirname ) def lowercase_ ( self ) -> List[Any]: lowerCAmelCase_ : Optional[int] = MBartTokenizer(__lowercase , keep_accents=__lowercase ) lowerCAmelCase_ : Dict = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(__lowercase , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__lowercase ) , [value + tokenizer.fairseq_offset for value in [2_8_5, 4_6, 1_0, 1_7_0, 3_8_2]] , ) lowerCAmelCase_ : Optional[Any] = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( __lowercase , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) lowerCAmelCase_ : Dict = tokenizer.convert_tokens_to_ids(__lowercase ) self.assertListEqual( __lowercase , [ value + tokenizer.fairseq_offset for value in [8, 2_1, 8_4, 5_5, 2_4, 1_9, 7, 2, 6_0_2, 3_4_7, 3_4_7, 3_4_7, 3, 1_2, 6_6, 4_6, 7_2, 8_0, 6, 2, 4] # ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^ ] , ) lowerCAmelCase_ : Union[str, Any] = tokenizer.convert_ids_to_tokens(__lowercase ) self.assertListEqual( __lowercase , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) def lowercase_ ( self ) -> Dict: if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return lowerCAmelCase_ : int = (self.rust_tokenizer_class, '''hf-internal-testing/tiny-random-mbart''', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): lowerCAmelCase_ : Optional[int] = self.rust_tokenizer_class.from_pretrained(__lowercase , **__lowercase ) lowerCAmelCase_ : int = self.tokenizer_class.from_pretrained(__lowercase , **__lowercase ) lowerCAmelCase_ : Tuple = tempfile.mkdtemp() lowerCAmelCase_ : Union[str, Any] = tokenizer_r.save_pretrained(__lowercase ) lowerCAmelCase_ : Dict = tokenizer_p.save_pretrained(__lowercase ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) lowerCAmelCase_ : str = tuple(f for f in tokenizer_r_files if '''tokenizer.json''' not in f ) self.assertSequenceEqual(__lowercase , __lowercase ) # Checks everything loads correctly in the same way lowerCAmelCase_ : Tuple = tokenizer_r.from_pretrained(__lowercase ) lowerCAmelCase_ : Dict = tokenizer_p.from_pretrained(__lowercase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__lowercase , __lowercase ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(__lowercase ) # Save tokenizer rust, legacy_format=True lowerCAmelCase_ : Optional[Any] = tempfile.mkdtemp() lowerCAmelCase_ : int = tokenizer_r.save_pretrained(__lowercase , legacy_format=__lowercase ) lowerCAmelCase_ : Tuple = tokenizer_p.save_pretrained(__lowercase ) # Checks it save with the same files self.assertSequenceEqual(__lowercase , __lowercase ) # Checks everything loads correctly in the same way lowerCAmelCase_ : Optional[int] = tokenizer_r.from_pretrained(__lowercase ) lowerCAmelCase_ : List[Any] = tokenizer_p.from_pretrained(__lowercase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__lowercase , __lowercase ) ) shutil.rmtree(__lowercase ) # Save tokenizer rust, legacy_format=False lowerCAmelCase_ : Optional[Any] = tempfile.mkdtemp() lowerCAmelCase_ : List[str] = tokenizer_r.save_pretrained(__lowercase , legacy_format=__lowercase ) lowerCAmelCase_ : Optional[int] = tokenizer_p.save_pretrained(__lowercase ) # Checks it saved the tokenizer.json file self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way lowerCAmelCase_ : Dict = tokenizer_r.from_pretrained(__lowercase ) lowerCAmelCase_ : List[Any] = tokenizer_p.from_pretrained(__lowercase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__lowercase , __lowercase ) ) shutil.rmtree(__lowercase ) @require_torch @require_sentencepiece @require_tokenizers class snake_case__( unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : int = """facebook/mbart-large-en-ro""" SCREAMING_SNAKE_CASE__ : int = [ """ UN Chief Says There Is No Military Solution in Syria""", """ Secretary-General Ban Ki-moon says his response to Russia's stepped up military support for Syria is that \"there is no military solution\" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.""", ] SCREAMING_SNAKE_CASE__ : Optional[int] = [ """Şeful ONU declară că nu există o soluţie militară în Siria""", """Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei""" """ pentru Siria este că \"nu există o soluţie militară\" la conflictul de aproape cinci ani şi că noi arme nu vor""" """ face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.""", ] SCREAMING_SNAKE_CASE__ : str = [8_274, 127_873, 25_916, 7, 8_622, 2_071, 438, 67_485, 53, 187_895, 23, 51_712, 2, EN_CODE] @classmethod def lowercase_ ( cls ) -> Optional[int]: lowerCAmelCase_ : MBartTokenizer = MBartTokenizer.from_pretrained( cls.checkpoint_name , src_lang='''en_XX''' , tgt_lang='''ro_RO''' ) lowerCAmelCase_ : Optional[Any] = 1 return cls def lowercase_ ( self ) -> Optional[Any]: self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''ar_AR'''] , 2_5_0_0_0_1 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''en_EN'''] , 2_5_0_0_0_4 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''ro_RO'''] , 2_5_0_0_2_0 ) def lowercase_ ( self ) -> Tuple: lowerCAmelCase_ : Optional[int] = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , __lowercase ) def lowercase_ ( self ) -> Any: self.assertIn(__lowercase , self.tokenizer.all_special_ids ) lowerCAmelCase_ : Union[str, Any] = [RO_CODE, 8_8_4, 9_0_1_9, 9_6, 9, 9_1_6, 8_6_7_9_2, 3_6, 1_8_7_4_3, 1_5_5_9_6, 5, 2] lowerCAmelCase_ : Tuple = self.tokenizer.decode(__lowercase , skip_special_tokens=__lowercase ) lowerCAmelCase_ : List[Any] = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=__lowercase ) self.assertEqual(__lowercase , __lowercase ) self.assertNotIn(self.tokenizer.eos_token , __lowercase ) def lowercase_ ( self ) -> Any: lowerCAmelCase_ : Union[str, Any] = ['''this is gunna be a long sentence ''' * 2_0] assert isinstance(src_text[0] , __lowercase ) lowerCAmelCase_ : str = 1_0 lowerCAmelCase_ : Tuple = self.tokenizer(__lowercase , max_length=__lowercase , truncation=__lowercase ).input_ids[0] self.assertEqual(ids[-2] , 2 ) self.assertEqual(ids[-1] , __lowercase ) self.assertEqual(len(__lowercase ) , __lowercase ) def lowercase_ ( self ) -> int: self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['''<mask>''', '''ar_AR'''] ) , [2_5_0_0_2_6, 2_5_0_0_0_1] ) def lowercase_ ( self ) -> Dict: lowerCAmelCase_ : Any = tempfile.mkdtemp() lowerCAmelCase_ : int = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(__lowercase ) lowerCAmelCase_ : Optional[Any] = MBartTokenizer.from_pretrained(__lowercase ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , __lowercase ) @require_torch def lowercase_ ( self ) -> Union[str, Any]: lowerCAmelCase_ : Tuple = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=__lowercase , return_tensors='''pt''' ) lowerCAmelCase_ : Tuple = shift_tokens_right(batch['''labels'''] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 assert batch.input_ids[1][-2:].tolist() == [2, EN_CODE] assert batch.decoder_input_ids[1][0].tolist() == RO_CODE assert batch.decoder_input_ids[1][-1] == 2 assert batch.labels[1][-2:].tolist() == [2, RO_CODE] @require_torch def lowercase_ ( self ) -> List[Any]: lowerCAmelCase_ : str = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=__lowercase , truncation=__lowercase , max_length=len(self.expected_src_tokens ) , return_tensors='''pt''' , ) lowerCAmelCase_ : int = shift_tokens_right(batch['''labels'''] , self.tokenizer.pad_token_id ) self.assertIsInstance(__lowercase , __lowercase ) self.assertEqual((2, 1_4) , batch.input_ids.shape ) self.assertEqual((2, 1_4) , batch.attention_mask.shape ) lowerCAmelCase_ : str = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , __lowercase ) self.assertEqual(2 , batch.decoder_input_ids[0, -1] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id, EN_CODE] ) def lowercase_ ( self ) -> Optional[int]: lowerCAmelCase_ : Optional[Any] = self.tokenizer(self.src_text , padding=__lowercase , truncation=__lowercase , max_length=3 , return_tensors='''pt''' ) lowerCAmelCase_ : Any = self.tokenizer( text_target=self.tgt_text , padding=__lowercase , truncation=__lowercase , max_length=1_0 , return_tensors='''pt''' ) lowerCAmelCase_ : int = targets['''input_ids'''] lowerCAmelCase_ : Optional[Any] = shift_tokens_right(__lowercase , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 1_0 ) @require_torch def lowercase_ ( self ) -> List[str]: lowerCAmelCase_ : Any = self.tokenizer._build_translation_inputs( '''A test''' , return_tensors='''pt''' , src_lang='''en_XX''' , tgt_lang='''ar_AR''' ) self.assertEqual( nested_simplify(__lowercase ) , { # A, test, EOS, en_XX '''input_ids''': [[6_2, 3_0_3_4, 2, 2_5_0_0_0_4]], '''attention_mask''': [[1, 1, 1, 1]], # ar_AR '''forced_bos_token_id''': 2_5_0_0_0_1, } , )
262
1
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging UpperCAmelCase_ : Any = logging.get_logger(__name__) UpperCAmelCase_ : int = '▁' UpperCAmelCase_ : str = {'vocab_file': 'sentencepiece.bpe.model', 'monolingual_vocab_file': 'dict.txt'} UpperCAmelCase_ : List[Any] = { 'vocab_file': { 'vinai/bartpho-syllable': 'https://huggingface.co/vinai/bartpho-syllable/resolve/main/sentencepiece.bpe.model', }, 'monolingual_vocab_file': { 'vinai/bartpho-syllable': 'https://huggingface.co/vinai/bartpho-syllable/resolve/main/dict.txt', }, } UpperCAmelCase_ : Optional[int] = {'vinai/bartpho-syllable': 1024} class SCREAMING_SNAKE_CASE__ ( lowercase__ ): snake_case__ : Any = VOCAB_FILES_NAMES snake_case__ : Tuple = PRETRAINED_VOCAB_FILES_MAP snake_case__ : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case__ : Dict = ['''input_ids''', '''attention_mask'''] def __init__( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : List[str]="<s>" , SCREAMING_SNAKE_CASE__ : Union[str, Any]="</s>" , SCREAMING_SNAKE_CASE__ : Optional[int]="</s>" , SCREAMING_SNAKE_CASE__ : Tuple="<s>" , SCREAMING_SNAKE_CASE__ : Any="<unk>" , SCREAMING_SNAKE_CASE__ : List[Any]="<pad>" , SCREAMING_SNAKE_CASE__ : int="<mask>" , SCREAMING_SNAKE_CASE__ : Optional[Dict[str, Any]] = None , **SCREAMING_SNAKE_CASE__ : Tuple , ) -> None: # Mask token behave like a normal word, i.e. include the space before it a_ : str = AddedToken(SCREAMING_SNAKE_CASE__ , lstrip=SCREAMING_SNAKE_CASE__ , rstrip=SCREAMING_SNAKE_CASE__ ) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else mask_token a_ : List[Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=SCREAMING_SNAKE_CASE__ , eos_token=SCREAMING_SNAKE_CASE__ , unk_token=SCREAMING_SNAKE_CASE__ , sep_token=SCREAMING_SNAKE_CASE__ , cls_token=SCREAMING_SNAKE_CASE__ , pad_token=SCREAMING_SNAKE_CASE__ , mask_token=SCREAMING_SNAKE_CASE__ , sp_model_kwargs=self.sp_model_kwargs , **SCREAMING_SNAKE_CASE__ , ) a_ : Optional[int] = vocab_file a_ : str = monolingual_vocab_file a_ : Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(SCREAMING_SNAKE_CASE__ ) ) # Load the reduced vocab # Keep order of special tokens for backward compatibility a_ : int = {} a_ : str = 0 for token in [bos_token, pad_token, eos_token, unk_token, sep_token, cls_token]: if str(SCREAMING_SNAKE_CASE__ ) not in self.fairseq_tokens_to_ids: a_ : Dict = cnt cnt += 1 with open(SCREAMING_SNAKE_CASE__ , 'r' , encoding='utf-8' ) as f: for line in f.readlines(): a_ : List[str] = line.strip().split()[0] a_ : Dict = len(self.fairseq_tokens_to_ids ) if str(SCREAMING_SNAKE_CASE__ ) not in self.fairseq_tokens_to_ids: a_ : Dict = len(self.fairseq_tokens_to_ids ) a_ : Any = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self : Optional[Any] ) -> Union[str, Any]: a_ : Optional[Any] = self.__dict__.copy() a_ : Dict = None a_ : List[Any] = self.sp_model.serialized_model_proto() return state def __setstate__( self : List[str] , SCREAMING_SNAKE_CASE__ : int ) -> List[str]: a_ : str = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): a_ : int = {} a_ : Any = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def SCREAMING_SNAKE_CASE ( self : str , SCREAMING_SNAKE_CASE__ : List[int] , SCREAMING_SNAKE_CASE__ : Optional[List[int]] = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] a_ : Any = [self.cls_token_id] a_ : Union[str, Any] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def SCREAMING_SNAKE_CASE ( self : int , SCREAMING_SNAKE_CASE__ : List[int] , SCREAMING_SNAKE_CASE__ : Optional[List[int]] = None , SCREAMING_SNAKE_CASE__ : bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=SCREAMING_SNAKE_CASE__ , token_ids_a=SCREAMING_SNAKE_CASE__ , already_has_special_tokens=SCREAMING_SNAKE_CASE__ ) if token_ids_a is None: return [1] + ([0] * len(SCREAMING_SNAKE_CASE__ )) + [1] return [1] + ([0] * len(SCREAMING_SNAKE_CASE__ )) + [1, 1] + ([0] * len(SCREAMING_SNAKE_CASE__ )) + [1] def SCREAMING_SNAKE_CASE ( self : Any , SCREAMING_SNAKE_CASE__ : List[int] , SCREAMING_SNAKE_CASE__ : Optional[List[int]] = None ) -> List[int]: a_ : int = [self.sep_token_id] a_ : str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Optional[int]: return len(self.fairseq_ids_to_tokens ) def SCREAMING_SNAKE_CASE ( self : int ) -> Tuple: a_ : Optional[Any] = {self.convert_ids_to_tokens(SCREAMING_SNAKE_CASE__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def SCREAMING_SNAKE_CASE ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : str ) -> List[str]: return self.sp_model.encode(SCREAMING_SNAKE_CASE__ , out_type=SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE ( self : Any , SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> List[Any]: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] else: return self.unk_token_id def SCREAMING_SNAKE_CASE ( self : List[Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> List[Any]: return self.fairseq_ids_to_tokens[index] def SCREAMING_SNAKE_CASE ( self : Any , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> int: a_ : int = ''.join(SCREAMING_SNAKE_CASE__ ).replace(SCREAMING_SNAKE_CASE__ , ' ' ).strip() return out_string def SCREAMING_SNAKE_CASE ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(SCREAMING_SNAKE_CASE__ ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return a_ : Dict = os.path.join( SCREAMING_SNAKE_CASE__ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) a_ : Union[str, Any] = os.path.join( SCREAMING_SNAKE_CASE__ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['monolingual_vocab_file'] , ) if os.path.abspath(self.vocab_file ) != os.path.abspath(SCREAMING_SNAKE_CASE__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , SCREAMING_SNAKE_CASE__ ) elif not os.path.isfile(self.vocab_file ): with open(SCREAMING_SNAKE_CASE__ , 'wb' ) as fi: a_ : Any = self.sp_model.serialized_model_proto() fi.write(SCREAMING_SNAKE_CASE__ ) if os.path.abspath(self.monolingual_vocab_file ) != os.path.abspath( SCREAMING_SNAKE_CASE__ ) and os.path.isfile(self.monolingual_vocab_file ): copyfile(self.monolingual_vocab_file , SCREAMING_SNAKE_CASE__ ) elif not os.path.isfile(self.monolingual_vocab_file ): with open(SCREAMING_SNAKE_CASE__ , 'w' , encoding='utf-8' ) as fp: for token in self.fairseq_tokens_to_ids: if token not in self.all_special_tokens: fp.write(F"""{str(SCREAMING_SNAKE_CASE__ )} \n""" ) return out_vocab_file, out_monolingual_vocab_file
368
import argparse import logging import os from datetime import datetime import numpy as np import torch from torch import nn from torch.utils.data import DataLoader, RandomSampler, TensorDataset from tqdm import tqdm from transformers import GPTaLMHeadModel UpperCAmelCase_ : str = logging.getLogger(__name__) def SCREAMING_SNAKE_CASE_ ( __A : Dict , __A : List[str] ) -> Tuple: """simple docstring""" if os.path.exists(__A ): if os.path.exists(os.path.join(__A , 'config.json' ) ) and os.path.isfile( os.path.join(__A , 'config.json' ) ): os.remove(os.path.join(__A , 'config.json' ) ) if os.path.exists(os.path.join(__A , 'pytorch_model.bin' ) ) and os.path.isfile( os.path.join(__A , 'pytorch_model.bin' ) ): os.remove(os.path.join(__A , 'pytorch_model.bin' ) ) else: os.makedirs(__A ) model.save_pretrained(__A ) def SCREAMING_SNAKE_CASE_ ( __A : str , __A : Dict=False ) -> Any: """simple docstring""" a_ : Optional[Any] = 2 if unlogit: a_ : List[str] = torch.pow(__A , __A ) a_ : Tuple = p * torch.log(__A ) a_ : Union[str, Any] = 0 return -plogp.sum(dim=-1 ) def SCREAMING_SNAKE_CASE_ ( __A : Any ) -> Tuple: """simple docstring""" logger.info('lv, h >\t' + '\t'.join(F"""{x + 1}""" for x in range(len(__A ) ) ) ) for row in range(len(__A ) ): if tensor.dtype != torch.long: logger.info(F"""layer {row + 1}:\t""" + '\t'.join(F"""{x:.5f}""" for x in tensor[row].cpu().data ) ) else: logger.info(F"""layer {row + 1}:\t""" + '\t'.join(F"""{x:d}""" for x in tensor[row].cpu().data ) ) def SCREAMING_SNAKE_CASE_ ( __A : Optional[int] , __A : Dict , __A : Union[str, Any] , __A : List[str]=True , __A : str=True , __A : int=None , __A : List[str]=False ) -> List[Any]: """simple docstring""" a_ , a_ : List[str] = model.config.num_hidden_layers, model.config.num_attention_heads a_ : Tuple = torch.zeros(__A , __A ).to(args.device ) a_ : Optional[int] = torch.zeros(__A , __A ).to(args.device ) if head_mask is None: a_ : Tuple = torch.ones(__A , __A ).to(args.device ) head_mask.requires_grad_(requires_grad=__A ) # If actually pruned attention multi-head, set head mask to None to avoid shape mismatch if actually_pruned: a_ : List[str] = None a_ : Optional[Any] = 0.0 a_ : Optional[int] = 0.0 for step, inputs in enumerate(tqdm(__A , desc='Iteration' , disable=args.local_rank not in [-1, 0] ) ): a_ : Any = tuple(t.to(args.device ) for t in inputs ) ((a_) , ) : Dict = inputs # Do a forward pass (not with torch.no_grad() since we need gradients for importance score - see below) a_ : Tuple = model(__A , labels=__A , head_mask=__A ) # (loss), lm_logits, presents, (all hidden_states), (attentions) a_ , a_ , a_ : Optional[Any] = ( outputs[0], outputs[1], outputs[-1], ) # Loss and logits are the first, attention the last loss.backward() # Backpropagate to populate the gradients in the head mask total_loss += loss.detach().cpu().numpy() if compute_entropy: for layer, attn in enumerate(__A ): a_ : List[str] = entropy(attn.detach() , __A ) attn_entropy[layer] += masked_entropy.sum(-1 ).sum(0 ).sum(0 ).detach() if compute_importance: head_importance += head_mask.grad.abs().detach() tot_tokens += torch.ones_like(__A ).float().detach().sum().data # Normalize attn_entropy /= tot_tokens head_importance /= tot_tokens # Layerwise importance normalization if not args.dont_normalize_importance_by_layer: a_ : int = 2 a_ : Dict = torch.pow(torch.pow(__A , __A ).sum(-1 ) , 1 / exponent ) head_importance /= norm_by_layer.unsqueeze(-1 ) + 1e-2_0 if not args.dont_normalize_global_importance: a_ : Dict = (head_importance - head_importance.min()) / (head_importance.max() - head_importance.min()) # Print matrices if compute_entropy: logger.info('Attention entropies' ) print_ad_tensor(__A ) if compute_importance: logger.info('Head importance scores' ) print_ad_tensor(__A ) logger.info('Head ranked by importance scores' ) a_ : Optional[Any] = torch.zeros(head_importance.numel() , dtype=torch.long , device=args.device ) a_ : Tuple = torch.arange( head_importance.numel() , device=args.device ) a_ : Optional[Any] = head_ranks.view_as(__A ) print_ad_tensor(__A ) return attn_entropy, head_importance, total_loss def SCREAMING_SNAKE_CASE_ ( __A : Union[str, Any] , __A : List[Any] , __A : str ) -> Union[str, Any]: """simple docstring""" a_ , a_ , a_ : Any = compute_heads_importance(__A , __A , __A , compute_entropy=__A ) a_ : List[str] = 1 / loss # instead of downsteam score use the LM loss logger.info('Pruning: original score: %f, threshold: %f' , __A , original_score * args.masking_threshold ) a_ : List[Any] = torch.ones_like(__A ) a_ : Optional[Any] = max(1 , int(new_head_mask.numel() * args.masking_amount ) ) a_ : List[Any] = original_score while current_score >= original_score * args.masking_threshold: a_ : Union[str, Any] = new_head_mask.clone().detach() # save current head mask # heads from least important to most - keep only not-masked heads a_ : str = float('Inf' ) a_ : Any = head_importance.view(-1 ).sort()[1] if len(__A ) <= num_to_mask: print('BREAK BY num_to_mask' ) break # mask heads a_ : Any = current_heads_to_mask[:num_to_mask] logger.info('Heads to mask: %s' , str(current_heads_to_mask.tolist() ) ) a_ : Optional[Any] = new_head_mask.view(-1 ) a_ : Optional[int] = 0.0 a_ : List[str] = new_head_mask.view_as(__A ) a_ : Dict = new_head_mask.clone().detach() print_ad_tensor(__A ) # Compute metric and head importance again a_ , a_ , a_ : int = compute_heads_importance( __A , __A , __A , compute_entropy=__A , head_mask=__A ) a_ : Optional[int] = 1 / loss logger.info( 'Masking: current score: %f, remaining heads %d (%.1f percents)' , __A , new_head_mask.sum() , new_head_mask.sum() / new_head_mask.numel() * 1_00 , ) logger.info('Final head mask' ) print_ad_tensor(__A ) np.save(os.path.join(args.output_dir , 'head_mask.npy' ) , head_mask.detach().cpu().numpy() ) return head_mask def SCREAMING_SNAKE_CASE_ ( __A : Optional[int] , __A : int , __A : Union[str, Any] , __A : Optional[Any] ) -> Optional[Any]: """simple docstring""" a_ : Dict = datetime.now() a_ , a_ , a_ : Union[str, Any] = compute_heads_importance( __A , __A , __A , compute_entropy=__A , compute_importance=__A , head_mask=__A ) a_ : Union[str, Any] = 1 / loss a_ : List[Any] = datetime.now() - before_time a_ : str = sum(p.numel() for p in model.parameters() ) a_ : Any = { layer: (1 - head_mask[layer].long()).nonzero().squeeze().tolist() for layer in range(len(__A ) ) } for k, v in heads_to_prune.items(): if isinstance(__A , __A ): a_ : List[str] = [ v, ] assert sum(len(__A ) for h in heads_to_prune.values() ) == (1 - head_mask.long()).sum().item() model.prune_heads(__A ) a_ : str = sum(p.numel() for p in model.parameters() ) a_ : Union[str, Any] = datetime.now() a_ , a_ , a_ : int = compute_heads_importance( __A , __A , __A , compute_entropy=__A , compute_importance=__A , head_mask=__A , actually_pruned=__A , ) a_ : int = 1 / loss a_ : str = datetime.now() - before_time logger.info( 'Pruning: original num of params: %.2e, after pruning %.2e (%.1f percents)' , __A , __A , pruned_num_params / original_num_params * 1_00 , ) logger.info('Pruning: score with masking: %f score with pruning: %f' , __A , __A ) logger.info('Pruning: speed ratio (original timing / new timing): %f percents' , original_time / new_time * 1_00 ) save_model(__A , args.output_dir ) def SCREAMING_SNAKE_CASE_ ( ) -> Tuple: """simple docstring""" a_ : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--data_dir' , default=__A , type=__A , required=__A , help='The input data dir. Should contain the .tsv files (or other data files) for the task.' , ) parser.add_argument( '--model_name_or_path' , default=__A , type=__A , required=__A , help='Path to pretrained model or model identifier from huggingface.co/models' , ) parser.add_argument( '--output_dir' , default=__A , type=__A , required=__A , help='The output directory where the model predictions and checkpoints will be written.' , ) # Other parameters parser.add_argument( '--config_name' , default='' , type=__A , help='Pretrained config name or path if not the same as model_name_or_path' , ) parser.add_argument( '--tokenizer_name' , default='' , type=__A , help='Pretrained tokenizer name or path if not the same as model_name_or_path' , ) parser.add_argument( '--cache_dir' , default=__A , type=__A , help='Where do you want to store the pre-trained models downloaded from s3' , ) parser.add_argument( '--data_subset' , type=__A , default=-1 , help='If > 0: limit the data to a subset of data_subset instances.' ) parser.add_argument( '--overwrite_output_dir' , action='store_true' , help='Whether to overwrite data in output directory' ) parser.add_argument( '--overwrite_cache' , action='store_true' , help='Overwrite the cached training and evaluation sets' ) parser.add_argument( '--dont_normalize_importance_by_layer' , action='store_true' , help='Don\'t normalize importance score by layers' ) parser.add_argument( '--dont_normalize_global_importance' , action='store_true' , help='Don\'t normalize all importance scores between 0 and 1' , ) parser.add_argument( '--try_masking' , action='store_true' , help='Whether to try to mask head until a threshold of accuracy.' ) parser.add_argument( '--masking_threshold' , default=0.9 , type=__A , help='masking threshold in term of metrics (stop masking when metric < threshold * original metric value).' , ) parser.add_argument( '--masking_amount' , default=0.1 , type=__A , help='Amount to heads to masking at each masking step.' ) parser.add_argument('--metric_name' , default='acc' , type=__A , help='Metric to use for head masking.' ) parser.add_argument( '--max_seq_length' , default=1_28 , type=__A , help=( 'The maximum total input sequence length after WordPiece tokenization. \n' 'Sequences longer than this will be truncated, sequences shorter padded.' ) , ) parser.add_argument('--batch_size' , default=1 , type=__A , help='Batch size.' ) parser.add_argument('--seed' , type=__A , default=42 ) parser.add_argument('--local_rank' , type=__A , default=-1 , help='local_rank for distributed training on gpus' ) parser.add_argument('--no_cuda' , action='store_true' , help='Whether not to use CUDA when available' ) parser.add_argument('--server_ip' , type=__A , default='' , help='Can be used for distant debugging.' ) parser.add_argument('--server_port' , type=__A , default='' , help='Can be used for distant debugging.' ) a_ : List[Any] = parser.parse_args() if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print('Waiting for debugger attach' ) ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=__A ) ptvsd.wait_for_attach() # Setup devices and distributed training if args.local_rank == -1 or args.no_cuda: a_ : str = torch.device('cuda' if torch.cuda.is_available() and not args.no_cuda else 'cpu' ) a_ : List[Any] = 0 if args.no_cuda else torch.cuda.device_count() else: torch.cuda.set_device(args.local_rank ) a_ : Any = torch.device('cuda' , args.local_rank ) a_ : Union[str, Any] = 1 torch.distributed.init_process_group(backend='nccl' ) # Initializes the distributed backend # Setup logging logging.basicConfig(level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN ) logger.info('device: {} n_gpu: {}, distributed: {}'.format(args.device , args.n_gpu , bool(args.local_rank != -1 ) ) ) a_ : Union[str, Any] = GPTaLMHeadModel.from_pretrained(args.model_name_or_path ) # Distributed and parallel training model.to(args.device ) if args.local_rank != -1: a_ : List[Any] = nn.parallel.DistributedDataParallel( __A , device_ids=[args.local_rank] , output_device=args.local_rank , find_unused_parameters=__A ) elif args.n_gpu > 1: a_ : Optional[int] = nn.DataParallel(__A ) # Print/save training arguments os.makedirs(args.output_dir , exist_ok=__A ) torch.save(__A , os.path.join(args.output_dir , 'run_args.bin' ) ) logger.info('Training/evaluation parameters %s' , __A ) # Prepare dataset a_ : Optional[Any] = np.concatenate( [ np.loadtxt(args.data_dir , dtype=np.intaa ), ] ) a_ : Tuple = (torch.from_numpy(__A ),) a_ : Optional[int] = TensorDataset(*__A ) a_ : Any = RandomSampler(__A ) a_ : str = DataLoader(__A , sampler=__A , batch_size=args.batch_size ) # Compute head entropy and importance score compute_heads_importance(__A , __A , __A ) # Try head masking (set heads to zero until the score goes under a threshole) # and head pruning (remove masked heads and see the effect on the network) if args.try_masking and args.masking_threshold > 0.0 and args.masking_threshold < 1.0: a_ : Optional[Any] = mask_heads(__A , __A , __A ) prune_heads(__A , __A , __A , __A ) if __name__ == "__main__": main()
120
0
import importlib import os import fsspec import pytest from fsspec import register_implementation from fsspec.registry import _registry as _fsspec_registry from datasets.filesystems import COMPRESSION_FILESYSTEMS, HfFileSystem, extract_path_from_uri, is_remote_filesystem from .utils import require_lza, require_zstandard def _UpperCAmelCase ( snake_case ): """simple docstring""" assert "mock" in _fsspec_registry assert "bz2" in _fsspec_registry def _UpperCAmelCase ( ): """simple docstring""" assert "mock" not in _fsspec_registry assert "bz2" in _fsspec_registry def _UpperCAmelCase ( ): """simple docstring""" _lowerCAmelCase = """mock-s3-bucket""" _lowerCAmelCase = F's3://{mock_bucket}' _lowerCAmelCase = extract_path_from_uri(snake_case ) assert dataset_path.startswith("""s3://""" ) is False _lowerCAmelCase = """./local/path""" _lowerCAmelCase = extract_path_from_uri(snake_case ) assert dataset_path == new_dataset_path def _UpperCAmelCase ( snake_case ): """simple docstring""" _lowerCAmelCase = is_remote_filesystem(snake_case ) assert is_remote is True _lowerCAmelCase = fsspec.filesystem("""file""" ) _lowerCAmelCase = is_remote_filesystem(snake_case ) assert is_remote is False @pytest.mark.parametrize("""compression_fs_class""" , snake_case ) def _UpperCAmelCase ( snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case ): """simple docstring""" _lowerCAmelCase = {"""gzip""": gz_file, """xz""": xz_file, """zstd""": zstd_file, """bz2""": bza_file, """lz4""": lza_file} _lowerCAmelCase = input_paths[compression_fs_class.protocol] if input_path is None: _lowerCAmelCase = F'for \'{compression_fs_class.protocol}\' compression protocol, ' if compression_fs_class.protocol == "lz4": reason += require_lza.kwargs["reason"] elif compression_fs_class.protocol == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(snake_case ) _lowerCAmelCase = fsspec.filesystem(compression_fs_class.protocol , fo=snake_case ) assert isinstance(snake_case , snake_case ) _lowerCAmelCase = os.path.basename(snake_case ) _lowerCAmelCase = expected_filename[: expected_filename.rindex(""".""" )] assert fs.glob("""*""" ) == [expected_filename] with fs.open(snake_case , """r""" , encoding="""utf-8""" ) as f, open(snake_case , encoding="""utf-8""" ) as expected_file: assert f.read() == expected_file.read() @pytest.mark.parametrize("""protocol""" , ["""zip""", """gzip"""] ) def _UpperCAmelCase ( snake_case , snake_case , snake_case ): """simple docstring""" _lowerCAmelCase = {"""zip""": zip_jsonl_path, """gzip""": jsonl_gz_path} _lowerCAmelCase = compressed_file_paths[protocol] _lowerCAmelCase = """dataset.jsonl""" _lowerCAmelCase = F'{protocol}://{member_file_path}::{compressed_file_path}' _lowerCAmelCase , *_lowerCAmelCase = fsspec.get_fs_token_paths(snake_case ) assert fs.isfile(snake_case ) assert not fs.isfile("""non_existing_""" + member_file_path ) @pytest.mark.integration def _UpperCAmelCase ( snake_case , snake_case , snake_case , snake_case ): """simple docstring""" _lowerCAmelCase = hf_api.dataset_info(snake_case , token=snake_case ) _lowerCAmelCase = HfFileSystem(repo_info=snake_case , token=snake_case ) assert sorted(hffs.glob("""*""" ) ) == [".gitattributes", "data"] assert hffs.isdir("""data""" ) assert hffs.isfile(""".gitattributes""" ) and hffs.isfile("""data/text_data.txt""" ) with open(snake_case ) as f: assert hffs.open("""data/text_data.txt""" , """r""" ).read() == f.read() def _UpperCAmelCase ( ): """simple docstring""" _lowerCAmelCase = """bz2""" # Import module import datasets.filesystems # Overwrite protocol and reload register_implementation(snake_case , snake_case , clobber=snake_case ) with pytest.warns(snake_case ) as warning_info: importlib.reload(datasets.filesystems ) assert len(snake_case ) == 1 assert ( str(warning_info[0].message ) == F'A filesystem protocol was already set for {protocol} and will be overwritten.' )
82
'''simple docstring''' from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import TensorType, is_torch_available, logging A =logging.get_logger(__name__) A ={ 'Helsinki-NLP/opus-mt-en-de': 'https://huggingface.co/Helsinki-NLP/opus-mt-en-de/resolve/main/config.json', # See all Marian models at https://huggingface.co/models?filter=marian } class _a ( __a ): __a : List[Any] = """marian""" __a : Union[str, Any] = ["""past_key_values"""] __a : List[str] = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self : List[Any] , lowercase : Union[str, Any]=58_101 , lowercase : Tuple=None , lowercase : str=1_024 , lowercase : Optional[int]=12 , lowercase : Optional[int]=4_096 , lowercase : int=16 , lowercase : List[Any]=12 , lowercase : int=4_096 , lowercase : Optional[int]=16 , lowercase : int=0.0 , lowercase : Tuple=0.0 , lowercase : Tuple=True , lowercase : Union[str, Any]=True , lowercase : List[Any]="gelu" , lowercase : Tuple=1_024 , lowercase : str=0.1 , lowercase : str=0.0 , lowercase : Optional[int]=0.0 , lowercase : Dict=0.02 , lowercase : Union[str, Any]=58_100 , lowercase : List[str]=False , lowercase : str=58_100 , lowercase : Any=0 , lowercase : Optional[Any]=0 , lowercase : Tuple=True , **lowercase : Optional[int] , ): '''simple docstring''' UpperCAmelCase = vocab_size UpperCAmelCase = decoder_vocab_size or vocab_size UpperCAmelCase = max_position_embeddings UpperCAmelCase = d_model UpperCAmelCase = encoder_ffn_dim UpperCAmelCase = encoder_layers UpperCAmelCase = encoder_attention_heads UpperCAmelCase = decoder_ffn_dim UpperCAmelCase = decoder_layers UpperCAmelCase = decoder_attention_heads UpperCAmelCase = dropout UpperCAmelCase = attention_dropout UpperCAmelCase = activation_dropout UpperCAmelCase = activation_function UpperCAmelCase = init_std UpperCAmelCase = encoder_layerdrop UpperCAmelCase = decoder_layerdrop UpperCAmelCase = use_cache UpperCAmelCase = encoder_layers UpperCAmelCase = scale_embedding # scale factor will be sqrt(d_model) if True UpperCAmelCase = share_encoder_decoder_embeddings super().__init__( pad_token_id=lowercase , eos_token_id=lowercase , is_encoder_decoder=lowercase , decoder_start_token_id=lowercase , forced_eos_token_id=lowercase , **lowercase , ) class _a ( __a ): @property # Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.inputs def A ( self : int ): '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: UpperCAmelCase = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ] ) if self.use_past: UpperCAmelCase = {0: '''batch'''} UpperCAmelCase = {0: '''batch''', 1: '''past_decoder_sequence + sequence'''} else: UpperCAmelCase = {0: '''batch''', 1: '''decoder_sequence'''} UpperCAmelCase = {0: '''batch''', 1: '''decoder_sequence'''} if self.use_past: self.fill_with_past_key_values_(lowercase , direction='''inputs''' ) elif self.task == "causal-lm": # TODO: figure this case out. UpperCAmelCase = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ] ) if self.use_past: UpperCAmelCase , UpperCAmelCase = self.num_layers for i in range(lowercase ): UpperCAmelCase = {0: '''batch''', 2: '''past_sequence + sequence'''} UpperCAmelCase = {0: '''batch''', 2: '''past_sequence + sequence'''} else: UpperCAmelCase = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''decoder_input_ids''', {0: '''batch''', 1: '''decoder_sequence'''}), ('''decoder_attention_mask''', {0: '''batch''', 1: '''decoder_sequence'''}), ] ) return common_inputs @property # Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.outputs def A ( self : Any ): '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: UpperCAmelCase = super().outputs else: UpperCAmelCase = super(lowercase , self ).outputs if self.use_past: UpperCAmelCase , UpperCAmelCase = self.num_layers for i in range(lowercase ): UpperCAmelCase = {0: '''batch''', 2: '''past_sequence + sequence'''} UpperCAmelCase = {0: '''batch''', 2: '''past_sequence + sequence'''} return common_outputs def A ( self : Dict , lowercase : PreTrainedTokenizer , lowercase : int = -1 , lowercase : int = -1 , lowercase : bool = False , lowercase : Optional[TensorType] = None , ): '''simple docstring''' UpperCAmelCase = self._generate_dummy_inputs_for_encoder_and_decoder( lowercase , lowercase , lowercase , lowercase , lowercase ) # Generate decoder inputs UpperCAmelCase = seq_length if not self.use_past else 1 UpperCAmelCase = self._generate_dummy_inputs_for_encoder_and_decoder( lowercase , lowercase , lowercase , lowercase , lowercase ) UpperCAmelCase = {f"decoder_{name}": tensor for name, tensor in decoder_inputs.items()} UpperCAmelCase = dict(**lowercase , **lowercase ) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch UpperCAmelCase , UpperCAmelCase = common_inputs['''input_ids'''].shape UpperCAmelCase = common_inputs['''decoder_input_ids'''].shape[1] UpperCAmelCase , UpperCAmelCase = self.num_attention_heads UpperCAmelCase = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) UpperCAmelCase = decoder_seq_length + 3 UpperCAmelCase = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) UpperCAmelCase = torch.cat( [common_inputs['''decoder_attention_mask'''], torch.ones(lowercase , lowercase )] , dim=1 ) UpperCAmelCase = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered UpperCAmelCase , UpperCAmelCase = self.num_layers UpperCAmelCase = min(lowercase , lowercase ) UpperCAmelCase = max(lowercase , lowercase ) - min_num_layers UpperCAmelCase = '''encoder''' if num_encoder_layers > num_decoder_layers else '''decoder''' for _ in range(lowercase ): common_inputs["past_key_values"].append( ( torch.zeros(lowercase ), torch.zeros(lowercase ), torch.zeros(lowercase ), torch.zeros(lowercase ), ) ) # TODO: test this. UpperCAmelCase = encoder_shape if remaining_side_name == '''encoder''' else decoder_shape for _ in range(lowercase , lowercase ): common_inputs["past_key_values"].append((torch.zeros(lowercase ), torch.zeros(lowercase )) ) return common_inputs def A ( self : int , lowercase : PreTrainedTokenizer , lowercase : int = -1 , lowercase : int = -1 , lowercase : bool = False , lowercase : Optional[TensorType] = None , ): '''simple docstring''' UpperCAmelCase = self._generate_dummy_inputs_for_encoder_and_decoder( lowercase , lowercase , lowercase , lowercase , lowercase ) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch UpperCAmelCase , UpperCAmelCase = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values UpperCAmelCase = seqlen + 2 UpperCAmelCase , UpperCAmelCase = self.num_layers UpperCAmelCase , UpperCAmelCase = self.num_attention_heads UpperCAmelCase = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) UpperCAmelCase = common_inputs['''attention_mask'''].dtype UpperCAmelCase = torch.cat( [common_inputs['''attention_mask'''], torch.ones(lowercase , lowercase , dtype=lowercase )] , dim=1 ) UpperCAmelCase = [ (torch.zeros(lowercase ), torch.zeros(lowercase )) for _ in range(lowercase ) ] return common_inputs def A ( self : str , lowercase : PreTrainedTokenizer , lowercase : int = -1 , lowercase : int = -1 , lowercase : bool = False , lowercase : Optional[TensorType] = None , ): '''simple docstring''' UpperCAmelCase = compute_effective_axis_dimension( lowercase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX UpperCAmelCase = tokenizer.num_special_tokens_to_add(lowercase ) UpperCAmelCase = compute_effective_axis_dimension( lowercase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=lowercase ) # Generate dummy inputs according to compute batch and sequence UpperCAmelCase = [''' '''.join([tokenizer.unk_token] ) * seq_length] * batch_size UpperCAmelCase = dict(tokenizer(lowercase , return_tensors=lowercase ) ) return common_inputs def A ( self : List[str] , lowercase : PreTrainedTokenizer , lowercase : int = -1 , lowercase : int = -1 , lowercase : bool = False , lowercase : Optional[TensorType] = None , ): '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: UpperCAmelCase = self._generate_dummy_inputs_for_default_and_seqaseq_lm( lowercase , batch_size=lowercase , seq_length=lowercase , is_pair=lowercase , framework=lowercase ) else: UpperCAmelCase = self._generate_dummy_inputs_for_causal_lm( lowercase , batch_size=lowercase , seq_length=lowercase , is_pair=lowercase , framework=lowercase ) return common_inputs def A ( self : List[Any] , lowercase : Any , lowercase : Tuple , lowercase : Any , lowercase : Any ): '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: UpperCAmelCase = super()._flatten_past_key_values_(lowercase , lowercase , lowercase , lowercase ) else: UpperCAmelCase = super(lowercase , self )._flatten_past_key_values_( lowercase , lowercase , lowercase , lowercase ) @property def A ( self : Any ): '''simple docstring''' return 1E-4
34
0
from __future__ import annotations from scipy.special import comb # type: ignore class _UpperCamelCase : '''simple docstring''' def __init__( self : Dict , snake_case_ : list[tuple[float, float]] ): UpperCamelCase_: List[str] = list_of_points # Degree determines the flexibility of the curve. # Degree = 1 will produce a straight line. UpperCamelCase_: Tuple = len(snake_case_ ) - 1 def lowerCAmelCase__ ( self : Any , snake_case_ : float ): assert 0 <= t <= 1, "Time t must be between 0 and 1." UpperCamelCase_: list[float] = [] for i in range(len(self.list_of_points ) ): # basis function for each i output_values.append( comb(self.degree , snake_case_ ) * ((1 - t) ** (self.degree - i)) * (t**i) ) # the basis must sum up to 1 for it to produce a valid Bezier curve. assert round(sum(snake_case_ ) , 5 ) == 1 return output_values def lowerCAmelCase__ ( self : List[str] , snake_case_ : float ): assert 0 <= t <= 1, "Time t must be between 0 and 1." UpperCamelCase_: int = self.basis_function(snake_case_ ) UpperCamelCase_: int = 0.0 UpperCamelCase_: List[Any] = 0.0 for i in range(len(self.list_of_points ) ): # For all points, sum up the product of i-th basis function and i-th point. x += basis_function[i] * self.list_of_points[i][0] y += basis_function[i] * self.list_of_points[i][1] return (x, y) def lowerCAmelCase__ ( self : str , snake_case_ : float = 0.01 ): from matplotlib import pyplot as plt # type: ignore UpperCamelCase_: list[float] = [] # x coordinates of points to plot UpperCamelCase_: list[float] = [] # y coordinates of points to plot UpperCamelCase_: Any = 0.0 while t <= 1: UpperCamelCase_: Any = self.bezier_curve_function(snake_case_ ) to_plot_x.append(value[0] ) to_plot_y.append(value[1] ) t += step_size UpperCamelCase_: List[Any] = [i[0] for i in self.list_of_points] UpperCamelCase_: Tuple = [i[1] for i in self.list_of_points] plt.plot( snake_case_ , snake_case_ , color="""blue""" , label="""Curve of Degree """ + str(self.degree ) , ) plt.scatter(snake_case_ , snake_case_ , color="""red""" , label="""Control Points""" ) plt.legend() plt.show() if __name__ == "__main__": import doctest doctest.testmod() BezierCurve([(1, 2), (3, 5)]).plot_curve() # degree 1 BezierCurve([(0, 0), (5, 5), (5, 0)]).plot_curve() # degree 2 BezierCurve([(0, 0), (5, 5), (5, 0), (2.5, -2.5)]).plot_curve() # degree 3
360
def A__ ( lowerCamelCase , lowerCamelCase ) -> list: UpperCamelCase_: Optional[int] = word.split() def justify(lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> str: UpperCamelCase_: Tuple = max_width - width UpperCamelCase_: Optional[Any] = len(lowerCamelCase ) if len(lowerCamelCase ) == 1: # if there is only word in line # just insert overall_spaces_count for the remainder of line return line[0] + " " * overall_spaces_count else: UpperCamelCase_: List[Any] = words_count - 1 # num_spaces_between_words_list[i] : tells you to insert # num_spaces_between_words_list[i] spaces # after word on line[i] UpperCamelCase_: Optional[Any] = spaces_to_insert_between_words * [ overall_spaces_count // spaces_to_insert_between_words ] UpperCamelCase_: List[str] = ( overall_spaces_count % spaces_to_insert_between_words ) # distribute spaces via round robin to the left words for i in range(lowerCamelCase ): num_spaces_between_words_list[i] += 1 UpperCamelCase_: Dict = [] for i in range(lowerCamelCase ): # add the word aligned_words_list.append(line[i] ) # add the spaces to insert aligned_words_list.append(num_spaces_between_words_list[i] * """ """ ) # just add the last word to the sentence aligned_words_list.append(line[-1] ) # join the aligned words list to form a justified line return "".join(lowerCamelCase ) UpperCamelCase_: Optional[int] = [] UpperCamelCase_: list[str] = [] UpperCamelCase_: List[str] = 0 for word in words: if width + len(lowerCamelCase ) + len(lowerCamelCase ) <= max_width: # keep adding words until we can fill out max_width # width = sum of length of all words (without overall_spaces_count) # len(word) = length of current word # len(line) = number of overall_spaces_count to insert between words line.append(lowerCamelCase ) width += len(lowerCamelCase ) else: # justify the line and add it to result answer.append(justify(lowerCamelCase , lowerCamelCase , lowerCamelCase ) ) # reset new line and new width UpperCamelCase_, UpperCamelCase_: List[str] = [word], len(lowerCamelCase ) UpperCamelCase_: List[str] = max_width - width - len(lowerCamelCase ) answer.append(""" """.join(lowerCamelCase ) + (remaining_spaces + 1) * """ """ ) return answer if __name__ == "__main__": from doctest import testmod testmod()
223
0
from __future__ import annotations import math def UpperCAmelCase__ ( _A : int ): '''simple docstring''' if num <= 0: a__ =F"""{num}: Invalid input, please enter a positive integer.""" raise ValueError(_A ) a__ =[True] * (num + 1) a__ =[] a__ =2 a__ =int(math.sqrt(_A ) ) while start <= end: # If start is a prime if sieve[start] is True: prime.append(_A ) # Set multiples of start be False for i in range(start * start , num + 1 , _A ): if sieve[i] is True: a__ =False start += 1 for j in range(end + 1 , num + 1 ): if sieve[j] is True: prime.append(_A ) return prime if __name__ == "__main__": print(prime_sieve(int(input('''Enter a positive integer: ''').strip())))
188
import unittest from parameterized import parameterized from transformers import OpenLlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import OpenLlamaForCausalLM, OpenLlamaForSequenceClassification, OpenLlamaModel class __magic_name__ : '''simple docstring''' def __init__( self, lowercase_, lowercase_=13, lowercase_=7, lowercase_=True, lowercase_=True, lowercase_=False, lowercase_=True, lowercase_=99, lowercase_=32, lowercase_=5, lowercase_=4, lowercase_=37, lowercase_="gelu", lowercase_=0.1, lowercase_=0.1, lowercase_=512, lowercase_=16, lowercase_=2, lowercase_=0.02, lowercase_=3, lowercase_=4, lowercase_=None, ) -> List[Any]: """simple docstring""" a__ =parent a__ =batch_size a__ =seq_length a__ =is_training a__ =use_input_mask a__ =use_token_type_ids a__ =use_labels a__ =vocab_size a__ =hidden_size a__ =num_hidden_layers a__ =num_attention_heads a__ =intermediate_size a__ =hidden_act a__ =hidden_dropout_prob a__ =attention_probs_dropout_prob a__ =max_position_embeddings a__ =type_vocab_size a__ =type_sequence_label_size a__ =initializer_range a__ =num_labels a__ =num_choices a__ =scope def _UpperCAmelCase ( self ) -> Optional[Any]: """simple docstring""" a__ =ids_tensor([self.batch_size, self.seq_length], self.vocab_size ) a__ =None if self.use_input_mask: a__ =random_attention_mask([self.batch_size, self.seq_length] ) a__ =None if self.use_token_type_ids: a__ =ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size ) a__ =None a__ =None a__ =None if self.use_labels: a__ =ids_tensor([self.batch_size], self.type_sequence_label_size ) a__ =ids_tensor([self.batch_size, self.seq_length], self.num_labels ) a__ =ids_tensor([self.batch_size], self.num_choices ) a__ =self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _UpperCAmelCase ( self ) -> List[str]: """simple docstring""" return OpenLlamaConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, is_decoder=lowercase_, initializer_range=self.initializer_range, use_stable_embedding=lowercase_, ) def _UpperCAmelCase ( self, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_ ) -> List[str]: """simple docstring""" a__ =OpenLlamaModel(config=lowercase_ ) model.to(lowercase_ ) model.eval() a__ =model(lowercase_, attention_mask=lowercase_ ) a__ =model(lowercase_ ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def _UpperCAmelCase ( self, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, ) -> Any: """simple docstring""" a__ =True a__ =OpenLlamaModel(lowercase_ ) model.to(lowercase_ ) model.eval() a__ =model( lowercase_, attention_mask=lowercase_, encoder_hidden_states=lowercase_, encoder_attention_mask=lowercase_, ) a__ =model( lowercase_, attention_mask=lowercase_, encoder_hidden_states=lowercase_, ) a__ =model(lowercase_, attention_mask=lowercase_ ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def _UpperCAmelCase ( self, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, ) -> List[str]: """simple docstring""" a__ =OpenLlamaForCausalLM(config=lowercase_ ) model.to(lowercase_ ) model.eval() a__ =model(lowercase_, attention_mask=lowercase_, labels=lowercase_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size) ) def _UpperCAmelCase ( self, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, ) -> List[Any]: """simple docstring""" a__ =True a__ =True a__ =OpenLlamaForCausalLM(config=lowercase_ ) model.to(lowercase_ ) model.eval() # first forward pass a__ =model( lowercase_, attention_mask=lowercase_, encoder_hidden_states=lowercase_, encoder_attention_mask=lowercase_, use_cache=lowercase_, ) a__ =outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids a__ =ids_tensor((self.batch_size, 3), config.vocab_size ) a__ =ids_tensor((self.batch_size, 3), vocab_size=2 ) # append to next input_ids and a__ =torch.cat([input_ids, next_tokens], dim=-1 ) a__ =torch.cat([input_mask, next_mask], dim=-1 ) a__ =model( lowercase_, attention_mask=lowercase_, encoder_hidden_states=lowercase_, encoder_attention_mask=lowercase_, output_hidden_states=lowercase_, )['''hidden_states'''][0] a__ =model( lowercase_, attention_mask=lowercase_, encoder_hidden_states=lowercase_, encoder_attention_mask=lowercase_, past_key_values=lowercase_, output_hidden_states=lowercase_, )['''hidden_states'''][0] # select random slice a__ =ids_tensor((1,), output_from_past.shape[-1] ).item() a__ =output_from_no_past[:, -3:, random_slice_idx].detach() a__ =output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowercase_, lowercase_, atol=1E-3 ) ) def _UpperCAmelCase ( self ) -> Optional[int]: """simple docstring""" a__ =self.prepare_config_and_inputs() ( ( a__ ), ( a__ ), ( a__ ), ( a__ ), ( a__ ), ( a__ ), ( a__ ), ) =config_and_inputs a__ ={'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class __magic_name__ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = ( (OpenLlamaModel, OpenLlamaForCausalLM, OpenLlamaForSequenceClassification) if is_torch_available() else () ) lowerCamelCase__ : Optional[Any] = (OpenLlamaForCausalLM,) if is_torch_available() else () lowerCamelCase__ : List[str] = ( { 'feature-extraction': OpenLlamaModel, 'text-classification': OpenLlamaForSequenceClassification, 'text-generation': OpenLlamaForCausalLM, 'zero-shot': OpenLlamaForSequenceClassification, } if is_torch_available() else {} ) lowerCamelCase__ : int = False lowerCamelCase__ : Any = False def _UpperCAmelCase ( self ) -> List[str]: """simple docstring""" a__ =OpenLlamaModelTester(self ) a__ =ConfigTester(self, config_class=lowercase_, hidden_size=37 ) def _UpperCAmelCase ( self ) -> str: """simple docstring""" self.config_tester.run_common_tests() def _UpperCAmelCase ( self ) -> Optional[Any]: """simple docstring""" a__ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase_ ) def _UpperCAmelCase ( self ) -> str: """simple docstring""" a__ =self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: a__ =type self.model_tester.create_and_check_model(*lowercase_ ) def _UpperCAmelCase ( self ) -> int: """simple docstring""" a__, a__ =self.model_tester.prepare_config_and_inputs_for_common() a__ =3 a__ =input_dict['''input_ids'''] a__ =input_ids.ne(1 ).to(lowercase_ ) a__ =ids_tensor([self.model_tester.batch_size], self.model_tester.type_sequence_label_size ) a__ =OpenLlamaForSequenceClassification(lowercase_ ) model.to(lowercase_ ) model.eval() a__ =model(lowercase_, attention_mask=lowercase_, labels=lowercase_ ) self.assertEqual(result.logits.shape, (self.model_tester.batch_size, self.model_tester.num_labels) ) def _UpperCAmelCase ( self ) -> Any: """simple docstring""" a__, a__ =self.model_tester.prepare_config_and_inputs_for_common() a__ =3 a__ ='''single_label_classification''' a__ =input_dict['''input_ids'''] a__ =input_ids.ne(1 ).to(lowercase_ ) a__ =ids_tensor([self.model_tester.batch_size], self.model_tester.type_sequence_label_size ) a__ =OpenLlamaForSequenceClassification(lowercase_ ) model.to(lowercase_ ) model.eval() a__ =model(lowercase_, attention_mask=lowercase_, labels=lowercase_ ) self.assertEqual(result.logits.shape, (self.model_tester.batch_size, self.model_tester.num_labels) ) def _UpperCAmelCase ( self ) -> Optional[int]: """simple docstring""" a__, a__ =self.model_tester.prepare_config_and_inputs_for_common() a__ =3 a__ ='''multi_label_classification''' a__ =input_dict['''input_ids'''] a__ =input_ids.ne(1 ).to(lowercase_ ) a__ =ids_tensor( [self.model_tester.batch_size, config.num_labels], self.model_tester.type_sequence_label_size ).to(torch.float ) a__ =OpenLlamaForSequenceClassification(lowercase_ ) model.to(lowercase_ ) model.eval() a__ =model(lowercase_, attention_mask=lowercase_, labels=lowercase_ ) self.assertEqual(result.logits.shape, (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip('''Open-Llama buffers include complex numbers, which breaks this test''' ) def _UpperCAmelCase ( self ) -> List[str]: """simple docstring""" pass @parameterized.expand([('''linear''',), ('''dynamic''',)] ) def _UpperCAmelCase ( self, lowercase_ ) -> Optional[Any]: """simple docstring""" a__, a__ =self.model_tester.prepare_config_and_inputs_for_common() a__ =ids_tensor([1, 10], config.vocab_size ) a__ =ids_tensor([1, int(config.max_position_embeddings * 1.5 )], config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights a__ =OpenLlamaModel(lowercase_ ) original_model.to(lowercase_ ) original_model.eval() a__ =original_model(lowercase_ ).last_hidden_state a__ =original_model(lowercase_ ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights a__ ={'''type''': scaling_type, '''factor''': 10.0} a__ =OpenLlamaModel(lowercase_ ) scaled_model.to(lowercase_ ) scaled_model.eval() a__ =scaled_model(lowercase_ ).last_hidden_state a__ =scaled_model(lowercase_ ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(lowercase_, lowercase_, atol=1E-5 ) ) else: self.assertFalse(torch.allclose(lowercase_, lowercase_, atol=1E-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(lowercase_, lowercase_, atol=1E-5 ) )
188
1
'''simple docstring''' from ..utils import ( OptionalDependencyNotAvailable, is_flax_available, is_scipy_available, is_torch_available, is_torchsde_available, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_pt_objects import * # noqa F403 else: from .scheduling_consistency_models import CMStochasticIterativeScheduler from .scheduling_ddim import DDIMScheduler from .scheduling_ddim_inverse import DDIMInverseScheduler from .scheduling_ddim_parallel import DDIMParallelScheduler from .scheduling_ddpm import DDPMScheduler from .scheduling_ddpm_parallel import DDPMParallelScheduler from .scheduling_deis_multistep import DEISMultistepScheduler from .scheduling_dpmsolver_multistep import DPMSolverMultistepScheduler from .scheduling_dpmsolver_multistep_inverse import DPMSolverMultistepInverseScheduler from .scheduling_dpmsolver_singlestep import DPMSolverSinglestepScheduler from .scheduling_euler_ancestral_discrete import EulerAncestralDiscreteScheduler from .scheduling_euler_discrete import EulerDiscreteScheduler from .scheduling_heun_discrete import HeunDiscreteScheduler from .scheduling_ipndm import IPNDMScheduler from .scheduling_k_dpm_2_ancestral_discrete import KDPMaAncestralDiscreteScheduler from .scheduling_k_dpm_2_discrete import KDPMaDiscreteScheduler from .scheduling_karras_ve import KarrasVeScheduler from .scheduling_pndm import PNDMScheduler from .scheduling_repaint import RePaintScheduler from .scheduling_sde_ve import ScoreSdeVeScheduler from .scheduling_sde_vp import ScoreSdeVpScheduler from .scheduling_unclip import UnCLIPScheduler from .scheduling_unipc_multistep import UniPCMultistepScheduler from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin from .scheduling_vq_diffusion import VQDiffusionScheduler try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_flax_objects import * # noqa F403 else: from .scheduling_ddim_flax import FlaxDDIMScheduler from .scheduling_ddpm_flax import FlaxDDPMScheduler from .scheduling_dpmsolver_multistep_flax import FlaxDPMSolverMultistepScheduler from .scheduling_karras_ve_flax import FlaxKarrasVeScheduler from .scheduling_lms_discrete_flax import FlaxLMSDiscreteScheduler from .scheduling_pndm_flax import FlaxPNDMScheduler from .scheduling_sde_ve_flax import FlaxScoreSdeVeScheduler from .scheduling_utils_flax import ( FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, broadcast_to_shape_from_left, ) try: if not (is_torch_available() and is_scipy_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_torch_and_scipy_objects import * # noqa F403 else: from .scheduling_lms_discrete import LMSDiscreteScheduler try: if not (is_torch_available() and is_torchsde_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_torch_and_torchsde_objects import * # noqa F403 else: from .scheduling_dpmsolver_sde import DPMSolverSDEScheduler
114
'''simple docstring''' def _lowerCAmelCase ( _UpperCamelCase : float , _UpperCamelCase : float ) -> float: """simple docstring""" if mass < 0: raise ValueError('The mass of a body cannot be negative' ) return 0.5 * mass * abs(_UpperCamelCase ) * abs(_UpperCamelCase ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
114
1
