code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
'''simple docstring''' def _SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase ): """simple docstring""" return base * power(UpperCamelCase , (exponent - 1) ) if exponent else 1 if __name__ == "__main__": print('''Raise base to the power of exponent using recursion...''') _lowerCAmelCase = int(input('''Enter the base: ''').strip()) _lowerCAmelCase = int(input('''Enter the exponent: ''').strip()) _lowerCAmelCase = power(base, abs(exponent)) if exponent < 0: # power() does not properly deal w/ negative exponents _lowerCAmelCase = 1 / result print(F"""{base} to the power of {exponent} is {result}""")
37
import math def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' return math.pow(_UpperCAmelCase, 2 ) - a def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> float: '''simple docstring''' return 2 * x def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> float: '''simple docstring''' lowerCAmelCase : Any = 2.0 while start <= a: lowerCAmelCase : Dict = math.pow(_UpperCAmelCase, 2 ) return start def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase = 9_999, _UpperCAmelCase = 0.0_0_0_0_0_0_0_0_0_0_0_0_0_1 ) -> float: '''simple docstring''' if a < 0: raise ValueError('math domain error' ) lowerCAmelCase : Optional[Any] = get_initial_point(_UpperCAmelCase ) for _ in range(_UpperCAmelCase ): lowerCAmelCase : Any = value lowerCAmelCase : int = value - fx(_UpperCAmelCase, _UpperCAmelCase ) / fx_derivative(_UpperCAmelCase ) if abs(prev_value - value ) < tolerance: return value return value if __name__ == "__main__": from doctest import testmod testmod()
138
0
"""simple docstring""" from __future__ import annotations from cmath import sqrt def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): if a == 0: raise ValueError("Coefficient 'a' must not be zero." ) UpperCAmelCase_ = b * b - 4 * a * c UpperCAmelCase_ = (-b + sqrt(lowerCAmelCase__ )) / (2 * a) UpperCAmelCase_ = (-b - sqrt(lowerCAmelCase__ )) / (2 * a) return ( root_a.real if not root_a.imag else root_a, root_a.real if not root_a.imag else root_a, ) def a__ ( ): UpperCAmelCase_ , UpperCAmelCase_ = quadratic_roots(a=5 , b=6 , c=1 ) print(f"""The solutions are: {solutiona} and {solutiona}""" ) if __name__ == "__main__": main()
241
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase = logging.get_logger(__name__) lowerCamelCase = { """RWKV/rwkv-4-169m-pile""": """https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json""", """RWKV/rwkv-4-430m-pile""": """https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json""", """RWKV/rwkv-4-1b5-pile""": """https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json""", """RWKV/rwkv-4-3b-pile""": """https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json""", """RWKV/rwkv-4-7b-pile""": """https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json""", """RWKV/rwkv-4-14b-pile""": """https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json""", """RWKV/rwkv-raven-1b5""": """https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json""", """RWKV/rwkv-raven-3b""": """https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json""", """RWKV/rwkv-raven-7b""": """https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json""", """RWKV/rwkv-raven-14b""": """https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json""", } class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCamelCase = '''rwkv''' UpperCamelCase = {'''max_position_embeddings''': '''context_length'''} def __init__( self : str , _UpperCAmelCase : int=50277 , _UpperCAmelCase : Optional[Any]=1024 , _UpperCAmelCase : str=4096 , _UpperCAmelCase : Any=32 , _UpperCAmelCase : Any=None , _UpperCAmelCase : Optional[int]=None , _UpperCAmelCase : Tuple=1e-5 , _UpperCAmelCase : str=0 , _UpperCAmelCase : Any=0 , _UpperCAmelCase : Union[str, Any]=6 , _UpperCAmelCase : Dict=False , _UpperCAmelCase : Any=True , **_UpperCAmelCase : Optional[Any] , ) -> str: '''simple docstring''' UpperCAmelCase_ = vocab_size UpperCAmelCase_ = context_length UpperCAmelCase_ = hidden_size UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = attention_hidden_size if attention_hidden_size is not None else hidden_size UpperCAmelCase_ = intermediate_size if intermediate_size is not None else 4 * hidden_size UpperCAmelCase_ = layer_norm_epsilon UpperCAmelCase_ = rescale_every UpperCAmelCase_ = use_cache UpperCAmelCase_ = bos_token_id UpperCAmelCase_ = eos_token_id super().__init__( tie_word_embeddings=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase )
241
1
def __lowerCamelCase ( UpperCamelCase__ ): '''simple docstring''' snake_case_ = 0 while len(SCREAMING_SNAKE_CASE__ ) > 1: snake_case_ = 0 # Consider two files with minimum cost to be merged for _ in range(2 ): snake_case_ = files.index(min(SCREAMING_SNAKE_CASE__ ) ) temp += files[min_index] files.pop(SCREAMING_SNAKE_CASE__ ) files.append(SCREAMING_SNAKE_CASE__ ) optimal_merge_cost += temp return optimal_merge_cost if __name__ == "__main__": import doctest doctest.testmod()
285
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices lowercase_ = logging.get_logger(__name__) lowercase_ = { "microsoft/resnet-50": "https://huggingface.co/microsoft/resnet-50/blob/main/config.json", } class A ( _UpperCAmelCase , _UpperCAmelCase ): """simple docstring""" lowerCamelCase = 'resnet' lowerCamelCase = ['basic', 'bottleneck'] def __init__( self : Optional[Any],lowercase_ : int=3,lowercase_ : List[str]=6_4,lowercase_ : int=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8],lowercase_ : Tuple=[3, 4, 6, 3],lowercase_ : Union[str, Any]="bottleneck",lowercase_ : List[str]="relu",lowercase_ : Tuple=False,lowercase_ : List[str]=None,lowercase_ : List[Any]=None,**lowercase_ : str,)-> Optional[Any]: '''simple docstring''' super().__init__(**lowercase_ ) if layer_type not in self.layer_types: raise ValueError(F'layer_type={layer_type} is not one of {",".join(self.layer_types )}' ) A__ = num_channels A__ = embedding_size A__ = hidden_sizes A__ = depths A__ = layer_type A__ = hidden_act A__ = downsample_in_first_stage A__ = ['stem'] + [F'stage{idx}' for idx in range(1,len(lowercase_ ) + 1 )] A__ , A__ = get_aligned_output_features_output_indices( out_features=lowercase_,out_indices=lowercase_,stage_names=self.stage_names ) class A ( _UpperCAmelCase ): """simple docstring""" lowerCamelCase = version.parse('1.11' ) @property def snake_case__ ( self : List[Any] )-> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def snake_case__ ( self : Any )-> float: '''simple docstring''' return 1E-3
7
0
'''simple docstring''' from typing import Any class snake_case__ : def __init__( self : Any , __a : Any ) -> Dict: '''simple docstring''' __snake_case : Tuple = data __snake_case : Any = None def __repr__( self : str ) -> str: '''simple docstring''' return f'''Node({self.data})''' class snake_case__ : def __init__( self : Optional[Any] ) -> List[Any]: '''simple docstring''' __snake_case : Union[str, Any] = None def __iter__( self : Optional[Any] ) -> Any: '''simple docstring''' __snake_case : List[str] = self.head while node: yield node.data __snake_case : List[str] = node.next def __len__( self : List[str] ) -> int: '''simple docstring''' return sum(1 for _ in self ) def __repr__( self : List[Any] ) -> str: '''simple docstring''' return "->".join([str(UpperCamelCase__ ) for item in self] ) def __getitem__( self : Any , __a : int ) -> Any: '''simple docstring''' if not 0 <= index < len(self ): raise ValueError('list index out of range.' ) for i, node in enumerate(self ): if i == index: return node return None def __setitem__( self : List[Any] , __a : int , __a : Any ) -> None: '''simple docstring''' if not 0 <= index < len(self ): raise ValueError('list index out of range.' ) __snake_case : List[str] = self.head for _ in range(UpperCamelCase__ ): __snake_case : Optional[int] = current.next __snake_case : List[Any] = data def A_ ( self : Union[str, Any] , __a : Any ) -> None: '''simple docstring''' self.insert_nth(len(self ) , UpperCamelCase__ ) def A_ ( self : str , __a : Any ) -> None: '''simple docstring''' self.insert_nth(0 , UpperCamelCase__ ) def A_ ( self : Dict , __a : int , __a : Any ) -> None: '''simple docstring''' if not 0 <= index <= len(self ): raise IndexError('list index out of range' ) __snake_case : Union[str, Any] = Node(UpperCamelCase__ ) if self.head is None: __snake_case : Optional[Any] = new_node elif index == 0: __snake_case : int = self.head # link new_node to head __snake_case : Optional[Any] = new_node else: __snake_case : Union[str, Any] = self.head for _ in range(index - 1 ): __snake_case : Dict = temp.next __snake_case : int = temp.next __snake_case : Any = new_node def A_ ( self : Tuple ) -> None: # print every node data '''simple docstring''' print(self ) def A_ ( self : Tuple ) -> Any: '''simple docstring''' return self.delete_nth(0 ) def A_ ( self : Dict ) -> Any: # delete from tail '''simple docstring''' return self.delete_nth(len(self ) - 1 ) def A_ ( self : Optional[Any] , __a : int = 0 ) -> Any: '''simple docstring''' if not 0 <= index <= len(self ) - 1: # test if index is valid raise IndexError('List index out of range.' ) __snake_case : List[Any] = self.head # default first node if index == 0: __snake_case : Union[str, Any] = self.head.next else: __snake_case : Optional[int] = self.head for _ in range(index - 1 ): __snake_case : Any = temp.next __snake_case : Union[str, Any] = temp.next __snake_case : int = temp.next.next return delete_node.data def A_ ( self : str ) -> bool: '''simple docstring''' return self.head is None def A_ ( self : Any ) -> None: '''simple docstring''' __snake_case : List[str] = None __snake_case : int = self.head while current: # Store the current node's next node. __snake_case : Tuple = current.next # Make the current node's next point backwards __snake_case : Optional[int] = prev # Make the previous node be the current node __snake_case : List[str] = current # Make the current node the next node (to progress iteration) __snake_case : List[Any] = next_node # Return prev in order to put the head at the end __snake_case : Dict = prev def a_ ( ) -> None: __snake_case : Optional[Any] = LinkedList() assert linked_list.is_empty() is True assert str(__SCREAMING_SNAKE_CASE ) == "" try: linked_list.delete_head() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. try: linked_list.delete_tail() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. for i in range(10 ): assert len(__SCREAMING_SNAKE_CASE ) == i linked_list.insert_nth(__SCREAMING_SNAKE_CASE ,i + 1 ) assert str(__SCREAMING_SNAKE_CASE ) == "->".join(str(__SCREAMING_SNAKE_CASE ) for i in range(1 ,11 ) ) linked_list.insert_head(0 ) linked_list.insert_tail(11 ) assert str(__SCREAMING_SNAKE_CASE ) == "->".join(str(__SCREAMING_SNAKE_CASE ) for i in range(0 ,12 ) ) assert linked_list.delete_head() == 0 assert linked_list.delete_nth(9 ) == 10 assert linked_list.delete_tail() == 11 assert len(__SCREAMING_SNAKE_CASE ) == 9 assert str(__SCREAMING_SNAKE_CASE ) == "->".join(str(__SCREAMING_SNAKE_CASE ) for i in range(1 ,10 ) ) assert all(linked_list[i] == i + 1 for i in range(0 ,9 ) ) is True for i in range(0 ,9 ): __snake_case : str = -i assert all(linked_list[i] == -i for i in range(0 ,9 ) ) is True linked_list.reverse() assert str(__SCREAMING_SNAKE_CASE ) == "->".join(str(__SCREAMING_SNAKE_CASE ) for i in range(-8 ,1 ) ) def a_ ( ) -> None: __snake_case : Union[str, Any] = [ -9, 1_00, Node(77_34_51_12 ), "dlrow olleH", 7, 55_55, 0, -1_9_2.5_5_5_5_5, "Hello, world!", 7_7.9, Node(10 ), None, None, 1_2.2_0, ] __snake_case : int = LinkedList() for i in test_input: linked_list.insert_tail(__SCREAMING_SNAKE_CASE ) # Check if it's empty or not assert linked_list.is_empty() is False assert ( str(__SCREAMING_SNAKE_CASE ) == "-9->100->Node(77345112)->dlrow olleH->7->5555->0->" "-192.55555->Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the head __snake_case : Union[str, Any] = linked_list.delete_head() assert result == -9 assert ( str(__SCREAMING_SNAKE_CASE ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the tail __snake_case : List[str] = linked_list.delete_tail() assert result == 1_2.2 assert ( str(__SCREAMING_SNAKE_CASE ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None" ) # Delete a node in specific location in linked list __snake_case : List[str] = linked_list.delete_nth(10 ) assert result is None assert ( str(__SCREAMING_SNAKE_CASE ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None" ) # Add a Node instance to its head linked_list.insert_head(Node('Hello again, world!' ) ) assert ( str(__SCREAMING_SNAKE_CASE ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None" ) # Add None to its tail linked_list.insert_tail(__SCREAMING_SNAKE_CASE ) assert ( str(__SCREAMING_SNAKE_CASE ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None->None" ) # Reverse the linked list linked_list.reverse() assert ( str(__SCREAMING_SNAKE_CASE ) == "None->None->Node(10)->77.9->Hello, world!->-192.55555->0->5555->" "7->dlrow olleH->Node(77345112)->100->Node(Hello again, world!)" ) def a_ ( ) -> str: from doctest import testmod testmod() __snake_case : Optional[int] = LinkedList() linked_list.insert_head(input('Inserting 1st at head ' ).strip() ) linked_list.insert_head(input('Inserting 2nd at head ' ).strip() ) print('\nPrint list:' ) linked_list.print_list() linked_list.insert_tail(input('\nInserting 1st at tail ' ).strip() ) linked_list.insert_tail(input('Inserting 2nd at tail ' ).strip() ) print('\nPrint list:' ) linked_list.print_list() print('\nDelete head' ) linked_list.delete_head() print('Delete tail' ) linked_list.delete_tail() print('\nPrint list:' ) linked_list.print_list() print('\nReverse linked list' ) linked_list.reverse() print('\nPrint list:' ) linked_list.print_list() print('\nString representation of linked list:' ) print(__SCREAMING_SNAKE_CASE ) print('\nReading/changing Node data using indexing:' ) print(f'''Element at Position 1: {linked_list[1]}''' ) __snake_case : Tuple = input('Enter New Value: ' ).strip() print('New list:' ) print(__SCREAMING_SNAKE_CASE ) print(f'''length of linked_list is : {len(__SCREAMING_SNAKE_CASE )}''' ) if __name__ == "__main__": main()
369
'''simple docstring''' import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import numpy as np import pytest from datasets.arrow_dataset import Dataset from datasets.search import ElasticSearchIndex, FaissIndex, MissingIndex from .utils import require_elasticsearch, require_faiss A__ : Tuple = pytest.mark.integration @require_faiss class snake_case__ ( SCREAMING_SNAKE_CASE_ ): def A_ ( self : Any ) -> Tuple: '''simple docstring''' __snake_case : Dict = Dataset.from_dict({'filename': ['my_name-train' + '_' + str(__a ) for x in np.arange(30 ).tolist()]} ) return dset def A_ ( self : Union[str, Any] ) -> List[Any]: '''simple docstring''' import faiss __snake_case : Dataset = self._create_dummy_dataset() __snake_case : Dict = dset.map( lambda __a , __a : {"vecs": i * np.ones(5 , dtype=np.floataa )} , with_indices=__a , keep_in_memory=__a ) __snake_case : List[Any] = dset.add_faiss_index('vecs' , batch_size=100 , metric_type=faiss.METRIC_INNER_PRODUCT ) __snake_case , __snake_case : Any = dset.get_nearest_examples('vecs' , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) dset.drop_index('vecs' ) def A_ ( self : Tuple ) -> Any: '''simple docstring''' import faiss __snake_case : Dataset = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='vecs' , batch_size=100 , metric_type=faiss.METRIC_INNER_PRODUCT , ) __snake_case , __snake_case : Any = dset.get_nearest_examples('vecs' , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) def A_ ( self : List[Any] ) -> Dict: '''simple docstring''' import faiss __snake_case : Dataset = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='vecs' , metric_type=faiss.METRIC_INNER_PRODUCT , ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=__a ) as tmp_file: dset.save_faiss_index('vecs' , tmp_file.name ) dset.load_faiss_index('vecs2' , tmp_file.name ) os.unlink(tmp_file.name ) __snake_case , __snake_case : str = dset.get_nearest_examples('vecs2' , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) def A_ ( self : Union[str, Any] ) -> Dict: '''simple docstring''' __snake_case : Dataset = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='vecs' ) dset.drop_index('vecs' ) self.assertRaises(__a , partial(dset.get_nearest_examples , 'vecs2' , np.ones(5 , dtype=np.floataa ) ) ) def A_ ( self : List[str] ) -> List[str]: '''simple docstring''' from elasticsearch import Elasticsearch __snake_case : Dataset = self._create_dummy_dataset() with patch('elasticsearch.Elasticsearch.search' ) as mocked_search, patch( 'elasticsearch.client.IndicesClient.create' ) as mocked_index_create, patch('elasticsearch.helpers.streaming_bulk' ) as mocked_bulk: __snake_case : Any = {'acknowledged': True} mocked_bulk.return_value([(True, None)] * 30 ) __snake_case : Dict = {'hits': {'hits': [{'_score': 1, '_id': 29}]}} __snake_case : Union[str, Any] = Elasticsearch() dset.add_elasticsearch_index('filename' , es_client=__a ) __snake_case , __snake_case : str = dset.get_nearest_examples('filename' , 'my_name-train_29' ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) @require_faiss class snake_case__ ( SCREAMING_SNAKE_CASE_ ): def A_ ( self : str ) -> int: '''simple docstring''' import faiss __snake_case : int = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) # add vectors index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsNotNone(index.faiss_index ) self.assertEqual(index.faiss_index.ntotal , 5 ) index.add_vectors(np.zeros((5, 5) , dtype=np.floataa ) ) self.assertEqual(index.faiss_index.ntotal , 10 ) # single query __snake_case : Dict = np.zeros(5 , dtype=np.floataa ) __snake_case : List[str] = 1 __snake_case , __snake_case : List[Any] = index.search(__a ) self.assertRaises(__a , index.search , query.reshape(-1 , 1 ) ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) # batched queries __snake_case : List[str] = np.eye(5 , dtype=np.floataa )[::-1] __snake_case , __snake_case : Dict = index.search_batch(__a ) self.assertRaises(__a , index.search_batch , queries[0] ) __snake_case : Any = [scores[0] for scores in total_scores] __snake_case : List[Any] = [indices[0] for indices in total_indices] self.assertGreater(np.min(__a ) , 0 ) self.assertListEqual([4, 3, 2, 1, 0] , __a ) def A_ ( self : int ) -> int: '''simple docstring''' import faiss __snake_case : int = FaissIndex(string_factory='Flat' ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) __snake_case : List[str] = FaissIndex(string_factory='LSH' ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexLSH ) with self.assertRaises(__a ): __snake_case : Dict = FaissIndex(string_factory='Flat' , custom_index=faiss.IndexFlat(5 ) ) def A_ ( self : str ) -> Dict: '''simple docstring''' import faiss __snake_case : Tuple = faiss.IndexFlat(5 ) __snake_case : List[Any] = FaissIndex(custom_index=__a ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) def A_ ( self : List[Any] ) -> int: '''simple docstring''' import faiss __snake_case : Optional[Any] = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=__a ) as tmp_file: index.save(tmp_file.name ) __snake_case : List[Any] = FaissIndex.load(tmp_file.name ) os.unlink(tmp_file.name ) __snake_case : List[Any] = np.zeros(5 , dtype=np.floataa ) __snake_case : Any = 1 __snake_case , __snake_case : int = index.search(__a ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) @require_faiss def a_ ( _UpperCAmelCase : str ) -> Optional[int]: import faiss __snake_case : int = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 ,dtype=np.floataa ) ) __snake_case : Dict = 'index.faiss' __snake_case : Any = f'''mock://{index_name}''' index.save(_UpperCAmelCase ,storage_options=mockfs.storage_options ) __snake_case : Any = FaissIndex.load(_UpperCAmelCase ,storage_options=mockfs.storage_options ) __snake_case : Any = np.zeros(5 ,dtype=np.floataa ) __snake_case : Any = 1 __snake_case , __snake_case : Tuple = index.search(_UpperCAmelCase ) assert scores[0] > 0 assert indices[0] == 1 @require_elasticsearch class snake_case__ ( SCREAMING_SNAKE_CASE_ ): def A_ ( self : List[str] ) -> List[str]: '''simple docstring''' from elasticsearch import Elasticsearch with patch('elasticsearch.Elasticsearch.search' ) as mocked_search, patch( 'elasticsearch.client.IndicesClient.create' ) as mocked_index_create, patch('elasticsearch.helpers.streaming_bulk' ) as mocked_bulk: __snake_case : int = Elasticsearch() __snake_case : Dict = {'acknowledged': True} __snake_case : List[Any] = ElasticSearchIndex(es_client=__a ) mocked_bulk.return_value([(True, None)] * 3 ) index.add_documents(['foo', 'bar', 'foobar'] ) # single query __snake_case : Optional[Any] = 'foo' __snake_case : int = {'hits': {'hits': [{'_score': 1, '_id': 0}]}} __snake_case , __snake_case : List[Any] = index.search(__a ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # single query with timeout __snake_case : Dict = 'foo' __snake_case : Dict = {'hits': {'hits': [{'_score': 1, '_id': 0}]}} __snake_case , __snake_case : Optional[Any] = index.search(__a , request_timeout=30 ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # batched queries __snake_case : List[Any] = ['foo', 'bar', 'foobar'] __snake_case : str = {'hits': {'hits': [{'_score': 1, '_id': 1}]}} __snake_case , __snake_case : Any = index.search_batch(__a ) __snake_case : Any = [scores[0] for scores in total_scores] __snake_case : Tuple = [indices[0] for indices in total_indices] self.assertGreater(np.min(__a ) , 0 ) self.assertListEqual([1, 1, 1] , __a ) # batched queries with timeout __snake_case : Tuple = ['foo', 'bar', 'foobar'] __snake_case : List[Any] = {'hits': {'hits': [{'_score': 1, '_id': 1}]}} __snake_case , __snake_case : int = index.search_batch(__a , request_timeout=30 ) __snake_case : Any = [scores[0] for scores in total_scores] __snake_case : Dict = [indices[0] for indices in total_indices] self.assertGreater(np.min(__a ) , 0 ) self.assertListEqual([1, 1, 1] , __a )
0
0
"""simple docstring""" from ..utils import DummyObject, requires_backends class lowercase ( metaclass=SCREAMING_SNAKE_CASE_ ): _SCREAMING_SNAKE_CASE = ['torch'] def __init__( self , *lowercase , **lowercase ) -> Optional[int]: requires_backends(self , ["""torch"""] ) @classmethod def _snake_case ( cls , *lowercase , **lowercase ) -> Optional[Any]: requires_backends(cls , ["""torch"""] ) @classmethod def _snake_case ( cls , *lowercase , **lowercase ) -> str: requires_backends(cls , ["""torch"""] ) class lowercase ( metaclass=SCREAMING_SNAKE_CASE_ ): _SCREAMING_SNAKE_CASE = ['torch'] def __init__( self , *lowercase , **lowercase ) -> Any: requires_backends(self , ["""torch"""] ) @classmethod def _snake_case ( cls , *lowercase , **lowercase ) -> Optional[Any]: requires_backends(cls , ["""torch"""] ) @classmethod def _snake_case ( cls , *lowercase , **lowercase ) -> str: requires_backends(cls , ["""torch"""] ) class lowercase ( metaclass=SCREAMING_SNAKE_CASE_ ): _SCREAMING_SNAKE_CASE = ['torch'] def __init__( self , *lowercase , **lowercase ) -> Union[str, Any]: requires_backends(self , ["""torch"""] ) @classmethod def _snake_case ( cls , *lowercase , **lowercase ) -> int: requires_backends(cls , ["""torch"""] ) @classmethod def _snake_case ( cls , *lowercase , **lowercase ) -> List[str]: requires_backends(cls , ["""torch"""] ) class lowercase ( metaclass=SCREAMING_SNAKE_CASE_ ): _SCREAMING_SNAKE_CASE = ['torch'] def __init__( self , *lowercase , **lowercase ) -> List[str]: requires_backends(self , ["""torch"""] ) @classmethod def _snake_case ( cls , *lowercase , **lowercase ) -> Tuple: requires_backends(cls , ["""torch"""] ) @classmethod def _snake_case ( cls , *lowercase , **lowercase ) -> List[Any]: requires_backends(cls , ["""torch"""] ) class lowercase ( metaclass=SCREAMING_SNAKE_CASE_ ): _SCREAMING_SNAKE_CASE = ['torch'] def __init__( self , *lowercase , **lowercase ) -> Any: requires_backends(self , ["""torch"""] ) @classmethod def _snake_case ( cls , *lowercase , **lowercase ) -> str: requires_backends(cls , ["""torch"""] ) @classmethod def _snake_case ( cls , *lowercase , **lowercase ) -> int: requires_backends(cls , ["""torch"""] ) class lowercase ( metaclass=SCREAMING_SNAKE_CASE_ ): _SCREAMING_SNAKE_CASE = ['torch'] def __init__( self , *lowercase , **lowercase ) -> int: requires_backends(self , ["""torch"""] ) @classmethod def _snake_case ( cls , *lowercase , **lowercase ) -> Dict: requires_backends(cls , ["""torch"""] ) @classmethod def _snake_case ( cls , *lowercase , **lowercase ) -> Dict: requires_backends(cls , ["""torch"""] ) class lowercase ( metaclass=SCREAMING_SNAKE_CASE_ ): _SCREAMING_SNAKE_CASE = ['torch'] def __init__( self , *lowercase , **lowercase ) -> int: requires_backends(self , ["""torch"""] ) @classmethod def _snake_case ( cls , *lowercase , **lowercase ) -> Optional[Any]: requires_backends(cls , ["""torch"""] ) @classmethod def _snake_case ( cls , *lowercase , **lowercase ) -> str: requires_backends(cls , ["""torch"""] ) class lowercase ( metaclass=SCREAMING_SNAKE_CASE_ ): _SCREAMING_SNAKE_CASE = ['torch'] def __init__( self , *lowercase , **lowercase ) -> List[Any]: requires_backends(self , ["""torch"""] ) @classmethod def _snake_case ( cls , *lowercase , **lowercase ) -> Any: requires_backends(cls , ["""torch"""] ) @classmethod def _snake_case ( cls , *lowercase , **lowercase ) -> Any: requires_backends(cls , ["""torch"""] ) class lowercase ( metaclass=SCREAMING_SNAKE_CASE_ ): _SCREAMING_SNAKE_CASE = ['torch'] def __init__( self , *lowercase , **lowercase ) -> Optional[Any]: requires_backends(self , ["""torch"""] ) @classmethod def _snake_case ( cls , *lowercase , **lowercase ) -> Union[str, Any]: requires_backends(cls , ["""torch"""] ) @classmethod def _snake_case ( cls , *lowercase , **lowercase ) -> Optional[int]: requires_backends(cls , ["""torch"""] ) class lowercase ( metaclass=SCREAMING_SNAKE_CASE_ ): _SCREAMING_SNAKE_CASE = ['torch'] def __init__( self , *lowercase , **lowercase ) -> str: requires_backends(self , ["""torch"""] ) @classmethod def _snake_case ( cls , *lowercase , **lowercase ) -> List[str]: requires_backends(cls , ["""torch"""] ) @classmethod def _snake_case ( cls , *lowercase , **lowercase ) -> Optional[int]: requires_backends(cls , ["""torch"""] ) class lowercase ( metaclass=SCREAMING_SNAKE_CASE_ ): _SCREAMING_SNAKE_CASE = ['torch'] def __init__( self , *lowercase , **lowercase ) -> Union[str, Any]: requires_backends(self , ["""torch"""] ) @classmethod def _snake_case ( cls , *lowercase , **lowercase ) -> int: requires_backends(cls , ["""torch"""] ) @classmethod def _snake_case ( cls , *lowercase , **lowercase ) -> List[str]: requires_backends(cls , ["""torch"""] ) def UpperCAmelCase__ ( *SCREAMING_SNAKE_CASE : Tuple , **SCREAMING_SNAKE_CASE : List[Any] ): '''simple docstring''' requires_backends(lowercase_ , ["""torch"""] ) def UpperCAmelCase__ ( *SCREAMING_SNAKE_CASE : List[Any] , **SCREAMING_SNAKE_CASE : List[str] ): '''simple docstring''' requires_backends(lowercase_ , ["""torch"""] ) def UpperCAmelCase__ ( *SCREAMING_SNAKE_CASE : Optional[int] , **SCREAMING_SNAKE_CASE : Dict ): '''simple docstring''' requires_backends(lowercase_ , ["""torch"""] ) def UpperCAmelCase__ ( *SCREAMING_SNAKE_CASE : List[Any] , **SCREAMING_SNAKE_CASE : Union[str, Any] ): '''simple docstring''' requires_backends(lowercase_ , ["""torch"""] ) def UpperCAmelCase__ ( *SCREAMING_SNAKE_CASE : Union[str, Any] , **SCREAMING_SNAKE_CASE : Any ): '''simple docstring''' requires_backends(lowercase_ , ["""torch"""] ) def UpperCAmelCase__ ( *SCREAMING_SNAKE_CASE : Optional[int] , **SCREAMING_SNAKE_CASE : Tuple ): '''simple docstring''' requires_backends(lowercase_ , ["""torch"""] ) def UpperCAmelCase__ ( *SCREAMING_SNAKE_CASE : str , **SCREAMING_SNAKE_CASE : str ): '''simple docstring''' requires_backends(lowercase_ , ["""torch"""] ) class lowercase ( metaclass=SCREAMING_SNAKE_CASE_ ): _SCREAMING_SNAKE_CASE = ['torch'] def __init__( self , *lowercase , **lowercase ) -> Dict: requires_backends(self , ["""torch"""] ) @classmethod def _snake_case ( cls , *lowercase , **lowercase ) -> Optional[int]: requires_backends(cls , ["""torch"""] ) @classmethod def _snake_case ( cls , *lowercase , **lowercase ) -> List[str]: requires_backends(cls , ["""torch"""] ) class lowercase ( metaclass=SCREAMING_SNAKE_CASE_ ): _SCREAMING_SNAKE_CASE = ['torch'] def __init__( self , *lowercase , **lowercase ) -> Any: requires_backends(self , ["""torch"""] ) @classmethod def _snake_case ( cls , *lowercase , **lowercase ) -> Optional[int]: requires_backends(cls , ["""torch"""] ) @classmethod def _snake_case ( cls , *lowercase , **lowercase ) -> Dict: requires_backends(cls , ["""torch"""] ) class lowercase ( metaclass=SCREAMING_SNAKE_CASE_ ): _SCREAMING_SNAKE_CASE = ['torch'] def __init__( self , *lowercase , **lowercase ) -> List[str]: requires_backends(self , ["""torch"""] ) @classmethod def _snake_case ( cls , *lowercase , **lowercase ) -> str: requires_backends(cls , ["""torch"""] ) @classmethod def _snake_case ( cls , *lowercase , **lowercase ) -> Union[str, Any]: requires_backends(cls , ["""torch"""] ) class lowercase ( metaclass=SCREAMING_SNAKE_CASE_ ): _SCREAMING_SNAKE_CASE = ['torch'] def __init__( self , *lowercase , **lowercase ) -> int: requires_backends(self , ["""torch"""] ) @classmethod def _snake_case ( cls , *lowercase , **lowercase ) -> Dict: requires_backends(cls , ["""torch"""] ) @classmethod def _snake_case ( cls , *lowercase , **lowercase ) -> int: requires_backends(cls , ["""torch"""] ) class lowercase ( metaclass=SCREAMING_SNAKE_CASE_ ): _SCREAMING_SNAKE_CASE = ['torch'] def __init__( self , *lowercase , **lowercase ) -> Union[str, Any]: requires_backends(self , ["""torch"""] ) @classmethod def _snake_case ( cls , *lowercase , **lowercase ) -> Optional[int]: requires_backends(cls , ["""torch"""] ) @classmethod def _snake_case ( cls , *lowercase , **lowercase ) -> Optional[int]: requires_backends(cls , ["""torch"""] ) class lowercase ( metaclass=SCREAMING_SNAKE_CASE_ ): _SCREAMING_SNAKE_CASE = ['torch'] def __init__( self , *lowercase , **lowercase ) -> str: requires_backends(self , ["""torch"""] ) @classmethod def _snake_case ( cls , *lowercase , **lowercase ) -> Any: requires_backends(cls , ["""torch"""] ) @classmethod def _snake_case ( cls , *lowercase , **lowercase ) -> Any: requires_backends(cls , ["""torch"""] ) class lowercase ( metaclass=SCREAMING_SNAKE_CASE_ ): _SCREAMING_SNAKE_CASE = ['torch'] def __init__( self , *lowercase , **lowercase ) -> List[str]: requires_backends(self , ["""torch"""] ) @classmethod def _snake_case ( cls , *lowercase , **lowercase ) -> str: requires_backends(cls , ["""torch"""] ) @classmethod def _snake_case ( cls , *lowercase , **lowercase ) -> List[str]: requires_backends(cls , ["""torch"""] ) class lowercase ( metaclass=SCREAMING_SNAKE_CASE_ ): _SCREAMING_SNAKE_CASE = ['torch'] def __init__( self , *lowercase , **lowercase ) -> List[Any]: requires_backends(self , ["""torch"""] ) @classmethod def _snake_case ( cls , *lowercase , **lowercase ) -> List[Any]: requires_backends(cls , ["""torch"""] ) @classmethod def _snake_case ( cls , *lowercase , **lowercase ) -> List[Any]: requires_backends(cls , ["""torch"""] ) class lowercase ( metaclass=SCREAMING_SNAKE_CASE_ ): _SCREAMING_SNAKE_CASE = ['torch'] def __init__( self , *lowercase , **lowercase ) -> Dict: requires_backends(self , ["""torch"""] ) @classmethod def _snake_case ( cls , *lowercase , **lowercase ) -> List[str]: requires_backends(cls , ["""torch"""] ) @classmethod def _snake_case ( cls , *lowercase , **lowercase ) -> Union[str, Any]: requires_backends(cls , ["""torch"""] ) class lowercase ( metaclass=SCREAMING_SNAKE_CASE_ ): _SCREAMING_SNAKE_CASE = ['torch'] def __init__( self , *lowercase , **lowercase ) -> str: requires_backends(self , ["""torch"""] ) @classmethod def _snake_case ( cls , *lowercase , **lowercase ) -> str: requires_backends(cls , ["""torch"""] ) @classmethod def _snake_case ( cls , *lowercase , **lowercase ) -> str: requires_backends(cls , ["""torch"""] ) class lowercase ( metaclass=SCREAMING_SNAKE_CASE_ ): _SCREAMING_SNAKE_CASE = ['torch'] def __init__( self , *lowercase , **lowercase ) -> Dict: requires_backends(self , ["""torch"""] ) @classmethod def _snake_case ( cls , *lowercase , **lowercase ) -> Dict: requires_backends(cls , ["""torch"""] ) @classmethod def _snake_case ( cls , *lowercase , **lowercase ) -> List[str]: requires_backends(cls , ["""torch"""] ) class lowercase ( metaclass=SCREAMING_SNAKE_CASE_ ): _SCREAMING_SNAKE_CASE = ['torch'] def __init__( self , *lowercase , **lowercase ) -> str: requires_backends(self , ["""torch"""] ) @classmethod def _snake_case ( cls , *lowercase , **lowercase ) -> Optional[Any]: requires_backends(cls , ["""torch"""] ) @classmethod def _snake_case ( cls , *lowercase , **lowercase ) -> Tuple: requires_backends(cls , ["""torch"""] ) class lowercase ( metaclass=SCREAMING_SNAKE_CASE_ ): _SCREAMING_SNAKE_CASE = ['torch'] def __init__( self , *lowercase , **lowercase ) -> Optional[Any]: requires_backends(self , ["""torch"""] ) @classmethod def _snake_case ( cls , *lowercase , **lowercase ) -> Optional[int]: requires_backends(cls , ["""torch"""] ) @classmethod def _snake_case ( cls , *lowercase , **lowercase ) -> Dict: requires_backends(cls , ["""torch"""] ) class lowercase ( metaclass=SCREAMING_SNAKE_CASE_ ): _SCREAMING_SNAKE_CASE = ['torch'] def __init__( self , *lowercase , **lowercase ) -> Any: requires_backends(self , ["""torch"""] ) @classmethod def _snake_case ( cls , *lowercase , **lowercase ) -> Union[str, Any]: requires_backends(cls , ["""torch"""] ) @classmethod def _snake_case ( cls , *lowercase , **lowercase ) -> Optional[int]: requires_backends(cls , ["""torch"""] ) class lowercase ( metaclass=SCREAMING_SNAKE_CASE_ ): _SCREAMING_SNAKE_CASE = ['torch'] def __init__( self , *lowercase , **lowercase ) -> List[Any]: requires_backends(self , ["""torch"""] ) @classmethod def _snake_case ( cls , *lowercase , **lowercase ) -> Tuple: requires_backends(cls , ["""torch"""] ) @classmethod def _snake_case ( cls , *lowercase , **lowercase ) -> List[Any]: requires_backends(cls , ["""torch"""] ) class lowercase ( metaclass=SCREAMING_SNAKE_CASE_ ): _SCREAMING_SNAKE_CASE = ['torch'] def __init__( self , *lowercase , **lowercase ) -> Any: requires_backends(self , ["""torch"""] ) @classmethod def _snake_case ( cls , *lowercase , **lowercase ) -> List[str]: requires_backends(cls , ["""torch"""] ) @classmethod def _snake_case ( cls , *lowercase , **lowercase ) -> int: requires_backends(cls , ["""torch"""] ) class lowercase ( metaclass=SCREAMING_SNAKE_CASE_ ): _SCREAMING_SNAKE_CASE = ['torch'] def __init__( self , *lowercase , **lowercase ) -> int: requires_backends(self , ["""torch"""] ) @classmethod def _snake_case ( cls , *lowercase , **lowercase ) -> Union[str, Any]: requires_backends(cls , ["""torch"""] ) @classmethod def _snake_case ( cls , *lowercase , **lowercase ) -> Tuple: requires_backends(cls , ["""torch"""] ) class lowercase ( metaclass=SCREAMING_SNAKE_CASE_ ): _SCREAMING_SNAKE_CASE = ['torch'] def __init__( self , *lowercase , **lowercase ) -> int: requires_backends(self , ["""torch"""] ) @classmethod def _snake_case ( cls , *lowercase , **lowercase ) -> Tuple: requires_backends(cls , ["""torch"""] ) @classmethod def _snake_case ( cls , *lowercase , **lowercase ) -> Optional[int]: requires_backends(cls , ["""torch"""] ) class lowercase ( metaclass=SCREAMING_SNAKE_CASE_ ): _SCREAMING_SNAKE_CASE = ['torch'] def __init__( self , *lowercase , **lowercase ) -> str: requires_backends(self , ["""torch"""] ) @classmethod def _snake_case ( cls , *lowercase , **lowercase ) -> List[str]: requires_backends(cls , ["""torch"""] ) @classmethod def _snake_case ( cls , *lowercase , **lowercase ) -> List[Any]: requires_backends(cls , ["""torch"""] ) class lowercase ( metaclass=SCREAMING_SNAKE_CASE_ ): _SCREAMING_SNAKE_CASE = ['torch'] def __init__( self , *lowercase , **lowercase ) -> List[Any]: requires_backends(self , ["""torch"""] ) @classmethod def _snake_case ( cls , *lowercase , **lowercase ) -> Union[str, Any]: requires_backends(cls , ["""torch"""] ) @classmethod def _snake_case ( cls , *lowercase , **lowercase ) -> Optional[int]: requires_backends(cls , ["""torch"""] ) class lowercase ( metaclass=SCREAMING_SNAKE_CASE_ ): _SCREAMING_SNAKE_CASE = ['torch'] def __init__( self , *lowercase , **lowercase ) -> Optional[int]: requires_backends(self , ["""torch"""] ) @classmethod def _snake_case ( cls , *lowercase , **lowercase ) -> Union[str, Any]: requires_backends(cls , ["""torch"""] ) @classmethod def _snake_case ( cls , *lowercase , **lowercase ) -> str: requires_backends(cls , ["""torch"""] ) class lowercase ( metaclass=SCREAMING_SNAKE_CASE_ ): _SCREAMING_SNAKE_CASE = ['torch'] def __init__( self , *lowercase , **lowercase ) -> Optional[int]: requires_backends(self , ["""torch"""] ) @classmethod def _snake_case ( cls , *lowercase , **lowercase ) -> Optional[Any]: requires_backends(cls , ["""torch"""] ) @classmethod def _snake_case ( cls , *lowercase , **lowercase ) -> int: requires_backends(cls , ["""torch"""] ) class lowercase ( metaclass=SCREAMING_SNAKE_CASE_ ): _SCREAMING_SNAKE_CASE = ['torch'] def __init__( self , *lowercase , **lowercase ) -> List[str]: requires_backends(self , ["""torch"""] ) @classmethod def _snake_case ( cls , *lowercase , **lowercase ) -> str: requires_backends(cls , ["""torch"""] ) @classmethod def _snake_case ( cls , *lowercase , **lowercase ) -> List[Any]: requires_backends(cls , ["""torch"""] ) class lowercase ( metaclass=SCREAMING_SNAKE_CASE_ ): _SCREAMING_SNAKE_CASE = ['torch'] def __init__( self , *lowercase , **lowercase ) -> Union[str, Any]: requires_backends(self , ["""torch"""] ) @classmethod def _snake_case ( cls , *lowercase , **lowercase ) -> Tuple: requires_backends(cls , ["""torch"""] ) @classmethod def _snake_case ( cls , *lowercase , **lowercase ) -> Optional[Any]: requires_backends(cls , ["""torch"""] ) class lowercase ( metaclass=SCREAMING_SNAKE_CASE_ ): _SCREAMING_SNAKE_CASE = ['torch'] def __init__( self , *lowercase , **lowercase ) -> List[str]: requires_backends(self , ["""torch"""] ) @classmethod def _snake_case ( cls , *lowercase , **lowercase ) -> Tuple: requires_backends(cls , ["""torch"""] ) @classmethod def _snake_case ( cls , *lowercase , **lowercase ) -> Dict: requires_backends(cls , ["""torch"""] ) class lowercase ( metaclass=SCREAMING_SNAKE_CASE_ ): _SCREAMING_SNAKE_CASE = ['torch'] def __init__( self , *lowercase , **lowercase ) -> Tuple: requires_backends(self , ["""torch"""] ) @classmethod def _snake_case ( cls , *lowercase , **lowercase ) -> Dict: requires_backends(cls , ["""torch"""] ) @classmethod def _snake_case ( cls , *lowercase , **lowercase ) -> Tuple: requires_backends(cls , ["""torch"""] ) class lowercase ( metaclass=SCREAMING_SNAKE_CASE_ ): _SCREAMING_SNAKE_CASE = ['torch'] def __init__( self , *lowercase , **lowercase ) -> Dict: requires_backends(self , ["""torch"""] ) @classmethod def _snake_case ( cls , *lowercase , **lowercase ) -> Tuple: requires_backends(cls , ["""torch"""] ) @classmethod def _snake_case ( cls , *lowercase , **lowercase ) -> Dict: requires_backends(cls , ["""torch"""] ) class lowercase ( metaclass=SCREAMING_SNAKE_CASE_ ): _SCREAMING_SNAKE_CASE = ['torch'] def __init__( self , *lowercase , **lowercase ) -> Tuple: requires_backends(self , ["""torch"""] ) @classmethod def _snake_case ( cls , *lowercase , **lowercase ) -> List[str]: requires_backends(cls , ["""torch"""] ) @classmethod def _snake_case ( cls , *lowercase , **lowercase ) -> int: requires_backends(cls , ["""torch"""] ) class lowercase ( metaclass=SCREAMING_SNAKE_CASE_ ): _SCREAMING_SNAKE_CASE = ['torch'] def __init__( self , *lowercase , **lowercase ) -> Dict: requires_backends(self , ["""torch"""] ) @classmethod def _snake_case ( cls , *lowercase , **lowercase ) -> str: requires_backends(cls , ["""torch"""] ) @classmethod def _snake_case ( cls , *lowercase , **lowercase ) -> Union[str, Any]: requires_backends(cls , ["""torch"""] ) class lowercase ( metaclass=SCREAMING_SNAKE_CASE_ ): _SCREAMING_SNAKE_CASE = ['torch'] def __init__( self , *lowercase , **lowercase ) -> Any: requires_backends(self , ["""torch"""] ) @classmethod def _snake_case ( cls , *lowercase , **lowercase ) -> List[Any]: requires_backends(cls , ["""torch"""] ) @classmethod def _snake_case ( cls , *lowercase , **lowercase ) -> Dict: requires_backends(cls , ["""torch"""] ) class lowercase ( metaclass=SCREAMING_SNAKE_CASE_ ): _SCREAMING_SNAKE_CASE = ['torch'] def __init__( self , *lowercase , **lowercase ) -> List[Any]: requires_backends(self , ["""torch"""] ) @classmethod def _snake_case ( cls , *lowercase , **lowercase ) -> List[Any]: requires_backends(cls , ["""torch"""] ) @classmethod def _snake_case ( cls , *lowercase , **lowercase ) -> str: requires_backends(cls , ["""torch"""] ) class lowercase ( metaclass=SCREAMING_SNAKE_CASE_ ): _SCREAMING_SNAKE_CASE = ['torch'] def __init__( self , *lowercase , **lowercase ) -> List[str]: requires_backends(self , ["""torch"""] ) @classmethod def _snake_case ( cls , *lowercase , **lowercase ) -> Tuple: requires_backends(cls , ["""torch"""] ) @classmethod def _snake_case ( cls , *lowercase , **lowercase ) -> Any: requires_backends(cls , ["""torch"""] ) class lowercase ( metaclass=SCREAMING_SNAKE_CASE_ ): _SCREAMING_SNAKE_CASE = ['torch'] def __init__( self , *lowercase , **lowercase ) -> Any: requires_backends(self , ["""torch"""] ) @classmethod def _snake_case ( cls , *lowercase , **lowercase ) -> Any: requires_backends(cls , ["""torch"""] ) @classmethod def _snake_case ( cls , *lowercase , **lowercase ) -> Optional[Any]: requires_backends(cls , ["""torch"""] ) class lowercase ( metaclass=SCREAMING_SNAKE_CASE_ ): _SCREAMING_SNAKE_CASE = ['torch'] def __init__( self , *lowercase , **lowercase ) -> Tuple: requires_backends(self , ["""torch"""] ) @classmethod def _snake_case ( cls , *lowercase , **lowercase ) -> Dict: requires_backends(cls , ["""torch"""] ) @classmethod def _snake_case ( cls , *lowercase , **lowercase ) -> Union[str, Any]: requires_backends(cls , ["""torch"""] ) class lowercase ( metaclass=SCREAMING_SNAKE_CASE_ ): _SCREAMING_SNAKE_CASE = ['torch'] def __init__( self , *lowercase , **lowercase ) -> Optional[Any]: requires_backends(self , ["""torch"""] ) @classmethod def _snake_case ( cls , *lowercase , **lowercase ) -> int: requires_backends(cls , ["""torch"""] ) @classmethod def _snake_case ( cls , *lowercase , **lowercase ) -> Any: requires_backends(cls , ["""torch"""] ) class lowercase ( metaclass=SCREAMING_SNAKE_CASE_ ): _SCREAMING_SNAKE_CASE = ['torch'] def __init__( self , *lowercase , **lowercase ) -> Union[str, Any]: requires_backends(self , ["""torch"""] ) @classmethod def _snake_case ( cls , *lowercase , **lowercase ) -> Tuple: requires_backends(cls , ["""torch"""] ) @classmethod def _snake_case ( cls , *lowercase , **lowercase ) -> List[str]: requires_backends(cls , ["""torch"""] ) class lowercase ( metaclass=SCREAMING_SNAKE_CASE_ ): _SCREAMING_SNAKE_CASE = ['torch'] def __init__( self , *lowercase , **lowercase ) -> Optional[int]: requires_backends(self , ["""torch"""] ) @classmethod def _snake_case ( cls , *lowercase , **lowercase ) -> List[Any]: requires_backends(cls , ["""torch"""] ) @classmethod def _snake_case ( cls , *lowercase , **lowercase ) -> Tuple: requires_backends(cls , ["""torch"""] ) class lowercase ( metaclass=SCREAMING_SNAKE_CASE_ ): _SCREAMING_SNAKE_CASE = ['torch'] def __init__( self , *lowercase , **lowercase ) -> List[Any]: requires_backends(self , ["""torch"""] ) @classmethod def _snake_case ( cls , *lowercase , **lowercase ) -> int: requires_backends(cls , ["""torch"""] ) @classmethod def _snake_case ( cls , *lowercase , **lowercase ) -> str: requires_backends(cls , ["""torch"""] ) class lowercase ( metaclass=SCREAMING_SNAKE_CASE_ ): _SCREAMING_SNAKE_CASE = ['torch'] def __init__( self , *lowercase , **lowercase ) -> List[Any]: requires_backends(self , ["""torch"""] ) @classmethod def _snake_case ( cls , *lowercase , **lowercase ) -> Tuple: requires_backends(cls , ["""torch"""] ) @classmethod def _snake_case ( cls , *lowercase , **lowercase ) -> List[str]: requires_backends(cls , ["""torch"""] )
46
"""simple docstring""" from typing import List, Optional, Union import numpy as np import PIL import torch from PIL import Image from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) snake_case_ = logging.get_logger(__name__) # pylint: disable=invalid-name snake_case_ = """ Examples: ```py >>> from diffusers import KandinskyV22Img2ImgPipeline, KandinskyV22PriorPipeline >>> from diffusers.utils import load_image >>> import torch >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained( ... \"kandinsky-community/kandinsky-2-2-prior\", torch_dtype=torch.float16 ... ) >>> pipe_prior.to(\"cuda\") >>> prompt = \"A red cartoon frog, 4k\" >>> image_emb, zero_image_emb = pipe_prior(prompt, return_dict=False) >>> pipe = KandinskyV22Img2ImgPipeline.from_pretrained( ... \"kandinsky-community/kandinsky-2-2-decoder\", torch_dtype=torch.float16 ... ) >>> pipe.to(\"cuda\") >>> init_image = load_image( ... \"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main\" ... \"/kandinsky/frog.png\" ... ) >>> image = pipe( ... image=init_image, ... image_embeds=image_emb, ... negative_image_embeds=zero_image_emb, ... height=768, ... width=768, ... num_inference_steps=100, ... strength=0.2, ... ).images >>> image[0].save(\"red_frog.png\") ``` """ def _lowerCAmelCase ( lowercase_ , lowercase_ , lowercase_=8 ): UpperCAmelCase = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 UpperCAmelCase = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor def _lowerCAmelCase ( lowercase_ , lowercase_=512 , lowercase_=512 ): UpperCAmelCase = pil_image.resize((w, h) , resample=Image.BICUBIC , reducing_gap=1 ) UpperCAmelCase = np.array(pil_image.convert('RGB' ) ) UpperCAmelCase = arr.astype(np.floataa ) / 1_2_7.5 - 1 UpperCAmelCase = np.transpose(lowercase_ , [2, 0, 1] ) UpperCAmelCase = torch.from_numpy(lowercase_ ).unsqueeze(0 ) return image class A_ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" def __init__( self :Dict , lowercase_ :UNetaDConditionModel , lowercase_ :DDPMScheduler , lowercase_ :VQModel , ) -> List[str]: super().__init__() self.register_modules( unet=lowercase_ , scheduler=lowercase_ , movq=lowercase_ , ) UpperCAmelCase = 2 ** (len(self.movq.config.block_out_channels ) - 1) def UpperCAmelCase__ ( self :Optional[int] , lowercase_ :Optional[Any] , lowercase_ :Tuple , lowercase_ :Any ) -> Optional[int]: # get the original timestep using init_timestep UpperCAmelCase = min(int(num_inference_steps * strength ) , lowercase_ ) UpperCAmelCase = max(num_inference_steps - init_timestep , 0 ) UpperCAmelCase = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def UpperCAmelCase__ ( self :List[Any] , lowercase_ :Dict , lowercase_ :str , lowercase_ :Optional[Any] , lowercase_ :Union[str, Any] , lowercase_ :List[Any] , lowercase_ :Optional[Any] , lowercase_ :Any=None ) -> Any: if not isinstance(lowercase_ , (torch.Tensor, PIL.Image.Image, list) ): raise ValueError( f"""`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(lowercase_ )}""" ) UpperCAmelCase = image.to(device=lowercase_ , dtype=lowercase_ ) UpperCAmelCase = batch_size * num_images_per_prompt if image.shape[1] == 4: UpperCAmelCase = image else: if isinstance(lowercase_ , lowercase_ ) and len(lowercase_ ) != batch_size: raise ValueError( f"""You have passed a list of generators of length {len(lowercase_ )}, but requested an effective batch""" f""" size of {batch_size}. Make sure the batch size matches the length of the generators.""" ) elif isinstance(lowercase_ , lowercase_ ): UpperCAmelCase = [ self.movq.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(lowercase_ ) ] UpperCAmelCase = torch.cat(lowercase_ , dim=0 ) else: UpperCAmelCase = self.movq.encode(lowercase_ ).latent_dist.sample(lowercase_ ) UpperCAmelCase = self.movq.config.scaling_factor * init_latents UpperCAmelCase = torch.cat([init_latents] , dim=0 ) UpperCAmelCase = init_latents.shape UpperCAmelCase = randn_tensor(lowercase_ , generator=lowercase_ , device=lowercase_ , dtype=lowercase_ ) # get latents UpperCAmelCase = self.scheduler.add_noise(lowercase_ , lowercase_ , lowercase_ ) UpperCAmelCase = init_latents return latents def UpperCAmelCase__ ( self :int , lowercase_ :int=0 ) -> List[str]: if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('Please install accelerate via `pip install accelerate`' ) UpperCAmelCase = torch.device(f"""cuda:{gpu_id}""" ) UpperCAmelCase = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(lowercase_ , lowercase_ ) def UpperCAmelCase__ ( self :Union[str, Any] , lowercase_ :str=0 ) -> Dict: if is_accelerate_available() and is_accelerate_version('>=' , '0.17.0.dev0' ): from accelerate import cpu_offload_with_hook else: raise ImportError('`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.' ) UpperCAmelCase = torch.device(f"""cuda:{gpu_id}""" ) if self.device.type != "cpu": self.to('cpu' , silence_dtype_warnings=lowercase_ ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) UpperCAmelCase = None for cpu_offloaded_model in [self.unet, self.movq]: UpperCAmelCase , UpperCAmelCase = cpu_offload_with_hook(lowercase_ , lowercase_ , prev_module_hook=lowercase_ ) # We'll offload the last model manually. UpperCAmelCase = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def UpperCAmelCase__ ( self :List[Any] ) -> Dict: if not hasattr(self.unet , '_hf_hook' ): return self.device for module in self.unet.modules(): if ( hasattr(lowercase_ , '_hf_hook' ) and hasattr(module._hf_hook , 'execution_device' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(lowercase_ ) def __call__( self :str , lowercase_ :Union[torch.FloatTensor, List[torch.FloatTensor]] , lowercase_ :Union[torch.FloatTensor, PIL.Image.Image, List[torch.FloatTensor], List[PIL.Image.Image]] , lowercase_ :Union[torch.FloatTensor, List[torch.FloatTensor]] , lowercase_ :int = 5_12 , lowercase_ :int = 5_12 , lowercase_ :int = 1_00 , lowercase_ :float = 4.0 , lowercase_ :float = 0.3 , lowercase_ :int = 1 , lowercase_ :Optional[Union[torch.Generator, List[torch.Generator]]] = None , lowercase_ :Optional[str] = "pil" , lowercase_ :bool = True , ) -> List[str]: UpperCAmelCase = self._execution_device UpperCAmelCase = guidance_scale > 1.0 if isinstance(lowercase_ , lowercase_ ): UpperCAmelCase = torch.cat(lowercase_ , dim=0 ) UpperCAmelCase = image_embeds.shape[0] if isinstance(lowercase_ , lowercase_ ): UpperCAmelCase = torch.cat(lowercase_ , dim=0 ) if do_classifier_free_guidance: UpperCAmelCase = image_embeds.repeat_interleave(lowercase_ , dim=0 ) UpperCAmelCase = negative_image_embeds.repeat_interleave(lowercase_ , dim=0 ) UpperCAmelCase = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=lowercase_ ) if not isinstance(lowercase_ , lowercase_ ): UpperCAmelCase = [image] if not all(isinstance(lowercase_ , (PIL.Image.Image, torch.Tensor) ) for i in image ): raise ValueError( f"""Input is in incorrect format: {[type(lowercase_ ) for i in image]}. Currently, we only support PIL image and pytorch tensor""" ) UpperCAmelCase = torch.cat([prepare_image(lowercase_ , lowercase_ , lowercase_ ) for i in image] , dim=0 ) UpperCAmelCase = image.to(dtype=image_embeds.dtype , device=lowercase_ ) UpperCAmelCase = self.movq.encode(lowercase_ )['latents'] UpperCAmelCase = latents.repeat_interleave(lowercase_ , dim=0 ) self.scheduler.set_timesteps(lowercase_ , device=lowercase_ ) UpperCAmelCase , UpperCAmelCase = self.get_timesteps(lowercase_ , lowercase_ , lowercase_ ) UpperCAmelCase = timesteps[:1].repeat(batch_size * num_images_per_prompt ) UpperCAmelCase , UpperCAmelCase = downscale_height_and_width(lowercase_ , lowercase_ , self.movq_scale_factor ) UpperCAmelCase = self.prepare_latents( lowercase_ , lowercase_ , lowercase_ , lowercase_ , image_embeds.dtype , lowercase_ , lowercase_ ) for i, t in enumerate(self.progress_bar(lowercase_ ) ): # expand the latents if we are doing classifier free guidance UpperCAmelCase = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents UpperCAmelCase = {'image_embeds': image_embeds} UpperCAmelCase = self.unet( sample=lowercase_ , timestep=lowercase_ , encoder_hidden_states=lowercase_ , added_cond_kwargs=lowercase_ , return_dict=lowercase_ , )[0] if do_classifier_free_guidance: UpperCAmelCase , UpperCAmelCase = noise_pred.split(latents.shape[1] , dim=1 ) UpperCAmelCase , UpperCAmelCase = noise_pred.chunk(2 ) UpperCAmelCase , UpperCAmelCase = variance_pred.chunk(2 ) UpperCAmelCase = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) UpperCAmelCase = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , 'variance_type' ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): UpperCAmelCase , UpperCAmelCase = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 UpperCAmelCase = self.scheduler.step( lowercase_ , lowercase_ , lowercase_ , generator=lowercase_ , )[0] # post-processing UpperCAmelCase = self.movq.decode(lowercase_ , force_not_quantize=lowercase_ )['sample'] if output_type not in ["pt", "np", "pil"]: raise ValueError(f"""Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}""" ) if output_type in ["np", "pil"]: UpperCAmelCase = image * 0.5 + 0.5 UpperCAmelCase = image.clamp(0 , 1 ) UpperCAmelCase = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": UpperCAmelCase = self.numpy_to_pil(lowercase_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=lowercase_ )
78
0
def lowercase_ ( A__ = 1000 ) -> int: """simple docstring""" return sum(2 * a * ((a - 1) // 2) for a in range(3 , n + 1 ) ) if __name__ == "__main__": print(solution())
137
import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class lowerCamelCase ( A_ ): UpperCAmelCase__ : Dict = ["image_processor", "tokenizer"] UpperCAmelCase__ : Dict = "LayoutLMv2ImageProcessor" UpperCAmelCase__ : Optional[Any] = ("LayoutXLMTokenizer", "LayoutXLMTokenizerFast") def __init__(self : str , _A : Any=None , _A : Tuple=None , **_A : Optional[Any] ) -> Optional[int]: if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , _A , ) snake_case = kwargs.pop("feature_extractor" ) snake_case = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(_A , _A ) def __call__(self : int , _A : List[str] , _A : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , _A : Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None , _A : Union[List[List[int]], List[List[List[int]]]] = None , _A : Optional[Union[List[int], List[List[int]]]] = None , _A : bool = True , _A : Union[bool, str, PaddingStrategy] = False , _A : Union[bool, str, TruncationStrategy] = None , _A : Optional[int] = None , _A : int = 0 , _A : Optional[int] = None , _A : Optional[bool] = None , _A : Optional[bool] = None , _A : bool = False , _A : bool = False , _A : bool = False , _A : bool = False , _A : bool = True , _A : Optional[Union[str, TensorType]] = None , **_A : Dict , ) -> BatchEncoding: # verify input if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( "You cannot provide bounding boxes " "if you initialized the image processor with apply_ocr set to True." ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( "You cannot provide word labels if you initialized the image processor with apply_ocr set to True." ) if return_overflowing_tokens is True and return_offsets_mapping is False: raise ValueError("You cannot return overflowing tokens without returning the offsets mapping." ) # first, apply the image processor snake_case = self.image_processor(images=_A , return_tensors=_A ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(_A , _A ): snake_case = [text] # add batch dimension (as the image processor always adds a batch dimension) snake_case = features["words"] snake_case = self.tokenizer( text=text if text is not None else features["words"] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features["boxes"] , word_labels=_A , add_special_tokens=_A , padding=_A , truncation=_A , max_length=_A , stride=_A , pad_to_multiple_of=_A , return_token_type_ids=_A , return_attention_mask=_A , return_overflowing_tokens=_A , return_special_tokens_mask=_A , return_offsets_mapping=_A , return_length=_A , verbose=_A , return_tensors=_A , **_A , ) # add pixel values snake_case = features.pop("pixel_values" ) if return_overflowing_tokens is True: snake_case = self.get_overflowing_images(_A , encoded_inputs["overflow_to_sample_mapping"] ) snake_case = images return encoded_inputs def UpperCAmelCase(self : Dict , _A : Dict , _A : List[str] ) -> Optional[int]: # in case there's an overflow, ensure each `input_ids` sample is mapped to its corresponding image snake_case = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(_A ) != len(_A ): raise ValueError( "Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got" f' {len(_A )} and {len(_A )}' ) return images_with_overflow def UpperCAmelCase(self : Tuple , *_A : int , **_A : Dict ) -> str: return self.tokenizer.batch_decode(*_A , **_A ) def UpperCAmelCase(self : str , *_A : List[Any] , **_A : List[Any] ) -> Optional[Any]: return self.tokenizer.decode(*_A , **_A ) @property def UpperCAmelCase(self : Tuple ) -> Optional[int]: return ["input_ids", "bbox", "attention_mask", "image"] @property def UpperCAmelCase(self : List[Any] ) -> int: warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , _A , ) return self.image_processor_class @property def UpperCAmelCase(self : Dict ) -> Union[str, Any]: warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , _A , ) return self.image_processor
137
1
"""simple docstring""" from typing import List from .keymap import KEYMAP, get_character def UpperCAmelCase__ (snake_case__ : str ): """simple docstring""" def decorator(snake_case__ : Optional[int] ): _snake_case : List[Any] = getattr(snake_case__ , """handle_key""" , [] ) handle += [key] setattr(snake_case__ , """handle_key""" , snake_case__ ) return func return decorator def UpperCAmelCase__ (*snake_case__ : List[str] ): """simple docstring""" def decorator(snake_case__ : List[Any] ): _snake_case : Optional[Any] = getattr(snake_case__ , """handle_key""" , [] ) handle += keys setattr(snake_case__ , """handle_key""" , snake_case__ ) return func return decorator class lowercase( __a ): '''simple docstring''' def __new__( cls: str, a_: Optional[Any], a_: List[Any], a_: Optional[Any] ): '''simple docstring''' _snake_case : Optional[int] = super().__new__(cls, a_, a_, a_ ) if not hasattr(a_, """key_handler""" ): setattr(a_, """key_handler""", {} ) setattr(a_, """handle_input""", KeyHandler.handle_input ) for value in attrs.values(): _snake_case : List[Any] = getattr(a_, """handle_key""", [] ) for key in handled_keys: _snake_case : Dict = value return new_cls @staticmethod def UpperCamelCase_ ( cls: str ): '''simple docstring''' _snake_case : List[Any] = get_character() if char != KEYMAP["undefined"]: _snake_case : Union[str, Any] = ord(a_ ) _snake_case : Optional[int] = cls.key_handler.get(a_ ) if handler: _snake_case : Optional[int] = char return handler(cls ) else: return None def UpperCAmelCase__ (cls : Union[str, Any] ): """simple docstring""" return KeyHandler(cls.__name__ , cls.__bases__ , cls.__dict__.copy() )
64
'''simple docstring''' import os from argparse import ArgumentParser from typing import List import torch.utils.data from datasets import Dataset, IterableDataset from datasets.distributed import split_dataset_by_node __a: Optional[int] = 4 __a: Optional[Any] = 3 class UpperCAmelCase ( a__ ): '''simple docstring''' pass def __UpperCamelCase ( UpperCAmelCase ): for shard in shards: for i in range(UpperCAmelCase ): yield {"i": i, "shard": shard} def __UpperCamelCase ( ): lowercase__ : Tuple = int(os.environ['''RANK'''] ) lowercase__ : List[str] = int(os.environ['''WORLD_SIZE'''] ) lowercase__ : Optional[Any] = ArgumentParser() parser.add_argument('''--streaming''' , type=UpperCAmelCase ) parser.add_argument('''--local_rank''' , type=UpperCAmelCase ) parser.add_argument('''--num_workers''' , type=UpperCAmelCase , default=0 ) lowercase__ : List[Any] = parser.parse_args() lowercase__ : List[str] = args.streaming lowercase__ : str = args.num_workers lowercase__ : Optional[int] = {'''shards''': [F"""shard_{shard_idx}""" for shard_idx in range(UpperCAmelCase )]} lowercase__ : Tuple = IterableDataset.from_generator(UpperCAmelCase , gen_kwargs=UpperCAmelCase ) if not streaming: lowercase__ : int = Dataset.from_list(list(UpperCAmelCase ) ) lowercase__ : str = split_dataset_by_node(UpperCAmelCase , rank=UpperCAmelCase , world_size=UpperCAmelCase ) lowercase__ : Optional[int] = torch.utils.data.DataLoader(UpperCAmelCase , num_workers=UpperCAmelCase ) lowercase__ : Dict = NUM_SHARDS * NUM_ITEMS_PER_SHARD lowercase__ : Optional[Any] = full_size // world_size expected_local_size += int(rank < (full_size % world_size) ) lowercase__ : Union[str, Any] = sum(1 for _ in dataloader ) if local_size != expected_local_size: raise FailedTestError(F"""local_size {local_size} != expected_local_size {expected_local_size}""" ) if __name__ == "__main__": main()
198
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) _lowercase: int = {"configuration_fnet": ["FNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "FNetConfig"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase: Optional[Any] = ["FNetTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase: Optional[int] = ["FNetTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase: str = [ "FNET_PRETRAINED_MODEL_ARCHIVE_LIST", "FNetForMaskedLM", "FNetForMultipleChoice", "FNetForNextSentencePrediction", "FNetForPreTraining", "FNetForQuestionAnswering", "FNetForSequenceClassification", "FNetForTokenClassification", "FNetLayer", "FNetModel", "FNetPreTrainedModel", ] if TYPE_CHECKING: from .configuration_fnet import FNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet import FNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet_fast import FNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_fnet import ( FNET_PRETRAINED_MODEL_ARCHIVE_LIST, FNetForMaskedLM, FNetForMultipleChoice, FNetForNextSentencePrediction, FNetForPreTraining, FNetForQuestionAnswering, FNetForSequenceClassification, FNetForTokenClassification, FNetLayer, FNetModel, FNetPreTrainedModel, ) else: import sys _lowercase: List[str] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
361
# using dfs for finding eulerian path traversal def a( A : int , A : Optional[Any] , A : Any , A : Optional[int]=None ) -> List[str]: """simple docstring""" a = (path or []) + [u] for v in graph[u]: if visited_edge[u][v] is False: a , a = True, True a = dfs(A , A , A , A ) return path def a( A : List[str] , A : Optional[int] ) -> List[str]: """simple docstring""" a = 0 a = -1 for i in range(A ): if i not in graph.keys(): continue if len(graph[i] ) % 2 == 1: odd_degree_nodes += 1 a = i if odd_degree_nodes == 0: return 1, odd_node if odd_degree_nodes == 2: return 2, odd_node return 3, odd_node def a( A : str , A : str ) -> List[Any]: """simple docstring""" a = [[False for _ in range(max_node + 1 )] for _ in range(max_node + 1 )] a , a = check_circuit_or_path(A , A ) if check == 3: print("graph is not Eulerian" ) print("no path" ) return a = 1 if check == 2: a = odd_node print("graph has a Euler path" ) if check == 1: print("graph has a Euler cycle" ) a = dfs(A , A , A ) print(A ) def a( ) -> int: """simple docstring""" a = {1: [2, 3, 4], 2: [1, 3], 3: [1, 2], 4: [1, 5], 5: [4]} a = {1: [2, 3, 4, 5], 2: [1, 3], 3: [1, 2], 4: [1, 5], 5: [1, 4]} a = {1: [2, 3, 4], 2: [1, 3, 4], 3: [1, 2], 4: [1, 2, 5], 5: [4]} a = {1: [2, 3], 2: [1, 3], 3: [1, 2]} a = { 1: [], 2: [] # all degree is zero } a = 10 check_euler(A , A ) check_euler(A , A ) check_euler(A , A ) check_euler(A , A ) check_euler(A , A ) if __name__ == "__main__": main()
71
0
'''simple docstring''' import itertools import string from collections.abc import Generator, Iterable def _lowerCAmelCase ( _UpperCamelCase : Iterable[str] , _UpperCamelCase : int ) -> Generator[tuple[str, ...], None, None]: """simple docstring""" _SCREAMING_SNAKE_CASE =iter(_UpperCAmelCase ) while True: _SCREAMING_SNAKE_CASE =tuple(itertools.islice(_UpperCAmelCase , _UpperCAmelCase ) ) if not chunk: return yield chunk def _lowerCAmelCase ( _UpperCamelCase : str ) -> str: """simple docstring""" _SCREAMING_SNAKE_CASE =''.join([c.upper() for c in dirty if c in string.ascii_letters] ) _SCREAMING_SNAKE_CASE ='' if len(_UpperCAmelCase ) < 2: return dirty for i in range(len(_UpperCAmelCase ) - 1 ): clean += dirty[i] if dirty[i] == dirty[i + 1]: clean += "X" clean += dirty[-1] if len(_UpperCAmelCase ) & 1: clean += "X" return clean def _lowerCAmelCase ( _UpperCamelCase : str ) -> list[str]: """simple docstring""" _SCREAMING_SNAKE_CASE ='ABCDEFGHIKLMNOPQRSTUVWXYZ' # we're using a list instead of a '2d' array because it makes the math # for setting up the table and doing the actual encoding/decoding simpler _SCREAMING_SNAKE_CASE =[] # copy key chars into the table if they are in `alphabet` ignoring duplicates for char in key.upper(): if char not in table and char in alphabet: table.append(_UpperCAmelCase ) # fill the rest of the table in with the remaining alphabet chars for char in alphabet: if char not in table: table.append(_UpperCAmelCase ) return table def _lowerCAmelCase ( _UpperCamelCase : str , _UpperCamelCase : str ) -> str: """simple docstring""" _SCREAMING_SNAKE_CASE =generate_table(_UpperCAmelCase ) _SCREAMING_SNAKE_CASE =prepare_input(_UpperCAmelCase ) _SCREAMING_SNAKE_CASE ='' # https://en.wikipedia.org/wiki/Playfair_cipher#Description for chara, chara in chunker(_UpperCAmelCase , 2 ): _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =divmod(table.index(_UpperCAmelCase ) , 5 ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =divmod(table.index(_UpperCAmelCase ) , 5 ) if rowa == rowa: ciphertext += table[rowa * 5 + (cola + 1) % 5] ciphertext += table[rowa * 5 + (cola + 1) % 5] elif cola == cola: ciphertext += table[((rowa + 1) % 5) * 5 + cola] ciphertext += table[((rowa + 1) % 5) * 5 + cola] else: # rectangle ciphertext += table[rowa * 5 + cola] ciphertext += table[rowa * 5 + cola] return ciphertext def _lowerCAmelCase ( _UpperCamelCase : str , _UpperCamelCase : str ) -> str: """simple docstring""" _SCREAMING_SNAKE_CASE =generate_table(_UpperCAmelCase ) _SCREAMING_SNAKE_CASE ='' # https://en.wikipedia.org/wiki/Playfair_cipher#Description for chara, chara in chunker(_UpperCAmelCase , 2 ): _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =divmod(table.index(_UpperCAmelCase ) , 5 ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =divmod(table.index(_UpperCAmelCase ) , 5 ) if rowa == rowa: plaintext += table[rowa * 5 + (cola - 1) % 5] plaintext += table[rowa * 5 + (cola - 1) % 5] elif cola == cola: plaintext += table[((rowa - 1) % 5) * 5 + cola] plaintext += table[((rowa - 1) % 5) * 5 + cola] else: # rectangle plaintext += table[rowa * 5 + cola] plaintext += table[rowa * 5 + cola] return plaintext
47
import os import sys import unittest UpperCAmelCase__ = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, "utils")) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path UpperCAmelCase__ = os.path.join(git_repo_path, "src", "diffusers") class __lowerCAmelCase ( unittest.TestCase ): def _lowerCamelCase ( self : Tuple) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = find_backend(' if not is_torch_available():') self.assertEqual(A , 'torch') # backend_with_underscore = find_backend(" if not is_tensorflow_text_available():") # self.assertEqual(backend_with_underscore, "tensorflow_text") _UpperCAmelCase = find_backend(' if not (is_torch_available() and is_transformers_available()):') self.assertEqual(A , 'torch_and_transformers') # double_backend_with_underscore = find_backend( # " if not (is_sentencepiece_available() and is_tensorflow_text_available()):" # ) # self.assertEqual(double_backend_with_underscore, "sentencepiece_and_tensorflow_text") _UpperCAmelCase = find_backend( ' if not (is_torch_available() and is_transformers_available() and is_onnx_available()):') self.assertEqual(A , 'torch_and_transformers_and_onnx') def _lowerCamelCase ( self : int) -> Dict: """simple docstring""" _UpperCAmelCase = read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn('torch' , A) self.assertIn('torch_and_transformers' , A) self.assertIn('flax_and_transformers' , A) self.assertIn('torch_and_transformers_and_onnx' , A) # Likewise, we can't assert on the exact content of a key self.assertIn('UNet2DModel' , objects['torch']) self.assertIn('FlaxUNet2DConditionModel' , objects['flax']) self.assertIn('StableDiffusionPipeline' , objects['torch_and_transformers']) self.assertIn('FlaxStableDiffusionPipeline' , objects['flax_and_transformers']) self.assertIn('LMSDiscreteScheduler' , objects['torch_and_scipy']) self.assertIn('OnnxStableDiffusionPipeline' , objects['torch_and_transformers_and_onnx']) def _lowerCamelCase ( self : Union[str, Any]) -> List[Any]: """simple docstring""" _UpperCAmelCase = create_dummy_object('CONSTANT' , '\'torch\'') self.assertEqual(A , '\nCONSTANT = None\n') _UpperCAmelCase = create_dummy_object('function' , '\'torch\'') self.assertEqual( A , '\ndef function(*args, **kwargs):\n requires_backends(function, \'torch\')\n') _UpperCAmelCase = '\nclass FakeClass(metaclass=DummyObject):\n _backends = \'torch\'\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, \'torch\')\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, \'torch\')\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, \'torch\')\n' _UpperCAmelCase = create_dummy_object('FakeClass' , '\'torch\'') self.assertEqual(A , A) def _lowerCamelCase ( self : Dict) -> int: """simple docstring""" _UpperCAmelCase = '# This file is autogenerated by the command `make fix-copies`, do not edit.\nfrom ..utils import DummyObject, requires_backends\n\n\nCONSTANT = None\n\n\ndef function(*args, **kwargs):\n requires_backends(function, ["torch"])\n\n\nclass FakeClass(metaclass=DummyObject):\n _backends = ["torch"]\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, ["torch"])\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, ["torch"])\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, ["torch"])\n' _UpperCAmelCase = create_dummy_files({'torch': ['CONSTANT', 'function', 'FakeClass']}) self.assertEqual(dummy_files['torch'] , A)
339
0
import asyncio import os import shutil import subprocess import sys import tempfile import unittest from distutils.util import strtobool from functools import partial from pathlib import Path from typing import List, Union from unittest import mock import torch from ..state import AcceleratorState, PartialState from ..utils import ( gather, is_bnb_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_mps_available, is_safetensors_available, is_tensorboard_available, is_torch_version, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) def UpperCamelCase ( snake_case__ : List[str] , snake_case__ : List[str]=False ) -> Optional[Any]: try: UpperCamelCase : List[Any] = os.environ[key] except KeyError: # KEY isn't set, default to `default`. UpperCamelCase : List[Any] = default else: # KEY is set, convert it to True or False. try: UpperCamelCase : Optional[Any] = strtobool(snake_case__ ) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(F"""If set, {key} must be yes or no.""" ) return _value __UpperCAmelCase = parse_flag_from_env('''RUN_SLOW''', default=False) def UpperCamelCase ( snake_case__ : int ) -> str: return unittest.skip('Test was skipped' )(snake_case__ ) def UpperCamelCase ( snake_case__ : List[Any] ) -> Optional[Any]: return unittest.skipUnless(_run_slow_tests , 'test is slow' )(snake_case__ ) def UpperCamelCase ( snake_case__ : List[Any] ) -> Dict: return unittest.skipUnless(not torch.cuda.is_available() , 'test requires only a CPU' )(snake_case__ ) def UpperCamelCase ( snake_case__ : List[Any] ) -> Dict: return unittest.skipUnless(torch.cuda.is_available() , 'test requires a GPU' )(snake_case__ ) def UpperCamelCase ( snake_case__ : Tuple ) -> List[Any]: return unittest.skipUnless(is_xpu_available() , 'test requires a XPU' )(snake_case__ ) def UpperCamelCase ( snake_case__ : Optional[Any] ) -> List[Any]: return unittest.skipUnless(is_mps_available() , 'test requires a `mps` backend support in `torch`' )(snake_case__ ) def UpperCamelCase ( snake_case__ : List[str] ) -> Tuple: return unittest.skipUnless( is_transformers_available() and is_datasets_available() , 'test requires the Hugging Face suite' )(snake_case__ ) def UpperCamelCase ( snake_case__ : Optional[Any] ) -> List[Any]: return unittest.skipUnless(is_bnb_available() , 'test requires the bitsandbytes library' )(snake_case__ ) def UpperCamelCase ( snake_case__ : Dict ) -> List[str]: return unittest.skipUnless(is_tpu_available() , 'test requires TPU' )(snake_case__ ) def UpperCamelCase ( snake_case__ : Optional[int] ) -> Optional[int]: return unittest.skipUnless(torch.cuda.device_count() == 1 , 'test requires a GPU' )(snake_case__ ) def UpperCamelCase ( snake_case__ : Optional[int] ) -> Dict: return unittest.skipUnless(torch.xpu.device_count() == 1 , 'test requires a XPU' )(snake_case__ ) def UpperCamelCase ( snake_case__ : Tuple ) -> Any: return unittest.skipUnless(torch.cuda.device_count() > 1 , 'test requires multiple GPUs' )(snake_case__ ) def UpperCamelCase ( snake_case__ : Optional[Any] ) -> int: return unittest.skipUnless(torch.xpu.device_count() > 1 , 'test requires multiple XPUs' )(snake_case__ ) def UpperCamelCase ( snake_case__ : Optional[int] ) -> Any: return unittest.skipUnless(is_safetensors_available() , 'test requires safetensors' )(snake_case__ ) def UpperCamelCase ( snake_case__ : Optional[int] ) -> Dict: return unittest.skipUnless(is_deepspeed_available() , 'test requires DeepSpeed' )(snake_case__ ) def UpperCamelCase ( snake_case__ : Dict ) -> Optional[Any]: return unittest.skipUnless(is_torch_version('>=' , '1.12.0' ) , 'test requires torch version >= 1.12.0' )(snake_case__ ) def UpperCamelCase ( snake_case__ : Dict=None , snake_case__ : Union[str, Any]=None ) -> Optional[Any]: if test_case is None: return partial(snake_case__ , version=snake_case__ ) return unittest.skipUnless(is_torch_version('>=' , snake_case__ ) , F"""test requires torch version >= {version}""" )(snake_case__ ) def UpperCamelCase ( snake_case__ : Dict ) -> Optional[Any]: return unittest.skipUnless(is_tensorboard_available() , 'test requires Tensorboard' )(snake_case__ ) def UpperCamelCase ( snake_case__ : str ) -> Tuple: return unittest.skipUnless(is_wandb_available() , 'test requires wandb' )(snake_case__ ) def UpperCamelCase ( snake_case__ : Any ) -> List[Any]: return unittest.skipUnless(is_comet_ml_available() , 'test requires comet_ml' )(snake_case__ ) __UpperCAmelCase = ( any([is_wandb_available(), is_tensorboard_available()]) and not is_comet_ml_available() ) def UpperCamelCase ( snake_case__ : Optional[Any] ) -> Optional[Any]: return unittest.skipUnless( _atleast_one_tracker_available , 'test requires at least one tracker to be available and for `comet_ml` to not be installed' , )(snake_case__ ) class lowerCAmelCase_ ( unittest.TestCase ): UpperCAmelCase__ : Optional[Any] = True @classmethod def snake_case_ ( cls ) -> Any: UpperCamelCase : Optional[Any] = tempfile.mkdtemp() @classmethod def snake_case_ ( cls ) -> Tuple: if os.path.exists(cls.tmpdir ): shutil.rmtree(cls.tmpdir ) def snake_case_ ( self ) -> str: if self.clear_on_setup: for path in Path(self.tmpdir ).glob('**/*' ): if path.is_file(): path.unlink() elif path.is_dir(): shutil.rmtree(SCREAMING_SNAKE_CASE_ ) class lowerCAmelCase_ ( unittest.TestCase ): def snake_case_ ( self ) -> Optional[int]: super().tearDown() # Reset the state of the AcceleratorState singleton. AcceleratorState._reset_state() PartialState._reset_state() class lowerCAmelCase_ ( unittest.TestCase ): def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> Tuple: UpperCamelCase : Optional[Any] = mocks if isinstance(SCREAMING_SNAKE_CASE_, (tuple, list) ) else [mocks] for m in self.mocks: m.start() self.addCleanup(m.stop ) def UpperCamelCase ( snake_case__ : Tuple ) -> Optional[int]: UpperCamelCase : Tuple = AcceleratorState() UpperCamelCase : Tuple = tensor[None].clone().to(state.device ) UpperCamelCase : str = gather(snake_case__ ).cpu() UpperCamelCase : Union[str, Any] = tensor[0].cpu() for i in range(tensors.shape[0] ): if not torch.equal(tensors[i] , snake_case__ ): return False return True class lowerCAmelCase_ : def __init__( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> int: UpperCamelCase : List[Any] = returncode UpperCamelCase : Tuple = stdout UpperCamelCase : Any = stderr async def UpperCamelCase ( snake_case__ : Tuple , snake_case__ : Optional[int] ) -> Union[str, Any]: while True: UpperCamelCase : List[str] = await stream.readline() if line: callback(snake_case__ ) else: break async def UpperCamelCase ( snake_case__ : Dict , snake_case__ : int=None , snake_case__ : Dict=None , snake_case__ : Any=None , snake_case__ : Optional[Any]=False , snake_case__ : Union[str, Any]=False ) -> _RunOutput: if echo: print('\nRunning: ' , ' '.join(snake_case__ ) ) UpperCamelCase : Dict = await asyncio.create_subprocess_exec( cmd[0] , *cmd[1:] , stdin=snake_case__ , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=snake_case__ , ) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) UpperCamelCase : Tuple = [] UpperCamelCase : int = [] def tee(snake_case__ : List[Any] , snake_case__ : Optional[int] , snake_case__ : Optional[int] , snake_case__ : List[Any]="" ): UpperCamelCase : Union[str, Any] = line.decode('utf-8' ).rstrip() sink.append(snake_case__ ) if not quiet: print(snake_case__ , snake_case__ , file=snake_case__ ) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ asyncio.create_task(_read_stream(p.stdout , lambda snake_case__ : tee(snake_case__ , snake_case__ , sys.stdout , label='stdout:' ) ) ), asyncio.create_task(_read_stream(p.stderr , lambda snake_case__ : tee(snake_case__ , snake_case__ , sys.stderr , label='stderr:' ) ) ), ] , timeout=snake_case__ , ) return _RunOutput(await p.wait() , snake_case__ , snake_case__ ) def UpperCamelCase ( snake_case__ : Dict , snake_case__ : Any=None , snake_case__ : Tuple=None , snake_case__ : Any=180 , snake_case__ : Any=False , snake_case__ : Optional[int]=True ) -> _RunOutput: UpperCamelCase : int = asyncio.get_event_loop() UpperCamelCase : Tuple = loop.run_until_complete( _stream_subprocess(snake_case__ , env=snake_case__ , stdin=snake_case__ , timeout=snake_case__ , quiet=snake_case__ , echo=snake_case__ ) ) UpperCamelCase : str = ' '.join(snake_case__ ) if result.returncode > 0: UpperCamelCase : Union[str, Any] = '\n'.join(result.stderr ) raise RuntimeError( F"""'{cmd_str}' failed with returncode {result.returncode}\n\n""" F"""The combined stderr from workers follows:\n{stderr}""" ) return result class lowerCAmelCase_ ( a__ ): pass def UpperCamelCase ( snake_case__ : List[str] , snake_case__ : str=False ) -> int: try: UpperCamelCase : Union[str, Any] = subprocess.check_output(snake_case__ , stderr=subprocess.STDOUT ) if return_stdout: if hasattr(snake_case__ , 'decode' ): UpperCamelCase : Optional[int] = output.decode('utf-8' ) return output except subprocess.CalledProcessError as e: raise SubprocessCallException( F"""Command `{" ".join(snake_case__ )}` failed with the following error:\n\n{e.output.decode()}""" ) from e
103
import unittest import numpy as np from transformers import is_flax_available from transformers.testing_utils import require_flax from ..test_modeling_flax_common import ids_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.generation import ( FlaxForcedBOSTokenLogitsProcessor, FlaxForcedEOSTokenLogitsProcessor, FlaxLogitsProcessorList, FlaxMinLengthLogitsProcessor, FlaxTemperatureLogitsWarper, FlaxTopKLogitsWarper, FlaxTopPLogitsWarper, ) @require_flax class lowerCAmelCase_ ( unittest.TestCase ): def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: UpperCamelCase : List[str] = jnp.ones((batch_size, length) ) / length return scores def snake_case_ ( self ) -> Optional[Any]: UpperCamelCase : Optional[Any] = None UpperCamelCase : Optional[int] = 20 UpperCamelCase : Optional[Any] = self._get_uniform_logits(batch_size=2, length=SCREAMING_SNAKE_CASE_ ) # tweak scores to not be uniform anymore UpperCamelCase : Dict = scores.at[1, 5].set((1 / length) + 0.1 ) # peak, 1st batch UpperCamelCase : Any = scores.at[1, 10].set((1 / length) - 0.4 ) # valley, 1st batch # compute softmax UpperCamelCase : List[str] = jax.nn.softmax(SCREAMING_SNAKE_CASE_, axis=-1 ) UpperCamelCase : List[Any] = FlaxTemperatureLogitsWarper(temperature=0.5 ) UpperCamelCase : int = FlaxTemperatureLogitsWarper(temperature=1.3 ) UpperCamelCase : Tuple = jax.nn.softmax(temp_dist_warper_sharper(SCREAMING_SNAKE_CASE_, scores.copy(), cur_len=SCREAMING_SNAKE_CASE_ ), axis=-1 ) UpperCamelCase : Any = jax.nn.softmax(temp_dist_warper_smoother(SCREAMING_SNAKE_CASE_, scores.copy(), cur_len=SCREAMING_SNAKE_CASE_ ), axis=-1 ) # uniform distribution stays uniform self.assertTrue(jnp.allclose(probs[0, :], warped_prob_sharp[0, :], atol=1e-3 ) ) self.assertTrue(jnp.allclose(probs[0, :], warped_prob_smooth[0, :], atol=1e-3 ) ) # sharp peaks get higher, valleys get lower self.assertLess(probs[1, :].max(), warped_prob_sharp[1, :].max() ) self.assertGreater(probs[1, :].min(), warped_prob_sharp[1, :].min() ) # smooth peaks get lower, valleys get higher self.assertGreater(probs[1, :].max(), warped_prob_smooth[1, :].max() ) self.assertLess(probs[1, :].min(), warped_prob_smooth[1, :].min() ) def snake_case_ ( self ) -> Optional[Any]: UpperCamelCase : Dict = None UpperCamelCase : Any = 10 UpperCamelCase : Any = 2 # create ramp distribution UpperCamelCase : List[Any] = np.broadcast_to(np.arange(SCREAMING_SNAKE_CASE_ )[None, :], (batch_size, vocab_size) ).copy() UpperCamelCase : Tuple = ramp_logits[1:, : vocab_size // 2] + vocab_size UpperCamelCase : Dict = FlaxTopKLogitsWarper(3 ) UpperCamelCase : Tuple = top_k_warp(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, cur_len=SCREAMING_SNAKE_CASE_ ) # check that correct tokens are filtered self.assertListEqual(jnp.isinf(scores[0] ).tolist(), 7 * [True] + 3 * [False] ) self.assertListEqual(jnp.isinf(scores[1] ).tolist(), 2 * [True] + 3 * [False] + 5 * [True] ) # check special case UpperCamelCase : Optional[int] = 5 UpperCamelCase : Optional[int] = FlaxTopKLogitsWarper(top_k=1, filter_value=0.0, min_tokens_to_keep=3 ) UpperCamelCase : Union[str, Any] = np.broadcast_to(np.arange(SCREAMING_SNAKE_CASE_ )[None, :], (batch_size, length) ).copy() UpperCamelCase : List[str] = top_k_warp_safety_check(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, cur_len=SCREAMING_SNAKE_CASE_ ) # min_tokens overwrites k: 3 tokens are kept => 2 tokens are nullified self.assertListEqual((scores == 0.0).sum(axis=-1 ).tolist(), [2, 2] ) def snake_case_ ( self ) -> Union[str, Any]: UpperCamelCase : int = None UpperCamelCase : List[str] = 10 UpperCamelCase : Optional[Any] = 2 # create distribution and take log (inverse to Softmax as taken in TopPLogitsWarper) UpperCamelCase : Optional[int] = np.log(np.array([[0.3, 0.1, 0.1, 0.5], [0.15, 0.3, 0.3, 0.25]] ) ) UpperCamelCase : Optional[Any] = FlaxTopPLogitsWarper(0.8 ) UpperCamelCase : int = np.exp(top_p_warp(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, cur_len=SCREAMING_SNAKE_CASE_ ) ) # dist should be filtered to keep min num values so that sum is >= top_p # exp (-inf) => 0 UpperCamelCase : Any = np.array([[0.3, 0.0, 0.0, 0.5], [0.0, 0.3, 0.3, 0.25]] ) self.assertTrue(np.allclose(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, atol=1e-3 ) ) # check edge cases with negative and extreme logits UpperCamelCase : Optional[Any] = np.broadcast_to(np.arange(SCREAMING_SNAKE_CASE_ )[None, :], (batch_size, vocab_size) ).copy() - ( vocab_size // 2 ) # make ramp_logits more extreme UpperCamelCase : Tuple = ramp_logits[1] * 1_00.0 # make sure at least 2 tokens are kept UpperCamelCase : int = FlaxTopPLogitsWarper(0.9, min_tokens_to_keep=2, filter_value=0.0 ) UpperCamelCase : List[str] = top_p_warp(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, cur_len=SCREAMING_SNAKE_CASE_ ) # first batch should keep three tokens, second batch would keep only 1, but due to `min_tokens_to_keep=2` keeps 2. self.assertListEqual((filtered_dist != 0.0).sum(axis=-1 ).tolist(), [3, 2] ) def snake_case_ ( self ) -> List[Any]: UpperCamelCase : Union[str, Any] = 20 UpperCamelCase : Union[str, Any] = 4 UpperCamelCase : Optional[int] = 0 UpperCamelCase : Dict = FlaxMinLengthLogitsProcessor(min_length=10, eos_token_id=SCREAMING_SNAKE_CASE_ ) # check that min length is applied at length 5 UpperCamelCase : List[str] = ids_tensor((batch_size, 20), vocab_size=20 ) UpperCamelCase : Any = 5 UpperCamelCase : Tuple = self._get_uniform_logits(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Tuple = min_dist_processor(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, cur_len=SCREAMING_SNAKE_CASE_ ) self.assertListEqual(scores_before_min_length[:, eos_token_id].tolist(), 4 * [-float('inf' )] ) # check that min length is not applied anymore at length 15 UpperCamelCase : Any = self._get_uniform_logits(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Union[str, Any] = 15 UpperCamelCase : str = min_dist_processor(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, cur_len=SCREAMING_SNAKE_CASE_ ) self.assertFalse(jnp.isinf(SCREAMING_SNAKE_CASE_ ).any() ) def snake_case_ ( self ) -> Dict: UpperCamelCase : str = 20 UpperCamelCase : List[Any] = 4 UpperCamelCase : List[str] = 0 UpperCamelCase : int = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=SCREAMING_SNAKE_CASE_ ) # check that all scores are -inf except the bos_token_id score UpperCamelCase : Any = ids_tensor((batch_size, 1), vocab_size=20 ) UpperCamelCase : List[Any] = 1 UpperCamelCase : Tuple = self._get_uniform_logits(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[Any] = logits_processor(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, cur_len=SCREAMING_SNAKE_CASE_ ) self.assertTrue(jnp.isneginf(scores[:, bos_token_id + 1 :] ).all() ) self.assertListEqual(scores[:, bos_token_id].tolist(), 4 * [0] ) # score for bos_token_id shold be zero # check that bos_token_id is not forced if current length is greater than 1 UpperCamelCase : Dict = 3 UpperCamelCase : str = self._get_uniform_logits(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) UpperCamelCase : int = logits_processor(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, cur_len=SCREAMING_SNAKE_CASE_ ) self.assertFalse(jnp.isinf(SCREAMING_SNAKE_CASE_ ).any() ) def snake_case_ ( self ) -> List[str]: UpperCamelCase : Union[str, Any] = 20 UpperCamelCase : Optional[Any] = 4 UpperCamelCase : List[Any] = 0 UpperCamelCase : int = 5 UpperCamelCase : Tuple = FlaxForcedEOSTokenLogitsProcessor(max_length=SCREAMING_SNAKE_CASE_, eos_token_id=SCREAMING_SNAKE_CASE_ ) # check that all scores are -inf except the eos_token_id when max_length is reached UpperCamelCase : str = ids_tensor((batch_size, 4), vocab_size=20 ) UpperCamelCase : Tuple = 4 UpperCamelCase : Union[str, Any] = self._get_uniform_logits(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Any = logits_processor(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, cur_len=SCREAMING_SNAKE_CASE_ ) self.assertTrue(jnp.isneginf(scores[:, eos_token_id + 1 :] ).all() ) self.assertListEqual(scores[:, eos_token_id].tolist(), 4 * [0] ) # score for eos_token_id should be zero # check that eos_token_id is not forced if max_length is not reached UpperCamelCase : str = 3 UpperCamelCase : List[Any] = self._get_uniform_logits(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Union[str, Any] = logits_processor(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, cur_len=SCREAMING_SNAKE_CASE_ ) self.assertFalse(jnp.isinf(SCREAMING_SNAKE_CASE_ ).any() ) def snake_case_ ( self ) -> int: UpperCamelCase : int = 4 UpperCamelCase : Tuple = 10 UpperCamelCase : str = 15 UpperCamelCase : List[str] = 2 UpperCamelCase : Any = 1 UpperCamelCase : List[str] = 15 # dummy input_ids and scores UpperCamelCase : Dict = ids_tensor((batch_size, sequence_length), SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[Any] = input_ids.copy() UpperCamelCase : Any = self._get_uniform_logits(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Any = scores.copy() # instantiate all dist processors UpperCamelCase : List[str] = FlaxTemperatureLogitsWarper(temperature=0.5 ) UpperCamelCase : Optional[Any] = FlaxTopKLogitsWarper(3 ) UpperCamelCase : Optional[int] = FlaxTopPLogitsWarper(0.8 ) # instantiate all logits processors UpperCamelCase : Optional[Any] = FlaxMinLengthLogitsProcessor(min_length=10, eos_token_id=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Dict = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[Any] = FlaxForcedEOSTokenLogitsProcessor(max_length=SCREAMING_SNAKE_CASE_, eos_token_id=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[str] = 10 # no processor list UpperCamelCase : Any = temp_dist_warp(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, cur_len=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Dict = top_k_warp(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, cur_len=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Dict = top_p_warp(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, cur_len=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Dict = min_dist_proc(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, cur_len=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Union[str, Any] = bos_dist_proc(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, cur_len=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[str] = eos_dist_proc(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, cur_len=SCREAMING_SNAKE_CASE_ ) # with processor list UpperCamelCase : List[str] = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] ) UpperCamelCase : Optional[Any] = processor(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, cur_len=SCREAMING_SNAKE_CASE_ ) # scores should be equal self.assertTrue(jnp.allclose(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, atol=1e-3 ) ) # input_ids should never be changed self.assertListEqual(input_ids.tolist(), input_ids_comp.tolist() ) def snake_case_ ( self ) -> int: UpperCamelCase : Optional[Any] = 4 UpperCamelCase : Tuple = 10 UpperCamelCase : Union[str, Any] = 15 UpperCamelCase : Union[str, Any] = 2 UpperCamelCase : Optional[Any] = 1 UpperCamelCase : int = 15 # dummy input_ids and scores UpperCamelCase : Dict = ids_tensor((batch_size, sequence_length), SCREAMING_SNAKE_CASE_ ) UpperCamelCase : str = input_ids.copy() UpperCamelCase : Optional[int] = self._get_uniform_logits(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Union[str, Any] = scores.copy() # instantiate all dist processors UpperCamelCase : Dict = FlaxTemperatureLogitsWarper(temperature=0.5 ) UpperCamelCase : Optional[Any] = FlaxTopKLogitsWarper(3 ) UpperCamelCase : Union[str, Any] = FlaxTopPLogitsWarper(0.8 ) # instantiate all logits processors UpperCamelCase : str = FlaxMinLengthLogitsProcessor(min_length=10, eos_token_id=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Any = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[int] = FlaxForcedEOSTokenLogitsProcessor(max_length=SCREAMING_SNAKE_CASE_, eos_token_id=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Any = 10 # no processor list def run_no_processor_list(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ): UpperCamelCase : Optional[Any] = temp_dist_warp(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, cur_len=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : str = top_k_warp(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, cur_len=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Any = top_p_warp(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, cur_len=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[str] = min_dist_proc(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, cur_len=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[str] = bos_dist_proc(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, cur_len=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[str] = eos_dist_proc(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, cur_len=SCREAMING_SNAKE_CASE_ ) return scores # with processor list def run_processor_list(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ): UpperCamelCase : Tuple = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] ) UpperCamelCase : Union[str, Any] = processor(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, cur_len=SCREAMING_SNAKE_CASE_ ) return scores UpperCamelCase : Dict = jax.jit(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[str] = jax.jit(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : int = jitted_run_no_processor_list(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) UpperCamelCase : int = jitted_run_processor_list(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) # scores should be equal self.assertTrue(jnp.allclose(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, atol=1e-3 ) ) # input_ids should never be changed self.assertListEqual(input_ids.tolist(), input_ids_comp.tolist() )
103
1
"""simple docstring""" from argparse import ArgumentParser, Namespace from ..utils import logging from . import BaseTransformersCLICommand def _snake_case ( lowercase__ : Namespace ) -> Optional[int]: '''simple docstring''' return ConvertCommand( args.model_type , args.tf_checkpoint , args.pytorch_dump_output , args.config , args.finetuning_task_name ) __UpperCAmelCase = '\ntransformers can only be used from the commandline to convert TensorFlow models in PyTorch, In that case, it requires\nTensorFlow to be installed. Please see https://www.tensorflow.org/install/ for installation instructions.\n' class _SCREAMING_SNAKE_CASE ( A__ ): @staticmethod def __lowerCAmelCase ( __A ) -> List[str]: lowerCAmelCase_ :Dict = parser.add_parser( """convert""" , help="""CLI tool to run convert model from original author checkpoints to Transformers PyTorch checkpoints.""" , ) train_parser.add_argument("""--model_type""" , type=__UpperCAmelCase , required=__UpperCAmelCase , help="""Model\'s type.""" ) train_parser.add_argument( """--tf_checkpoint""" , type=__UpperCAmelCase , required=__UpperCAmelCase , help="""TensorFlow checkpoint path or folder.""" ) train_parser.add_argument( """--pytorch_dump_output""" , type=__UpperCAmelCase , required=__UpperCAmelCase , help="""Path to the PyTorch saved model output.""" ) train_parser.add_argument("""--config""" , type=__UpperCAmelCase , default="""""" , help="""Configuration file path or folder.""" ) train_parser.add_argument( """--finetuning_task_name""" , type=__UpperCAmelCase , default=__UpperCAmelCase , help="""Optional fine-tuning task name if the TF model was a finetuned model.""" , ) train_parser.set_defaults(func=__UpperCAmelCase ) def __init__( self , __A , __A , __A , __A , __A , *__A , ) -> Optional[Any]: lowerCAmelCase_ :Tuple = logging.get_logger("""transformers-cli/converting""" ) self._logger.info(f"""Loading model {model_type}""" ) lowerCAmelCase_ :int = model_type lowerCAmelCase_ :Dict = tf_checkpoint lowerCAmelCase_ :str = pytorch_dump_output lowerCAmelCase_ :Dict = config lowerCAmelCase_ :Any = finetuning_task_name def __lowerCAmelCase ( self ) -> Optional[Any]: if self._model_type == "albert": try: from ..models.albert.convert_albert_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(__UpperCAmelCase ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "bert": try: from ..models.bert.convert_bert_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(__UpperCAmelCase ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "funnel": try: from ..models.funnel.convert_funnel_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(__UpperCAmelCase ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "t5": try: from ..models.ta.convert_ta_original_tf_checkpoint_to_pytorch import convert_tf_checkpoint_to_pytorch except ImportError: raise ImportError(__UpperCAmelCase ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "gpt": from ..models.openai.convert_openai_original_tf_checkpoint_to_pytorch import ( convert_openai_checkpoint_to_pytorch, ) convert_openai_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "transfo_xl": try: from ..models.transfo_xl.convert_transfo_xl_original_tf_checkpoint_to_pytorch import ( convert_transfo_xl_checkpoint_to_pytorch, ) except ImportError: raise ImportError(__UpperCAmelCase ) if "ckpt" in self._tf_checkpoint.lower(): lowerCAmelCase_ :Optional[int] = self._tf_checkpoint lowerCAmelCase_ :List[Any] = """""" else: lowerCAmelCase_ :Dict = self._tf_checkpoint lowerCAmelCase_ :Union[str, Any] = """""" convert_transfo_xl_checkpoint_to_pytorch( __UpperCAmelCase , self._config , self._pytorch_dump_output , __UpperCAmelCase ) elif self._model_type == "gpt2": try: from ..models.gpta.convert_gpta_original_tf_checkpoint_to_pytorch import ( convert_gpta_checkpoint_to_pytorch, ) except ImportError: raise ImportError(__UpperCAmelCase ) convert_gpta_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "xlnet": try: from ..models.xlnet.convert_xlnet_original_tf_checkpoint_to_pytorch import ( convert_xlnet_checkpoint_to_pytorch, ) except ImportError: raise ImportError(__UpperCAmelCase ) convert_xlnet_checkpoint_to_pytorch( self._tf_checkpoint , self._config , self._pytorch_dump_output , self._finetuning_task_name ) elif self._model_type == "xlm": from ..models.xlm.convert_xlm_original_pytorch_checkpoint_to_pytorch import ( convert_xlm_checkpoint_to_pytorch, ) convert_xlm_checkpoint_to_pytorch(self._tf_checkpoint , self._pytorch_dump_output ) elif self._model_type == "lxmert": from ..models.lxmert.convert_lxmert_original_tf_checkpoint_to_pytorch import ( convert_lxmert_checkpoint_to_pytorch, ) convert_lxmert_checkpoint_to_pytorch(self._tf_checkpoint , self._pytorch_dump_output ) elif self._model_type == "rembert": from ..models.rembert.convert_rembert_tf_checkpoint_to_pytorch import ( convert_rembert_tf_checkpoint_to_pytorch, ) convert_rembert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) else: raise ValueError( """--model_type should be selected in the list [bert, gpt, gpt2, t5, transfo_xl, xlnet, xlm, lxmert]""" )
84
from math import factorial UpperCAmelCase__ = {str(digit): factorial(digit) for digit in range(10)} def _a ( a :int ) -> int: if not isinstance(a , a ): raise TypeError('''Parameter number must be int''' ) if number < 0: raise ValueError('''Parameter number must be greater than or equal to 0''' ) # Converts number in string to iterate on its digits and adds its factorial. return sum(DIGIT_FACTORIAL[digit] for digit in str(a ) ) def _a ( a :int = 60 , a :int = 1_000_000 ) -> int: if not isinstance(a , a ) or not isinstance(a , a ): raise TypeError('''Parameters chain_length and number_limit must be int''' ) if chain_length <= 0 or number_limit <= 0: raise ValueError( '''Parameters chain_length and number_limit must be greater than 0''' ) # the counter for the chains with the exact desired length a = 0 # the cached sizes of the previous chains a = {} for start_chain_element in range(1 , a ): # The temporary set will contain the elements of the chain a = set() a = 0 # Stop computing the chain when you find a cached size, a repeating item or the # length is greater then the desired one. a = start_chain_element while ( chain_element not in chain_sets_lengths and chain_element not in chain_set and chain_set_length <= chain_length ): chain_set.add(a ) chain_set_length += 1 a = digit_factorial_sum(a ) if chain_element in chain_sets_lengths: chain_set_length += chain_sets_lengths[chain_element] a = chain_set_length # If chain contains the exact amount of elements increase the counter if chain_set_length == chain_length: chains_counter += 1 return chains_counter if __name__ == "__main__": import doctest doctest.testmod() print(f"""{solution()}""")
0
0
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_barthez import BarthezTokenizer else: lowerCamelCase = None lowerCamelCase = logging.get_logger(__name__) lowerCamelCase = {"""vocab_file""": """sentencepiece.bpe.model""", """tokenizer_file""": """tokenizer.json"""} lowerCamelCase = { """vocab_file""": { """moussaKam/mbarthez""": """https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model""", """moussaKam/barthez""": """https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model""", """moussaKam/barthez-orangesum-title""": ( """https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model""" ), }, """tokenizer_file""": { """moussaKam/mbarthez""": """https://huggingface.co/moussaKam/mbarthez/resolve/main/tokenizer.json""", """moussaKam/barthez""": """https://huggingface.co/moussaKam/barthez/resolve/main/tokenizer.json""", """moussaKam/barthez-orangesum-title""": ( """https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/tokenizer.json""" ), }, } lowerCamelCase = { """moussaKam/mbarthez""": 1_024, """moussaKam/barthez""": 1_024, """moussaKam/barthez-orangesum-title""": 1_024, } lowerCamelCase = """▁""" class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCamelCase = VOCAB_FILES_NAMES UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase = ['''input_ids''', '''attention_mask'''] UpperCamelCase = BarthezTokenizer def __init__( self : str , _UpperCAmelCase : Union[str, Any]=None , _UpperCAmelCase : Optional[int]=None , _UpperCAmelCase : Optional[int]="<s>" , _UpperCAmelCase : Optional[int]="</s>" , _UpperCAmelCase : Optional[int]="</s>" , _UpperCAmelCase : List[str]="<s>" , _UpperCAmelCase : Tuple="<unk>" , _UpperCAmelCase : str="<pad>" , _UpperCAmelCase : List[Any]="<mask>" , **_UpperCAmelCase : Dict , ) -> List[Any]: '''simple docstring''' UpperCAmelCase_ = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else mask_token super().__init__( _UpperCAmelCase , tokenizer_file=_UpperCAmelCase , bos_token=_UpperCAmelCase , eos_token=_UpperCAmelCase , unk_token=_UpperCAmelCase , sep_token=_UpperCAmelCase , cls_token=_UpperCAmelCase , pad_token=_UpperCAmelCase , mask_token=_UpperCAmelCase , **_UpperCAmelCase , ) UpperCAmelCase_ = vocab_file UpperCAmelCase_ = False if not self.vocab_file else True def lowercase__ ( self : Optional[Any] , _UpperCAmelCase : List[int] , _UpperCAmelCase : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] UpperCAmelCase_ = [self.cls_token_id] UpperCAmelCase_ = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowercase__ ( self : Dict , _UpperCAmelCase : List[int] , _UpperCAmelCase : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' UpperCAmelCase_ = [self.sep_token_id] UpperCAmelCase_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowercase__ ( self : Union[str, Any] , _UpperCAmelCase : str , _UpperCAmelCase : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer." ) if not os.path.isdir(_UpperCAmelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return UpperCAmelCase_ = os.path.join( _UpperCAmelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_UpperCAmelCase ): copyfile(self.vocab_file , _UpperCAmelCase ) return (out_vocab_file,)
241
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase = logging.get_logger(__name__) lowerCamelCase = { """roberta-base""": """https://huggingface.co/roberta-base/resolve/main/config.json""", """roberta-large""": """https://huggingface.co/roberta-large/resolve/main/config.json""", """roberta-large-mnli""": """https://huggingface.co/roberta-large-mnli/resolve/main/config.json""", """distilroberta-base""": """https://huggingface.co/distilroberta-base/resolve/main/config.json""", """roberta-base-openai-detector""": """https://huggingface.co/roberta-base-openai-detector/resolve/main/config.json""", """roberta-large-openai-detector""": """https://huggingface.co/roberta-large-openai-detector/resolve/main/config.json""", } class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCamelCase = '''roberta''' def __init__( self : int , _UpperCAmelCase : List[Any]=50265 , _UpperCAmelCase : str=768 , _UpperCAmelCase : List[str]=12 , _UpperCAmelCase : int=12 , _UpperCAmelCase : Tuple=3072 , _UpperCAmelCase : Dict="gelu" , _UpperCAmelCase : int=0.1 , _UpperCAmelCase : Optional[int]=0.1 , _UpperCAmelCase : Optional[int]=512 , _UpperCAmelCase : Optional[Any]=2 , _UpperCAmelCase : Optional[int]=0.02 , _UpperCAmelCase : Optional[Any]=1e-12 , _UpperCAmelCase : Dict=1 , _UpperCAmelCase : str=0 , _UpperCAmelCase : int=2 , _UpperCAmelCase : Tuple="absolute" , _UpperCAmelCase : Any=True , _UpperCAmelCase : int=None , **_UpperCAmelCase : List[str] , ) -> Any: '''simple docstring''' super().__init__(pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase ) UpperCAmelCase_ = vocab_size UpperCAmelCase_ = hidden_size UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = hidden_act UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = hidden_dropout_prob UpperCAmelCase_ = attention_probs_dropout_prob UpperCAmelCase_ = max_position_embeddings UpperCAmelCase_ = type_vocab_size UpperCAmelCase_ = initializer_range UpperCAmelCase_ = layer_norm_eps UpperCAmelCase_ = position_embedding_type UpperCAmelCase_ = use_cache UpperCAmelCase_ = classifier_dropout class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' @property def lowercase__ ( self : List[Any] ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": UpperCAmelCase_ = {0: "batch", 1: "choice", 2: "sequence"} else: UpperCAmelCase_ = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
241
1
import os import pickle import unittest from transformers import AutoTokenizer from transformers.models.bert.tokenization_bert import BertTokenizer from transformers.models.bert_japanese.tokenization_bert_japanese import ( VOCAB_FILES_NAMES, BertJapaneseTokenizer, CharacterTokenizer, JumanppTokenizer, MecabTokenizer, SudachiTokenizer, WordpieceTokenizer, ) from transformers.testing_utils import custom_tokenizers, require_jumanpp, require_sudachi from ...test_tokenization_common import TokenizerTesterMixin @custom_tokenizers class __lowercase ( UpperCAmelCase_ , unittest.TestCase ): """simple docstring""" _UpperCAmelCase : Optional[int] = BertJapaneseTokenizer _UpperCAmelCase : Any = False _UpperCAmelCase : Dict = True def _SCREAMING_SNAKE_CASE ( self : Optional[int]): super().setUp() SCREAMING_SNAKE_CASE_: Dict = [ "[UNK]", "[CLS]", "[SEP]", "こんにちは", "こん", "にちは", "ばんは", "##こん", "##にちは", "##ばんは", "世界", "##世界", "、", "##、", "。", "##。", ] SCREAMING_SNAKE_CASE_: Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"]) with open(self.vocab_file , "w" , encoding="utf-8") as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens])) def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase__ : Optional[int]): SCREAMING_SNAKE_CASE_: Optional[int] = "こんにちは、世界。 \nこんばんは、世界。" SCREAMING_SNAKE_CASE_: Dict = "こんにちは 、 世界 。 こんばんは 、 世界 。" return input_text, output_text def _SCREAMING_SNAKE_CASE ( self : List[str] , lowerCAmelCase__ : List[str]): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Any = self.get_input_output_texts(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Dict = tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = tokenizer.decode(lowerCAmelCase__ , clean_up_tokenization_spaces=lowerCAmelCase__) return text, ids def _SCREAMING_SNAKE_CASE ( self : List[Any]): pass # TODO add if relevant def _SCREAMING_SNAKE_CASE ( self : Dict): pass # TODO add if relevant def _SCREAMING_SNAKE_CASE ( self : Optional[int]): pass # TODO add if relevant def _SCREAMING_SNAKE_CASE ( self : int): SCREAMING_SNAKE_CASE_: int = self.tokenizer_class(self.vocab_file) SCREAMING_SNAKE_CASE_: List[Any] = tokenizer.tokenize("こんにちは、世界。\nこんばんは、世界。") self.assertListEqual(lowerCAmelCase__ , ["こんにちは", "、", "世界", "。", "こん", "##ばんは", "、", "世界", "。"]) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase__) , [3, 12, 10, 14, 4, 9, 12, 10, 14]) def _SCREAMING_SNAKE_CASE ( self : Optional[int]): SCREAMING_SNAKE_CASE_: int = self.tokenizer_class(self.vocab_file , word_tokenizer_type="mecab") self.assertIsNotNone(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Dict = "こんにちは、世界。\nこんばんは、世界。" SCREAMING_SNAKE_CASE_: Optional[int] = tokenizer.tokenize(lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__ , ["こんにちは", "、", "世界", "。", "こん", "##ばんは", "、", "世界", "。"]) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase__) , [3, 12, 10, 14, 4, 9, 12, 10, 14]) SCREAMING_SNAKE_CASE_: int = os.path.join(self.tmpdirname , "tokenizer.bin") with open(lowerCAmelCase__ , "wb") as handle: pickle.dump(lowerCAmelCase__ , lowerCAmelCase__) with open(lowerCAmelCase__ , "rb") as handle: SCREAMING_SNAKE_CASE_: List[Any] = pickle.load(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[Any] = tokenizer_new.tokenize(lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): SCREAMING_SNAKE_CASE_: Union[str, Any] = MecabTokenizer(mecab_dic="ipadic") self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 ") , ["アップルストア", "で", "iPhone", "8", "が", "発売", "さ", "れ", "た", "。"] , ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): try: SCREAMING_SNAKE_CASE_: List[str] = MecabTokenizer(mecab_dic="unidic_lite") except ModuleNotFoundError: return self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 ") , ["アップル", "ストア", "で", "iPhone", "8", "が", "発売", "さ", "れ", "た", "。"] , ) def _SCREAMING_SNAKE_CASE ( self : str): try: SCREAMING_SNAKE_CASE_: Tuple = MecabTokenizer(mecab_dic="unidic") except ModuleNotFoundError: return self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 ") , ["アップル", "ストア", "で", "iPhone", "8", "が", "発売", "さ", "れ", "た", "。"] , ) def _SCREAMING_SNAKE_CASE ( self : Tuple): SCREAMING_SNAKE_CASE_: Tuple = MecabTokenizer(do_lower_case=lowerCAmelCase__ , mecab_dic="ipadic") self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 ") , ["アップルストア", "で", "iphone", "8", "が", "発売", "さ", "れ", "た", "。"] , ) def _SCREAMING_SNAKE_CASE ( self : int): try: SCREAMING_SNAKE_CASE_: int = MecabTokenizer( do_lower_case=lowerCAmelCase__ , normalize_text=lowerCAmelCase__ , mecab_option="-d /usr/local/lib/mecab/dic/jumandic") except RuntimeError: # if dict doesn't exist in the system, previous code raises this error. return self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 ") , ["アップルストア", "で", "iPhone", "8", "が", "発売", "さ", "れた", "\u3000", "。"] , ) def _SCREAMING_SNAKE_CASE ( self : List[Any]): SCREAMING_SNAKE_CASE_: Dict = MecabTokenizer(normalize_text=lowerCAmelCase__ , mecab_dic="ipadic") self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 ") , ["アップルストア", "で", "iPhone", "8", "が", "発売", "さ", "れ", "た", " ", "。"] , ) @require_sudachi def _SCREAMING_SNAKE_CASE ( self : Dict): SCREAMING_SNAKE_CASE_: Any = self.tokenizer_class(self.vocab_file , word_tokenizer_type="sudachi") self.assertIsNotNone(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[str] = "こんにちは、世界。\nこんばんは、世界。" SCREAMING_SNAKE_CASE_: Any = tokenizer.tokenize(lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__ , ["こんにちは", "、", "世界", "。", "こん", "##ばんは", "、", "世界", "。"]) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase__) , [3, 12, 10, 14, 4, 9, 12, 10, 14]) SCREAMING_SNAKE_CASE_: Tuple = os.path.join(self.tmpdirname , "tokenizer.bin") with open(lowerCAmelCase__ , "wb") as handle: pickle.dump(lowerCAmelCase__ , lowerCAmelCase__) with open(lowerCAmelCase__ , "rb") as handle: SCREAMING_SNAKE_CASE_: str = pickle.load(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: str = tokenizer_new.tokenize(lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__) @require_sudachi def _SCREAMING_SNAKE_CASE ( self : List[str]): SCREAMING_SNAKE_CASE_: Optional[int] = SudachiTokenizer(sudachi_dict_type="core") self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 ") , [" ", "\t", "アップル", "ストア", "で", "iPhone", "8", " ", "が", " ", " ", "\n ", "発売", "さ", "れ", "た", " ", "。", " ", " "] , ) @require_sudachi def _SCREAMING_SNAKE_CASE ( self : Any): SCREAMING_SNAKE_CASE_: Union[str, Any] = SudachiTokenizer(sudachi_dict_type="core" , sudachi_split_mode="A") self.assertListEqual(tokenizer.tokenize("外国人参政権") , ["外国", "人", "参政", "権"]) @require_sudachi def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): SCREAMING_SNAKE_CASE_: Tuple = SudachiTokenizer(sudachi_dict_type="core" , sudachi_split_mode="B") self.assertListEqual(tokenizer.tokenize("外国人参政権") , ["外国人", "参政権"]) @require_sudachi def _SCREAMING_SNAKE_CASE ( self : Optional[int]): SCREAMING_SNAKE_CASE_: Union[str, Any] = SudachiTokenizer(sudachi_dict_type="core" , sudachi_split_mode="C") self.assertListEqual(tokenizer.tokenize("外国人参政権") , ["外国人参政権"]) @require_sudachi def _SCREAMING_SNAKE_CASE ( self : Dict): SCREAMING_SNAKE_CASE_: Optional[Any] = SudachiTokenizer(do_lower_case=lowerCAmelCase__ , sudachi_dict_type="core") self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 ") , [" ", "\t", "アップル", "ストア", "で", "iphone", "8", " ", "が", " ", " ", "\n ", "発売", "さ", "れ", "た", " ", "。", " ", " "] , ) @require_sudachi def _SCREAMING_SNAKE_CASE ( self : Any): SCREAMING_SNAKE_CASE_: str = SudachiTokenizer(normalize_text=lowerCAmelCase__ , sudachi_dict_type="core") self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 ") , [" ", "\t", "アップル", "ストア", "で", "iPhone", "8", " ", "が", " ", " ", "\n ", "発売", "さ", "れ", "た", "\u3000", "。", " ", " "] , ) @require_sudachi def _SCREAMING_SNAKE_CASE ( self : List[str]): SCREAMING_SNAKE_CASE_: Optional[Any] = SudachiTokenizer(trim_whitespace=lowerCAmelCase__ , sudachi_dict_type="core") self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 ") , ["アップル", "ストア", "で", "iPhone", "8", "が", "発売", "さ", "れ", "た", "。"] , ) @require_jumanpp def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): SCREAMING_SNAKE_CASE_: Tuple = self.tokenizer_class(self.vocab_file , word_tokenizer_type="jumanpp") self.assertIsNotNone(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = "こんにちは、世界。\nこんばんは、世界。" SCREAMING_SNAKE_CASE_: Dict = tokenizer.tokenize(lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__ , ["こんにちは", "、", "世界", "。", "こん", "##ばんは", "、", "世界", "。"]) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase__) , [3, 12, 10, 14, 4, 9, 12, 10, 14]) SCREAMING_SNAKE_CASE_: Optional[int] = os.path.join(self.tmpdirname , "tokenizer.bin") with open(lowerCAmelCase__ , "wb") as handle: pickle.dump(lowerCAmelCase__ , lowerCAmelCase__) with open(lowerCAmelCase__ , "rb") as handle: SCREAMING_SNAKE_CASE_: Dict = pickle.load(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Dict = tokenizer_new.tokenize(lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__) @require_jumanpp def _SCREAMING_SNAKE_CASE ( self : Any): SCREAMING_SNAKE_CASE_: Union[str, Any] = JumanppTokenizer() self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 ") , ["アップル", "ストア", "で", "iPhone", "8", "\u3000", "が", "\u3000", "\u3000", "\u3000", "発売", "さ", "れた", "\u3000", "。"] , ) @require_jumanpp def _SCREAMING_SNAKE_CASE ( self : str): SCREAMING_SNAKE_CASE_: List[str] = JumanppTokenizer(do_lower_case=lowerCAmelCase__) self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 ") , ["アップル", "ストア", "で", "iphone", "8", "\u3000", "が", "\u3000", "\u3000", "\u3000", "発売", "さ", "れた", "\u3000", "。"] , ) @require_jumanpp def _SCREAMING_SNAKE_CASE ( self : Tuple): SCREAMING_SNAKE_CASE_: Dict = JumanppTokenizer(normalize_text=lowerCAmelCase__) self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 ") , ["ア", "ッ", "フ", "゚", "ル", "ストア", "で", "iPhone", "8", "\u3000", "が", "\u3000", "\u3000", "\u3000", "発売", "さ", "れた", "\u3000", "。"] , ) @require_jumanpp def _SCREAMING_SNAKE_CASE ( self : Dict): SCREAMING_SNAKE_CASE_: str = JumanppTokenizer(trim_whitespace=lowerCAmelCase__) self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 ") , ["アップル", "ストア", "で", "iPhone", "8", "が", "発売", "さ", "れた", "。"] , ) @require_jumanpp def _SCREAMING_SNAKE_CASE ( self : List[Any]): SCREAMING_SNAKE_CASE_: Union[str, Any] = JumanppTokenizer() self.assertListEqual( tokenizer.tokenize("ありがとうございますm(_ _)m見つけるのが大変です。") , ["ありがとう", "ございます", "m(_ _)m", "見つける", "の", "が", "大変です", "。"] , ) def _SCREAMING_SNAKE_CASE ( self : List[str]): SCREAMING_SNAKE_CASE_: Optional[Any] = ["[UNK]", "[CLS]", "[SEP]", "こんにちは", "こん", "にちは", "ばんは", "##こん", "##にちは", "##ばんは"] SCREAMING_SNAKE_CASE_: Optional[int] = {} for i, token in enumerate(lowerCAmelCase__): SCREAMING_SNAKE_CASE_: Optional[Any] = i SCREAMING_SNAKE_CASE_: Union[str, Any] = WordpieceTokenizer(vocab=lowerCAmelCase__ , unk_token="[UNK]") self.assertListEqual(tokenizer.tokenize("") , []) self.assertListEqual(tokenizer.tokenize("こんにちは") , ["こんにちは"]) self.assertListEqual(tokenizer.tokenize("こんばんは") , ["こん", "##ばんは"]) self.assertListEqual(tokenizer.tokenize("こんばんは こんばんにちは こんにちは") , ["こん", "##ばんは", "[UNK]", "こんにちは"]) def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): SCREAMING_SNAKE_CASE_: str = BertJapaneseTokenizer.from_pretrained("nlp-waseda/roberta-base-japanese-with-auto-jumanpp") SCREAMING_SNAKE_CASE_: List[Any] = tokenizer.subword_tokenizer SCREAMING_SNAKE_CASE_: List[Any] = subword_tokenizer.tokenize("国境 の 長い トンネル を 抜ける と 雪国 であった 。") self.assertListEqual(lowerCAmelCase__ , ["▁国境", "▁の", "▁長い", "▁トンネル", "▁を", "▁抜ける", "▁と", "▁雪", "国", "▁であった", "▁。"]) SCREAMING_SNAKE_CASE_: str = subword_tokenizer.tokenize("こんばんは こんばん にち は こんにちは") self.assertListEqual(lowerCAmelCase__ , ["▁こん", "ばん", "は", "▁こん", "ばん", "▁に", "ち", "▁は", "▁こんにちは"]) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): SCREAMING_SNAKE_CASE_: Dict = self.tokenizer_class.from_pretrained("cl-tohoku/bert-base-japanese") SCREAMING_SNAKE_CASE_: Tuple = tokenizer.encode("ありがとう。" , add_special_tokens=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Dict = tokenizer.encode("どういたしまして。" , add_special_tokens=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Dict = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase__ , lowerCAmelCase__) # 2 is for "[CLS]", 3 is for "[SEP]" assert encoded_sentence == [2] + text + [3] assert encoded_pair == [2] + text + [3] + text_a + [3] @custom_tokenizers class __lowercase ( UpperCAmelCase_ , unittest.TestCase ): """simple docstring""" _UpperCAmelCase : Optional[Any] = BertJapaneseTokenizer _UpperCAmelCase : List[str] = False def _SCREAMING_SNAKE_CASE ( self : List[Any]): super().setUp() SCREAMING_SNAKE_CASE_: Any = ["[UNK]", "[CLS]", "[SEP]", "こ", "ん", "に", "ち", "は", "ば", "世", "界", "、", "。"] SCREAMING_SNAKE_CASE_: int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"]) with open(self.vocab_file , "w" , encoding="utf-8") as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens])) def _SCREAMING_SNAKE_CASE ( self : List[str] , **lowerCAmelCase__ : Union[str, Any]): return BertJapaneseTokenizer.from_pretrained(self.tmpdirname , subword_tokenizer_type="character" , **lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase__ : Union[str, Any]): SCREAMING_SNAKE_CASE_: List[Any] = "こんにちは、世界。 \nこんばんは、世界。" SCREAMING_SNAKE_CASE_: Union[str, Any] = "こ ん に ち は 、 世 界 。 こ ん ば ん は 、 世 界 。" return input_text, output_text def _SCREAMING_SNAKE_CASE ( self : Tuple): pass # TODO add if relevant def _SCREAMING_SNAKE_CASE ( self : int): pass # TODO add if relevant def _SCREAMING_SNAKE_CASE ( self : Any): pass # TODO add if relevant def _SCREAMING_SNAKE_CASE ( self : Optional[int]): SCREAMING_SNAKE_CASE_: Dict = self.tokenizer_class(self.vocab_file , subword_tokenizer_type="character") SCREAMING_SNAKE_CASE_: Optional[int] = tokenizer.tokenize("こんにちは、世界。 \nこんばんは、世界。") self.assertListEqual( lowerCAmelCase__ , ["こ", "ん", "に", "ち", "は", "、", "世", "界", "。", "こ", "ん", "ば", "ん", "は", "、", "世", "界", "。"]) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCAmelCase__) , [3, 4, 5, 6, 7, 11, 9, 10, 12, 3, 4, 8, 4, 7, 11, 9, 10, 12]) def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): SCREAMING_SNAKE_CASE_: Optional[Any] = ["[UNK]", "[CLS]", "[SEP]", "こ", "ん", "に", "ち", "は", "ば", "世", "界", "、", "。"] SCREAMING_SNAKE_CASE_: List[Any] = {} for i, token in enumerate(lowerCAmelCase__): SCREAMING_SNAKE_CASE_: Dict = i SCREAMING_SNAKE_CASE_: Optional[int] = CharacterTokenizer(vocab=lowerCAmelCase__ , unk_token="[UNK]") self.assertListEqual(tokenizer.tokenize("") , []) self.assertListEqual(tokenizer.tokenize("こんにちは") , ["こ", "ん", "に", "ち", "は"]) self.assertListEqual(tokenizer.tokenize("こんにちほ") , ["こ", "ん", "に", "ち", "[UNK]"]) def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): SCREAMING_SNAKE_CASE_: str = self.tokenizer_class.from_pretrained("cl-tohoku/bert-base-japanese-char") SCREAMING_SNAKE_CASE_: Optional[int] = tokenizer.encode("ありがとう。" , add_special_tokens=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = tokenizer.encode("どういたしまして。" , add_special_tokens=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase__ , lowerCAmelCase__) # 2 is for "[CLS]", 3 is for "[SEP]" assert encoded_sentence == [2] + text + [3] assert encoded_pair == [2] + text + [3] + text_a + [3] @custom_tokenizers class __lowercase ( unittest.TestCase ): """simple docstring""" def _SCREAMING_SNAKE_CASE ( self : str): SCREAMING_SNAKE_CASE_: List[str] = "cl-tohoku/bert-base-japanese" SCREAMING_SNAKE_CASE_: List[str] = AutoTokenizer.from_pretrained(lowerCAmelCase__) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__) class __lowercase ( unittest.TestCase ): """simple docstring""" def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): SCREAMING_SNAKE_CASE_: Union[str, Any] = "cl-tohoku/bert-base-japanese" with self.assertLogs("transformers" , level="WARNING") as cm: BertTokenizer.from_pretrained(lowerCAmelCase__) self.assertTrue( cm.records[0].message.startswith( "The tokenizer class you load from this checkpoint is not the same type as the class this function" " is called from.")) SCREAMING_SNAKE_CASE_: Union[str, Any] = "bert-base-cased" with self.assertLogs("transformers" , level="WARNING") as cm: BertJapaneseTokenizer.from_pretrained(lowerCAmelCase__) self.assertTrue( cm.records[0].message.startswith( "The tokenizer class you load from this checkpoint is not the same type as the class this function" " is called from."))