"""simple docstring""" import inspect import os import torch from transformers import AutoModel from transformers.testing_utils import mockenv_context from transformers.trainer_utils import set_seed import accelerate from accelerate.accelerator import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils.testing import ( AccelerateTestCase, TempDirTestCase, execute_subprocess_async, require_cuda, require_fsdp, require_multi_gpu, slow, ) from accelerate.utils.constants import ( FSDP_AUTO_WRAP_POLICY, FSDP_BACKWARD_PREFETCH, FSDP_SHARDING_STRATEGY, FSDP_STATE_DICT_TYPE, ) from accelerate.utils.dataclasses import FullyShardedDataParallelPlugin from accelerate.utils.other import patch_environment set_seed(4_2) A : int = "bert-base-cased" A : str = "fp16" A : List[Any] = "bf16" A : str = [FPaa, BFaa] @require_fsdp @require_cuda class _UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' def snake_case ( self ): super().setUp() __lowerCAmelCase = dict( ACCELERATE_USE_FSDP="true" , MASTER_ADDR="localhost" , MASTER_PORT="10999" , RANK="0" , LOCAL_RANK="0" , WORLD_SIZE="1" , ) def snake_case ( self ): from torch.distributed.fsdp.fully_sharded_data_parallel import ShardingStrategy for i, strategy in enumerate(__a ): __lowerCAmelCase = self.dist_env.copy() __lowerCAmelCase = f"{i + 1}" __lowerCAmelCase = strategy with mockenv_context(**__a ): __lowerCAmelCase = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.sharding_strategy , ShardingStrategy(i + 1 ) ) def snake_case ( self ): from torch.distributed.fsdp.fully_sharded_data_parallel import BackwardPrefetch for i, prefetch_policy in enumerate(__a ): __lowerCAmelCase = self.dist_env.copy() __lowerCAmelCase = prefetch_policy with mockenv_context(**__a ): __lowerCAmelCase = FullyShardedDataParallelPlugin() if prefetch_policy == "NO_PREFETCH": self.assertIsNone(fsdp_plugin.backward_prefetch ) else: self.assertEqual(fsdp_plugin.backward_prefetch , BackwardPrefetch(i + 1 ) ) def snake_case ( self ): from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType for i, state_dict_type in enumerate(__a ): __lowerCAmelCase = self.dist_env.copy() __lowerCAmelCase = state_dict_type with mockenv_context(**__a ): __lowerCAmelCase = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.state_dict_type , StateDictType(i + 1 ) ) if state_dict_type == "FULL_STATE_DICT": self.assertTrue(fsdp_plugin.state_dict_config.offload_to_cpu ) self.assertTrue(fsdp_plugin.state_dict_config.ranka_only ) def snake_case ( self ): __lowerCAmelCase = AutoModel.from_pretrained(__a ) for policy in FSDP_AUTO_WRAP_POLICY: __lowerCAmelCase = self.dist_env.copy() __lowerCAmelCase = policy if policy == "TRANSFORMER_BASED_WRAP": __lowerCAmelCase = "BertLayer" elif policy == "SIZE_BASED_WRAP": __lowerCAmelCase = "2000" with mockenv_context(**__a ): __lowerCAmelCase = FullyShardedDataParallelPlugin() fsdp_plugin.set_auto_wrap_policy(__a ) if policy == "NO_WRAP": self.assertIsNone(fsdp_plugin.auto_wrap_policy ) else: self.assertIsNotNone(fsdp_plugin.auto_wrap_policy ) __lowerCAmelCase = self.dist_env.copy() __lowerCAmelCase = "TRANSFORMER_BASED_WRAP" __lowerCAmelCase = "T5Layer" with mockenv_context(**__a ): __lowerCAmelCase = FullyShardedDataParallelPlugin() with self.assertRaises(__a ) as cm: fsdp_plugin.set_auto_wrap_policy(__a ) self.assertTrue("Could not find the transformer layer class to wrap in the model." in str(cm.exception ) ) __lowerCAmelCase = self.dist_env.copy() __lowerCAmelCase = "SIZE_BASED_WRAP" __lowerCAmelCase = "0" with mockenv_context(**__a ): __lowerCAmelCase = FullyShardedDataParallelPlugin() fsdp_plugin.set_auto_wrap_policy(__a ) self.assertIsNone(fsdp_plugin.auto_wrap_policy ) def snake_case ( self ): from torch.distributed.fsdp.fully_sharded_data_parallel import MixedPrecision from torch.distributed.fsdp.sharded_grad_scaler import ShardedGradScaler for mp_dtype in dtypes: __lowerCAmelCase = self.dist_env.copy() __lowerCAmelCase = mp_dtype with mockenv_context(**__a ): __lowerCAmelCase = Accelerator() if mp_dtype == "fp16": __lowerCAmelCase = torch.floataa elif mp_dtype == "bf16": __lowerCAmelCase = torch.bfloataa __lowerCAmelCase = MixedPrecision(param_dtype=__a , reduce_dtype=__a , buffer_dtype=__a ) self.assertEqual(accelerator.state.fsdp_plugin.mixed_precision_policy , __a ) if mp_dtype == FPaa: self.assertTrue(isinstance(accelerator.scaler , __a ) ) elif mp_dtype == BFaa: self.assertIsNone(accelerator.scaler ) AcceleratorState._reset_state(__a ) def snake_case ( self ): from torch.distributed.fsdp.fully_sharded_data_parallel import CPUOffload for flag in [True, False]: __lowerCAmelCase = self.dist_env.copy() __lowerCAmelCase = str(__a ).lower() with mockenv_context(**__a ): __lowerCAmelCase = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.cpu_offload , CPUOffload(offload_params=__a ) ) @require_fsdp @require_multi_gpu @slow class _UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' def snake_case ( self ): super().setUp() __lowerCAmelCase = 0.8_2 __lowerCAmelCase = [ "fsdp_shard_grad_op_transformer_based_wrap", "fsdp_full_shard_transformer_based_wrap", ] __lowerCAmelCase = { "multi_gpu_fp16": 32_00, "fsdp_shard_grad_op_transformer_based_wrap_fp16": 20_00, "fsdp_full_shard_transformer_based_wrap_fp16": 19_00, # Disabling below test as it overwhelms the RAM memory usage # on CI self-hosted runner leading to tests getting killed. # "fsdp_full_shard_cpu_offload_transformer_based_wrap_fp32": 1500, # fp16 was leading to indefinite hang } __lowerCAmelCase = 1_60 __lowerCAmelCase = 1_60 __lowerCAmelCase = inspect.getfile(accelerate.test_utils ) __lowerCAmelCase = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["scripts", "external_deps"] ) def snake_case ( self ): __lowerCAmelCase = os.path.join(self.test_scripts_folder , "test_performance.py" ) __lowerCAmelCase = ["accelerate", "launch", "--num_processes=2", "--num_machines=1", "--machine_rank=0", "--use_fsdp"] for config in self.performance_configs: __lowerCAmelCase = cmd.copy() for i, strategy in enumerate(__a ): if strategy.lower() in config: cmd_config.append(f"--fsdp_sharding_strategy={i+1}" ) break if "fp32" in config: cmd_config.append("--mixed_precision=no" ) else: cmd_config.append("--mixed_precision=fp16" ) if "cpu_offload" in config: cmd_config.append("--fsdp_offload_params=True" ) for policy in FSDP_AUTO_WRAP_POLICY: if policy.lower() in config: cmd_config.append(f"--fsdp_auto_wrap_policy={policy}" ) break if policy == "TRANSFORMER_BASED_WRAP": cmd_config.append("--fsdp_transformer_layer_cls_to_wrap=BertLayer" ) elif policy == "SIZE_BASED_WRAP": cmd_config.append("--fsdp_min_num_params=2000" ) cmd_config.extend( [ self.test_file_path, f"--output_dir={self.tmpdir}", f"--performance_lower_bound={self.performance_lower_bound}", ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__a , env=os.environ.copy() ) def snake_case ( self ): __lowerCAmelCase = os.path.join(self.test_scripts_folder , "test_checkpointing.py" ) __lowerCAmelCase = [ "accelerate", "launch", "--num_processes=2", "--num_machines=1", "--machine_rank=0", "--use_fsdp", "--mixed_precision=fp16", "--fsdp_transformer_layer_cls_to_wrap=BertLayer", ] for i, strategy in enumerate(__a ): __lowerCAmelCase = cmd.copy() cmd_config.append(f"--fsdp_sharding_strategy={i+1}" ) if strategy != "FULL_SHARD": continue __lowerCAmelCase = len(__a ) for state_dict_type in FSDP_STATE_DICT_TYPE: __lowerCAmelCase = cmd_config[:state_dict_config_index] cmd_config.append(f"--fsdp_state_dict_type={state_dict_type}" ) cmd_config.extend( [ self.test_file_path, f"--output_dir={self.tmpdir}", "--partial_train_epoch=1", ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__a , env=os.environ.copy() ) __lowerCAmelCase = cmd_config[:-1] __lowerCAmelCase = os.path.join(self.tmpdir , "epoch_0" ) cmd_config.extend( [ f"--resume_from_checkpoint={resume_from_checkpoint}", ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__a , env=os.environ.copy() ) def snake_case ( self ): __lowerCAmelCase = os.path.join(self.test_scripts_folder , "test_peak_memory_usage.py" ) __lowerCAmelCase = [ "accelerate", "launch", "--num_processes=2", "--num_machines=1", "--machine_rank=0", ] for spec, peak_mem_upper_bound in self.peak_memory_usage_upper_bound.items(): __lowerCAmelCase = cmd.copy() if "fp16" in spec: cmd_config.extend(["--mixed_precision=fp16"] ) else: cmd_config.extend(["--mixed_precision=no"] ) if "multi_gpu" in spec: continue else: cmd_config.extend(["--use_fsdp"] ) for i, strategy in enumerate(__a ): if strategy.lower() in spec: cmd_config.append(f"--fsdp_sharding_strategy={i+1}" ) break if "cpu_offload" in spec: cmd_config.append("--fsdp_offload_params=True" ) for policy in FSDP_AUTO_WRAP_POLICY: if policy.lower() in spec: cmd_config.append(f"--fsdp_auto_wrap_policy={policy}" ) break if policy == "TRANSFORMER_BASED_WRAP": cmd_config.append("--fsdp_transformer_layer_cls_to_wrap=BertLayer" ) elif policy == "SIZE_BASED_WRAP": cmd_config.append("--fsdp_min_num_params=2000" ) cmd_config.extend( [ self.test_file_path, f"--output_dir={self.tmpdir}", f"--peak_memory_upper_bound={peak_mem_upper_bound}", f"--n_train={self.n_train}", f"--n_val={self.n_val}", ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__a , env=os.environ.copy() )
57
"""simple docstring""" def _lowerCamelCase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = False while is_sorted is False: # Until all the indices are traversed keep looping __lowerCAmelCase = True for i in range(0 , len(_UpperCamelCase ) - 1 , 2 ): # iterating over all even indices if input_list[i] > input_list[i + 1]: __lowerCAmelCase , __lowerCAmelCase = input_list[i + 1], input_list[i] # swapping if elements not in order __lowerCAmelCase = False for i in range(1 , len(_UpperCamelCase ) - 1 , 2 ): # iterating over all odd indices if input_list[i] > input_list[i + 1]: __lowerCAmelCase , __lowerCAmelCase = input_list[i + 1], input_list[i] # swapping if elements not in order __lowerCAmelCase = False return input_list if __name__ == "__main__": print("Enter list to be sorted") A : Union[str, Any] = [int(x) for x in input().split()] # inputing elements of the list in one line A : str = odd_even_sort(input_list) print("The sorted list is") print(sorted_list)
57
1
"""simple docstring""" from __future__ import annotations from bisect import bisect_left from functools import total_ordering from heapq import merge @total_ordering class UpperCAmelCase_ ( _UpperCamelCase ): def __lt__( self : Dict , A : Tuple ): return self[-1] < other[-1] def __eq__( self : str , A : Dict ): return self[-1] == other[-1] def __snake_case ( SCREAMING_SNAKE_CASE__ : list ) -> list: '''simple docstring''' _UpperCAmelCase : list[Stack] = [] # sort into stacks for element in collection: _UpperCAmelCase : str = Stack([element] ) _UpperCAmelCase : List[Any] = bisect_left(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if i != len(SCREAMING_SNAKE_CASE__ ): stacks[i].append(SCREAMING_SNAKE_CASE__ ) else: stacks.append(SCREAMING_SNAKE_CASE__ ) # use a heap-based merge to merge stack efficiently _UpperCAmelCase : int = merge(*(reversed(SCREAMING_SNAKE_CASE__ ) for stack in stacks) ) return collection if __name__ == "__main__": _lowerCAmelCase : str = input("Enter numbers separated by a comma:\n").strip() _lowerCAmelCase : Any = [int(item) for item in user_input.split(",")] print(patience_sort(unsorted))
370
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available _lowerCAmelCase : Union[str, Any] = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Optional[Any] = ["GPTSw3Tokenizer"] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_gpt_swa import GPTSwaTokenizer else: import sys _lowerCAmelCase : List[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
202
0
import uuid from typing import Any, Dict, List, Optional, Union from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch __a :List[Any] = logging.get_logger(__name__) class _a : """simple docstring""" def __init__( self : int , UpperCAmelCase : str = None , UpperCAmelCase : uuid.UUID = None , UpperCAmelCase : Union[str, Any]=None , UpperCAmelCase : Optional[int]=None ): if not conversation_id: A_ = uuid.uuida() if past_user_inputs is None: A_ = [] if generated_responses is None: A_ = [] A_ = conversation_id A_ = past_user_inputs A_ = generated_responses A_ = text def __eq__( self : List[Any] , UpperCAmelCase : Tuple ): if not isinstance(UpperCAmelCase , UpperCAmelCase ): return False if self.uuid == other.uuid: return True return ( self.new_user_input == other.new_user_input and self.past_user_inputs == other.past_user_inputs and self.generated_responses == other.generated_responses ) def __A ( self : Union[str, Any] , UpperCAmelCase : str , UpperCAmelCase : bool = False ): if self.new_user_input: if overwrite: logger.warning( f'''User input added while unprocessed input was existing: "{self.new_user_input}" was overwritten ''' f'''with: "{text}".''' ) A_ = text else: logger.warning( f'''User input added while unprocessed input was existing: "{self.new_user_input}" new input ''' f'''ignored: "{text}". Set `overwrite` to True to overwrite unprocessed user input''' ) else: A_ = text def __A ( self : Dict ): if self.new_user_input: self.past_user_inputs.append(self.new_user_input ) A_ = None def __A ( self : Any , UpperCAmelCase : str ): self.generated_responses.append(UpperCAmelCase ) def __A ( self : List[Any] ): for user_input, generated_response in zip(self.past_user_inputs , self.generated_responses ): yield True, user_input yield False, generated_response if self.new_user_input: yield True, self.new_user_input def __repr__( self : int ): A_ = f'''Conversation id: {self.uuid} \n''' for is_user, text in self.iter_texts(): A_ = "user" if is_user else "bot" output += f'''{name} >> {text} \n''' return output @add_end_docstrings( snake_case_ , R'\n min_length_for_response (`int`, *optional*, defaults to 32):\n The minimum length (in number of tokens) for a response.\n minimum_tokens (`int`, *optional*, defaults to 10):\n The minimum length of tokens to leave for a response.\n ' , ) class _a ( snake_case_ ): """simple docstring""" def __init__( self : Dict , *UpperCAmelCase : Optional[int] , **UpperCAmelCase : Tuple ): super().__init__(*UpperCAmelCase , **UpperCAmelCase ) if self.tokenizer.pad_token_id is None: A_ = self.tokenizer.eos_token def __A ( self : Tuple , UpperCAmelCase : Union[str, Any]=None , UpperCAmelCase : Optional[int]=None , UpperCAmelCase : List[str]=None , **UpperCAmelCase : Dict ): A_ = {} A_ = {} A_ = {} if min_length_for_response is not None: A_ = min_length_for_response if minimum_tokens is not None: A_ = minimum_tokens if "max_length" in generate_kwargs: A_ = generate_kwargs["max_length"] # self.max_length = generate_kwargs.get("max_length", self.model.config.max_length) if clean_up_tokenization_spaces is not None: A_ = clean_up_tokenization_spaces if generate_kwargs: forward_params.update(UpperCAmelCase ) return preprocess_params, forward_params, postprocess_params def __call__( self : Optional[int] , UpperCAmelCase : Union[Conversation, List[Conversation]] , UpperCAmelCase : Any=0 , **UpperCAmelCase : int ): A_ = super().__call__(UpperCAmelCase , num_workers=UpperCAmelCase , **UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) and len(UpperCAmelCase ) == 1: return outputs[0] return outputs def __A ( self : Dict , UpperCAmelCase : Conversation , UpperCAmelCase : Dict=32 ): if not isinstance(UpperCAmelCase , UpperCAmelCase ): raise ValueError("ConversationalPipeline, expects Conversation as inputs" ) if conversation.new_user_input is None: raise ValueError( f'''Conversation with UUID {type(conversation.uuid )} does not contain new user input to process. ''' "Add user inputs with the conversation's `add_user_input` method" ) if hasattr(self.tokenizer , "_build_conversation_input_ids" ): A_ = self.tokenizer._build_conversation_input_ids(UpperCAmelCase ) else: # If the tokenizer cannot handle conversations, we default to only the old version A_ = self._legacy_parse_and_tokenize(UpperCAmelCase ) if self.framework == "pt": A_ = torch.LongTensor([input_ids] ) elif self.framework == "tf": A_ = tf.constant([input_ids] ) return {"input_ids": input_ids, "conversation": conversation} def __A ( self : Any , UpperCAmelCase : int , UpperCAmelCase : Tuple=10 , **UpperCAmelCase : str ): A_ = generate_kwargs.get("max_length" , self.model.config.max_length ) A_ = model_inputs["input_ids"].shape[1] if max_length - minimum_tokens < n: logger.warning(f'''Conversation input is to long ({n}), trimming it to ({max_length} - {minimum_tokens})''' ) A_ = max_length - minimum_tokens A_ = model_inputs["input_ids"][:, -trim:] if "attention_mask" in model_inputs: A_ = model_inputs["attention_mask"][:, -trim:] A_ = model_inputs.pop("conversation" ) A_ = max_length A_ = self.model.generate(**UpperCAmelCase , **UpperCAmelCase ) if self.model.config.is_encoder_decoder: A_ = 1 else: A_ = n return {"output_ids": output_ids[:, start_position:], "conversation": conversation} def __A ( self : Tuple , UpperCAmelCase : List[str] , UpperCAmelCase : Optional[int]=True ): A_ = model_outputs["output_ids"] A_ = self.tokenizer.decode( output_ids[0] , skip_special_tokens=UpperCAmelCase , clean_up_tokenization_spaces=UpperCAmelCase , ) A_ = model_outputs["conversation"] conversation.mark_processed() conversation.append_response(UpperCAmelCase ) return conversation def __A ( self : str , UpperCAmelCase : Conversation ): A_ = self.tokenizer.eos_token_id A_ = [] for is_user, text in conversation.iter_texts(): if eos_token_id is not None: input_ids.extend(self.tokenizer.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) + [eos_token_id] ) else: input_ids.extend(self.tokenizer.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) ) if len(UpperCAmelCase ) > self.tokenizer.model_max_length: A_ = input_ids[-self.tokenizer.model_max_length :] return input_ids
312
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, ClassLabel, Features from .base import TaskTemplate @dataclass(frozen=snake_case_ ) class _a ( snake_case_ ): """simple docstring""" _lowerCamelCase : str = field(default='audio-classification' , metadata={'include_in_asdict_even_if_is_default': True} ) _lowerCamelCase : ClassVar[Features] = Features({'audio': Audio()} ) _lowerCamelCase : ClassVar[Features] = Features({'labels': ClassLabel} ) _lowerCamelCase : str = "audio" _lowerCamelCase : str = "labels" def __A ( self : str , UpperCAmelCase : List[Any] ): if self.label_column not in features: raise ValueError(f'''Column {self.label_column} is not present in features.''' ) if not isinstance(features[self.label_column] , UpperCAmelCase ): raise ValueError(f'''Column {self.label_column} is not a ClassLabel.''' ) A_ = copy.deepcopy(self ) A_ = self.label_schema.copy() A_ = features[self.label_column] A_ = label_schema return task_template @property def __A ( self : List[str] ): return { self.audio_column: "audio", self.label_column: "labels", }
312
1
import os try: from .build_directory_md import good_file_paths except ImportError: from build_directory_md import good_file_paths # type: ignore A : str = list(good_file_paths()) assert filepaths, "good_file_paths() failed!" A : List[str] = [file for file in filepaths if file != file.lower()] if upper_files: print(F'{len(upper_files)} files contain uppercase characters:') print('\n'.join(upper_files) + '\n') A : Dict = [file for file in filepaths if ' ' in file] if space_files: print(F'{len(space_files)} files contain space characters:') print('\n'.join(space_files) + '\n') A : List[str] = [file for file in filepaths if '-' in file] if hyphen_files: print(F'{len(hyphen_files)} files contain hyphen characters:') print('\n'.join(hyphen_files) + '\n') A : Tuple = [file for file in filepaths if os.sep not in file] if nodir_files: print(F'{len(nodir_files)} files are not in a directory:') print('\n'.join(nodir_files) + '\n') A : str = len(upper_files + space_files + hyphen_files + nodir_files) if bad_files: import sys sys.exit(bad_files)
146
from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel from ...schedulers import ScoreSdeVeScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class A ( UpperCAmelCase__ ): '''simple docstring''' A__ = 42 A__ = 42 def __init__(self : Union[str, Any] , _UpperCAmelCase : UNetaDModel , _UpperCAmelCase : ScoreSdeVeScheduler ) -> List[str]: """simple docstring""" super().__init__() self.register_modules(unet=_UpperCAmelCase , scheduler=_UpperCAmelCase ) @torch.no_grad() def __call__(self : Optional[Any] , _UpperCAmelCase : int = 1 , _UpperCAmelCase : int = 2000 , _UpperCAmelCase : Optional[Union[torch.Generator, List[torch.Generator]]] = None , _UpperCAmelCase : Optional[str] = "pil" , _UpperCAmelCase : bool = True , **_UpperCAmelCase : Any , ) -> Union[ImagePipelineOutput, Tuple]: """simple docstring""" lowercase__ = self.unet.config.sample_size lowercase__ = (batch_size, 3, img_size, img_size) lowercase__ = self.unet lowercase__ = randn_tensor(_UpperCAmelCase , generator=_UpperCAmelCase ) * self.scheduler.init_noise_sigma lowercase__ = sample.to(self.device ) self.scheduler.set_timesteps(_UpperCAmelCase ) self.scheduler.set_sigmas(_UpperCAmelCase ) for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): lowercase__ = self.scheduler.sigmas[i] * torch.ones(shape[0] , device=self.device ) # correction step for _ in range(self.scheduler.config.correct_steps ): lowercase__ = self.unet(_UpperCAmelCase , _UpperCAmelCase ).sample lowercase__ = self.scheduler.step_correct(_UpperCAmelCase , _UpperCAmelCase , generator=_UpperCAmelCase ).prev_sample # prediction step lowercase__ = model(_UpperCAmelCase , _UpperCAmelCase ).sample lowercase__ = self.scheduler.step_pred(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , generator=_UpperCAmelCase ) lowercase__ , lowercase__ = output.prev_sample, output.prev_sample_mean lowercase__ = sample_mean.clamp(0 , 1 ) lowercase__ = sample.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": lowercase__ = self.numpy_to_pil(_UpperCAmelCase ) if not return_dict: return (sample,) return ImagePipelineOutput(images=_UpperCAmelCase )
146
1
"""simple docstring""" from typing import Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING __snake_case : List[str] = logging.get_logger(__name__) @add_end_docstrings(__SCREAMING_SNAKE_CASE ) class A__ ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self: str , *_SCREAMING_SNAKE_CASE: List[str] , **_SCREAMING_SNAKE_CASE: Any) -> List[Any]: """simple docstring""" super().__init__(*__lowerCAmelCase , **__lowerCAmelCase) self.check_model_type(__lowerCAmelCase) def _SCREAMING_SNAKE_CASE ( self: Optional[Any] , _SCREAMING_SNAKE_CASE: Optional[Any]=None , _SCREAMING_SNAKE_CASE: Union[str, Any]=None , _SCREAMING_SNAKE_CASE: Tuple=None , **_SCREAMING_SNAKE_CASE: List[Any]) -> Dict: """simple docstring""" __lowerCAmelCase , __lowerCAmelCase : str = {}, {} if padding is not None: __lowerCAmelCase : List[Any] = padding if truncation is not None: __lowerCAmelCase : int = truncation if top_k is not None: __lowerCAmelCase : str = top_k return preprocess_params, {}, postprocess_params def __call__( self: Optional[int] , _SCREAMING_SNAKE_CASE: List[Any] , _SCREAMING_SNAKE_CASE: int = None , **_SCREAMING_SNAKE_CASE: int) -> Dict: """simple docstring""" if isinstance(__lowerCAmelCase , (Image.Image, str)) and isinstance(__lowerCAmelCase , __lowerCAmelCase): __lowerCAmelCase : List[Any] = {"image": image, "question": question} else: __lowerCAmelCase : int = image __lowerCAmelCase : str = super().__call__(__lowerCAmelCase , **__lowerCAmelCase) return results def _SCREAMING_SNAKE_CASE ( self: Dict , _SCREAMING_SNAKE_CASE: Dict , _SCREAMING_SNAKE_CASE: List[Any]=False , _SCREAMING_SNAKE_CASE: Any=False) -> Union[str, Any]: """simple docstring""" __lowerCAmelCase : Union[str, Any] = load_image(inputs["image"]) __lowerCAmelCase : List[Any] = self.tokenizer( inputs["question"] , return_tensors=self.framework , padding=__lowerCAmelCase , truncation=__lowerCAmelCase) __lowerCAmelCase : Optional[int] = self.image_processor(images=__lowerCAmelCase , return_tensors=self.framework) model_inputs.update(__lowerCAmelCase) return model_inputs def _SCREAMING_SNAKE_CASE ( self: Dict , _SCREAMING_SNAKE_CASE: Tuple) -> Dict: """simple docstring""" __lowerCAmelCase : str = self.model(**__lowerCAmelCase) return model_outputs def _SCREAMING_SNAKE_CASE ( self: Union[str, Any] , _SCREAMING_SNAKE_CASE: Union[str, Any] , _SCREAMING_SNAKE_CASE: Optional[Any]=5) -> Optional[int]: """simple docstring""" if top_k > self.model.config.num_labels: __lowerCAmelCase : Optional[int] = self.model.config.num_labels if self.framework == "pt": __lowerCAmelCase : List[Any] = model_outputs.logits.sigmoid()[0] __lowerCAmelCase , __lowerCAmelCase : int = probs.topk(__lowerCAmelCase) else: raise ValueError(F"""Unsupported framework: {self.framework}""") __lowerCAmelCase : Optional[int] = scores.tolist() __lowerCAmelCase : Dict = ids.tolist() return [{"score": score, "answer": self.model.config.idalabel[_id]} for score, _id in zip(__lowerCAmelCase , __lowerCAmelCase)]
269
_a = 65_521 def lowerCAmelCase__(__snake_case ) -> int: '''simple docstring''' lowerCamelCase__ = 1 lowerCamelCase__ = 0 for plain_chr in plain_text: lowerCamelCase__ = (a + ord(__snake_case )) % MOD_ADLER lowerCamelCase__ = (b + a) % MOD_ADLER return (b << 16) | a
209
0
'''simple docstring''' def __magic_name__ ( A = 1_0 , A = 2_2 ) -> int: snake_case = range(1 , A ) snake_case = range(1 , A ) return sum( 1 for power in powers for base in bases if len(str(base**power ) ) == power ) if __name__ == "__main__": print(f"{solution(1_0, 2_2) = }")
332
'''simple docstring''' from __future__ import annotations from math import ceil, floor, sqrt def __magic_name__ ( A = 2_0_0_0_0_0_0 ) -> int: snake_case = [0] snake_case = 42 for idx in range(1 , ceil(sqrt(target * 2 ) * 1.1 ) ): triangle_numbers.append(triangle_numbers[-1] + idx ) # we want this to be as close as possible to target snake_case = 0 # the area corresponding to the grid that gives the product closest to target snake_case = 0 # an estimate of b, using the quadratic formula snake_case = 42 # the largest integer less than b_estimate snake_case = 42 # the largest integer less than b_estimate snake_case = 42 # the triangle number corresponding to b_floor snake_case = 42 # the triangle number corresponding to b_ceil snake_case = 42 for idx_a, triangle_a in enumerate(triangle_numbers[1:] , 1 ): snake_case = (-1 + sqrt(1 + 8 * target / triangle_a )) / 2 snake_case = floor(A ) snake_case = ceil(A ) snake_case = triangle_numbers[b_floor] snake_case = triangle_numbers[b_ceil] if abs(target - triangle_b_first_guess * triangle_a ) < abs( target - best_product ): snake_case = triangle_b_first_guess * triangle_a snake_case = idx_a * b_floor if abs(target - triangle_b_second_guess * triangle_a ) < abs( target - best_product ): snake_case = triangle_b_second_guess * triangle_a snake_case = idx_a * b_ceil return area if __name__ == "__main__": print(f"{solution() = }")
332
1
'''simple docstring''' import argparse import glob import importlib.util import os import re import black from doc_builder.style_doc import style_docstrings_in_code # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py a_ : Optional[int] = """src/diffusers""" a_ : str = """.""" # This is to make sure the diffusers module imported is the one in the repo. a_ : List[str] = importlib.util.spec_from_file_location( """diffusers""", os.path.join(DIFFUSERS_PATH, """__init__.py"""), submodule_search_locations=[DIFFUSERS_PATH], ) a_ : List[Any] = spec.loader.load_module() def a_ ( __snake_case : Any , __snake_case : Any ) -> int: """simple docstring""" return line.startswith(__snake_case ) or len(__snake_case ) <= 1 or re.search(r'''^\s*\)(\s*->.*:|:)\s*$''' , __snake_case ) is not None def a_ ( __snake_case : Any ) -> List[Any]: """simple docstring""" lowerCamelCase_ =object_name.split('''.''' ) lowerCamelCase_ =0 # First let's find the module where our object lives. lowerCamelCase_ =parts[i] while i < len(__snake_case ) and not os.path.isfile(os.path.join(__snake_case , F'''{module}.py''' ) ): i += 1 if i < len(__snake_case ): lowerCamelCase_ =os.path.join(__snake_case , parts[i] ) if i >= len(__snake_case ): raise ValueError(F'''`object_name` should begin with the name of a module of diffusers but got {object_name}.''' ) with open(os.path.join(__snake_case , F'''{module}.py''' ) , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: lowerCamelCase_ =f.readlines() # Now let's find the class / func in the code! lowerCamelCase_ ='''''' lowerCamelCase_ =0 for name in parts[i + 1 :]: while ( line_index < len(__snake_case ) and re.search(rF'''^{indent}(class|def)\s+{name}(\(|\:)''' , lines[line_index] ) is None ): line_index += 1 indent += " " line_index += 1 if line_index >= len(__snake_case ): raise ValueError(F''' {object_name} does not match any function or class in {module}.''' ) # We found the beginning of the class / func, now let's find the end (when the indent diminishes). lowerCamelCase_ =line_index while line_index < len(__snake_case ) and _should_continue(lines[line_index] , __snake_case ): line_index += 1 # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 lowerCamelCase_ =lines[start_index:line_index] return "".join(__snake_case ) a_ : Tuple = re.compile(R"""^(\s*)#\s*Copied from\s+diffusers\.(\S+\.\S+)\s*($|\S.*$)""") a_ : Optional[int] = re.compile(R"""^\s*(\S+)->(\S+)(\s+.*|$)""") a_ : Union[str, Any] = re.compile(R"""<FILL\s+[^>]*>""") def a_ ( __snake_case : Dict ) -> Tuple: """simple docstring""" lowerCamelCase_ =code.split('''\n''' ) lowerCamelCase_ =0 while idx < len(__snake_case ) and len(lines[idx] ) == 0: idx += 1 if idx < len(__snake_case ): return re.search(r'''^(\s*)\S''' , lines[idx] ).groups()[0] return "" def a_ ( __snake_case : Any ) -> int: """simple docstring""" lowerCamelCase_ =len(get_indent(__snake_case ) ) > 0 if has_indent: lowerCamelCase_ =F'''class Bla:\n{code}''' lowerCamelCase_ =black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 , preview=__snake_case ) lowerCamelCase_ =black.format_str(__snake_case , mode=__snake_case ) lowerCamelCase_, lowerCamelCase_ =style_docstrings_in_code(__snake_case ) return result[len('''class Bla:\n''' ) :] if has_indent else result def a_ ( __snake_case : str , __snake_case : Union[str, Any]=False ) -> Optional[int]: """simple docstring""" with open(__snake_case , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: lowerCamelCase_ =f.readlines() lowerCamelCase_ =[] lowerCamelCase_ =0 # Not a for loop cause `lines` is going to change (if `overwrite=True`). while line_index < len(__snake_case ): lowerCamelCase_ =_re_copy_warning.search(lines[line_index] ) if search is None: line_index += 1 continue # There is some copied code here, let's retrieve the original. lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ =search.groups() lowerCamelCase_ =find_code_in_diffusers(__snake_case ) lowerCamelCase_ =get_indent(__snake_case ) lowerCamelCase_ =line_index + 1 if indent == theoretical_indent else line_index + 2 lowerCamelCase_ =theoretical_indent lowerCamelCase_ =start_index # Loop to check the observed code, stop when indentation diminishes or if we see a End copy comment. lowerCamelCase_ =True while line_index < len(__snake_case ) and should_continue: line_index += 1 if line_index >= len(__snake_case ): break lowerCamelCase_ =lines[line_index] lowerCamelCase_ =_should_continue(__snake_case , __snake_case ) and re.search(F'''^{indent}# End copy''' , __snake_case ) is None # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 lowerCamelCase_ =lines[start_index:line_index] lowerCamelCase_ =''''''.join(__snake_case ) # Remove any nested `Copied from` comments to avoid circular copies lowerCamelCase_ =[line for line in theoretical_code.split('''\n''' ) if _re_copy_warning.search(__snake_case ) is None] lowerCamelCase_ ='''\n'''.join(__snake_case ) # Before comparing, use the `replace_pattern` on the original code. if len(__snake_case ) > 0: lowerCamelCase_ =replace_pattern.replace('''with''' , '''''' ).split(''',''' ) lowerCamelCase_ =[_re_replace_pattern.search(__snake_case ) for p in patterns] for pattern in patterns: if pattern is None: continue lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ =pattern.groups() lowerCamelCase_ =re.sub(__snake_case , __snake_case , __snake_case ) if option.strip() == "all-casing": lowerCamelCase_ =re.sub(obja.lower() , obja.lower() , __snake_case ) lowerCamelCase_ =re.sub(obja.upper() , obja.upper() , __snake_case ) # Blackify after replacement. To be able to do that, we need the header (class or function definition) # from the previous line lowerCamelCase_ =blackify(lines[start_index - 1] + theoretical_code ) lowerCamelCase_ =theoretical_code[len(lines[start_index - 1] ) :] # Test for a diff and act accordingly. if observed_code != theoretical_code: diffs.append([object_name, start_index] ) if overwrite: lowerCamelCase_ =lines[:start_index] + [theoretical_code] + lines[line_index:] lowerCamelCase_ =start_index + 1 if overwrite and len(__snake_case ) > 0: # Warn the user a file has been modified. print(F'''Detected changes, rewriting {filename}.''' ) with open(__snake_case , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.writelines(__snake_case ) return diffs def a_ ( __snake_case : bool = False ) -> Dict: """simple docstring""" lowerCamelCase_ =glob.glob(os.path.join(__snake_case , '''**/*.py''' ) , recursive=__snake_case ) lowerCamelCase_ =[] for filename in all_files: lowerCamelCase_ =is_copy_consistent(__snake_case , __snake_case ) diffs += [F'''- {filename}: copy does not match {d[0]} at line {d[1]}''' for d in new_diffs] if not overwrite and len(__snake_case ) > 0: lowerCamelCase_ ='''\n'''.join(__snake_case ) raise Exception( '''Found the following copy inconsistencies:\n''' + diff + '''\nRun `make fix-copies` or `python utils/check_copies.py --fix_and_overwrite` to fix them.''' ) if __name__ == "__main__": a_ : str = argparse.ArgumentParser() parser.add_argument("""--fix_and_overwrite""", action="""store_true""", help="""Whether to fix inconsistencies.""") a_ : Union[str, Any] = parser.parse_args() check_copies(args.fix_and_overwrite)
75
'''simple docstring''' from __future__ import annotations from typing import TypedDict class __A ( A ): '''simple docstring''' __lowerCamelCase : str __lowerCamelCase : int def lowerCAmelCase (__A): """simple docstring""" if not isinstance(__A , __A): raise TypeError('''The parameter s type must be str.''') return [s[i:] + s[:i] for i in range(len(__A))] def lowerCAmelCase (__A): """simple docstring""" if not isinstance(__A , __A): raise TypeError('''The parameter s type must be str.''') if not s: raise ValueError('''The parameter s must not be empty.''') _a = all_rotations(__A) rotations.sort() # sort the list of rotations in alphabetically order # make a string composed of the last char of each rotation _a = { "bwt_string": "".join([word[-1] for word in rotations]), "idx_original_string": rotations.index(__A), } return response def lowerCAmelCase (__A , __A): """simple docstring""" if not isinstance(__A , __A): raise TypeError('''The parameter bwt_string type must be str.''') if not bwt_string: raise ValueError('''The parameter bwt_string must not be empty.''') try: _a = int(__A) except ValueError: raise TypeError( '''The parameter idx_original_string type must be int or passive''' ''' of cast to int.''') if idx_original_string < 0: raise ValueError('''The parameter idx_original_string must not be lower than 0.''') if idx_original_string >= len(__A): raise ValueError( '''The parameter idx_original_string must be lower than''' ''' len(bwt_string).''') _a = [''''''] * len(__A) for _ in range(len(__A)): for i in range(len(__A)): _a = bwt_string[i] + ordered_rotations[i] ordered_rotations.sort() return ordered_rotations[idx_original_string] if __name__ == "__main__": lowercase_ = "Provide a string that I will generate its BWT transform: " lowercase_ = input(entry_msg).strip() lowercase_ = bwt_transform(s) print( F"""Burrows Wheeler transform for string '{s}' results """ F"""in '{result['bwt_string']}'""" ) lowercase_ = reverse_bwt(result["bwt_string"], result["idx_original_string"]) print( F"""Reversing Burrows Wheeler transform for entry '{result['bwt_string']}' """ F"""we get original string '{original_string}'""" )
211
0
'''simple docstring''' from argparse import ArgumentParser from .env import EnvironmentCommand def UpperCamelCase ( ) -> List[str]: '''simple docstring''' __magic_name__ = ArgumentParser('''Diffusers CLI tool''' , usage='''diffusers-cli <command> [<args>]''' ) __magic_name__ = parser.add_subparsers(help='''diffusers-cli command helpers''' ) # Register commands EnvironmentCommand.register_subcommand(a ) # Let's go __magic_name__ = parser.parse_args() if not hasattr(a , '''func''' ): parser.print_help() exit(1 ) # Run __magic_name__ = args.func(a ) service.run() if __name__ == "__main__": main()
98
'''simple docstring''' from __future__ import annotations from fractions import Fraction def UpperCamelCase ( a , a ) -> bool: '''simple docstring''' return ( num != den and num % 10 == den // 10 and (num // 10) / (den % 10) == num / den ) def UpperCamelCase ( a ) -> list[str]: '''simple docstring''' __magic_name__ = [] __magic_name__ = 11 __magic_name__ = int('''1''' + '''0''' * digit_len ) for num in range(a , a ): while den <= 99: if (num != den) and (num % 10 == den // 10) and (den % 10 != 0): if is_digit_cancelling(a , a ): solutions.append(F'''{num}/{den}''' ) den += 1 num += 1 __magic_name__ = 10 return solutions def UpperCamelCase ( a = 2 ) -> int: '''simple docstring''' __magic_name__ = 1.0 for fraction in fraction_list(a ): __magic_name__ = Fraction(a ) result *= frac.denominator / frac.numerator return int(a ) if __name__ == "__main__": print(solution())
98
1
from graphs.minimum_spanning_tree_kruskal import kruskal def lowerCAmelCase__ ( ) -> Optional[int]: '''simple docstring''' _UpperCAmelCase = 9 _UpperCAmelCase = [ [0, 1, 4], [0, 7, 8], [1, 2, 8], [7, 8, 7], [7, 6, 1], [2, 8, 2], [8, 6, 6], [2, 3, 7], [2, 5, 4], [6, 5, 2], [3, 5, 1_4], [3, 4, 9], [5, 4, 1_0], [1, 7, 1_1], ] _UpperCAmelCase = kruskal(a__ , a__ ) _UpperCAmelCase = [ [7, 6, 1], [2, 8, 2], [6, 5, 2], [0, 1, 4], [2, 5, 4], [2, 3, 7], [0, 7, 8], [3, 4, 9], ] assert sorted(a__ ) == sorted(a__ )
329
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ :List[Any] = logging.get_logger(__name__) lowerCAmelCase__ :Tuple = {'''ctrl''': '''https://huggingface.co/ctrl/resolve/main/config.json'''} class __a ( UpperCAmelCase ): _a : str = 'ctrl' _a : Tuple = ['past_key_values'] _a : List[Any] = { 'max_position_embeddings': 'n_positions', 'hidden_size': 'n_embd', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self , _SCREAMING_SNAKE_CASE=246534 , _SCREAMING_SNAKE_CASE=256 , _SCREAMING_SNAKE_CASE=1280 , _SCREAMING_SNAKE_CASE=8192 , _SCREAMING_SNAKE_CASE=48 , _SCREAMING_SNAKE_CASE=16 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=1e-6 , _SCREAMING_SNAKE_CASE=0.02 , _SCREAMING_SNAKE_CASE=True , **_SCREAMING_SNAKE_CASE , ) -> List[str]: """simple docstring""" _UpperCAmelCase = vocab_size _UpperCAmelCase = n_positions _UpperCAmelCase = n_embd _UpperCAmelCase = n_layer _UpperCAmelCase = n_head _UpperCAmelCase = dff _UpperCAmelCase = resid_pdrop _UpperCAmelCase = embd_pdrop _UpperCAmelCase = layer_norm_epsilon _UpperCAmelCase = initializer_range _UpperCAmelCase = use_cache super().__init__(**_SCREAMING_SNAKE_CASE )
329
1
'''simple docstring''' import os import pytest from attr import dataclass lowercase__ : Optional[Any] = 'us-east-1' # defaults region @dataclass class __lowerCAmelCase : """simple docstring""" _snake_case : str _snake_case : Any = 'arn:aws:iam::558105141721:role/sagemaker_execution_role' _snake_case : Any = { 'task_name': 'mnli', 'per_device_train_batch_size': 1_6, 'per_device_eval_batch_size': 1_6, 'do_train': True, 'do_eval': True, 'do_predict': True, 'output_dir': '/opt/ml/model', 'overwrite_output_dir': True, 'max_steps': 5_0_0, 'save_steps': 5_5_0_0, } _snake_case : Union[str, Any] = {**hyperparameters, 'max_steps': 1_0_0_0} @property def snake_case__ ( self : str ) -> str: '''simple docstring''' if self.framework == "pytorch": return [ {"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"}, {"Name": "eval_accuracy", "Regex": r"eval_accuracy.*=\D*(.*?)$"}, {"Name": "eval_loss", "Regex": r"eval_loss.*=\D*(.*?)$"}, ] else: return [ {"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"}, {"Name": "eval_accuracy", "Regex": r"loss.*=\D*(.*?)]?$"}, {"Name": "eval_loss", "Regex": r"sparse_categorical_accuracy.*=\D*(.*?)]?$"}, ] @property def snake_case__ ( self : Union[str, Any] ) -> str: '''simple docstring''' return f"""{self.framework}-transfromers-test""" @property def snake_case__ ( self : List[Any] ) -> str: '''simple docstring''' return f"""./tests/sagemaker/scripts/{self.framework}""" @property def snake_case__ ( self : Optional[Any] ) -> str: '''simple docstring''' if self.framework == "pytorch": return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-pytorch-training:1.7.1-transformers4.6.1-gpu-py36-cu110-ubuntu18.04" else: return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-tensorflow-training:2.4.1-transformers4.6.1-gpu-py37-cu110-ubuntu18.04" @pytest.fixture(scope='''class''' ) def a__ ( lowercase : int ) -> Tuple: """simple docstring""" _UpperCamelCase = SageMakerTestEnvironment(framework=request.cls.framework )
287
'''simple docstring''' import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import numpy as np from utils_multiple_choice import MultipleChoiceDataset, Split, processors import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process lowercase__ : Any = logging.getLogger(__name__) def a__ ( lowercase : Optional[Any], lowercase : Tuple ) -> Any: """simple docstring""" return (preds == labels).mean() @dataclass class __lowerCAmelCase : """simple docstring""" _snake_case : str = field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) _snake_case : Optional[str] = field( default=__magic_name__ , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) _snake_case : Optional[str] = field( default=__magic_name__ , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) _snake_case : Optional[str] = field( default=__magic_name__ , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) @dataclass class __lowerCAmelCase : """simple docstring""" _snake_case : str = field(metadata={'help': 'The name of the task to train on: ' + ', '.join(processors.keys() )} ) _snake_case : str = field(metadata={'help': 'Should contain the data files for the task.'} ) _snake_case : int = field( default=1_2_8 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) _snake_case : bool = field( default=__magic_name__ , metadata={'help': 'Overwrite the cached training and evaluation sets'} ) def a__ ( ) -> Optional[Any]: """simple docstring""" _UpperCamelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. Use""" ''' --overwrite_output_dir to overcome.''' ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN, ) logger.warning( '''Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s''', training_args.local_rank, training_args.device, training_args.n_gpu, bool(training_args.local_rank != -1 ), training_args.fpaa, ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('''Training/evaluation parameters %s''', lowercase ) # Set seed set_seed(training_args.seed ) try: _UpperCamelCase = processors[data_args.task_name]() _UpperCamelCase = processor.get_labels() _UpperCamelCase = len(lowercase ) except KeyError: raise ValueError('''Task not found: %s''' % (data_args.task_name) ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _UpperCamelCase = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path, num_labels=lowercase, finetuning_task=data_args.task_name, cache_dir=model_args.cache_dir, ) _UpperCamelCase = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path, cache_dir=model_args.cache_dir, ) _UpperCamelCase = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path, from_tf=bool('''.ckpt''' in model_args.model_name_or_path ), config=lowercase, cache_dir=model_args.cache_dir, ) # Get datasets _UpperCamelCase = ( MultipleChoiceDataset( data_dir=data_args.data_dir, tokenizer=lowercase, task=data_args.task_name, max_seq_length=data_args.max_seq_length, overwrite_cache=data_args.overwrite_cache, mode=Split.train, ) if training_args.do_train else None ) _UpperCamelCase = ( MultipleChoiceDataset( data_dir=data_args.data_dir, tokenizer=lowercase, task=data_args.task_name, max_seq_length=data_args.max_seq_length, overwrite_cache=data_args.overwrite_cache, mode=Split.dev, ) if training_args.do_eval else None ) def compute_metrics(lowercase : EvalPrediction ) -> Dict: _UpperCamelCase = np.argmax(p.predictions, axis=1 ) return {"acc": simple_accuracy(lowercase, p.label_ids )} # Data collator _UpperCamelCase = DataCollatorWithPadding(lowercase, pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer _UpperCamelCase = Trainer( model=lowercase, args=lowercase, train_dataset=lowercase, eval_dataset=lowercase, compute_metrics=lowercase, data_collator=lowercase, ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation _UpperCamelCase = {} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) _UpperCamelCase = trainer.evaluate() _UpperCamelCase = os.path.join(training_args.output_dir, '''eval_results.txt''' ) if trainer.is_world_master(): with open(lowercase, '''w''' ) as writer: logger.info('''***** Eval results *****''' ) for key, value in result.items(): logger.info(''' %s = %s''', lowercase, lowercase ) writer.write('''%s = %s\n''' % (key, value) ) results.update(lowercase ) return results def a__ ( lowercase : Tuple ) -> List[Any]: """simple docstring""" main() if __name__ == "__main__": main()
287
1
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ChineseCLIPImageProcessor class __A ( unittest.TestCase ): """simple docstring""" def __init__( self , lowerCamelCase__ , lowerCamelCase__=7 , lowerCamelCase__=3 , lowerCamelCase__=18 , lowerCamelCase__=30 , lowerCamelCase__=400 , lowerCamelCase__=True , lowerCamelCase__=None , lowerCamelCase__=True , lowerCamelCase__=None , lowerCamelCase__=True , lowerCamelCase__=[0.48_145_466, 0.4_578_275, 0.40_821_073] , lowerCamelCase__=[0.26_862_954, 0.26_130_258, 0.27_577_711] , lowerCamelCase__=True , ): """simple docstring""" __UpperCamelCase : int =size if size is not None else {'height': 224, 'width': 224} __UpperCamelCase : Optional[Any] =crop_size if crop_size is not None else {'height': 18, 'width': 18} __UpperCamelCase : Optional[Any] =parent __UpperCamelCase : List[str] =batch_size __UpperCamelCase : Optional[Any] =num_channels __UpperCamelCase : Any =image_size __UpperCamelCase : Optional[Any] =min_resolution __UpperCamelCase : Tuple =max_resolution __UpperCamelCase : Tuple =do_resize __UpperCamelCase : Optional[int] =size __UpperCamelCase : Optional[int] =do_center_crop __UpperCamelCase : Union[str, Any] =crop_size __UpperCamelCase : Tuple =do_normalize __UpperCamelCase : int =image_mean __UpperCamelCase : Dict =image_std __UpperCamelCase : List[str] =do_convert_rgb def __lowercase ( self ): """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_convert_rgb": self.do_convert_rgb, } def __lowercase ( self , lowerCamelCase__=False , lowerCamelCase__=False , lowerCamelCase__=False ): """simple docstring""" assert not (numpify and torchify), "You cannot specify both numpy and PyTorch tensors at the same time" if equal_resolution: __UpperCamelCase : Union[str, Any] =[] for i in range(self.batch_size ): image_inputs.append( np.random.randint( 255 , size=(self.num_channels, self.max_resolution, self.max_resolution) , dtype=np.uinta ) ) else: __UpperCamelCase : Tuple =[] for i in range(self.batch_size ): __UpperCamelCase , __UpperCamelCase : Union[str, Any] =np.random.choice(np.arange(self.min_resolution , self.max_resolution ) , 2 ) image_inputs.append(np.random.randint(255 , size=(self.num_channels, width, height) , dtype=np.uinta ) ) if not numpify and not torchify: # PIL expects the channel dimension as last dimension __UpperCamelCase : Optional[int] =[Image.fromarray(np.moveaxis(lowerCamelCase__ , 0 , -1 ) ) for x in image_inputs] if torchify: __UpperCamelCase : Any =[torch.from_numpy(lowerCamelCase__ ) for x in image_inputs] return image_inputs @require_torch @require_vision class __A ( a , unittest.TestCase ): """simple docstring""" UpperCamelCase__ : Any =ChineseCLIPImageProcessor if is_vision_available() else None def __lowercase ( self ): """simple docstring""" __UpperCamelCase : Tuple =ChineseCLIPImageProcessingTester(self , do_center_crop=lowerCamelCase__ ) @property def __lowercase ( self ): """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def __lowercase ( self ): """simple docstring""" __UpperCamelCase : Union[str, Any] =self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCamelCase__ , 'do_resize' ) ) self.assertTrue(hasattr(lowerCamelCase__ , 'size' ) ) self.assertTrue(hasattr(lowerCamelCase__ , 'do_center_crop' ) ) self.assertTrue(hasattr(lowerCamelCase__ , 'center_crop' ) ) self.assertTrue(hasattr(lowerCamelCase__ , 'do_normalize' ) ) self.assertTrue(hasattr(lowerCamelCase__ , 'image_mean' ) ) self.assertTrue(hasattr(lowerCamelCase__ , 'image_std' ) ) self.assertTrue(hasattr(lowerCamelCase__ , 'do_convert_rgb' ) ) def __lowercase ( self ): """simple docstring""" __UpperCamelCase : Optional[Any] =self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'height': 224, 'width': 224} ) self.assertEqual(image_processor.crop_size , {'height': 18, 'width': 18} ) __UpperCamelCase : Dict =self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'shortest_edge': 42} ) self.assertEqual(image_processor.crop_size , {'height': 84, 'width': 84} ) def __lowercase ( self ): """simple docstring""" pass def __lowercase ( self ): """simple docstring""" __UpperCamelCase : int =self.image_processing_class(**self.image_processor_dict ) # create random PIL images __UpperCamelCase : str =self.image_processor_tester.prepare_inputs(equal_resolution=lowerCamelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase__ , Image.Image ) # Test not batched input __UpperCamelCase : Dict =image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched __UpperCamelCase : List[str] =image_processing(lowerCamelCase__ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def __lowercase ( self ): """simple docstring""" __UpperCamelCase : Any =self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __UpperCamelCase : Optional[Any] =self.image_processor_tester.prepare_inputs(equal_resolution=lowerCamelCase__ , numpify=lowerCamelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase__ , np.ndarray ) # Test not batched input __UpperCamelCase : List[str] =image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched __UpperCamelCase : Any =image_processing(lowerCamelCase__ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def __lowercase ( self ): """simple docstring""" __UpperCamelCase : Tuple =self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __UpperCamelCase : Union[str, Any] =self.image_processor_tester.prepare_inputs(equal_resolution=lowerCamelCase__ , torchify=lowerCamelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase__ , torch.Tensor ) # Test not batched input __UpperCamelCase : Any =image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched __UpperCamelCase : Any =image_processing(lowerCamelCase__ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) @require_torch @require_vision class __A ( a , unittest.TestCase ): """simple docstring""" UpperCamelCase__ : Any =ChineseCLIPImageProcessor if is_vision_available() else None def __lowercase ( self ): """simple docstring""" __UpperCamelCase : int =ChineseCLIPImageProcessingTester(self , num_channels=4 , do_center_crop=lowerCamelCase__ ) __UpperCamelCase : int =3 @property def __lowercase ( self ): """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def __lowercase ( self ): """simple docstring""" __UpperCamelCase : Optional[int] =self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCamelCase__ , 'do_resize' ) ) self.assertTrue(hasattr(lowerCamelCase__ , 'size' ) ) self.assertTrue(hasattr(lowerCamelCase__ , 'do_center_crop' ) ) self.assertTrue(hasattr(lowerCamelCase__ , 'center_crop' ) ) self.assertTrue(hasattr(lowerCamelCase__ , 'do_normalize' ) ) self.assertTrue(hasattr(lowerCamelCase__ , 'image_mean' ) ) self.assertTrue(hasattr(lowerCamelCase__ , 'image_std' ) ) self.assertTrue(hasattr(lowerCamelCase__ , 'do_convert_rgb' ) ) def __lowercase ( self ): """simple docstring""" pass def __lowercase ( self ): """simple docstring""" __UpperCamelCase : Tuple =self.image_processing_class(**self.image_processor_dict ) # create random PIL images __UpperCamelCase : Union[str, Any] =self.image_processor_tester.prepare_inputs(equal_resolution=lowerCamelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase__ , Image.Image ) # Test not batched input __UpperCamelCase : List[str] =image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.expected_encoded_image_num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched __UpperCamelCase : List[Any] =image_processing(lowerCamelCase__ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.expected_encoded_image_num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , )
71
UpperCAmelCase__ = {} def A ( _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int ) -> int: '''simple docstring''' # if we are absent twice, or late 3 consecutive days, # no further prize strings are possible if late == 3 or absent == 2: return 0 # if we have no days left, and have not failed any other rules, # we have a prize string if days == 0: return 1 # No easy solution, so now we need to do the recursive calculation # First, check if the combination is already in the cache, and # if yes, return the stored value from there since we already # know the number of possible prize strings from this point on _UpperCAmelCase = (days, absent, late) if key in cache: return cache[key] # now we calculate the three possible ways that can unfold from # this point on, depending on our attendance today # 1) if we are late (but not absent), the "absent" counter stays as # it is, but the "late" counter increases by one _UpperCAmelCase = _calculate(days - 1 , _UpperCAmelCase , late + 1 ) # 2) if we are absent, the "absent" counter increases by 1, and the # "late" counter resets to 0 _UpperCAmelCase = _calculate(days - 1 , absent + 1 , 0 ) # 3) if we are on time, this resets the "late" counter and keeps the # absent counter _UpperCAmelCase = _calculate(days - 1 , _UpperCAmelCase , 0 ) _UpperCAmelCase = state_late + state_absent + state_ontime _UpperCAmelCase = prizestrings return prizestrings def A ( _UpperCAmelCase : int = 30 ) -> int: '''simple docstring''' return _calculate(_UpperCAmelCase , absent=0 , late=0 ) if __name__ == "__main__": print(solution())
339
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __SCREAMING_SNAKE_CASE : Optional[Any] = logging.get_logger(__name__) class __A (__lowercase): '''simple docstring''' __lowercase: Any = """timm_backbone""" def __init__( self : Dict , UpperCAmelCase_ : List[Any]=None , UpperCAmelCase_ : int=3 , UpperCAmelCase_ : Dict=True , UpperCAmelCase_ : Optional[int]=True , UpperCAmelCase_ : int=None , **UpperCAmelCase_ : Union[str, Any] , ) ->Tuple: """simple docstring""" super().__init__(**_a ) snake_case_ = backbone snake_case_ = num_channels snake_case_ = features_only snake_case_ = use_pretrained_backbone snake_case_ = True snake_case_ = out_indices if out_indices is not None else (-1,)
350
"""simple docstring""" import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler __SCREAMING_SNAKE_CASE : Tuple = 16 __SCREAMING_SNAKE_CASE : int = 32 def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 16 , _SCREAMING_SNAKE_CASE = "bert-base-cased" ) -> Optional[Any]: snake_case_ = AutoTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ) snake_case_ = load_dataset("""glue""" , """mrpc""" ) def tokenize_function(_SCREAMING_SNAKE_CASE ): # max_length=None => use the model max length (it's actually the default) snake_case_ = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=_SCREAMING_SNAKE_CASE , max_length=_SCREAMING_SNAKE_CASE ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset snake_case_ = datasets.map( _SCREAMING_SNAKE_CASE , batched=_SCREAMING_SNAKE_CASE , remove_columns=["""idx""", """sentence1""", """sentence2"""] , load_from_cache_file=_SCREAMING_SNAKE_CASE ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library snake_case_ = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(_SCREAMING_SNAKE_CASE ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(_SCREAMING_SNAKE_CASE , padding="""max_length""" , max_length=128 , return_tensors="""pt""" ) return tokenizer.pad(_SCREAMING_SNAKE_CASE , padding="""longest""" , return_tensors="""pt""" ) # Instantiate dataloaders. snake_case_ = DataLoader( tokenized_datasets["""train"""] , shuffle=_SCREAMING_SNAKE_CASE , collate_fn=_SCREAMING_SNAKE_CASE , batch_size=_SCREAMING_SNAKE_CASE ) snake_case_ = DataLoader( tokenized_datasets["""validation"""] , shuffle=_SCREAMING_SNAKE_CASE , collate_fn=_SCREAMING_SNAKE_CASE , batch_size=_SCREAMING_SNAKE_CASE ) return train_dataloader, eval_dataloader def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> List[str]: # Initialize accelerator snake_case_ = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs snake_case_ = config["""lr"""] snake_case_ = int(config["""num_epochs"""] ) snake_case_ = int(config["""seed"""] ) snake_case_ = int(config["""batch_size"""] ) snake_case_ = args.model_name_or_path set_seed(_SCREAMING_SNAKE_CASE ) snake_case_ , snake_case_ = get_dataloaders(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) snake_case_ = AutoModelForSequenceClassification.from_pretrained(_SCREAMING_SNAKE_CASE , return_dict=_SCREAMING_SNAKE_CASE ) # Instantiate optimizer snake_case_ = ( AdamW if accelerator.state.deepspeed_plugin is None or """optimizer""" not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) snake_case_ = optimizer_cls(params=model.parameters() , lr=_SCREAMING_SNAKE_CASE ) if accelerator.state.deepspeed_plugin is not None: snake_case_ = accelerator.state.deepspeed_plugin.deepspeed_config[ """gradient_accumulation_steps""" ] else: snake_case_ = 1 snake_case_ = (len(_SCREAMING_SNAKE_CASE ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): snake_case_ = get_linear_schedule_with_warmup( optimizer=_SCREAMING_SNAKE_CASE , num_warmup_steps=0 , num_training_steps=_SCREAMING_SNAKE_CASE , ) else: snake_case_ = DummyScheduler(_SCREAMING_SNAKE_CASE , total_num_steps=_SCREAMING_SNAKE_CASE , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ = accelerator.prepare( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # We need to keep track of how many total steps we have iterated over snake_case_ = 0 # We also need to keep track of the stating epoch so files are named properly snake_case_ = 0 # Now we train the model snake_case_ = evaluate.load("""glue""" , """mrpc""" ) snake_case_ = 0 snake_case_ = {} for epoch in range(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): model.train() for step, batch in enumerate(_SCREAMING_SNAKE_CASE ): snake_case_ = model(**_SCREAMING_SNAKE_CASE ) snake_case_ = outputs.loss snake_case_ = loss / gradient_accumulation_steps accelerator.backward(_SCREAMING_SNAKE_CASE ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 model.eval() snake_case_ = 0 for step, batch in enumerate(_SCREAMING_SNAKE_CASE ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): snake_case_ = model(**_SCREAMING_SNAKE_CASE ) snake_case_ = outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times snake_case_ , snake_case_ = accelerator.gather( (predictions, batch["""labels"""]) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(_SCREAMING_SNAKE_CASE ) - 1: snake_case_ = predictions[: len(eval_dataloader.dataset ) - samples_seen] snake_case_ = references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=_SCREAMING_SNAKE_CASE , references=_SCREAMING_SNAKE_CASE , ) snake_case_ = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"""epoch {epoch}:""" , _SCREAMING_SNAKE_CASE ) snake_case_ = eval_metric["""accuracy"""] if best_performance < eval_metric["accuracy"]: snake_case_ = eval_metric["""accuracy"""] if args.performance_lower_bound is not None: assert ( args.performance_lower_bound <= best_performance ), f"""Best performance metric {best_performance} is lower than the lower bound {args.performance_lower_bound}""" accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , """all_results.json""" ) , """w""" ) as f: json.dump(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def _a ( ) -> int: snake_case_ = argparse.ArgumentParser(description="""Simple example of training script tracking peak GPU memory usage.""" ) parser.add_argument( """--model_name_or_path""" , type=_SCREAMING_SNAKE_CASE , default="""bert-base-cased""" , help="""Path to pretrained model or model identifier from huggingface.co/models.""" , required=_SCREAMING_SNAKE_CASE , ) parser.add_argument( """--output_dir""" , type=_SCREAMING_SNAKE_CASE , default=""".""" , help="""Optional save directory where all checkpoint folders will be stored. Default is the current working directory.""" , ) parser.add_argument( """--performance_lower_bound""" , type=_SCREAMING_SNAKE_CASE , default=_SCREAMING_SNAKE_CASE , help="""Optional lower bound for the performance metric. If set, the training will throw error when the performance metric drops below this value.""" , ) parser.add_argument( """--num_epochs""" , type=_SCREAMING_SNAKE_CASE , default=3 , help="""Number of train epochs.""" , ) snake_case_ = parser.parse_args() snake_case_ = {"""lr""": 2E-5, """num_epochs""": args.num_epochs, """seed""": 42, """batch_size""": 16} training_function(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if __name__ == "__main__": main()