13
class __lowercase : """simple docstring""" def __init__( self : List[Any] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : List[Any]): SCREAMING_SNAKE_CASE_: List[str] = name SCREAMING_SNAKE_CASE_: Union[str, Any] = val def __str__( self : Dict): return F"{self.__class__.__name__}({self.name}, {self.val})" def __lt__( self : List[str] , lowerCAmelCase__ : Any): return self.val < other.val class __lowercase : """simple docstring""" def __init__( self : Tuple , lowerCAmelCase__ : Dict): SCREAMING_SNAKE_CASE_: str = {} SCREAMING_SNAKE_CASE_: int = {} SCREAMING_SNAKE_CASE_: Any = self.build_heap(lowerCAmelCase__) def __getitem__( self : List[Any] , lowerCAmelCase__ : Dict): return self.get_value(lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase__ : Dict): return (idx - 1) // 2 def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase__ : Optional[Any]): return idx * 2 + 1 def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase__ : Tuple): return idx * 2 + 2 def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase__ : Optional[int]): return self.heap_dict[key] def _SCREAMING_SNAKE_CASE ( self : List[Any] , lowerCAmelCase__ : Union[str, Any]): SCREAMING_SNAKE_CASE_: Tuple = len(lowerCAmelCase__) - 1 SCREAMING_SNAKE_CASE_: List[str] = self.get_parent_idx(lowerCAmelCase__) for idx, i in enumerate(lowerCAmelCase__): SCREAMING_SNAKE_CASE_: Union[str, Any] = idx SCREAMING_SNAKE_CASE_: str = i.val for i in range(lowerCAmelCase__ , -1 , -1): self.sift_down(lowerCAmelCase__ , lowerCAmelCase__) return array def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : List[str]): while True: SCREAMING_SNAKE_CASE_: Optional[Any] = self.get_left_child_idx(lowerCAmelCase__) # noqa: E741 SCREAMING_SNAKE_CASE_: Dict = self.get_right_child_idx(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = idx if l < len(lowerCAmelCase__) and array[l] < array[idx]: SCREAMING_SNAKE_CASE_: List[str] = l if r < len(lowerCAmelCase__) and array[r] < array[smallest]: SCREAMING_SNAKE_CASE_: str = r if smallest != idx: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Any = array[smallest], array[idx] ( ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ): Optional[Any] = ( self.idx_of_element[array[smallest]], self.idx_of_element[array[idx]], ) SCREAMING_SNAKE_CASE_: Optional[int] = smallest else: break def _SCREAMING_SNAKE_CASE ( self : Dict , lowerCAmelCase__ : str): SCREAMING_SNAKE_CASE_: Any = self.get_parent_idx(lowerCAmelCase__) while p >= 0 and self.heap[p] > self.heap[idx]: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[Any] = self.heap[idx], self.heap[p] SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Tuple = ( self.idx_of_element[self.heap[idx]], self.idx_of_element[self.heap[p]], ) SCREAMING_SNAKE_CASE_: Union[str, Any] = p SCREAMING_SNAKE_CASE_: Optional[int] = self.get_parent_idx(lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : List[Any]): return self.heap[0] def _SCREAMING_SNAKE_CASE ( self : Dict): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Tuple = self.heap[-1], self.heap[0] SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[str] = ( self.idx_of_element[self.heap[-1]], self.idx_of_element[self.heap[0]], ) SCREAMING_SNAKE_CASE_: int = self.heap.pop() del self.idx_of_element[x] self.sift_down(0 , self.heap) return x def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase__ : Tuple): self.heap.append(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[str] = len(self.heap) - 1 SCREAMING_SNAKE_CASE_: List[str] = node.val self.sift_up(len(self.heap) - 1) def _SCREAMING_SNAKE_CASE ( self : List[Any]): return len(self.heap) == 0 def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase__ : Any , lowerCAmelCase__ : Optional[int]): assert ( self.heap[self.idx_of_element[node]].val > new_value ), "newValue must be less that current value" SCREAMING_SNAKE_CASE_: Any = new_value SCREAMING_SNAKE_CASE_: Tuple = new_value self.sift_up(self.idx_of_element[node]) lowerCAmelCase : int = Node("""R""", -1) lowerCAmelCase : str = Node("""B""", 6) lowerCAmelCase : str = Node("""A""", 3) lowerCAmelCase : List[str] = Node("""X""", 1) lowerCAmelCase : Union[str, Any] = Node("""E""", 4) # Use one of these two ways to generate Min-Heap # Generating Min-Heap from array lowerCAmelCase : Optional[Any] = MinHeap([r, b, a, x, e]) # Generating Min-Heap by Insert method # myMinHeap.insert(a) # myMinHeap.insert(b) # myMinHeap.insert(x) # myMinHeap.insert(r) # myMinHeap.insert(e) # Before print("""Min Heap - before decrease key""") for i in my_min_heap.heap: print(i) print("""Min Heap - After decrease key of node [B -> -17]""") my_min_heap.decrease_key(b, -17) # After for i in my_min_heap.heap: print(i) if __name__ == "__main__": import doctest doctest.testmod()
13
1
"""simple docstring""" import os import shutil import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np from datasets import Dataset from transformers.models.realm.configuration_realm import RealmConfig from transformers.models.realm.retrieval_realm import _REALM_BLOCK_RECORDS_FILENAME, RealmRetriever from transformers.models.realm.tokenization_realm import VOCAB_FILES_NAMES, RealmTokenizer class UpperCAmelCase_ ( __lowercase ): """simple docstring""" def __lowercase ( self ) -> Tuple: _a : Tuple = tempfile.mkdtemp() _a : List[str] = 5 # Realm tok _a : Optional[int] = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''test''', '''question''', '''this''', '''is''', '''the''', '''first''', '''second''', '''third''', '''fourth''', '''fifth''', '''record''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] _a : Optional[int] = os.path.join(self.tmpdirname , '''realm_tokenizer''' ) os.makedirs(_a , exist_ok=_a ) _a : str = os.path.join(_a , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) _a : List[str] = os.path.join(self.tmpdirname , '''realm_block_records''' ) os.makedirs(_a , exist_ok=_a ) def __lowercase ( self ) -> RealmTokenizer: return RealmTokenizer.from_pretrained(os.path.join(self.tmpdirname , '''realm_tokenizer''' ) ) def __lowercase ( self ) -> str: shutil.rmtree(self.tmpdirname ) def __lowercase ( self ) -> List[str]: _a : int = RealmConfig(num_block_records=self.num_block_records ) return config def __lowercase ( self ) -> Optional[int]: _a : Optional[Any] = Dataset.from_dict( { '''id''': ['''0''', '''1'''], '''question''': ['''foo''', '''bar'''], '''answers''': [['''Foo''', '''Bar'''], ['''Bar''']], } ) return dataset def __lowercase ( self ) -> Dict: _a : Any = np.array( [ b'''This is the first record''', b'''This is the second record''', b'''This is the third record''', b'''This is the fourth record''', b'''This is the fifth record''', b'''This is a longer longer longer record''', ] , dtype=_a , ) return block_records def __lowercase ( self ) -> Optional[int]: _a : List[str] = RealmRetriever( block_records=self.get_dummy_block_records() , tokenizer=self.get_tokenizer() , ) return retriever def __lowercase ( self ) -> Optional[int]: _a : Dict = self.get_config() _a : Tuple = self.get_dummy_retriever() _a : Dict = retriever.tokenizer _a : Union[str, Any] = np.array([0, 3] , dtype='''long''' ) _a : Any = tokenizer(['''Test question'''] ).input_ids _a : int = tokenizer( ['''the fourth'''] , add_special_tokens=_a , return_token_type_ids=_a , return_attention_mask=_a , ).input_ids _a : str = config.reader_seq_len _a : Any = retriever( _a , _a , answer_ids=_a , max_length=_a , return_tensors='''np''' ) self.assertEqual(len(_a ) , 2 ) self.assertEqual(len(_a ) , 2 ) self.assertEqual(len(_a ) , 2 ) self.assertEqual(concat_inputs.input_ids.shape , (2, 1_0) ) self.assertEqual(concat_inputs.attention_mask.shape , (2, 1_0) ) self.assertEqual(concat_inputs.token_type_ids.shape , (2, 1_0) ) self.assertEqual(concat_inputs.special_tokens_mask.shape , (2, 1_0) ) self.assertEqual( tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[0] ) , ['''[CLS]''', '''test''', '''question''', '''[SEP]''', '''this''', '''is''', '''the''', '''first''', '''record''', '''[SEP]'''] , ) self.assertEqual( tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[1] ) , ['''[CLS]''', '''test''', '''question''', '''[SEP]''', '''this''', '''is''', '''the''', '''fourth''', '''record''', '''[SEP]'''] , ) def __lowercase ( self ) -> Union[str, Any]: _a : Optional[int] = self.get_config() _a : Union[str, Any] = self.get_dummy_retriever() _a : Tuple = retriever.tokenizer _a : List[str] = np.array([0, 3, 5] , dtype='''long''' ) _a : int = tokenizer(['''Test question'''] ).input_ids _a : List[str] = tokenizer( ['''the fourth''', '''longer longer'''] , add_special_tokens=_a , return_token_type_ids=_a , return_attention_mask=_a , ).input_ids _a : Union[str, Any] = config.reader_seq_len _a : List[Any] = retriever( _a , _a , answer_ids=_a , max_length=_a , return_tensors='''np''' ) self.assertEqual([False, True, True] , _a ) self.assertEqual([[-1, -1, -1], [6, -1, -1], [6, 7, 8]] , _a ) self.assertEqual([[-1, -1, -1], [7, -1, -1], [7, 8, 9]] , _a ) def __lowercase ( self ) -> int: _a : Any = self.get_dummy_retriever() retriever.save_pretrained(os.path.join(self.tmpdirname , '''realm_block_records''' ) ) # Test local path _a : str = retriever.from_pretrained(os.path.join(self.tmpdirname , '''realm_block_records''' ) ) self.assertEqual(retriever.block_records[0] , b'''This is the first record''' ) # Test mocked remote path with patch('''transformers.models.realm.retrieval_realm.hf_hub_download''' ) as mock_hf_hub_download: _a : Tuple = os.path.join( os.path.join(self.tmpdirname , '''realm_block_records''' ) , _REALM_BLOCK_RECORDS_FILENAME ) _a : str = RealmRetriever.from_pretrained('''google/realm-cc-news-pretrained-openqa''' ) self.assertEqual(retriever.block_records[0] , b'''This is the first record''' )
352
from typing import Dict, Iterable, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format, to_pil_image from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_pytesseract_available, is_vision_available, logging, requires_backends if is_vision_available(): import PIL # soft dependency if is_pytesseract_available(): import pytesseract a__ = logging.get_logger(__name__) def __UpperCAmelCase ( __a : Union[str, Any] ,__a : str ,__a : Union[str, Any] ) -> List[str]: """simple docstring""" return [ int(1_000 * (box[0] / width) ), int(1_000 * (box[1] / height) ), int(1_000 * (box[2] / width) ), int(1_000 * (box[3] / height) ), ] def __UpperCAmelCase ( __a : np.ndarray ,__a : Optional[str] ,__a : Optional[str] ) -> List[Any]: """simple docstring""" _a : str = to_pil_image(__a ) _a , _a : Optional[Any] = pil_image.size _a : Tuple = pytesseract.image_to_data(__a ,lang=__a ,output_type='''dict''' ,config=__a ) _a , _a , _a , _a , _a : List[str] = data['''text'''], data['''left'''], data['''top'''], data['''width'''], data['''height'''] # filter empty words and corresponding coordinates _a : Dict = [idx for idx, word in enumerate(__a ) if not word.strip()] _a : str = [word for idx, word in enumerate(__a ) if idx not in irrelevant_indices] _a : List[str] = [coord for idx, coord in enumerate(__a ) if idx not in irrelevant_indices] _a : Union[str, Any] = [coord for idx, coord in enumerate(__a ) if idx not in irrelevant_indices] _a : str = [coord for idx, coord in enumerate(__a ) if idx not in irrelevant_indices] _a : Union[str, Any] = [coord for idx, coord in enumerate(__a ) if idx not in irrelevant_indices] # turn coordinates into (left, top, left+width, top+height) format _a : int = [] for x, y, w, h in zip(__a ,__a ,__a ,__a ): _a : List[str] = [x, y, x + w, y + h] actual_boxes.append(__a ) # finally, normalize the bounding boxes _a : Dict = [] for box in actual_boxes: normalized_boxes.append(normalize_box(__a ,__a ,__a ) ) assert len(__a ) == len(__a ), "Not as many words as there are bounding boxes" return words, normalized_boxes class UpperCAmelCase_ ( __lowercase ): """simple docstring""" UpperCAmelCase__ : Optional[int] = ["pixel_values"] def __init__( self , _a = True , _a = None , _a = PILImageResampling.BILINEAR , _a = True , _a = 1 / 2_5_5 , _a = True , _a = None , _a = None , _a = True , _a = None , _a = "" , **_a , ) -> None: super().__init__(**_a ) _a : List[str] = size if size is not None else {'''height''': 2_2_4, '''width''': 2_2_4} _a : Union[str, Any] = get_size_dict(_a ) _a : int = do_resize _a : Optional[int] = size _a : str = resample _a : str = do_rescale _a : Any = rescale_value _a : Optional[Any] = do_normalize _a : int = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _a : List[str] = image_std if image_std is not None else IMAGENET_STANDARD_STD _a : List[Any] = apply_ocr _a : Optional[int] = ocr_lang _a : Tuple = tesseract_config def __lowercase ( self , _a , _a , _a = PILImageResampling.BILINEAR , _a = None , **_a , ) -> np.ndarray: _a : Any = get_size_dict(_a ) if "height" not in size or "width" not in size: raise ValueError(F"""The size dictionary must contain the keys 'height' and 'width'. Got {size.keys()}""" ) _a : Optional[int] = (size['''height'''], size['''width''']) return resize(_a , size=_a , resample=_a , data_format=_a , **_a ) def __lowercase ( self , _a , _a , _a = None , **_a , ) -> np.ndarray: return rescale(_a , scale=_a , data_format=_a , **_a ) def __lowercase ( self , _a , _a , _a , _a = None , **_a , ) -> np.ndarray: return normalize(_a , mean=_a , std=_a , data_format=_a , **_a ) def __lowercase ( self , _a , _a = None , _a = None , _a=None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = ChannelDimension.FIRST , **_a , ) -> PIL.Image.Image: _a : Optional[int] = do_resize if do_resize is not None else self.do_resize _a : Union[str, Any] = size if size is not None else self.size _a : Any = get_size_dict(_a ) _a : List[str] = resample if resample is not None else self.resample _a : int = do_rescale if do_rescale is not None else self.do_rescale _a : Union[str, Any] = rescale_factor if rescale_factor is not None else self.rescale_factor _a : int = do_normalize if do_normalize is not None else self.do_normalize _a : str = image_mean if image_mean is not None else self.image_mean _a : Tuple = image_std if image_std is not None else self.image_std _a : Any = apply_ocr if apply_ocr is not None else self.apply_ocr _a : int = ocr_lang if ocr_lang is not None else self.ocr_lang _a : Optional[int] = tesseract_config if tesseract_config is not None else self.tesseract_config _a : List[Any] = make_list_of_images(_a ) if not valid_images(_a ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''If do_normalize is True, image_mean and image_std must be specified.''' ) # All transformations expect numpy arrays. _a : Any = [to_numpy_array(_a ) for image in images] # Tesseract OCR to get words + normalized bounding boxes if apply_ocr: requires_backends(self , '''pytesseract''' ) _a : str = [] _a : str = [] for image in images: _a , _a : Union[str, Any] = apply_tesseract(_a , _a , _a ) words_batch.append(_a ) boxes_batch.append(_a ) if do_resize: _a : List[str] = [self.resize(image=_a , size=_a , resample=_a ) for image in images] if do_rescale: _a : Optional[Any] = [self.rescale(image=_a , scale=_a ) for image in images] if do_normalize: _a : List[Any] = [self.normalize(image=_a , mean=_a , std=_a ) for image in images] _a : List[str] = [to_channel_dimension_format(_a , _a ) for image in images] _a : List[str] = BatchFeature(data={'''pixel_values''': images} , tensor_type=_a ) if apply_ocr: _a : Optional[int] = words_batch _a : List[Any] = boxes_batch return data
15
0
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging UpperCAmelCase_ : Any = logging.get_logger(__name__) if is_vision_available(): import PIL class lowerCAmelCase__ ( UpperCAmelCase__ ): '''simple docstring''' __UpperCamelCase = ["pixel_values"] def __init__( self : Dict , lowercase_ : bool = True , lowercase_ : Dict[str, int] = None , lowercase_ : PILImageResampling = PILImageResampling.BICUBIC , lowercase_ : bool = True , lowercase_ : Dict[str, int] = None , lowercase_ : bool = True , lowercase_ : Union[int, float] = 1 / 255 , lowercase_ : bool = True , lowercase_ : Optional[Union[float, List[float]]] = None , lowercase_ : Optional[Union[float, List[float]]] = None , lowercase_ : bool = True , **lowercase_ : Any , ): '''simple docstring''' super().__init__(**lowercase_) SCREAMING_SNAKE_CASE_ : Dict = size if size is not None else {'''shortest_edge''': 224} SCREAMING_SNAKE_CASE_ : List[str] = get_size_dict(lowercase_ , default_to_square=lowercase_) SCREAMING_SNAKE_CASE_ : str = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} SCREAMING_SNAKE_CASE_ : List[Any] = get_size_dict(lowercase_ , default_to_square=lowercase_ , param_name='''crop_size''') SCREAMING_SNAKE_CASE_ : List[Any] = do_resize SCREAMING_SNAKE_CASE_ : Tuple = size SCREAMING_SNAKE_CASE_ : str = resample SCREAMING_SNAKE_CASE_ : Any = do_center_crop SCREAMING_SNAKE_CASE_ : Any = crop_size SCREAMING_SNAKE_CASE_ : Dict = do_rescale SCREAMING_SNAKE_CASE_ : Any = rescale_factor SCREAMING_SNAKE_CASE_ : Optional[Any] = do_normalize SCREAMING_SNAKE_CASE_ : int = image_mean if image_mean is not None else OPENAI_CLIP_MEAN SCREAMING_SNAKE_CASE_ : str = image_std if image_std is not None else OPENAI_CLIP_STD SCREAMING_SNAKE_CASE_ : str = do_convert_rgb def _SCREAMING_SNAKE_CASE ( self : List[Any] , lowercase_ : np.ndarray , lowercase_ : Dict[str, int] , lowercase_ : PILImageResampling = PILImageResampling.BICUBIC , lowercase_ : Optional[Union[str, ChannelDimension]] = None , **lowercase_ : Optional[Any] , ): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Union[str, Any] = get_size_dict(lowercase_ , default_to_square=lowercase_) if "shortest_edge" not in size: raise ValueError(F'The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}') SCREAMING_SNAKE_CASE_ : Union[str, Any] = get_resize_output_image_size(lowercase_ , size=size['''shortest_edge'''] , default_to_square=lowercase_) return resize(lowercase_ , size=lowercase_ , resample=lowercase_ , data_format=lowercase_ , **lowercase_) def _SCREAMING_SNAKE_CASE ( self : str , lowercase_ : np.ndarray , lowercase_ : Dict[str, int] , lowercase_ : Optional[Union[str, ChannelDimension]] = None , **lowercase_ : Dict , ): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Union[str, Any] = get_size_dict(lowercase_) if "height" not in size or "width" not in size: raise ValueError(F'The `size` parameter must contain the keys (height, width). Got {size.keys()}') return center_crop(lowercase_ , size=(size['''height'''], size['''width''']) , data_format=lowercase_ , **lowercase_) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowercase_ : np.ndarray , lowercase_ : Union[int, float] , lowercase_ : Optional[Union[str, ChannelDimension]] = None , **lowercase_ : List[Any] , ): '''simple docstring''' return rescale(lowercase_ , scale=lowercase_ , data_format=lowercase_ , **lowercase_) def _SCREAMING_SNAKE_CASE ( self : Any , lowercase_ : np.ndarray , lowercase_ : Union[float, List[float]] , lowercase_ : Union[float, List[float]] , lowercase_ : Optional[Union[str, ChannelDimension]] = None , **lowercase_ : Dict , ): '''simple docstring''' return normalize(lowercase_ , mean=lowercase_ , std=lowercase_ , data_format=lowercase_ , **lowercase_) def _SCREAMING_SNAKE_CASE ( self : Dict , lowercase_ : ImageInput , lowercase_ : bool = None , lowercase_ : Dict[str, int] = None , lowercase_ : PILImageResampling = None , lowercase_ : bool = None , lowercase_ : int = None , lowercase_ : bool = None , lowercase_ : float = None , lowercase_ : bool = None , lowercase_ : Optional[Union[float, List[float]]] = None , lowercase_ : Optional[Union[float, List[float]]] = None , lowercase_ : bool = None , lowercase_ : Optional[Union[str, TensorType]] = None , lowercase_ : Optional[ChannelDimension] = ChannelDimension.FIRST , **lowercase_ : Union[str, Any] , ): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[int] = do_resize if do_resize is not None else self.do_resize SCREAMING_SNAKE_CASE_ : int = size if size is not None else self.size SCREAMING_SNAKE_CASE_ : Any = get_size_dict(lowercase_ , param_name='''size''' , default_to_square=lowercase_) SCREAMING_SNAKE_CASE_ : int = resample if resample is not None else self.resample SCREAMING_SNAKE_CASE_ : Any = do_center_crop if do_center_crop is not None else self.do_center_crop SCREAMING_SNAKE_CASE_ : List[str] = crop_size if crop_size is not None else self.crop_size SCREAMING_SNAKE_CASE_ : Union[str, Any] = get_size_dict(lowercase_ , param_name='''crop_size''' , default_to_square=lowercase_) SCREAMING_SNAKE_CASE_ : Optional[Any] = do_rescale if do_rescale is not None else self.do_rescale SCREAMING_SNAKE_CASE_ : List[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor SCREAMING_SNAKE_CASE_ : Optional[int] = do_normalize if do_normalize is not None else self.do_normalize SCREAMING_SNAKE_CASE_ : Optional[int] = image_mean if image_mean is not None else self.image_mean SCREAMING_SNAKE_CASE_ : List[str] = image_std if image_std is not None else self.image_std SCREAMING_SNAKE_CASE_ : str = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb SCREAMING_SNAKE_CASE_ : Optional[int] = make_list_of_images(lowercase_) if not valid_images(lowercase_): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''') if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''') if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''') if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''') if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''') # PIL RGBA images are converted to RGB if do_convert_rgb: SCREAMING_SNAKE_CASE_ : int = [convert_to_rgb(lowercase_) for image in images] # All transformations expect numpy arrays. SCREAMING_SNAKE_CASE_ : Tuple = [to_numpy_array(lowercase_) for image in images] if do_resize: SCREAMING_SNAKE_CASE_ : Union[str, Any] = [self.resize(image=lowercase_ , size=lowercase_ , resample=lowercase_) for image in images] if do_center_crop: SCREAMING_SNAKE_CASE_ : str = [self.center_crop(image=lowercase_ , size=lowercase_) for image in images] if do_rescale: SCREAMING_SNAKE_CASE_ : Union[str, Any] = [self.rescale(image=lowercase_ , scale=lowercase_) for image in images] if do_normalize: SCREAMING_SNAKE_CASE_ : Dict = [self.normalize(image=lowercase_ , mean=lowercase_ , std=lowercase_) for image in images] SCREAMING_SNAKE_CASE_ : List[str] = [to_channel_dimension_format(lowercase_ , lowercase_) for image in images] SCREAMING_SNAKE_CASE_ : Tuple = {'''pixel_values''': images} return BatchFeature(data=lowercase_ , tensor_type=lowercase_)
91
import math from typing import Callable, List, Optional, Union import numpy as np import PIL import torch from PIL import Image from transformers import CLIPTextModel, CLIPTokenizer from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale import StableDiffusionUpscalePipeline from diffusers.schedulers import DDIMScheduler, DDPMScheduler, LMSDiscreteScheduler, PNDMScheduler def lowerCAmelCase_ (lowerCAmelCase__: List[Any] , lowerCAmelCase__: List[str] , lowerCAmelCase__: Optional[Any]=[] ): """simple docstring""" UpperCAmelCase_: Union[str, Any] = size[0] - overlap_pixels * 2 UpperCAmelCase_: Dict = size[1] - overlap_pixels * 2 for letter in ["l", "r"]: if letter in remove_borders: size_x += overlap_pixels for letter in ["t", "b"]: if letter in remove_borders: size_y += overlap_pixels UpperCAmelCase_: Union[str, Any] = np.ones((size_y, size_x) , dtype=np.uinta ) * 2_5_5 UpperCAmelCase_: Optional[int] = np.pad(lowerCAmelCase__ , mode="""linear_ramp""" , pad_width=lowerCAmelCase__ , end_values=0 ) if "l" in remove_borders: UpperCAmelCase_: List[Any] = mask[:, overlap_pixels : mask.shape[1]] if "r" in remove_borders: UpperCAmelCase_: Optional[Any] = mask[:, 0 : mask.shape[1] - overlap_pixels] if "t" in remove_borders: UpperCAmelCase_: Optional[int] = mask[overlap_pixels : mask.shape[0], :] if "b" in remove_borders: UpperCAmelCase_: int = mask[0 : mask.shape[0] - overlap_pixels, :] return mask def lowerCAmelCase_ (lowerCAmelCase__: List[Any] , lowerCAmelCase__: str , lowerCAmelCase__: Union[str, Any] ): """simple docstring""" return max(lowerCAmelCase__ , min(lowerCAmelCase__ , lowerCAmelCase__ ) ) def lowerCAmelCase_ (lowerCAmelCase__: [int] , lowerCAmelCase__: [int] , lowerCAmelCase__: [int] ): """simple docstring""" return ( clamp(rect[0] , min[0] , max[0] ), clamp(rect[1] , min[1] , max[1] ), clamp(rect[2] , min[0] , max[0] ), clamp(rect[3] , min[1] , max[1] ), ) def lowerCAmelCase_ (lowerCAmelCase__: [int] , lowerCAmelCase__: int , lowerCAmelCase__: [int] ): """simple docstring""" UpperCAmelCase_: str = list(lowerCAmelCase__ ) rect[0] -= overlap rect[1] -= overlap rect[2] += overlap rect[3] += overlap UpperCAmelCase_: int = clamp_rect(lowerCAmelCase__ , [0, 0] , [image_size[0], image_size[1]] ) return rect def lowerCAmelCase_ (lowerCAmelCase__: List[Any] , lowerCAmelCase__: List[str] , lowerCAmelCase__: List[Any] , lowerCAmelCase__: int ): """simple docstring""" UpperCAmelCase_: Optional[Any] = Image.new("""RGB""" , (tile.size[0] + original_slice, tile.size[1]) ) result.paste( original_image.resize((tile.size[0], tile.size[1]) , Image.BICUBIC ).crop( (slice_x, 0, slice_x + original_slice, tile.size[1]) ) , (0, 0) , ) result.paste(lowerCAmelCase__ , (original_slice, 0) ) return result def lowerCAmelCase_ (lowerCAmelCase__: Dict , lowerCAmelCase__: Dict ): """simple docstring""" UpperCAmelCase_: Dict = (original_image_slice * 4, 0, tile.size[0], tile.size[1]) UpperCAmelCase_: Optional[int] = tile.crop(lowerCAmelCase__ ) return tile def lowerCAmelCase_ (lowerCAmelCase__: Tuple , lowerCAmelCase__: int ): """simple docstring""" UpperCAmelCase_: str = n % d return n - divisor class _a ( _lowerCAmelCase ): def __init__(self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = 350, ) -> str: super().__init__( vae=SCREAMING_SNAKE_CASE_, text_encoder=SCREAMING_SNAKE_CASE_, tokenizer=SCREAMING_SNAKE_CASE_, unet=SCREAMING_SNAKE_CASE_, low_res_scheduler=SCREAMING_SNAKE_CASE_, scheduler=SCREAMING_SNAKE_CASE_, max_noise_level=SCREAMING_SNAKE_CASE_, ) def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) -> Dict: torch.manual_seed(0 ) UpperCAmelCase_: Dict = ( min(image.size[0] - (tile_size + original_image_slice), x * tile_size ), min(image.size[1] - (tile_size + original_image_slice), y * tile_size ), min(image.size[0], (x + 1) * tile_size ), min(image.size[1], (y + 1) * tile_size ), ) UpperCAmelCase_: Tuple = add_overlap_rect(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, image.size ) UpperCAmelCase_: List[str] = image.crop(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Optional[Any] = ((crop_rect[0] + ((crop_rect[2] - crop_rect[0]) / 2)) / image.size[0]) * tile.size[0] UpperCAmelCase_: List[Any] = translated_slice_x - (original_image_slice / 2) UpperCAmelCase_: str = max(0, SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Any = squeeze_tile(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Any = to_input.size UpperCAmelCase_: Any = to_input.resize((tile_size, tile_size), Image.BICUBIC ) UpperCAmelCase_: str = super(SCREAMING_SNAKE_CASE_, self ).__call__(image=SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ).images[0] UpperCAmelCase_: Optional[int] = upscaled_tile.resize((orig_input_size[0] * 4, orig_input_size[1] * 4), Image.BICUBIC ) UpperCAmelCase_: int = unsqueeze_tile(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Optional[Any] = upscaled_tile.resize((tile.size[0] * 4, tile.size[1] * 4), Image.BICUBIC ) UpperCAmelCase_: Union[str, Any] = [] if x == 0: remove_borders.append("""l""" ) elif crop_rect[2] == image.size[0]: remove_borders.append("""r""" ) if y == 0: remove_borders.append("""t""" ) elif crop_rect[3] == image.size[1]: remove_borders.append("""b""" ) UpperCAmelCase_: Tuple = Image.fromarray( make_transparency_mask( (upscaled_tile.size[0], upscaled_tile.size[1]), tile_border * 4, remove_borders=SCREAMING_SNAKE_CASE_ ), mode="""L""", ) final_image.paste( SCREAMING_SNAKE_CASE_, (crop_rect_with_overlap[0] * 4, crop_rect_with_overlap[1] * 4), SCREAMING_SNAKE_CASE_ ) @torch.no_grad() def __call__(self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = 75, SCREAMING_SNAKE_CASE_ = 9.0, SCREAMING_SNAKE_CASE_ = 50, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = 1, SCREAMING_SNAKE_CASE_ = 0.0, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = 1, SCREAMING_SNAKE_CASE_ = 128, SCREAMING_SNAKE_CASE_ = 32, SCREAMING_SNAKE_CASE_ = 32, ) -> Dict: UpperCAmelCase_: int = Image.new("""RGB""", (image.size[0] * 4, image.size[1] * 4) ) UpperCAmelCase_: str = math.ceil(image.size[0] / tile_size ) UpperCAmelCase_: int = math.ceil(image.size[1] / tile_size ) UpperCAmelCase_: Dict = tcx * tcy UpperCAmelCase_: Optional[Any] = 0 for y in range(SCREAMING_SNAKE_CASE_ ): for x in range(SCREAMING_SNAKE_CASE_ ): self._process_tile( SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, prompt=SCREAMING_SNAKE_CASE_, num_inference_steps=SCREAMING_SNAKE_CASE_, guidance_scale=SCREAMING_SNAKE_CASE_, noise_level=SCREAMING_SNAKE_CASE_, negative_prompt=SCREAMING_SNAKE_CASE_, num_images_per_prompt=SCREAMING_SNAKE_CASE_, eta=SCREAMING_SNAKE_CASE_, generator=SCREAMING_SNAKE_CASE_, latents=SCREAMING_SNAKE_CASE_, ) current_count += 1 if callback is not None: callback({"""progress""": current_count / total_tile_count, """image""": final_image} ) return final_image def lowerCAmelCase_ (): """simple docstring""" UpperCAmelCase_: Tuple = """stabilityai/stable-diffusion-x4-upscaler""" UpperCAmelCase_: Union[str, Any] = StableDiffusionTiledUpscalePipeline.from_pretrained(lowerCAmelCase__ , revision="""fp16""" , torch_dtype=torch.floataa ) UpperCAmelCase_: str = pipe.to("""cuda""" ) UpperCAmelCase_: List[str] = Image.open("""../../docs/source/imgs/diffusers_library.jpg""" ) def callback(lowerCAmelCase__: Dict ): print(F'progress: {obj["progress"]:.4f}' ) obj["image"].save("""diffusers_library_progress.jpg""" ) UpperCAmelCase_: Optional[int] = pipe(image=lowerCAmelCase__ , prompt="""Black font, white background, vector""" , noise_level=4_0 , callback=lowerCAmelCase__ ) final_image.save("""diffusers_library.jpg""" ) if __name__ == "__main__": main()
147
0
import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def snake_case_(_UpperCamelCase ) -> Union[str, Any]: """simple docstring""" _snake_case = filter(lambda _UpperCamelCase : p.requires_grad , model.parameters() ) _snake_case = sum([np.prod(p.size() ) for p in model_parameters] ) return params __A = logging.getLogger(__name__) def snake_case_(_UpperCamelCase , _UpperCamelCase ) -> List[str]: """simple docstring""" if metric == "rouge2": _snake_case = '''{val_avg_rouge2:.4f}-{step_count}''' elif metric == "bleu": _snake_case = '''{val_avg_bleu:.4f}-{step_count}''' elif metric == "em": _snake_case = '''{val_avg_em:.4f}-{step_count}''' elif metric == "loss": _snake_case = '''{val_avg_loss:.4f}-{step_count}''' else: raise NotImplementedError( F"""seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this""" ''' function.''' ) _snake_case = ModelCheckpoint( dirpath=_UpperCamelCase , filename=_UpperCamelCase , monitor=F"""val_{metric}""" , mode='''max''' , save_top_k=1 , every_n_epochs=1 , ) return checkpoint_callback def snake_case_(_UpperCamelCase , _UpperCamelCase ) -> Tuple: """simple docstring""" return EarlyStopping( monitor=F"""val_{metric}""" , mode='''min''' if '''loss''' in metric else '''max''' , patience=_UpperCamelCase , verbose=_UpperCamelCase , ) class lowercase_ ( pl.Callback ): def UpperCamelCase_ ( self : Optional[Any] , A__ : Optional[Any] , A__ : Optional[int] ) -> List[str]: _snake_case = {f"""lr_group_{i}""": param['''lr'''] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )} pl_module.logger.log_metrics(A__ ) @rank_zero_only def UpperCamelCase_ ( self : Optional[int] , A__ : pl.Trainer , A__ : pl.LightningModule , A__ : str , A__ : List[str]=True ) -> None: logger.info(f"""***** {type_path} results at step {trainer.global_step:05d} *****""" ) _snake_case = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ['''log''', '''progress_bar''', '''preds''']} ) # Log results _snake_case = Path(pl_module.hparams.output_dir ) if type_path == "test": _snake_case = od / '''test_results.txt''' _snake_case = od / '''test_generations.txt''' else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. _snake_case = od / f"""{type_path}_results/{trainer.global_step:05d}.txt""" _snake_case = od / f"""{type_path}_generations/{trainer.global_step:05d}.txt""" results_file.parent.mkdir(exist_ok=A__ ) generations_file.parent.mkdir(exist_ok=A__ ) with open(A__ , '''a+''' ) as writer: for key in sorted(A__ ): if key in ["log", "progress_bar", "preds"]: continue _snake_case = metrics[key] if isinstance(A__ , torch.Tensor ): _snake_case = val.item() _snake_case = f"""{key}: {val:.6f}\n""" writer.write(A__ ) if not save_generations: return if "preds" in metrics: _snake_case = '''\n'''.join(metrics['''preds'''] ) generations_file.open('''w+''' ).write(A__ ) @rank_zero_only def UpperCamelCase_ ( self : Tuple , A__ : Any , A__ : List[str] ) -> Any: try: _snake_case = pl_module.model.model.num_parameters() except AttributeError: _snake_case = pl_module.model.num_parameters() _snake_case = count_trainable_parameters(A__ ) # mp stands for million parameters trainer.logger.log_metrics({'''n_params''': npars, '''mp''': npars / 1e6, '''grad_mp''': n_trainable_pars / 1e6} ) @rank_zero_only def UpperCamelCase_ ( self : List[str] , A__ : pl.Trainer , A__ : pl.LightningModule ) -> Union[str, Any]: save_json(pl_module.metrics , pl_module.metrics_save_path ) return self._write_logs(A__ , A__ , '''test''' ) @rank_zero_only def UpperCamelCase_ ( self : Union[str, Any] , A__ : pl.Trainer , A__ : Optional[Any] ) -> Union[str, Any]: save_json(pl_module.metrics , pl_module.metrics_save_path ) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
355
from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_herbert import HerbertTokenizer __A = logging.get_logger(__name__) __A = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} __A = { '''vocab_file''': { '''allegro/herbert-base-cased''': '''https://huggingface.co/allegro/herbert-base-cased/resolve/main/vocab.json''' }, '''merges_file''': { '''allegro/herbert-base-cased''': '''https://huggingface.co/allegro/herbert-base-cased/resolve/main/merges.txt''' }, } __A = {'''allegro/herbert-base-cased''': 5_14} __A = {} class lowercase_ ( __lowercase ): UpperCamelCase_ : Any = VOCAB_FILES_NAMES UpperCamelCase_ : Optional[int] = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ : List[str] = PRETRAINED_INIT_CONFIGURATION UpperCamelCase_ : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ : Optional[Any] = HerbertTokenizer def __init__( self : Tuple , A__ : str=None , A__ : Optional[Any]=None , A__ : Union[str, Any]=None , A__ : Optional[int]="<s>" , A__ : Optional[int]="<unk>" , A__ : str="<pad>" , A__ : List[Any]="<mask>" , A__ : Dict="</s>" , **A__ : Optional[int] , ) -> Optional[int]: super().__init__( A__ , A__ , tokenizer_file=A__ , cls_token=A__ , unk_token=A__ , pad_token=A__ , mask_token=A__ , sep_token=A__ , **A__ , ) def UpperCamelCase_ ( self : str , A__ : List[int] , A__ : Optional[List[int]] = None ) -> List[int]: _snake_case = [self.cls_token_id] _snake_case = [self.sep_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def UpperCamelCase_ ( self : Tuple , A__ : List[int] , A__ : Optional[List[int]] = None , A__ : bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=A__ , token_ids_a=A__ , already_has_special_tokens=A__ ) if token_ids_a is None: return [1] + ([0] * len(A__ )) + [1] return [1] + ([0] * len(A__ )) + [1] + ([0] * len(A__ )) + [1] def UpperCamelCase_ ( self : Any , A__ : List[int] , A__ : Optional[List[int]] = None ) -> List[int]: _snake_case = [self.sep_token_id] _snake_case = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCamelCase_ ( self : Union[str, Any] , A__ : str , A__ : Optional[str] = None ) -> Tuple[str]: _snake_case = self._tokenizer.model.save(A__ , name=A__ ) return tuple(A__ )
278
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available SCREAMING_SNAKE_CASE_: Dict ={ 'configuration_squeezebert': [ 'SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'SqueezeBertConfig', 'SqueezeBertOnnxConfig', ], 'tokenization_squeezebert': ['SqueezeBertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_: Optional[int] =['SqueezeBertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_: str =[ 'SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'SqueezeBertForMaskedLM', 'SqueezeBertForMultipleChoice', 'SqueezeBertForQuestionAnswering', 'SqueezeBertForSequenceClassification', 'SqueezeBertForTokenClassification', 'SqueezeBertModel', 'SqueezeBertModule', 'SqueezeBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_squeezebert import ( SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, SqueezeBertConfig, SqueezeBertOnnxConfig, ) from .tokenization_squeezebert import SqueezeBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_squeezebert_fast import SqueezeBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_squeezebert import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, SqueezeBertModule, SqueezeBertPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE_: List[Any] =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
1
'''simple docstring''' from typing import Callable, Dict, Optional, Tuple import torch from torch import nn from torch.distributions import ( AffineTransform, Distribution, Independent, NegativeBinomial, Normal, StudentT, TransformedDistribution, ) class __A ( UpperCamelCase__ ): def __init__(self : int , __a : Distribution , __a : Dict=None , __a : int=None , __a : Any=0 ): UpperCAmelCase_ = 1.0 if scale is None else scale UpperCAmelCase_ = 0.0 if loc is None else loc super().__init__(__a , [AffineTransform(loc=self.loc , scale=self.scale , event_dim=__a )] ) @property def _lowercase (self : Union[str, Any] ): return self.base_dist.mean * self.scale + self.loc @property def _lowercase (self : List[Any] ): return self.base_dist.variance * self.scale**2 @property def _lowercase (self : List[Any] ): return self.variance.sqrt() class __A ( nn.Module ): def __init__(self : Optional[int] , __a : int , __a : Dict[str, int] , __a : Callable[..., Tuple[torch.Tensor]] , **__a : List[str] ): super().__init__(**__a ) UpperCAmelCase_ = args_dim UpperCAmelCase_ = nn.ModuleList([nn.Linear(__a , __a ) for dim in args_dim.values()] ) UpperCAmelCase_ = domain_map def _lowercase (self : List[str] , __a : torch.Tensor ): UpperCAmelCase_ = [proj(__a ) for proj in self.proj] return self.domain_map(*__a ) class __A ( nn.Module ): def __init__(self : Union[str, Any] , __a : List[str] ): super().__init__() UpperCAmelCase_ = function def _lowercase (self : Optional[int] , __a : List[str] , *__a : Optional[int] ): return self.function(__a , *__a ) class __A : a__ : type a__ : int a__ : Dict[str, int] def __init__(self : List[Any] , __a : int = 1 ): UpperCAmelCase_ = dim UpperCAmelCase_ = {k: dim * self.args_dim[k] for k in self.args_dim} def _lowercase (self : Any , __a : Any ): if self.dim == 1: return self.distribution_class(*__a ) else: return Independent(self.distribution_class(*__a ) , 1 ) def _lowercase (self : List[str] , __a : Union[str, Any] , __a : Optional[torch.Tensor] = None , __a : Optional[torch.Tensor] = None , ): UpperCAmelCase_ = self._base_distribution(__a ) if loc is None and scale is None: return distr else: return AffineTransformed(__a , loc=__a , scale=__a , event_dim=self.event_dim ) @property def _lowercase (self : Any ): return () if self.dim == 1 else (self.dim,) @property def _lowercase (self : Dict ): return len(self.event_shape ) @property def _lowercase (self : Tuple ): return 0.0 def _lowercase (self : List[str] , __a : int ): return ParameterProjection( in_features=__a , args_dim=self.args_dim , domain_map=LambdaLayer(self.domain_map ) , ) def _lowercase (self : Optional[int] , *__a : torch.Tensor ): raise NotImplementedError() @staticmethod def _lowercase (__a : torch.Tensor ): return (x + torch.sqrt(torch.square(__a ) + 4.0 )) / 2.0 class __A ( UpperCamelCase__ ): a__ : Dict[str, int] = {"df": 1, "loc": 1, "scale": 1} a__ : type = StudentT @classmethod def _lowercase (cls : Union[str, Any] , __a : torch.Tensor , __a : torch.Tensor , __a : torch.Tensor ): UpperCAmelCase_ = cls.squareplus(__a ).clamp_min(torch.finfo(scale.dtype ).eps ) UpperCAmelCase_ = 2.0 + cls.squareplus(__a ) return df.squeeze(-1 ), loc.squeeze(-1 ), scale.squeeze(-1 ) class __A ( UpperCamelCase__ ): a__ : Dict[str, int] = {"loc": 1, "scale": 1} a__ : type = Normal @classmethod def _lowercase (cls : Tuple , __a : torch.Tensor , __a : torch.Tensor ): UpperCAmelCase_ = cls.squareplus(__a ).clamp_min(torch.finfo(scale.dtype ).eps ) return loc.squeeze(-1 ), scale.squeeze(-1 ) class __A ( UpperCamelCase__ ): a__ : Dict[str, int] = {"total_count": 1, "logits": 1} a__ : type = NegativeBinomial @classmethod def _lowercase (cls : Optional[Any] , __a : torch.Tensor , __a : torch.Tensor ): UpperCAmelCase_ = cls.squareplus(__a ) return total_count.squeeze(-1 ), logits.squeeze(-1 ) def _lowercase (self : List[str] , __a : str ): UpperCAmelCase_ , UpperCAmelCase_ = distr_args if self.dim == 1: return self.distribution_class(total_count=__a , logits=__a ) else: return Independent(self.distribution_class(total_count=__a , logits=__a ) , 1 ) def _lowercase (self : Optional[Any] , __a : int , __a : Optional[torch.Tensor] = None , __a : Optional[torch.Tensor] = None ): UpperCAmelCase_ , UpperCAmelCase_ = distr_args if scale is not None: # See scaling property of Gamma. logits += scale.log() return self._base_distribution((total_count, logits) )
1
1
"""simple docstring""" import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __a ( lowerCAmelCase__ ): SCREAMING_SNAKE_CASE__ : int = ["image_processor", "tokenizer"] SCREAMING_SNAKE_CASE__ : Optional[Any] = "ViltImageProcessor" SCREAMING_SNAKE_CASE__ : int = ("BertTokenizer", "BertTokenizerFast") def __init__( self , a__=None , a__=None , **a__ ): _lowerCamelCase = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , a__ , ) _lowerCamelCase = kwargs.pop('feature_extractor' ) _lowerCamelCase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(a__ , a__ ) _lowerCamelCase = self.image_processor def __call__( self , a__ , a__ = None , a__ = True , a__ = False , a__ = None , a__ = None , a__ = 0 , a__ = None , a__ = None , a__ = None , a__ = False , a__ = False , a__ = False , a__ = False , a__ = True , a__ = None , **a__ , ): _lowerCamelCase = self.tokenizer( text=a__ , add_special_tokens=a__ , padding=a__ , truncation=a__ , max_length=a__ , stride=a__ , pad_to_multiple_of=a__ , return_token_type_ids=a__ , return_attention_mask=a__ , return_overflowing_tokens=a__ , return_special_tokens_mask=a__ , return_offsets_mapping=a__ , return_length=a__ , verbose=a__ , return_tensors=a__ , **a__ , ) # add pixel_values + pixel_mask _lowerCamelCase = self.image_processor(a__ , return_tensors=a__ ) encoding.update(a__ ) return encoding def snake_case_ ( self , *a__ , **a__ ): return self.tokenizer.batch_decode(*a__ , **a__ ) def snake_case_ ( self , *a__ , **a__ ): return self.tokenizer.decode(*a__ , **a__ ) @property def snake_case_ ( self ): _lowerCamelCase = self.tokenizer.model_input_names _lowerCamelCase = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def snake_case_ ( self ): warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , a__ , ) return self.image_processor_class @property def snake_case_ ( self ): warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , a__ , ) return self.image_processor
80
"""simple docstring""" from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from ..image_utils import load_image if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_OBJECT_DETECTION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING A_ : Any =logging.get_logger(__name__) A_ : Dict =Dict[str, Any] A_ : Dict =List[Prediction] @add_end_docstrings(lowerCAmelCase__ ) class __a ( lowerCAmelCase__ ): def __init__( self , *a__ , **a__ ): super().__init__(*a__ , **a__ ) if self.framework == "tf": raise ValueError(F'The {self.__class__} is only available in PyTorch.' ) requires_backends(self , 'vision' ) self.check_model_type( dict(MODEL_FOR_OBJECT_DETECTION_MAPPING.items() + MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING.items() ) ) def snake_case_ ( self , **a__ ): _lowerCamelCase = {} if "threshold" in kwargs: _lowerCamelCase = kwargs['threshold'] return {}, {}, postprocess_kwargs def __call__( self , *a__ , **a__ ): return super().__call__(*a__ , **a__ ) def snake_case_ ( self , a__ ): _lowerCamelCase = load_image(a__ ) _lowerCamelCase = torch.IntTensor([[image.height, image.width]] ) _lowerCamelCase = self.image_processor(images=[image] , return_tensors='pt' ) if self.tokenizer is not None: _lowerCamelCase = self.tokenizer(text=inputs['words'] , boxes=inputs['boxes'] , return_tensors='pt' ) _lowerCamelCase = target_size return inputs def snake_case_ ( self , a__ ): _lowerCamelCase = model_inputs.pop('target_size' ) _lowerCamelCase = self.model(**a__ ) _lowerCamelCase = outputs.__class__({'target_size': target_size, **outputs} ) if self.tokenizer is not None: _lowerCamelCase = model_inputs['bbox'] return model_outputs def snake_case_ ( self , a__ , a__=0.9 ): _lowerCamelCase = model_outputs['target_size'] if self.tokenizer is not None: # This is a LayoutLMForTokenClassification variant. # The OCR got the boxes and the model classified the words. _lowerCamelCase , _lowerCamelCase = target_size[0].tolist() def unnormalize(a__ ): return self._get_bounding_box( torch.Tensor( [ (width * bbox[0] / 10_00), (height * bbox[1] / 10_00), (width * bbox[2] / 10_00), (height * bbox[3] / 10_00), ] ) ) _lowerCamelCase , _lowerCamelCase = model_outputs['logits'].squeeze(0 ).softmax(dim=-1 ).max(dim=-1 ) _lowerCamelCase = [self.model.config.idalabel[prediction] for prediction in classes.tolist()] _lowerCamelCase = [unnormalize(a__ ) for bbox in model_outputs['bbox'].squeeze(0 )] _lowerCamelCase = ['score', 'label', 'box'] _lowerCamelCase = [dict(zip(a__ , a__ ) ) for vals in zip(scores.tolist() , a__ , a__ ) if vals[0] > threshold] else: # This is a regular ForObjectDetectionModel _lowerCamelCase = self.image_processor.post_process_object_detection(a__ , a__ , a__ ) _lowerCamelCase = raw_annotations[0] _lowerCamelCase = raw_annotation['scores'] _lowerCamelCase = raw_annotation['labels'] _lowerCamelCase = raw_annotation['boxes'] _lowerCamelCase = scores.tolist() _lowerCamelCase = [self.model.config.idalabel[label.item()] for label in labels] _lowerCamelCase = [self._get_bounding_box(a__ ) for box in boxes] # {"scores": [...], ...} --> [{"score":x, ...}, ...] _lowerCamelCase = ['score', 'label', 'box'] _lowerCamelCase = [ dict(zip(a__ , a__ ) ) for vals in zip(raw_annotation['scores'] , raw_annotation['labels'] , raw_annotation['boxes'] ) ] return annotation def snake_case_ ( self , a__ ): if self.framework != "pt": raise ValueError('The ObjectDetectionPipeline is only available in PyTorch.' ) _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = box.int().tolist() _lowerCamelCase = { 'xmin': xmin, 'ymin': ymin, 'xmax': xmax, 'ymax': ymax, } return bbox
80
1
import tempfile import unittest import numpy as np from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import BertConfig, is_flax_available from transformers.testing_utils import TOKEN, USER, is_staging_test, require_flax if is_flax_available(): import os from flax.core.frozen_dict import unfreeze from flax.traverse_util import flatten_dict from transformers import FlaxBertModel __a = '0.12' # assumed parallelism: 8 @require_flax @is_staging_test class lowercase__( unittest.TestCase ): """simple docstring""" @classmethod def _lowercase ( cls : Any ) -> Optional[Any]: lowercase_ = TOKEN HfFolder.save_token(SCREAMING_SNAKE_CASE_ ) @classmethod def _lowercase ( cls : int ) -> str: try: delete_repo(token=cls._token , repo_id='''test-model-flax''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-model-flax-org''' ) except HTTPError: pass def _lowercase ( self : List[Any] ) -> str: lowercase_ = BertConfig( vocab_size=9_9 , hidden_size=3_2 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=3_7 ) lowercase_ = FlaxBertModel(SCREAMING_SNAKE_CASE_ ) model.push_to_hub('''test-model-flax''' , use_auth_token=self._token ) lowercase_ = FlaxBertModel.from_pretrained(f'''{USER}/test-model-flax''' ) lowercase_ = flatten_dict(unfreeze(model.params ) ) lowercase_ = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): lowercase_ = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(SCREAMING_SNAKE_CASE_ , 1e-3 , msg=f'''{key} not identical''' ) # Reset repo delete_repo(token=self._token , repo_id='''test-model-flax''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(SCREAMING_SNAKE_CASE_ , repo_id='''test-model-flax''' , push_to_hub=SCREAMING_SNAKE_CASE_ , use_auth_token=self._token ) lowercase_ = FlaxBertModel.from_pretrained(f'''{USER}/test-model-flax''' ) lowercase_ = flatten_dict(unfreeze(model.params ) ) lowercase_ = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): lowercase_ = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(SCREAMING_SNAKE_CASE_ , 1e-3 , msg=f'''{key} not identical''' ) def _lowercase ( self : Union[str, Any] ) -> List[Any]: lowercase_ = BertConfig( vocab_size=9_9 , hidden_size=3_2 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=3_7 ) lowercase_ = FlaxBertModel(SCREAMING_SNAKE_CASE_ ) model.push_to_hub('''valid_org/test-model-flax-org''' , use_auth_token=self._token ) lowercase_ = FlaxBertModel.from_pretrained('''valid_org/test-model-flax-org''' ) lowercase_ = flatten_dict(unfreeze(model.params ) ) lowercase_ = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): lowercase_ = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(SCREAMING_SNAKE_CASE_ , 1e-3 , msg=f'''{key} not identical''' ) # Reset repo delete_repo(token=self._token , repo_id='''valid_org/test-model-flax-org''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained( SCREAMING_SNAKE_CASE_ , repo_id='''valid_org/test-model-flax-org''' , push_to_hub=SCREAMING_SNAKE_CASE_ , use_auth_token=self._token ) lowercase_ = FlaxBertModel.from_pretrained('''valid_org/test-model-flax-org''' ) lowercase_ = flatten_dict(unfreeze(model.params ) ) lowercase_ = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): lowercase_ = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(SCREAMING_SNAKE_CASE_ , 1e-3 , msg=f'''{key} not identical''' ) def a ( snake_case__: Any , snake_case__: List[str] ): '''simple docstring''' lowercase_ = True lowercase_ = flatten_dict(modela.params ) lowercase_ = flatten_dict(modela.params ) for key in flat_params_a.keys(): if np.sum(np.abs(flat_params_a[key] - flat_params_a[key] ) ) > 1e-4: lowercase_ = False return models_are_equal @require_flax class lowercase__( unittest.TestCase ): """simple docstring""" def _lowercase ( self : int ) -> Union[str, Any]: lowercase_ = BertConfig.from_pretrained('''hf-internal-testing/tiny-bert-flax-only''' ) lowercase_ = FlaxBertModel(SCREAMING_SNAKE_CASE_ ) lowercase_ = '''bert''' with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) with self.assertRaises(SCREAMING_SNAKE_CASE_ ): lowercase_ = FlaxBertModel.from_pretrained(SCREAMING_SNAKE_CASE_ ) lowercase_ = FlaxBertModel.from_pretrained(SCREAMING_SNAKE_CASE_ , subfolder=SCREAMING_SNAKE_CASE_ ) self.assertTrue(check_models_equal(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) def _lowercase ( self : List[str] ) -> Union[str, Any]: lowercase_ = BertConfig.from_pretrained('''hf-internal-testing/tiny-bert-flax-only''' ) lowercase_ = FlaxBertModel(SCREAMING_SNAKE_CASE_ ) lowercase_ = '''bert''' with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) , max_shard_size='''10KB''' ) with self.assertRaises(SCREAMING_SNAKE_CASE_ ): lowercase_ = FlaxBertModel.from_pretrained(SCREAMING_SNAKE_CASE_ ) lowercase_ = FlaxBertModel.from_pretrained(SCREAMING_SNAKE_CASE_ , subfolder=SCREAMING_SNAKE_CASE_ ) self.assertTrue(check_models_equal(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) def _lowercase ( self : Tuple ) -> List[str]: lowercase_ = '''bert''' lowercase_ = '''hf-internal-testing/tiny-random-bert-subfolder''' with self.assertRaises(SCREAMING_SNAKE_CASE_ ): lowercase_ = FlaxBertModel.from_pretrained(SCREAMING_SNAKE_CASE_ ) lowercase_ = FlaxBertModel.from_pretrained(SCREAMING_SNAKE_CASE_ , subfolder=SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) def _lowercase ( self : Any ) -> str: lowercase_ = '''bert''' lowercase_ = '''hf-internal-testing/tiny-random-bert-sharded-subfolder''' with self.assertRaises(SCREAMING_SNAKE_CASE_ ): lowercase_ = FlaxBertModel.from_pretrained(SCREAMING_SNAKE_CASE_ ) lowercase_ = FlaxBertModel.from_pretrained(SCREAMING_SNAKE_CASE_ , subfolder=SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ )
30
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __a = { 'configuration_rembert': ['REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'RemBertConfig', 'RemBertOnnxConfig'] } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = ['RemBertTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = ['RemBertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ 'REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'RemBertForCausalLM', 'RemBertForMaskedLM', 'RemBertForMultipleChoice', 'RemBertForQuestionAnswering', 'RemBertForSequenceClassification', 'RemBertForTokenClassification', 'RemBertLayer', 'RemBertModel', 'RemBertPreTrainedModel', 'load_tf_weights_in_rembert', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ 'TF_REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFRemBertForCausalLM', 'TFRemBertForMaskedLM', 'TFRemBertForMultipleChoice', 'TFRemBertForQuestionAnswering', 'TFRemBertForSequenceClassification', 'TFRemBertForTokenClassification', 'TFRemBertLayer', 'TFRemBertModel', 'TFRemBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_rembert import REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RemBertConfig, RemBertOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_rembert import RemBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_rembert_fast import RemBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_rembert import ( REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST, RemBertForCausalLM, RemBertForMaskedLM, RemBertForMultipleChoice, RemBertForQuestionAnswering, RemBertForSequenceClassification, RemBertForTokenClassification, RemBertLayer, RemBertModel, RemBertPreTrainedModel, load_tf_weights_in_rembert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_rembert import ( TF_REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFRemBertForCausalLM, TFRemBertForMaskedLM, TFRemBertForMultipleChoice, TFRemBertForQuestionAnswering, TFRemBertForSequenceClassification, TFRemBertForTokenClassification, TFRemBertLayer, TFRemBertModel, TFRemBertPreTrainedModel, ) else: import sys __a = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
30
1
'''simple docstring''' import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import DetrConfig, MaskFormerConfig, SwinConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskFormerForInstanceSegmentation, MaskFormerModel if is_vision_available(): from transformers import MaskFormerImageProcessor if is_vision_available(): from PIL import Image class __lowerCAmelCase : """simple docstring""" def __init__( self : int , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Optional[Any]=2 , lowerCAmelCase__ : List[str]=True , lowerCAmelCase__ : Tuple=False , lowerCAmelCase__ : Optional[Any]=10 , lowerCAmelCase__ : Any=3 , lowerCAmelCase__ : str=32 * 4 , lowerCAmelCase__ : Union[str, Any]=32 * 6 , lowerCAmelCase__ : Union[str, Any]=4 , lowerCAmelCase__ : Optional[Any]=32 , ) -> Dict: '''simple docstring''' _UpperCamelCase = parent _UpperCamelCase = batch_size _UpperCamelCase = is_training _UpperCamelCase = use_auxiliary_loss _UpperCamelCase = num_queries _UpperCamelCase = num_channels _UpperCamelCase = min_size _UpperCamelCase = max_size _UpperCamelCase = num_labels _UpperCamelCase = mask_feature_size def snake_case__ ( self : str ) -> str: '''simple docstring''' _UpperCamelCase = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( lowerCAmelCase__ ) _UpperCamelCase = torch.ones([self.batch_size, self.min_size, self.max_size] , device=lowerCAmelCase__ ) _UpperCamelCase = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=lowerCAmelCase__ ) > 0.5 ).float() _UpperCamelCase = (torch.rand((self.batch_size, self.num_labels) , device=lowerCAmelCase__ ) > 0.5).long() _UpperCamelCase = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def snake_case__ ( self : Tuple ) -> Dict: '''simple docstring''' return MaskFormerConfig.from_backbone_and_decoder_configs( backbone_config=SwinConfig( depths=[1, 1, 1, 1] , ) , decoder_config=DetrConfig( decoder_ffn_dim=128 , num_queries=self.num_queries , decoder_attention_heads=2 , d_model=self.mask_feature_size , ) , mask_feature_size=self.mask_feature_size , fpn_feature_size=self.mask_feature_size , num_channels=self.num_channels , num_labels=self.num_labels , ) def snake_case__ ( self : str ) -> int: '''simple docstring''' _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = self.prepare_config_and_inputs() _UpperCamelCase = {'''pixel_values''': pixel_values, '''pixel_mask''': pixel_mask} return config, inputs_dict def snake_case__ ( self : Dict , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Union[str, Any] ) -> Optional[int]: '''simple docstring''' _UpperCamelCase = output.encoder_hidden_states _UpperCamelCase = output.pixel_decoder_hidden_states _UpperCamelCase = output.transformer_decoder_hidden_states self.parent.assertTrue(len(lowerCAmelCase__ ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(lowerCAmelCase__ ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(lowerCAmelCase__ ) , config.decoder_config.decoder_layers ) def snake_case__ ( self : str , lowerCAmelCase__ : str , lowerCAmelCase__ : Any , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Union[str, Any]=False ) -> Dict: '''simple docstring''' with torch.no_grad(): _UpperCamelCase = MaskFormerModel(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() _UpperCamelCase = model(pixel_values=lowerCAmelCase__ , pixel_mask=lowerCAmelCase__ ) _UpperCamelCase = model(lowerCAmelCase__ , output_hidden_states=lowerCAmelCase__ ) # the correct shape of output.transformer_decoder_hidden_states ensure the correcteness of the # encoder and pixel decoder self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.mask_feature_size) , ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(lowerCAmelCase__ , lowerCAmelCase__ ) def snake_case__ ( self : int , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Any ) -> List[Any]: '''simple docstring''' _UpperCamelCase = MaskFormerForInstanceSegmentation(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() def comm_check_on_output(lowerCAmelCase__ : Any ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): _UpperCamelCase = model(pixel_values=lowerCAmelCase__ , pixel_mask=lowerCAmelCase__ ) _UpperCamelCase = model(lowerCAmelCase__ ) comm_check_on_output(lowerCAmelCase__ ) _UpperCamelCase = model( pixel_values=lowerCAmelCase__ , pixel_mask=lowerCAmelCase__ , mask_labels=lowerCAmelCase__ , class_labels=lowerCAmelCase__ ) comm_check_on_output(lowerCAmelCase__ ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape , torch.Size([1] ) ) @require_torch class __lowerCAmelCase ( __magic_name__ , __magic_name__ , unittest.TestCase ): """simple docstring""" _snake_case : Optional[Any] = (MaskFormerModel, MaskFormerForInstanceSegmentation) if is_torch_available() else () _snake_case : List[str] = ( {'feature-extraction': MaskFormerModel, 'image-segmentation': MaskFormerForInstanceSegmentation} if is_torch_available() else {} ) _snake_case : int = False _snake_case : Dict = False _snake_case : Dict = False _snake_case : Union[str, Any] = False def snake_case__ ( self : Optional[int] ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = MaskFormerModelTester(self ) _UpperCamelCase = ConfigTester(self , config_class=lowerCAmelCase__ , has_text_modality=lowerCAmelCase__ ) def snake_case__ ( self : Union[str, Any] ) -> Dict: '''simple docstring''' self.config_tester.run_common_tests() def snake_case__ ( self : Union[str, Any] ) -> List[Any]: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskformer_model(lowerCAmelCase__ , **lowerCAmelCase__ , output_hidden_states=lowerCAmelCase__ ) def snake_case__ ( self : Tuple ) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskformer_instance_segmentation_head_model(*lowerCAmelCase__ ) @unittest.skip(reason='''MaskFormer does not use inputs_embeds''' ) def snake_case__ ( self : Dict ) -> Union[str, Any]: '''simple docstring''' pass @unittest.skip(reason='''MaskFormer does not have a get_input_embeddings method''' ) def snake_case__ ( self : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' pass @unittest.skip(reason='''MaskFormer is not a generative model''' ) def snake_case__ ( self : str ) -> Optional[int]: '''simple docstring''' pass @unittest.skip(reason='''MaskFormer does not use token embeddings''' ) def snake_case__ ( self : Optional[int] ) -> Optional[int]: '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip( reason='''MaskFormer has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`''' ) def snake_case__ ( self : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def snake_case__ ( self : str ) -> Optional[Any]: '''simple docstring''' pass def snake_case__ ( self : Any ) -> Optional[int]: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase = model_class(lowerCAmelCase__ ) _UpperCamelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCamelCase = [*signature.parameters.keys()] _UpperCamelCase = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , lowerCAmelCase__ ) @slow def snake_case__ ( self : Any ) -> List[Any]: '''simple docstring''' for model_name in ["facebook/maskformer-swin-small-coco"]: _UpperCamelCase = MaskFormerModel.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) def snake_case__ ( self : str ) -> str: '''simple docstring''' _UpperCamelCase = (self.model_tester.min_size,) * 2 _UpperCamelCase = { '''pixel_values''': torch.randn((2, 3, *size) , device=lowerCAmelCase__ ), '''mask_labels''': torch.randn((2, 10, *size) , device=lowerCAmelCase__ ), '''class_labels''': torch.zeros(2 , 10 , device=lowerCAmelCase__ ).long(), } _UpperCamelCase = MaskFormerForInstanceSegmentation(MaskFormerConfig() ).to(lowerCAmelCase__ ) _UpperCamelCase = model(**lowerCAmelCase__ ) self.assertTrue(outputs.loss is not None ) def snake_case__ ( self : Tuple ) -> Tuple: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskformer_model(lowerCAmelCase__ , **lowerCAmelCase__ , output_hidden_states=lowerCAmelCase__ ) def snake_case__ ( self : Tuple ) -> Any: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase = model_class(lowerCAmelCase__ ).to(lowerCAmelCase__ ) _UpperCamelCase = model(**lowerCAmelCase__ , output_attentions=lowerCAmelCase__ ) self.assertTrue(outputs.attentions is not None ) def snake_case__ ( self : List[Any] ) -> Optional[Any]: '''simple docstring''' if not self.model_tester.is_training: return # only MaskFormerForInstanceSegmentation has the loss _UpperCamelCase = self.all_model_classes[1] _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs() _UpperCamelCase = model_class(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.train() _UpperCamelCase = model(lowerCAmelCase__ , mask_labels=lowerCAmelCase__ , class_labels=lowerCAmelCase__ ).loss loss.backward() def snake_case__ ( self : Optional[int] ) -> str: '''simple docstring''' _UpperCamelCase = self.all_model_classes[1] _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs() _UpperCamelCase = True _UpperCamelCase = True _UpperCamelCase = model_class(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.train() _UpperCamelCase = model(lowerCAmelCase__ , mask_labels=lowerCAmelCase__ , class_labels=lowerCAmelCase__ ) _UpperCamelCase = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() _UpperCamelCase = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() # we requires_grad=True in inputs_embeds (line 2152), the original implementation don't _UpperCamelCase = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() _UpperCamelCase = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=lowerCAmelCase__ ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) lowercase__ : Any = 1E-4 def a__ ( ) -> Any: """simple docstring""" _UpperCamelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_vision @slow class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @cached_property def snake_case__ ( self : Optional[Any] ) -> Tuple: '''simple docstring''' return ( MaskFormerImageProcessor.from_pretrained('''facebook/maskformer-swin-small-coco''' ) if is_vision_available() else None ) def snake_case__ ( self : Optional[int] ) -> List[str]: '''simple docstring''' _UpperCamelCase = MaskFormerModel.from_pretrained('''facebook/maskformer-swin-small-coco''' ).to(lowerCAmelCase__ ) _UpperCamelCase = self.default_image_processor _UpperCamelCase = prepare_img() _UpperCamelCase = image_processor(lowerCAmelCase__ , return_tensors='''pt''' ).to(lowerCAmelCase__ ) _UpperCamelCase = inputs['''pixel_values'''].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(lowerCAmelCase__ , (1, 3, 800, 1088) ) with torch.no_grad(): _UpperCamelCase = model(**lowerCAmelCase__ ) _UpperCamelCase = torch.tensor( [[-0.0482, 0.9228, 0.4951], [-0.2547, 0.8017, 0.8527], [-0.0069, 0.3385, -0.0089]] ).to(lowerCAmelCase__ ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] , lowerCAmelCase__ , atol=lowerCAmelCase__ ) ) _UpperCamelCase = torch.tensor( [[-0.8422, -0.8434, -0.9718], [-1.0144, -0.5565, -0.4195], [-1.0038, -0.4484, -0.1961]] ).to(lowerCAmelCase__ ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , lowerCAmelCase__ , atol=lowerCAmelCase__ ) ) _UpperCamelCase = torch.tensor( [[0.2852, -0.0159, 0.9735], [0.6254, 0.1858, 0.8529], [-0.0680, -0.4116, 1.8413]] ).to(lowerCAmelCase__ ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] , lowerCAmelCase__ , atol=lowerCAmelCase__ ) ) def snake_case__ ( self : Optional[int] ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = ( MaskFormerForInstanceSegmentation.from_pretrained('''facebook/maskformer-swin-small-coco''' ) .to(lowerCAmelCase__ ) .eval() ) _UpperCamelCase = self.default_image_processor _UpperCamelCase = prepare_img() _UpperCamelCase = image_processor(lowerCAmelCase__ , return_tensors='''pt''' ).to(lowerCAmelCase__ ) _UpperCamelCase = inputs['''pixel_values'''].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(lowerCAmelCase__ , (1, 3, 800, 1088) ) with torch.no_grad(): _UpperCamelCase = model(**lowerCAmelCase__ ) # masks_queries_logits _UpperCamelCase = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.decoder_config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) , ) _UpperCamelCase = [ [-1.3737124, -1.7724937, -1.9364233], [-1.5977281, -1.9867939, -2.1523695], [-1.5795398, -1.9269832, -2.093942], ] _UpperCamelCase = torch.tensor(lowerCAmelCase__ ).to(lowerCAmelCase__ ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , lowerCAmelCase__ , atol=lowerCAmelCase__ ) ) # class_queries_logits _UpperCamelCase = outputs.class_queries_logits self.assertEqual( class_queries_logits.shape , (1, model.config.decoder_config.num_queries, model.config.num_labels + 1) ) _UpperCamelCase = torch.tensor( [ [1.6_5_1_2e0_0, -5.2_5_7_2e0_0, -3.3_5_1_9e0_0], [3.6_1_6_9e-0_2, -5.9_0_2_5e0_0, -2.9_3_1_3e0_0], [1.0_7_6_6e-0_4, -7.7_6_3_0e0_0, -5.1_2_6_3e0_0], ] ).to(lowerCAmelCase__ ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , lowerCAmelCase__ , atol=lowerCAmelCase__ ) ) def snake_case__ ( self : Union[str, Any] ) -> List[str]: '''simple docstring''' _UpperCamelCase = ( MaskFormerForInstanceSegmentation.from_pretrained('''facebook/maskformer-resnet101-coco-stuff''' ) .to(lowerCAmelCase__ ) .eval() ) _UpperCamelCase = self.default_image_processor _UpperCamelCase = prepare_img() _UpperCamelCase = image_processor(lowerCAmelCase__ , return_tensors='''pt''' ).to(lowerCAmelCase__ ) _UpperCamelCase = inputs['''pixel_values'''].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(lowerCAmelCase__ , (1, 3, 800, 1088) ) with torch.no_grad(): _UpperCamelCase = model(**lowerCAmelCase__ ) # masks_queries_logits _UpperCamelCase = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.decoder_config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) , ) _UpperCamelCase = [[-0.9046, -2.6366, -4.6062], [-3.4179, -5.7890, -8.8057], [-4.9179, -7.6560, -10.7711]] _UpperCamelCase = torch.tensor(lowerCAmelCase__ ).to(lowerCAmelCase__ ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , lowerCAmelCase__ , atol=lowerCAmelCase__ ) ) # class_queries_logits _UpperCamelCase = outputs.class_queries_logits self.assertEqual( class_queries_logits.shape , (1, model.config.decoder_config.num_queries, model.config.num_labels + 1) ) _UpperCamelCase = torch.tensor( [[4.7188, -3.2585, -2.8857], [6.6871, -2.9181, -1.2487], [7.2449, -2.2764, -2.1874]] ).to(lowerCAmelCase__ ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , lowerCAmelCase__ , atol=lowerCAmelCase__ ) ) def snake_case__ ( self : Any ) -> int: '''simple docstring''' _UpperCamelCase = ( MaskFormerForInstanceSegmentation.from_pretrained('''facebook/maskformer-swin-small-coco''' ) .to(lowerCAmelCase__ ) .eval() ) _UpperCamelCase = self.default_image_processor _UpperCamelCase = image_processor( [np.zeros((3, 800, 1333) ), np.zeros((3, 800, 1333) )] , segmentation_maps=[np.zeros((384, 384) ).astype(np.floataa ), np.zeros((384, 384) ).astype(np.floataa )] , return_tensors='''pt''' , ) _UpperCamelCase = inputs['''pixel_values'''].to(lowerCAmelCase__ ) _UpperCamelCase = [el.to(lowerCAmelCase__ ) for el in inputs['''mask_labels''']] _UpperCamelCase = [el.to(lowerCAmelCase__ ) for el in inputs['''class_labels''']] with torch.no_grad(): _UpperCamelCase = model(**lowerCAmelCase__ ) self.assertTrue(outputs.loss is not None )
287
'''simple docstring''' from math import isclose, sqrt def a__ ( lowercase : float, lowercase : float, lowercase : float ) -> tuple[float, float, float]: """simple docstring""" _UpperCamelCase = point_y / 4 / point_x _UpperCamelCase = 2 * normal_gradient / (1 + normal_gradient * normal_gradient) _UpperCamelCase = (1 - normal_gradient * normal_gradient) / ( 1 + normal_gradient * normal_gradient ) _UpperCamelCase = (sa - ca * incoming_gradient) / (ca + sa * incoming_gradient) # to find the next point, solve the simultaeneous equations: # y^2 + 4x^2 = 100 # y - b = m * (x - a) # ==> A x^2 + B x + C = 0 _UpperCamelCase = outgoing_gradient**2 + 4 _UpperCamelCase = 2 * outgoing_gradient * (point_y - outgoing_gradient * point_x) _UpperCamelCase = (point_y - outgoing_gradient * point_x) ** 2 - 100 _UpperCamelCase = ( -linear_term - sqrt(linear_term**2 - 4 * quadratic_term * constant_term ) ) / (2 * quadratic_term) _UpperCamelCase = ( -linear_term + sqrt(linear_term**2 - 4 * quadratic_term * constant_term ) ) / (2 * quadratic_term) # two solutions, one of which is our input point _UpperCamelCase = x_minus if isclose(lowercase, lowercase ) else x_plus _UpperCamelCase = point_y + outgoing_gradient * (next_x - point_x) return next_x, next_y, outgoing_gradient def a__ ( lowercase : float = 1.4, lowercase : float = -9.6 ) -> int: """simple docstring""" _UpperCamelCase = 0 _UpperCamelCase = first_x_coord _UpperCamelCase = first_y_coord _UpperCamelCase = (1_0.1 - point_y) / (0.0 - point_x) while not (-0.0_1 <= point_x <= 0.0_1 and point_y > 0): _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = next_point(lowercase, lowercase, lowercase ) num_reflections += 1 return num_reflections if __name__ == "__main__": print(F"""{solution() = }""")
287
1
from __future__ import annotations import unittest import numpy as np from transformers import OPTConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import GPTaTokenizer, TFOPTForCausalLM, TFOPTModel def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase=None, _UpperCAmelCase=None ) -> Any: '''simple docstring''' if attention_mask is None: lowerCAmelCase : int = tf.cast(tf.math.not_equal(_UpperCAmelCase, config.pad_token_id ), tf.inta ) return {"input_ids": input_ids, "attention_mask": attention_mask} @require_tf class __A : lowerCAmelCase_ : List[str] = OPTConfig lowerCAmelCase_ : Any = {} lowerCAmelCase_ : Union[str, Any] = 'gelu' def __init__( self : Optional[int] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : str=13 , UpperCAmelCase_ : int=7 , UpperCAmelCase_ : str=True , UpperCAmelCase_ : Any=False , UpperCAmelCase_ : List[Any]=99 , UpperCAmelCase_ : int=16 , UpperCAmelCase_ : Dict=2 , UpperCAmelCase_ : Optional[Any]=4 , UpperCAmelCase_ : Optional[Any]=4 , UpperCAmelCase_ : str="gelu" , UpperCAmelCase_ : Dict=0.1 , UpperCAmelCase_ : int=0.1 , UpperCAmelCase_ : List[str]=20 , UpperCAmelCase_ : Union[str, Any]=2 , UpperCAmelCase_ : Optional[Any]=1 , UpperCAmelCase_ : Union[str, Any]=0 , UpperCAmelCase_ : int=16 , UpperCAmelCase_ : str=16 , ): lowerCAmelCase : Tuple = parent lowerCAmelCase : Tuple = batch_size lowerCAmelCase : str = seq_length lowerCAmelCase : Tuple = is_training lowerCAmelCase : str = use_labels lowerCAmelCase : Dict = vocab_size lowerCAmelCase : Optional[int] = hidden_size lowerCAmelCase : List[str] = num_hidden_layers lowerCAmelCase : List[str] = num_attention_heads lowerCAmelCase : Optional[Any] = intermediate_size lowerCAmelCase : Optional[int] = hidden_act lowerCAmelCase : str = hidden_dropout_prob lowerCAmelCase : List[Any] = attention_probs_dropout_prob lowerCAmelCase : int = max_position_embeddings lowerCAmelCase : Optional[Any] = eos_token_id lowerCAmelCase : Optional[int] = pad_token_id lowerCAmelCase : Optional[Any] = bos_token_id lowerCAmelCase : int = embed_dim lowerCAmelCase : List[Any] = word_embed_proj_dim lowerCAmelCase : Tuple = False def lowercase__ ( self : List[str] ): lowerCAmelCase : int = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) lowerCAmelCase : List[Any] = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) lowerCAmelCase : List[Any] = tf.concat([input_ids, eos_tensor] , axis=1 ) lowerCAmelCase : Optional[Any] = self.config_cls( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , embed_dim=self.embed_dim , word_embed_proj_dim=self.word_embed_proj_dim , is_encoder_decoder=UpperCAmelCase_ , **self.config_updates , ) lowerCAmelCase : Any = prepare_opt_inputs_dict(UpperCAmelCase_ , UpperCAmelCase_ ) return config, inputs_dict def lowercase__ ( self : Dict , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Tuple ): lowerCAmelCase : int = TFOPTModel(config=UpperCAmelCase_ ) lowerCAmelCase : Optional[int] = inputs_dict["""input_ids"""] lowerCAmelCase : Optional[int] = input_ids[:1, :] lowerCAmelCase : Optional[int] = inputs_dict["""attention_mask"""][:1, :] lowerCAmelCase : List[Any] = 1 # first forward pass lowerCAmelCase : int = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , use_cache=UpperCAmelCase_ ) lowerCAmelCase : Optional[Any] = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids lowerCAmelCase : Union[str, Any] = ids_tensor((self.batch_size, 3) , config.vocab_size ) lowerCAmelCase : str = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and lowerCAmelCase : Optional[Any] = tf.concat([input_ids, next_tokens] , axis=-1 ) lowerCAmelCase : str = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) lowerCAmelCase : str = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ )[0] lowerCAmelCase : Optional[Any] = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , past_key_values=UpperCAmelCase_ )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice lowerCAmelCase : List[Any] = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) lowerCAmelCase : Any = output_from_no_past[:, -3:, random_slice_idx] lowerCAmelCase : Union[str, Any] = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(UpperCAmelCase_ , UpperCAmelCase_ , rtol=1E-3 ) @require_tf class __A ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): lowerCAmelCase_ : List[Any] = (TFOPTModel, TFOPTForCausalLM) if is_tf_available() else () lowerCAmelCase_ : List[str] = (TFOPTForCausalLM,) if is_tf_available() else () lowerCAmelCase_ : int = ( {'feature-extraction': TFOPTModel, 'text-generation': TFOPTForCausalLM} if is_tf_available() else {} ) lowerCAmelCase_ : int = False lowerCAmelCase_ : List[str] = False lowerCAmelCase_ : Dict = False lowerCAmelCase_ : Optional[int] = 10 def lowercase__ ( self : Union[str, Any] ): lowerCAmelCase : int = TFOPTModelTester(self ) lowerCAmelCase : Any = ConfigTester(self , config_class=UpperCAmelCase_ ) def lowercase__ ( self : Optional[Any] ): self.config_tester.run_common_tests() def lowercase__ ( self : List[str] ): lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*UpperCAmelCase_ ) def lowercase__ ( self : Dict ): lowerCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() def _get_word_embedding_weight(UpperCAmelCase_ : str , UpperCAmelCase_ : Union[str, Any] ): if hasattr(UpperCAmelCase_ , 'weight' ): return embedding_layer.weight else: # Here we build the word embeddings weights if not exists. # And then we retry to get the attribute once built. model.build() if hasattr(UpperCAmelCase_ , 'weight' ): return embedding_layer.weight else: return None for model_class in self.all_model_classes: for size in [config.vocab_size - 10, config.vocab_size + 10]: # build the embeddings lowerCAmelCase : Any = model_class(config=UpperCAmelCase_ ) lowerCAmelCase : str = _get_word_embedding_weight(UpperCAmelCase_ , model.get_input_embeddings() ) lowerCAmelCase : int = _get_word_embedding_weight(UpperCAmelCase_ , model.get_output_embeddings() ) # reshape the embeddings model.resize_token_embeddings(UpperCAmelCase_ ) lowerCAmelCase : Tuple = _get_word_embedding_weight(UpperCAmelCase_ , model.get_input_embeddings() ) lowerCAmelCase : Dict = _get_word_embedding_weight(UpperCAmelCase_ , model.get_output_embeddings() ) # check that the resized embeddings size matches the desired size. lowerCAmelCase : Optional[Any] = size if size is not None else config.vocab_size self.assertEqual(new_input_embeddings.shape[0] , UpperCAmelCase_ ) # check that weights remain the same after resizing lowerCAmelCase : int = True for pa, pa in zip(old_input_embeddings.value() , new_input_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: lowerCAmelCase : str = False self.assertTrue(UpperCAmelCase_ ) if old_output_embeddings is not None and new_output_embeddings is not None: self.assertEqual(new_output_embeddings.shape[0] , UpperCAmelCase_ ) lowerCAmelCase : Optional[int] = True for pa, pa in zip(old_output_embeddings.value() , new_output_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: lowerCAmelCase : List[str] = False self.assertTrue(UpperCAmelCase_ ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> List[str]: '''simple docstring''' return tf.constant(_UpperCAmelCase, dtype=tf.intaa ) @require_tf class __A ( unittest.TestCase ): lowerCAmelCase_ : List[str] = 99 def lowercase__ ( self : Union[str, Any] ): lowerCAmelCase : Union[str, Any] = tf.ones((4, 1) , dtype=tf.intaa ) * 2 lowerCAmelCase : Optional[int] = tf.concat([ids_tensor((4, 6) , self.vocab_size - 3 ) + 3, eos_column_vector] , axis=1 ) lowerCAmelCase : Union[str, Any] = input_ids.shape[0] lowerCAmelCase : Union[str, Any] = OPTConfig( vocab_size=self.vocab_size , hidden_size=24 , num_hidden_layers=2 , num_attention_heads=2 , ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size @require_sentencepiece @require_tf class __A ( unittest.TestCase ): @slow def lowercase__ ( self : Optional[Any] ): lowerCAmelCase : Any = TFOPTModel.from_pretrained('facebook/opt-350m' ) lowerCAmelCase : Optional[int] = _long_tensor([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]] ) lowerCAmelCase : int = tf.not_equal(UpperCAmelCase_ , model.config.pad_token_id ) with tf.GradientTape(): lowerCAmelCase : Dict = model(input_ids=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ ).last_hidden_state lowerCAmelCase : List[str] = (1, 11, 512) self.assertEqual(output.shape , UpperCAmelCase_ ) lowerCAmelCase : Dict = tf.constant( [[-0.28_73, -1.92_18, -0.30_33], [-1.27_10, -0.13_38, -0.19_02], [0.40_95, 0.12_14, -1.31_21]] ) self.assertTrue(np.allclose(output[:, :3, :3] , UpperCAmelCase_ , atol=4E-3 ) ) lowerCAmelCase : List[Any] = tf.function(UpperCAmelCase_ , jit_compile=UpperCAmelCase_ ) lowerCAmelCase : Tuple = xla_generate(UpperCAmelCase_ , UpperCAmelCase_ )[0] self.assertTrue(np.allclose(output[:, :3, :3] , UpperCAmelCase_ , atol=4E-2 ) ) @require_tf @slow class __A ( unittest.TestCase ): def lowercase__ ( self : str ): super().setUp() lowerCAmelCase : Tuple = """facebook/opt-350m""" def lowercase__ ( self : List[Any] ): lowerCAmelCase : Optional[Any] = TFOPTForCausalLM.from_pretrained(self.path_model ) lowerCAmelCase : Dict = GPTaTokenizer.from_pretrained(self.path_model ) lowerCAmelCase : Dict = [ """Today is a beautiful day and I want to""", """In the city of""", """Paris is the capital of France and""", """Computers and mobile phones have taken""", ] # verify that prompt without BOS token is identical to Metaseq -> add_special_tokens=False lowerCAmelCase : Dict = tokenizer(UpperCAmelCase_ , return_tensors='tf' , padding=UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ ) lowerCAmelCase : List[str] = tf.math.reduce_mean(model(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 ) lowerCAmelCase : Union[str, Any] = tf.constant( [ [1.38_51, -13.8923, -10.5229, -10.7533, -0.23_09, -10.2384, -0.53_65, -9.09_47, -5.16_70], [-4.70_73, -10.6276, -3.94_15, -21.5242, -0.28_22, -0.28_22, -0.28_22, -0.28_22, -0.28_22], [0.62_47, -3.42_29, -8.91_79, -1.42_97, -14.1650, 1.41_46, -9.02_18, -0.27_03, -0.27_03], [6.47_83, -1.99_13, -10.7926, -2.33_36, 1.50_92, -0.99_74, -6.82_13, 1.34_77, 1.34_77], ] ) self.assertTrue(np.allclose(UpperCAmelCase_ , UpperCAmelCase_ , atol=1E-4 ) ) lowerCAmelCase : Dict = tf.function(UpperCAmelCase_ , jit_compile=UpperCAmelCase_ ) lowerCAmelCase : List[str] = tf.math.reduce_mean(xla_generate(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 ) self.assertTrue(np.allclose(UpperCAmelCase_ , UpperCAmelCase_ , atol=1E-4 ) ) @require_tf @slow class __A ( unittest.TestCase ): @property def lowercase__ ( self : Optional[Any] ): return [ "Today is a beautiful day and I want", "In the city of", "Paris is the capital of France and", "Computers and mobile phones have taken", ] def lowercase__ ( self : Dict ): lowerCAmelCase : Tuple = """facebook/opt-125m""" lowerCAmelCase : int = [ """Today is a beautiful day and I want to""", """In the city of New York, the city""", """Paris is the capital of France and the capital""", """Computers and mobile phones have taken over the""", ] lowerCAmelCase : Dict = [] lowerCAmelCase : Tuple = GPTaTokenizer.from_pretrained(UpperCAmelCase_ ) lowerCAmelCase : List[Any] = TFOPTForCausalLM.from_pretrained(UpperCAmelCase_ ) for prompt in self.prompts: lowerCAmelCase : List[str] = tokenizer(UpperCAmelCase_ , return_tensors='tf' ).input_ids lowerCAmelCase : str = model.generate(UpperCAmelCase_ , max_length=10 ) lowerCAmelCase : Optional[Any] = tokenizer.batch_decode(UpperCAmelCase_ , skip_special_tokens=UpperCAmelCase_ ) predicted_outputs += generated_string self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ ) def lowercase__ ( self : Union[str, Any] ): lowerCAmelCase : Any = """facebook/opt-350m""" lowerCAmelCase : Union[str, Any] = GPTaTokenizer.from_pretrained(UpperCAmelCase_ ) lowerCAmelCase : str = TFOPTForCausalLM.from_pretrained(UpperCAmelCase_ ) lowerCAmelCase : Dict = """left""" # use different length sentences to test batching lowerCAmelCase : List[str] = [ """Hello, my dog is a little""", """Today, I""", ] lowerCAmelCase : str = tokenizer(UpperCAmelCase_ , return_tensors='tf' , padding=UpperCAmelCase_ ) lowerCAmelCase : Union[str, Any] = inputs["""input_ids"""] lowerCAmelCase : List[str] = model.generate(input_ids=UpperCAmelCase_ , attention_mask=inputs['attention_mask'] ) lowerCAmelCase : Union[str, Any] = tokenizer(sentences[0] , return_tensors='tf' ).input_ids lowerCAmelCase : Dict = model.generate(input_ids=UpperCAmelCase_ ) lowerCAmelCase : List[Any] = inputs_non_padded.shape[-1] - tf.math.reduce_sum( tf.cast(inputs['attention_mask'][-1] , tf.intaa ) ) lowerCAmelCase : Optional[Any] = tokenizer(sentences[1] , return_tensors='tf' ).input_ids lowerCAmelCase : List[str] = model.generate(input_ids=UpperCAmelCase_ , max_length=model.config.max_length - num_paddings ) lowerCAmelCase : Dict = tokenizer.batch_decode(UpperCAmelCase_ , skip_special_tokens=UpperCAmelCase_ ) lowerCAmelCase : Any = tokenizer.decode(output_non_padded[0] , skip_special_tokens=UpperCAmelCase_ ) lowerCAmelCase : Any = tokenizer.decode(output_padded[0] , skip_special_tokens=UpperCAmelCase_ ) lowerCAmelCase : Union[str, Any] = [ """Hello, my dog is a little bit of a dork.\nI'm a little bit""", """Today, I was in the middle of a conversation with a friend about the""", ] self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ ) self.assertListEqual(UpperCAmelCase_ , [non_padded_sentence, padded_sentence] ) def lowercase__ ( self : Tuple ): lowerCAmelCase : Optional[int] = """facebook/opt-350m""" lowerCAmelCase : List[Any] = [ """Today is a beautiful day and I want to""", """In the city of San Francisco, the city""", """Paris is the capital of France and the capital""", """Computers and mobile phones have taken over the""", ] lowerCAmelCase : int = [] lowerCAmelCase : str = GPTaTokenizer.from_pretrained(UpperCAmelCase_ ) lowerCAmelCase : Any = TFOPTForCausalLM.from_pretrained(UpperCAmelCase_ ) for prompt in self.prompts: lowerCAmelCase : int = tokenizer(UpperCAmelCase_ , return_tensors='tf' ).input_ids lowerCAmelCase : Tuple = model.generate(UpperCAmelCase_ , max_length=10 ) lowerCAmelCase : List[str] = tokenizer.batch_decode(UpperCAmelCase_ , skip_special_tokens=UpperCAmelCase_ ) predicted_outputs += generated_string self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ )
138
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _UpperCAmelCase = logging.get_logger(__name__) _UpperCAmelCase = { """facebook/vit-mae-base""": """https://huggingface.co/facebook/vit-mae-base/resolve/main/config.json""", # See all ViT MAE models at https://huggingface.co/models?filter=vit-mae } class a ( UpperCAmelCase__ ): UpperCamelCase : Dict = 'vit_mae' def __init__( self : int , lowerCAmelCase : int=768 , lowerCAmelCase : List[str]=12 , lowerCAmelCase : Any=12 , lowerCAmelCase : Union[str, Any]=3072 , lowerCAmelCase : Any="gelu" , lowerCAmelCase : str=0.0 , lowerCAmelCase : Any=0.0 , lowerCAmelCase : List[Any]=0.0_2 , lowerCAmelCase : int=1E-12 , lowerCAmelCase : Optional[Any]=224 , lowerCAmelCase : Optional[Any]=16 , lowerCAmelCase : Any=3 , lowerCAmelCase : Optional[Any]=True , lowerCAmelCase : Any=16 , lowerCAmelCase : str=512 , lowerCAmelCase : int=8 , lowerCAmelCase : Union[str, Any]=2048 , lowerCAmelCase : Tuple=0.7_5 , lowerCAmelCase : str=False , **lowerCAmelCase : Tuple , ) -> List[Any]: '''simple docstring''' super().__init__(**lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Optional[int] =hidden_size SCREAMING_SNAKE_CASE_: Optional[int] =num_hidden_layers SCREAMING_SNAKE_CASE_: Optional[int] =num_attention_heads SCREAMING_SNAKE_CASE_: Optional[Any] =intermediate_size SCREAMING_SNAKE_CASE_: Union[str, Any] =hidden_act SCREAMING_SNAKE_CASE_: Tuple =hidden_dropout_prob SCREAMING_SNAKE_CASE_: List[str] =attention_probs_dropout_prob SCREAMING_SNAKE_CASE_: List[Any] =initializer_range SCREAMING_SNAKE_CASE_: int =layer_norm_eps SCREAMING_SNAKE_CASE_: List[str] =image_size SCREAMING_SNAKE_CASE_: Dict =patch_size SCREAMING_SNAKE_CASE_: str =num_channels SCREAMING_SNAKE_CASE_: List[str] =qkv_bias SCREAMING_SNAKE_CASE_: List[str] =decoder_num_attention_heads SCREAMING_SNAKE_CASE_: Any =decoder_hidden_size SCREAMING_SNAKE_CASE_: Optional[Any] =decoder_num_hidden_layers SCREAMING_SNAKE_CASE_: str =decoder_intermediate_size SCREAMING_SNAKE_CASE_: Union[str, Any] =mask_ratio SCREAMING_SNAKE_CASE_: List[str] =norm_pix_loss
173
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __A = { "configuration_xlm_roberta_xl": [ "XLM_ROBERTA_XL_PRETRAINED_CONFIG_ARCHIVE_MAP", "XLMRobertaXLConfig", "XLMRobertaXLOnnxConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ "XLM_ROBERTA_XL_PRETRAINED_MODEL_ARCHIVE_LIST", "XLMRobertaXLForCausalLM", "XLMRobertaXLForMaskedLM", "XLMRobertaXLForMultipleChoice", "XLMRobertaXLForQuestionAnswering", "XLMRobertaXLForSequenceClassification", "XLMRobertaXLForTokenClassification", "XLMRobertaXLModel", "XLMRobertaXLPreTrainedModel", ] if TYPE_CHECKING: from .configuration_xlm_roberta_xl import ( XLM_ROBERTA_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMRobertaXLConfig, XLMRobertaXLOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm_roberta_xl import ( XLM_ROBERTA_XL_PRETRAINED_MODEL_ARCHIVE_LIST, XLMRobertaXLForCausalLM, XLMRobertaXLForMaskedLM, XLMRobertaXLForMultipleChoice, XLMRobertaXLForQuestionAnswering, XLMRobertaXLForSequenceClassification, XLMRobertaXLForTokenClassification, XLMRobertaXLModel, XLMRobertaXLPreTrainedModel, ) else: import sys __A = _LazyModule(__name__, globals()["__file__"], _import_structure)
2
"""simple docstring""" import json import os import tempfile import unittest import unittest.mock as mock from pathlib import Path from requests.exceptions import HTTPError from transformers.utils import ( CONFIG_NAME, FLAX_WEIGHTS_NAME, TF2_WEIGHTS_NAME, TRANSFORMERS_CACHE, WEIGHTS_NAME, cached_file, get_file_from_repo, has_file, ) __A = "hf-internal-testing/tiny-random-bert" __A = os.path.join(TRANSFORMERS_CACHE, "models--hf-internal-testing--tiny-random-bert") __A = "9b8c223d42b2188cb49d29af482996f9d0f3e5a6" class UpperCAmelCase (unittest.TestCase ): """simple docstring""" def _snake_case ( self ): lowercase__: Union[str, Any] = cached_file(_UpperCAmelCase , _UpperCAmelCase ) # Should have downloaded the file in here self.assertTrue(os.path.isdir(_UpperCAmelCase ) ) # Cache should contain at least those three subfolders: for subfolder in ["blobs", "refs", "snapshots"]: self.assertTrue(os.path.isdir(os.path.join(_UpperCAmelCase , _UpperCAmelCase ) ) ) with open(os.path.join(_UpperCAmelCase , '''refs''' , '''main''' ) ) as f: lowercase__: Dict = f.read() self.assertEqual(_UpperCAmelCase , os.path.join(_UpperCAmelCase , '''snapshots''' , _UpperCAmelCase , _UpperCAmelCase ) ) self.assertTrue(os.path.isfile(_UpperCAmelCase ) ) # File is cached at the same place the second time. lowercase__: Any = cached_file(_UpperCAmelCase , _UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) # Using a specific revision to test the full commit hash. lowercase__: Dict = cached_file(_UpperCAmelCase , _UpperCAmelCase , revision='''9b8c223''' ) self.assertEqual(_UpperCAmelCase , os.path.join(_UpperCAmelCase , '''snapshots''' , _UpperCAmelCase , _UpperCAmelCase ) ) def _snake_case ( self ): with self.assertRaisesRegex(_UpperCAmelCase , '''is not a valid model identifier''' ): lowercase__: int = cached_file('''tiny-random-bert''' , _UpperCAmelCase ) with self.assertRaisesRegex(_UpperCAmelCase , '''is not a valid git identifier''' ): lowercase__: List[Any] = cached_file(_UpperCAmelCase , _UpperCAmelCase , revision='''aaaa''' ) with self.assertRaisesRegex(_UpperCAmelCase , '''does not appear to have a file named''' ): lowercase__: Dict = cached_file(_UpperCAmelCase , '''conf''' ) def _snake_case ( self ): with self.assertRaisesRegex(_UpperCAmelCase , '''does not appear to have a file named''' ): lowercase__: Optional[Any] = cached_file(_UpperCAmelCase , '''conf''' ) with open(os.path.join(_UpperCAmelCase , '''refs''' , '''main''' ) ) as f: lowercase__: int = f.read() self.assertTrue(os.path.isfile(os.path.join(_UpperCAmelCase , '''.no_exist''' , _UpperCAmelCase , '''conf''' ) ) ) lowercase__: Dict = cached_file(_UpperCAmelCase , '''conf''' , _raise_exceptions_for_missing_entries=_UpperCAmelCase ) self.assertIsNone(_UpperCAmelCase ) lowercase__: List[str] = cached_file(_UpperCAmelCase , '''conf''' , local_files_only=_UpperCAmelCase , _raise_exceptions_for_missing_entries=_UpperCAmelCase ) self.assertIsNone(_UpperCAmelCase ) lowercase__: Union[str, Any] = mock.Mock() lowercase__: str = 500 lowercase__: Union[str, Any] = {} lowercase__: List[str] = HTTPError lowercase__: int = {} # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch('''requests.Session.request''' , return_value=_UpperCAmelCase ) as mock_head: lowercase__: Any = cached_file(_UpperCAmelCase , '''conf''' , _raise_exceptions_for_connection_errors=_UpperCAmelCase ) self.assertIsNone(_UpperCAmelCase ) # This check we did call the fake head request mock_head.assert_called() def _snake_case ( self ): self.assertTrue(has_file('''hf-internal-testing/tiny-bert-pt-only''' , _UpperCAmelCase ) ) self.assertFalse(has_file('''hf-internal-testing/tiny-bert-pt-only''' , _UpperCAmelCase ) ) self.assertFalse(has_file('''hf-internal-testing/tiny-bert-pt-only''' , _UpperCAmelCase ) ) def _snake_case ( self ): # `get_file_from_repo` returns None if the file does not exist self.assertIsNone(get_file_from_repo('''bert-base-cased''' , '''ahah.txt''' ) ) # The function raises if the repository does not exist. with self.assertRaisesRegex(_UpperCAmelCase , '''is not a valid model identifier''' ): get_file_from_repo('''bert-base-case''' , _UpperCAmelCase ) # The function raises if the revision does not exist. with self.assertRaisesRegex(_UpperCAmelCase , '''is not a valid git identifier''' ): get_file_from_repo('''bert-base-cased''' , _UpperCAmelCase , revision='''ahaha''' ) lowercase__: Optional[Any] = get_file_from_repo('''bert-base-cased''' , _UpperCAmelCase ) # The name is the cached name which is not very easy to test, so instead we load the content. lowercase__: Optional[Any] = json.loads(open(_UpperCAmelCase , '''r''' ).read() ) self.assertEqual(config['''hidden_size'''] , 768 ) def _snake_case ( self ): with tempfile.TemporaryDirectory() as tmp_dir: lowercase__: Any = Path(_UpperCAmelCase ) / '''a.txt''' filename.touch() self.assertEqual(get_file_from_repo(_UpperCAmelCase , '''a.txt''' ) , str(_UpperCAmelCase ) ) self.assertIsNone(get_file_from_repo(_UpperCAmelCase , '''b.txt''' ) )