233
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) a_ = { """configuration_convbert""": ["""CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ConvBertConfig""", """ConvBertOnnxConfig"""], """tokenization_convbert""": ["""ConvBertTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = ["""ConvBertTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ """CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """ConvBertForMaskedLM""", """ConvBertForMultipleChoice""", """ConvBertForQuestionAnswering""", """ConvBertForSequenceClassification""", """ConvBertForTokenClassification""", """ConvBertLayer""", """ConvBertModel""", """ConvBertPreTrainedModel""", """load_tf_weights_in_convbert""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ """TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFConvBertForMaskedLM""", """TFConvBertForMultipleChoice""", """TFConvBertForQuestionAnswering""", """TFConvBertForSequenceClassification""", """TFConvBertForTokenClassification""", """TFConvBertLayer""", """TFConvBertModel""", """TFConvBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_convbert import CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvBertConfig, ConvBertOnnxConfig from .tokenization_convbert import ConvBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_convbert_fast import ConvBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convbert import ( CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvBertForMaskedLM, ConvBertForMultipleChoice, ConvBertForQuestionAnswering, ConvBertForSequenceClassification, ConvBertForTokenClassification, ConvBertLayer, ConvBertModel, ConvBertPreTrainedModel, load_tf_weights_in_convbert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convbert import ( TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertLayer, TFConvBertModel, TFConvBertPreTrainedModel, ) else: import sys a_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
330
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate # and perform gradient accumulation # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## _A = 16 _A = 32 def lowerCamelCase__ ( a__ : Accelerator , a__ : int = 16 ) -> Tuple: UpperCamelCase_ = AutoTokenizer.from_pretrained("""bert-base-cased""" ) UpperCamelCase_ = load_dataset("""glue""" , """mrpc""" ) def tokenize_function(a__ : Optional[int] ): # max_length=None => use the model max length (it's actually the default) UpperCamelCase_ = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=a__ , max_length=a__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): UpperCamelCase_ = datasets.map( a__ , batched=a__ , remove_columns=["""idx""", """sentence1""", """sentence2"""] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library UpperCamelCase_ = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(a__ : str ): # On TPU it's best to pad everything to the same length or training will be very slow. UpperCamelCase_ = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": UpperCamelCase_ = 16 elif accelerator.mixed_precision != "no": UpperCamelCase_ = 8 else: UpperCamelCase_ = None return tokenizer.pad( a__ , padding="""longest""" , max_length=a__ , pad_to_multiple_of=a__ , return_tensors="""pt""" , ) # Instantiate dataloaders. UpperCamelCase_ = DataLoader( tokenized_datasets["""train"""] , shuffle=a__ , collate_fn=a__ , batch_size=a__ ) UpperCamelCase_ = DataLoader( tokenized_datasets["""validation"""] , shuffle=a__ , collate_fn=a__ , batch_size=a__ ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('''TESTING_MOCKED_DATALOADERS''', None) == "1": from accelerate.test_utils.training import mocked_dataloaders _A = mocked_dataloaders # noqa: F811 def lowerCamelCase__ ( a__ : str , a__ : Tuple ) -> Any: # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""" , a__ ) == "1": UpperCamelCase_ = 2 # New Code # UpperCamelCase_ = int(args.gradient_accumulation_steps ) # Initialize accelerator UpperCamelCase_ = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , gradient_accumulation_steps=a__ ) if accelerator.distributed_type == DistributedType.TPU and gradient_accumulation_steps > 1: raise NotImplementedError( """Gradient accumulation on TPUs is currently not supported. Pass `gradient_accumulation_steps=1`""" ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs UpperCamelCase_ = config["""lr"""] UpperCamelCase_ = int(config["""num_epochs"""] ) UpperCamelCase_ = int(config["""seed"""] ) UpperCamelCase_ = int(config["""batch_size"""] ) UpperCamelCase_ = evaluate.load("""glue""" , """mrpc""" ) set_seed(a__ ) UpperCamelCase_ , UpperCamelCase_ = get_dataloaders(a__ , a__ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) UpperCamelCase_ = AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" , return_dict=a__ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). UpperCamelCase_ = model.to(accelerator.device ) # Instantiate optimizer UpperCamelCase_ = AdamW(params=model.parameters() , lr=a__ ) # Instantiate scheduler UpperCamelCase_ = get_linear_schedule_with_warmup( optimizer=a__ , num_warmup_steps=100 , num_training_steps=(len(a__ ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = accelerator.prepare( a__ , a__ , a__ , a__ , a__ ) # Now we train the model for epoch in range(a__ ): model.train() for step, batch in enumerate(a__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) # New code # # We use the new `accumulate` context manager to perform gradient accumulation # We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests. with accelerator.accumulate(a__ ): UpperCamelCase_ = model(**a__ ) UpperCamelCase_ = output.loss accelerator.backward(a__ ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(a__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): UpperCamelCase_ = model(**a__ ) UpperCamelCase_ = outputs.logits.argmax(dim=-1 ) UpperCamelCase_ , UpperCamelCase_ = accelerator.gather_for_metrics((predictions, batch["""labels"""]) ) metric.add_batch( predictions=a__ , references=a__ , ) UpperCamelCase_ = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f'''epoch {epoch}:''' , a__ ) def lowerCamelCase__ ( ) -> str: UpperCamelCase_ = argparse.ArgumentParser(description="""Simple example of training script.""" ) parser.add_argument( """--mixed_precision""" , type=a__ , default=a__ , choices=["""no""", """fp16""", """bf16""", """fp8"""] , help="""Whether to use mixed precision. Choose""" """between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.""" """and an Nvidia Ampere GPU.""" , ) # New Code # parser.add_argument( """--gradient_accumulation_steps""" , type=a__ , default=1 , help="""The number of minibatches to be ran before gradients are accumulated.""" , ) parser.add_argument("""--cpu""" , action="""store_true""" , help="""If passed, will train on the CPU.""" ) UpperCamelCase_ = parser.parse_args() UpperCamelCase_ = {"""lr""": 2e-5, """num_epochs""": 3, """seed""": 42, """batch_size""": 16} training_function(a__ , a__ ) if __name__ == "__main__": main()
122
0
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer import diffusers from diffusers import ( AutoencoderKL, EulerDiscreteScheduler, StableDiffusionLatentUpscalePipeline, StableDiffusionPipeline, UNetaDConditionModel, ) from diffusers.schedulers import KarrasDiffusionSchedulers from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() def UpperCAmelCase ( lowerCamelCase_ :int ): '''simple docstring''' snake_case_ : List[Any] = [tensor.shape for tensor in tensor_list] return all(shape == shapes[0] for shape in shapes[1:] ) class __UpperCamelCase ( lowercase__ , lowercase__ , lowercase__ , unittest.TestCase ): lowercase : Dict = StableDiffusionLatentUpscalePipeline lowercase : str = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - { 'height', 'width', 'cross_attention_kwargs', 'negative_prompt_embeds', 'prompt_embeds', } lowercase : str = PipelineTesterMixin.required_optional_params - {'num_images_per_prompt'} lowercase : str = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS lowercase : str = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess lowercase : str = frozenset([] ) lowercase : Optional[int] = True @property def a__ ( self :int ): snake_case_ : List[str] = 1 snake_case_ : int = 4 snake_case_ : Optional[Any] = (1_6, 1_6) snake_case_ : List[Any] = floats_tensor((batch_size, num_channels) + sizes ,rng=random.Random(0 ) ).to(_UpperCamelCase ) return image def a__ ( self :Tuple ): torch.manual_seed(0 ) snake_case_ : Optional[Any] = UNetaDConditionModel( act_fn="""gelu""" ,attention_head_dim=8 ,norm_num_groups=_UpperCamelCase ,block_out_channels=[3_2, 3_2, 6_4, 6_4] ,time_cond_proj_dim=1_6_0 ,conv_in_kernel=1 ,conv_out_kernel=1 ,cross_attention_dim=3_2 ,down_block_types=( """KDownBlock2D""", """KCrossAttnDownBlock2D""", """KCrossAttnDownBlock2D""", """KCrossAttnDownBlock2D""", ) ,in_channels=8 ,mid_block_type=_UpperCamelCase ,only_cross_attention=_UpperCamelCase ,out_channels=5 ,resnet_time_scale_shift="""scale_shift""" ,time_embedding_type="""fourier""" ,timestep_post_act="""gelu""" ,up_block_types=("""KCrossAttnUpBlock2D""", """KCrossAttnUpBlock2D""", """KCrossAttnUpBlock2D""", """KUpBlock2D""") ,) snake_case_ : List[Any] = AutoencoderKL( block_out_channels=[3_2, 3_2, 6_4, 6_4] ,in_channels=3 ,out_channels=3 ,down_block_types=[ """DownEncoderBlock2D""", """DownEncoderBlock2D""", """DownEncoderBlock2D""", """DownEncoderBlock2D""", ] ,up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D""", """UpDecoderBlock2D""", """UpDecoderBlock2D"""] ,latent_channels=4 ,) snake_case_ : List[Any] = EulerDiscreteScheduler(prediction_type="""sample""" ) snake_case_ : Any = CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=3_2 ,intermediate_size=3_7 ,layer_norm_eps=1E-0_5 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1_0_0_0 ,hidden_act="""quick_gelu""" ,projection_dim=5_1_2 ,) snake_case_ : Any = CLIPTextModel(_UpperCamelCase ) snake_case_ : Optional[int] = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) snake_case_ : Optional[int] = { """unet""": model.eval(), """vae""": vae.eval(), """scheduler""": scheduler, """text_encoder""": text_encoder, """tokenizer""": tokenizer, } return components def a__ ( self :List[Any] ,_UpperCamelCase :Union[str, Any] ,_UpperCamelCase :int=0 ): if str(_UpperCamelCase ).startswith("""mps""" ): snake_case_ : List[Any] = torch.manual_seed(_UpperCamelCase ) else: snake_case_ : Union[str, Any] = torch.Generator(device=_UpperCamelCase ).manual_seed(_UpperCamelCase ) snake_case_ : Optional[Any] = { """prompt""": """A painting of a squirrel eating a burger""", """image""": self.dummy_image.cpu(), """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs def a__ ( self :List[str] ): snake_case_ : Any = """cpu""" snake_case_ : str = self.get_dummy_components() snake_case_ : str = self.pipeline_class(**_UpperCamelCase ) pipe.to(_UpperCamelCase ) pipe.set_progress_bar_config(disable=_UpperCamelCase ) snake_case_ : List[Any] = self.get_dummy_inputs(_UpperCamelCase ) snake_case_ : Optional[Any] = pipe(**_UpperCamelCase ).images snake_case_ : Dict = image[0, -3:, -3:, -1] self.assertEqual(image.shape ,(1, 2_5_6, 2_5_6, 3) ) snake_case_ : int = np.array( [0.47_22_24_12, 0.41_92_16_33, 0.44_71_74_34, 0.46_87_41_92, 0.42_58_82_58, 0.46_15_07_26, 0.4_67_75_34, 0.45_58_38_32, 0.48_57_90_55] ) snake_case_ : Optional[int] = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(_UpperCamelCase ,1E-3 ) def a__ ( self :int ): super().test_attention_slicing_forward_pass(expected_max_diff=7E-3 ) def a__ ( self :Optional[Any] ): super().test_cpu_offload_forward_pass(expected_max_diff=3E-3 ) def a__ ( self :List[Any] ): super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 ) def a__ ( self :List[str] ): super().test_inference_batch_single_identical(expected_max_diff=7E-3 ) def a__ ( self :int ): super().test_pt_np_pil_outputs_equivalent(expected_max_diff=3E-3 ) def a__ ( self :int ): super().test_save_load_local(expected_max_difference=3E-3 ) def a__ ( self :List[str] ): super().test_save_load_optional_components(expected_max_difference=3E-3 ) def a__ ( self :Tuple ): snake_case_ : Union[str, Any] = [ """DDIMScheduler""", """DDPMScheduler""", """PNDMScheduler""", """HeunDiscreteScheduler""", """EulerAncestralDiscreteScheduler""", """KDPM2DiscreteScheduler""", """KDPM2AncestralDiscreteScheduler""", """DPMSolverSDEScheduler""", ] snake_case_ : Dict = self.get_dummy_components() snake_case_ : Optional[Any] = self.pipeline_class(**_UpperCamelCase ) # make sure that PNDM does not need warm-up pipe.scheduler.register_to_config(skip_prk_steps=_UpperCamelCase ) pipe.to(_UpperCamelCase ) pipe.set_progress_bar_config(disable=_UpperCamelCase ) snake_case_ : Any = self.get_dummy_inputs(_UpperCamelCase ) snake_case_ : Any = 2 snake_case_ : str = [] for scheduler_enum in KarrasDiffusionSchedulers: if scheduler_enum.name in skip_schedulers: # no sigma schedulers are not supported # no schedulers continue snake_case_ : Union[str, Any] = getattr(_UpperCamelCase ,scheduler_enum.name ) snake_case_ : str = scheduler_cls.from_config(pipe.scheduler.config ) snake_case_ : Any = pipe(**_UpperCamelCase )[0] outputs.append(_UpperCamelCase ) assert check_same_shape(_UpperCamelCase ) @require_torch_gpu @slow class __UpperCamelCase ( unittest.TestCase ): def a__ ( self :Optional[Any] ): super().tearDown() gc.collect() torch.cuda.empty_cache() def a__ ( self :Optional[Any] ): snake_case_ : Tuple = torch.manual_seed(3_3 ) snake_case_ : Optional[int] = StableDiffusionPipeline.from_pretrained("""CompVis/stable-diffusion-v1-4""" ,torch_dtype=torch.floataa ) pipe.to("""cuda""" ) snake_case_ : List[Any] = StableDiffusionLatentUpscalePipeline.from_pretrained( """stabilityai/sd-x2-latent-upscaler""" ,torch_dtype=torch.floataa ) upscaler.to("""cuda""" ) snake_case_ : Dict = """a photo of an astronaut high resolution, unreal engine, ultra realistic""" snake_case_ : str = pipe(_UpperCamelCase ,generator=_UpperCamelCase ,output_type="""latent""" ).images snake_case_ : Union[str, Any] = upscaler( prompt=_UpperCamelCase ,image=_UpperCamelCase ,num_inference_steps=2_0 ,guidance_scale=0 ,generator=_UpperCamelCase ,output_type="""np""" ,).images[0] snake_case_ : str = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/astronaut_1024.npy""" ) assert np.abs((expected_image - image).mean() ) < 5E-2 def a__ ( self :Dict ): snake_case_ : Union[str, Any] = torch.manual_seed(3_3 ) snake_case_ : Tuple = StableDiffusionLatentUpscalePipeline.from_pretrained( """stabilityai/sd-x2-latent-upscaler""" ,torch_dtype=torch.floataa ) upscaler.to("""cuda""" ) snake_case_ : Tuple = """the temple of fire by Ross Tran and Gerardo Dottori, oil on canvas""" snake_case_ : Any = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_512.png""" ) snake_case_ : List[str] = upscaler( prompt=_UpperCamelCase ,image=_UpperCamelCase ,num_inference_steps=2_0 ,guidance_scale=0 ,generator=_UpperCamelCase ,output_type="""np""" ,).images[0] snake_case_ : Dict = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_1024.npy""" ) assert np.abs((expected_image - image).max() ) < 5E-2
8
'''simple docstring''' import functools def UpperCAmelCase ( lowerCamelCase_ :str , lowerCamelCase_ :str ): '''simple docstring''' snake_case_ : List[str] = len(lowerCamelCase_ ) snake_case_ : Dict = len(lowerCamelCase_ ) @functools.cache def min_distance(lowerCamelCase_ :int , lowerCamelCase_ :int ) -> int: # if first word index is overflow - delete all from the second word if indexa >= len_worda: return len_worda - indexa # if second word index is overflow - delete all from the first word if indexa >= len_worda: return len_worda - indexa snake_case_ : Union[str, Any] = int(worda[indexa] != worda[indexa] ) # current letters not identical return min( 1 + min_distance(indexa + 1 , lowerCamelCase_ ) , 1 + min_distance(lowerCamelCase_ , indexa + 1 ) , diff + min_distance(indexa + 1 , indexa + 1 ) , ) return min_distance(0 , 0 ) if __name__ == "__main__": import doctest doctest.testmod()
8
1
"""simple docstring""" # Lint as: python3 import itertools import os import re _lowercase : List[Any] = re.compile(r"([A-Z]+)([A-Z][a-z])") _lowercase : int = re.compile(r"([a-z\d])([A-Z])") _lowercase : Union[str, Any] = re.compile(r"(?<!_)_(?!_)") _lowercase : str = re.compile(r"(_{2,})") _lowercase : Optional[Any] = r"^\w+(\.\w+)*$" _lowercase : Dict = r"<>:/\|?*" def snake_case__ ( __lowerCamelCase : Optional[Any] ): """simple docstring""" lowerCamelCase__ : Tuple =_uppercase_uppercase_re.sub(R'''\1_\2''' , __lowerCamelCase ) lowerCamelCase__ : List[Any] =_lowercase_uppercase_re.sub(R'''\1_\2''' , __lowerCamelCase ) return name.lower() def snake_case__ ( __lowerCamelCase : Optional[int] ): """simple docstring""" lowerCamelCase__ : Any =_single_underscore_re.split(__lowerCamelCase ) lowerCamelCase__ : str =[_multiple_underscores_re.split(__lowerCamelCase ) for n in name] return "".join(n.capitalize() for n in itertools.chain.from_iterable(__lowerCamelCase ) if n != '''''' ) def snake_case__ ( __lowerCamelCase : List[str] ): """simple docstring""" if os.path.basename(__lowerCamelCase ) != name: raise ValueError(f'''Should be a dataset name, not a path: {name}''' ) return camelcase_to_snakecase(__lowerCamelCase ) def snake_case__ ( __lowerCamelCase : Optional[Any] , __lowerCamelCase : Optional[int] ): """simple docstring""" if os.path.basename(__lowerCamelCase ) != name: raise ValueError(f'''Should be a dataset name, not a path: {name}''' ) if not re.match(_split_re , __lowerCamelCase ): raise ValueError(f'''Split name should match \'{_split_re}\'\' but got \'{split}\'.''' ) return f'''{filename_prefix_for_name(__lowerCamelCase )}-{split}''' def snake_case__ ( __lowerCamelCase : str , __lowerCamelCase : Dict , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : List[str]=None ): """simple docstring""" lowerCamelCase__ : Dict =filename_prefix_for_split(__lowerCamelCase , __lowerCamelCase ) if filetype_suffix: prefix += f'''.{filetype_suffix}''' lowerCamelCase__ : Any =os.path.join(__lowerCamelCase , __lowerCamelCase ) return f'''{filepath}*''' def snake_case__ ( __lowerCamelCase : Tuple , __lowerCamelCase : Any , __lowerCamelCase : List[Any] , __lowerCamelCase : int=None , __lowerCamelCase : Tuple=None ): """simple docstring""" lowerCamelCase__ : List[Any] =filename_prefix_for_split(__lowerCamelCase , __lowerCamelCase ) lowerCamelCase__ : List[Any] =os.path.join(__lowerCamelCase , __lowerCamelCase ) if shard_lengths: lowerCamelCase__ : Optional[Any] =len(__lowerCamelCase ) lowerCamelCase__ : List[str] =[f'''{prefix}-{shard_id:05d}-of-{num_shards:05d}''' for shard_id in range(__lowerCamelCase )] if filetype_suffix: lowerCamelCase__ : List[str] =[filename + f'''.{filetype_suffix}''' for filename in filenames] return filenames else: lowerCamelCase__ : Optional[Any] =prefix if filetype_suffix: filename += f'''.{filetype_suffix}''' return [filename]
238
"""simple docstring""" from pathlib import Path from typing import List from transformers import is_torch_available, is_vision_available from transformers.testing_utils import get_tests_dir, is_tool_test from transformers.tools.agent_types import AGENT_TYPE_MAPPING, AgentAudio, AgentImage, AgentText if is_torch_available(): import torch if is_vision_available(): from PIL import Image _lowercase : Union[str, Any] = ["text", "image", "audio"] def snake_case__ ( __lowerCamelCase : List[str] ): """simple docstring""" lowerCamelCase__ : Union[str, Any] =[] for input_type in input_types: if input_type == "text": inputs.append('''Text input''' ) elif input_type == "image": inputs.append( Image.open(Path(get_tests_dir('''fixtures/tests_samples/COCO''' ) ) / '''000000039769.png''' ).resize((512, 512) ) ) elif input_type == "audio": inputs.append(torch.ones(3000 ) ) elif isinstance(__lowerCamelCase , __lowerCamelCase ): inputs.append(create_inputs(__lowerCamelCase ) ) else: raise ValueError(f'''Invalid type requested: {input_type}''' ) return inputs def snake_case__ ( __lowerCamelCase : List ): """simple docstring""" lowerCamelCase__ : Tuple =[] for output in outputs: if isinstance(__lowerCamelCase , (str, AgentText) ): output_types.append('''text''' ) elif isinstance(__lowerCamelCase , (Image.Image, AgentImage) ): output_types.append('''image''' ) elif isinstance(__lowerCamelCase , (torch.Tensor, AgentAudio) ): output_types.append('''audio''' ) else: raise ValueError(f'''Invalid output: {output}''' ) return output_types @is_tool_test class __SCREAMING_SNAKE_CASE : '''simple docstring''' def snake_case ( self : Any )-> Optional[Any]: self.assertTrue(hasattr(self.tool, '''inputs''' ) ) self.assertTrue(hasattr(self.tool, '''outputs''' ) ) lowerCamelCase__ : Tuple =self.tool.inputs for _input in inputs: if isinstance(_input, lowerCamelCase ): for __input in _input: self.assertTrue(__input in authorized_types ) else: self.assertTrue(_input in authorized_types ) lowerCamelCase__ : Optional[Any] =self.tool.outputs for _output in outputs: self.assertTrue(_output in authorized_types ) def snake_case ( self : Optional[int] )-> Union[str, Any]: lowerCamelCase__ : Optional[int] =create_inputs(self.tool.inputs ) lowerCamelCase__ : List[Any] =self.tool(*lowerCamelCase ) # There is a single output if len(self.tool.outputs ) == 1: lowerCamelCase__ : Optional[int] =[outputs] self.assertListEqual(output_types(lowerCamelCase ), self.tool.outputs ) def snake_case ( self : Union[str, Any] )-> List[str]: self.assertTrue(hasattr(self.tool, '''description''' ) ) self.assertTrue(hasattr(self.tool, '''default_checkpoint''' ) ) self.assertTrue(self.tool.description.startswith('''This is a tool that''' ) ) def snake_case ( self : Union[str, Any] )-> str: lowerCamelCase__ : List[str] =create_inputs(self.tool.inputs ) lowerCamelCase__ : Optional[Any] =self.tool(*lowerCamelCase ) if not isinstance(lowerCamelCase, lowerCamelCase ): lowerCamelCase__ : Any =[outputs] self.assertEqual(len(lowerCamelCase ), len(self.tool.outputs ) ) for output, output_type in zip(lowerCamelCase, self.tool.outputs ): lowerCamelCase__ : List[Any] =AGENT_TYPE_MAPPING[output_type] self.assertTrue(isinstance(lowerCamelCase, lowerCamelCase ) ) def snake_case ( self : Optional[Any] )-> List[Any]: lowerCamelCase__ : Optional[Any] =create_inputs(self.tool.inputs ) lowerCamelCase__ : List[str] =[] for _input, input_type in zip(lowerCamelCase, self.tool.inputs ): if isinstance(lowerCamelCase, lowerCamelCase ): _inputs.append([AGENT_TYPE_MAPPING[_input_type](_input ) for _input_type in input_type] ) else: _inputs.append(AGENT_TYPE_MAPPING[input_type](_input ) ) # Should not raise an error lowerCamelCase__ : Any =self.tool(*lowerCamelCase ) if not isinstance(lowerCamelCase, lowerCamelCase ): lowerCamelCase__ : Optional[int] =[outputs] self.assertEqual(len(lowerCamelCase ), len(self.tool.outputs ) )
238
1
"""simple docstring""" import math import os import sys def __UpperCAmelCase ( __lowerCamelCase ) -> str: lowercase__ : int = '''''' try: with open(__lowerCamelCase , '''rb''' ) as binary_file: lowercase__ : int = binary_file.read() for dat in data: lowercase__ : List[str] = f"""{dat:08b}""" result += curr_byte return result except OSError: print('''File not accessible''' ) sys.exit() def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> None: lexicon.pop(__lowerCamelCase ) lowercase__ : List[str] = last_match_id if math.loga(__lowerCamelCase ).is_integer(): for curr_key in lexicon: lowercase__ : int = '''0''' + lexicon[curr_key] lowercase__ : Union[str, Any] = bin(__lowerCamelCase )[2:] def __UpperCAmelCase ( __lowerCamelCase ) -> str: lowercase__ : List[str] = {'''0''': '''0''', '''1''': '''1'''} lowercase__ , lowercase__ : int = '''''', '''''' lowercase__ : List[str] = len(__lowerCamelCase ) for i in range(len(__lowerCamelCase ) ): curr_string += data_bits[i] if curr_string not in lexicon: continue lowercase__ : Dict = lexicon[curr_string] result += last_match_id add_key_to_lexicon(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) index += 1 lowercase__ : int = '''''' while curr_string != "" and curr_string not in lexicon: curr_string += "0" if curr_string != "": lowercase__ : Union[str, Any] = lexicon[curr_string] result += last_match_id return result def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> str: lowercase__ : List[str] = os.path.getsize(__lowerCamelCase ) lowercase__ : Any = bin(__lowerCamelCase )[2:] lowercase__ : Optional[int] = len(__lowerCamelCase ) return "0" * (length_length - 1) + file_length_binary + compressed def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> None: lowercase__ : Tuple = 8 try: with open(__lowerCamelCase , '''wb''' ) as opened_file: lowercase__ : str = [ to_write[i : i + byte_length] for i in range(0 , len(__lowerCamelCase ) , __lowerCamelCase ) ] if len(result_byte_array[-1] ) % byte_length == 0: result_byte_array.append('''10000000''' ) else: result_byte_array[-1] += "1" + "0" * ( byte_length - len(result_byte_array[-1] ) - 1 ) for elem in result_byte_array: opened_file.write(int(__lowerCamelCase , 2 ).to_bytes(1 , byteorder='''big''' ) ) except OSError: print('''File not accessible''' ) sys.exit() def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> None: lowercase__ : Optional[int] = read_file_binary(__lowerCamelCase ) lowercase__ : Dict = compress_data(__lowerCamelCase ) lowercase__ : List[str] = add_file_length(__lowerCamelCase , __lowerCamelCase ) write_file_binary(__lowerCamelCase , __lowerCamelCase ) if __name__ == "__main__": compress(sys.argv[1], sys.argv[2])
302
"""simple docstring""" import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision import transforms from transformers import BitImageProcessor, FocalNetConfig, FocalNetForImageClassification from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def __UpperCAmelCase ( __lowerCamelCase ) -> Optional[int]: lowercase__ : int = [2, 2, 6, 2] if '''tiny''' in model_name else [2, 2, 18, 2] lowercase__ : Dict = True if '''large''' in model_name or '''huge''' in model_name else False lowercase__ : Optional[int] = True if '''large''' in model_name or '''huge''' in model_name else False lowercase__ : List[Any] = True if '''large''' in model_name or '''huge''' in model_name else False if "large" in model_name or "xlarge" in model_name or "huge" in model_name: if "fl3" in model_name: lowercase__ : Dict = [3, 3, 3, 3] lowercase__ : str = [5, 5, 5, 5] elif "fl4" in model_name: lowercase__ : List[str] = [4, 4, 4, 4] lowercase__ : Any = [3, 3, 3, 3] if "tiny" in model_name or "small" in model_name or "base" in model_name: lowercase__ : List[str] = [3, 3, 3, 3] if "lrf" in model_name: lowercase__ : List[str] = [3, 3, 3, 3] else: lowercase__ : Optional[Any] = [2, 2, 2, 2] if "tiny" in model_name: lowercase__ : Optional[int] = 96 elif "small" in model_name: lowercase__ : Union[str, Any] = 96 elif "base" in model_name: lowercase__ : Tuple = 1_28 elif "large" in model_name: lowercase__ : Any = 1_92 elif "xlarge" in model_name: lowercase__ : Any = 2_56 elif "huge" in model_name: lowercase__ : Union[str, Any] = 3_52 # set label information lowercase__ : List[Any] = '''huggingface/label-files''' if "large" in model_name or "huge" in model_name: lowercase__ : Optional[int] = '''imagenet-22k-id2label.json''' else: lowercase__ : Optional[Any] = '''imagenet-1k-id2label.json''' lowercase__ : Dict = json.load(open(hf_hub_download(__lowerCamelCase , __lowerCamelCase , repo_type='''dataset''' ) , '''r''' ) ) lowercase__ : Union[str, Any] = {int(__lowerCamelCase ): v for k, v in idalabel.items()} lowercase__ : Optional[Any] = {v: k for k, v in idalabel.items()} lowercase__ : int = FocalNetConfig( embed_dim=__lowerCamelCase , depths=__lowerCamelCase , focal_levels=__lowerCamelCase , focal_windows=__lowerCamelCase , use_conv_embed=__lowerCamelCase , idalabel=__lowerCamelCase , labelaid=__lowerCamelCase , use_post_layernorm=__lowerCamelCase , use_layerscale=__lowerCamelCase , ) return config def __UpperCAmelCase ( __lowerCamelCase ) -> Any: if "patch_embed.proj" in name: lowercase__ : Any = name.replace('''patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' ) if "patch_embed.norm" in name: lowercase__ : Tuple = name.replace('''patch_embed.norm''' , '''embeddings.norm''' ) if "layers" in name: lowercase__ : Dict = '''encoder.''' + name if "encoder.layers" in name: lowercase__ : Tuple = name.replace('''encoder.layers''' , '''encoder.stages''' ) if "downsample.proj" in name: lowercase__ : Union[str, Any] = name.replace('''downsample.proj''' , '''downsample.projection''' ) if "blocks" in name: lowercase__ : Optional[Any] = name.replace('''blocks''' , '''layers''' ) if "modulation.f.weight" in name or "modulation.f.bias" in name: lowercase__ : Dict = name.replace('''modulation.f''' , '''modulation.projection_in''' ) if "modulation.h.weight" in name or "modulation.h.bias" in name: lowercase__ : Dict = name.replace('''modulation.h''' , '''modulation.projection_context''' ) if "modulation.proj.weight" in name or "modulation.proj.bias" in name: lowercase__ : Optional[Any] = name.replace('''modulation.proj''' , '''modulation.projection_out''' ) if name == "norm.weight": lowercase__ : Dict = '''layernorm.weight''' if name == "norm.bias": lowercase__ : Dict = '''layernorm.bias''' if "head" in name: lowercase__ : Dict = name.replace('''head''' , '''classifier''' ) else: lowercase__ : List[Any] = '''focalnet.''' + name return name def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=False ) -> List[str]: # fmt: off lowercase__ : Any = { '''focalnet-tiny''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_srf.pth''', '''focalnet-tiny-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_lrf.pth''', '''focalnet-small''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_srf.pth''', '''focalnet-small-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_lrf.pth''', '''focalnet-base''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_srf.pth''', '''focalnet-base-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_lrf.pth''', '''focalnet-large-lrf-fl3''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384.pth''', '''focalnet-large-lrf-fl4''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384_fl4.pth''', '''focalnet-xlarge-lrf-fl3''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384.pth''', '''focalnet-xlarge-lrf-fl4''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384_fl4.pth''', } # fmt: on lowercase__ : Optional[int] = model_name_to_url[model_name] print('''Checkpoint URL: ''' , __lowerCamelCase ) lowercase__ : str = torch.hub.load_state_dict_from_url(__lowerCamelCase , map_location='''cpu''' )['''model'''] # rename keys for key in state_dict.copy().keys(): lowercase__ : int = state_dict.pop(__lowerCamelCase ) lowercase__ : Any = val lowercase__ : List[Any] = get_focalnet_config(__lowerCamelCase ) lowercase__ : Optional[int] = FocalNetForImageClassification(__lowerCamelCase ) model.eval() # load state dict model.load_state_dict(__lowerCamelCase ) # verify conversion lowercase__ : int = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowercase__ : int = BitImageProcessor( do_resize=__lowerCamelCase , size={'''shortest_edge''': 2_56} , resample=PILImageResampling.BILINEAR , do_center_crop=__lowerCamelCase , crop_size=2_24 , do_normalize=__lowerCamelCase , image_mean=__lowerCamelCase , image_std=__lowerCamelCase , ) lowercase__ : str = Image.open(requests.get(__lowerCamelCase , stream=__lowerCamelCase ).raw ) lowercase__ : List[str] = processor(images=__lowerCamelCase , return_tensors='''pt''' ) lowercase__ : List[str] = transforms.Compose( [ transforms.Resize(2_56 ), transforms.CenterCrop(2_24 ), transforms.ToTensor(), transforms.Normalize(mean=[0.4_8_5, 0.4_5_6, 0.4_0_6] , std=[0.2_2_9, 0.2_2_4, 0.2_2_5] ), ] ) lowercase__ : Optional[Any] = image_transforms(__lowerCamelCase ).unsqueeze(0 ) # verify pixel_values assert torch.allclose(inputs.pixel_values , __lowerCamelCase , atol=1E-4 ) lowercase__ : Optional[Any] = model(**__lowerCamelCase ) lowercase__ : Optional[int] = outputs.logits.argmax(-1 ).item() print('''Predicted class:''' , model.config.idalabel[predicted_class_idx] ) print('''First values of logits:''' , outputs.logits[0, :3] ) if model_name == "focalnet-tiny": lowercase__ : Dict = torch.tensor([0.2_1_6_6, -0.4_3_6_8, 0.2_1_9_1] ) elif model_name == "focalnet-tiny-lrf": lowercase__ : Union[str, Any] = torch.tensor([1.1_6_6_9, 0.0_1_2_5, -0.1_6_9_5] ) elif model_name == "focalnet-small": lowercase__ : Optional[int] = torch.tensor([0.4_9_1_7, -0.0_4_3_0, 0.1_3_4_1] ) elif model_name == "focalnet-small-lrf": lowercase__ : Dict = torch.tensor([-0.2_5_8_8, -0.5_3_4_2, -0.2_3_3_1] ) elif model_name == "focalnet-base": lowercase__ : List[str] = torch.tensor([-0.1_6_5_5, -0.4_0_9_0, -0.1_7_3_0] ) elif model_name == "focalnet-base-lrf": lowercase__ : List[str] = torch.tensor([0.5_3_0_6, -0.0_4_8_3, -0.3_9_2_8] ) assert torch.allclose(outputs.logits[0, :3] , __lowerCamelCase , atol=1E-4 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(f"""Saving model and processor of {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(__lowerCamelCase ) processor.save_pretrained(__lowerCamelCase ) if push_to_hub: print(f"""Pushing model and processor of {model_name} to the hub...""" ) model.push_to_hub(f"""{model_name}""" ) processor.push_to_hub(f"""{model_name}""" ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='focalnet-tiny', type=str, help='Name of the FocalNet model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether to push the model and processor to the hub.', ) lowerCAmelCase_ = parser.parse_args() convert_focalnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
302
1
"""simple docstring""" from typing import List from .keymap import KEYMAP, get_character def __UpperCAmelCase ( __UpperCamelCase ): def decorator(__UpperCamelCase ): __lowercase : Optional[Any] = getattr(SCREAMING_SNAKE_CASE__ , '''handle_key''' , [] ) handle += [key] setattr(SCREAMING_SNAKE_CASE__ , '''handle_key''' , SCREAMING_SNAKE_CASE__ ) return func return decorator def __UpperCAmelCase ( *__UpperCamelCase ): def decorator(__UpperCamelCase ): __lowercase : Tuple = getattr(SCREAMING_SNAKE_CASE__ , '''handle_key''' , [] ) handle += keys setattr(SCREAMING_SNAKE_CASE__ , '''handle_key''' , SCREAMING_SNAKE_CASE__ ) return func return decorator class UpperCAmelCase_ ( UpperCamelCase_ ): def __new__( cls , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> List[Any]: __lowercase : Optional[Any] = super().__new__(cls , lowercase_ , lowercase_ , lowercase_ ) if not hasattr(lowercase_ , '''key_handler''' ): setattr(lowercase_ , '''key_handler''' , {} ) setattr(lowercase_ , '''handle_input''' , KeyHandler.handle_input ) for value in attrs.values(): __lowercase : Any = getattr(lowercase_ , '''handle_key''' , [] ) for key in handled_keys: __lowercase : Tuple = value return new_cls @staticmethod def _lowerCamelCase ( cls ) -> str: __lowercase : str = get_character() if char != KEYMAP["undefined"]: __lowercase : Tuple = ord(lowercase_ ) __lowercase : Optional[int] = cls.key_handler.get(lowercase_ ) if handler: __lowercase : Union[str, Any] = char return handler(cls ) else: return None def __UpperCAmelCase ( cls ): return KeyHandler(cls.__name__ , cls.__bases__ , cls.__dict__.copy() )
249
import sys from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers lowerCamelCase = 'python tqdm regex requests packaging filelock numpy tokenizers'.split() if sys.version_info < (3, 7): pkgs_to_check_at_runtime.append('dataclasses') if sys.version_info < (3, 8): pkgs_to_check_at_runtime.append('importlib_metadata') for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(F"""can't find {pkg} in {deps.keys()}, check dependency_versions_table.py""") def a_ ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : str=None ): '''simple docstring''' require_version(deps[pkg] , SCREAMING_SNAKE_CASE__ )
199
0
import warnings from contextlib import contextmanager from ....processing_utils import ProcessorMixin class SCREAMING_SNAKE_CASE__ ( UpperCamelCase__ ): __SCREAMING_SNAKE_CASE = '''MCTCTFeatureExtractor''' __SCREAMING_SNAKE_CASE = '''AutoTokenizer''' def __init__( self,__lowerCamelCase,__lowerCamelCase ): super().__init__(__lowerCamelCase,__lowerCamelCase ) A__ = self.feature_extractor A__ = False def __call__( self,*__lowerCamelCase,**__lowerCamelCase ): # For backward compatibility if self._in_target_context_manager: return self.current_processor(*__lowerCamelCase,**__lowerCamelCase ) if "raw_speech" in kwargs: warnings.warn('''Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.''' ) A__ = kwargs.pop('''raw_speech''' ) else: A__ = kwargs.pop('''audio''',__lowerCamelCase ) A__ = kwargs.pop('''sampling_rate''',__lowerCamelCase ) A__ = kwargs.pop('''text''',__lowerCamelCase ) if len(__lowerCamelCase ) > 0: A__ = args[0] A__ = args[1:] if audio is None and text is None: raise ValueError('''You need to specify either an `audio` or `text` input to process.''' ) if audio is not None: A__ = self.feature_extractor(__lowerCamelCase,*__lowerCamelCase,sampling_rate=__lowerCamelCase,**__lowerCamelCase ) if text is not None: A__ = self.tokenizer(__lowerCamelCase,**__lowerCamelCase ) if text is None: return inputs elif audio is None: return encodings else: A__ = encodings['''input_ids'''] return inputs def UpperCamelCase ( self,*__lowerCamelCase,**__lowerCamelCase ): return self.tokenizer.batch_decode(*__lowerCamelCase,**__lowerCamelCase ) def UpperCamelCase ( self,*__lowerCamelCase,**__lowerCamelCase ): # For backward compatibility if self._in_target_context_manager: return self.current_processor.pad(*__lowerCamelCase,**__lowerCamelCase ) A__ = kwargs.pop('''input_features''',__lowerCamelCase ) A__ = kwargs.pop('''labels''',__lowerCamelCase ) if len(__lowerCamelCase ) > 0: A__ = args[0] A__ = args[1:] if input_features is not None: A__ = self.feature_extractor.pad(__lowerCamelCase,*__lowerCamelCase,**__lowerCamelCase ) if labels is not None: A__ = self.tokenizer.pad(__lowerCamelCase,**__lowerCamelCase ) if labels is None: return input_features elif input_features is None: return labels else: A__ = labels['''input_ids'''] return input_features def UpperCamelCase ( self,*__lowerCamelCase,**__lowerCamelCase ): return self.tokenizer.decode(*__lowerCamelCase,**__lowerCamelCase ) @contextmanager def UpperCamelCase ( self ): warnings.warn( '''`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ''' '''labels by using the argument `text` of the regular `__call__` method (either in the same call as ''' '''your audio inputs, or in a separate call.''' ) A__ = True A__ = self.tokenizer yield A__ = self.feature_extractor A__ = False
364
import gc import unittest import numpy as np import torch from diffusers import StableDiffusionKDiffusionPipeline from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() @slow @require_torch_gpu class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def UpperCamelCase ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase ( self ): A__ = StableDiffusionKDiffusionPipeline.from_pretrained('''CompVis/stable-diffusion-v1-4''' ) A__ = sd_pipe.to(__lowerCamelCase ) sd_pipe.set_progress_bar_config(disable=__lowerCamelCase ) sd_pipe.set_scheduler('''sample_euler''' ) A__ = '''A painting of a squirrel eating a burger''' A__ = torch.manual_seed(0 ) A__ = sd_pipe([prompt],generator=__lowerCamelCase,guidance_scale=9.0,num_inference_steps=20,output_type='''np''' ) A__ = output.images A__ = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) A__ = np.array([0.0447, 0.0492, 0.0468, 0.0408, 0.0383, 0.0408, 0.0354, 0.0380, 0.0339] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCamelCase ( self ): A__ = StableDiffusionKDiffusionPipeline.from_pretrained('''stabilityai/stable-diffusion-2-1-base''' ) A__ = sd_pipe.to(__lowerCamelCase ) sd_pipe.set_progress_bar_config(disable=__lowerCamelCase ) sd_pipe.set_scheduler('''sample_euler''' ) A__ = '''A painting of a squirrel eating a burger''' A__ = torch.manual_seed(0 ) A__ = sd_pipe([prompt],generator=__lowerCamelCase,guidance_scale=9.0,num_inference_steps=20,output_type='''np''' ) A__ = output.images A__ = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) A__ = np.array([0.1237, 0.1320, 0.1438, 0.1359, 0.1390, 0.1132, 0.1277, 0.1175, 0.1112] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-1 def UpperCamelCase ( self ): A__ = StableDiffusionKDiffusionPipeline.from_pretrained('''stabilityai/stable-diffusion-2-1-base''' ) A__ = sd_pipe.to(__lowerCamelCase ) sd_pipe.set_progress_bar_config(disable=__lowerCamelCase ) sd_pipe.set_scheduler('''sample_dpmpp_2m''' ) A__ = '''A painting of a squirrel eating a burger''' A__ = torch.manual_seed(0 ) A__ = sd_pipe( [prompt],generator=__lowerCamelCase,guidance_scale=7.5,num_inference_steps=15,output_type='''np''',use_karras_sigmas=__lowerCamelCase,) A__ = output.images A__ = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) A__ = np.array( [0.11381689, 0.12112921, 0.1389457, 0.12549606, 0.1244964, 0.10831517, 0.11562866, 0.10867816, 0.10499048] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
39
0
def __A ( __lowerCAmelCase )-> Union[str, Any]: """simple docstring""" _UpperCAmelCase = [] _UpperCAmelCase = [] _UpperCAmelCase = { '^': 3, '*': 2, '/': 2, '%': 2, '+': 1, '-': 1, } # Priority of each operator _UpperCAmelCase = len(__lowerCAmelCase ) if (len(__lowerCAmelCase ) > 7) else 7 # Print table header for output print( 'Symbol'.center(8 ) , 'Stack'.center(__lowerCAmelCase ) , 'Postfix'.center(__lowerCAmelCase ) , sep=' | ' , ) print('-' * (print_width * 3 + 7) ) for x in infix: if x.isalpha() or x.isdigit(): post_fix.append(__lowerCAmelCase ) # if x is Alphabet / Digit, add it to Postfix elif x == "(": stack.append(__lowerCAmelCase ) # if x is "(" push to Stack elif x == ")": # if x is ")" pop stack until "(" is encountered while stack[-1] != "(": post_fix.append(stack.pop() ) # Pop stack & add the content to Postfix stack.pop() else: if len(__lowerCAmelCase ) == 0: stack.append(__lowerCAmelCase ) # If stack is empty, push x to stack else: # while priority of x is not > priority of element in the stack while len(__lowerCAmelCase ) > 0 and priority[x] <= priority[stack[-1]]: post_fix.append(stack.pop() ) # pop stack & add to Postfix stack.append(__lowerCAmelCase ) # push x to stack print( x.center(8 ) , (''.join(__lowerCAmelCase )).ljust(__lowerCAmelCase ) , (''.join(__lowerCAmelCase )).ljust(__lowerCAmelCase ) , sep=' | ' , ) # Output in tabular format while len(__lowerCAmelCase ) > 0: # while stack is not empty post_fix.append(stack.pop() ) # pop stack & add to Postfix print( ' '.center(8 ) , (''.join(__lowerCAmelCase )).ljust(__lowerCAmelCase ) , (''.join(__lowerCAmelCase )).ljust(__lowerCAmelCase ) , sep=' | ' , ) # Output in tabular format return "".join(__lowerCAmelCase ) # return Postfix as str def __A ( __lowerCAmelCase )-> Tuple: """simple docstring""" _UpperCAmelCase = list(infix[::-1] ) # reverse the infix equation for i in range(len(__lowerCAmelCase ) ): if infix[i] == "(": _UpperCAmelCase = ')' # change "(" to ")" elif infix[i] == ")": _UpperCAmelCase = '(' # change ")" to "(" return (infix_2_postfix(''.join(__lowerCAmelCase ) ))[ ::-1 ] # call infix_2_postfix on Infix, return reverse of Postfix if __name__ == "__main__": _a = input('''\nEnter an Infix Equation = ''') # Input an Infix equation _a = ''''''.join(Infix.split()) # Remove spaces from the input print('''\n\t''', Infix, '''(Infix) -> ''', infix_2_prefix(Infix), '''(Prefix)''')
39
'''simple docstring''' def snake_case__ ( _A: str ) -> list[int]: '''simple docstring''' lowerCAmelCase = [0 for i in range(len(_A ) )] # initialize interval's left pointer and right pointer lowerCAmelCase , lowerCAmelCase = 0, 0 for i in range(1 , len(_A ) ): # case when current index is inside the interval if i <= right_pointer: lowerCAmelCase = min(right_pointer - i + 1 , z_result[i - left_pointer] ) lowerCAmelCase = min_edge while go_next(_A , _A , _A ): z_result[i] += 1 # if new index's result gives us more right interval, # we've to update left_pointer and right_pointer if i + z_result[i] - 1 > right_pointer: lowerCAmelCase , lowerCAmelCase = i, i + z_result[i] - 1 return z_result def snake_case__ ( _A: int , _A: list[int] , _A: str ) -> bool: '''simple docstring''' return i + z_result[i] < len(_A ) and s[z_result[i]] == s[i + z_result[i]] def snake_case__ ( _A: str , _A: str ) -> int: '''simple docstring''' lowerCAmelCase = 0 # concatenate 'pattern' and 'input_str' and call z_function # with concatenated string lowerCAmelCase = z_function(pattern + input_str ) for val in z_result: # if value is greater then length of the pattern string # that means this index is starting position of substring # which is equal to pattern string if val >= len(_A ): answer += 1 return answer if __name__ == "__main__": import doctest doctest.testmod()
272
0
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCAmelCase = logging.get_logger(__name__) UpperCAmelCase = { """facebook/deit-base-distilled-patch16-224""": ( """https://huggingface.co/facebook/deit-base-patch16-224/resolve/main/config.json""" ), # See all DeiT models at https://huggingface.co/models?filter=deit } class UpperCAmelCase_ ( _lowercase): snake_case__ = '''deit''' def __init__( self : str , __UpperCamelCase : int=768 , __UpperCamelCase : List[Any]=12 , __UpperCamelCase : List[Any]=12 , __UpperCamelCase : Any=3072 , __UpperCamelCase : Dict="gelu" , __UpperCamelCase : Dict=0.0 , __UpperCamelCase : Any=0.0 , __UpperCamelCase : List[str]=0.0_2 , __UpperCamelCase : Tuple=1E-12 , __UpperCamelCase : List[str]=224 , __UpperCamelCase : Tuple=16 , __UpperCamelCase : Any=3 , __UpperCamelCase : Tuple=True , __UpperCamelCase : Dict=16 , **__UpperCamelCase : List[str] , ) -> Any: super().__init__(**__UpperCamelCase ) _UpperCamelCase = hidden_size _UpperCamelCase = num_hidden_layers _UpperCamelCase = num_attention_heads _UpperCamelCase = intermediate_size _UpperCamelCase = hidden_act _UpperCamelCase = hidden_dropout_prob _UpperCamelCase = attention_probs_dropout_prob _UpperCamelCase = initializer_range _UpperCamelCase = layer_norm_eps _UpperCamelCase = image_size _UpperCamelCase = patch_size _UpperCamelCase = num_channels _UpperCamelCase = qkv_bias _UpperCamelCase = encoder_stride class UpperCAmelCase_ ( _lowercase): snake_case__ = version.parse('''1.11''') @property def _UpperCamelCase ( self : int ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def _UpperCamelCase ( self : Any ) -> float: return 1E-4
54
"""simple docstring""" from __future__ import annotations UpperCAmelCase = 8.988E9 # units = N * m^s * C^-2 def lowercase ( a__ : float , a__ : float , a__ : float , a__ : float ) -> dict[str, float]: _UpperCamelCase = abs(chargea * chargea ) if (force, chargea, chargea, distance).count(0 ) != 1: raise ValueError('''One and only one argument must be 0''' ) if distance < 0: raise ValueError('''Distance cannot be negative''' ) if force == 0: _UpperCamelCase = COULOMBS_CONSTANT * charge_product / (distance**2) return {"force": force} elif chargea == 0: _UpperCamelCase = abs(a__ ) * (distance**2) / (COULOMBS_CONSTANT * chargea) return {"charge1": chargea} elif chargea == 0: _UpperCamelCase = abs(a__ ) * (distance**2) / (COULOMBS_CONSTANT * chargea) return {"charge2": chargea} elif distance == 0: _UpperCamelCase = (COULOMBS_CONSTANT * charge_product / abs(a__ )) ** 0.5 return {"distance": distance} raise ValueError('''Exactly one argument must be 0''' ) if __name__ == "__main__": import doctest doctest.testmod()
54
1
import argparse import os import torch from diffusers import ( CMStochasticIterativeScheduler, ConsistencyModelPipeline, UNetaDModel, ) __lowerCAmelCase : Optional[Any] = { "sample_size": 32, "in_channels": 3, "out_channels": 3, "layers_per_block": 2, "num_class_embeds": 1_000, "block_out_channels": [32, 64], "attention_head_dim": 8, "down_block_types": [ "ResnetDownsampleBlock2D", "AttnDownBlock2D", ], "up_block_types": [ "AttnUpBlock2D", "ResnetUpsampleBlock2D", ], "resnet_time_scale_shift": "scale_shift", "upsample_type": "resnet", "downsample_type": "resnet", } __lowerCAmelCase : str = { "sample_size": 64, "in_channels": 3, "out_channels": 3, "layers_per_block": 3, "num_class_embeds": 1_000, "block_out_channels": [192, 192 * 2, 192 * 3, 192 * 4], "attention_head_dim": 64, "down_block_types": [ "ResnetDownsampleBlock2D", "AttnDownBlock2D", "AttnDownBlock2D", "AttnDownBlock2D", ], "up_block_types": [ "AttnUpBlock2D", "AttnUpBlock2D", "AttnUpBlock2D", "ResnetUpsampleBlock2D", ], "resnet_time_scale_shift": "scale_shift", "upsample_type": "resnet", "downsample_type": "resnet", } __lowerCAmelCase : str = { "sample_size": 256, "in_channels": 3, "out_channels": 3, "layers_per_block": 2, "num_class_embeds": None, "block_out_channels": [256, 256, 256 * 2, 256 * 2, 256 * 4, 256 * 4], "attention_head_dim": 64, "down_block_types": [ "ResnetDownsampleBlock2D", "ResnetDownsampleBlock2D", "ResnetDownsampleBlock2D", "AttnDownBlock2D", "AttnDownBlock2D", "AttnDownBlock2D", ], "up_block_types": [ "AttnUpBlock2D", "AttnUpBlock2D", "AttnUpBlock2D", "ResnetUpsampleBlock2D", "ResnetUpsampleBlock2D", "ResnetUpsampleBlock2D", ], "resnet_time_scale_shift": "default", "upsample_type": "resnet", "downsample_type": "resnet", } __lowerCAmelCase : int = { "num_train_timesteps": 40, "sigma_min": 0.002, "sigma_max": 80.0, } __lowerCAmelCase : int = { "num_train_timesteps": 201, "sigma_min": 0.002, "sigma_max": 80.0, } __lowerCAmelCase : Union[str, Any] = { "num_train_timesteps": 151, "sigma_min": 0.002, "sigma_max": 80.0, } def UpperCAmelCase_ ( __lowerCAmelCase ) -> str: if isinstance(__lowerCAmelCase , __lowerCAmelCase ): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise argparse.ArgumentTypeError('''boolean value expected''' ) def UpperCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=False ) -> Optional[Any]: __lowercase : Optional[int] = checkpoint[F'{old_prefix}.in_layers.0.weight'] __lowercase : List[Any] = checkpoint[F'{old_prefix}.in_layers.0.bias'] __lowercase : Tuple = checkpoint[F'{old_prefix}.in_layers.2.weight'] __lowercase : int = checkpoint[F'{old_prefix}.in_layers.2.bias'] __lowercase : Optional[int] = checkpoint[F'{old_prefix}.emb_layers.1.weight'] __lowercase : Optional[int] = checkpoint[F'{old_prefix}.emb_layers.1.bias'] __lowercase : int = checkpoint[F'{old_prefix}.out_layers.0.weight'] __lowercase : Any = checkpoint[F'{old_prefix}.out_layers.0.bias'] __lowercase : int = checkpoint[F'{old_prefix}.out_layers.3.weight'] __lowercase : Any = checkpoint[F'{old_prefix}.out_layers.3.bias'] if has_skip: __lowercase : Optional[int] = checkpoint[F'{old_prefix}.skip_connection.weight'] __lowercase : Union[str, Any] = checkpoint[F'{old_prefix}.skip_connection.bias'] return new_checkpoint def UpperCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=None ) -> Optional[int]: __lowercase , __lowercase , __lowercase : Any = checkpoint[F'{old_prefix}.qkv.weight'].chunk(3 , dim=0 ) __lowercase , __lowercase , __lowercase : Tuple = checkpoint[F'{old_prefix}.qkv.bias'].chunk(3 , dim=0 ) __lowercase : List[Any] = checkpoint[F'{old_prefix}.norm.weight'] __lowercase : int = checkpoint[F'{old_prefix}.norm.bias'] __lowercase : int = weight_q.squeeze(-1 ).squeeze(-1 ) __lowercase : Union[str, Any] = bias_q.squeeze(-1 ).squeeze(-1 ) __lowercase : List[Any] = weight_k.squeeze(-1 ).squeeze(-1 ) __lowercase : Optional[int] = bias_k.squeeze(-1 ).squeeze(-1 ) __lowercase : Optional[Any] = weight_v.squeeze(-1 ).squeeze(-1 ) __lowercase : Dict = bias_v.squeeze(-1 ).squeeze(-1 ) __lowercase : List[str] = ( checkpoint[F'{old_prefix}.proj_out.weight'].squeeze(-1 ).squeeze(-1 ) ) __lowercase : str = checkpoint[F'{old_prefix}.proj_out.bias'].squeeze(-1 ).squeeze(-1 ) return new_checkpoint def UpperCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase ) -> List[str]: __lowercase : Union[str, Any] = torch.load(__lowerCAmelCase , map_location='''cpu''' ) __lowercase : Optional[int] = {} __lowercase : List[str] = checkpoint['''time_embed.0.weight'''] __lowercase : List[Any] = checkpoint['''time_embed.0.bias'''] __lowercase : List[str] = checkpoint['''time_embed.2.weight'''] __lowercase : List[str] = checkpoint['''time_embed.2.bias'''] if unet_config["num_class_embeds"] is not None: __lowercase : Optional[int] = checkpoint['''label_emb.weight'''] __lowercase : Tuple = checkpoint['''input_blocks.0.0.weight'''] __lowercase : Tuple = checkpoint['''input_blocks.0.0.bias'''] __lowercase : Union[str, Any] = unet_config['''down_block_types'''] __lowercase : Any = unet_config['''layers_per_block'''] __lowercase : Optional[int] = unet_config['''attention_head_dim'''] __lowercase : int = unet_config['''block_out_channels'''] __lowercase : Dict = 1 __lowercase : Dict = channels_list[0] for i, layer_type in enumerate(__lowerCAmelCase ): __lowercase : List[str] = channels_list[i] __lowercase : Union[str, Any] = current_channels != prev_channels if layer_type == "ResnetDownsampleBlock2D": for j in range(__lowerCAmelCase ): __lowercase : List[Any] = F'down_blocks.{i}.resnets.{j}' __lowercase : Any = F'input_blocks.{current_layer}.0' __lowercase : Any = True if j == 0 and downsample_block_has_skip else False __lowercase : str = convert_resnet(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , has_skip=__lowerCAmelCase ) current_layer += 1 elif layer_type == "AttnDownBlock2D": for j in range(__lowerCAmelCase ): __lowercase : Optional[Any] = F'down_blocks.{i}.resnets.{j}' __lowercase : List[str] = F'input_blocks.{current_layer}.0' __lowercase : List[str] = True if j == 0 and downsample_block_has_skip else False __lowercase : List[Any] = convert_resnet(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , has_skip=__lowerCAmelCase ) __lowercase : Dict = F'down_blocks.{i}.attentions.{j}' __lowercase : Any = F'input_blocks.{current_layer}.1' __lowercase : Union[str, Any] = convert_attention( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) current_layer += 1 if i != len(__lowerCAmelCase ) - 1: __lowercase : List[Any] = F'down_blocks.{i}.downsamplers.0' __lowercase : int = F'input_blocks.{current_layer}.0' __lowercase : Optional[Any] = convert_resnet(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) current_layer += 1 __lowercase : int = current_channels # hardcoded the mid-block for now __lowercase : int = '''mid_block.resnets.0''' __lowercase : Any = '''middle_block.0''' __lowercase : Optional[Any] = convert_resnet(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) __lowercase : Any = '''mid_block.attentions.0''' __lowercase : Dict = '''middle_block.1''' __lowercase : Tuple = convert_attention(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) __lowercase : str = '''mid_block.resnets.1''' __lowercase : List[Any] = '''middle_block.2''' __lowercase : Any = convert_resnet(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) __lowercase : Any = 0 __lowercase : int = unet_config['''up_block_types'''] for i, layer_type in enumerate(__lowerCAmelCase ): if layer_type == "ResnetUpsampleBlock2D": for j in range(layers_per_block + 1 ): __lowercase : int = F'up_blocks.{i}.resnets.{j}' __lowercase : Optional[Any] = F'output_blocks.{current_layer}.0' __lowercase : Any = convert_resnet(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , has_skip=__lowerCAmelCase ) current_layer += 1 if i != len(__lowerCAmelCase ) - 1: __lowercase : Tuple = F'up_blocks.{i}.upsamplers.0' __lowercase : Optional[Any] = F'output_blocks.{current_layer-1}.1' __lowercase : Optional[Any] = convert_resnet(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) elif layer_type == "AttnUpBlock2D": for j in range(layers_per_block + 1 ): __lowercase : Optional[Any] = F'up_blocks.{i}.resnets.{j}' __lowercase : Union[str, Any] = F'output_blocks.{current_layer}.0' __lowercase : Dict = convert_resnet(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , has_skip=__lowerCAmelCase ) __lowercase : Optional[Any] = F'up_blocks.{i}.attentions.{j}' __lowercase : Tuple = F'output_blocks.{current_layer}.1' __lowercase : int = convert_attention( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) current_layer += 1 if i != len(__lowerCAmelCase ) - 1: __lowercase : str = F'up_blocks.{i}.upsamplers.0' __lowercase : Optional[int] = F'output_blocks.{current_layer-1}.2' __lowercase : str = convert_resnet(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) __lowercase : Union[str, Any] = checkpoint['''out.0.weight'''] __lowercase : Optional[int] = checkpoint['''out.0.bias'''] __lowercase : int = checkpoint['''out.2.weight'''] __lowercase : List[str] = checkpoint['''out.2.bias'''] return new_checkpoint if __name__ == "__main__": __lowerCAmelCase : List[str] = argparse.ArgumentParser() parser.add_argument("--unet_path", default=None, type=str, required=True, help="Path to the unet.pt to convert.") parser.add_argument( "--dump_path", default=None, type=str, required=True, help="Path to output the converted UNet model." ) parser.add_argument("--class_cond", default=True, type=str, help="Whether the model is class-conditional.") __lowerCAmelCase : Tuple = parser.parse_args() __lowerCAmelCase : List[str] = strabool(args.class_cond) __lowerCAmelCase : str = os.path.basename(args.unet_path) print(F'Checkpoint: {ckpt_name}') # Get U-Net config if "imagenet64" in ckpt_name: __lowerCAmelCase : Optional[int] = IMAGENET_64_UNET_CONFIG elif "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): __lowerCAmelCase : int = LSUN_256_UNET_CONFIG elif "test" in ckpt_name: __lowerCAmelCase : str = TEST_UNET_CONFIG else: raise ValueError(F'Checkpoint type {ckpt_name} is not currently supported.') if not args.class_cond: __lowerCAmelCase : Optional[Any] = None __lowerCAmelCase : int = con_pt_to_diffuser(args.unet_path, unet_config) __lowerCAmelCase : List[str] = UNetaDModel(**unet_config) image_unet.load_state_dict(converted_unet_ckpt) # Get scheduler config if "cd" in ckpt_name or "test" in ckpt_name: __lowerCAmelCase : Union[str, Any] = CD_SCHEDULER_CONFIG elif "ct" in ckpt_name and "imagenet64" in ckpt_name: __lowerCAmelCase : Optional[Any] = CT_IMAGENET_64_SCHEDULER_CONFIG elif "ct" in ckpt_name and "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): __lowerCAmelCase : List[str] = CT_LSUN_256_SCHEDULER_CONFIG else: raise ValueError(F'Checkpoint type {ckpt_name} is not currently supported.') __lowerCAmelCase : Union[str, Any] = CMStochasticIterativeScheduler(**scheduler_config) __lowerCAmelCase : List[str] = ConsistencyModelPipeline(unet=image_unet, scheduler=cm_scheduler) consistency_model.save_pretrained(args.dump_path)
156
from typing import List, Optional import numpy as np from ...processing_utils import ProcessorMixin from ...utils import to_numpy class __lowerCAmelCase ( lowerCAmelCase_ ): """simple docstring""" A__ : Any = '''EncodecFeatureExtractor''' A__ : Optional[int] = ('''T5Tokenizer''', '''T5TokenizerFast''') def __init__( self : Optional[int] , _snake_case : Optional[Any] , _snake_case : Optional[Any] ): super().__init__(_snake_case , _snake_case ) __lowercase : List[Any] = self.feature_extractor __lowercase : Tuple = False def snake_case_ ( self : Optional[int] , _snake_case : Union[str, Any]=None , _snake_case : Optional[Any]=None , _snake_case : List[str]=True ): return self.tokenizer.get_decoder_prompt_ids(task=_snake_case , language=_snake_case , no_timestamps=_snake_case ) def __call__( self : str , *_snake_case : Tuple , **_snake_case : str ): # For backward compatibility if self._in_target_context_manager: return self.current_processor(*_snake_case , **_snake_case ) __lowercase : Optional[Any] = kwargs.pop('''audio''' , _snake_case ) __lowercase : str = kwargs.pop('''sampling_rate''' , _snake_case ) __lowercase : Any = kwargs.pop('''text''' , _snake_case ) if len(_snake_case ) > 0: __lowercase : Dict = args[0] __lowercase : Any = args[1:] if audio is None and text is None: raise ValueError('''You need to specify either an `audio` or `text` input to process.''' ) if text is not None: __lowercase : str = self.tokenizer(_snake_case , **_snake_case ) if audio is not None: __lowercase : List[str] = self.feature_extractor(_snake_case , *_snake_case , sampling_rate=_snake_case , **_snake_case ) if audio is None: return inputs elif text is None: return audio_inputs else: __lowercase : Tuple = audio_inputs['''input_values'''] if "padding_mask" in audio_inputs: __lowercase : Tuple = audio_inputs['''padding_mask'''] return inputs def snake_case_ ( self : int , *_snake_case : int , **_snake_case : Any ): __lowercase : Dict = kwargs.pop('''audio''' , _snake_case ) __lowercase : Tuple = kwargs.pop('''padding_mask''' , _snake_case ) if len(_snake_case ) > 0: __lowercase : str = args[0] __lowercase : Tuple = args[1:] if audio_values is not None: return self._decode_audio(_snake_case , padding_mask=_snake_case ) else: return self.tokenizer.batch_decode(*_snake_case , **_snake_case ) def snake_case_ ( self : Optional[int] , *_snake_case : int , **_snake_case : List[str] ): return self.tokenizer.decode(*_snake_case , **_snake_case ) def snake_case_ ( self : Dict , _snake_case : List[Any] , _snake_case : Optional = None ): __lowercase : Union[str, Any] = to_numpy(_snake_case ) __lowercase , __lowercase , __lowercase : Optional[int] = audio_values.shape if padding_mask is None: return list(_snake_case ) __lowercase : Optional[int] = to_numpy(_snake_case ) # match the sequence length of the padding mask to the generated audio arrays by padding with the **non-padding** # token (so that the generated audio values are **not** treated as padded tokens) __lowercase : int = seq_len - padding_mask.shape[-1] __lowercase : Optional[int] = 1 - self.feature_extractor.padding_value __lowercase : Tuple = np.pad(_snake_case , ((0, 0), (0, difference)) , '''constant''' , constant_values=_snake_case ) __lowercase : str = audio_values.tolist() for i in range(_snake_case ): __lowercase : str = np.asarray(audio_values[i] )[ padding_mask[i][None, :] != self.feature_extractor.padding_value ] __lowercase : Any = sliced_audio.reshape(_snake_case , -1 ) return audio_values
156
1
import pytest __A = """__dummy_dataset1__""" __A = """ import json import os import datasets REPO_URL = \"https://huggingface.co/datasets/albertvillanova/tests-raw-jsonl/resolve/main/\" URLS = {\"train\": REPO_URL + \"wikiann-bn-train.jsonl\", \"validation\": REPO_URL + \"wikiann-bn-validation.jsonl\"} class __DummyDataset1__(datasets.GeneratorBasedBuilder): def _info(self): features = datasets.Features( { \"tokens\": datasets.Sequence(datasets.Value(\"string\")), \"ner_tags\": datasets.Sequence( datasets.features.ClassLabel( names=[ \"O\", \"B-PER\", \"I-PER\", \"B-ORG\", \"I-ORG\", \"B-LOC\", \"I-LOC\", ] ) ), \"langs\": datasets.Sequence(datasets.Value(\"string\")), \"spans\": datasets.Sequence(datasets.Value(\"string\")), } ) return datasets.DatasetInfo(features=features) def _split_generators(self, dl_manager): dl_path = dl_manager.download(URLS) return [ datasets.SplitGenerator(datasets.Split.TRAIN, gen_kwargs={\"filepath\": dl_path[\"train\"]}), datasets.SplitGenerator(datasets.Split.VALIDATION, gen_kwargs={\"filepath\": dl_path[\"validation\"]}), ] def _generate_examples(self, filepath): with open(filepath, \"r\", encoding=\"utf-8\") as f: for i, line in enumerate(f): yield i, json.loads(line) """ @pytest.fixture def lowerCAmelCase_ ( ) -> int: """simple docstring""" return DATASET_LOADING_SCRIPT_NAME @pytest.fixture def lowerCAmelCase_ ( ) -> Union[str, Any]: """simple docstring""" return DATASET_LOADING_SCRIPT_CODE @pytest.fixture def lowerCAmelCase_ ( __a , __a , __a ) -> List[str]: """simple docstring""" lowerCamelCase__: str =dataset_loading_script_name lowerCamelCase__: List[Any] =tmp_path / "datasets" / script_name script_dir.mkdir(parents=__a ) lowerCamelCase__: Dict =script_dir / F"""{script_name}.py""" with open(__a , "w" ) as f: f.write(__a ) return str(__a )
364
def lowerCAmelCase_ ( __a ) -> str: """simple docstring""" if isinstance(__a , __a ): raise TypeError("'float' object cannot be interpreted as an integer" ) if isinstance(__a , __a ): raise TypeError("'str' object cannot be interpreted as an integer" ) if num == 0: return "0b0" lowerCamelCase__: Optional[int] =False if num < 0: lowerCamelCase__: Optional[Any] =True lowerCamelCase__: List[Any] =-num lowerCamelCase__: list[int] =[] while num > 0: binary.insert(0 , num % 2 ) num >>= 1 if negative: return "-0b" + "".join(str(__a ) for e in binary ) return "0b" + "".join(str(__a ) for e in binary ) if __name__ == "__main__": import doctest doctest.testmod()
273
0
"""simple docstring""" def A__ ( UpperCamelCase ): A = [0] * len(UpperCamelCase ) A = [] A = [1] * len(UpperCamelCase ) for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(UpperCamelCase ) ): if indegree[i] == 0: queue.append(UpperCamelCase ) while queue: A = queue.pop(0 ) for x in graph[vertex]: indegree[x] -= 1 if long_dist[vertex] + 1 > long_dist[x]: A = long_dist[vertex] + 1 if indegree[x] == 0: queue.append(UpperCamelCase ) print(max(UpperCamelCase ) ) # Adjacency list of Graph _snake_case : List[Any] = {0: [2, 3, 4], 1: [2, 7], 2: [5], 3: [5, 7], 4: [7], 5: [6], 6: [7], 7: []} longest_distance(graph)
292
from decimal import Decimal, getcontext from math import ceil, factorial def A ( lowercase ) -> str: '''simple docstring''' if not isinstance(lowercase , lowercase ): raise TypeError('Undefined for non-integers' ) elif precision < 1: raise ValueError('Undefined for non-natural numbers' ) UpperCamelCase = precision UpperCamelCase = ceil(precision / 14 ) UpperCamelCase = 426_880 * Decimal(10_005 ).sqrt() UpperCamelCase = 1 UpperCamelCase = 13_591_409 UpperCamelCase = Decimal(lowercase ) for k in range(1 , lowercase ): UpperCamelCase = factorial(6 * k ) // (factorial(3 * k ) * factorial(lowercase ) ** 3) linear_term += 545_140_134 exponential_term *= -262_537_412_640_768_000 partial_sum += Decimal(multinomial_term * linear_term ) / exponential_term return str(constant_term / partial_sum )[:-1] if __name__ == "__main__": _UpperCAmelCase : Dict = 50 print(F'''The first {n} digits of pi is: {pi(n)}''')
222
0
'''simple docstring''' _SCREAMING_SNAKE_CASE : List[Any] = "Input must be a string of 8 numbers plus letter" _SCREAMING_SNAKE_CASE : Dict = "TRWAGMYFPDXBNJZSQVHLCKE" def UpperCamelCase_( snake_case : str ): '''simple docstring''' if not isinstance(snake_case , snake_case ): snake_case_ = f'Expected string as input, found {type(snake_case ).__name__}' raise TypeError(snake_case ) snake_case_ = spanish_id.replace("-" , "" ).upper() if len(snake_case ) != 9: raise ValueError(snake_case ) try: snake_case_ = int(spanish_id_clean[0:8] ) snake_case_ = spanish_id_clean[8] except ValueError as ex: raise ValueError(snake_case ) from ex if letter.isdigit(): raise ValueError(snake_case ) return letter == LOOKUP_LETTERS[number % 2_3] if __name__ == "__main__": import doctest doctest.testmod()
92
'''simple docstring''' from random import shuffle import tensorflow as tf from numpy import array def UpperCamelCase_( snake_case : Optional[int] , snake_case : Optional[int] ): '''simple docstring''' snake_case_ = int(snake_case ) assert noofclusters < len(snake_case ) # Find out the dimensionality snake_case_ = len(vectors[0] ) # Will help select random centroids from among the available vectors snake_case_ = list(range(len(snake_case ) ) ) shuffle(snake_case ) # GRAPH OF COMPUTATION # We initialize a new graph and set it as the default during each run # of this algorithm. This ensures that as this function is called # multiple times, the default graph doesn't keep getting crowded with # unused ops and Variables from previous function calls. snake_case_ = tf.Graph() with graph.as_default(): # SESSION OF COMPUTATION snake_case_ = tf.Session() ##CONSTRUCTING THE ELEMENTS OF COMPUTATION ##First lets ensure we have a Variable vector for each centroid, ##initialized to one of the vectors from the available data points snake_case_ = [ tf.Variable(vectors[vector_indices[i]] ) for i in range(snake_case ) ] ##These nodes will assign the centroid Variables the appropriate ##values snake_case_ = tf.placeholder("float64" , [dim] ) snake_case_ = [] for centroid in centroids: cent_assigns.append(tf.assign(snake_case , snake_case ) ) ##Variables for cluster assignments of individual vectors(initialized ##to 0 at first) snake_case_ = [tf.Variable(0 ) for i in range(len(snake_case ) )] ##These nodes will assign an assignment Variable the appropriate ##value snake_case_ = tf.placeholder("int32" ) snake_case_ = [] for assignment in assignments: cluster_assigns.append(tf.assign(snake_case , snake_case ) ) ##Now lets construct the node that will compute the mean # The placeholder for the input snake_case_ = tf.placeholder("float" , [None, dim] ) # The Node/op takes the input and computes a mean along the 0th # dimension, i.e. the list of input vectors snake_case_ = tf.reduce_mean(snake_case , 0 ) ##Node for computing Euclidean distances # Placeholders for input snake_case_ = tf.placeholder("float" , [dim] ) snake_case_ = tf.placeholder("float" , [dim] ) snake_case_ = tf.sqrt(tf.reduce_sum(tf.pow(tf.sub(snake_case , snake_case ) , 2 ) ) ) ##This node will figure out which cluster to assign a vector to, ##based on Euclidean distances of the vector from the centroids. # Placeholder for input snake_case_ = tf.placeholder("float" , [noofclusters] ) snake_case_ = tf.argmin(snake_case , 0 ) ##INITIALIZING STATE VARIABLES ##This will help initialization of all Variables defined with respect ##to the graph. The Variable-initializer should be defined after ##all the Variables have been constructed, so that each of them ##will be included in the initialization. snake_case_ = tf.initialize_all_variables() # Initialize all variables sess.run(snake_case ) ##CLUSTERING ITERATIONS # Now perform the Expectation-Maximization steps of K-Means clustering # iterations. To keep things simple, we will only do a set number of # iterations, instead of using a Stopping Criterion. snake_case_ = 1_0_0 for _ in range(snake_case ): ##EXPECTATION STEP ##Based on the centroid locations till last iteration, compute ##the _expected_ centroid assignments. # Iterate over each vector for vector_n in range(len(snake_case ) ): snake_case_ = vectors[vector_n] # Compute Euclidean distance between this vector and each # centroid. Remember that this list cannot be named #'centroid_distances', since that is the input to the # cluster assignment node. snake_case_ = [ sess.run(snake_case , feed_dict={va: vect, va: sess.run(snake_case )} ) for centroid in centroids ] # Now use the cluster assignment node, with the distances # as the input snake_case_ = sess.run( snake_case , feed_dict={centroid_distances: distances} ) # Now assign the value to the appropriate state variable sess.run( cluster_assigns[vector_n] , feed_dict={assignment_value: assignment} ) ##MAXIMIZATION STEP # Based on the expected state computed from the Expectation Step, # compute the locations of the centroids so as to maximize the # overall objective of minimizing within-cluster Sum-of-Squares for cluster_n in range(snake_case ): # Collect all the vectors assigned to this cluster snake_case_ = [ vectors[i] for i in range(len(snake_case ) ) if sess.run(assignments[i] ) == cluster_n ] # Compute new centroid location snake_case_ = sess.run( snake_case , feed_dict={mean_input: array(snake_case )} ) # Assign value to appropriate variable sess.run( cent_assigns[cluster_n] , feed_dict={centroid_value: new_location} ) # Return centroids and assignments snake_case_ = sess.run(snake_case ) snake_case_ = sess.run(snake_case ) return centroids, assignments
92
1
'''simple docstring''' def _lowercase ( __A = 50_000_000 ): '''simple docstring''' __UpperCamelCase = set() __UpperCamelCase = int((limit - 24) ** (1 / 2) ) __UpperCamelCase = set(range(3 ,prime_square_limit + 1 ,2 ) ) primes.add(2 ) for p in range(3 ,prime_square_limit + 1 ,2 ): if p not in primes: continue primes.difference_update(set(range(p * p ,prime_square_limit + 1 ,_SCREAMING_SNAKE_CASE ) ) ) for primea in primes: __UpperCamelCase = primea * primea for primea in primes: __UpperCamelCase = primea * primea * primea if square + cube >= limit - 16: break for primea in primes: __UpperCamelCase = primea * primea * primea * primea __UpperCamelCase = square + cube + tetr if total >= limit: break ret.add(_SCREAMING_SNAKE_CASE ) return len(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": print(f'''{solution() = }''')
349
"""simple docstring""" import unittest import numpy as np from transformers import RoFormerConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roformer.modeling_flax_roformer import ( FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, ) class __A (unittest.TestCase): '''simple docstring''' def __init__( self : List[Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Tuple=13 , UpperCAmelCase_ : List[Any]=7 , UpperCAmelCase_ : int=True , UpperCAmelCase_ : Dict=True , UpperCAmelCase_ : int=True , UpperCAmelCase_ : int=True , UpperCAmelCase_ : Dict=99 , UpperCAmelCase_ : str=32 , UpperCAmelCase_ : Tuple=5 , UpperCAmelCase_ : Union[str, Any]=4 , UpperCAmelCase_ : Any=37 , UpperCAmelCase_ : int="gelu" , UpperCAmelCase_ : Any=0.1 , UpperCAmelCase_ : List[str]=0.1 , UpperCAmelCase_ : Dict=512 , UpperCAmelCase_ : Optional[Any]=16 , UpperCAmelCase_ : Dict=2 , UpperCAmelCase_ : str=0.02 , UpperCAmelCase_ : str=4 , ) ->Tuple: """simple docstring""" snake_case_ = parent snake_case_ = batch_size snake_case_ = seq_length snake_case_ = is_training snake_case_ = use_attention_mask snake_case_ = use_token_type_ids snake_case_ = use_labels snake_case_ = vocab_size snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = intermediate_size snake_case_ = hidden_act snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = max_position_embeddings snake_case_ = type_vocab_size snake_case_ = type_sequence_label_size snake_case_ = initializer_range snake_case_ = num_choices def lowerCAmelCase ( self : Optional[int] ) ->str: """simple docstring""" snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case_ = None if self.use_attention_mask: snake_case_ = random_attention_mask([self.batch_size, self.seq_length] ) snake_case_ = None if self.use_token_type_ids: snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) snake_case_ = RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCAmelCase_ , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def lowerCAmelCase ( self : List[str] ) ->Dict: """simple docstring""" snake_case_ = self.prepare_config_and_inputs() snake_case_ , snake_case_ , snake_case_ , snake_case_ = config_and_inputs snake_case_ = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask} return config, inputs_dict @require_flax class __A (snake_case__ , unittest.TestCase): '''simple docstring''' __lowercase: Union[str, Any] = True __lowercase: int = ( ( FlaxRoFormerModel, FlaxRoFormerForMaskedLM, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, ) if is_flax_available() else () ) def lowerCAmelCase ( self : Optional[Any] ) ->Tuple: """simple docstring""" snake_case_ = FlaxRoFormerModelTester(self ) @slow def lowerCAmelCase ( self : Any ) ->List[str]: """simple docstring""" for model_class_name in self.all_model_classes: snake_case_ = model_class_name.from_pretrained("""junnyu/roformer_chinese_small""" , from_pt=UpperCAmelCase_ ) snake_case_ = model(np.ones((1, 1) ) ) self.assertIsNotNone(UpperCAmelCase_ ) @require_flax class __A (unittest.TestCase): '''simple docstring''' @slow def lowerCAmelCase ( self : str ) ->Dict: """simple docstring""" snake_case_ = FlaxRoFormerForMaskedLM.from_pretrained("""junnyu/roformer_chinese_base""" ) snake_case_ = jnp.array([[0, 1, 2, 3, 4, 5]] ) snake_case_ = model(UpperCAmelCase_ )[0] snake_case_ = 50_000 snake_case_ = (1, 6, vocab_size) self.assertEqual(output.shape , UpperCAmelCase_ ) snake_case_ = jnp.array( [[[-0.1_205, -1.0_265, 0.2_922], [-1.5_134, 0.1_974, 0.1_519], [-5.0_135, -3.9_003, -0.8_404]]] ) self.assertTrue(jnp.allclose(output[:, :3, :3] , UpperCAmelCase_ , atol=1E-4 ) )
347
0
'''simple docstring''' import copy import random from transformers import CLIPTokenizer class __A ( __lowerCAmelCase ): def __init__(self : str , *__a : List[str] , **__a : Optional[Any] ): super().__init__(*lowerCamelCase__ , **lowerCamelCase__ ) UpperCAmelCase_ = {} def _lowercase (self : Any , __a : Dict , *__a : Union[str, Any] , **__a : Optional[Any] ): UpperCAmelCase_ = super().add_tokens(lowerCamelCase__ , *lowerCamelCase__ , **lowerCamelCase__ ) if num_added_tokens == 0: raise ValueError( f"""The tokenizer already contains the token {placeholder_token}. Please pass a different""" " `placeholder_token` that is not already in the tokenizer." ) def _lowercase (self : str , __a : Tuple , *__a : Optional[int] , __a : Tuple=1 , **__a : Union[str, Any] ): UpperCAmelCase_ = [] if num_vec_per_token == 1: self.try_adding_tokens(lowerCamelCase__ , *lowerCamelCase__ , **lowerCamelCase__ ) output.append(lowerCamelCase__ ) else: UpperCAmelCase_ = [] for i in range(lowerCamelCase__ ): UpperCAmelCase_ = placeholder_token + f"""_{i}""" self.try_adding_tokens(lowerCamelCase__ , *lowerCamelCase__ , **lowerCamelCase__ ) output.append(lowerCamelCase__ ) # handle cases where there is a new placeholder token that contains the current placeholder token but is larger for token in self.token_map: if token in placeholder_token: raise ValueError( f"""The tokenizer already has placeholder token {token} that can get confused with""" f""" {placeholder_token}keep placeholder tokens independent""" ) UpperCAmelCase_ = output def _lowercase (self : int , __a : Optional[int] , __a : List[str]=False , __a : Optional[int]=1.0 ): if isinstance(lowerCamelCase__ , lowerCamelCase__ ): UpperCAmelCase_ = [] for i in range(len(lowerCamelCase__ ) ): output.append(self.replace_placeholder_tokens_in_text(text[i] , vector_shuffle=lowerCamelCase__ ) ) return output for placeholder_token in self.token_map: if placeholder_token in text: UpperCAmelCase_ = self.token_map[placeholder_token] UpperCAmelCase_ = tokens[: 1 + int(len(lowerCamelCase__ ) * prop_tokens_to_load )] if vector_shuffle: UpperCAmelCase_ = copy.copy(lowerCamelCase__ ) random.shuffle(lowerCamelCase__ ) UpperCAmelCase_ = text.replace(lowerCamelCase__ , " ".join(lowerCamelCase__ ) ) return text def __call__(self : Dict , __a : Tuple , *__a : List[Any] , __a : Optional[int]=False , __a : List[str]=1.0 , **__a : Dict ): return super().__call__( self.replace_placeholder_tokens_in_text( lowerCamelCase__ , vector_shuffle=lowerCamelCase__ , prop_tokens_to_load=lowerCamelCase__ ) , *lowerCamelCase__ , **lowerCamelCase__ , ) def _lowercase (self : str , __a : Optional[Any] , *__a : Any , __a : Optional[int]=False , __a : str=1.0 , **__a : Any ): return super().encode( self.replace_placeholder_tokens_in_text( lowerCamelCase__ , vector_shuffle=lowerCamelCase__ , prop_tokens_to_load=lowerCamelCase__ ) , *lowerCamelCase__ , **lowerCamelCase__ , )
357
'''simple docstring''' from collections import OrderedDict from ...utils import logging from .auto_factory import _BaseAutoModelClass, _LazyAutoMapping, auto_class_update from .configuration_auto import CONFIG_MAPPING_NAMES SCREAMING_SNAKE_CASE_: Any =logging.get_logger(__name__) SCREAMING_SNAKE_CASE_: List[Any] =OrderedDict( [ # Base model mapping ('albert', 'FlaxAlbertModel'), ('bart', 'FlaxBartModel'), ('beit', 'FlaxBeitModel'), ('bert', 'FlaxBertModel'), ('big_bird', 'FlaxBigBirdModel'), ('blenderbot', 'FlaxBlenderbotModel'), ('blenderbot-small', 'FlaxBlenderbotSmallModel'), ('clip', 'FlaxCLIPModel'), ('distilbert', 'FlaxDistilBertModel'), ('electra', 'FlaxElectraModel'), ('gpt-sw3', 'FlaxGPT2Model'), ('gpt2', 'FlaxGPT2Model'), ('gpt_neo', 'FlaxGPTNeoModel'), ('gptj', 'FlaxGPTJModel'), ('longt5', 'FlaxLongT5Model'), ('marian', 'FlaxMarianModel'), ('mbart', 'FlaxMBartModel'), ('mt5', 'FlaxMT5Model'), ('opt', 'FlaxOPTModel'), ('pegasus', 'FlaxPegasusModel'), ('regnet', 'FlaxRegNetModel'), ('resnet', 'FlaxResNetModel'), ('roberta', 'FlaxRobertaModel'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormModel'), ('roformer', 'FlaxRoFormerModel'), ('t5', 'FlaxT5Model'), ('vision-text-dual-encoder', 'FlaxVisionTextDualEncoderModel'), ('vit', 'FlaxViTModel'), ('wav2vec2', 'FlaxWav2Vec2Model'), ('whisper', 'FlaxWhisperModel'), ('xglm', 'FlaxXGLMModel'), ('xlm-roberta', 'FlaxXLMRobertaModel'), ] ) SCREAMING_SNAKE_CASE_: List[Any] =OrderedDict( [ # Model for pre-training mapping ('albert', 'FlaxAlbertForPreTraining'), ('bart', 'FlaxBartForConditionalGeneration'), ('bert', 'FlaxBertForPreTraining'), ('big_bird', 'FlaxBigBirdForPreTraining'), ('electra', 'FlaxElectraForPreTraining'), ('longt5', 'FlaxLongT5ForConditionalGeneration'), ('mbart', 'FlaxMBartForConditionalGeneration'), ('mt5', 'FlaxMT5ForConditionalGeneration'), ('roberta', 'FlaxRobertaForMaskedLM'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForMaskedLM'), ('roformer', 'FlaxRoFormerForMaskedLM'), ('t5', 'FlaxT5ForConditionalGeneration'), ('wav2vec2', 'FlaxWav2Vec2ForPreTraining'), ('whisper', 'FlaxWhisperForConditionalGeneration'), ('xlm-roberta', 'FlaxXLMRobertaForMaskedLM'), ] ) SCREAMING_SNAKE_CASE_: Any =OrderedDict( [ # Model for Masked LM mapping ('albert', 'FlaxAlbertForMaskedLM'), ('bart', 'FlaxBartForConditionalGeneration'), ('bert', 'FlaxBertForMaskedLM'), ('big_bird', 'FlaxBigBirdForMaskedLM'), ('distilbert', 'FlaxDistilBertForMaskedLM'), ('electra', 'FlaxElectraForMaskedLM'), ('mbart', 'FlaxMBartForConditionalGeneration'), ('roberta', 'FlaxRobertaForMaskedLM'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForMaskedLM'), ('roformer', 'FlaxRoFormerForMaskedLM'), ('xlm-roberta', 'FlaxXLMRobertaForMaskedLM'), ] ) SCREAMING_SNAKE_CASE_: int =OrderedDict( [ # Model for Seq2Seq Causal LM mapping ('bart', 'FlaxBartForConditionalGeneration'), ('blenderbot', 'FlaxBlenderbotForConditionalGeneration'), ('blenderbot-small', 'FlaxBlenderbotSmallForConditionalGeneration'), ('encoder-decoder', 'FlaxEncoderDecoderModel'), ('longt5', 'FlaxLongT5ForConditionalGeneration'), ('marian', 'FlaxMarianMTModel'), ('mbart', 'FlaxMBartForConditionalGeneration'), ('mt5', 'FlaxMT5ForConditionalGeneration'), ('pegasus', 'FlaxPegasusForConditionalGeneration'), ('t5', 'FlaxT5ForConditionalGeneration'), ] ) SCREAMING_SNAKE_CASE_: str =OrderedDict( [ # Model for Image-classsification ('beit', 'FlaxBeitForImageClassification'), ('regnet', 'FlaxRegNetForImageClassification'), ('resnet', 'FlaxResNetForImageClassification'), ('vit', 'FlaxViTForImageClassification'), ] ) SCREAMING_SNAKE_CASE_: str =OrderedDict( [ ('vision-encoder-decoder', 'FlaxVisionEncoderDecoderModel'), ] ) SCREAMING_SNAKE_CASE_: List[Any] =OrderedDict( [ # Model for Causal LM mapping ('bart', 'FlaxBartForCausalLM'), ('bert', 'FlaxBertForCausalLM'), ('big_bird', 'FlaxBigBirdForCausalLM'), ('electra', 'FlaxElectraForCausalLM'), ('gpt-sw3', 'FlaxGPT2LMHeadModel'), ('gpt2', 'FlaxGPT2LMHeadModel'), ('gpt_neo', 'FlaxGPTNeoForCausalLM'), ('gptj', 'FlaxGPTJForCausalLM'), ('opt', 'FlaxOPTForCausalLM'), ('roberta', 'FlaxRobertaForCausalLM'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForCausalLM'), ('xglm', 'FlaxXGLMForCausalLM'), ('xlm-roberta', 'FlaxXLMRobertaForCausalLM'), ] ) SCREAMING_SNAKE_CASE_: Optional[int] =OrderedDict( [ # Model for Sequence Classification mapping ('albert', 'FlaxAlbertForSequenceClassification'), ('bart', 'FlaxBartForSequenceClassification'), ('bert', 'FlaxBertForSequenceClassification'), ('big_bird', 'FlaxBigBirdForSequenceClassification'), ('distilbert', 'FlaxDistilBertForSequenceClassification'), ('electra', 'FlaxElectraForSequenceClassification'), ('mbart', 'FlaxMBartForSequenceClassification'), ('roberta', 'FlaxRobertaForSequenceClassification'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForSequenceClassification'), ('roformer', 'FlaxRoFormerForSequenceClassification'), ('xlm-roberta', 'FlaxXLMRobertaForSequenceClassification'), ] ) SCREAMING_SNAKE_CASE_: Any =OrderedDict( [ # Model for Question Answering mapping ('albert', 'FlaxAlbertForQuestionAnswering'), ('bart', 'FlaxBartForQuestionAnswering'), ('bert', 'FlaxBertForQuestionAnswering'), ('big_bird', 'FlaxBigBirdForQuestionAnswering'), ('distilbert', 'FlaxDistilBertForQuestionAnswering'), ('electra', 'FlaxElectraForQuestionAnswering'), ('mbart', 'FlaxMBartForQuestionAnswering'), ('roberta', 'FlaxRobertaForQuestionAnswering'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForQuestionAnswering'), ('roformer', 'FlaxRoFormerForQuestionAnswering'), ('xlm-roberta', 'FlaxXLMRobertaForQuestionAnswering'), ] ) SCREAMING_SNAKE_CASE_: Any =OrderedDict( [ # Model for Token Classification mapping ('albert', 'FlaxAlbertForTokenClassification'), ('bert', 'FlaxBertForTokenClassification'), ('big_bird', 'FlaxBigBirdForTokenClassification'), ('distilbert', 'FlaxDistilBertForTokenClassification'), ('electra', 'FlaxElectraForTokenClassification'), ('roberta', 'FlaxRobertaForTokenClassification'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForTokenClassification'), ('roformer', 'FlaxRoFormerForTokenClassification'), ('xlm-roberta', 'FlaxXLMRobertaForTokenClassification'), ] ) SCREAMING_SNAKE_CASE_: Optional[Any] =OrderedDict( [ # Model for Multiple Choice mapping ('albert', 'FlaxAlbertForMultipleChoice'), ('bert', 'FlaxBertForMultipleChoice'), ('big_bird', 'FlaxBigBirdForMultipleChoice'), ('distilbert', 'FlaxDistilBertForMultipleChoice'), ('electra', 'FlaxElectraForMultipleChoice'), ('roberta', 'FlaxRobertaForMultipleChoice'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForMultipleChoice'), ('roformer', 'FlaxRoFormerForMultipleChoice'), ('xlm-roberta', 'FlaxXLMRobertaForMultipleChoice'), ] ) SCREAMING_SNAKE_CASE_: int =OrderedDict( [ ('bert', 'FlaxBertForNextSentencePrediction'), ] ) SCREAMING_SNAKE_CASE_: List[Any] =OrderedDict( [ ('speech-encoder-decoder', 'FlaxSpeechEncoderDecoderModel'), ('whisper', 'FlaxWhisperForConditionalGeneration'), ] ) SCREAMING_SNAKE_CASE_: Optional[int] =OrderedDict( [ ('whisper', 'FlaxWhisperForAudioClassification'), ] ) SCREAMING_SNAKE_CASE_: str =_LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_MAPPING_NAMES) SCREAMING_SNAKE_CASE_: str =_LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_PRETRAINING_MAPPING_NAMES) SCREAMING_SNAKE_CASE_: List[str] =_LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MASKED_LM_MAPPING_NAMES) SCREAMING_SNAKE_CASE_: List[Any] =_LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES ) SCREAMING_SNAKE_CASE_: Optional[Any] =_LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES ) SCREAMING_SNAKE_CASE_: Dict =_LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES) SCREAMING_SNAKE_CASE_: Optional[Any] =_LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_CAUSAL_LM_MAPPING_NAMES) SCREAMING_SNAKE_CASE_: Any =_LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES ) SCREAMING_SNAKE_CASE_: List[str] =_LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES ) SCREAMING_SNAKE_CASE_: Dict =_LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES ) SCREAMING_SNAKE_CASE_: Any =_LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES ) SCREAMING_SNAKE_CASE_: Dict =_LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES ) SCREAMING_SNAKE_CASE_: Dict =_LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES ) SCREAMING_SNAKE_CASE_: Optional[Any] =_LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES ) class __A ( _BaseAutoModelClass ): a__ : int = FLAX_MODEL_MAPPING SCREAMING_SNAKE_CASE_: Dict =auto_class_update(FlaxAutoModel) class __A ( _BaseAutoModelClass ): a__ : str = FLAX_MODEL_FOR_PRETRAINING_MAPPING SCREAMING_SNAKE_CASE_: Dict =auto_class_update(FlaxAutoModelForPreTraining, head_doc='pretraining') class __A ( _BaseAutoModelClass ): a__ : Optional[Any] = FLAX_MODEL_FOR_CAUSAL_LM_MAPPING SCREAMING_SNAKE_CASE_: Tuple =auto_class_update(FlaxAutoModelForCausalLM, head_doc='causal language modeling') class __A ( _BaseAutoModelClass ): a__ : Optional[Any] = FLAX_MODEL_FOR_MASKED_LM_MAPPING SCREAMING_SNAKE_CASE_: Optional[Any] =auto_class_update(FlaxAutoModelForMaskedLM, head_doc='masked language modeling') class __A ( _BaseAutoModelClass ): a__ : List[Any] = FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING SCREAMING_SNAKE_CASE_: Optional[Any] =auto_class_update( FlaxAutoModelForSeqaSeqLM, head_doc='sequence-to-sequence language modeling', checkpoint_for_example='t5-base' ) class __A ( _BaseAutoModelClass ): a__ : Union[str, Any] = FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING SCREAMING_SNAKE_CASE_: Optional[int] =auto_class_update( FlaxAutoModelForSequenceClassification, head_doc='sequence classification' ) class __A ( _BaseAutoModelClass ): a__ : Optional[int] = FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING SCREAMING_SNAKE_CASE_: List[Any] =auto_class_update(FlaxAutoModelForQuestionAnswering, head_doc='question answering') class __A ( _BaseAutoModelClass ): a__ : Tuple = FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING SCREAMING_SNAKE_CASE_: List[Any] =auto_class_update( FlaxAutoModelForTokenClassification, head_doc='token classification' ) class __A ( _BaseAutoModelClass ): a__ : Dict = FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING SCREAMING_SNAKE_CASE_: Any =auto_class_update(FlaxAutoModelForMultipleChoice, head_doc='multiple choice') class __A ( _BaseAutoModelClass ): a__ : Union[str, Any] = FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING SCREAMING_SNAKE_CASE_: int =auto_class_update( FlaxAutoModelForNextSentencePrediction, head_doc='next sentence prediction' ) class __A ( _BaseAutoModelClass ): a__ : int = FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING SCREAMING_SNAKE_CASE_: Dict =auto_class_update( FlaxAutoModelForImageClassification, head_doc='image classification' ) class __A ( _BaseAutoModelClass ): a__ : Any = FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING SCREAMING_SNAKE_CASE_: Optional[int] =auto_class_update(FlaxAutoModelForVisionaSeq, head_doc='vision-to-text modeling') class __A ( _BaseAutoModelClass ): a__ : List[Any] = FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING SCREAMING_SNAKE_CASE_: Union[str, Any] =auto_class_update( FlaxAutoModelForSpeechSeqaSeq, head_doc='sequence-to-sequence speech-to-text modeling' )
106
0
import unittest import torch from diffusers import VQModel from diffusers.utils import floats_tensor, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin enable_full_determinism() class UpperCAmelCase__ ( A_ , A_ , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : Dict = VQModel UpperCAmelCase__ : str = "sample" @property def _a ( self , A_=(32, 32) ) -> str: __UpperCamelCase =4 __UpperCamelCase =3 __UpperCamelCase =floats_tensor((batch_size, num_channels) + sizes ).to(A_ ) return {"sample": image} @property def _a ( self ) -> str: return (3, 32, 32) @property def _a ( self ) -> Optional[int]: return (3, 32, 32) def _a ( self ) -> Optional[Any]: __UpperCamelCase ={ 'block_out_channels': [32, 64], 'in_channels': 3, 'out_channels': 3, 'down_block_types': ['DownEncoderBlock2D', 'DownEncoderBlock2D'], 'up_block_types': ['UpDecoderBlock2D', 'UpDecoderBlock2D'], 'latent_channels': 3, } __UpperCamelCase =self.dummy_input return init_dict, inputs_dict def _a ( self ) -> str: pass def _a ( self ) -> List[str]: pass def _a ( self ) -> int: __UpperCamelCase , __UpperCamelCase =VQModel.from_pretrained('fusing/vqgan-dummy' , output_loading_info=A_ ) self.assertIsNotNone(A_ ) self.assertEqual(len(loading_info['missing_keys'] ) , 0 ) model.to(A_ ) __UpperCamelCase =model(**self.dummy_input ) assert image is not None, "Make sure output is not None" def _a ( self ) -> Tuple: __UpperCamelCase =VQModel.from_pretrained('fusing/vqgan-dummy' ) model.to(A_ ).eval() torch.manual_seed(0 ) if torch.cuda.is_available(): torch.cuda.manual_seed_all(0 ) __UpperCamelCase =torch.randn(1 , model.config.in_channels , model.config.sample_size , model.config.sample_size ) __UpperCamelCase =image.to(A_ ) with torch.no_grad(): __UpperCamelCase =model(A_ ).sample __UpperCamelCase =output[0, -1, -3:, -3:].flatten().cpu() # fmt: off __UpperCamelCase =torch.tensor([-0.0153, -0.4044, -0.1880, -0.5161, -0.2418, -0.4072, -0.1612, -0.0633, -0.0143] ) # fmt: on self.assertTrue(torch.allclose(A_ , A_ , atol=1E-3 ) )
62
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) _A = { 'configuration_convbert': ['CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ConvBertConfig', 'ConvBertOnnxConfig'], 'tokenization_convbert': ['ConvBertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = ['ConvBertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = [ 'CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'ConvBertForMaskedLM', 'ConvBertForMultipleChoice', 'ConvBertForQuestionAnswering', 'ConvBertForSequenceClassification', 'ConvBertForTokenClassification', 'ConvBertLayer', 'ConvBertModel', 'ConvBertPreTrainedModel', 'load_tf_weights_in_convbert', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = [ 'TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFConvBertForMaskedLM', 'TFConvBertForMultipleChoice', 'TFConvBertForQuestionAnswering', 'TFConvBertForSequenceClassification', 'TFConvBertForTokenClassification', 'TFConvBertLayer', 'TFConvBertModel', 'TFConvBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_convbert import CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvBertConfig, ConvBertOnnxConfig from .tokenization_convbert import ConvBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_convbert_fast import ConvBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convbert import ( CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvBertForMaskedLM, ConvBertForMultipleChoice, ConvBertForQuestionAnswering, ConvBertForSequenceClassification, ConvBertForTokenClassification, ConvBertLayer, ConvBertModel, ConvBertPreTrainedModel, load_tf_weights_in_convbert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convbert import ( TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertLayer, TFConvBertModel, TFConvBertPreTrainedModel, ) else: import sys _A = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
62
1
_lowerCamelCase : Tuple = [ (1_000, '''M'''), (900, '''CM'''), (500, '''D'''), (400, '''CD'''), (100, '''C'''), (90, '''XC'''), (50, '''L'''), (40, '''XL'''), (10, '''X'''), (9, '''IX'''), (5, '''V'''), (4, '''IV'''), (1, '''I'''), ] def a_ ( __lowercase : str ) -> int: _snake_case = {'I': 1, 'V': 5, 'X': 10, 'L': 50, 'C': 100, 'D': 500, 'M': 1_000} _snake_case = 0 _snake_case = 0 while place < len(__lowercase ): if (place + 1 < len(__lowercase )) and (vals[roman[place]] < vals[roman[place + 1]]): total += vals[roman[place + 1]] - vals[roman[place]] place += 2 else: total += vals[roman[place]] place += 1 return total def a_ ( __lowercase : int ) -> str: _snake_case = [] for arabic, roman in ROMAN: ((_snake_case) , (_snake_case)) = divmod(__lowercase , __lowercase ) result.append(roman * factor ) if number == 0: break return "".join(__lowercase ) if __name__ == "__main__": import doctest doctest.testmod()
361
def a_ ( __lowercase : int = 50_000_000 ) -> int: _snake_case = set() _snake_case = int((limit - 24) ** (1 / 2) ) _snake_case = set(range(3 , prime_square_limit + 1 , 2 ) ) primes.add(2 ) for p in range(3 , prime_square_limit + 1 , 2 ): if p not in primes: continue primes.difference_update(set(range(p * p , prime_square_limit + 1 , __lowercase ) ) ) for primea in primes: _snake_case = primea * primea for primea in primes: _snake_case = primea * primea * primea if square + cube >= limit - 16: break for primea in primes: _snake_case = primea * primea * primea * primea _snake_case = square + cube + tetr if total >= limit: break ret.add(__lowercase ) return len(__lowercase ) if __name__ == "__main__": print(F'{solution() = }')
130
0
def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : Dict ): """simple docstring""" __a = [0] * len(_SCREAMING_SNAKE_CASE ) __a = [] __a = [1] * len(_SCREAMING_SNAKE_CASE ) for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(_SCREAMING_SNAKE_CASE ) ): if indegree[i] == 0: queue.append(_SCREAMING_SNAKE_CASE ) while queue: __a = queue.pop(0 ) for x in graph[vertex]: indegree[x] -= 1 if long_dist[vertex] + 1 > long_dist[x]: __a = long_dist[vertex] + 1 if indegree[x] == 0: queue.append(_SCREAMING_SNAKE_CASE ) print(max(_SCREAMING_SNAKE_CASE ) ) # Adjacency list of Graph lowerCamelCase__ = {0: [2, 3, 4], 1: [2, 7], 2: [5], 3: [5, 7], 4: [7], 5: [6], 6: [7], 7: []} longest_distance(graph)
302
import tempfile import unittest from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from transformers.testing_utils import ( is_torch_available, require_optimum, require_torch, slow, ) if is_torch_available(): import torch @require_torch @require_optimum @slow class SCREAMING_SNAKE_CASE ( unittest.TestCase ): def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' __a = """hf-internal-testing/tiny-random-t5""" __a = AutoTokenizer.from_pretrained(__lowercase ) __a = AutoModelForSeqaSeqLM.from_pretrained(__lowercase ) __a = tokenizer("""This is me""" , return_tensors="""pt""" ) __a = model.to_bettertransformer() self.assertTrue(any("""BetterTransformer""" in mod.__class__.__name__ for _, mod in model.named_modules() ) ) __a = model.generate(**__lowercase ) __a = model.reverse_bettertransformer() self.assertFalse(any("""BetterTransformer""" in mod.__class__.__name__ for _, mod in model.named_modules() ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__lowercase ) __a = AutoModelForSeqaSeqLM.from_pretrained(__lowercase ) self.assertFalse( any("""BetterTransformer""" in mod.__class__.__name__ for _, mod in model_reloaded.named_modules() ) ) __a = model_reloaded.generate(**__lowercase ) self.assertTrue(torch.allclose(__lowercase , __lowercase ) ) def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' __a = """hf-internal-testing/tiny-random-t5""" __a = AutoModelForSeqaSeqLM.from_pretrained(__lowercase ) __a = model.to_bettertransformer() with tempfile.TemporaryDirectory() as tmpdirname: with self.assertRaises(__lowercase ): model.save_pretrained(__lowercase ) __a = model.reverse_bettertransformer() model.save_pretrained(__lowercase )
302
1
"""simple docstring""" from __future__ import annotations def a__ ( SCREAMING_SNAKE_CASE : list[float] , SCREAMING_SNAKE_CASE : list[float] ): '''simple docstring''' lowerCAmelCase : List[str] = sorted(numsa + numsa ) lowerCAmelCase , lowerCAmelCase : Optional[int] = divmod(len(SCREAMING_SNAKE_CASE ) , 2 ) if mod == 1: return all_numbers[div] else: return (all_numbers[div] + all_numbers[div - 1]) / 2 if __name__ == "__main__": import doctest doctest.testmod() lowerCAmelCase__ = [float(x) for x in input('''Enter the elements of first array: ''').split()] lowerCAmelCase__ = [float(x) for x in input('''Enter the elements of second array: ''').split()] print(F"The median of two arrays is: {median_of_two_arrays(array_a, array_a)}")
133
"""simple docstring""" import inspect import unittest from typing import List import numpy as np from transformers import EfficientFormerConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerModel, ) from transformers.models.efficientformer.modeling_tf_efficientformer import ( TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) if is_vision_available(): from PIL import Image from transformers import EfficientFormerImageProcessor class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self , snake_case__ , snake_case__ = 13 , snake_case__ = 64 , snake_case__ = 2 , snake_case__ = 3 , snake_case__ = 3 , snake_case__ = True , snake_case__ = True , snake_case__ = 128 , snake_case__=[16, 32, 64, 128] , snake_case__ = 7 , snake_case__ = 4 , snake_case__ = 37 , snake_case__ = "gelu" , snake_case__ = 0.1 , snake_case__ = 0.1 , snake_case__ = 10 , snake_case__ = 0.02 , snake_case__ = 2 , snake_case__ = 1 , snake_case__ = 128 , snake_case__ = [2, 2, 2, 2] , snake_case__ = 2 , snake_case__ = 2 , ): """simple docstring""" lowerCAmelCase : Optional[Any] = parent lowerCAmelCase : str = batch_size lowerCAmelCase : int = image_size lowerCAmelCase : int = patch_size lowerCAmelCase : Union[str, Any] = num_channels lowerCAmelCase : int = is_training lowerCAmelCase : Tuple = use_labels lowerCAmelCase : List[Any] = hidden_size lowerCAmelCase : Dict = num_hidden_layers lowerCAmelCase : Tuple = num_attention_heads lowerCAmelCase : List[Any] = intermediate_size lowerCAmelCase : int = hidden_act lowerCAmelCase : str = hidden_dropout_prob lowerCAmelCase : Tuple = attention_probs_dropout_prob lowerCAmelCase : Optional[int] = type_sequence_label_size lowerCAmelCase : List[str] = initializer_range lowerCAmelCase : List[str] = encoder_stride lowerCAmelCase : Union[str, Any] = num_attention_outputs lowerCAmelCase : Any = embed_dim lowerCAmelCase : Tuple = embed_dim + 1 lowerCAmelCase : str = resolution lowerCAmelCase : Optional[Any] = depths lowerCAmelCase : Any = hidden_sizes lowerCAmelCase : List[str] = dim lowerCAmelCase : str = mlp_expansion_ratio def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase : Tuple = None if self.use_labels: lowerCAmelCase : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase : Tuple = self.get_config() return config, pixel_values, labels def lowercase__ ( self ): """simple docstring""" return EfficientFormerConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=snake_case__ , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , resolution=self.resolution , depths=self.depths , hidden_sizes=self.hidden_sizes , dim=self.dim , mlp_expansion_ratio=self.mlp_expansion_ratio , ) def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__ ): """simple docstring""" lowerCAmelCase : Tuple = TFEfficientFormerModel(config=snake_case__ ) lowerCAmelCase : Optional[int] = model(snake_case__ , training=snake_case__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__ ): """simple docstring""" lowerCAmelCase : Tuple = self.type_sequence_label_size lowerCAmelCase : Dict = TFEfficientFormerForImageClassification(snake_case__ ) lowerCAmelCase : Tuple = model(snake_case__ , labels=snake_case__ , training=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images lowerCAmelCase : str = 1 lowerCAmelCase : Any = TFEfficientFormerForImageClassification(snake_case__ ) lowerCAmelCase : List[str] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCAmelCase : str = model(snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Optional[Any] = self.prepare_config_and_inputs() lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : int = config_and_inputs lowerCAmelCase : List[str] = {"pixel_values": pixel_values} return config, inputs_dict @require_tf class SCREAMING_SNAKE_CASE__ ( lowercase , lowercase , unittest.TestCase ): """simple docstring""" a : Optional[int] =( ( TFEfficientFormerModel, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerForImageClassification, ) if is_tf_available() else () ) a : Union[str, Any] =( { "feature-extraction": TFEfficientFormerModel, "image-classification": ( TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, ), } if is_tf_available() else {} ) a : int =False a : Optional[Any] =False a : List[Any] =False a : str =False a : List[Any] =False def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Any = TFEfficientFormerModelTester(self ) lowerCAmelCase : Dict = ConfigTester( self , config_class=snake_case__ , has_text_modality=snake_case__ , hidden_size=37 ) def lowercase__ ( self ): """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="EfficientFormer does not use inputs_embeds" ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip(reason="EfficientFormer does not support input and output embeddings" ) def lowercase__ ( self ): """simple docstring""" pass def lowercase__ ( self ): """simple docstring""" lowerCAmelCase , lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase : Tuple = model_class(snake_case__ ) lowerCAmelCase : str = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase : Optional[int] = [*signature.parameters.keys()] lowerCAmelCase : str = ["pixel_values"] self.assertListEqual(arg_names[:1] , snake_case__ ) def lowercase__ ( self ): """simple docstring""" def check_hidden_states_output(snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : List[Any] = model_class(snake_case__ ) lowerCAmelCase : List[str] = model(**self._prepare_for_class(snake_case__ , snake_case__ ) , training=snake_case__ ) lowerCAmelCase : Dict = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states lowerCAmelCase : List[Any] = getattr( self.model_tester , "expected_num_hidden_layers" , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(snake_case__ ) , snake_case__ ) if hasattr(self.model_tester , "encoder_seq_length" ): lowerCAmelCase : Union[str, Any] = self.model_tester.encoder_seq_length if hasattr(self.model_tester , "chunk_length" ) and self.model_tester.chunk_length > 1: lowerCAmelCase : Tuple = seq_length * self.model_tester.chunk_length else: lowerCAmelCase : List[str] = self.model_tester.seq_length self.assertListEqual( list(hidden_states[-1].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) if config.is_encoder_decoder: lowerCAmelCase : Tuple = outputs.decoder_hidden_states self.asseretIsInstance(snake_case__ , (list, tuple) ) self.assertEqual(len(snake_case__ ) , snake_case__ ) lowerCAmelCase : int = getattr(self.model_tester , "seq_length" , snake_case__ ) lowerCAmelCase : Tuple = getattr(self.model_tester , "decoder_seq_length" , snake_case__ ) self.assertListEqual( list(hidden_states[-1].shape[-2:] ) , [decoder_seq_length, self.model_tester.hidden_size] , ) lowerCAmelCase , lowerCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase : str = True check_hidden_states_output(snake_case__ , snake_case__ , snake_case__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCAmelCase : Dict = True check_hidden_states_output(snake_case__ , snake_case__ , snake_case__ ) def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__=False ): """simple docstring""" lowerCAmelCase : Optional[int] = super()._prepare_for_class(snake_case__ , snake_case__ , return_labels=snake_case__ ) if return_labels: if model_class.__name__ == "TFEfficientFormerForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case__ ) @unittest.skip(reason="EfficientFormer does not implement masked image modeling yet" ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*snake_case__ ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*snake_case__ ) @slow def lowercase__ ( self ): """simple docstring""" for model_name in TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase : Optional[Any] = TFEfficientFormerModel.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase , lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase : int = True lowerCAmelCase : Union[str, Any] = getattr(self.model_tester , "seq_length" , snake_case__ ) lowerCAmelCase : Dict = getattr(self.model_tester , "encoder_seq_length" , snake_case__ ) lowerCAmelCase : Union[str, Any] = getattr(self.model_tester , "key_length" , snake_case__ ) lowerCAmelCase : List[str] = getattr(self.model_tester , "chunk_length" , snake_case__ ) if chunk_length is not None and hasattr(self.model_tester , "num_hashes" ): lowerCAmelCase : Dict = encoder_seq_length * self.model_tester.num_hashes for model_class in self.all_model_classes: lowerCAmelCase : int = True lowerCAmelCase : int = False lowerCAmelCase : Dict = True lowerCAmelCase : List[Any] = model_class(snake_case__ ) lowerCAmelCase : Tuple = model(**self._prepare_for_class(snake_case__ , snake_case__ ) , training=snake_case__ ) lowerCAmelCase : str = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(snake_case__ ) , self.model_tester.num_attention_outputs ) # check that output_attentions also work using config del inputs_dict["output_attentions"] lowerCAmelCase : int = True lowerCAmelCase : Dict = model_class(snake_case__ ) lowerCAmelCase : int = model(**self._prepare_for_class(snake_case__ , snake_case__ ) , training=snake_case__ ) lowerCAmelCase : int = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(snake_case__ ) , self.model_tester.num_attention_outputs ) if chunk_length is not None: self.assertListEqual( list(attentions[0].shape[-4:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length] , ) else: self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length] , ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase , lowerCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # Prepare our model lowerCAmelCase : List[str] = model_class(snake_case__ ) # These are maximally general inputs for the model, with multiple None dimensions # Hopefully this will catch any conditionals that fail for flexible shapes lowerCAmelCase : Optional[Any] = { key: tf.keras.Input(shape=val.shape[1:] , dtype=val.dtype , name=snake_case__ ) for key, val in model.input_signature.items() if key in model.dummy_inputs } lowerCAmelCase : Optional[Any] = model(snake_case__ ) self.assertTrue(outputs_dict is not None ) def a__ ( ): '''simple docstring''' lowerCAmelCase : Optional[Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_tf @require_vision class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" @cached_property def lowercase__ ( self ): """simple docstring""" return ( EfficientFormerImageProcessor.from_pretrained("snap-research/efficientformer-l1-300" ) if is_vision_available() else None ) @slow def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Optional[Any] = TFEfficientFormerForImageClassification.from_pretrained("snap-research/efficientformer-l1-300" ) lowerCAmelCase : Tuple = self.default_image_processor lowerCAmelCase : Tuple = prepare_img() lowerCAmelCase : List[str] = image_processor(images=snake_case__ , return_tensors="tf" ) # forward pass lowerCAmelCase : Optional[int] = model(**snake_case__ , training=snake_case__ ) # verify the logits lowerCAmelCase : Union[str, Any] = tf.TensorShape((1, 1_000) ) self.assertEqual(outputs.logits.shape , snake_case__ ) lowerCAmelCase : Tuple = tf.constant([-0.0555, 0.4825, -0.0852] ) self.assertTrue(np.allclose(outputs.logits[0, :3] , snake_case__ , atol=1e-4 ) ) @slow def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : List[Any] = TFEfficientFormerForImageClassificationWithTeacher.from_pretrained( "snap-research/efficientformer-l1-300" ) lowerCAmelCase : Optional[int] = self.default_image_processor lowerCAmelCase : Optional[Any] = prepare_img() lowerCAmelCase : Tuple = image_processor(images=snake_case__ , return_tensors="tf" ) # forward pass lowerCAmelCase : Dict = model(**snake_case__ , training=snake_case__ ) # verify the logits lowerCAmelCase : Optional[int] = tf.TensorShape((1, 1_000) ) self.assertEqual(outputs.logits.shape , snake_case__ ) lowerCAmelCase : Any = tf.constant([-0.1312, 0.4353, -1.0499] ) self.assertTrue(np.allclose(outputs.logits[0, :3] , snake_case__ , atol=1e-4 ) )
133
1