2
1
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.speechta import SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaProcessor from ..utils import is_datasets_available from .base import PipelineTool if is_datasets_available(): from datasets import load_dataset class snake_case ( __UpperCAmelCase ): """simple docstring""" snake_case__ = "microsoft/speecht5_tts" snake_case__ = ( "This is a tool that reads an English text out loud. It takes an input named `text` which should contain the " "text to read (in English) and returns a waveform object containing the sound." ) snake_case__ = "text_reader" snake_case__ = SpeechTaProcessor snake_case__ = SpeechTaForTextToSpeech snake_case__ = SpeechTaHifiGan snake_case__ = ["text"] snake_case__ = ["audio"] def __lowerCAmelCase ( self : Dict ): if self.post_processor is None: UpperCAmelCase__ = 'microsoft/speecht5_hifigan' super().setup() def __lowerCAmelCase ( self : Dict ,lowerCamelCase__ : str ,lowerCamelCase__ : Dict=None ): UpperCAmelCase__ = self.pre_processor(text=lowerCamelCase__ ,return_tensors='pt' ,truncation=lowerCamelCase__ ) if speaker_embeddings is None: if not is_datasets_available(): raise ImportError('Datasets needs to be installed if not passing speaker embeddings.' ) UpperCAmelCase__ = load_dataset('Matthijs/cmu-arctic-xvectors' ,split='validation' ) UpperCAmelCase__ = torch.tensor(embeddings_dataset[7_305]['xvector'] ).unsqueeze(0 ) return {"input_ids": inputs["input_ids"], "speaker_embeddings": speaker_embeddings} def __lowerCAmelCase ( self : Tuple ,lowerCamelCase__ : List[str] ): with torch.no_grad(): return self.model.generate_speech(**lowerCamelCase__ ) def __lowerCAmelCase ( self : Any ,lowerCamelCase__ : Optional[int] ): with torch.no_grad(): return self.post_processor(lowerCamelCase__ ).cpu().detach()
98
'''simple docstring''' def __lowerCamelCase ( A__ = 10**9 ) -> int: """simple docstring""" UpperCamelCase = 1 UpperCamelCase = 2 UpperCamelCase = 0 UpperCamelCase = 0 UpperCamelCase = 0 while perimeter <= max_perimeter: perimeters_sum += perimeter prev_value += 2 * value value += prev_value UpperCamelCase = 2 * value + 2 if i % 2 == 0 else 2 * value - 2 i += 1 return perimeters_sum if __name__ == "__main__": print(f'''{solution() = }''')
28
0
"""simple docstring""" import warnings from ...utils import logging from .image_processing_beit import BeitImageProcessor SCREAMING_SNAKE_CASE : str = logging.get_logger(__name__) class __lowerCamelCase ( __lowercase ): def __init__(self , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' warnings.warn( """The class BeitFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use BeitImageProcessor instead.""" , lowerCamelCase , ) super().__init__(*lowerCamelCase , **lowerCamelCase )
364
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool SCREAMING_SNAKE_CASE : Optional[Any] = { '''Acehnese Arabic''': '''ace_Arab''', '''Acehnese Latin''': '''ace_Latn''', '''Mesopotamian Arabic''': '''acm_Arab''', '''Ta\'izzi-Adeni Arabic''': '''acq_Arab''', '''Tunisian Arabic''': '''aeb_Arab''', '''Afrikaans''': '''afr_Latn''', '''South Levantine Arabic''': '''ajp_Arab''', '''Akan''': '''aka_Latn''', '''Amharic''': '''amh_Ethi''', '''North Levantine Arabic''': '''apc_Arab''', '''Modern Standard Arabic''': '''arb_Arab''', '''Modern Standard Arabic Romanized''': '''arb_Latn''', '''Najdi Arabic''': '''ars_Arab''', '''Moroccan Arabic''': '''ary_Arab''', '''Egyptian Arabic''': '''arz_Arab''', '''Assamese''': '''asm_Beng''', '''Asturian''': '''ast_Latn''', '''Awadhi''': '''awa_Deva''', '''Central Aymara''': '''ayr_Latn''', '''South Azerbaijani''': '''azb_Arab''', '''North Azerbaijani''': '''azj_Latn''', '''Bashkir''': '''bak_Cyrl''', '''Bambara''': '''bam_Latn''', '''Balinese''': '''ban_Latn''', '''Belarusian''': '''bel_Cyrl''', '''Bemba''': '''bem_Latn''', '''Bengali''': '''ben_Beng''', '''Bhojpuri''': '''bho_Deva''', '''Banjar Arabic''': '''bjn_Arab''', '''Banjar Latin''': '''bjn_Latn''', '''Standard Tibetan''': '''bod_Tibt''', '''Bosnian''': '''bos_Latn''', '''Buginese''': '''bug_Latn''', '''Bulgarian''': '''bul_Cyrl''', '''Catalan''': '''cat_Latn''', '''Cebuano''': '''ceb_Latn''', '''Czech''': '''ces_Latn''', '''Chokwe''': '''cjk_Latn''', '''Central Kurdish''': '''ckb_Arab''', '''Crimean Tatar''': '''crh_Latn''', '''Welsh''': '''cym_Latn''', '''Danish''': '''dan_Latn''', '''German''': '''deu_Latn''', '''Southwestern Dinka''': '''dik_Latn''', '''Dyula''': '''dyu_Latn''', '''Dzongkha''': '''dzo_Tibt''', '''Greek''': '''ell_Grek''', '''English''': '''eng_Latn''', '''Esperanto''': '''epo_Latn''', '''Estonian''': '''est_Latn''', '''Basque''': '''eus_Latn''', '''Ewe''': '''ewe_Latn''', '''Faroese''': '''fao_Latn''', '''Fijian''': '''fij_Latn''', '''Finnish''': '''fin_Latn''', '''Fon''': '''fon_Latn''', '''French''': '''fra_Latn''', '''Friulian''': '''fur_Latn''', '''Nigerian Fulfulde''': '''fuv_Latn''', '''Scottish Gaelic''': '''gla_Latn''', '''Irish''': '''gle_Latn''', '''Galician''': '''glg_Latn''', '''Guarani''': '''grn_Latn''', '''Gujarati''': '''guj_Gujr''', '''Haitian Creole''': '''hat_Latn''', '''Hausa''': '''hau_Latn''', '''Hebrew''': '''heb_Hebr''', '''Hindi''': '''hin_Deva''', '''Chhattisgarhi''': '''hne_Deva''', '''Croatian''': '''hrv_Latn''', '''Hungarian''': '''hun_Latn''', '''Armenian''': '''hye_Armn''', '''Igbo''': '''ibo_Latn''', '''Ilocano''': '''ilo_Latn''', '''Indonesian''': '''ind_Latn''', '''Icelandic''': '''isl_Latn''', '''Italian''': '''ita_Latn''', '''Javanese''': '''jav_Latn''', '''Japanese''': '''jpn_Jpan''', '''Kabyle''': '''kab_Latn''', '''Jingpho''': '''kac_Latn''', '''Kamba''': '''kam_Latn''', '''Kannada''': '''kan_Knda''', '''Kashmiri Arabic''': '''kas_Arab''', '''Kashmiri Devanagari''': '''kas_Deva''', '''Georgian''': '''kat_Geor''', '''Central Kanuri Arabic''': '''knc_Arab''', '''Central Kanuri Latin''': '''knc_Latn''', '''Kazakh''': '''kaz_Cyrl''', '''Kabiyè''': '''kbp_Latn''', '''Kabuverdianu''': '''kea_Latn''', '''Khmer''': '''khm_Khmr''', '''Kikuyu''': '''kik_Latn''', '''Kinyarwanda''': '''kin_Latn''', '''Kyrgyz''': '''kir_Cyrl''', '''Kimbundu''': '''kmb_Latn''', '''Northern Kurdish''': '''kmr_Latn''', '''Kikongo''': '''kon_Latn''', '''Korean''': '''kor_Hang''', '''Lao''': '''lao_Laoo''', '''Ligurian''': '''lij_Latn''', '''Limburgish''': '''lim_Latn''', '''Lingala''': '''lin_Latn''', '''Lithuanian''': '''lit_Latn''', '''Lombard''': '''lmo_Latn''', '''Latgalian''': '''ltg_Latn''', '''Luxembourgish''': '''ltz_Latn''', '''Luba-Kasai''': '''lua_Latn''', '''Ganda''': '''lug_Latn''', '''Luo''': '''luo_Latn''', '''Mizo''': '''lus_Latn''', '''Standard Latvian''': '''lvs_Latn''', '''Magahi''': '''mag_Deva''', '''Maithili''': '''mai_Deva''', '''Malayalam''': '''mal_Mlym''', '''Marathi''': '''mar_Deva''', '''Minangkabau Arabic ''': '''min_Arab''', '''Minangkabau Latin''': '''min_Latn''', '''Macedonian''': '''mkd_Cyrl''', '''Plateau Malagasy''': '''plt_Latn''', '''Maltese''': '''mlt_Latn''', '''Meitei Bengali''': '''mni_Beng''', '''Halh Mongolian''': '''khk_Cyrl''', '''Mossi''': '''mos_Latn''', '''Maori''': '''mri_Latn''', '''Burmese''': '''mya_Mymr''', '''Dutch''': '''nld_Latn''', '''Norwegian Nynorsk''': '''nno_Latn''', '''Norwegian Bokmål''': '''nob_Latn''', '''Nepali''': '''npi_Deva''', '''Northern Sotho''': '''nso_Latn''', '''Nuer''': '''nus_Latn''', '''Nyanja''': '''nya_Latn''', '''Occitan''': '''oci_Latn''', '''West Central Oromo''': '''gaz_Latn''', '''Odia''': '''ory_Orya''', '''Pangasinan''': '''pag_Latn''', '''Eastern Panjabi''': '''pan_Guru''', '''Papiamento''': '''pap_Latn''', '''Western Persian''': '''pes_Arab''', '''Polish''': '''pol_Latn''', '''Portuguese''': '''por_Latn''', '''Dari''': '''prs_Arab''', '''Southern Pashto''': '''pbt_Arab''', '''Ayacucho Quechua''': '''quy_Latn''', '''Romanian''': '''ron_Latn''', '''Rundi''': '''run_Latn''', '''Russian''': '''rus_Cyrl''', '''Sango''': '''sag_Latn''', '''Sanskrit''': '''san_Deva''', '''Santali''': '''sat_Olck''', '''Sicilian''': '''scn_Latn''', '''Shan''': '''shn_Mymr''', '''Sinhala''': '''sin_Sinh''', '''Slovak''': '''slk_Latn''', '''Slovenian''': '''slv_Latn''', '''Samoan''': '''smo_Latn''', '''Shona''': '''sna_Latn''', '''Sindhi''': '''snd_Arab''', '''Somali''': '''som_Latn''', '''Southern Sotho''': '''sot_Latn''', '''Spanish''': '''spa_Latn''', '''Tosk Albanian''': '''als_Latn''', '''Sardinian''': '''srd_Latn''', '''Serbian''': '''srp_Cyrl''', '''Swati''': '''ssw_Latn''', '''Sundanese''': '''sun_Latn''', '''Swedish''': '''swe_Latn''', '''Swahili''': '''swh_Latn''', '''Silesian''': '''szl_Latn''', '''Tamil''': '''tam_Taml''', '''Tatar''': '''tat_Cyrl''', '''Telugu''': '''tel_Telu''', '''Tajik''': '''tgk_Cyrl''', '''Tagalog''': '''tgl_Latn''', '''Thai''': '''tha_Thai''', '''Tigrinya''': '''tir_Ethi''', '''Tamasheq Latin''': '''taq_Latn''', '''Tamasheq Tifinagh''': '''taq_Tfng''', '''Tok Pisin''': '''tpi_Latn''', '''Tswana''': '''tsn_Latn''', '''Tsonga''': '''tso_Latn''', '''Turkmen''': '''tuk_Latn''', '''Tumbuka''': '''tum_Latn''', '''Turkish''': '''tur_Latn''', '''Twi''': '''twi_Latn''', '''Central Atlas Tamazight''': '''tzm_Tfng''', '''Uyghur''': '''uig_Arab''', '''Ukrainian''': '''ukr_Cyrl''', '''Umbundu''': '''umb_Latn''', '''Urdu''': '''urd_Arab''', '''Northern Uzbek''': '''uzn_Latn''', '''Venetian''': '''vec_Latn''', '''Vietnamese''': '''vie_Latn''', '''Waray''': '''war_Latn''', '''Wolof''': '''wol_Latn''', '''Xhosa''': '''xho_Latn''', '''Eastern Yiddish''': '''ydd_Hebr''', '''Yoruba''': '''yor_Latn''', '''Yue Chinese''': '''yue_Hant''', '''Chinese Simplified''': '''zho_Hans''', '''Chinese Traditional''': '''zho_Hant''', '''Standard Malay''': '''zsm_Latn''', '''Zulu''': '''zul_Latn''', } class __lowerCamelCase ( __lowercase ): __UpperCamelCase = 'facebook/nllb-200-distilled-600M' __UpperCamelCase = ( 'This is a tool that translates text from a language to another. It takes three inputs: `text`, which should ' 'be the text to translate, `src_lang`, which should be the language of the text to translate and `tgt_lang`, ' 'which should be the language for the desired ouput language. Both `src_lang` and `tgt_lang` are written in ' 'plain English, such as \'Romanian\', or \'Albanian\'. It returns the text translated in `tgt_lang`.' ) __UpperCamelCase = 'translator' __UpperCamelCase = AutoTokenizer __UpperCamelCase = AutoModelForSeqaSeqLM __UpperCamelCase = LANGUAGE_CODES __UpperCamelCase = ['text', 'text', 'text'] __UpperCamelCase = ['text'] def A__ (self , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' if src_lang not in self.lang_to_code: raise ValueError(f"""{src_lang} is not a supported language.""" ) if tgt_lang not in self.lang_to_code: raise ValueError(f"""{tgt_lang} is not a supported language.""" ) _lowerCAmelCase = self.lang_to_code[src_lang] _lowerCAmelCase = self.lang_to_code[tgt_lang] return self.pre_processor._build_translation_inputs( lowerCamelCase , return_tensors="""pt""" , src_lang=lowerCamelCase , tgt_lang=lowerCamelCase ) def A__ (self , lowerCamelCase ): '''simple docstring''' return self.model.generate(**lowerCamelCase ) def A__ (self , lowerCamelCase ): '''simple docstring''' return self.post_processor.decode(outputs[0].tolist() , skip_special_tokens=lowerCamelCase )
317
0
"""simple docstring""" import argparse import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## _a = 16 _a = 32 def __a ( __lowerCamelCase, __lowerCamelCase = 16 ): UpperCAmelCase_ : Any = AutoTokenizer.from_pretrained("bert-base-cased" ) UpperCAmelCase_ : Optional[Any] = load_dataset("glue", "mrpc" ) def tokenize_function(__lowerCamelCase ): # max_length=None => use the model max length (it's actually the default) UpperCAmelCase_ : Optional[Any] = tokenizer(examples["sentence1"], examples["sentence2"], truncation=__lowerCamelCase, max_length=__lowerCamelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): UpperCAmelCase_ : Optional[Any] = datasets.map( __lowerCamelCase, batched=__lowerCamelCase, remove_columns=["idx", "sentence1", "sentence2"], ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library UpperCAmelCase_ : Optional[int] = tokenized_datasets.rename_column("label", "labels" ) def collate_fn(__lowerCamelCase ): # On TPU it's best to pad everything to the same length or training will be very slow. UpperCAmelCase_ : List[str] = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": UpperCAmelCase_ : int = 16 elif accelerator.mixed_precision != "no": UpperCAmelCase_ : Optional[Any] = 8 else: UpperCAmelCase_ : Any = None return tokenizer.pad( __lowerCamelCase, padding="longest", max_length=__lowerCamelCase, pad_to_multiple_of=__lowerCamelCase, return_tensors="pt", ) # Instantiate dataloaders. UpperCAmelCase_ : Optional[int] = DataLoader( tokenized_datasets["train"], shuffle=__lowerCamelCase, collate_fn=__lowerCamelCase, batch_size=__lowerCamelCase, drop_last=__lowerCamelCase ) UpperCAmelCase_ : int = DataLoader( tokenized_datasets["validation"], shuffle=__lowerCamelCase, collate_fn=__lowerCamelCase, batch_size=__lowerCamelCase, drop_last=(accelerator.mixed_precision == "fp8"), ) return train_dataloader, eval_dataloader def __a ( __lowerCamelCase, __lowerCamelCase ): # Initialize accelerator UpperCAmelCase_ : Any = Accelerator(cpu=args.cpu, mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs UpperCAmelCase_ : str = config["lr"] UpperCAmelCase_ : str = int(config["num_epochs"] ) UpperCAmelCase_ : Dict = int(config["seed"] ) UpperCAmelCase_ : str = int(config["batch_size"] ) UpperCAmelCase_ : str = evaluate.load("glue", "mrpc" ) # If the batch size is too big we use gradient accumulation UpperCAmelCase_ : Any = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: UpperCAmelCase_ : Any = batch_size // MAX_GPU_BATCH_SIZE UpperCAmelCase_ : Optional[Any] = MAX_GPU_BATCH_SIZE set_seed(__lowerCamelCase ) UpperCAmelCase_ , UpperCAmelCase_ : str = get_dataloaders(__lowerCamelCase, __lowerCamelCase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) UpperCAmelCase_ : int = AutoModelForSequenceClassification.from_pretrained("bert-base-cased", return_dict=__lowerCamelCase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). UpperCAmelCase_ : Dict = model.to(accelerator.device ) # Instantiate optimizer UpperCAmelCase_ : str = AdamW(params=model.parameters(), lr=__lowerCamelCase ) # Instantiate scheduler UpperCAmelCase_ : Any = get_linear_schedule_with_warmup( optimizer=__lowerCamelCase, num_warmup_steps=100, num_training_steps=(len(__lowerCamelCase ) * num_epochs) // gradient_accumulation_steps, ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = accelerator.prepare( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) # Now we train the model for epoch in range(__lowerCamelCase ): model.train() for step, batch in enumerate(__lowerCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) UpperCAmelCase_ : Union[str, Any] = model(**__lowerCamelCase ) UpperCAmelCase_ : Union[str, Any] = outputs.loss UpperCAmelCase_ : int = loss / gradient_accumulation_steps accelerator.backward(__lowerCamelCase ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(__lowerCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): UpperCAmelCase_ : Optional[int] = model(**__lowerCamelCase ) UpperCAmelCase_ : str = outputs.logits.argmax(dim=-1 ) UpperCAmelCase_ , UpperCAmelCase_ : Any = accelerator.gather_for_metrics((predictions, batch["labels"]) ) metric.add_batch( predictions=__lowerCamelCase, references=__lowerCamelCase, ) UpperCAmelCase_ : Tuple = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"""epoch {epoch}:""", __lowerCamelCase ) def __a ( ): UpperCAmelCase_ : Optional[int] = argparse.ArgumentParser(description="Simple example of training script." ) parser.add_argument( "--mixed_precision", type=__lowerCamelCase, default=__lowerCamelCase, choices=["no", "fp16", "bf16", "fp8"], help="Whether to use mixed precision. Choose" "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." "and an Nvidia Ampere GPU.", ) parser.add_argument("--cpu", action="store_true", help="If passed, will train on the CPU." ) UpperCAmelCase_ : List[Any] = parser.parse_args() UpperCAmelCase_ : Optional[int] = {"lr": 2E-5, "num_epochs": 3, "seed": 42, "batch_size": 16} training_function(__lowerCamelCase, __lowerCamelCase ) if __name__ == "__main__": main()
61
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_fnet import FNetTokenizer else: _a = None _a = logging.get_logger(__name__) _a = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'} _a = { 'vocab_file': { 'google/fnet-base': 'https://huggingface.co/google/fnet-base/resolve/main/spiece.model', 'google/fnet-large': 'https://huggingface.co/google/fnet-large/resolve/main/spiece.model', }, 'tokenizer_file': { 'google/fnet-base': 'https://huggingface.co/google/fnet-base/resolve/main/tokenizer.json', 'google/fnet-large': 'https://huggingface.co/google/fnet-large/resolve/main/tokenizer.json', }, } _a = { 'google/fnet-base': 512, 'google/fnet-large': 512, } _a = '▁' class A_ (lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[str] = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE__ : Tuple = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE__ : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE__ : Union[str, Any] = ["""input_ids""", """token_type_ids"""] SCREAMING_SNAKE_CASE__ : Tuple = FNetTokenizer def __init__( self , lowercase_=None , lowercase_=None , lowercase_=False , lowercase_=True , lowercase_=True , lowercase_="<unk>" , lowercase_="[SEP]" , lowercase_="<pad>" , lowercase_="[CLS]" , lowercase_="[MASK]" , **lowercase_ , ): """simple docstring""" # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. UpperCAmelCase_ : int = ( AddedToken(lowercase_ , lstrip=lowercase_ , rstrip=lowercase_ , normalized=lowercase_ ) if isinstance(lowercase_ , lowercase_ ) else mask_token ) super().__init__( lowercase_ , tokenizer_file=lowercase_ , do_lower_case=lowercase_ , remove_space=lowercase_ , keep_accents=lowercase_ , unk_token=lowercase_ , sep_token=lowercase_ , pad_token=lowercase_ , cls_token=lowercase_ , mask_token=lowercase_ , **lowercase_ , ) UpperCAmelCase_ : Any = do_lower_case UpperCAmelCase_ : Tuple = remove_space UpperCAmelCase_ : str = keep_accents UpperCAmelCase_ : Any = vocab_file UpperCAmelCase_ : List[Any] = False if not self.vocab_file else True def UpperCamelCase__ ( self , lowercase_ , lowercase_ = None ): """simple docstring""" UpperCAmelCase_ : Tuple = [self.sep_token_id] UpperCAmelCase_ : Any = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def UpperCamelCase__ ( self , lowercase_ , lowercase_ = None ): """simple docstring""" UpperCAmelCase_ : Any = [self.sep_token_id] UpperCAmelCase_ : Any = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCamelCase__ ( self , lowercase_ , lowercase_ = None ): """simple docstring""" if not os.path.isdir(lowercase_ ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return UpperCAmelCase_ : List[str] = os.path.join( lowercase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowercase_ ): copyfile(self.vocab_file , lowercase_ ) return (out_vocab_file,)
61
1
"""simple docstring""" import os import re from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _UpperCAmelCase = logging.get_logger(__name__) _UpperCAmelCase = { 'vocab_file': 'vocab.txt', 'merges_file': 'bpe.codes', } _UpperCAmelCase = { 'vocab_file': { 'vinai/phobert-base': 'https://huggingface.co/vinai/phobert-base/resolve/main/vocab.txt', 'vinai/phobert-large': 'https://huggingface.co/vinai/phobert-large/resolve/main/vocab.txt', }, 'merges_file': { 'vinai/phobert-base': 'https://huggingface.co/vinai/phobert-base/resolve/main/bpe.codes', 'vinai/phobert-large': 'https://huggingface.co/vinai/phobert-large/resolve/main/bpe.codes', }, } _UpperCAmelCase = { 'vinai/phobert-base': 2_5_6, 'vinai/phobert-large': 2_5_6, } def lowerCAmelCase_ ( UpperCamelCase_ ) -> List[str]: UpperCamelCase_ = set() UpperCamelCase_ = word[0] for char in word[1:]: pairs.add((prev_char, char) ) UpperCamelCase_ = char UpperCamelCase_ = set(UpperCamelCase__ ) return pairs class _UpperCamelCase ( lowerCAmelCase_ ): _UpperCamelCase : Dict = VOCAB_FILES_NAMES _UpperCamelCase : str = PRETRAINED_VOCAB_FILES_MAP _UpperCamelCase : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self: Optional[Any] , _SCREAMING_SNAKE_CASE: str , _SCREAMING_SNAKE_CASE: Dict , _SCREAMING_SNAKE_CASE: List[str]="<s>" , _SCREAMING_SNAKE_CASE: int="</s>" , _SCREAMING_SNAKE_CASE: Tuple="</s>" , _SCREAMING_SNAKE_CASE: Optional[Any]="<s>" , _SCREAMING_SNAKE_CASE: Optional[int]="<unk>" , _SCREAMING_SNAKE_CASE: Dict="<pad>" , _SCREAMING_SNAKE_CASE: Any="<mask>" , **_SCREAMING_SNAKE_CASE: Optional[Any] , ) -> Any: """simple docstring""" super().__init__( bos_token=_SCREAMING_SNAKE_CASE , eos_token=_SCREAMING_SNAKE_CASE , unk_token=_SCREAMING_SNAKE_CASE , sep_token=_SCREAMING_SNAKE_CASE , cls_token=_SCREAMING_SNAKE_CASE , pad_token=_SCREAMING_SNAKE_CASE , mask_token=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) UpperCamelCase_ = vocab_file UpperCamelCase_ = merges_file UpperCamelCase_ = {} UpperCamelCase_ = 0 UpperCamelCase_ = 1 UpperCamelCase_ = 2 UpperCamelCase_ = 3 self.add_from_file(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = {v: k for k, v in self.encoder.items()} with open(_SCREAMING_SNAKE_CASE , encoding="utf-8" ) as merges_handle: UpperCamelCase_ = merges_handle.read().split("\n" )[:-1] UpperCamelCase_ = [tuple(merge.split()[:-1] ) for merge in merges] UpperCamelCase_ = dict(zip(_SCREAMING_SNAKE_CASE , range(len(_SCREAMING_SNAKE_CASE ) ) ) ) UpperCamelCase_ = {} def lowercase ( self: Optional[int] , _SCREAMING_SNAKE_CASE: Tuple , _SCREAMING_SNAKE_CASE: Union[str, Any] = None ) -> List[int]: """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] UpperCamelCase_ = [self.cls_token_id] UpperCamelCase_ = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowercase ( self: Tuple , _SCREAMING_SNAKE_CASE: int , _SCREAMING_SNAKE_CASE: Tuple = None , _SCREAMING_SNAKE_CASE: Optional[int] = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_SCREAMING_SNAKE_CASE , token_ids_a=_SCREAMING_SNAKE_CASE , already_has_special_tokens=_SCREAMING_SNAKE_CASE ) if token_ids_a is None: return [1] + ([0] * len(_SCREAMING_SNAKE_CASE )) + [1] return [1] + ([0] * len(_SCREAMING_SNAKE_CASE )) + [1, 1] + ([0] * len(_SCREAMING_SNAKE_CASE )) + [1] def lowercase ( self: List[str] , _SCREAMING_SNAKE_CASE: Tuple , _SCREAMING_SNAKE_CASE: Any = None ) -> List[int]: """simple docstring""" UpperCamelCase_ = [self.sep_token_id] UpperCamelCase_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def lowercase ( self: Tuple ) -> List[str]: """simple docstring""" return len(self.encoder ) def lowercase ( self: Union[str, Any] ) -> Union[str, Any]: """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder ) def lowercase ( self: Union[str, Any] , _SCREAMING_SNAKE_CASE: List[Any] ) -> List[Any]: """simple docstring""" if token in self.cache: return self.cache[token] UpperCamelCase_ = tuple(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = tuple(list(word[:-1] ) + [word[-1] + "</w>"] ) UpperCamelCase_ = get_pairs(_SCREAMING_SNAKE_CASE ) if not pairs: return token while True: UpperCamelCase_ = min(_SCREAMING_SNAKE_CASE , key=lambda _SCREAMING_SNAKE_CASE : self.bpe_ranks.get(_SCREAMING_SNAKE_CASE , float("inf" ) ) ) if bigram not in self.bpe_ranks: break UpperCamelCase_ = bigram UpperCamelCase_ = [] UpperCamelCase_ = 0 while i < len(_SCREAMING_SNAKE_CASE ): try: UpperCamelCase_ = word.index(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) UpperCamelCase_ = j if word[i] == first and i < len(_SCREAMING_SNAKE_CASE ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 UpperCamelCase_ = tuple(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = new_word if len(_SCREAMING_SNAKE_CASE ) == 1: break else: UpperCamelCase_ = get_pairs(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = '''@@ '''.join(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = word[:-4] UpperCamelCase_ = word return word def lowercase ( self: Dict , _SCREAMING_SNAKE_CASE: Optional[int] ) -> Dict: """simple docstring""" UpperCamelCase_ = [] UpperCamelCase_ = re.findall(R"\S+\n?" , _SCREAMING_SNAKE_CASE ) for token in words: split_tokens.extend(list(self.bpe(_SCREAMING_SNAKE_CASE ).split(" " ) ) ) return split_tokens def lowercase ( self: Union[str, Any] , _SCREAMING_SNAKE_CASE: Any ) -> Optional[Any]: """simple docstring""" return self.encoder.get(_SCREAMING_SNAKE_CASE , self.encoder.get(self.unk_token ) ) def lowercase ( self: str , _SCREAMING_SNAKE_CASE: List[str] ) -> List[str]: """simple docstring""" return self.decoder.get(_SCREAMING_SNAKE_CASE , self.unk_token ) def lowercase ( self: List[Any] , _SCREAMING_SNAKE_CASE: str ) -> str: """simple docstring""" UpperCamelCase_ = ''' '''.join(_SCREAMING_SNAKE_CASE ).replace("@@ " , "" ).strip() return out_string def lowercase ( self: Optional[Any] , _SCREAMING_SNAKE_CASE: Optional[int] , _SCREAMING_SNAKE_CASE: str = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(_SCREAMING_SNAKE_CASE ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return UpperCamelCase_ = os.path.join( _SCREAMING_SNAKE_CASE , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) UpperCamelCase_ = os.path.join( _SCREAMING_SNAKE_CASE , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_SCREAMING_SNAKE_CASE ): copyfile(self.vocab_file , _SCREAMING_SNAKE_CASE ) if os.path.abspath(self.merges_file ) != os.path.abspath(_SCREAMING_SNAKE_CASE ): copyfile(self.merges_file , _SCREAMING_SNAKE_CASE ) return out_vocab_file, out_merge_file def lowercase ( self: Any , _SCREAMING_SNAKE_CASE: Union[str, Any] ) -> Any: """simple docstring""" if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): try: with open(_SCREAMING_SNAKE_CASE , "r" , encoding="utf-8" ) as fd: self.add_from_file(_SCREAMING_SNAKE_CASE ) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception(f'''Incorrect encoding detected in {f}, please rebuild the dataset''' ) return UpperCamelCase_ = f.readlines() for lineTmp in lines: UpperCamelCase_ = lineTmp.strip() UpperCamelCase_ = line.rfind(" " ) if idx == -1: raise ValueError("Incorrect dictionary format, expected \'<token> <cnt>\'" ) UpperCamelCase_ = line[:idx] UpperCamelCase_ = len(self.encoder )
352
import logging import os import sys from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import SeqaSeqTrainer from seqaseq_training_args import SeqaSeqTrainingArguments import transformers from transformers import ( AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer, HfArgumentParser, MBartTokenizer, MBartTokenizerFast, set_seed, ) from transformers.trainer_utils import EvaluationStrategy, is_main_process from transformers.training_args import ParallelMode from utils import ( SeqaSeqDataCollator, SeqaSeqDataset, assert_all_frozen, build_compute_metrics_fn, check_output_dir, freeze_embeds, freeze_params, lmap, save_json, use_task_specific_params, write_txt_file, ) _UpperCAmelCase = logging.getLogger(__name__) @dataclass class _UpperCamelCase : _UpperCamelCase : str = field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) _UpperCamelCase : Optional[str] = field( default=lowerCAmelCase_ , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) _UpperCamelCase : Optional[str] = field( default=lowerCAmelCase_ , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) _UpperCamelCase : Optional[str] = field( default=lowerCAmelCase_ , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) _UpperCamelCase : bool = field(default=lowerCAmelCase_ , metadata={'''help''': '''Whether tp freeze the encoder.'''} ) _UpperCamelCase : bool = field(default=lowerCAmelCase_ , metadata={'''help''': '''Whether to freeze the embeddings.'''} ) @dataclass class _UpperCamelCase : _UpperCamelCase : str = field( metadata={'''help''': '''The input data dir. Should contain the .tsv files (or other data files) for the task.'''} ) _UpperCamelCase : Optional[str] = field( default='''summarization''' , metadata={'''help''': '''Task name, summarization (or summarization_{dataset} for pegasus) or translation'''} , ) _UpperCamelCase : Optional[int] = field( default=1_0_2_4 , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) _UpperCamelCase : Optional[int] = field( default=1_2_8 , metadata={ '''help''': ( '''The maximum total sequence length for target text after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) _UpperCamelCase : Optional[int] = field( default=1_4_2 , metadata={ '''help''': ( '''The maximum total sequence length for validation target text after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded. ''' '''This argument is also used to override the ``max_length`` param of ``model.generate``, which is used ''' '''during ``evaluate`` and ``predict``.''' ) } , ) _UpperCamelCase : Optional[int] = field( default=1_4_2 , metadata={ '''help''': ( '''The maximum total sequence length for test target text after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) _UpperCamelCase : Optional[int] = field(default=-1 , metadata={'''help''': '''# training examples. -1 means use all.'''} ) _UpperCamelCase : Optional[int] = field(default=-1 , metadata={'''help''': '''# validation examples. -1 means use all.'''} ) _UpperCamelCase : Optional[int] = field(default=-1 , metadata={'''help''': '''# test examples. -1 means use all.'''} ) _UpperCamelCase : Optional[str] = field(default=lowerCAmelCase_ , metadata={'''help''': '''Source language id for translation.'''} ) _UpperCamelCase : Optional[str] = field(default=lowerCAmelCase_ , metadata={'''help''': '''Target language id for translation.'''} ) _UpperCamelCase : Optional[int] = field(default=lowerCAmelCase_ , metadata={'''help''': '''# num_beams to use for evaluation.'''} ) _UpperCamelCase : bool = field( default=lowerCAmelCase_ , metadata={'''help''': '''If only pad tokens should be ignored. This assumes that `config.pad_token_id` is defined.'''} , ) def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> Optional[int]: logger.info(F'''***** {split} metrics *****''' ) for key in sorted(metrics.keys() ): logger.info(F''' {key} = {metrics[key]}''' ) save_json(UpperCamelCase_ , os.path.join(UpperCamelCase_ , F'''{split}_results.json''' ) ) def lowerCAmelCase_ ( ) -> Optional[int]: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. UpperCamelCase_ = HfArgumentParser((ModelArguments, DataTrainingArguments, SeqaSeqTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = parser.parse_args_into_dataclasses() check_output_dir(UpperCamelCase_ ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.parallel_mode == ParallelMode.DISTRIBUTED ) , training_args.fpaa , ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info("Training/evaluation parameters %s" , UpperCamelCase_ ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. UpperCamelCase_ = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) UpperCamelCase_ = ("encoder_layerdrop", "decoder_layerdrop", "dropout", "attention_dropout") for p in extra_model_params: if getattr(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): assert hasattr(UpperCamelCase_ , UpperCamelCase_ ), F'''({config.__class__.__name__}) doesn\'t have a `{p}` attribute''' setattr(UpperCamelCase_ , UpperCamelCase_ , getattr(UpperCamelCase_ , UpperCamelCase_ ) ) UpperCamelCase_ = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) UpperCamelCase_ = AutoModelForSeqaSeqLM.from_pretrained( model_args.model_name_or_path , from_tf=".ckpt" in model_args.model_name_or_path , config=UpperCamelCase_ , cache_dir=model_args.cache_dir , ) # use task specific params use_task_specific_params(UpperCamelCase_ , data_args.task ) # set num_beams for evaluation if data_args.eval_beams is None: UpperCamelCase_ = model.config.num_beams # set decoder_start_token_id for MBart if model.config.decoder_start_token_id is None and isinstance(UpperCamelCase_ , (MBartTokenizer, MBartTokenizerFast) ): assert ( data_args.tgt_lang is not None and data_args.src_lang is not None ), "mBart requires --tgt_lang and --src_lang" if isinstance(UpperCamelCase_ , UpperCamelCase_ ): UpperCamelCase_ = tokenizer.lang_code_to_id[data_args.tgt_lang] else: UpperCamelCase_ = tokenizer.convert_tokens_to_ids(data_args.tgt_lang ) if model_args.freeze_embeds: freeze_embeds(UpperCamelCase_ ) if model_args.freeze_encoder: freeze_params(model.get_encoder() ) assert_all_frozen(model.get_encoder() ) UpperCamelCase_ = SeqaSeqDataset # Get datasets UpperCamelCase_ = ( dataset_class( UpperCamelCase_ , type_path="train" , data_dir=data_args.data_dir , n_obs=data_args.n_train , max_target_length=data_args.max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or "" , ) if training_args.do_train else None ) UpperCamelCase_ = ( dataset_class( UpperCamelCase_ , type_path="val" , data_dir=data_args.data_dir , n_obs=data_args.n_val , max_target_length=data_args.val_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or "" , ) if training_args.do_eval or training_args.evaluation_strategy != EvaluationStrategy.NO else None ) UpperCamelCase_ = ( dataset_class( UpperCamelCase_ , type_path="test" , data_dir=data_args.data_dir , n_obs=data_args.n_test , max_target_length=data_args.test_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or "" , ) if training_args.do_predict else None ) # Initialize our Trainer UpperCamelCase_ = ( build_compute_metrics_fn(data_args.task , UpperCamelCase_ ) if training_args.predict_with_generate else None ) UpperCamelCase_ = SeqaSeqTrainer( model=UpperCamelCase_ , args=UpperCamelCase_ , data_args=UpperCamelCase_ , train_dataset=UpperCamelCase_ , eval_dataset=UpperCamelCase_ , data_collator=SeqaSeqDataCollator( UpperCamelCase_ , UpperCamelCase_ , model.config.decoder_start_token_id , training_args.tpu_num_cores ) , compute_metrics=UpperCamelCase_ , tokenizer=UpperCamelCase_ , ) UpperCamelCase_ = {} # Training if training_args.do_train: logger.info("*** Train ***" ) UpperCamelCase_ = trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) UpperCamelCase_ = train_result.metrics UpperCamelCase_ = data_args.n_train trainer.save_model() # this also saves the tokenizer if trainer.is_world_process_zero(): handle_metrics("train" , UpperCamelCase_ , training_args.output_dir ) all_metrics.update(UpperCamelCase_ ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , "trainer_state.json" ) ) # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) tokenizer.save_pretrained(training_args.output_dir ) # Evaluation if training_args.do_eval: logger.info("*** Evaluate ***" ) UpperCamelCase_ = trainer.evaluate(metric_key_prefix="val" ) UpperCamelCase_ = data_args.n_val UpperCamelCase_ = round(metrics["val_loss"] , 4 ) if trainer.is_world_process_zero(): handle_metrics("val" , UpperCamelCase_ , training_args.output_dir ) all_metrics.update(UpperCamelCase_ ) if training_args.do_predict: logger.info("*** Predict ***" ) UpperCamelCase_ = trainer.predict(test_dataset=UpperCamelCase_ , metric_key_prefix="test" ) UpperCamelCase_ = test_output.metrics UpperCamelCase_ = data_args.n_test if trainer.is_world_process_zero(): UpperCamelCase_ = round(metrics["test_loss"] , 4 ) handle_metrics("test" , UpperCamelCase_ , training_args.output_dir ) all_metrics.update(UpperCamelCase_ ) if training_args.predict_with_generate: UpperCamelCase_ = tokenizer.batch_decode( test_output.predictions , skip_special_tokens=UpperCamelCase_ , clean_up_tokenization_spaces=UpperCamelCase_ ) UpperCamelCase_ = lmap(str.strip , UpperCamelCase_ ) write_txt_file(UpperCamelCase_ , os.path.join(training_args.output_dir , "test_generations.txt" ) ) if trainer.is_world_process_zero(): save_json(UpperCamelCase_ , os.path.join(training_args.output_dir , "all_results.json" ) ) return all_metrics def lowerCAmelCase_ ( UpperCamelCase_ ) -> Optional[Any]: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
328
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __snake_case = { '''configuration_bloom''': ['''BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BloomConfig''', '''BloomOnnxConfig'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = ['''BloomTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ '''BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BloomForCausalLM''', '''BloomModel''', '''BloomPreTrainedModel''', '''BloomForSequenceClassification''', '''BloomForTokenClassification''', '''BloomForQuestionAnswering''', ] if TYPE_CHECKING: from .configuration_bloom import BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP, BloomConfig, BloomOnnxConfig try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bloom_fast import BloomTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bloom import ( BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST, BloomForCausalLM, BloomForQuestionAnswering, BloomForSequenceClassification, BloomForTokenClassification, BloomModel, BloomPreTrainedModel, ) else: import sys __snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
348
import torch from diffusers import KDPMaDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class __snake_case ( lowerCamelCase__ ): __lowerCamelCase : Optional[int] = (KDPMaDiscreteScheduler,) __lowerCamelCase : List[str] = 10 def UpperCAmelCase__ ( self , **snake_case__ ) -> str: '''simple docstring''' UpperCAmelCase : int ={ '''num_train_timesteps''': 1100, '''beta_start''': 0.0001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', } config.update(**snake_case__ ) return config def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' for timesteps in [10, 50, 100, 1000]: self.check_over_configs(num_train_timesteps=snake_case__ ) def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' for beta_start, beta_end in zip([0.0_0001, 0.0001, 0.001] , [0.0002, 0.002, 0.02] ): self.check_over_configs(beta_start=snake_case__ , beta_end=snake_case__ ) def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=snake_case__ ) def UpperCAmelCase__ ( self ) -> Dict: '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=snake_case__ ) def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' UpperCAmelCase : Optional[Any] =self.scheduler_classes[0] UpperCAmelCase : Optional[int] =self.get_scheduler_config(prediction_type='''v_prediction''' ) UpperCAmelCase : Optional[Any] =scheduler_class(**snake_case__ ) scheduler.set_timesteps(self.num_inference_steps ) UpperCAmelCase : str =self.dummy_model() UpperCAmelCase : Optional[Any] =self.dummy_sample_deter * scheduler.init_noise_sigma UpperCAmelCase : Union[str, Any] =sample.to(snake_case__ ) for i, t in enumerate(scheduler.timesteps ): UpperCAmelCase : str =scheduler.scale_model_input(snake_case__ , snake_case__ ) UpperCAmelCase : Any =model(snake_case__ , snake_case__ ) UpperCAmelCase : Union[str, Any] =scheduler.step(snake_case__ , snake_case__ , snake_case__ ) UpperCAmelCase : int =output.prev_sample UpperCAmelCase : Dict =torch.sum(torch.abs(snake_case__ ) ) UpperCAmelCase : Optional[Any] =torch.mean(torch.abs(snake_case__ ) ) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 4.69_34e-07 ) < 1e-2 assert abs(result_mean.item() - 6.11_12e-10 ) < 1e-3 else: # CUDA assert abs(result_sum.item() - 4.6_93_42_86_50_17_09_72e-07 ) < 1e-2 assert abs(result_mean.item() - 0.0002 ) < 1e-3 def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' if torch_device == "mps": return UpperCAmelCase : Any =self.scheduler_classes[0] UpperCAmelCase : Optional[int] =self.get_scheduler_config() UpperCAmelCase : Optional[Any] =scheduler_class(**snake_case__ ) scheduler.set_timesteps(self.num_inference_steps ) UpperCAmelCase : Optional[int] =self.dummy_model() UpperCAmelCase : Union[str, Any] =self.dummy_sample_deter * scheduler.init_noise_sigma UpperCAmelCase : str =sample.to(snake_case__ ) for i, t in enumerate(scheduler.timesteps ): UpperCAmelCase : Dict =scheduler.scale_model_input(snake_case__ , snake_case__ ) UpperCAmelCase : Union[str, Any] =model(snake_case__ , snake_case__ ) UpperCAmelCase : List[str] =scheduler.step(snake_case__ , snake_case__ , snake_case__ ) UpperCAmelCase : Optional[int] =output.prev_sample UpperCAmelCase : Any =torch.sum(torch.abs(snake_case__ ) ) UpperCAmelCase : Union[str, Any] =torch.mean(torch.abs(snake_case__ ) ) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 20.4125 ) < 1e-2 assert abs(result_mean.item() - 0.0266 ) < 1e-3 else: # CUDA assert abs(result_sum.item() - 20.4125 ) < 1e-2 assert abs(result_mean.item() - 0.0266 ) < 1e-3 def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' if torch_device == "mps": return UpperCAmelCase : List[Any] =self.scheduler_classes[0] UpperCAmelCase : Dict =self.get_scheduler_config() UpperCAmelCase : List[str] =scheduler_class(**snake_case__ ) scheduler.set_timesteps(self.num_inference_steps , device=snake_case__ ) UpperCAmelCase : int =self.dummy_model() UpperCAmelCase : Tuple =self.dummy_sample_deter.to(snake_case__ ) * scheduler.init_noise_sigma for t in scheduler.timesteps: UpperCAmelCase : Optional[Any] =scheduler.scale_model_input(snake_case__ , snake_case__ ) UpperCAmelCase : int =model(snake_case__ , snake_case__ ) UpperCAmelCase : str =scheduler.step(snake_case__ , snake_case__ , snake_case__ ) UpperCAmelCase : List[str] =output.prev_sample UpperCAmelCase : List[str] =torch.sum(torch.abs(snake_case__ ) ) UpperCAmelCase : Dict =torch.mean(torch.abs(snake_case__ ) ) if str(snake_case__ ).startswith('''cpu''' ): # The following sum varies between 148 and 156 on mps. Why? assert abs(result_sum.item() - 20.4125 ) < 1e-2 assert abs(result_mean.item() - 0.0266 ) < 1e-3 else: # CUDA assert abs(result_sum.item() - 20.4125 ) < 1e-2 assert abs(result_mean.item() - 0.0266 ) < 1e-3
348
1
from transformers import DistilBertTokenizer, DistilBertTokenizerFast from transformers.testing_utils import require_tokenizers, slow from ..bert.test_tokenization_bert import BertTokenizationTest @require_tokenizers class _UpperCamelCase ( _A ): '''simple docstring''' __UpperCamelCase : List[str] = DistilBertTokenizer __UpperCamelCase : List[Any] = DistilBertTokenizerFast __UpperCamelCase : List[str] = True @slow def lowerCAmelCase__ ( self : Tuple ): UpperCamelCase_: Tuple = DistilBertTokenizer.from_pretrained("""distilbert-base-uncased""" ) UpperCamelCase_: List[Any] = tokenizer.encode("""sequence builders""" , add_special_tokens=snake_case_ ) UpperCamelCase_: List[str] = tokenizer.encode("""multi-sequence build""" , add_special_tokens=snake_case_ ) UpperCamelCase_: List[str] = tokenizer.build_inputs_with_special_tokens(snake_case_ ) UpperCamelCase_: Tuple = tokenizer.build_inputs_with_special_tokens(snake_case_ , snake_case_ ) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ]
369
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase_ : Optional[int] = logging.get_logger(__name__) lowerCamelCase_ : Optional[int] = {"""ctrl""": """https://huggingface.co/ctrl/resolve/main/config.json"""} class _UpperCamelCase ( _A ): '''simple docstring''' __UpperCamelCase : int = """ctrl""" __UpperCamelCase : Dict = ["""past_key_values"""] __UpperCamelCase : List[str] = { """max_position_embeddings""": """n_positions""", """hidden_size""": """n_embd""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self : Dict , snake_case_ : Any=24_6534 , snake_case_ : Dict=256 , snake_case_ : str=1280 , snake_case_ : Optional[int]=8192 , snake_case_ : Union[str, Any]=48 , snake_case_ : Any=16 , snake_case_ : Optional[int]=0.1 , snake_case_ : Any=0.1 , snake_case_ : Any=1e-6 , snake_case_ : Optional[Any]=0.02 , snake_case_ : Optional[int]=True , **snake_case_ : Union[str, Any] , ): UpperCamelCase_: Union[str, Any] = vocab_size UpperCamelCase_: Union[str, Any] = n_positions UpperCamelCase_: Optional[int] = n_embd UpperCamelCase_: int = n_layer UpperCamelCase_: str = n_head UpperCamelCase_: Optional[int] = dff UpperCamelCase_: Optional[Any] = resid_pdrop UpperCamelCase_: Union[str, Any] = embd_pdrop UpperCamelCase_: List[str] = layer_norm_epsilon UpperCamelCase_: Optional[Any] = initializer_range UpperCamelCase_: Optional[Any] = use_cache super().__init__(**snake_case_ )
223
0
import itertools import string from collections.abc import Generator, Iterable def A ( _lowercase , _lowercase ): SCREAMING_SNAKE_CASE : Union[str, Any] = iter(_lowercase ) while True: SCREAMING_SNAKE_CASE : Optional[Any] = tuple(itertools.islice(_lowercase , _lowercase ) ) if not chunk: return yield chunk def A ( _lowercase ): SCREAMING_SNAKE_CASE : int = ''''''.join([c.upper() for c in dirty if c in string.ascii_letters] ) SCREAMING_SNAKE_CASE : List[str] = '''''' if len(_lowercase ) < 2: return dirty for i in range(len(_lowercase ) - 1 ): clean += dirty[i] if dirty[i] == dirty[i + 1]: clean += "X" clean += dirty[-1] if len(_lowercase ) & 1: clean += "X" return clean def A ( _lowercase ): # I and J are used interchangeably to allow # us to use a 5x5 table (25 letters) SCREAMING_SNAKE_CASE : Optional[Any] = '''ABCDEFGHIKLMNOPQRSTUVWXYZ''' # we're using a list instead of a '2d' array because it makes the math # for setting up the table and doing the actual encoding/decoding simpler SCREAMING_SNAKE_CASE : List[Any] = [] # copy key chars into the table if they are in `alphabet` ignoring duplicates for char in key.upper(): if char not in table and char in alphabet: table.append(_lowercase ) # fill the rest of the table in with the remaining alphabet chars for char in alphabet: if char not in table: table.append(_lowercase ) return table def A ( _lowercase , _lowercase ): SCREAMING_SNAKE_CASE : Any = generate_table(_lowercase ) SCREAMING_SNAKE_CASE : Any = prepare_input(_lowercase ) SCREAMING_SNAKE_CASE : Union[str, Any] = '''''' # https://en.wikipedia.org/wiki/Playfair_cipher#Description for chara, chara in chunker(_lowercase , 2 ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = divmod(table.index(_lowercase ) , 5 ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Union[str, Any] = divmod(table.index(_lowercase ) , 5 ) if rowa == rowa: ciphertext += table[rowa * 5 + (cola + 1) % 5] ciphertext += table[rowa * 5 + (cola + 1) % 5] elif cola == cola: ciphertext += table[((rowa + 1) % 5) * 5 + cola] ciphertext += table[((rowa + 1) % 5) * 5 + cola] else: # rectangle ciphertext += table[rowa * 5 + cola] ciphertext += table[rowa * 5 + cola] return ciphertext def A ( _lowercase , _lowercase ): SCREAMING_SNAKE_CASE : Any = generate_table(_lowercase ) SCREAMING_SNAKE_CASE : List[Any] = '''''' # https://en.wikipedia.org/wiki/Playfair_cipher#Description for chara, chara in chunker(_lowercase , 2 ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[str] = divmod(table.index(_lowercase ) , 5 ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = divmod(table.index(_lowercase ) , 5 ) if rowa == rowa: plaintext += table[rowa * 5 + (cola - 1) % 5] plaintext += table[rowa * 5 + (cola - 1) % 5] elif cola == cola: plaintext += table[((rowa - 1) % 5) * 5 + cola] plaintext += table[((rowa - 1) % 5) * 5 + cola] else: # rectangle plaintext += table[rowa * 5 + cola] plaintext += table[rowa * 5 + cola] return plaintext
182
from packaging import version from .import_utils import is_accelerate_available if is_accelerate_available(): import accelerate def A ( _lowercase ): if not is_accelerate_available(): return method SCREAMING_SNAKE_CASE : int = version.parse(accelerate.__version__ ).base_version if version.parse(_lowercase ) < version.parse('''0.17.0''' ): return method def wrapper(self , *_lowercase , **_lowercase ): if hasattr(self , '''_hf_hook''' ) and hasattr(self._hf_hook , '''pre_forward''' ): self._hf_hook.pre_forward(self ) return method(self , *_lowercase , **_lowercase ) return wrapper
182
1
'''simple docstring''' import unittest from knapsack import greedy_knapsack as kp class lowerCamelCase ( unittest.TestCase ): def lowercase__ ( self : Dict ) -> Optional[int]: '''simple docstring''' A__ : str =[10, 20, 30, 40, 50, 60] A__ : int =[2, 4, 6, 8, 10, 12] A__ : Any =1_00 self.assertEqual(kp.calc_profit(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) , 2_10 ) def lowercase__ ( self : Any ) -> Dict: '''simple docstring''' self.assertRaisesRegex(lowerCAmelCase_ , """max_weight must greater than zero.""" ) def lowercase__ ( self : Optional[int] ) -> Dict: '''simple docstring''' self.assertRaisesRegex(lowerCAmelCase_ , """Weight can not be negative.""" ) def lowercase__ ( self : int ) -> Dict: '''simple docstring''' self.assertRaisesRegex(lowerCAmelCase_ , """Profit can not be negative.""" ) def lowercase__ ( self : Optional[int] ) -> Tuple: '''simple docstring''' self.assertRaisesRegex(lowerCAmelCase_ , """max_weight must greater than zero.""" ) def lowercase__ ( self : Tuple ) -> str: '''simple docstring''' self.assertRaisesRegex( lowerCAmelCase_ , """The length of profit and weight must be same.""" ) if __name__ == "__main__": unittest.main()
356
'''simple docstring''' import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XLMRobertaTokenizer, XLMRobertaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin __snake_case : List[str] = get_tests_dir('fixtures/test_sentencepiece.model') @require_sentencepiece @require_tokenizers class lowerCamelCase ( lowercase_ , unittest.TestCase ): '''simple docstring''' __snake_case = XLMRobertaTokenizer __snake_case = XLMRobertaTokenizerFast __snake_case = True __snake_case = True def lowercase__ ( self : Any ) -> Union[str, Any]: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing A__ : Any =XLMRobertaTokenizer(lowerCAmelCase_ , keep_accents=lowerCAmelCase_ ) tokenizer.save_pretrained(self.tmpdirname ) def lowercase__ ( self : Optional[Any] ) -> Tuple: '''simple docstring''' A__ : Union[str, Any] ="""<pad>""" A__ : Any =1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCAmelCase_ ) , lowerCAmelCase_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCAmelCase_ ) , lowerCAmelCase_ ) def lowercase__ ( self : List[Any] ) -> Any: '''simple docstring''' A__ : int =list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<s>""" ) self.assertEqual(vocab_keys[1] , """<pad>""" ) self.assertEqual(vocab_keys[-1] , """<mask>""" ) self.assertEqual(len(lowerCAmelCase_ ) , 10_02 ) def lowercase__ ( self : Optional[int] ) -> Optional[Any]: '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 10_02 ) def lowercase__ ( self : Tuple ) -> Any: '''simple docstring''' A__ : List[Any] =XLMRobertaTokenizer(lowerCAmelCase_ , keep_accents=lowerCAmelCase_ ) A__ : Tuple =tokenizer.tokenize("""This is a test""" ) self.assertListEqual(lowerCAmelCase_ , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCAmelCase_ ) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , ) A__ : Optional[int] =tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( lowerCAmelCase_ , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] , ) A__ : Optional[int] =tokenizer.convert_tokens_to_ids(lowerCAmelCase_ ) self.assertListEqual( lowerCAmelCase_ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4] # ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^ ] , ) A__ : Union[str, Any] =tokenizer.convert_ids_to_tokens(lowerCAmelCase_ ) self.assertListEqual( lowerCAmelCase_ , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] , ) def lowercase__ ( self : List[Any] ) -> Optional[int]: '''simple docstring''' if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return A__ : Dict =(self.rust_tokenizer_class, """hf-internal-testing/tiny-xlm-roberta""", {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ): A__ : List[str] =self.rust_tokenizer_class.from_pretrained(lowerCAmelCase_ , **lowerCAmelCase_ ) A__ : Union[str, Any] =self.tokenizer_class.from_pretrained(lowerCAmelCase_ , **lowerCAmelCase_ ) A__ : Optional[Any] =tempfile.mkdtemp() A__ : Union[str, Any] =tokenizer_r.save_pretrained(lowerCAmelCase_ ) A__ : Union[str, Any] =tokenizer_p.save_pretrained(lowerCAmelCase_ ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any("""tokenizer.json""" in f for f in tokenizer_r_files ) ) A__ : List[str] =tuple(f for f in tokenizer_r_files if """tokenizer.json""" not in f ) self.assertSequenceEqual(lowerCAmelCase_ , lowerCAmelCase_ ) # Checks everything loads correctly in the same way A__ : Any =tokenizer_r.from_pretrained(lowerCAmelCase_ ) A__ : Union[str, Any] =tokenizer_p.from_pretrained(lowerCAmelCase_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowerCAmelCase_ , lowerCAmelCase_ ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(lowerCAmelCase_ ) # Save tokenizer rust, legacy_format=True A__ : List[str] =tempfile.mkdtemp() A__ : List[str] =tokenizer_r.save_pretrained(lowerCAmelCase_ , legacy_format=lowerCAmelCase_ ) A__ : List[Any] =tokenizer_p.save_pretrained(lowerCAmelCase_ ) # Checks it save with the same files self.assertSequenceEqual(lowerCAmelCase_ , lowerCAmelCase_ ) # Checks everything loads correctly in the same way A__ : str =tokenizer_r.from_pretrained(lowerCAmelCase_ ) A__ : List[Any] =tokenizer_p.from_pretrained(lowerCAmelCase_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowerCAmelCase_ , lowerCAmelCase_ ) ) shutil.rmtree(lowerCAmelCase_ ) # Save tokenizer rust, legacy_format=False A__ : List[str] =tempfile.mkdtemp() A__ : Dict =tokenizer_r.save_pretrained(lowerCAmelCase_ , legacy_format=lowerCAmelCase_ ) A__ : List[Any] =tokenizer_p.save_pretrained(lowerCAmelCase_ ) # Checks it saved the tokenizer.json file self.assertTrue(any("""tokenizer.json""" in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way A__ : Optional[int] =tokenizer_r.from_pretrained(lowerCAmelCase_ ) A__ : str =tokenizer_p.from_pretrained(lowerCAmelCase_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowerCAmelCase_ , lowerCAmelCase_ ) ) shutil.rmtree(lowerCAmelCase_ ) @cached_property def lowercase__ ( self : Optional[Any] ) -> List[str]: '''simple docstring''' return XLMRobertaTokenizer.from_pretrained("""xlm-roberta-base""" ) def lowercase__ ( self : Tuple ) -> Tuple: '''simple docstring''' with tempfile.NamedTemporaryFile() as f: shutil.copyfile(lowerCAmelCase_ , f.name ) A__ : Dict =XLMRobertaTokenizer(f.name , keep_accents=lowerCAmelCase_ ) A__ : Optional[Any] =pickle.dumps(lowerCAmelCase_ ) pickle.loads(lowerCAmelCase_ ) def lowercase__ ( self : Optional[Any] ) -> List[Any]: '''simple docstring''' if not self.test_rust_tokenizer: return A__ : Any =self.get_tokenizer() A__ : Any =self.get_rust_tokenizer() A__ : Optional[Any] ="""I was born in 92000, and this is falsé.""" A__ : List[str] =tokenizer.tokenize(lowerCAmelCase_ ) A__ : int =rust_tokenizer.tokenize(lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) A__ : str =tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) A__ : Dict =rust_tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) A__ : Union[str, Any] =self.get_rust_tokenizer() A__ : Union[str, Any] =tokenizer.encode(lowerCAmelCase_ ) A__ : Optional[Any] =rust_tokenizer.encode(lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) @slow def lowercase__ ( self : Dict ) -> int: '''simple docstring''' A__ : Optional[Any] ="""Hello World!""" A__ : Optional[Any] =[0, 3_53_78, 66_61, 38, 2] # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer # xlmr.eval() # xlmr.encode(symbols) self.assertListEqual(lowerCAmelCase_ , self.big_tokenizer.encode(lowerCAmelCase_ ) ) @slow def lowercase__ ( self : List[Any] ) -> int: '''simple docstring''' A__ : List[Any] =( """This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will""" """ add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth""" ) A__ : Optional[Any] =[ 0, 32_93, 83, 10, 45_52, 49_89, 79_86, 6_78, 10, 59_15, 1_11, 17_94_59, 12_48_50, 4, 60_44, 2_37, 12, 6, 5, 6, 4, 67_80, 7_05, 15, 13_88, 44, 3_78, 1_01_14, 7_11, 1_52, 20, 6, 5, 2_23_76, 6_42, 12_21, 1_51_90, 3_41_53, 4_50, 56_08, 9_59, 11_19, 5_77_02, 1_36, 1_86, 47, 10_98, 2_93_67, 47, # 4426, # What fairseq tokenizes from "<unk>": "_<" # 3678, # What fairseq tokenizes from "<unk>": "unk" # 2740, # What fairseq tokenizes from "<unk>": ">" 3, # What we tokenize from "<unk>": "<unk>" 6, # Residue from the tokenization: an extra sentencepiece underline 4, 60_44, 2_37, 62_84, 5_09_01, 5_28, 31, 90, 34, 9_27, 2, ] # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer # xlmr.eval() # xlmr.encode(symbols) self.assertListEqual(lowerCAmelCase_ , self.big_tokenizer.encode(lowerCAmelCase_ ) ) @slow def lowercase__ ( self : int ) -> Optional[Any]: '''simple docstring''' # fmt: off A__ : List[Any] ={"""input_ids""": [[0, 1_10_62, 8_27_72, 7, 15, 8_27_72, 5_38, 5_15_29, 2_37, 1_71_98, 12_90, 2_06, 9, 21_51_75, 13_14, 1_36, 1_71_98, 12_90, 2_06, 9, 5_63_59, 42, 12_20_09, 9, 1_64_66, 16, 8_73_44, 45_37, 9, 47_17, 7_83_81, 6, 15_99_58, 7, 15, 2_44_80, 6_18, 4, 5_27, 2_26_93, 54_28, 4, 27_77, 2_44_80, 98_74, 4, 4_35_23, 5_94, 4, 8_03, 1_83_92, 3_31_89, 18, 4, 4_35_23, 2_44_47, 1_23_99, 1_00, 2_49_55, 8_36_58, 96_26, 14_40_57, 15, 8_39, 2_23_35, 16, 1_36, 2_49_55, 8_36_58, 8_34_79, 15, 3_91_02, 7_24, 16, 6_78, 6_45, 27_89, 13_28, 45_89, 42, 12_20_09, 11_57_74, 23, 8_05, 13_28, 4_68_76, 7, 1_36, 5_38_94, 19_40, 4_22_27, 4_11_59, 1_77_21, 8_23, 4_25, 4, 2_75_12, 9_87_22, 2_06, 1_36, 55_31, 49_70, 9_19, 1_73_36, 5, 2], [0, 2_00_80, 6_18, 83, 8_27_75, 47, 4_79, 9, 15_17, 73, 5_38_94, 3_33, 8_05_81, 11_01_17, 1_88_11, 52_56, 12_95, 51, 15_25_26, 2_97, 79_86, 3_90, 12_44_16, 5_38, 3_54_31, 2_14, 98, 1_50_44, 2_57_37, 1_36, 71_08, 4_37_01, 23, 7_56, 13_53_55, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 5_81, 6_37_73, 11_94_55, 6, 14_77_97, 8_82_03, 7, 6_45, 70, 21, 32_85, 1_02_69, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCAmelCase_ , model_name="""xlm-roberta-base""" , revision="""d9d8a8ea5eb94b1c6654ae9249df7793cd2933d3""" , )
136
0
import collections import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _a = logging.get_logger(__name__) _a = '''▁''' _a = {'''vocab_file''': '''prophetnet.tokenizer'''} _a = { '''vocab_file''': { '''microsoft/xprophetnet-large-wiki100-cased''': ( '''https://huggingface.co/microsoft/xprophetnet-large-wiki100-cased/resolve/main/prophetnet.tokenizer''' ), } } _a = { '''microsoft/xprophetnet-large-wiki100-cased''': {'''do_lower_case''': False}, } _a = { '''microsoft/xprophetnet-large-wiki100-cased''': 5_1_2, } def _a ( SCREAMING_SNAKE_CASE : List[Any] ) -> Dict: """simple docstring""" __lowerCAmelCase: Optional[Any] = collections.OrderedDict() with open(SCREAMING_SNAKE_CASE , 'r' , encoding='utf-8' ) as reader: __lowerCAmelCase: Any = reader.readlines() for index, token in enumerate(SCREAMING_SNAKE_CASE ): __lowerCAmelCase: Optional[Any] = token.rstrip('\n' ) __lowerCAmelCase: int = index return vocab class A_ ( snake_case__ ): _lowercase : Dict = VOCAB_FILES_NAMES _lowercase : List[Any] = PRETRAINED_VOCAB_FILES_MAP _lowercase : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowercase : Union[str, Any] = ['input_ids', 'attention_mask'] def __init__( self : List[str] , UpperCAmelCase : str , UpperCAmelCase : str="[SEP]" , UpperCAmelCase : Tuple="[SEP]" , UpperCAmelCase : Optional[int]="[SEP]" , UpperCAmelCase : int="[UNK]" , UpperCAmelCase : Optional[int]="[PAD]" , UpperCAmelCase : int="[CLS]" , UpperCAmelCase : int="[MASK]" , UpperCAmelCase : Optional[Dict[str, Any]] = None , **UpperCAmelCase : str , ) -> None: __lowerCAmelCase: Dict = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=UpperCAmelCase , eos_token=UpperCAmelCase , sep_token=UpperCAmelCase , unk_token=UpperCAmelCase , pad_token=UpperCAmelCase , cls_token=UpperCAmelCase , mask_token=UpperCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **UpperCAmelCase , ) try: import sentencepiece as spm except ImportError: logger.warning( 'You need to install SentencePiece to use XLMRobertaTokenizer: https://github.com/google/sentencepiece' ' pip install sentencepiece' ) raise __lowerCAmelCase: List[str] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(UpperCAmelCase ) ) __lowerCAmelCase: int = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # put special tokens and [unused] tokens into the vocab __lowerCAmelCase: Tuple = {'[PAD]': 0, '[CLS]': 1, '[SEP]': 2, '[UNK]': 3, '[MASK]': 4} for i in range(1_0 ): __lowerCAmelCase: Optional[int] = F'''[unused{i}]''' __lowerCAmelCase: List[str] = 5 + i # The first "real" token "," has position 15 in the embedding vocab and position 3 in the spm vocab __lowerCAmelCase: List[Any] = 1_2 __lowerCAmelCase: Optional[int] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} for k in self.fairseq_tokens_to_ids.keys(): self.unique_no_split_tokens.append(UpperCAmelCase ) def __getstate__( self : Optional[int] ) -> int: __lowerCAmelCase: Tuple = self.__dict__.copy() __lowerCAmelCase: Tuple = None return state def __setstate__( self : int , UpperCAmelCase : List[Any] ) -> List[Any]: __lowerCAmelCase: List[Any] = d try: import sentencepiece as spm except ImportError: logger.warning( 'You need to install SentencePiece to use XLMRobertaTokenizer: https://github.com/google/sentencepiece' ' pip install sentencepiece' ) raise # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): __lowerCAmelCase: Dict = {} __lowerCAmelCase: Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def UpperCAmelCase ( self : int , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None , UpperCAmelCase : bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCAmelCase , token_ids_a=UpperCAmelCase , already_has_special_tokens=UpperCAmelCase ) if token_ids_a is None: return ([0] * len(UpperCAmelCase )) + [1] return ([0] * len(UpperCAmelCase )) + [1] + ([0] * len(UpperCAmelCase )) + [1] def UpperCAmelCase ( self : Tuple , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ) -> List[int]: __lowerCAmelCase: List[str] = [self.sep_token_id] if token_ids_a is None: return len(token_ids_a + sep ) * [0] return len(token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def UpperCAmelCase ( self : Any ) -> List[Any]: return len(self.sp_model ) + self.fairseq_offset def UpperCAmelCase ( self : Any ) -> Any: __lowerCAmelCase: List[Any] = {self.convert_ids_to_tokens(UpperCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def UpperCAmelCase ( self : List[Any] , UpperCAmelCase : str ) -> str: return self.sp_model.encode(UpperCAmelCase , out_type=UpperCAmelCase ) def UpperCAmelCase ( self : int , UpperCAmelCase : Union[str, Any] ) -> Optional[Any]: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] __lowerCAmelCase: Optional[int] = self.sp_model.PieceToId(UpperCAmelCase ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def UpperCAmelCase ( self : List[str] , UpperCAmelCase : int ) -> Optional[int]: if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def UpperCAmelCase ( self : Optional[Any] , UpperCAmelCase : int ) -> Any: __lowerCAmelCase: Any = ''.join(UpperCAmelCase ).replace(UpperCAmelCase , ' ' ).strip() return out_string def UpperCAmelCase ( self : Optional[int] , UpperCAmelCase : str , UpperCAmelCase : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(UpperCAmelCase ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return __lowerCAmelCase: Tuple = os.path.join( UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , UpperCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(UpperCAmelCase , 'wb' ) as fi: __lowerCAmelCase: List[str] = self.sp_model.serialized_model_proto() fi.write(UpperCAmelCase ) return (out_vocab_file,) def UpperCAmelCase ( self : str , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ) -> List[int]: if token_ids_a is None: return token_ids_a + [self.sep_token_id] __lowerCAmelCase: List[str] = [self.sep_token_id] return token_ids_a + sep + token_ids_a + sep
322
from __future__ import annotations def _a ( SCREAMING_SNAKE_CASE : list[int] , SCREAMING_SNAKE_CASE : int ) -> list[int]: """simple docstring""" __lowerCAmelCase: int = 0 __lowerCAmelCase: Tuple = len(SCREAMING_SNAKE_CASE ) - 1 while i < j: if nums[i] + nums[j] == target: return [i, j] elif nums[i] + nums[j] < target: __lowerCAmelCase: Tuple = i + 1 else: __lowerCAmelCase: List[str] = j - 1 return [] if __name__ == "__main__": import doctest doctest.testmod() print(f"{two_pointer([2, 7, 1_1, 1_5], 9) = }")
322
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available __UpperCamelCase = {"configuration_swin": ["SWIN_PRETRAINED_CONFIG_ARCHIVE_MAP", "SwinConfig", "SwinOnnxConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = [ "SWIN_PRETRAINED_MODEL_ARCHIVE_LIST", "SwinForImageClassification", "SwinForMaskedImageModeling", "SwinModel", "SwinPreTrainedModel", "SwinBackbone", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = [ "TF_SWIN_PRETRAINED_MODEL_ARCHIVE_LIST", "TFSwinForImageClassification", "TFSwinForMaskedImageModeling", "TFSwinModel", "TFSwinPreTrainedModel", ] if TYPE_CHECKING: from .configuration_swin import SWIN_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinConfig, SwinOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swin import ( SWIN_PRETRAINED_MODEL_ARCHIVE_LIST, SwinBackbone, SwinForImageClassification, SwinForMaskedImageModeling, SwinModel, SwinPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_swin import ( TF_SWIN_PRETRAINED_MODEL_ARCHIVE_LIST, TFSwinForImageClassification, TFSwinForMaskedImageModeling, TFSwinModel, TFSwinPreTrainedModel, ) else: import sys __UpperCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
366
'''simple docstring''' from __future__ import annotations import os import tempfile import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import is_tensorflow_text_available, is_tf_available from transformers.testing_utils import require_tensorflow_text, require_tf, slow from ..test_modeling_tf_common import floats_tensor from .test_framework_agnostic import GenerationIntegrationTestsMixin if is_tf_available(): import tensorflow as tf from transformers import ( AutoTokenizer, TFAutoModelForCausalLM, TFAutoModelForSeqaSeqLM, TFAutoModelForSpeechSeqaSeq, TFAutoModelForVisionaSeq, TFBartForConditionalGeneration, TFLogitsProcessorList, TFMinLengthLogitsProcessor, tf_top_k_top_p_filtering, ) if is_tensorflow_text_available(): import tensorflow_text as text @require_tf class _A ( unittest.TestCase ): def lowercase__ ( self : Optional[int] ) -> str: """simple docstring""" __snake_case : List[Any] = tf.convert_to_tensor( [ [ 8.2220991, # 3rd highest value; idx. 0 -0.5620044, 5.23229752, 4.0386393, -6.8798378, -0.54785802, -3.2012153, 2.92777176, 1.88171953, 7.35341276, # 5th highest value; idx. 9 8.43207833, # 2nd highest value; idx. 10 -9.85711836, -5.96209236, -1.13039161, -7.1115294, -0.8369633, -5.3186408, 7.06427407, 0.81369344, -0.82023817, -5.9179796, 0.58813443, -6.99778438, 4.71551189, -0.18771637, 7.44020759, # 4th highest value; idx. 25 9.38450987, # 1st highest value; idx. 26 2.12662941, -9.32562038, 2.35652522, ], # cummulative prob of 5 highest values <= 0.6 [ 0.58425518, 4.53139238, -5.57510464, -6.28030699, -7.19529503, -4.02122551, 1.39337037, -6.06707057, 1.59480517, -9.643119, 0.03907799, 0.67231762, -8.88206726, 6.27115922, # 4th highest value; idx. 13 2.28520723, 4.82767506, 4.30421368, 8.8275313, # 2nd highest value; idx. 17 5.44029958, # 5th highest value; idx. 18 -4.4735794, 7.38579536, # 3rd highest value; idx. 20 -2.91051663, 2.61946077, -2.5674762, -9.48959302, -4.02922645, -1.35416918, 9.67702323, # 1st highest value; idx. 27 -5.89478553, 1.85370467, ], # cummulative prob of 5 highest values <= 0.6 ] , dtype=tf.floataa , ) __snake_case : int = tf.convert_to_tensor( [[0, 0], [0, 9], [0, 10], [0, 25], [0, 26], [1, 13], [1, 17], [1, 18], [1, 20], [1, 27]] , dtype=tf.intaa , ) # expected non filtered idx as noted above __snake_case : Optional[Any] = tf.convert_to_tensor( [8.222099, 7.3534126, 8.432078, 7.4402075, 9.38451, 6.271159, 8.827531, 5.4402995, 7.3857956, 9.677023] , dtype=tf.floataa , ) # expected non filtered values as noted above __snake_case : str = tf_top_k_top_p_filtering(__magic_name__ , top_k=10 , top_p=0.6 , min_tokens_to_keep=4 ) __snake_case : Dict = output[output != -float("""inf""" )] __snake_case : Optional[Any] = tf.cast( tf.where(tf.not_equal(__magic_name__ , tf.constant(-float("""inf""" ) , dtype=tf.floataa ) ) ) , dtype=tf.intaa , ) tf.debugging.assert_near(__magic_name__ , __magic_name__ , rtol=1E-12 ) tf.debugging.assert_equal(__magic_name__ , __magic_name__ ) @require_tf class _A ( unittest.TestCase , __lowercase ): # setting framework_dependent_parameters needs to be gated, just like its contents' imports if is_tf_available(): lowercase__: Tuple = { '''AutoModelForCausalLM''': TFAutoModelForCausalLM, '''AutoModelForSpeechSeq2Seq''': TFAutoModelForSpeechSeqaSeq, '''AutoModelForSeq2SeqLM''': TFAutoModelForSeqaSeqLM, '''AutoModelForVision2Seq''': TFAutoModelForVisionaSeq, '''LogitsProcessorList''': TFLogitsProcessorList, '''MinLengthLogitsProcessor''': TFMinLengthLogitsProcessor, '''create_tensor_fn''': tf.convert_to_tensor, '''floats_tensor''': floats_tensor, '''return_tensors''': '''tf''', } @slow def lowercase__ ( self : List[str] ) -> Any: """simple docstring""" __snake_case : str = TFAutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) __snake_case : Optional[int] = 2 __snake_case : str = 2 class _A ( tf.Module ): def __init__( self : str , __magic_name__ : Optional[int] ) -> Tuple: """simple docstring""" super(__magic_name__ , self ).__init__() __snake_case : Dict = model @tf.function( input_signature=( tf.TensorSpec((None, input_length) , tf.intaa , name="""input_ids""" ), tf.TensorSpec((None, input_length) , tf.intaa , name="""attention_mask""" ), ) , jit_compile=__magic_name__ , ) def lowercase__ ( self : Optional[int] , __magic_name__ : int , __magic_name__ : List[str] ) -> Dict: """simple docstring""" __snake_case : Tuple = self.model.generate( input_ids=__magic_name__ , attention_mask=__magic_name__ , max_new_tokens=__magic_name__ , return_dict_in_generate=__magic_name__ , ) return {"sequences": outputs["sequences"]} __snake_case : int = [[2, 0], [1_02, 1_03]] __snake_case : Tuple = [[1, 0], [1, 1]] __snake_case : Union[str, Any] = DummyModel(model=__magic_name__ ) with tempfile.TemporaryDirectory() as tmp_dir: tf.saved_model.save(__magic_name__ , __magic_name__ , signatures={"""serving_default""": dummy_model.serving} ) __snake_case : List[str] = tf.saved_model.load(__magic_name__ ).signatures["""serving_default"""] for batch_size in range(1 , len(__magic_name__ ) + 1 ): __snake_case : Union[str, Any] = { """input_ids""": tf.constant(dummy_input_ids[:batch_size] ), """attention_mask""": tf.constant(dummy_attention_masks[:batch_size] ), } __snake_case : Tuple = serving_func(**__magic_name__ )["""sequences"""] __snake_case : List[str] = test_model.generate(**__magic_name__ , max_new_tokens=__magic_name__ ) tf.debugging.assert_equal(__magic_name__ , __magic_name__ ) @slow def lowercase__ ( self : Tuple ) -> int: """simple docstring""" __snake_case : Optional[int] = TFAutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) __snake_case : Dict = 1 __snake_case : int = 2 class _A ( tf.Module ): def __init__( self : Tuple , __magic_name__ : List[str] ) -> int: """simple docstring""" super(__magic_name__ , self ).__init__() __snake_case : Optional[int] = model @tf.function( input_signature=( tf.TensorSpec((batch_size, None) , tf.intaa , name="""input_ids""" ), tf.TensorSpec((batch_size, None) , tf.intaa , name="""attention_mask""" ), ) , jit_compile=__magic_name__ , ) def lowercase__ ( self : int , __magic_name__ : Optional[Any] , __magic_name__ : List[Any] ) -> List[Any]: """simple docstring""" __snake_case : Optional[int] = self.model.generate( input_ids=__magic_name__ , attention_mask=__magic_name__ , max_new_tokens=__magic_name__ , return_dict_in_generate=__magic_name__ , ) return {"sequences": outputs["sequences"]} __snake_case : Union[str, Any] = [[2], [1_02, 1_03]] __snake_case : Tuple = [[1], [1, 1]] __snake_case : List[str] = DummyModel(model=__magic_name__ ) with tempfile.TemporaryDirectory() as tmp_dir: tf.saved_model.save(__magic_name__ , __magic_name__ , signatures={"""serving_default""": dummy_model.serving} ) __snake_case : List[str] = tf.saved_model.load(__magic_name__ ).signatures["""serving_default"""] for input_row in range(len(__magic_name__ ) ): __snake_case : Tuple = { """input_ids""": tf.constant([dummy_input_ids[input_row]] ), """attention_mask""": tf.constant([dummy_attention_masks[input_row]] ), } __snake_case : str = serving_func(**__magic_name__ )["""sequences"""] __snake_case : Union[str, Any] = test_model.generate(**__magic_name__ , max_new_tokens=__magic_name__ ) tf.debugging.assert_equal(__magic_name__ , __magic_name__ ) @slow @require_tensorflow_text def lowercase__ ( self : Dict ) -> Tuple: """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: # file needed to load the TF tokenizer hf_hub_download(repo_id="""google/flan-t5-small""" , filename="""spiece.model""" , local_dir=__magic_name__ ) class _A ( tf.keras.layers.Layer ): def __init__( self : Optional[int] ) -> int: """simple docstring""" super().__init__() __snake_case : Any = text.SentencepieceTokenizer( model=tf.io.gfile.GFile(os.path.join(__magic_name__ , """spiece.model""" ) , """rb""" ).read() ) __snake_case : Tuple = TFAutoModelForSeqaSeqLM.from_pretrained("""hf-internal-testing/tiny-random-t5""" ) def lowercase__ ( self : Any , __magic_name__ : List[Any] , *__magic_name__ : str , **__magic_name__ : Optional[int] ) -> Dict: """simple docstring""" __snake_case : Optional[int] = self.tokenizer.tokenize(__magic_name__ ) __snake_case , __snake_case : List[Any] = text.pad_model_inputs( __magic_name__ , max_seq_length=64 , pad_value=self.model.config.pad_token_id ) __snake_case : Optional[int] = self.model.generate(input_ids=__magic_name__ , attention_mask=__magic_name__ ) return self.tokenizer.detokenize(__magic_name__ ) __snake_case : int = CompleteSentenceTransformer() __snake_case : Union[str, Any] = tf.keras.layers.Input(shape=(1,) , dtype=tf.string , name="""inputs""" ) __snake_case : Tuple = complete_model(__magic_name__ ) __snake_case : Optional[Any] = tf.keras.Model(__magic_name__ , __magic_name__ ) keras_model.save(__magic_name__ ) def lowercase__ ( self : int ) -> Union[str, Any]: """simple docstring""" __snake_case : Dict = { """do_sample""": True, """num_beams""": 1, """top_p""": 0.7, """top_k""": 10, """temperature""": 0.7, } __snake_case : str = 14 __snake_case : str = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) __snake_case : int = """Hello, my dog is cute and""" __snake_case : Any = tokenizer(__magic_name__ , return_tensors="""tf""" ) __snake_case : List[Any] = TFAutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) __snake_case : List[Any] = 6_38 # forces the generation to happen on CPU, to avoid GPU-related quirks with tf.device(""":/CPU:0""" ): tf.random.set_seed(0 ) __snake_case : int = model.generate(**__magic_name__ , eos_token_id=__magic_name__ , **__magic_name__ ) self.assertTrue(expectation == len(generated_tokens[0] ) ) __snake_case : Dict = [6_38, 1_98] with tf.device(""":/CPU:0""" ): tf.random.set_seed(0 ) __snake_case : Optional[int] = model.generate(**__magic_name__ , eos_token_id=__magic_name__ , **__magic_name__ ) self.assertTrue(expectation == len(generated_tokens[0] ) ) def lowercase__ ( self : Tuple ) -> str: """simple docstring""" __snake_case : List[str] = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-bart""" ) __snake_case : str = """Hugging Face is a technology company based in New York and Paris.""" __snake_case : str = bart_tokenizer(__magic_name__ , return_tensors="""tf""" ).input_ids __snake_case : Union[str, Any] = TFBartForConditionalGeneration.from_pretrained("""hf-internal-testing/tiny-random-bart""" ) __snake_case : int = bart_model.generate(__magic_name__ ).numpy() class _A ( __lowercase ): def lowercase__ ( self : int , __magic_name__ : Any , __magic_name__ : int=None , **__magic_name__ : int ) -> Optional[Any]: """simple docstring""" return super().call(__magic_name__ , **__magic_name__ ) __snake_case : Union[str, Any] = FakeBart.from_pretrained("""hf-internal-testing/tiny-random-bart""" ) __snake_case : Optional[Any] = bart_model.generate(__magic_name__ , foo="""bar""" ).numpy() self.assertTrue(np.array_equal(__magic_name__ , __magic_name__ ) ) class _A ( bart_model.model.encoder.__class__ ): def lowercase__ ( self : Optional[int] , __magic_name__ : Optional[int] , **__magic_name__ : Tuple ) -> Dict: """simple docstring""" return super().call(__magic_name__ , **__magic_name__ ) __snake_case : List[Any] = FakeEncoder(bart_model.config , bart_model.model.shared ) __snake_case : Tuple = fake_encoder # Normal generation still works (the output will be different because the encoder weights are different) __snake_case : Dict = bart_model.generate(__magic_name__ ).numpy() with self.assertRaises(__magic_name__ ): # FakeEncoder.call() accepts **kwargs -> no filtering -> value error due to unexpected input "foo" bart_model.generate(__magic_name__ , foo="""bar""" )
13
0
"""simple docstring""" from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __UpperCamelCase = { '''configuration_mctct''': ['''MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MCTCTConfig'''], '''feature_extraction_mctct''': ['''MCTCTFeatureExtractor'''], '''processing_mctct''': ['''MCTCTProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = [ '''MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MCTCTForCTC''', '''MCTCTModel''', '''MCTCTPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mctct import MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP, MCTCTConfig from .feature_extraction_mctct import MCTCTFeatureExtractor from .processing_mctct import MCTCTProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mctct import MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST, MCTCTForCTC, MCTCTModel, MCTCTPreTrainedModel else: import sys __UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
69
'''simple docstring''' def _A ( ): return [list(range(1000 - i , -1000 - i , -1 ) ) for i in range(1000 )] __A = generate_large_matrix() __A = ( [[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]], [[3, 2], [1, 0]], [[7, 7, 6]], [[7, 7, 6], [-1, -2, -3]], grid, ) def _A ( lowercase__ ): assert all(row == sorted(lowercase__ , reverse=lowercase__ ) for row in grid ) assert all(list(lowercase__ ) == sorted(lowercase__ , reverse=lowercase__ ) for col in zip(*lowercase__ ) ) def _A ( lowercase__ ): lowercase__ = 0 lowercase__ = len(lowercase__ ) - 1 # Edge cases such as no values or all numbers are negative. if not array or array[0] < 0: return 0 while right + 1 > left: lowercase__ = (left + right) // 2 lowercase__ = array[mid] # Num must be negative and the index must be greater than or equal to 0. if num < 0 and array[mid - 1] >= 0: return mid if num >= 0: lowercase__ = mid + 1 else: lowercase__ = mid - 1 # No negative numbers so return the last index of the array + 1 which is the length. return len(lowercase__ ) def _A ( lowercase__ ): lowercase__ = 0 lowercase__ = len(grid[0] ) for i in range(len(lowercase__ ) ): lowercase__ = find_negative_index(grid[i][:bound] ) total += bound return (len(lowercase__ ) * len(grid[0] )) - total def _A ( lowercase__ ): return len([number for row in grid for number in row if number < 0] ) def _A ( lowercase__ ): lowercase__ = 0 for row in grid: for i, number in enumerate(lowercase__ ): if number < 0: total += len(lowercase__ ) - i break return total def _A ( ): from timeit import timeit print("""Running benchmarks""" ) lowercase__ = ( """from __main__ import count_negatives_binary_search, """ """count_negatives_brute_force, count_negatives_brute_force_with_break, grid""" ) for func in ( "count_negatives_binary_search", # took 0.7727 seconds "count_negatives_brute_force_with_break", # took 4.6505 seconds "count_negatives_brute_force", # took 12.8160 seconds ): lowercase__ = timeit(f'''{func}(grid=grid)''' , setup=lowercase__ , number=500 ) print(f'''{func}() took {time:0.4f} seconds''' ) if __name__ == "__main__": import doctest doctest.testmod() benchmark()
164
0
import argparse import json from pathlib import Path import torch import torchaudio from datasets import load_dataset from huggingface_hub import hf_hub_download from transformers import ASTConfig, ASTFeatureExtractor, ASTForAudioClassification from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase : Tuple = logging.get_logger(__name__) def a__ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE = ASTConfig() if "10-10" in model_name: pass elif "speech-commands" in model_name: __SCREAMING_SNAKE_CASE = 1_28 elif "12-12" in model_name: __SCREAMING_SNAKE_CASE = 12 __SCREAMING_SNAKE_CASE = 12 elif "14-14" in model_name: __SCREAMING_SNAKE_CASE = 14 __SCREAMING_SNAKE_CASE = 14 elif "16-16" in model_name: __SCREAMING_SNAKE_CASE = 16 __SCREAMING_SNAKE_CASE = 16 else: raise ValueError("""Model not supported""" ) __SCREAMING_SNAKE_CASE = 'huggingface/label-files' if "speech-commands" in model_name: __SCREAMING_SNAKE_CASE = 35 __SCREAMING_SNAKE_CASE = 'speech-commands-v2-id2label.json' else: __SCREAMING_SNAKE_CASE = 5_27 __SCREAMING_SNAKE_CASE = 'audioset-id2label.json' __SCREAMING_SNAKE_CASE = json.load(open(hf_hub_download(_UpperCAmelCase , _UpperCAmelCase , repo_type="""dataset""" ) , """r""" ) ) __SCREAMING_SNAKE_CASE = {int(_UpperCAmelCase ): v for k, v in idalabel.items()} __SCREAMING_SNAKE_CASE = idalabel __SCREAMING_SNAKE_CASE = {v: k for k, v in idalabel.items()} return config def a__ ( a__ ): """simple docstring""" if "module.v" in name: __SCREAMING_SNAKE_CASE = name.replace("""module.v""" , """audio_spectrogram_transformer""" ) if "cls_token" in name: __SCREAMING_SNAKE_CASE = name.replace("""cls_token""" , """embeddings.cls_token""" ) if "dist_token" in name: __SCREAMING_SNAKE_CASE = name.replace("""dist_token""" , """embeddings.distillation_token""" ) if "pos_embed" in name: __SCREAMING_SNAKE_CASE = name.replace("""pos_embed""" , """embeddings.position_embeddings""" ) if "patch_embed.proj" in name: __SCREAMING_SNAKE_CASE = name.replace("""patch_embed.proj""" , """embeddings.patch_embeddings.projection""" ) # transformer blocks if "blocks" in name: __SCREAMING_SNAKE_CASE = name.replace("""blocks""" , """encoder.layer""" ) if "attn.proj" in name: __SCREAMING_SNAKE_CASE = name.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in name: __SCREAMING_SNAKE_CASE = name.replace("""attn""" , """attention.self""" ) if "norm1" in name: __SCREAMING_SNAKE_CASE = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name: __SCREAMING_SNAKE_CASE = name.replace("""norm2""" , """layernorm_after""" ) if "mlp.fc1" in name: __SCREAMING_SNAKE_CASE = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: __SCREAMING_SNAKE_CASE = name.replace("""mlp.fc2""" , """output.dense""" ) # final layernorm if "audio_spectrogram_transformer.norm" in name: __SCREAMING_SNAKE_CASE = name.replace("""audio_spectrogram_transformer.norm""" , """audio_spectrogram_transformer.layernorm""" ) # classifier head if "module.mlp_head.0" in name: __SCREAMING_SNAKE_CASE = name.replace("""module.mlp_head.0""" , """classifier.layernorm""" ) if "module.mlp_head.1" in name: __SCREAMING_SNAKE_CASE = name.replace("""module.mlp_head.1""" , """classifier.dense""" ) return name def a__ ( a__ , a__ ): """simple docstring""" for key in orig_state_dict.copy().keys(): __SCREAMING_SNAKE_CASE = orig_state_dict.pop(_UpperCAmelCase ) if "qkv" in key: __SCREAMING_SNAKE_CASE = key.split(""".""" ) __SCREAMING_SNAKE_CASE = int(key_split[3] ) __SCREAMING_SNAKE_CASE = config.hidden_size if "weight" in key: __SCREAMING_SNAKE_CASE = val[:dim, :] __SCREAMING_SNAKE_CASE = val[dim : dim * 2, :] __SCREAMING_SNAKE_CASE = val[-dim:, :] else: __SCREAMING_SNAKE_CASE = val[:dim] __SCREAMING_SNAKE_CASE = val[dim : dim * 2] __SCREAMING_SNAKE_CASE = val[-dim:] else: __SCREAMING_SNAKE_CASE = val return orig_state_dict def a__ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE = [ 'module.v.head.weight', 'module.v.head.bias', 'module.v.head_dist.weight', 'module.v.head_dist.bias', ] for k in ignore_keys: state_dict.pop(_UpperCAmelCase , _UpperCAmelCase ) @torch.no_grad() def a__ ( a__ , a__ , a__=False ): """simple docstring""" __SCREAMING_SNAKE_CASE = get_audio_spectrogram_transformer_config(_UpperCAmelCase ) __SCREAMING_SNAKE_CASE = { 'ast-finetuned-audioset-10-10-0.4593': ( 'https://www.dropbox.com/s/ca0b1v2nlxzyeb4/audioset_10_10_0.4593.pth?dl=1' ), 'ast-finetuned-audioset-10-10-0.450': ( 'https://www.dropbox.com/s/1tv0hovue1bxupk/audioset_10_10_0.4495.pth?dl=1' ), 'ast-finetuned-audioset-10-10-0.448': ( 'https://www.dropbox.com/s/6u5sikl4b9wo4u5/audioset_10_10_0.4483.pth?dl=1' ), 'ast-finetuned-audioset-10-10-0.448-v2': ( 'https://www.dropbox.com/s/kt6i0v9fvfm1mbq/audioset_10_10_0.4475.pth?dl=1' ), 'ast-finetuned-audioset-12-12-0.447': ( 'https://www.dropbox.com/s/snfhx3tizr4nuc8/audioset_12_12_0.4467.pth?dl=1' ), 'ast-finetuned-audioset-14-14-0.443': ( 'https://www.dropbox.com/s/z18s6pemtnxm4k7/audioset_14_14_0.4431.pth?dl=1' ), 'ast-finetuned-audioset-16-16-0.442': ( 'https://www.dropbox.com/s/mdsa4t1xmcimia6/audioset_16_16_0.4422.pth?dl=1' ), 'ast-finetuned-speech-commands-v2': ( 'https://www.dropbox.com/s/q0tbqpwv44pquwy/speechcommands_10_10_0.9812.pth?dl=1' ), } # load original state_dict __SCREAMING_SNAKE_CASE = model_name_to_url[model_name] __SCREAMING_SNAKE_CASE = torch.hub.load_state_dict_from_url(_UpperCAmelCase , map_location="""cpu""" ) # remove some keys remove_keys(_UpperCAmelCase ) # rename some keys __SCREAMING_SNAKE_CASE = convert_state_dict(_UpperCAmelCase , _UpperCAmelCase ) # load 🤗 model __SCREAMING_SNAKE_CASE = ASTForAudioClassification(_UpperCAmelCase ) model.eval() model.load_state_dict(_UpperCAmelCase ) # verify outputs on dummy input # source: https://github.com/YuanGongND/ast/blob/79e873b8a54d0a3b330dd522584ff2b9926cd581/src/run.py#L62 __SCREAMING_SNAKE_CASE = -4.2_677_393 if 'speech-commands' not in model_name else -6.845_978 __SCREAMING_SNAKE_CASE = 4.5_689_974 if 'speech-commands' not in model_name else 5.5_654_526 __SCREAMING_SNAKE_CASE = 10_24 if 'speech-commands' not in model_name else 1_28 __SCREAMING_SNAKE_CASE = ASTFeatureExtractor(mean=_UpperCAmelCase , std=_UpperCAmelCase , max_length=_UpperCAmelCase ) if "speech-commands" in model_name: __SCREAMING_SNAKE_CASE = load_dataset("""speech_commands""" , """v0.02""" , split="""validation""" ) __SCREAMING_SNAKE_CASE = dataset[0]['audio']['array'] else: __SCREAMING_SNAKE_CASE = hf_hub_download( repo_id="""nielsr/audio-spectogram-transformer-checkpoint""" , filename="""sample_audio.flac""" , repo_type="""dataset""" , ) __SCREAMING_SNAKE_CASE = torchaudio.load(_UpperCAmelCase ) __SCREAMING_SNAKE_CASE = waveform.squeeze().numpy() __SCREAMING_SNAKE_CASE = feature_extractor(_UpperCAmelCase , sampling_rate=1_60_00 , return_tensors="""pt""" ) # forward pass __SCREAMING_SNAKE_CASE = model(**_UpperCAmelCase ) __SCREAMING_SNAKE_CASE = outputs.logits if model_name == "ast-finetuned-audioset-10-10-0.4593": __SCREAMING_SNAKE_CASE = torch.tensor([-0.8_760, -7.0_042, -8.6_602] ) elif model_name == "ast-finetuned-audioset-10-10-0.450": __SCREAMING_SNAKE_CASE = torch.tensor([-1.1_986, -7.0_903, -8.2_718] ) elif model_name == "ast-finetuned-audioset-10-10-0.448": __SCREAMING_SNAKE_CASE = torch.tensor([-2.6_128, -8.0_080, -9.4_344] ) elif model_name == "ast-finetuned-audioset-10-10-0.448-v2": __SCREAMING_SNAKE_CASE = torch.tensor([-1.5_080, -7.4_534, -8.8_917] ) elif model_name == "ast-finetuned-audioset-12-12-0.447": __SCREAMING_SNAKE_CASE = torch.tensor([-0.5_050, -6.5_833, -8.0_843] ) elif model_name == "ast-finetuned-audioset-14-14-0.443": __SCREAMING_SNAKE_CASE = torch.tensor([-0.3_826, -7.0_336, -8.2_413] ) elif model_name == "ast-finetuned-audioset-16-16-0.442": __SCREAMING_SNAKE_CASE = torch.tensor([-1.2_113, -6.9_101, -8.3_470] ) elif model_name == "ast-finetuned-speech-commands-v2": __SCREAMING_SNAKE_CASE = torch.tensor([6.1_589, -8.0_566, -8.7_984] ) else: raise ValueError("""Unknown model name""" ) if not torch.allclose(logits[0, :3] , _UpperCAmelCase , atol=1E-4 ): raise ValueError("""Logits don\'t match""" ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: Path(_UpperCAmelCase ).mkdir(exist_ok=_UpperCAmelCase ) print(F'Saving model {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(_UpperCAmelCase ) print(F'Saving feature extractor to {pytorch_dump_folder_path}' ) feature_extractor.save_pretrained(_UpperCAmelCase ) if push_to_hub: print("""Pushing model and feature extractor to the hub...""" ) model.push_to_hub(F'MIT/{model_name}' ) feature_extractor.push_to_hub(F'MIT/{model_name}' ) if __name__ == "__main__": UpperCAmelCase : int = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='ast-finetuned-audioset-10-10-0.4593', type=str, help='Name of the Audio Spectrogram Transformer model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) UpperCAmelCase : Dict = parser.parse_args() convert_audio_spectrogram_transformer_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
350
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase : int = logging.get_logger(__name__) UpperCAmelCase : Union[str, Any] = { 'microsoft/markuplm-base': 'https://huggingface.co/microsoft/markuplm-base/resolve/main/config.json', 'microsoft/markuplm-large': 'https://huggingface.co/microsoft/markuplm-large/resolve/main/config.json', } class lowerCAmelCase__ ( a ): """simple docstring""" lowerCAmelCase__ = "markuplm" def __init__( self : List[str] , __SCREAMING_SNAKE_CASE : Tuple=30_522 , __SCREAMING_SNAKE_CASE : Optional[Any]=768 , __SCREAMING_SNAKE_CASE : str=12 , __SCREAMING_SNAKE_CASE : List[Any]=12 , __SCREAMING_SNAKE_CASE : str=3_072 , __SCREAMING_SNAKE_CASE : Dict="gelu" , __SCREAMING_SNAKE_CASE : Optional[int]=0.1 , __SCREAMING_SNAKE_CASE : Optional[Any]=0.1 , __SCREAMING_SNAKE_CASE : Optional[Any]=512 , __SCREAMING_SNAKE_CASE : str=2 , __SCREAMING_SNAKE_CASE : List[Any]=0.02 , __SCREAMING_SNAKE_CASE : Union[str, Any]=1E-12 , __SCREAMING_SNAKE_CASE : str=0 , __SCREAMING_SNAKE_CASE : Dict=0 , __SCREAMING_SNAKE_CASE : Union[str, Any]=2 , __SCREAMING_SNAKE_CASE : Union[str, Any]=256 , __SCREAMING_SNAKE_CASE : Union[str, Any]=1_024 , __SCREAMING_SNAKE_CASE : Dict=216 , __SCREAMING_SNAKE_CASE : Union[str, Any]=1_001 , __SCREAMING_SNAKE_CASE : Optional[int]=32 , __SCREAMING_SNAKE_CASE : str=50 , __SCREAMING_SNAKE_CASE : int="absolute" , __SCREAMING_SNAKE_CASE : Dict=True , __SCREAMING_SNAKE_CASE : int=None , **__SCREAMING_SNAKE_CASE : List[str] , ) -> Tuple: """simple docstring""" super().__init__( pad_token_id=__SCREAMING_SNAKE_CASE , bos_token_id=__SCREAMING_SNAKE_CASE , eos_token_id=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , ) __SCREAMING_SNAKE_CASE = vocab_size __SCREAMING_SNAKE_CASE = hidden_size __SCREAMING_SNAKE_CASE = num_hidden_layers __SCREAMING_SNAKE_CASE = num_attention_heads __SCREAMING_SNAKE_CASE = hidden_act __SCREAMING_SNAKE_CASE = intermediate_size __SCREAMING_SNAKE_CASE = hidden_dropout_prob __SCREAMING_SNAKE_CASE = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE = max_position_embeddings __SCREAMING_SNAKE_CASE = type_vocab_size __SCREAMING_SNAKE_CASE = initializer_range __SCREAMING_SNAKE_CASE = layer_norm_eps __SCREAMING_SNAKE_CASE = position_embedding_type __SCREAMING_SNAKE_CASE = use_cache __SCREAMING_SNAKE_CASE = classifier_dropout # additional properties __SCREAMING_SNAKE_CASE = max_depth __SCREAMING_SNAKE_CASE = max_xpath_tag_unit_embeddings __SCREAMING_SNAKE_CASE = max_xpath_subs_unit_embeddings __SCREAMING_SNAKE_CASE = tag_pad_id __SCREAMING_SNAKE_CASE = subs_pad_id __SCREAMING_SNAKE_CASE = xpath_unit_hidden_size