"""simple docstring""" import inspect import unittest from typing import List import numpy as np from transformers import EfficientFormerConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerModel, ) from transformers.models.efficientformer.modeling_tf_efficientformer import ( TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) if is_vision_available(): from PIL import Image from transformers import EfficientFormerImageProcessor class _A : """simple docstring""" def __init__( self : List[str] , __UpperCAmelCase : Dict , __UpperCAmelCase : int = 13 , __UpperCAmelCase : int = 64 , __UpperCAmelCase : int = 2 , __UpperCAmelCase : int = 3 , __UpperCAmelCase : int = 3 , __UpperCAmelCase : bool = True , __UpperCAmelCase : bool = True , __UpperCAmelCase : int = 128 , __UpperCAmelCase : Dict=[16, 32, 64, 128] , __UpperCAmelCase : int = 7 , __UpperCAmelCase : int = 4 , __UpperCAmelCase : int = 37 , __UpperCAmelCase : str = "gelu" , __UpperCAmelCase : float = 0.1 , __UpperCAmelCase : float = 0.1 , __UpperCAmelCase : int = 10 , __UpperCAmelCase : float = 0.02 , __UpperCAmelCase : int = 2 , __UpperCAmelCase : int = 1 , __UpperCAmelCase : int = 128 , __UpperCAmelCase : List[int] = [2, 2, 2, 2] , __UpperCAmelCase : int = 2 , __UpperCAmelCase : int = 2 , ): a : int = parent a : List[str] = batch_size a : List[Any] = image_size a : Union[str, Any] = patch_size a : Any = num_channels a : Union[str, Any] = is_training a : Union[str, Any] = use_labels a : Tuple = hidden_size a : Tuple = num_hidden_layers a : int = num_attention_heads a : Union[str, Any] = intermediate_size a : int = hidden_act a : Tuple = hidden_dropout_prob a : Optional[int] = attention_probs_dropout_prob a : List[str] = type_sequence_label_size a : str = initializer_range a : Optional[int] = encoder_stride a : Optional[int] = num_attention_outputs a : Any = embed_dim a : Dict = embed_dim + 1 a : Union[str, Any] = resolution a : Optional[int] = depths a : Union[str, Any] = hidden_sizes a : Dict = dim a : List[str] = mlp_expansion_ratio def __snake_case ( self : Dict): a : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) a : str = None if self.use_labels: a : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size) a : List[str] = self.get_config() return config, pixel_values, labels def __snake_case ( self : Optional[int]): return EfficientFormerConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__UpperCAmelCase , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , resolution=self.resolution , depths=self.depths , hidden_sizes=self.hidden_sizes , dim=self.dim , mlp_expansion_ratio=self.mlp_expansion_ratio , ) def __snake_case ( self : Dict , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : int , __UpperCAmelCase : Dict): a : Optional[Any] = TFEfficientFormerModel(config=__UpperCAmelCase) a : int = model(__UpperCAmelCase , training=__UpperCAmelCase) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def __snake_case ( self : List[Any] , __UpperCAmelCase : List[str] , __UpperCAmelCase : Tuple , __UpperCAmelCase : Tuple): a : Optional[int] = self.type_sequence_label_size a : Union[str, Any] = TFEfficientFormerForImageClassification(__UpperCAmelCase) a : Dict = model(__UpperCAmelCase , labels=__UpperCAmelCase , training=__UpperCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) # test greyscale images a : Union[str, Any] = 1 a : Any = TFEfficientFormerForImageClassification(__UpperCAmelCase) a : List[Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) a : List[str] = model(__UpperCAmelCase , labels=__UpperCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) def __snake_case ( self : Tuple): a : Union[str, Any] = self.prepare_config_and_inputs() a , a , a : List[str] = config_and_inputs a : int = {"pixel_values": pixel_values} return config, inputs_dict @require_tf class _A ( _a ,_a ,unittest.TestCase ): """simple docstring""" UpperCAmelCase : Dict = ( ( TFEfficientFormerModel, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerForImageClassification, ) if is_tf_available() else () ) UpperCAmelCase : Optional[Any] = ( { """feature-extraction""": TFEfficientFormerModel, """image-classification""": ( TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, ), } if is_tf_available() else {} ) UpperCAmelCase : Tuple = False UpperCAmelCase : Optional[Any] = False UpperCAmelCase : List[Any] = False UpperCAmelCase : Dict = False UpperCAmelCase : Union[str, Any] = False def __snake_case ( self : List[Any]): a : Any = TFEfficientFormerModelTester(self) a : Optional[Any] = ConfigTester( self , config_class=__UpperCAmelCase , has_text_modality=__UpperCAmelCase , hidden_size=37) def __snake_case ( self : str): self.config_tester.run_common_tests() @unittest.skip(reason="EfficientFormer does not use inputs_embeds") def __snake_case ( self : int): pass @unittest.skip(reason="EfficientFormer does not support input and output embeddings") def __snake_case ( self : Optional[Any]): pass def __snake_case ( self : Optional[Any]): a , a : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a : Dict = model_class(__UpperCAmelCase) a : Optional[Any] = inspect.signature(model.call) # signature.parameters is an OrderedDict => so arg_names order is deterministic a : List[str] = [*signature.parameters.keys()] a : List[Any] = ["pixel_values"] self.assertListEqual(arg_names[:1] , __UpperCAmelCase) def __snake_case ( self : str): def check_hidden_states_output(__UpperCAmelCase : List[Any] , __UpperCAmelCase : str , __UpperCAmelCase : Optional[Any]): a : int = model_class(__UpperCAmelCase) a : Optional[int] = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase) , training=__UpperCAmelCase) a : List[str] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states a : Optional[Any] = getattr( self.model_tester , "expected_num_hidden_layers" , self.model_tester.num_hidden_layers + 1) self.assertEqual(len(__UpperCAmelCase) , __UpperCAmelCase) if hasattr(self.model_tester , "encoder_seq_length"): a : Optional[Any] = self.model_tester.encoder_seq_length if hasattr(self.model_tester , "chunk_length") and self.model_tester.chunk_length > 1: a : Any = seq_length * self.model_tester.chunk_length else: a : str = self.model_tester.seq_length self.assertListEqual( list(hidden_states[-1].shape[-2:]) , [seq_length, self.model_tester.hidden_size] , ) if config.is_encoder_decoder: a : Union[str, Any] = outputs.decoder_hidden_states self.asseretIsInstance(__UpperCAmelCase , (list, tuple)) self.assertEqual(len(__UpperCAmelCase) , __UpperCAmelCase) a : int = getattr(self.model_tester , "seq_length" , __UpperCAmelCase) a : Any = getattr(self.model_tester , "decoder_seq_length" , __UpperCAmelCase) self.assertListEqual( list(hidden_states[-1].shape[-2:]) , [decoder_seq_length, self.model_tester.hidden_size] , ) a , a : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a : int = True check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] a : Optional[Any] = True check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase) def __snake_case ( self : Optional[int] , __UpperCAmelCase : Dict , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Union[str, Any]=False): a : str = super()._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase , return_labels=__UpperCAmelCase) if return_labels: if model_class.__name__ == "TFEfficientFormerForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def __snake_case ( self : str): a : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCAmelCase) @unittest.skip(reason="EfficientFormer does not implement masked image modeling yet") def __snake_case ( self : Union[str, Any]): a : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*__UpperCAmelCase) def __snake_case ( self : str): a : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__UpperCAmelCase) @slow def __snake_case ( self : int): for model_name in TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a : Optional[int] = TFEfficientFormerModel.from_pretrained(__UpperCAmelCase) self.assertIsNotNone(__UpperCAmelCase) def __snake_case ( self : Union[str, Any]): a , a : List[str] = self.model_tester.prepare_config_and_inputs_for_common() a : Dict = True a : Dict = getattr(self.model_tester , "seq_length" , __UpperCAmelCase) a : List[str] = getattr(self.model_tester , "encoder_seq_length" , __UpperCAmelCase) a : List[Any] = getattr(self.model_tester , "key_length" , __UpperCAmelCase) a : List[str] = getattr(self.model_tester , "chunk_length" , __UpperCAmelCase) if chunk_length is not None and hasattr(self.model_tester , "num_hashes"): a : Tuple = encoder_seq_length * self.model_tester.num_hashes for model_class in self.all_model_classes: a : Optional[int] = True a : Dict = False a : Union[str, Any] = True a : Any = model_class(__UpperCAmelCase) a : Union[str, Any] = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase) , training=__UpperCAmelCase) a : Union[str, Any] = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(__UpperCAmelCase) , self.model_tester.num_attention_outputs) # check that output_attentions also work using config del inputs_dict["output_attentions"] a : str = True a : Dict = model_class(__UpperCAmelCase) a : int = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase) , training=__UpperCAmelCase) a : Any = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(__UpperCAmelCase) , self.model_tester.num_attention_outputs) if chunk_length is not None: self.assertListEqual( list(attentions[0].shape[-4:]) , [self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length] , ) else: self.assertListEqual( list(attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length] , ) def __snake_case ( self : Optional[int]): # We use a simplified version of this test for EfficientFormer because it requires training=False # and Keras refuses to let us force that during functional construction a , a : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # Prepare our model a : Any = model_class(__UpperCAmelCase) # These are maximally general inputs for the model, with multiple None dimensions # Hopefully this will catch any conditionals that fail for flexible shapes a : str = { key: tf.keras.Input(shape=val.shape[1:] , dtype=val.dtype , name=__UpperCAmelCase) for key, val in model.input_signature.items() if key in model.dummy_inputs } a : Optional[int] = model(__UpperCAmelCase) self.assertTrue(outputs_dict is not None) def lowercase ( )-> Dict: '''simple docstring''' a : Tuple = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_tf @require_vision class _A ( unittest.TestCase ): """simple docstring""" @cached_property def __snake_case ( self : Tuple): return ( EfficientFormerImageProcessor.from_pretrained("snap-research/efficientformer-l1-300") if is_vision_available() else None ) @slow def __snake_case ( self : Optional[int]): a : Any = TFEfficientFormerForImageClassification.from_pretrained("snap-research/efficientformer-l1-300") a : Optional[int] = self.default_image_processor a : int = prepare_img() a : Optional[Any] = image_processor(images=__UpperCAmelCase , return_tensors="tf") # forward pass a : Tuple = model(**__UpperCAmelCase , training=__UpperCAmelCase) # verify the logits a : str = tf.TensorShape((1, 1000)) self.assertEqual(outputs.logits.shape , __UpperCAmelCase) a : Any = tf.constant([-0.0_555, 0.4_825, -0.0_852]) self.assertTrue(np.allclose(outputs.logits[0, :3] , __UpperCAmelCase , atol=1e-4)) @slow def __snake_case ( self : Optional[Any]): a : List[Any] = TFEfficientFormerForImageClassificationWithTeacher.from_pretrained( "snap-research/efficientformer-l1-300") a : int = self.default_image_processor a : int = prepare_img() a : str = image_processor(images=__UpperCAmelCase , return_tensors="tf") # forward pass a : Union[str, Any] = model(**__UpperCAmelCase , training=__UpperCAmelCase) # verify the logits a : str = tf.TensorShape((1, 1000)) self.assertEqual(outputs.logits.shape , __UpperCAmelCase) a : Any = tf.constant([-0.1_312, 0.4_353, -1.0_499]) self.assertTrue(np.allclose(outputs.logits[0, :3] , __UpperCAmelCase , atol=1e-4))
40
"""simple docstring""" from bisect import bisect from itertools import accumulate def lowercase ( A_ , A_ , A_ , A_ )-> Union[str, Any]: '''simple docstring''' a : Any = sorted(zip(A_ , A_ ) , key=lambda A_ : x[0] / x[1] , reverse=A_ ) a , a : int = [i[0] for i in r], [i[1] for i in r] a : Union[str, Any] = list(accumulate(A_ ) ) a : Optional[Any] = bisect(A_ , A_ ) return ( 0 if k == 0 else sum(vl[:k] ) + (w - acc[k - 1]) * (vl[k]) / (wt[k]) if k != n else sum(vl[:k] ) ) if __name__ == "__main__": import doctest doctest.testmod()
40
1
# Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING import numpy as np import pyarrow as pa from .. import config from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import torch class A__ ( TensorFormatter[Mapping, 'torch.Tensor', Mapping] ): def __init__( self : List[str] , a : Union[str, Any]=None , **a : Union[str, Any] ): '''simple docstring''' super().__init__(features=a ) lowerCAmelCase__ : Any = torch_tensor_kwargs import torch # noqa import torch at initialization def _lowerCamelCase ( self : Dict , a : Tuple ): '''simple docstring''' import torch if isinstance(a , a ) and column: if all( isinstance(a , torch.Tensor ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return torch.stack(a ) return column def _lowerCamelCase ( self : Tuple , a : Tuple ): '''simple docstring''' import torch if isinstance(a , (str, bytes, type(a )) ): return value elif isinstance(a , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ): return value.tolist() lowerCAmelCase__ : List[str] = {} if isinstance(a , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ): lowerCAmelCase__ : List[str] = {'dtype': torch.intaa} elif isinstance(a , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ): lowerCAmelCase__ : Optional[int] = {'dtype': torch.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(a , PIL.Image.Image ): lowerCAmelCase__ : Dict = np.asarray(a ) return torch.tensor(a , **{**default_dtype, **self.torch_tensor_kwargs} ) def _lowerCamelCase ( self : List[str] , a : Optional[int] ): '''simple docstring''' import torch # support for torch, tf, jax etc. if hasattr(a , '__array__' ) and not isinstance(a , torch.Tensor ): lowerCAmelCase__ : int = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(a , np.ndarray ): if data_struct.dtype == object: # torch tensors cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(a ) for substruct in data_struct] ) elif isinstance(a , (list, tuple) ): return self._consolidate([self.recursive_tensorize(a ) for substruct in data_struct] ) return self._tensorize(a ) def _lowerCamelCase ( self : str , a : dict ): '''simple docstring''' return map_nested(self._recursive_tensorize , a , map_list=a ) def _lowerCamelCase ( self : str , a : pa.Table ): '''simple docstring''' lowerCAmelCase__ : int = self.numpy_arrow_extractor().extract_row(a ) lowerCAmelCase__ : Tuple = self.python_features_decoder.decode_row(a ) return self.recursive_tensorize(a ) def _lowerCamelCase ( self : Optional[Any] , a : pa.Table ): '''simple docstring''' lowerCAmelCase__ : List[Any] = self.numpy_arrow_extractor().extract_column(a ) lowerCAmelCase__ : Tuple = self.python_features_decoder.decode_column(a , pa_table.column_names[0] ) lowerCAmelCase__ : Optional[Any] = self.recursive_tensorize(a ) lowerCAmelCase__ : int = self._consolidate(a ) return column def _lowerCamelCase ( self : Dict , a : pa.Table ): '''simple docstring''' lowerCAmelCase__ : int = self.numpy_arrow_extractor().extract_batch(a ) lowerCAmelCase__ : List[Any] = self.python_features_decoder.decode_batch(a ) lowerCAmelCase__ : Optional[int] = self.recursive_tensorize(a ) for column_name in batch: lowerCAmelCase__ : Union[str, Any] = self._consolidate(batch[column_name] ) return batch
307
import gc import random import unittest import numpy as np import torch from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import ( DiffusionPipeline, UnCLIPImageVariationPipeline, UnCLIPScheduler, UNetaDConditionModel, UNetaDModel, ) from diffusers.pipelines.unclip.text_proj import UnCLIPTextProjModel from diffusers.utils import floats_tensor, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, load_image, require_torch_gpu, skip_mps from ..pipeline_params import IMAGE_VARIATION_BATCH_PARAMS, IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class A__ ( __magic_name__ , unittest.TestCase ): lowercase = UnCLIPImageVariationPipeline lowercase = IMAGE_VARIATION_PARAMS - {'height', 'width', 'guidance_scale'} lowercase = IMAGE_VARIATION_BATCH_PARAMS lowercase = [ 'generator', 'return_dict', 'decoder_num_inference_steps', 'super_res_num_inference_steps', ] lowercase = False @property def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' return 32 @property def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' return 32 @property def _lowerCamelCase ( self : int ): '''simple docstring''' return self.time_input_dim @property def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' return self.time_input_dim * 4 @property def _lowerCamelCase ( self : Any ): '''simple docstring''' return 100 @property def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' lowerCAmelCase__ : List[str] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) return tokenizer @property def _lowerCamelCase ( self : Any ): '''simple docstring''' torch.manual_seed(0 ) lowerCAmelCase__ : Optional[int] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) return CLIPTextModelWithProjection(a ) @property def _lowerCamelCase ( self : List[str] ): '''simple docstring''' torch.manual_seed(0 ) lowerCAmelCase__ : List[Any] = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , num_hidden_layers=5 , num_attention_heads=4 , image_size=32 , intermediate_size=37 , patch_size=1 , ) return CLIPVisionModelWithProjection(a ) @property def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' torch.manual_seed(0 ) lowerCAmelCase__ : Union[str, Any] = { 'clip_embeddings_dim': self.text_embedder_hidden_size, 'time_embed_dim': self.time_embed_dim, 'cross_attention_dim': self.cross_attention_dim, } lowerCAmelCase__ : Optional[Any] = UnCLIPTextProjModel(**a ) return model @property def _lowerCamelCase ( self : List[str] ): '''simple docstring''' torch.manual_seed(0 ) lowerCAmelCase__ : str = { 'sample_size': 32, # RGB in channels 'in_channels': 3, # Out channels is double in channels because predicts mean and variance 'out_channels': 6, 'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'), 'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'), 'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn', 'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2), 'layers_per_block': 1, 'cross_attention_dim': self.cross_attention_dim, 'attention_head_dim': 4, 'resnet_time_scale_shift': 'scale_shift', 'class_embed_type': 'identity', } lowerCAmelCase__ : str = UNetaDConditionModel(**a ) return model @property def _lowerCamelCase ( self : str ): '''simple docstring''' return { "sample_size": 64, "layers_per_block": 1, "down_block_types": ("ResnetDownsampleBlock2D", "ResnetDownsampleBlock2D"), "up_block_types": ("ResnetUpsampleBlock2D", "ResnetUpsampleBlock2D"), "block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2), "in_channels": 6, "out_channels": 3, } @property def _lowerCamelCase ( self : str ): '''simple docstring''' torch.manual_seed(0 ) lowerCAmelCase__ : Any = UNetaDModel(**self.dummy_super_res_kwargs ) return model @property def _lowerCamelCase ( self : int ): '''simple docstring''' torch.manual_seed(1 ) lowerCAmelCase__ : List[str] = UNetaDModel(**self.dummy_super_res_kwargs ) return model def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = self.dummy_decoder lowerCAmelCase__ : Optional[int] = self.dummy_text_proj lowerCAmelCase__ : Any = self.dummy_text_encoder lowerCAmelCase__ : Any = self.dummy_tokenizer lowerCAmelCase__ : Any = self.dummy_super_res_first lowerCAmelCase__ : Optional[int] = self.dummy_super_res_last lowerCAmelCase__ : Dict = UnCLIPScheduler( variance_type='learned_range' , prediction_type='epsilon' , num_train_timesteps=1_000 , ) lowerCAmelCase__ : Any = UnCLIPScheduler( variance_type='fixed_small_log' , prediction_type='epsilon' , num_train_timesteps=1_000 , ) lowerCAmelCase__ : Any = CLIPImageProcessor(crop_size=32 , size=32 ) lowerCAmelCase__ : Optional[int] = self.dummy_image_encoder return { "decoder": decoder, "text_encoder": text_encoder, "tokenizer": tokenizer, "text_proj": text_proj, "feature_extractor": feature_extractor, "image_encoder": image_encoder, "super_res_first": super_res_first, "super_res_last": super_res_last, "decoder_scheduler": decoder_scheduler, "super_res_scheduler": super_res_scheduler, } def _lowerCamelCase ( self : Any , a : Dict , a : List[str]=0 , a : List[str]=True ): '''simple docstring''' lowerCAmelCase__ : Dict = floats_tensor((1, 3, 32, 32) , rng=random.Random(a ) ).to(a ) if str(a ).startswith('mps' ): lowerCAmelCase__ : Optional[int] = torch.manual_seed(a ) else: lowerCAmelCase__ : str = torch.Generator(device=a ).manual_seed(a ) if pil_image: lowerCAmelCase__ : Optional[int] = input_image * 0.5 + 0.5 lowerCAmelCase__ : Dict = input_image.clamp(0 , 1 ) lowerCAmelCase__ : List[Any] = input_image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() lowerCAmelCase__ : Union[str, Any] = DiffusionPipeline.numpy_to_pil(a )[0] return { "image": input_image, "generator": generator, "decoder_num_inference_steps": 2, "super_res_num_inference_steps": 2, "output_type": "np", } def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' lowerCAmelCase__ : Optional[int] = 'cpu' lowerCAmelCase__ : Any = self.get_dummy_components() lowerCAmelCase__ : List[str] = self.pipeline_class(**a ) lowerCAmelCase__ : Dict = pipe.to(a ) pipe.set_progress_bar_config(disable=a ) lowerCAmelCase__ : Dict = self.get_dummy_inputs(a , pil_image=a ) lowerCAmelCase__ : str = pipe(**a ) lowerCAmelCase__ : Optional[Any] = output.images lowerCAmelCase__ : str = self.get_dummy_inputs(a , pil_image=a ) lowerCAmelCase__ : Optional[int] = pipe( **a , return_dict=a , )[0] lowerCAmelCase__ : Optional[Any] = image[0, -3:, -3:, -1] lowerCAmelCase__ : Tuple = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowerCAmelCase__ : List[str] = np.array( [ 0.9_9_9_7, 0.0_0_0_2, 0.9_9_9_7, 0.9_9_9_7, 0.9_9_6_9, 0.0_0_2_3, 0.9_9_9_7, 0.9_9_6_9, 0.9_9_7_0, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def _lowerCamelCase ( self : List[str] ): '''simple docstring''' lowerCAmelCase__ : Union[str, Any] = 'cpu' lowerCAmelCase__ : Dict = self.get_dummy_components() lowerCAmelCase__ : Optional[int] = self.pipeline_class(**a ) lowerCAmelCase__ : int = pipe.to(a ) pipe.set_progress_bar_config(disable=a ) lowerCAmelCase__ : List[Any] = self.get_dummy_inputs(a , pil_image=a ) lowerCAmelCase__ : List[str] = pipe(**a ) lowerCAmelCase__ : Union[str, Any] = output.images lowerCAmelCase__ : int = self.get_dummy_inputs(a , pil_image=a ) lowerCAmelCase__ : int = pipe( **a , return_dict=a , )[0] lowerCAmelCase__ : Tuple = image[0, -3:, -3:, -1] lowerCAmelCase__ : Tuple = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowerCAmelCase__ : str = np.array([0.9_9_9_7, 0.0_0_0_3, 0.9_9_9_7, 0.9_9_9_7, 0.9_9_7_0, 0.0_0_2_4, 0.9_9_9_7, 0.9_9_7_1, 0.9_9_7_1] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def _lowerCamelCase ( self : List[str] ): '''simple docstring''' lowerCAmelCase__ : Tuple = 'cpu' lowerCAmelCase__ : int = self.get_dummy_components() lowerCAmelCase__ : Tuple = self.pipeline_class(**a ) lowerCAmelCase__ : Union[str, Any] = pipe.to(a ) pipe.set_progress_bar_config(disable=a ) lowerCAmelCase__ : Tuple = self.get_dummy_inputs(a , pil_image=a ) lowerCAmelCase__ : List[str] = [ pipeline_inputs['image'], pipeline_inputs['image'], ] lowerCAmelCase__ : Optional[int] = pipe(**a ) lowerCAmelCase__ : Tuple = output.images lowerCAmelCase__ : List[str] = self.get_dummy_inputs(a , pil_image=a ) lowerCAmelCase__ : Union[str, Any] = [ tuple_pipeline_inputs['image'], tuple_pipeline_inputs['image'], ] lowerCAmelCase__ : str = pipe( **a , return_dict=a , )[0] lowerCAmelCase__ : Optional[Any] = image[0, -3:, -3:, -1] lowerCAmelCase__ : Any = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (2, 64, 64, 3) lowerCAmelCase__ : Union[str, Any] = np.array( [ 0.9_9_9_7, 0.9_9_8_9, 0.0_0_0_8, 0.0_0_2_1, 0.9_9_6_0, 0.0_0_1_8, 0.0_0_1_4, 0.0_0_0_2, 0.9_9_3_3, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def _lowerCamelCase ( self : Tuple ): '''simple docstring''' lowerCAmelCase__ : Tuple = torch.device('cpu' ) class A__ : lowercase = 1 lowerCAmelCase__ : Optional[Any] = self.get_dummy_components() lowerCAmelCase__ : Dict = self.pipeline_class(**a ) lowerCAmelCase__ : Optional[Any] = pipe.to(a ) pipe.set_progress_bar_config(disable=a ) lowerCAmelCase__ : Optional[int] = torch.Generator(device=a ).manual_seed(0 ) lowerCAmelCase__ : Optional[int] = pipe.decoder.dtype lowerCAmelCase__ : Union[str, Any] = 1 lowerCAmelCase__ : str = ( batch_size, pipe.decoder.config.in_channels, pipe.decoder.config.sample_size, pipe.decoder.config.sample_size, ) lowerCAmelCase__ : List[Any] = pipe.prepare_latents( a , dtype=a , device=a , generator=a , latents=a , scheduler=DummyScheduler() ) lowerCAmelCase__ : List[str] = ( batch_size, pipe.super_res_first.config.in_channels // 2, pipe.super_res_first.config.sample_size, pipe.super_res_first.config.sample_size, ) lowerCAmelCase__ : Any = pipe.prepare_latents( a , dtype=a , device=a , generator=a , latents=a , scheduler=DummyScheduler() ) lowerCAmelCase__ : List[Any] = self.get_dummy_inputs(a , pil_image=a ) lowerCAmelCase__ : Optional[int] = pipe( **a , decoder_latents=a , super_res_latents=a ).images lowerCAmelCase__ : Optional[Any] = self.get_dummy_inputs(a , pil_image=a ) # Don't pass image, instead pass embedding lowerCAmelCase__ : Union[str, Any] = pipeline_inputs.pop('image' ) lowerCAmelCase__ : Union[str, Any] = pipe.image_encoder(a ).image_embeds lowerCAmelCase__ : List[Any] = pipe( **a , decoder_latents=a , super_res_latents=a , image_embeddings=a , ).images # make sure passing text embeddings manually is identical assert np.abs(img_out_a - img_out_a ).max() < 1E-4 @skip_mps def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' lowerCAmelCase__ : Tuple = torch_device == 'cpu' # Check is relaxed because there is not a torch 2.0 sliced attention added kv processor lowerCAmelCase__ : int = 1E-2 self._test_attention_slicing_forward_pass( test_max_difference=a , expected_max_diff=a ) @skip_mps def _lowerCamelCase ( self : Tuple ): '''simple docstring''' lowerCAmelCase__ : Union[str, Any] = torch_device == 'cpu' lowerCAmelCase__ : Any = True lowerCAmelCase__ : Optional[Any] = [ 'decoder_num_inference_steps', 'super_res_num_inference_steps', ] self._test_inference_batch_single_identical( test_max_difference=a , relax_max_difference=a , additional_params_copy_to_batched_inputs=a , ) def _lowerCamelCase ( self : Dict ): '''simple docstring''' lowerCAmelCase__ : Tuple = [ 'decoder_num_inference_steps', 'super_res_num_inference_steps', ] if torch_device == "mps": # TODO: MPS errors with larger batch sizes lowerCAmelCase__ : List[str] = [2, 3] self._test_inference_batch_consistent( batch_sizes=a , additional_params_copy_to_batched_inputs=a , ) else: self._test_inference_batch_consistent( additional_params_copy_to_batched_inputs=a ) @skip_mps def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' return super().test_dict_tuple_outputs_equivalent() @skip_mps def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' return super().test_save_load_local() @skip_mps def _lowerCamelCase ( self : str ): '''simple docstring''' return super().test_save_load_optional_components() @slow @require_torch_gpu class A__ ( unittest.TestCase ): def _lowerCamelCase ( self : Tuple ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' lowerCAmelCase__ : Dict = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/unclip/cat.png' ) lowerCAmelCase__ : List[Any] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/unclip/karlo_v1_alpha_cat_variation_fp16.npy' ) lowerCAmelCase__ : Tuple = UnCLIPImageVariationPipeline.from_pretrained( 'kakaobrain/karlo-v1-alpha-image-variations' , torch_dtype=torch.floataa ) lowerCAmelCase__ : Union[str, Any] = pipeline.to(a ) pipeline.set_progress_bar_config(disable=a ) lowerCAmelCase__ : Dict = torch.Generator(device='cpu' ).manual_seed(0 ) lowerCAmelCase__ : List[str] = pipeline( a , generator=a , output_type='np' , ) lowerCAmelCase__ : Union[str, Any] = output.images[0] assert image.shape == (256, 256, 3) assert_mean_pixel_difference(a , a , 15 )
307
1
"""simple docstring""" import sys from collections import defaultdict class SCREAMING_SNAKE_CASE__ : def __init__( self : str ): lowerCAmelCase = [] def __lowercase ( self : int , lowerCAmelCase : int ): return self.node_position[vertex] def __lowercase ( self : Dict , lowerCAmelCase : int , lowerCAmelCase : Any ): lowerCAmelCase = pos def __lowercase ( self : Optional[Any] , lowerCAmelCase : int , lowerCAmelCase : str , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Any ): if start > size // 2 - 1: return else: if 2 * start + 2 >= size: lowerCAmelCase = 2 * start + 1 else: if heap[2 * start + 1] < heap[2 * start + 2]: lowerCAmelCase = 2 * start + 1 else: lowerCAmelCase = 2 * start + 2 if heap[smallest_child] < heap[start]: lowerCAmelCase , lowerCAmelCase = heap[smallest_child], positions[smallest_child] lowerCAmelCase , lowerCAmelCase = ( heap[start], positions[start], ) lowerCAmelCase , lowerCAmelCase = temp, tempa lowerCAmelCase = self.get_position(positions[smallest_child] ) self.set_position( positions[smallest_child] , self.get_position(positions[start] ) ) self.set_position(positions[start] , lowerCAmelCase ) self.top_to_bottom(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) def __lowercase ( self : List[Any] , lowerCAmelCase : Tuple , lowerCAmelCase : int , lowerCAmelCase : Optional[int] , lowerCAmelCase : List[Any] ): lowerCAmelCase = position[index] while index != 0: lowerCAmelCase = int((index - 2) / 2 ) if index % 2 == 0 else int((index - 1) / 2 ) if val < heap[parent]: lowerCAmelCase = heap[parent] lowerCAmelCase = position[parent] self.set_position(position[parent] , lowerCAmelCase ) else: lowerCAmelCase = val lowerCAmelCase = temp self.set_position(lowerCAmelCase , lowerCAmelCase ) break lowerCAmelCase = parent else: lowerCAmelCase = val lowerCAmelCase = temp self.set_position(lowerCAmelCase , 0 ) def __lowercase ( self : str , lowerCAmelCase : Tuple , lowerCAmelCase : List[Any] ): lowerCAmelCase = len(lowerCAmelCase ) // 2 - 1 for i in range(lowerCAmelCase , -1 , -1 ): self.top_to_bottom(lowerCAmelCase , lowerCAmelCase , len(lowerCAmelCase ) , lowerCAmelCase ) def __lowercase ( self : int , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Any ): lowerCAmelCase = positions[0] lowerCAmelCase = sys.maxsize self.top_to_bottom(lowerCAmelCase , 0 , len(lowerCAmelCase ) , lowerCAmelCase ) return temp def lowercase (snake_case__ : Optional[Any] ) -> Dict: '''simple docstring''' lowerCAmelCase = Heap() lowerCAmelCase = [0] * len(snake_case__ ) lowerCAmelCase = [-1] * len(snake_case__ ) # Neighboring Tree Vertex of selected vertex # Minimum Distance of explored vertex with neighboring vertex of partial tree # formed in graph lowerCAmelCase = [] # Heap of Distance of vertices from their neighboring vertex lowerCAmelCase = [] for vertex in range(len(snake_case__ ) ): distance_tv.append(sys.maxsize ) positions.append(snake_case__ ) heap.node_position.append(snake_case__ ) lowerCAmelCase = [] lowerCAmelCase = 1 lowerCAmelCase = sys.maxsize for neighbor, distance in adjacency_list[0]: lowerCAmelCase = 0 lowerCAmelCase = distance heap.heapify(snake_case__ , snake_case__ ) for _ in range(1 , len(snake_case__ ) ): lowerCAmelCase = heap.delete_minimum(snake_case__ , snake_case__ ) if visited[vertex] == 0: tree_edges.append((nbr_tv[vertex], vertex) ) lowerCAmelCase = 1 for neighbor, distance in adjacency_list[vertex]: if ( visited[neighbor] == 0 and distance < distance_tv[heap.get_position(snake_case__ )] ): lowerCAmelCase = distance heap.bottom_to_top( snake_case__ , heap.get_position(snake_case__ ) , snake_case__ , snake_case__ ) lowerCAmelCase = vertex return tree_edges if __name__ == "__main__": # pragma: no cover # < --------- Prims Algorithm --------- > a = int(input('Enter number of edges: ').strip()) a = defaultdict(list) for _ in range(edges_number): a = [int(x) for x in input().strip().split()] adjacency_list[edge[0]].append([edge[1], edge[2]]) adjacency_list[edge[1]].append([edge[0], edge[2]]) print(prisms_algorithm(adjacency_list))
155
"""simple docstring""" import argparse import json from tqdm import tqdm def lowercase () -> Dict: '''simple docstring''' lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--src_path""" , type=snake_case__ , default="""biencoder-nq-dev.json""" , help="""Path to raw DPR training data""" , ) parser.add_argument( """--evaluation_set""" , type=snake_case__ , help="""where to store parsed evaluation_set file""" , ) parser.add_argument( """--gold_data_path""" , type=snake_case__ , help="""where to store parsed gold_data_path file""" , ) lowerCAmelCase = parser.parse_args() with open(args.src_path , """r""" ) as src_file, open(args.evaluation_set , """w""" ) as eval_file, open( args.gold_data_path , """w""" ) as gold_file: lowerCAmelCase = json.load(snake_case__ ) for dpr_record in tqdm(snake_case__ ): lowerCAmelCase = dpr_record["""question"""] lowerCAmelCase = [context["""title"""] for context in dpr_record["""positive_ctxs"""]] eval_file.write(question + """\n""" ) gold_file.write("""\t""".join(snake_case__ ) + """\n""" ) if __name__ == "__main__": main()
155
1
"""simple docstring""" import argparse import json import os import re import shutil import torch from transformers import BioGptConfig, BioGptForCausalLM from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE from transformers.utils import WEIGHTS_NAME, logging logging.set_verbosity_warning() SCREAMING_SNAKE_CASE__ = 2 class lowerCAmelCase_ : """simple docstring""" def __init__( self , *, # begin keyword-only arguments lowerCAmelCase="<s>" , lowerCAmelCase="<pad>" , lowerCAmelCase="</s>" , lowerCAmelCase="<unk>" , lowerCAmelCase=None , ): """simple docstring""" snake_case ,snake_case ,snake_case ,snake_case = bos, unk, pad, eos snake_case = [] snake_case = [] snake_case = {} snake_case = self.add_symbol(lowerCAmelCase ) snake_case = self.add_symbol(lowerCAmelCase ) snake_case = self.add_symbol(lowerCAmelCase ) snake_case = self.add_symbol(lowerCAmelCase ) if extra_special_symbols: for s in extra_special_symbols: self.add_symbol(lowerCAmelCase ) snake_case = len(self.symbols ) def __eq__( self , lowerCAmelCase ): """simple docstring""" return self.indices == other.indices def __getitem__( self , lowerCAmelCase ): """simple docstring""" if idx < len(self.symbols ): return self.symbols[idx] return self.unk_word def __len__( self ): """simple docstring""" return len(self.symbols ) def __contains__( self , lowerCAmelCase ): """simple docstring""" return sym in self.indices @classmethod def snake_case ( cls , lowerCAmelCase ): """simple docstring""" snake_case = cls() d.add_from_file(lowerCAmelCase ) return d def snake_case ( self , lowerCAmelCase , lowerCAmelCase=1 , lowerCAmelCase=False ): """simple docstring""" if word in self.indices and not overwrite: snake_case = self.indices[word] snake_case = self.count[idx] + n return idx else: snake_case = len(self.symbols ) snake_case = idx self.symbols.append(lowerCAmelCase ) self.count.append(lowerCAmelCase ) return idx def snake_case ( self , lowerCAmelCase ): """simple docstring""" return 0 def snake_case ( self , lowerCAmelCase ): """simple docstring""" if isinstance(lowerCAmelCase , lowerCAmelCase ): try: with open(lowerCAmelCase , 'r' , encoding='utf-8' ) as fd: self.add_from_file(lowerCAmelCase ) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception('Incorrect encoding detected in {}, please rebuild the dataset'.format(lowerCAmelCase ) ) return snake_case = f.readlines() snake_case = self._load_meta(lowerCAmelCase ) for line in lines[indices_start_line:]: try: snake_case ,snake_case = line.rstrip().rsplit(' ' , 1 ) if field == "#fairseq:overwrite": snake_case = True snake_case ,snake_case = line.rsplit(' ' , 1 ) else: snake_case = False snake_case = int(lowerCAmelCase ) snake_case = line if word in self and not overwrite: raise RuntimeError( 'Duplicate word found when loading Dictionary: \'{}\'. ' 'Duplicate words can overwrite earlier ones by adding the ' '#fairseq:overwrite flag at the end of the corresponding row ' 'in the dictionary file. If using the Camembert model, please ' 'download an updated copy of the model file.'.format(lowerCAmelCase ) ) self.add_symbol(lowerCAmelCase , n=lowerCAmelCase , overwrite=lowerCAmelCase ) except ValueError: raise ValueError('Incorrect dictionary format, expected \'<token> <cnt> [flags]\'' ) def lowerCAmelCase__ ( _UpperCamelCase : Optional[Any] ) -> List[Any]: """simple docstring""" snake_case = dict((re.sub(r'@@$' , '' , _UpperCamelCase ), v) if k.endswith('@@' ) else (re.sub(r'$' , '</w>' , _UpperCamelCase ), v) for k, v in d.items() ) snake_case = '<s> <pad> </s> <unk>'.split() # restore the special tokens for k in keep_keys: del da[f"""{k}</w>"""] snake_case = d[k] # restore return da def lowerCAmelCase__ ( _UpperCamelCase : Optional[Any] , _UpperCamelCase : Tuple ) -> int: """simple docstring""" if not os.path.exists(_UpperCamelCase ): raise ValueError(f"""path {biogpt_checkpoint_path} does not exist!""" ) os.makedirs(_UpperCamelCase , exist_ok=_UpperCamelCase ) print(f"""Writing results to {pytorch_dump_folder_path}""" ) # handle various types of models snake_case = os.path.join(_UpperCamelCase , 'checkpoint.pt' ) if not os.path.isfile(_UpperCamelCase ): raise ValueError(f"""path to the file {checkpoint_file} does not exist!""" ) snake_case = torch.load(_UpperCamelCase , map_location='cpu' ) snake_case = chkpt['cfg']['model'] # dicts snake_case = os.path.join(_UpperCamelCase , 'dict.txt' ) if not os.path.isfile(_UpperCamelCase ): raise ValueError(f"""path to the file {dict_file} does not exist!""" ) snake_case = Dictionary.load(_UpperCamelCase ) snake_case = rewrite_dict_keys(src_dict.indices ) snake_case = len(_UpperCamelCase ) snake_case = os.path.join(_UpperCamelCase , VOCAB_FILES_NAMES['vocab_file'] ) print(f"""Generating {src_vocab_file} of {src_vocab_size} records""" ) with open(_UpperCamelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(_UpperCamelCase , ensure_ascii=_UpperCamelCase , indent=_UpperCamelCase ) ) # merges_file (bpecodes) snake_case = os.path.join(_UpperCamelCase , 'bpecodes' ) if not os.path.isfile(_UpperCamelCase ): raise ValueError(f"""path to the file {bpecodes_file} does not exist!""" ) snake_case = os.path.join(_UpperCamelCase , VOCAB_FILES_NAMES['merges_file'] ) shutil.copyfile(_UpperCamelCase , _UpperCamelCase ) # model config snake_case = os.path.join(_UpperCamelCase , 'config.json' ) snake_case = { 'activation_dropout': args['activation_dropout'], 'architectures': ['BioGptForCausalLM'], 'attention_probs_dropout_prob': args['attention_dropout'], 'bos_token_id': 0, 'eos_token_id': 2, 'hidden_act': args['activation_fn'], 'hidden_dropout_prob': args['dropout'], 'hidden_size': args['decoder_embed_dim'], 'initializer_range': 0.02, 'intermediate_size': args['decoder_ffn_embed_dim'], 'layer_norm_eps': 1e-1_2, 'layerdrop': args['decoder_layerdrop'], 'max_position_embeddings': args['max_target_positions'], 'model_type': 'biogpt', 'num_attention_heads': args['decoder_attention_heads'], 'num_hidden_layers': args['decoder_layers'], 'pad_token_id': 1, 'scale_embedding': not args['no_scale_embedding'], 'tie_word_embeddings': args['share_decoder_input_output_embed'], 'vocab_size': src_vocab_size, } # good hparam defaults to start with print(f"""Generating {biogpt_model_config_file}""" ) with open(_UpperCamelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(_UpperCamelCase , ensure_ascii=_UpperCamelCase , indent=_UpperCamelCase ) ) # tokenizer config snake_case = os.path.join(_UpperCamelCase , _UpperCamelCase ) snake_case = { 'bos_token': '<s>', 'eos_token': '</s>', 'model_max_length': 1_0_2_4, 'pad_token': '<pad>', 'special_tokens_map_file': None, 'tokenizer_class': 'BioGptTokenizer', 'unk_token': '<unk>', } print(f"""Generating {biogpt_tokenizer_config_file}""" ) with open(_UpperCamelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(_UpperCamelCase , ensure_ascii=_UpperCamelCase , indent=_UpperCamelCase ) ) # model snake_case = chkpt['model'] # remove unneeded keys snake_case = [ 'decoder.version', ] for k in ignore_keys: model_state_dict.pop(_UpperCamelCase , _UpperCamelCase ) snake_case = list(model_state_dict.keys() ) for layer_name in layer_names: if layer_name.endswith('output_projection.weight' ): snake_case = model_state_dict.pop(_UpperCamelCase ) else: snake_case = model_state_dict.pop(_UpperCamelCase ) snake_case = BioGptConfig.from_pretrained(_UpperCamelCase ) snake_case = BioGptForCausalLM(_UpperCamelCase ) # check that it loads ok model_new.load_state_dict(_UpperCamelCase ) # save snake_case = os.path.join(_UpperCamelCase , _UpperCamelCase ) print(f"""Generating {pytorch_weights_dump_path}""" ) torch.save(_UpperCamelCase , _UpperCamelCase ) print('Conversion is done!' ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--biogpt_checkpoint_path", default=None, type=str, required=True, help=( "Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts," " bpecodes, etc." ), ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) SCREAMING_SNAKE_CASE__ = parser.parse_args() convert_biogpt_checkpoint_to_pytorch(args.biogpt_checkpoint_path, args.pytorch_dump_folder_path)
149
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available SCREAMING_SNAKE_CASE__ = { "configuration_data2vec_audio": ["DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP", "Data2VecAudioConfig"], "configuration_data2vec_text": [ "DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP", "Data2VecTextConfig", "Data2VecTextOnnxConfig", ], "configuration_data2vec_vision": [ "DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP", "Data2VecVisionConfig", "Data2VecVisionOnnxConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ "DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST", "Data2VecAudioForAudioFrameClassification", "Data2VecAudioForCTC", "Data2VecAudioForSequenceClassification", "Data2VecAudioForXVector", "Data2VecAudioModel", "Data2VecAudioPreTrainedModel", ] SCREAMING_SNAKE_CASE__ = [ "DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST", "Data2VecTextForCausalLM", "Data2VecTextForMaskedLM", "Data2VecTextForMultipleChoice", "Data2VecTextForQuestionAnswering", "Data2VecTextForSequenceClassification", "Data2VecTextForTokenClassification", "Data2VecTextModel", "Data2VecTextPreTrainedModel", ] SCREAMING_SNAKE_CASE__ = [ "DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST", "Data2VecVisionForImageClassification", "Data2VecVisionForMaskedImageModeling", "Data2VecVisionForSemanticSegmentation", "Data2VecVisionModel", "Data2VecVisionPreTrainedModel", ] if is_tf_available(): SCREAMING_SNAKE_CASE__ = [ "TFData2VecVisionForImageClassification", "TFData2VecVisionForSemanticSegmentation", "TFData2VecVisionModel", "TFData2VecVisionPreTrainedModel", ] if TYPE_CHECKING: from .configuration_dataavec_audio import DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecAudioConfig from .configuration_dataavec_text import ( DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecTextConfig, DataaVecTextOnnxConfig, ) from .configuration_dataavec_vision import ( DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecVisionConfig, DataaVecVisionOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dataavec_audio import ( DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecAudioForAudioFrameClassification, DataaVecAudioForCTC, DataaVecAudioForSequenceClassification, DataaVecAudioForXVector, DataaVecAudioModel, DataaVecAudioPreTrainedModel, ) from .modeling_dataavec_text import ( DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecTextForCausalLM, DataaVecTextForMaskedLM, DataaVecTextForMultipleChoice, DataaVecTextForQuestionAnswering, DataaVecTextForSequenceClassification, DataaVecTextForTokenClassification, DataaVecTextModel, DataaVecTextPreTrainedModel, ) from .modeling_dataavec_vision import ( DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecVisionForImageClassification, DataaVecVisionForMaskedImageModeling, DataaVecVisionForSemanticSegmentation, DataaVecVisionModel, DataaVecVisionPreTrainedModel, ) if is_tf_available(): from .modeling_tf_dataavec_vision import ( TFDataaVecVisionForImageClassification, TFDataaVecVisionForSemanticSegmentation, TFDataaVecVisionModel, TFDataaVecVisionPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
149
1
"""simple docstring""" from __future__ import annotations def lowercase ( _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : Union[str, Any] ): '''simple docstring''' if (direction == 1 and array[indexa] > array[indexa]) or ( direction == 0 and array[indexa] < array[indexa] ): _UpperCAmelCase , _UpperCAmelCase = array[indexa], array[indexa] def lowercase ( _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : List[str] ): '''simple docstring''' if length > 1: _UpperCAmelCase = int(length / 2 ) for i in range(a__ , low + middle ): comp_and_swap(a__ , a__ , i + middle , a__ ) bitonic_merge(a__ , a__ , a__ , a__ ) bitonic_merge(a__ , low + middle , a__ , a__ ) def lowercase ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : Any ): '''simple docstring''' if length > 1: _UpperCAmelCase = int(length / 2 ) bitonic_sort(a__ , a__ , a__ , 1 ) bitonic_sort(a__ , low + middle , a__ , 0 ) bitonic_merge(a__ , a__ , a__ , a__ ) if __name__ == "__main__": __A : Dict = input("Enter numbers separated by a comma:\n").strip() __A : Union[str, Any] = [int(item.strip()) for item in user_input.split(",")] bitonic_sort(unsorted, 0, len(unsorted), 1) print("\nSorted array in ascending order is: ", end="") print(*unsorted, sep=", ") bitonic_merge(unsorted, 0, len(unsorted), 0) print("Sorted array in descending order is: ", end="") print(*unsorted, sep=", ")
260
from typing import Optional, Tuple, Union import flax import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict from ..configuration_utils import ConfigMixin, flax_register_to_config from ..utils import BaseOutput from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps from .modeling_flax_utils import FlaxModelMixin from .unet_ad_blocks_flax import ( FlaxCrossAttnDownBlockaD, FlaxDownBlockaD, FlaxUNetMidBlockaDCrossAttn, ) @flax.struct.dataclass class UpperCAmelCase_ ( UpperCamelCase_ ): '''simple docstring''' UpperCamelCase__ : jnp.ndarray UpperCamelCase__ : jnp.ndarray class UpperCAmelCase_ ( nn.Module ): '''simple docstring''' UpperCamelCase__ : int UpperCamelCase__ : Tuple[int] = (16, 32, 96, 256) UpperCamelCase__ : jnp.dtype = jnp.floataa def _A ( self ): '''simple docstring''' __SCREAMING_SNAKE_CASE = nn.Conv( self.block_out_channels[0] , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) __SCREAMING_SNAKE_CASE = [] for i in range(len(self.block_out_channels ) - 1 ): __SCREAMING_SNAKE_CASE = self.block_out_channels[i] __SCREAMING_SNAKE_CASE = self.block_out_channels[i + 1] __SCREAMING_SNAKE_CASE = nn.Conv( _A , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) blocks.append(_A ) __SCREAMING_SNAKE_CASE = nn.Conv( _A , kernel_size=(3, 3) , strides=(2, 2) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) blocks.append(_A ) __SCREAMING_SNAKE_CASE = blocks __SCREAMING_SNAKE_CASE = nn.Conv( self.conditioning_embedding_channels , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) def __call__( self , _A ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.conv_in(_A ) __SCREAMING_SNAKE_CASE = nn.silu(_A ) for block in self.blocks: __SCREAMING_SNAKE_CASE = block(_A ) __SCREAMING_SNAKE_CASE = nn.silu(_A ) __SCREAMING_SNAKE_CASE = self.conv_out(_A ) return embedding @flax_register_to_config class UpperCAmelCase_ ( nn.Module , UpperCamelCase_ , UpperCamelCase_ ): '''simple docstring''' UpperCamelCase__ : int = 32 UpperCamelCase__ : int = 4 UpperCamelCase__ : Tuple[str] = ( "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D", ) UpperCamelCase__ : Union[bool, Tuple[bool]] = False UpperCamelCase__ : Tuple[int] = (320, 640, 1280, 1280) UpperCamelCase__ : int = 2 UpperCamelCase__ : Union[int, Tuple[int]] = 8 UpperCamelCase__ : Optional[Union[int, Tuple[int]]] = None UpperCamelCase__ : int = 1280 UpperCamelCase__ : float = 0.0 UpperCamelCase__ : bool = False UpperCamelCase__ : jnp.dtype = jnp.floataa UpperCamelCase__ : bool = True UpperCamelCase__ : int = 0 UpperCamelCase__ : str = "rgb" UpperCamelCase__ : Tuple[int] = (16, 32, 96, 256) def _A ( self , _A ): '''simple docstring''' __SCREAMING_SNAKE_CASE = (1, self.in_channels, self.sample_size, self.sample_size) __SCREAMING_SNAKE_CASE = jnp.zeros(_A , dtype=jnp.floataa ) __SCREAMING_SNAKE_CASE = jnp.ones((1,) , dtype=jnp.intaa ) __SCREAMING_SNAKE_CASE = jnp.zeros((1, 1, self.cross_attention_dim) , dtype=jnp.floataa ) __SCREAMING_SNAKE_CASE = (1, 3, self.sample_size * 8, self.sample_size * 8) __SCREAMING_SNAKE_CASE = jnp.zeros(_A , dtype=jnp.floataa ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = jax.random.split(_A ) __SCREAMING_SNAKE_CASE = {'params': params_rng, 'dropout': dropout_rng} return self.init(_A , _A , _A , _A , _A )["params"] def _A ( self ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.block_out_channels __SCREAMING_SNAKE_CASE = block_out_channels[0] * 4 # If `num_attention_heads` is not defined (which is the case for most models) # it will default to `attention_head_dim`. This looks weird upon first reading it and it is. # The reason for this behavior is to correct for incorrectly named variables that were introduced # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking # which is why we correct for the naming here. __SCREAMING_SNAKE_CASE = self.num_attention_heads or self.attention_head_dim # input __SCREAMING_SNAKE_CASE = nn.Conv( block_out_channels[0] , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) # time __SCREAMING_SNAKE_CASE = FlaxTimesteps( block_out_channels[0] , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.config.freq_shift ) __SCREAMING_SNAKE_CASE = FlaxTimestepEmbedding(_A , dtype=self.dtype ) __SCREAMING_SNAKE_CASE = FlaxControlNetConditioningEmbedding( conditioning_embedding_channels=block_out_channels[0] , block_out_channels=self.conditioning_embedding_out_channels , ) __SCREAMING_SNAKE_CASE = self.only_cross_attention if isinstance(_A , _A ): __SCREAMING_SNAKE_CASE = (only_cross_attention,) * len(self.down_block_types ) if isinstance(_A , _A ): __SCREAMING_SNAKE_CASE = (num_attention_heads,) * len(self.down_block_types ) # down __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = block_out_channels[0] __SCREAMING_SNAKE_CASE = nn.Conv( _A , kernel_size=(1, 1) , padding='VALID' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(_A ) for i, down_block_type in enumerate(self.down_block_types ): __SCREAMING_SNAKE_CASE = output_channel __SCREAMING_SNAKE_CASE = block_out_channels[i] __SCREAMING_SNAKE_CASE = i == len(_A ) - 1 if down_block_type == "CrossAttnDownBlock2D": __SCREAMING_SNAKE_CASE = FlaxCrossAttnDownBlockaD( in_channels=_A , out_channels=_A , dropout=self.dropout , num_layers=self.layers_per_block , num_attention_heads=num_attention_heads[i] , add_downsample=not is_final_block , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , dtype=self.dtype , ) else: __SCREAMING_SNAKE_CASE = FlaxDownBlockaD( in_channels=_A , out_channels=_A , dropout=self.dropout , num_layers=self.layers_per_block , add_downsample=not is_final_block , dtype=self.dtype , ) down_blocks.append(_A ) for _ in range(self.layers_per_block ): __SCREAMING_SNAKE_CASE = nn.Conv( _A , kernel_size=(1, 1) , padding='VALID' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(_A ) if not is_final_block: __SCREAMING_SNAKE_CASE = nn.Conv( _A , kernel_size=(1, 1) , padding='VALID' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(_A ) __SCREAMING_SNAKE_CASE = down_blocks __SCREAMING_SNAKE_CASE = controlnet_down_blocks # mid __SCREAMING_SNAKE_CASE = block_out_channels[-1] __SCREAMING_SNAKE_CASE = FlaxUNetMidBlockaDCrossAttn( in_channels=_A , dropout=self.dropout , num_attention_heads=num_attention_heads[-1] , use_linear_projection=self.use_linear_projection , dtype=self.dtype , ) __SCREAMING_SNAKE_CASE = nn.Conv( _A , kernel_size=(1, 1) , padding='VALID' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) def __call__( self , _A , _A , _A , _A , _A = 1.0 , _A = True , _A = False , ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.controlnet_conditioning_channel_order if channel_order == "bgr": __SCREAMING_SNAKE_CASE = jnp.flip(_A , axis=1 ) # 1. time if not isinstance(_A , jnp.ndarray ): __SCREAMING_SNAKE_CASE = jnp.array([timesteps] , dtype=jnp.intaa ) elif isinstance(_A , jnp.ndarray ) and len(timesteps.shape ) == 0: __SCREAMING_SNAKE_CASE = timesteps.astype(dtype=jnp.floataa ) __SCREAMING_SNAKE_CASE = jnp.expand_dims(_A , 0 ) __SCREAMING_SNAKE_CASE = self.time_proj(_A ) __SCREAMING_SNAKE_CASE = self.time_embedding(_A ) # 2. pre-process __SCREAMING_SNAKE_CASE = jnp.transpose(_A , (0, 2, 3, 1) ) __SCREAMING_SNAKE_CASE = self.conv_in(_A ) __SCREAMING_SNAKE_CASE = jnp.transpose(_A , (0, 2, 3, 1) ) __SCREAMING_SNAKE_CASE = self.controlnet_cond_embedding(_A ) sample += controlnet_cond # 3. down __SCREAMING_SNAKE_CASE = (sample,) for down_block in self.down_blocks: if isinstance(_A , _A ): __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = down_block(_A , _A , _A , deterministic=not train ) else: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = down_block(_A , _A , deterministic=not train ) down_block_res_samples += res_samples # 4. mid __SCREAMING_SNAKE_CASE = self.mid_block(_A , _A , _A , deterministic=not train ) # 5. contronet blocks __SCREAMING_SNAKE_CASE = () for down_block_res_sample, controlnet_block in zip(_A , self.controlnet_down_blocks ): __SCREAMING_SNAKE_CASE = controlnet_block(_A ) controlnet_down_block_res_samples += (down_block_res_sample,) __SCREAMING_SNAKE_CASE = controlnet_down_block_res_samples __SCREAMING_SNAKE_CASE = self.controlnet_mid_block(_A ) # 6. scaling __SCREAMING_SNAKE_CASE = [sample * conditioning_scale for sample in down_block_res_samples] mid_block_res_sample *= conditioning_scale if not return_dict: return (down_block_res_samples, mid_block_res_sample) return FlaxControlNetOutput( down_block_res_samples=_A , mid_block_res_sample=_A )
257
0
from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case_ = logging.get_logger(__name__) snake_case_ = { 'studio-ousia/luke-base': 'https://huggingface.co/studio-ousia/luke-base/resolve/main/config.json', 'studio-ousia/luke-large': 'https://huggingface.co/studio-ousia/luke-large/resolve/main/config.json', } class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ): A_ : Union[str, Any] = 'luke' def __init__(self : Union[str, Any] , a__ : List[Any]=5_0267 , a__ : Tuple=50_0000 , a__ : List[Any]=768 , a__ : int=256 , a__ : int=12 , a__ : Any=12 , a__ : Optional[int]=3072 , a__ : int="gelu" , a__ : List[Any]=0.1 , a__ : Optional[int]=0.1 , a__ : List[str]=512 , a__ : Optional[Any]=2 , a__ : Dict=0.0_2 , a__ : List[str]=1E-12 , a__ : List[str]=True , a__ : Optional[int]=None , a__ : Tuple=1 , a__ : str=0 , a__ : Any=2 , **a__ : List[str] , ): """simple docstring""" super().__init__(pad_token_id=a__ , bos_token_id=a__ , eos_token_id=a__ , **a__ ) __snake_case = vocab_size __snake_case = entity_vocab_size __snake_case = hidden_size __snake_case = entity_emb_size __snake_case = num_hidden_layers __snake_case = num_attention_heads __snake_case = hidden_act __snake_case = intermediate_size __snake_case = hidden_dropout_prob __snake_case = attention_probs_dropout_prob __snake_case = max_position_embeddings __snake_case = type_vocab_size __snake_case = initializer_range __snake_case = layer_norm_eps __snake_case = use_entity_aware_attention __snake_case = classifier_dropout
238
def lowerCamelCase__ ( snake_case_ : int = 1000 ) -> int: __snake_case = 2**power __snake_case = str(snake_case_ ) __snake_case = list(snake_case_ ) __snake_case = 0 for i in list_num: sum_of_num += int(snake_case_ ) return sum_of_num if __name__ == "__main__": snake_case_ = int(input('Enter the power of 2: ').strip()) print('2 ^ ', power, ' = ', 2**power) snake_case_ = solution(power) print('Sum of the digits is: ', result)
238
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) __lowercase = { """configuration_mobilebert""": [ """MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MobileBertConfig""", """MobileBertOnnxConfig""", ], """tokenization_mobilebert""": ["""MobileBertTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase = ["""MobileBertTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase = [ """MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """MobileBertForMaskedLM""", """MobileBertForMultipleChoice""", """MobileBertForNextSentencePrediction""", """MobileBertForPreTraining""", """MobileBertForQuestionAnswering""", """MobileBertForSequenceClassification""", """MobileBertForTokenClassification""", """MobileBertLayer""", """MobileBertModel""", """MobileBertPreTrainedModel""", """load_tf_weights_in_mobilebert""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase = [ """TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFMobileBertForMaskedLM""", """TFMobileBertForMultipleChoice""", """TFMobileBertForNextSentencePrediction""", """TFMobileBertForPreTraining""", """TFMobileBertForQuestionAnswering""", """TFMobileBertForSequenceClassification""", """TFMobileBertForTokenClassification""", """TFMobileBertMainLayer""", """TFMobileBertModel""", """TFMobileBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mobilebert import ( MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileBertConfig, MobileBertOnnxConfig, ) from .tokenization_mobilebert import MobileBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mobilebert_fast import MobileBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilebert import ( MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertLayer, MobileBertModel, MobileBertPreTrainedModel, load_tf_weights_in_mobilebert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilebert import ( TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertMainLayer, TFMobileBertModel, TFMobileBertPreTrainedModel, ) else: import sys __lowercase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
40
'''simple docstring''' import torch from diffusers import DPMSolverSDEScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import require_torchsde from .test_schedulers import SchedulerCommonTest @require_torchsde class a_ (_a ): __lowerCAmelCase : Dict = (DPMSolverSDEScheduler,) __lowerCAmelCase : Dict = 1_0 def __UpperCamelCase ( self , **snake_case_ ): _lowerCAmelCase : List[Any] = { """num_train_timesteps""": 1_1_0_0, """beta_start""": 0.0001, """beta_end""": 0.02, """beta_schedule""": """linear""", """noise_sampler_seed""": 0, } config.update(**snake_case_ ) return config def __UpperCamelCase ( self ): for timesteps in [1_0, 5_0, 1_0_0, 1_0_0_0]: self.check_over_configs(num_train_timesteps=snake_case_ ) def __UpperCamelCase ( self ): for beta_start, beta_end in zip([0.0_0001, 0.0001, 0.001] , [0.0002, 0.002, 0.02] ): self.check_over_configs(beta_start=snake_case_ , beta_end=snake_case_ ) def __UpperCamelCase ( self ): for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=snake_case_ ) def __UpperCamelCase ( self ): for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=snake_case_ ) def __UpperCamelCase ( self ): _lowerCAmelCase : List[str] = self.scheduler_classes[0] _lowerCAmelCase : str = self.get_scheduler_config() _lowerCAmelCase : Any = scheduler_class(**snake_case_ ) scheduler.set_timesteps(self.num_inference_steps ) _lowerCAmelCase : Tuple = self.dummy_model() _lowerCAmelCase : List[str] = self.dummy_sample_deter * scheduler.init_noise_sigma _lowerCAmelCase : Optional[Any] = sample.to(snake_case_ ) for i, t in enumerate(scheduler.timesteps ): _lowerCAmelCase : Union[str, Any] = scheduler.scale_model_input(snake_case_ , snake_case_ ) _lowerCAmelCase : Union[str, Any] = model(snake_case_ , snake_case_ ) _lowerCAmelCase : Any = scheduler.step(snake_case_ , snake_case_ , snake_case_ ) _lowerCAmelCase : Dict = output.prev_sample _lowerCAmelCase : List[Any] = torch.sum(torch.abs(snake_case_ ) ) _lowerCAmelCase : Dict = torch.mean(torch.abs(snake_case_ ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 167.47_8210_4492_1875 ) < 1E-2 assert abs(result_mean.item() - 0.2178_7059_6456_5277 ) < 1E-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 171.59_3521_1181_6406 ) < 1E-2 assert abs(result_mean.item() - 0.2_2342_9068_9229_9652 ) < 1E-3 else: assert abs(result_sum.item() - 162.52_3834_2285_1562 ) < 1E-2 assert abs(result_mean.item() - 0.211_6195_7085_1326 ) < 1E-3 def __UpperCamelCase ( self ): _lowerCAmelCase : str = self.scheduler_classes[0] _lowerCAmelCase : Optional[Any] = self.get_scheduler_config(prediction_type="""v_prediction""" ) _lowerCAmelCase : Dict = scheduler_class(**snake_case_ ) scheduler.set_timesteps(self.num_inference_steps ) _lowerCAmelCase : int = self.dummy_model() _lowerCAmelCase : Dict = self.dummy_sample_deter * scheduler.init_noise_sigma _lowerCAmelCase : int = sample.to(snake_case_ ) for i, t in enumerate(scheduler.timesteps ): _lowerCAmelCase : List[str] = scheduler.scale_model_input(snake_case_ , snake_case_ ) _lowerCAmelCase : List[Any] = model(snake_case_ , snake_case_ ) _lowerCAmelCase : str = scheduler.step(snake_case_ , snake_case_ , snake_case_ ) _lowerCAmelCase : int = output.prev_sample _lowerCAmelCase : str = torch.sum(torch.abs(snake_case_ ) ) _lowerCAmelCase : Optional[int] = torch.mean(torch.abs(snake_case_ ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 124.77_1492_0043_9453 ) < 1E-2 assert abs(result_mean.item() - 0.1_6226_2890_1481_6284 ) < 1E-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 128.1_6633_6059_5703 ) < 1E-2 assert abs(result_mean.item() - 0.1_6688_3260_0116_7297 ) < 1E-3 else: assert abs(result_sum.item() - 119.8_4875_4882_8125 ) < 1E-2 assert abs(result_mean.item() - 0.1560_5306_6253_6621 ) < 1E-3 def __UpperCamelCase ( self ): _lowerCAmelCase : Union[str, Any] = self.scheduler_classes[0] _lowerCAmelCase : str = self.get_scheduler_config() _lowerCAmelCase : str = scheduler_class(**snake_case_ ) scheduler.set_timesteps(self.num_inference_steps , device=snake_case_ ) _lowerCAmelCase : Tuple = self.dummy_model() _lowerCAmelCase : Optional[int] = self.dummy_sample_deter.to(snake_case_ ) * scheduler.init_noise_sigma for t in scheduler.timesteps: _lowerCAmelCase : str = scheduler.scale_model_input(snake_case_ , snake_case_ ) _lowerCAmelCase : Dict = model(snake_case_ , snake_case_ ) _lowerCAmelCase : Any = scheduler.step(snake_case_ , snake_case_ , snake_case_ ) _lowerCAmelCase : Dict = output.prev_sample _lowerCAmelCase : List[Any] = torch.sum(torch.abs(snake_case_ ) ) _lowerCAmelCase : Dict = torch.mean(torch.abs(snake_case_ ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 167.46_9573_9746_0938 ) < 1E-2 assert abs(result_mean.item() - 0.2_1805_9346_0798_2635 ) < 1E-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 171.59_3536_3769_5312 ) < 1E-2 assert abs(result_mean.item() - 0.2_2342_9083_8241_5771 ) < 1E-3 else: assert abs(result_sum.item() - 162.52_3834_2285_1562 ) < 1E-2 assert abs(result_mean.item() - 0.211_6195_7085_1326 ) < 1E-3 def __UpperCamelCase ( self ): _lowerCAmelCase : Any = self.scheduler_classes[0] _lowerCAmelCase : Optional[int] = self.get_scheduler_config() _lowerCAmelCase : Tuple = scheduler_class(**snake_case_ , use_karras_sigmas=snake_case_ ) scheduler.set_timesteps(self.num_inference_steps , device=snake_case_ ) _lowerCAmelCase : List[Any] = self.dummy_model() _lowerCAmelCase : str = self.dummy_sample_deter.to(snake_case_ ) * scheduler.init_noise_sigma _lowerCAmelCase : Optional[int] = sample.to(snake_case_ ) for t in scheduler.timesteps: _lowerCAmelCase : List[str] = scheduler.scale_model_input(snake_case_ , snake_case_ ) _lowerCAmelCase : int = model(snake_case_ , snake_case_ ) _lowerCAmelCase : Optional[int] = scheduler.step(snake_case_ , snake_case_ , snake_case_ ) _lowerCAmelCase : str = output.prev_sample _lowerCAmelCase : Optional[Any] = torch.sum(torch.abs(snake_case_ ) ) _lowerCAmelCase : Dict = torch.mean(torch.abs(snake_case_ ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 176.66_9741_3574_2188 ) < 1E-2 assert abs(result_mean.item() - 0.2_3003_8727_3098_1811 ) < 1E-2 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 177.63_6535_6445_3125 ) < 1E-2 assert abs(result_mean.item() - 0.2_3003_8727_3098_1811 ) < 1E-2 else: assert abs(result_sum.item() - 170.3_1352_2338_8672 ) < 1E-2 assert abs(result_mean.item() - 0.2_3003_8727_3098_1811 ) < 1E-2
309
0
from typing import Any def UpperCamelCase ( __magic_name__ : list , __magic_name__ : list , __magic_name__ : dict , __magic_name__ : dict , __magic_name__ : dict , ) -> list: """simple docstring""" _validation( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , ) # Creates data structures and fill initial step lowercase__ = {} lowercase__ = {} for state in states_space: lowercase__ = observations_space[0] lowercase__ = ( initial_probabilities[state] * emission_probabilities[state][observation] ) lowercase__ = None # Fills the data structure with the probabilities of # different transitions and pointers to previous states for o in range(1 , len(__magic_name__ ) ): lowercase__ = observations_space[o] lowercase__ = observations_space[o - 1] for state in states_space: # Calculates the argmax for probability function lowercase__ = """""" lowercase__ = -1 for k_state in states_space: lowercase__ = ( probabilities[(k_state, prior_observation)] * transition_probabilities[k_state][state] * emission_probabilities[state][observation] ) if probability > max_probability: lowercase__ = probability lowercase__ = k_state # Update probabilities and pointers dicts lowercase__ = ( probabilities[(arg_max, prior_observation)] * transition_probabilities[arg_max][state] * emission_probabilities[state][observation] ) lowercase__ = arg_max # The final observation lowercase__ = observations_space[len(__magic_name__ ) - 1] # argmax for given final observation lowercase__ = """""" lowercase__ = -1 for k_state in states_space: lowercase__ = probabilities[(k_state, final_observation)] if probability > max_probability: lowercase__ = probability lowercase__ = k_state lowercase__ = arg_max # Process pointers backwards lowercase__ = last_state lowercase__ = [] for o in range(len(__magic_name__ ) - 1 , -1 , -1 ): result.append(__magic_name__ ) lowercase__ = pointers[previous, observations_space[o]] result.reverse() return result def UpperCamelCase ( __magic_name__ : Any , __magic_name__ : Any , __magic_name__ : Any , __magic_name__ : Any , __magic_name__ : Any , ) -> None: """simple docstring""" _validate_not_empty( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , ) _validate_lists(__magic_name__ , __magic_name__ ) _validate_dicts( __magic_name__ , __magic_name__ , __magic_name__ ) def UpperCamelCase ( __magic_name__ : Any , __magic_name__ : Any , __magic_name__ : Any , __magic_name__ : Any , __magic_name__ : Any , ) -> None: """simple docstring""" if not all( [ observations_space, states_space, initial_probabilities, transition_probabilities, emission_probabilities, ] ): raise ValueError("""There's an empty parameter""" ) def UpperCamelCase ( __magic_name__ : Any , __magic_name__ : Any ) -> None: """simple docstring""" _validate_list(__magic_name__ , """observations_space""" ) _validate_list(__magic_name__ , """states_space""" ) def UpperCamelCase ( __magic_name__ : Any , __magic_name__ : str ) -> None: """simple docstring""" if not isinstance(_object , __magic_name__ ): lowercase__ = f'''{var_name} must be a list''' raise ValueError(__magic_name__ ) else: for x in _object: if not isinstance(__magic_name__ , __magic_name__ ): lowercase__ = f'''{var_name} must be a list of strings''' raise ValueError(__magic_name__ ) def UpperCamelCase ( __magic_name__ : Any , __magic_name__ : Any , __magic_name__ : Any , ) -> None: """simple docstring""" _validate_dict(__magic_name__ , """initial_probabilities""" , __magic_name__ ) _validate_nested_dict(__magic_name__ , """transition_probabilities""" ) _validate_nested_dict(__magic_name__ , """emission_probabilities""" ) def UpperCamelCase ( __magic_name__ : Any , __magic_name__ : str ) -> None: """simple docstring""" _validate_dict(_object , __magic_name__ , __magic_name__ ) for x in _object.values(): _validate_dict(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) def UpperCamelCase ( __magic_name__ : Any , __magic_name__ : str , __magic_name__ : type , __magic_name__ : bool = False ) -> None: """simple docstring""" if not isinstance(_object , __magic_name__ ): lowercase__ = f'''{var_name} must be a dict''' raise ValueError(__magic_name__ ) if not all(isinstance(__magic_name__ , __magic_name__ ) for x in _object ): lowercase__ = f'''{var_name} all keys must be strings''' raise ValueError(__magic_name__ ) if not all(isinstance(__magic_name__ , __magic_name__ ) for x in _object.values() ): lowercase__ = """nested dictionary """ if nested else """""" lowercase__ = f'''{var_name} {nested_text}all values must be {value_type.__name__}''' raise ValueError(__magic_name__ ) if __name__ == "__main__": from doctest import testmod testmod()
146
import inspect from typing import Callable, List, Optional, Union import torch from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer from diffusers import DiffusionPipeline from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler from diffusers.utils import logging A : str = logging.get_logger(__name__) # pylint: disable=invalid-name class A ( UpperCAmelCase__ ): '''simple docstring''' def __init__(self : List[str] , _UpperCAmelCase : AutoencoderKL , _UpperCAmelCase : CLIPTextModel , _UpperCAmelCase : CLIPTokenizer , _UpperCAmelCase : UNetaDConditionModel , _UpperCAmelCase : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , _UpperCAmelCase : StableDiffusionSafetyChecker , _UpperCAmelCase : CLIPImageProcessor , ) -> Dict: """simple docstring""" super().__init__() self.register_modules( vae=_UpperCAmelCase , text_encoder=_UpperCAmelCase , tokenizer=_UpperCAmelCase , unet=_UpperCAmelCase , scheduler=_UpperCAmelCase , safety_checker=_UpperCAmelCase , feature_extractor=_UpperCAmelCase , ) def lowerCamelCase__ (self : Optional[Any] , _UpperCAmelCase : Optional[Union[str, int]] = "auto" ) -> Tuple: """simple docstring""" if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory lowercase__ = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(_UpperCAmelCase ) def lowerCamelCase__ (self : Optional[Any] ) -> Optional[Any]: """simple docstring""" self.enable_attention_slicing(_UpperCAmelCase ) @torch.no_grad() def __call__(self : Any , _UpperCAmelCase : Union[str, List[str]] , _UpperCAmelCase : int = 512 , _UpperCAmelCase : int = 512 , _UpperCAmelCase : int = 50 , _UpperCAmelCase : float = 7.5 , _UpperCAmelCase : Optional[Union[str, List[str]]] = None , _UpperCAmelCase : Optional[int] = 1 , _UpperCAmelCase : float = 0.0 , _UpperCAmelCase : Optional[torch.Generator] = None , _UpperCAmelCase : Optional[torch.FloatTensor] = None , _UpperCAmelCase : Optional[str] = "pil" , _UpperCAmelCase : bool = True , _UpperCAmelCase : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , _UpperCAmelCase : int = 1 , _UpperCAmelCase : Optional[torch.FloatTensor] = None , **_UpperCAmelCase : Any , ) -> Tuple: """simple docstring""" if isinstance(_UpperCAmelCase , _UpperCAmelCase ): lowercase__ = 1 elif isinstance(_UpperCAmelCase , _UpperCAmelCase ): lowercase__ = len(_UpperCAmelCase ) else: raise ValueError(f'''`prompt` has to be of type `str` or `list` but is {type(_UpperCAmelCase )}''' ) if height % 8 != 0 or width % 8 != 0: raise ValueError(f'''`height` and `width` have to be divisible by 8 but are {height} and {width}.''' ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(_UpperCAmelCase , _UpperCAmelCase ) or callback_steps <= 0) ): raise ValueError( f'''`callback_steps` has to be a positive integer but is {callback_steps} of type''' f''' {type(_UpperCAmelCase )}.''' ) # get prompt text embeddings lowercase__ = self.tokenizer( _UpperCAmelCase , padding="""max_length""" , max_length=self.tokenizer.model_max_length , return_tensors="""pt""" , ) lowercase__ = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: lowercase__ = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( """The following part of your input was truncated because CLIP can only handle sequences up to""" f''' {self.tokenizer.model_max_length} tokens: {removed_text}''' ) lowercase__ = text_input_ids[:, : self.tokenizer.model_max_length] if text_embeddings is None: lowercase__ = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method lowercase__ , lowercase__ , lowercase__ = text_embeddings.shape lowercase__ = text_embeddings.repeat(1 , _UpperCAmelCase , 1 ) lowercase__ = text_embeddings.view(bs_embed * num_images_per_prompt , _UpperCAmelCase , -1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. lowercase__ = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: lowercase__ = 42 if negative_prompt is None: lowercase__ = [""""""] elif type(_UpperCAmelCase ) is not type(_UpperCAmelCase ): raise TypeError( f'''`negative_prompt` should be the same type to `prompt`, but got {type(_UpperCAmelCase )} !=''' f''' {type(_UpperCAmelCase )}.''' ) elif isinstance(_UpperCAmelCase , _UpperCAmelCase ): lowercase__ = [negative_prompt] elif batch_size != len(_UpperCAmelCase ): raise ValueError( f'''`negative_prompt`: {negative_prompt} has batch size {len(_UpperCAmelCase )}, but `prompt`:''' f''' {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches''' """ the batch size of `prompt`.""" ) else: lowercase__ = negative_prompt lowercase__ = text_input_ids.shape[-1] lowercase__ = self.tokenizer( _UpperCAmelCase , padding="""max_length""" , max_length=_UpperCAmelCase , truncation=_UpperCAmelCase , return_tensors="""pt""" , ) lowercase__ = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method lowercase__ = uncond_embeddings.shape[1] lowercase__ = uncond_embeddings.repeat(_UpperCAmelCase , _UpperCAmelCase , 1 ) lowercase__ = uncond_embeddings.view(batch_size * num_images_per_prompt , _UpperCAmelCase , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes lowercase__ = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. lowercase__ = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) lowercase__ = (batch_size * num_images_per_prompt, self.unet.config.in_channels, 64, 64) lowercase__ = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps lowercase__ = torch.randn( _UpperCAmelCase , generator=_UpperCAmelCase , device="""cpu""" , dtype=_UpperCAmelCase ).to(self.device ) lowercase__ = torch.randn(_UpperCAmelCase , generator=_UpperCAmelCase , device="""cpu""" , dtype=_UpperCAmelCase ).to( self.device ) else: lowercase__ = torch.randn( _UpperCAmelCase , generator=_UpperCAmelCase , device=self.device , dtype=_UpperCAmelCase ) lowercase__ = torch.randn(_UpperCAmelCase , generator=_UpperCAmelCase , device=self.device , dtype=_UpperCAmelCase ) else: if latents_reference.shape != latents_shape: raise ValueError(f'''Unexpected latents shape, got {latents.shape}, expected {latents_shape}''' ) lowercase__ = latents_reference.to(self.device ) lowercase__ = latents.to(self.device ) # This is the key part of the pipeline where we # try to ensure that the generated images w/ the same seed # but different sizes actually result in similar images lowercase__ = (latents_shape[3] - latents_shape_reference[3]) // 2 lowercase__ = (latents_shape[2] - latents_shape_reference[2]) // 2 lowercase__ = latents_shape_reference[3] if dx >= 0 else latents_shape_reference[3] + 2 * dx lowercase__ = latents_shape_reference[2] if dy >= 0 else latents_shape_reference[2] + 2 * dy lowercase__ = 0 if dx < 0 else dx lowercase__ = 0 if dy < 0 else dy lowercase__ = max(-dx , 0 ) lowercase__ = max(-dy , 0 ) # import pdb # pdb.set_trace() lowercase__ = latents_reference[:, :, dy : dy + h, dx : dx + w] # set timesteps self.scheduler.set_timesteps(_UpperCAmelCase ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand lowercase__ = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler lowercase__ = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] lowercase__ = """eta""" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) lowercase__ = {} if accepts_eta: lowercase__ = eta for i, t in enumerate(self.progress_bar(_UpperCAmelCase ) ): # expand the latents if we are doing classifier free guidance lowercase__ = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents lowercase__ = self.scheduler.scale_model_input(_UpperCAmelCase , _UpperCAmelCase ) # predict the noise residual lowercase__ = self.unet(_UpperCAmelCase , _UpperCAmelCase , encoder_hidden_states=_UpperCAmelCase ).sample # perform guidance if do_classifier_free_guidance: lowercase__ , lowercase__ = noise_pred.chunk(2 ) lowercase__ = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 lowercase__ = self.scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) lowercase__ = 1 / 0.18_215 * latents lowercase__ = self.vae.decode(_UpperCAmelCase ).sample lowercase__ = (image / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 lowercase__ = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if self.safety_checker is not None: lowercase__ = self.feature_extractor(self.numpy_to_pil(_UpperCAmelCase ) , return_tensors="""pt""" ).to( self.device ) lowercase__ , lowercase__ = self.safety_checker( images=_UpperCAmelCase , clip_input=safety_checker_input.pixel_values.to(text_embeddings.dtype ) ) else: lowercase__ = None if output_type == "pil": lowercase__ = self.numpy_to_pil(_UpperCAmelCase ) if not return_dict: return (image, has_nsfw_concept) return StableDiffusionPipelineOutput(images=_UpperCAmelCase , nsfw_content_detected=_UpperCAmelCase )
146
1
def lowercase( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , ) -> Tuple: '''simple docstring''' UpperCamelCase = [redshift, radiation_density, matter_density, dark_energy] if any(p < 0 for p in parameters ): raise ValueError("""All input parameters must be positive""" ) if any(p > 1 for p in parameters[1:4] ): raise ValueError("""Relative densities cannot be greater than one""" ) else: UpperCamelCase = 1 - (matter_density + radiation_density + dark_energy) UpperCamelCase = ( radiation_density * (redshift + 1) ** 4 + matter_density * (redshift + 1) ** 3 + curvature * (redshift + 1) ** 2 + dark_energy ) UpperCamelCase = hubble_constant * e_a ** (1 / 2) return hubble if __name__ == "__main__": import doctest # run doctest doctest.testmod() # demo LCDM approximation _SCREAMING_SNAKE_CASE = 0.3 print( hubble_parameter( hubble_constant=68.3, radiation_density=1E-4, matter_density=matter_density, dark_energy=1 - matter_density, redshift=0, ) )
343
"""simple docstring""" def _lowerCamelCase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = False while is_sorted is False: # Until all the indices are traversed keep looping __lowerCAmelCase = True for i in range(0 , len(_UpperCamelCase ) - 1 , 2 ): # iterating over all even indices if input_list[i] > input_list[i + 1]: __lowerCAmelCase , __lowerCAmelCase = input_list[i + 1], input_list[i] # swapping if elements not in order __lowerCAmelCase = False for i in range(1 , len(_UpperCamelCase ) - 1 , 2 ): # iterating over all odd indices if input_list[i] > input_list[i + 1]: __lowerCAmelCase , __lowerCAmelCase = input_list[i + 1], input_list[i] # swapping if elements not in order __lowerCAmelCase = False return input_list if __name__ == "__main__": print("Enter list to be sorted") A : Union[str, Any] = [int(x) for x in input().split()] # inputing elements of the list in one line A : str = odd_even_sort(input_list) print("The sorted list is") print(sorted_list)
57
0
"""simple docstring""" import math import numpy as np import qiskit from qiskit import Aer, ClassicalRegister, QuantumCircuit, QuantumRegister, execute def lowerCamelCase_( _lowerCamelCase = 3 ) -> qiskit.result.counts.Counts: '''simple docstring''' if isinstance(_lowerCamelCase , _lowerCamelCase ): raise TypeError("number of qubits must be a integer." ) if number_of_qubits <= 0: raise ValueError("number of qubits must be > 0." ) if math.floor(_lowerCamelCase ) != number_of_qubits: raise ValueError("number of qubits must be exact integer." ) if number_of_qubits > 10: raise ValueError("number of qubits too large to simulate(>10)." ) _lowerCamelCase : str = QuantumRegister(_lowerCamelCase , "qr" ) _lowerCamelCase : Optional[Any] = ClassicalRegister(_lowerCamelCase , "cr" ) _lowerCamelCase : Optional[int] = QuantumCircuit(_lowerCamelCase , _lowerCamelCase ) _lowerCamelCase : List[Any] = number_of_qubits for i in range(_lowerCamelCase ): quantum_circuit.h(number_of_qubits - i - 1 ) counter -= 1 for j in range(_lowerCamelCase ): quantum_circuit.cp(np.pi / 2 ** (counter - j) , _lowerCamelCase , _lowerCamelCase ) for k in range(number_of_qubits // 2 ): quantum_circuit.swap(_lowerCamelCase , number_of_qubits - k - 1 ) # measure all the qubits quantum_circuit.measure(_lowerCamelCase , _lowerCamelCase ) # simulate with 10000 shots _lowerCamelCase : Optional[int] = Aer.get_backend("qasm_simulator" ) _lowerCamelCase : Optional[Any] = execute(_lowerCamelCase , _lowerCamelCase , shots=10000 ) return job.result().get_counts(_lowerCamelCase ) if __name__ == "__main__": print( f'''Total count for quantum fourier transform state is: \ {quantum_fourier_transform(3)}''' )
340
"""simple docstring""" _lowerCAmelCase : Tuple = [ [0, 16, 13, 0, 0, 0], [0, 0, 10, 12, 0, 0], [0, 4, 0, 0, 14, 0], [0, 0, 9, 0, 0, 20], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Tuple: '''simple docstring''' _lowerCamelCase : Any = [False] * len(_lowerCamelCase ) _lowerCamelCase : Union[str, Any] = [s] _lowerCamelCase : str = True while queue: _lowerCamelCase : Optional[int] = queue.pop(0 ) for ind in range(len(graph[u] ) ): if visited[ind] is False and graph[u][ind] > 0: queue.append(_lowerCamelCase ) _lowerCamelCase : Any = True _lowerCamelCase : Any = u return visited[t] def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Optional[Any]: '''simple docstring''' _lowerCamelCase : List[str] = [-1] * (len(_lowerCamelCase )) _lowerCamelCase : Union[str, Any] = 0 _lowerCamelCase : Union[str, Any] = [] _lowerCamelCase : List[str] = [i[:] for i in graph] # Record original cut, copy. while bfs(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): _lowerCamelCase : Any = float("Inf" ) _lowerCamelCase : Dict = sink while s != source: # Find the minimum value in select path _lowerCamelCase : Union[str, Any] = min(_lowerCamelCase , graph[parent[s]][s] ) _lowerCamelCase : Union[str, Any] = parent[s] max_flow += path_flow _lowerCamelCase : Optional[Any] = sink while v != source: _lowerCamelCase : Union[str, Any] = parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow _lowerCamelCase : List[str] = parent[v] for i in range(len(_lowerCamelCase ) ): for j in range(len(graph[0] ) ): if graph[i][j] == 0 and temp[i][j] > 0: res.append((i, j) ) return res if __name__ == "__main__": print(mincut(test_graph, source=0, sink=5))
340
1
"""simple docstring""" import warnings from ...utils import logging from .image_processing_yolos import YolosImageProcessor lowerCamelCase_ = logging.get_logger(__name__) class UpperCamelCase_ (UpperCAmelCase_ ): def __init__( self : List[str] , *lowerCAmelCase_ : List[str] , **lowerCAmelCase_ : str ) -> None: warnings.warn( "The class YolosFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use YolosImageProcessor instead." , __UpperCAmelCase , ) super().__init__(*__UpperCAmelCase , **__UpperCAmelCase )
268
import inspect import os import unittest import torch import accelerate from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_multi_gpu from accelerate.utils import patch_environment class A ( unittest.TestCase ): def lowercase_ (self : Union[str, Any] ) -> str: """simple docstring""" UpperCAmelCase__ = inspect.getfile(accelerate.test_utils ) UpperCAmelCase__ = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["scripts", "test_script.py"] ) UpperCAmelCase__ = os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ["scripts", "test_distributed_data_loop.py"] ) UpperCAmelCase__ = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["scripts", "test_ops.py"] ) @require_multi_gpu def lowercase_ (self : List[str] ) -> Any: """simple docstring""" print(f"""Found {torch.cuda.device_count()} devices.""" ) UpperCAmelCase__ = ["torchrun", f"""--nproc_per_node={torch.cuda.device_count()}""", self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__UpperCAmelCase , env=os.environ.copy() ) @require_multi_gpu def lowercase_ (self : str ) -> str: """simple docstring""" print(f"""Found {torch.cuda.device_count()} devices.""" ) UpperCAmelCase__ = ["torchrun", f"""--nproc_per_node={torch.cuda.device_count()}""", self.operation_file_path] print(f"""Command: {cmd}""" ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__UpperCAmelCase , env=os.environ.copy() ) @require_multi_gpu def lowercase_ (self : Tuple ) -> int: """simple docstring""" UpperCAmelCase__ = ["torchrun", f"""--nproc_per_node={torch.cuda.device_count()}""", inspect.getfile(self.__class__ )] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__UpperCAmelCase , env=os.environ.copy() ) @require_multi_gpu def lowercase_ (self : Dict ) -> str: """simple docstring""" print(f"""Found {torch.cuda.device_count()} devices, using 2 devices only""" ) UpperCAmelCase__ = ["torchrun", f"""--nproc_per_node={torch.cuda.device_count()}""", self.data_loop_file_path] with patch_environment(omp_num_threads=1 , cuda_visible_devices="0,1" ): execute_subprocess_async(__UpperCAmelCase , env=os.environ.copy() ) if __name__ == "__main__": UpperCamelCase__ = Accelerator() UpperCamelCase__ = (accelerator.state.process_index + 2, 1_0) UpperCamelCase__ = torch.randint(0, 1_0, shape).to(accelerator.device) UpperCamelCase__ = '' UpperCamelCase__ = accelerator.pad_across_processes(tensor) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += f"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." if not torch.equal(tensora[: accelerator.state.process_index + 2], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[accelerator.state.process_index + 2 :] == 0): error_msg += "Padding was not done with the right value (0)." UpperCamelCase__ = accelerator.pad_across_processes(tensor, pad_first=True) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += f"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." UpperCamelCase__ = accelerator.state.num_processes - accelerator.state.process_index - 1 if not torch.equal(tensora[index:], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[:index] == 0): error_msg += "Padding was not done with the right value (0)." # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
65
0
def UpperCAmelCase_( a__ = 1_000 ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = 1, 1 SCREAMING_SNAKE_CASE : str = [] for i in range(1 , n + 1 ): SCREAMING_SNAKE_CASE : Any = prev_numerator + 2 * prev_denominator SCREAMING_SNAKE_CASE : Tuple = prev_numerator + prev_denominator if len(str(__snake_case ) ) > len(str(__snake_case ) ): result.append(__snake_case ) SCREAMING_SNAKE_CASE : Dict = numerator SCREAMING_SNAKE_CASE : List[Any] = denominator return len(__snake_case ) if __name__ == "__main__": print(F"{solution() = }")
363
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, StableDiffusionSAGPipeline, UNetaDConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class a_ ( a__ , a__ , unittest.TestCase ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = StableDiffusionSAGPipeline __SCREAMING_SNAKE_CASE : Dict = TEXT_TO_IMAGE_PARAMS __SCREAMING_SNAKE_CASE : Tuple = TEXT_TO_IMAGE_BATCH_PARAMS __SCREAMING_SNAKE_CASE : List[Any] = TEXT_TO_IMAGE_IMAGE_PARAMS __SCREAMING_SNAKE_CASE : Union[str, Any] = TEXT_TO_IMAGE_IMAGE_PARAMS __SCREAMING_SNAKE_CASE : int = False def __lowerCAmelCase ( self ) ->Optional[int]: torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Tuple = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) SCREAMING_SNAKE_CASE : int = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='''scaled_linear''' , clip_sample=_lowerCamelCase , set_alpha_to_one=_lowerCamelCase , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : str = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Dict = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) SCREAMING_SNAKE_CASE : Union[str, Any] = CLIPTextModel(_lowerCamelCase ) SCREAMING_SNAKE_CASE : str = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) SCREAMING_SNAKE_CASE : Union[str, Any] = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase=0 ) ->str: if str(_lowerCamelCase ).startswith('''mps''' ): SCREAMING_SNAKE_CASE : List[Any] = torch.manual_seed(_lowerCamelCase ) else: SCREAMING_SNAKE_CASE : List[Any] = torch.Generator(device=_lowerCamelCase ).manual_seed(_lowerCamelCase ) SCREAMING_SNAKE_CASE : str = { '''prompt''': '''.''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 1.0, '''sag_scale''': 1.0, '''output_type''': '''numpy''', } return inputs def __lowerCAmelCase ( self ) ->Optional[int]: super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class a_ ( unittest.TestCase ): """simple docstring""" def __lowerCAmelCase ( self ) ->Dict: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCAmelCase ( self ) ->Union[str, Any]: SCREAMING_SNAKE_CASE : Optional[Any] = StableDiffusionSAGPipeline.from_pretrained('''CompVis/stable-diffusion-v1-4''' ) SCREAMING_SNAKE_CASE : Tuple = sag_pipe.to(_lowerCamelCase ) sag_pipe.set_progress_bar_config(disable=_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[str] = '''.''' SCREAMING_SNAKE_CASE : Dict = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : List[str] = sag_pipe( [prompt] , generator=_lowerCamelCase , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='''np''' ) SCREAMING_SNAKE_CASE : int = output.images SCREAMING_SNAKE_CASE : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE : Optional[int] = np.array([0.1_5_6_8, 0.1_7_3_8, 0.1_6_9_5, 0.1_6_9_3, 0.1_5_0_7, 0.1_7_0_5, 0.1_5_4_7, 0.1_7_5_1, 0.1_9_4_9] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-2 def __lowerCAmelCase ( self ) ->Optional[int]: SCREAMING_SNAKE_CASE : Union[str, Any] = StableDiffusionSAGPipeline.from_pretrained('''stabilityai/stable-diffusion-2-1-base''' ) SCREAMING_SNAKE_CASE : int = sag_pipe.to(_lowerCamelCase ) sag_pipe.set_progress_bar_config(disable=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = '''.''' SCREAMING_SNAKE_CASE : str = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Any = sag_pipe( [prompt] , generator=_lowerCamelCase , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='''np''' ) SCREAMING_SNAKE_CASE : List[str] = output.images SCREAMING_SNAKE_CASE : List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE : str = np.array([0.3_4_5_9, 0.2_8_7_6, 0.2_5_3_7, 0.3_0_0_2, 0.2_6_7_1, 0.2_1_6_0, 0.3_0_2_6, 0.2_2_6_2, 0.2_3_7_1] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-2 def __lowerCAmelCase ( self ) ->Any: SCREAMING_SNAKE_CASE : int = StableDiffusionSAGPipeline.from_pretrained('''stabilityai/stable-diffusion-2-1-base''' ) SCREAMING_SNAKE_CASE : Optional[int] = sag_pipe.to(_lowerCamelCase ) sag_pipe.set_progress_bar_config(disable=_lowerCamelCase ) SCREAMING_SNAKE_CASE : int = '''.''' SCREAMING_SNAKE_CASE : Optional[Any] = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : List[str] = sag_pipe( [prompt] , width=768 , height=512 , generator=_lowerCamelCase , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='''np''' , ) SCREAMING_SNAKE_CASE : List[Any] = output.images assert image.shape == (1, 512, 768, 3)
19
0
import argparse import OmegaConf import torch from diffusers import DDIMScheduler, LDMPipeline, UNetLDMModel, VQModel def _a ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Dict ): """simple docstring""" UpperCamelCase__ : Dict = OmegaConf.load(SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Any = torch.load(SCREAMING_SNAKE_CASE , map_location='''cpu''' )['''model'''] UpperCamelCase__ : Dict = list(state_dict.keys() ) # extract state_dict for VQVAE UpperCamelCase__ : List[str] = {} UpperCamelCase__ : Dict = '''first_stage_model.''' for key in keys: if key.startswith(SCREAMING_SNAKE_CASE ): UpperCamelCase__ : str = state_dict[key] # extract state_dict for UNetLDM UpperCamelCase__ : Dict = {} UpperCamelCase__ : Any = '''model.diffusion_model.''' for key in keys: if key.startswith(SCREAMING_SNAKE_CASE ): UpperCamelCase__ : Any = state_dict[key] UpperCamelCase__ : int = config.model.params.first_stage_config.params UpperCamelCase__ : Tuple = config.model.params.unet_config.params UpperCamelCase__ : Tuple = VQModel(**SCREAMING_SNAKE_CASE ).eval() vqvae.load_state_dict(SCREAMING_SNAKE_CASE ) UpperCamelCase__ : int = UNetLDMModel(**SCREAMING_SNAKE_CASE ).eval() unet.load_state_dict(SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Union[str, Any] = DDIMScheduler( timesteps=config.model.params.timesteps , beta_schedule='''scaled_linear''' , beta_start=config.model.params.linear_start , beta_end=config.model.params.linear_end , clip_sample=SCREAMING_SNAKE_CASE , ) UpperCamelCase__ : Any = LDMPipeline(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) pipeline.save_pretrained(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": __UpperCamelCase : List[str] = argparse.ArgumentParser() parser.add_argument("--checkpoint_path", type=str, required=True) parser.add_argument("--config_path", type=str, required=True) parser.add_argument("--output_path", type=str, required=True) __UpperCamelCase : Dict = parser.parse_args() convert_ldm_original(args.checkpoint_path, args.config_path, args.output_path)
146
import inspect import math import tempfile import unittest import numpy as np from transformers import ViTMAEConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMAEForPreTraining, ViTMAEModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class __magic_name__ : def __init__( self : Tuple , lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : int=13 , lowerCamelCase__ : Union[str, Any]=30 , lowerCamelCase__ : Union[str, Any]=2 , lowerCamelCase__ : List[Any]=3 , lowerCamelCase__ : str=True , lowerCamelCase__ : str=True , lowerCamelCase__ : Dict=32 , lowerCamelCase__ : str=5 , lowerCamelCase__ : Dict=4 , lowerCamelCase__ : Any=37 , lowerCamelCase__ : Optional[Any]="gelu" , lowerCamelCase__ : List[Any]=0.1 , lowerCamelCase__ : Dict=0.1 , lowerCamelCase__ : Tuple=10 , lowerCamelCase__ : List[Any]=0.02 , lowerCamelCase__ : List[Any]=3 , lowerCamelCase__ : str=0.6 , lowerCamelCase__ : int=None , ) -> Dict: '''simple docstring''' UpperCamelCase__ : Any = parent UpperCamelCase__ : List[str] = batch_size UpperCamelCase__ : List[Any] = image_size UpperCamelCase__ : str = patch_size UpperCamelCase__ : List[str] = num_channels UpperCamelCase__ : int = is_training UpperCamelCase__ : Dict = use_labels UpperCamelCase__ : int = hidden_size UpperCamelCase__ : Union[str, Any] = num_hidden_layers UpperCamelCase__ : Tuple = num_attention_heads UpperCamelCase__ : Union[str, Any] = intermediate_size UpperCamelCase__ : Dict = hidden_act UpperCamelCase__ : str = hidden_dropout_prob UpperCamelCase__ : Tuple = attention_probs_dropout_prob UpperCamelCase__ : Union[str, Any] = type_sequence_label_size UpperCamelCase__ : str = initializer_range UpperCamelCase__ : str = mask_ratio UpperCamelCase__ : Tuple = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) UpperCamelCase__ : Optional[int] = (image_size // patch_size) ** 2 UpperCamelCase__ : Dict = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) ) def UpperCAmelCase__ ( self : Union[str, Any] ) -> Any: '''simple docstring''' UpperCamelCase__ : Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase__ : List[str] = None if self.use_labels: UpperCamelCase__ : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase__ : Any = self.get_config() return config, pixel_values, labels def UpperCAmelCase__ ( self : Dict ) -> List[str]: '''simple docstring''' return ViTMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowerCamelCase__ , initializer_range=self.initializer_range , mask_ratio=self.mask_ratio , ) def UpperCAmelCase__ ( self : Tuple , lowerCamelCase__ : Dict , lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : List[str] ) -> Union[str, Any]: '''simple docstring''' UpperCamelCase__ : List[Any] = ViTMAEModel(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() UpperCamelCase__ : List[Any] = model(lowerCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase__ ( self : int , lowerCamelCase__ : str , lowerCamelCase__ : Optional[int] , lowerCamelCase__ : List[Any] ) -> List[Any]: '''simple docstring''' UpperCamelCase__ : Tuple = ViTMAEForPreTraining(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() UpperCamelCase__ : List[str] = model(lowerCamelCase__ ) UpperCamelCase__ : int = (self.image_size // self.patch_size) ** 2 UpperCamelCase__ : Optional[int] = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) # test greyscale images UpperCamelCase__ : List[Any] = 1 UpperCamelCase__ : int = ViTMAEForPreTraining(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() UpperCamelCase__ : Tuple = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCamelCase__ : Any = model(lowerCamelCase__ ) UpperCamelCase__ : Optional[Any] = self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) def UpperCAmelCase__ ( self : Optional[Any] ) -> str: '''simple docstring''' UpperCamelCase__ : Any = self.prepare_config_and_inputs() UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ : Union[str, Any] = config_and_inputs UpperCamelCase__ : Optional[int] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class __magic_name__ ( __lowerCAmelCase , __lowerCAmelCase , unittest.TestCase): A: Optional[Any] = (ViTMAEModel, ViTMAEForPreTraining) if is_torch_available() else () A: Union[str, Any] = {"feature-extraction": ViTMAEModel} if is_torch_available() else {} A: Any = False A: str = False A: Optional[int] = False A: Any = False def UpperCAmelCase__ ( self : Optional[Any] ) -> int: '''simple docstring''' UpperCamelCase__ : Optional[int] = ViTMAEModelTester(self ) UpperCamelCase__ : Union[str, Any] = ConfigTester(self , config_class=lowerCamelCase__ , has_text_modality=lowerCamelCase__ , hidden_size=37 ) def UpperCAmelCase__ ( self : str ) -> Optional[int]: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='''ViTMAE does not use inputs_embeds''' ) def UpperCAmelCase__ ( self : Tuple ) -> str: '''simple docstring''' pass def UpperCAmelCase__ ( self : List[str] ) -> int: '''simple docstring''' UpperCamelCase__ , UpperCamelCase__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase__ : List[Any] = model_class(lowerCamelCase__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) UpperCamelCase__ : Optional[int] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCamelCase__ , nn.Linear ) ) def UpperCAmelCase__ ( self : Optional[int] ) -> int: '''simple docstring''' UpperCamelCase__ , UpperCamelCase__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase__ : Optional[Any] = model_class(lowerCamelCase__ ) UpperCamelCase__ : List[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase__ : Optional[int] = [*signature.parameters.keys()] UpperCamelCase__ : List[str] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , lowerCamelCase__ ) def UpperCAmelCase__ ( self : Dict ) -> str: '''simple docstring''' UpperCamelCase__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase__ ) def UpperCAmelCase__ ( self : int ) -> List[str]: '''simple docstring''' UpperCamelCase__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*lowerCamelCase__ ) def UpperCAmelCase__ ( self : int , lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : Any , lowerCamelCase__ : List[str] ) -> Tuple: '''simple docstring''' np.random.seed(2 ) UpperCamelCase__ : List[str] = int((pt_model.config.image_size // pt_model.config.patch_size) ** 2 ) UpperCamelCase__ : Any = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) UpperCamelCase__ : Optional[Any] = torch.from_numpy(lowerCamelCase__ ) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument UpperCamelCase__ : Union[str, Any] = pt_noise super().check_pt_tf_models(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def UpperCAmelCase__ ( self : Tuple ) -> List[str]: '''simple docstring''' UpperCamelCase__ , UpperCamelCase__ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase__ : Tuple = model_class(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): UpperCamelCase__ : Tuple = model(**self._prepare_for_class(lowerCamelCase__ , lowerCamelCase__ ) ) UpperCamelCase__ : int = outputs[0].cpu().numpy() UpperCamelCase__ : Dict = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(lowerCamelCase__ ) UpperCamelCase__ : Any = model_class.from_pretrained(lowerCamelCase__ ) model.to(lowerCamelCase__ ) # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): UpperCamelCase__ : Optional[Any] = model(**self._prepare_for_class(lowerCamelCase__ , lowerCamelCase__ ) ) # Make sure we don't have nans UpperCamelCase__ : Union[str, Any] = after_outputs[0].cpu().numpy() UpperCamelCase__ : Optional[Any] = 0 UpperCamelCase__ : List[Any] = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(lowerCamelCase__ , 1E-5 ) @unittest.skip( reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.''' ) def UpperCAmelCase__ ( self : Union[str, Any] ) -> List[str]: '''simple docstring''' pass @unittest.skip( reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.''' ) def UpperCAmelCase__ ( self : Tuple ) -> Optional[Any]: '''simple docstring''' pass @unittest.skip( reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.''' ) def UpperCAmelCase__ ( self : List[Any] ) -> List[Any]: '''simple docstring''' pass @unittest.skip(reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load''' ) def UpperCAmelCase__ ( self : int ) -> Optional[int]: '''simple docstring''' pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def UpperCAmelCase__ ( self : List[Any] ) -> Union[str, Any]: '''simple docstring''' pass @slow def UpperCAmelCase__ ( self : Tuple ) -> Tuple: '''simple docstring''' for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase__ : Dict = ViTMAEModel.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) def _a ( ): """simple docstring""" UpperCamelCase__ : Optional[Any] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class __magic_name__ ( unittest.TestCase): @cached_property def UpperCAmelCase__ ( self : Optional[Any] ) -> str: '''simple docstring''' return ViTImageProcessor.from_pretrained('''facebook/vit-mae-base''' ) if is_vision_available() else None @slow def UpperCAmelCase__ ( self : str ) -> Any: '''simple docstring''' np.random.seed(2 ) UpperCamelCase__ : Dict = ViTMAEForPreTraining.from_pretrained('''facebook/vit-mae-base''' ).to(lowerCamelCase__ ) UpperCamelCase__ : Optional[Any] = self.default_image_processor UpperCamelCase__ : int = prepare_img() UpperCamelCase__ : str = image_processor(images=lowerCamelCase__ , return_tensors='''pt''' ).to(lowerCamelCase__ ) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) UpperCamelCase__ : Tuple = ViTMAEConfig() UpperCamelCase__ : List[Any] = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 ) UpperCamelCase__ : Dict = np.random.uniform(size=(1, num_patches) ) # forward pass with torch.no_grad(): UpperCamelCase__ : List[Any] = model(**lowerCamelCase__ , noise=torch.from_numpy(lowerCamelCase__ ).to(device=lowerCamelCase__ ) ) # verify the logits UpperCamelCase__ : Optional[Any] = torch.Size((1, 196, 768) ) self.assertEqual(outputs.logits.shape , lowerCamelCase__ ) UpperCamelCase__ : Dict = torch.tensor( [[-0.0548, -1.7023, -0.9325], [0.3721, -0.5670, -0.2233], [0.8235, -1.3878, -0.3524]] ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , expected_slice.to(lowerCamelCase__ ) , atol=1E-4 ) )
146
1
from math import factorial def SCREAMING_SNAKE_CASE__ ( __a , __a ): # If either of the conditions are true, the function is being asked # to calculate a factorial of a negative number, which is not possible if n < k or k < 0: raise ValueError('Please enter positive integers for n and k where n >= k' ) return factorial(__a ) // (factorial(__a ) * factorial(n - k )) if __name__ == "__main__": print( """The number of five-card hands possible from a standard""", F'''fifty-two card deck is: {combinations(52, 5)}\n''', ) print( """If a class of 40 students must be arranged into groups of""", F'''4 for group projects, there are {combinations(40, 4)} ways''', """to arrange them.\n""", ) print( """If 10 teams are competing in a Formula One race, there""", F'''are {combinations(10, 3)} ways that first, second and''', """third place can be awarded.""", )
88
_SCREAMING_SNAKE_CASE = { """Pillow""": """Pillow""", """accelerate""": """accelerate>=0.11.0""", """compel""": """compel==0.1.8""", """black""": """black~=23.1""", """datasets""": """datasets""", """filelock""": """filelock""", """flax""": """flax>=0.4.1""", """hf-doc-builder""": """hf-doc-builder>=0.3.0""", """huggingface-hub""": """huggingface-hub>=0.13.2""", """requests-mock""": """requests-mock==1.10.0""", """importlib_metadata""": """importlib_metadata""", """invisible-watermark""": """invisible-watermark""", """isort""": """isort>=5.5.4""", """jax""": """jax>=0.2.8,!=0.3.2""", """jaxlib""": """jaxlib>=0.1.65""", """Jinja2""": """Jinja2""", """k-diffusion""": """k-diffusion>=0.0.12""", """torchsde""": """torchsde""", """note_seq""": """note_seq""", """librosa""": """librosa""", """numpy""": """numpy""", """omegaconf""": """omegaconf""", """parameterized""": """parameterized""", """protobuf""": """protobuf>=3.20.3,<4""", """pytest""": """pytest""", """pytest-timeout""": """pytest-timeout""", """pytest-xdist""": """pytest-xdist""", """ruff""": """ruff>=0.0.241""", """safetensors""": """safetensors""", """sentencepiece""": """sentencepiece>=0.1.91,!=0.1.92""", """scipy""": """scipy""", """onnx""": """onnx""", """regex""": """regex!=2019.12.17""", """requests""": """requests""", """tensorboard""": """tensorboard""", """torch""": """torch>=1.4""", """torchvision""": """torchvision""", """transformers""": """transformers>=4.25.1""", """urllib3""": """urllib3<=2.0.0""", }
88
1
'''simple docstring''' from collections.abc import Sequence def __A ( lowerCamelCase_ , lowerCamelCase_ ): """simple docstring""" return sum(c * (x**i) for i, c in enumerate(lowerCamelCase_ ) ) def __A ( lowerCamelCase_ , lowerCamelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = 0.0 for coeff in reversed(lowerCamelCase_ ): SCREAMING_SNAKE_CASE : int = result * x + coeff return result if __name__ == "__main__": __UpperCAmelCase = (0.0, 0.0, 5.0, 9.3, 7.0) __UpperCAmelCase = 10.0 print(evaluate_poly(poly, x)) print(horner(poly, x))
323
'''simple docstring''' # NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from ...utils import deprecate from ..controlnet.multicontrolnet import MultiControlNetModel # noqa: F401 from ..controlnet.pipeline_controlnet import StableDiffusionControlNetPipeline # noqa: F401 deprecate( """stable diffusion controlnet""", """0.22.0""", """Importing `StableDiffusionControlNetPipeline` or `MultiControlNetModel` from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet is deprecated. Please import `from diffusers import StableDiffusionControlNetPipeline` instead.""", standard_warn=False, stacklevel=3, )
323
1
import argparse import os import re import packaging.version UpperCAmelCase ="examples/" UpperCAmelCase ={ "examples": (re.compile(R"^check_min_version\(\"[^\"]+\"\)\s*$", re.MULTILINE), "check_min_version(\"VERSION\")\n"), "init": (re.compile(R"^__version__\s+=\s+\"([^\"]+)\"\s*$", re.MULTILINE), "__version__ = \"VERSION\"\n"), "setup": (re.compile(R"^(\s*)version\s*=\s*\"[^\"]+\",", re.MULTILINE), R"\1version=\"VERSION\","), "doc": (re.compile(R"^(\s*)release\s*=\s*\"[^\"]+\"$", re.MULTILINE), "release = \"VERSION\"\n"), } UpperCAmelCase ={ "init": "src/diffusers/__init__.py", "setup": "setup.py", } UpperCAmelCase ="README.md" def _A ( _a : List[Any] , _a : str , _a : str ): """simple docstring""" with open(_a , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: A = f.read() A , A = REPLACE_PATTERNS[pattern] A = replace.replace("""VERSION""" , _a ) A = re_pattern.sub(_a , _a ) with open(_a , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.write(_a ) def _A ( _a : Dict ): """simple docstring""" for folder, directories, fnames in os.walk(_a ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove("""research_projects""" ) if "legacy" in directories: directories.remove("""legacy""" ) for fname in fnames: if fname.endswith(""".py""" ): update_version_in_file(os.path.join(_a , _a ) , _a , pattern="""examples""" ) def _A ( _a : Optional[Any] , _a : List[str]=False ): """simple docstring""" for pattern, fname in REPLACE_FILES.items(): update_version_in_file(_a , _a , _a ) if not patch: update_version_in_examples(_a ) def _A ( ): """simple docstring""" A = """🤗 Transformers currently provides the following architectures""" A = """1. Want to contribute a new model?""" with open(_a , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: A = f.readlines() # Find the start of the list. A = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 A = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith("""1.""" ): A = lines[index].replace( """https://huggingface.co/docs/diffusers/main/model_doc""" , """https://huggingface.co/docs/diffusers/model_doc""" , ) index += 1 with open(_a , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.writelines(_a ) def _A ( ): """simple docstring""" with open(REPLACE_FILES["""init"""] , """r""" ) as f: A = f.read() A = REPLACE_PATTERNS["""init"""][0].search(_a ).groups()[0] return packaging.version.parse(_a ) def _A ( _a : int=False ): """simple docstring""" A = get_version() if patch and default_version.is_devrelease: raise ValueError("""Can't create a patch version from the dev branch, checkout a released version!""" ) if default_version.is_devrelease: A = default_version.base_version elif patch: A = f'{default_version.major}.{default_version.minor}.{default_version.micro + 1}' else: A = f'{default_version.major}.{default_version.minor + 1}.0' # Now let's ask nicely if that's the right one. A = input(f'Which version are you releasing? [{default_version}]' ) if len(_a ) == 0: A = default_version print(f'Updating version to {version}.' ) global_version_update(_a , patch=_a ) def _A ( ): """simple docstring""" A = get_version() A = f'{current_version.major}.{current_version.minor + 1}.0.dev0' A = current_version.base_version # Check with the user we got that right. A = input(f'Which version are we developing now? [{dev_version}]' ) if len(_a ) == 0: A = dev_version print(f'Updating version to {version}.' ) global_version_update(_a ) # print("Cleaning main README, don't forget to run `make fix-copies`.") # clean_main_ref_in_model_list() if __name__ == "__main__": UpperCAmelCase =argparse.ArgumentParser() parser.add_argument("--post_release", action="store_true", help="Whether this is pre or post release.") parser.add_argument("--patch", action="store_true", help="Whether or not this is a patch release.") UpperCAmelCase =parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print("Nothing to do after a patch :-)") else: post_release_work()
355
"""simple docstring""" from typing import Dict, Iterable, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging UpperCAmelCase =logging.get_logger(__name__) class lowerCamelCase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowerCamelCase = ['''pixel_values'''] def __init__( self ,lowerCamelCase_ = True ,lowerCamelCase_ = None ,lowerCamelCase_ = PILImageResampling.BICUBIC ,lowerCamelCase_ = True ,lowerCamelCase_ = None ,lowerCamelCase_ = True ,lowerCamelCase_ = 1 / 2_5_5 ,lowerCamelCase_ = True ,lowerCamelCase_ = IMAGENET_DEFAULT_MEAN ,lowerCamelCase_ = IMAGENET_DEFAULT_STD ,**lowerCamelCase_ ,) -> None: super().__init__(**lowerCamelCase_ ) A = size if size is not None else {"""shortest_edge""": 2_2_4} A = get_size_dict(lowerCamelCase_ ,default_to_square=lowerCamelCase_ ) A = crop_size if crop_size is not None else {"""height""": 2_2_4, """width""": 2_2_4} A = get_size_dict(lowerCamelCase_ ,param_name="""crop_size""" ) A = do_resize A = size A = resample A = do_center_crop A = crop_size A = do_rescale A = rescale_factor A = do_normalize A = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN A = image_std if image_std is not None else IMAGENET_DEFAULT_STD def UpperCamelCase__ ( self ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ = PILImageResampling.BICUBIC ,lowerCamelCase_ = None ,**lowerCamelCase_ ,) -> np.ndarray: A = get_size_dict(lowerCamelCase_ ,default_to_square=lowerCamelCase_ ) # size_dict is a dict with either keys "height" and "width" or "shortest_edge" if "shortest_edge" in size: A = int((2_5_6 / 2_2_4) * size["""shortest_edge"""] ) A = get_resize_output_image_size(lowerCamelCase_ ,size=lowerCamelCase_ ,default_to_square=lowerCamelCase_ ) A = {"""height""": output_size[0], """width""": output_size[1]} if "height" not in size_dict or "width" not in size_dict: raise ValueError( f'Size dict must have keys \'height\' and \'width\' or \'shortest_edge\'. Got {size_dict.keys()}' ) return resize( lowerCamelCase_ ,size=(size_dict["""height"""], size_dict["""width"""]) ,resample=lowerCamelCase_ ,data_format=lowerCamelCase_ ,**lowerCamelCase_ ) def UpperCamelCase__ ( self ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ = None ,**lowerCamelCase_ ,) -> np.ndarray: A = get_size_dict(lowerCamelCase_ ) if "height" not in size or "width" not in size: raise ValueError(f'Size dict must have keys \'height\' and \'width\'. Got {size.keys()}' ) return center_crop(lowerCamelCase_ ,size=(size["""height"""], size["""width"""]) ,data_format=lowerCamelCase_ ,**lowerCamelCase_ ) def UpperCamelCase__ ( self ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ = None ,**lowerCamelCase_ ,) -> np.ndarray: return rescale(lowerCamelCase_ ,scale=lowerCamelCase_ ,data_format=lowerCamelCase_ ,**lowerCamelCase_ ) def UpperCamelCase__ ( self ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ = None ,**lowerCamelCase_ ,) -> np.ndarray: return normalize(lowerCamelCase_ ,mean=lowerCamelCase_ ,std=lowerCamelCase_ ,data_format=lowerCamelCase_ ,**lowerCamelCase_ ) def UpperCamelCase__ ( self ,lowerCamelCase_ ,lowerCamelCase_ = None ,lowerCamelCase_ = None ,lowerCamelCase_ = None ,lowerCamelCase_ = None ,lowerCamelCase_ = None ,lowerCamelCase_ = None ,lowerCamelCase_ = None ,lowerCamelCase_ = None ,lowerCamelCase_ = None ,lowerCamelCase_ = None ,lowerCamelCase_ = None ,lowerCamelCase_ = ChannelDimension.FIRST ,**lowerCamelCase_ ,) -> BatchFeature: A = do_resize if do_resize is not None else self.do_resize A = resample if resample is not None else self.resample A = do_center_crop if do_center_crop is not None else self.do_center_crop A = do_rescale if do_rescale is not None else self.do_rescale A = rescale_factor if rescale_factor is not None else self.rescale_factor A = do_normalize if do_normalize is not None else self.do_normalize A = image_mean if image_mean is not None else self.image_mean A = image_std if image_std is not None else self.image_std A = size if size is not None else self.size A = get_size_dict(lowerCamelCase_ ,default_to_square=lowerCamelCase_ ) A = crop_size if crop_size is not None else self.crop_size A = get_size_dict(lowerCamelCase_ ,param_name="""crop_size""" ) A = make_list_of_images(lowerCamelCase_ ) if not valid_images(lowerCamelCase_ ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. A = [to_numpy_array(lowerCamelCase_ ) for image in images] if do_resize: A = [self.resize(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ) for image in images] if do_center_crop: A = [self.center_crop(lowerCamelCase_ ,lowerCamelCase_ ) for image in images] if do_rescale: A = [self.rescale(lowerCamelCase_ ,lowerCamelCase_ ) for image in images] if do_normalize: A = [self.normalize(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ) for image in images] A = [to_channel_dimension_format(lowerCamelCase_ ,lowerCamelCase_ ) for image in images] A = {"""pixel_values""": images} return BatchFeature(data=lowerCamelCase_ ,tensor_type=lowerCamelCase_ )
77
0
"""simple docstring""" from packaging import version from .import_utils import is_accelerate_available if is_accelerate_available(): import accelerate def lowercase_ ( _snake_case ): if not is_accelerate_available(): return method SCREAMING_SNAKE_CASE__ : Union[str, Any] = version.parse(accelerate.__version__ ).base_version if version.parse(_snake_case ) < version.parse("""0.17.0""" ): return method def wrapper(self ,*_snake_case ,**_snake_case ): if hasattr(self ,"""_hf_hook""" ) and hasattr(self._hf_hook ,"""pre_forward""" ): self._hf_hook.pre_forward(self ) return method(self ,*_snake_case ,**_snake_case ) return wrapper
25
"""simple docstring""" import argparse import os import torch from transformers import FlavaConfig, FlavaForPreTraining from transformers.models.flava.convert_dalle_to_flava_codebook import convert_dalle_checkpoint def lowercase_ ( _snake_case ): # encoder.embeddings are double copied in original FLAVA return sum(param.float().sum() if """encoder.embeddings""" not in key else 0 for key, param in state_dict.items() ) def lowercase_ ( _snake_case ,_snake_case ): SCREAMING_SNAKE_CASE__ : Any = {} for key, value in state_dict.items(): if "text_encoder.embeddings" in key or "image_encoder.embeddings" in key: continue SCREAMING_SNAKE_CASE__ : Optional[int] = key.replace("""heads.cmd.mim_head.cls.predictions""" ,"""mmm_image_head""" ) SCREAMING_SNAKE_CASE__ : Dict = key.replace("""heads.cmd.mlm_head.cls.predictions""" ,"""mmm_text_head""" ) SCREAMING_SNAKE_CASE__ : List[Any] = key.replace("""heads.cmd.itm_head.cls""" ,"""itm_head""" ) SCREAMING_SNAKE_CASE__ : Tuple = key.replace("""heads.cmd.itm_head.pooler""" ,"""itm_head.pooler""" ) SCREAMING_SNAKE_CASE__ : int = key.replace("""heads.cmd.clip_head.logit_scale""" ,"""flava.logit_scale""" ) SCREAMING_SNAKE_CASE__ : Tuple = key.replace("""heads.fairseq_mlm.cls.predictions""" ,"""mlm_head""" ) SCREAMING_SNAKE_CASE__ : str = key.replace("""heads.imagenet.mim_head.cls.predictions""" ,"""mim_head""" ) SCREAMING_SNAKE_CASE__ : List[str] = key.replace("""mm_text_projection""" ,"""flava.text_to_mm_projection""" ) SCREAMING_SNAKE_CASE__ : Dict = key.replace("""mm_image_projection""" ,"""flava.image_to_mm_projection""" ) SCREAMING_SNAKE_CASE__ : str = key.replace("""image_encoder.module""" ,"""flava.image_model""" ) SCREAMING_SNAKE_CASE__ : Tuple = key.replace("""text_encoder.module""" ,"""flava.text_model""" ) SCREAMING_SNAKE_CASE__ : int = key.replace("""mm_encoder.module.encoder.cls_token""" ,"""flava.multimodal_model.cls_token""" ) SCREAMING_SNAKE_CASE__ : Dict = key.replace("""mm_encoder.module""" ,"""flava.multimodal_model""" ) SCREAMING_SNAKE_CASE__ : Any = key.replace("""text_projection""" ,"""flava.text_projection""" ) SCREAMING_SNAKE_CASE__ : List[Any] = key.replace("""image_projection""" ,"""flava.image_projection""" ) SCREAMING_SNAKE_CASE__ : Tuple = value.float() for key, value in codebook_state_dict.items(): SCREAMING_SNAKE_CASE__ : Optional[Any] = value return upgrade @torch.no_grad() def lowercase_ ( _snake_case ,_snake_case ,_snake_case ,_snake_case=None ): if config_path is not None: SCREAMING_SNAKE_CASE__ : Optional[Any] = FlavaConfig.from_pretrained(_snake_case ) else: SCREAMING_SNAKE_CASE__ : List[str] = FlavaConfig() SCREAMING_SNAKE_CASE__ : Optional[int] = FlavaForPreTraining(_snake_case ).eval() SCREAMING_SNAKE_CASE__ : List[Any] = convert_dalle_checkpoint(_snake_case ,_snake_case ,save_checkpoint=_snake_case ) if os.path.exists(_snake_case ): SCREAMING_SNAKE_CASE__ : List[str] = torch.load(_snake_case ,map_location="""cpu""" ) else: SCREAMING_SNAKE_CASE__ : Tuple = torch.hub.load_state_dict_from_url(_snake_case ,map_location="""cpu""" ) SCREAMING_SNAKE_CASE__ : Dict = upgrade_state_dict(_snake_case ,_snake_case ) hf_model.load_state_dict(_snake_case ) SCREAMING_SNAKE_CASE__ : Any = hf_model.state_dict() SCREAMING_SNAKE_CASE__ : Any = count_parameters(_snake_case ) SCREAMING_SNAKE_CASE__ : str = count_parameters(_snake_case ) + count_parameters(_snake_case ) assert torch.allclose(_snake_case ,_snake_case ,atol=1E-3 ) hf_model.save_pretrained(_snake_case ) if __name__ == "__main__": UpperCAmelCase__ : List[Any] = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to flava checkpoint') parser.add_argument('--codebook_path', default=None, type=str, help='Path to flava codebook checkpoint') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') UpperCAmelCase__ : Optional[int] = parser.parse_args() convert_flava_checkpoint(args.checkpoint_path, args.codebook_path, args.pytorch_dump_folder_path, args.config_path)
25
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowerCAmelCase_ = { 'configuration_squeezebert': [ 'SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'SqueezeBertConfig', 'SqueezeBertOnnxConfig', ], 'tokenization_squeezebert': ['SqueezeBertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['SqueezeBertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'SqueezeBertForMaskedLM', 'SqueezeBertForMultipleChoice', 'SqueezeBertForQuestionAnswering', 'SqueezeBertForSequenceClassification', 'SqueezeBertForTokenClassification', 'SqueezeBertModel', 'SqueezeBertModule', 'SqueezeBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_squeezebert import ( SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, SqueezeBertConfig, SqueezeBertOnnxConfig, ) from .tokenization_squeezebert import SqueezeBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_squeezebert_fast import SqueezeBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_squeezebert import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, SqueezeBertModule, SqueezeBertPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
116
import os from collections.abc import Iterator def snake_case( __magic_name__ = "." ) -> Iterator[str]: '''simple docstring''' for dir_path, dir_names, filenames in os.walk(__magic_name__ ): lowercase : Tuple = [d for d in dir_names if d != '''scripts''' and d[0] not in '''._'''] for filename in filenames: if filename == "__init__.py": continue if os.path.splitext(__magic_name__ )[1] in (".py", ".ipynb"): yield os.path.join(__magic_name__ , __magic_name__ ).lstrip('''./''' ) def snake_case( __magic_name__ ) -> Dict: '''simple docstring''' return F"""{i * ' '}*""" if i else "\n##" def snake_case( __magic_name__ , __magic_name__ ) -> str: '''simple docstring''' lowercase : Dict = old_path.split(os.sep ) for i, new_part in enumerate(new_path.split(os.sep ) ): if (i + 1 > len(__magic_name__ ) or old_parts[i] != new_part) and new_part: print(F"""{md_prefix(__magic_name__ )} {new_part.replace('_' , ' ' ).title()}""" ) return new_path def snake_case( __magic_name__ = "." ) -> None: '''simple docstring''' lowercase : str = '''''' for filepath in sorted(good_file_paths(__magic_name__ ) ): lowercase , lowercase : Optional[int] = os.path.split(__magic_name__ ) if filepath != old_path: lowercase : str = print_path(__magic_name__ , __magic_name__ ) lowercase : Optional[int] = (filepath.count(os.sep ) + 1) if filepath else 0 lowercase : Optional[Any] = F"""{filepath}/{filename}""".replace(''' ''' , '''%20''' ) lowercase : List[str] = os.path.splitext(filename.replace('''_''' , ''' ''' ).title() )[0] print(F"""{md_prefix(__magic_name__ )} [{filename}]({url})""" ) if __name__ == "__main__": print_directory_md('.')