331
0
from typing import Dict, Optional import numpy as np import datasets lowerCAmelCase__ :List[Any] = '\nIoU is the area of overlap between the predicted segmentation and the ground truth divided by the area of union\nbetween the predicted segmentation and the ground truth. For binary (two classes) or multi-class segmentation,\nthe mean IoU of the image is calculated by taking the IoU of each class and averaging them.\n' lowerCAmelCase__ :List[str] = '\nArgs:\n predictions (`List[ndarray]`):\n List of predicted segmentation maps, each of shape (height, width). Each segmentation map can be of a different size.\n references (`List[ndarray]`):\n List of ground truth segmentation maps, each of shape (height, width). Each segmentation map can be of a different size.\n num_labels (`int`):\n Number of classes (categories).\n ignore_index (`int`):\n Index that will be ignored during evaluation.\n nan_to_num (`int`, *optional*):\n If specified, NaN values will be replaced by the number defined by the user.\n label_map (`dict`, *optional*):\n If specified, dictionary mapping old label indices to new label indices.\n reduce_labels (`bool`, *optional*, defaults to `False`):\n Whether or not to reduce all label values of segmentation maps by 1. Usually used for datasets where 0 is used for background,\n and background itself is not included in all classes of a dataset (e.g. ADE20k). The background label will be replaced by 255.\n\nReturns:\n `Dict[str, float | ndarray]` comprising various elements:\n - *mean_iou* (`float`):\n Mean Intersection-over-Union (IoU averaged over all categories).\n - *mean_accuracy* (`float`):\n Mean accuracy (averaged over all categories).\n - *overall_accuracy* (`float`):\n Overall accuracy on all images.\n - *per_category_accuracy* (`ndarray` of shape `(num_labels,)`):\n Per category accuracy.\n - *per_category_iou* (`ndarray` of shape `(num_labels,)`):\n Per category IoU.\n\nExamples:\n\n >>> import numpy as np\n\n >>> mean_iou = datasets.load_metric("mean_iou")\n\n >>> # suppose one has 3 different segmentation maps predicted\n >>> predicted_1 = np.array([[1, 2], [3, 4], [5, 255]])\n >>> actual_1 = np.array([[0, 3], [5, 4], [6, 255]])\n\n >>> predicted_2 = np.array([[2, 7], [9, 2], [3, 6]])\n >>> actual_2 = np.array([[1, 7], [9, 2], [3, 6]])\n\n >>> predicted_3 = np.array([[2, 2, 3], [8, 2, 4], [3, 255, 2]])\n >>> actual_3 = np.array([[1, 2, 2], [8, 2, 1], [3, 255, 1]])\n\n >>> predicted = [predicted_1, predicted_2, predicted_3]\n >>> ground_truth = [actual_1, actual_2, actual_3]\n\n >>> results = mean_iou.compute(predictions=predicted, references=ground_truth, num_labels=10, ignore_index=255, reduce_labels=False)\n >>> print(results) # doctest: +NORMALIZE_WHITESPACE\n {\'mean_iou\': 0.47750000000000004, \'mean_accuracy\': 0.5916666666666666, \'overall_accuracy\': 0.5263157894736842, \'per_category_iou\': array([0. , 0. , 0.375, 0.4 , 0.5 , 0. , 0.5 , 1. , 1. , 1. ]), \'per_category_accuracy\': array([0. , 0. , 0.75 , 0.66666667, 1. , 0. , 0.5 , 1. , 1. , 1. ])}\n' lowerCAmelCase__ :str = '\\n@software{MMSegmentation_Contributors_OpenMMLab_Semantic_Segmentation_2020,\nauthor = {{MMSegmentation Contributors}},\nlicense = {Apache-2.0},\nmonth = {7},\ntitle = {{OpenMMLab Semantic Segmentation Toolbox and Benchmark}},\nurl = {https://github.com/open-mmlab/mmsegmentation},\nyear = {2020}\n}' def lowerCAmelCase__ ( a__: Optional[int] , a__: int , a__: List[str] , a__: str , a__: List[Any] = None , a__: Dict = False , ) -> Tuple: '''simple docstring''' if label_map is not None: for old_id, new_id in label_map.items(): _UpperCAmelCase = new_id # turn into Numpy arrays _UpperCAmelCase = np.array(a_ ) _UpperCAmelCase = np.array(a_ ) if reduce_labels: _UpperCAmelCase = 2_5_5 _UpperCAmelCase = label - 1 _UpperCAmelCase = 2_5_5 _UpperCAmelCase = label != ignore_index _UpperCAmelCase = np.not_equal(a_ , a_ ) _UpperCAmelCase = pred_label[mask] _UpperCAmelCase = np.array(a_ )[mask] _UpperCAmelCase = pred_label[pred_label == label] _UpperCAmelCase = np.histogram(a_ , bins=a_ , range=(0, num_labels - 1) )[0] _UpperCAmelCase = np.histogram(a_ , bins=a_ , range=(0, num_labels - 1) )[0] _UpperCAmelCase = np.histogram(a_ , bins=a_ , range=(0, num_labels - 1) )[0] _UpperCAmelCase = area_pred_label + area_label - area_intersect return area_intersect, area_union, area_pred_label, area_label def lowerCAmelCase__ ( a__: Union[str, Any] , a__: Union[str, Any] , a__: Tuple , a__: Dict , a__: List[str] = None , a__: str = False , ) -> Union[str, Any]: '''simple docstring''' _UpperCAmelCase = np.zeros((num_labels,) , dtype=np.floataa ) _UpperCAmelCase = np.zeros((num_labels,) , dtype=np.floataa ) _UpperCAmelCase = np.zeros((num_labels,) , dtype=np.floataa ) _UpperCAmelCase = np.zeros((num_labels,) , dtype=np.floataa ) for result, gt_seg_map in zip(a_ , a_ ): _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = intersect_and_union( a_ , a_ , a_ , a_ , a_ , a_ ) total_area_intersect += area_intersect total_area_union += area_union total_area_pred_label += area_pred_label total_area_label += area_label return total_area_intersect, total_area_union, total_area_pred_label, total_area_label def lowerCAmelCase__ ( a__: Dict , a__: Dict , a__: str , a__: Optional[Any] , a__: Any = None , a__: Union[str, Any] = None , a__: Tuple = False , ) -> str: '''simple docstring''' _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = total_intersect_and_union( a_ , a_ , a_ , a_ , a_ , a_ ) # compute metrics _UpperCAmelCase = {} _UpperCAmelCase = total_area_intersect.sum() / total_area_label.sum() _UpperCAmelCase = total_area_intersect / total_area_union _UpperCAmelCase = total_area_intersect / total_area_label _UpperCAmelCase = np.nanmean(a_ ) _UpperCAmelCase = np.nanmean(a_ ) _UpperCAmelCase = all_acc _UpperCAmelCase = iou _UpperCAmelCase = acc if nan_to_num is not None: _UpperCAmelCase = {metric: np.nan_to_num(a_ , nan=a_ ) for metric, metric_value in metrics.items()} return metrics @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __a ( datasets.Metric ): def UpperCAmelCase__ ( self ) -> Tuple: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( # 1st Seq - height dim, 2nd - width dim { 'predictions': datasets.Sequence(datasets.Sequence(datasets.Value('uint16' ) ) ), 'references': datasets.Sequence(datasets.Sequence(datasets.Value('uint16' ) ) ), } ) , reference_urls=[ 'https://github.com/open-mmlab/mmsegmentation/blob/71c201b1813267d78764f306a297ca717827c4bf/mmseg/core/evaluation/metrics.py' ] , ) def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = False , ) -> List[Any]: """simple docstring""" _UpperCAmelCase = mean_iou( results=_SCREAMING_SNAKE_CASE , gt_seg_maps=_SCREAMING_SNAKE_CASE , num_labels=_SCREAMING_SNAKE_CASE , ignore_index=_SCREAMING_SNAKE_CASE , nan_to_num=_SCREAMING_SNAKE_CASE , label_map=_SCREAMING_SNAKE_CASE , reduce_labels=_SCREAMING_SNAKE_CASE , ) return iou_result
329
def UpperCAmelCase ( a_ ) -> Optional[int]: """simple docstring""" __A = [0] * len(a_ ) __A = [] __A = [1] * len(a_ ) for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(a_ ) ): if indegree[i] == 0: queue.append(a_ ) while queue: __A = queue.pop(0 ) for x in graph[vertex]: indegree[x] -= 1 if long_dist[vertex] + 1 > long_dist[x]: __A = long_dist[vertex] + 1 if indegree[x] == 0: queue.append(a_ ) print(max(a_ ) ) # Adjacency list of Graph SCREAMING_SNAKE_CASE :List[Any] = {0: [2, 3, 4], 1: [2, 7], 2: [5], 3: [5, 7], 4: [7], 5: [6], 6: [7], 7: []} longest_distance(graph)
15
0
'''simple docstring''' import io import os import unicodedata from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging snake_case__ : Dict = logging.get_logger(__name__) snake_case__ : Any = '''▁''' snake_case__ : Union[str, Any] = {'''vocab_file''': '''vocab.txt''', '''sentencepiece_model_ckpt''': '''sentencepiece.bpe.model'''} snake_case__ : Optional[Any] = { '''sentencepiece_model_file''': '''sentencepiece.bpe.model''', '''vocab_file''': '''vocab.txt''', } snake_case__ : Union[str, Any] = { '''vocab_file''': { '''ernie-m-base''': '''https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt''', '''ernie-m-large''': '''https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt''', }, '''sentencepiece_model_file''': { '''ernie-m-base''': '''https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model''', '''ernie-m-large''': '''https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model''', }, } snake_case__ : int = { '''ernie-m-base''': 514, '''ernie-m-large''': 514, } snake_case__ : List[Any] = { '''ernie-m-base''': {'''do_lower_case''': False}, '''ernie-m-large''': {'''do_lower_case''': False}, } class __SCREAMING_SNAKE_CASE ( snake_case__ ): '''simple docstring''' lowerCamelCase_ :List[str] = ["input_ids"] lowerCamelCase_ :List[Any] = VOCAB_FILES_NAMES lowerCamelCase_ :Union[str, Any] = PRETRAINED_INIT_CONFIGURATION lowerCamelCase_ :Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase_ :Tuple = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase_ :Any = RESOURCE_FILES_NAMES def __init__( self , snake_case_ , snake_case_=None , snake_case_=False , snake_case_="utf8" , snake_case_="[UNK]" , snake_case_="[SEP]" , snake_case_="[PAD]" , snake_case_="[CLS]" , snake_case_="[MASK]" , snake_case_ = None , **snake_case_ , ): '''simple docstring''' UpperCAmelCase_ : Tuple = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=_A , unk_token=_A , sep_token=_A , pad_token=_A , cls_token=_A , mask_token=_A , vocab_file=_A , encoding=_A , sp_model_kwargs=self.sp_model_kwargs , **_A , ) UpperCAmelCase_ : List[Any] = do_lower_case UpperCAmelCase_ : List[str] = sentencepiece_model_ckpt UpperCAmelCase_ : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_A ) # to mimic paddlenlp.transformers.ernie_m.tokenizer.ErnieMTokenizer functioning if vocab_file is not None: UpperCAmelCase_ : Tuple = self.load_vocab(filepath=_A ) else: UpperCAmelCase_ : Optional[int] = {self.sp_model.id_to_piece(_A ): id for id in range(self.sp_model.get_piece_size() )} UpperCAmelCase_ : Tuple = {v: k for k, v in self.vocab.items()} def _UpperCamelCase ( self , snake_case_ ): '''simple docstring''' if text is None: return None UpperCAmelCase_ : Any = self.tokenize(_A ) UpperCAmelCase_ , UpperCAmelCase_ : str = '', [] for i, ch in enumerate(_A ): if ch in self.SP_CHAR_MAPPING: UpperCAmelCase_ : str = self.SP_CHAR_MAPPING.get(_A ) else: UpperCAmelCase_ : str = unicodedata.normalize('NFKC' , _A ) if self.is_whitespace(_A ): continue normalized_text += ch char_mapping.extend([i] * len(_A ) ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Dict = normalized_text, [], 0 if self.do_lower_case: UpperCAmelCase_ : Any = text.lower() for token in split_tokens: if token[:1] == "▁": UpperCAmelCase_ : int = token[1:] UpperCAmelCase_ : Optional[int] = text[offset:].index(_A ) + offset UpperCAmelCase_ : Optional[Any] = start + len(_A ) token_mapping.append((char_mapping[start], char_mapping[end - 1] + 1) ) UpperCAmelCase_ : Union[str, Any] = end return token_mapping @property def _UpperCamelCase ( self ): '''simple docstring''' return len(self.vocab ) def _UpperCamelCase ( self ): '''simple docstring''' return dict(self.vocab , **self.added_tokens_encoder ) def __getstate__( self ): '''simple docstring''' UpperCAmelCase_ : List[str] = self.__dict__.copy() UpperCAmelCase_ : Dict = None return state def __setstate__( self , snake_case_ ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): UpperCAmelCase_ : Optional[Any] = {} UpperCAmelCase_ : Any = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.sentencepiece_model_ckpt ) def _UpperCamelCase ( self , snake_case_ ): '''simple docstring''' return "".join((self.SP_CHAR_MAPPING.get(_A , _A ) for c in text) ) def _UpperCamelCase ( self , snake_case_ , snake_case_=False , snake_case_=6_4 , snake_case_=0.1 ): '''simple docstring''' if self.sp_model_kwargs.get('enable_sampling' ) is True: UpperCAmelCase_ : Optional[int] = True if self.sp_model_kwargs.get('alpha' ) is not None: UpperCAmelCase_ : int = self.sp_model_kwargs.get('alpha' ) if self.sp_model_kwargs.get('nbest_size' ) is not None: UpperCAmelCase_ : List[Any] = self.sp_model_kwargs.get('nbest_size' ) if not enable_sampling: UpperCAmelCase_ : List[str] = self.sp_model.EncodeAsPieces(_A ) else: UpperCAmelCase_ : Optional[int] = self.sp_model.SampleEncodeAsPieces(_A , _A , _A ) UpperCAmelCase_ : List[str] = [] for pi, piece in enumerate(_A ): if piece == SPIECE_UNDERLINE: if not pieces[pi + 1].startswith(_A ) and pi != 0: new_pieces.append(_A ) continue else: continue UpperCAmelCase_ : int = 0 for i, chunk in enumerate(_A ): if chunk == SPIECE_UNDERLINE: continue if self.is_ch_char(_A ) or self.is_punct(_A ): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) new_pieces.append(_A ) UpperCAmelCase_ : int = i + 1 elif chunk.isdigit() and i > 0 and not piece[i - 1].isdigit(): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) UpperCAmelCase_ : List[str] = i elif not chunk.isdigit() and i > 0 and piece[i - 1].isdigit(): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) UpperCAmelCase_ : Optional[int] = i if len(_A ) > lst_i: new_pieces.append(piece[lst_i:] ) return new_pieces def _UpperCamelCase ( self , snake_case_ ): '''simple docstring''' UpperCAmelCase_ : Any = ''.join(_A ).replace(_A , ' ' ).strip() return out_string def _UpperCamelCase ( self , snake_case_ ): '''simple docstring''' UpperCAmelCase_ : str = self.convert_ids_to_tokens(_A ) UpperCAmelCase_ : Union[str, Any] = ''.join(_A ).replace(_A , ' ' ).strip() return out_string def _UpperCamelCase ( self , snake_case_ ): '''simple docstring''' return self.vocab.get(_A , self.vocab.get(self.unk_token ) ) def _UpperCamelCase ( self , snake_case_ ): '''simple docstring''' return self.reverse_vocab.get(_A , self.unk_token ) def _UpperCamelCase ( self , snake_case_ , snake_case_=None ): '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] UpperCAmelCase_ : int = [self.cls_token_id] UpperCAmelCase_ : List[Any] = [self.sep_token_id] return _cls + token_ids_a + _sep + _sep + token_ids_a + _sep def _UpperCamelCase ( self , snake_case_ , snake_case_=None ): '''simple docstring''' if offset_mapping_a is None: return [(0, 0)] + offset_mapping_a + [(0, 0)] return [(0, 0)] + offset_mapping_a + [(0, 0), (0, 0)] + offset_mapping_a + [(0, 0)] def _UpperCamelCase ( self , snake_case_ , snake_case_=None , snake_case_=False ): '''simple docstring''' if already_has_special_tokens: if token_ids_a is not None: raise ValueError( 'You should not supply a second sequence if the provided sequence of ' 'ids is already formatted with special tokens for the model.' ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(_A )) + [1, 1] + ([0] * len(_A )) + [1] return [1] + ([0] * len(_A )) + [1] def _UpperCamelCase ( self , snake_case_ , snake_case_ = None ): '''simple docstring''' if token_ids_a is None: # [CLS] X [SEP] return (len(_A ) + 2) * [0] # [CLS] A [SEP] [SEP] B [SEP] return [0] * (len(_A ) + 1) + [1] * (len(_A ) + 3) def _UpperCamelCase ( self , snake_case_ ): '''simple docstring''' if "\u4e00" <= char <= "\u9fff": return True return False def _UpperCamelCase ( self , snake_case_ ): '''simple docstring''' if ("a" <= char <= "z") or ("A" <= char <= "Z"): return True return False def _UpperCamelCase ( self , snake_case_ ): '''simple docstring''' if char in ",;:.?!~,;:。?!《》【】": return True return False def _UpperCamelCase ( self , snake_case_ ): '''simple docstring''' if char == " " or char == "\t" or char == "\n" or char == "\r": return True if len(_A ) == 1: UpperCAmelCase_ : List[str] = unicodedata.category(_A ) if cat == "Zs": return True return False def _UpperCamelCase ( self , snake_case_ ): '''simple docstring''' UpperCAmelCase_ : int = {} with io.open(_A , 'r' , encoding='utf-8' ) as f: for index, line in enumerate(_A ): UpperCAmelCase_ : Optional[int] = line.rstrip('\n' ) UpperCAmelCase_ : Optional[Any] = int(_A ) return token_to_idx def _UpperCamelCase ( self , snake_case_ , snake_case_ = None ): '''simple docstring''' UpperCAmelCase_ : List[Any] = 0 if os.path.isdir(_A ): UpperCAmelCase_ : Tuple = os.path.join( _A , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) else: UpperCAmelCase_ : List[Any] = (filename_prefix + '-' if filename_prefix else '') + save_directory with open(_A , 'w' , encoding='utf-8' ) as writer: for token, token_index in sorted(self.vocab.items() , key=lambda snake_case_ : kv[1] ): if index != token_index: logger.warning( F'''Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.''' ' Please check that the vocabulary is not corrupted!' ) UpperCAmelCase_ : Any = token_index writer.write(token + '\n' ) index += 1 UpperCAmelCase_ : Union[str, Any] = os.path.join(_A , 'sentencepiece.bpe.model' ) with open(_A , 'wb' ) as fi: UpperCAmelCase_ : Tuple = self.sp_model.serialized_model_proto() fi.write(_A ) return (vocab_file,)
364
'''simple docstring''' import copy import os import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np import pyarrow as pa import pyarrow.parquet as pq import pytest from datasets.arrow_writer import ArrowWriter, OptimizedTypedSequence, ParquetWriter, TypedSequence from datasets.features import ArrayaD, ClassLabel, Features, Image, Value from datasets.features.features import ArrayaDExtensionType, cast_to_python_objects from datasets.keyhash import DuplicatedKeysError, InvalidKeyError from .utils import require_pil class __SCREAMING_SNAKE_CASE ( lowerCamelCase_ ): '''simple docstring''' def _UpperCamelCase ( self ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = pa.array(TypedSequence([1, 2, 3] ) ) self.assertEqual(arr.type , pa.intaa() ) def _UpperCamelCase ( self ): '''simple docstring''' with self.assertRaises(snake_case_ ): UpperCAmelCase_ : Optional[int] = pa.array(TypedSequence([1, 2, 3] ) , type=pa.intaa() ) def _UpperCamelCase ( self ): '''simple docstring''' with self.assertRaises(snake_case_ ): UpperCAmelCase_ : List[Any] = pa.array(TypedSequence([1, 2, 3] , try_type=Value('bool' ) , type=Value('int64' ) ) ) def _UpperCamelCase ( self ): '''simple docstring''' UpperCAmelCase_ : Any = pa.array(TypedSequence([1, 2, 3] , type=Value('int32' ) ) ) self.assertEqual(arr.type , pa.intaa() ) def _UpperCamelCase ( self ): '''simple docstring''' with self.assertRaises((TypeError, pa.lib.ArrowInvalid) ): UpperCAmelCase_ : List[str] = pa.array(TypedSequence(['foo', 'bar'] , type=Value('int64' ) ) ) def _UpperCamelCase ( self ): '''simple docstring''' UpperCAmelCase_ : str = pa.array(TypedSequence([1, 2, 3] , try_type=Value('int32' ) ) ) self.assertEqual(arr.type , pa.intaa() ) def _UpperCamelCase ( self ): '''simple docstring''' UpperCAmelCase_ : List[str] = pa.array(TypedSequence(['foo', 'bar'] , try_type=Value('int64' ) ) ) self.assertEqual(arr.type , pa.string() ) def _UpperCamelCase ( self ): '''simple docstring''' UpperCAmelCase_ : Tuple = pa.array(TypedSequence([[[1, 2, 3]]] , type=ArrayaD((1, 3) , 'int64' ) ) ) self.assertEqual(arr.type , ArrayaDExtensionType((1, 3) , 'int64' ) ) def _UpperCamelCase ( self ): '''simple docstring''' with self.assertRaises((TypeError, pa.lib.ArrowInvalid) ): UpperCAmelCase_ : Any = pa.array(TypedSequence(['foo', 'bar'] , type=ArrayaD((1, 3) , 'int64' ) ) ) def _UpperCamelCase ( self ): '''simple docstring''' UpperCAmelCase_ : int = pa.array(TypedSequence([[[1, 2, 3]]] , try_type=ArrayaD((1, 3) , 'int64' ) ) ) self.assertEqual(arr.type , ArrayaDExtensionType((1, 3) , 'int64' ) ) def _UpperCamelCase ( self ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = pa.array(TypedSequence(['foo', 'bar'] , try_type=ArrayaD((1, 3) , 'int64' ) ) ) self.assertEqual(arr.type , pa.string() ) @require_pil def _UpperCamelCase ( self ): '''simple docstring''' import PIL.Image UpperCAmelCase_ : Any = PIL.Image.fromarray(np.arange(1_0 , dtype=np.uinta ).reshape(2 , 5 ) ) with patch( 'datasets.arrow_writer.cast_to_python_objects' , side_effect=snake_case_ ) as mock_cast_to_python_objects: UpperCAmelCase_ : int = pa.array(TypedSequence([{'path': None, 'bytes': b'image_bytes'}, pil_image] , type=Image() ) ) UpperCAmelCase_ , UpperCAmelCase_ : Any = mock_cast_to_python_objects.call_args_list[-1] self.assertIn('optimize_list_casting' , snake_case_ ) self.assertFalse(kwargs['optimize_list_casting'] ) def _lowerCamelCase ( lowerCamelCase_ : Any , lowerCamelCase_ : int ): """simple docstring""" UpperCAmelCase_ : str = pa.BufferReader(lowerCamelCase_ ) if isinstance(lowerCamelCase_ , pa.Buffer ) else pa.memory_map(lowerCamelCase_ ) UpperCAmelCase_ : Union[str, Any] = pa.ipc.open_stream(lowerCamelCase_ ) UpperCAmelCase_ : pa.Table = f.read_all() assert len(pa_table.to_batches() ) == expected_num_chunks assert pa_table.to_pydict() == {"col_1": ["foo", "bar"], "col_2": [1, 2]} del pa_table @pytest.mark.parametrize('writer_batch_size' , [None, 1, 10] ) @pytest.mark.parametrize( 'fields' , [None, {'col_1': pa.string(), 'col_2': pa.intaa()}, {'col_1': pa.string(), 'col_2': pa.intaa()}] ) def _lowerCamelCase ( lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : int ): """simple docstring""" UpperCAmelCase_ : List[str] = pa.BufferOutputStream() UpperCAmelCase_ : Dict = pa.schema(lowerCamelCase_ ) if fields else None with ArrowWriter(stream=lowerCamelCase_ , schema=lowerCamelCase_ , writer_batch_size=lowerCamelCase_ ) as writer: writer.write({'col_1': 'foo', 'col_2': 1} ) writer.write({'col_1': 'bar', 'col_2': 2} ) UpperCAmelCase_ , UpperCAmelCase_ : Dict = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: UpperCAmelCase_ : Optional[int] = {'col_1': pa.string(), 'col_2': pa.intaa()} assert writer._schema == pa.schema(lowerCamelCase_ , metadata=writer._schema.metadata ) _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) def _lowerCamelCase ( ): """simple docstring""" UpperCAmelCase_ : Tuple = pa.BufferOutputStream() UpperCAmelCase_ : Optional[int] = Features({'labels': ClassLabel(names=['neg', 'pos'] )} ) with ArrowWriter(stream=lowerCamelCase_ , features=lowerCamelCase_ ) as writer: writer.write({'labels': 0} ) writer.write({'labels': 1} ) UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = writer.finalize() assert num_examples == 2 assert num_bytes > 0 assert writer._schema == features.arrow_schema assert writer._schema.metadata == features.arrow_schema.metadata UpperCAmelCase_ : Any = pa.BufferReader(output.getvalue() ) UpperCAmelCase_ : List[str] = pa.ipc.open_stream(lowerCamelCase_ ) UpperCAmelCase_ : pa.Table = f.read_all() UpperCAmelCase_ : Optional[Any] = pa_table.schema assert pa_table.num_rows == 2 assert schema == features.arrow_schema assert schema.metadata == features.arrow_schema.metadata assert features == Features.from_arrow_schema(lowerCamelCase_ ) @pytest.mark.parametrize('writer_batch_size' , [None, 1, 10] ) def _lowerCamelCase ( lowerCamelCase_ : List[Any] ): """simple docstring""" UpperCAmelCase_ : Union[str, Any] = pa.BufferOutputStream() with ArrowWriter( stream=lowerCamelCase_ , writer_batch_size=lowerCamelCase_ , hash_salt='split_name' , check_duplicates=lowerCamelCase_ , ) as writer: with pytest.raises(lowerCamelCase_ ): writer.write({'col_1': 'foo', 'col_2': 1} , key=[1, 2] ) UpperCAmelCase_ , UpperCAmelCase_ : Any = writer.finalize() @pytest.mark.parametrize('writer_batch_size' , [None, 2, 10] ) def _lowerCamelCase ( lowerCamelCase_ : Union[str, Any] ): """simple docstring""" UpperCAmelCase_ : int = pa.BufferOutputStream() with ArrowWriter( stream=lowerCamelCase_ , writer_batch_size=lowerCamelCase_ , hash_salt='split_name' , check_duplicates=lowerCamelCase_ , ) as writer: with pytest.raises(lowerCamelCase_ ): writer.write({'col_1': 'foo', 'col_2': 1} , key=10 ) writer.write({'col_1': 'bar', 'col_2': 2} , key=10 ) UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = writer.finalize() @pytest.mark.parametrize('writer_batch_size' , [None, 2, 10] ) def _lowerCamelCase ( lowerCamelCase_ : Optional[int] ): """simple docstring""" UpperCAmelCase_ : str = pa.BufferOutputStream() with ArrowWriter( stream=lowerCamelCase_ , writer_batch_size=lowerCamelCase_ , hash_salt='split_name' , check_duplicates=lowerCamelCase_ , ) as writer: writer.write({'col_1': 'foo', 'col_2': 1} , key=1 ) writer.write({'col_1': 'bar', 'col_2': 2} , key=2 ) UpperCAmelCase_ , UpperCAmelCase_ : Dict = writer.finalize() assert num_examples == 2 assert num_bytes > 0 _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) @pytest.mark.parametrize('writer_batch_size' , [None, 1, 10] ) @pytest.mark.parametrize( 'fields' , [None, {'col_1': pa.string(), 'col_2': pa.intaa()}, {'col_1': pa.string(), 'col_2': pa.intaa()}] ) def _lowerCamelCase ( lowerCamelCase_ : Dict , lowerCamelCase_ : str ): """simple docstring""" UpperCAmelCase_ : List[Any] = pa.BufferOutputStream() UpperCAmelCase_ : Optional[Any] = pa.schema(lowerCamelCase_ ) if fields else None with ArrowWriter(stream=lowerCamelCase_ , schema=lowerCamelCase_ , writer_batch_size=lowerCamelCase_ ) as writer: writer.write_batch({'col_1': ['foo', 'bar'], 'col_2': [1, 2]} ) writer.write_batch({'col_1': [], 'col_2': []} ) UpperCAmelCase_ , UpperCAmelCase_ : str = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: UpperCAmelCase_ : int = {'col_1': pa.string(), 'col_2': pa.intaa()} assert writer._schema == pa.schema(lowerCamelCase_ , metadata=writer._schema.metadata ) _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) @pytest.mark.parametrize('writer_batch_size' , [None, 1, 10] ) @pytest.mark.parametrize( 'fields' , [None, {'col_1': pa.string(), 'col_2': pa.intaa()}, {'col_1': pa.string(), 'col_2': pa.intaa()}] ) def _lowerCamelCase ( lowerCamelCase_ : int , lowerCamelCase_ : Union[str, Any] ): """simple docstring""" UpperCAmelCase_ : List[str] = pa.BufferOutputStream() UpperCAmelCase_ : Optional[int] = pa.schema(lowerCamelCase_ ) if fields else None with ArrowWriter(stream=lowerCamelCase_ , schema=lowerCamelCase_ , writer_batch_size=lowerCamelCase_ ) as writer: writer.write_table(pa.Table.from_pydict({'col_1': ['foo', 'bar'], 'col_2': [1, 2]} ) ) UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: UpperCAmelCase_ : Any = {'col_1': pa.string(), 'col_2': pa.intaa()} assert writer._schema == pa.schema(lowerCamelCase_ , metadata=writer._schema.metadata ) _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) @pytest.mark.parametrize('writer_batch_size' , [None, 1, 10] ) @pytest.mark.parametrize( 'fields' , [None, {'col_1': pa.string(), 'col_2': pa.intaa()}, {'col_1': pa.string(), 'col_2': pa.intaa()}] ) def _lowerCamelCase ( lowerCamelCase_ : Dict , lowerCamelCase_ : List[str] ): """simple docstring""" UpperCAmelCase_ : Tuple = pa.BufferOutputStream() UpperCAmelCase_ : Tuple = pa.schema(lowerCamelCase_ ) if fields else None with ArrowWriter(stream=lowerCamelCase_ , schema=lowerCamelCase_ , writer_batch_size=lowerCamelCase_ ) as writer: writer.write_row(pa.Table.from_pydict({'col_1': ['foo'], 'col_2': [1]} ) ) writer.write_row(pa.Table.from_pydict({'col_1': ['bar'], 'col_2': [2]} ) ) UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: UpperCAmelCase_ : Union[str, Any] = {'col_1': pa.string(), 'col_2': pa.intaa()} assert writer._schema == pa.schema(lowerCamelCase_ , metadata=writer._schema.metadata ) _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) def _lowerCamelCase ( ): """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: UpperCAmelCase_ : Union[str, Any] = {'col_1': pa.string(), 'col_2': pa.intaa()} UpperCAmelCase_ : Tuple = os.path.join(lowerCamelCase_ , 'test.arrow' ) with ArrowWriter(path=lowerCamelCase_ , schema=pa.schema(lowerCamelCase_ ) ) as writer: writer.write_batch({'col_1': ['foo', 'bar'], 'col_2': [1, 2]} ) UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = writer.finalize() assert num_examples == 2 assert num_bytes > 0 assert writer._schema == pa.schema(lowerCamelCase_ , metadata=writer._schema.metadata ) _check_output(lowerCamelCase_ , 1 ) def _lowerCamelCase ( lowerCamelCase_ : Optional[Any] ): """simple docstring""" if pa.types.is_list(lowerCamelCase_ ): return get_base_dtype(arr_type.value_type ) else: return arr_type def _lowerCamelCase ( lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Optional[Any] ): """simple docstring""" if isinstance(lst[0] , lowerCamelCase_ ): change_first_primitive_element_in_list(lst[0] , lowerCamelCase_ ) else: UpperCAmelCase_ : str = value @pytest.mark.parametrize('optimized_int_type, expected_dtype' , [(None, pa.intaa()), (Value('int32' ), pa.intaa())] ) @pytest.mark.parametrize('sequence' , [[1, 2, 3], [[1, 2, 3]], [[[1, 2, 3]]]] ) def _lowerCamelCase ( lowerCamelCase_ : int , lowerCamelCase_ : Dict , lowerCamelCase_ : int ): """simple docstring""" UpperCAmelCase_ : List[Any] = pa.array(TypedSequence(lowerCamelCase_ , optimized_int_type=lowerCamelCase_ ) ) assert get_base_dtype(arr.type ) == expected_dtype @pytest.mark.parametrize( 'col, expected_dtype' , [ ('attention_mask', pa.inta()), ('special_tokens_mask', pa.inta()), ('token_type_ids', pa.inta()), ('input_ids', pa.intaa()), ('other', pa.intaa()), ] , ) @pytest.mark.parametrize('sequence' , [[1, 2, 3], [[1, 2, 3]], [[[1, 2, 3]]]] ) def _lowerCamelCase ( lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : Tuple , lowerCamelCase_ : List[Any] ): """simple docstring""" UpperCAmelCase_ : Tuple = pa.array(OptimizedTypedSequence(lowerCamelCase_ , col=lowerCamelCase_ ) ) assert get_base_dtype(arr.type ) == expected_dtype # not in range if col != "other": # avoids errors due to in-place modifications UpperCAmelCase_ : int = copy.deepcopy(lowerCamelCase_ ) UpperCAmelCase_ : str = np.iinfo(expected_dtype.to_pandas_dtype() ).max + 1 change_first_primitive_element_in_list(lowerCamelCase_ , lowerCamelCase_ ) UpperCAmelCase_ : Dict = pa.array(OptimizedTypedSequence(lowerCamelCase_ , col=lowerCamelCase_ ) ) assert get_base_dtype(arr.type ) == pa.intaa() @pytest.mark.parametrize('raise_exception' , [False, True] ) def _lowerCamelCase ( lowerCamelCase_ : List[str] , lowerCamelCase_ : List[Any] ): """simple docstring""" UpperCAmelCase_ : int = str(tmp_path / 'dataset-train.arrow' ) try: with ArrowWriter(path=lowerCamelCase_ ) as writer: if raise_exception: raise pa.lib.ArrowInvalid() else: writer.stream.close() except pa.lib.ArrowInvalid: pass finally: assert writer.stream.closed def _lowerCamelCase ( lowerCamelCase_ : Dict ): """simple docstring""" UpperCAmelCase_ : Dict = 'mock://dataset-train.arrow' with ArrowWriter(path=lowerCamelCase_ , storage_options=mockfs.storage_options ) as writer: assert isinstance(writer._fs , type(lowerCamelCase_ ) ) assert writer._fs.storage_options == mockfs.storage_options writer.write({'col_1': 'foo', 'col_2': 1} ) writer.write({'col_1': 'bar', 'col_2': 2} ) UpperCAmelCase_ , UpperCAmelCase_ : Tuple = writer.finalize() assert num_examples == 2 assert num_bytes > 0 assert mockfs.exists(lowerCamelCase_ ) def _lowerCamelCase ( ): """simple docstring""" UpperCAmelCase_ : Optional[Any] = pa.BufferOutputStream() with ParquetWriter(stream=lowerCamelCase_ ) as writer: writer.write({'col_1': 'foo', 'col_2': 1} ) writer.write({'col_1': 'bar', 'col_2': 2} ) UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = writer.finalize() assert num_examples == 2 assert num_bytes > 0 UpperCAmelCase_ : List[str] = pa.BufferReader(output.getvalue() ) UpperCAmelCase_ : pa.Table = pq.read_table(lowerCamelCase_ ) assert pa_table.to_pydict() == {"col_1": ["foo", "bar"], "col_2": [1, 2]} @require_pil @pytest.mark.parametrize('embed_local_files' , [False, True] ) def _lowerCamelCase ( lowerCamelCase_ : List[Any] , lowerCamelCase_ : Union[str, Any] ): """simple docstring""" import PIL.Image UpperCAmelCase_ : str = str(tmp_path / 'test_image_rgb.jpg' ) PIL.Image.fromarray(np.zeros((5, 5) , dtype=np.uinta ) ).save(lowerCamelCase_ , format='png' ) UpperCAmelCase_ : int = pa.BufferOutputStream() with ParquetWriter( stream=lowerCamelCase_ , features=Features({'image': Image()} ) , embed_local_files=lowerCamelCase_ ) as writer: writer.write({'image': image_path} ) writer.finalize() UpperCAmelCase_ : Optional[int] = pa.BufferReader(output.getvalue() ) UpperCAmelCase_ : pa.Table = pq.read_table(lowerCamelCase_ ) UpperCAmelCase_ : List[str] = pa_table.to_pydict() if embed_local_files: assert isinstance(out['image'][0]['path'] , lowerCamelCase_ ) with open(lowerCamelCase_ , 'rb' ) as f: assert out["image"][0]["bytes"] == f.read() else: assert out["image"][0]["path"] == image_path assert out["image"][0]["bytes"] is None def _lowerCamelCase ( ): """simple docstring""" UpperCAmelCase_ : List[str] = pa.schema([pa.field('col_1' , pa.string() , nullable=lowerCamelCase_ )] ) UpperCAmelCase_ : Dict = pa.BufferOutputStream() with ArrowWriter(stream=lowerCamelCase_ ) as writer: writer._build_writer(inferred_schema=lowerCamelCase_ ) assert writer._schema == pa.schema([pa.field('col_1' , pa.string() )] )
274
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) _lowercase : Tuple = { "configuration_falcon": ["FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP", "FalconConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Tuple = [ "FALCON_PRETRAINED_MODEL_ARCHIVE_LIST", "FalconForCausalLM", "FalconModel", "FalconPreTrainedModel", "FalconForSequenceClassification", "FalconForTokenClassification", "FalconForQuestionAnswering", ] if TYPE_CHECKING: from .configuration_falcon import FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP, FalconConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_falcon import ( FALCON_PRETRAINED_MODEL_ARCHIVE_LIST, FalconForCausalLM, FalconForQuestionAnswering, FalconForSequenceClassification, FalconForTokenClassification, FalconModel, FalconPreTrainedModel, ) else: import sys _lowercase : List[str] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
238
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_lxmert import LxmertTokenizer __lowerCamelCase = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} __lowerCamelCase = { """vocab_file""": { """unc-nlp/lxmert-base-uncased""": """https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/vocab.txt""", }, """tokenizer_file""": { """unc-nlp/lxmert-base-uncased""": ( """https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/tokenizer.json""" ), }, } __lowerCamelCase = { """unc-nlp/lxmert-base-uncased""": 5_12, } __lowerCamelCase = { """unc-nlp/lxmert-base-uncased""": {"""do_lower_case""": True}, } class UpperCAmelCase ( A_ ): A__ : Any = VOCAB_FILES_NAMES A__ : Optional[int] = PRETRAINED_VOCAB_FILES_MAP A__ : Tuple = PRETRAINED_INIT_CONFIGURATION A__ : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A__ : List[Any] = LxmertTokenizer def __init__(self : Dict , snake_case__ : Tuple=None , snake_case__ : Optional[Any]=None , snake_case__ : Optional[Any]=True , snake_case__ : Tuple="[UNK]" , snake_case__ : Optional[Any]="[SEP]" , snake_case__ : Optional[Any]="[PAD]" , snake_case__ : List[Any]="[CLS]" , snake_case__ : Tuple="[MASK]" , snake_case__ : Dict=True , snake_case__ : Union[str, Any]=None , **snake_case__ : Dict , ) -> Optional[int]: '''simple docstring''' super().__init__( snake_case__ , tokenizer_file=snake_case__ , do_lower_case=snake_case__ , unk_token=snake_case__ , sep_token=snake_case__ , pad_token=snake_case__ , cls_token=snake_case__ , mask_token=snake_case__ , tokenize_chinese_chars=snake_case__ , strip_accents=snake_case__ , **snake_case__ , ) snake_case : int = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("lowercase" , snake_case__ ) != do_lower_case or normalizer_state.get("strip_accents" , snake_case__ ) != strip_accents or normalizer_state.get("handle_chinese_chars" , snake_case__ ) != tokenize_chinese_chars ): snake_case : Union[str, Any] = getattr(snake_case__ , normalizer_state.pop("type" ) ) snake_case : str = do_lower_case snake_case : List[Any] = strip_accents snake_case : Optional[int] = tokenize_chinese_chars snake_case : int = normalizer_class(**snake_case__ ) snake_case : Optional[Any] = do_lower_case def _SCREAMING_SNAKE_CASE (self : Union[str, Any] , snake_case__ : Optional[Any] , snake_case__ : Dict=None ) -> Any: '''simple docstring''' snake_case : Optional[int] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def _SCREAMING_SNAKE_CASE (self : Optional[int] , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' snake_case : Optional[Any] = [self.sep_token_id] snake_case : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _SCREAMING_SNAKE_CASE (self : Any , snake_case__ : str , snake_case__ : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' snake_case : List[Any] = self._tokenizer.model.save(snake_case__ , name=snake_case__ ) return tuple(snake_case__ )
59
0
"""simple docstring""" import inspect import unittest import torch import torch.nn as nn from accelerate.hooks import ( AlignDevicesHook, ModelHook, SequentialHook, add_hook_to_module, attach_align_device_hook, remove_hook_from_module, remove_hook_from_submodules, ) from accelerate.test_utils import require_multi_gpu class UpperCamelCase_ ( nn.Module): """simple docstring""" def __init__( self : str ) -> Optional[int]: super().__init__() __SCREAMING_SNAKE_CASE = nn.Linear(3 , 4 ) __SCREAMING_SNAKE_CASE = nn.BatchNormad(4 ) __SCREAMING_SNAKE_CASE = nn.Linear(4 , 5 ) def UpperCAmelCase_ ( self : Dict , UpperCAmelCase__ : int ) -> Union[str, Any]: return self.lineara(self.batchnorm(self.lineara(UpperCAmelCase__ ) ) ) class UpperCamelCase_ ( UpperCamelCase): """simple docstring""" def UpperCAmelCase_ ( self : Dict , UpperCAmelCase__ : List[Any] , *UpperCAmelCase__ : Any , **UpperCAmelCase__ : Optional[Any] ) -> Tuple: return (args[0] + 1,) + args[1:], kwargs class UpperCamelCase_ ( UpperCamelCase): """simple docstring""" def UpperCAmelCase_ ( self : Optional[int] , UpperCAmelCase__ : Any , UpperCAmelCase__ : Any ) -> List[Any]: return output + 1 class UpperCamelCase_ ( unittest.TestCase): """simple docstring""" def UpperCAmelCase_ ( self : Any ) -> List[str]: __SCREAMING_SNAKE_CASE = ModelForTest() __SCREAMING_SNAKE_CASE = ModelHook() add_hook_to_module(UpperCAmelCase__ , UpperCAmelCase__ ) self.assertEqual(test_model._hf_hook , UpperCAmelCase__ ) self.assertTrue(hasattr(UpperCAmelCase__ , "_old_forward" ) ) # Check adding the hook did not change the name or the signature self.assertEqual(test_model.forward.__name__ , "forward" ) self.assertListEqual(list(inspect.signature(test_model.forward ).parameters ) , ["x"] ) remove_hook_from_module(UpperCAmelCase__ ) self.assertFalse(hasattr(UpperCAmelCase__ , "_hf_hook" ) ) self.assertFalse(hasattr(UpperCAmelCase__ , "_old_forward" ) ) def UpperCAmelCase_ ( self : Any ) -> Dict: __SCREAMING_SNAKE_CASE = ModelForTest() __SCREAMING_SNAKE_CASE = ModelHook() add_hook_to_module(UpperCAmelCase__ , UpperCAmelCase__ ) add_hook_to_module(UpperCAmelCase__ , UpperCAmelCase__ , append=UpperCAmelCase__ ) self.assertEqual(isinstance(test_model._hf_hook , UpperCAmelCase__ ) , UpperCAmelCase__ ) self.assertEqual(len(test_model._hf_hook.hooks ) , 2 ) self.assertTrue(hasattr(UpperCAmelCase__ , "_old_forward" ) ) # Check adding the hook did not change the name or the signature self.assertEqual(test_model.forward.__name__ , "forward" ) self.assertListEqual(list(inspect.signature(test_model.forward ).parameters ) , ["x"] ) remove_hook_from_module(UpperCAmelCase__ ) self.assertFalse(hasattr(UpperCAmelCase__ , "_hf_hook" ) ) self.assertFalse(hasattr(UpperCAmelCase__ , "_old_forward" ) ) def UpperCAmelCase_ ( self : List[str] ) -> List[Any]: __SCREAMING_SNAKE_CASE = ModelForTest() __SCREAMING_SNAKE_CASE = torch.randn(2 , 3 ) __SCREAMING_SNAKE_CASE = test_model(x + 1 ) __SCREAMING_SNAKE_CASE = test_model(x + 2 ) __SCREAMING_SNAKE_CASE = PreForwardHook() add_hook_to_module(UpperCAmelCase__ , UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = test_model(UpperCAmelCase__ ) self.assertTrue(torch.allclose(UpperCAmelCase__ , UpperCAmelCase__ , atol=1E-5 ) ) # Attaching a hook to a model when it already has one replaces, does not chain __SCREAMING_SNAKE_CASE = PreForwardHook() add_hook_to_module(UpperCAmelCase__ , UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = test_model(UpperCAmelCase__ ) self.assertTrue(torch.allclose(UpperCAmelCase__ , UpperCAmelCase__ , atol=1E-5 ) ) # You need to use the sequential hook to chain two or more hooks __SCREAMING_SNAKE_CASE = SequentialHook(PreForwardHook() , PreForwardHook() ) add_hook_to_module(UpperCAmelCase__ , UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = test_model(UpperCAmelCase__ ) assert torch.allclose(UpperCAmelCase__ , UpperCAmelCase__ , atol=1E-5 ) def UpperCAmelCase_ ( self : str ) -> str: __SCREAMING_SNAKE_CASE = ModelForTest() __SCREAMING_SNAKE_CASE = torch.randn(2 , 3 ) __SCREAMING_SNAKE_CASE = test_model(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = PostForwardHook() add_hook_to_module(UpperCAmelCase__ , UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = test_model(UpperCAmelCase__ ) self.assertTrue(torch.allclose(UpperCAmelCase__ , output + 1 , atol=1E-5 ) ) # Attaching a hook to a model when it already has one replaces, does not chain __SCREAMING_SNAKE_CASE = PostForwardHook() add_hook_to_module(UpperCAmelCase__ , UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = test_model(UpperCAmelCase__ ) self.assertTrue(torch.allclose(UpperCAmelCase__ , output + 1 , atol=1E-5 ) ) # You need to use the sequential hook to chain two or more hooks __SCREAMING_SNAKE_CASE = SequentialHook(PostForwardHook() , PostForwardHook() ) add_hook_to_module(UpperCAmelCase__ , UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = test_model(UpperCAmelCase__ ) assert torch.allclose(UpperCAmelCase__ , output + 2 , atol=1E-5 ) def UpperCAmelCase_ ( self : Dict ) -> Tuple: __SCREAMING_SNAKE_CASE = ModelForTest() __SCREAMING_SNAKE_CASE = torch.randn(2 , 3 ) __SCREAMING_SNAKE_CASE = test_model(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = PostForwardHook() add_hook_to_module(UpperCAmelCase__ , UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = test_model(UpperCAmelCase__ ) self.assertTrue(torch.allclose(UpperCAmelCase__ , output + 1 ) ) self.assertTrue(outputa.requires_grad ) __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = test_model(UpperCAmelCase__ ) self.assertFalse(outputa.requires_grad ) @require_multi_gpu def UpperCAmelCase_ ( self : Union[str, Any] ) -> Dict: __SCREAMING_SNAKE_CASE = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device("cpu" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("cpu" ) ) self.assertEqual(model.lineara.weight.device , torch.device("cpu" ) ) # This will move each submodule on different devices add_hook_to_module(model.lineara , AlignDevicesHook(execution_device=0 ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(execution_device=0 ) ) add_hook_to_module(model.lineara , AlignDevicesHook(execution_device=1 ) ) self.assertEqual(model.lineara.weight.device , torch.device(0 ) ) self.assertEqual(model.batchnorm.weight.device , torch.device(0 ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device(0 ) ) self.assertEqual(model.lineara.weight.device , torch.device(1 ) ) # We can still make a forward pass. The input does not need to be on any particular device __SCREAMING_SNAKE_CASE = torch.randn(2 , 3 ) __SCREAMING_SNAKE_CASE = model(UpperCAmelCase__ ) self.assertEqual(output.device , torch.device(1 ) ) # We can add a general hook to put back output on same device as input. add_hook_to_module(UpperCAmelCase__ , AlignDevicesHook(io_same_device=UpperCAmelCase__ ) ) __SCREAMING_SNAKE_CASE = torch.randn(2 , 3 ).to(0 ) __SCREAMING_SNAKE_CASE = model(UpperCAmelCase__ ) self.assertEqual(output.device , torch.device(0 ) ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device("cpu" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("cpu" ) ) self.assertEqual(model.lineara.weight.device , torch.device("cpu" ) ) # This will move each submodule on different devices __SCREAMING_SNAKE_CASE = {"execution_device": 0 if torch.cuda.is_available() else "cpu", "offload": True} add_hook_to_module(model.lineara , AlignDevicesHook(**UpperCAmelCase__ ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(**UpperCAmelCase__ ) ) add_hook_to_module(model.lineara , AlignDevicesHook(**UpperCAmelCase__ ) ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device("meta" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("meta" ) ) self.assertEqual(model.lineara.weight.device , torch.device("meta" ) ) # Buffers are not included in the offload by default, so are on the execution device __SCREAMING_SNAKE_CASE = torch.device(hook_kwargs["execution_device"] ) self.assertEqual(model.batchnorm.running_mean.device , UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = torch.randn(2 , 3 ) __SCREAMING_SNAKE_CASE = model(UpperCAmelCase__ ) self.assertEqual(output.device , UpperCAmelCase__ ) # Removing hooks loads back the weights in the model. remove_hook_from_module(model.lineara ) remove_hook_from_module(model.batchnorm ) remove_hook_from_module(model.lineara ) self.assertEqual(model.lineara.weight.device , torch.device("cpu" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("cpu" ) ) self.assertEqual(model.lineara.weight.device , torch.device("cpu" ) ) # Now test with buffers included in the offload __SCREAMING_SNAKE_CASE = { "execution_device": 0 if torch.cuda.is_available() else "cpu", "offload": True, "offload_buffers": True, } add_hook_to_module(model.lineara , AlignDevicesHook(**UpperCAmelCase__ ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(**UpperCAmelCase__ ) ) add_hook_to_module(model.lineara , AlignDevicesHook(**UpperCAmelCase__ ) ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device("meta" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("meta" ) ) self.assertEqual(model.lineara.weight.device , torch.device("meta" ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device("meta" ) ) __SCREAMING_SNAKE_CASE = torch.randn(2 , 3 ) __SCREAMING_SNAKE_CASE = model(UpperCAmelCase__ ) self.assertEqual(output.device , UpperCAmelCase__ ) # Removing hooks loads back the weights in the model. remove_hook_from_module(model.lineara ) remove_hook_from_module(model.batchnorm ) remove_hook_from_module(model.lineara ) self.assertEqual(model.lineara.weight.device , torch.device("cpu" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("cpu" ) ) self.assertEqual(model.lineara.weight.device , torch.device("cpu" ) ) def UpperCAmelCase_ ( self : Optional[Any] ) -> Optional[Any]: __SCREAMING_SNAKE_CASE = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device("cpu" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("cpu" ) ) self.assertEqual(model.lineara.weight.device , torch.device("cpu" ) ) # This will move each submodule on different devices __SCREAMING_SNAKE_CASE = 0 if torch.cuda.is_available() else "cpu" attach_align_device_hook(UpperCAmelCase__ , execution_device=UpperCAmelCase__ , offload=UpperCAmelCase__ ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device("meta" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("meta" ) ) self.assertEqual(model.lineara.weight.device , torch.device("meta" ) ) # Buffers are not included in the offload by default, so are on the execution device __SCREAMING_SNAKE_CASE = torch.device(UpperCAmelCase__ ) self.assertEqual(model.batchnorm.running_mean.device , UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = torch.randn(2 , 3 ) __SCREAMING_SNAKE_CASE = model(UpperCAmelCase__ ) self.assertEqual(output.device , UpperCAmelCase__ ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(UpperCAmelCase__ ) self.assertEqual(model.lineara.weight.device , torch.device("cpu" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("cpu" ) ) self.assertEqual(model.lineara.weight.device , torch.device("cpu" ) ) # Now test with buffers included in the offload attach_align_device_hook(UpperCAmelCase__ , execution_device=UpperCAmelCase__ , offload=UpperCAmelCase__ , offload_buffers=UpperCAmelCase__ ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device("meta" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("meta" ) ) self.assertEqual(model.lineara.weight.device , torch.device("meta" ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device("meta" ) ) __SCREAMING_SNAKE_CASE = torch.randn(2 , 3 ) __SCREAMING_SNAKE_CASE = model(UpperCAmelCase__ ) self.assertEqual(output.device , UpperCAmelCase__ ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(UpperCAmelCase__ ) self.assertEqual(model.lineara.weight.device , torch.device("cpu" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("cpu" ) ) self.assertEqual(model.lineara.weight.device , torch.device("cpu" ) ) def UpperCAmelCase_ ( self : int ) -> Dict: __SCREAMING_SNAKE_CASE = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device("cpu" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("cpu" ) ) self.assertEqual(model.lineara.weight.device , torch.device("cpu" ) ) # This will move each submodule on different devices __SCREAMING_SNAKE_CASE = 0 if torch.cuda.is_available() else "cpu" attach_align_device_hook( UpperCAmelCase__ , execution_device=UpperCAmelCase__ , offload=UpperCAmelCase__ , weights_map=model.state_dict() ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device("meta" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("meta" ) ) self.assertEqual(model.lineara.weight.device , torch.device("meta" ) ) # Buffers are not included in the offload by default, so are on the execution device __SCREAMING_SNAKE_CASE = torch.device(UpperCAmelCase__ ) self.assertEqual(model.batchnorm.running_mean.device , UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = torch.randn(2 , 3 ) __SCREAMING_SNAKE_CASE = model(UpperCAmelCase__ ) self.assertEqual(output.device , UpperCAmelCase__ ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(UpperCAmelCase__ ) self.assertEqual(model.lineara.weight.device , torch.device("cpu" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("cpu" ) ) self.assertEqual(model.lineara.weight.device , torch.device("cpu" ) ) # Now test with buffers included in the offload attach_align_device_hook( UpperCAmelCase__ , execution_device=UpperCAmelCase__ , offload=UpperCAmelCase__ , weights_map=model.state_dict() , offload_buffers=UpperCAmelCase__ , ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device("meta" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("meta" ) ) self.assertEqual(model.lineara.weight.device , torch.device("meta" ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device("meta" ) ) __SCREAMING_SNAKE_CASE = torch.randn(2 , 3 ) __SCREAMING_SNAKE_CASE = model(UpperCAmelCase__ ) self.assertEqual(output.device , UpperCAmelCase__ ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(UpperCAmelCase__ ) self.assertEqual(model.lineara.weight.device , torch.device("cpu" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("cpu" ) ) self.assertEqual(model.lineara.weight.device , torch.device("cpu" ) )
365
"""simple docstring""" from typing import List from ...configuration_utils import PretrainedConfig from ...utils import logging a__ : Tuple = logging.get_logger(__name__) a__ : List[Any] = { '''snap-research/efficientformer-l1-300''': ( '''https://huggingface.co/snap-research/efficientformer-l1-300/resolve/main/config.json''' ), } class UpperCamelCase_ ( UpperCamelCase): """simple docstring""" snake_case__ : Any = "efficientformer" def __init__( self : Any , UpperCAmelCase__ : List[int] = [3, 2, 6, 4] , UpperCAmelCase__ : List[int] = [4_8, 9_6, 2_2_4, 4_4_8] , UpperCAmelCase__ : List[bool] = [True, True, True, True] , UpperCAmelCase__ : int = 4_4_8 , UpperCAmelCase__ : int = 3_2 , UpperCAmelCase__ : int = 4 , UpperCAmelCase__ : int = 7 , UpperCAmelCase__ : int = 5 , UpperCAmelCase__ : int = 8 , UpperCAmelCase__ : int = 4 , UpperCAmelCase__ : float = 0.0 , UpperCAmelCase__ : int = 1_6 , UpperCAmelCase__ : int = 3 , UpperCAmelCase__ : int = 3 , UpperCAmelCase__ : int = 3 , UpperCAmelCase__ : int = 2 , UpperCAmelCase__ : int = 1 , UpperCAmelCase__ : float = 0.0 , UpperCAmelCase__ : int = 1 , UpperCAmelCase__ : bool = True , UpperCAmelCase__ : bool = True , UpperCAmelCase__ : float = 1E-5 , UpperCAmelCase__ : str = "gelu" , UpperCAmelCase__ : float = 0.02 , UpperCAmelCase__ : float = 1E-12 , UpperCAmelCase__ : int = 2_2_4 , UpperCAmelCase__ : float = 1E-05 , **UpperCAmelCase__ : Tuple , ) -> None: super().__init__(**UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = hidden_act __SCREAMING_SNAKE_CASE = hidden_dropout_prob __SCREAMING_SNAKE_CASE = hidden_sizes __SCREAMING_SNAKE_CASE = num_hidden_layers __SCREAMING_SNAKE_CASE = num_attention_heads __SCREAMING_SNAKE_CASE = initializer_range __SCREAMING_SNAKE_CASE = layer_norm_eps __SCREAMING_SNAKE_CASE = patch_size __SCREAMING_SNAKE_CASE = num_channels __SCREAMING_SNAKE_CASE = depths __SCREAMING_SNAKE_CASE = mlp_expansion_ratio __SCREAMING_SNAKE_CASE = downsamples __SCREAMING_SNAKE_CASE = dim __SCREAMING_SNAKE_CASE = key_dim __SCREAMING_SNAKE_CASE = attention_ratio __SCREAMING_SNAKE_CASE = resolution __SCREAMING_SNAKE_CASE = pool_size __SCREAMING_SNAKE_CASE = downsample_patch_size __SCREAMING_SNAKE_CASE = downsample_stride __SCREAMING_SNAKE_CASE = downsample_pad __SCREAMING_SNAKE_CASE = drop_path_rate __SCREAMING_SNAKE_CASE = num_metaad_blocks __SCREAMING_SNAKE_CASE = distillation __SCREAMING_SNAKE_CASE = use_layer_scale __SCREAMING_SNAKE_CASE = layer_scale_init_value __SCREAMING_SNAKE_CASE = image_size __SCREAMING_SNAKE_CASE = batch_norm_eps
195
0
from __future__ import annotations import copy import tempfile import unittest from transformers import CONFIG_MAPPING, AutoConfig, BertConfig, GPTaConfig, TaConfig, TapasConfig, is_tf_available from transformers.testing_utils import ( DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, RequestCounter, require_tensorflow_probability, require_tf, slow, ) from ..bert.test_modeling_bert import BertModelTester if is_tf_available(): from transformers import ( TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSeqaSeqLM, TFAutoModelForSequenceClassification, TFAutoModelForTableQuestionAnswering, TFAutoModelForTokenClassification, TFAutoModelWithLMHead, TFBertForMaskedLM, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertModel, TFFunnelBaseModel, TFFunnelModel, TFGPTaLMHeadModel, TFRobertaForMaskedLM, TFTaForConditionalGeneration, TFTapasForQuestionAnswering, ) from transformers.models.auto.modeling_tf_auto import ( TF_MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_PRETRAINING_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TF_MODEL_MAPPING, ) from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.gpta.modeling_tf_gpta import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.ta.modeling_tf_ta import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.tapas.modeling_tf_tapas import TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST class UpperCamelCase__ ( lowerCAmelCase_ ): '''simple docstring''' __snake_case : Tuple = "new-model" if is_tf_available(): class UpperCamelCase__ ( lowerCAmelCase_ ): '''simple docstring''' __snake_case : List[Any] = NewModelConfig @require_tf class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' @slow def SCREAMING_SNAKE_CASE__ ( self : Dict ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE = """bert-base-cased""" SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ ,lowerCamelCase__ ) SCREAMING_SNAKE_CASE = TFAutoModel.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ ,lowerCamelCase__ ) @slow def SCREAMING_SNAKE_CASE__ ( self : Tuple ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE = """bert-base-cased""" SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ ,lowerCamelCase__ ) SCREAMING_SNAKE_CASE = TFAutoModelForPreTraining.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ ,lowerCamelCase__ ) @slow def SCREAMING_SNAKE_CASE__ ( self : int ) -> List[str]: '''simple docstring''' for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ ,lowerCamelCase__ ) SCREAMING_SNAKE_CASE = TFAutoModelForCausalLM.from_pretrained(lowerCamelCase__ ) SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE = TFAutoModelForCausalLM.from_pretrained(lowerCamelCase__ ,output_loading_info=lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ ,lowerCamelCase__ ) @slow def SCREAMING_SNAKE_CASE__ ( self : Any ) -> Any: '''simple docstring''' for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ ,lowerCamelCase__ ) SCREAMING_SNAKE_CASE = TFAutoModelWithLMHead.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ ,lowerCamelCase__ ) @slow def SCREAMING_SNAKE_CASE__ ( self : Tuple ) -> List[Any]: '''simple docstring''' for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ ,lowerCamelCase__ ) SCREAMING_SNAKE_CASE = TFAutoModelForMaskedLM.from_pretrained(lowerCamelCase__ ) SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE = TFAutoModelForMaskedLM.from_pretrained(lowerCamelCase__ ,output_loading_info=lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ ,lowerCamelCase__ ) @slow def SCREAMING_SNAKE_CASE__ ( self : Dict ) -> Tuple: '''simple docstring''' for model_name in TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ ,lowerCamelCase__ ) SCREAMING_SNAKE_CASE = TFAutoModelForSeqaSeqLM.from_pretrained(lowerCamelCase__ ) SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE = TFAutoModelForSeqaSeqLM.from_pretrained(lowerCamelCase__ ,output_loading_info=lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ ,lowerCamelCase__ ) @slow def SCREAMING_SNAKE_CASE__ ( self : str ) -> List[str]: '''simple docstring''' for model_name in ["bert-base-uncased"]: SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ ,lowerCamelCase__ ) SCREAMING_SNAKE_CASE = TFAutoModelForSequenceClassification.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ ,lowerCamelCase__ ) @slow def SCREAMING_SNAKE_CASE__ ( self : int ) -> Union[str, Any]: '''simple docstring''' for model_name in ["bert-base-uncased"]: SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ ,lowerCamelCase__ ) SCREAMING_SNAKE_CASE = TFAutoModelForQuestionAnswering.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ ,lowerCamelCase__ ) @slow @require_tensorflow_probability def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ) -> str: '''simple docstring''' for model_name in TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST[5:6]: SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ ,lowerCamelCase__ ) SCREAMING_SNAKE_CASE = TFAutoModelForTableQuestionAnswering.from_pretrained(lowerCamelCase__ ) SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE = TFAutoModelForTableQuestionAnswering.from_pretrained( lowerCamelCase__ ,output_loading_info=lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ ,lowerCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE = TFAutoModelWithLMHead.from_pretrained(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ ,lowerCamelCase__ ) self.assertEqual(model.num_parameters() ,14410 ) self.assertEqual(model.num_parameters(only_trainable=lowerCamelCase__ ) ,14410 ) def SCREAMING_SNAKE_CASE__ ( self : List[str] ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE = TFAutoModelWithLMHead.from_pretrained(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ ,lowerCamelCase__ ) self.assertEqual(model.num_parameters() ,14410 ) self.assertEqual(model.num_parameters(only_trainable=lowerCamelCase__ ) ,14410 ) def SCREAMING_SNAKE_CASE__ ( self : List[str] ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = TFAutoModel.from_pretrained("""sgugger/funnel-random-tiny""" ) self.assertIsInstance(lowerCamelCase__ ,lowerCamelCase__ ) SCREAMING_SNAKE_CASE = copy.deepcopy(model.config ) SCREAMING_SNAKE_CASE = ["""FunnelBaseModel"""] SCREAMING_SNAKE_CASE = TFAutoModel.from_config(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ ,lowerCamelCase__ ) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = TFAutoModel.from_pretrained(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ ,lowerCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ) -> str: '''simple docstring''' try: AutoConfig.register("""new-model""" ,lowerCamelCase__ ) SCREAMING_SNAKE_CASE = [ TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSequenceClassification, TFAutoModelForTokenClassification, ] for auto_class in auto_classes: with self.subTest(auto_class.__name__ ): # Wrong config class will raise an error with self.assertRaises(lowerCamelCase__ ): auto_class.register(lowerCamelCase__ ,lowerCamelCase__ ) auto_class.register(lowerCamelCase__ ,lowerCamelCase__ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(lowerCamelCase__ ): auto_class.register(lowerCamelCase__ ,lowerCamelCase__ ) # Now that the config is registered, it can be used as any other config with the auto-API SCREAMING_SNAKE_CASE = BertModelTester(self ).get_config() SCREAMING_SNAKE_CASE = NewModelConfig(**tiny_config.to_dict() ) SCREAMING_SNAKE_CASE = auto_class.from_config(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ ,lowerCamelCase__ ) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = auto_class.from_pretrained(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ ,lowerCamelCase__ ) finally: if "new-model" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["new-model"] for mapping in ( TF_MODEL_MAPPING, TF_MODEL_FOR_PRETRAINING_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, ): if NewModelConfig in mapping._extra_content: del mapping._extra_content[NewModelConfig] def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ) -> Optional[int]: '''simple docstring''' with self.assertRaisesRegex( lowerCamelCase__ ,"""bert-base is not a local folder and is not a valid model identifier""" ): SCREAMING_SNAKE_CASE = TFAutoModel.from_pretrained("""bert-base""" ) def SCREAMING_SNAKE_CASE__ ( self : Dict ) -> List[str]: '''simple docstring''' with self.assertRaisesRegex( lowerCamelCase__ ,R"""aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)""" ): SCREAMING_SNAKE_CASE = TFAutoModel.from_pretrained(lowerCamelCase__ ,revision="""aaaaaa""" ) def SCREAMING_SNAKE_CASE__ ( self : Dict ) -> Union[str, Any]: '''simple docstring''' with self.assertRaisesRegex( lowerCamelCase__ ,"""hf-internal-testing/config-no-model does not appear to have a file named pytorch_model.bin""" ,): SCREAMING_SNAKE_CASE = TFAutoModel.from_pretrained("""hf-internal-testing/config-no-model""" ) def SCREAMING_SNAKE_CASE__ ( self : int ) -> Optional[Any]: '''simple docstring''' with self.assertRaisesRegex(lowerCamelCase__ ,"""Use `from_pt=True` to load this model""" ): SCREAMING_SNAKE_CASE = TFAutoModel.from_pretrained("""hf-internal-testing/tiny-bert-pt-only""" ) def SCREAMING_SNAKE_CASE__ ( self : Any ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE = TFAutoModel.from_pretrained("""hf-internal-testing/tiny-random-bert""" ) with RequestCounter() as counter: SCREAMING_SNAKE_CASE = TFAutoModel.from_pretrained("""hf-internal-testing/tiny-random-bert""" ) self.assertEqual(counter.get_request_count ,0 ) self.assertEqual(counter.head_request_count ,1 ) self.assertEqual(counter.other_request_count ,0 ) # With a sharded checkpoint SCREAMING_SNAKE_CASE = TFAutoModel.from_pretrained("""ArthurZ/tiny-random-bert-sharded""" ) with RequestCounter() as counter: SCREAMING_SNAKE_CASE = TFAutoModel.from_pretrained("""ArthurZ/tiny-random-bert-sharded""" ) self.assertEqual(counter.get_request_count ,0 ) self.assertEqual(counter.head_request_count ,1 ) self.assertEqual(counter.other_request_count ,0 )
296
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = { """microsoft/git-base""": """https://huggingface.co/microsoft/git-base/resolve/main/config.json""", } class UpperCamelCase__ ( lowerCAmelCase_ ): '''simple docstring''' __snake_case : Dict = "git_vision_model" def __init__( self : List[Any] ,lowerCamelCase__ : Dict=768 ,lowerCamelCase__ : Union[str, Any]=3072 ,lowerCamelCase__ : Optional[int]=12 ,lowerCamelCase__ : Tuple=12 ,lowerCamelCase__ : Tuple=3 ,lowerCamelCase__ : Optional[Any]=224 ,lowerCamelCase__ : Union[str, Any]=16 ,lowerCamelCase__ : List[Any]="quick_gelu" ,lowerCamelCase__ : Optional[Any]=1e-5 ,lowerCamelCase__ : str=0.0 ,lowerCamelCase__ : Optional[int]=0.02 ,**lowerCamelCase__ : Union[str, Any] ,) -> Optional[int]: '''simple docstring''' super().__init__(**lowerCamelCase__ ) SCREAMING_SNAKE_CASE = hidden_size SCREAMING_SNAKE_CASE = intermediate_size SCREAMING_SNAKE_CASE = num_hidden_layers SCREAMING_SNAKE_CASE = num_attention_heads SCREAMING_SNAKE_CASE = num_channels SCREAMING_SNAKE_CASE = patch_size SCREAMING_SNAKE_CASE = image_size SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = attention_dropout SCREAMING_SNAKE_CASE = layer_norm_eps SCREAMING_SNAKE_CASE = hidden_act @classmethod def SCREAMING_SNAKE_CASE__ ( cls : Tuple ,lowerCamelCase__ : Union[str, os.PathLike] ,**lowerCamelCase__ : int ) -> "PretrainedConfig": '''simple docstring''' cls._set_token_in_kwargs(lowerCamelCase__ ) SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE = cls.get_config_dict(lowerCamelCase__ ,**lowerCamelCase__ ) # get the vision config dict if we are loading from GITConfig if config_dict.get("""model_type""" ) == "git": SCREAMING_SNAKE_CASE = config_dict["""vision_config"""] if "model_type" in config_dict and hasattr(cls ,"""model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(lowerCamelCase__ ,**lowerCamelCase__ ) class UpperCamelCase__ ( lowerCAmelCase_ ): '''simple docstring''' __snake_case : Dict = "git" def __init__( self : Optional[int] ,lowerCamelCase__ : int=None ,lowerCamelCase__ : str=30522 ,lowerCamelCase__ : Tuple=768 ,lowerCamelCase__ : Union[str, Any]=6 ,lowerCamelCase__ : str=12 ,lowerCamelCase__ : List[str]=3072 ,lowerCamelCase__ : Dict="gelu" ,lowerCamelCase__ : Tuple=0.1 ,lowerCamelCase__ : Any=0.1 ,lowerCamelCase__ : List[str]=1024 ,lowerCamelCase__ : List[str]=0.02 ,lowerCamelCase__ : str=1e-1_2 ,lowerCamelCase__ : Optional[int]=0 ,lowerCamelCase__ : Optional[int]="absolute" ,lowerCamelCase__ : Optional[Any]=True ,lowerCamelCase__ : str=False ,lowerCamelCase__ : int=101 ,lowerCamelCase__ : int=102 ,lowerCamelCase__ : Dict=None ,**lowerCamelCase__ : List[Any] ,) -> Optional[Any]: '''simple docstring''' super().__init__(bos_token_id=lowerCamelCase__ ,eos_token_id=lowerCamelCase__ ,pad_token_id=lowerCamelCase__ ,**lowerCamelCase__ ) if vision_config is None: SCREAMING_SNAKE_CASE = {} logger.info("""vision_config is None. initializing the GitVisionConfig with default values.""" ) SCREAMING_SNAKE_CASE = GitVisionConfig(**lowerCamelCase__ ) SCREAMING_SNAKE_CASE = vocab_size SCREAMING_SNAKE_CASE = hidden_size SCREAMING_SNAKE_CASE = num_hidden_layers SCREAMING_SNAKE_CASE = num_attention_heads SCREAMING_SNAKE_CASE = hidden_act SCREAMING_SNAKE_CASE = intermediate_size SCREAMING_SNAKE_CASE = hidden_dropout_prob SCREAMING_SNAKE_CASE = attention_probs_dropout_prob SCREAMING_SNAKE_CASE = max_position_embeddings SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = layer_norm_eps SCREAMING_SNAKE_CASE = position_embedding_type SCREAMING_SNAKE_CASE = use_cache SCREAMING_SNAKE_CASE = tie_word_embeddings SCREAMING_SNAKE_CASE = num_image_with_embedding SCREAMING_SNAKE_CASE = bos_token_id SCREAMING_SNAKE_CASE = eos_token_id def SCREAMING_SNAKE_CASE__ ( self : Dict ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE = copy.deepcopy(self.__dict__ ) SCREAMING_SNAKE_CASE = self.vision_config.to_dict() SCREAMING_SNAKE_CASE = self.__class__.model_type return output
296
1
"""simple docstring""" from typing import Any def UpperCamelCase ( UpperCAmelCase ) ->list[Any]: """simple docstring""" if not input_list: return [] a_ = [input_list.count(UpperCAmelCase ) for value in input_list] a_ = max(UpperCAmelCase ) # Gets the maximum count in the input list. # Gets values of modes return sorted({input_list[i] for i, value in enumerate(UpperCAmelCase ) if value == y} ) if __name__ == "__main__": import doctest doctest.testmod()
303
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCamelCase_ = { 'configuration_lilt': ['LILT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LiltConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ 'LILT_PRETRAINED_MODEL_ARCHIVE_LIST', 'LiltForQuestionAnswering', 'LiltForSequenceClassification', 'LiltForTokenClassification', 'LiltModel', 'LiltPreTrainedModel', ] if TYPE_CHECKING: from .configuration_lilt import LILT_PRETRAINED_CONFIG_ARCHIVE_MAP, LiltConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_lilt import ( LILT_PRETRAINED_MODEL_ARCHIVE_LIST, LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, LiltPreTrainedModel, ) else: import sys UpperCamelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
303
1
"""simple docstring""" import warnings from diffusers import StableDiffusionImgaImgPipeline # noqa F401 warnings.warn( """The `image_to_image.py` script is outdated. Please use directly `from diffusers import""" """ StableDiffusionImg2ImgPipeline` instead.""" )
203
from dataclasses import dataclass from typing import Optional import numpy as np import torch import torch.nn as nn from ..utils import BaseOutput, is_torch_version, randn_tensor from .attention_processor import SpatialNorm from .unet_ad_blocks import UNetMidBlockaD, get_down_block, get_up_block @dataclass class A ( UpperCAmelCase_ ): __UpperCAmelCase : torch.FloatTensor class A ( nn.Module ): def __init__(self : Union[str, Any] , __UpperCAmelCase : int=3 , __UpperCAmelCase : Dict=3 , __UpperCAmelCase : Optional[Any]=("DownEncoderBlock2D",) , __UpperCAmelCase : int=(6_4,) , __UpperCAmelCase : Union[str, Any]=2 , __UpperCAmelCase : Any=3_2 , __UpperCAmelCase : str="silu" , __UpperCAmelCase : Any=True , ) -> Dict: """simple docstring""" super().__init__() UpperCAmelCase__ = layers_per_block UpperCAmelCase__ = torch.nn.Convad( __UpperCAmelCase , block_out_channels[0] , kernel_size=3 , stride=1 , padding=1 , ) UpperCAmelCase__ = None UpperCAmelCase__ = nn.ModuleList([] ) # down UpperCAmelCase__ = block_out_channels[0] for i, down_block_type in enumerate(__UpperCAmelCase ): UpperCAmelCase__ = output_channel UpperCAmelCase__ = block_out_channels[i] UpperCAmelCase__ = i == len(__UpperCAmelCase ) - 1 UpperCAmelCase__ = get_down_block( __UpperCAmelCase , num_layers=self.layers_per_block , in_channels=__UpperCAmelCase , out_channels=__UpperCAmelCase , add_downsample=not is_final_block , resnet_eps=1E-6 , downsample_padding=0 , resnet_act_fn=__UpperCAmelCase , resnet_groups=__UpperCAmelCase , attention_head_dim=__UpperCAmelCase , temb_channels=__UpperCAmelCase , ) self.down_blocks.append(__UpperCAmelCase ) # mid UpperCAmelCase__ = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1E-6 , resnet_act_fn=__UpperCAmelCase , output_scale_factor=1 , resnet_time_scale_shift="default" , attention_head_dim=block_out_channels[-1] , resnet_groups=__UpperCAmelCase , temb_channels=__UpperCAmelCase , ) # out UpperCAmelCase__ = nn.GroupNorm(num_channels=block_out_channels[-1] , num_groups=__UpperCAmelCase , eps=1E-6 ) UpperCAmelCase__ = nn.SiLU() UpperCAmelCase__ = 2 * out_channels if double_z else out_channels UpperCAmelCase__ = nn.Convad(block_out_channels[-1] , __UpperCAmelCase , 3 , padding=1 ) UpperCAmelCase__ = False def lowercase_ (self : List[Any] , __UpperCAmelCase : int ) -> str: """simple docstring""" UpperCAmelCase__ = x UpperCAmelCase__ = self.conv_in(__UpperCAmelCase ) if self.training and self.gradient_checkpointing: def create_custom_forward(__UpperCAmelCase : int ): def custom_forward(*__UpperCAmelCase : Optional[Any] ): return module(*__UpperCAmelCase ) return custom_forward # down if is_torch_version(">=" , "1.11.0" ): for down_block in self.down_blocks: UpperCAmelCase__ = torch.utils.checkpoint.checkpoint( create_custom_forward(__UpperCAmelCase ) , __UpperCAmelCase , use_reentrant=__UpperCAmelCase ) # middle UpperCAmelCase__ = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , __UpperCAmelCase , use_reentrant=__UpperCAmelCase ) else: for down_block in self.down_blocks: UpperCAmelCase__ = torch.utils.checkpoint.checkpoint(create_custom_forward(__UpperCAmelCase ) , __UpperCAmelCase ) # middle UpperCAmelCase__ = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block ) , __UpperCAmelCase ) else: # down for down_block in self.down_blocks: UpperCAmelCase__ = down_block(__UpperCAmelCase ) # middle UpperCAmelCase__ = self.mid_block(__UpperCAmelCase ) # post-process UpperCAmelCase__ = self.conv_norm_out(__UpperCAmelCase ) UpperCAmelCase__ = self.conv_act(__UpperCAmelCase ) UpperCAmelCase__ = self.conv_out(__UpperCAmelCase ) return sample class A ( nn.Module ): def __init__(self : List[Any] , __UpperCAmelCase : str=3 , __UpperCAmelCase : Union[str, Any]=3 , __UpperCAmelCase : Optional[int]=("UpDecoderBlock2D",) , __UpperCAmelCase : str=(6_4,) , __UpperCAmelCase : Optional[Any]=2 , __UpperCAmelCase : Tuple=3_2 , __UpperCAmelCase : Any="silu" , __UpperCAmelCase : Any="group" , ) -> Dict: """simple docstring""" super().__init__() UpperCAmelCase__ = layers_per_block UpperCAmelCase__ = nn.Convad( __UpperCAmelCase , block_out_channels[-1] , kernel_size=3 , stride=1 , padding=1 , ) UpperCAmelCase__ = None UpperCAmelCase__ = nn.ModuleList([] ) UpperCAmelCase__ = in_channels if norm_type == "spatial" else None # mid UpperCAmelCase__ = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1E-6 , resnet_act_fn=__UpperCAmelCase , output_scale_factor=1 , resnet_time_scale_shift="default" if norm_type == "group" else norm_type , attention_head_dim=block_out_channels[-1] , resnet_groups=__UpperCAmelCase , temb_channels=__UpperCAmelCase , ) # up UpperCAmelCase__ = list(reversed(__UpperCAmelCase ) ) UpperCAmelCase__ = reversed_block_out_channels[0] for i, up_block_type in enumerate(__UpperCAmelCase ): UpperCAmelCase__ = output_channel UpperCAmelCase__ = reversed_block_out_channels[i] UpperCAmelCase__ = i == len(__UpperCAmelCase ) - 1 UpperCAmelCase__ = get_up_block( __UpperCAmelCase , num_layers=self.layers_per_block + 1 , in_channels=__UpperCAmelCase , out_channels=__UpperCAmelCase , prev_output_channel=__UpperCAmelCase , add_upsample=not is_final_block , resnet_eps=1E-6 , resnet_act_fn=__UpperCAmelCase , resnet_groups=__UpperCAmelCase , attention_head_dim=__UpperCAmelCase , temb_channels=__UpperCAmelCase , resnet_time_scale_shift=__UpperCAmelCase , ) self.up_blocks.append(__UpperCAmelCase ) UpperCAmelCase__ = output_channel # out if norm_type == "spatial": UpperCAmelCase__ = SpatialNorm(block_out_channels[0] , __UpperCAmelCase ) else: UpperCAmelCase__ = nn.GroupNorm(num_channels=block_out_channels[0] , num_groups=__UpperCAmelCase , eps=1E-6 ) UpperCAmelCase__ = nn.SiLU() UpperCAmelCase__ = nn.Convad(block_out_channels[0] , __UpperCAmelCase , 3 , padding=1 ) UpperCAmelCase__ = False def lowercase_ (self : Optional[int] , __UpperCAmelCase : Tuple , __UpperCAmelCase : Dict=None ) -> List[Any]: """simple docstring""" UpperCAmelCase__ = z UpperCAmelCase__ = self.conv_in(__UpperCAmelCase ) UpperCAmelCase__ = next(iter(self.up_blocks.parameters() ) ).dtype if self.training and self.gradient_checkpointing: def create_custom_forward(__UpperCAmelCase : str ): def custom_forward(*__UpperCAmelCase : List[str] ): return module(*__UpperCAmelCase ) return custom_forward if is_torch_version(">=" , "1.11.0" ): # middle UpperCAmelCase__ = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , __UpperCAmelCase , __UpperCAmelCase , use_reentrant=__UpperCAmelCase ) UpperCAmelCase__ = sample.to(__UpperCAmelCase ) # up for up_block in self.up_blocks: UpperCAmelCase__ = torch.utils.checkpoint.checkpoint( create_custom_forward(__UpperCAmelCase ) , __UpperCAmelCase , __UpperCAmelCase , use_reentrant=__UpperCAmelCase ) else: # middle UpperCAmelCase__ = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , __UpperCAmelCase , __UpperCAmelCase ) UpperCAmelCase__ = sample.to(__UpperCAmelCase ) # up for up_block in self.up_blocks: UpperCAmelCase__ = torch.utils.checkpoint.checkpoint(create_custom_forward(__UpperCAmelCase ) , __UpperCAmelCase , __UpperCAmelCase ) else: # middle UpperCAmelCase__ = self.mid_block(__UpperCAmelCase , __UpperCAmelCase ) UpperCAmelCase__ = sample.to(__UpperCAmelCase ) # up for up_block in self.up_blocks: UpperCAmelCase__ = up_block(__UpperCAmelCase , __UpperCAmelCase ) # post-process if latent_embeds is None: UpperCAmelCase__ = self.conv_norm_out(__UpperCAmelCase ) else: UpperCAmelCase__ = self.conv_norm_out(__UpperCAmelCase , __UpperCAmelCase ) UpperCAmelCase__ = self.conv_act(__UpperCAmelCase ) UpperCAmelCase__ = self.conv_out(__UpperCAmelCase ) return sample class A ( nn.Module ): def __init__(self : Optional[Any] , __UpperCAmelCase : str , __UpperCAmelCase : List[str] , __UpperCAmelCase : List[str] , __UpperCAmelCase : Dict=None , __UpperCAmelCase : Union[str, Any]="random" , __UpperCAmelCase : Dict=False , __UpperCAmelCase : Union[str, Any]=True ) -> Dict: """simple docstring""" super().__init__() UpperCAmelCase__ = n_e UpperCAmelCase__ = vq_embed_dim UpperCAmelCase__ = beta UpperCAmelCase__ = legacy UpperCAmelCase__ = nn.Embedding(self.n_e , self.vq_embed_dim ) self.embedding.weight.data.uniform_(-1.0 / self.n_e , 1.0 / self.n_e ) UpperCAmelCase__ = remap if self.remap is not None: self.register_buffer("used" , torch.tensor(np.load(self.remap ) ) ) UpperCAmelCase__ = self.used.shape[0] UpperCAmelCase__ = unknown_index # "random" or "extra" or integer if self.unknown_index == "extra": UpperCAmelCase__ = self.re_embed UpperCAmelCase__ = self.re_embed + 1 print( f"""Remapping {self.n_e} indices to {self.re_embed} indices. """ f"""Using {self.unknown_index} for unknown indices.""" ) else: UpperCAmelCase__ = n_e UpperCAmelCase__ = sane_index_shape def lowercase_ (self : str , __UpperCAmelCase : str ) -> List[str]: """simple docstring""" UpperCAmelCase__ = inds.shape assert len(__UpperCAmelCase ) > 1 UpperCAmelCase__ = inds.reshape(ishape[0] , -1 ) UpperCAmelCase__ = self.used.to(__UpperCAmelCase ) UpperCAmelCase__ = (inds[:, :, None] == used[None, None, ...]).long() UpperCAmelCase__ = match.argmax(-1 ) UpperCAmelCase__ = match.sum(2 ) < 1 if self.unknown_index == "random": UpperCAmelCase__ = torch.randint(0 , self.re_embed , size=new[unknown].shape ).to(device=new.device ) else: UpperCAmelCase__ = self.unknown_index return new.reshape(__UpperCAmelCase ) def lowercase_ (self : Tuple , __UpperCAmelCase : Optional[int] ) -> Dict: """simple docstring""" UpperCAmelCase__ = inds.shape assert len(__UpperCAmelCase ) > 1 UpperCAmelCase__ = inds.reshape(ishape[0] , -1 ) UpperCAmelCase__ = self.used.to(__UpperCAmelCase ) if self.re_embed > self.used.shape[0]: # extra token UpperCAmelCase__ = 0 # simply set to zero UpperCAmelCase__ = torch.gather(used[None, :][inds.shape[0] * [0], :] , 1 , __UpperCAmelCase ) return back.reshape(__UpperCAmelCase ) def lowercase_ (self : Optional[Any] , __UpperCAmelCase : Dict ) -> List[str]: """simple docstring""" UpperCAmelCase__ = z.permute(0 , 2 , 3 , 1 ).contiguous() UpperCAmelCase__ = z.view(-1 , self.vq_embed_dim ) # distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z UpperCAmelCase__ = torch.argmin(torch.cdist(__UpperCAmelCase , self.embedding.weight ) , dim=1 ) UpperCAmelCase__ = self.embedding(__UpperCAmelCase ).view(z.shape ) UpperCAmelCase__ = None UpperCAmelCase__ = None # compute loss for embedding if not self.legacy: UpperCAmelCase__ = self.beta * torch.mean((z_q.detach() - z) ** 2 ) + torch.mean((z_q - z.detach()) ** 2 ) else: UpperCAmelCase__ = torch.mean((z_q.detach() - z) ** 2 ) + self.beta * torch.mean((z_q - z.detach()) ** 2 ) # preserve gradients UpperCAmelCase__ = z + (z_q - z).detach() # reshape back to match original input shape UpperCAmelCase__ = z_q.permute(0 , 3 , 1 , 2 ).contiguous() if self.remap is not None: UpperCAmelCase__ = min_encoding_indices.reshape(z.shape[0] , -1 ) # add batch axis UpperCAmelCase__ = self.remap_to_used(__UpperCAmelCase ) UpperCAmelCase__ = min_encoding_indices.reshape(-1 , 1 ) # flatten if self.sane_index_shape: UpperCAmelCase__ = min_encoding_indices.reshape(z_q.shape[0] , z_q.shape[2] , z_q.shape[3] ) return z_q, loss, (perplexity, min_encodings, min_encoding_indices) def lowercase_ (self : Optional[int] , __UpperCAmelCase : int , __UpperCAmelCase : Optional[Any] ) -> Any: """simple docstring""" if self.remap is not None: UpperCAmelCase__ = indices.reshape(shape[0] , -1 ) # add batch axis UpperCAmelCase__ = self.unmap_to_all(__UpperCAmelCase ) UpperCAmelCase__ = indices.reshape(-1 ) # flatten again # get quantized latent vectors UpperCAmelCase__ = self.embedding(__UpperCAmelCase ) if shape is not None: UpperCAmelCase__ = z_q.view(__UpperCAmelCase ) # reshape back to match original input shape UpperCAmelCase__ = z_q.permute(0 , 3 , 1 , 2 ).contiguous() return z_q class A ( UpperCAmelCase_ ): def __init__(self : Any , __UpperCAmelCase : Dict , __UpperCAmelCase : str=False ) -> Tuple: """simple docstring""" UpperCAmelCase__ = parameters UpperCAmelCase__ , UpperCAmelCase__ = torch.chunk(__UpperCAmelCase , 2 , dim=1 ) UpperCAmelCase__ = torch.clamp(self.logvar , -30.0 , 20.0 ) UpperCAmelCase__ = deterministic UpperCAmelCase__ = torch.exp(0.5 * self.logvar ) UpperCAmelCase__ = torch.exp(self.logvar ) if self.deterministic: UpperCAmelCase__ = UpperCAmelCase__ = torch.zeros_like( self.mean , device=self.parameters.device , dtype=self.parameters.dtype ) def lowercase_ (self : Union[str, Any] , __UpperCAmelCase : Optional[torch.Generator] = None ) -> torch.FloatTensor: """simple docstring""" UpperCAmelCase__ = randn_tensor( self.mean.shape , generator=__UpperCAmelCase , device=self.parameters.device , dtype=self.parameters.dtype ) UpperCAmelCase__ = self.mean + self.std * sample return x def lowercase_ (self : str , __UpperCAmelCase : int=None ) -> Any: """simple docstring""" if self.deterministic: return torch.Tensor([0.0] ) else: if other is None: return 0.5 * torch.sum(torch.pow(self.mean , 2 ) + self.var - 1.0 - self.logvar , dim=[1, 2, 3] ) else: return 0.5 * torch.sum( torch.pow(self.mean - other.mean , 2 ) / other.var + self.var / other.var - 1.0 - self.logvar + other.logvar , dim=[1, 2, 3] , ) def lowercase_ (self : Dict , __UpperCAmelCase : Tuple , __UpperCAmelCase : Any=[1, 2, 3] ) -> Dict: """simple docstring""" if self.deterministic: return torch.Tensor([0.0] ) UpperCAmelCase__ = np.log(2.0 * np.pi ) return 0.5 * torch.sum(logtwopi + self.logvar + torch.pow(sample - self.mean , 2 ) / self.var , dim=__UpperCAmelCase ) def lowercase_ (self : Tuple ) -> Optional[Any]: """simple docstring""" return self.mean
65
0
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import os from ...utils.constants import SAGEMAKER_PARALLEL_EC2_INSTANCES, TORCH_DYNAMO_MODES from ...utils.dataclasses import ComputeEnvironment, SageMakerDistributedType from ...utils.imports import is_botoa_available from .config_args import SageMakerConfig from .config_utils import ( DYNAMO_BACKENDS, _ask_field, _ask_options, _convert_dynamo_backend, _convert_mixed_precision, _convert_sagemaker_distributed_mode, _convert_yes_no_to_bool, ) if is_botoa_available(): import botoa # noqa: F401 def __lowerCamelCase ( lowerCamelCase__ ): """simple docstring""" lowercase__ : Any = botoa.client("iam" ) lowercase__ : str = { "Version": "2012-10-17", "Statement": [ {"Effect": "Allow", "Principal": {"Service": "sagemaker.amazonaws.com"}, "Action": "sts:AssumeRole"} ], } try: # create the role, associated with the chosen trust policy iam_client.create_role( RoleName=lowerCamelCase__ , AssumeRolePolicyDocument=json.dumps(lowerCamelCase__ , indent=2 ) ) lowercase__ : Tuple = { "Version": "2012-10-17", "Statement": [ { "Effect": "Allow", "Action": [ "sagemaker:*", "ecr:GetDownloadUrlForLayer", "ecr:BatchGetImage", "ecr:BatchCheckLayerAvailability", "ecr:GetAuthorizationToken", "cloudwatch:PutMetricData", "cloudwatch:GetMetricData", "cloudwatch:GetMetricStatistics", "cloudwatch:ListMetrics", "logs:CreateLogGroup", "logs:CreateLogStream", "logs:DescribeLogStreams", "logs:PutLogEvents", "logs:GetLogEvents", "s3:CreateBucket", "s3:ListBucket", "s3:GetBucketLocation", "s3:GetObject", "s3:PutObject", ], "Resource": "*", } ], } # attach policy to role iam_client.put_role_policy( RoleName=lowerCamelCase__ , PolicyName=F"""{role_name}_policy_permission""" , PolicyDocument=json.dumps(lowerCamelCase__ , indent=2 ) , ) except iam_client.exceptions.EntityAlreadyExistsException: print(F"""role {role_name} already exists. Using existing one""" ) def __lowerCamelCase ( lowerCamelCase__ ): """simple docstring""" lowercase__ : List[Any] = botoa.client("iam" ) return iam_client.get_role(RoleName=lowerCamelCase__ )["Role"]["Arn"] def __lowerCamelCase ( ): """simple docstring""" lowercase__ : str = _ask_options( "How do you want to authorize?" , ["AWS Profile", "Credentials (AWS_ACCESS_KEY_ID, AWS_SECRET_ACCESS_KEY) "] , lowerCamelCase__ , ) lowercase__ : Any = None if credentials_configuration == 0: lowercase__ : int = _ask_field("Enter your AWS Profile name: [default] " , default="default" ) lowercase__ : Tuple = aws_profile else: print( "Note you will need to provide AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY when you launch you training script with," "`accelerate launch --aws_access_key_id XXX --aws_secret_access_key YYY`" ) lowercase__ : Any = _ask_field("AWS Access Key ID: " ) lowercase__ : List[Any] = aws_access_key_id lowercase__ : int = _ask_field("AWS Secret Access Key: " ) lowercase__ : Optional[Any] = aws_secret_access_key lowercase__ : Any = _ask_field("Enter your AWS Region: [us-east-1]" , default="us-east-1" ) lowercase__ : Union[str, Any] = aws_region lowercase__ : Tuple = _ask_options( "Do you already have an IAM Role for executing Amazon SageMaker Training Jobs?" , ["Provide IAM Role name", "Create new IAM role using credentials"] , lowerCamelCase__ , ) if role_management == 0: lowercase__ : Tuple = _ask_field("Enter your IAM role name: " ) else: lowercase__ : Optional[int] = "accelerate_sagemaker_execution_role" print(F"""Accelerate will create an iam role \"{iam_role_name}\" using the provided credentials""" ) _create_iam_role_for_sagemaker(lowerCamelCase__ ) lowercase__ : int = _ask_field( "Do you want to use custom Docker image? [yes/NO]: " , _convert_yes_no_to_bool , default=lowerCamelCase__ , error_message="Please enter yes or no." , ) lowercase__ : Any = None if is_custom_docker_image: lowercase__ : Tuple = _ask_field("Enter your Docker image: " , lambda lowerCamelCase__ : str(lowerCamelCase__ ).lower() ) lowercase__ : Tuple = _ask_field( "Do you want to provide SageMaker input channels with data locations? [yes/NO]: " , _convert_yes_no_to_bool , default=lowerCamelCase__ , error_message="Please enter yes or no." , ) lowercase__ : str = None if is_sagemaker_inputs_enabled: lowercase__ : str = _ask_field( "Enter the path to the SageMaker inputs TSV file with columns (channel_name, data_location): " , lambda lowerCamelCase__ : str(lowerCamelCase__ ).lower() , ) lowercase__ : Tuple = _ask_field( "Do you want to enable SageMaker metrics? [yes/NO]: " , _convert_yes_no_to_bool , default=lowerCamelCase__ , error_message="Please enter yes or no." , ) lowercase__ : List[str] = None if is_sagemaker_metrics_enabled: lowercase__ : Dict = _ask_field( "Enter the path to the SageMaker metrics TSV file with columns (metric_name, metric_regex): " , lambda lowerCamelCase__ : str(lowerCamelCase__ ).lower() , ) lowercase__ : int = _ask_options( "What is the distributed mode?" , ["No distributed training", "Data parallelism"] , _convert_sagemaker_distributed_mode , ) lowercase__ : Union[str, Any] = {} lowercase__ : Union[str, Any] = _ask_field( "Do you wish to optimize your script with torch dynamo?[yes/NO]:" , _convert_yes_no_to_bool , default=lowerCamelCase__ , error_message="Please enter yes or no." , ) if use_dynamo: lowercase__ : int = "dynamo_" lowercase__ : Optional[int] = _ask_options( "Which dynamo backend would you like to use?" , [x.lower() for x in DYNAMO_BACKENDS] , _convert_dynamo_backend , default=2 , ) lowercase__ : Optional[Any] = _ask_field( "Do you want to customize the defaults sent to torch.compile? [yes/NO]: " , _convert_yes_no_to_bool , default=lowerCamelCase__ , error_message="Please enter yes or no." , ) if use_custom_options: lowercase__ : int = _ask_options( "Which mode do you want to use?" , lowerCamelCase__ , lambda lowerCamelCase__ : TORCH_DYNAMO_MODES[int(lowerCamelCase__ )] , default="default" , ) lowercase__ : Any = _ask_field( "Do you want the fullgraph mode or it is ok to break model into several subgraphs? [yes/NO]: " , _convert_yes_no_to_bool , default=lowerCamelCase__ , error_message="Please enter yes or no." , ) lowercase__ : Optional[int] = _ask_field( "Do you want to enable dynamic shape tracing? [yes/NO]: " , _convert_yes_no_to_bool , default=lowerCamelCase__ , error_message="Please enter yes or no." , ) lowercase__ : int = "Which EC2 instance type you want to use for your training?" if distributed_type != SageMakerDistributedType.NO: lowercase__ : str = _ask_options( lowerCamelCase__ , lowerCamelCase__ , lambda lowerCamelCase__ : SAGEMAKER_PARALLEL_EC2_INSTANCES[int(lowerCamelCase__ )] ) else: eca_instance_query += "? [ml.p3.2xlarge]:" lowercase__ : Union[str, Any] = _ask_field(lowerCamelCase__ , lambda lowerCamelCase__ : str(lowerCamelCase__ ).lower() , default="ml.p3.2xlarge" ) lowercase__ : Dict = 1 if distributed_type in (SageMakerDistributedType.DATA_PARALLEL, SageMakerDistributedType.MODEL_PARALLEL): lowercase__ : Optional[int] = _ask_field( "How many machines do you want use? [1]: " , lowerCamelCase__ , default=1 , ) lowercase__ : Union[str, Any] = _ask_options( "Do you wish to use FP16 or BF16 (mixed precision)?" , ["no", "fp16", "bf16", "fp8"] , _convert_mixed_precision , ) if use_dynamo and mixed_precision == "no": print( "Torch dynamo used without mixed precision requires TF32 to be efficient. Accelerate will enable it by default when launching your scripts." ) return SageMakerConfig( image_uri=lowerCamelCase__ , compute_environment=ComputeEnvironment.AMAZON_SAGEMAKER , distributed_type=lowerCamelCase__ , use_cpu=lowerCamelCase__ , dynamo_config=lowerCamelCase__ , eca_instance_type=lowerCamelCase__ , profile=lowerCamelCase__ , region=lowerCamelCase__ , iam_role_name=lowerCamelCase__ , mixed_precision=lowerCamelCase__ , num_machines=lowerCamelCase__ , sagemaker_inputs_file=lowerCamelCase__ , sagemaker_metrics_file=lowerCamelCase__ , )
121