116
1
'''simple docstring''' from __future__ import annotations def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase ) -> list: '''simple docstring''' snake_case_ = [] snake_case_ = input_list[low:mid], input_list[mid : high + 1] while left and right: result.append((left if left[0] <= right[0] else right).pop(0 ) ) snake_case_ = result + left + right return input_list def __magic_name__ ( __UpperCAmelCase ) -> list: '''simple docstring''' if len(__UpperCAmelCase ) <= 1: return input_list snake_case_ = list(__UpperCAmelCase ) # iteration for two-way merging snake_case_ = 2 while p <= len(__UpperCAmelCase ): # getting low, high and middle value for merge-sort of single list for i in range(0, len(__UpperCAmelCase ), __UpperCAmelCase ): snake_case_ = i snake_case_ = i + p - 1 snake_case_ = (low + high + 1) // 2 snake_case_ = merge(__UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase ) # final merge of last two parts if p * 2 >= len(__UpperCAmelCase ): snake_case_ = i snake_case_ = merge(__UpperCAmelCase, 0, __UpperCAmelCase, len(__UpperCAmelCase ) - 1 ) break p *= 2 return input_list if __name__ == "__main__": a : str = input('Enter numbers separated by a comma:\n').strip() if user_input == "": a : Optional[int] = [] else: a : List[str] = [int(item.strip()) for item in user_input.split(',')] print(iter_merge_sort(unsorted))
56
"""simple docstring""" import argparse import json import os import pickle import shutil import numpy as np import torch from distiller import Distiller from lm_seqs_dataset import LmSeqsDataset from transformers import ( BertConfig, BertForMaskedLM, BertTokenizer, DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer, GPTaConfig, GPTaLMHeadModel, GPTaTokenizer, RobertaConfig, RobertaForMaskedLM, RobertaTokenizer, ) from utils import git_log, init_gpu_params, logger, set_seed _A = { """distilbert""": (DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer), """roberta""": (RobertaConfig, RobertaForMaskedLM, RobertaTokenizer), """bert""": (BertConfig, BertForMaskedLM, BertTokenizer), """gpt2""": (GPTaConfig, GPTaLMHeadModel, GPTaTokenizer), } def a__ ( lowerCAmelCase ) -> Optional[int]: assert (args.mlm and args.alpha_mlm > 0.0) or (not args.mlm and args.alpha_mlm == 0.0) assert (args.alpha_mlm > 0.0 and args.alpha_clm == 0.0) or (args.alpha_mlm == 0.0 and args.alpha_clm > 0.0) if args.mlm: assert os.path.isfile(args.token_counts ) assert (args.student_type in ["roberta", "distilbert"]) and (args.teacher_type in ["roberta", "bert"]) else: assert (args.student_type in ["gpt2"]) and (args.teacher_type in ["gpt2"]) assert args.teacher_type == args.student_type or ( args.student_type == "distilbert" and args.teacher_type == "bert" ) assert os.path.isfile(args.student_config ) if args.student_pretrained_weights is not None: assert os.path.isfile(args.student_pretrained_weights ) if args.freeze_token_type_embds: assert args.student_type in ["roberta"] assert args.alpha_ce >= 0.0 assert args.alpha_mlm >= 0.0 assert args.alpha_clm >= 0.0 assert args.alpha_mse >= 0.0 assert args.alpha_cos >= 0.0 assert args.alpha_ce + args.alpha_mlm + args.alpha_clm + args.alpha_mse + args.alpha_cos > 0.0 def a__ ( lowerCAmelCase , lowerCAmelCase ) -> Optional[int]: if args.student_type == "roberta": UpperCAmelCase__ : Optional[Any] = False elif args.student_type == "gpt2": UpperCAmelCase__ : Optional[int] = False def a__ ( lowerCAmelCase , lowerCAmelCase ) -> Any: if args.student_type == "roberta": UpperCAmelCase__ : Tuple = False def a__ ( ) -> int: UpperCAmelCase__ : Dict = argparse.ArgumentParser(description="""Training""" ) parser.add_argument("""--force""" , action="""store_true""" , help="""Overwrite dump_path if it already exists.""" ) parser.add_argument( """--dump_path""" , type=lowerCAmelCase , required=lowerCAmelCase , help="""The output directory (log, checkpoints, parameters, etc.)""" ) parser.add_argument( """--data_file""" , type=lowerCAmelCase , required=lowerCAmelCase , help="""The binarized file (tokenized + tokens_to_ids) and grouped by sequence.""" , ) parser.add_argument( """--student_type""" , type=lowerCAmelCase , choices=["""distilbert""", """roberta""", """gpt2"""] , required=lowerCAmelCase , help="""The student type (DistilBERT, RoBERTa).""" , ) parser.add_argument("""--student_config""" , type=lowerCAmelCase , required=lowerCAmelCase , help="""Path to the student configuration.""" ) parser.add_argument( """--student_pretrained_weights""" , default=lowerCAmelCase , type=lowerCAmelCase , help="""Load student initialization checkpoint.""" ) parser.add_argument( """--teacher_type""" , choices=["""bert""", """roberta""", """gpt2"""] , required=lowerCAmelCase , help="""Teacher type (BERT, RoBERTa).""" ) parser.add_argument("""--teacher_name""" , type=lowerCAmelCase , required=lowerCAmelCase , help="""The teacher model.""" ) parser.add_argument("""--temperature""" , default=2.0 , type=lowerCAmelCase , help="""Temperature for the softmax temperature.""" ) parser.add_argument( """--alpha_ce""" , default=0.5 , type=lowerCAmelCase , help="""Linear weight for the distillation loss. Must be >=0.""" ) parser.add_argument( """--alpha_mlm""" , default=0.0 , type=lowerCAmelCase , help="""Linear weight for the MLM loss. Must be >=0. Should be used in conjunction with `mlm` flag.""" , ) parser.add_argument("""--alpha_clm""" , default=0.5 , type=lowerCAmelCase , help="""Linear weight for the CLM loss. Must be >=0.""" ) parser.add_argument("""--alpha_mse""" , default=0.0 , type=lowerCAmelCase , help="""Linear weight of the MSE loss. Must be >=0.""" ) parser.add_argument( """--alpha_cos""" , default=0.0 , type=lowerCAmelCase , help="""Linear weight of the cosine embedding loss. Must be >=0.""" ) parser.add_argument( """--mlm""" , action="""store_true""" , help="""The LM step: MLM or CLM. If `mlm` is True, the MLM is used over CLM.""" ) parser.add_argument( """--mlm_mask_prop""" , default=0.15 , type=lowerCAmelCase , help="""Proportion of tokens for which we need to make a prediction.""" , ) parser.add_argument("""--word_mask""" , default=0.8 , type=lowerCAmelCase , help="""Proportion of tokens to mask out.""" ) parser.add_argument("""--word_keep""" , default=0.1 , type=lowerCAmelCase , help="""Proportion of tokens to keep.""" ) parser.add_argument("""--word_rand""" , default=0.1 , type=lowerCAmelCase , help="""Proportion of tokens to randomly replace.""" ) parser.add_argument( """--mlm_smoothing""" , default=0.7 , type=lowerCAmelCase , help="""Smoothing parameter to emphasize more rare tokens (see XLM, similar to word2vec).""" , ) parser.add_argument("""--token_counts""" , type=lowerCAmelCase , help="""The token counts in the data_file for MLM.""" ) parser.add_argument( """--restrict_ce_to_mask""" , action="""store_true""" , help="""If true, compute the distillation loss only the [MLM] prediction distribution.""" , ) parser.add_argument( """--freeze_pos_embs""" , action="""store_true""" , help="""Freeze positional embeddings during distillation. For student_type in ['roberta', 'gpt2'] only.""" , ) parser.add_argument( """--freeze_token_type_embds""" , action="""store_true""" , help="""Freeze token type embeddings during distillation if existent. For student_type in ['roberta'] only.""" , ) parser.add_argument("""--n_epoch""" , type=lowerCAmelCase , default=3 , help="""Number of pass on the whole dataset.""" ) parser.add_argument("""--batch_size""" , type=lowerCAmelCase , default=5 , help="""Batch size (for each process).""" ) parser.add_argument( """--group_by_size""" , action="""store_false""" , help="""If true, group sequences that have similar length into the same batch. Default is true.""" , ) parser.add_argument( """--gradient_accumulation_steps""" , type=lowerCAmelCase , default=50 , help="""Gradient accumulation for larger training batches.""" , ) parser.add_argument("""--warmup_prop""" , default=0.05 , type=lowerCAmelCase , help="""Linear warmup proportion.""" ) parser.add_argument("""--weight_decay""" , default=0.0 , type=lowerCAmelCase , help="""Weight decay if we apply some.""" ) parser.add_argument("""--learning_rate""" , default=5E-4 , type=lowerCAmelCase , help="""The initial learning rate for Adam.""" ) parser.add_argument("""--adam_epsilon""" , default=1E-6 , type=lowerCAmelCase , help="""Epsilon for Adam optimizer.""" ) parser.add_argument("""--max_grad_norm""" , default=5.0 , type=lowerCAmelCase , help="""Max gradient norm.""" ) parser.add_argument("""--initializer_range""" , default=0.02 , type=lowerCAmelCase , help="""Random initialization range.""" ) parser.add_argument( """--fp16""" , action="""store_true""" , help="""Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit""" , ) parser.add_argument( """--fp16_opt_level""" , type=lowerCAmelCase , default="""O1""" , help=( """For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3'].""" """See details at https://nvidia.github.io/apex/amp.html""" ) , ) parser.add_argument("""--n_gpu""" , type=lowerCAmelCase , default=1 , help="""Number of GPUs in the node.""" ) parser.add_argument("""--local_rank""" , type=lowerCAmelCase , default=-1 , help="""Distributed training - Local rank""" ) parser.add_argument("""--seed""" , type=lowerCAmelCase , default=56 , help="""Random seed""" ) parser.add_argument("""--log_interval""" , type=lowerCAmelCase , default=5_00 , help="""Tensorboard logging interval.""" ) parser.add_argument("""--checkpoint_interval""" , type=lowerCAmelCase , default=40_00 , help="""Checkpoint interval.""" ) UpperCAmelCase__ : List[Any] = parser.parse_args() sanity_checks(lowerCAmelCase ) # ARGS # init_gpu_params(lowerCAmelCase ) set_seed(lowerCAmelCase ) if args.is_master: if os.path.exists(args.dump_path ): if not args.force: raise ValueError( F"""Serialization dir {args.dump_path} already exists, but you have not precised wheter to overwrite""" """ itUse `--force` if you want to overwrite it""" ) else: shutil.rmtree(args.dump_path ) if not os.path.exists(args.dump_path ): os.makedirs(args.dump_path ) logger.info(F"""Experiment will be dumped and logged in {args.dump_path}""" ) # SAVE PARAMS # logger.info(F"""Param: {args}""" ) with open(os.path.join(args.dump_path , """parameters.json""" ) , """w""" ) as f: json.dump(vars(lowerCAmelCase ) , lowerCAmelCase , indent=4 ) git_log(args.dump_path ) UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : Optional[Any] = MODEL_CLASSES[args.student_type] UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : int = MODEL_CLASSES[args.teacher_type] # TOKENIZER # UpperCAmelCase__ : List[Any] = teacher_tokenizer_class.from_pretrained(args.teacher_name ) UpperCAmelCase__ : List[Any] = {} for tok_name, tok_symbol in tokenizer.special_tokens_map.items(): UpperCAmelCase__ : List[Any] = tokenizer.all_special_tokens.index(lowerCAmelCase ) UpperCAmelCase__ : Tuple = tokenizer.all_special_ids[idx] logger.info(F"""Special tokens {special_tok_ids}""" ) UpperCAmelCase__ : Any = special_tok_ids UpperCAmelCase__ : Any = tokenizer.max_model_input_sizes[args.teacher_name] # DATA LOADER # logger.info(F"""Loading data from {args.data_file}""" ) with open(args.data_file , """rb""" ) as fp: UpperCAmelCase__ : List[str] = pickle.load(lowerCAmelCase ) if args.mlm: logger.info(F"""Loading token counts from {args.token_counts} (already pre-computed)""" ) with open(args.token_counts , """rb""" ) as fp: UpperCAmelCase__ : List[Any] = pickle.load(lowerCAmelCase ) UpperCAmelCase__ : List[Any] = np.maximum(lowerCAmelCase , 1 ) ** -args.mlm_smoothing for idx in special_tok_ids.values(): UpperCAmelCase__ : int = 0.0 # do not predict special tokens UpperCAmelCase__ : str = torch.from_numpy(lowerCAmelCase ) else: UpperCAmelCase__ : List[Any] = None UpperCAmelCase__ : str = LmSeqsDataset(params=lowerCAmelCase , data=lowerCAmelCase ) logger.info("""Data loader created.""" ) # STUDENT # logger.info(F"""Loading student config from {args.student_config}""" ) UpperCAmelCase__ : List[str] = student_config_class.from_pretrained(args.student_config ) UpperCAmelCase__ : List[Any] = True if args.student_pretrained_weights is not None: logger.info(F"""Loading pretrained weights from {args.student_pretrained_weights}""" ) UpperCAmelCase__ : List[str] = student_model_class.from_pretrained(args.student_pretrained_weights , config=lowerCAmelCase ) else: UpperCAmelCase__ : List[Any] = student_model_class(lowerCAmelCase ) if args.n_gpu > 0: student.to(F"""cuda:{args.local_rank}""" ) logger.info("""Student loaded.""" ) # TEACHER # UpperCAmelCase__ : str = teacher_model_class.from_pretrained(args.teacher_name , output_hidden_states=lowerCAmelCase ) if args.n_gpu > 0: teacher.to(F"""cuda:{args.local_rank}""" ) logger.info(F"""Teacher loaded from {args.teacher_name}.""" ) # FREEZING # if args.freeze_pos_embs: freeze_pos_embeddings(lowerCAmelCase , lowerCAmelCase ) if args.freeze_token_type_embds: freeze_token_type_embeddings(lowerCAmelCase , lowerCAmelCase ) # SANITY CHECKS # assert student.config.vocab_size == teacher.config.vocab_size assert student.config.hidden_size == teacher.config.hidden_size assert student.config.max_position_embeddings == teacher.config.max_position_embeddings if args.mlm: assert token_probs.size(0 ) == stu_architecture_config.vocab_size # DISTILLER # torch.cuda.empty_cache() UpperCAmelCase__ : Optional[int] = Distiller( params=lowerCAmelCase , dataset=lowerCAmelCase , token_probs=lowerCAmelCase , student=lowerCAmelCase , teacher=lowerCAmelCase ) distiller.train() logger.info("""Let's go get some drinks.""" ) if __name__ == "__main__": main()
171
0
from transformers import DistilBertTokenizer, DistilBertTokenizerFast from transformers.testing_utils import require_tokenizers, slow from ..bert.test_tokenization_bert import BertTokenizationTest @require_tokenizers class __lowerCAmelCase ( A ): UpperCamelCase = DistilBertTokenizer UpperCamelCase = DistilBertTokenizerFast UpperCamelCase = True @slow def _lowerCamelCase ( self : Tuple) -> Any: """simple docstring""" _UpperCAmelCase = DistilBertTokenizer.from_pretrained('distilbert-base-uncased') _UpperCAmelCase = tokenizer.encode('sequence builders' , add_special_tokens=A) _UpperCAmelCase = tokenizer.encode('multi-sequence build' , add_special_tokens=A) _UpperCAmelCase = tokenizer.build_inputs_with_special_tokens(A) _UpperCAmelCase = tokenizer.build_inputs_with_special_tokens(A , A) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ]
353
import json import os import unittest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __lowerCAmelCase ( A , unittest.TestCase ): UpperCamelCase = CLIPTokenizer UpperCamelCase = CLIPTokenizerFast UpperCamelCase = True UpperCamelCase = {} UpperCamelCase = False def _lowerCamelCase ( self : List[str]) -> List[str]: """simple docstring""" super().setUp() # fmt: off _UpperCAmelCase = ['l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'lo', 'l</w>', 'w</w>', 'r</w>', 't</w>', 'low</w>', 'er</w>', 'lowest</w>', 'newer</w>', 'wider', '<unk>', '<|startoftext|>', '<|endoftext|>'] # fmt: on _UpperCAmelCase = dict(zip(A , range(len(A)))) _UpperCAmelCase = ['#version: 0.2', 'l o', 'lo w</w>', 'e r</w>'] _UpperCAmelCase = {'unk_token': '<unk>'} _UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file']) _UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file']) with open(self.vocab_file , 'w' , encoding='utf-8') as fp: fp.write(json.dumps(A) + '\n') with open(self.merges_file , 'w' , encoding='utf-8') as fp: fp.write('\n'.join(A)) def _lowerCamelCase ( self : Optional[Any] , **A : str) -> Optional[int]: """simple docstring""" kwargs.update(self.special_tokens_map) return CLIPTokenizer.from_pretrained(self.tmpdirname , **A) def _lowerCamelCase ( self : Any , **A : Dict) -> Union[str, Any]: """simple docstring""" kwargs.update(self.special_tokens_map) return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **A) def _lowerCamelCase ( self : Optional[int] , A : Union[str, Any]) -> int: """simple docstring""" _UpperCAmelCase = 'lower newer' _UpperCAmelCase = 'lower newer' return input_text, output_text def _lowerCamelCase ( self : Dict) -> Any: """simple docstring""" _UpperCAmelCase = CLIPTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map) _UpperCAmelCase = 'lower newer' _UpperCAmelCase = ['lo', 'w', 'er</w>', 'n', 'e', 'w', 'er</w>'] _UpperCAmelCase = tokenizer.tokenize(A) self.assertListEqual(A , A) _UpperCAmelCase = tokens + [tokenizer.unk_token] _UpperCAmelCase = [10, 2, 16, 9, 3, 2, 16, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(A) , A) @require_ftfy def _lowerCamelCase ( self : List[Any]) -> Dict: """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})"): _UpperCAmelCase = self.tokenizer_class.from_pretrained(A , **A) _UpperCAmelCase = self.rust_tokenizer_class.from_pretrained(A , **A) _UpperCAmelCase = 'A\n\'ll 11p223RF☆ho!!to?\'d\'d\'\'d of a cat to-$\'\'d.' _UpperCAmelCase = tokenizer_s.tokenize(A) _UpperCAmelCase = tokenizer_r.tokenize(A) self.assertListEqual(A , A) # Test that the tokenization is identical on an example containing a character (Latin Small Letter A # with Tilde) encoded in 2 different ways _UpperCAmelCase = 'xa\u0303y' + ' ' + 'x\xe3y' _UpperCAmelCase = tokenizer_s.tokenize(A) _UpperCAmelCase = tokenizer_r.tokenize(A) self.assertListEqual(A , A) # Test that the tokenization is identical on unicode of space type _UpperCAmelCase = [ '\u0009', # (horizontal tab, '\t') '\u000B', # (vertical tab) '\u000C', # (form feed) '\u0020', # (space, ' ') '\u200E', # (left-to-right mark):w '\u200F', # (right-to-left mark) ] for unicode_seq in spaces_unicodes: _UpperCAmelCase = tokenizer_s.tokenize(A) _UpperCAmelCase = tokenizer_r.tokenize(A) self.assertListEqual(A , A) # Test that the tokenization is identical on unicode of line break type _UpperCAmelCase = [ '\u000A', # (line feed, '\n') '\r\n', # (carriage return and line feed, '\r\n') '\u000D', # (carriage return, '\r') '\r', # (carriage return, '\r') '\u000D', # (carriage return, '\r') '\u2028', # (line separator) '\u2029', # (paragraph separator) # "\u0085", # (next line) ] # The tokenization is not identical for the character "\u0085" (next line). The slow version using ftfy transforms # it into the Horizontal Ellipsis character "…" ("\u2026") while the fast version transforms it into a # space (and thus into an empty list). for unicode_seq in line_break_unicodes: _UpperCAmelCase = tokenizer_s.tokenize(A) _UpperCAmelCase = tokenizer_r.tokenize(A) self.assertListEqual(A , A) def _lowerCamelCase ( self : str) -> Optional[Any]: """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})"): _UpperCAmelCase = 'hello' # `hello` is a token in the vocabulary of `pretrained_name` _UpperCAmelCase = F"{text_of_1_token} {text_of_1_token}" _UpperCAmelCase = self.rust_tokenizer_class.from_pretrained( A , use_fast=A , ) _UpperCAmelCase = tokenizer_r(A , return_offsets_mapping=A , add_special_tokens=A) self.assertEqual(encoding.offset_mapping[0] , (0, len(A))) self.assertEqual( encoding.offset_mapping[1] , (len(A) + 1, len(A) + 1 + len(A)) , ) _UpperCAmelCase = F" {text}" _UpperCAmelCase = self.rust_tokenizer_class.from_pretrained( A , use_fast=A , ) _UpperCAmelCase = tokenizer_r(A , return_offsets_mapping=A , add_special_tokens=A) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(A))) self.assertEqual( encoding.offset_mapping[1] , (1 + len(A) + 1, 1 + len(A) + 1 + len(A)) , ) def _lowerCamelCase ( self : Tuple) -> str: """simple docstring""" with self.assertRaises(A) as context: self.rust_tokenizer_class.from_pretrained('robot-test/old-clip-tokenizer') self.assertTrue( context.exception.args[0].startswith( 'The `backend_tokenizer` provided does not match the expected format.')) @require_ftfy def _lowerCamelCase ( self : int) -> int: """simple docstring""" super().test_tokenization_python_rust_equals() def _lowerCamelCase ( self : Union[str, Any]) -> Any: """simple docstring""" pass
290
0
'''simple docstring''' import argparse from tax import checkpoints from transformers import AutoConfig, FlaxAutoModelForSeqaSeqLM def _lowerCAmelCase ( __snake_case : Tuple , __snake_case : str , __snake_case : Union[str, Any] ) -> str: __A : Any = AutoConfig.from_pretrained(__snake_case ) __A : Optional[Any] = FlaxAutoModelForSeqaSeqLM.from_config(config=__snake_case ) __A : Any = checkpoints.load_tax_checkpoint(__snake_case ) __A : Dict = 'wi_0' in tax_model['target']['encoder']['layers_0']['mlp'] if config.model_type == "t5": __A : List[str] = 'SelfAttention' if config.model_type == "longt5" and config.encoder_attention_type == "local": __A : List[str] = 'LocalSelfAttention' elif config.model_type == "longt5" and config.encoder_attention_type == "transient-global": __A : int = 'TransientGlobalSelfAttention' else: raise ValueError( 'Given config is expected to have `model_type=\'t5\'`, or `model_type=\'longt5` with `encoder_attention_type`' ' attribute with a value from [\'local\', \'transient-global].' ) # Encoder for layer_index in range(config.num_layers ): __A : Tuple = f'layers_{str(__snake_case )}' # Self-Attention __A : Any = tax_model['target']['encoder'][layer_name]['attention']['key']['kernel'] __A : Tuple = tax_model['target']['encoder'][layer_name]['attention']['out']['kernel'] __A : Optional[int] = tax_model['target']['encoder'][layer_name]['attention']['query']['kernel'] __A : Dict = tax_model['target']['encoder'][layer_name]['attention']['value']['kernel'] # Global input layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": __A : Tuple = tax_model['target']['encoder'][layer_name]['attention']['T5LayerNorm_0']['scale'] # Layer Normalization __A : Optional[int] = tax_model['target']['encoder'][layer_name]['pre_attention_layer_norm']['scale'] if split_mlp_wi: __A : Dict = tax_model['target']['encoder'][layer_name]['mlp']['wi_0']['kernel'] __A : int = tax_model['target']['encoder'][layer_name]['mlp']['wi_1']['kernel'] else: __A : Tuple = tax_model['target']['encoder'][layer_name]['mlp']['wi']['kernel'] __A : List[str] = tax_model['target']['encoder'][layer_name]['mlp']['wo']['kernel'] # Layer Normalization __A : str = tax_model['target']['encoder'][layer_name]['pre_mlp_layer_norm']['scale'] # Assigning __A : str = flax_model.params['encoder']['block'][str(__snake_case )]['layer'] __A : List[str] = tax_attention_key __A : int = tax_attention_out __A : List[Any] = tax_attention_query __A : List[str] = tax_attention_value __A : List[str] = tax_attention_layer_norm # Global input layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": __A : Dict = tax_global_layer_norm if split_mlp_wi: __A : Optional[int] = tax_mlp_wi_a __A : Tuple = tax_mlp_wi_a else: __A : Optional[Any] = tax_mlp_wi __A : int = tax_mlp_wo __A : Tuple = tax_mlp_layer_norm __A : int = flax_model_encoder_layer_block # Only for layer 0: __A : List[str] = tax_model['target']['encoder']['relpos_bias']['rel_embedding'].T __A : Tuple = tax_encoder_rel_embedding # Side/global relative position_bias + layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": __A : Optional[Any] = tax_model['target']['encoder']['side_relpos_bias']['rel_embedding'].T __A : Optional[int] = tax_encoder_global_rel_embedding # Assigning __A : List[Any] = tax_model['target']['encoder']['encoder_norm']['scale'] __A : List[Any] = tax_encoder_norm # Decoder for layer_index in range(config.num_layers ): __A : Any = f'layers_{str(__snake_case )}' # Self-Attention __A : Optional[int] = tax_model['target']['decoder'][layer_name]['self_attention']['key']['kernel'] __A : List[str] = tax_model['target']['decoder'][layer_name]['self_attention']['out']['kernel'] __A : Optional[Any] = tax_model['target']['decoder'][layer_name]['self_attention']['query']['kernel'] __A : Optional[Any] = tax_model['target']['decoder'][layer_name]['self_attention']['value']['kernel'] # Layer Normalization __A : str = tax_model['target']['decoder'][layer_name]['pre_self_attention_layer_norm'][ 'scale' ] # Encoder-Decoder-Attention __A : Dict = tax_model['target']['decoder'][layer_name]['encoder_decoder_attention'] __A : List[Any] = tax_enc_dec_attention_module['key']['kernel'] __A : List[str] = tax_enc_dec_attention_module['out']['kernel'] __A : Dict = tax_enc_dec_attention_module['query']['kernel'] __A : Any = tax_enc_dec_attention_module['value']['kernel'] # Layer Normalization __A : List[Any] = tax_model['target']['decoder'][layer_name]['pre_cross_attention_layer_norm']['scale'] # MLP if split_mlp_wi: __A : Optional[int] = tax_model['target']['decoder'][layer_name]['mlp']['wi_0']['kernel'] __A : Tuple = tax_model['target']['decoder'][layer_name]['mlp']['wi_1']['kernel'] else: __A : Optional[int] = tax_model['target']['decoder'][layer_name]['mlp']['wi']['kernel'] __A : int = tax_model['target']['decoder'][layer_name]['mlp']['wo']['kernel'] # Layer Normalization __A : Dict = tax_model['target']['decoder'][layer_name]['pre_mlp_layer_norm']['scale'] # Assigning __A : Dict = flax_model.params['decoder']['block'][str(__snake_case )]['layer'] __A : Union[str, Any] = tax_attention_key __A : int = tax_attention_out __A : List[Any] = tax_attention_query __A : Dict = tax_attention_value __A : Union[str, Any] = tax_pre_attention_layer_norm __A : Any = tax_enc_dec_attention_key __A : Dict = tax_enc_dec_attention_out __A : Optional[Any] = tax_enc_dec_attention_query __A : Optional[int] = tax_enc_dec_attention_value __A : List[str] = tax_cross_layer_norm if split_mlp_wi: __A : List[Any] = tax_mlp_wi_a __A : Dict = tax_mlp_wi_a else: __A : Optional[int] = tax_mlp_wi __A : Optional[int] = tax_mlp_wo __A : int = txa_mlp_layer_norm __A : Optional[int] = flax_model_decoder_layer_block # Decoder Normalization __A : List[str] = tax_model['target']['decoder']['decoder_norm']['scale'] __A : Union[str, Any] = txa_decoder_norm # Only for layer 0: __A : Union[str, Any] = tax_model['target']['decoder']['relpos_bias']['rel_embedding'].T __A : int = tax_decoder_rel_embedding # Token Embeddings __A : str = tax_model['target']['token_embedder']['embedding'] __A : str = txa_token_embeddings # LM Head (only in v1.1 and LongT5 checkpoints) if "logits_dense" in tax_model["target"]["decoder"]: __A : Any = tax_model['target']['decoder']['logits_dense']['kernel'] flax_model.save_pretrained(__snake_case ) print('T5X Model was sucessfully converted!' ) if __name__ == "__main__": lowercase__ : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--t5x_checkpoint_path''', default=None, type=str, required=True, help='''Path the T5X checkpoint.''' ) parser.add_argument('''--config_name''', default=None, type=str, required=True, help='''Config name of LongT5/T5 model.''') parser.add_argument( '''--flax_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output FLAX model.''' ) lowercase__ : int = parser.parse_args() convert_tax_checkpoint_to_flax(args.tax_checkpoint_path, args.config_name, args.flax_dump_folder_path)
190
'''simple docstring''' import math def _lowerCAmelCase ( __snake_case : int ) -> bool: if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(__snake_case ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def _lowerCAmelCase ( __snake_case : float = 0.1 ) -> int: __A : Tuple = 3 __A : Optional[int] = 3 while primes / (2 * j - 1) >= ratio: for i in range(j * j + j + 1 , (j + 2) * (j + 2) , j + 1 ): primes += is_prime(__snake_case ) j += 2 return j if __name__ == "__main__": import doctest doctest.testmod()
190
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _lowercase : Any = logging.get_logger(__name__) _lowercase : Dict = { 'google/vivit-b-16x2-kinetics400': ( 'https://huggingface.co/google/vivit-b-16x2-kinetics400/resolve/main/config.json' ), # See all Vivit models at https://huggingface.co/models?filter=vivit } class _UpperCAmelCase ( _lowerCAmelCase ): a__ : int = "vivit" def __init__( self : str , _lowercase : Any=2_24 , _lowercase : List[str]=32 , _lowercase : List[Any]=[2, 16, 16] , _lowercase : Optional[Any]=3 , _lowercase : Optional[Any]=7_68 , _lowercase : Optional[Any]=12 , _lowercase : Union[str, Any]=12 , _lowercase : str=30_72 , _lowercase : Union[str, Any]="gelu_fast" , _lowercase : str=0.0 , _lowercase : int=0.0 , _lowercase : str=0.02 , _lowercase : Tuple=1E-06 , _lowercase : Optional[int]=True , **_lowercase : Union[str, Any] , ): __UpperCAmelCase = hidden_size __UpperCAmelCase = num_hidden_layers __UpperCAmelCase = num_attention_heads __UpperCAmelCase = intermediate_size __UpperCAmelCase = hidden_act __UpperCAmelCase = hidden_dropout_prob __UpperCAmelCase = attention_probs_dropout_prob __UpperCAmelCase = initializer_range __UpperCAmelCase = layer_norm_eps __UpperCAmelCase = image_size __UpperCAmelCase = num_frames __UpperCAmelCase = tubelet_size __UpperCAmelCase = num_channels __UpperCAmelCase = qkv_bias super().__init__(**_lowercase )
354
"""simple docstring""" import gc import unittest from transformers import MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, FillMaskPipeline, pipeline from transformers.pipelines import PipelineException from transformers.testing_utils import ( is_pipeline_test, is_torch_available, nested_simplify, require_tf, require_torch, require_torch_gpu, slow, ) from .test_pipelines_common import ANY @is_pipeline_test class _UpperCAmelCase ( unittest.TestCase ): a__ : Optional[int] = MODEL_FOR_MASKED_LM_MAPPING a__ : Tuple = TF_MODEL_FOR_MASKED_LM_MAPPING def a ( self : List[str] ): super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() if is_torch_available(): import torch torch.cuda.empty_cache() @require_tf def a ( self : Tuple ): __UpperCAmelCase = pipeline(task='''fill-mask''' , model='''sshleifer/tiny-distilroberta-base''' , top_k=2 , framework='''tf''' ) __UpperCAmelCase = unmasker('''My name is <mask>''' ) self.assertEqual( nested_simplify(_lowercase , decimals=6 ) , [ {'''sequence''': '''My name is grouped''', '''score''': 2.1E-05, '''token''': 3_80_15, '''token_str''': ''' grouped'''}, {'''sequence''': '''My name is accuser''', '''score''': 2.1E-05, '''token''': 2_55_06, '''token_str''': ''' accuser'''}, ] , ) __UpperCAmelCase = unmasker('''The largest city in France is <mask>''' ) self.assertEqual( nested_simplify(_lowercase , decimals=6 ) , [ { '''sequence''': '''The largest city in France is grouped''', '''score''': 2.1E-05, '''token''': 3_80_15, '''token_str''': ''' grouped''', }, { '''sequence''': '''The largest city in France is accuser''', '''score''': 2.1E-05, '''token''': 2_55_06, '''token_str''': ''' accuser''', }, ] , ) __UpperCAmelCase = unmasker('''My name is <mask>''' , targets=[''' Patrick''', ''' Clara''', ''' Teven'''] , top_k=3 ) self.assertEqual( nested_simplify(_lowercase , decimals=6 ) , [ {'''sequence''': '''My name is Clara''', '''score''': 2E-05, '''token''': 1_36_06, '''token_str''': ''' Clara'''}, {'''sequence''': '''My name is Patrick''', '''score''': 2E-05, '''token''': 34_99, '''token_str''': ''' Patrick'''}, {'''sequence''': '''My name is Te''', '''score''': 1.9E-05, '''token''': 29_41, '''token_str''': ''' Te'''}, ] , ) @require_torch def a ( self : Optional[int] ): __UpperCAmelCase = pipeline(task='''fill-mask''' , model='''sshleifer/tiny-distilroberta-base''' , top_k=2 , framework='''pt''' ) __UpperCAmelCase = unmasker('''My name is <mask>''' ) self.assertEqual( nested_simplify(_lowercase , decimals=6 ) , [ {'''sequence''': '''My name is Maul''', '''score''': 2.2E-05, '''token''': 3_56_76, '''token_str''': ''' Maul'''}, {'''sequence''': '''My name isELS''', '''score''': 2.2E-05, '''token''': 1_64_16, '''token_str''': '''ELS'''}, ] , ) __UpperCAmelCase = unmasker('''The largest city in France is <mask>''' ) self.assertEqual( nested_simplify(_lowercase , decimals=6 ) , [ { '''sequence''': '''The largest city in France is Maul''', '''score''': 2.2E-05, '''token''': 3_56_76, '''token_str''': ''' Maul''', }, {'''sequence''': '''The largest city in France isELS''', '''score''': 2.2E-05, '''token''': 1_64_16, '''token_str''': '''ELS'''}, ] , ) __UpperCAmelCase = unmasker('''My name is <mask>''' , targets=[''' Patrick''', ''' Clara''', ''' Teven'''] , top_k=3 ) self.assertEqual( nested_simplify(_lowercase , decimals=6 ) , [ {'''sequence''': '''My name is Patrick''', '''score''': 2.1E-05, '''token''': 34_99, '''token_str''': ''' Patrick'''}, {'''sequence''': '''My name is Te''', '''score''': 2E-05, '''token''': 29_41, '''token_str''': ''' Te'''}, {'''sequence''': '''My name is Clara''', '''score''': 2E-05, '''token''': 1_36_06, '''token_str''': ''' Clara'''}, ] , ) __UpperCAmelCase = unmasker('''My name is <mask> <mask>''' , top_k=2 ) self.assertEqual( nested_simplify(_lowercase , decimals=6 ) , [ [ { '''score''': 2.2E-05, '''token''': 3_56_76, '''token_str''': ''' Maul''', '''sequence''': '''<s>My name is Maul<mask></s>''', }, {'''score''': 2.2E-05, '''token''': 1_64_16, '''token_str''': '''ELS''', '''sequence''': '''<s>My name isELS<mask></s>'''}, ], [ { '''score''': 2.2E-05, '''token''': 3_56_76, '''token_str''': ''' Maul''', '''sequence''': '''<s>My name is<mask> Maul</s>''', }, {'''score''': 2.2E-05, '''token''': 1_64_16, '''token_str''': '''ELS''', '''sequence''': '''<s>My name is<mask>ELS</s>'''}, ], ] , ) @require_torch_gpu def a ( self : Any ): __UpperCAmelCase = pipeline('''fill-mask''' , model='''hf-internal-testing/tiny-random-distilbert''' , device=0 , framework='''pt''' ) # convert model to fp16 pipe.model.half() __UpperCAmelCase = pipe('''Paris is the [MASK] of France.''' ) # We actually don't care about the result, we just want to make sure # it works, meaning the float16 tensor got casted back to float32 # for postprocessing. self.assertIsInstance(_lowercase , _lowercase ) @slow @require_torch def a ( self : int ): __UpperCAmelCase = pipeline(task='''fill-mask''' , model='''distilroberta-base''' , top_k=2 , framework='''pt''' ) self.run_large_test(_lowercase ) @slow @require_tf def a ( self : Optional[Any] ): __UpperCAmelCase = pipeline(task='''fill-mask''' , model='''distilroberta-base''' , top_k=2 , framework='''tf''' ) self.run_large_test(_lowercase ) def a ( self : Dict , _lowercase : str ): __UpperCAmelCase = unmasker('''My name is <mask>''' ) self.assertEqual( nested_simplify(_lowercase ) , [ {'''sequence''': '''My name is John''', '''score''': 0.008, '''token''': 6_10, '''token_str''': ''' John'''}, {'''sequence''': '''My name is Chris''', '''score''': 0.007, '''token''': 15_73, '''token_str''': ''' Chris'''}, ] , ) __UpperCAmelCase = unmasker('''The largest city in France is <mask>''' ) self.assertEqual( nested_simplify(_lowercase ) , [ { '''sequence''': '''The largest city in France is Paris''', '''score''': 0.251, '''token''': 22_01, '''token_str''': ''' Paris''', }, { '''sequence''': '''The largest city in France is Lyon''', '''score''': 0.214, '''token''': 1_27_90, '''token_str''': ''' Lyon''', }, ] , ) __UpperCAmelCase = unmasker('''My name is <mask>''' , targets=[''' Patrick''', ''' Clara''', ''' Teven'''] , top_k=3 ) self.assertEqual( nested_simplify(_lowercase ) , [ {'''sequence''': '''My name is Patrick''', '''score''': 0.005, '''token''': 34_99, '''token_str''': ''' Patrick'''}, {'''sequence''': '''My name is Clara''', '''score''': 0.000, '''token''': 1_36_06, '''token_str''': ''' Clara'''}, {'''sequence''': '''My name is Te''', '''score''': 0.000, '''token''': 29_41, '''token_str''': ''' Te'''}, ] , ) @require_torch def a ( self : List[Any] ): __UpperCAmelCase = pipeline(task='''fill-mask''' , model='''sshleifer/tiny-distilroberta-base''' , framework='''pt''' ) __UpperCAmelCase = None __UpperCAmelCase = None self.run_pipeline_test(_lowercase , [] ) @require_tf def a ( self : str ): __UpperCAmelCase = pipeline(task='''fill-mask''' , model='''sshleifer/tiny-distilroberta-base''' , framework='''tf''' ) __UpperCAmelCase = None __UpperCAmelCase = None self.run_pipeline_test(_lowercase , [] ) def a ( self : Optional[int] , _lowercase : Optional[Any] , _lowercase : Optional[int] , _lowercase : Tuple ): if tokenizer is None or tokenizer.mask_token_id is None: self.skipTest('''The provided tokenizer has no mask token, (probably reformer or wav2vec2)''' ) __UpperCAmelCase = FillMaskPipeline(model=_lowercase , tokenizer=_lowercase ) __UpperCAmelCase = [ F'''This is another {tokenizer.mask_token} test''', ] return fill_masker, examples def a ( self : int , _lowercase : Tuple , _lowercase : Tuple ): __UpperCAmelCase = fill_masker.tokenizer __UpperCAmelCase = fill_masker.model __UpperCAmelCase = fill_masker( F'''This is a {tokenizer.mask_token}''' , ) self.assertEqual( _lowercase , [ {'''sequence''': ANY(_lowercase ), '''score''': ANY(_lowercase ), '''token''': ANY(_lowercase ), '''token_str''': ANY(_lowercase )}, {'''sequence''': ANY(_lowercase ), '''score''': ANY(_lowercase ), '''token''': ANY(_lowercase ), '''token_str''': ANY(_lowercase )}, {'''sequence''': ANY(_lowercase ), '''score''': ANY(_lowercase ), '''token''': ANY(_lowercase ), '''token_str''': ANY(_lowercase )}, {'''sequence''': ANY(_lowercase ), '''score''': ANY(_lowercase ), '''token''': ANY(_lowercase ), '''token_str''': ANY(_lowercase )}, {'''sequence''': ANY(_lowercase ), '''score''': ANY(_lowercase ), '''token''': ANY(_lowercase ), '''token_str''': ANY(_lowercase )}, ] , ) __UpperCAmelCase = fill_masker([F'''This is a {tokenizer.mask_token}'''] ) self.assertEqual( _lowercase , [ {'''sequence''': ANY(_lowercase ), '''score''': ANY(_lowercase ), '''token''': ANY(_lowercase ), '''token_str''': ANY(_lowercase )}, {'''sequence''': ANY(_lowercase ), '''score''': ANY(_lowercase ), '''token''': ANY(_lowercase ), '''token_str''': ANY(_lowercase )}, {'''sequence''': ANY(_lowercase ), '''score''': ANY(_lowercase ), '''token''': ANY(_lowercase ), '''token_str''': ANY(_lowercase )}, {'''sequence''': ANY(_lowercase ), '''score''': ANY(_lowercase ), '''token''': ANY(_lowercase ), '''token_str''': ANY(_lowercase )}, {'''sequence''': ANY(_lowercase ), '''score''': ANY(_lowercase ), '''token''': ANY(_lowercase ), '''token_str''': ANY(_lowercase )}, ] , ) __UpperCAmelCase = fill_masker([F'''This is a {tokenizer.mask_token}''', F'''Another {tokenizer.mask_token} great test.'''] ) self.assertEqual( _lowercase , [ [ {'''sequence''': ANY(_lowercase ), '''score''': ANY(_lowercase ), '''token''': ANY(_lowercase ), '''token_str''': ANY(_lowercase )}, {'''sequence''': ANY(_lowercase ), '''score''': ANY(_lowercase ), '''token''': ANY(_lowercase ), '''token_str''': ANY(_lowercase )}, {'''sequence''': ANY(_lowercase ), '''score''': ANY(_lowercase ), '''token''': ANY(_lowercase ), '''token_str''': ANY(_lowercase )}, {'''sequence''': ANY(_lowercase ), '''score''': ANY(_lowercase ), '''token''': ANY(_lowercase ), '''token_str''': ANY(_lowercase )}, {'''sequence''': ANY(_lowercase ), '''score''': ANY(_lowercase ), '''token''': ANY(_lowercase ), '''token_str''': ANY(_lowercase )}, ], [ {'''sequence''': ANY(_lowercase ), '''score''': ANY(_lowercase ), '''token''': ANY(_lowercase ), '''token_str''': ANY(_lowercase )}, {'''sequence''': ANY(_lowercase ), '''score''': ANY(_lowercase ), '''token''': ANY(_lowercase ), '''token_str''': ANY(_lowercase )}, {'''sequence''': ANY(_lowercase ), '''score''': ANY(_lowercase ), '''token''': ANY(_lowercase ), '''token_str''': ANY(_lowercase )}, {'''sequence''': ANY(_lowercase ), '''score''': ANY(_lowercase ), '''token''': ANY(_lowercase ), '''token_str''': ANY(_lowercase )}, {'''sequence''': ANY(_lowercase ), '''score''': ANY(_lowercase ), '''token''': ANY(_lowercase ), '''token_str''': ANY(_lowercase )}, ], ] , ) with self.assertRaises(_lowercase ): fill_masker([None] ) # No mask_token is not supported with self.assertRaises(_lowercase ): fill_masker('''This is''' ) self.run_test_top_k(_lowercase , _lowercase ) self.run_test_targets(_lowercase , _lowercase ) self.run_test_top_k_targets(_lowercase , _lowercase ) self.fill_mask_with_duplicate_targets_and_top_k(_lowercase , _lowercase ) self.fill_mask_with_multiple_masks(_lowercase , _lowercase ) def a ( self : Optional[Any] , _lowercase : Optional[Any] , _lowercase : List[Any] ): __UpperCAmelCase = tokenizer.get_vocab() __UpperCAmelCase = sorted(vocab.keys() )[:2] # Pipeline argument __UpperCAmelCase = FillMaskPipeline(model=_lowercase , tokenizer=_lowercase , targets=_lowercase ) __UpperCAmelCase = fill_masker(F'''This is a {tokenizer.mask_token}''' ) self.assertEqual( _lowercase , [ {'''sequence''': ANY(_lowercase ), '''score''': ANY(_lowercase ), '''token''': ANY(_lowercase ), '''token_str''': ANY(_lowercase )}, {'''sequence''': ANY(_lowercase ), '''score''': ANY(_lowercase ), '''token''': ANY(_lowercase ), '''token_str''': ANY(_lowercase )}, ] , ) __UpperCAmelCase = {vocab[el] for el in targets} self.assertEqual({el['''token'''] for el in outputs} , _lowercase ) __UpperCAmelCase = [tokenizer.decode([x] ) for x in target_ids] self.assertEqual({el['''token_str'''] for el in outputs} , set(_lowercase ) ) # Call argument __UpperCAmelCase = FillMaskPipeline(model=_lowercase , tokenizer=_lowercase ) __UpperCAmelCase = fill_masker(F'''This is a {tokenizer.mask_token}''' , targets=_lowercase ) self.assertEqual( _lowercase , [ {'''sequence''': ANY(_lowercase ), '''score''': ANY(_lowercase ), '''token''': ANY(_lowercase ), '''token_str''': ANY(_lowercase )}, {'''sequence''': ANY(_lowercase ), '''score''': ANY(_lowercase ), '''token''': ANY(_lowercase ), '''token_str''': ANY(_lowercase )}, ] , ) __UpperCAmelCase = {vocab[el] for el in targets} self.assertEqual({el['''token'''] for el in outputs} , _lowercase ) __UpperCAmelCase = [tokenizer.decode([x] ) for x in target_ids] self.assertEqual({el['''token_str'''] for el in outputs} , set(_lowercase ) ) # Score equivalence __UpperCAmelCase = fill_masker(F'''This is a {tokenizer.mask_token}''' , targets=_lowercase ) __UpperCAmelCase = [top_mask['''token_str'''] for top_mask in outputs] __UpperCAmelCase = [top_mask['''score'''] for top_mask in outputs] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(_lowercase ) == set(_lowercase ): __UpperCAmelCase = fill_masker(F'''This is a {tokenizer.mask_token}''' , targets=_lowercase ) __UpperCAmelCase = [top_mask['''score'''] for top_mask in unmasked_targets] self.assertEqual(nested_simplify(_lowercase ) , nested_simplify(_lowercase ) ) # Raises with invalid with self.assertRaises(_lowercase ): __UpperCAmelCase = fill_masker(F'''This is a {tokenizer.mask_token}''' , targets=[] ) # For some tokenizers, `""` is actually in the vocabulary and the expected error won't raised if "" not in tokenizer.get_vocab(): with self.assertRaises(_lowercase ): __UpperCAmelCase = fill_masker(F'''This is a {tokenizer.mask_token}''' , targets=[''''''] ) with self.assertRaises(_lowercase ): __UpperCAmelCase = fill_masker(F'''This is a {tokenizer.mask_token}''' , targets='''''' ) def a ( self : List[Any] , _lowercase : Tuple , _lowercase : Optional[Any] ): __UpperCAmelCase = FillMaskPipeline(model=_lowercase , tokenizer=_lowercase , top_k=2 ) __UpperCAmelCase = fill_masker(F'''This is a {tokenizer.mask_token}''' ) self.assertEqual( _lowercase , [ {'''sequence''': ANY(_lowercase ), '''score''': ANY(_lowercase ), '''token''': ANY(_lowercase ), '''token_str''': ANY(_lowercase )}, {'''sequence''': ANY(_lowercase ), '''score''': ANY(_lowercase ), '''token''': ANY(_lowercase ), '''token_str''': ANY(_lowercase )}, ] , ) __UpperCAmelCase = FillMaskPipeline(model=_lowercase , tokenizer=_lowercase ) __UpperCAmelCase = fill_masker(F'''This is a {tokenizer.mask_token}''' , top_k=2 ) self.assertEqual( _lowercase , [ {'''sequence''': ANY(_lowercase ), '''score''': ANY(_lowercase ), '''token''': ANY(_lowercase ), '''token_str''': ANY(_lowercase )}, {'''sequence''': ANY(_lowercase ), '''score''': ANY(_lowercase ), '''token''': ANY(_lowercase ), '''token_str''': ANY(_lowercase )}, ] , ) self.assertEqual(nested_simplify(_lowercase ) , nested_simplify(_lowercase ) ) def a ( self : Optional[int] , _lowercase : int , _lowercase : Tuple ): __UpperCAmelCase = tokenizer.get_vocab() __UpperCAmelCase = FillMaskPipeline(model=_lowercase , tokenizer=_lowercase ) # top_k=2, ntargets=3 __UpperCAmelCase = sorted(vocab.keys() )[:3] __UpperCAmelCase = fill_masker(F'''This is a {tokenizer.mask_token}''' , top_k=2 , targets=_lowercase ) # If we use the most probably targets, and filter differently, we should still # have the same results __UpperCAmelCase = [el['''token_str'''] for el in sorted(_lowercase , key=lambda _lowercase : x["score"] , reverse=_lowercase )] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(_lowercase ).issubset(_lowercase ): __UpperCAmelCase = fill_masker(F'''This is a {tokenizer.mask_token}''' , top_k=3 , targets=_lowercase ) # They should yield exactly the same result self.assertEqual(nested_simplify(_lowercase ) , nested_simplify(_lowercase ) ) def a ( self : Union[str, Any] , _lowercase : Tuple , _lowercase : Union[str, Any] ): __UpperCAmelCase = FillMaskPipeline(model=_lowercase , tokenizer=_lowercase ) __UpperCAmelCase = tokenizer.get_vocab() # String duplicates + id duplicates __UpperCAmelCase = sorted(vocab.keys() )[:3] __UpperCAmelCase = [targets[0], targets[1], targets[0], targets[2], targets[1]] __UpperCAmelCase = fill_masker(F'''My name is {tokenizer.mask_token}''' , targets=_lowercase , top_k=10 ) # The target list contains duplicates, so we can't output more # than them self.assertEqual(len(_lowercase ) , 3 ) def a ( self : Dict , _lowercase : Dict , _lowercase : Any ): __UpperCAmelCase = FillMaskPipeline(model=_lowercase , tokenizer=_lowercase ) __UpperCAmelCase = fill_masker( F'''This is a {tokenizer.mask_token} {tokenizer.mask_token} {tokenizer.mask_token}''' , top_k=2 ) self.assertEqual( _lowercase , [ [ {'''sequence''': ANY(_lowercase ), '''score''': ANY(_lowercase ), '''token''': ANY(_lowercase ), '''token_str''': ANY(_lowercase )}, {'''sequence''': ANY(_lowercase ), '''score''': ANY(_lowercase ), '''token''': ANY(_lowercase ), '''token_str''': ANY(_lowercase )}, ], [ {'''sequence''': ANY(_lowercase ), '''score''': ANY(_lowercase ), '''token''': ANY(_lowercase ), '''token_str''': ANY(_lowercase )}, {'''sequence''': ANY(_lowercase ), '''score''': ANY(_lowercase ), '''token''': ANY(_lowercase ), '''token_str''': ANY(_lowercase )}, ], [ {'''sequence''': ANY(_lowercase ), '''score''': ANY(_lowercase ), '''token''': ANY(_lowercase ), '''token_str''': ANY(_lowercase )}, {'''sequence''': ANY(_lowercase ), '''score''': ANY(_lowercase ), '''token''': ANY(_lowercase ), '''token_str''': ANY(_lowercase )}, ], ] , )
86
0
import os import torch from ..logging import get_logger from .constants import FSDP_PYTORCH_VERSION, MODEL_NAME, OPTIMIZER_NAME from .versions import is_torch_version if is_torch_version(">=", FSDP_PYTORCH_VERSION): import torch.distributed.checkpoint as dist_cp from torch.distributed.checkpoint.default_planner import DefaultLoadPlanner, DefaultSavePlanner from torch.distributed.checkpoint.optimizer import load_sharded_optimizer_state_dict from torch.distributed.fsdp.fully_sharded_data_parallel import FullyShardedDataParallel as FSDP from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType _lowercase: Union[str, Any] = get_logger(__name__) def a( A : int , A : List[str] , A : List[str] , A : Optional[Any] , A : Union[str, Any]=0 ) -> Union[str, Any]: """simple docstring""" os.makedirs(A , exist_ok=A ) with FSDP.state_dict_type( A , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): a = model.state_dict() if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: a = f'''{MODEL_NAME}.bin''' if model_index == 0 else f'''{MODEL_NAME}_{model_index}.bin''' a = os.path.join(A , A ) if accelerator.process_index == 0: logger.info(f'''Saving model to {output_model_file}''' ) torch.save(A , A ) logger.info(f'''Model saved to {output_model_file}''' ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: a = ( f'''{MODEL_NAME}_rank{accelerator.process_index}.bin''' if model_index == 0 else f'''{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin''' ) a = os.path.join(A , A ) logger.info(f'''Saving model to {output_model_file}''' ) torch.save(A , A ) logger.info(f'''Model saved to {output_model_file}''' ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: a = os.path.join(A , f'''{MODEL_NAME}_{model_index}''' ) os.makedirs(A , exist_ok=A ) logger.info(f'''Saving model to {ckpt_dir}''' ) a = {"model": state_dict} dist_cp.save_state_dict( state_dict=A , storage_writer=dist_cp.FileSystemWriter(A ) , planner=DefaultSavePlanner() , ) logger.info(f'''Model saved to {ckpt_dir}''' ) def a( A : str , A : Any , A : Tuple , A : List[str] , A : Tuple=0 ) -> Tuple: """simple docstring""" accelerator.wait_for_everyone() with FSDP.state_dict_type( A , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if type(A ) != FSDP and accelerator.process_index != 0: if not fsdp_plugin.sync_module_states: raise ValueError( "Set the `sync_module_states` flag to `True` so that model states are synced across processes when " "initializing FSDP object" ) return a = f'''{MODEL_NAME}.bin''' if model_index == 0 else f'''{MODEL_NAME}_{model_index}.bin''' a = os.path.join(A , A ) logger.info(f'''Loading model from {input_model_file}''' ) a = torch.load(A ) logger.info(f'''Model loaded from {input_model_file}''' ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: a = ( f'''{MODEL_NAME}_rank{accelerator.process_index}.bin''' if model_index == 0 else f'''{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin''' ) a = os.path.join(A , A ) logger.info(f'''Loading model from {input_model_file}''' ) a = torch.load(A ) logger.info(f'''Model loaded from {input_model_file}''' ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: a = ( os.path.join(A , f'''{MODEL_NAME}_{model_index}''' ) if f'''{MODEL_NAME}''' not in input_dir else input_dir ) logger.info(f'''Loading model from {ckpt_dir}''' ) a = {"model": model.state_dict()} dist_cp.load_state_dict( state_dict=A , storage_reader=dist_cp.FileSystemReader(A ) , planner=DefaultLoadPlanner() , ) a = state_dict["model"] logger.info(f'''Model loaded from {ckpt_dir}''' ) model.load_state_dict(A ) def a( A : str , A : Optional[Any] , A : Tuple , A : int , A : Optional[int] , A : str=0 ) -> Optional[Any]: """simple docstring""" os.makedirs(A , exist_ok=A ) with FSDP.state_dict_type( A , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): a = FSDP.optim_state_dict(A , A ) if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if accelerator.process_index == 0: a = ( f'''{OPTIMIZER_NAME}.bin''' if optimizer_index == 0 else f'''{OPTIMIZER_NAME}_{optimizer_index}.bin''' ) a = os.path.join(A , A ) logger.info(f'''Saving Optimizer state to {output_optimizer_file}''' ) torch.save(A , A ) logger.info(f'''Optimizer state saved in {output_optimizer_file}''' ) else: a = os.path.join(A , f'''{OPTIMIZER_NAME}_{optimizer_index}''' ) os.makedirs(A , exist_ok=A ) logger.info(f'''Saving Optimizer state to {ckpt_dir}''' ) dist_cp.save_state_dict( state_dict={"optimizer": optim_state} , storage_writer=dist_cp.FileSystemWriter(A ) , planner=DefaultSavePlanner() , ) logger.info(f'''Optimizer state saved in {ckpt_dir}''' ) def a( A : List[str] , A : Dict , A : int , A : Dict , A : Optional[int] , A : List[Any]=0 ) -> str: """simple docstring""" accelerator.wait_for_everyone() with FSDP.state_dict_type( A , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: a = None # below check should work but currently it isn't working (mostly opytorch issue), # in the meantime disabling it at the cost of excess memory usage # if accelerator.process_index == 0 or not fsdp_plugin.optim_state_dict_config.rank0_only: a = ( f'''{OPTIMIZER_NAME}.bin''' if optimizer_index == 0 else f'''{OPTIMIZER_NAME}_{optimizer_index}.bin''' ) a = os.path.join(A , A ) logger.info(f'''Loading Optimizer state from {input_optimizer_file}''' ) a = torch.load(A ) logger.info(f'''Optimizer state loaded from {input_optimizer_file}''' ) else: a = ( os.path.join(A , f'''{OPTIMIZER_NAME}_{optimizer_index}''' ) if f'''{OPTIMIZER_NAME}''' not in input_dir else input_dir ) logger.info(f'''Loading Optimizer from {ckpt_dir}''' ) a = load_sharded_optimizer_state_dict( model_state_dict=model.state_dict() , optimizer_key="optimizer" , storage_reader=dist_cp.FileSystemReader(A ) , ) a = optim_state["optimizer"] logger.info(f'''Optimizer loaded from {ckpt_dir}''' ) a = FSDP.optim_state_dict_to_load(A , A , A ) optimizer.load_state_dict(A )
227
from __future__ import annotations _lowercase: Tuple = list[list[int]] # assigning initial values to the grid _lowercase: Matrix = [ [3, 0, 6, 5, 0, 8, 4, 0, 0], [5, 2, 0, 0, 0, 0, 0, 0, 0], [0, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] # a grid with no solution _lowercase: Matrix = [ [5, 0, 6, 5, 0, 8, 4, 0, 3], [5, 2, 0, 0, 0, 0, 0, 0, 2], [1, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] def a( A : Matrix , A : int , A : int , A : int ) -> bool: """simple docstring""" for i in range(9 ): if grid[row][i] == n or grid[i][column] == n: return False for i in range(3 ): for j in range(3 ): if grid[(row - row % 3) + i][(column - column % 3) + j] == n: return False return True def a( A : Matrix ) -> tuple[int, int] | None: """simple docstring""" for i in range(9 ): for j in range(9 ): if grid[i][j] == 0: return i, j return None def a( A : Matrix ) -> Matrix | None: """simple docstring""" if location := find_empty_location(A ): a , a = location else: # If the location is ``None``, then the grid is solved. return grid for digit in range(1 , 10 ): if is_safe(A , A , A , A ): a = digit if sudoku(A ) is not None: return grid a = 0 return None def a( A : Matrix ) -> None: """simple docstring""" for row in grid: for cell in row: print(A , end=" " ) print() if __name__ == "__main__": # make a copy of grid so that you can compare with the unmodified grid for example_grid in (initial_grid, no_solution): print("\nExample grid:\n" + "=" * 20) print_solution(example_grid) print("\nExample grid solution:") _lowercase: List[str] = sudoku(example_grid) if solution is not None: print_solution(solution) else: print("Cannot find a solution.")