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = '''▁''' lowerCAmelCase__ = {'''vocab_file''': '''sentencepiece.bpe.model''', '''monolingual_vocab_file''': '''dict.txt'''} lowerCAmelCase__ = { '''vocab_file''': { '''vinai/bartpho-syllable''': '''https://huggingface.co/vinai/bartpho-syllable/resolve/main/sentencepiece.bpe.model''', }, '''monolingual_vocab_file''': { '''vinai/bartpho-syllable''': '''https://huggingface.co/vinai/bartpho-syllable/resolve/main/dict.txt''', }, } lowerCAmelCase__ = {'''vinai/bartpho-syllable''': 1_0_2_4} class snake_case__(_UpperCamelCase ): """simple docstring""" lowercase_ = VOCAB_FILES_NAMES lowercase_ = PRETRAINED_VOCAB_FILES_MAP lowercase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase_ = ["""input_ids""", """attention_mask"""] def __init__( self : Optional[int] , SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : Optional[int]="<s>" , SCREAMING_SNAKE_CASE : Optional[int]="</s>" , SCREAMING_SNAKE_CASE : str="</s>" , SCREAMING_SNAKE_CASE : List[str]="<s>" , SCREAMING_SNAKE_CASE : Union[str, Any]="<unk>" , SCREAMING_SNAKE_CASE : Tuple="<pad>" , SCREAMING_SNAKE_CASE : List[str]="<mask>" , SCREAMING_SNAKE_CASE : Optional[Dict[str, Any]] = None , **SCREAMING_SNAKE_CASE : int , ): # Mask token behave like a normal word, i.e. include the space before it lowercase__ : Dict = AddedToken(SCREAMING_SNAKE_CASE , lstrip=SCREAMING_SNAKE_CASE , rstrip=SCREAMING_SNAKE_CASE ) if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) else mask_token lowercase__ : int = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=SCREAMING_SNAKE_CASE , eos_token=SCREAMING_SNAKE_CASE , unk_token=SCREAMING_SNAKE_CASE , sep_token=SCREAMING_SNAKE_CASE , cls_token=SCREAMING_SNAKE_CASE , pad_token=SCREAMING_SNAKE_CASE , mask_token=SCREAMING_SNAKE_CASE , sp_model_kwargs=self.sp_model_kwargs , **SCREAMING_SNAKE_CASE , ) lowercase__ : Dict = vocab_file lowercase__ : Union[str, Any] = monolingual_vocab_file lowercase__ : Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(SCREAMING_SNAKE_CASE ) ) # Load the reduced vocab # Keep order of special tokens for backward compatibility lowercase__ : Any = {} lowercase__ : int = 0 for token in [bos_token, pad_token, eos_token, unk_token, sep_token, cls_token]: if str(SCREAMING_SNAKE_CASE ) not in self.fairseq_tokens_to_ids: lowercase__ : Dict = cnt cnt += 1 with open(SCREAMING_SNAKE_CASE , "r" , encoding="utf-8" ) as f: for line in f.readlines(): lowercase__ : int = line.strip().split()[0] lowercase__ : List[str] = len(self.fairseq_tokens_to_ids ) if str(SCREAMING_SNAKE_CASE ) not in self.fairseq_tokens_to_ids: lowercase__ : Optional[Any] = len(self.fairseq_tokens_to_ids ) lowercase__ : List[str] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self : int ): lowercase__ : Dict = self.__dict__.copy() lowercase__ : Union[str, Any] = None lowercase__ : Dict = self.sp_model.serialized_model_proto() return state def __setstate__( self : Union[str, Any] , SCREAMING_SNAKE_CASE : Optional[Any] ): lowercase__ : Union[str, Any] = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): lowercase__ : Dict = {} lowercase__ : List[str] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def snake_case ( self : Optional[int] , SCREAMING_SNAKE_CASE : List[int] , SCREAMING_SNAKE_CASE : Optional[List[int]] = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowercase__ : List[Any] = [self.cls_token_id] lowercase__ : str = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def snake_case ( self : Dict , SCREAMING_SNAKE_CASE : List[int] , SCREAMING_SNAKE_CASE : Optional[List[int]] = None , SCREAMING_SNAKE_CASE : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=SCREAMING_SNAKE_CASE , token_ids_a=SCREAMING_SNAKE_CASE , already_has_special_tokens=SCREAMING_SNAKE_CASE ) if token_ids_a is None: return [1] + ([0] * len(SCREAMING_SNAKE_CASE )) + [1] return [1] + ([0] * len(SCREAMING_SNAKE_CASE )) + [1, 1] + ([0] * len(SCREAMING_SNAKE_CASE )) + [1] def snake_case ( self : str , SCREAMING_SNAKE_CASE : List[int] , SCREAMING_SNAKE_CASE : Optional[List[int]] = None ): lowercase__ : Tuple = [self.sep_token_id] lowercase__ : str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def snake_case ( self : Optional[int] ): return len(self.fairseq_ids_to_tokens ) def snake_case ( self : List[Any] ): lowercase__ : Any = {self.convert_ids_to_tokens(SCREAMING_SNAKE_CASE ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def snake_case ( self : Union[str, Any] , SCREAMING_SNAKE_CASE : str ): return self.sp_model.encode(SCREAMING_SNAKE_CASE , out_type=SCREAMING_SNAKE_CASE ) def snake_case ( self : List[str] , SCREAMING_SNAKE_CASE : int ): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] else: return self.unk_token_id def snake_case ( self : List[str] , SCREAMING_SNAKE_CASE : Any ): return self.fairseq_ids_to_tokens[index] def snake_case ( self : List[Any] , SCREAMING_SNAKE_CASE : Union[str, Any] ): lowercase__ : str = "".join(SCREAMING_SNAKE_CASE ).replace(SCREAMING_SNAKE_CASE , " " ).strip() return out_string def snake_case ( self : Optional[int] , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Optional[str] = None ): if not os.path.isdir(SCREAMING_SNAKE_CASE ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return lowercase__ : str = os.path.join( SCREAMING_SNAKE_CASE , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) lowercase__ : List[str] = os.path.join( SCREAMING_SNAKE_CASE , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["monolingual_vocab_file"] , ) if os.path.abspath(self.vocab_file ) != os.path.abspath(SCREAMING_SNAKE_CASE ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , SCREAMING_SNAKE_CASE ) elif not os.path.isfile(self.vocab_file ): with open(SCREAMING_SNAKE_CASE , "wb" ) as fi: lowercase__ : str = self.sp_model.serialized_model_proto() fi.write(SCREAMING_SNAKE_CASE ) if os.path.abspath(self.monolingual_vocab_file ) != os.path.abspath( SCREAMING_SNAKE_CASE ) and os.path.isfile(self.monolingual_vocab_file ): copyfile(self.monolingual_vocab_file , SCREAMING_SNAKE_CASE ) elif not os.path.isfile(self.monolingual_vocab_file ): with open(SCREAMING_SNAKE_CASE , "w" , encoding="utf-8" ) as fp: for token in self.fairseq_tokens_to_ids: if token not in self.all_special_tokens: fp.write(f"""{str(SCREAMING_SNAKE_CASE )} \n""" ) return out_vocab_file, out_monolingual_vocab_file
121
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCamelCase : Union[str, Any] = { 'configuration_xlm_roberta_xl': [ 'XLM_ROBERTA_XL_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XLMRobertaXLConfig', 'XLMRobertaXLOnnxConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : int = [ 'XLM_ROBERTA_XL_PRETRAINED_MODEL_ARCHIVE_LIST', 'XLMRobertaXLForCausalLM', 'XLMRobertaXLForMaskedLM', 'XLMRobertaXLForMultipleChoice', 'XLMRobertaXLForQuestionAnswering', 'XLMRobertaXLForSequenceClassification', 'XLMRobertaXLForTokenClassification', 'XLMRobertaXLModel', 'XLMRobertaXLPreTrainedModel', ] if TYPE_CHECKING: from .configuration_xlm_roberta_xl import ( XLM_ROBERTA_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMRobertaXLConfig, XLMRobertaXLOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm_roberta_xl import ( XLM_ROBERTA_XL_PRETRAINED_MODEL_ARCHIVE_LIST, XLMRobertaXLForCausalLM, XLMRobertaXLForMaskedLM, XLMRobertaXLForMultipleChoice, XLMRobertaXLForQuestionAnswering, XLMRobertaXLForSequenceClassification, XLMRobertaXLForTokenClassification, XLMRobertaXLModel, XLMRobertaXLPreTrainedModel, ) else: import sys lowerCamelCase : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure)
2
'''simple docstring''' from __future__ import annotations def _SCREAMING_SNAKE_CASE (A , A ) -> list[list[int]]: """simple docstring""" lowercase__ = [] create_all_state(1 , A , A , [] , A ) return result def _SCREAMING_SNAKE_CASE (A , A , A , A , A , ) -> None: """simple docstring""" if level == 0: total_list.append(current_list[:] ) return for i in range(A , total_number - level + 2 ): current_list.append(A ) create_all_state(i + 1 , A , level - 1 , A , A ) current_list.pop() def _SCREAMING_SNAKE_CASE (A ) -> None: """simple docstring""" for i in total_list: print(*A ) if __name__ == "__main__": lowerCamelCase : Tuple = 4 lowerCamelCase : Union[str, Any] = 2 lowerCamelCase : Dict = generate_all_combinations(n, k) print_all_state(total_list)
2
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) A : Optional[Any] = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Tuple = ['NllbTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : List[Any] = ['NllbTokenizerFast'] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb import NllbTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb_fast import NllbTokenizerFast else: import sys A : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
33
from transformers import BertTokenizer, EncoderDecoderModel, SeqaSeqTrainer, SeqaSeqTrainingArguments from transformers.testing_utils import TestCasePlus, require_torch, slow from transformers.utils import is_datasets_available if is_datasets_available(): import datasets class __A( a ): @slow @require_torch def SCREAMING_SNAKE_CASE_ ( self ) -> int: '''simple docstring''' __a = EncoderDecoderModel.from_encoder_decoder_pretrained('''prajjwal1/bert-tiny''' , '''prajjwal1/bert-tiny''' ) __a = BertTokenizer.from_pretrained('''bert-base-uncased''' ) __a = bertabert.config.encoder.vocab_size __a = tokenizer.sep_token_id __a = tokenizer.cls_token_id __a = 128 __a = datasets.load_dataset('''cnn_dailymail''' , '''3.0.0''' , split='''train[:1%]''' ) __a = datasets.load_dataset('''cnn_dailymail''' , '''3.0.0''' , split='''validation[:1%]''' ) __a = train_dataset.select(range(32 ) ) __a = val_dataset.select(range(16 ) ) __a = 4 def _map_to_encoder_decoder_inputs(_snake_case ): # Tokenizer will automatically set [BOS] <text> [EOS] __a = tokenizer(batch['''article'''] , padding='''max_length''' , truncation=_snake_case , max_length=512 ) __a = tokenizer(batch['''highlights'''] , padding='''max_length''' , truncation=_snake_case , max_length=128 ) __a = inputs.input_ids __a = inputs.attention_mask __a = outputs.input_ids __a = outputs.input_ids.copy() __a = [ [-100 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch['''labels'''] ] __a = outputs.attention_mask assert all(len(_snake_case ) == 512 for x in inputs.input_ids ) assert all(len(_snake_case ) == 128 for x in outputs.input_ids ) return batch def _compute_metrics(_snake_case ): __a = pred.label_ids __a = pred.predictions # all unnecessary tokens are removed __a = tokenizer.batch_decode(_snake_case , skip_special_tokens=_snake_case ) __a = tokenizer.batch_decode(_snake_case , skip_special_tokens=_snake_case ) __a = sum([int(pred_str[i] == label_str[i] ) for i in range(len(_snake_case ) )] ) / len(_snake_case ) return {"accuracy": accuracy} # map train dataset __a = train_dataset.map( _map_to_encoder_decoder_inputs , batched=_snake_case , batch_size=_snake_case , remove_columns=['''article''', '''highlights'''] , ) train_dataset.set_format( type='''torch''' , columns=['''input_ids''', '''attention_mask''', '''decoder_input_ids''', '''decoder_attention_mask''', '''labels'''] , ) # same for validation dataset __a = val_dataset.map( _map_to_encoder_decoder_inputs , batched=_snake_case , batch_size=_snake_case , remove_columns=['''article''', '''highlights'''] , ) val_dataset.set_format( type='''torch''' , columns=['''input_ids''', '''attention_mask''', '''decoder_input_ids''', '''decoder_attention_mask''', '''labels'''] , ) __a = self.get_auto_remove_tmp_dir() __a = SeqaSeqTrainingArguments( output_dir=_snake_case , per_device_train_batch_size=_snake_case , per_device_eval_batch_size=_snake_case , predict_with_generate=_snake_case , evaluation_strategy='''steps''' , do_train=_snake_case , do_eval=_snake_case , warmup_steps=0 , eval_steps=2 , logging_steps=2 , ) # instantiate trainer __a = SeqaSeqTrainer( model=_snake_case , args=_snake_case , compute_metrics=_compute_metrics , train_dataset=_snake_case , eval_dataset=_snake_case , tokenizer=_snake_case , ) # start training trainer.train()
33
1
'''simple docstring''' _lowerCamelCase : str = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/" def __lowerCamelCase ( A__ ) -> bytes: """simple docstring""" # Make sure the supplied data is a bytes-like object if not isinstance(A__ , A__ ): UpperCamelCase = F"""a bytes-like object is required, not '{data.__class__.__name__}'""" raise TypeError(A__ ) UpperCamelCase = ''.join(bin(A__ )[2:].zfill(8 ) for byte in data ) UpperCamelCase = len(A__ ) % 6 != 0 if padding_needed: # The padding that will be added later UpperCamelCase = B'=' * ((6 - len(A__ ) % 6) // 2) # Append binary_stream with arbitrary binary digits (0's by default) to make its # length a multiple of 6. binary_stream += "0" * (6 - len(A__ ) % 6) else: UpperCamelCase = B'' # Encode every 6 binary digits to their corresponding Base64 character return ( "".join( B64_CHARSET[int(binary_stream[index : index + 6] , 2 )] for index in range(0 , len(A__ ) , 6 ) ).encode() + padding ) def __lowerCamelCase ( A__ ) -> bytes: """simple docstring""" # Make sure encoded_data is either a string or a bytes-like object if not isinstance(A__ , A__ ) and not isinstance(A__ , A__ ): UpperCamelCase = ( 'argument should be a bytes-like object or ASCII string, ' F"""not '{encoded_data.__class__.__name__}'""" ) raise TypeError(A__ ) # In case encoded_data is a bytes-like object, make sure it contains only # ASCII characters so we convert it to a string object if isinstance(A__ , A__ ): try: UpperCamelCase = encoded_data.decode('utf-8' ) except UnicodeDecodeError: raise ValueError('base64 encoded data should only contain ASCII characters' ) UpperCamelCase = encoded_data.count('=' ) # Check if the encoded string contains non base64 characters if padding: assert all( char in B64_CHARSET for char in encoded_data[:-padding] ), "Invalid base64 character(s) found." else: assert all( char in B64_CHARSET for char in encoded_data ), "Invalid base64 character(s) found." # Check the padding assert len(A__ ) % 4 == 0 and padding < 3, "Incorrect padding" if padding: # Remove padding if there is one UpperCamelCase = encoded_data[:-padding] UpperCamelCase = ''.join( bin(B64_CHARSET.index(A__ ) )[2:].zfill(6 ) for char in encoded_data )[: -padding * 2] else: UpperCamelCase = ''.join( bin(B64_CHARSET.index(A__ ) )[2:].zfill(6 ) for char in encoded_data ) UpperCamelCase = [ int(binary_stream[index : index + 8] , 2 ) for index in range(0 , len(A__ ) , 8 ) ] return bytes(A__ ) if __name__ == "__main__": import doctest doctest.testmod()
28
'''simple docstring''' def UpperCamelCase__ ( lowerCAmelCase ): """simple docstring""" _lowerCAmelCase = len(lowerCAmelCase ) for i in range(length - 1 ): _lowerCAmelCase = i for k in range(i + 1 , lowerCAmelCase ): if collection[k] < collection[least]: _lowerCAmelCase = k if least != i: _lowerCAmelCase , _lowerCAmelCase = (collection[i], collection[least]) return collection if __name__ == "__main__": A__ : str =input('''Enter numbers separated by a comma:\n''').strip() A__ : Optional[int] =[int(item) for item in user_input.split(''',''')] print(selection_sort(unsorted))
70
0
import hashlib import unittest from typing import Dict import numpy as np from transformers import ( MODEL_FOR_MASK_GENERATION_MAPPING, TF_MODEL_FOR_MASK_GENERATION_MAPPING, is_vision_available, pipeline, ) from transformers.pipelines import MaskGenerationPipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) if is_vision_available(): from PIL import Image else: class UpperCamelCase__: @staticmethod def snake_case__ ( *__UpperCAmelCase ,**__UpperCAmelCase ) -> Union[str, Any]: pass def UpperCAmelCase ( UpperCamelCase__ ): """simple docstring""" A__ = hashlib.mda(image.tobytes() ) return m.hexdigest()[:10] def UpperCAmelCase ( UpperCamelCase__ ): """simple docstring""" A__ = np.array(snake_case__ ) A__ = npimg.shape return {"hash": hashimage(snake_case__ ), "shape": shape} @is_pipeline_test @require_vision @require_torch class UpperCamelCase__( unittest.TestCase ): lowerCAmelCase__ : Dict = dict( (list(MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if MODEL_FOR_MASK_GENERATION_MAPPING else []) ) lowerCAmelCase__ : Union[str, Any] = dict( (list(TF_MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if TF_MODEL_FOR_MASK_GENERATION_MAPPING else []) ) def snake_case__ ( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ) -> List[Any]: A__ = MaskGenerationPipeline(model=SCREAMING_SNAKE_CASE_ ,image_processor=SCREAMING_SNAKE_CASE_ ) return image_segmenter, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def snake_case__ ( self ,__UpperCAmelCase ,__UpperCAmelCase ) -> Tuple: pass @require_tf @unittest.skip('Image segmentation not implemented in TF' ) def snake_case__ ( self ) -> Dict: pass @slow @require_torch def snake_case__ ( self ) -> Optional[int]: A__ = pipeline('mask-generation' ,model='facebook/sam-vit-huge' ) A__ = image_segmenter('http://images.cocodataset.org/val2017/000000039769.jpg' ,points_per_batch=2_56 ) # Shortening by hashing A__ = [] for i, o in enumerate(outputs['masks'] ): new_outupt += [{"mask": mask_to_test_readable(SCREAMING_SNAKE_CASE_ ), "scores": outputs["scores"][i]}] # fmt: off self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE_ ,decimals=4 ) ,[ {'mask': {'hash': '115ad19f5f', 'shape': (4_80, 6_40)}, 'scores': 1.0_4_4_4}, {'mask': {'hash': '6affa964c6', 'shape': (4_80, 6_40)}, 'scores': 1.0_2_1}, {'mask': {'hash': 'dfe28a0388', 'shape': (4_80, 6_40)}, 'scores': 1.0_1_6_7}, {'mask': {'hash': 'c0a5f4a318', 'shape': (4_80, 6_40)}, 'scores': 1.0_1_3_2}, {'mask': {'hash': 'fe8065c197', 'shape': (4_80, 6_40)}, 'scores': 1.0_0_5_3}, {'mask': {'hash': 'e2d0b7a0b7', 'shape': (4_80, 6_40)}, 'scores': 0.9_9_6_7}, {'mask': {'hash': '453c7844bd', 'shape': (4_80, 6_40)}, 'scores': 0.9_9_3}, {'mask': {'hash': '3d44f2926d', 'shape': (4_80, 6_40)}, 'scores': 0.9_9_0_9}, {'mask': {'hash': '64033ddc3f', 'shape': (4_80, 6_40)}, 'scores': 0.9_8_7_9}, {'mask': {'hash': '801064ff79', 'shape': (4_80, 6_40)}, 'scores': 0.9_8_3_4}, {'mask': {'hash': '6172f276ef', 'shape': (4_80, 6_40)}, 'scores': 0.9_7_1_6}, {'mask': {'hash': 'b49e60e084', 'shape': (4_80, 6_40)}, 'scores': 0.9_6_1_2}, {'mask': {'hash': 'a811e775fd', 'shape': (4_80, 6_40)}, 'scores': 0.9_5_9_9}, {'mask': {'hash': 'a6a8ebcf4b', 'shape': (4_80, 6_40)}, 'scores': 0.9_5_5_2}, {'mask': {'hash': '9d8257e080', 'shape': (4_80, 6_40)}, 'scores': 0.9_5_3_2}, {'mask': {'hash': '32de6454a8', 'shape': (4_80, 6_40)}, 'scores': 0.9_5_1_6}, {'mask': {'hash': 'af3d4af2c8', 'shape': (4_80, 6_40)}, 'scores': 0.9_4_9_9}, {'mask': {'hash': '3c6db475fb', 'shape': (4_80, 6_40)}, 'scores': 0.9_4_8_3}, {'mask': {'hash': 'c290813fb9', 'shape': (4_80, 6_40)}, 'scores': 0.9_4_6_4}, {'mask': {'hash': 'b6f0b8f606', 'shape': (4_80, 6_40)}, 'scores': 0.9_4_3}, {'mask': {'hash': '92ce16bfdf', 'shape': (4_80, 6_40)}, 'scores': 0.9_4_3}, {'mask': {'hash': 'c749b25868', 'shape': (4_80, 6_40)}, 'scores': 0.9_4_0_8}, {'mask': {'hash': 'efb6cab859', 'shape': (4_80, 6_40)}, 'scores': 0.9_3_3_5}, {'mask': {'hash': '1ff2eafb30', 'shape': (4_80, 6_40)}, 'scores': 0.9_3_2_6}, {'mask': {'hash': '788b798e24', 'shape': (4_80, 6_40)}, 'scores': 0.9_2_6_2}, {'mask': {'hash': 'abea804f0e', 'shape': (4_80, 6_40)}, 'scores': 0.8_9_9_9}, {'mask': {'hash': '7b9e8ddb73', 'shape': (4_80, 6_40)}, 'scores': 0.8_9_8_6}, {'mask': {'hash': 'cd24047c8a', 'shape': (4_80, 6_40)}, 'scores': 0.8_9_8_4}, {'mask': {'hash': '6943e6bcbd', 'shape': (4_80, 6_40)}, 'scores': 0.8_8_7_3}, {'mask': {'hash': 'b5f47c9191', 'shape': (4_80, 6_40)}, 'scores': 0.8_8_7_1} ] ,) # fmt: on @require_torch @slow def snake_case__ ( self ) -> str: A__ = 'facebook/sam-vit-huge' A__ = pipeline('mask-generation' ,model=SCREAMING_SNAKE_CASE_ ) A__ = image_segmenter( 'http://images.cocodataset.org/val2017/000000039769.jpg' ,pred_iou_thresh=1 ,points_per_batch=2_56 ) # Shortening by hashing A__ = [] for i, o in enumerate(outputs['masks'] ): new_outupt += [{"mask": mask_to_test_readable(SCREAMING_SNAKE_CASE_ ), "scores": outputs["scores"][i]}] self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE_ ,decimals=4 ) ,[ {'mask': {'hash': '115ad19f5f', 'shape': (4_80, 6_40)}, 'scores': 1.0_4_4_4}, {'mask': {'hash': '6affa964c6', 'shape': (4_80, 6_40)}, 'scores': 1.0_2_1_0}, {'mask': {'hash': 'dfe28a0388', 'shape': (4_80, 6_40)}, 'scores': 1.0_1_6_7}, {'mask': {'hash': 'c0a5f4a318', 'shape': (4_80, 6_40)}, 'scores': 1.0_1_3_2}, {'mask': {'hash': 'fe8065c197', 'shape': (4_80, 6_40)}, 'scores': 1.0_0_5_3}, ] ,)
365
"""simple docstring""" from __future__ import annotations from math import pi, sqrt def UpperCAmelCase ( UpperCamelCase__ , UpperCamelCase__ ): """simple docstring""" if inductance <= 0: raise ValueError('Inductance cannot be 0 or negative' ) elif capacitance <= 0: raise ValueError('Capacitance cannot be 0 or negative' ) else: return ( "Resonant frequency", float(1 / (2 * pi * (sqrt(inductance * capacitance ))) ), ) if __name__ == "__main__": import doctest doctest.testmod()
154
0
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices a_ = logging.get_logger(__name__) a_ = { '''facebook/convnextv2-tiny-1k-224''': '''https://huggingface.co/facebook/convnextv2-tiny-1k-224/resolve/main/config.json''', } class lowercase__ ( lowerCamelCase__, lowerCamelCase__ ): a_ ='convnextv2' def __init__( self , __UpperCAmelCase=3 , __UpperCAmelCase=4 , __UpperCAmelCase=4 , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.02 , __UpperCAmelCase=1E-1_2 , __UpperCAmelCase=0.0 , __UpperCAmelCase=224 , __UpperCAmelCase=None , __UpperCAmelCase=None , **__UpperCAmelCase , )-> List[Any]: '''simple docstring''' super().__init__(**lowercase__ ) lowerCAmelCase__ = num_channels lowerCAmelCase__ = patch_size lowerCAmelCase__ = num_stages lowerCAmelCase__ = [96, 192, 384, 768] if hidden_sizes is None else hidden_sizes lowerCAmelCase__ = [3, 3, 9, 3] if depths is None else depths lowerCAmelCase__ = hidden_act lowerCAmelCase__ = initializer_range lowerCAmelCase__ = layer_norm_eps lowerCAmelCase__ = drop_path_rate lowerCAmelCase__ = image_size lowerCAmelCase__ = ["stem"] + [F"stage{idx}" for idx in range(1 , len(self.depths ) + 1 )] lowerCAmelCase__ , lowerCAmelCase__ = get_aligned_output_features_output_indices( out_features=lowercase__ , out_indices=lowercase__ , stage_names=self.stage_names )
340
'''simple docstring''' import argparse from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection from diffusers import UnCLIPImageVariationPipeline, UnCLIPPipeline if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() parser.add_argument('''--dump_path''', default=None, type=str, required=True, help='''Path to the output model.''') parser.add_argument( '''--txt2img_unclip''', default='''kakaobrain/karlo-v1-alpha''', type=str, required=False, help='''The pretrained txt2img unclip.''', ) lowerCAmelCase__ = parser.parse_args() lowerCAmelCase__ = UnCLIPPipeline.from_pretrained(args.txtaimg_unclip) lowerCAmelCase__ = CLIPImageProcessor() lowerCAmelCase__ = CLIPVisionModelWithProjection.from_pretrained('''openai/clip-vit-large-patch14''') lowerCAmelCase__ = UnCLIPImageVariationPipeline( decoder=txtaimg.decoder, text_encoder=txtaimg.text_encoder, tokenizer=txtaimg.tokenizer, text_proj=txtaimg.text_proj, feature_extractor=feature_extractor, image_encoder=image_encoder, super_res_first=txtaimg.super_res_first, super_res_last=txtaimg.super_res_last, decoder_scheduler=txtaimg.decoder_scheduler, super_res_scheduler=txtaimg.super_res_scheduler, ) imgaimg.save_pretrained(args.dump_path)
104
0
from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowercase__ : Optional[int] = {"configuration_mmbt": ["MMBTConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : List[Any] = ["MMBTForClassification", "MMBTModel", "ModalEmbeddings"] if TYPE_CHECKING: from .configuration_mmbt import MMBTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mmbt import MMBTForClassification, MMBTModel, ModalEmbeddings else: import sys lowercase__ : int = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
180
from math import isqrt def SCREAMING_SNAKE_CASE ( __UpperCamelCase) -> bool: return all(number % divisor != 0 for divisor in range(2 , isqrt(__UpperCamelCase) + 1)) def SCREAMING_SNAKE_CASE ( __UpperCamelCase = 10**6) -> int: a = 0 a = 1 a = 7 while prime_candidate < max_prime: primes_count += is_prime(__UpperCamelCase) cube_index += 1 prime_candidate += 6 * cube_index return primes_count if __name__ == "__main__": print(F'{solution() = }')
180
1
"""simple docstring""" from __future__ import annotations from collections.abc import Generator def __lowerCAmelCase (): __lowerCAmelCase : dict[int, int] = {} __lowerCAmelCase : List[str] = 2 while True: __lowerCAmelCase : List[Any] = factor_map.pop(_UpperCamelCase , _UpperCamelCase ) if factor: __lowerCAmelCase : Optional[Any] = factor + prime while x in factor_map: x += factor __lowerCAmelCase : str = factor else: __lowerCAmelCase : List[Any] = prime yield prime prime += 1 def __lowerCAmelCase (_UpperCamelCase = 1e1_0 ): __lowerCAmelCase : Dict = sieve() __lowerCAmelCase : Optional[Any] = 1 while True: __lowerCAmelCase : int = next(_UpperCamelCase ) if (2 * prime * n) > limit: return n # Ignore the next prime as the reminder will be 2. next(_UpperCamelCase ) n += 2 if __name__ == "__main__": print(solution())
86
import unittest import numpy as np import requests from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11 else: SCREAMING_SNAKE_CASE__ : str = False if is_vision_available(): from PIL import Image from transformers import PixaStructImageProcessor class lowerCAmelCase__ ( unittest.TestCase ): def __init__( self : Tuple , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : List[Any]=7 , SCREAMING_SNAKE_CASE__ : List[str]=3 , SCREAMING_SNAKE_CASE__ : Tuple=18 , SCREAMING_SNAKE_CASE__ : int=30 , SCREAMING_SNAKE_CASE__ : Any=4_00 , SCREAMING_SNAKE_CASE__ : Any=None , SCREAMING_SNAKE_CASE__ : str=True , SCREAMING_SNAKE_CASE__ : str=True , SCREAMING_SNAKE_CASE__ : Optional[Any]=None , ) -> Union[str, Any]: __lowerCamelCase = size if size is not None else {'''height''': 20, '''width''': 20} __lowerCamelCase = parent __lowerCamelCase = batch_size __lowerCamelCase = num_channels __lowerCamelCase = image_size __lowerCamelCase = min_resolution __lowerCamelCase = max_resolution __lowerCamelCase = size __lowerCamelCase = do_normalize __lowerCamelCase = do_convert_rgb __lowerCamelCase = [5_12, 10_24, 20_48, 40_96] __lowerCamelCase = patch_size if patch_size is not None else {'''height''': 16, '''width''': 16} def __A ( self : Union[str, Any] ) -> Union[str, Any]: return {"do_normalize": self.do_normalize, "do_convert_rgb": self.do_convert_rgb} def __A ( self : int ) -> Any: __lowerCamelCase = '''https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/australia.jpg''' __lowerCamelCase = Image.open(requests.get(SCREAMING_SNAKE_CASE__ , stream=SCREAMING_SNAKE_CASE__ ).raw ).convert('''RGB''' ) return raw_image @unittest.skipIf( not is_torch_greater_or_equal_than_1_11 , reason="""`Pix2StructImageProcessor` requires `torch>=1.11.0`.""" , ) @require_torch @require_vision class lowerCAmelCase__ ( __lowercase , unittest.TestCase ): a__ : Dict = PixaStructImageProcessor if is_vision_available() else None def __A ( self : Optional[Any] ) -> List[Any]: __lowerCamelCase = PixaStructImageProcessingTester(self ) @property def __A ( self : Optional[int] ) -> Optional[int]: return self.image_processor_tester.prepare_image_processor_dict() def __A ( self : Tuple ) -> Dict: __lowerCamelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , '''do_normalize''' ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , '''do_convert_rgb''' ) ) def __A ( self : int ) -> str: __lowerCamelCase = self.image_processor_tester.prepare_dummy_image() __lowerCamelCase = self.image_processing_class(**self.image_processor_dict ) __lowerCamelCase = 20_48 __lowerCamelCase = image_processor(SCREAMING_SNAKE_CASE__ , return_tensors='''pt''' , max_patches=SCREAMING_SNAKE_CASE__ ) self.assertTrue(torch.allclose(inputs.flattened_patches.mean() , torch.tensor(0.0606 ) , atol=1e-3 , rtol=1e-3 ) ) def __A ( self : Union[str, Any] ) -> Dict: # Initialize image_processor __lowerCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __lowerCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=SCREAMING_SNAKE_CASE__ ) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE__ , Image.Image ) # Test not batched input __lowerCamelCase = ( (self.image_processor_tester.patch_size['''height'''] * self.image_processor_tester.patch_size['''width''']) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input __lowerCamelCase = image_processor( image_inputs[0] , return_tensors='''pt''' , max_patches=SCREAMING_SNAKE_CASE__ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched __lowerCamelCase = image_processor( SCREAMING_SNAKE_CASE__ , return_tensors='''pt''' , max_patches=SCREAMING_SNAKE_CASE__ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def __A ( self : Dict ) -> str: # Initialize image_processor __lowerCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __lowerCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=SCREAMING_SNAKE_CASE__ ) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE__ , Image.Image ) # Test not batched input __lowerCamelCase = ( (self.image_processor_tester.patch_size['''height'''] * self.image_processor_tester.patch_size['''width''']) * self.image_processor_tester.num_channels ) + 2 __lowerCamelCase = True for max_patch in self.image_processor_tester.max_patches: # Test not batched input with self.assertRaises(SCREAMING_SNAKE_CASE__ ): __lowerCamelCase = image_processor( image_inputs[0] , return_tensors='''pt''' , max_patches=SCREAMING_SNAKE_CASE__ ).flattened_patches __lowerCamelCase = '''Hello''' __lowerCamelCase = image_processor( image_inputs[0] , return_tensors='''pt''' , max_patches=SCREAMING_SNAKE_CASE__ , header_text=SCREAMING_SNAKE_CASE__ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched __lowerCamelCase = image_processor( SCREAMING_SNAKE_CASE__ , return_tensors='''pt''' , max_patches=SCREAMING_SNAKE_CASE__ , header_text=SCREAMING_SNAKE_CASE__ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def __A ( self : List[str] ) -> Any: # Initialize image_processor __lowerCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __lowerCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=SCREAMING_SNAKE_CASE__ , numpify=SCREAMING_SNAKE_CASE__ ) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE__ , np.ndarray ) __lowerCamelCase = ( (self.image_processor_tester.patch_size['''height'''] * self.image_processor_tester.patch_size['''width''']) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input __lowerCamelCase = image_processor( image_inputs[0] , return_tensors='''pt''' , max_patches=SCREAMING_SNAKE_CASE__ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched __lowerCamelCase = image_processor( SCREAMING_SNAKE_CASE__ , return_tensors='''pt''' , max_patches=SCREAMING_SNAKE_CASE__ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def __A ( self : Tuple ) -> List[str]: # Initialize image_processor __lowerCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __lowerCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=SCREAMING_SNAKE_CASE__ , torchify=SCREAMING_SNAKE_CASE__ ) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE__ , torch.Tensor ) # Test not batched input __lowerCamelCase = ( (self.image_processor_tester.patch_size['''height'''] * self.image_processor_tester.patch_size['''width''']) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input __lowerCamelCase = image_processor( image_inputs[0] , return_tensors='''pt''' , max_patches=SCREAMING_SNAKE_CASE__ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched __lowerCamelCase = image_processor( SCREAMING_SNAKE_CASE__ , return_tensors='''pt''' , max_patches=SCREAMING_SNAKE_CASE__ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) @unittest.skipIf( not is_torch_greater_or_equal_than_1_11 , reason="""`Pix2StructImageProcessor` requires `torch>=1.11.0`.""" , ) @require_torch @require_vision class lowerCAmelCase__ ( __lowercase , unittest.TestCase ): a__ : Any = PixaStructImageProcessor if is_vision_available() else None def __A ( self : Union[str, Any] ) -> Optional[Any]: __lowerCamelCase = PixaStructImageProcessingTester(self , num_channels=4 ) __lowerCamelCase = 3 @property def __A ( self : List[Any] ) -> Optional[Any]: return self.image_processor_tester.prepare_image_processor_dict() def __A ( self : Union[str, Any] ) -> List[str]: __lowerCamelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , '''do_normalize''' ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , '''do_convert_rgb''' ) ) def __A ( self : Optional[int] ) -> str: # Initialize image_processor __lowerCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __lowerCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=SCREAMING_SNAKE_CASE__ ) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE__ , Image.Image ) # Test not batched input __lowerCamelCase = ( (self.image_processor_tester.patch_size['''height'''] * self.image_processor_tester.patch_size['''width''']) * (self.image_processor_tester.num_channels - 1) ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input __lowerCamelCase = image_processor( image_inputs[0] , return_tensors='''pt''' , max_patches=SCREAMING_SNAKE_CASE__ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched __lowerCamelCase = image_processor( SCREAMING_SNAKE_CASE__ , return_tensors='''pt''' , max_patches=SCREAMING_SNAKE_CASE__ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
270
0
"""simple docstring""" import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import List import timm import torch import torch.nn as nn from huggingface_hub import hf_hub_download from torch import Tensor from transformers import AutoImageProcessor, ResNetConfig, ResNetForImageClassification from transformers.utils import logging logging.set_verbosity_info() __snake_case = logging.get_logger() @dataclass class _lowerCAmelCase : __UpperCAmelCase : nn.Module __UpperCAmelCase : List[nn.Module] = field(default_factory=snake_case_ ) __UpperCAmelCase : list = field(default_factory=snake_case_ ) def lowerCamelCase ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> Tuple: '''simple docstring''' snake_case : Any = len(list(m.modules() ) ) == 1 or isinstance(UpperCamelCase__ , nn.Convad ) or isinstance(UpperCamelCase__ , nn.BatchNormad ) if has_not_submodules: self.traced.append(UpperCamelCase__ ) def __call__( self , UpperCamelCase__ ) -> Any: '''simple docstring''' for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook ) ) self.module(UpperCamelCase__ ) [x.remove() for x in self.handles] return self @property def lowerCamelCase ( self ) -> Any: '''simple docstring''' return list(filter(lambda UpperCamelCase__ : len(list(x.state_dict().keys() ) ) > 0 , self.traced ) ) @dataclass class _lowerCAmelCase : __UpperCAmelCase : nn.Module __UpperCAmelCase : nn.Module __UpperCAmelCase : int = 0 __UpperCAmelCase : List = field(default_factory=snake_case_ ) __UpperCAmelCase : List = field(default_factory=snake_case_ ) def __call__( self , UpperCamelCase__ ) -> List[Any]: '''simple docstring''' snake_case : int = Tracker(self.dest )(UpperCamelCase__ ).parametrized snake_case : Union[str, Any] = Tracker(self.src )(UpperCamelCase__ ).parametrized snake_case : List[str] = list(filter(lambda UpperCamelCase__ : type(UpperCamelCase__ ) not in self.src_skip , UpperCamelCase__ ) ) snake_case : List[str] = list(filter(lambda UpperCamelCase__ : type(UpperCamelCase__ ) not in self.dest_skip , UpperCamelCase__ ) ) if len(UpperCamelCase__ ) != len(UpperCamelCase__ ): raise Exception( F'Numbers of operations are different. Source module has {len(UpperCamelCase__ )} operations while' F' destination module has {len(UpperCamelCase__ )}.' ) for dest_m, src_m in zip(UpperCamelCase__ , UpperCamelCase__ ): dest_m.load_state_dict(src_m.state_dict() ) if self.verbose == 1: print(F'Transfered from={src_m} to={dest_m}' ) def __lowerCAmelCase ( lowercase : str , lowercase : ResNetConfig , lowercase : Path , lowercase : bool = True ) -> Dict: """simple docstring""" print(F'Converting {name}...' ) with torch.no_grad(): snake_case : Union[str, Any] = timm.create_model(lowercase , pretrained=lowercase ).eval() snake_case : str = ResNetForImageClassification(lowercase ).eval() snake_case : Union[str, Any] = ModuleTransfer(src=lowercase , dest=lowercase ) snake_case : Optional[int] = torch.randn((1, 3, 224, 224) ) module_transfer(lowercase ) assert torch.allclose(from_model(lowercase ) , our_model(lowercase ).logits ), "The model logits don't match the original one." snake_case : Tuple = F'resnet{"-".join(name.split("resnet" ) )}' print(lowercase ) if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message="Add model" , use_temp_dir=lowercase , ) # we can use the convnext one snake_case : str = AutoImageProcessor.from_pretrained("facebook/convnext-base-224-22k-1k" ) image_processor.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message="Add image processor" , use_temp_dir=lowercase , ) print(F'Pushed {checkpoint_name}' ) def __lowerCAmelCase ( lowercase : Path , lowercase : str = None , lowercase : bool = True ) -> int: """simple docstring""" snake_case : List[str] = "imagenet-1k-id2label.json" snake_case : List[str] = 1000 snake_case : Tuple = (1, num_labels) snake_case : List[str] = "huggingface/label-files" snake_case : Dict = num_labels snake_case : int = json.load(open(hf_hub_download(lowercase , lowercase , repo_type="dataset" ) , "r" ) ) snake_case : str = {int(lowercase ): v for k, v in idalabel.items()} snake_case : Dict = idalabel snake_case : Any = {v: k for k, v in idalabel.items()} snake_case : Union[str, Any] = partial(lowercase , num_labels=lowercase , idalabel=lowercase , labelaid=lowercase ) snake_case : Dict = { "resnet18": ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[64, 128, 256, 512] , layer_type="basic" ), "resnet26": ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[256, 512, 1024, 2048] , layer_type="bottleneck" ), "resnet34": ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[64, 128, 256, 512] , layer_type="basic" ), "resnet50": ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[256, 512, 1024, 2048] , layer_type="bottleneck" ), "resnet101": ImageNetPreTrainedConfig( depths=[3, 4, 23, 3] , hidden_sizes=[256, 512, 1024, 2048] , layer_type="bottleneck" ), "resnet152": ImageNetPreTrainedConfig( depths=[3, 8, 36, 3] , hidden_sizes=[256, 512, 1024, 2048] , layer_type="bottleneck" ), } if model_name: convert_weight_and_push(lowercase , names_to_config[model_name] , lowercase , lowercase ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(lowercase , lowercase , lowercase , lowercase ) return config, expected_shape if __name__ == "__main__": __snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default=None, type=str, help=( """The name of the model you wish to convert, it must be one of the supported resnet* architecture,""" """ currently: resnet18,26,34,50,101,152. If `None`, all of them will the converted.""" ), ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=Path, required=True, help="""Path to the output PyTorch model directory.""", ) parser.add_argument( """--push_to_hub""", default=True, type=bool, required=False, help="""If True, push model and image processor to the hub.""", ) __snake_case = parser.parse_args() __snake_case = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
350
"""simple docstring""" from pathlib import Path import fire from tqdm import tqdm def __lowerCAmelCase ( lowercase : Optional[Any]="ro" , lowercase : Union[str, Any]="en" , lowercase : str="wmt16" , lowercase : Any=None ) -> None: """simple docstring""" try: import datasets except (ModuleNotFoundError, ImportError): raise ImportError("run pip install datasets" ) snake_case : Any = F'{src_lang}-{tgt_lang}' print(F'Converting {dataset}-{pair}' ) snake_case : Union[str, Any] = datasets.load_dataset(lowercase , lowercase ) if save_dir is None: snake_case : int = F'{dataset}-{pair}' snake_case : Optional[Any] = Path(lowercase ) save_dir.mkdir(exist_ok=lowercase ) for split in ds.keys(): print(F'Splitting {split} with {ds[split].num_rows} records' ) # to save to val.source, val.target like summary datasets snake_case : Any = "val" if split == "validation" else split snake_case : List[str] = save_dir.joinpath(F'{fn}.source' ) snake_case : int = save_dir.joinpath(F'{fn}.target' ) snake_case : str = src_path.open("w+" ) snake_case : Optional[int] = tgt_path.open("w+" ) # reader is the bottleneck so writing one record at a time doesn't slow things down for x in tqdm(ds[split] ): snake_case : int = x["translation"] src_fp.write(ex[src_lang] + "\n" ) tgt_fp.write(ex[tgt_lang] + "\n" ) print(F'Saved {dataset} dataset to {save_dir}' ) if __name__ == "__main__": fire.Fire(download_wmt_dataset)
112
0
'''simple docstring''' import random import sys import numpy as np from matplotlib import pyplot as plt from matplotlib.colors import ListedColormap lowercase_ = """Usage of script: script_name <size_of_canvas:int>""" lowercase_ = [0] * 100 + [1] * 10 random.shuffle(choice) def lowerCamelCase ( __lowerCamelCase : int ) ->list[list[bool]]: _SCREAMING_SNAKE_CASE = [[False for i in range(__lowerCamelCase )] for j in range(__lowerCamelCase )] return canvas def lowerCamelCase ( __lowerCamelCase : list[list[bool]] ) ->None: for i, row in enumerate(__lowerCamelCase ): for j, _ in enumerate(__lowerCamelCase ): _SCREAMING_SNAKE_CASE = bool(random.getrandbits(1 ) ) def lowerCamelCase ( __lowerCamelCase : list[list[bool]] ) ->list[list[bool]]: _SCREAMING_SNAKE_CASE = np.array(__lowerCamelCase ) _SCREAMING_SNAKE_CASE = np.array(create_canvas(current_canvas.shape[0] ) ) for r, row in enumerate(__lowerCamelCase ): for c, pt in enumerate(__lowerCamelCase ): _SCREAMING_SNAKE_CASE = __judge_point( __lowerCamelCase , current_canvas[r - 1 : r + 2, c - 1 : c + 2] ) _SCREAMING_SNAKE_CASE = next_gen_canvas del next_gen_canvas # cleaning memory as we move on. _SCREAMING_SNAKE_CASE = current_canvas.tolist() return return_canvas def lowerCamelCase ( __lowerCamelCase : bool , __lowerCamelCase : list[list[bool]] ) ->bool: _SCREAMING_SNAKE_CASE = 0 _SCREAMING_SNAKE_CASE = 0 # finding dead or alive neighbours count. for i in neighbours: for status in i: if status: alive += 1 else: dead += 1 # handling duplicate entry for focus pt. if pt: alive -= 1 else: dead -= 1 # running the rules of game here. _SCREAMING_SNAKE_CASE = pt if pt: if alive < 2: _SCREAMING_SNAKE_CASE = False elif alive == 2 or alive == 3: _SCREAMING_SNAKE_CASE = True elif alive > 3: _SCREAMING_SNAKE_CASE = False else: if alive == 3: _SCREAMING_SNAKE_CASE = True return state if __name__ == "__main__": if len(sys.argv) != 2: raise Exception(usage_doc) lowercase_ = int(sys.argv[1]) # main working structure of this module. lowercase_ = create_canvas(canvas_size) seed(c) lowercase_ , lowercase_ = plt.subplots() fig.show() lowercase_ = ListedColormap(["""w""", """k"""]) try: while True: lowercase_ = run(c) ax.matshow(c, cmap=cmap) fig.canvas.draw() ax.cla() except KeyboardInterrupt: # do nothing. pass
58
'''simple docstring''' from typing import List, Optional, Union import torch from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) lowercase_ = logging.get_logger(__name__) # pylint: disable=invalid-name lowercase_ = """ Examples: ```py >>> from diffusers import KandinskyV22Pipeline, KandinskyV22PriorPipeline >>> import torch >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\"kandinsky-community/kandinsky-2-2-prior\") >>> pipe_prior.to(\"cuda\") >>> prompt = \"red cat, 4k photo\" >>> out = pipe_prior(prompt) >>> image_emb = out.image_embeds >>> zero_image_emb = out.negative_image_embeds >>> pipe = KandinskyV22Pipeline.from_pretrained(\"kandinsky-community/kandinsky-2-2-decoder\") >>> pipe.to(\"cuda\") >>> image = pipe( ... image_embeds=image_emb, ... negative_image_embeds=zero_image_emb, ... height=768, ... width=768, ... num_inference_steps=50, ... ).images >>> image[0].save(\"cat.png\") ``` """ def lowerCamelCase ( __lowerCamelCase : str , __lowerCamelCase : Optional[Any] , __lowerCamelCase : List[Any]=8 ) ->Tuple: _SCREAMING_SNAKE_CASE = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 _SCREAMING_SNAKE_CASE = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor class a_ ( snake_case_ ): '''simple docstring''' def __init__( self , A , A , A , ) -> Union[str, Any]: super().__init__() self.register_modules( unet=A , scheduler=A , movq=A , ) _SCREAMING_SNAKE_CASE = 2 ** (len(self.movq.config.block_out_channels ) - 1) def snake_case_( self , A , A , A , A , A , A ) -> Union[str, Any]: if latents is None: _SCREAMING_SNAKE_CASE = randn_tensor(A , generator=A , device=A , dtype=A ) else: if latents.shape != shape: raise ValueError(f'Unexpected latents shape, got {latents.shape}, expected {shape}' ) _SCREAMING_SNAKE_CASE = latents.to(A ) _SCREAMING_SNAKE_CASE = latents * scheduler.init_noise_sigma return latents def snake_case_( self , A=0 ) -> Dict: if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("""Please install accelerate via `pip install accelerate`""" ) _SCREAMING_SNAKE_CASE = torch.device(f'cuda:{gpu_id}' ) _SCREAMING_SNAKE_CASE = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(A , A ) def snake_case_( self , A=0 ) -> str: if is_accelerate_available() and is_accelerate_version(""">=""" , """0.17.0.dev0""" ): from accelerate import cpu_offload_with_hook else: raise ImportError("""`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.""" ) _SCREAMING_SNAKE_CASE = torch.device(f'cuda:{gpu_id}' ) if self.device.type != "cpu": self.to("""cpu""" , silence_dtype_warnings=A ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) _SCREAMING_SNAKE_CASE = None for cpu_offloaded_model in [self.unet, self.movq]: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = cpu_offload_with_hook(A , A , prev_module_hook=A ) # We'll offload the last model manually. _SCREAMING_SNAKE_CASE = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def snake_case_( self ) -> Tuple: if not hasattr(self.unet , """_hf_hook""" ): return self.device for module in self.unet.modules(): if ( hasattr(A , """_hf_hook""" ) and hasattr(module._hf_hook , """execution_device""" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(A ) def __call__( self , A , A , A = 512 , A = 512 , A = 100 , A = 4.0 , A = 1 , A = None , A = None , A = "pil" , A = True , ) -> List[str]: _SCREAMING_SNAKE_CASE = self._execution_device _SCREAMING_SNAKE_CASE = guidance_scale > 1.0 if isinstance(A , A ): _SCREAMING_SNAKE_CASE = torch.cat(A , dim=0 ) _SCREAMING_SNAKE_CASE = image_embeds.shape[0] * num_images_per_prompt if isinstance(A , A ): _SCREAMING_SNAKE_CASE = torch.cat(A , dim=0 ) if do_classifier_free_guidance: _SCREAMING_SNAKE_CASE = image_embeds.repeat_interleave(A , dim=0 ) _SCREAMING_SNAKE_CASE = negative_image_embeds.repeat_interleave(A , dim=0 ) _SCREAMING_SNAKE_CASE = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=A ) self.scheduler.set_timesteps(A , device=A ) _SCREAMING_SNAKE_CASE = self.scheduler.timesteps _SCREAMING_SNAKE_CASE = self.unet.config.in_channels _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = downscale_height_and_width(A , A , self.movq_scale_factor ) # create initial latent _SCREAMING_SNAKE_CASE = self.prepare_latents( (batch_size, num_channels_latents, height, width) , image_embeds.dtype , A , A , A , self.scheduler , ) for i, t in enumerate(self.progress_bar(A ) ): # expand the latents if we are doing classifier free guidance _SCREAMING_SNAKE_CASE = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents _SCREAMING_SNAKE_CASE = {"""image_embeds""": image_embeds} _SCREAMING_SNAKE_CASE = self.unet( sample=A , timestep=A , encoder_hidden_states=A , added_cond_kwargs=A , return_dict=A , )[0] if do_classifier_free_guidance: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = noise_pred.split(latents.shape[1] , dim=1 ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = noise_pred.chunk(2 ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = variance_pred.chunk(2 ) _SCREAMING_SNAKE_CASE = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) _SCREAMING_SNAKE_CASE = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , """variance_type""" ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 _SCREAMING_SNAKE_CASE = self.scheduler.step( A , A , A , generator=A , )[0] # post-processing _SCREAMING_SNAKE_CASE = self.movq.decode(A , force_not_quantize=A )["""sample"""] if output_type not in ["pt", "np", "pil"]: raise ValueError(f'Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}' ) if output_type in ["np", "pil"]: _SCREAMING_SNAKE_CASE = image * 0.5 + 0.5 _SCREAMING_SNAKE_CASE = image.clamp(0 , 1 ) _SCREAMING_SNAKE_CASE = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": _SCREAMING_SNAKE_CASE = self.numpy_to_pil(A ) if not return_dict: return (image,) return ImagePipelineOutput(images=A )
58
1
import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import numpy as np from utils_multiple_choice import MultipleChoiceDataset, Split, processors import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process lowerCamelCase_ = logging.getLogger(__name__) def UpperCamelCase( lowercase_ , lowercase_ ) -> List[str]: '''simple docstring''' return (preds == labels).mean() @dataclass class __lowerCamelCase : lowerCamelCase_ : str = field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) lowerCamelCase_ : Optional[str] = field( default=__snake_case , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) lowerCamelCase_ : Optional[str] = field( default=__snake_case , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) lowerCamelCase_ : Optional[str] = field( default=__snake_case , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) @dataclass class __lowerCamelCase : lowerCamelCase_ : str = field(metadata={'help': 'The name of the task to train on: ' + ', '.join(processors.keys() )} ) lowerCamelCase_ : str = field(metadata={'help': 'Should contain the data files for the task.'} ) lowerCamelCase_ : int = field( default=128 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) lowerCamelCase_ : bool = field( default=__snake_case , metadata={'help': 'Overwrite the cached training and evaluation sets'} ) def UpperCamelCase( ) -> int: '''simple docstring''' snake_case_ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) snake_case_ , snake_case_ , snake_case_ = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f'''Output directory ({training_args.output_dir}) already exists and is not empty. Use''' """ --overwrite_output_dir to overcome.""" ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( """Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s""" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info("""Training/evaluation parameters %s""" , lowercase_ ) # Set seed set_seed(training_args.seed ) try: snake_case_ = processors[data_args.task_name]() snake_case_ = processor.get_labels() snake_case_ = len(lowercase_ ) except KeyError: raise ValueError("""Task not found: %s""" % (data_args.task_name) ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. snake_case_ = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=lowercase_ , finetuning_task=data_args.task_name , cache_dir=model_args.cache_dir , ) snake_case_ = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) snake_case_ = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=lowercase_ , cache_dir=model_args.cache_dir , ) # Get datasets snake_case_ = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=lowercase_ , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) snake_case_ = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=lowercase_ , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def compute_metrics(lowercase_ ) -> Dict: snake_case_ = np.argmax(p.predictions , axis=1 ) return {"acc": simple_accuracy(lowercase_ , p.label_ids )} # Data collator snake_case_ = DataCollatorWithPadding(lowercase_ , pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer snake_case_ = Trainer( model=lowercase_ , args=lowercase_ , train_dataset=lowercase_ , eval_dataset=lowercase_ , compute_metrics=lowercase_ , data_collator=lowercase_ , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation snake_case_ = {} if training_args.do_eval: logger.info("""*** Evaluate ***""" ) snake_case_ = trainer.evaluate() snake_case_ = os.path.join(training_args.output_dir , """eval_results.txt""" ) if trainer.is_world_master(): with open(lowercase_ , """w""" ) as writer: logger.info("""***** Eval results *****""" ) for key, value in result.items(): logger.info(""" %s = %s""" , lowercase_ , lowercase_ ) writer.write("""%s = %s\n""" % (key, value) ) results.update(lowercase_ ) return results def UpperCamelCase( lowercase_ ) -> Dict: '''simple docstring''' main() if __name__ == "__main__": main()
34
from argparse import ArgumentParser from datasets.commands.convert import ConvertCommand from datasets.commands.dummy_data import DummyDataCommand from datasets.commands.env import EnvironmentCommand from datasets.commands.run_beam import RunBeamCommand from datasets.commands.test import TestCommand from datasets.utils.logging import set_verbosity_info def UpperCamelCase( lowercase_ ) -> Any: '''simple docstring''' return {key.lstrip("""-""" ): value for key, value in zip(unknown_args[::2] , unknown_args[1::2] )} def UpperCamelCase( ) -> str: '''simple docstring''' snake_case_ = ArgumentParser( """HuggingFace Datasets CLI tool""" , usage="""datasets-cli <command> [<args>]""" , allow_abbrev=lowercase_ ) snake_case_ = parser.add_subparsers(help="""datasets-cli command helpers""" ) set_verbosity_info() # Register commands ConvertCommand.register_subcommand(lowercase_ ) EnvironmentCommand.register_subcommand(lowercase_ ) TestCommand.register_subcommand(lowercase_ ) RunBeamCommand.register_subcommand(lowercase_ ) DummyDataCommand.register_subcommand(lowercase_ ) # Parse args snake_case_ , snake_case_ = parser.parse_known_args() if not hasattr(lowercase_ , """func""" ): parser.print_help() exit(1 ) snake_case_ = parse_unknown_args(lowercase_ ) # Run snake_case_ = args.func(lowercase_ , **lowercase_ ) service.run() if __name__ == "__main__": main()
34
1
"""simple docstring""" import inspect import unittest from transformers import MobileViTConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTModel from transformers.models.mobilevit.modeling_mobilevit import MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class _SCREAMING_SNAKE_CASE( UpperCAmelCase_ ): def _UpperCamelCase ( self ) -> Any: """simple docstring""" __SCREAMING_SNAKE_CASE :Optional[Any] = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(lowerCAmelCase__ ,'''hidden_sizes''' ) ) self.parent.assertTrue(hasattr(lowerCAmelCase__ ,'''neck_hidden_sizes''' ) ) self.parent.assertTrue(hasattr(lowerCAmelCase__ ,'''num_attention_heads''' ) ) class _SCREAMING_SNAKE_CASE: def __init__( self ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=13 ,SCREAMING_SNAKE_CASE__=32 ,SCREAMING_SNAKE_CASE__=2 ,SCREAMING_SNAKE_CASE__=3 ,SCREAMING_SNAKE_CASE__=6_40 ,SCREAMING_SNAKE_CASE__=4 ,SCREAMING_SNAKE_CASE__="silu" ,SCREAMING_SNAKE_CASE__=3 ,SCREAMING_SNAKE_CASE__=32 ,SCREAMING_SNAKE_CASE__=0.1 ,SCREAMING_SNAKE_CASE__=0.1 ,SCREAMING_SNAKE_CASE__=0.1 ,SCREAMING_SNAKE_CASE__=0.0_2 ,SCREAMING_SNAKE_CASE__=True ,SCREAMING_SNAKE_CASE__=True ,SCREAMING_SNAKE_CASE__=10 ,SCREAMING_SNAKE_CASE__=None ,) -> int: """simple docstring""" __SCREAMING_SNAKE_CASE :Any = parent __SCREAMING_SNAKE_CASE :List[Any] = batch_size __SCREAMING_SNAKE_CASE :Tuple = image_size __SCREAMING_SNAKE_CASE :Tuple = patch_size __SCREAMING_SNAKE_CASE :List[Any] = num_channels __SCREAMING_SNAKE_CASE :str = last_hidden_size __SCREAMING_SNAKE_CASE :List[Any] = num_attention_heads __SCREAMING_SNAKE_CASE :Dict = hidden_act __SCREAMING_SNAKE_CASE :Optional[Any] = conv_kernel_size __SCREAMING_SNAKE_CASE :str = output_stride __SCREAMING_SNAKE_CASE :Any = hidden_dropout_prob __SCREAMING_SNAKE_CASE :Dict = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE :int = classifier_dropout_prob __SCREAMING_SNAKE_CASE :Union[str, Any] = use_labels __SCREAMING_SNAKE_CASE :Union[str, Any] = is_training __SCREAMING_SNAKE_CASE :Any = num_labels __SCREAMING_SNAKE_CASE :Tuple = initializer_range __SCREAMING_SNAKE_CASE :List[str] = scope def _UpperCamelCase ( self ) -> int: """simple docstring""" __SCREAMING_SNAKE_CASE :int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __SCREAMING_SNAKE_CASE :List[str] = None __SCREAMING_SNAKE_CASE :List[Any] = None if self.use_labels: __SCREAMING_SNAKE_CASE :str = ids_tensor([self.batch_size] ,self.num_labels ) __SCREAMING_SNAKE_CASE :Tuple = ids_tensor([self.batch_size, self.image_size, self.image_size] ,self.num_labels ) __SCREAMING_SNAKE_CASE :List[Any] = self.get_config() return config, pixel_values, labels, pixel_labels def _UpperCamelCase ( self ) -> List[Any]: """simple docstring""" return MobileViTConfig( image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,num_attention_heads=self.num_attention_heads ,hidden_act=self.hidden_act ,conv_kernel_size=self.conv_kernel_size ,output_stride=self.output_stride ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,classifier_dropout_prob=self.classifier_dropout_prob ,initializer_range=self.initializer_range ,) def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) -> Dict: """simple docstring""" __SCREAMING_SNAKE_CASE :List[Any] = MobileViTModel(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __SCREAMING_SNAKE_CASE :Tuple = model(lowerCAmelCase__ ) self.parent.assertEqual( result.last_hidden_state.shape ,( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) ,) def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) -> List[str]: """simple docstring""" __SCREAMING_SNAKE_CASE :List[Any] = self.num_labels __SCREAMING_SNAKE_CASE :str = MobileViTForImageClassification(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __SCREAMING_SNAKE_CASE :Dict = model(lowerCAmelCase__ ,labels=lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) -> Optional[int]: """simple docstring""" __SCREAMING_SNAKE_CASE :Any = self.num_labels __SCREAMING_SNAKE_CASE :List[Any] = MobileViTForSemanticSegmentation(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __SCREAMING_SNAKE_CASE :Union[str, Any] = model(lowerCAmelCase__ ) self.parent.assertEqual( result.logits.shape ,( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) ,) __SCREAMING_SNAKE_CASE :List[str] = model(lowerCAmelCase__ ,labels=lowerCAmelCase__ ) self.parent.assertEqual( result.logits.shape ,( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) ,) def _UpperCamelCase ( self ) -> Dict: """simple docstring""" __SCREAMING_SNAKE_CASE :List[str] = self.prepare_config_and_inputs() __SCREAMING_SNAKE_CASE :Any = config_and_inputs __SCREAMING_SNAKE_CASE :int = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class _SCREAMING_SNAKE_CASE( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = ( (MobileViTModel, MobileViTForImageClassification, MobileViTForSemanticSegmentation) if is_torch_available() else () ) SCREAMING_SNAKE_CASE_ : str = ( { '''feature-extraction''': MobileViTModel, '''image-classification''': MobileViTForImageClassification, '''image-segmentation''': MobileViTForSemanticSegmentation, } if is_torch_available() else {} ) SCREAMING_SNAKE_CASE_ : Any = False SCREAMING_SNAKE_CASE_ : Dict = False SCREAMING_SNAKE_CASE_ : Union[str, Any] = False SCREAMING_SNAKE_CASE_ : int = False def _UpperCamelCase ( self ) -> int: """simple docstring""" __SCREAMING_SNAKE_CASE :str = MobileViTModelTester(self ) __SCREAMING_SNAKE_CASE :Union[str, Any] = MobileViTConfigTester(self ,config_class=lowerCAmelCase__ ,has_text_modality=lowerCAmelCase__ ) def _UpperCamelCase ( self ) -> Dict: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason='''MobileViT does not use inputs_embeds''' ) def _UpperCamelCase ( self ) -> List[Any]: """simple docstring""" pass @unittest.skip(reason='''MobileViT does not support input and output embeddings''' ) def _UpperCamelCase ( self ) -> Dict: """simple docstring""" pass @unittest.skip(reason='''MobileViT does not output attentions''' ) def _UpperCamelCase ( self ) -> int: """simple docstring""" pass def _UpperCamelCase ( self ) -> List[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE :Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __SCREAMING_SNAKE_CASE :List[str] = model_class(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE :Optional[int] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __SCREAMING_SNAKE_CASE :List[Any] = [*signature.parameters.keys()] __SCREAMING_SNAKE_CASE :List[str] = ["pixel_values"] self.assertListEqual(arg_names[:1] ,lowerCAmelCase__ ) @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def _UpperCamelCase ( self ) -> str: """simple docstring""" pass def _UpperCamelCase ( self ) -> int: """simple docstring""" __SCREAMING_SNAKE_CASE :List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase__ ) def _UpperCamelCase ( self ) -> Optional[Any]: """simple docstring""" def check_hidden_states_output(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): __SCREAMING_SNAKE_CASE :Dict = model_class(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() with torch.no_grad(): __SCREAMING_SNAKE_CASE :Union[str, Any] = model(**self._prepare_for_class(lowerCAmelCase__ ,lowerCAmelCase__ ) ) __SCREAMING_SNAKE_CASE :Optional[int] = outputs.hidden_states __SCREAMING_SNAKE_CASE :Any = 5 self.assertEqual(len(lowerCAmelCase__ ) ,lowerCAmelCase__ ) # MobileViT's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. __SCREAMING_SNAKE_CASE :Optional[Any] = 2 for i in range(len(lowerCAmelCase__ ) ): self.assertListEqual( list(hidden_states[i].shape[-2:] ) ,[self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] ,) divisor *= 2 self.assertEqual(self.model_tester.output_stride ,divisor // 2 ) __SCREAMING_SNAKE_CASE :List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __SCREAMING_SNAKE_CASE :Dict = True check_hidden_states_output(lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __SCREAMING_SNAKE_CASE :Optional[int] = True check_hidden_states_output(lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ) def _UpperCamelCase ( self ) -> int: """simple docstring""" __SCREAMING_SNAKE_CASE :Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase__ ) def _UpperCamelCase ( self ) -> Optional[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE :Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*lowerCAmelCase__ ) @slow def _UpperCamelCase ( self ) -> Dict: """simple docstring""" for model_name in MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __SCREAMING_SNAKE_CASE :Optional[int] = MobileViTModel.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) def __lowerCamelCase ( ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE :Union[str, Any] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class _SCREAMING_SNAKE_CASE( unittest.TestCase ): @cached_property def _UpperCamelCase ( self ) -> List[str]: """simple docstring""" return MobileViTImageProcessor.from_pretrained('''apple/mobilevit-xx-small''' ) if is_vision_available() else None @slow def _UpperCamelCase ( self ) -> int: """simple docstring""" __SCREAMING_SNAKE_CASE :int = MobileViTForImageClassification.from_pretrained('''apple/mobilevit-xx-small''' ).to(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE :int = self.default_image_processor __SCREAMING_SNAKE_CASE :Union[str, Any] = prepare_img() __SCREAMING_SNAKE_CASE :List[str] = image_processor(images=lowerCAmelCase__ ,return_tensors='''pt''' ).to(lowerCAmelCase__ ) # forward pass with torch.no_grad(): __SCREAMING_SNAKE_CASE :int = model(**lowerCAmelCase__ ) # verify the logits __SCREAMING_SNAKE_CASE :Union[str, Any] = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape ,lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE :Any = torch.tensor([-1.9_3_6_4, -1.2_3_2_7, -0.4_6_5_3] ).to(lowerCAmelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] ,lowerCAmelCase__ ,atol=1E-4 ) ) @slow def _UpperCamelCase ( self ) -> str: """simple docstring""" __SCREAMING_SNAKE_CASE :Optional[Any] = MobileViTForSemanticSegmentation.from_pretrained('''apple/deeplabv3-mobilevit-xx-small''' ) __SCREAMING_SNAKE_CASE :Optional[Any] = model.to(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE :List[Any] = MobileViTImageProcessor.from_pretrained('''apple/deeplabv3-mobilevit-xx-small''' ) __SCREAMING_SNAKE_CASE :Union[str, Any] = prepare_img() __SCREAMING_SNAKE_CASE :Any = image_processor(images=lowerCAmelCase__ ,return_tensors='''pt''' ).to(lowerCAmelCase__ ) # forward pass with torch.no_grad(): __SCREAMING_SNAKE_CASE :Optional[int] = model(**lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE :Union[str, Any] = outputs.logits # verify the logits __SCREAMING_SNAKE_CASE :Union[str, Any] = torch.Size((1, 21, 32, 32) ) self.assertEqual(logits.shape ,lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE :Union[str, Any] = torch.tensor( [ [[6.9_7_1_3, 6.9_7_8_6, 7.2_4_2_2], [7.2_8_9_3, 7.2_8_2_5, 7.4_4_4_6], [7.6_5_8_0, 7.8_7_9_7, 7.9_4_2_0]], [[-1_0.6_8_6_9, -1_0.3_2_5_0, -1_0.3_4_7_1], [-1_0.4_2_2_8, -9.9_8_6_8, -9.7_1_3_2], [-1_1.0_4_0_5, -1_1.0_2_2_1, -1_0.7_3_1_8]], [[-3.3_0_8_9, -2.8_5_3_9, -2.6_7_4_0], [-3.2_7_0_6, -2.5_6_2_1, -2.5_1_0_8], [-3.2_5_3_4, -2.6_6_1_5, -2.6_6_5_1]], ] ,device=lowerCAmelCase__ ,) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] ,lowerCAmelCase__ ,atol=1E-4 ) ) @slow def _UpperCamelCase ( self ) -> Tuple: """simple docstring""" __SCREAMING_SNAKE_CASE :List[str] = MobileViTForSemanticSegmentation.from_pretrained('''apple/deeplabv3-mobilevit-xx-small''' ) __SCREAMING_SNAKE_CASE :Dict = model.to(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE :Union[str, Any] = MobileViTImageProcessor.from_pretrained('''apple/deeplabv3-mobilevit-xx-small''' ) __SCREAMING_SNAKE_CASE :Dict = prepare_img() __SCREAMING_SNAKE_CASE :Optional[Any] = image_processor(images=lowerCAmelCase__ ,return_tensors='''pt''' ).to(lowerCAmelCase__ ) # forward pass with torch.no_grad(): __SCREAMING_SNAKE_CASE :Union[str, Any] = model(**lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE :int = outputs.logits.detach().cpu() __SCREAMING_SNAKE_CASE :Any = image_processor.post_process_semantic_segmentation(outputs=lowerCAmelCase__ ,target_sizes=[(50, 60)] ) __SCREAMING_SNAKE_CASE :Tuple = torch.Size((50, 60) ) self.assertEqual(segmentation[0].shape ,lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE :Optional[Any] = image_processor.post_process_semantic_segmentation(outputs=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE :Optional[Any] = torch.Size((32, 32) ) self.assertEqual(segmentation[0].shape ,lowerCAmelCase__ )
191
import unittest from transformers import ( MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TextaTextGenerationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, require_tf, require_torch from transformers.utils import is_torch_available from .test_pipelines_common import ANY if is_torch_available(): import torch @is_pipeline_test class __lowercase ( unittest.TestCase ): """simple docstring""" _UpperCAmelCase : List[Any] = MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING _UpperCAmelCase : str = TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING def _SCREAMING_SNAKE_CASE ( self : Any , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Dict): SCREAMING_SNAKE_CASE_: Any = TextaTextGenerationPipeline(model=lowerCAmelCase__ , tokenizer=lowerCAmelCase__) return generator, ["Something to write", "Something else"] def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Any): SCREAMING_SNAKE_CASE_: List[Any] = generator("Something there") self.assertEqual(lowerCAmelCase__ , [{"generated_text": ANY(lowerCAmelCase__)}]) # These are encoder decoder, they don't just append to incoming string self.assertFalse(outputs[0]["generated_text"].startswith("Something there")) SCREAMING_SNAKE_CASE_: List[Any] = generator(["This is great !", "Something else"] , num_return_sequences=2 , do_sample=lowerCAmelCase__) self.assertEqual( lowerCAmelCase__ , [ [{"generated_text": ANY(lowerCAmelCase__)}, {"generated_text": ANY(lowerCAmelCase__)}], [{"generated_text": ANY(lowerCAmelCase__)}, {"generated_text": ANY(lowerCAmelCase__)}], ] , ) SCREAMING_SNAKE_CASE_: Dict = generator( ["This is great !", "Something else"] , num_return_sequences=2 , batch_size=2 , do_sample=lowerCAmelCase__) self.assertEqual( lowerCAmelCase__ , [ [{"generated_text": ANY(lowerCAmelCase__)}, {"generated_text": ANY(lowerCAmelCase__)}], [{"generated_text": ANY(lowerCAmelCase__)}, {"generated_text": ANY(lowerCAmelCase__)}], ] , ) with self.assertRaises(lowerCAmelCase__): generator(4) @require_torch def _SCREAMING_SNAKE_CASE ( self : Tuple): SCREAMING_SNAKE_CASE_: Optional[int] = pipeline("text2text-generation" , model="patrickvonplaten/t5-tiny-random" , framework="pt") # do_sample=False necessary for reproducibility SCREAMING_SNAKE_CASE_: Union[str, Any] = generator("Something there" , do_sample=lowerCAmelCase__) self.assertEqual(lowerCAmelCase__ , [{"generated_text": ""}]) SCREAMING_SNAKE_CASE_: Union[str, Any] = 3 SCREAMING_SNAKE_CASE_: Any = generator( "Something there" , num_return_sequences=lowerCAmelCase__ , num_beams=lowerCAmelCase__ , ) SCREAMING_SNAKE_CASE_: Any = [ {"generated_text": "Beide Beide Beide Beide Beide Beide Beide Beide Beide"}, {"generated_text": "Beide Beide Beide Beide Beide Beide Beide Beide"}, {"generated_text": ""}, ] self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = generator("This is a test" , do_sample=lowerCAmelCase__ , num_return_sequences=2 , return_tensors=lowerCAmelCase__) self.assertEqual( lowerCAmelCase__ , [ {"generated_token_ids": ANY(torch.Tensor)}, {"generated_token_ids": ANY(torch.Tensor)}, ] , ) SCREAMING_SNAKE_CASE_: str = generator.model.config.eos_token_id SCREAMING_SNAKE_CASE_: Union[str, Any] = "<pad>" SCREAMING_SNAKE_CASE_: Tuple = generator( ["This is a test", "This is a second test"] , do_sample=lowerCAmelCase__ , num_return_sequences=2 , batch_size=2 , return_tensors=lowerCAmelCase__ , ) self.assertEqual( lowerCAmelCase__ , [ [ {"generated_token_ids": ANY(torch.Tensor)}, {"generated_token_ids": ANY(torch.Tensor)}, ], [ {"generated_token_ids": ANY(torch.Tensor)}, {"generated_token_ids": ANY(torch.Tensor)}, ], ] , ) @require_tf def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): SCREAMING_SNAKE_CASE_: Union[str, Any] = pipeline("text2text-generation" , model="patrickvonplaten/t5-tiny-random" , framework="tf") # do_sample=False necessary for reproducibility SCREAMING_SNAKE_CASE_: List[Any] = generator("Something there" , do_sample=lowerCAmelCase__) self.assertEqual(lowerCAmelCase__ , [{"generated_text": ""}])
13
0
import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=0.999 , SCREAMING_SNAKE_CASE_="cosine" , ) -> Union[str, Any]: if alpha_transform_type == "cosine": def alpha_bar_fn(SCREAMING_SNAKE_CASE_ ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(SCREAMING_SNAKE_CASE_ ): return math.exp(t * -12.0 ) else: raise ValueError(F'''Unsupported alpha_tranform_type: {alpha_transform_type}''' ) lowerCAmelCase__ : Tuple = [] for i in range(SCREAMING_SNAKE_CASE_ ): lowerCAmelCase__ : List[Any] = i / num_diffusion_timesteps lowerCAmelCase__ : str = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(SCREAMING_SNAKE_CASE_ ) / alpha_bar_fn(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) ) return torch.tensor(SCREAMING_SNAKE_CASE_ , dtype=torch.floataa ) class A__ ( __magic_name__ , __magic_name__ ): lowercase = [e.name for e in KarrasDiffusionSchedulers] lowercase = 2 @register_to_config def __init__( self : Union[str, Any] , a : int = 1_000 , a : float = 0.0_0_0_8_5 , a : float = 0.0_1_2 , a : str = "linear" , a : Optional[Union[np.ndarray, List[float]]] = None , a : str = "epsilon" , a : Optional[bool] = False , a : Optional[bool] = False , a : float = 1.0 , a : str = "linspace" , a : int = 0 , ): '''simple docstring''' if trained_betas is not None: lowerCAmelCase__ : List[str] = torch.tensor(a , dtype=torch.floataa ) elif beta_schedule == "linear": lowerCAmelCase__ : List[str] = torch.linspace(a , a , a , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. lowerCAmelCase__ : Union[str, Any] = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , a , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule lowerCAmelCase__ : int = betas_for_alpha_bar(a , alpha_transform_type='cosine' ) elif beta_schedule == "exp": lowerCAmelCase__ : List[str] = betas_for_alpha_bar(a , alpha_transform_type='exp' ) else: raise NotImplementedError(f'''{beta_schedule} does is not implemented for {self.__class__}''' ) lowerCAmelCase__ : int = 1.0 - self.betas lowerCAmelCase__ : Tuple = torch.cumprod(self.alphas , dim=0 ) # set all values self.set_timesteps(a , a , a ) lowerCAmelCase__ : Optional[Any] = use_karras_sigmas def _lowerCamelCase ( self : str , a : List[Any] , a : str=None ): '''simple docstring''' if schedule_timesteps is None: lowerCAmelCase__ : List[str] = self.timesteps lowerCAmelCase__ : int = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: lowerCAmelCase__ : List[str] = 1 if len(a ) > 1 else 0 else: lowerCAmelCase__ : Tuple = timestep.cpu().item() if torch.is_tensor(a ) else timestep lowerCAmelCase__ : Tuple = self._index_counter[timestep_int] return indices[pos].item() @property def _lowerCamelCase ( self : Dict ): '''simple docstring''' if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def _lowerCamelCase ( self : Tuple , a : torch.FloatTensor , a : Union[float, torch.FloatTensor] , ): '''simple docstring''' lowerCAmelCase__ : Tuple = self.index_for_timestep(a ) lowerCAmelCase__ : Any = self.sigmas[step_index] lowerCAmelCase__ : Optional[Any] = sample / ((sigma**2 + 1) ** 0.5) return sample def _lowerCamelCase ( self : List[str] , a : int , a : Union[str, torch.device] = None , a : Optional[int] = None , ): '''simple docstring''' lowerCAmelCase__ : Any = num_inference_steps lowerCAmelCase__ : Union[str, Any] = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": lowerCAmelCase__ : Union[str, Any] = np.linspace(0 , num_train_timesteps - 1 , a , dtype=a )[::-1].copy() elif self.config.timestep_spacing == "leading": lowerCAmelCase__ : List[Any] = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 lowerCAmelCase__ : Dict = (np.arange(0 , a ) * step_ratio).round()[::-1].copy().astype(a ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": lowerCAmelCase__ : Tuple = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 lowerCAmelCase__ : int = (np.arange(a , 0 , -step_ratio )).round().copy().astype(a ) timesteps -= 1 else: raise ValueError( f'''{self.config.timestep_spacing} is not supported. Please make sure to choose one of \'linspace\', \'leading\' or \'trailing\'.''' ) lowerCAmelCase__ : str = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) lowerCAmelCase__ : List[Any] = np.log(a ) lowerCAmelCase__ : Optional[int] = np.interp(a , np.arange(0 , len(a ) ) , a ) if self.config.use_karras_sigmas: lowerCAmelCase__ : str = self._convert_to_karras(in_sigmas=a , num_inference_steps=self.num_inference_steps ) lowerCAmelCase__ : Union[str, Any] = np.array([self._sigma_to_t(a , a ) for sigma in sigmas] ) lowerCAmelCase__ : Tuple = np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) lowerCAmelCase__ : Dict = torch.from_numpy(a ).to(device=a ) lowerCAmelCase__ : Union[str, Any] = torch.cat([sigmas[:1], sigmas[1:-1].repeat_interleave(2 ), sigmas[-1:]] ) lowerCAmelCase__ : Tuple = torch.from_numpy(a ) lowerCAmelCase__ : List[str] = torch.cat([timesteps[:1], timesteps[1:].repeat_interleave(2 )] ) if str(a ).startswith('mps' ): # mps does not support float64 lowerCAmelCase__ : Optional[Any] = timesteps.to(a , dtype=torch.floataa ) else: lowerCAmelCase__ : Any = timesteps.to(device=a ) # empty dt and derivative lowerCAmelCase__ : str = None lowerCAmelCase__ : Optional[int] = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter lowerCAmelCase__ : Optional[Any] = defaultdict(a ) def _lowerCamelCase ( self : Any , a : Dict , a : Optional[Any] ): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = np.log(a ) # get distribution lowerCAmelCase__ : Tuple = log_sigma - log_sigmas[:, np.newaxis] # get sigmas range lowerCAmelCase__ : Optional[int] = np.cumsum((dists >= 0) , axis=0 ).argmax(axis=0 ).clip(max=log_sigmas.shape[0] - 2 ) lowerCAmelCase__ : List[str] = low_idx + 1 lowerCAmelCase__ : List[str] = log_sigmas[low_idx] lowerCAmelCase__ : Any = log_sigmas[high_idx] # interpolate sigmas lowerCAmelCase__ : Union[str, Any] = (low - log_sigma) / (low - high) lowerCAmelCase__ : List[Any] = np.clip(a , 0 , 1 ) # transform interpolation to time range lowerCAmelCase__ : List[Any] = (1 - w) * low_idx + w * high_idx lowerCAmelCase__ : Any = t.reshape(sigma.shape ) return t def _lowerCamelCase ( self : Tuple , a : torch.FloatTensor , a : Any ): '''simple docstring''' lowerCAmelCase__ : float = in_sigmas[-1].item() lowerCAmelCase__ : float = in_sigmas[0].item() lowerCAmelCase__ : Tuple = 7.0 # 7.0 is the value used in the paper lowerCAmelCase__ : Tuple = np.linspace(0 , 1 , a ) lowerCAmelCase__ : Any = sigma_min ** (1 / rho) lowerCAmelCase__ : Optional[Any] = sigma_max ** (1 / rho) lowerCAmelCase__ : Tuple = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho return sigmas @property def _lowerCamelCase ( self : Any ): '''simple docstring''' return self.dt is None def _lowerCamelCase ( self : List[str] , a : Union[torch.FloatTensor, np.ndarray] , a : Union[float, torch.FloatTensor] , a : Union[torch.FloatTensor, np.ndarray] , a : bool = True , ): '''simple docstring''' lowerCAmelCase__ : List[str] = self.index_for_timestep(a ) # advance index counter by 1 lowerCAmelCase__ : Tuple = timestep.cpu().item() if torch.is_tensor(a ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: lowerCAmelCase__ : Union[str, Any] = self.sigmas[step_index] lowerCAmelCase__ : Union[str, Any] = self.sigmas[step_index + 1] else: # 2nd order / Heun's method lowerCAmelCase__ : int = self.sigmas[step_index - 1] lowerCAmelCase__ : Any = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API lowerCAmelCase__ : Optional[int] = 0 lowerCAmelCase__ : Union[str, Any] = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": lowerCAmelCase__ : int = sigma_hat if self.state_in_first_order else sigma_next lowerCAmelCase__ : Any = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": lowerCAmelCase__ : Dict = sigma_hat if self.state_in_first_order else sigma_next lowerCAmelCase__ : List[Any] = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": lowerCAmelCase__ : int = model_output else: raise ValueError( f'''prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`''' ) if self.config.clip_sample: lowerCAmelCase__ : str = pred_original_sample.clamp( -self.config.clip_sample_range , self.config.clip_sample_range ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order lowerCAmelCase__ : Dict = (sample - pred_original_sample) / sigma_hat # 3. delta timestep lowerCAmelCase__ : Optional[int] = sigma_next - sigma_hat # store for 2nd order step lowerCAmelCase__ : List[Any] = derivative lowerCAmelCase__ : str = dt lowerCAmelCase__ : Dict = sample else: # 2. 2nd order / Heun's method lowerCAmelCase__ : Union[str, Any] = (sample - pred_original_sample) / sigma_next lowerCAmelCase__ : Union[str, Any] = (self.prev_derivative + derivative) / 2 # 3. take prev timestep & sample lowerCAmelCase__ : Dict = self.dt lowerCAmelCase__ : Optional[int] = self.sample # free dt and derivative # Note, this puts the scheduler in "first order mode" lowerCAmelCase__ : List[str] = None lowerCAmelCase__ : Tuple = None lowerCAmelCase__ : str = None lowerCAmelCase__ : Tuple = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=a ) def _lowerCamelCase ( self : int , a : torch.FloatTensor , a : torch.FloatTensor , a : torch.FloatTensor , ): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = self.sigmas.to(device=original_samples.device , dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(a ): # mps does not support float64 lowerCAmelCase__ : Optional[int] = self.timesteps.to(original_samples.device , dtype=torch.floataa ) lowerCAmelCase__ : int = timesteps.to(original_samples.device , dtype=torch.floataa ) else: lowerCAmelCase__ : Union[str, Any] = self.timesteps.to(original_samples.device ) lowerCAmelCase__ : Optional[Any] = timesteps.to(original_samples.device ) lowerCAmelCase__ : List[Any] = [self.index_for_timestep(a , a ) for t in timesteps] lowerCAmelCase__ : List[str] = sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): lowerCAmelCase__ : Any = sigma.unsqueeze(-1 ) lowerCAmelCase__ : List[str] = original_samples + noise * sigma return noisy_samples def __len__( self : int ): '''simple docstring''' return self.config.num_train_timesteps
307
from __future__ import annotations def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> list[list[int]]: lowerCAmelCase__ : list[list[int]] = [] create_all_state(1 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , [] , SCREAMING_SNAKE_CASE_ ) return result def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ) -> None: if level == 0: total_list.append(current_list[:] ) return for i in range(SCREAMING_SNAKE_CASE_ , total_number - level + 2 ): current_list.append(SCREAMING_SNAKE_CASE_ ) create_all_state(i + 1 , SCREAMING_SNAKE_CASE_ , level - 1 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) current_list.pop() def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ) -> None: for i in total_list: print(*SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": lowerCamelCase__ = 4 lowerCamelCase__ = 2 lowerCamelCase__ = generate_all_combinations(n, k) print_all_state(total_list)
307
1
"""simple docstring""" from __future__ import annotations from collections import namedtuple from dataclasses import dataclass @dataclass class _lowerCAmelCase : """simple docstring""" __UpperCAmelCase : int __UpperCAmelCase : TreeNode | None = None __UpperCAmelCase : TreeNode | None = None _a = namedtuple('CoinsDistribResult', 'moves excess') def _A ( UpperCamelCase_ : TreeNode | None) -> Tuple: '''simple docstring''' if root is None: return 0 # Validation def count_nodes(UpperCamelCase_ : TreeNode | None) -> int: if node is None: return 0 return count_nodes(node.left) + count_nodes(node.right) + 1 def count_coins(UpperCamelCase_ : TreeNode | None) -> int: if node is None: return 0 return count_coins(node.left) + count_coins(node.right) + node.data if count_nodes(SCREAMING_SNAKE_CASE__) != count_coins(SCREAMING_SNAKE_CASE__): raise ValueError("The nodes number should be same as the number of coins") # Main calculation def get_distrib(UpperCamelCase_ : TreeNode | None) -> CoinsDistribResult: if node is None: return CoinsDistribResult(0, 1) __lowercase = get_distrib(node.left) __lowercase = get_distrib(node.right) __lowercase = 1 - left_distrib_excess __lowercase = 1 - right_distrib_excess __lowercase = ( left_distrib_moves + right_distrib_moves + abs(SCREAMING_SNAKE_CASE__) + abs(SCREAMING_SNAKE_CASE__) ) __lowercase = node.data - coins_to_left - coins_to_right return CoinsDistribResult(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__) return get_distrib(SCREAMING_SNAKE_CASE__)[0] if __name__ == "__main__": import doctest doctest.testmod()
17
def a_ ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str ): '''simple docstring''' assert x is not None assert y is not None _lowerCamelCase : Dict =len(SCREAMING_SNAKE_CASE__ ) _lowerCamelCase : Optional[Any] =len(SCREAMING_SNAKE_CASE__ ) # declaring the array for storing the dp values _lowerCamelCase : Optional[int] =[[0] * (n + 1) for _ in range(m + 1 )] # noqa: E741 for i in range(1 , m + 1 ): for j in range(1 , n + 1 ): _lowerCamelCase : int =1 if x[i - 1] == y[j - 1] else 0 _lowerCamelCase : Union[str, Any] =max(l[i - 1][j] , l[i][j - 1] , l[i - 1][j - 1] + match ) _lowerCamelCase : Optional[int] ='' _lowerCamelCase , _lowerCamelCase : Dict =m, n while i > 0 and j > 0: _lowerCamelCase : int =1 if x[i - 1] == y[j - 1] else 0 if l[i][j] == l[i - 1][j - 1] + match: if match == 1: _lowerCamelCase : Union[str, Any] =x[i - 1] + seq i -= 1 j -= 1 elif l[i][j] == l[i - 1][j]: i -= 1 else: j -= 1 return l[m][n], seq if __name__ == "__main__": lowerCamelCase = 'AGGTAB' lowerCamelCase = 'GXTXAYB' lowerCamelCase = 4 lowerCamelCase = 'GTAB' lowerCamelCase , lowerCamelCase = longest_common_subsequence(a, b) print('len =', ln, ', sub-sequence =', subseq) import doctest doctest.testmod()
199
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import _LazyModule _SCREAMING_SNAKE_CASE : Any = {"tokenization_wav2vec2_phoneme": ["Wav2Vec2PhonemeCTCTokenizer"]} if TYPE_CHECKING: from .tokenization_wavaveca_phoneme import WavaVecaPhonemeCTCTokenizer else: import sys _SCREAMING_SNAKE_CASE : Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
92
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _SCREAMING_SNAKE_CASE : List[Any] = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : Optional[int] = { "edbeeching/decision-transformer-gym-hopper-medium": ( "https://huggingface.co/edbeeching/decision-transformer-gym-hopper-medium/resolve/main/config.json" ), # See all DecisionTransformer models at https://huggingface.co/models?filter=decision_transformer } class _snake_case ( lowercase_ ): lowerCAmelCase_ : Dict = "decision_transformer" lowerCAmelCase_ : List[Any] = ["past_key_values"] lowerCAmelCase_ : Tuple = { "max_position_embeddings": "n_positions", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self , a__=17 , a__=4 , a__=128 , a__=4_096 , a__=True , a__=1 , a__=1_024 , a__=3 , a__=1 , a__=None , a__="relu" , a__=0.1 , a__=0.1 , a__=0.1 , a__=1e-5 , a__=0.0_2 , a__=True , a__=True , a__=50_256 , a__=50_256 , a__=False , a__=False , **a__ , ) -> Optional[int]: '''simple docstring''' snake_case_ = state_dim snake_case_ = act_dim snake_case_ = hidden_size snake_case_ = max_ep_len snake_case_ = action_tanh snake_case_ = vocab_size snake_case_ = n_positions snake_case_ = n_layer snake_case_ = n_head snake_case_ = n_inner snake_case_ = activation_function snake_case_ = resid_pdrop snake_case_ = embd_pdrop snake_case_ = attn_pdrop snake_case_ = layer_norm_epsilon snake_case_ = initializer_range snake_case_ = scale_attn_weights snake_case_ = use_cache snake_case_ = scale_attn_by_inverse_layer_idx snake_case_ = reorder_and_upcast_attn snake_case_ = bos_token_id snake_case_ = eos_token_id super().__init__(bos_token_id=a__ , eos_token_id=a__ , **a__ )
92
1
import pprint import requests a__: Optional[int] = 'https://zenquotes.io/api' def UpperCamelCase__( )->str: return requests.get(API_ENDPOINT_URL + '''/today''' ).json() def UpperCamelCase__( )->List[Any]: return requests.get(API_ENDPOINT_URL + '''/random''' ).json() if __name__ == "__main__": a__: Optional[Any] = random_quotes() pprint.pprint(response)
193
"""simple docstring""" def snake_case_ ( A_ : list[list[float]] ): '''simple docstring''' _lowerCamelCase : list[list[float]] = [] for data in source_data: for i, el in enumerate(A_ ): if len(A_ ) < i + 1: data_lists.append([] ) data_lists[i].append(float(A_ ) ) return data_lists def snake_case_ ( A_ : list[list[float]], A_ : list[int] ): '''simple docstring''' _lowerCamelCase : list[list[float]] = [] for dlist, weight in zip(A_, A_ ): _lowerCamelCase : Any = min(A_ ) _lowerCamelCase : Optional[Any] = max(A_ ) _lowerCamelCase : list[float] = [] # for weight 0 score is 1 - actual score if weight == 0: for item in dlist: try: score.append(1 - ((item - mind) / (maxd - mind)) ) except ZeroDivisionError: score.append(1 ) elif weight == 1: for item in dlist: try: score.append((item - mind) / (maxd - mind) ) except ZeroDivisionError: score.append(0 ) # weight not 0 or 1 else: _lowerCamelCase : str = F'''Invalid weight of {weight:f} provided''' raise ValueError(A_ ) score_lists.append(A_ ) return score_lists def snake_case_ ( A_ : list[list[float]] ): '''simple docstring''' _lowerCamelCase : list[float] = [0 for i in range(len(score_lists[0] ) )] for slist in score_lists: for j, ele in enumerate(A_ ): _lowerCamelCase : List[str] = final_scores[j] + ele return final_scores def snake_case_ ( A_ : list[list[float]], A_ : list[int] ): '''simple docstring''' _lowerCamelCase : Tuple = get_data(A_ ) _lowerCamelCase : Optional[Any] = calculate_each_score(A_, A_ ) _lowerCamelCase : str = generate_final_scores(A_ ) # append scores to source data for i, ele in enumerate(A_ ): source_data[i].append(A_ ) return source_data
72
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available SCREAMING_SNAKE_CASE :List[str] = {'configuration_yolos': ['YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP', 'YolosConfig', 'YolosOnnxConfig']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE :int = ['YolosFeatureExtractor'] SCREAMING_SNAKE_CASE :Optional[int] = ['YolosImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE :Optional[Any] = [ 'YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST', 'YolosForObjectDetection', 'YolosModel', 'YolosPreTrainedModel', ] if TYPE_CHECKING: from .configuration_yolos import YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP, YolosConfig, YolosOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_yolos import YolosFeatureExtractor from .image_processing_yolos import YolosImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_yolos import ( YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST, YolosForObjectDetection, YolosModel, YolosPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE :Optional[int] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
360
from typing import List, Optional, Tuple, Union import torch from ...schedulers import DDIMScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : List[str] ,A : Optional[Any] ,A : List[Any] ): super().__init__() # make sure scheduler can always be converted to DDIM __A = DDIMScheduler.from_config(scheduler.config ) self.register_modules(unet=A ,scheduler=A ) @torch.no_grad() def __call__( self : Tuple ,A : int = 1 ,A : Optional[Union[torch.Generator, List[torch.Generator]]] = None ,A : float = 0.0 ,A : int = 50 ,A : Optional[bool] = None ,A : Optional[str] = "pil" ,A : bool = True ,): # Sample gaussian noise to begin loop if isinstance(self.unet.config.sample_size ,A ): __A = ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size, ) else: __A = (batch_size, self.unet.config.in_channels, *self.unet.config.sample_size) if isinstance(A ,A ) and len(A ) != batch_size: raise ValueError( f'''You have passed a list of generators of length {len(A )}, but requested an effective batch''' f''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' ) __A = randn_tensor(A ,generator=A ,device=self.device ,dtype=self.unet.dtype ) # set step values self.scheduler.set_timesteps(A ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output __A = self.unet(A ,A ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 __A = self.scheduler.step( A ,A ,A ,eta=A ,use_clipped_model_output=A ,generator=A ).prev_sample __A = (image / 2 + 0.5).clamp(0 ,1 ) __A = image.cpu().permute(0 ,2 ,3 ,1 ).numpy() if output_type == "pil": __A = self.numpy_to_pil(A ) if not return_dict: return (image,) return ImagePipelineOutput(images=A )
124
0