227
1
import json import os import shutil import warnings from argparse import ArgumentParser, Namespace from pathlib import Path from typing import List from ..utils import logging from . import BaseTransformersCLICommand try: from cookiecutter.main import cookiecutter UpperCAmelCase : Dict = True except ImportError: UpperCAmelCase : Optional[Any] = False UpperCAmelCase : Optional[Any] = logging.get_logger(__name__) # pylint: disable=invalid-name def _A ( SCREAMING_SNAKE_CASE : Namespace ): """simple docstring""" return AddNewModelCommand(args.testing , args.testing_file , path=args.path ) class __lowerCAmelCase ( UpperCamelCase__): @staticmethod def _lowercase ( lowerCAmelCase__ ) -> Optional[int]: '''simple docstring''' a__ : Union[str, Any] =parser.add_parser("add-new-model" ) add_new_model_parser.add_argument("--testing" , action="store_true" , help="If in testing mode." ) add_new_model_parser.add_argument("--testing_file" , type=lowerCAmelCase__ , help="Configuration file on which to run." ) add_new_model_parser.add_argument( "--path" , type=lowerCAmelCase__ , help="Path to cookiecutter. Should only be used for testing purposes." ) add_new_model_parser.set_defaults(func=lowerCAmelCase__ ) def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=None , *lowerCAmelCase__ ) -> List[Any]: '''simple docstring''' a__ : List[str] =testing a__ : str =testing_file a__ : Union[str, Any] =path def _lowercase ( self ) -> Optional[Any]: '''simple docstring''' warnings.warn( "The command `transformers-cli add-new-model` is deprecated and will be removed in v5 of Transformers. " "It is not actively maintained anymore, so might give a result that won't pass all tests and quality " "checks, you should use `transformers-cli add-new-model-like` instead." ) if not _has_cookiecutter: raise ImportError( "Model creation dependencies are required to use the `add_new_model` command. Install them by running " "the following at the root of your `transformers` clone:\n\n\t$ pip install -e .[modelcreation]\n" ) # Ensure that there is no other `cookiecutter-template-xxx` directory in the current working directory a__ : Union[str, Any] =[directory for directory in os.listdir() if "cookiecutter-template-" == directory[:2_2]] if len(lowerCAmelCase__ ) > 0: raise ValueError( "Several directories starting with `cookiecutter-template-` in current working directory. " "Please clean your directory by removing all folders starting with `cookiecutter-template-` or " "change your working directory." ) a__ : Tuple =( Path(lowerCAmelCase__ ).parent.parent.parent.parent if self._path is None else Path(self._path ).parent.parent ) a__ : List[Any] =path_to_transformer_root / "templates" / "adding_a_new_model" # Execute cookiecutter if not self._testing: cookiecutter(str(lowerCAmelCase__ ) ) else: with open(self._testing_file , "r" ) as configuration_file: a__ : Optional[Any] =json.load(lowerCAmelCase__ ) cookiecutter( str(path_to_cookiecutter if self._path is None else self._path ) , no_input=lowerCAmelCase__ , extra_context=lowerCAmelCase__ , ) a__ : str =[directory for directory in os.listdir() if "cookiecutter-template-" in directory[:2_2]][0] # Retrieve configuration with open(directory + "/configuration.json" , "r" ) as configuration_file: a__ : Tuple =json.load(lowerCAmelCase__ ) a__ : Union[str, Any] =configuration["lowercase_modelname"] a__ : Optional[Any] =configuration["generate_tensorflow_pytorch_and_flax"] os.remove(F'''{directory}/configuration.json''' ) a__ : int ="PyTorch" in generate_tensorflow_pytorch_and_flax a__ : Union[str, Any] ="TensorFlow" in generate_tensorflow_pytorch_and_flax a__ : List[str] ="Flax" in generate_tensorflow_pytorch_and_flax a__ : Any =F'''{path_to_transformer_root}/src/transformers/models/{lowercase_model_name}''' os.makedirs(lowerCAmelCase__ , exist_ok=lowerCAmelCase__ ) os.makedirs(F'''{path_to_transformer_root}/tests/models/{lowercase_model_name}''' , exist_ok=lowerCAmelCase__ ) # Tests require submodules as they have parent imports with open(F'''{path_to_transformer_root}/tests/models/{lowercase_model_name}/__init__.py''' , "w" ): pass shutil.move( F'''{directory}/__init__.py''' , F'''{model_dir}/__init__.py''' , ) shutil.move( F'''{directory}/configuration_{lowercase_model_name}.py''' , F'''{model_dir}/configuration_{lowercase_model_name}.py''' , ) def remove_copy_lines(lowerCAmelCase__ ): with open(lowerCAmelCase__ , "r" ) as f: a__ : Tuple =f.readlines() with open(lowerCAmelCase__ , "w" ) as f: for line in lines: if "# Copied from transformers." not in line: f.write(lowerCAmelCase__ ) if output_pytorch: if not self._testing: remove_copy_lines(F'''{directory}/modeling_{lowercase_model_name}.py''' ) shutil.move( F'''{directory}/modeling_{lowercase_model_name}.py''' , F'''{model_dir}/modeling_{lowercase_model_name}.py''' , ) shutil.move( F'''{directory}/test_modeling_{lowercase_model_name}.py''' , F'''{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_{lowercase_model_name}.py''' , ) else: os.remove(F'''{directory}/modeling_{lowercase_model_name}.py''' ) os.remove(F'''{directory}/test_modeling_{lowercase_model_name}.py''' ) if output_tensorflow: if not self._testing: remove_copy_lines(F'''{directory}/modeling_tf_{lowercase_model_name}.py''' ) shutil.move( F'''{directory}/modeling_tf_{lowercase_model_name}.py''' , F'''{model_dir}/modeling_tf_{lowercase_model_name}.py''' , ) shutil.move( F'''{directory}/test_modeling_tf_{lowercase_model_name}.py''' , F'''{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_tf_{lowercase_model_name}.py''' , ) else: os.remove(F'''{directory}/modeling_tf_{lowercase_model_name}.py''' ) os.remove(F'''{directory}/test_modeling_tf_{lowercase_model_name}.py''' ) if output_flax: if not self._testing: remove_copy_lines(F'''{directory}/modeling_flax_{lowercase_model_name}.py''' ) shutil.move( F'''{directory}/modeling_flax_{lowercase_model_name}.py''' , F'''{model_dir}/modeling_flax_{lowercase_model_name}.py''' , ) shutil.move( F'''{directory}/test_modeling_flax_{lowercase_model_name}.py''' , F'''{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_flax_{lowercase_model_name}.py''' , ) else: os.remove(F'''{directory}/modeling_flax_{lowercase_model_name}.py''' ) os.remove(F'''{directory}/test_modeling_flax_{lowercase_model_name}.py''' ) shutil.move( F'''{directory}/{lowercase_model_name}.md''' , F'''{path_to_transformer_root}/docs/source/en/model_doc/{lowercase_model_name}.md''' , ) shutil.move( F'''{directory}/tokenization_{lowercase_model_name}.py''' , F'''{model_dir}/tokenization_{lowercase_model_name}.py''' , ) shutil.move( F'''{directory}/tokenization_fast_{lowercase_model_name}.py''' , F'''{model_dir}/tokenization_{lowercase_model_name}_fast.py''' , ) from os import fdopen, remove from shutil import copymode, move from tempfile import mkstemp def replace(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): # Create temp file a__ , a__ : List[str] =mkstemp() a__ : Union[str, Any] =False with fdopen(lowerCAmelCase__ , "w" ) as new_file: with open(lowerCAmelCase__ ) as old_file: for line in old_file: new_file.write(lowerCAmelCase__ ) if line_to_copy_below in line: a__ : Optional[int] =True for line_to_copy in lines_to_copy: new_file.write(lowerCAmelCase__ ) if not line_found: raise ValueError(F'''Line {line_to_copy_below} was not found in file.''' ) # Copy the file permissions from the old file to the new file copymode(lowerCAmelCase__ , lowerCAmelCase__ ) # Remove original file remove(lowerCAmelCase__ ) # Move new file move(lowerCAmelCase__ , lowerCAmelCase__ ) def skip_units(lowerCAmelCase__ ): return ( ("generating PyTorch" in line and not output_pytorch) or ("generating TensorFlow" in line and not output_tensorflow) or ("generating Flax" in line and not output_flax) ) def replace_in_files(lowerCAmelCase__ ): with open(lowerCAmelCase__ ) as datafile: a__ : Union[str, Any] =[] a__ : Tuple =False a__ : Dict =False for line in datafile: if "# To replace in: " in line and "##" not in line: a__ : List[str] =line.split("\"" )[1] a__ : Any =skip_units(lowerCAmelCase__ ) elif "# Below: " in line and "##" not in line: a__ : Dict =line.split("\"" )[1] a__ : List[str] =skip_units(lowerCAmelCase__ ) elif "# End." in line and "##" not in line: if not skip_file and not skip_snippet: replace(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) a__ : Optional[Any] =[] elif "# Replace with" in line and "##" not in line: a__ : Tuple =[] elif "##" not in line: lines_to_copy.append(lowerCAmelCase__ ) remove(lowerCAmelCase__ ) replace_in_files(F'''{directory}/to_replace_{lowercase_model_name}.py''' ) os.rmdir(lowerCAmelCase__ )
148
from typing import Optional from .. import Features, NamedSplit from ..packaged_modules.text.text import Text from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class __lowerCAmelCase ( UpperCamelCase__): def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = False , lowerCAmelCase__ = False , lowerCAmelCase__ = None , **lowerCAmelCase__ , ) -> int: '''simple docstring''' super().__init__( lowerCAmelCase__ , split=lowerCAmelCase__ , features=lowerCAmelCase__ , cache_dir=lowerCAmelCase__ , keep_in_memory=lowerCAmelCase__ , streaming=lowerCAmelCase__ , num_proc=lowerCAmelCase__ , **lowerCAmelCase__ , ) a__ : Tuple =path_or_paths if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else {self.split: path_or_paths} a__ : List[str] =Text( cache_dir=lowerCAmelCase__ , data_files=lowerCAmelCase__ , features=lowerCAmelCase__ , **lowerCAmelCase__ , ) def _lowercase ( self ) -> List[Any]: '''simple docstring''' if self.streaming: a__ : str =self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: a__ : Dict =None a__ : Optional[Any] =None a__ : Union[str, Any] =None a__ : Tuple =None self.builder.download_and_prepare( download_config=lowerCAmelCase__ , download_mode=lowerCAmelCase__ , verification_mode=lowerCAmelCase__ , base_path=lowerCAmelCase__ , num_proc=self.num_proc , ) a__ : Tuple =self.builder.as_dataset( split=self.split , verification_mode=lowerCAmelCase__ , in_memory=self.keep_in_memory ) return dataset
148
1
import sacrebleu as scb from packaging import version from sacrebleu import CHRF import datasets __lowerCAmelCase : str ='\\n@inproceedings{popovic-2015-chrf,\n title = "chr{F}: character n-gram {F}-score for automatic {MT} evaluation",\n author = "Popovi{\'c}, Maja",\n booktitle = "Proceedings of the Tenth Workshop on Statistical Machine Translation",\n month = sep,\n year = "2015",\n address = "Lisbon, Portugal",\n publisher = "Association for Computational Linguistics",\n url = "https://aclanthology.org/W15-3049",\n doi = "10.18653/v1/W15-3049",\n pages = "392--395",\n}\n@inproceedings{popovic-2017-chrf,\n title = "chr{F}++: words helping character n-grams",\n author = "Popovi{\'c}, Maja",\n booktitle = "Proceedings of the Second Conference on Machine Translation",\n month = sep,\n year = "2017",\n address = "Copenhagen, Denmark",\n publisher = "Association for Computational Linguistics",\n url = "https://aclanthology.org/W17-4770",\n doi = "10.18653/v1/W17-4770",\n pages = "612--618",\n}\n@inproceedings{post-2018-call,\n title = "A Call for Clarity in Reporting {BLEU} Scores",\n author = "Post, Matt",\n booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers",\n month = oct,\n year = "2018",\n address = "Belgium, Brussels",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/W18-6319",\n pages = "186--191",\n}\n' __lowerCAmelCase : Optional[Any] ='\\nChrF and ChrF++ are two MT evaluation metrics. They both use the F-score statistic for character n-gram matches,\nand ChrF++ adds word n-grams as well which correlates more strongly with direct assessment. We use the implementation\nthat is already present in sacrebleu.\n\nThe implementation here is slightly different from sacrebleu in terms of the required input format. The length of\nthe references and hypotheses lists need to be the same, so you may need to transpose your references compared to\nsacrebleu\'s required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534\n\nSee the README.md file at https://github.com/mjpost/sacreBLEU#chrf--chrf for more information.\n' __lowerCAmelCase : str ='\nProduces ChrF(++) scores for hypotheses given reference translations.\n\nArgs:\n predictions (list of str): The predicted sentences.\n references (list of list of str): The references. There should be one reference sub-list for each prediction sentence.\n char_order (int): Character n-gram order. Defaults to `6`.\n word_order (int): Word n-gram order. If equals to `2`, the metric is referred to as chrF++. Defaults to `0`.\n beta (int): Determine the importance of recall w.r.t precision. Defaults to `2`.\n lowercase (bool): if `True`, enables case-insensitivity. Defaults to `False`.\n whitespace (bool): If `True`, include whitespaces when extracting character n-grams.\n eps_smoothing (bool): If `True`, applies epsilon smoothing similar\n to reference chrF++.py, NLTK and Moses implementations. If `False`,\n it takes into account effective match order similar to sacreBLEU < 2.0.0. Defaults to `False`.\n\nReturns:\n \'score\' (float): The chrF (chrF++) score,\n \'char_order\' (int): The character n-gram order,\n \'word_order\' (int): The word n-gram order. If equals to 2, the metric is referred to as chrF++,\n \'beta\' (int): Determine the importance of recall w.r.t precision\n\nExamples:\n Example 1--a simple example of calculating chrF:\n >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."]\n >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]]\n >>> chrf = datasets.load_metric("chrf")\n >>> results = chrf.compute(predictions=prediction, references=reference)\n >>> print(results)\n {\'score\': 84.64214891738334, \'char_order\': 6, \'word_order\': 0, \'beta\': 2}\n\n Example 2--the same example, but with the argument word_order=2, to calculate chrF++ instead of chrF:\n >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."]\n >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]]\n >>> chrf = datasets.load_metric("chrf")\n >>> results = chrf.compute(predictions=prediction,\n ... references=reference,\n ... word_order=2)\n >>> print(results)\n {\'score\': 82.87263732906315, \'char_order\': 6, \'word_order\': 2, \'beta\': 2}\n\n Example 3--the same chrF++ example as above, but with `lowercase=True` to normalize all case:\n >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."]\n >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]]\n >>> chrf = datasets.load_metric("chrf")\n >>> results = chrf.compute(predictions=prediction,\n ... references=reference,\n ... word_order=2,\n ... lowercase=True)\n >>> print(results)\n {\'score\': 92.12853119829202, \'char_order\': 6, \'word_order\': 2, \'beta\': 2}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _lowercase ( datasets.Metric ): '''simple docstring''' def __magic_name__( self :Union[str, Any] ) -> List[Any]: if version.parse(scb.__version__ ) < version.parse('''1.4.12''' ): raise ImportWarning( '''To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn\'t match this condition.\n''' '''You can install it with `pip install "sacrebleu>=1.4.12"`.''' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='''https://github.com/mjpost/sacreBLEU#chrf--chrf''' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Sequence(datasets.Value('''string''' , id='''sequence''' ) , id='''references''' ), } ) , codebase_urls=['''https://github.com/mjpost/sacreBLEU#chrf--chrf'''] , reference_urls=[ '''https://github.com/m-popovic/chrF''', ] , ) def __magic_name__( self :Union[str, Any] , lowerCAmelCase__ :Optional[int] , lowerCAmelCase__ :Dict , lowerCAmelCase__ :int = CHRF.CHAR_ORDER , lowerCAmelCase__ :int = CHRF.WORD_ORDER , lowerCAmelCase__ :int = CHRF.BETA , lowerCAmelCase__ :bool = False , lowerCAmelCase__ :bool = False , lowerCAmelCase__ :bool = False , ) -> Optional[int]: __SCREAMING_SNAKE_CASE : str = len(references[0] ) if any(len(lowerCAmelCase__ ) != references_per_prediction for refs in references ): raise ValueError('''Sacrebleu requires the same number of references for each prediction''' ) __SCREAMING_SNAKE_CASE : Optional[Any] = [[refs[i] for refs in references] for i in range(lowerCAmelCase__ )] __SCREAMING_SNAKE_CASE : Dict = CHRF(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Tuple = sb_chrf.corpus_score(lowerCAmelCase__ , lowerCAmelCase__ ) return { "score": output.score, "char_order": output.char_order, "word_order": output.word_order, "beta": output.beta, }
9
import argparse import requests import torch # pip3 install salesforce-lavis # I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis from lavis.models import load_model_and_preprocess from PIL import Image from transformers import ( AutoTokenizer, BlipaConfig, BlipaForConditionalGeneration, BlipaProcessor, BlipaVisionConfig, BlipImageProcessor, OPTConfig, TaConfig, ) from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD def _UpperCamelCase ( ): __SCREAMING_SNAKE_CASE : Dict = '''https://storage.googleapis.com/sfr-vision-language-research/LAVIS/assets/merlion.png''' __SCREAMING_SNAKE_CASE : List[str] = Image.open(requests.get(lowercase__ , stream=lowercase__ ).raw ).convert('''RGB''' ) return image def _UpperCamelCase ( lowercase__ ): __SCREAMING_SNAKE_CASE : List[Any] = [] # fmt: off # vision encoder rename_keys.append(('''visual_encoder.cls_token''', '''vision_model.embeddings.class_embedding''') ) rename_keys.append(('''visual_encoder.pos_embed''', '''vision_model.embeddings.position_embedding''') ) rename_keys.append(('''visual_encoder.patch_embed.proj.weight''', '''vision_model.embeddings.patch_embedding.weight''') ) rename_keys.append(('''visual_encoder.patch_embed.proj.bias''', '''vision_model.embeddings.patch_embedding.bias''') ) rename_keys.append(('''ln_vision.weight''', '''vision_model.post_layernorm.weight''') ) rename_keys.append(('''ln_vision.bias''', '''vision_model.post_layernorm.bias''') ) for i in range(config.vision_config.num_hidden_layers ): rename_keys.append((F'''visual_encoder.blocks.{i}.norm1.weight''', F'''vision_model.encoder.layers.{i}.layer_norm1.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.norm1.bias''', F'''vision_model.encoder.layers.{i}.layer_norm1.bias''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.norm2.weight''', F'''vision_model.encoder.layers.{i}.layer_norm2.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.norm2.bias''', F'''vision_model.encoder.layers.{i}.layer_norm2.bias''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.attn.qkv.weight''', F'''vision_model.encoder.layers.{i}.self_attn.qkv.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.attn.proj.weight''', F'''vision_model.encoder.layers.{i}.self_attn.projection.weight''',) ) rename_keys.append((F'''visual_encoder.blocks.{i}.attn.proj.bias''', F'''vision_model.encoder.layers.{i}.self_attn.projection.bias''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc1.weight''', F'''vision_model.encoder.layers.{i}.mlp.fc1.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc1.bias''', F'''vision_model.encoder.layers.{i}.mlp.fc1.bias''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc2.weight''', F'''vision_model.encoder.layers.{i}.mlp.fc2.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc2.bias''', F'''vision_model.encoder.layers.{i}.mlp.fc2.bias''') ) # QFormer rename_keys.append(('''Qformer.bert.embeddings.LayerNorm.weight''', '''qformer.layernorm.weight''') ) rename_keys.append(('''Qformer.bert.embeddings.LayerNorm.bias''', '''qformer.layernorm.bias''') ) # fmt: on return rename_keys def _UpperCamelCase ( lowercase__ , lowercase__ , lowercase__ ): __SCREAMING_SNAKE_CASE : List[Any] = dct.pop(lowercase__ ) __SCREAMING_SNAKE_CASE : List[Any] = val def _UpperCamelCase ( lowercase__ , lowercase__ ): for i in range(config.vision_config.num_hidden_layers ): # read in original q and v biases __SCREAMING_SNAKE_CASE : Optional[int] = state_dict.pop(F'''visual_encoder.blocks.{i}.attn.q_bias''' ) __SCREAMING_SNAKE_CASE : int = state_dict.pop(F'''visual_encoder.blocks.{i}.attn.v_bias''' ) # next, set bias in the state dict __SCREAMING_SNAKE_CASE : Optional[int] = torch.cat((q_bias, torch.zeros_like(lowercase__ , requires_grad=lowercase__ ), v_bias) ) __SCREAMING_SNAKE_CASE : Optional[Any] = qkv_bias def _UpperCamelCase ( lowercase__ , lowercase__ ): __SCREAMING_SNAKE_CASE : Any = 364 if '''coco''' in model_name else 224 __SCREAMING_SNAKE_CASE : List[str] = BlipaVisionConfig(image_size=lowercase__ ).to_dict() # make sure the models have proper bos_token_id and eos_token_id set (important for generation) # seems like flan-T5 models don't have bos_token_id properly set? if "opt-2.7b" in model_name: __SCREAMING_SNAKE_CASE : Union[str, Any] = OPTConfig.from_pretrained('''facebook/opt-2.7b''' , eos_token_id=lowercase__ ).to_dict() elif "opt-6.7b" in model_name: __SCREAMING_SNAKE_CASE : List[Any] = OPTConfig.from_pretrained('''facebook/opt-6.7b''' , eos_token_id=lowercase__ ).to_dict() elif "t5-xl" in model_name: __SCREAMING_SNAKE_CASE : Optional[Any] = TaConfig.from_pretrained('''google/flan-t5-xl''' , dense_act_fn='''gelu''' , bos_token_id=1 ).to_dict() elif "t5-xxl" in model_name: __SCREAMING_SNAKE_CASE : Union[str, Any] = TaConfig.from_pretrained('''google/flan-t5-xxl''' , dense_act_fn='''gelu''' , bos_token_id=1 ).to_dict() __SCREAMING_SNAKE_CASE : Optional[int] = BlipaConfig(vision_config=lowercase__ , text_config=lowercase__ ) return config, image_size @torch.no_grad() def _UpperCamelCase ( lowercase__ , lowercase__=None , lowercase__=False ): __SCREAMING_SNAKE_CASE : Any = ( AutoTokenizer.from_pretrained('''facebook/opt-2.7b''' ) if '''opt''' in model_name else AutoTokenizer.from_pretrained('''google/flan-t5-xl''' ) ) __SCREAMING_SNAKE_CASE : str = tokenizer('''\n''' , add_special_tokens=lowercase__ ).input_ids[0] __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Union[str, Any] = get_blipa_config(lowercase__ , eos_token_id=lowercase__ ) __SCREAMING_SNAKE_CASE : int = BlipaForConditionalGeneration(lowercase__ ).eval() __SCREAMING_SNAKE_CASE : int = { '''blip2-opt-2.7b''': ('''blip2_opt''', '''pretrain_opt2.7b'''), '''blip2-opt-6.7b''': ('''blip2_opt''', '''pretrain_opt6.7b'''), '''blip2-opt-2.7b-coco''': ('''blip2_opt''', '''caption_coco_opt2.7b'''), '''blip2-opt-6.7b-coco''': ('''blip2_opt''', '''caption_coco_opt6.7b'''), '''blip2-flan-t5-xl''': ('''blip2_t5''', '''pretrain_flant5xl'''), '''blip2-flan-t5-xl-coco''': ('''blip2_t5''', '''caption_coco_flant5xl'''), '''blip2-flan-t5-xxl''': ('''blip2_t5''', '''pretrain_flant5xxl'''), } __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Any = model_name_to_original[model_name] # load original model print('''Loading original model...''' ) __SCREAMING_SNAKE_CASE : List[str] = '''cuda''' if torch.cuda.is_available() else '''cpu''' __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Dict = load_model_and_preprocess( name=lowercase__ , model_type=lowercase__ , is_eval=lowercase__ , device=lowercase__ ) original_model.eval() print('''Done!''' ) # update state dict keys __SCREAMING_SNAKE_CASE : List[str] = original_model.state_dict() __SCREAMING_SNAKE_CASE : Optional[int] = create_rename_keys(lowercase__ ) for src, dest in rename_keys: rename_key(lowercase__ , lowercase__ , lowercase__ ) # some keys can be renamed efficiently for key, val in state_dict.copy().items(): __SCREAMING_SNAKE_CASE : Tuple = state_dict.pop(lowercase__ ) if key.startswith('''Qformer.bert''' ): __SCREAMING_SNAKE_CASE : List[str] = key.replace('''Qformer.bert''' , '''qformer''' ) if "attention.self" in key: __SCREAMING_SNAKE_CASE : Union[str, Any] = key.replace('''self''' , '''attention''' ) if "opt_proj" in key: __SCREAMING_SNAKE_CASE : Dict = key.replace('''opt_proj''' , '''language_projection''' ) if "t5_proj" in key: __SCREAMING_SNAKE_CASE : Tuple = key.replace('''t5_proj''' , '''language_projection''' ) if key.startswith('''opt''' ): __SCREAMING_SNAKE_CASE : List[str] = key.replace('''opt''' , '''language''' ) if key.startswith('''t5''' ): __SCREAMING_SNAKE_CASE : Tuple = key.replace('''t5''' , '''language''' ) __SCREAMING_SNAKE_CASE : Tuple = val # read in qv biases read_in_q_v_bias(lowercase__ , lowercase__ ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : List[str] = hf_model.load_state_dict(lowercase__ , strict=lowercase__ ) assert len(lowercase__ ) == 0 assert unexpected_keys == ["qformer.embeddings.position_ids"] __SCREAMING_SNAKE_CASE : List[str] = load_demo_image() __SCREAMING_SNAKE_CASE : Any = vis_processors['''eval'''](lowercase__ ).unsqueeze(0 ).to(lowercase__ ) __SCREAMING_SNAKE_CASE : str = tokenizer(['''\n'''] , return_tensors='''pt''' ).input_ids.to(lowercase__ ) # create processor __SCREAMING_SNAKE_CASE : List[Any] = BlipImageProcessor( size={'''height''': image_size, '''width''': image_size} , image_mean=lowercase__ , image_std=lowercase__ ) __SCREAMING_SNAKE_CASE : int = BlipaProcessor(image_processor=lowercase__ , tokenizer=lowercase__ ) __SCREAMING_SNAKE_CASE : Any = processor(images=lowercase__ , return_tensors='''pt''' ).pixel_values.to(lowercase__ ) # make sure processor creates exact same pixel values assert torch.allclose(lowercase__ , lowercase__ ) original_model.to(lowercase__ ) hf_model.to(lowercase__ ) with torch.no_grad(): if "opt" in model_name: __SCREAMING_SNAKE_CASE : Dict = original_model({'''image''': original_pixel_values, '''text_input''': ['''''']} ).logits __SCREAMING_SNAKE_CASE : Dict = hf_model(lowercase__ , lowercase__ ).logits else: __SCREAMING_SNAKE_CASE : int = original_model( {'''image''': original_pixel_values, '''text_input''': ['''\n'''], '''text_output''': ['''\n''']} ).logits __SCREAMING_SNAKE_CASE : List[Any] = input_ids.masked_fill(input_ids == tokenizer.pad_token_id , -100 ) __SCREAMING_SNAKE_CASE : Optional[int] = hf_model(lowercase__ , lowercase__ , labels=lowercase__ ).logits assert original_logits.shape == logits.shape print('''First values of original logits:''' , original_logits[0, :3, :3] ) print('''First values of HF logits:''' , logits[0, :3, :3] ) # assert values if model_name == "blip2-flan-t5-xl": __SCREAMING_SNAKE_CASE : Dict = torch.tensor( [[-41.5850, -4.4440, -8.9922], [-47.4322, -5.9143, -1.7340]] , device=lowercase__ ) assert torch.allclose(logits[0, :3, :3] , lowercase__ , atol=1e-4 ) elif model_name == "blip2-flan-t5-xl-coco": __SCREAMING_SNAKE_CASE : Any = torch.tensor( [[-57.0109, -9.8967, -12.6280], [-68.6578, -12.7191, -10.5065]] , device=lowercase__ ) else: # cast to same type __SCREAMING_SNAKE_CASE : Optional[Any] = logits.dtype assert torch.allclose(original_logits.to(lowercase__ ) , lowercase__ , atol=1e-2 ) print('''Looks ok!''' ) print('''Generating a caption...''' ) __SCREAMING_SNAKE_CASE : Any = '''''' __SCREAMING_SNAKE_CASE : Optional[int] = tokenizer(lowercase__ , return_tensors='''pt''' ).input_ids.to(lowercase__ ) __SCREAMING_SNAKE_CASE : Optional[int] = original_model.generate({'''image''': original_pixel_values} ) __SCREAMING_SNAKE_CASE : Union[str, Any] = hf_model.generate( lowercase__ , lowercase__ , do_sample=lowercase__ , num_beams=5 , max_length=30 , min_length=1 , top_p=0.9 , repetition_penalty=1.0 , length_penalty=1.0 , temperature=1 , ) print('''Original generation:''' , lowercase__ ) __SCREAMING_SNAKE_CASE : Optional[Any] = input_ids.shape[1] __SCREAMING_SNAKE_CASE : Any = processor.batch_decode(outputs[:, prompt_length:] , skip_special_tokens=lowercase__ ) __SCREAMING_SNAKE_CASE : Optional[Any] = [text.strip() for text in output_text] print('''HF generation:''' , lowercase__ ) if pytorch_dump_folder_path is not None: processor.save_pretrained(lowercase__ ) hf_model.save_pretrained(lowercase__ ) if push_to_hub: processor.push_to_hub(F'''nielsr/{model_name}''' ) hf_model.push_to_hub(F'''nielsr/{model_name}''' ) if __name__ == "__main__": __lowerCAmelCase : List[str] =argparse.ArgumentParser() __lowerCAmelCase : Tuple =[ 'blip2-opt-2.7b', 'blip2-opt-6.7b', 'blip2-opt-2.7b-coco', 'blip2-opt-6.7b-coco', 'blip2-flan-t5-xl', 'blip2-flan-t5-xl-coco', 'blip2-flan-t5-xxl', ] parser.add_argument( '--model_name', default='blip2-opt-2.7b', choices=choices, type=str, help='Path to hf config.json of model to convert', ) parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument( '--push_to_hub', action='store_true', help='Whether to push the model and processor to the hub after converting', ) __lowerCAmelCase : List[Any] =parser.parse_args() convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
9
1
# We ignore warnings about stepping the scheduler since we step it ourselves during gradient accumulation import warnings from .state import AcceleratorState, GradientState warnings.filterwarnings('ignore', category=UserWarning, module='torch.optim.lr_scheduler') class _snake_case : def __init__( self , a , a , a = True , a = False) -> Tuple: SCREAMING_SNAKE_CASE = scheduler SCREAMING_SNAKE_CASE = optimizers if isinstance(a , (list, tuple)) else [optimizers] SCREAMING_SNAKE_CASE = split_batches SCREAMING_SNAKE_CASE = step_with_optimizer SCREAMING_SNAKE_CASE = GradientState() def SCREAMING_SNAKE_CASE__ ( self , *a , **a) -> List[Any]: if not self.step_with_optimizer: # No link between scheduler and optimizer -> just step self.scheduler.step(*a , **a) return # Otherwise, first make sure the optimizer was stepped. if not self.gradient_state.sync_gradients: if self.gradient_state.adjust_scheduler: self.scheduler._step_count += 1 return for opt in self.optimizers: if opt.step_was_skipped: return if self.split_batches: # Split batches -> the training dataloader batch size is not changed so one step per training step self.scheduler.step(*a , **a) else: # Otherwise the training dataloader batch size was multiplied by `num_processes`, so we need to do # num_processes steps per training step SCREAMING_SNAKE_CASE = AcceleratorState().num_processes for _ in range(a): # Special case when using OneCycle and `drop_last` was not used if hasattr(self.scheduler , 'total_steps'): if self.scheduler._step_count <= self.scheduler.total_steps: self.scheduler.step(*a , **a) else: self.scheduler.step(*a , **a) def SCREAMING_SNAKE_CASE__ ( self) -> Tuple: return self.scheduler.get_last_lr() def SCREAMING_SNAKE_CASE__ ( self) -> Dict: return self.scheduler.state_dict() def SCREAMING_SNAKE_CASE__ ( self , a) -> List[Any]: self.scheduler.load_state_dict(a) def SCREAMING_SNAKE_CASE__ ( self) -> List[Any]: return self.scheduler.get_lr() def SCREAMING_SNAKE_CASE__ ( self , *a , **a) -> List[Any]: return self.scheduler.print_lr(*a , **a)
350
import argparse import torch from torch import nn from transformers import MaMaaaConfig, MaMaaaForConditionalGeneration def lowerCamelCase__ (_UpperCAmelCase): SCREAMING_SNAKE_CASE = [ 'encoder.version', 'decoder.version', 'model.encoder.version', 'model.decoder.version', 'decoder.output_projection.weight', '_float_tensor', 'encoder.embed_positions._float_tensor', 'decoder.embed_positions._float_tensor', ] for k in ignore_keys: state_dict.pop(_UpperCAmelCase , _UpperCAmelCase) def lowerCamelCase__ (_UpperCAmelCase): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = emb.weight.shape SCREAMING_SNAKE_CASE = nn.Linear(_UpperCAmelCase , _UpperCAmelCase , bias=_UpperCAmelCase) SCREAMING_SNAKE_CASE = emb.weight.data return lin_layer def lowerCamelCase__ (_UpperCAmelCase): SCREAMING_SNAKE_CASE = torch.load(_UpperCAmelCase , map_location='cpu') SCREAMING_SNAKE_CASE = mam_aaa['args'] or mam_aaa['cfg']['model'] SCREAMING_SNAKE_CASE = mam_aaa['model'] remove_ignore_keys_(_UpperCAmelCase) SCREAMING_SNAKE_CASE = state_dict['encoder.embed_tokens.weight'].shape[0] SCREAMING_SNAKE_CASE = MaMaaaConfig( vocab_size=_UpperCAmelCase , max_position_embeddings=1024 , encoder_layers=args.encoder_layers , decoder_layers=args.decoder_layers , encoder_attention_heads=args.encoder_attention_heads , decoder_attention_heads=args.decoder_attention_heads , encoder_ffn_dim=args.encoder_ffn_embed_dim , decoder_ffn_dim=args.decoder_ffn_embed_dim , d_model=args.encoder_embed_dim , encoder_layerdrop=args.encoder_layerdrop , decoder_layerdrop=args.decoder_layerdrop , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function='relu' , ) SCREAMING_SNAKE_CASE = state_dict['decoder.embed_tokens.weight'] SCREAMING_SNAKE_CASE = MaMaaaForConditionalGeneration(_UpperCAmelCase) model.model.load_state_dict(_UpperCAmelCase , strict=_UpperCAmelCase) SCREAMING_SNAKE_CASE = make_linear_from_emb(model.model.shared) return model if __name__ == "__main__": a_ : int = argparse.ArgumentParser() # Required parameters parser.add_argument('fairseq_path', type=str, help='path to a model.pt on local filesystem.') parser.add_argument('pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') a_ : List[str] = parser.parse_args() a_ : Dict = convert_fairseq_mamaaa_checkpoint_from_disk(args.fairseq_pathß) model.save_pretrained(args.pytorch_dump_folder_path)
327
0
"""simple docstring""" import dataclasses import json import sys import types from argparse import ArgumentDefaultsHelpFormatter, ArgumentParser, ArgumentTypeError from copy import copy from enum import Enum from inspect import isclass from pathlib import Path from typing import Any, Callable, Dict, Iterable, List, Literal, NewType, Optional, Tuple, Union, get_type_hints import yaml __A = NewType("""DataClass""", Any) __A = NewType("""DataClassType""", Any) def __A (_SCREAMING_SNAKE_CASE ) ->Dict: """simple docstring""" if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise ArgumentTypeError( F"Truthy value expected: got {v} but expected one of yes/no, true/false, t/f, y/n, 1/0 (case insensitive)." ) def __A (_SCREAMING_SNAKE_CASE ) ->Callable[[str], Any]: """simple docstring""" lowerCAmelCase__ :str = {str(_SCREAMING_SNAKE_CASE ): choice for choice in choices} return lambda _SCREAMING_SNAKE_CASE : str_to_choice.get(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def __A (*, _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = dataclasses.MISSING , _SCREAMING_SNAKE_CASE = dataclasses.MISSING , _SCREAMING_SNAKE_CASE = None , **_SCREAMING_SNAKE_CASE , ) ->dataclasses.Field: """simple docstring""" if metadata is None: # Important, don't use as default param in function signature because dict is mutable and shared across function calls lowerCAmelCase__ :List[Any] = {} if aliases is not None: lowerCAmelCase__ :Optional[Any] = aliases if help is not None: lowerCAmelCase__ :int = help return dataclasses.field(metadata=_SCREAMING_SNAKE_CASE , default=_SCREAMING_SNAKE_CASE , default_factory=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) class _lowerCAmelCase ( a ): """simple docstring""" __magic_name__ :Iterable[DataClassType] def __init__( self , __UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' if "formatter_class" not in kwargs: lowerCAmelCase__ :Tuple = ArgumentDefaultsHelpFormatter super().__init__(**__UpperCAmelCase ) if dataclasses.is_dataclass(__UpperCAmelCase ): lowerCAmelCase__ :Optional[int] = [dataclass_types] lowerCAmelCase__ :List[str] = list(__UpperCAmelCase ) for dtype in self.dataclass_types: self._add_dataclass_arguments(__UpperCAmelCase ) @staticmethod def snake_case ( __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' lowerCAmelCase__ :Union[str, Any] = F"--{field.name}" lowerCAmelCase__ :Dict = field.metadata.copy() # field.metadata is not used at all by Data Classes, # it is provided as a third-party extension mechanism. if isinstance(field.type , __UpperCAmelCase ): raise RuntimeError( 'Unresolved type detected, which should have been done with the help of ' '`typing.get_type_hints` method by default' ) lowerCAmelCase__ :int = kwargs.pop('aliases' , [] ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ): lowerCAmelCase__ :int = [aliases] lowerCAmelCase__ :Optional[Any] = getattr(field.type , '__origin__' , field.type ) if origin_type is Union or (hasattr(__UpperCAmelCase , 'UnionType' ) and isinstance(__UpperCAmelCase , types.UnionType )): if str not in field.type.__args__ and ( len(field.type.__args__ ) != 2 or type(__UpperCAmelCase ) not in field.type.__args__ ): raise ValueError( 'Only `Union[X, NoneType]` (i.e., `Optional[X]`) is allowed for `Union` because' ' the argument parser only supports one type per argument.' F" Problem encountered in field '{field.name}'." ) if type(__UpperCAmelCase ) not in field.type.__args__: # filter `str` in Union lowerCAmelCase__ :Optional[Any] = field.type.__args__[0] if field.type.__args__[1] == str else field.type.__args__[1] lowerCAmelCase__ :Tuple = getattr(field.type , '__origin__' , field.type ) elif bool not in field.type.__args__: # filter `NoneType` in Union (except for `Union[bool, NoneType]`) lowerCAmelCase__ :Optional[int] = ( field.type.__args__[0] if isinstance(__UpperCAmelCase , field.type.__args__[1] ) else field.type.__args__[1] ) lowerCAmelCase__ :Any = getattr(field.type , '__origin__' , field.type ) # A variable to store kwargs for a boolean field, if needed # so that we can init a `no_*` complement argument (see below) lowerCAmelCase__ :Dict = {} if origin_type is Literal or (isinstance(field.type , __UpperCAmelCase ) and issubclass(field.type , __UpperCAmelCase )): if origin_type is Literal: lowerCAmelCase__ :Dict = field.type.__args__ else: lowerCAmelCase__ :Dict = [x.value for x in field.type] lowerCAmelCase__ :Any = make_choice_type_function(kwargs['choices'] ) if field.default is not dataclasses.MISSING: lowerCAmelCase__ :int = field.default else: lowerCAmelCase__ :Any = True elif field.type is bool or field.type == Optional[bool]: # Copy the currect kwargs to use to instantiate a `no_*` complement argument below. # We do not initialize it here because the `no_*` alternative must be instantiated after the real argument lowerCAmelCase__ :Optional[int] = copy(__UpperCAmelCase ) # Hack because type=bool in argparse does not behave as we want. lowerCAmelCase__ :Dict = string_to_bool if field.type is bool or (field.default is not None and field.default is not dataclasses.MISSING): # Default value is False if we have no default when of type bool. lowerCAmelCase__ :Union[str, Any] = False if field.default is dataclasses.MISSING else field.default # This is the value that will get picked if we don't include --field_name in any way lowerCAmelCase__ :Any = default # This tells argparse we accept 0 or 1 value after --field_name lowerCAmelCase__ :Any = '?' # This is the value that will get picked if we do --field_name (without value) lowerCAmelCase__ :int = True elif isclass(__UpperCAmelCase ) and issubclass(__UpperCAmelCase , __UpperCAmelCase ): lowerCAmelCase__ :List[Any] = field.type.__args__[0] lowerCAmelCase__ :Union[str, Any] = '+' if field.default_factory is not dataclasses.MISSING: lowerCAmelCase__ :str = field.default_factory() elif field.default is dataclasses.MISSING: lowerCAmelCase__ :Optional[Any] = True else: lowerCAmelCase__ :Dict = field.type if field.default is not dataclasses.MISSING: lowerCAmelCase__ :List[str] = field.default elif field.default_factory is not dataclasses.MISSING: lowerCAmelCase__ :Optional[Any] = field.default_factory() else: lowerCAmelCase__ :Optional[Any] = True parser.add_argument(__UpperCAmelCase , *__UpperCAmelCase , **__UpperCAmelCase ) # Add a complement `no_*` argument for a boolean field AFTER the initial field has already been added. # Order is important for arguments with the same destination! # We use a copy of earlier kwargs because the original kwargs have changed a lot before reaching down # here and we do not need those changes/additional keys. if field.default is True and (field.type is bool or field.type == Optional[bool]): lowerCAmelCase__ :int = False parser.add_argument(F"--no_{field.name}" , action='store_false' , dest=field.name , **__UpperCAmelCase ) def snake_case ( self , __UpperCAmelCase ): '''simple docstring''' if hasattr(__UpperCAmelCase , '_argument_group_name' ): lowerCAmelCase__ :Optional[int] = self.add_argument_group(dtype._argument_group_name ) else: lowerCAmelCase__ :Union[str, Any] = self try: lowerCAmelCase__ :Dict[str, type] = get_type_hints(__UpperCAmelCase ) except NameError: raise RuntimeError( F"Type resolution failed for {dtype}. Try declaring the class in global scope or " 'removing line of `from __future__ import annotations` which opts in Postponed ' 'Evaluation of Annotations (PEP 563)' ) except TypeError as ex: # Remove this block when we drop Python 3.9 support if sys.version_info[:2] < (3, 1_0) and "unsupported operand type(s) for |" in str(__UpperCAmelCase ): lowerCAmelCase__ :Optional[int] = '.'.join(map(__UpperCAmelCase , sys.version_info[:3] ) ) raise RuntimeError( F"Type resolution failed for {dtype} on Python {python_version}. Try removing " 'line of `from __future__ import annotations` which opts in union types as ' '`X | Y` (PEP 604) via Postponed Evaluation of Annotations (PEP 563). To ' 'support Python versions that lower than 3.10, you need to use ' '`typing.Union[X, Y]` instead of `X | Y` and `typing.Optional[X]` instead of ' '`X | None`.' ) from ex raise for field in dataclasses.fields(__UpperCAmelCase ): if not field.init: continue lowerCAmelCase__ :List[Any] = type_hints[field.name] self._parse_dataclass_field(__UpperCAmelCase , __UpperCAmelCase ) def snake_case ( self , __UpperCAmelCase=None , __UpperCAmelCase=False , __UpperCAmelCase=True , __UpperCAmelCase=None , __UpperCAmelCase=None , ): '''simple docstring''' if args_file_flag or args_filename or (look_for_args_file and len(sys.argv )): lowerCAmelCase__ :List[Any] = [] if args_filename: args_files.append(Path(__UpperCAmelCase ) ) elif look_for_args_file and len(sys.argv ): args_files.append(Path(sys.argv[0] ).with_suffix('.args' ) ) # args files specified via command line flag should overwrite default args files so we add them last if args_file_flag: # Create special parser just to extract the args_file_flag values lowerCAmelCase__ :List[Any] = ArgumentParser() args_file_parser.add_argument(__UpperCAmelCase , type=__UpperCAmelCase , action='append' ) # Use only remaining args for further parsing (remove the args_file_flag) lowerCAmelCase__ , lowerCAmelCase__ :Any = args_file_parser.parse_known_args(args=__UpperCAmelCase ) lowerCAmelCase__ :Any = vars(__UpperCAmelCase ).get(args_file_flag.lstrip('-' ) , __UpperCAmelCase ) if cmd_args_file_paths: args_files.extend([Path(__UpperCAmelCase ) for p in cmd_args_file_paths] ) lowerCAmelCase__ :Tuple = [] for args_file in args_files: if args_file.exists(): file_args += args_file.read_text().split() # in case of duplicate arguments the last one has precedence # args specified via the command line should overwrite args from files, so we add them last lowerCAmelCase__ :List[str] = file_args + args if args is not None else file_args + sys.argv[1:] lowerCAmelCase__ , lowerCAmelCase__ :str = self.parse_known_args(args=__UpperCAmelCase ) lowerCAmelCase__ :List[str] = [] for dtype in self.dataclass_types: lowerCAmelCase__ :List[Any] = {f.name for f in dataclasses.fields(__UpperCAmelCase ) if f.init} lowerCAmelCase__ :Optional[Any] = {k: v for k, v in vars(__UpperCAmelCase ).items() if k in keys} for k in keys: delattr(__UpperCAmelCase , __UpperCAmelCase ) lowerCAmelCase__ :Tuple = dtype(**__UpperCAmelCase ) outputs.append(__UpperCAmelCase ) if len(namespace.__dict__ ) > 0: # additional namespace. outputs.append(__UpperCAmelCase ) if return_remaining_strings: return (*outputs, remaining_args) else: if remaining_args: raise ValueError(F"Some specified arguments are not used by the HfArgumentParser: {remaining_args}" ) return (*outputs,) def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase = False ): '''simple docstring''' lowerCAmelCase__ :str = set(args.keys() ) lowerCAmelCase__ :Optional[Any] = [] for dtype in self.dataclass_types: lowerCAmelCase__ :Any = {f.name for f in dataclasses.fields(__UpperCAmelCase ) if f.init} lowerCAmelCase__ :str = {k: v for k, v in args.items() if k in keys} unused_keys.difference_update(inputs.keys() ) lowerCAmelCase__ :List[Any] = dtype(**__UpperCAmelCase ) outputs.append(__UpperCAmelCase ) if not allow_extra_keys and unused_keys: raise ValueError(F"Some keys are not used by the HfArgumentParser: {sorted(__UpperCAmelCase )}" ) return tuple(__UpperCAmelCase ) def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase = False ): '''simple docstring''' with open(Path(__UpperCAmelCase ) , encoding='utf-8' ) as open_json_file: lowerCAmelCase__ :Dict = json.loads(open_json_file.read() ) lowerCAmelCase__ :int = self.parse_dict(__UpperCAmelCase , allow_extra_keys=__UpperCAmelCase ) return tuple(__UpperCAmelCase ) def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase = False ): '''simple docstring''' lowerCAmelCase__ :List[str] = self.parse_dict(yaml.safe_load(Path(__UpperCAmelCase ).read_text() ) , allow_extra_keys=__UpperCAmelCase ) return tuple(__UpperCAmelCase )
293
"""simple docstring""" from __future__ import annotations __A = 1.6_021e-19 # units = C def __A (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , ) ->tuple[str, float]: """simple docstring""" if (conductivity, electron_conc, mobility).count(0 ) != 1: raise ValueError('You cannot supply more or less than 2 values' ) elif conductivity < 0: raise ValueError('Conductivity cannot be negative' ) elif electron_conc < 0: raise ValueError('Electron concentration cannot be negative' ) elif mobility < 0: raise ValueError('mobility cannot be negative' ) elif conductivity == 0: return ( "conductivity", mobility * electron_conc * ELECTRON_CHARGE, ) elif electron_conc == 0: return ( "electron_conc", conductivity / (mobility * ELECTRON_CHARGE), ) else: return ( "mobility", conductivity / (electron_conc * ELECTRON_CHARGE), ) if __name__ == "__main__": import doctest doctest.testmod()
293
1
"""simple docstring""" from ..utils import DummyObject, requires_backends class _A ( metaclass=_a ): """simple docstring""" UpperCAmelCase : Tuple = ["""speech"""] def __init__( self : Tuple , *__UpperCAmelCase : Dict , **__UpperCAmelCase : Optional[Any]): requires_backends(self , ["speech"]) class _A ( metaclass=_a ): """simple docstring""" UpperCAmelCase : str = ["""speech"""] def __init__( self : Optional[Any] , *__UpperCAmelCase : Tuple , **__UpperCAmelCase : Any): requires_backends(self , ["speech"])
365
"""simple docstring""" from math import ceil, sqrt def lowercase ( A_ = 1_000_000 )-> int: '''simple docstring''' a : Tuple = 0 for outer_width in range(3 , (limit // 4) + 2 ): if outer_width**2 > limit: a : str = max(ceil(sqrt(outer_width**2 - limit ) ) , 1 ) else: a : Tuple = 1 if (outer_width - hole_width_lower_bound) % 2: hole_width_lower_bound += 1 answer += (outer_width - hole_width_lower_bound - 2) // 2 + 1 return answer if __name__ == "__main__": print(f'''{solution() = }''')
226
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available a_ : Dict = { """configuration_squeezebert""": [ """SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """SqueezeBertConfig""", """SqueezeBertOnnxConfig""", ], """tokenization_squeezebert""": ["""SqueezeBertTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : List[Any] = ["""SqueezeBertTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : List[Any] = [ """SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """SqueezeBertForMaskedLM""", """SqueezeBertForMultipleChoice""", """SqueezeBertForQuestionAnswering""", """SqueezeBertForSequenceClassification""", """SqueezeBertForTokenClassification""", """SqueezeBertModel""", """SqueezeBertModule""", """SqueezeBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_squeezebert import ( SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, SqueezeBertConfig, SqueezeBertOnnxConfig, ) from .tokenization_squeezebert import SqueezeBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_squeezebert_fast import SqueezeBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_squeezebert import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, SqueezeBertModule, SqueezeBertPreTrainedModel, ) else: import sys a_ : str = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
75
import gc import random import unittest import numpy as np import torch from diffusers import ( DDIMScheduler, KandinskyVaaControlnetPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): '''simple docstring''' __lowerCamelCase : Union[str, Any] = KandinskyVaaControlnetPipeline __lowerCamelCase : Optional[int] = ["image_embeds", "negative_image_embeds", "hint"] __lowerCamelCase : Dict = ["image_embeds", "negative_image_embeds", "hint"] __lowerCamelCase : List[str] = [ "generator", "height", "width", "latents", "guidance_scale", "num_inference_steps", "return_dict", "guidance_scale", "num_images_per_prompt", "output_type", "return_dict", ] __lowerCamelCase : Dict = False @property def _lowerCAmelCase ( self ): return 32 @property def _lowerCAmelCase ( self ): return 32 @property def _lowerCAmelCase ( self ): return self.time_input_dim @property def _lowerCAmelCase ( self ): return self.time_input_dim * 4 @property def _lowerCAmelCase ( self ): return 100 @property def _lowerCAmelCase ( self ): torch.manual_seed(0 ) A : Any = { """in_channels""": 8, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """image_hint""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } A : List[str] = UNetaDConditionModel(**lowerCamelCase__ ) return model @property def _lowerCAmelCase ( self ): return { "block_out_channels": [32, 32, 64, 64], "down_block_types": [ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "AttnDownEncoderBlock2D", ], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], "vq_embed_dim": 4, } @property def _lowerCAmelCase ( self ): torch.manual_seed(0 ) A : List[Any] = VQModel(**self.dummy_movq_kwargs ) return model def _lowerCAmelCase ( self ): A : Optional[Any] = self.dummy_unet A : Tuple = self.dummy_movq A : List[Any] = DDIMScheduler( num_train_timesteps=1000, beta_schedule="""linear""", beta_start=0.0_0085, beta_end=0.012, clip_sample=lowerCamelCase__, set_alpha_to_one=lowerCamelCase__, steps_offset=1, prediction_type="""epsilon""", thresholding=lowerCamelCase__, ) A : int = { """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def _lowerCAmelCase ( self, lowerCamelCase__, lowerCamelCase__=0 ): A : Optional[Any] = floats_tensor((1, self.text_embedder_hidden_size), rng=random.Random(lowerCamelCase__ ) ).to(lowerCamelCase__ ) A : List[Any] = floats_tensor((1, self.text_embedder_hidden_size), rng=random.Random(seed + 1 ) ).to( lowerCamelCase__ ) # create hint A : int = floats_tensor((1, 3, 64, 64), rng=random.Random(lowerCamelCase__ ) ).to(lowerCamelCase__ ) if str(lowerCamelCase__ ).startswith("""mps""" ): A : Optional[Any] = torch.manual_seed(lowerCamelCase__ ) else: A : str = torch.Generator(device=lowerCamelCase__ ).manual_seed(lowerCamelCase__ ) A : List[str] = { """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """hint""": hint, """generator""": generator, """height""": 64, """width""": 64, """guidance_scale""": 4.0, """num_inference_steps""": 2, """output_type""": """np""", } return inputs def _lowerCAmelCase ( self ): A : Dict = """cpu""" A : List[str] = self.get_dummy_components() A : Dict = self.pipeline_class(**lowerCamelCase__ ) A : Optional[Any] = pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) A : int = pipe(**self.get_dummy_inputs(lowerCamelCase__ ) ) A : Union[str, Any] = output.images A : str = pipe( **self.get_dummy_inputs(lowerCamelCase__ ), return_dict=lowerCamelCase__, )[0] A : Optional[int] = image[0, -3:, -3:, -1] A : Any = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) A : Dict = np.array( [0.695_9826, 0.86_8279, 0.755_8092, 0.6876_9467, 0.8580_5804, 0.6597_7496, 0.4488_5302, 0.595_9111, 0.425_1595] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), f''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), f''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' @slow @require_torch_gpu class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): '''simple docstring''' def _lowerCAmelCase ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowerCAmelCase ( self ): A : Tuple = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinskyv22/kandinskyv22_controlnet_robotcat_fp16.npy""" ) A : Any = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinskyv22/hint_image_cat.png""" ) A : Optional[Any] = torch.from_numpy(np.array(lowerCamelCase__ ) ).float() / 255.0 A : List[str] = hint.permute(2, 0, 1 ).unsqueeze(0 ) A : Union[str, Any] = KandinskyVaaPriorPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-prior""", torch_dtype=torch.floataa ) pipe_prior.to(lowerCamelCase__ ) A : Tuple = KandinskyVaaControlnetPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-controlnet-depth""", torch_dtype=torch.floataa ) A : Union[str, Any] = pipeline.to(lowerCamelCase__ ) pipeline.set_progress_bar_config(disable=lowerCamelCase__ ) A : Optional[Any] = """A robot, 4k photo""" A : Union[str, Any] = torch.Generator(device="""cuda""" ).manual_seed(0 ) A , A : int = pipe_prior( lowerCamelCase__, generator=lowerCamelCase__, num_inference_steps=5, negative_prompt="""""", ).to_tuple() A : Union[str, Any] = torch.Generator(device="""cuda""" ).manual_seed(0 ) A : int = pipeline( image_embeds=lowerCamelCase__, negative_image_embeds=lowerCamelCase__, hint=lowerCamelCase__, generator=lowerCamelCase__, num_inference_steps=100, output_type="""np""", ) A : Optional[int] = output.images[0] assert image.shape == (512, 512, 3) assert_mean_pixel_difference(lowerCamelCase__, lowerCamelCase__ )
116
0
"""simple docstring""" from PIL import Image def _lowerCAmelCase ( UpperCAmelCase : Image , UpperCAmelCase : float ): '''simple docstring''' def brightness(UpperCAmelCase : int ) -> float: return 128 + level + (c - 128) if not -255.0 <= level <= 255.0: raise ValueError('''level must be between -255.0 (black) and 255.0 (white)''' ) return img.point(UpperCAmelCase ) if __name__ == "__main__": # Load image with Image.open("""image_data/lena.jpg""") as img: # Change brightness to 100 _SCREAMING_SNAKE_CASE : str = change_brightness(img, 1_0_0) brigt_img.save("""image_data/lena_brightness.png""", format="""png""")
157
"""simple docstring""" # Copyright 2022 The HuggingFace Team and The OpenBMB Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _SCREAMING_SNAKE_CASE : Any = { """configuration_cpmant""": ["""CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """CpmAntConfig"""], """tokenization_cpmant""": ["""CpmAntTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Any = [ """CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST""", """CpmAntForCausalLM""", """CpmAntModel""", """CpmAntPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_cpmant import CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP, CpmAntConfig from .tokenization_cpmant import CpmAntTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_cpmant import ( CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST, CpmAntForCausalLM, CpmAntModel, CpmAntPreTrainedModel, ) else: import sys _SCREAMING_SNAKE_CASE : Dict = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
157
1
"""simple docstring""" from typing import List from .keymap import KEYMAP, get_character def _snake_case ( UpperCamelCase : str ): def decorator(UpperCamelCase : Union[str, Any] ): UpperCAmelCase : List[str] = getattr(UpperCamelCase , """handle_key""" , [] ) handle += [key] setattr(UpperCamelCase , """handle_key""" , UpperCamelCase ) return func return decorator def _snake_case ( *UpperCamelCase : List[str] ): def decorator(UpperCamelCase : str ): UpperCAmelCase : Tuple = getattr(UpperCamelCase , """handle_key""" , [] ) handle += keys setattr(UpperCamelCase , """handle_key""" , UpperCamelCase ) return func return decorator class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase__ ): def __new__( cls , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase : Tuple = super().__new__(cls , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if not hasattr(_SCREAMING_SNAKE_CASE , """key_handler""" ): setattr(_SCREAMING_SNAKE_CASE , """key_handler""" , {} ) setattr(_SCREAMING_SNAKE_CASE , """handle_input""" , KeyHandler.handle_input ) for value in attrs.values(): UpperCAmelCase : Any = getattr(_SCREAMING_SNAKE_CASE , """handle_key""" , [] ) for key in handled_keys: UpperCAmelCase : Optional[Any] = value return new_cls @staticmethod def SCREAMING_SNAKE_CASE ( cls ) -> Dict: '''simple docstring''' UpperCAmelCase : Any = get_character() if char != KEYMAP["undefined"]: UpperCAmelCase : Optional[Any] = ord(_SCREAMING_SNAKE_CASE ) UpperCAmelCase : Tuple = cls.key_handler.get(_SCREAMING_SNAKE_CASE ) if handler: UpperCAmelCase : Tuple = char return handler(cls ) else: return None def _snake_case ( cls : Tuple ): return KeyHandler(cls.__name__ , cls.__bases__ , cls.__dict__.copy() )
109
from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { '''facebook/s2t-wav2vec2-large-en-de''': ( '''https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/config.json''' ), # See all Speech2Text models at https://huggingface.co/models?filter=speech2text2 } class lowerCAmelCase_ ( a__ ): UpperCAmelCase__ : Optional[Any] = "speech_to_text_2" UpperCAmelCase__ : List[Any] = ["past_key_values"] UpperCAmelCase__ : Any = {"num_attention_heads": "decoder_attention_heads", "hidden_size": "d_model"} def __init__( self, SCREAMING_SNAKE_CASE_=1_0000, SCREAMING_SNAKE_CASE_=6, SCREAMING_SNAKE_CASE_=2048, SCREAMING_SNAKE_CASE_=4, SCREAMING_SNAKE_CASE_=0.0, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_="relu", SCREAMING_SNAKE_CASE_=256, SCREAMING_SNAKE_CASE_=0.1, SCREAMING_SNAKE_CASE_=0.0, SCREAMING_SNAKE_CASE_=0.0, SCREAMING_SNAKE_CASE_=0.02, SCREAMING_SNAKE_CASE_=2, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=1, SCREAMING_SNAKE_CASE_=0, SCREAMING_SNAKE_CASE_=2, SCREAMING_SNAKE_CASE_=1024, **SCREAMING_SNAKE_CASE_, ) -> int: UpperCamelCase : Optional[int] = vocab_size UpperCamelCase : List[str] = d_model UpperCamelCase : List[str] = decoder_ffn_dim UpperCamelCase : Optional[Any] = decoder_layers UpperCamelCase : Any = decoder_attention_heads UpperCamelCase : Tuple = dropout UpperCamelCase : str = attention_dropout UpperCamelCase : str = activation_dropout UpperCamelCase : Union[str, Any] = activation_function UpperCamelCase : Optional[int] = init_std UpperCamelCase : Tuple = decoder_layerdrop UpperCamelCase : Dict = use_cache UpperCamelCase : Any = decoder_layers UpperCamelCase : Union[str, Any] = scale_embedding # scale factor will be sqrt(d_model) if True UpperCamelCase : Union[str, Any] = max_target_positions super().__init__( pad_token_id=SCREAMING_SNAKE_CASE_, bos_token_id=SCREAMING_SNAKE_CASE_, eos_token_id=SCREAMING_SNAKE_CASE_, decoder_start_token_id=SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_, )
119
0
import torch from diffusers import KDPMaDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class lowerCamelCase (_snake_case ): '''simple docstring''' _snake_case : Dict = (KDPMaDiscreteScheduler,) _snake_case : int = 1_0 def __UpperCAmelCase ( self , **_UpperCamelCase ) -> Dict: UpperCAmelCase_ : Union[str, Any] = { 'num_train_timesteps': 1_1_0_0, 'beta_start': 0.00_01, 'beta_end': 0.02, 'beta_schedule': 'linear', } config.update(**_UpperCamelCase ) return config def __UpperCAmelCase ( self ) -> List[str]: for timesteps in [1_0, 5_0, 1_0_0, 1_0_0_0]: self.check_over_configs(num_train_timesteps=_UpperCamelCase ) def __UpperCAmelCase ( self ) -> Tuple: for beta_start, beta_end in zip([0.0_00_01, 0.00_01, 0.0_01] , [0.00_02, 0.0_02, 0.02] ): self.check_over_configs(beta_start=_UpperCamelCase , beta_end=_UpperCamelCase ) def __UpperCAmelCase ( self ) -> Any: for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=_UpperCamelCase ) def __UpperCAmelCase ( self ) -> Tuple: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_UpperCamelCase ) def __UpperCAmelCase ( self ) -> str: UpperCAmelCase_ : Union[str, Any] = self.scheduler_classes[0] UpperCAmelCase_ : List[str] = self.get_scheduler_config(prediction_type='v_prediction' ) UpperCAmelCase_ : Any = scheduler_class(**_UpperCamelCase ) scheduler.set_timesteps(self.num_inference_steps ) UpperCAmelCase_ : str = self.dummy_model() UpperCAmelCase_ : int = self.dummy_sample_deter * scheduler.init_noise_sigma UpperCAmelCase_ : List[Any] = sample.to(_UpperCamelCase ) for i, t in enumerate(scheduler.timesteps ): UpperCAmelCase_ : List[str] = scheduler.scale_model_input(_UpperCamelCase , _UpperCamelCase ) UpperCAmelCase_ : List[Any] = model(_UpperCamelCase , _UpperCamelCase ) UpperCAmelCase_ : Optional[Any] = scheduler.step(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) UpperCAmelCase_ : str = output.prev_sample UpperCAmelCase_ : List[Any] = torch.sum(torch.abs(_UpperCamelCase ) ) UpperCAmelCase_ : int = torch.mean(torch.abs(_UpperCamelCase ) ) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 4.6_934E-07 ) < 1E-2 assert abs(result_mean.item() - 6.1_112E-10 ) < 1E-3 else: # CUDA assert abs(result_sum.item() - 4.693_428_650_170_972E-07 ) < 1E-2 assert abs(result_mean.item() - 0.00_02 ) < 1E-3 def __UpperCAmelCase ( self ) -> Dict: if torch_device == "mps": return UpperCAmelCase_ : Optional[Any] = self.scheduler_classes[0] UpperCAmelCase_ : Any = self.get_scheduler_config() UpperCAmelCase_ : str = scheduler_class(**_UpperCamelCase ) scheduler.set_timesteps(self.num_inference_steps ) UpperCAmelCase_ : Dict = self.dummy_model() UpperCAmelCase_ : Tuple = self.dummy_sample_deter * scheduler.init_noise_sigma UpperCAmelCase_ : Tuple = sample.to(_UpperCamelCase ) for i, t in enumerate(scheduler.timesteps ): UpperCAmelCase_ : Union[str, Any] = scheduler.scale_model_input(_UpperCamelCase , _UpperCamelCase ) UpperCAmelCase_ : List[Any] = model(_UpperCamelCase , _UpperCamelCase ) UpperCAmelCase_ : Tuple = scheduler.step(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) UpperCAmelCase_ : Dict = output.prev_sample UpperCAmelCase_ : str = torch.sum(torch.abs(_UpperCamelCase ) ) UpperCAmelCase_ : Any = torch.mean(torch.abs(_UpperCamelCase ) ) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 20.41_25 ) < 1E-2 assert abs(result_mean.item() - 0.02_66 ) < 1E-3 else: # CUDA assert abs(result_sum.item() - 20.41_25 ) < 1E-2 assert abs(result_mean.item() - 0.02_66 ) < 1E-3 def __UpperCAmelCase ( self ) -> Optional[Any]: if torch_device == "mps": return UpperCAmelCase_ : Union[str, Any] = self.scheduler_classes[0] UpperCAmelCase_ : Union[str, Any] = self.get_scheduler_config() UpperCAmelCase_ : Dict = scheduler_class(**_UpperCamelCase ) scheduler.set_timesteps(self.num_inference_steps , device=_UpperCamelCase ) UpperCAmelCase_ : List[str] = self.dummy_model() UpperCAmelCase_ : str = self.dummy_sample_deter.to(_UpperCamelCase ) * scheduler.init_noise_sigma for t in scheduler.timesteps: UpperCAmelCase_ : int = scheduler.scale_model_input(_UpperCamelCase , _UpperCamelCase ) UpperCAmelCase_ : Tuple = model(_UpperCamelCase , _UpperCamelCase ) UpperCAmelCase_ : List[str] = scheduler.step(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) UpperCAmelCase_ : str = output.prev_sample UpperCAmelCase_ : Any = torch.sum(torch.abs(_UpperCamelCase ) ) UpperCAmelCase_ : Optional[int] = torch.mean(torch.abs(_UpperCamelCase ) ) if str(_UpperCamelCase ).startswith('cpu' ): # The following sum varies between 148 and 156 on mps. Why? assert abs(result_sum.item() - 20.41_25 ) < 1E-2 assert abs(result_mean.item() - 0.02_66 ) < 1E-3 else: # CUDA assert abs(result_sum.item() - 20.41_25 ) < 1E-2 assert abs(result_mean.item() - 0.02_66 ) < 1E-3
145
import re import string from collections import Counter import sacrebleu import sacremoses from packaging import version import datasets __UpperCAmelCase = '\n@inproceedings{xu-etal-2016-optimizing,\n title = {Optimizing Statistical Machine Translation for Text Simplification},\n authors={Xu, Wei and Napoles, Courtney and Pavlick, Ellie and Chen, Quanze and Callison-Burch, Chris},\n journal = {Transactions of the Association for Computational Linguistics},\n volume = {4},\n year={2016},\n url = {https://www.aclweb.org/anthology/Q16-1029},\n pages = {401--415\n},\n@inproceedings{post-2018-call,\n title = "A Call for Clarity in Reporting {BLEU} Scores",\n author = "Post, Matt",\n booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers",\n month = oct,\n year = "2018",\n address = "Belgium, Brussels",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/W18-6319",\n pages = "186--191",\n}\n' __UpperCAmelCase = '\\nWIKI_SPLIT is the combination of three metrics SARI, EXACT and SACREBLEU\nIt can be used to evaluate the quality of machine-generated texts.\n' __UpperCAmelCase = '\nCalculates sari score (between 0 and 100) given a list of source and predicted\nsentences, and a list of lists of reference sentences. It also computes the BLEU score as well as the exact match score.\nArgs:\n sources: list of source sentences where each sentence should be a string.\n predictions: list of predicted sentences where each sentence should be a string.\n references: list of lists of reference sentences where each sentence should be a string.\nReturns:\n sari: sari score\n sacrebleu: sacrebleu score\n exact: exact score\n\nExamples:\n >>> sources=["About 95 species are currently accepted ."]\n >>> predictions=["About 95 you now get in ."]\n >>> references=[["About 95 species are currently known ."]]\n >>> wiki_split = datasets.load_metric("wiki_split")\n >>> results = wiki_split.compute(sources=sources, predictions=predictions, references=references)\n >>> print(results)\n {\'sari\': 21.805555555555557, \'sacrebleu\': 14.535768424205482, \'exact\': 0.0}\n' def lowercase__ ( __snake_case : Optional[int] ): '''simple docstring''' def remove_articles(__snake_case : Tuple ): UpperCAmelCase_ : Optional[int] = re.compile(R'\b(a|an|the)\b' , re.UNICODE ) return re.sub(__snake_case , ' ' , __snake_case ) def white_space_fix(__snake_case : int ): return " ".join(text.split() ) def remove_punc(__snake_case : int ): UpperCAmelCase_ : Optional[Any] = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(__snake_case : List[str] ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(__snake_case ) ) ) ) def lowercase__ ( __snake_case : List[str] , __snake_case : List[Any] ): '''simple docstring''' return int(normalize_answer(__snake_case ) == normalize_answer(__snake_case ) ) def lowercase__ ( __snake_case : Optional[Any] , __snake_case : Tuple ): '''simple docstring''' UpperCAmelCase_ : Tuple = [any(compute_exact(__snake_case , __snake_case ) for ref in refs ) for pred, refs in zip(__snake_case , __snake_case )] return (sum(__snake_case ) / len(__snake_case )) * 100 def lowercase__ ( __snake_case : Optional[Any] , __snake_case : Any , __snake_case : Optional[int] , __snake_case : Optional[Any] ): '''simple docstring''' UpperCAmelCase_ : str = [rgram for rgrams in rgramslist for rgram in rgrams] UpperCAmelCase_ : str = Counter(__snake_case ) UpperCAmelCase_ : List[Any] = Counter(__snake_case ) UpperCAmelCase_ : int = Counter() for sgram, scount in sgramcounter.items(): UpperCAmelCase_ : Any = scount * numref UpperCAmelCase_ : List[Any] = Counter(__snake_case ) UpperCAmelCase_ : Dict = Counter() for cgram, ccount in cgramcounter.items(): UpperCAmelCase_ : int = ccount * numref # KEEP UpperCAmelCase_ : Optional[Any] = sgramcounter_rep & cgramcounter_rep UpperCAmelCase_ : Any = keepgramcounter_rep & rgramcounter UpperCAmelCase_ : Union[str, Any] = sgramcounter_rep & rgramcounter UpperCAmelCase_ : Dict = 0 UpperCAmelCase_ : List[Any] = 0 for keepgram in keepgramcountergood_rep: keeptmpscorea += keepgramcountergood_rep[keepgram] / keepgramcounter_rep[keepgram] # Fix an alleged bug [2] in the keep score computation. # keeptmpscore2 += keepgramcountergood_rep[keepgram] / keepgramcounterall_rep[keepgram] keeptmpscorea += keepgramcountergood_rep[keepgram] # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. UpperCAmelCase_ : Optional[Any] = 1 UpperCAmelCase_ : Optional[Any] = 1 if len(__snake_case ) > 0: UpperCAmelCase_ : List[str] = keeptmpscorea / len(__snake_case ) if len(__snake_case ) > 0: # Fix an alleged bug [2] in the keep score computation. # keepscore_recall = keeptmpscore2 / len(keepgramcounterall_rep) UpperCAmelCase_ : List[Any] = keeptmpscorea / sum(keepgramcounterall_rep.values() ) UpperCAmelCase_ : List[Any] = 0 if keepscore_precision > 0 or keepscore_recall > 0: UpperCAmelCase_ : List[Any] = 2 * keepscore_precision * keepscore_recall / (keepscore_precision + keepscore_recall) # DELETION UpperCAmelCase_ : Optional[int] = sgramcounter_rep - cgramcounter_rep UpperCAmelCase_ : Dict = delgramcounter_rep - rgramcounter UpperCAmelCase_ : Optional[Any] = sgramcounter_rep - rgramcounter UpperCAmelCase_ : str = 0 UpperCAmelCase_ : str = 0 for delgram in delgramcountergood_rep: deltmpscorea += delgramcountergood_rep[delgram] / delgramcounter_rep[delgram] deltmpscorea += delgramcountergood_rep[delgram] / delgramcounterall_rep[delgram] # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. UpperCAmelCase_ : List[Any] = 1 if len(__snake_case ) > 0: UpperCAmelCase_ : Dict = deltmpscorea / len(__snake_case ) # ADDITION UpperCAmelCase_ : Tuple = set(__snake_case ) - set(__snake_case ) UpperCAmelCase_ : Union[str, Any] = set(__snake_case ) & set(__snake_case ) UpperCAmelCase_ : Dict = set(__snake_case ) - set(__snake_case ) UpperCAmelCase_ : List[str] = 0 for addgram in addgramcountergood: addtmpscore += 1 # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. UpperCAmelCase_ : List[str] = 1 UpperCAmelCase_ : Any = 1 if len(__snake_case ) > 0: UpperCAmelCase_ : Dict = addtmpscore / len(__snake_case ) if len(__snake_case ) > 0: UpperCAmelCase_ : Optional[int] = addtmpscore / len(__snake_case ) UpperCAmelCase_ : Optional[Any] = 0 if addscore_precision > 0 or addscore_recall > 0: UpperCAmelCase_ : List[str] = 2 * addscore_precision * addscore_recall / (addscore_precision + addscore_recall) return (keepscore, delscore_precision, addscore) def lowercase__ ( __snake_case : str , __snake_case : Any , __snake_case : Union[str, Any] ): '''simple docstring''' UpperCAmelCase_ : int = len(__snake_case ) UpperCAmelCase_ : List[str] = ssent.split(' ' ) UpperCAmelCase_ : Union[str, Any] = csent.split(' ' ) UpperCAmelCase_ : List[str] = [] UpperCAmelCase_ : List[Any] = [] UpperCAmelCase_ : Dict = [] UpperCAmelCase_ : Optional[Any] = [] UpperCAmelCase_ : Optional[Any] = [] UpperCAmelCase_ : int = [] UpperCAmelCase_ : List[Any] = [] UpperCAmelCase_ : List[str] = [] UpperCAmelCase_ : Optional[Any] = [] UpperCAmelCase_ : Tuple = [] for rsent in rsents: UpperCAmelCase_ : List[Any] = rsent.split(' ' ) UpperCAmelCase_ : Any = [] UpperCAmelCase_ : Dict = [] UpperCAmelCase_ : str = [] ragramslist.append(__snake_case ) for i in range(0 , len(__snake_case ) - 1 ): if i < len(__snake_case ) - 1: UpperCAmelCase_ : Tuple = ragrams[i] + ' ' + ragrams[i + 1] ragrams.append(__snake_case ) if i < len(__snake_case ) - 2: UpperCAmelCase_ : List[str] = ragrams[i] + ' ' + ragrams[i + 1] + ' ' + ragrams[i + 2] ragrams.append(__snake_case ) if i < len(__snake_case ) - 3: UpperCAmelCase_ : Union[str, Any] = ragrams[i] + ' ' + ragrams[i + 1] + ' ' + ragrams[i + 2] + ' ' + ragrams[i + 3] ragrams.append(__snake_case ) ragramslist.append(__snake_case ) ragramslist.append(__snake_case ) ragramslist.append(__snake_case ) for i in range(0 , len(__snake_case ) - 1 ): if i < len(__snake_case ) - 1: UpperCAmelCase_ : str = sagrams[i] + ' ' + sagrams[i + 1] sagrams.append(__snake_case ) if i < len(__snake_case ) - 2: UpperCAmelCase_ : List[str] = sagrams[i] + ' ' + sagrams[i + 1] + ' ' + sagrams[i + 2] sagrams.append(__snake_case ) if i < len(__snake_case ) - 3: UpperCAmelCase_ : Any = sagrams[i] + ' ' + sagrams[i + 1] + ' ' + sagrams[i + 2] + ' ' + sagrams[i + 3] sagrams.append(__snake_case ) for i in range(0 , len(__snake_case ) - 1 ): if i < len(__snake_case ) - 1: UpperCAmelCase_ : Optional[int] = cagrams[i] + ' ' + cagrams[i + 1] cagrams.append(__snake_case ) if i < len(__snake_case ) - 2: UpperCAmelCase_ : Tuple = cagrams[i] + ' ' + cagrams[i + 1] + ' ' + cagrams[i + 2] cagrams.append(__snake_case ) if i < len(__snake_case ) - 3: UpperCAmelCase_ : Union[str, Any] = cagrams[i] + ' ' + cagrams[i + 1] + ' ' + cagrams[i + 2] + ' ' + cagrams[i + 3] cagrams.append(__snake_case ) ((UpperCAmelCase_) , (UpperCAmelCase_) , (UpperCAmelCase_)) : int = SARIngram(__snake_case , __snake_case , __snake_case , __snake_case ) ((UpperCAmelCase_) , (UpperCAmelCase_) , (UpperCAmelCase_)) : str = SARIngram(__snake_case , __snake_case , __snake_case , __snake_case ) ((UpperCAmelCase_) , (UpperCAmelCase_) , (UpperCAmelCase_)) : Tuple = SARIngram(__snake_case , __snake_case , __snake_case , __snake_case ) ((UpperCAmelCase_) , (UpperCAmelCase_) , (UpperCAmelCase_)) : int = SARIngram(__snake_case , __snake_case , __snake_case , __snake_case ) UpperCAmelCase_ : List[str] = sum([keepascore, keepascore, keepascore, keepascore] ) / 4 UpperCAmelCase_ : Optional[Any] = sum([delascore, delascore, delascore, delascore] ) / 4 UpperCAmelCase_ : List[str] = sum([addascore, addascore, addascore, addascore] ) / 4 UpperCAmelCase_ : Dict = (avgkeepscore + avgdelscore + avgaddscore) / 3 return finalscore def lowercase__ ( __snake_case : List[Any] , __snake_case : bool = True , __snake_case : str = "13a" , __snake_case : bool = True ): '''simple docstring''' if lowercase: UpperCAmelCase_ : Optional[Any] = sentence.lower() if tokenizer in ["13a", "intl"]: if version.parse(sacrebleu.__version__ ).major >= 2: UpperCAmelCase_ : Union[str, Any] = sacrebleu.metrics.bleu._get_tokenizer(__snake_case )()(__snake_case ) else: UpperCAmelCase_ : Union[str, Any] = sacrebleu.TOKENIZERS[tokenizer]()(__snake_case ) elif tokenizer == "moses": UpperCAmelCase_ : Optional[Any] = sacremoses.MosesTokenizer().tokenize(__snake_case , return_str=__snake_case , escape=__snake_case ) elif tokenizer == "penn": UpperCAmelCase_ : Dict = sacremoses.MosesTokenizer().penn_tokenize(__snake_case , return_str=__snake_case ) else: UpperCAmelCase_ : int = sentence if not return_str: UpperCAmelCase_ : Any = normalized_sent.split() return normalized_sent def lowercase__ ( __snake_case : Optional[int] , __snake_case : List[str] , __snake_case : Dict ): '''simple docstring''' if not (len(__snake_case ) == len(__snake_case ) == len(__snake_case )): raise ValueError('Sources length must match predictions and references lengths.' ) UpperCAmelCase_ : Tuple = 0 for src, pred, refs in zip(__snake_case , __snake_case , __snake_case ): sari_score += SARIsent(normalize(__snake_case ) , normalize(__snake_case ) , [normalize(__snake_case ) for sent in refs] ) UpperCAmelCase_ : Any = sari_score / len(__snake_case ) return 100 * sari_score def lowercase__ ( __snake_case : int , __snake_case : Union[str, Any] , __snake_case : str="exp" , __snake_case : Any=None , __snake_case : Union[str, Any]=False , __snake_case : Union[str, Any]=False , __snake_case : List[str]=False , ): '''simple docstring''' UpperCAmelCase_ : int = len(references[0] ) if any(len(__snake_case ) != references_per_prediction for refs in references ): raise ValueError('Sacrebleu requires the same number of references for each prediction' ) UpperCAmelCase_ : Dict = [[refs[i] for refs in references] for i in range(__snake_case )] UpperCAmelCase_ : str = sacrebleu.corpus_bleu( __snake_case , __snake_case , smooth_method=__snake_case , smooth_value=__snake_case , force=__snake_case , lowercase=__snake_case , use_effective_order=__snake_case , ) return output.score @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCamelCase (datasets.Metric ): '''simple docstring''' def __UpperCAmelCase ( self ) -> Any: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Sequence(datasets.Value('string' , id='sequence' ) , id='references' ), } ) , codebase_urls=[ 'https://github.com/huggingface/transformers/blob/master/src/transformers/data/metrics/squad_metrics.py', 'https://github.com/cocoxu/simplification/blob/master/SARI.py', 'https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/utils/sari_hook.py', 'https://github.com/mjpost/sacreBLEU', ] , reference_urls=[ 'https://www.aclweb.org/anthology/Q16-1029.pdf', 'https://github.com/mjpost/sacreBLEU', 'https://en.wikipedia.org/wiki/BLEU', 'https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213', ] , ) def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> str: UpperCAmelCase_ : List[Any] = {} result.update({'sari': compute_sari(sources=_UpperCamelCase , predictions=_UpperCamelCase , references=_UpperCamelCase )} ) result.update({'sacrebleu': compute_sacrebleu(predictions=_UpperCamelCase , references=_UpperCamelCase )} ) result.update({'exact': compute_em(predictions=_UpperCamelCase , references=_UpperCamelCase )} ) return result
145
1