"""simple docstring""" # Lint as: python3 import os import re import urllib.parse from pathlib import Path from typing import Callable, List, Optional, Union from zipfile import ZipFile from ..utils.file_utils import cached_path, hf_github_url from ..utils.logging import get_logger from ..utils.version import Version lowerCAmelCase__ = get_logger(__name__) class SCREAMING_SNAKE_CASE__ : """simple docstring""" a : Optional[Any] ="dummy_data" a : int ="datasets" a : Tuple =False def __init__( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ = None , snake_case__ = False , snake_case__ = True , snake_case__ = None , ): """simple docstring""" lowerCAmelCase : Tuple = 0 lowerCAmelCase : int = dataset_name lowerCAmelCase : List[Any] = cache_dir lowerCAmelCase : List[str] = use_local_dummy_data lowerCAmelCase : List[str] = config # download_callbacks take a single url as input lowerCAmelCase : List[Callable] = download_callbacks or [] # if False, it doesn't load existing files and it returns the paths of the dummy files relative # to the dummy_data zip file root lowerCAmelCase : Tuple = load_existing_dummy_data # TODO(PVP, QL) might need to make this more general lowerCAmelCase : Union[str, Any] = str(snake_case__ ) # to be downloaded lowerCAmelCase : List[Any] = None lowerCAmelCase : List[Any] = None @property def lowercase__ ( self ): """simple docstring""" if self._dummy_file is None: lowerCAmelCase : Any = self.download_dummy_data() return self._dummy_file @property def lowercase__ ( self ): """simple docstring""" if self.config is not None: # structure is dummy / config_name / version_name return os.path.join("dummy" , self.config.name , self.version_name ) # structure is dummy / version_name return os.path.join("dummy" , self.version_name ) @property def lowercase__ ( self ): """simple docstring""" return os.path.join(self.dummy_data_folder , "dummy_data.zip" ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Optional[Any] = ( self.local_path_to_dummy_data if self.use_local_dummy_data is True else self.github_path_to_dummy_data ) lowerCAmelCase : str = cached_path( snake_case__ , cache_dir=self.cache_dir , extract_compressed_file=snake_case__ , force_extract=snake_case__ ) return os.path.join(snake_case__ , self.dummy_file_name ) @property def lowercase__ ( self ): """simple docstring""" return os.path.join(self.datasets_scripts_dir , self.dataset_name , self.dummy_zip_file ) @property def lowercase__ ( self ): """simple docstring""" if self._bucket_url is None: lowerCAmelCase : Union[str, Any] = hf_github_url(self.dataset_name , self.dummy_zip_file.replace(os.sep , "/" ) ) return self._bucket_url @property def lowercase__ ( self ): """simple docstring""" if os.path.isdir(self.dummy_file ): return self.dummy_file # else cut off path to file -> example `xsum`. return "/".join(self.dummy_file.replace(os.sep , "/" ).split("/" )[:-1] ) def lowercase__ ( self , snake_case__ , *snake_case__ ): """simple docstring""" if self.load_existing_dummy_data: # dummy data is downloaded and tested lowerCAmelCase : int = self.dummy_file else: # dummy data cannot be downloaded and only the path to dummy file is returned lowerCAmelCase : List[Any] = self.dummy_file_name # special case when data_url is a dict if isinstance(snake_case__ , snake_case__ ): return self.create_dummy_data_dict(snake_case__ , snake_case__ ) elif isinstance(snake_case__ , (list, tuple) ): return self.create_dummy_data_list(snake_case__ , snake_case__ ) else: return self.create_dummy_data_single(snake_case__ , snake_case__ ) def lowercase__ ( self , snake_case__ , *snake_case__ ): """simple docstring""" return self.download_and_extract(snake_case__ ) def lowercase__ ( self , snake_case__ , snake_case__ ): """simple docstring""" return self.download_and_extract(snake_case__ ) def lowercase__ ( self , snake_case__ , *snake_case__ , **snake_case__ ): """simple docstring""" return path def lowercase__ ( self ): """simple docstring""" return {} def lowercase__ ( self , snake_case__ , snake_case__ ): """simple docstring""" lowerCAmelCase : List[Any] = {} for key, single_urls in data_url.items(): for download_callback in self.download_callbacks: if isinstance(snake_case__ , snake_case__ ): for single_url in single_urls: download_callback(snake_case__ ) else: lowerCAmelCase : List[str] = single_urls download_callback(snake_case__ ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus if isinstance(snake_case__ , snake_case__ ): lowerCAmelCase : Tuple = [os.path.join(snake_case__ , urllib.parse.quote_plus(Path(snake_case__ ).name ) ) for x in single_urls] else: lowerCAmelCase : int = single_urls lowerCAmelCase : Any = os.path.join(snake_case__ , urllib.parse.quote_plus(Path(snake_case__ ).name ) ) lowerCAmelCase : Union[str, Any] = value # make sure that values are unique if all(isinstance(snake_case__ , snake_case__ ) for i in dummy_data_dict.values() ) and len(set(dummy_data_dict.values() ) ) < len( dummy_data_dict.values() ): # append key to value to make its name unique lowerCAmelCase : Union[str, Any] = {key: value + key for key, value in dummy_data_dict.items()} return dummy_data_dict def lowercase__ ( self , snake_case__ , snake_case__ ): """simple docstring""" lowerCAmelCase : Dict = [] # trick: if there are many shards named like `data.txt-000001-of-00300`, only use the first one lowerCAmelCase : Optional[Any] = all(bool(re.findall("[0-9]{3,}-of-[0-9]{3,}" , snake_case__ ) ) for url in data_url ) lowerCAmelCase : Any = all( url.startswith("https://ftp.ncbi.nlm.nih.gov/pubmed/baseline/pubmed" ) for url in data_url ) if data_url and (is_tf_records or is_pubmed_records): lowerCAmelCase : int = [data_url[0]] * len(snake_case__ ) for single_url in data_url: for download_callback in self.download_callbacks: download_callback(snake_case__ ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus lowerCAmelCase : Dict = os.path.join(snake_case__ , urllib.parse.quote_plus(single_url.split("/" )[-1] ) ) dummy_data_list.append(snake_case__ ) return dummy_data_list def lowercase__ ( self , snake_case__ , snake_case__ ): """simple docstring""" for download_callback in self.download_callbacks: download_callback(snake_case__ ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus lowerCAmelCase : Tuple = os.path.join(snake_case__ , urllib.parse.quote_plus(data_url.split("/" )[-1] ) ) if os.path.exists(snake_case__ ) or not self.load_existing_dummy_data: return value else: # Backward compatibility, maybe deprecate at one point. # For many datasets with single url calls to dl_manager.download_and_extract, # the dummy_data.zip file is actually the zipped downloaded file # while now we expected the dummy_data.zip file to be a directory containing # the downloaded file. return path_to_dummy_data def lowercase__ ( self ): """simple docstring""" pass def lowercase__ ( self ): """simple docstring""" pass def lowercase__ ( self , snake_case__ ): """simple docstring""" def _iter_archive_members(snake_case__ ): # this preserves the order of the members inside the ZIP archive lowerCAmelCase : str = Path(self.dummy_file ).parent lowerCAmelCase : Optional[Any] = path.relative_to(snake_case__ ) with ZipFile(self.local_path_to_dummy_data ) as zip_file: lowerCAmelCase : List[Any] = zip_file.namelist() for member in members: if member.startswith(relative_path.as_posix() ): yield dummy_parent_path.joinpath(snake_case__ ) lowerCAmelCase : List[Any] = Path(snake_case__ ) lowerCAmelCase : str = _iter_archive_members(snake_case__ ) if self.use_local_dummy_data else path.rglob("*" ) for file_path in file_paths: if file_path.is_file() and not file_path.name.startswith((".", "__") ): yield file_path.relative_to(snake_case__ ).as_posix(), file_path.open("rb" ) def lowercase__ ( self , snake_case__ ): """simple docstring""" if not isinstance(snake_case__ , snake_case__ ): lowerCAmelCase : List[Any] = [paths] for path in paths: if os.path.isfile(snake_case__ ): if os.path.basename(snake_case__ ).startswith((".", "__") ): return yield path else: for dirpath, dirnames, filenames in os.walk(snake_case__ ): if os.path.basename(snake_case__ ).startswith((".", "__") ): continue dirnames.sort() for filename in sorted(snake_case__ ): if filename.startswith((".", "__") ): continue yield os.path.join(snake_case__ , snake_case__ )
108
import unittest import numpy as np import requests from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11 else: SCREAMING_SNAKE_CASE__ : str = False if is_vision_available(): from PIL import Image from transformers import PixaStructImageProcessor class lowerCAmelCase__ ( unittest.TestCase ): def __init__( self : Tuple , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : List[Any]=7 , SCREAMING_SNAKE_CASE__ : List[str]=3 , SCREAMING_SNAKE_CASE__ : Tuple=18 , SCREAMING_SNAKE_CASE__ : int=30 , SCREAMING_SNAKE_CASE__ : Any=4_00 , SCREAMING_SNAKE_CASE__ : Any=None , SCREAMING_SNAKE_CASE__ : str=True , SCREAMING_SNAKE_CASE__ : str=True , SCREAMING_SNAKE_CASE__ : Optional[Any]=None , ) -> Union[str, Any]: __lowerCamelCase = size if size is not None else {'''height''': 20, '''width''': 20} __lowerCamelCase = parent __lowerCamelCase = batch_size __lowerCamelCase = num_channels __lowerCamelCase = image_size __lowerCamelCase = min_resolution __lowerCamelCase = max_resolution __lowerCamelCase = size __lowerCamelCase = do_normalize __lowerCamelCase = do_convert_rgb __lowerCamelCase = [5_12, 10_24, 20_48, 40_96] __lowerCamelCase = patch_size if patch_size is not None else {'''height''': 16, '''width''': 16} def __A ( self : Union[str, Any] ) -> Union[str, Any]: return {"do_normalize": self.do_normalize, "do_convert_rgb": self.do_convert_rgb} def __A ( self : int ) -> Any: __lowerCamelCase = '''https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/australia.jpg''' __lowerCamelCase = Image.open(requests.get(SCREAMING_SNAKE_CASE__ , stream=SCREAMING_SNAKE_CASE__ ).raw ).convert('''RGB''' ) return raw_image @unittest.skipIf( not is_torch_greater_or_equal_than_1_11 , reason="""`Pix2StructImageProcessor` requires `torch>=1.11.0`.""" , ) @require_torch @require_vision class lowerCAmelCase__ ( __lowercase , unittest.TestCase ): a__ : Dict = PixaStructImageProcessor if is_vision_available() else None def __A ( self : Optional[Any] ) -> List[Any]: __lowerCamelCase = PixaStructImageProcessingTester(self ) @property def __A ( self : Optional[int] ) -> Optional[int]: return self.image_processor_tester.prepare_image_processor_dict() def __A ( self : Tuple ) -> Dict: __lowerCamelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , '''do_normalize''' ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , '''do_convert_rgb''' ) ) def __A ( self : int ) -> str: __lowerCamelCase = self.image_processor_tester.prepare_dummy_image() __lowerCamelCase = self.image_processing_class(**self.image_processor_dict ) __lowerCamelCase = 20_48 __lowerCamelCase = image_processor(SCREAMING_SNAKE_CASE__ , return_tensors='''pt''' , max_patches=SCREAMING_SNAKE_CASE__ ) self.assertTrue(torch.allclose(inputs.flattened_patches.mean() , torch.tensor(0.0606 ) , atol=1e-3 , rtol=1e-3 ) ) def __A ( self : Union[str, Any] ) -> Dict: # Initialize image_processor __lowerCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __lowerCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=SCREAMING_SNAKE_CASE__ ) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE__ , Image.Image ) # Test not batched input __lowerCamelCase = ( (self.image_processor_tester.patch_size['''height'''] * self.image_processor_tester.patch_size['''width''']) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input __lowerCamelCase = image_processor( image_inputs[0] , return_tensors='''pt''' , max_patches=SCREAMING_SNAKE_CASE__ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched __lowerCamelCase = image_processor( SCREAMING_SNAKE_CASE__ , return_tensors='''pt''' , max_patches=SCREAMING_SNAKE_CASE__ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def __A ( self : Dict ) -> str: # Initialize image_processor __lowerCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __lowerCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=SCREAMING_SNAKE_CASE__ ) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE__ , Image.Image ) # Test not batched input __lowerCamelCase = ( (self.image_processor_tester.patch_size['''height'''] * self.image_processor_tester.patch_size['''width''']) * self.image_processor_tester.num_channels ) + 2 __lowerCamelCase = True for max_patch in self.image_processor_tester.max_patches: # Test not batched input with self.assertRaises(SCREAMING_SNAKE_CASE__ ): __lowerCamelCase = image_processor( image_inputs[0] , return_tensors='''pt''' , max_patches=SCREAMING_SNAKE_CASE__ ).flattened_patches __lowerCamelCase = '''Hello''' __lowerCamelCase = image_processor( image_inputs[0] , return_tensors='''pt''' , max_patches=SCREAMING_SNAKE_CASE__ , header_text=SCREAMING_SNAKE_CASE__ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched __lowerCamelCase = image_processor( SCREAMING_SNAKE_CASE__ , return_tensors='''pt''' , max_patches=SCREAMING_SNAKE_CASE__ , header_text=SCREAMING_SNAKE_CASE__ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def __A ( self : List[str] ) -> Any: # Initialize image_processor __lowerCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __lowerCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=SCREAMING_SNAKE_CASE__ , numpify=SCREAMING_SNAKE_CASE__ ) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE__ , np.ndarray ) __lowerCamelCase = ( (self.image_processor_tester.patch_size['''height'''] * self.image_processor_tester.patch_size['''width''']) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input __lowerCamelCase = image_processor( image_inputs[0] , return_tensors='''pt''' , max_patches=SCREAMING_SNAKE_CASE__ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched __lowerCamelCase = image_processor( SCREAMING_SNAKE_CASE__ , return_tensors='''pt''' , max_patches=SCREAMING_SNAKE_CASE__ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def __A ( self : Tuple ) -> List[str]: # Initialize image_processor __lowerCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __lowerCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=SCREAMING_SNAKE_CASE__ , torchify=SCREAMING_SNAKE_CASE__ ) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE__ , torch.Tensor ) # Test not batched input __lowerCamelCase = ( (self.image_processor_tester.patch_size['''height'''] * self.image_processor_tester.patch_size['''width''']) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input __lowerCamelCase = image_processor( image_inputs[0] , return_tensors='''pt''' , max_patches=SCREAMING_SNAKE_CASE__ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched __lowerCamelCase = image_processor( SCREAMING_SNAKE_CASE__ , return_tensors='''pt''' , max_patches=SCREAMING_SNAKE_CASE__ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) @unittest.skipIf( not is_torch_greater_or_equal_than_1_11 , reason="""`Pix2StructImageProcessor` requires `torch>=1.11.0`.""" , ) @require_torch @require_vision class lowerCAmelCase__ ( __lowercase , unittest.TestCase ): a__ : Any = PixaStructImageProcessor if is_vision_available() else None def __A ( self : Union[str, Any] ) -> Optional[Any]: __lowerCamelCase = PixaStructImageProcessingTester(self , num_channels=4 ) __lowerCamelCase = 3 @property def __A ( self : List[Any] ) -> Optional[Any]: return self.image_processor_tester.prepare_image_processor_dict() def __A ( self : Union[str, Any] ) -> List[str]: __lowerCamelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , '''do_normalize''' ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , '''do_convert_rgb''' ) ) def __A ( self : Optional[int] ) -> str: # Initialize image_processor __lowerCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __lowerCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=SCREAMING_SNAKE_CASE__ ) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE__ , Image.Image ) # Test not batched input __lowerCamelCase = ( (self.image_processor_tester.patch_size['''height'''] * self.image_processor_tester.patch_size['''width''']) * (self.image_processor_tester.num_channels - 1) ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input __lowerCamelCase = image_processor( image_inputs[0] , return_tensors='''pt''' , max_patches=SCREAMING_SNAKE_CASE__ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched __lowerCamelCase = image_processor( SCREAMING_SNAKE_CASE__ , return_tensors='''pt''' , max_patches=SCREAMING_SNAKE_CASE__ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
270
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __lowerCAmelCase = { '''configuration_roc_bert''': ['''ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''RoCBertConfig'''], '''tokenization_roc_bert''': ['''RoCBertTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: pass try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = [ '''ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''RoCBertForCausalLM''', '''RoCBertForMaskedLM''', '''RoCBertForMultipleChoice''', '''RoCBertForPreTraining''', '''RoCBertForQuestionAnswering''', '''RoCBertForSequenceClassification''', '''RoCBertForTokenClassification''', '''RoCBertLayer''', '''RoCBertModel''', '''RoCBertPreTrainedModel''', '''load_tf_weights_in_roc_bert''', ] if TYPE_CHECKING: from .configuration_roc_bert import ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RoCBertConfig from .tokenization_roc_bert import RoCBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: raise OptionalDependencyNotAvailable() try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roc_bert import ( ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, RoCBertForCausalLM, RoCBertForMaskedLM, RoCBertForMultipleChoice, RoCBertForPreTraining, RoCBertForQuestionAnswering, RoCBertForSequenceClassification, RoCBertForTokenClassification, RoCBertLayer, RoCBertModel, RoCBertPreTrainedModel, load_tf_weights_in_roc_bert, ) else: import sys __lowerCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
369
import math import numpy as np import qiskit from qiskit import Aer, ClassicalRegister, QuantumCircuit, QuantumRegister, execute def snake_case_ ( snake_case = 3 ) -> qiskit.result.counts.Counts: if isinstance(snake_case , snake_case ): raise TypeError('number of qubits must be a integer.' ) if number_of_qubits <= 0: raise ValueError('number of qubits must be > 0.' ) if math.floor(snake_case ) != number_of_qubits: raise ValueError('number of qubits must be exact integer.' ) if number_of_qubits > 10: raise ValueError('number of qubits too large to simulate(>10).' ) lowercase__: str = QuantumRegister(snake_case , 'qr' ) lowercase__: str = ClassicalRegister(snake_case , 'cr' ) lowercase__: List[Any] = QuantumCircuit(snake_case , snake_case ) lowercase__: int = number_of_qubits for i in range(snake_case ): quantum_circuit.h(number_of_qubits - i - 1 ) counter -= 1 for j in range(snake_case ): quantum_circuit.cp(np.pi / 2 ** (counter - j) , snake_case , snake_case ) for k in range(number_of_qubits // 2 ): quantum_circuit.swap(snake_case , number_of_qubits - k - 1 ) # measure all the qubits quantum_circuit.measure(snake_case , snake_case ) # simulate with 10000 shots lowercase__: str = Aer.get_backend('qasm_simulator' ) lowercase__: Union[str, Any] = execute(snake_case , snake_case , shots=1_00_00 ) return job.result().get_counts(snake_case ) if __name__ == "__main__": print( F'''Total count for quantum fourier transform state is: \ {quantum_fourier_transform(3)}''' )
288
0
'''simple docstring''' from typing import List, Optional, Tuple, Union import torch from ...schedulers import DDIMScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class UpperCamelCase__ ( lowercase__ ): """simple docstring""" def __init__( self , snake_case , snake_case ): '''simple docstring''' super().__init__() # make sure scheduler can always be converted to DDIM UpperCAmelCase : Any = DDIMScheduler.from_config(scheduler.config ) self.register_modules(unet=snake_case , scheduler=snake_case ) @torch.no_grad() def __call__( self , snake_case = 1 , snake_case = None , snake_case = 0.0 , snake_case = 5_0 , snake_case = None , snake_case = "pil" , snake_case = True , ): '''simple docstring''' if isinstance(self.unet.config.sample_size , snake_case ): UpperCAmelCase : Dict = ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size, ) else: UpperCAmelCase : List[Any] = (batch_size, self.unet.config.in_channels, *self.unet.config.sample_size) if isinstance(snake_case , snake_case ) and len(snake_case ) != batch_size: raise ValueError( f"You have passed a list of generators of length {len(snake_case )}, but requested an effective batch" f" size of {batch_size}. Make sure the batch size matches the length of the generators." ) UpperCAmelCase : Union[str, Any] = randn_tensor(snake_case , generator=snake_case , device=self.device , dtype=self.unet.dtype ) # set step values self.scheduler.set_timesteps(snake_case ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output UpperCAmelCase : List[Any] = self.unet(snake_case , snake_case ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 UpperCAmelCase : Union[str, Any] = self.scheduler.step( snake_case , snake_case , snake_case , eta=snake_case , use_clipped_model_output=snake_case , generator=snake_case ).prev_sample UpperCAmelCase : int = (image / 2 + 0.5).clamp(0 , 1 ) UpperCAmelCase : Dict = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": UpperCAmelCase : Dict = self.numpy_to_pil(snake_case ) if not return_dict: return (image,) return ImagePipelineOutput(images=snake_case )
311
'''simple docstring''' def lowercase ( __magic_name__ ): '''simple docstring''' if number > 0: raise ValueError("input must be a negative integer" ) UpperCAmelCase : List[Any] = len(bin(__magic_name__ )[3:] ) UpperCAmelCase : Optional[Any] = bin(abs(__magic_name__ ) - (1 << binary_number_length) )[3:] UpperCAmelCase : Tuple = ( ( "1" + "0" * (binary_number_length - len(__magic_name__ )) + twos_complement_number ) if number < 0 else "0" ) return "0b" + twos_complement_number if __name__ == "__main__": import doctest doctest.testmod()
311
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_speech_available, is_torch_available _lowerCamelCase : Optional[int] = { '''configuration_audio_spectrogram_transformer''': [ '''AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ASTConfig''', ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Union[str, Any] = [ '''AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ASTForAudioClassification''', '''ASTModel''', '''ASTPreTrainedModel''', ] try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Dict = ['''ASTFeatureExtractor'''] if TYPE_CHECKING: from .configuration_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ASTConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ASTForAudioClassification, ASTModel, ASTPreTrainedModel, ) try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_audio_spectrogram_transformer import ASTFeatureExtractor else: import sys _lowerCamelCase : str = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
350
import argparse import torch from torch import nn from transformers import MBartConfig, MBartForConditionalGeneration def a_ ( __lowercase : Dict ) -> int: _snake_case = [ 'encoder.version', 'decoder.version', 'model.encoder.version', 'model.decoder.version', '_float_tensor', 'decoder.output_projection.weight', ] for k in ignore_keys: state_dict.pop(__lowercase , __lowercase ) def a_ ( __lowercase : List[str] ) -> str: _snake_case , _snake_case = emb.weight.shape _snake_case = nn.Linear(__lowercase , __lowercase , bias=__lowercase ) _snake_case = emb.weight.data return lin_layer def a_ ( __lowercase : Optional[int] , __lowercase : Optional[Any]="facebook/mbart-large-en-ro" , __lowercase : Union[str, Any]=False , __lowercase : Optional[Any]=False ) -> int: _snake_case = torch.load(__lowercase , map_location='cpu' )['model'] remove_ignore_keys_(__lowercase ) _snake_case = state_dict['encoder.embed_tokens.weight'].shape[0] _snake_case = MBartConfig.from_pretrained(__lowercase , vocab_size=__lowercase ) if mbart_aa and finetuned: _snake_case = 'relu' _snake_case = state_dict['decoder.embed_tokens.weight'] _snake_case = MBartForConditionalGeneration(__lowercase ) model.model.load_state_dict(__lowercase ) if finetuned: _snake_case = make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": _lowerCamelCase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''fairseq_path''', type=str, help='''bart.large, bart.large.cnn or a path to a model.pt on local filesystem.''' ) parser.add_argument('''pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument( '''--hf_config''', default='''facebook/mbart-large-cc25''', type=str, help='''Which huggingface architecture to use: mbart-large''', ) parser.add_argument('''--mbart_50''', action='''store_true''', help='''whether the model is mMART-50 checkpoint''') parser.add_argument('''--finetuned''', action='''store_true''', help='''whether the model is a fine-tuned checkpoint''') _lowerCamelCase : List[str] = parser.parse_args() _lowerCamelCase : Tuple = convert_fairseq_mbart_checkpoint_from_disk( args.fairseq_path, hf_config_path=args.hf_config, finetuned=args.finetuned, mbart_aa=args.mbart_aa ) model.save_pretrained(args.pytorch_dump_folder_path)
130
0
'''simple docstring''' from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import TensorType, is_torch_available, logging UpperCamelCase__ : Union[str, Any] = logging.get_logger(__name__) UpperCamelCase__ : Tuple = { '''Helsinki-NLP/opus-mt-en-de''': '''https://huggingface.co/Helsinki-NLP/opus-mt-en-de/resolve/main/config.json''', # See all Marian models at https://huggingface.co/models?filter=marian } class _UpperCamelCase ( lowerCamelCase__ ): '''simple docstring''' _A : int = '''marian''' _A : Optional[Any] = ['''past_key_values'''] _A : Optional[int] = {'''num_attention_heads''': '''encoder_attention_heads''', '''hidden_size''': '''d_model'''} def __init__( self : int , lowerCAmelCase__ : Tuple=5_8_1_0_1 , lowerCAmelCase__ : List[Any]=None , lowerCAmelCase__ : Any=1_0_2_4 , lowerCAmelCase__ : Dict=1_2 , lowerCAmelCase__ : Tuple=4_0_9_6 , lowerCAmelCase__ : int=1_6 , lowerCAmelCase__ : List[Any]=1_2 , lowerCAmelCase__ : List[Any]=4_0_9_6 , lowerCAmelCase__ : int=1_6 , lowerCAmelCase__ : List[str]=0.0 , lowerCAmelCase__ : Optional[int]=0.0 , lowerCAmelCase__ : List[Any]=True , lowerCAmelCase__ : str=True , lowerCAmelCase__ : Optional[Any]="gelu" , lowerCAmelCase__ : Dict=1_0_2_4 , lowerCAmelCase__ : Any=0.1 , lowerCAmelCase__ : Any=0.0 , lowerCAmelCase__ : Optional[int]=0.0 , lowerCAmelCase__ : List[str]=0.02 , lowerCAmelCase__ : Optional[Any]=5_8_1_0_0 , lowerCAmelCase__ : Optional[int]=False , lowerCAmelCase__ : Tuple=5_8_1_0_0 , lowerCAmelCase__ : Optional[int]=0 , lowerCAmelCase__ : int=0 , lowerCAmelCase__ : Optional[int]=True , **lowerCAmelCase__ : str , ): """simple docstring""" __SCREAMING_SNAKE_CASE : Any = vocab_size __SCREAMING_SNAKE_CASE : Dict = decoder_vocab_size or vocab_size __SCREAMING_SNAKE_CASE : int = max_position_embeddings __SCREAMING_SNAKE_CASE : Optional[Any] = d_model __SCREAMING_SNAKE_CASE : Tuple = encoder_ffn_dim __SCREAMING_SNAKE_CASE : int = encoder_layers __SCREAMING_SNAKE_CASE : str = encoder_attention_heads __SCREAMING_SNAKE_CASE : Optional[int] = decoder_ffn_dim __SCREAMING_SNAKE_CASE : Union[str, Any] = decoder_layers __SCREAMING_SNAKE_CASE : Dict = decoder_attention_heads __SCREAMING_SNAKE_CASE : str = dropout __SCREAMING_SNAKE_CASE : Tuple = attention_dropout __SCREAMING_SNAKE_CASE : Optional[int] = activation_dropout __SCREAMING_SNAKE_CASE : Any = activation_function __SCREAMING_SNAKE_CASE : Optional[Any] = init_std __SCREAMING_SNAKE_CASE : int = encoder_layerdrop __SCREAMING_SNAKE_CASE : Union[str, Any] = decoder_layerdrop __SCREAMING_SNAKE_CASE : Any = use_cache __SCREAMING_SNAKE_CASE : str = encoder_layers __SCREAMING_SNAKE_CASE : Dict = scale_embedding # scale factor will be sqrt(d_model) if True __SCREAMING_SNAKE_CASE : List[Any] = share_encoder_decoder_embeddings super().__init__( pad_token_id=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__ , is_encoder_decoder=lowerCAmelCase__ , decoder_start_token_id=lowerCAmelCase__ , forced_eos_token_id=lowerCAmelCase__ , **lowerCAmelCase__ , ) class _UpperCamelCase ( lowerCamelCase__ ): '''simple docstring''' @property # Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.inputs def UpperCamelCase__ ( self : Tuple ): """simple docstring""" if self.task in ["default", "seq2seq-lm"]: __SCREAMING_SNAKE_CASE : Any = OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """encoder_sequence"""}), ("""attention_mask""", {0: """batch""", 1: """encoder_sequence"""}), ] ) if self.use_past: __SCREAMING_SNAKE_CASE : Dict = {0: """batch"""} __SCREAMING_SNAKE_CASE : int = {0: """batch""", 1: """past_decoder_sequence + sequence"""} else: __SCREAMING_SNAKE_CASE : Tuple = {0: """batch""", 1: """decoder_sequence"""} __SCREAMING_SNAKE_CASE : Union[str, Any] = {0: """batch""", 1: """decoder_sequence"""} if self.use_past: self.fill_with_past_key_values_(lowerCAmelCase__ , direction="""inputs""" ) elif self.task == "causal-lm": # TODO: figure this case out. __SCREAMING_SNAKE_CASE : Any = OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """encoder_sequence"""}), ("""attention_mask""", {0: """batch""", 1: """encoder_sequence"""}), ] ) if self.use_past: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Union[str, Any] = self.num_layers for i in range(lowerCAmelCase__ ): __SCREAMING_SNAKE_CASE : Tuple = {0: """batch""", 2: """past_sequence + sequence"""} __SCREAMING_SNAKE_CASE : Tuple = {0: """batch""", 2: """past_sequence + sequence"""} else: __SCREAMING_SNAKE_CASE : int = OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """encoder_sequence"""}), ("""attention_mask""", {0: """batch""", 1: """encoder_sequence"""}), ("""decoder_input_ids""", {0: """batch""", 1: """decoder_sequence"""}), ("""decoder_attention_mask""", {0: """batch""", 1: """decoder_sequence"""}), ] ) return common_inputs @property # Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.outputs def UpperCamelCase__ ( self : List[str] ): """simple docstring""" if self.task in ["default", "seq2seq-lm"]: __SCREAMING_SNAKE_CASE : str = super().outputs else: __SCREAMING_SNAKE_CASE : Union[str, Any] = super(lowerCAmelCase__ , self ).outputs if self.use_past: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : List[str] = self.num_layers for i in range(lowerCAmelCase__ ): __SCREAMING_SNAKE_CASE : int = {0: """batch""", 2: """past_sequence + sequence"""} __SCREAMING_SNAKE_CASE : Tuple = {0: """batch""", 2: """past_sequence + sequence"""} return common_outputs def UpperCamelCase__ ( self : int , lowerCAmelCase__ : PreTrainedTokenizer , lowerCAmelCase__ : int = -1 , lowerCAmelCase__ : int = -1 , lowerCAmelCase__ : bool = False , lowerCAmelCase__ : Optional[TensorType] = None , ): """simple docstring""" __SCREAMING_SNAKE_CASE : Any = self._generate_dummy_inputs_for_encoder_and_decoder( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # Generate decoder inputs __SCREAMING_SNAKE_CASE : List[Any] = seq_length if not self.use_past else 1 __SCREAMING_SNAKE_CASE : List[Any] = self._generate_dummy_inputs_for_encoder_and_decoder( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Union[str, Any] = {F"decoder_{name}": tensor for name, tensor in decoder_inputs.items()} __SCREAMING_SNAKE_CASE : List[str] = dict(**lowerCAmelCase__ , **lowerCAmelCase__ ) if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Optional[int] = common_inputs["""input_ids"""].shape __SCREAMING_SNAKE_CASE : Optional[int] = common_inputs["""decoder_input_ids"""].shape[1] __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Dict = self.num_attention_heads __SCREAMING_SNAKE_CASE : Any = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) __SCREAMING_SNAKE_CASE : str = decoder_seq_length + 3 __SCREAMING_SNAKE_CASE : int = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) __SCREAMING_SNAKE_CASE : Optional[Any] = torch.cat( [common_inputs["""decoder_attention_mask"""], torch.ones(lowerCAmelCase__ , lowerCAmelCase__ )] , dim=1 ) __SCREAMING_SNAKE_CASE : str = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Union[str, Any] = self.num_layers __SCREAMING_SNAKE_CASE : Optional[int] = min(lowerCAmelCase__ , lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[Any] = max(lowerCAmelCase__ , lowerCAmelCase__ ) - min_num_layers __SCREAMING_SNAKE_CASE : int = """encoder""" if num_encoder_layers > num_decoder_layers else """decoder""" for _ in range(lowerCAmelCase__ ): common_inputs["past_key_values"].append( ( torch.zeros(lowerCAmelCase__ ), torch.zeros(lowerCAmelCase__ ), torch.zeros(lowerCAmelCase__ ), torch.zeros(lowerCAmelCase__ ), ) ) # TODO: test this. __SCREAMING_SNAKE_CASE : str = encoder_shape if remaining_side_name == """encoder""" else decoder_shape for _ in range(lowerCAmelCase__ , lowerCAmelCase__ ): common_inputs["past_key_values"].append((torch.zeros(lowerCAmelCase__ ), torch.zeros(lowerCAmelCase__ )) ) return common_inputs def UpperCamelCase__ ( self : List[Any] , lowerCAmelCase__ : PreTrainedTokenizer , lowerCAmelCase__ : int = -1 , lowerCAmelCase__ : int = -1 , lowerCAmelCase__ : bool = False , lowerCAmelCase__ : Optional[TensorType] = None , ): """simple docstring""" __SCREAMING_SNAKE_CASE : Union[str, Any] = self._generate_dummy_inputs_for_encoder_and_decoder( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Union[str, Any] = common_inputs["""input_ids"""].shape # Not using the same length for past_key_values __SCREAMING_SNAKE_CASE : str = seqlen + 2 __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Optional[Any] = self.num_layers __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Tuple = self.num_attention_heads __SCREAMING_SNAKE_CASE : Union[str, Any] = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) __SCREAMING_SNAKE_CASE : List[str] = common_inputs["""attention_mask"""].dtype __SCREAMING_SNAKE_CASE : int = torch.cat( [common_inputs["""attention_mask"""], torch.ones(lowerCAmelCase__ , lowerCAmelCase__ , dtype=lowerCAmelCase__ )] , dim=1 ) __SCREAMING_SNAKE_CASE : Tuple = [ (torch.zeros(lowerCAmelCase__ ), torch.zeros(lowerCAmelCase__ )) for _ in range(lowerCAmelCase__ ) ] return common_inputs def UpperCamelCase__ ( self : List[Any] , lowerCAmelCase__ : PreTrainedTokenizer , lowerCAmelCase__ : int = -1 , lowerCAmelCase__ : int = -1 , lowerCAmelCase__ : bool = False , lowerCAmelCase__ : Optional[TensorType] = None , ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[int] = compute_effective_axis_dimension( lowerCAmelCase__ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX __SCREAMING_SNAKE_CASE : List[Any] = tokenizer.num_special_tokens_to_add(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Union[str, Any] = compute_effective_axis_dimension( lowerCAmelCase__ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=lowerCAmelCase__ ) # Generate dummy inputs according to compute batch and sequence __SCREAMING_SNAKE_CASE : Any = [""" """.join([tokenizer.unk_token] ) * seq_length] * batch_size __SCREAMING_SNAKE_CASE : Optional[Any] = dict(tokenizer(lowerCAmelCase__ , return_tensors=lowerCAmelCase__ ) ) return common_inputs def UpperCamelCase__ ( self : Dict , lowerCAmelCase__ : PreTrainedTokenizer , lowerCAmelCase__ : int = -1 , lowerCAmelCase__ : int = -1 , lowerCAmelCase__ : bool = False , lowerCAmelCase__ : Optional[TensorType] = None , ): """simple docstring""" if self.task in ["default", "seq2seq-lm"]: __SCREAMING_SNAKE_CASE : List[str] = self._generate_dummy_inputs_for_default_and_seqaseq_lm( lowerCAmelCase__ , batch_size=lowerCAmelCase__ , seq_length=lowerCAmelCase__ , is_pair=lowerCAmelCase__ , framework=lowerCAmelCase__ ) else: __SCREAMING_SNAKE_CASE : Dict = self._generate_dummy_inputs_for_causal_lm( lowerCAmelCase__ , batch_size=lowerCAmelCase__ , seq_length=lowerCAmelCase__ , is_pair=lowerCAmelCase__ , framework=lowerCAmelCase__ ) return common_inputs def UpperCamelCase__ ( self : str , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Tuple ): """simple docstring""" if self.task in ["default", "seq2seq-lm"]: __SCREAMING_SNAKE_CASE : Tuple = super()._flatten_past_key_values_(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) else: __SCREAMING_SNAKE_CASE : List[str] = super(lowerCAmelCase__ , self )._flatten_past_key_values_( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) @property def UpperCamelCase__ ( self : Optional[Any] ): """simple docstring""" return 1E-4
112
'''simple docstring''' from collections.abc import Iterable from typing import Any class _UpperCamelCase : '''simple docstring''' def __init__( self : Optional[int] , lowerCAmelCase__ : int | None = None ): """simple docstring""" __SCREAMING_SNAKE_CASE : Union[str, Any] = value __SCREAMING_SNAKE_CASE : Node | None = None # Added in order to delete a node easier __SCREAMING_SNAKE_CASE : Node | None = None __SCREAMING_SNAKE_CASE : Node | None = None def __repr__( self : Optional[Any] ): """simple docstring""" from pprint import pformat if self.left is None and self.right is None: return str(self.value ) return pformat({F"{self.value}": (self.left, self.right)} , indent=1 ) class _UpperCamelCase : '''simple docstring''' def __init__( self : Optional[int] , lowerCAmelCase__ : Node | None = None ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = root def __str__( self : Union[str, Any] ): """simple docstring""" return str(self.root ) def UpperCamelCase__ ( self : Dict , lowerCAmelCase__ : Node , lowerCAmelCase__ : Node | None ): """simple docstring""" if new_children is not None: # reset its kids __SCREAMING_SNAKE_CASE : List[str] = node.parent if node.parent is not None: # reset its parent if self.is_right(lowerCAmelCase__ ): # If it is the right children __SCREAMING_SNAKE_CASE : Any = new_children else: __SCREAMING_SNAKE_CASE : int = new_children else: __SCREAMING_SNAKE_CASE : int = new_children def UpperCamelCase__ ( self : str , lowerCAmelCase__ : Node ): """simple docstring""" if node.parent and node.parent.right: return node == node.parent.right return False def UpperCamelCase__ ( self : List[Any] ): """simple docstring""" return self.root is None def UpperCamelCase__ ( self : Optional[Any] , lowerCAmelCase__ : str ): """simple docstring""" __SCREAMING_SNAKE_CASE : Union[str, Any] = Node(lowerCAmelCase__ ) # create a new Node if self.empty(): # if Tree is empty __SCREAMING_SNAKE_CASE : Optional[int] = new_node # set its root else: # Tree is not empty __SCREAMING_SNAKE_CASE : Optional[int] = self.root # from root if parent_node is None: return while True: # While we don't get to a leaf if value < parent_node.value: # We go left if parent_node.left is None: __SCREAMING_SNAKE_CASE : List[str] = new_node # We insert the new node in a leaf break else: __SCREAMING_SNAKE_CASE : Any = parent_node.left else: if parent_node.right is None: __SCREAMING_SNAKE_CASE : Tuple = new_node break else: __SCREAMING_SNAKE_CASE : List[str] = parent_node.right __SCREAMING_SNAKE_CASE : Tuple = parent_node def UpperCamelCase__ ( self : str , *lowerCAmelCase__ : List[Any] ): """simple docstring""" for value in values: self.__insert(lowerCAmelCase__ ) def UpperCamelCase__ ( self : List[str] , lowerCAmelCase__ : Union[str, Any] ): """simple docstring""" if self.empty(): raise IndexError("""Warning: Tree is empty! please use another.""" ) else: __SCREAMING_SNAKE_CASE : List[Any] = self.root # use lazy evaluation here to avoid NoneType Attribute error while node is not None and node.value is not value: __SCREAMING_SNAKE_CASE : Any = node.left if value < node.value else node.right return node def UpperCamelCase__ ( self : List[Any] , lowerCAmelCase__ : Node | None = None ): """simple docstring""" if node is None: if self.root is None: return None __SCREAMING_SNAKE_CASE : Optional[Any] = self.root if not self.empty(): while node.right is not None: __SCREAMING_SNAKE_CASE : Tuple = node.right return node def UpperCamelCase__ ( self : Dict , lowerCAmelCase__ : Node | None = None ): """simple docstring""" if node is None: __SCREAMING_SNAKE_CASE : Union[str, Any] = self.root if self.root is None: return None if not self.empty(): __SCREAMING_SNAKE_CASE : Optional[Any] = self.root while node.left is not None: __SCREAMING_SNAKE_CASE : Any = node.left return node def UpperCamelCase__ ( self : str , lowerCAmelCase__ : int ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[str] = self.search(lowerCAmelCase__ ) # Look for the node with that label if node is not None: if node.left is None and node.right is None: # If it has no children self.__reassign_nodes(lowerCAmelCase__ , lowerCAmelCase__ ) elif node.left is None: # Has only right children self.__reassign_nodes(lowerCAmelCase__ , node.right ) elif node.right is None: # Has only left children self.__reassign_nodes(lowerCAmelCase__ , node.left ) else: __SCREAMING_SNAKE_CASE : Tuple = self.get_max( node.left ) # Gets the max value of the left branch self.remove(tmp_node.value ) # type: ignore __SCREAMING_SNAKE_CASE : Optional[Any] = ( tmp_node.value # type: ignore ) # Assigns the value to the node to delete and keep tree structure def UpperCamelCase__ ( self : Tuple , lowerCAmelCase__ : Node | None ): """simple docstring""" if node is not None: yield node # Preorder Traversal yield from self.preorder_traverse(node.left ) yield from self.preorder_traverse(node.right ) def UpperCamelCase__ ( self : Optional[int] , lowerCAmelCase__ : Optional[Any]=None ): """simple docstring""" if traversal_function is None: return self.preorder_traverse(self.root ) else: return traversal_function(self.root ) def UpperCamelCase__ ( self : str , lowerCAmelCase__ : list , lowerCAmelCase__ : Node | None ): """simple docstring""" if node: self.inorder(lowerCAmelCase__ , node.left ) arr.append(node.value ) self.inorder(lowerCAmelCase__ , node.right ) def UpperCamelCase__ ( self : int , lowerCAmelCase__ : int , lowerCAmelCase__ : Node ): """simple docstring""" __SCREAMING_SNAKE_CASE : list[int] = [] self.inorder(lowerCAmelCase__ , lowerCAmelCase__ ) # append all values to list using inorder traversal return arr[k - 1] def lowerCAmelCase_ ( _lowerCamelCase: Node | None ): __SCREAMING_SNAKE_CASE : Optional[Any] = [] if curr_node is not None: __SCREAMING_SNAKE_CASE : Optional[int] = postorder(curr_node.left ) + postorder(curr_node.right ) + [curr_node] return node_list def lowerCAmelCase_ ( ): __SCREAMING_SNAKE_CASE : str = (8, 3, 6, 1, 10, 14, 13, 4, 7) __SCREAMING_SNAKE_CASE : Dict = BinarySearchTree() for i in testlist: t.insert(_lowerCamelCase ) # Prints all the elements of the list in order traversal print(_lowerCamelCase ) if t.search(6 ) is not None: print("""The value 6 exists""" ) else: print("""The value 6 doesn't exist""" ) if t.search(-1 ) is not None: print("""The value -1 exists""" ) else: print("""The value -1 doesn't exist""" ) if not t.empty(): print("""Max Value: """ , t.get_max().value ) # type: ignore print("""Min Value: """ , t.get_min().value ) # type: ignore for i in testlist: t.remove(_lowerCamelCase ) print(_lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
112
1
"""simple docstring""" _a = { 0: """0""", 1: """1""", 2: """2""", 3: """3""", 4: """4""", 5: """5""", 6: """6""", 7: """7""", 8: """8""", 9: """9""", 10: """a""", 11: """b""", 12: """c""", 13: """d""", 14: """e""", 15: """f""", } def lowerCamelCase__ ( __snake_case ) -> str: """simple docstring""" assert type(__a ) in (int, float) and decimal == int(__a ) _UpperCamelCase = int(__a ) _UpperCamelCase = '''''' _UpperCamelCase = False if decimal < 0: _UpperCamelCase = True decimal *= -1 while decimal > 0: _UpperCamelCase = divmod(__a, 16 ) _UpperCamelCase = values[remainder] + hexadecimal _UpperCamelCase = '''0x''' + hexadecimal if negative: _UpperCamelCase = '''-''' + hexadecimal return hexadecimal if __name__ == "__main__": import doctest doctest.testmod()
365
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING import torch from ..models.auto import AutoModelForVisualQuestionAnswering, AutoProcessor from ..utils import requires_backends from .base import PipelineTool if TYPE_CHECKING: from PIL import Image class _UpperCAmelCase( lowerCamelCase ): lowercase__ = 'dandelin/vilt-b32-finetuned-vqa' lowercase__ = ( 'This is a tool that answers a question about an image. It takes an input named `image` which should be the ' 'image containing the information, as well as a `question` which should be the question in English. It ' 'returns a text that is the answer to the question.' ) lowercase__ = 'image_qa' lowercase__ = AutoProcessor lowercase__ = AutoModelForVisualQuestionAnswering lowercase__ = ['image', 'text'] lowercase__ = ['text'] def __init__( self , *__a , **__a) -> int: '''simple docstring''' requires_backends(self , ['''vision''']) super().__init__(*__a , **__a) def UpperCAmelCase ( self , __a , __a) -> Dict: '''simple docstring''' return self.pre_processor(__a , __a , return_tensors='''pt''') def UpperCAmelCase ( self , __a) -> Tuple: '''simple docstring''' with torch.no_grad(): return self.model(**__a).logits def UpperCAmelCase ( self , __a) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = outputs.argmax(-1).item() return self.model.config.idalabel[idx]
100
0
"""simple docstring""" from ...utils import is_torch_available, is_transformers_available if is_transformers_available() and is_torch_available(): from .pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings, VQDiffusionPipeline
33
"""simple docstring""" from ...utils import is_torch_available, is_transformers_available if is_transformers_available() and is_torch_available(): from .pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings, VQDiffusionPipeline
33
1
'''simple docstring''' # Lint as: python3 import dataclasses import re from dataclasses import dataclass from functools import total_ordering from typing import Optional, Union __lowerCAmelCase = re.compile(r'''^(?P<major>\d+)''' r'''\.(?P<minor>\d+)''' r'''\.(?P<patch>\d+)$''') @total_ordering @dataclass class __magic_name__ : lowerCAmelCase : str lowerCAmelCase : Optional[str] = None lowerCAmelCase : Optional[Union[str, int]] = None lowerCAmelCase : Optional[Union[str, int]] = None lowerCAmelCase : Optional[Union[str, int]] = None def __lowercase ( self : Optional[int] ): _a , _a , _a : int = _str_to_version_tuple(self.version_str ) def __repr__( self : Union[str, Any] ): return F"""{self.tuple[0]}.{self.tuple[1]}.{self.tuple[2]}""" @property def __lowercase ( self : Union[str, Any] ): return self.major, self.minor, self.patch def __lowercase ( self : Dict ,_UpperCAmelCase : Tuple ): if isinstance(_UpperCAmelCase ,_UpperCAmelCase ): return Version(_UpperCAmelCase ) elif isinstance(_UpperCAmelCase ,_UpperCAmelCase ): return other raise TypeError(F"""{other} (type {type(_UpperCAmelCase )}) cannot be compared to version.""" ) def __eq__( self : List[str] ,_UpperCAmelCase : int ): try: _a : Tuple = self._validate_operand(_UpperCAmelCase ) except (TypeError, ValueError): return False else: return self.tuple == other.tuple def __lt__( self : str ,_UpperCAmelCase : Optional[int] ): _a : Tuple = self._validate_operand(_UpperCAmelCase ) return self.tuple < other.tuple def __hash__( self : List[str] ): return hash(_version_tuple_to_str(self.tuple ) ) @classmethod def __lowercase ( cls : Any ,_UpperCAmelCase : int ): _a : Optional[int] = {f.name for f in dataclasses.fields(cls )} return cls(**{k: v for k, v in dic.items() if k in field_names} ) def __lowercase ( self : List[str] ): return self.version_str def __lowerCamelCase ( lowerCAmelCase_ ) -> Dict: _a : List[str] = _VERSION_REG.match(lowerCAmelCase_ ) if not res: raise ValueError(f"""Invalid version '{version_str}'. Format should be x.y.z with {{x,y,z}} being digits.""" ) return tuple(int(lowerCAmelCase_ ) for v in [res.group('major' ), res.group('minor' ), res.group('patch' )] ) def __lowerCamelCase ( lowerCAmelCase_ ) -> Tuple: return ".".join(str(lowerCAmelCase_ ) for v in version_tuple )
107
'''simple docstring''' from __future__ import annotations import os from typing import Any import requests __lowerCAmelCase = '''https://api.github.com''' # https://docs.github.com/en/free-pro-team@latest/rest/reference/users#get-the-authenticated-user __lowerCAmelCase = BASE_URL + '''/user''' # https://github.com/settings/tokens __lowerCAmelCase = os.environ.get('''USER_TOKEN''', '''''') def __lowerCamelCase ( lowerCAmelCase_ ) -> dict[Any, Any]: _a : Union[str, Any] = { 'Authorization': f"""token {auth_token}""", 'Accept': 'application/vnd.github.v3+json', } return requests.get(lowerCAmelCase_ , headers=lowerCAmelCase_ ).json() if __name__ == "__main__": # pragma: no cover if USER_TOKEN: for key, value in fetch_github_info(USER_TOKEN).items(): print(f"""{key}: {value}""") else: raise ValueError('''\'USER_TOKEN\' field cannot be empty.''')
107
1
'''simple docstring''' import unittest from transformers import ( MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TextClassificationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow from .test_pipelines_common import ANY # These 2 model types require different inputs than those of the usual text models. lowercase_ = {"""LayoutLMv2Config""", """LayoutLMv3Config"""} @is_pipeline_test class a_ ( unittest.TestCase ): '''simple docstring''' UpperCamelCase = MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING UpperCamelCase = TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if model_mapping is not None: UpperCamelCase = {config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP} if tf_model_mapping is not None: UpperCamelCase = { config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP } @require_torch def snake_case_( self ) -> Tuple: _SCREAMING_SNAKE_CASE = pipeline( task="""text-classification""" , model="""hf-internal-testing/tiny-random-distilbert""" , framework="""pt""" ) _SCREAMING_SNAKE_CASE = text_classifier("""This is great !""" ) self.assertEqual(nested_simplify(A ) , [{"""label""": """LABEL_0""", """score""": 0.504}] ) _SCREAMING_SNAKE_CASE = text_classifier("""This is great !""" , top_k=2 ) self.assertEqual( nested_simplify(A ) , [{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}] ) _SCREAMING_SNAKE_CASE = text_classifier(["""This is great !""", """This is bad"""] , top_k=2 ) self.assertEqual( nested_simplify(A ) , [ [{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}], [{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}], ] , ) _SCREAMING_SNAKE_CASE = text_classifier("""This is great !""" , top_k=1 ) self.assertEqual(nested_simplify(A ) , [{"""label""": """LABEL_0""", """score""": 0.504}] ) # Legacy behavior _SCREAMING_SNAKE_CASE = text_classifier("""This is great !""" , return_all_scores=A ) self.assertEqual(nested_simplify(A ) , [{"""label""": """LABEL_0""", """score""": 0.504}] ) _SCREAMING_SNAKE_CASE = text_classifier("""This is great !""" , return_all_scores=A ) self.assertEqual( nested_simplify(A ) , [[{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}]] ) _SCREAMING_SNAKE_CASE = text_classifier(["""This is great !""", """Something else"""] , return_all_scores=A ) self.assertEqual( nested_simplify(A ) , [ [{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}], [{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}], ] , ) _SCREAMING_SNAKE_CASE = text_classifier(["""This is great !""", """Something else"""] , return_all_scores=A ) self.assertEqual( nested_simplify(A ) , [ {"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_0""", """score""": 0.504}, ] , ) @require_torch def snake_case_( self ) -> Tuple: import torch _SCREAMING_SNAKE_CASE = pipeline( task="""text-classification""" , model="""hf-internal-testing/tiny-random-distilbert""" , framework="""pt""" , device=torch.device("""cpu""" ) , ) _SCREAMING_SNAKE_CASE = text_classifier("""This is great !""" ) self.assertEqual(nested_simplify(A ) , [{"""label""": """LABEL_0""", """score""": 0.504}] ) @require_tf def snake_case_( self ) -> str: _SCREAMING_SNAKE_CASE = pipeline( task="""text-classification""" , model="""hf-internal-testing/tiny-random-distilbert""" , framework="""tf""" ) _SCREAMING_SNAKE_CASE = text_classifier("""This is great !""" ) self.assertEqual(nested_simplify(A ) , [{"""label""": """LABEL_0""", """score""": 0.504}] ) @slow @require_torch def snake_case_( self ) -> str: _SCREAMING_SNAKE_CASE = pipeline("""text-classification""" ) _SCREAMING_SNAKE_CASE = text_classifier("""This is great !""" ) self.assertEqual(nested_simplify(A ) , [{"""label""": """POSITIVE""", """score""": 1.0}] ) _SCREAMING_SNAKE_CASE = text_classifier("""This is bad !""" ) self.assertEqual(nested_simplify(A ) , [{"""label""": """NEGATIVE""", """score""": 1.0}] ) _SCREAMING_SNAKE_CASE = text_classifier("""Birds are a type of animal""" ) self.assertEqual(nested_simplify(A ) , [{"""label""": """POSITIVE""", """score""": 0.988}] ) @slow @require_tf def snake_case_( self ) -> List[str]: _SCREAMING_SNAKE_CASE = pipeline("""text-classification""" , framework="""tf""" ) _SCREAMING_SNAKE_CASE = text_classifier("""This is great !""" ) self.assertEqual(nested_simplify(A ) , [{"""label""": """POSITIVE""", """score""": 1.0}] ) _SCREAMING_SNAKE_CASE = text_classifier("""This is bad !""" ) self.assertEqual(nested_simplify(A ) , [{"""label""": """NEGATIVE""", """score""": 1.0}] ) _SCREAMING_SNAKE_CASE = text_classifier("""Birds are a type of animal""" ) self.assertEqual(nested_simplify(A ) , [{"""label""": """POSITIVE""", """score""": 0.988}] ) def snake_case_( self , A , A , A ) -> List[str]: _SCREAMING_SNAKE_CASE = TextClassificationPipeline(model=A , tokenizer=A ) return text_classifier, ["HuggingFace is in", "This is another test"] def snake_case_( self , A , A ) -> List[str]: _SCREAMING_SNAKE_CASE = text_classifier.model # Small inputs because BartTokenizer tiny has maximum position embeddings = 22 _SCREAMING_SNAKE_CASE = """HuggingFace is in""" _SCREAMING_SNAKE_CASE = text_classifier(A ) self.assertEqual(nested_simplify(A ) , [{"""label""": ANY(A ), """score""": ANY(A )}] ) self.assertTrue(outputs[0]["""label"""] in model.config.idalabel.values() ) _SCREAMING_SNAKE_CASE = ["""HuggingFace is in """, """Paris is in France"""] _SCREAMING_SNAKE_CASE = text_classifier(A ) self.assertEqual( nested_simplify(A ) , [{"""label""": ANY(A ), """score""": ANY(A )}, {"""label""": ANY(A ), """score""": ANY(A )}] , ) self.assertTrue(outputs[0]["""label"""] in model.config.idalabel.values() ) self.assertTrue(outputs[1]["""label"""] in model.config.idalabel.values() ) # Forcing to get all results with `top_k=None` # This is NOT the legacy format _SCREAMING_SNAKE_CASE = text_classifier(A , top_k=A ) _SCREAMING_SNAKE_CASE = len(model.config.idalabel.values() ) self.assertEqual( nested_simplify(A ) , [[{"""label""": ANY(A ), """score""": ANY(A )}] * N, [{"""label""": ANY(A ), """score""": ANY(A )}] * N] , ) _SCREAMING_SNAKE_CASE = {"""text""": """HuggingFace is in """, """text_pair""": """Paris is in France"""} _SCREAMING_SNAKE_CASE = text_classifier(A ) self.assertEqual( nested_simplify(A ) , {"""label""": ANY(A ), """score""": ANY(A )} , ) self.assertTrue(outputs["""label"""] in model.config.idalabel.values() ) # This might be used a text pair, but tokenizer + pipe interaction # makes it hard to understand that it's not using the pair properly # https://github.com/huggingface/transformers/issues/17305 # We disabled this usage instead as it was outputting wrong outputs. _SCREAMING_SNAKE_CASE = [["""HuggingFace is in """, """Paris is in France"""]] with self.assertRaises(A ): text_classifier(A ) # This used to be valid for doing text pairs # We're keeping it working because of backward compatibility _SCREAMING_SNAKE_CASE = text_classifier([[["""HuggingFace is in """, """Paris is in France"""]]] ) self.assertEqual( nested_simplify(A ) , [{"""label""": ANY(A ), """score""": ANY(A )}] , ) self.assertTrue(outputs[0]["""label"""] in model.config.idalabel.values() )
58
# Usage: # ./gen-card-facebook-wmt19.py import os from pathlib import Path def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: Optional[int] , SCREAMING_SNAKE_CASE_: Optional[int] , SCREAMING_SNAKE_CASE_: int ) -> List[str]: '''simple docstring''' A__ = { "en": "Machine learning is great, isn't it?", "ru": "Машинное обучение - это здорово, не так ли?", "de": "Maschinelles Lernen ist großartig, oder?", } # BLUE scores as follows: # "pair": [fairseq, transformers] A__ = { "ru-en": ["[41.3](http://matrix.statmt.org/matrix/output/1907?run_id=6937)", "39.20"], "en-ru": ["[36.4](http://matrix.statmt.org/matrix/output/1914?run_id=6724)", "33.47"], "en-de": ["[43.1](http://matrix.statmt.org/matrix/output/1909?run_id=6862)", "42.83"], "de-en": ["[42.3](http://matrix.statmt.org/matrix/output/1902?run_id=6750)", "41.35"], } A__ = F'{src_lang}-{tgt_lang}' A__ = F'\n---\nlanguage: \n- {src_lang}\n- {tgt_lang}\nthumbnail:\ntags:\n- translation\n- wmt19\n- facebook\nlicense: apache-2.0\ndatasets:\n- wmt19\nmetrics:\n- bleu\n---\n\n# FSMT\n\n## Model description\n\nThis is a ported version of [fairseq wmt19 transformer](https://github.com/pytorch/fairseq/blob/master/examples/wmt19/README.md) for {src_lang}-{tgt_lang}.\n\nFor more details, please see, [Facebook FAIR\'s WMT19 News Translation Task Submission](https://arxiv.org/abs/1907.06616).\n\nThe abbreviation FSMT stands for FairSeqMachineTranslation\n\nAll four models are available:\n\n* [wmt19-en-ru](https://huggingface.co/facebook/wmt19-en-ru)\n* [wmt19-ru-en](https://huggingface.co/facebook/wmt19-ru-en)\n* [wmt19-en-de](https://huggingface.co/facebook/wmt19-en-de)\n* [wmt19-de-en](https://huggingface.co/facebook/wmt19-de-en)\n\n## Intended uses & limitations\n\n#### How to use\n\n```python\nfrom transformers import FSMTForConditionalGeneration, FSMTTokenizer\nmname = "facebook/wmt19-{src_lang}-{tgt_lang}"\ntokenizer = FSMTTokenizer.from_pretrained(mname)\nmodel = FSMTForConditionalGeneration.from_pretrained(mname)\n\ninput = "{texts[src_lang]}"\ninput_ids = tokenizer.encode(input, return_tensors="pt")\noutputs = model.generate(input_ids)\ndecoded = tokenizer.decode(outputs[0], skip_special_tokens=True)\nprint(decoded) # {texts[tgt_lang]}\n\n```\n\n#### Limitations and bias\n\n- The original (and this ported model) doesn\'t seem to handle well inputs with repeated sub-phrases, [content gets truncated](https://discuss.huggingface.co/t/issues-with-translating-inputs-containing-repeated-phrases/981)\n\n## Training data\n\nPretrained weights were left identical to the original model released by fairseq. For more details, please, see the [paper](https://arxiv.org/abs/1907.06616).\n\n## Eval results\n\npair | fairseq | transformers\n-------|---------|----------\n{pair} | {scores[pair][0]} | {scores[pair][1]}\n\nThe score is slightly below the score reported by `fairseq`, since `transformers`` currently doesn\'t support:\n- model ensemble, therefore the best performing checkpoint was ported (``model4.pt``).\n- re-ranking\n\nThe score was calculated using this code:\n\n```bash\ngit clone https://github.com/huggingface/transformers\ncd transformers\nexport PAIR={pair}\nexport DATA_DIR=data/$PAIR\nexport SAVE_DIR=data/$PAIR\nexport BS=8\nexport NUM_BEAMS=15\nmkdir -p $DATA_DIR\nsacrebleu -t wmt19 -l $PAIR --echo src > $DATA_DIR/val.source\nsacrebleu -t wmt19 -l $PAIR --echo ref > $DATA_DIR/val.target\necho $PAIR\nPYTHONPATH="src:examples/seq2seq" python examples/seq2seq/run_eval.py facebook/wmt19-$PAIR $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS\n```\nnote: fairseq reports using a beam of 50, so you should get a slightly higher score if re-run with `--num_beams 50`.\n\n## Data Sources\n\n- [training, etc.](http://www.statmt.org/wmt19/)\n- [test set](http://matrix.statmt.org/test_sets/newstest2019.tgz?1556572561)\n\n\n### BibTeX entry and citation info\n\n```bibtex\n@inproceedings{{...,\n year={{2020}},\n title={{Facebook FAIR\'s WMT19 News Translation Task Submission}},\n author={{Ng, Nathan and Yee, Kyra and Baevski, Alexei and Ott, Myle and Auli, Michael and Edunov, Sergey}},\n booktitle={{Proc. of WMT}},\n}}\n```\n\n\n## TODO\n\n- port model ensemble (fairseq uses 4 model checkpoints)\n\n' os.makedirs(SCREAMING_SNAKE_CASE_ , exist_ok=SCREAMING_SNAKE_CASE_ ) A__ = os.path.join(SCREAMING_SNAKE_CASE_ , "README.md" ) print(F'Generating {path}' ) with open(SCREAMING_SNAKE_CASE_ , "w" , encoding="utf-8" ) as f: f.write(SCREAMING_SNAKE_CASE_ ) # make sure we are under the root of the project lowerCAmelCase__ = Path(__file__).resolve().parent.parent.parent lowerCAmelCase__ = repo_dir / """model_cards""" for model_name in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = model_name.split("""-""") lowerCAmelCase__ = model_cards_dir / """facebook""" / model_name write_model_card(model_card_dir, src_lang=src_lang, tgt_lang=tgt_lang)
68
0
"""simple docstring""" from numpy import exp, pi, sqrt def UpperCamelCase_ ( lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : float = 0.0 , lowerCAmelCase__ : float = 1.0 ) -> int: """simple docstring""" return 1 / sqrt(2 * pi * sigma**2 ) * exp(-((x - mu) ** 2) / (2 * sigma**2) ) if __name__ == "__main__": import doctest doctest.testmod()
289
"""simple docstring""" import argparse import os # New Code # import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils import find_executable_batch_size ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to ensure out-of-memory errors never # interrupt training, and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## lowercase__ : Optional[int] = 1_6 lowercase__ : List[str] = 3_2 def UpperCamelCase_ ( lowerCAmelCase__ : Accelerator , lowerCAmelCase__ : int = 16 ) -> Dict: """simple docstring""" lowerCAmelCase_ : Union[str, Any] = AutoTokenizer.from_pretrained('bert-base-cased' ) lowerCAmelCase_ : Union[str, Any] = load_dataset('glue' , 'mrpc' ) def tokenize_function(lowerCAmelCase__ : Tuple ): # max_length=None => use the model max length (it's actually the default) lowerCAmelCase_ : Dict = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=lowerCAmelCase__ , max_length=lowerCAmelCase__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): lowerCAmelCase_ : Dict = datasets.map( lowerCAmelCase__ , batched=lowerCAmelCase__ , remove_columns=['idx', 'sentence1', 'sentence2'] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowerCAmelCase_ : int = tokenized_datasets.rename_column('label' , 'labels' ) def collate_fn(lowerCAmelCase__ : List[str] ): # On TPU it's best to pad everything to the same length or training will be very slow. lowerCAmelCase_ : Any = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": lowerCAmelCase_ : Dict = 16 elif accelerator.mixed_precision != "no": lowerCAmelCase_ : str = 8 else: lowerCAmelCase_ : str = None return tokenizer.pad( lowerCAmelCase__ , padding='longest' , max_length=lowerCAmelCase__ , pad_to_multiple_of=lowerCAmelCase__ , return_tensors='pt' , ) # Instantiate dataloaders. lowerCAmelCase_ : List[Any] = DataLoader( tokenized_datasets['train'] , shuffle=lowerCAmelCase__ , collate_fn=lowerCAmelCase__ , batch_size=lowerCAmelCase__ ) lowerCAmelCase_ : Tuple = DataLoader( tokenized_datasets['validation'] , shuffle=lowerCAmelCase__ , collate_fn=lowerCAmelCase__ , batch_size=lowerCAmelCase__ ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""", None) == "1": from accelerate.test_utils.training import mocked_dataloaders lowercase__ : int = mocked_dataloaders # noqa: F811 def UpperCamelCase_ ( lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Optional[Any] ) -> Optional[int]: """simple docstring""" if os.environ.get('TESTING_MOCKED_DATALOADERS' , lowerCAmelCase__ ) == "1": lowerCAmelCase_ : Optional[int] = 2 # Initialize accelerator lowerCAmelCase_ : str = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowerCAmelCase_ : Optional[int] = config['lr'] lowerCAmelCase_ : Tuple = int(config['num_epochs'] ) lowerCAmelCase_ : int = int(config['seed'] ) lowerCAmelCase_ : str = int(config['batch_size'] ) lowerCAmelCase_ : str = evaluate.load('glue' , 'mrpc' ) # New Code # # We now can define an inner training loop function. It should take a batch size as the only parameter, # and build the dataloaders in there. # It also gets our decorator @find_executable_batch_size(starting_batch_size=lowerCAmelCase__ ) def inner_training_loop(lowerCAmelCase__ : Optional[int] ): # And now just move everything below under this function # We need to bring in the Accelerator object from earlier nonlocal accelerator # And reset all of its attributes that could hold onto any memory: accelerator.free_memory() # Then we can declare the model, optimizer, and everything else: set_seed(lowerCAmelCase__ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowerCAmelCase_ : str = AutoModelForSequenceClassification.from_pretrained('bert-base-cased' , return_dict=lowerCAmelCase__ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). lowerCAmelCase_ : int = model.to(accelerator.device ) # Instantiate optimizer lowerCAmelCase_ : List[Any] = AdamW(params=model.parameters() , lr=lowerCAmelCase__ ) lowerCAmelCase_ ,lowerCAmelCase_ : Any = get_dataloaders(lowerCAmelCase__ , lowerCAmelCase__ ) # Instantiate scheduler lowerCAmelCase_ : Dict = get_linear_schedule_with_warmup( optimizer=lowerCAmelCase__ , num_warmup_steps=100 , num_training_steps=(len(lowerCAmelCase__ ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowerCAmelCase_ ,lowerCAmelCase_ ,lowerCAmelCase_ ,lowerCAmelCase_ ,lowerCAmelCase_ : List[Any] = accelerator.prepare( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # Now we train the model for epoch in range(lowerCAmelCase__ ): model.train() for step, batch in enumerate(lowerCAmelCase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) lowerCAmelCase_ : List[str] = model(**lowerCAmelCase__ ) lowerCAmelCase_ : Optional[Any] = outputs.loss accelerator.backward(lowerCAmelCase__ ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(lowerCAmelCase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): lowerCAmelCase_ : Union[str, Any] = model(**lowerCAmelCase__ ) lowerCAmelCase_ : List[Any] = outputs.logits.argmax(dim=-1 ) lowerCAmelCase_ ,lowerCAmelCase_ : Optional[Any] = accelerator.gather_for_metrics((predictions, batch['labels']) ) metric.add_batch( predictions=lowerCAmelCase__ , references=lowerCAmelCase__ , ) lowerCAmelCase_ : str = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"epoch {epoch}:" , lowerCAmelCase__ ) # New Code # # And call it at the end with no arguments # Note: You could also refactor this outside of your training loop function inner_training_loop() def UpperCamelCase_ ( ) -> Optional[Any]: """simple docstring""" lowerCAmelCase_ : int = argparse.ArgumentParser(description='Simple example of training script.' ) parser.add_argument( '--mixed_precision' , type=lowerCAmelCase__ , default=lowerCAmelCase__ , choices=['no', 'fp16', 'bf16', 'fp8'] , help='Whether to use mixed precision. Choose' 'between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.' 'and an Nvidia Ampere GPU.' , ) parser.add_argument('--cpu' , action='store_true' , help='If passed, will train on the CPU.' ) lowerCAmelCase_ : str = parser.parse_args() lowerCAmelCase_ : Union[str, Any] = {'lr': 2e-5, 'num_epochs': 3, 'seed': 42, 'batch_size': 16} training_function(lowerCAmelCase__ , lowerCAmelCase__ ) if __name__ == "__main__": main()
289
1
"""simple docstring""" import warnings from ...utils import logging from .image_processing_segformer import SegformerImageProcessor _a = logging.get_logger(__name__) class _lowerCAmelCase ( lowercase ): """simple docstring""" def __init__( self : int, *UpperCAmelCase__ : Dict, **UpperCAmelCase__ : Optional[Any] ): warnings.warn( "The class SegformerFeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use SegformerImageProcessor instead.", UpperCAmelCase__, ) super().__init__(*UpperCAmelCase__, **UpperCAmelCase__ )
17
import requests def A ( lowercase , lowercase ) -> None: '''simple docstring''' UpperCamelCase = {'Content-Type': 'application/json'} UpperCamelCase = requests.post(lowercase , json={'text': message_body} , headers=lowercase ) if response.status_code != 200: UpperCamelCase = ( 'Request to slack returned an error ' f'''{response.status_code}, the response is:\n{response.text}''' ) raise ValueError(lowercase ) if __name__ == "__main__": # Set the slack url to the one provided by Slack when you create the webhook at # https://my.slack.com/services/new/incoming-webhook/ send_slack_message("<YOUR MESSAGE BODY>", "<SLACK CHANNEL URL>")
222
0
"""simple docstring""" from __future__ import annotations from typing import Any class __magic_name__ : '''simple docstring''' def __init__( self , _a ): """simple docstring""" lowerCamelCase = num_of_nodes lowerCamelCase = [] lowerCamelCase = {} def _lowerCAmelCase ( self , _a , _a , _a ): """simple docstring""" self.m_edges.append([u_node, v_node, weight] ) def _lowerCAmelCase ( self , _a ): """simple docstring""" if self.m_component[u_node] == u_node: return u_node return self.find_component(self.m_component[u_node] ) def _lowerCAmelCase ( self , _a ): """simple docstring""" if self.m_component[u_node] != u_node: for k in self.m_component: lowerCamelCase = self.find_component(_a ) def _lowerCAmelCase ( self , _a , _a , _a ): """simple docstring""" if component_size[u_node] <= component_size[v_node]: lowerCamelCase = v_node component_size[v_node] += component_size[u_node] self.set_component(_a ) elif component_size[u_node] >= component_size[v_node]: lowerCamelCase = self.find_component(_a ) component_size[u_node] += component_size[v_node] self.set_component(_a ) def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase = [] lowerCamelCase = 0 lowerCamelCase = [-1] * self.m_num_of_nodes # A list of components (initialized to all of the nodes) for node in range(self.m_num_of_nodes ): self.m_component.update({node: node} ) component_size.append(1 ) lowerCamelCase = self.m_num_of_nodes while num_of_components > 1: for edge in self.m_edges: lowerCamelCase , lowerCamelCase , lowerCamelCase = edge lowerCamelCase = self.m_component[u] lowerCamelCase = self.m_component[v] if u_component != v_component: for component in (u_component, v_component): if ( minimum_weight_edge[component] == -1 or minimum_weight_edge[component][2] > w ): lowerCamelCase = [u, v, w] for edge in minimum_weight_edge: if isinstance(_a , _a ): lowerCamelCase , lowerCamelCase , lowerCamelCase = edge lowerCamelCase = self.m_component[u] lowerCamelCase = self.m_component[v] if u_component != v_component: mst_weight += w self.union(_a , _a , _a ) print(f'Added edge [{u} - {v}]\nAdded weight: {w}\n' ) num_of_components -= 1 lowerCamelCase = [-1] * self.m_num_of_nodes print(f'The total weight of the minimal spanning tree is: {mst_weight}' ) def a__ ( ) -> None: pass if __name__ == "__main__": import doctest doctest.testmod()
168
"""simple docstring""" def a__ ( snake_case__ , snake_case__ ) -> int: return number | (1 << position) def a__ ( snake_case__ , snake_case__ ) -> int: return number & ~(1 << position) def a__ ( snake_case__ , snake_case__ ) -> int: return number ^ (1 << position) def a__ ( snake_case__ , snake_case__ ) -> bool: return ((number >> position) & 1) == 1 def a__ ( snake_case__ , snake_case__ ) -> int: return int((number & (1 << position)) != 0 ) if __name__ == "__main__": import doctest doctest.testmod()
168
1
'''simple docstring''' from __future__ import annotations from statistics import mean def SCREAMING_SNAKE_CASE_ (UpperCamelCase , UpperCamelCase , UpperCamelCase ) -> list[int]: lowerCamelCase__ : Any = [0] * no_of_processes lowerCamelCase__ : Optional[int] = [0] * no_of_processes # Initialize remaining_time to waiting_time. for i in range(UpperCamelCase ): lowerCamelCase__ : Optional[Any] = burst_time[i] lowerCamelCase__ : list[int] = [] lowerCamelCase__ : List[Any] = 0 lowerCamelCase__ : Tuple = 0 # When processes are not completed, # A process whose arrival time has passed \ # and has remaining execution time is put into the ready_process. # The shortest process in the ready_process, target_process is executed. while completed != no_of_processes: lowerCamelCase__ : int = [] lowerCamelCase__ : Optional[int] = -1 for i in range(UpperCamelCase ): if (arrival_time[i] <= total_time) and (remaining_time[i] > 0): ready_process.append(UpperCamelCase ) if len(UpperCamelCase ) > 0: lowerCamelCase__ : Union[str, Any] = ready_process[0] for i in ready_process: if remaining_time[i] < remaining_time[target_process]: lowerCamelCase__ : int = i total_time += burst_time[target_process] completed += 1 lowerCamelCase__ : Optional[Any] = 0 lowerCamelCase__ : List[str] = ( total_time - arrival_time[target_process] - burst_time[target_process] ) else: total_time += 1 return waiting_time def SCREAMING_SNAKE_CASE_ (UpperCamelCase , UpperCamelCase , UpperCamelCase ) -> list[int]: lowerCamelCase__ : Optional[int] = [0] * no_of_processes for i in range(UpperCamelCase ): lowerCamelCase__ : int = burst_time[i] + waiting_time[i] return turn_around_time if __name__ == "__main__": print('''[TEST CASE 01]''') _A : int =4 _A : Any =[2, 5, 3, 7] _A : Dict =[0, 0, 0, 0] _A : int =calculate_waitingtime(arrival_time, burst_time, no_of_processes) _A : int =calculate_turnaroundtime( burst_time, no_of_processes, waiting_time ) # Printing the Result print('''PID\tBurst Time\tArrival Time\tWaiting Time\tTurnaround Time''') for i, process_id in enumerate(list(range(1, 5))): print( F'{process_id}\t{burst_time[i]}\t\t\t{arrival_time[i]}\t\t\t\t' F'{waiting_time[i]}\t\t\t\t{turn_around_time[i]}' ) print(F'\nAverage waiting time = {mean(waiting_time):.5f}') print(F'Average turnaround time = {mean(turn_around_time):.5f}')
41
'''simple docstring''' import tempfile import unittest import numpy as np import transformers from transformers import GPTaTokenizer, GPTJConfig, is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax, tooslow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax import jax.numpy as jnp from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) from transformers.models.gptj.modeling_flax_gptj import FlaxGPTJForCausalLM, FlaxGPTJModel if is_torch_available(): import torch class lowerCAmelCase_ : def __init__( self , _lowerCAmelCase , _lowerCAmelCase=14 , _lowerCAmelCase=7 , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=False , _lowerCAmelCase=True , _lowerCAmelCase=99 , _lowerCAmelCase=32 , _lowerCAmelCase=4 , _lowerCAmelCase=4 , _lowerCAmelCase=4 , _lowerCAmelCase=37 , _lowerCAmelCase="gelu" , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=512 , _lowerCAmelCase=0.02 , ) -> Any: _lowerCAmelCase = parent _lowerCAmelCase = batch_size _lowerCAmelCase = seq_length _lowerCAmelCase = is_training _lowerCAmelCase = use_input_mask _lowerCAmelCase = use_token_type_ids _lowerCAmelCase = use_labels _lowerCAmelCase = vocab_size _lowerCAmelCase = hidden_size _lowerCAmelCase = rotary_dim _lowerCAmelCase = num_hidden_layers _lowerCAmelCase = num_attention_heads _lowerCAmelCase = intermediate_size _lowerCAmelCase = hidden_act _lowerCAmelCase = hidden_dropout_prob _lowerCAmelCase = attention_probs_dropout_prob _lowerCAmelCase = max_position_embeddings _lowerCAmelCase = initializer_range _lowerCAmelCase = None _lowerCAmelCase = vocab_size - 1 _lowerCAmelCase = vocab_size - 1 _lowerCAmelCase = vocab_size - 1 def _snake_case ( self ) -> str: _lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowerCAmelCase = None if self.use_input_mask: _lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) _lowerCAmelCase = GPTJConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , use_cache=_lowerCAmelCase , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , rotary_dim=self.rotary_dim , ) return (config, input_ids, input_mask) def _snake_case ( self ) -> Any: _lowerCAmelCase = self.prepare_config_and_inputs() _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = config_and_inputs _lowerCAmelCase = {"input_ids": input_ids, "attention_mask": attention_mask} return config, inputs_dict def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Dict: _lowerCAmelCase = 20 _lowerCAmelCase = model_class_name(_lowerCAmelCase ) _lowerCAmelCase = model.init_cache(input_ids.shape[0] , _lowerCAmelCase ) _lowerCAmelCase = jnp.ones((input_ids.shape[0], max_decoder_length) , dtype="i4" ) _lowerCAmelCase = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) ) _lowerCAmelCase = model( input_ids[:, :-1] , attention_mask=_lowerCAmelCase , past_key_values=_lowerCAmelCase , position_ids=_lowerCAmelCase , ) _lowerCAmelCase = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype="i4" ) _lowerCAmelCase = model( input_ids[:, -1:] , attention_mask=_lowerCAmelCase , past_key_values=outputs_cache.past_key_values , position_ids=_lowerCAmelCase , ) _lowerCAmelCase = model(_lowerCAmelCase ) _lowerCAmelCase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=f'''Max diff is {diff}''' ) def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> int: _lowerCAmelCase = 20 _lowerCAmelCase = model_class_name(_lowerCAmelCase ) _lowerCAmelCase = jnp.concatenate( [attention_mask, jnp.zeros((attention_mask.shape[0], max_decoder_length - attention_mask.shape[1]) )] , axis=-1 , ) _lowerCAmelCase = model.init_cache(input_ids.shape[0] , _lowerCAmelCase ) _lowerCAmelCase = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) ) _lowerCAmelCase = model( input_ids[:, :-1] , attention_mask=_lowerCAmelCase , past_key_values=_lowerCAmelCase , position_ids=_lowerCAmelCase , ) _lowerCAmelCase = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype="i4" ) _lowerCAmelCase = model( input_ids[:, -1:] , past_key_values=outputs_cache.past_key_values , attention_mask=_lowerCAmelCase , position_ids=_lowerCAmelCase , ) _lowerCAmelCase = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase ) _lowerCAmelCase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=f'''Max diff is {diff}''' ) @require_flax class lowerCAmelCase_ ( __magic_name__ ,__magic_name__ ,unittest.TestCase ): __lowerCamelCase : str = (FlaxGPTJModel, FlaxGPTJForCausalLM) if is_flax_available() else () __lowerCamelCase : Optional[Any] = (FlaxGPTJForCausalLM,) if is_flax_available() else () def _snake_case ( self ) -> List[str]: _lowerCAmelCase = FlaxGPTJModelTester(self ) def _snake_case ( self ) -> List[str]: for model_class_name in self.all_model_classes: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) def _snake_case ( self ) -> int: for model_class_name in self.all_model_classes: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward_with_attn_mask( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) @tooslow def _snake_case ( self ) -> Any: _lowerCAmelCase = GPTaTokenizer.from_pretrained("gpt2" , pad_token="<|endoftext|>" , padding_side="left" ) _lowerCAmelCase = tokenizer(["Hello this is a long string", "Hey"] , return_tensors="np" , padding=_lowerCAmelCase , truncation=_lowerCAmelCase ) _lowerCAmelCase = FlaxGPTJForCausalLM.from_pretrained("EleutherAI/gpt-j-6B" ) _lowerCAmelCase = False _lowerCAmelCase = model.config.eos_token_id _lowerCAmelCase = jax.jit(model.generate ) _lowerCAmelCase = jit_generate( inputs["input_ids"] , attention_mask=inputs["attention_mask"] , pad_token_id=tokenizer.pad_token_id ).sequences _lowerCAmelCase = tokenizer.batch_decode(_lowerCAmelCase , skip_special_tokens=_lowerCAmelCase ) _lowerCAmelCase = [ "Hello this is a long string of text.\n\nI'm trying to get the text of the", "Hey, I'm a little late to the party. I'm going to", ] self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) @is_pt_flax_cross_test def _snake_case ( self ) -> Optional[Any]: _lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs _lowerCAmelCase = self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) _lowerCAmelCase = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class _lowerCAmelCase = model_class.__name__[4:] # Skip the "Flax" at the beginning _lowerCAmelCase = getattr(_lowerCAmelCase , _lowerCAmelCase ) _lowerCAmelCase , _lowerCAmelCase = pt_inputs["input_ids"].shape _lowerCAmelCase = np.random.randint(0 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(_lowerCAmelCase ): _lowerCAmelCase = 0 _lowerCAmelCase = 1 _lowerCAmelCase = 0 _lowerCAmelCase = 1 _lowerCAmelCase = pt_model_class(_lowerCAmelCase ).eval() _lowerCAmelCase = model_class(_lowerCAmelCase , dtype=jnp.floataa ) _lowerCAmelCase = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , _lowerCAmelCase ) _lowerCAmelCase = fx_state with torch.no_grad(): _lowerCAmelCase = pt_model(**_lowerCAmelCase ).to_tuple() _lowerCAmelCase = fx_model(**_lowerCAmelCase ).to_tuple() self.assertEqual(len(_lowerCAmelCase ) , len(_lowerCAmelCase ) , "Output lengths differ between Flax and PyTorch" ) for fx_output, pt_output in zip(_lowerCAmelCase , _lowerCAmelCase ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2 ) with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(_lowerCAmelCase ) _lowerCAmelCase = model_class.from_pretrained(_lowerCAmelCase , from_pt=_lowerCAmelCase ) _lowerCAmelCase = fx_model_loaded(**_lowerCAmelCase ).to_tuple() self.assertEqual( len(_lowerCAmelCase ) , len(_lowerCAmelCase ) , "Output lengths differ between Flax and PyTorch" ) for fx_output_loaded, pt_output in zip(_lowerCAmelCase , _lowerCAmelCase ): self.assert_almost_equals(fx_output_loaded[:, -1] , pt_output[:, -1].numpy() , 4E-2 ) @is_pt_flax_cross_test def _snake_case ( self ) -> Dict: _lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs _lowerCAmelCase = self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) _lowerCAmelCase = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class _lowerCAmelCase = model_class.__name__[4:] # Skip the "Flax" at the beginning _lowerCAmelCase = getattr(_lowerCAmelCase , _lowerCAmelCase ) _lowerCAmelCase = pt_model_class(_lowerCAmelCase ).eval() _lowerCAmelCase = model_class(_lowerCAmelCase , dtype=jnp.floataa ) _lowerCAmelCase = load_flax_weights_in_pytorch_model(_lowerCAmelCase , fx_model.params ) _lowerCAmelCase , _lowerCAmelCase = pt_inputs["input_ids"].shape _lowerCAmelCase = np.random.randint(0 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(_lowerCAmelCase ): _lowerCAmelCase = 0 _lowerCAmelCase = 1 _lowerCAmelCase = 0 _lowerCAmelCase = 1 # make sure weights are tied in PyTorch pt_model.tie_weights() with torch.no_grad(): _lowerCAmelCase = pt_model(**_lowerCAmelCase ).to_tuple() _lowerCAmelCase = fx_model(**_lowerCAmelCase ).to_tuple() self.assertEqual(len(_lowerCAmelCase ) , len(_lowerCAmelCase ) , "Output lengths differ between Flax and PyTorch" ) for fx_output, pt_output in zip(_lowerCAmelCase , _lowerCAmelCase ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2 ) with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(_lowerCAmelCase ) _lowerCAmelCase = pt_model_class.from_pretrained(_lowerCAmelCase , from_flax=_lowerCAmelCase ) with torch.no_grad(): _lowerCAmelCase = pt_model_loaded(**_lowerCAmelCase ).to_tuple() self.assertEqual( len(_lowerCAmelCase ) , len(_lowerCAmelCase ) , "Output lengths differ between Flax and PyTorch" ) for fx_output, pt_output in zip(_lowerCAmelCase , _lowerCAmelCase ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2 ) @tooslow def _snake_case ( self ) -> Union[str, Any]: for model_class_name in self.all_model_classes: _lowerCAmelCase = model_class_name.from_pretrained("EleutherAI/gpt-j-6B" ) _lowerCAmelCase = model(np.ones((1, 1) ) ) self.assertIsNotNone(_lowerCAmelCase )
158
0
def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :int , SCREAMING_SNAKE_CASE :int , SCREAMING_SNAKE_CASE :list[list[int]] ) -> int: def update_area_of_max_square(SCREAMING_SNAKE_CASE :int , SCREAMING_SNAKE_CASE :int ) -> int: # BASE CASE if row >= rows or col >= cols: return 0 __lowerCAmelCase : Optional[Any] = update_area_of_max_square(lowerCAmelCase__ , col + 1 ) __lowerCAmelCase : Optional[Any] = update_area_of_max_square(row + 1 , col + 1 ) __lowerCAmelCase : Any = update_area_of_max_square(row + 1 , lowerCAmelCase__ ) if mat[row][col]: __lowerCAmelCase : Union[str, Any] = 1 + min([right, diagonal, down] ) __lowerCAmelCase : List[Any] = max(largest_square_area[0] , lowerCAmelCase__ ) return sub_problem_sol else: return 0 __lowerCAmelCase : Optional[Any] = [0] update_area_of_max_square(0 , 0 ) return largest_square_area[0] def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :int , SCREAMING_SNAKE_CASE :int , SCREAMING_SNAKE_CASE :list[list[int]] ) -> int: def update_area_of_max_square_using_dp_array( SCREAMING_SNAKE_CASE :int , SCREAMING_SNAKE_CASE :int , SCREAMING_SNAKE_CASE :list[list[int]] ) -> int: if row >= rows or col >= cols: return 0 if dp_array[row][col] != -1: return dp_array[row][col] __lowerCAmelCase : Union[str, Any] = update_area_of_max_square_using_dp_array(lowerCAmelCase__ , col + 1 , lowerCAmelCase__ ) __lowerCAmelCase : str = update_area_of_max_square_using_dp_array(row + 1 , col + 1 , lowerCAmelCase__ ) __lowerCAmelCase : List[Any] = update_area_of_max_square_using_dp_array(row + 1 , lowerCAmelCase__ , lowerCAmelCase__ ) if mat[row][col]: __lowerCAmelCase : Union[str, Any] = 1 + min([right, diagonal, down] ) __lowerCAmelCase : str = max(largest_square_area[0] , lowerCAmelCase__ ) __lowerCAmelCase : str = sub_problem_sol return sub_problem_sol else: return 0 __lowerCAmelCase : List[Any] = [0] __lowerCAmelCase : int = [[-1] * cols for _ in range(lowerCAmelCase__ )] update_area_of_max_square_using_dp_array(0 , 0 , lowerCAmelCase__ ) return largest_square_area[0] def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :int , SCREAMING_SNAKE_CASE :int , SCREAMING_SNAKE_CASE :list[list[int]] ) -> int: __lowerCAmelCase : str = [[0] * (cols + 1) for _ in range(rows + 1 )] __lowerCAmelCase : Any = 0 for row in range(rows - 1 , -1 , -1 ): for col in range(cols - 1 , -1 , -1 ): __lowerCAmelCase : Tuple = dp_array[row][col + 1] __lowerCAmelCase : int = dp_array[row + 1][col + 1] __lowerCAmelCase : Optional[Any] = dp_array[row + 1][col] if mat[row][col] == 1: __lowerCAmelCase : Union[str, Any] = 1 + min(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) __lowerCAmelCase : Dict = max(dp_array[row][col] , lowerCAmelCase__ ) else: __lowerCAmelCase : Tuple = 0 return largest_square_area def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :int , SCREAMING_SNAKE_CASE :int , SCREAMING_SNAKE_CASE :list[list[int]] ) -> int: __lowerCAmelCase : List[str] = [0] * (cols + 1) __lowerCAmelCase : Tuple = [0] * (cols + 1) __lowerCAmelCase : List[str] = 0 for row in range(rows - 1 , -1 , -1 ): for col in range(cols - 1 , -1 , -1 ): __lowerCAmelCase : str = current_row[col + 1] __lowerCAmelCase : Optional[Any] = next_row[col + 1] __lowerCAmelCase : List[Any] = next_row[col] if mat[row][col] == 1: __lowerCAmelCase : int = 1 + min(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) __lowerCAmelCase : str = max(current_row[col] , lowerCAmelCase__ ) else: __lowerCAmelCase : int = 0 __lowerCAmelCase : Dict = current_row return largest_square_area if __name__ == "__main__": import doctest doctest.testmod() print(largest_square_area_in_matrix_bottom_up(2, 2, [[1, 1], [1, 1]]))
366
from ...configuration_utils import PretrainedConfig from ...utils import logging _UpperCAmelCase = logging.get_logger(__name__) _UpperCAmelCase = { 'microsoft/biogpt': 'https://huggingface.co/microsoft/biogpt/resolve/main/config.json', # See all BioGPT models at https://huggingface.co/models?filter=biogpt } class snake_case_ ( __lowercase ): A_ = 'biogpt' def __init__( self : int , _snake_case : Any=42384 , _snake_case : Any=1024 , _snake_case : List[Any]=24 , _snake_case : Any=16 , _snake_case : List[str]=4096 , _snake_case : Dict="gelu" , _snake_case : Tuple=0.1 , _snake_case : str=0.1 , _snake_case : Tuple=1024 , _snake_case : Tuple=0.02 , _snake_case : Tuple=1E-12 , _snake_case : Optional[int]=True , _snake_case : Optional[int]=True , _snake_case : Any=0.0 , _snake_case : Tuple=0.0 , _snake_case : str=1 , _snake_case : Dict=0 , _snake_case : str=2 , **_snake_case : Union[str, Any] , )->Dict: '''simple docstring''' __lowerCAmelCase : List[Any] = vocab_size __lowerCAmelCase : Dict = max_position_embeddings __lowerCAmelCase : str = hidden_size __lowerCAmelCase : Dict = num_hidden_layers __lowerCAmelCase : List[Any] = num_attention_heads __lowerCAmelCase : Optional[Any] = intermediate_size __lowerCAmelCase : int = hidden_act __lowerCAmelCase : Any = hidden_dropout_prob __lowerCAmelCase : Any = attention_probs_dropout_prob __lowerCAmelCase : Any = initializer_range __lowerCAmelCase : int = layer_norm_eps __lowerCAmelCase : Optional[int] = scale_embedding __lowerCAmelCase : List[Any] = use_cache __lowerCAmelCase : str = layerdrop __lowerCAmelCase : Dict = activation_dropout super().__init__(pad_token_id=_snake_case , bos_token_id=_snake_case , eos_token_id=_snake_case , **_snake_case )
232
0
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.test_utils import execute_subprocess_async def snake_case_ (_a : Any=None ): if subparsers is not None: UpperCAmelCase = subparsers.add_parser('''test''' ) else: UpperCAmelCase = argparse.ArgumentParser('''Accelerate test command''' ) parser.add_argument( '''--config_file''' , default=_a , help=( '''The path to use to store the config file. Will default to a file named default_config.yaml in the cache ''' '''location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ''' '''such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ''' '''with \'huggingface\'.''' ) , ) if subparsers is not None: parser.set_defaults(func=_a ) return parser def snake_case_ (_a : Tuple ): UpperCAmelCase = os.path.sep.join(__file__.split(os.path.sep )[:-2] + ['''test_utils''', '''scripts''', '''test_script.py'''] ) if args.config_file is None: UpperCAmelCase = script_name else: UpperCAmelCase = F"--config_file={args.config_file} {script_name}" UpperCAmelCase = ['''accelerate-launch'''] + test_args.split() UpperCAmelCase = execute_subprocess_async(_a , env=os.environ.copy() ) if result.returncode == 0: print('''Test is a success! You are ready for your distributed training!''' ) def snake_case_ (): UpperCAmelCase = test_command_parser() UpperCAmelCase = parser.parse_args() test_command(_a ) if __name__ == "__main__": main()
34
'''simple docstring''' import argparse import json import logging import os import sys from unittest.mock import patch from transformers.testing_utils import TestCasePlus, get_gpu_count, slow A =[ os.path.join(os.path.dirname(__file__), dirname) for dirname in [ 'text-classification', 'language-modeling', 'summarization', 'token-classification', 'question-answering', ] ] sys.path.extend(SRC_DIRS) if SRC_DIRS is not None: import run_clm_flax import run_flax_glue import run_flax_ner import run_mlm_flax import run_qa import run_summarization_flax import run_ta_mlm_flax logging.basicConfig(level=logging.DEBUG) A =logging.getLogger() def snake_case_ (): UpperCAmelCase = argparse.ArgumentParser() parser.add_argument('''-f''' ) UpperCAmelCase = parser.parse_args() return args.f def snake_case_ (_a : List[str] , _a : Union[str, Any]="eval" ): UpperCAmelCase = os.path.join(_a , F"{split}_results.json" ) if os.path.exists(_a ): with open(_a , '''r''' ) as f: return json.load(_a ) raise ValueError(F"can't find {path}" ) A =logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class _a ( __a ): def A ( self : Any ): '''simple docstring''' UpperCAmelCase = self.get_auto_remove_tmp_dir() UpperCAmelCase = f"\n run_glue.py\n --model_name_or_path distilbert-base-uncased\n --output_dir {tmp_dir}\n --train_file ./tests/fixtures/tests_samples/MRPC/train.csv\n --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --learning_rate=1e-4\n --eval_steps=2\n --warmup_steps=2\n --seed=42\n --max_seq_length=128\n ".split() with patch.object(lowercase , '''argv''' , lowercase ): run_flax_glue.main() UpperCAmelCase = get_results(lowercase ) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.75 ) @slow def A ( self : Any ): '''simple docstring''' UpperCAmelCase = self.get_auto_remove_tmp_dir() UpperCAmelCase = f"\n run_clm_flax.py\n --model_name_or_path distilgpt2\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --do_train\n --do_eval\n --block_size 128\n --per_device_train_batch_size 4\n --per_device_eval_batch_size 4\n --num_train_epochs 2\n --logging_steps 2 --eval_steps 2\n --output_dir {tmp_dir}\n --overwrite_output_dir\n ".split() with patch.object(lowercase , '''argv''' , lowercase ): run_clm_flax.main() UpperCAmelCase = get_results(lowercase ) self.assertLess(result['''eval_perplexity'''] , 100 ) @slow def A ( self : str ): '''simple docstring''' UpperCAmelCase = self.get_auto_remove_tmp_dir() UpperCAmelCase = f"\n run_summarization.py\n --model_name_or_path t5-small\n --train_file tests/fixtures/tests_samples/xsum/sample.json\n --validation_file tests/fixtures/tests_samples/xsum/sample.json\n --test_file tests/fixtures/tests_samples/xsum/sample.json\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --num_train_epochs=3\n --warmup_steps=8\n --do_train\n --do_eval\n --do_predict\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --predict_with_generate\n ".split() with patch.object(lowercase , '''argv''' , lowercase ): run_summarization_flax.main() UpperCAmelCase = get_results(lowercase , split='''test''' ) self.assertGreaterEqual(result['''test_rouge1'''] , 10 ) self.assertGreaterEqual(result['''test_rouge2'''] , 2 ) self.assertGreaterEqual(result['''test_rougeL'''] , 7 ) self.assertGreaterEqual(result['''test_rougeLsum'''] , 7 ) @slow def A ( self : int ): '''simple docstring''' UpperCAmelCase = self.get_auto_remove_tmp_dir() UpperCAmelCase = f"\n run_mlm.py\n --model_name_or_path distilroberta-base\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --max_seq_length 128\n --per_device_train_batch_size 4\n --per_device_eval_batch_size 4\n --logging_steps 2 --eval_steps 2\n --do_train\n --do_eval\n --num_train_epochs=1\n ".split() with patch.object(lowercase , '''argv''' , lowercase ): run_mlm_flax.main() UpperCAmelCase = get_results(lowercase ) self.assertLess(result['''eval_perplexity'''] , 42 ) @slow def A ( self : Tuple ): '''simple docstring''' UpperCAmelCase = self.get_auto_remove_tmp_dir() UpperCAmelCase = f"\n run_t5_mlm_flax.py\n --model_name_or_path t5-small\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --do_train\n --do_eval\n --max_seq_length 128\n --per_device_train_batch_size 4\n --per_device_eval_batch_size 4\n --num_train_epochs 2\n --logging_steps 2 --eval_steps 2\n --output_dir {tmp_dir}\n --overwrite_output_dir\n ".split() with patch.object(lowercase , '''argv''' , lowercase ): run_ta_mlm_flax.main() UpperCAmelCase = get_results(lowercase ) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.42 ) @slow def A ( self : Tuple ): '''simple docstring''' UpperCAmelCase = 7 if get_gpu_count() > 1 else 2 UpperCAmelCase = self.get_auto_remove_tmp_dir() UpperCAmelCase = f"\n run_flax_ner.py\n --model_name_or_path bert-base-uncased\n --train_file tests/fixtures/tests_samples/conll/sample.json\n --validation_file tests/fixtures/tests_samples/conll/sample.json\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --do_train\n --do_eval\n --warmup_steps=2\n --learning_rate=2e-4\n --logging_steps 2 --eval_steps 2\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=2\n --num_train_epochs={epochs}\n --seed 7\n ".split() with patch.object(lowercase , '''argv''' , lowercase ): run_flax_ner.main() UpperCAmelCase = get_results(lowercase ) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.75 ) self.assertGreaterEqual(result['''eval_f1'''] , 0.3 ) @slow def A ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase = self.get_auto_remove_tmp_dir() UpperCAmelCase = f"\n run_qa.py\n --model_name_or_path bert-base-uncased\n --version_2_with_negative\n --train_file tests/fixtures/tests_samples/SQUAD/sample.json\n --validation_file tests/fixtures/tests_samples/SQUAD/sample.json\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --num_train_epochs=3\n --warmup_steps=2\n --do_train\n --do_eval\n --logging_steps 2 --eval_steps 2\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n ".split() with patch.object(lowercase , '''argv''' , lowercase ): run_qa.main() UpperCAmelCase = get_results(lowercase ) self.assertGreaterEqual(result['''eval_f1'''] , 30 ) self.assertGreaterEqual(result['''eval_exact'''] , 30 )
34
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase__ = { "configuration_nllb_moe": [ "NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP", "NllbMoeConfig", ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ "NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST", "NllbMoeForConditionalGeneration", "NllbMoeModel", "NllbMoePreTrainedModel", "NllbMoeTop2Router", "NllbMoeSparseMLP", ] if TYPE_CHECKING: from .configuration_nllb_moe import ( NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP, NllbMoeConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nllb_moe import ( NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST, NllbMoeForConditionalGeneration, NllbMoeModel, NllbMoePreTrainedModel, NllbMoeSparseMLP, NllbMoeTopaRouter, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
351
"""simple docstring""" import math import random from typing import Any from .hill_climbing import SearchProblem def a__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = math.inf , _SCREAMING_SNAKE_CASE = -math.inf , _SCREAMING_SNAKE_CASE = math.inf , _SCREAMING_SNAKE_CASE = -math.inf , _SCREAMING_SNAKE_CASE = False , _SCREAMING_SNAKE_CASE = 100 , _SCREAMING_SNAKE_CASE = 0.01 , _SCREAMING_SNAKE_CASE = 1 , ): """simple docstring""" UpperCamelCase = False UpperCamelCase = search_prob UpperCamelCase = start_temperate UpperCamelCase = [] UpperCamelCase = 0 UpperCamelCase = None while not search_end: UpperCamelCase = current_state.score() if best_state is None or current_score > best_state.score(): UpperCamelCase = current_state scores.append(_SCREAMING_SNAKE_CASE ) iterations += 1 UpperCamelCase = None UpperCamelCase = current_state.get_neighbors() while ( next_state is None and neighbors ): # till we do not find a neighbor that we can move to UpperCamelCase = random.randint(0 , len(_SCREAMING_SNAKE_CASE ) - 1 ) # picking a random neighbor UpperCamelCase = neighbors.pop(_SCREAMING_SNAKE_CASE ) UpperCamelCase = picked_neighbor.score() - current_score if ( picked_neighbor.x > max_x or picked_neighbor.x < min_x or picked_neighbor.y > max_y or picked_neighbor.y < min_y ): continue # neighbor outside our bounds if not find_max: UpperCamelCase = change * -1 # in case we are finding minimum if change > 0: # improves the solution UpperCamelCase = picked_neighbor else: UpperCamelCase = (math.e) ** ( change / current_temp ) # probability generation function if random.random() < probability: # random number within probability UpperCamelCase = picked_neighbor UpperCamelCase = current_temp - (current_temp * rate_of_decrease) if current_temp < threshold_temp or next_state is None: # temperature below threshold, or could not find a suitable neighbor UpperCamelCase = True else: UpperCamelCase = next_state if visualization: from matplotlib import pyplot as plt plt.plot(range(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) plt.xlabel("Iterations" ) plt.ylabel("Function values" ) plt.show() return best_state if __name__ == "__main__": def a__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): """simple docstring""" return (x**2) + (y**2) # starting the problem with initial coordinates (12, 47) lowerCAmelCase__ = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) lowerCAmelCase__ = simulated_annealing( prob, find_max=False, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( '''The minimum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 ''' f'''and 50 > y > - 5 found via hill climbing: {local_min.score()}''' ) # starting the problem with initial coordinates (12, 47) lowerCAmelCase__ = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) lowerCAmelCase__ = simulated_annealing( prob, find_max=True, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( '''The maximum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 ''' f'''and 50 > y > - 5 found via hill climbing: {local_min.score()}''' ) def a__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): """simple docstring""" return (3 * x**2) - (6 * y) lowerCAmelCase__ = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) lowerCAmelCase__ = simulated_annealing(prob, find_max=False, visualization=True) print( '''The minimum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: ''' f'''{local_min.score()}''' ) lowerCAmelCase__ = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) lowerCAmelCase__ = simulated_annealing(prob, find_max=True, visualization=True) print( '''The maximum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: ''' f'''{local_min.score()}''' )
244
0
def A ( lowercase ) -> bool: '''simple docstring''' UpperCamelCase = 0 for ch in input_str: UpperCamelCase = ord(lowercase ) UpperCamelCase = pow(2 , lowercase ) # If we already turned on bit for current character's unicode if bitmap >> ch_unicode & 1 == 1: return False bitmap |= ch_bit_index_on return True if __name__ == "__main__": import doctest doctest.testmod()
222
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _UpperCAmelCase : Union[str, Any] = { "configuration_instructblip": [ "INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP", "InstructBlipConfig", "InstructBlipQFormerConfig", "InstructBlipVisionConfig", ], "processing_instructblip": ["InstructBlipProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : List[Any] = [ "INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "InstructBlipQFormerModel", "InstructBlipPreTrainedModel", "InstructBlipForConditionalGeneration", "InstructBlipVisionModel", ] if TYPE_CHECKING: from .configuration_instructblip import ( INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, InstructBlipConfig, InstructBlipQFormerConfig, InstructBlipVisionConfig, ) from .processing_instructblip import InstructBlipProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_instructblip import ( INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST, InstructBlipForConditionalGeneration, InstructBlipPreTrainedModel, InstructBlipQFormerModel, InstructBlipVisionModel, ) else: import sys _UpperCAmelCase : Union[str, Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
222
1
"""simple docstring""" import logging import math import os from dataclasses import dataclass, field from glob import glob from typing import Optional from torch.utils.data import ConcatDataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_WITH_LM_HEAD_MAPPING, AutoConfig, AutoModelWithLMHead, AutoTokenizer, DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForWholeWordMask, HfArgumentParser, LineByLineTextDataset, LineByLineWithRefDataset, PreTrainedTokenizer, TextDataset, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process lowerCamelCase_ = logging.getLogger(__name__) lowerCamelCase_ = list(MODEL_WITH_LM_HEAD_MAPPING.keys()) lowerCamelCase_ = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class _SCREAMING_SNAKE_CASE: SCREAMING_SNAKE_CASE_ : Optional[str] = field( default=A , metadata={ '''help''': ( '''The model checkpoint for weights initialization. Leave None if you want to train a model from''' ''' scratch.''' ) } , ) SCREAMING_SNAKE_CASE_ : Optional[str] = field( default=A , metadata={'''help''': '''If training from scratch, pass a model type from the list: ''' + ''', '''.join(A )} , ) SCREAMING_SNAKE_CASE_ : Optional[str] = field( default=A , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) SCREAMING_SNAKE_CASE_ : Optional[str] = field( default=A , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) SCREAMING_SNAKE_CASE_ : Optional[str] = field( default=A , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) @dataclass class _SCREAMING_SNAKE_CASE: SCREAMING_SNAKE_CASE_ : Optional[str] = field( default=A , metadata={'''help''': '''The input training data file (a text file).'''} ) SCREAMING_SNAKE_CASE_ : Optional[str] = field( default=A , metadata={ '''help''': ( '''The input training data files (multiple files in glob format). ''' '''Very often splitting large files to smaller files can prevent tokenizer going out of memory''' ) } , ) SCREAMING_SNAKE_CASE_ : Optional[str] = field( default=A , metadata={'''help''': '''An optional input evaluation data file to evaluate the perplexity on (a text file).'''} , ) SCREAMING_SNAKE_CASE_ : Optional[str] = field( default=A , metadata={'''help''': '''An optional input train ref data file for whole word mask in Chinese.'''} , ) SCREAMING_SNAKE_CASE_ : Optional[str] = field( default=A , metadata={'''help''': '''An optional input eval ref data file for whole word mask in Chinese.'''} , ) SCREAMING_SNAKE_CASE_ : bool = field( default=A , metadata={'''help''': '''Whether distinct lines of text in the dataset are to be handled as distinct sequences.'''} , ) SCREAMING_SNAKE_CASE_ : bool = field( default=A , metadata={'''help''': '''Train with masked-language modeling loss instead of language modeling.'''} ) SCREAMING_SNAKE_CASE_ : bool = field(default=A , metadata={'''help''': '''Whether ot not to use whole word mask.'''} ) SCREAMING_SNAKE_CASE_ : float = field( default=0.15 , metadata={'''help''': '''Ratio of tokens to mask for masked language modeling loss'''} ) SCREAMING_SNAKE_CASE_ : float = field( default=1 / 6 , metadata={ '''help''': ( '''Ratio of length of a span of masked tokens to surrounding context length for permutation language''' ''' modeling.''' ) } , ) SCREAMING_SNAKE_CASE_ : int = field( default=5 , metadata={'''help''': '''Maximum length of a span of masked tokens for permutation language modeling.'''} ) SCREAMING_SNAKE_CASE_ : int = field( default=-1 , metadata={ '''help''': ( '''Optional input sequence length after tokenization.''' '''The training dataset will be truncated in block of this size for training.''' '''Default to the model max input length for single sentence inputs (take into account special tokens).''' ) } , ) SCREAMING_SNAKE_CASE_ : bool = field( default=A , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) def __lowerCamelCase ( a_ : DataTrainingArguments , a_ : PreTrainedTokenizer , a_ : bool = False , a_ : Optional[str] = None , ) -> List[str]: def _dataset(a_ : int , a_ : Dict=None ): if args.line_by_line: if ref_path is not None: if not args.whole_word_mask or not args.mlm: raise ValueError('''You need to set world whole masking and mlm to True for Chinese Whole Word Mask''' ) return LineByLineWithRefDataset( tokenizer=a_ , file_path=a_ , block_size=args.block_size , ref_path=a_ , ) return LineByLineTextDataset(tokenizer=a_ , file_path=a_ , block_size=args.block_size ) else: return TextDataset( tokenizer=a_ , file_path=a_ , block_size=args.block_size , overwrite_cache=args.overwrite_cache , cache_dir=a_ , ) if evaluate: return _dataset(args.eval_data_file , args.eval_ref_file ) elif args.train_data_files: return ConcatDataset([_dataset(a_ ) for f in glob(args.train_data_files )] ) else: return _dataset(args.train_data_file , args.train_ref_file ) def __lowerCamelCase ( ) -> Optional[int]: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. __SCREAMING_SNAKE_CASE :Dict = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE :Union[str, Any] = parser.parse_args_into_dataclasses() if data_args.eval_data_file is None and training_args.do_eval: raise ValueError( '''Cannot do evaluation without an evaluation data file. Either supply a file to --eval_data_file ''' '''or remove the --do_eval argument.''' ) if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f'''Output directory ({training_args.output_dir}) already exists and is not empty. Use''' ''' --overwrite_output_dir to overcome.''' ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( '''Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s''' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('''Training/evaluation parameters %s''' , a_ ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. if model_args.config_name: __SCREAMING_SNAKE_CASE :List[Any] = AutoConfig.from_pretrained(model_args.config_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: __SCREAMING_SNAKE_CASE :List[Any] = AutoConfig.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: __SCREAMING_SNAKE_CASE :List[str] = CONFIG_MAPPING[model_args.model_type]() logger.warning('''You are instantiating a new config instance from scratch.''' ) if model_args.tokenizer_name: __SCREAMING_SNAKE_CASE :Optional[int] = AutoTokenizer.from_pretrained(model_args.tokenizer_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: __SCREAMING_SNAKE_CASE :Dict = AutoTokenizer.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: raise ValueError( '''You are instantiating a new tokenizer from scratch. This is not supported, but you can do it from another''' ''' script, save it,and load it from here, using --tokenizer_name''' ) if model_args.model_name_or_path: __SCREAMING_SNAKE_CASE :List[Any] = AutoModelWithLMHead.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=a_ , cache_dir=model_args.cache_dir , ) else: logger.info('''Training new model from scratch''' ) __SCREAMING_SNAKE_CASE :List[Any] = AutoModelWithLMHead.from_config(a_ ) model.resize_token_embeddings(len(a_ ) ) if config.model_type in ["bert", "roberta", "distilbert", "camembert"] and not data_args.mlm: raise ValueError( '''BERT and RoBERTa-like models do not have LM heads but masked LM heads. They must be run using the''' '''--mlm flag (masked language modeling).''' ) if data_args.block_size <= 0: __SCREAMING_SNAKE_CASE :Any = tokenizer.max_len # Our input block size will be the max possible for the model else: __SCREAMING_SNAKE_CASE :Optional[int] = min(data_args.block_size , tokenizer.max_len ) # Get datasets __SCREAMING_SNAKE_CASE :int = ( get_dataset(a_ , tokenizer=a_ , cache_dir=model_args.cache_dir ) if training_args.do_train else None ) __SCREAMING_SNAKE_CASE :List[Any] = ( get_dataset(a_ , tokenizer=a_ , evaluate=a_ , cache_dir=model_args.cache_dir ) if training_args.do_eval else None ) if config.model_type == "xlnet": __SCREAMING_SNAKE_CASE :Dict = DataCollatorForPermutationLanguageModeling( tokenizer=a_ , plm_probability=data_args.plm_probability , max_span_length=data_args.max_span_length , ) else: if data_args.mlm and data_args.whole_word_mask: __SCREAMING_SNAKE_CASE :Optional[int] = DataCollatorForWholeWordMask( tokenizer=a_ , mlm_probability=data_args.mlm_probability ) else: __SCREAMING_SNAKE_CASE :Optional[Any] = DataCollatorForLanguageModeling( tokenizer=a_ , mlm=data_args.mlm , mlm_probability=data_args.mlm_probability ) # Initialize our Trainer __SCREAMING_SNAKE_CASE :List[str] = Trainer( model=a_ , args=a_ , data_collator=a_ , train_dataset=a_ , eval_dataset=a_ , prediction_loss_only=a_ , ) # Training if training_args.do_train: __SCREAMING_SNAKE_CASE :Optional[Any] = ( model_args.model_name_or_path if model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ) else None ) trainer.train(model_path=a_ ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation __SCREAMING_SNAKE_CASE :List[str] = {} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) __SCREAMING_SNAKE_CASE :Union[str, Any] = trainer.evaluate() __SCREAMING_SNAKE_CASE :Dict = math.exp(eval_output['''eval_loss'''] ) __SCREAMING_SNAKE_CASE :int = {'''perplexity''': perplexity} __SCREAMING_SNAKE_CASE :Dict = os.path.join(training_args.output_dir , '''eval_results_lm.txt''' ) if trainer.is_world_master(): with open(a_ , '''w''' ) as writer: logger.info('''***** Eval results *****''' ) for key in sorted(result.keys() ): logger.info(''' %s = %s''' , a_ , str(result[key] ) ) writer.write('''%s = %s\n''' % (key, str(result[key] )) ) results.update(a_ ) return results def __lowerCamelCase ( a_ : Tuple ) -> Tuple: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
239
"""simple docstring""" import argparse import torch from transformers import ( UniSpeechSatConfig, UniSpeechSatForAudioFrameClassification, UniSpeechSatForSequenceClassification, UniSpeechSatForXVector, WavaVecaFeatureExtractor, logging, ) logging.set_verbosity_info() lowerCamelCase_ = logging.get_logger(__name__) def __lowerCamelCase ( a_ : Optional[int] , a_ : Optional[int] , a_ : Any ) -> List[Any]: __SCREAMING_SNAKE_CASE :Any = UniSpeechSatForSequenceClassification.from_pretrained(a_ , config=a_ ) __SCREAMING_SNAKE_CASE :int = downstream_dict['''projector.weight'''] __SCREAMING_SNAKE_CASE :List[Any] = downstream_dict['''projector.bias'''] __SCREAMING_SNAKE_CASE :Union[str, Any] = downstream_dict['''model.post_net.linear.weight'''] __SCREAMING_SNAKE_CASE :List[str] = downstream_dict['''model.post_net.linear.bias'''] return model def __lowerCamelCase ( a_ : Union[str, Any] , a_ : List[Any] , a_ : List[Any] ) -> Optional[int]: __SCREAMING_SNAKE_CASE :Any = UniSpeechSatForAudioFrameClassification.from_pretrained(a_ , config=a_ ) __SCREAMING_SNAKE_CASE :List[str] = downstream_dict['''model.linear.weight'''] __SCREAMING_SNAKE_CASE :Union[str, Any] = downstream_dict['''model.linear.bias'''] return model def __lowerCamelCase ( a_ : Optional[int] , a_ : Optional[Any] , a_ : int ) -> List[str]: __SCREAMING_SNAKE_CASE :List[str] = UniSpeechSatForXVector.from_pretrained(a_ , config=a_ ) __SCREAMING_SNAKE_CASE :Optional[int] = downstream_dict['''connector.weight'''] __SCREAMING_SNAKE_CASE :Tuple = downstream_dict['''connector.bias'''] for i, kernel_size in enumerate(hf_config.tdnn_kernel ): __SCREAMING_SNAKE_CASE :str = downstream_dict[ f'''model.framelevel_feature_extractor.module.{i}.kernel.weight''' ] __SCREAMING_SNAKE_CASE :int = downstream_dict[f'''model.framelevel_feature_extractor.module.{i}.kernel.bias'''] __SCREAMING_SNAKE_CASE :Any = downstream_dict['''model.utterancelevel_feature_extractor.linear1.weight'''] __SCREAMING_SNAKE_CASE :Optional[Any] = downstream_dict['''model.utterancelevel_feature_extractor.linear1.bias'''] __SCREAMING_SNAKE_CASE :Dict = downstream_dict['''model.utterancelevel_feature_extractor.linear2.weight'''] __SCREAMING_SNAKE_CASE :Optional[int] = downstream_dict['''model.utterancelevel_feature_extractor.linear2.bias'''] __SCREAMING_SNAKE_CASE :str = downstream_dict['''objective.W'''] return model @torch.no_grad() def __lowerCamelCase ( a_ : Optional[int] , a_ : Union[str, Any] , a_ : Any , a_ : Union[str, Any] ) -> List[str]: __SCREAMING_SNAKE_CASE :str = torch.load(a_ , map_location='''cpu''' ) __SCREAMING_SNAKE_CASE :str = checkpoint['''Downstream'''] __SCREAMING_SNAKE_CASE :str = UniSpeechSatConfig.from_pretrained(a_ ) __SCREAMING_SNAKE_CASE :List[str] = WavaVecaFeatureExtractor.from_pretrained( a_ , return_attention_mask=a_ , do_normalize=a_ ) __SCREAMING_SNAKE_CASE :Optional[Any] = hf_config.architectures[0] if arch.endswith('''ForSequenceClassification''' ): __SCREAMING_SNAKE_CASE :str = convert_classification(a_ , a_ , a_ ) elif arch.endswith('''ForAudioFrameClassification''' ): __SCREAMING_SNAKE_CASE :Tuple = convert_diarization(a_ , a_ , a_ ) elif arch.endswith('''ForXVector''' ): __SCREAMING_SNAKE_CASE :List[Any] = convert_xvector(a_ , a_ , a_ ) else: raise NotImplementedError(f'''S3PRL weights conversion is not supported for {arch}''' ) if hf_config.use_weighted_layer_sum: __SCREAMING_SNAKE_CASE :Dict = checkpoint['''Featurizer''']['''weights'''] hf_feature_extractor.save_pretrained(a_ ) hf_model.save_pretrained(a_ ) if __name__ == "__main__": lowerCamelCase_ = argparse.ArgumentParser() parser.add_argument( "--base_model_name", default=None, type=str, help="Name of the huggingface pretrained base model." ) parser.add_argument("--config_path", default=None, type=str, help="Path to the huggingface classifier config.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to the s3prl checkpoint.") parser.add_argument("--model_dump_path", default=None, type=str, help="Path to the final converted model.") lowerCamelCase_ = parser.parse_args() convert_saprl_checkpoint(args.base_model_name, args.config_path, args.checkpoint_path, args.model_dump_path)
239
1
'''simple docstring''' from __future__ import annotations import pandas as pd def lowercase__( __UpperCamelCase: list[int] ,__UpperCamelCase: list[int] ,__UpperCamelCase: int ): """simple docstring""" SCREAMING_SNAKE_CASE : Any = [0] * no_of_processes SCREAMING_SNAKE_CASE : int = [0] * no_of_processes # Copy the burst time into remaining_time[] for i in range(snake_case_ ): SCREAMING_SNAKE_CASE : Any = burst_time[i] SCREAMING_SNAKE_CASE : Tuple = 0 SCREAMING_SNAKE_CASE : Tuple = 0 SCREAMING_SNAKE_CASE : Optional[int] = 9_99_99_99_99 SCREAMING_SNAKE_CASE : Optional[Any] = 0 SCREAMING_SNAKE_CASE : Dict = False # Process until all processes are completed while complete != no_of_processes: for j in range(snake_case_ ): if arrival_time[j] <= increment_time and remaining_time[j] > 0: if remaining_time[j] < minm: SCREAMING_SNAKE_CASE : str = remaining_time[j] SCREAMING_SNAKE_CASE : Tuple = j SCREAMING_SNAKE_CASE : str = True if not check: increment_time += 1 continue remaining_time[short] -= 1 SCREAMING_SNAKE_CASE : Any = remaining_time[short] if minm == 0: SCREAMING_SNAKE_CASE : Optional[int] = 9_99_99_99_99 if remaining_time[short] == 0: complete += 1 SCREAMING_SNAKE_CASE : Optional[Any] = False # Find finish time of current process SCREAMING_SNAKE_CASE : Union[str, Any] = increment_time + 1 # Calculate waiting time SCREAMING_SNAKE_CASE : Optional[int] = finish_time - arrival_time[short] SCREAMING_SNAKE_CASE : List[Any] = finar - burst_time[short] if waiting_time[short] < 0: SCREAMING_SNAKE_CASE : Dict = 0 # Increment time increment_time += 1 return waiting_time def lowercase__( __UpperCamelCase: list[int] ,__UpperCamelCase: int ,__UpperCamelCase: list[int] ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = [0] * no_of_processes for i in range(snake_case_ ): SCREAMING_SNAKE_CASE : Dict = burst_time[i] + waiting_time[i] return turn_around_time def lowercase__( __UpperCamelCase: list[int] ,__UpperCamelCase: list[int] ,__UpperCamelCase: int ): """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = 0 SCREAMING_SNAKE_CASE : Union[str, Any] = 0 for i in range(snake_case_ ): SCREAMING_SNAKE_CASE : Optional[Any] = total_waiting_time + waiting_time[i] SCREAMING_SNAKE_CASE : List[str] = total_turn_around_time + turn_around_time[i] print(f"Average waiting time = {total_waiting_time / no_of_processes:.5f}" ) print('Average turn around time =' ,total_turn_around_time / no_of_processes ) if __name__ == "__main__": print("Enter how many process you want to analyze") UpperCamelCase_ = int(input()) UpperCamelCase_ = [0] * no_of_processes UpperCamelCase_ = [0] * no_of_processes UpperCamelCase_ = list(range(1, no_of_processes + 1)) for i in range(no_of_processes): print("Enter the arrival time and burst time for process:--" + str(i + 1)) UpperCamelCase_ , UpperCamelCase_ = map(int, input().split()) UpperCamelCase_ = calculate_waitingtime(arrival_time, burst_time, no_of_processes) UpperCamelCase_ = burst_time UpperCamelCase_ = no_of_processes UpperCamelCase_ = waiting_time UpperCamelCase_ = calculate_turnaroundtime(bt, n, wt) calculate_average_times(waiting_time, turn_around_time, no_of_processes) UpperCamelCase_ = pd.DataFrame( list(zip(processes, burst_time, arrival_time, waiting_time, turn_around_time)), columns=[ "Process", "BurstTime", "ArrivalTime", "WaitingTime", "TurnAroundTime", ], ) # Printing the dataFrame pd.set_option("display.max_rows", fcfs.shape[0] + 1) print(fcfs)
251
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a_ = logging.get_logger(__name__) a_ = { """bert-base-uncased""": """https://huggingface.co/bert-base-uncased/resolve/main/config.json""", """bert-large-uncased""": """https://huggingface.co/bert-large-uncased/resolve/main/config.json""", """bert-base-cased""": """https://huggingface.co/bert-base-cased/resolve/main/config.json""", """bert-large-cased""": """https://huggingface.co/bert-large-cased/resolve/main/config.json""", """bert-base-multilingual-uncased""": """https://huggingface.co/bert-base-multilingual-uncased/resolve/main/config.json""", """bert-base-multilingual-cased""": """https://huggingface.co/bert-base-multilingual-cased/resolve/main/config.json""", """bert-base-chinese""": """https://huggingface.co/bert-base-chinese/resolve/main/config.json""", """bert-base-german-cased""": """https://huggingface.co/bert-base-german-cased/resolve/main/config.json""", """bert-large-uncased-whole-word-masking""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/config.json""" ), """bert-large-cased-whole-word-masking""": ( """https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/config.json""" ), """bert-large-uncased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/config.json""" ), """bert-large-cased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/config.json""" ), """bert-base-cased-finetuned-mrpc""": """https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/config.json""", """bert-base-german-dbmdz-cased""": """https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/config.json""", """bert-base-german-dbmdz-uncased""": """https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/config.json""", """cl-tohoku/bert-base-japanese""": """https://huggingface.co/cl-tohoku/bert-base-japanese/resolve/main/config.json""", """cl-tohoku/bert-base-japanese-whole-word-masking""": ( """https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking/resolve/main/config.json""" ), """cl-tohoku/bert-base-japanese-char""": ( """https://huggingface.co/cl-tohoku/bert-base-japanese-char/resolve/main/config.json""" ), """cl-tohoku/bert-base-japanese-char-whole-word-masking""": ( """https://huggingface.co/cl-tohoku/bert-base-japanese-char-whole-word-masking/resolve/main/config.json""" ), """TurkuNLP/bert-base-finnish-cased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/config.json""" ), """TurkuNLP/bert-base-finnish-uncased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/config.json""" ), """wietsedv/bert-base-dutch-cased""": """https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/config.json""", # See all BERT models at https://huggingface.co/models?filter=bert } class __snake_case ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = """bert""" def __init__( self , __lowerCamelCase=3_0522 , __lowerCamelCase=768 , __lowerCamelCase=12 , __lowerCamelCase=12 , __lowerCamelCase=3072 , __lowerCamelCase="gelu" , __lowerCamelCase=0.1 , __lowerCamelCase=0.1 , __lowerCamelCase=512 , __lowerCamelCase=2 , __lowerCamelCase=0.0_2 , __lowerCamelCase=1e-1_2 , __lowerCamelCase=0 , __lowerCamelCase="absolute" , __lowerCamelCase=True , __lowerCamelCase=None , **__lowerCamelCase , ): '''simple docstring''' super().__init__(pad_token_id=__lowerCamelCase , **__lowerCamelCase ) __A : Dict = vocab_size __A : Any = hidden_size __A : str = num_hidden_layers __A : int = num_attention_heads __A : Optional[int] = hidden_act __A : List[Any] = intermediate_size __A : Tuple = hidden_dropout_prob __A : Optional[int] = attention_probs_dropout_prob __A : Optional[int] = max_position_embeddings __A : Optional[Any] = type_vocab_size __A : Optional[Any] = initializer_range __A : Dict = layer_norm_eps __A : Any = position_embedding_type __A : Optional[int] = use_cache __A : str = classifier_dropout class __snake_case ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" @property def UpperCamelCase__( self ): '''simple docstring''' if self.task == "multiple-choice": __A : str = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: __A : Tuple = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''token_type_ids''', dynamic_axis), ] )
179
0
import argparse import torch from transformers import ( WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaForAudioFrameClassification, WavaVecaForSequenceClassification, WavaVecaForXVector, logging, ) logging.set_verbosity_info() snake_case = logging.get_logger(__name__) def lowerCamelCase__ ( lowercase , lowercase , lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = WavaVecaForSequenceClassification.from_pretrained(lowercase , config=lowercase ) SCREAMING_SNAKE_CASE : Dict = downstream_dict["projector.weight"] SCREAMING_SNAKE_CASE : str = downstream_dict["projector.bias"] SCREAMING_SNAKE_CASE : List[Any] = downstream_dict["model.post_net.linear.weight"] SCREAMING_SNAKE_CASE : Any = downstream_dict["model.post_net.linear.bias"] return model def lowerCamelCase__ ( lowercase , lowercase , lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = WavaVecaForAudioFrameClassification.from_pretrained(lowercase , config=lowercase ) SCREAMING_SNAKE_CASE : List[str] = downstream_dict["model.linear.weight"] SCREAMING_SNAKE_CASE : Union[str, Any] = downstream_dict["model.linear.bias"] return model def lowerCamelCase__ ( lowercase , lowercase , lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = WavaVecaForXVector.from_pretrained(lowercase , config=lowercase ) SCREAMING_SNAKE_CASE : List[Any] = downstream_dict["connector.weight"] SCREAMING_SNAKE_CASE : List[str] = downstream_dict["connector.bias"] for i, kernel_size in enumerate(hf_config.tdnn_kernel ): SCREAMING_SNAKE_CASE : Dict = downstream_dict[ F'''model.framelevel_feature_extractor.module.{i}.kernel.weight''' ] SCREAMING_SNAKE_CASE : Optional[int] = downstream_dict[F'''model.framelevel_feature_extractor.module.{i}.kernel.bias'''] SCREAMING_SNAKE_CASE : Optional[int] = downstream_dict["model.utterancelevel_feature_extractor.linear1.weight"] SCREAMING_SNAKE_CASE : Optional[int] = downstream_dict["model.utterancelevel_feature_extractor.linear1.bias"] SCREAMING_SNAKE_CASE : Tuple = downstream_dict["model.utterancelevel_feature_extractor.linear2.weight"] SCREAMING_SNAKE_CASE : Any = downstream_dict["model.utterancelevel_feature_extractor.linear2.bias"] SCREAMING_SNAKE_CASE : List[Any] = downstream_dict["objective.W"] return model @torch.no_grad() def lowerCamelCase__ ( lowercase , lowercase , lowercase , lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : str = torch.load(lowercase , map_location="cpu" ) SCREAMING_SNAKE_CASE : Union[str, Any] = checkpoint["Downstream"] SCREAMING_SNAKE_CASE : Union[str, Any] = WavaVecaConfig.from_pretrained(lowercase ) SCREAMING_SNAKE_CASE : str = WavaVecaFeatureExtractor.from_pretrained( lowercase , return_attention_mask=lowercase , do_normalize=lowercase ) SCREAMING_SNAKE_CASE : Optional[int] = hf_config.architectures[0] if arch.endswith("ForSequenceClassification" ): SCREAMING_SNAKE_CASE : int = convert_classification(lowercase , lowercase , lowercase ) elif arch.endswith("ForAudioFrameClassification" ): SCREAMING_SNAKE_CASE : Union[str, Any] = convert_diarization(lowercase , lowercase , lowercase ) elif arch.endswith("ForXVector" ): SCREAMING_SNAKE_CASE : List[Any] = convert_xvector(lowercase , lowercase , lowercase ) else: raise NotImplementedError(F'''S3PRL weights conversion is not supported for {arch}''' ) if hf_config.use_weighted_layer_sum: SCREAMING_SNAKE_CASE : Dict = checkpoint["Featurizer"]["weights"] hf_feature_extractor.save_pretrained(lowercase ) hf_model.save_pretrained(lowercase ) if __name__ == "__main__": snake_case = argparse.ArgumentParser() parser.add_argument( """--base_model_name""", default=None, type=str, help="""Name of the huggingface pretrained base model.""" ) parser.add_argument("""--config_path""", default=None, type=str, help="""Path to the huggingface classifier config.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to the s3prl checkpoint.""") parser.add_argument("""--model_dump_path""", default=None, type=str, help="""Path to the final converted model.""") snake_case = parser.parse_args() convert_saprl_checkpoint(args.base_model_name, args.config_path, args.checkpoint_path, args.model_dump_path)
319
def lowerCamelCase__ ( lowercase , lowercase ): """simple docstring""" return int((input_a, input_a).count(1 ) != 0 ) def lowerCamelCase__ ( ): """simple docstring""" assert or_gate(0 , 0 ) == 0 assert or_gate(0 , 1 ) == 1 assert or_gate(1 , 0 ) == 1 assert or_gate(1 , 1 ) == 1 if __name__ == "__main__": print(or_gate(0, 1)) print(or_gate(1, 0)) print(or_gate(0, 0)) print(or_gate(1, 1))
319
1
'''simple docstring''' import os import sys from contextlib import contextmanager # Windows only if os.name == "nt": import ctypes import msvcrt # noqa class snake_case ( ctypes.Structure ): """simple docstring""" _lowerCamelCase = [("size", ctypes.c_int), ("visible", ctypes.c_byte)] def __snake_case ( ): if os.name == "nt": lowerCamelCase_ = CursorInfo() lowerCamelCase_ = ctypes.windll.kernelaa.GetStdHandle(-11 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(UpperCAmelCase_ , ctypes.byref(UpperCAmelCase_ ) ) lowerCamelCase_ = False ctypes.windll.kernelaa.SetConsoleCursorInfo(UpperCAmelCase_ , ctypes.byref(UpperCAmelCase_ ) ) elif os.name == "posix": sys.stdout.write("\033[?25l" ) sys.stdout.flush() def __snake_case ( ): if os.name == "nt": lowerCamelCase_ = CursorInfo() lowerCamelCase_ = ctypes.windll.kernelaa.GetStdHandle(-11 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(UpperCAmelCase_ , ctypes.byref(UpperCAmelCase_ ) ) lowerCamelCase_ = True ctypes.windll.kernelaa.SetConsoleCursorInfo(UpperCAmelCase_ , ctypes.byref(UpperCAmelCase_ ) ) elif os.name == "posix": sys.stdout.write("\033[?25h" ) sys.stdout.flush() @contextmanager def __snake_case ( ): try: hide_cursor() yield finally: show_cursor()
55
from __future__ import annotations from collections import namedtuple def __SCREAMING_SNAKE_CASE ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> tuple: '''simple docstring''' UpperCAmelCase = namedtuple('''result''' , '''name value''' ) if (voltage, current, power).count(0 ) != 1: raise ValueError('''Only one argument must be 0''' ) elif power < 0: raise ValueError( '''Power cannot be negative in any electrical/electronics system''' ) elif voltage == 0: return result('''voltage''' , power / current ) elif current == 0: return result('''current''' , power / voltage ) elif power == 0: return result('''power''' , float(round(abs(voltage * current ) , 2 ) ) ) else: raise ValueError('''Exactly one argument must be 0''' ) if __name__ == "__main__": import doctest doctest.testmod()
273
0
"""simple docstring""" __UpperCamelCase : str = { "A": ".-", "B": "-...", "C": "-.-.", "D": "-..", "E": ".", "F": "..-.", "G": "--.", "H": "....", "I": "..", "J": ".---", "K": "-.-", "L": ".-..", "M": "--", "N": "-.", "O": "---", "P": ".--.", "Q": "--.-", "R": ".-.", "S": "...", "T": "-", "U": "..-", "V": "...-", "W": ".--", "X": "-..-", "Y": "-.--", "Z": "--..", "1": ".----", "2": "..---", "3": "...--", "4": "....-", "5": ".....", "6": "-....", "7": "--...", "8": "---..", "9": "----.", "0": "-----", "&": ".-...", "@": ".--.-.", ":": "---...", ",": "--..--", ".": ".-.-.-", "'": ".----.", "\"": ".-..-.", "?": "..--..", "/": "-..-.", "=": "-...-", "+": ".-.-.", "-": "-....-", "(": "-.--.", ")": "-.--.-", "!": "-.-.--", " ": "/" } # Exclamation mark is not in ITU-R recommendation # fmt: on __UpperCamelCase : Union[str, Any] = {value: key for key, value in MORSE_CODE_DICT.items()} def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str ): return " ".join(MORSE_CODE_DICT[char] for char in message.upper() ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str ): return "".join(REVERSE_DICT[char] for char in message.split() ) def _SCREAMING_SNAKE_CASE (): lowerCAmelCase = "Morse code here!" print(_snake_case ) lowerCAmelCase = encrypt(_snake_case ) print(_snake_case ) lowerCAmelCase = decrypt(_snake_case ) print(_snake_case ) if __name__ == "__main__": main()
369
"""simple docstring""" from __future__ import annotations from decimal import Decimal from numpy import array def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : list[list[float]] ): lowerCAmelCase = Decimal # Check if the provided matrix has 2 rows and 2 columns # since this implementation only works for 2x2 matrices if len(_UpperCAmelCase ) == 2 and len(matrix[0] ) == 2 and len(matrix[1] ) == 2: # Calculate the determinant of the matrix lowerCAmelCase = float( d(matrix[0][0] ) * d(matrix[1][1] ) - d(matrix[1][0] ) * d(matrix[0][1] ) ) if determinant == 0: raise ValueError('This matrix has no inverse.' ) # Creates a copy of the matrix with swapped positions of the elements lowerCAmelCase = [[0.0, 0.0], [0.0, 0.0]] lowerCAmelCase ,lowerCAmelCase = matrix[1][1], matrix[0][0] lowerCAmelCase ,lowerCAmelCase = -matrix[1][0], -matrix[0][1] # Calculate the inverse of the matrix return [ [(float(d(_UpperCAmelCase ) ) / determinant) or 0.0 for n in row] for row in swapped_matrix ] elif ( len(_UpperCAmelCase ) == 3 and len(matrix[0] ) == 3 and len(matrix[1] ) == 3 and len(matrix[2] ) == 3 ): # Calculate the determinant of the matrix using Sarrus rule lowerCAmelCase = float( ( (d(matrix[0][0] ) * d(matrix[1][1] ) * d(matrix[2][2] )) + (d(matrix[0][1] ) * d(matrix[1][2] ) * d(matrix[2][0] )) + (d(matrix[0][2] ) * d(matrix[1][0] ) * d(matrix[2][1] )) ) - ( (d(matrix[0][2] ) * d(matrix[1][1] ) * d(matrix[2][0] )) + (d(matrix[0][1] ) * d(matrix[1][0] ) * d(matrix[2][2] )) + (d(matrix[0][0] ) * d(matrix[1][2] ) * d(matrix[2][1] )) ) ) if determinant == 0: raise ValueError('This matrix has no inverse.' ) # Creating cofactor matrix lowerCAmelCase = [ [d(0.0 ), d(0.0 ), d(0.0 )], [d(0.0 ), d(0.0 ), d(0.0 )], [d(0.0 ), d(0.0 ), d(0.0 )], ] lowerCAmelCase = (d(matrix[1][1] ) * d(matrix[2][2] )) - ( d(matrix[1][2] ) * d(matrix[2][1] ) ) lowerCAmelCase = -( (d(matrix[1][0] ) * d(matrix[2][2] )) - (d(matrix[1][2] ) * d(matrix[2][0] )) ) lowerCAmelCase = (d(matrix[1][0] ) * d(matrix[2][1] )) - ( d(matrix[1][1] ) * d(matrix[2][0] ) ) lowerCAmelCase = -( (d(matrix[0][1] ) * d(matrix[2][2] )) - (d(matrix[0][2] ) * d(matrix[2][1] )) ) lowerCAmelCase = (d(matrix[0][0] ) * d(matrix[2][2] )) - ( d(matrix[0][2] ) * d(matrix[2][0] ) ) lowerCAmelCase = -( (d(matrix[0][0] ) * d(matrix[2][1] )) - (d(matrix[0][1] ) * d(matrix[2][0] )) ) lowerCAmelCase = (d(matrix[0][1] ) * d(matrix[1][2] )) - ( d(matrix[0][2] ) * d(matrix[1][1] ) ) lowerCAmelCase = -( (d(matrix[0][0] ) * d(matrix[1][2] )) - (d(matrix[0][2] ) * d(matrix[1][0] )) ) lowerCAmelCase = (d(matrix[0][0] ) * d(matrix[1][1] )) - ( d(matrix[0][1] ) * d(matrix[1][0] ) ) # Transpose the cofactor matrix (Adjoint matrix) lowerCAmelCase = array(_UpperCAmelCase ) for i in range(3 ): for j in range(3 ): lowerCAmelCase = cofactor_matrix[j][i] # Inverse of the matrix using the formula (1/determinant) * adjoint matrix lowerCAmelCase = array(_UpperCAmelCase ) for i in range(3 ): for j in range(3 ): inverse_matrix[i][j] /= d(_UpperCAmelCase ) # Calculate the inverse of the matrix return [[float(d(_UpperCAmelCase ) ) or 0.0 for n in row] for row in inverse_matrix] raise ValueError('Please provide a matrix of size 2x2 or 3x3.' )
309
0
'''simple docstring''' import random from typing import Any def SCREAMING_SNAKE_CASE_ (UpperCamelCase ) -> list[Any]: for _ in range(len(UpperCamelCase ) ): lowerCamelCase__ : List[Any] = random.randint(0 , len(UpperCamelCase ) - 1 ) lowerCamelCase__ : Tuple = random.randint(0 , len(UpperCamelCase ) - 1 ) lowerCamelCase__ , lowerCamelCase__ : List[str] = data[b], data[a] return data if __name__ == "__main__": _A : int =[0, 1, 2, 3, 4, 5, 6, 7] _A : Optional[Any] =['''python''', '''says''', '''hello''', '''!'''] print('''Fisher-Yates Shuffle:''') print('''List''', integers, strings) print('''FY Shuffle''', fisher_yates_shuffle(integers), fisher_yates_shuffle(strings))
41
def __A ( __lowerCAmelCase )-> list: """simple docstring""" if len(__lowerCAmelCase ) < 2: return collection def circle_sort_util(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> bool: _UpperCAmelCase = False if low == high: return swapped _UpperCAmelCase = low _UpperCAmelCase = high while left < right: if collection[left] > collection[right]: _UpperCAmelCase , _UpperCAmelCase = ( collection[right], collection[left], ) _UpperCAmelCase = True left += 1 right -= 1 if left == right and collection[left] > collection[right + 1]: _UpperCAmelCase , _UpperCAmelCase = ( collection[right + 1], collection[left], ) _UpperCAmelCase = True _UpperCAmelCase = low + int((high - low) / 2 ) _UpperCAmelCase = circle_sort_util(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) _UpperCAmelCase = circle_sort_util(__lowerCAmelCase , mid + 1 , __lowerCAmelCase ) return swapped or left_swap or right_swap _UpperCAmelCase = True while is_not_sorted is True: _UpperCAmelCase = circle_sort_util(__lowerCAmelCase , 0 , len(__lowerCAmelCase ) - 1 ) return collection if __name__ == "__main__": _a = input('''Enter numbers separated by a comma:\n''').strip() _a = [int(item) for item in user_input.split(''',''')] print(circle_sort(unsorted))
39
0
"""simple docstring""" def __UpperCAmelCase ( UpperCAmelCase_ : int ) -> int: '''simple docstring''' if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): raise ValueError('Input must be an integer' ) if input_num <= 0: raise ValueError('Input must be positive' ) return sum( divisor for divisor in range(1 , input_num // 2 + 1 ) if input_num % divisor == 0 ) if __name__ == "__main__": import doctest doctest.testmod()
353
"""simple docstring""" import itertools import string from collections.abc import Generator, Iterable def __UpperCAmelCase ( UpperCAmelCase_ : Iterable[str] , UpperCAmelCase_ : int ) -> Generator[tuple[str, ...], None, None]: '''simple docstring''' __snake_case : Optional[int] = iter(UpperCAmelCase_ ) while True: __snake_case : Optional[int] = tuple(itertools.islice(UpperCAmelCase_ , UpperCAmelCase_ ) ) if not chunk: return yield chunk def __UpperCAmelCase ( UpperCAmelCase_ : str ) -> str: '''simple docstring''' __snake_case : Any = ''.join([c.upper() for c in dirty if c in string.ascii_letters] ) __snake_case : Union[str, Any] = '' if len(UpperCAmelCase_ ) < 2: return dirty for i in range(len(UpperCAmelCase_ ) - 1 ): clean += dirty[i] if dirty[i] == dirty[i + 1]: clean += "X" clean += dirty[-1] if len(UpperCAmelCase_ ) & 1: clean += "X" return clean def __UpperCAmelCase ( UpperCAmelCase_ : str ) -> list[str]: '''simple docstring''' __snake_case : List[str] = 'ABCDEFGHIKLMNOPQRSTUVWXYZ' # we're using a list instead of a '2d' array because it makes the math # for setting up the table and doing the actual encoding/decoding simpler __snake_case : Optional[int] = [] # copy key chars into the table if they are in `alphabet` ignoring duplicates for char in key.upper(): if char not in table and char in alphabet: table.append(UpperCAmelCase_ ) # fill the rest of the table in with the remaining alphabet chars for char in alphabet: if char not in table: table.append(UpperCAmelCase_ ) return table def __UpperCAmelCase ( UpperCAmelCase_ : str , UpperCAmelCase_ : str ) -> str: '''simple docstring''' __snake_case : str = generate_table(UpperCAmelCase_ ) __snake_case : Union[str, Any] = prepare_input(UpperCAmelCase_ ) __snake_case : Tuple = '' # https://en.wikipedia.org/wiki/Playfair_cipher#Description for chara, chara in chunker(UpperCAmelCase_ , 2 ): __snake_case , __snake_case : Any = divmod(table.index(UpperCAmelCase_ ) , 5 ) __snake_case , __snake_case : Tuple = divmod(table.index(UpperCAmelCase_ ) , 5 ) if rowa == rowa: ciphertext += table[rowa * 5 + (cola + 1) % 5] ciphertext += table[rowa * 5 + (cola + 1) % 5] elif cola == cola: ciphertext += table[((rowa + 1) % 5) * 5 + cola] ciphertext += table[((rowa + 1) % 5) * 5 + cola] else: # rectangle ciphertext += table[rowa * 5 + cola] ciphertext += table[rowa * 5 + cola] return ciphertext def __UpperCAmelCase ( UpperCAmelCase_ : str , UpperCAmelCase_ : str ) -> str: '''simple docstring''' __snake_case : Optional[int] = generate_table(UpperCAmelCase_ ) __snake_case : Any = '' # https://en.wikipedia.org/wiki/Playfair_cipher#Description for chara, chara in chunker(UpperCAmelCase_ , 2 ): __snake_case , __snake_case : Union[str, Any] = divmod(table.index(UpperCAmelCase_ ) , 5 ) __snake_case , __snake_case : Tuple = divmod(table.index(UpperCAmelCase_ ) , 5 ) if rowa == rowa: plaintext += table[rowa * 5 + (cola - 1) % 5] plaintext += table[rowa * 5 + (cola - 1) % 5] elif cola == cola: plaintext += table[((rowa - 1) % 5) * 5 + cola] plaintext += table[((rowa - 1) % 5) * 5 + cola] else: # rectangle plaintext += table[rowa * 5 + cola] plaintext += table[rowa * 5 + cola] return plaintext
95
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available UpperCamelCase__ : str = { 'configuration_altclip': [ 'ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP', 'AltCLIPConfig', 'AltCLIPTextConfig', 'AltCLIPVisionConfig', ], 'processing_altclip': ['AltCLIPProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : List[str] = [ 'ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST', 'AltCLIPPreTrainedModel', 'AltCLIPModel', 'AltCLIPTextModel', 'AltCLIPVisionModel', ] if TYPE_CHECKING: from .configuration_altclip import ( ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, AltCLIPConfig, AltCLIPTextConfig, AltCLIPVisionConfig, ) from .processing_altclip import AltCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_altclip import ( ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, AltCLIPModel, AltCLIPPreTrainedModel, AltCLIPTextModel, AltCLIPVisionModel, ) else: import sys UpperCamelCase__ : Optional[int] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
344
'''simple docstring''' import copy import json import os import tempfile from transformers import is_torch_available from .test_configuration_utils import config_common_kwargs class _lowerCAmelCase ( __A ): """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=True , _lowerCamelCase=None , **_lowerCamelCase ) -> Any: A_ : List[Any] = parent A_ : int = config_class A_ : int = has_text_modality A_ : str = kwargs A_ : int = common_properties def UpperCAmelCase_ ( self ) -> str: A_ : Optional[int] = self.config_class(**self.inputs_dict ) A_ : Optional[int] = ( ["""hidden_size""", """num_attention_heads""", """num_hidden_layers"""] if self.common_properties is None else self.common_properties ) # Add common fields for text models if self.has_text_modality: common_properties.extend(["""vocab_size"""] ) # Test that config has the common properties as getters for prop in common_properties: self.parent.assertTrue(hasattr(_lowerCamelCase , _lowerCamelCase ) , msg=F"`{prop}` does not exist" ) # Test that config has the common properties as setter for idx, name in enumerate(_lowerCamelCase ): try: setattr(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) self.parent.assertEqual( getattr(_lowerCamelCase , _lowerCamelCase ) , _lowerCamelCase , msg=F"`{name} value {idx} expected, but was {getattr(_lowerCamelCase , _lowerCamelCase )}" ) except NotImplementedError: # Some models might not be able to implement setters for common_properties # In that case, a NotImplementedError is raised pass # Test if config class can be called with Config(prop_name=..) for idx, name in enumerate(_lowerCamelCase ): try: A_ : List[str] = self.config_class(**{name: idx} ) self.parent.assertEqual( getattr(_lowerCamelCase , _lowerCamelCase ) , _lowerCamelCase , msg=F"`{name} value {idx} expected, but was {getattr(_lowerCamelCase , _lowerCamelCase )}" ) except NotImplementedError: # Some models might not be able to implement setters for common_properties # In that case, a NotImplementedError is raised pass def UpperCAmelCase_ ( self ) -> Tuple: A_ : Any = self.config_class(**self.inputs_dict ) A_ : Optional[int] = json.loads(config.to_json_string() ) for key, value in self.inputs_dict.items(): self.parent.assertEqual(obj[key] , _lowerCamelCase ) def UpperCAmelCase_ ( self ) -> Tuple: A_ : str = self.config_class(**self.inputs_dict ) with tempfile.TemporaryDirectory() as tmpdirname: A_ : List[Any] = os.path.join(_lowerCamelCase , """config.json""" ) config_first.to_json_file(_lowerCamelCase ) A_ : Dict = self.config_class.from_json_file(_lowerCamelCase ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def UpperCAmelCase_ ( self ) -> List[str]: A_ : Any = self.config_class(**self.inputs_dict ) with tempfile.TemporaryDirectory() as tmpdirname: config_first.save_pretrained(_lowerCamelCase ) A_ : Union[str, Any] = self.config_class.from_pretrained(_lowerCamelCase ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def UpperCAmelCase_ ( self ) -> Optional[Any]: A_ : Optional[int] = self.config_class(**self.inputs_dict ) A_ : List[Any] = """test""" with tempfile.TemporaryDirectory() as tmpdirname: A_ : Any = os.path.join(_lowerCamelCase , _lowerCamelCase ) config_first.save_pretrained(_lowerCamelCase ) A_ : Any = self.config_class.from_pretrained(_lowerCamelCase , subfolder=_lowerCamelCase ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def UpperCAmelCase_ ( self ) -> Union[str, Any]: A_ : Tuple = self.config_class(**self.inputs_dict , num_labels=5 ) self.parent.assertEqual(len(config.idalabel ) , 5 ) self.parent.assertEqual(len(config.labelaid ) , 5 ) A_ : str = 3 self.parent.assertEqual(len(config.idalabel ) , 3 ) self.parent.assertEqual(len(config.labelaid ) , 3 ) def UpperCAmelCase_ ( self ) -> Optional[Any]: if self.config_class.is_composition: return A_ : Dict = self.config_class() self.parent.assertIsNotNone(_lowerCamelCase ) def UpperCAmelCase_ ( self ) -> Dict: A_ : Any = copy.deepcopy(_lowerCamelCase ) A_ : Tuple = self.config_class(**_lowerCamelCase ) A_ : Optional[Any] = [] for key, value in config_common_kwargs.items(): if key == "torch_dtype": if not is_torch_available(): continue else: import torch if config.torch_dtype != torch.floataa: wrong_values.append(("""torch_dtype""", config.torch_dtype, torch.floataa) ) elif getattr(_lowerCamelCase , _lowerCamelCase ) != value: wrong_values.append((key, getattr(_lowerCamelCase , _lowerCamelCase ), value) ) if len(_lowerCamelCase ) > 0: A_ : List[Any] = """\n""".join([F"- {v[0]}: got {v[1]} instead of {v[2]}" for v in wrong_values] ) raise ValueError(F"The following keys were not properly set in the config:\n{errors}" ) def UpperCAmelCase_ ( self ) -> Optional[int]: self.create_and_test_config_common_properties() self.create_and_test_config_to_json_string() self.create_and_test_config_to_json_file() self.create_and_test_config_from_and_save_pretrained() self.create_and_test_config_from_and_save_pretrained_subfolder() self.create_and_test_config_with_num_labels() self.check_config_can_be_init_without_params() self.check_config_arguments_init()
344
1
def lowerCamelCase_ ( ) -> List[str]: """simple docstring""" snake_case_ : Dict = 0 for i in range(1 , 1_001 ): total += i**i return str(_UpperCamelCase )[-10:] if __name__ == "__main__": print(solution())
366
import flax.linen as nn import jax.numpy as jnp from .attention_flax import FlaxTransformeraDModel from .resnet_flax import FlaxDownsampleaD, FlaxResnetBlockaD, FlaxUpsampleaD class __lowerCAmelCase ( nn.Module ): lowerCamelCase_ : int lowerCamelCase_ : int lowerCamelCase_ : float = 0.0 lowerCamelCase_ : int = 1 lowerCamelCase_ : int = 1 lowerCamelCase_ : bool = True lowerCamelCase_ : bool = False lowerCamelCase_ : bool = False lowerCamelCase_ : bool = False lowerCamelCase_ : jnp.dtype = jnp.floataa def lowerCamelCase (self ) -> Tuple: '''simple docstring''' snake_case_ : Tuple = [] snake_case_ : List[str] = [] for i in range(self.num_layers ): snake_case_ : Tuple = self.in_channels if i == 0 else self.out_channels snake_case_ : Dict = FlaxResnetBlockaD( in_channels=__magic_name__ , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(__magic_name__ ) snake_case_ : str = FlaxTransformeraDModel( in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(__magic_name__ ) snake_case_ : Union[str, Any] = resnets snake_case_ : Union[str, Any] = attentions if self.add_downsample: snake_case_ : List[str] = FlaxDownsampleaD(self.out_channels , dtype=self.dtype ) def __call__(self , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__=True ) -> List[Any]: '''simple docstring''' snake_case_ : str = () for resnet, attn in zip(self.resnets , self.attentions ): snake_case_ : Optional[Any] = resnet(__magic_name__ , __magic_name__ , deterministic=__magic_name__ ) snake_case_ : List[str] = attn(__magic_name__ , __magic_name__ , deterministic=__magic_name__ ) output_states += (hidden_states,) if self.add_downsample: snake_case_ : Union[str, Any] = self.downsamplers_a(__magic_name__ ) output_states += (hidden_states,) return hidden_states, output_states class __lowerCAmelCase ( nn.Module ): lowerCamelCase_ : int lowerCamelCase_ : int lowerCamelCase_ : float = 0.0 lowerCamelCase_ : int = 1 lowerCamelCase_ : bool = True lowerCamelCase_ : jnp.dtype = jnp.floataa def lowerCamelCase (self ) -> Dict: '''simple docstring''' snake_case_ : Optional[Any] = [] for i in range(self.num_layers ): snake_case_ : List[Any] = self.in_channels if i == 0 else self.out_channels snake_case_ : Tuple = FlaxResnetBlockaD( in_channels=__magic_name__ , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(__magic_name__ ) snake_case_ : Dict = resnets if self.add_downsample: snake_case_ : Optional[int] = FlaxDownsampleaD(self.out_channels , dtype=self.dtype ) def __call__(self , __magic_name__ , __magic_name__ , __magic_name__=True ) -> Optional[Any]: '''simple docstring''' snake_case_ : Any = () for resnet in self.resnets: snake_case_ : List[Any] = resnet(__magic_name__ , __magic_name__ , deterministic=__magic_name__ ) output_states += (hidden_states,) if self.add_downsample: snake_case_ : str = self.downsamplers_a(__magic_name__ ) output_states += (hidden_states,) return hidden_states, output_states class __lowerCAmelCase ( nn.Module ): lowerCamelCase_ : int lowerCamelCase_ : int lowerCamelCase_ : int lowerCamelCase_ : float = 0.0 lowerCamelCase_ : int = 1 lowerCamelCase_ : int = 1 lowerCamelCase_ : bool = True lowerCamelCase_ : bool = False lowerCamelCase_ : bool = False lowerCamelCase_ : bool = False lowerCamelCase_ : jnp.dtype = jnp.floataa def lowerCamelCase (self ) -> str: '''simple docstring''' snake_case_ : Optional[Any] = [] snake_case_ : Optional[Any] = [] for i in range(self.num_layers ): snake_case_ : List[Any] = self.in_channels if (i == self.num_layers - 1) else self.out_channels snake_case_ : Optional[int] = self.prev_output_channel if i == 0 else self.out_channels snake_case_ : Dict = FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(__magic_name__ ) snake_case_ : List[str] = FlaxTransformeraDModel( in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(__magic_name__ ) snake_case_ : List[Any] = resnets snake_case_ : Tuple = attentions if self.add_upsample: snake_case_ : List[Any] = FlaxUpsampleaD(self.out_channels , dtype=self.dtype ) def __call__(self , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__=True ) -> Union[str, Any]: '''simple docstring''' for resnet, attn in zip(self.resnets , self.attentions ): # pop res hidden states snake_case_ : Dict = res_hidden_states_tuple[-1] snake_case_ : List[Any] = res_hidden_states_tuple[:-1] snake_case_ : Optional[int] = jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 ) snake_case_ : Tuple = resnet(__magic_name__ , __magic_name__ , deterministic=__magic_name__ ) snake_case_ : Tuple = attn(__magic_name__ , __magic_name__ , deterministic=__magic_name__ ) if self.add_upsample: snake_case_ : Optional[Any] = self.upsamplers_a(__magic_name__ ) return hidden_states class __lowerCAmelCase ( nn.Module ): lowerCamelCase_ : int lowerCamelCase_ : int lowerCamelCase_ : int lowerCamelCase_ : float = 0.0 lowerCamelCase_ : int = 1 lowerCamelCase_ : bool = True lowerCamelCase_ : jnp.dtype = jnp.floataa def lowerCamelCase (self ) -> int: '''simple docstring''' snake_case_ : Union[str, Any] = [] for i in range(self.num_layers ): snake_case_ : Tuple = self.in_channels if (i == self.num_layers - 1) else self.out_channels snake_case_ : Optional[Any] = self.prev_output_channel if i == 0 else self.out_channels snake_case_ : int = FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(__magic_name__ ) snake_case_ : Tuple = resnets if self.add_upsample: snake_case_ : List[str] = FlaxUpsampleaD(self.out_channels , dtype=self.dtype ) def __call__(self , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__=True ) -> List[Any]: '''simple docstring''' for resnet in self.resnets: # pop res hidden states snake_case_ : Tuple = res_hidden_states_tuple[-1] snake_case_ : List[Any] = res_hidden_states_tuple[:-1] snake_case_ : Dict = jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 ) snake_case_ : Optional[Any] = resnet(__magic_name__ , __magic_name__ , deterministic=__magic_name__ ) if self.add_upsample: snake_case_ : Optional[int] = self.upsamplers_a(__magic_name__ ) return hidden_states class __lowerCAmelCase ( nn.Module ): lowerCamelCase_ : int lowerCamelCase_ : float = 0.0 lowerCamelCase_ : int = 1 lowerCamelCase_ : int = 1 lowerCamelCase_ : bool = False lowerCamelCase_ : bool = False lowerCamelCase_ : jnp.dtype = jnp.floataa def lowerCamelCase (self ) -> str: '''simple docstring''' snake_case_ : Dict = [ FlaxResnetBlockaD( in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , ) ] snake_case_ : int = [] for _ in range(self.num_layers ): snake_case_ : str = FlaxTransformeraDModel( in_channels=self.in_channels , n_heads=self.num_attention_heads , d_head=self.in_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(__magic_name__ ) snake_case_ : Dict = FlaxResnetBlockaD( in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(__magic_name__ ) snake_case_ : Optional[Any] = resnets snake_case_ : Optional[int] = attentions def __call__(self , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__=True ) -> Optional[int]: '''simple docstring''' snake_case_ : List[Any] = self.resnets[0](__magic_name__ , __magic_name__ ) for attn, resnet in zip(self.attentions , self.resnets[1:] ): snake_case_ : Tuple = attn(__magic_name__ , __magic_name__ , deterministic=__magic_name__ ) snake_case_ : Union[str, Any] = resnet(__magic_name__ , __magic_name__ , deterministic=__magic_name__ ) return hidden_states
279
0
from __future__ import annotations class lowerCamelCase : """simple docstring""" def __init__( self : Union[str, Any] , __magic_name__ : str , __magic_name__ : str ) -> Dict: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = text, pattern SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = len(__magic_name__ ), len(__magic_name__ ) def __A ( self : List[str] , __magic_name__ : str ) -> int: for i in range(self.patLen - 1 , -1 , -1 ): if char == self.pattern[i]: return i return -1 def __A ( self : Dict , __magic_name__ : int ) -> int: for i in range(self.patLen - 1 , -1 , -1 ): if self.pattern[i] != self.text[current_pos + i]: return current_pos + i return -1 def __A ( self : Tuple ) -> list[int]: # searches pattern in text and returns index positions SCREAMING_SNAKE_CASE_ = [] for i in range(self.textLen - self.patLen + 1 ): SCREAMING_SNAKE_CASE_ = self.mismatch_in_text(__magic_name__ ) if mismatch_index == -1: positions.append(__magic_name__ ) else: SCREAMING_SNAKE_CASE_ = self.match_in_pattern(self.text[mismatch_index] ) SCREAMING_SNAKE_CASE_ = ( mismatch_index - match_index ) # shifting index lgtm [py/multiple-definition] return positions A : Dict = "ABAABA" A : Union[str, Any] = "AB" A : str = BoyerMooreSearch(text, pattern) A : Tuple = bms.bad_character_heuristic() if len(positions) == 0: print("No match found") else: print("Pattern found in following positions: ") print(positions)
118
from functools import lru_cache @lru_cache def a__ ( __UpperCamelCase ): if num < 0: raise ValueError("Number should not be negative." ) return 1 if num in (0, 1) else num * factorial(num - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
118
1
"""simple docstring""" import argparse import json import numpy import torch from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def _snake_case ( UpperCamelCase : Dict , UpperCamelCase : Tuple ): # Load checkpoint UpperCAmelCase : List[str] = torch.load(UpperCamelCase , map_location="""cpu""" ) UpperCAmelCase : List[Any] = chkpt["""model"""] # We have the base model one level deeper than the original XLM repository UpperCAmelCase : Any = {} for k, v in state_dict.items(): if "pred_layer" in k: UpperCAmelCase : List[str] = v else: UpperCAmelCase : int = v UpperCAmelCase : str = chkpt["""params"""] UpperCAmelCase : Optional[Any] = {n: v for n, v in config.items() if not isinstance(UpperCamelCase , (torch.FloatTensor, numpy.ndarray) )} UpperCAmelCase : Any = chkpt["""dico_word2id"""] UpperCAmelCase : Union[str, Any] = {s + """</w>""" if s.find("""@@""" ) == -1 and i > 13 else s.replace("""@@""" , """""" ): i for s, i in vocab.items()} # Save pytorch-model UpperCAmelCase : Optional[Any] = pytorch_dump_folder_path + """/""" + WEIGHTS_NAME UpperCAmelCase : List[Any] = pytorch_dump_folder_path + """/""" + CONFIG_NAME UpperCAmelCase : Dict = pytorch_dump_folder_path + """/""" + VOCAB_FILES_NAMES["""vocab_file"""] print(F"Save PyTorch model to {pytorch_weights_dump_path}" ) torch.save(UpperCamelCase , UpperCamelCase ) print(F"Save configuration file to {pytorch_config_dump_path}" ) with open(UpperCamelCase , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(UpperCamelCase , indent=2 ) + """\n""" ) print(F"Save vocab file to {pytorch_config_dump_path}" ) with open(UpperCamelCase , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(UpperCamelCase , indent=2 ) + """\n""" ) if __name__ == "__main__": A: Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--xlm_checkpoint_path", default=None, type=str, required=True, help="Path the official PyTorch dump." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) A: Optional[Any] = parser.parse_args() convert_xlm_checkpoint_to_pytorch(args.xlm_checkpoint_path, args.pytorch_dump_folder_path)
76
"""simple docstring""" import numpy as np import torch import tqdm from ...models.unet_ad import UNetaDModel from ...pipelines import DiffusionPipeline from ...utils import randn_tensor from ...utils.dummy_pt_objects import DDPMScheduler class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase__ ): def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , ) -> List[Any]: '''simple docstring''' super().__init__() UpperCAmelCase : Tuple = value_function UpperCAmelCase : Dict = unet UpperCAmelCase : Union[str, Any] = scheduler UpperCAmelCase : List[Any] = env UpperCAmelCase : int = env.get_dataset() UpperCAmelCase : Optional[int] = {} for key in self.data.keys(): try: UpperCAmelCase : Dict = self.data[key].mean() except: # noqa: E722 pass UpperCAmelCase : int = {} for key in self.data.keys(): try: UpperCAmelCase : Optional[Any] = self.data[key].std() except: # noqa: E722 pass UpperCAmelCase : Any = env.observation_space.shape[0] UpperCAmelCase : str = env.action_space.shape[0] def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Tuple: '''simple docstring''' return (x_in - self.means[key]) / self.stds[key] def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Union[str, Any]: '''simple docstring''' return x_in * self.stds[key] + self.means[key] def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE ) -> Optional[Any]: '''simple docstring''' if type(_SCREAMING_SNAKE_CASE ) is dict: return {k: self.to_torch(_SCREAMING_SNAKE_CASE ) for k, v in x_in.items()} elif torch.is_tensor(_SCREAMING_SNAKE_CASE ): return x_in.to(self.unet.device ) return torch.tensor(_SCREAMING_SNAKE_CASE , device=self.unet.device ) def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> str: '''simple docstring''' for key, val in cond.items(): UpperCAmelCase : Optional[Any] = val.clone() return x_in def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> int: '''simple docstring''' UpperCAmelCase : Dict = x.shape[0] UpperCAmelCase : Optional[int] = None for i in tqdm.tqdm(self.scheduler.timesteps ): # create batch of timesteps to pass into model UpperCAmelCase : Tuple = torch.full((batch_size,) , _SCREAMING_SNAKE_CASE , device=self.unet.device , dtype=torch.long ) for _ in range(_SCREAMING_SNAKE_CASE ): with torch.enable_grad(): x.requires_grad_() # permute to match dimension for pre-trained models UpperCAmelCase : Dict = self.value_function(x.permute(0 , 2 , 1 ) , _SCREAMING_SNAKE_CASE ).sample UpperCAmelCase : Optional[int] = torch.autograd.grad([y.sum()] , [x] )[0] UpperCAmelCase : List[Any] = self.scheduler._get_variance(_SCREAMING_SNAKE_CASE ) UpperCAmelCase : List[str] = torch.exp(0.5 * posterior_variance ) UpperCAmelCase : str = model_std * grad UpperCAmelCase : str = 0 UpperCAmelCase : Any = x.detach() UpperCAmelCase : int = x + scale * grad UpperCAmelCase : Any = self.reset_xa(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , self.action_dim ) UpperCAmelCase : Optional[int] = self.unet(x.permute(0 , 2 , 1 ) , _SCREAMING_SNAKE_CASE ).sample.permute(0 , 2 , 1 ) # TODO: verify deprecation of this kwarg UpperCAmelCase : Any = self.scheduler.step(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , predict_epsilon=_SCREAMING_SNAKE_CASE )["""prev_sample"""] # apply conditions to the trajectory (set the initial state) UpperCAmelCase : Dict = self.reset_xa(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , self.action_dim ) UpperCAmelCase : int = self.to_torch(_SCREAMING_SNAKE_CASE ) return x, y def __call__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=64 , _SCREAMING_SNAKE_CASE=32 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=0.1 ) -> Tuple: '''simple docstring''' UpperCAmelCase : int = self.normalize(_SCREAMING_SNAKE_CASE , """observations""" ) UpperCAmelCase : int = obs[None].repeat(_SCREAMING_SNAKE_CASE , axis=0 ) UpperCAmelCase : Dict = {0: self.to_torch(_SCREAMING_SNAKE_CASE )} UpperCAmelCase : Dict = (batch_size, planning_horizon, self.state_dim + self.action_dim) # generate initial noise and apply our conditions (to make the trajectories start at current state) UpperCAmelCase : str = randn_tensor(_SCREAMING_SNAKE_CASE , device=self.unet.device ) UpperCAmelCase : Any = self.reset_xa(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , self.action_dim ) UpperCAmelCase : str = self.to_torch(_SCREAMING_SNAKE_CASE ) # run the diffusion process UpperCAmelCase , UpperCAmelCase : Any = self.run_diffusion(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # sort output trajectories by value UpperCAmelCase : List[str] = y.argsort(0 , descending=_SCREAMING_SNAKE_CASE ).squeeze() UpperCAmelCase : Any = x[sorted_idx] UpperCAmelCase : Dict = sorted_values[:, :, : self.action_dim] UpperCAmelCase : int = actions.detach().cpu().numpy() UpperCAmelCase : List[str] = self.de_normalize(_SCREAMING_SNAKE_CASE , key="""actions""" ) # select the action with the highest value if y is not None: UpperCAmelCase : Any = 0 else: # if we didn't run value guiding, select a random action UpperCAmelCase : Optional[int] = np.random.randint(0 , _SCREAMING_SNAKE_CASE ) UpperCAmelCase : Any = denorm_actions[selected_index, 0] return denorm_actions
76
1
import tempfile import unittest from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from transformers.testing_utils import ( is_torch_available, require_optimum, require_torch, slow, ) if is_torch_available(): import torch @require_torch @require_optimum @slow class snake_case__ (unittest.TestCase ): """simple docstring""" def __UpperCAmelCase ( self : int ) -> List[str]: a = "hf-internal-testing/tiny-random-t5" a = AutoTokenizer.from_pretrained(__lowerCamelCase ) a = AutoModelForSeqaSeqLM.from_pretrained(__lowerCamelCase ) a = tokenizer("This is me" , return_tensors="pt" ) a = model.to_bettertransformer() self.assertTrue(any("BetterTransformer" in mod.__class__.__name__ for _, mod in model.named_modules() ) ) a = model.generate(**__lowerCamelCase ) a = model.reverse_bettertransformer() self.assertFalse(any("BetterTransformer" in mod.__class__.__name__ for _, mod in model.named_modules() ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__lowerCamelCase ) a = AutoModelForSeqaSeqLM.from_pretrained(__lowerCamelCase ) self.assertFalse( any("BetterTransformer" in mod.__class__.__name__ for _, mod in model_reloaded.named_modules() ) ) a = model_reloaded.generate(**__lowerCamelCase ) self.assertTrue(torch.allclose(__lowerCamelCase , __lowerCamelCase ) ) def __UpperCAmelCase ( self : Union[str, Any] ) -> Tuple: a = "hf-internal-testing/tiny-random-t5" a = AutoModelForSeqaSeqLM.from_pretrained(__lowerCamelCase ) a = model.to_bettertransformer() with tempfile.TemporaryDirectory() as tmpdirname: with self.assertRaises(__lowerCamelCase ): model.save_pretrained(__lowerCamelCase ) a = model.reverse_bettertransformer() model.save_pretrained(__lowerCamelCase )
107
from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCAmelCase : Optional[Any] = logging.get_logger(__name__) __lowerCAmelCase : str = {'openai-gpt': 'https://huggingface.co/openai-gpt/resolve/main/config.json'} class snake_case__ (_UpperCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = """openai-gpt""" SCREAMING_SNAKE_CASE_ : Tuple = { """max_position_embeddings""": """n_positions""", """hidden_size""": """n_embd""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self : str , __lowerCamelCase : List[str]=4_04_78 , __lowerCamelCase : List[Any]=5_12 , __lowerCamelCase : List[str]=7_68 , __lowerCamelCase : List[str]=12 , __lowerCamelCase : Optional[Any]=12 , __lowerCamelCase : str="gelu" , __lowerCamelCase : Optional[int]=0.1 , __lowerCamelCase : Any=0.1 , __lowerCamelCase : Dict=0.1 , __lowerCamelCase : Any=1e-5 , __lowerCamelCase : Optional[int]=0.02 , __lowerCamelCase : Optional[int]="cls_index" , __lowerCamelCase : List[Any]=True , __lowerCamelCase : Optional[int]=None , __lowerCamelCase : Optional[Any]=True , __lowerCamelCase : Tuple=0.1 , **__lowerCamelCase : Union[str, Any] , ) -> List[str]: a = vocab_size a = n_positions a = n_embd a = n_layer a = n_head a = afn a = resid_pdrop a = embd_pdrop a = attn_pdrop a = layer_norm_epsilon a = initializer_range a = summary_type a = summary_use_proj a = summary_activation a = summary_first_dropout a = summary_proj_to_labels super().__init__(**__lowerCamelCase )
107
1
'''simple docstring''' from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import TensorType, is_torch_available, logging a_ : List[str] = logging.get_logger(__name__) a_ : List[str] = { "Helsinki-NLP/opus-mt-en-de": "https://huggingface.co/Helsinki-NLP/opus-mt-en-de/resolve/main/config.json", # See all Marian models at https://huggingface.co/models?filter=marian } class a ( _SCREAMING_SNAKE_CASE ): _lowerCAmelCase = """marian""" _lowerCAmelCase = ["""past_key_values"""] _lowerCAmelCase = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self , __magic_name__=5_81_01 , __magic_name__=None , __magic_name__=10_24 , __magic_name__=12 , __magic_name__=40_96 , __magic_name__=16 , __magic_name__=12 , __magic_name__=40_96 , __magic_name__=16 , __magic_name__=0.0 , __magic_name__=0.0 , __magic_name__=True , __magic_name__=True , __magic_name__="gelu" , __magic_name__=10_24 , __magic_name__=0.1 , __magic_name__=0.0 , __magic_name__=0.0 , __magic_name__=0.0_2 , __magic_name__=5_81_00 , __magic_name__=False , __magic_name__=5_81_00 , __magic_name__=0 , __magic_name__=0 , __magic_name__=True , **__magic_name__ , ) -> int: _a = vocab_size _a = decoder_vocab_size or vocab_size _a = max_position_embeddings _a = d_model _a = encoder_ffn_dim _a = encoder_layers _a = encoder_attention_heads _a = decoder_ffn_dim _a = decoder_layers _a = decoder_attention_heads _a = dropout _a = attention_dropout _a = activation_dropout _a = activation_function _a = init_std _a = encoder_layerdrop _a = decoder_layerdrop _a = use_cache _a = encoder_layers _a = scale_embedding # scale factor will be sqrt(d_model) if True _a = share_encoder_decoder_embeddings super().__init__( pad_token_id=__magic_name__ , eos_token_id=__magic_name__ , is_encoder_decoder=__magic_name__ , decoder_start_token_id=__magic_name__ , forced_eos_token_id=__magic_name__ , **__magic_name__ , ) class a ( _SCREAMING_SNAKE_CASE ): @property # Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.inputs def __UpperCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]: if self.task in ["default", "seq2seq-lm"]: _a = OrderedDict( [ ('input_ids', {0: 'batch', 1: 'encoder_sequence'}), ('attention_mask', {0: 'batch', 1: 'encoder_sequence'}), ] ) if self.use_past: _a = {0: 'batch'} _a = {0: 'batch', 1: 'past_decoder_sequence + sequence'} else: _a = {0: 'batch', 1: 'decoder_sequence'} _a = {0: 'batch', 1: 'decoder_sequence'} if self.use_past: self.fill_with_past_key_values_(__magic_name__ , direction='inputs' ) elif self.task == "causal-lm": # TODO: figure this case out. _a = OrderedDict( [ ('input_ids', {0: 'batch', 1: 'encoder_sequence'}), ('attention_mask', {0: 'batch', 1: 'encoder_sequence'}), ] ) if self.use_past: _a , _a = self.num_layers for i in range(__magic_name__ ): _a = {0: 'batch', 2: 'past_sequence + sequence'} _a = {0: 'batch', 2: 'past_sequence + sequence'} else: _a = OrderedDict( [ ('input_ids', {0: 'batch', 1: 'encoder_sequence'}), ('attention_mask', {0: 'batch', 1: 'encoder_sequence'}), ('decoder_input_ids', {0: 'batch', 1: 'decoder_sequence'}), ('decoder_attention_mask', {0: 'batch', 1: 'decoder_sequence'}), ] ) return common_inputs @property # Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.outputs def __UpperCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]: if self.task in ["default", "seq2seq-lm"]: _a = super().outputs else: _a = super(__magic_name__ , self ).outputs if self.use_past: _a , _a = self.num_layers for i in range(__magic_name__ ): _a = {0: 'batch', 2: 'past_sequence + sequence'} _a = {0: 'batch', 2: 'past_sequence + sequence'} return common_outputs def __UpperCAmelCase ( self , __magic_name__ , __magic_name__ = -1 , __magic_name__ = -1 , __magic_name__ = False , __magic_name__ = None , ) -> Mapping[str, Any]: _a = self._generate_dummy_inputs_for_encoder_and_decoder( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) # Generate decoder inputs _a = seq_length if not self.use_past else 1 _a = self._generate_dummy_inputs_for_encoder_and_decoder( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) _a = {f'decoder_{name}': tensor for name, tensor in decoder_inputs.items()} _a = dict(**__magic_name__ , **__magic_name__ ) if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' ) else: import torch _a , _a = common_inputs['input_ids'].shape _a = common_inputs['decoder_input_ids'].shape[1] _a , _a = self.num_attention_heads _a = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) _a = decoder_seq_length + 3 _a = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) _a = torch.cat( [common_inputs['decoder_attention_mask'], torch.ones(__magic_name__ , __magic_name__ )] , dim=1 ) _a = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered _a , _a = self.num_layers _a = min(__magic_name__ , __magic_name__ ) _a = max(__magic_name__ , __magic_name__ ) - min_num_layers _a = 'encoder' if num_encoder_layers > num_decoder_layers else 'decoder' for _ in range(__magic_name__ ): common_inputs["past_key_values"].append( ( torch.zeros(__magic_name__ ), torch.zeros(__magic_name__ ), torch.zeros(__magic_name__ ), torch.zeros(__magic_name__ ), ) ) # TODO: test this. _a = encoder_shape if remaining_side_name == 'encoder' else decoder_shape for _ in range(__magic_name__ , __magic_name__ ): common_inputs["past_key_values"].append((torch.zeros(__magic_name__ ), torch.zeros(__magic_name__ )) ) return common_inputs def __UpperCAmelCase ( self , __magic_name__ , __magic_name__ = -1 , __magic_name__ = -1 , __magic_name__ = False , __magic_name__ = None , ) -> Mapping[str, Any]: _a = self._generate_dummy_inputs_for_encoder_and_decoder( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' ) else: import torch _a , _a = common_inputs['input_ids'].shape # Not using the same length for past_key_values _a = seqlen + 2 _a , _a = self.num_layers _a , _a = self.num_attention_heads _a = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) _a = common_inputs['attention_mask'].dtype _a = torch.cat( [common_inputs['attention_mask'], torch.ones(__magic_name__ , __magic_name__ , dtype=__magic_name__ )] , dim=1 ) _a = [ (torch.zeros(__magic_name__ ), torch.zeros(__magic_name__ )) for _ in range(__magic_name__ ) ] return common_inputs def __UpperCAmelCase ( self , __magic_name__ , __magic_name__ = -1 , __magic_name__ = -1 , __magic_name__ = False , __magic_name__ = None , ) -> Mapping[str, Any]: # Copied from OnnxConfig.generate_dummy_inputs # Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity. # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX _a = compute_effective_axis_dimension( __magic_name__ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX _a = tokenizer.num_special_tokens_to_add(__magic_name__ ) _a = compute_effective_axis_dimension( __magic_name__ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=__magic_name__ ) # Generate dummy inputs according to compute batch and sequence _a = [' '.join([tokenizer.unk_token] ) * seq_length] * batch_size _a = dict(tokenizer(__magic_name__ , return_tensors=__magic_name__ ) ) return common_inputs def __UpperCAmelCase ( self , __magic_name__ , __magic_name__ = -1 , __magic_name__ = -1 , __magic_name__ = False , __magic_name__ = None , ) -> Mapping[str, Any]: if self.task in ["default", "seq2seq-lm"]: _a = self._generate_dummy_inputs_for_default_and_seqaseq_lm( __magic_name__ , batch_size=__magic_name__ , seq_length=__magic_name__ , is_pair=__magic_name__ , framework=__magic_name__ ) else: _a = self._generate_dummy_inputs_for_causal_lm( __magic_name__ , batch_size=__magic_name__ , seq_length=__magic_name__ , is_pair=__magic_name__ , framework=__magic_name__ ) return common_inputs def __UpperCAmelCase ( self , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) -> List[Any]: if self.task in ["default", "seq2seq-lm"]: _a = super()._flatten_past_key_values_(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) else: _a = super(__magic_name__ , self )._flatten_past_key_values_( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) @property def __UpperCAmelCase ( self ) -> float: return 1e-4
104
'''simple docstring''' import warnings from ...utils import logging from .image_processing_clip import CLIPImageProcessor a_ : Optional[Any] = logging.get_logger(__name__) class a ( _SCREAMING_SNAKE_CASE ): def __init__( self , *__magic_name__ , **__magic_name__ ) -> None: warnings.warn( 'The class CLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use CLIPImageProcessor instead.' , __magic_name__ , ) super().__init__(*__magic_name__ , **__magic_name__ )
104
1
import gc import random import tempfile import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.stable_diffusion_safe import StableDiffusionPipelineSafe as StableDiffusionPipeline from diffusers.utils import floats_tensor, nightly, torch_device from diffusers.utils.testing_utils import require_torch_gpu class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" def _UpperCamelCase ( self ) -> str: super().tearDown() gc.collect() torch.cuda.empty_cache() @property def _UpperCamelCase ( self ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ = 1 SCREAMING_SNAKE_CASE_ = 3 SCREAMING_SNAKE_CASE_ = (32, 32) SCREAMING_SNAKE_CASE_ = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(_SCREAMING_SNAKE_CASE ) return image @property def _UpperCamelCase ( self ) -> Optional[Any]: torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) return model @property def _UpperCamelCase ( self ) -> Optional[int]: torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) return model @property def _UpperCamelCase ( self ) -> List[Any]: torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModel(_SCREAMING_SNAKE_CASE ) @property def _UpperCamelCase ( self ) -> Optional[int]: def extract(*_A , **_A ): class UpperCamelCase__ : """simple docstring""" def __init__( self ) -> Dict: SCREAMING_SNAKE_CASE_ = torch.ones([0] ) def _UpperCamelCase ( self , _A ) -> Any: self.pixel_values.to(_SCREAMING_SNAKE_CASE ) return self return Out() return extract def _UpperCamelCase ( self ) -> int: SCREAMING_SNAKE_CASE_ = '''cpu''' # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE_ = self.dummy_cond_unet SCREAMING_SNAKE_CASE_ = DDIMScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , clip_sample=_SCREAMING_SNAKE_CASE , set_alpha_to_one=_SCREAMING_SNAKE_CASE , ) SCREAMING_SNAKE_CASE_ = self.dummy_vae SCREAMING_SNAKE_CASE_ = self.dummy_text_encoder SCREAMING_SNAKE_CASE_ = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) # make sure here that pndm scheduler skips prk SCREAMING_SNAKE_CASE_ = StableDiffusionPipeline( unet=_SCREAMING_SNAKE_CASE , scheduler=_SCREAMING_SNAKE_CASE , vae=_SCREAMING_SNAKE_CASE , text_encoder=_SCREAMING_SNAKE_CASE , tokenizer=_SCREAMING_SNAKE_CASE , safety_checker=_SCREAMING_SNAKE_CASE , feature_extractor=self.dummy_extractor , ) SCREAMING_SNAKE_CASE_ = sd_pipe.to(_SCREAMING_SNAKE_CASE ) sd_pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ = '''A painting of a squirrel eating a burger''' SCREAMING_SNAKE_CASE_ = torch.Generator(device=_SCREAMING_SNAKE_CASE ).manual_seed(0 ) SCREAMING_SNAKE_CASE_ = sd_pipe([prompt] , generator=_SCREAMING_SNAKE_CASE , guidance_scale=6.0 , num_inference_steps=2 , output_type='''np''' ) SCREAMING_SNAKE_CASE_ = output.images SCREAMING_SNAKE_CASE_ = torch.Generator(device=_SCREAMING_SNAKE_CASE ).manual_seed(0 ) SCREAMING_SNAKE_CASE_ = sd_pipe( [prompt] , generator=_SCREAMING_SNAKE_CASE , guidance_scale=6.0 , num_inference_steps=2 , output_type='''np''' , return_dict=_SCREAMING_SNAKE_CASE , )[0] SCREAMING_SNAKE_CASE_ = image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE_ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) SCREAMING_SNAKE_CASE_ = np.array([0.5756, 0.6118, 0.5005, 0.5041, 0.5471, 0.4726, 0.4976, 0.4865, 0.4864] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def _UpperCamelCase ( self ) -> int: SCREAMING_SNAKE_CASE_ = '''cpu''' # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE_ = self.dummy_cond_unet SCREAMING_SNAKE_CASE_ = PNDMScheduler(skip_prk_steps=_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ = self.dummy_vae SCREAMING_SNAKE_CASE_ = self.dummy_text_encoder SCREAMING_SNAKE_CASE_ = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) # make sure here that pndm scheduler skips prk SCREAMING_SNAKE_CASE_ = StableDiffusionPipeline( unet=_SCREAMING_SNAKE_CASE , scheduler=_SCREAMING_SNAKE_CASE , vae=_SCREAMING_SNAKE_CASE , text_encoder=_SCREAMING_SNAKE_CASE , tokenizer=_SCREAMING_SNAKE_CASE , safety_checker=_SCREAMING_SNAKE_CASE , feature_extractor=self.dummy_extractor , ) SCREAMING_SNAKE_CASE_ = sd_pipe.to(_SCREAMING_SNAKE_CASE ) sd_pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ = '''A painting of a squirrel eating a burger''' SCREAMING_SNAKE_CASE_ = torch.Generator(device=_SCREAMING_SNAKE_CASE ).manual_seed(0 ) SCREAMING_SNAKE_CASE_ = sd_pipe([prompt] , generator=_SCREAMING_SNAKE_CASE , guidance_scale=6.0 , num_inference_steps=2 , output_type='''np''' ) SCREAMING_SNAKE_CASE_ = output.images SCREAMING_SNAKE_CASE_ = torch.Generator(device=_SCREAMING_SNAKE_CASE ).manual_seed(0 ) SCREAMING_SNAKE_CASE_ = sd_pipe( [prompt] , generator=_SCREAMING_SNAKE_CASE , guidance_scale=6.0 , num_inference_steps=2 , output_type='''np''' , return_dict=_SCREAMING_SNAKE_CASE , )[0] SCREAMING_SNAKE_CASE_ = image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE_ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) SCREAMING_SNAKE_CASE_ = np.array([0.5125, 0.5716, 0.4828, 0.5060, 0.5650, 0.4768, 0.5185, 0.4895, 0.4993] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def _UpperCamelCase ( self ) -> int: SCREAMING_SNAKE_CASE_ = StableDiffusionPipeline.from_pretrained( '''hf-internal-testing/tiny-stable-diffusion-lms-pipe''' , safety_checker=_SCREAMING_SNAKE_CASE ) assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) assert isinstance(pipe.scheduler , _SCREAMING_SNAKE_CASE ) assert pipe.safety_checker is None SCREAMING_SNAKE_CASE_ = pipe('''example prompt''' , num_inference_steps=2 ).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ = StableDiffusionPipeline.from_pretrained(_SCREAMING_SNAKE_CASE ) # sanity check that the pipeline still works assert pipe.safety_checker is None SCREAMING_SNAKE_CASE_ = pipe('''example prompt''' , num_inference_steps=2 ).images[0] assert image is not None @unittest.skipIf(torch_device != '''cuda''' , '''This test requires a GPU''' ) def _UpperCamelCase ( self ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ = self.dummy_cond_unet SCREAMING_SNAKE_CASE_ = PNDMScheduler(skip_prk_steps=_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ = self.dummy_vae SCREAMING_SNAKE_CASE_ = self.dummy_text_encoder SCREAMING_SNAKE_CASE_ = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) # put models in fp16 SCREAMING_SNAKE_CASE_ = unet.half() SCREAMING_SNAKE_CASE_ = vae.half() SCREAMING_SNAKE_CASE_ = bert.half() # make sure here that pndm scheduler skips prk SCREAMING_SNAKE_CASE_ = StableDiffusionPipeline( unet=_SCREAMING_SNAKE_CASE , scheduler=_SCREAMING_SNAKE_CASE , vae=_SCREAMING_SNAKE_CASE , text_encoder=_SCREAMING_SNAKE_CASE , tokenizer=_SCREAMING_SNAKE_CASE , safety_checker=_SCREAMING_SNAKE_CASE , feature_extractor=self.dummy_extractor , ) SCREAMING_SNAKE_CASE_ = sd_pipe.to(_SCREAMING_SNAKE_CASE ) sd_pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ = '''A painting of a squirrel eating a burger''' SCREAMING_SNAKE_CASE_ = sd_pipe([prompt] , num_inference_steps=2 , output_type='''np''' ).images assert image.shape == (1, 64, 64, 3) @nightly @require_torch_gpu class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" def _UpperCamelCase ( self ) -> Dict: super().tearDown() gc.collect() torch.cuda.empty_cache() def _UpperCamelCase ( self ) -> int: SCREAMING_SNAKE_CASE_ = StableDiffusionPipeline.from_pretrained('''runwayml/stable-diffusion-v1-5''' , safety_checker=_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) SCREAMING_SNAKE_CASE_ = sd_pipe.to(_SCREAMING_SNAKE_CASE ) sd_pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ = ( '''portrait of girl with smokey eyes makeup in abandoned hotel, grange clothes, redshift, wide high angle''' ''' coloured polaroid photograph with flash, kodak film, hyper real, stunning moody cinematography, with''' ''' anamorphic lenses, by maripol, fallen angels by wong kar - wai, style of suspiria and neon demon and''' ''' children from bahnhof zoo, detailed ''' ) SCREAMING_SNAKE_CASE_ = 4003660346 SCREAMING_SNAKE_CASE_ = 7 # without safety guidance (sld_guidance_scale = 0) SCREAMING_SNAKE_CASE_ = torch.manual_seed(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ = sd_pipe( [prompt] , generator=_SCREAMING_SNAKE_CASE , guidance_scale=_SCREAMING_SNAKE_CASE , num_inference_steps=50 , output_type='''np''' , width=512 , height=512 , sld_guidance_scale=0 , ) SCREAMING_SNAKE_CASE_ = output.images SCREAMING_SNAKE_CASE_ = image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE_ = [0.2278, 0.2231, 0.2249, 0.2333, 0.2303, 0.1885, 0.2273, 0.2144, 0.2176] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 # without safety guidance (strong configuration) SCREAMING_SNAKE_CASE_ = torch.manual_seed(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ = sd_pipe( [prompt] , generator=_SCREAMING_SNAKE_CASE , guidance_scale=_SCREAMING_SNAKE_CASE , num_inference_steps=50 , output_type='''np''' , width=512 , height=512 , sld_guidance_scale=2000 , sld_warmup_steps=7 , sld_threshold=0.025 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) SCREAMING_SNAKE_CASE_ = output.images SCREAMING_SNAKE_CASE_ = image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE_ = [0.2383, 0.2276, 0.236, 0.2192, 0.2186, 0.2053, 0.1971, 0.1901, 0.1719] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _UpperCamelCase ( self ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = StableDiffusionPipeline.from_pretrained('''runwayml/stable-diffusion-v1-5''' , safety_checker=_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) SCREAMING_SNAKE_CASE_ = sd_pipe.to(_SCREAMING_SNAKE_CASE ) sd_pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ = '''padme amidala taking a bath artwork, safe for work, no nudity''' SCREAMING_SNAKE_CASE_ = 2734971755 SCREAMING_SNAKE_CASE_ = 7 SCREAMING_SNAKE_CASE_ = torch.manual_seed(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ = sd_pipe( [prompt] , generator=_SCREAMING_SNAKE_CASE , guidance_scale=_SCREAMING_SNAKE_CASE , num_inference_steps=50 , output_type='''np''' , width=512 , height=512 , sld_guidance_scale=0 , ) SCREAMING_SNAKE_CASE_ = output.images SCREAMING_SNAKE_CASE_ = image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE_ = [0.3502, 0.3622, 0.3396, 0.3642, 0.3478, 0.3318, 0.35, 0.3348, 0.3297] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 SCREAMING_SNAKE_CASE_ = torch.manual_seed(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ = sd_pipe( [prompt] , generator=_SCREAMING_SNAKE_CASE , guidance_scale=_SCREAMING_SNAKE_CASE , num_inference_steps=50 , output_type='''np''' , width=512 , height=512 , sld_guidance_scale=2000 , sld_warmup_steps=7 , sld_threshold=0.025 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) SCREAMING_SNAKE_CASE_ = output.images SCREAMING_SNAKE_CASE_ = image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE_ = [0.5531, 0.5206, 0.4895, 0.5156, 0.5182, 0.4751, 0.4802, 0.4803, 0.4443] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _UpperCamelCase ( self ) -> Tuple: SCREAMING_SNAKE_CASE_ = StableDiffusionPipeline.from_pretrained('''runwayml/stable-diffusion-v1-5''' ) SCREAMING_SNAKE_CASE_ = sd_pipe.to(_SCREAMING_SNAKE_CASE ) sd_pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ = ( '''the four horsewomen of the apocalypse, painting by tom of finland, gaston bussiere, craig mullins, j. c.''' ''' leyendecker''' ) SCREAMING_SNAKE_CASE_ = 1044355234 SCREAMING_SNAKE_CASE_ = 12 SCREAMING_SNAKE_CASE_ = torch.manual_seed(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ = sd_pipe( [prompt] , generator=_SCREAMING_SNAKE_CASE , guidance_scale=_SCREAMING_SNAKE_CASE , num_inference_steps=50 , output_type='''np''' , width=512 , height=512 , sld_guidance_scale=0 , ) SCREAMING_SNAKE_CASE_ = output.images SCREAMING_SNAKE_CASE_ = image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE_ = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] ) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-7 SCREAMING_SNAKE_CASE_ = torch.manual_seed(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ = sd_pipe( [prompt] , generator=_SCREAMING_SNAKE_CASE , guidance_scale=_SCREAMING_SNAKE_CASE , num_inference_steps=50 , output_type='''np''' , width=512 , height=512 , sld_guidance_scale=2000 , sld_warmup_steps=7 , sld_threshold=0.025 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) SCREAMING_SNAKE_CASE_ = output.images SCREAMING_SNAKE_CASE_ = image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE_ = np.array([0.5818, 0.6285, 0.6835, 0.6019, 0.625, 0.6754, 0.6096, 0.6334, 0.6561] ) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
299
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { """vinvino02/glpn-kitti""": """https://huggingface.co/vinvino02/glpn-kitti/resolve/main/config.json""", # See all GLPN models at https://huggingface.co/models?filter=glpn } class _lowerCamelCase ( UpperCamelCase ): """simple docstring""" snake_case = "glpn" def __init__( self , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=[2, 2, 2, 2] , _SCREAMING_SNAKE_CASE=[8, 4, 2, 1] , _SCREAMING_SNAKE_CASE=[32, 64, 160, 256] , _SCREAMING_SNAKE_CASE=[7, 3, 3, 3] , _SCREAMING_SNAKE_CASE=[4, 2, 2, 2] , _SCREAMING_SNAKE_CASE=[1, 2, 5, 8] , _SCREAMING_SNAKE_CASE=[4, 4, 4, 4] , _SCREAMING_SNAKE_CASE="gelu" , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=0.0_2 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=1e-6 , _SCREAMING_SNAKE_CASE=64 , _SCREAMING_SNAKE_CASE=10 , _SCREAMING_SNAKE_CASE=-1 , **_SCREAMING_SNAKE_CASE , )->Any: '''simple docstring''' super().__init__(**_SCREAMING_SNAKE_CASE ) A_ : Optional[int] = num_channels A_ : Union[str, Any] = num_encoder_blocks A_ : int = depths A_ : Dict = sr_ratios A_ : Any = hidden_sizes A_ : int = patch_sizes A_ : Optional[int] = strides A_ : str = mlp_ratios A_ : List[str] = num_attention_heads A_ : str = hidden_act A_ : int = hidden_dropout_prob A_ : List[Any] = attention_probs_dropout_prob A_ : Optional[Any] = initializer_range A_ : Tuple = drop_path_rate A_ : Optional[int] = layer_norm_eps A_ : List[str] = decoder_hidden_size A_ : List[Any] = max_depth A_ : List[Any] = head_in_index
186
0
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase : Optional[int] =logging.get_logger(__name__) lowerCamelCase : Optional[Any] ={ '''edbeeching/decision-transformer-gym-hopper-medium''': ( '''https://huggingface.co/edbeeching/decision-transformer-gym-hopper-medium/resolve/main/config.json''' ), # See all DecisionTransformer models at https://huggingface.co/models?filter=decision_transformer } class __a ( A__ ): _lowerCAmelCase : str = '''decision_transformer''' _lowerCAmelCase : Optional[Any] = ['''past_key_values'''] _lowerCAmelCase : Optional[int] = { '''max_position_embeddings''': '''n_positions''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self : List[Any] , SCREAMING_SNAKE_CASE : Optional[int]=17 , SCREAMING_SNAKE_CASE : Optional[int]=4 , SCREAMING_SNAKE_CASE : Optional[int]=1_28 , SCREAMING_SNAKE_CASE : Dict=40_96 , SCREAMING_SNAKE_CASE : Union[str, Any]=True , SCREAMING_SNAKE_CASE : Tuple=1 , SCREAMING_SNAKE_CASE : Optional[int]=10_24 , SCREAMING_SNAKE_CASE : Any=3 , SCREAMING_SNAKE_CASE : str=1 , SCREAMING_SNAKE_CASE : Optional[int]=None , SCREAMING_SNAKE_CASE : Dict="relu" , SCREAMING_SNAKE_CASE : Optional[int]=0.1 , SCREAMING_SNAKE_CASE : str=0.1 , SCREAMING_SNAKE_CASE : str=0.1 , SCREAMING_SNAKE_CASE : Union[str, Any]=1e-5 , SCREAMING_SNAKE_CASE : Optional[int]=0.0_2 , SCREAMING_SNAKE_CASE : Optional[Any]=True , SCREAMING_SNAKE_CASE : Tuple=True , SCREAMING_SNAKE_CASE : int=5_02_56 , SCREAMING_SNAKE_CASE : List[Any]=5_02_56 , SCREAMING_SNAKE_CASE : Any=False , SCREAMING_SNAKE_CASE : List[Any]=False , **SCREAMING_SNAKE_CASE : Optional[int] , ): '''simple docstring''' UpperCamelCase__ : List[str] = state_dim UpperCamelCase__ : Optional[int] = act_dim UpperCamelCase__ : Dict = hidden_size UpperCamelCase__ : Any = max_ep_len UpperCamelCase__ : Optional[Any] = action_tanh UpperCamelCase__ : str = vocab_size UpperCamelCase__ : List[str] = n_positions UpperCamelCase__ : Tuple = n_layer UpperCamelCase__ : Union[str, Any] = n_head UpperCamelCase__ : Dict = n_inner UpperCamelCase__ : int = activation_function UpperCamelCase__ : List[str] = resid_pdrop UpperCamelCase__ : Optional[int] = embd_pdrop UpperCamelCase__ : Optional[Any] = attn_pdrop UpperCamelCase__ : Optional[Any] = layer_norm_epsilon UpperCamelCase__ : int = initializer_range UpperCamelCase__ : Dict = scale_attn_weights UpperCamelCase__ : Tuple = use_cache UpperCamelCase__ : List[str] = scale_attn_by_inverse_layer_idx UpperCamelCase__ : Union[str, Any] = reorder_and_upcast_attn UpperCamelCase__ : Optional[Any] = bos_token_id UpperCamelCase__ : Optional[int] = eos_token_id super().__init__(bos_token_id=SCREAMING_SNAKE_CASE , eos_token_id=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE )
364
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPImageProcessor, CLIPProcessor @require_vision class __a ( unittest.TestCase ): def __lowercase ( self : Union[str, Any] ): '''simple docstring''' UpperCamelCase__ : Dict = tempfile.mkdtemp() # fmt: off UpperCamelCase__ : List[Any] = ["l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "lo", "l</w>", "w</w>", "r</w>", "t</w>", "low</w>", "er</w>", "lowest</w>", "newer</w>", "wider", "<unk>", "<|startoftext|>", "<|endoftext|>"] # fmt: on UpperCamelCase__ : List[Any] = dict(zip(SCREAMING_SNAKE_CASE , range(len(SCREAMING_SNAKE_CASE ) ) ) ) UpperCamelCase__ : Tuple = ["#version: 0.2", "l o", "lo w</w>", "e r</w>", ""] UpperCamelCase__ : Tuple = {"unk_token": "<unk>"} UpperCamelCase__ : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) UpperCamelCase__ : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(SCREAMING_SNAKE_CASE ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(SCREAMING_SNAKE_CASE ) ) UpperCamelCase__ : List[str] = { "do_resize": True, "size": 20, "do_center_crop": True, "crop_size": 18, "do_normalize": True, "image_mean": [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3], "image_std": [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1], } UpperCamelCase__ : int = os.path.join(self.tmpdirname , SCREAMING_SNAKE_CASE ) with open(self.image_processor_file , "w" , encoding="utf-8" ) as fp: json.dump(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def __lowercase ( self : List[str] , **SCREAMING_SNAKE_CASE : List[str] ): '''simple docstring''' return CLIPTokenizer.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE ) def __lowercase ( self : List[Any] , **SCREAMING_SNAKE_CASE : Union[str, Any] ): '''simple docstring''' return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE ) def __lowercase ( self : Any , **SCREAMING_SNAKE_CASE : Union[str, Any] ): '''simple docstring''' return CLIPImageProcessor.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE ) def __lowercase ( self : Optional[Any] ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) def __lowercase ( self : Any ): '''simple docstring''' UpperCamelCase__ : int = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] UpperCamelCase__ : int = [Image.fromarray(np.moveaxis(SCREAMING_SNAKE_CASE , 0 , -1 ) ) for x in image_inputs] return image_inputs def __lowercase ( self : Tuple ): '''simple docstring''' UpperCamelCase__ : Union[str, Any] = self.get_tokenizer() UpperCamelCase__ : List[str] = self.get_rust_tokenizer() UpperCamelCase__ : str = self.get_image_processor() UpperCamelCase__ : List[str] = CLIPProcessor(tokenizer=SCREAMING_SNAKE_CASE , image_processor=SCREAMING_SNAKE_CASE ) processor_slow.save_pretrained(self.tmpdirname ) UpperCamelCase__ : List[Any] = CLIPProcessor.from_pretrained(self.tmpdirname , use_fast=SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Tuple = CLIPProcessor(tokenizer=SCREAMING_SNAKE_CASE , image_processor=SCREAMING_SNAKE_CASE ) processor_fast.save_pretrained(self.tmpdirname ) UpperCamelCase__ : Any = CLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , SCREAMING_SNAKE_CASE ) self.assertIsInstance(processor_fast.tokenizer , SCREAMING_SNAKE_CASE ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , SCREAMING_SNAKE_CASE ) self.assertIsInstance(processor_fast.image_processor , SCREAMING_SNAKE_CASE ) def __lowercase ( self : List[str] ): '''simple docstring''' UpperCamelCase__ : str = CLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) UpperCamelCase__ : Union[str, Any] = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" ) UpperCamelCase__ : int = self.get_image_processor(do_normalize=SCREAMING_SNAKE_CASE , padding_value=1.0 ) UpperCamelCase__ : Tuple = CLIPProcessor.from_pretrained( self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=SCREAMING_SNAKE_CASE , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , SCREAMING_SNAKE_CASE ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , SCREAMING_SNAKE_CASE ) def __lowercase ( self : List[Any] ): '''simple docstring''' UpperCamelCase__ : List[str] = self.get_image_processor() UpperCamelCase__ : Union[str, Any] = self.get_tokenizer() UpperCamelCase__ : Any = CLIPProcessor(tokenizer=SCREAMING_SNAKE_CASE , image_processor=SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Dict = self.prepare_image_inputs() UpperCamelCase__ : List[Any] = image_processor(SCREAMING_SNAKE_CASE , return_tensors="np" ) UpperCamelCase__ : Optional[Any] = processor(images=SCREAMING_SNAKE_CASE , return_tensors="np" ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 ) def __lowercase ( self : Union[str, Any] ): '''simple docstring''' UpperCamelCase__ : str = self.get_image_processor() UpperCamelCase__ : int = self.get_tokenizer() UpperCamelCase__ : Any = CLIPProcessor(tokenizer=SCREAMING_SNAKE_CASE , image_processor=SCREAMING_SNAKE_CASE ) UpperCamelCase__ : List[Any] = "lower newer" UpperCamelCase__ : int = processor(text=SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Tuple = tokenizer(SCREAMING_SNAKE_CASE ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def __lowercase ( self : int ): '''simple docstring''' UpperCamelCase__ : List[str] = self.get_image_processor() UpperCamelCase__ : Dict = self.get_tokenizer() UpperCamelCase__ : Optional[Any] = CLIPProcessor(tokenizer=SCREAMING_SNAKE_CASE , image_processor=SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Dict = "lower newer" UpperCamelCase__ : List[Any] = self.prepare_image_inputs() UpperCamelCase__ : Tuple = processor(text=SCREAMING_SNAKE_CASE , images=SCREAMING_SNAKE_CASE ) self.assertListEqual(list(inputs.keys() ) , ["input_ids", "attention_mask", "pixel_values"] ) # test if it raises when no input is passed with pytest.raises(SCREAMING_SNAKE_CASE ): processor() def __lowercase ( self : Optional[int] ): '''simple docstring''' UpperCamelCase__ : Optional[Any] = self.get_image_processor() UpperCamelCase__ : Optional[int] = self.get_tokenizer() UpperCamelCase__ : Optional[Any] = CLIPProcessor(tokenizer=SCREAMING_SNAKE_CASE , image_processor=SCREAMING_SNAKE_CASE ) UpperCamelCase__ : List[str] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] UpperCamelCase__ : Optional[Any] = processor.batch_decode(SCREAMING_SNAKE_CASE ) UpperCamelCase__ : List[Any] = tokenizer.batch_decode(SCREAMING_SNAKE_CASE ) self.assertListEqual(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def __lowercase ( self : List[str] ): '''simple docstring''' UpperCamelCase__ : Dict = self.get_image_processor() UpperCamelCase__ : Tuple = self.get_tokenizer() UpperCamelCase__ : Dict = CLIPProcessor(tokenizer=SCREAMING_SNAKE_CASE , image_processor=SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Dict = "lower newer" UpperCamelCase__ : List[str] = self.prepare_image_inputs() UpperCamelCase__ : str = processor(text=SCREAMING_SNAKE_CASE , images=SCREAMING_SNAKE_CASE ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
196
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig SCREAMING_SNAKE_CASE_: Union[str, Any] ={ 'albert-base-v1': 'https://huggingface.co/albert-base-v1/resolve/main/config.json', 'albert-large-v1': 'https://huggingface.co/albert-large-v1/resolve/main/config.json', 'albert-xlarge-v1': 'https://huggingface.co/albert-xlarge-v1/resolve/main/config.json', 'albert-xxlarge-v1': 'https://huggingface.co/albert-xxlarge-v1/resolve/main/config.json', 'albert-base-v2': 'https://huggingface.co/albert-base-v2/resolve/main/config.json', 'albert-large-v2': 'https://huggingface.co/albert-large-v2/resolve/main/config.json', 'albert-xlarge-v2': 'https://huggingface.co/albert-xlarge-v2/resolve/main/config.json', 'albert-xxlarge-v2': 'https://huggingface.co/albert-xxlarge-v2/resolve/main/config.json', } class __A ( UpperCamelCase__ ): a__ : Optional[int] = """albert""" def __init__(self : Optional[int] , __a : Optional[int]=30000 , __a : Optional[Any]=128 , __a : Any=4096 , __a : Tuple=12 , __a : int=1 , __a : str=64 , __a : Optional[int]=16384 , __a : Optional[Any]=1 , __a : Dict="gelu_new" , __a : Dict=0 , __a : Dict=0 , __a : int=512 , __a : Optional[Any]=2 , __a : Tuple=0.02 , __a : Any=1E-12 , __a : List[Any]=0.1 , __a : Optional[Any]="absolute" , __a : Union[str, Any]=0 , __a : Union[str, Any]=2 , __a : str=3 , **__a : Union[str, Any] , ): super().__init__(pad_token_id=__a , bos_token_id=__a , eos_token_id=__a , **__a ) UpperCAmelCase_ = vocab_size UpperCAmelCase_ = embedding_size UpperCAmelCase_ = hidden_size UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_hidden_groups UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = inner_group_num UpperCAmelCase_ = hidden_act UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = hidden_dropout_prob UpperCAmelCase_ = attention_probs_dropout_prob UpperCAmelCase_ = max_position_embeddings UpperCAmelCase_ = type_vocab_size UpperCAmelCase_ = initializer_range UpperCAmelCase_ = layer_norm_eps UpperCAmelCase_ = classifier_dropout_prob UpperCAmelCase_ = position_embedding_type class __A ( UpperCamelCase__ ): @property def _lowercase (self : Tuple ): if self.task == "multiple-choice": UpperCAmelCase_ = {0: "batch", 1: "choice", 2: "sequence"} else: UpperCAmelCase_ = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ("token_type_ids", dynamic_axis), ] )
1
import unittest from transformers import AutoConfig, AutoTokenizer, BertConfig, TensorType, is_flax_available from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, require_flax, slow if is_flax_available(): import jax from transformers.models.auto.modeling_flax_auto import FlaxAutoModel from transformers.models.bert.modeling_flax_bert import FlaxBertModel from transformers.models.roberta.modeling_flax_roberta import FlaxRobertaModel @require_flax class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): @slow def UpperCamelCase ( self ): for model_name in ["bert-base-cased", "bert-large-uncased"]: with self.subTest(__lowerCamelCase ): A__ = AutoConfig.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase,__lowerCamelCase ) A__ = FlaxAutoModel.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase,__lowerCamelCase ) @slow def UpperCamelCase ( self ): for model_name in ["roberta-base", "roberta-large"]: with self.subTest(__lowerCamelCase ): A__ = AutoConfig.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase,__lowerCamelCase ) A__ = FlaxAutoModel.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase,__lowerCamelCase ) @slow def UpperCamelCase ( self ): for model_name in ["bert-base-cased", "bert-large-uncased"]: A__ = AutoTokenizer.from_pretrained(__lowerCamelCase ) A__ = FlaxBertModel.from_pretrained(__lowerCamelCase ) A__ = tokenizer('''Do you support jax jitted function?''',return_tensors=TensorType.JAX ) @jax.jit def eval(**__lowerCamelCase ): return model(**__lowerCamelCase ) eval(**__lowerCamelCase ).block_until_ready() @slow def UpperCamelCase ( self ): for model_name in ["roberta-base", "roberta-large"]: A__ = AutoTokenizer.from_pretrained(__lowerCamelCase ) A__ = FlaxRobertaModel.from_pretrained(__lowerCamelCase ) A__ = tokenizer('''Do you support jax jitted function?''',return_tensors=TensorType.JAX ) @jax.jit def eval(**__lowerCamelCase ): return model(**__lowerCamelCase ) eval(**__lowerCamelCase ).block_until_ready() def UpperCamelCase ( self ): with self.assertRaisesRegex( __lowerCamelCase,'''bert-base is not a local folder and is not a valid model identifier''' ): A__ = FlaxAutoModel.from_pretrained('''bert-base''' ) def UpperCamelCase ( self ): with self.assertRaisesRegex( __lowerCamelCase,r'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ): A__ = FlaxAutoModel.from_pretrained(__lowerCamelCase,revision='''aaaaaa''' ) def UpperCamelCase ( self ): with self.assertRaisesRegex( __lowerCamelCase,'''hf-internal-testing/config-no-model does not appear to have a file named flax_model.msgpack''',): A__ = FlaxAutoModel.from_pretrained('''hf-internal-testing/config-no-model''' ) def UpperCamelCase ( self ): with self.assertRaisesRegex(__lowerCamelCase,'''Use `from_pt=True` to load this model''' ): A__ = FlaxAutoModel.from_pretrained('''hf-internal-testing/tiny-bert-pt-only''' )
193
0
class _UpperCamelCase : def __init__( self: Optional[Any] ) -> None: """simple docstring""" UpperCamelCase_ = {} # Mapping from char to TrieNode UpperCamelCase_ = False def lowercase ( self: Union[str, Any] , _SCREAMING_SNAKE_CASE: Optional[Any] ) -> None: """simple docstring""" for word in words: self.insert(_a ) def lowercase ( self: Tuple , _SCREAMING_SNAKE_CASE: Any ) -> None: """simple docstring""" UpperCamelCase_ = self for char in word: if char not in curr.nodes: UpperCamelCase_ = TrieNode() UpperCamelCase_ = curr.nodes[char] UpperCamelCase_ = True def lowercase ( self: Optional[int] , _SCREAMING_SNAKE_CASE: List[str] ) -> bool: """simple docstring""" UpperCamelCase_ = self for char in word: if char not in curr.nodes: return False UpperCamelCase_ = curr.nodes[char] return curr.is_leaf def lowercase ( self: Optional[Any] , _SCREAMING_SNAKE_CASE: Union[str, Any] ) -> None: """simple docstring""" def _delete(_SCREAMING_SNAKE_CASE: Union[str, Any] , _SCREAMING_SNAKE_CASE: Dict , _SCREAMING_SNAKE_CASE: Tuple ) -> bool: if index == len(_a ): # If word does not exist if not curr.is_leaf: return False UpperCamelCase_ = False return len(curr.nodes ) == 0 UpperCamelCase_ = word[index] UpperCamelCase_ = curr.nodes.get(_a ) # If char not in current trie node if not char_node: return False # Flag to check if node can be deleted UpperCamelCase_ = _delete(_a , _a , index + 1 ) if delete_curr: del curr.nodes[char] return len(curr.nodes ) == 0 return delete_curr _delete(self , _a , 0 ) def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ ) -> None: if node.is_leaf: print(__a , end=" " ) for key, value in node.nodes.items(): print_words(__a , word + key ) def lowerCAmelCase_ ( ) -> bool: UpperCamelCase_ = '''banana bananas bandana band apple all beast'''.split() UpperCamelCase_ = TrieNode() root.insert_many(__a ) # print_words(root, "") assert all(root.find(__a ) for word in words ) assert root.find("banana" ) assert not root.find("bandanas" ) assert not root.find("apps" ) assert root.find("apple" ) assert root.find("all" ) root.delete("all" ) assert not root.find("all" ) root.delete("banana" ) assert not root.find("banana" ) assert root.find("bananas" ) return True def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ ) -> None: print(str(__a ) , "works!" if passes else "doesn\'t work :(" ) def lowerCAmelCase_ ( ) -> None: assert test_trie() def lowerCAmelCase_ ( ) -> None: print_results("Testing trie functionality" , test_trie() ) if __name__ == "__main__": main()
365
from functools import lru_cache def lowerCAmelCase_ ( UpperCamelCase_ ) -> set: UpperCamelCase_ = 2 UpperCamelCase_ = set() while i * i <= n: if n % i: i += 1 else: n //= i factors.add(UpperCamelCase_ ) if n > 1: factors.add(UpperCamelCase_ ) return factors @lru_cache def lowerCAmelCase_ ( UpperCamelCase_ ) -> int: return len(unique_prime_factors(UpperCamelCase_ ) ) def lowerCAmelCase_ ( UpperCamelCase_ ) -> bool: return len(set(UpperCamelCase_ ) ) in (0, 1) def lowerCAmelCase_ ( UpperCamelCase_ ) -> list: UpperCamelCase_ = 2 while True: # Increment each value of a generated range UpperCamelCase_ = [base + i for i in range(UpperCamelCase_ )] # Run elements through out unique_prime_factors function # Append our target number to the end. UpperCamelCase_ = [upf_len(UpperCamelCase_ ) for x in group] checker.append(UpperCamelCase_ ) # If all numbers in the list are equal, return the group variable. if equality(UpperCamelCase_ ): return group # Increment our base variable by 1 base += 1 def lowerCAmelCase_ ( UpperCamelCase_ = 4 ) -> int: UpperCamelCase_ = run(UpperCamelCase_ ) return results[0] if len(UpperCamelCase_ ) else None if __name__ == "__main__": print(solution())
328
0
'''simple docstring''' import os from typing import Dict, List, Union import tensorflow as tf from keras_nlp.tokenizers import BytePairTokenizer from tensorflow_text import pad_model_inputs from .tokenization_gpta import GPTaTokenizer class A_ ( tf.keras.layers.Layer ): def __init__( self : Tuple , snake_case_ : Dict[str, int] , snake_case_ : List[str] , snake_case_ : int = None , snake_case_ : int = None ): super().__init__() _UpperCAmelCase = pad_token_id _UpperCAmelCase = max_length _UpperCAmelCase = vocab _UpperCAmelCase = merges _UpperCAmelCase = BytePairTokenizer(snake_case_ , snake_case_ , sequence_length=snake_case_ ) @classmethod def lowercase ( cls : Optional[int] , snake_case_ : GPTaTokenizer , *snake_case_ : List[Any] , **snake_case_ : Any ): _UpperCAmelCase = [" ".join(snake_case_ ) for m in tokenizer.bpe_ranks.keys()] _UpperCAmelCase = tokenizer.get_vocab() return cls(snake_case_ , snake_case_ , *snake_case_ , **snake_case_ ) @classmethod def lowercase ( cls : Optional[int] , snake_case_ : Union[str, os.PathLike] , *snake_case_ : Union[str, Any] , **snake_case_ : List[Any] ): _UpperCAmelCase = GPTaTokenizer.from_pretrained(snake_case_ , *snake_case_ , **snake_case_ ) return cls.from_tokenizer(snake_case_ , *snake_case_ , **snake_case_ ) @classmethod def lowercase ( cls : int , snake_case_ : List[Any] ): return cls(**snake_case_ ) def lowercase ( self : str ): return { "vocab": self.vocab, "merges": self.merges, "max_length": self.max_length, "pad_token_id": self.pad_token_id, } def lowercase ( self : List[str] , snake_case_ : Union[str, Any] , snake_case_ : int = None ): _UpperCAmelCase = self.tf_tokenizer(snake_case_ ) _UpperCAmelCase = tf.ones_like(snake_case_ ) if self.pad_token_id is not None: # pad the tokens up to max length _UpperCAmelCase = max_length if max_length is not None else self.max_length if max_length is not None: _UpperCAmelCase , _UpperCAmelCase = pad_model_inputs( snake_case_ , max_seq_length=snake_case_ , pad_value=self.pad_token_id ) return {"attention_mask": attention_mask, "input_ids": input_ids}
22
"""simple docstring""" def lowercase__ ( _UpperCAmelCase , _UpperCAmelCase ) -> bool: '''simple docstring''' lowercase : Optional[int] = len(_UpperCAmelCase ) + 1 lowercase : Any = len(_UpperCAmelCase ) + 1 # dp is a 2d matrix where dp[i][j] denotes whether prefix string of # length i of input_string matches with prefix string of length j of # given pattern. # "dp" stands for dynamic programming. lowercase : Tuple = [[0 for i in range(_UpperCAmelCase )] for j in range(_UpperCAmelCase )] # since string of zero length match pattern of zero length lowercase : List[Any] = 1 # since pattern of zero length will never match with string of non-zero length for i in range(1 , _UpperCAmelCase ): lowercase : Tuple = 0 # since string of zero length will match with pattern where there # is at least one * alternatively for j in range(1 , _UpperCAmelCase ): lowercase : Tuple = dp[0][j - 2] if pattern[j - 1] == '*' else 0 # now using bottom-up approach to find for all remaining lengths for i in range(1 , _UpperCAmelCase ): for j in range(1 , _UpperCAmelCase ): if input_string[i - 1] == pattern[j - 1] or pattern[j - 1] == ".": lowercase : List[str] = dp[i - 1][j - 1] elif pattern[j - 1] == "*": if dp[i][j - 2] == 1: lowercase : Any = 1 elif pattern[j - 2] in (input_string[i - 1], "."): lowercase : List[Any] = dp[i - 1][j] else: lowercase : Optional[int] = 0 else: lowercase : Dict = 0 return bool(dp[-1][-1] ) if __name__ == "__main__": import doctest doctest.testmod() # inputing the strings # input_string = input("input a string :") # pattern = input("input a pattern :") _UpperCamelCase: int = 'aab' _UpperCamelCase: Tuple = 'c*a*b' # using function to check whether given string matches the given pattern if match_pattern(input_string, pattern): print(f'''{input_string} matches the given pattern {pattern}''') else: print(f'''{input_string} does not match with the given pattern {pattern}''')
255
0
'''simple docstring''' from __future__ import annotations def lowerCamelCase__ ( _A , _A , _A ): if days_between_payments <= 0: raise ValueError('days_between_payments must be > 0' ) if daily_interest_rate < 0: raise ValueError('daily_interest_rate must be >= 0' ) if principal <= 0: raise ValueError('principal must be > 0' ) return principal * daily_interest_rate * days_between_payments def lowerCamelCase__ ( _A , _A , _A , ): if number_of_compounding_periods <= 0: raise ValueError('number_of_compounding_periods must be > 0' ) if nominal_annual_interest_rate_percentage < 0: raise ValueError('nominal_annual_interest_rate_percentage must be >= 0' ) if principal <= 0: raise ValueError('principal must be > 0' ) return principal * ( (1 + nominal_annual_interest_rate_percentage) ** number_of_compounding_periods - 1 ) def lowerCamelCase__ ( _A , _A , _A , ): if number_of_years <= 0: raise ValueError('number_of_years must be > 0' ) if nominal_annual_percentage_rate < 0: raise ValueError('nominal_annual_percentage_rate must be >= 0' ) if principal <= 0: raise ValueError('principal must be > 0' ) return compound_interest( _A , nominal_annual_percentage_rate / 365 , number_of_years * 365 ) if __name__ == "__main__": import doctest doctest.testmod()
354
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase: List[Any] = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase: Optional[int] = ['NllbTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase: Dict = ['NllbTokenizerFast'] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb import NllbTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb_fast import NllbTokenizerFast else: import sys lowerCAmelCase: Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
96
0
import json import os import tempfile import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ImageGPTImageProcessor class A__ ( unittest.TestCase): def __init__( self , __magic_name__ , __magic_name__=7 , __magic_name__=3 , __magic_name__=1_8 , __magic_name__=3_0 , __magic_name__=4_0_0 , __magic_name__=True , __magic_name__=None , __magic_name__=True , ): lowerCamelCase : List[str] = size if size is not None else {"""height""": 1_8, """width""": 1_8} lowerCamelCase : Any = parent lowerCamelCase : Union[str, Any] = batch_size lowerCamelCase : int = num_channels lowerCamelCase : Union[str, Any] = image_size lowerCamelCase : int = min_resolution lowerCamelCase : Union[str, Any] = max_resolution lowerCamelCase : Dict = do_resize lowerCamelCase : List[Any] = size lowerCamelCase : Any = do_normalize def UpperCamelCase__ ( self ): return { # here we create 2 clusters for the sake of simplicity "clusters": np.asarray( [ [0.8_866_443_634_033_203, 0.6_618_829_369_544_983, 0.3_891_746_401_786_804], [-0.6_042_559_146_881_104, -0.02_295_008_860_528_469, 0.5_423_797_369_003_296], ] ), "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, } @require_torch @require_vision class A__ ( __SCREAMING_SNAKE_CASE , unittest.TestCase): _UpperCAmelCase : Dict = ImageGPTImageProcessor if is_vision_available() else None def UpperCamelCase__ ( self ): lowerCamelCase : Optional[int] = ImageGPTImageProcessingTester(self ) @property def UpperCamelCase__ ( self ): return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase__ ( self ): lowerCamelCase : int = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__magic_name__ , """clusters""" ) ) self.assertTrue(hasattr(__magic_name__ , """do_resize""" ) ) self.assertTrue(hasattr(__magic_name__ , """size""" ) ) self.assertTrue(hasattr(__magic_name__ , """do_normalize""" ) ) def UpperCamelCase__ ( self ): lowerCamelCase : Optional[int] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""height""": 1_8, """width""": 1_8} ) lowerCamelCase : Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict , size=4_2 ) self.assertEqual(image_processor.size , {"""height""": 4_2, """width""": 4_2} ) def UpperCamelCase__ ( self ): lowerCamelCase : List[Any] = self.image_processing_class(**self.image_processor_dict ) lowerCamelCase : List[Any] = json.loads(image_processor.to_json_string() ) for key, value in self.image_processor_dict.items(): if key == "clusters": self.assertTrue(np.array_equal(__magic_name__ , obj[key] ) ) else: self.assertEqual(obj[key] , __magic_name__ ) def UpperCamelCase__ ( self ): lowerCamelCase : int = self.image_processing_class(**self.image_processor_dict ) with tempfile.TemporaryDirectory() as tmpdirname: lowerCamelCase : Any = os.path.join(__magic_name__ , """image_processor.json""" ) image_processor_first.to_json_file(__magic_name__ ) lowerCamelCase : Tuple = self.image_processing_class.from_json_file(__magic_name__ ).to_dict() lowerCamelCase : Optional[int] = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(__magic_name__ , image_processor_second[key] ) ) else: self.assertEqual(image_processor_first[key] , __magic_name__ ) def UpperCamelCase__ ( self ): lowerCamelCase : Dict = self.image_processing_class(**self.image_processor_dict ) with tempfile.TemporaryDirectory() as tmpdirname: image_processor_first.save_pretrained(__magic_name__ ) lowerCamelCase : int = self.image_processing_class.from_pretrained(__magic_name__ ).to_dict() lowerCamelCase : int = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(__magic_name__ , image_processor_second[key] ) ) else: self.assertEqual(image_processor_first[key] , __magic_name__ ) @unittest.skip("""ImageGPT requires clusters at initialization""" ) def UpperCamelCase__ ( self ): pass def _a ( ): lowerCamelCase : Union[str, Any] = load_dataset("""hf-internal-testing/fixtures_image_utils""", split="""test""" ) lowerCamelCase : Tuple = Image.open(dataset[4]["""file"""] ) lowerCamelCase : Optional[int] = Image.open(dataset[5]["""file"""] ) lowerCamelCase : str = [imagea, imagea] return images @require_vision @require_torch class A__ ( unittest.TestCase): @slow def UpperCamelCase__ ( self ): lowerCamelCase : Union[str, Any] = ImageGPTImageProcessor.from_pretrained("""openai/imagegpt-small""" ) lowerCamelCase : Optional[int] = prepare_images() # test non-batched lowerCamelCase : Any = image_processing(images[0] , return_tensors="""pt""" ) self.assertIsInstance(encoding.input_ids , torch.LongTensor ) self.assertEqual(encoding.input_ids.shape , (1, 1_0_2_4) ) lowerCamelCase : Any = [3_0_6, 1_9_1, 1_9_1] self.assertEqual(encoding.input_ids[0, :3].tolist() , __magic_name__ ) # test batched lowerCamelCase : List[str] = image_processing(__magic_name__ , return_tensors="""pt""" ) self.assertIsInstance(encoding.input_ids , torch.LongTensor ) self.assertEqual(encoding.input_ids.shape , (2, 1_0_2_4) ) lowerCamelCase : int = [3_0_3, 1_3, 1_3] self.assertEqual(encoding.input_ids[1, -3:].tolist() , __magic_name__ )
287
def _a ( lowerCamelCase ): if p < 2: raise ValueError("""p should not be less than 2!""" ) elif p == 2: return True lowerCamelCase : Any = 4 lowerCamelCase : List[str] = (1 << p) - 1 for _ in range(p - 2 ): lowerCamelCase : List[Any] = ((s * s) - 2) % m return s == 0 if __name__ == "__main__": print(lucas_lehmer_test(7)) print(lucas_lehmer_test(1_1))
287
1
import copy import os import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np import pyarrow as pa import pyarrow.parquet as pq import pytest from datasets.arrow_writer import ArrowWriter, OptimizedTypedSequence, ParquetWriter, TypedSequence from datasets.features import ArrayaD, ClassLabel, Features, Image, Value from datasets.features.features import ArrayaDExtensionType, cast_to_python_objects from datasets.keyhash import DuplicatedKeysError, InvalidKeyError from .utils import require_pil class __A ( lowerCamelCase__ ): def _snake_case ( self ): lowerCamelCase =pa.array(TypedSequence([1, 2, 3] ) ) self.assertEqual(arr.type , pa.intaa() ) def _snake_case ( self ): with self.assertRaises(__lowerCamelCase ): lowerCamelCase =pa.array(TypedSequence([1, 2, 3] ) , type=pa.intaa() ) def _snake_case ( self ): with self.assertRaises(__lowerCamelCase ): lowerCamelCase =pa.array(TypedSequence([1, 2, 3] , try_type=Value("""bool""" ) , type=Value("""int64""" ) ) ) def _snake_case ( self ): lowerCamelCase =pa.array(TypedSequence([1, 2, 3] , type=Value("""int32""" ) ) ) self.assertEqual(arr.type , pa.intaa() ) def _snake_case ( self ): with self.assertRaises((TypeError, pa.lib.ArrowInvalid) ): lowerCamelCase =pa.array(TypedSequence(["""foo""", """bar"""] , type=Value("""int64""" ) ) ) def _snake_case ( self ): lowerCamelCase =pa.array(TypedSequence([1, 2, 3] , try_type=Value("""int32""" ) ) ) self.assertEqual(arr.type , pa.intaa() ) def _snake_case ( self ): lowerCamelCase =pa.array(TypedSequence(["""foo""", """bar"""] , try_type=Value("""int64""" ) ) ) self.assertEqual(arr.type , pa.string() ) def _snake_case ( self ): lowerCamelCase =pa.array(TypedSequence([[[1, 2, 3]]] , type=ArrayaD((1, 3) , """int64""" ) ) ) self.assertEqual(arr.type , ArrayaDExtensionType((1, 3) , """int64""" ) ) def _snake_case ( self ): with self.assertRaises((TypeError, pa.lib.ArrowInvalid) ): lowerCamelCase =pa.array(TypedSequence(["""foo""", """bar"""] , type=ArrayaD((1, 3) , """int64""" ) ) ) def _snake_case ( self ): lowerCamelCase =pa.array(TypedSequence([[[1, 2, 3]]] , try_type=ArrayaD((1, 3) , """int64""" ) ) ) self.assertEqual(arr.type , ArrayaDExtensionType((1, 3) , """int64""" ) ) def _snake_case ( self ): lowerCamelCase =pa.array(TypedSequence(["""foo""", """bar"""] , try_type=ArrayaD((1, 3) , """int64""" ) ) ) self.assertEqual(arr.type , pa.string() ) @require_pil def _snake_case ( self ): import PIL.Image lowerCamelCase =PIL.Image.fromarray(np.arange(10 , dtype=np.uinta ).reshape(2 , 5 ) ) with patch( """datasets.arrow_writer.cast_to_python_objects""" , side_effect=__lowerCamelCase ) as mock_cast_to_python_objects: lowerCamelCase =pa.array(TypedSequence([{"""path""": None, """bytes""": B"""image_bytes"""}, pil_image] , type=Image() ) ) lowerCamelCase =mock_cast_to_python_objects.call_args_list[-1] self.assertIn("""optimize_list_casting""" , __lowerCamelCase ) self.assertFalse(kwargs["""optimize_list_casting"""] ) def _lowercase ( _UpperCAmelCase , _UpperCAmelCase ) -> int: lowerCamelCase =pa.BufferReader(lowerCamelCase_ ) if isinstance(lowerCamelCase_ , pa.Buffer ) else pa.memory_map(lowerCamelCase_ ) lowerCamelCase =pa.ipc.open_stream(lowerCamelCase_ ) lowerCamelCase =f.read_all() assert len(pa_table.to_batches() ) == expected_num_chunks assert pa_table.to_pydict() == {"col_1": ["foo", "bar"], "col_2": [1, 2]} del pa_table @pytest.mark.parametrize("""writer_batch_size""" , [None, 1, 10] ) @pytest.mark.parametrize( """fields""" , [None, {"""col_1""": pa.string(), """col_2""": pa.intaa()}, {"""col_1""": pa.string(), """col_2""": pa.intaa()}] ) def _lowercase ( _UpperCAmelCase , _UpperCAmelCase ) -> List[Any]: lowerCamelCase =pa.BufferOutputStream() lowerCamelCase =pa.schema(lowerCamelCase_ ) if fields else None with ArrowWriter(stream=lowerCamelCase_ , schema=lowerCamelCase_ , writer_batch_size=lowerCamelCase_ ) as writer: writer.write({"""col_1""": """foo""", """col_2""": 1} ) writer.write({"""col_1""": """bar""", """col_2""": 2} ) lowerCamelCase =writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: lowerCamelCase ={'''col_1''': pa.string(), '''col_2''': pa.intaa()} assert writer._schema == pa.schema(lowerCamelCase_ , metadata=writer._schema.metadata ) _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) def _lowercase ( ) -> Optional[int]: lowerCamelCase =pa.BufferOutputStream() lowerCamelCase =Features({"""labels""": ClassLabel(names=["""neg""", """pos"""] )} ) with ArrowWriter(stream=lowerCamelCase_ , features=lowerCamelCase_ ) as writer: writer.write({"""labels""": 0} ) writer.write({"""labels""": 1} ) lowerCamelCase =writer.finalize() assert num_examples == 2 assert num_bytes > 0 assert writer._schema == features.arrow_schema assert writer._schema.metadata == features.arrow_schema.metadata lowerCamelCase =pa.BufferReader(output.getvalue() ) lowerCamelCase =pa.ipc.open_stream(lowerCamelCase_ ) lowerCamelCase =f.read_all() lowerCamelCase =pa_table.schema assert pa_table.num_rows == 2 assert schema == features.arrow_schema assert schema.metadata == features.arrow_schema.metadata assert features == Features.from_arrow_schema(lowerCamelCase_ ) @pytest.mark.parametrize("""writer_batch_size""" , [None, 1, 10] ) def _lowercase ( _UpperCAmelCase ) -> List[Any]: lowerCamelCase =pa.BufferOutputStream() with ArrowWriter( stream=lowerCamelCase_ , writer_batch_size=lowerCamelCase_ , hash_salt="""split_name""" , check_duplicates=lowerCamelCase_ , ) as writer: with pytest.raises(lowerCamelCase_ ): writer.write({"""col_1""": """foo""", """col_2""": 1} , key=[1, 2] ) lowerCamelCase =writer.finalize() @pytest.mark.parametrize("""writer_batch_size""" , [None, 2, 10] ) def _lowercase ( _UpperCAmelCase ) -> Tuple: lowerCamelCase =pa.BufferOutputStream() with ArrowWriter( stream=lowerCamelCase_ , writer_batch_size=lowerCamelCase_ , hash_salt="""split_name""" , check_duplicates=lowerCamelCase_ , ) as writer: with pytest.raises(lowerCamelCase_ ): writer.write({"""col_1""": """foo""", """col_2""": 1} , key=10 ) writer.write({"""col_1""": """bar""", """col_2""": 2} , key=10 ) lowerCamelCase =writer.finalize() @pytest.mark.parametrize("""writer_batch_size""" , [None, 2, 10] ) def _lowercase ( _UpperCAmelCase ) -> Optional[Any]: lowerCamelCase =pa.BufferOutputStream() with ArrowWriter( stream=lowerCamelCase_ , writer_batch_size=lowerCamelCase_ , hash_salt="""split_name""" , check_duplicates=lowerCamelCase_ , ) as writer: writer.write({"""col_1""": """foo""", """col_2""": 1} , key=1 ) writer.write({"""col_1""": """bar""", """col_2""": 2} , key=2 ) lowerCamelCase =writer.finalize() assert num_examples == 2 assert num_bytes > 0 _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) @pytest.mark.parametrize("""writer_batch_size""" , [None, 1, 10] ) @pytest.mark.parametrize( """fields""" , [None, {"""col_1""": pa.string(), """col_2""": pa.intaa()}, {"""col_1""": pa.string(), """col_2""": pa.intaa()}] ) def _lowercase ( _UpperCAmelCase , _UpperCAmelCase ) -> List[str]: lowerCamelCase =pa.BufferOutputStream() lowerCamelCase =pa.schema(lowerCamelCase_ ) if fields else None with ArrowWriter(stream=lowerCamelCase_ , schema=lowerCamelCase_ , writer_batch_size=lowerCamelCase_ ) as writer: writer.write_batch({"""col_1""": ["""foo""", """bar"""], """col_2""": [1, 2]} ) writer.write_batch({"""col_1""": [], """col_2""": []} ) lowerCamelCase =writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: lowerCamelCase ={'''col_1''': pa.string(), '''col_2''': pa.intaa()} assert writer._schema == pa.schema(lowerCamelCase_ , metadata=writer._schema.metadata ) _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) @pytest.mark.parametrize("""writer_batch_size""" , [None, 1, 10] ) @pytest.mark.parametrize( """fields""" , [None, {"""col_1""": pa.string(), """col_2""": pa.intaa()}, {"""col_1""": pa.string(), """col_2""": pa.intaa()}] ) def _lowercase ( _UpperCAmelCase , _UpperCAmelCase ) -> str: lowerCamelCase =pa.BufferOutputStream() lowerCamelCase =pa.schema(lowerCamelCase_ ) if fields else None with ArrowWriter(stream=lowerCamelCase_ , schema=lowerCamelCase_ , writer_batch_size=lowerCamelCase_ ) as writer: writer.write_table(pa.Table.from_pydict({"""col_1""": ["""foo""", """bar"""], """col_2""": [1, 2]} ) ) lowerCamelCase =writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: lowerCamelCase ={'''col_1''': pa.string(), '''col_2''': pa.intaa()} assert writer._schema == pa.schema(lowerCamelCase_ , metadata=writer._schema.metadata ) _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) @pytest.mark.parametrize("""writer_batch_size""" , [None, 1, 10] ) @pytest.mark.parametrize( """fields""" , [None, {"""col_1""": pa.string(), """col_2""": pa.intaa()}, {"""col_1""": pa.string(), """col_2""": pa.intaa()}] ) def _lowercase ( _UpperCAmelCase , _UpperCAmelCase ) -> Optional[int]: lowerCamelCase =pa.BufferOutputStream() lowerCamelCase =pa.schema(lowerCamelCase_ ) if fields else None with ArrowWriter(stream=lowerCamelCase_ , schema=lowerCamelCase_ , writer_batch_size=lowerCamelCase_ ) as writer: writer.write_row(pa.Table.from_pydict({"""col_1""": ["""foo"""], """col_2""": [1]} ) ) writer.write_row(pa.Table.from_pydict({"""col_1""": ["""bar"""], """col_2""": [2]} ) ) lowerCamelCase =writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: lowerCamelCase ={'''col_1''': pa.string(), '''col_2''': pa.intaa()} assert writer._schema == pa.schema(lowerCamelCase_ , metadata=writer._schema.metadata ) _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) def _lowercase ( ) -> Optional[int]: with tempfile.TemporaryDirectory() as tmp_dir: lowerCamelCase ={'''col_1''': pa.string(), '''col_2''': pa.intaa()} lowerCamelCase =os.path.join(lowerCamelCase_ , """test.arrow""" ) with ArrowWriter(path=lowerCamelCase_ , schema=pa.schema(lowerCamelCase_ ) ) as writer: writer.write_batch({"""col_1""": ["""foo""", """bar"""], """col_2""": [1, 2]} ) lowerCamelCase =writer.finalize() assert num_examples == 2 assert num_bytes > 0 assert writer._schema == pa.schema(lowerCamelCase_ , metadata=writer._schema.metadata ) _check_output(lowerCamelCase_ , 1 ) def _lowercase ( _UpperCAmelCase ) -> str: if pa.types.is_list(lowerCamelCase_ ): return get_base_dtype(arr_type.value_type ) else: return arr_type def _lowercase ( _UpperCAmelCase , _UpperCAmelCase ) -> List[Any]: if isinstance(lst[0] , lowerCamelCase_ ): change_first_primitive_element_in_list(lst[0] , lowerCamelCase_ ) else: lowerCamelCase =value @pytest.mark.parametrize("""optimized_int_type, expected_dtype""" , [(None, pa.intaa()), (Value("""int32""" ), pa.intaa())] ) @pytest.mark.parametrize("""sequence""" , [[1, 2, 3], [[1, 2, 3]], [[[1, 2, 3]]]] ) def _lowercase ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> Optional[Any]: lowerCamelCase =pa.array(TypedSequence(lowerCamelCase_ , optimized_int_type=lowerCamelCase_ ) ) assert get_base_dtype(arr.type ) == expected_dtype @pytest.mark.parametrize( """col, expected_dtype""" , [ ("""attention_mask""", pa.inta()), ("""special_tokens_mask""", pa.inta()), ("""token_type_ids""", pa.inta()), ("""input_ids""", pa.intaa()), ("""other""", pa.intaa()), ] , ) @pytest.mark.parametrize("""sequence""" , [[1, 2, 3], [[1, 2, 3]], [[[1, 2, 3]]]] ) def _lowercase ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> List[Any]: lowerCamelCase =pa.array(OptimizedTypedSequence(lowerCamelCase_ , col=lowerCamelCase_ ) ) assert get_base_dtype(arr.type ) == expected_dtype # not in range if col != "other": # avoids errors due to in-place modifications lowerCamelCase =copy.deepcopy(lowerCamelCase_ ) lowerCamelCase =np.iinfo(expected_dtype.to_pandas_dtype() ).max + 1 change_first_primitive_element_in_list(lowerCamelCase_ , lowerCamelCase_ ) lowerCamelCase =pa.array(OptimizedTypedSequence(lowerCamelCase_ , col=lowerCamelCase_ ) ) assert get_base_dtype(arr.type ) == pa.intaa() @pytest.mark.parametrize("""raise_exception""" , [False, True] ) def _lowercase ( _UpperCAmelCase , _UpperCAmelCase ) -> int: lowerCamelCase =str(tmp_path / """dataset-train.arrow""" ) try: with ArrowWriter(path=lowerCamelCase_ ) as writer: if raise_exception: raise pa.lib.ArrowInvalid() else: writer.stream.close() except pa.lib.ArrowInvalid: pass finally: assert writer.stream.closed def _lowercase ( _UpperCAmelCase ) -> Tuple: lowerCamelCase ='''mock://dataset-train.arrow''' with ArrowWriter(path=lowerCamelCase_ , storage_options=mockfs.storage_options ) as writer: assert isinstance(writer._fs , type(lowerCamelCase_ ) ) assert writer._fs.storage_options == mockfs.storage_options writer.write({"""col_1""": """foo""", """col_2""": 1} ) writer.write({"""col_1""": """bar""", """col_2""": 2} ) lowerCamelCase =writer.finalize() assert num_examples == 2 assert num_bytes > 0 assert mockfs.exists(lowerCamelCase_ ) def _lowercase ( ) -> str: lowerCamelCase =pa.BufferOutputStream() with ParquetWriter(stream=lowerCamelCase_ ) as writer: writer.write({"""col_1""": """foo""", """col_2""": 1} ) writer.write({"""col_1""": """bar""", """col_2""": 2} ) lowerCamelCase =writer.finalize() assert num_examples == 2 assert num_bytes > 0 lowerCamelCase =pa.BufferReader(output.getvalue() ) lowerCamelCase =pq.read_table(lowerCamelCase_ ) assert pa_table.to_pydict() == {"col_1": ["foo", "bar"], "col_2": [1, 2]} @require_pil @pytest.mark.parametrize("""embed_local_files""" , [False, True] ) def _lowercase ( _UpperCAmelCase , _UpperCAmelCase ) -> Optional[int]: import PIL.Image lowerCamelCase =str(tmp_path / """test_image_rgb.jpg""" ) PIL.Image.fromarray(np.zeros((5, 5) , dtype=np.uinta ) ).save(lowerCamelCase_ , format="""png""" ) lowerCamelCase =pa.BufferOutputStream() with ParquetWriter( stream=lowerCamelCase_ , features=Features({"""image""": Image()} ) , embed_local_files=lowerCamelCase_ ) as writer: writer.write({"""image""": image_path} ) writer.finalize() lowerCamelCase =pa.BufferReader(output.getvalue() ) lowerCamelCase =pq.read_table(lowerCamelCase_ ) lowerCamelCase =pa_table.to_pydict() if embed_local_files: assert isinstance(out["""image"""][0]["""path"""] , lowerCamelCase_ ) with open(lowerCamelCase_ , """rb""" ) as f: assert out["image"][0]["bytes"] == f.read() else: assert out["image"][0]["path"] == image_path assert out["image"][0]["bytes"] is None def _lowercase ( ) -> int: lowerCamelCase =pa.schema([pa.field("""col_1""" , pa.string() , nullable=lowerCamelCase_ )] ) lowerCamelCase =pa.BufferOutputStream() with ArrowWriter(stream=lowerCamelCase_ ) as writer: writer._build_writer(inferred_schema=lowerCamelCase_ ) assert writer._schema == pa.schema([pa.field("""col_1""" , pa.string() )] )
356
import inspect import unittest class __A ( unittest.TestCase ): def _snake_case ( self ): try: import diffusers # noqa: F401 except ImportError: assert False def _snake_case ( self ): import diffusers from diffusers.dependency_versions_table import deps lowerCamelCase =inspect.getmembers(UpperCAmelCase_ , inspect.isclass ) for cls_name, cls_module in all_classes: if "dummy_" in cls_module.__module__: for backend in cls_module._backends: if backend == "k_diffusion": lowerCamelCase ="""k-diffusion""" elif backend == "invisible_watermark": lowerCamelCase ="""invisible-watermark""" assert backend in deps, f"""{backend} is not in the deps table!"""
262
0
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_pytesseract, require_torch from transformers.utils import is_pytesseract_available, is_torch_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_pytesseract_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class snake_case_( unittest.TestCase ): def __init__( self : int , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Tuple=7 , UpperCamelCase_ : int=3 , UpperCamelCase_ : Dict=1_8 , UpperCamelCase_ : List[Any]=3_0 , UpperCamelCase_ : str=4_0_0 , UpperCamelCase_ : Any=True , UpperCamelCase_ : List[str]=None , UpperCamelCase_ : List[Any]=True , ): lowerCAmelCase : Dict = size if size is not None else {'''height''': 1_8, '''width''': 1_8} lowerCAmelCase : str = parent lowerCAmelCase : int = batch_size lowerCAmelCase : List[str] = num_channels lowerCAmelCase : int = image_size lowerCAmelCase : Optional[int] = min_resolution lowerCAmelCase : List[Any] = max_resolution lowerCAmelCase : Dict = do_resize lowerCAmelCase : List[str] = size lowerCAmelCase : int = apply_ocr def lowerCamelCase__ ( self : List[str] ): return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr} @require_torch @require_pytesseract class snake_case_( a__ , unittest.TestCase ): __UpperCamelCase = LayoutLMvaImageProcessor if is_pytesseract_available() else None def lowerCamelCase__ ( self : Dict ): lowerCAmelCase : int = LayoutLMvaImageProcessingTester(self ) @property def lowerCamelCase__ ( self : int ): return self.image_processor_tester.prepare_image_processor_dict() def lowerCamelCase__ ( self : Optional[int] ): lowerCAmelCase : List[Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCamelCase_ , '''do_resize''' ) ) self.assertTrue(hasattr(UpperCamelCase_ , '''size''' ) ) self.assertTrue(hasattr(UpperCamelCase_ , '''apply_ocr''' ) ) def lowerCamelCase__ ( self : Optional[Any] ): lowerCAmelCase : Tuple = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''height''': 1_8, '''width''': 1_8} ) lowerCAmelCase : Optional[Any] = self.image_processing_class.from_dict(self.image_processor_dict , size=4_2 ) self.assertEqual(image_processor.size , {'''height''': 4_2, '''width''': 4_2} ) def lowerCamelCase__ ( self : int ): pass def lowerCamelCase__ ( self : int ): # Initialize image_processing lowerCAmelCase : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCAmelCase : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase_ , Image.Image ) # Test not batched input lowerCAmelCase : Optional[int] = image_processing(image_inputs[0] , return_tensors='''pt''' ) self.assertEqual( encoding.pixel_values.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) self.assertIsInstance(encoding.words , UpperCamelCase_ ) self.assertIsInstance(encoding.boxes , UpperCamelCase_ ) # Test batched lowerCAmelCase : Tuple = image_processing(UpperCamelCase_ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) def lowerCamelCase__ ( self : Union[str, Any] ): # Initialize image_processing lowerCAmelCase : Any = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowerCAmelCase : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase_ , numpify=UpperCamelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase_ , np.ndarray ) # Test not batched input lowerCAmelCase : List[Any] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched lowerCAmelCase : Any = image_processing(UpperCamelCase_ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) def lowerCamelCase__ ( self : Union[str, Any] ): # Initialize image_processing lowerCAmelCase : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowerCAmelCase : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase_ , torchify=UpperCamelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase_ , torch.Tensor ) # Test not batched input lowerCAmelCase : Tuple = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched lowerCAmelCase : Any = image_processing(UpperCamelCase_ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) def lowerCamelCase__ ( self : int ): # with apply_OCR = True lowerCAmelCase : Union[str, Any] = LayoutLMvaImageProcessor() from datasets import load_dataset lowerCAmelCase : List[Any] = load_dataset('''hf-internal-testing/fixtures_docvqa''' , split='''test''' ) lowerCAmelCase : Optional[int] = Image.open(ds[0]['''file'''] ).convert('''RGB''' ) lowerCAmelCase : List[Any] = image_processing(UpperCamelCase_ , return_tensors='''pt''' ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 2_2_4, 2_2_4) ) self.assertEqual(len(encoding.words ) , len(encoding.boxes ) ) # fmt: off # the words and boxes were obtained with Tesseract 4.1.1 lowerCAmelCase : Optional[Any] = [['''11:14''', '''to''', '''11:39''', '''a.m''', '''11:39''', '''to''', '''11:44''', '''a.m.''', '''11:44''', '''a.m.''', '''to''', '''12:25''', '''p.m.''', '''12:25''', '''to''', '''12:58''', '''p.m.''', '''12:58''', '''to''', '''4:00''', '''p.m.''', '''2:00''', '''to''', '''5:00''', '''p.m.''', '''Coffee''', '''Break''', '''Coffee''', '''will''', '''be''', '''served''', '''for''', '''men''', '''and''', '''women''', '''in''', '''the''', '''lobby''', '''adjacent''', '''to''', '''exhibit''', '''area.''', '''Please''', '''move''', '''into''', '''exhibit''', '''area.''', '''(Exhibits''', '''Open)''', '''TRRF''', '''GENERAL''', '''SESSION''', '''(PART''', '''|)''', '''Presiding:''', '''Lee''', '''A.''', '''Waller''', '''TRRF''', '''Vice''', '''President''', '''“Introductory''', '''Remarks”''', '''Lee''', '''A.''', '''Waller,''', '''TRRF''', '''Vice''', '''Presi-''', '''dent''', '''Individual''', '''Interviews''', '''with''', '''TRRF''', '''Public''', '''Board''', '''Members''', '''and''', '''Sci-''', '''entific''', '''Advisory''', '''Council''', '''Mem-''', '''bers''', '''Conducted''', '''by''', '''TRRF''', '''Treasurer''', '''Philip''', '''G.''', '''Kuehn''', '''to''', '''get''', '''answers''', '''which''', '''the''', '''public''', '''refrigerated''', '''warehousing''', '''industry''', '''is''', '''looking''', '''for.''', '''Plus''', '''questions''', '''from''', '''the''', '''floor.''', '''Dr.''', '''Emil''', '''M.''', '''Mrak,''', '''University''', '''of''', '''Cal-''', '''ifornia,''', '''Chairman,''', '''TRRF''', '''Board;''', '''Sam''', '''R.''', '''Cecil,''', '''University''', '''of''', '''Georgia''', '''College''', '''of''', '''Agriculture;''', '''Dr.''', '''Stanley''', '''Charm,''', '''Tufts''', '''University''', '''School''', '''of''', '''Medicine;''', '''Dr.''', '''Robert''', '''H.''', '''Cotton,''', '''ITT''', '''Continental''', '''Baking''', '''Company;''', '''Dr.''', '''Owen''', '''Fennema,''', '''University''', '''of''', '''Wis-''', '''consin;''', '''Dr.''', '''Robert''', '''E.''', '''Hardenburg,''', '''USDA.''', '''Questions''', '''and''', '''Answers''', '''Exhibits''', '''Open''', '''Capt.''', '''Jack''', '''Stoney''', '''Room''', '''TRRF''', '''Scientific''', '''Advisory''', '''Council''', '''Meeting''', '''Ballroom''', '''Foyer''']] # noqa: E231 lowerCAmelCase : List[Any] = [[[1_4_1, 5_7, 2_1_4, 6_9], [2_2_8, 5_8, 2_5_2, 6_9], [1_4_1, 7_5, 2_1_6, 8_8], [2_3_0, 7_9, 2_8_0, 8_8], [1_4_2, 2_6_0, 2_1_8, 2_7_3], [2_3_0, 2_6_1, 2_5_5, 2_7_3], [1_4_3, 2_7_9, 2_1_8, 2_9_0], [2_3_1, 2_8_2, 2_9_0, 2_9_1], [1_4_3, 3_4_2, 2_1_8, 3_5_4], [2_3_1, 3_4_5, 2_8_9, 3_5_5], [2_0_2, 3_6_2, 2_2_7, 3_7_3], [1_4_3, 3_7_9, 2_2_0, 3_9_2], [2_3_1, 3_8_2, 2_9_1, 3_9_4], [1_4_4, 7_1_4, 2_2_0, 7_2_6], [2_3_1, 7_1_5, 2_5_6, 7_2_6], [1_4_4, 7_3_2, 2_2_0, 7_4_5], [2_3_2, 7_3_6, 2_9_1, 7_4_7], [1_4_4, 7_6_9, 2_1_8, 7_8_2], [2_3_1, 7_7_0, 2_5_6, 7_8_2], [1_4_1, 7_8_8, 2_0_2, 8_0_1], [2_1_5, 7_9_1, 2_7_4, 8_0_4], [1_4_3, 8_2_6, 2_0_4, 8_3_8], [2_1_5, 8_2_6, 2_4_0, 8_3_8], [1_4_2, 8_4_4, 2_0_2, 8_5_7], [2_1_5, 8_4_7, 2_7_4, 8_5_9], [3_3_4, 5_7, 4_2_7, 6_9], [4_4_0, 5_7, 5_2_2, 6_9], [3_6_9, 7_5, 4_6_1, 8_8], [4_6_9, 7_5, 5_1_6, 8_8], [5_2_8, 7_6, 5_6_2, 8_8], [5_7_0, 7_6, 6_6_7, 8_8], [6_7_5, 7_5, 7_1_1, 8_7], [7_2_1, 7_9, 7_7_8, 8_8], [7_8_9, 7_5, 8_4_0, 8_8], [3_6_9, 9_7, 4_7_0, 1_0_7], [4_8_4, 9_4, 5_0_7, 1_0_6], [5_1_8, 9_4, 5_6_2, 1_0_7], [5_7_6, 9_4, 6_5_5, 1_1_0], [6_6_8, 9_4, 7_9_2, 1_0_9], [8_0_4, 9_5, 8_2_9, 1_0_7], [3_6_9, 1_1_3, 4_6_5, 1_2_5], [4_7_7, 1_1_6, 5_4_7, 1_2_5], [5_6_2, 1_1_3, 6_5_8, 1_2_5], [6_7_1, 1_1_6, 7_4_8, 1_2_5], [7_6_1, 1_1_3, 8_1_1, 1_2_5], [3_6_9, 1_3_1, 4_6_5, 1_4_3], [4_7_7, 1_3_3, 5_4_8, 1_4_3], [5_6_3, 1_3_0, 6_9_8, 1_4_5], [7_1_0, 1_3_0, 8_0_2, 1_4_6], [3_3_6, 1_7_1, 4_1_2, 1_8_3], [4_2_3, 1_7_1, 5_7_2, 1_8_3], [5_8_2, 1_7_0, 7_1_6, 1_8_4], [7_2_8, 1_7_1, 8_1_7, 1_8_7], [8_2_9, 1_7_1, 8_4_4, 1_8_6], [3_3_8, 1_9_7, 4_8_2, 2_1_2], [5_0_7, 1_9_6, 5_5_7, 2_0_9], [5_6_9, 1_9_6, 5_9_5, 2_0_8], [6_1_0, 1_9_6, 7_0_2, 2_0_9], [5_0_5, 2_1_4, 5_8_3, 2_2_6], [5_9_5, 2_1_4, 6_5_6, 2_2_7], [6_7_0, 2_1_5, 8_0_7, 2_2_7], [3_3_5, 2_5_9, 5_4_3, 2_7_4], [5_5_6, 2_5_9, 7_0_8, 2_7_2], [3_7_2, 2_7_9, 4_2_2, 2_9_1], [4_3_5, 2_7_9, 4_6_0, 2_9_1], [4_7_4, 2_7_9, 5_7_4, 2_9_2], [5_8_7, 2_7_8, 6_6_4, 2_9_1], [6_7_6, 2_7_8, 7_3_8, 2_9_1], [7_5_1, 2_7_9, 8_3_4, 2_9_1], [3_7_2, 2_9_8, 4_3_4, 3_1_0], [3_3_5, 3_4_1, 4_8_3, 3_5_4], [4_9_7, 3_4_1, 6_5_5, 3_5_4], [6_6_7, 3_4_1, 7_2_8, 3_5_4], [7_4_0, 3_4_1, 8_2_5, 3_5_4], [3_3_5, 3_6_0, 4_3_0, 3_7_2], [4_4_2, 3_6_0, 5_3_4, 3_7_2], [5_4_5, 3_5_9, 6_8_7, 3_7_2], [6_9_7, 3_6_0, 7_5_4, 3_7_2], [7_6_5, 3_6_0, 8_2_3, 3_7_3], [3_3_4, 3_7_8, 4_2_8, 3_9_1], [4_4_0, 3_7_8, 5_7_7, 3_9_4], [5_9_0, 3_7_8, 7_0_5, 3_9_1], [7_2_0, 3_7_8, 8_0_1, 3_9_1], [3_3_4, 3_9_7, 4_0_0, 4_0_9], [3_7_0, 4_1_6, 5_2_9, 4_2_9], [5_4_4, 4_1_6, 5_7_6, 4_3_2], [5_8_7, 4_1_6, 6_6_5, 4_2_8], [6_7_7, 4_1_6, 8_1_4, 4_2_9], [3_7_2, 4_3_5, 4_5_2, 4_5_0], [4_6_5, 4_3_4, 4_9_5, 4_4_7], [5_1_1, 4_3_4, 6_0_0, 4_4_7], [6_1_1, 4_3_6, 6_3_7, 4_4_7], [6_4_9, 4_3_6, 6_9_4, 4_5_1], [7_0_5, 4_3_8, 8_2_4, 4_4_7], [3_6_9, 4_5_3, 4_5_2, 4_6_6], [4_6_4, 4_5_4, 5_0_9, 4_6_6], [5_2_2, 4_5_3, 6_1_1, 4_6_9], [6_2_5, 4_5_3, 7_9_2, 4_6_9], [3_7_0, 4_7_2, 5_5_6, 4_8_8], [5_7_0, 4_7_2, 6_8_4, 4_8_7], [6_9_7, 4_7_2, 7_1_8, 4_8_5], [7_3_2, 4_7_2, 8_3_5, 4_8_8], [3_6_9, 4_9_0, 4_1_1, 5_0_3], [4_2_5, 4_9_0, 4_8_4, 5_0_3], [4_9_6, 4_9_0, 6_3_5, 5_0_6], [6_4_5, 4_9_0, 7_0_7, 5_0_3], [7_1_8, 4_9_1, 7_6_1, 5_0_3], [7_7_1, 4_9_0, 8_4_0, 5_0_3], [3_3_6, 5_1_0, 3_7_4, 5_2_1], [3_8_8, 5_1_0, 4_4_7, 5_2_2], [4_6_0, 5_1_0, 4_8_9, 5_2_1], [5_0_3, 5_1_0, 5_8_0, 5_2_2], [5_9_2, 5_0_9, 7_3_6, 5_2_5], [7_4_5, 5_0_9, 7_7_0, 5_2_2], [7_8_1, 5_0_9, 8_4_0, 5_2_2], [3_3_8, 5_2_8, 4_3_4, 5_4_1], [4_4_8, 5_2_8, 5_9_6, 5_4_1], [6_0_9, 5_2_7, 6_8_7, 5_4_0], [7_0_0, 5_2_8, 7_9_2, 5_4_1], [3_3_6, 5_4_6, 3_9_7, 5_5_9], [4_0_7, 5_4_6, 4_3_1, 5_5_9], [4_4_3, 5_4_6, 5_2_5, 5_6_0], [5_3_7, 5_4_6, 6_8_0, 5_6_2], [6_8_8, 5_4_6, 7_1_4, 5_5_9], [7_2_2, 5_4_6, 8_3_7, 5_6_2], [3_3_6, 5_6_5, 4_4_9, 5_8_1], [4_6_1, 5_6_5, 4_8_5, 5_7_7], [4_9_7, 5_6_5, 6_6_5, 5_8_1], [6_8_1, 5_6_5, 7_1_8, 5_7_7], [7_3_2, 5_6_5, 8_3_7, 5_8_0], [3_3_7, 5_8_4, 4_3_8, 5_9_7], [4_5_2, 5_8_3, 5_2_1, 5_9_6], [5_3_5, 5_8_4, 6_7_7, 5_9_9], [6_9_0, 5_8_3, 7_8_7, 5_9_6], [8_0_1, 5_8_3, 8_2_5, 5_9_6], [3_3_8, 6_0_2, 4_7_8, 6_1_5], [4_9_2, 6_0_2, 5_3_0, 6_1_4], [5_4_3, 6_0_2, 6_3_8, 6_1_5], [6_5_0, 6_0_2, 6_7_6, 6_1_4], [6_8_8, 6_0_2, 7_8_8, 6_1_5], [8_0_2, 6_0_2, 8_4_3, 6_1_4], [3_3_7, 6_2_1, 5_0_2, 6_3_3], [5_1_6, 6_2_1, 6_1_5, 6_3_7], [6_2_9, 6_2_1, 7_7_4, 6_3_6], [7_8_9, 6_2_1, 8_2_7, 6_3_3], [3_3_7, 6_3_9, 4_1_8, 6_5_2], [4_3_2, 6_4_0, 5_7_1, 6_5_3], [5_8_7, 6_3_9, 7_3_1, 6_5_5], [7_4_3, 6_3_9, 7_6_9, 6_5_2], [7_8_0, 6_3_9, 8_4_1, 6_5_2], [3_3_8, 6_5_8, 4_4_0, 6_7_3], [4_5_5, 6_5_8, 4_9_1, 6_7_0], [5_0_8, 6_5_8, 6_0_2, 6_7_1], [6_1_6, 6_5_8, 6_3_8, 6_7_0], [6_5_4, 6_5_8, 8_3_5, 6_7_4], [3_3_7, 6_7_7, 4_2_9, 6_8_9], [3_3_7, 7_1_4, 4_8_2, 7_2_6], [4_9_5, 7_1_4, 5_4_8, 7_2_6], [5_6_1, 7_1_4, 6_8_3, 7_2_6], [3_3_8, 7_7_0, 4_6_1, 7_8_2], [4_7_4, 7_6_9, 5_5_4, 7_8_5], [4_8_9, 7_8_8, 5_6_2, 8_0_3], [5_7_6, 7_8_8, 6_4_3, 8_0_1], [6_5_6, 7_8_7, 7_5_1, 8_0_4], [7_6_4, 7_8_8, 8_4_4, 8_0_1], [3_3_4, 8_2_5, 4_2_1, 8_3_8], [4_3_0, 8_2_4, 5_7_4, 8_3_8], [5_8_4, 8_2_4, 7_2_3, 8_4_1], [3_3_5, 8_4_4, 4_5_0, 8_5_7], [4_6_4, 8_4_3, 5_8_3, 8_6_0], [6_2_8, 8_6_2, 7_5_5, 8_7_5], [7_6_9, 8_6_1, 8_4_8, 8_7_8]]] # noqa: E231 # fmt: on self.assertListEqual(encoding.words , UpperCamelCase_ ) self.assertListEqual(encoding.boxes , UpperCamelCase_ ) # with apply_OCR = False lowerCAmelCase : Union[str, Any] = LayoutLMvaImageProcessor(apply_ocr=UpperCamelCase_ ) lowerCAmelCase : Union[str, Any] = image_processing(UpperCamelCase_ , return_tensors='''pt''' ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 2_2_4, 2_2_4) )
60
"""simple docstring""" import mpmath # for roots of unity import numpy as np class snake_case_: def __init__( self : str , UpperCamelCase_ : int=None , UpperCamelCase_ : List[str]=None ): # Input as list lowerCAmelCase : str = list(poly_a or [0] )[:] lowerCAmelCase : Any = list(poly_b or [0] )[:] # Remove leading zero coefficients while self.polyA[-1] == 0: self.polyA.pop() lowerCAmelCase : Optional[int] = len(self.polyA ) while self.polyB[-1] == 0: self.polyB.pop() lowerCAmelCase : Union[str, Any] = len(self.polyB ) # Add 0 to make lengths equal a power of 2 lowerCAmelCase : str = int( 2 ** np.ceil(np.loga(len(self.polyA ) + len(self.polyB ) - 1 ) ) ) while len(self.polyA ) < self.c_max_length: self.polyA.append(0 ) while len(self.polyB ) < self.c_max_length: self.polyB.append(0 ) # A complex root used for the fourier transform lowerCAmelCase : int = complex(mpmath.root(x=1 , n=self.c_max_length , k=1 ) ) # The product lowerCAmelCase : int = self.__multiply() def lowerCamelCase__ ( self : List[str] , UpperCamelCase_ : str ): lowerCAmelCase : Optional[Any] = [[x] for x in self.polyA] if which == '''A''' else [[x] for x in self.polyB] # Corner case if len(UpperCamelCase_ ) <= 1: return dft[0] # lowerCAmelCase : Tuple = self.c_max_length // 2 while next_ncol > 0: lowerCAmelCase : Dict = [[] for i in range(UpperCamelCase_ )] lowerCAmelCase : List[Any] = self.root**next_ncol # First half of next step lowerCAmelCase : Dict = 1 for j in range(self.c_max_length // (next_ncol * 2) ): for i in range(UpperCamelCase_ ): new_dft[i].append(dft[i][j] + current_root * dft[i + next_ncol][j] ) current_root *= root # Second half of next step lowerCAmelCase : int = 1 for j in range(self.c_max_length // (next_ncol * 2) ): for i in range(UpperCamelCase_ ): new_dft[i].append(dft[i][j] - current_root * dft[i + next_ncol][j] ) current_root *= root # Update lowerCAmelCase : Optional[Any] = new_dft lowerCAmelCase : Union[str, Any] = next_ncol // 2 return dft[0] def lowerCamelCase__ ( self : List[Any] ): lowerCAmelCase : Optional[Any] = self.__dft('''A''' ) lowerCAmelCase : Optional[int] = self.__dft('''B''' ) lowerCAmelCase : Any = [[dft_a[i] * dft_b[i] for i in range(self.c_max_length )]] del dft_a del dft_b # Corner Case if len(inverce_c[0] ) <= 1: return inverce_c[0] # Inverse DFT lowerCAmelCase : str = 2 while next_ncol <= self.c_max_length: lowerCAmelCase : Union[str, Any] = [[] for i in range(UpperCamelCase_ )] lowerCAmelCase : Optional[Any] = self.root ** (next_ncol // 2) lowerCAmelCase : Tuple = 1 # First half of next step for j in range(self.c_max_length // next_ncol ): for i in range(next_ncol // 2 ): # Even positions new_inverse_c[i].append( ( inverce_c[i][j] + inverce_c[i][j + self.c_max_length // next_ncol] ) / 2 ) # Odd positions new_inverse_c[i + next_ncol // 2].append( ( inverce_c[i][j] - inverce_c[i][j + self.c_max_length // next_ncol] ) / (2 * current_root) ) current_root *= root # Update lowerCAmelCase : Any = new_inverse_c next_ncol *= 2 # Unpack lowerCAmelCase : Optional[int] = [round(x[0].real , 8 ) + round(x[0].imag , 8 ) * 1j for x in inverce_c] # Remove leading 0's while inverce_c[-1] == 0: inverce_c.pop() return inverce_c def __str__( self : int ): lowerCAmelCase : int = '''A = ''' + ''' + '''.join( F'''{coef}*x^{i}''' for coef, i in enumerate(self.polyA[: self.len_A] ) ) lowerCAmelCase : str = '''B = ''' + ''' + '''.join( F'''{coef}*x^{i}''' for coef, i in enumerate(self.polyB[: self.len_B] ) ) lowerCAmelCase : int = '''A*B = ''' + ''' + '''.join( F'''{coef}*x^{i}''' for coef, i in enumerate(self.product ) ) return F'''{a}\n{b}\n{c}''' # Unit tests if __name__ == "__main__": import doctest doctest.testmod()
60
1
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, CycleDiffusionPipeline, DDIMScheduler, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class UpperCamelCase_ (_a, _a, unittest.TestCase ): """simple docstring""" _lowerCAmelCase = CycleDiffusionPipeline _lowerCAmelCase = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - { 'negative_prompt', 'height', 'width', 'negative_prompt_embeds', } _lowerCAmelCase = PipelineTesterMixin.required_optional_params - {'latents'} _lowerCAmelCase = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({'source_prompt'} ) _lowerCAmelCase = IMAGE_TO_IMAGE_IMAGE_PARAMS _lowerCAmelCase = IMAGE_TO_IMAGE_IMAGE_PARAMS def _a ( self : Dict ): """simple docstring""" torch.manual_seed(0 ) A_ : Optional[Any] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) A_ : Any = DDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule='''scaled_linear''' , num_train_timesteps=1000 , clip_sample=snake_case_ , set_alpha_to_one=snake_case_ , ) torch.manual_seed(0 ) A_ : Optional[int] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) torch.manual_seed(0 ) A_ : Optional[int] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) A_ : Union[str, Any] = CLIPTextModel(snake_case_ ) A_ : Dict = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) A_ : int = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def _a ( self : Optional[int] , _lowerCamelCase : Any , _lowerCamelCase : str=0 ): """simple docstring""" A_ : int = floats_tensor((1, 3, 32, 32) , rng=random.Random(snake_case_ ) ).to(snake_case_ ) A_ : List[str] = image / 2 + 0.5 if str(snake_case_ ).startswith('''mps''' ): A_ : Tuple = torch.manual_seed(snake_case_ ) else: A_ : Union[str, Any] = torch.Generator(device=snake_case_ ).manual_seed(snake_case_ ) A_ : str = { """prompt""": """An astronaut riding an elephant""", """source_prompt""": """An astronaut riding a horse""", """image""": image, """generator""": generator, """num_inference_steps""": 2, """eta""": 0.1, """strength""": 0.8, """guidance_scale""": 3, """source_guidance_scale""": 1, """output_type""": """numpy""", } return inputs def _a ( self : Tuple ): """simple docstring""" A_ : str = """cpu""" # ensure determinism for the device-dependent torch.Generator A_ : Optional[Any] = self.get_dummy_components() A_ : List[Any] = CycleDiffusionPipeline(**snake_case_ ) A_ : List[str] = pipe.to(snake_case_ ) pipe.set_progress_bar_config(disable=snake_case_ ) A_ : Tuple = self.get_dummy_inputs(snake_case_ ) A_ : Any = pipe(**snake_case_ ) A_ : Tuple = output.images A_ : Optional[int] = images[0, -3:, -3:, -1] assert images.shape == (1, 32, 32, 3) A_ : List[Any] = np.array([0.44_59, 0.49_43, 0.45_44, 0.66_43, 0.54_74, 0.43_27, 0.57_01, 0.59_59, 0.51_79] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @unittest.skipIf(torch_device != '''cuda''' , '''This test requires a GPU''' ) def _a ( self : List[str] ): """simple docstring""" A_ : List[str] = self.get_dummy_components() for name, module in components.items(): if hasattr(snake_case_ , '''half''' ): A_ : Optional[int] = module.half() A_ : List[Any] = CycleDiffusionPipeline(**snake_case_ ) A_ : Union[str, Any] = pipe.to(snake_case_ ) pipe.set_progress_bar_config(disable=snake_case_ ) A_ : int = self.get_dummy_inputs(snake_case_ ) A_ : List[Any] = pipe(**snake_case_ ) A_ : Any = output.images A_ : Optional[Any] = images[0, -3:, -3:, -1] assert images.shape == (1, 32, 32, 3) A_ : List[Any] = np.array([0.35_06, 0.45_43, 0.4_46, 0.45_75, 0.51_95, 0.41_55, 0.52_73, 0.5_18, 0.41_16] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @skip_mps def _a ( self : List[Any] ): """simple docstring""" return super().test_save_load_local() @unittest.skip('''non-deterministic pipeline''' ) def _a ( self : int ): """simple docstring""" return super().test_inference_batch_single_identical() @skip_mps def _a ( self : Dict ): """simple docstring""" return super().test_dict_tuple_outputs_equivalent() @skip_mps def _a ( self : int ): """simple docstring""" return super().test_save_load_optional_components() @skip_mps def _a ( self : Optional[int] ): """simple docstring""" return super().test_attention_slicing_forward_pass() @slow @require_torch_gpu class UpperCamelCase_ (unittest.TestCase ): """simple docstring""" def _a ( self : Dict ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def _a ( self : str ): """simple docstring""" A_ : Union[str, Any] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/cycle-diffusion/black_colored_car.png''' ) A_ : Tuple = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car_fp16.npy''' ) A_ : Tuple = init_image.resize((512, 512) ) A_ : List[Any] = """CompVis/stable-diffusion-v1-4""" A_ : Tuple = DDIMScheduler.from_pretrained(snake_case_ , subfolder='''scheduler''' ) A_ : Optional[int] = CycleDiffusionPipeline.from_pretrained( snake_case_ , scheduler=snake_case_ , safety_checker=snake_case_ , torch_dtype=torch.floataa , revision='''fp16''' ) pipe.to(snake_case_ ) pipe.set_progress_bar_config(disable=snake_case_ ) pipe.enable_attention_slicing() A_ : int = """A black colored car""" A_ : int = """A blue colored car""" A_ : Dict = torch.manual_seed(0 ) A_ : Dict = pipe( prompt=snake_case_ , source_prompt=snake_case_ , image=snake_case_ , num_inference_steps=100 , eta=0.1 , strength=0.85 , guidance_scale=3 , source_guidance_scale=1 , generator=snake_case_ , output_type='''np''' , ) A_ : Union[str, Any] = output.images # the values aren't exactly equal, but the images look the same visually assert np.abs(image - expected_image ).max() < 5E-1 def _a ( self : int ): """simple docstring""" A_ : Any = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/cycle-diffusion/black_colored_car.png''' ) A_ : Optional[int] = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car.npy''' ) A_ : Dict = init_image.resize((512, 512) ) A_ : Tuple = """CompVis/stable-diffusion-v1-4""" A_ : List[Any] = DDIMScheduler.from_pretrained(snake_case_ , subfolder='''scheduler''' ) A_ : str = CycleDiffusionPipeline.from_pretrained(snake_case_ , scheduler=snake_case_ , safety_checker=snake_case_ ) pipe.to(snake_case_ ) pipe.set_progress_bar_config(disable=snake_case_ ) pipe.enable_attention_slicing() A_ : Tuple = """A black colored car""" A_ : List[Any] = """A blue colored car""" A_ : Optional[Any] = torch.manual_seed(0 ) A_ : Any = pipe( prompt=snake_case_ , source_prompt=snake_case_ , image=snake_case_ , num_inference_steps=100 , eta=0.1 , strength=0.85 , guidance_scale=3 , source_guidance_scale=1 , generator=snake_case_ , output_type='''np''' , ) A_ : List[Any] = output.images assert np.abs(image - expected_image ).max() < 2E-2
370
'''simple docstring''' import unittest from queue import Empty from threading import Thread from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available from transformers.testing_utils import CaptureStdout, require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers import AutoModelForCausalLM @require_torch class UpperCamelCase_ (unittest.TestCase ): """simple docstring""" def _a ( self : Dict ): """simple docstring""" A_ : Optional[int] = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) A_ : Tuple = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(_lowerCamelCase ) A_ : Dict = -1 A_ : List[str] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_lowerCamelCase ) A_ : Any = model.generate(_lowerCamelCase , max_new_tokens=10 , do_sample=_lowerCamelCase ) A_ : List[str] = tokenizer.decode(greedy_ids[0] ) with CaptureStdout() as cs: A_ : List[str] = TextStreamer(_lowerCamelCase ) model.generate(_lowerCamelCase , max_new_tokens=10 , do_sample=_lowerCamelCase , streamer=_lowerCamelCase ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer A_ : Dict = cs.out[:-1] self.assertEqual(_lowerCamelCase , _lowerCamelCase ) def _a ( self : Tuple ): """simple docstring""" A_ : Optional[int] = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) A_ : List[str] = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(_lowerCamelCase ) A_ : Dict = -1 A_ : List[str] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_lowerCamelCase ) A_ : Optional[int] = model.generate(_lowerCamelCase , max_new_tokens=10 , do_sample=_lowerCamelCase ) A_ : str = tokenizer.decode(greedy_ids[0] ) A_ : int = TextIteratorStreamer(_lowerCamelCase ) A_ : List[Any] = {'''input_ids''': input_ids, '''max_new_tokens''': 10, '''do_sample''': False, '''streamer''': streamer} A_ : List[Any] = Thread(target=model.generate , kwargs=_lowerCamelCase ) thread.start() A_ : List[Any] = '''''' for new_text in streamer: streamer_text += new_text self.assertEqual(_lowerCamelCase , _lowerCamelCase ) def _a ( self : int ): """simple docstring""" A_ : List[str] = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) A_ : List[Any] = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(_lowerCamelCase ) A_ : List[str] = -1 A_ : Any = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_lowerCamelCase ) A_ : Tuple = model.generate(_lowerCamelCase , max_new_tokens=10 , do_sample=_lowerCamelCase ) A_ : Tuple = greedy_ids[:, input_ids.shape[1] :] A_ : Tuple = tokenizer.decode(new_greedy_ids[0] ) with CaptureStdout() as cs: A_ : Any = TextStreamer(_lowerCamelCase , skip_prompt=_lowerCamelCase ) model.generate(_lowerCamelCase , max_new_tokens=10 , do_sample=_lowerCamelCase , streamer=_lowerCamelCase ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer A_ : Any = cs.out[:-1] self.assertEqual(_lowerCamelCase , _lowerCamelCase ) def _a ( self : List[Any] ): """simple docstring""" A_ : List[Any] = AutoTokenizer.from_pretrained('''distilgpt2''' ) A_ : Tuple = AutoModelForCausalLM.from_pretrained('''distilgpt2''' ).to(_lowerCamelCase ) A_ : List[Any] = -1 A_ : Union[str, Any] = torch.ones((1, 5) , device=_lowerCamelCase ).long() * model.config.bos_token_id with CaptureStdout() as cs: A_ : List[Any] = TextStreamer(_lowerCamelCase , skip_special_tokens=_lowerCamelCase ) model.generate(_lowerCamelCase , max_new_tokens=1 , do_sample=_lowerCamelCase , streamer=_lowerCamelCase ) # The prompt contains a special token, so the streamer should not print it. As such, the output text, when # re-tokenized, must only contain one token A_ : List[str] = cs.out[:-1] # Remove the final "\n" A_ : List[Any] = tokenizer(_lowerCamelCase , return_tensors='''pt''' ) self.assertEqual(streamer_text_tokenized.input_ids.shape , (1, 1) ) def _a ( self : Union[str, Any] ): """simple docstring""" A_ : str = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) A_ : str = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(_lowerCamelCase ) A_ : Union[str, Any] = -1 A_ : Union[str, Any] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_lowerCamelCase ) A_ : List[str] = TextIteratorStreamer(_lowerCamelCase , timeout=0.0_01 ) A_ : str = {'''input_ids''': input_ids, '''max_new_tokens''': 10, '''do_sample''': False, '''streamer''': streamer} A_ : List[str] = Thread(target=model.generate , kwargs=_lowerCamelCase ) thread.start() # The streamer will timeout after 0.001 seconds, so an exception will be raised with self.assertRaises(_lowerCamelCase ): A_ : str = '''''' for new_text in streamer: streamer_text += new_text
4
0
import argparse import json import math import os import time import traceback import zipfile from collections import Counter import requests def __lowercase ( lowerCamelCase : Optional[Any] , lowerCamelCase : Any=None ): UpperCamelCase_ : Optional[int] = None if token is not None: UpperCamelCase_ : Any = {'Accept': 'application/vnd.github+json', 'Authorization': F"Bearer {token}"} UpperCamelCase_ : Any = F"https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100" UpperCamelCase_ : Union[str, Any] = requests.get(lowerCAmelCase_ , headers=lowerCAmelCase_ ).json() UpperCamelCase_ : Any = {} try: job_links.update({job['name']: job['html_url'] for job in result['jobs']} ) UpperCamelCase_ : Optional[Any] = math.ceil((result['total_count'] - 100) / 100 ) for i in range(lowerCAmelCase_ ): UpperCamelCase_ : int = requests.get(url + F"&page={i + 2}" , headers=lowerCAmelCase_ ).json() job_links.update({job['name']: job['html_url'] for job in result['jobs']} ) return job_links except Exception: print(F"Unknown error, could not fetch links:\n{traceback.format_exc()}" ) return {} def __lowercase ( lowerCamelCase : List[str] , lowerCamelCase : List[str]=None ): UpperCamelCase_ : List[str] = None if token is not None: UpperCamelCase_ : List[Any] = {'Accept': 'application/vnd.github+json', 'Authorization': F"Bearer {token}"} UpperCamelCase_ : str = F"https://api.github.com/repos/huggingface/transformers/actions/runs/{worflow_run_id}/artifacts?per_page=100" UpperCamelCase_ : Union[str, Any] = requests.get(lowerCAmelCase_ , headers=lowerCAmelCase_ ).json() UpperCamelCase_ : Union[str, Any] = {} try: artifacts.update({artifact['name']: artifact['archive_download_url'] for artifact in result['artifacts']} ) UpperCamelCase_ : str = math.ceil((result['total_count'] - 100) / 100 ) for i in range(lowerCAmelCase_ ): UpperCamelCase_ : List[Any] = requests.get(url + F"&page={i + 2}" , headers=lowerCAmelCase_ ).json() artifacts.update({artifact['name']: artifact['archive_download_url'] for artifact in result['artifacts']} ) return artifacts except Exception: print(F"Unknown error, could not fetch links:\n{traceback.format_exc()}" ) return {} def __lowercase ( lowerCamelCase : str , lowerCamelCase : List[Any] , lowerCamelCase : Optional[int] , lowerCamelCase : List[Any] ): UpperCamelCase_ : Dict = None if token is not None: UpperCamelCase_ : Any = {'Accept': 'application/vnd.github+json', 'Authorization': F"Bearer {token}"} UpperCamelCase_ : Dict = requests.get(lowerCAmelCase_ , headers=lowerCAmelCase_ , allow_redirects=lowerCAmelCase_ ) UpperCamelCase_ : Optional[Any] = result.headers['Location'] UpperCamelCase_ : Tuple = requests.get(lowerCAmelCase_ , allow_redirects=lowerCAmelCase_ ) UpperCamelCase_ : str = os.path.join(lowerCAmelCase_ , F"{artifact_name}.zip" ) with open(lowerCAmelCase_ , 'wb' ) as fp: fp.write(response.content ) def __lowercase ( lowerCamelCase : Union[str, Any] , lowerCamelCase : Tuple=None ): UpperCamelCase_ : Any = [] UpperCamelCase_ : Optional[Any] = [] UpperCamelCase_ : str = None with zipfile.ZipFile(lowerCAmelCase_ ) as z: for filename in z.namelist(): if not os.path.isdir(lowerCAmelCase_ ): # read the file if filename in ["failures_line.txt", "summary_short.txt", "job_name.txt"]: with z.open(lowerCAmelCase_ ) as f: for line in f: UpperCamelCase_ : Union[str, Any] = line.decode('UTF-8' ).strip() if filename == "failures_line.txt": try: # `error_line` is the place where `error` occurs UpperCamelCase_ : List[str] = line[: line.index(': ' )] UpperCamelCase_ : Tuple = line[line.index(': ' ) + len(': ' ) :] errors.append([error_line, error] ) except Exception: # skip un-related lines pass elif filename == "summary_short.txt" and line.startswith('FAILED ' ): # `test` is the test method that failed UpperCamelCase_ : Union[str, Any] = line[len('FAILED ' ) :] failed_tests.append(lowerCAmelCase_ ) elif filename == "job_name.txt": UpperCamelCase_ : List[Any] = line if len(lowerCAmelCase_ ) != len(lowerCAmelCase_ ): raise ValueError( F"`errors` and `failed_tests` should have the same number of elements. Got {len(lowerCAmelCase_ )} for `errors` " F"and {len(lowerCAmelCase_ )} for `failed_tests` instead. The test reports in {artifact_zip_path} have some" ' problem.' ) UpperCamelCase_ : List[str] = None if job_name and job_links: UpperCamelCase_ : Optional[Any] = job_links.get(lowerCAmelCase_ , lowerCAmelCase_ ) # A list with elements of the form (line of error, error, failed test) UpperCamelCase_ : List[str] = [x + [y] + [job_link] for x, y in zip(lowerCAmelCase_ , lowerCAmelCase_ )] return result def __lowercase ( lowerCamelCase : Optional[Any] , lowerCamelCase : str=None ): UpperCamelCase_ : Dict = [] UpperCamelCase_ : Any = [os.path.join(lowerCAmelCase_ , lowerCAmelCase_ ) for p in os.listdir(lowerCAmelCase_ ) if p.endswith('.zip' )] for p in paths: errors.extend(get_errors_from_single_artifact(lowerCAmelCase_ , job_links=lowerCAmelCase_ ) ) return errors def __lowercase ( lowerCamelCase : Optional[int] , lowerCamelCase : Any=None ): UpperCamelCase_ : Any = Counter() counter.update([x[1] for x in logs] ) UpperCamelCase_ : Optional[Any] = counter.most_common() UpperCamelCase_ : List[str] = {} for error, count in counts: if error_filter is None or error not in error_filter: UpperCamelCase_ : Any = {'count': count, 'failed_tests': [(x[2], x[0]) for x in logs if x[1] == error]} UpperCamelCase_ : List[str] = dict(sorted(r.items() , key=lambda lowerCamelCase : item[1]["count"] , reverse=lowerCAmelCase_ ) ) return r def __lowercase ( lowerCamelCase : List[str] ): UpperCamelCase_ : int = test.split('::' )[0] if test.startswith('tests/models/' ): UpperCamelCase_ : Union[str, Any] = test.split('/' )[2] else: UpperCamelCase_ : Tuple = None return test def __lowercase ( lowerCamelCase : int , lowerCamelCase : Dict=None ): UpperCamelCase_ : Optional[Any] = [(x[0], x[1], get_model(x[2] )) for x in logs] UpperCamelCase_ : List[str] = [x for x in logs if x[2] is not None] UpperCamelCase_ : List[Any] = {x[2] for x in logs} UpperCamelCase_ : str = {} for test in tests: UpperCamelCase_ : str = Counter() # count by errors in `test` counter.update([x[1] for x in logs if x[2] == test] ) UpperCamelCase_ : Union[str, Any] = counter.most_common() UpperCamelCase_ : Any = {error: count for error, count in counts if (error_filter is None or error not in error_filter)} UpperCamelCase_ : List[Any] = sum(error_counts.values() ) if n_errors > 0: UpperCamelCase_ : List[str] = {'count': n_errors, 'errors': error_counts} UpperCamelCase_ : int = dict(sorted(r.items() , key=lambda lowerCamelCase : item[1]["count"] , reverse=lowerCAmelCase_ ) ) return r def __lowercase ( lowerCamelCase : Optional[Any] ): UpperCamelCase_ : List[Any] = '| no. | error | status |' UpperCamelCase_ : str = '|-:|:-|:-|' UpperCamelCase_ : List[str] = [header, sep] for error in reduced_by_error: UpperCamelCase_ : Union[str, Any] = reduced_by_error[error]['count'] UpperCamelCase_ : Optional[Any] = F"| {count} | {error[:100]} | |" lines.append(lowerCAmelCase_ ) return "\n".join(lowerCAmelCase_ ) def __lowercase ( lowerCamelCase : List[Any] ): UpperCamelCase_ : List[Any] = '| model | no. of errors | major error | count |' UpperCamelCase_ : List[Any] = '|-:|-:|-:|-:|' UpperCamelCase_ : Optional[int] = [header, sep] for model in reduced_by_model: UpperCamelCase_ : List[str] = reduced_by_model[model]['count'] UpperCamelCase_, UpperCamelCase_ : Tuple = list(reduced_by_model[model]['errors'].items() )[0] UpperCamelCase_ : int = F"| {model} | {count} | {error[:60]} | {_count} |" lines.append(lowerCAmelCase_ ) return "\n".join(lowerCAmelCase_ ) if __name__ == "__main__": a_ = argparse.ArgumentParser() # Required parameters parser.add_argument('--workflow_run_id', type=str, required=True, help='A GitHub Actions workflow run id.') parser.add_argument( '--output_dir', type=str, required=True, help='Where to store the downloaded artifacts and other result files.', ) parser.add_argument('--token', default=None, type=str, help='A token that has actions:read permission.') a_ = parser.parse_args() os.makedirs(args.output_dir, exist_ok=True) a_ = get_job_links(args.workflow_run_id, token=args.token) a_ = {} # To deal with `workflow_call` event, where a job name is the combination of the job names in the caller and callee. # For example, `PyTorch 1.11 / Model tests (models/albert, single-gpu)`. if _job_links: for k, v in _job_links.items(): # This is how GitHub actions combine job names. if " / " in k: a_ = k.find(' / ') a_ = k[index + len(' / ') :] a_ = v with open(os.path.join(args.output_dir, 'job_links.json'), 'w', encoding='UTF-8') as fp: json.dump(job_links, fp, ensure_ascii=False, indent=4) a_ = get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, 'artifacts.json'), 'w', encoding='UTF-8') as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) for idx, (name, url) in enumerate(artifacts.items()): download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) a_ = get_all_errors(args.output_dir, job_links=job_links) # `e[1]` is the error a_ = Counter() counter.update([e[1] for e in errors]) # print the top 30 most common test errors a_ = counter.most_common(30) for item in most_common: print(item) with open(os.path.join(args.output_dir, 'errors.json'), 'w', encoding='UTF-8') as fp: json.dump(errors, fp, ensure_ascii=False, indent=4) a_ = reduce_by_error(errors) a_ = reduce_by_model(errors) a_ = make_github_table(reduced_by_error) a_ = make_github_table_per_model(reduced_by_model) with open(os.path.join(args.output_dir, 'reduced_by_error.txt'), 'w', encoding='UTF-8') as fp: fp.write(sa) with open(os.path.join(args.output_dir, 'reduced_by_model.txt'), 'w', encoding='UTF-8') as fp: fp.write(sa)
175
def _lowerCAmelCase ( lowerCAmelCase_ :int | float | str )->tuple[int, int]: '''simple docstring''' try: snake_case_ = float(lowerCAmelCase_ ) except ValueError: raise ValueError("Please enter a valid number" ) snake_case_ = decimal - int(lowerCAmelCase_ ) if fractional_part == 0: return int(lowerCAmelCase_ ), 1 else: snake_case_ = len(str(lowerCAmelCase_ ).split("." )[1] ) snake_case_ = int(decimal * (10**number_of_frac_digits) ) snake_case_ = 10**number_of_frac_digits snake_case_ , snake_case_ = denominator, numerator while True: snake_case_ = dividend % divisor if remainder == 0: break snake_case_ , snake_case_ = divisor, remainder snake_case_ , snake_case_ = numerator / divisor, denominator / divisor return int(lowerCAmelCase_ ), int(lowerCAmelCase_ ) if __name__ == "__main__": print(F'''{decimal_to_fraction(2) = }''') print(F'''{decimal_to_fraction(89.0) = }''') print(F'''{decimal_to_fraction('67') = }''') print(F'''{decimal_to_fraction('45.0') = }''') print(F'''{decimal_to_fraction(1.5) = }''') print(F'''{decimal_to_fraction('6.25') = }''') print(F'''{decimal_to_fraction('78td') = }''')
159
0
"""simple docstring""" import itertools from dataclasses import dataclass from typing import Any, Callable, Dict, List, Optional, Union import pandas as pd import pyarrow as pa import datasets import datasets.config from datasets.features.features import require_storage_cast from datasets.table import table_cast from datasets.utils.py_utils import Literal A_ = datasets.utils.logging.get_logger(__name__) A_ = ['''names''', '''prefix'''] A_ = ['''warn_bad_lines''', '''error_bad_lines''', '''mangle_dupe_cols'''] A_ = ['''encoding_errors''', '''on_bad_lines'''] A_ = ['''date_format'''] @dataclass class __SCREAMING_SNAKE_CASE ( datasets.BuilderConfig ): snake_case_ = ',' snake_case_ = None snake_case_ = 'infer' snake_case_ = None snake_case_ = None snake_case_ = None snake_case_ = None snake_case_ = None snake_case_ = True snake_case_ = None snake_case_ = None snake_case_ = None snake_case_ = None snake_case_ = False snake_case_ = None snake_case_ = None snake_case_ = None snake_case_ = True snake_case_ = True snake_case_ = False snake_case_ = True snake_case_ = None snake_case_ = '.' snake_case_ = None snake_case_ = '"' snake_case_ = 0 snake_case_ = None snake_case_ = None snake_case_ = None snake_case_ = None snake_case_ = True snake_case_ = True snake_case_ = 0 snake_case_ = True snake_case_ = False snake_case_ = None snake_case_ = 10000 snake_case_ = None snake_case_ = 'strict' snake_case_ = 'error' snake_case_ = None def _UpperCamelCase ( self : Union[str, Any] ): '''simple docstring''' if self.delimiter is not None: A__ : Tuple = self.delimiter if self.column_names is not None: A__ : str = self.column_names @property def _UpperCamelCase ( self : Tuple ): '''simple docstring''' A__ : Optional[Any] = { """sep""": self.sep, """header""": self.header, """names""": self.names, """index_col""": self.index_col, """usecols""": self.usecols, """prefix""": self.prefix, """mangle_dupe_cols""": self.mangle_dupe_cols, """engine""": self.engine, """converters""": self.converters, """true_values""": self.true_values, """false_values""": self.false_values, """skipinitialspace""": self.skipinitialspace, """skiprows""": self.skiprows, """nrows""": self.nrows, """na_values""": self.na_values, """keep_default_na""": self.keep_default_na, """na_filter""": self.na_filter, """verbose""": self.verbose, """skip_blank_lines""": self.skip_blank_lines, """thousands""": self.thousands, """decimal""": self.decimal, """lineterminator""": self.lineterminator, """quotechar""": self.quotechar, """quoting""": self.quoting, """escapechar""": self.escapechar, """comment""": self.comment, """encoding""": self.encoding, """dialect""": self.dialect, """error_bad_lines""": self.error_bad_lines, """warn_bad_lines""": self.warn_bad_lines, """skipfooter""": self.skipfooter, """doublequote""": self.doublequote, """memory_map""": self.memory_map, """float_precision""": self.float_precision, """chunksize""": self.chunksize, """encoding_errors""": self.encoding_errors, """on_bad_lines""": self.on_bad_lines, """date_format""": self.date_format, } # some kwargs must not be passed if they don't have a default value # some others are deprecated and we can also not pass them if they are the default value for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS: if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig() , snake_case ): del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 2.0 new arguments if not (datasets.config.PANDAS_VERSION.major >= 2): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 1.3 new arguments if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] return pd_read_csv_kwargs class __SCREAMING_SNAKE_CASE ( datasets.ArrowBasedBuilder ): snake_case_ = CsvConfig def _UpperCamelCase ( self : Any ): '''simple docstring''' return datasets.DatasetInfo(features=self.config.features ) def _UpperCamelCase ( self : Optional[Any] , snake_case : Dict ): '''simple docstring''' if not self.config.data_files: raise ValueError(F'At least one data file must be specified, but got data_files={self.config.data_files}' ) A__ : int = dl_manager.download_and_extract(self.config.data_files ) if isinstance(snake_case , (str, list, tuple) ): A__ : Optional[Any] = data_files if isinstance(snake_case , snake_case ): A__ : List[str] = [files] A__ : Union[str, Any] = [dl_manager.iter_files(snake_case ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"""files""": files} )] A__ : str = [] for split_name, files in data_files.items(): if isinstance(snake_case , snake_case ): A__ : List[Any] = [files] A__ : List[str] = [dl_manager.iter_files(snake_case ) for file in files] splits.append(datasets.SplitGenerator(name=snake_case , gen_kwargs={"""files""": files} ) ) return splits def _UpperCamelCase ( self : List[str] , snake_case : pa.Table ): '''simple docstring''' if self.config.features is not None: A__ : int = self.config.features.arrow_schema if all(not require_storage_cast(snake_case ) for feature in self.config.features.values() ): # cheaper cast A__ : int = pa.Table.from_arrays([pa_table[field.name] for field in schema] , schema=snake_case ) else: # more expensive cast; allows str <-> int/float or str to Audio for example A__ : Dict = table_cast(snake_case , snake_case ) return pa_table def _UpperCamelCase ( self : int , snake_case : Dict ): '''simple docstring''' A__ : Optional[int] = self.config.features.arrow_schema if self.config.features else None # dtype allows reading an int column as str A__ : int = ( { name: dtype.to_pandas_dtype() if not require_storage_cast(snake_case ) else object for name, dtype, feature in zip(schema.names , schema.types , self.config.features.values() ) } if schema is not None else None ) for file_idx, file in enumerate(itertools.chain.from_iterable(snake_case ) ): A__ : Optional[int] = pd.read_csv(snake_case , iterator=snake_case , dtype=snake_case , **self.config.pd_read_csv_kwargs ) try: for batch_idx, df in enumerate(snake_case ): A__ : Union[str, Any] = pa.Table.from_pandas(snake_case ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(snake_case ) except ValueError as e: logger.error(F'Failed to read file \'{file}\' with error {type(snake_case )}: {e}' ) raise
356
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING A_ = logging.get_logger(__name__) A_ = { '''microsoft/table-transformer-detection''': ( '''https://huggingface.co/microsoft/table-transformer-detection/resolve/main/config.json''' ), } class __SCREAMING_SNAKE_CASE ( UpperCamelCase ): snake_case_ = 'table-transformer' snake_case_ = ['past_key_values'] snake_case_ = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', } def __init__( self : Dict , snake_case : int=True , snake_case : Dict=None , snake_case : Union[str, Any]=3 , snake_case : Dict=100 , snake_case : Tuple=6 , snake_case : Optional[int]=2048 , snake_case : int=8 , snake_case : Dict=6 , snake_case : Any=2048 , snake_case : str=8 , snake_case : Union[str, Any]=0.0 , snake_case : List[str]=0.0 , snake_case : List[str]=True , snake_case : Any="relu" , snake_case : str=256 , snake_case : int=0.1 , snake_case : Dict=0.0 , snake_case : str=0.0 , snake_case : Union[str, Any]=0.02 , snake_case : Union[str, Any]=1.0 , snake_case : Optional[Any]=False , snake_case : int="sine" , snake_case : Optional[Any]="resnet50" , snake_case : Optional[int]=True , snake_case : Any=False , snake_case : int=1 , snake_case : Tuple=5 , snake_case : Optional[int]=2 , snake_case : Tuple=1 , snake_case : Optional[Any]=1 , snake_case : Optional[Any]=5 , snake_case : Dict=2 , snake_case : Any=0.1 , **snake_case : Any , ): '''simple docstring''' if backbone_config is not None and use_timm_backbone: raise ValueError("""You can't specify both `backbone_config` and `use_timm_backbone`.""" ) if not use_timm_backbone: if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) A__ : Optional[Any] = CONFIG_MAPPING["""resnet"""](out_features=["""stage4"""] ) elif isinstance(snake_case , snake_case ): A__ : Optional[int] = backbone_config.get("""model_type""" ) A__ : Optional[int] = CONFIG_MAPPING[backbone_model_type] A__ : List[str] = config_class.from_dict(snake_case ) # set timm attributes to None A__ , A__ , A__ : str = None, None, None A__ : Tuple = use_timm_backbone A__ : str = backbone_config A__ : str = num_channels A__ : List[Any] = num_queries A__ : Optional[Any] = d_model A__ : Tuple = encoder_ffn_dim A__ : Union[str, Any] = encoder_layers A__ : List[Any] = encoder_attention_heads A__ : Optional[int] = decoder_ffn_dim A__ : Any = decoder_layers A__ : int = decoder_attention_heads A__ : Any = dropout A__ : Dict = attention_dropout A__ : Dict = activation_dropout A__ : Tuple = activation_function A__ : List[str] = init_std A__ : List[str] = init_xavier_std A__ : Any = encoder_layerdrop A__ : Optional[Any] = decoder_layerdrop A__ : Union[str, Any] = encoder_layers A__ : Dict = auxiliary_loss A__ : List[Any] = position_embedding_type A__ : Optional[Any] = backbone A__ : str = use_pretrained_backbone A__ : Union[str, Any] = dilation # Hungarian matcher A__ : Tuple = class_cost A__ : Optional[Any] = bbox_cost A__ : Dict = giou_cost # Loss coefficients A__ : Any = mask_loss_coefficient A__ : str = dice_loss_coefficient A__ : str = bbox_loss_coefficient A__ : Union[str, Any] = giou_loss_coefficient A__ : List[str] = eos_coefficient super().__init__(is_encoder_decoder=snake_case , **snake_case ) @property def _UpperCamelCase ( self : List[str] ): '''simple docstring''' return self.encoder_attention_heads @property def _UpperCamelCase ( self : Dict ): '''simple docstring''' return self.d_model class __SCREAMING_SNAKE_CASE ( UpperCamelCase ): snake_case_ = version.parse('1.11' ) @property def _UpperCamelCase ( self : Any ): '''simple docstring''' return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ("""pixel_mask""", {0: """batch"""}), ] ) @property def _UpperCamelCase ( self : Optional[int] ): '''simple docstring''' return 1e-5 @property def _UpperCamelCase ( self : List[str] ): '''simple docstring''' return 12
296
0