code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
import argparse import json import logging import os import shutil import sys import tempfile import unittest from unittest import mock import torch from accelerate.utils import write_basic_config from transformers.testing_utils import TestCasePlus, get_gpu_count, run_command, slow, torch_device from transformers.utils import is_apex_available logging.basicConfig(level=logging.DEBUG) __lowercase = logging.getLogger() def lowerCamelCase ( ): '''simple docstring''' __UpperCamelCase :List[Any] = argparse.ArgumentParser() parser.add_argument('''-f''' ) __UpperCamelCase :Any = parser.parse_args() return args.f def lowerCamelCase ( SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCamelCase :Union[str, Any] = {} __UpperCamelCase :str = os.path.join(SCREAMING_SNAKE_CASE , '''all_results.json''' ) if os.path.exists(SCREAMING_SNAKE_CASE ): with open(SCREAMING_SNAKE_CASE , '''r''' ) as f: __UpperCamelCase :Optional[Any] = json.load(SCREAMING_SNAKE_CASE ) else: raise ValueError(f"""can't find {path}""" ) return results def lowerCamelCase ( ): '''simple docstring''' __UpperCamelCase :Optional[Any] = torch.cuda.is_available() and torch_device == '''cuda''' return is_using_cuda and is_apex_available() __lowercase = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class lowerCamelCase_ ( UpperCAmelCase_ ): '''simple docstring''' @classmethod def UpperCamelCase__ ( cls) -> int: # Write Accelerate config, will pick up on CPU, GPU, and multi-GPU __UpperCamelCase :List[Any] = tempfile.mkdtemp() __UpperCamelCase :List[Any] = os.path.join(cls.tmpdir , '''default_config.yml''') write_basic_config(save_location=cls.configPath) __UpperCamelCase :int = ['''accelerate''', '''launch''', '''--config_file''', cls.configPath] @classmethod def UpperCamelCase__ ( cls) -> Union[str, Any]: shutil.rmtree(cls.tmpdir) @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''}) def UpperCamelCase__ ( self) -> Union[str, Any]: __UpperCamelCase :List[str] = self.get_auto_remove_tmp_dir() __UpperCamelCase :Any = f""" {self.examples_dir}/pytorch/text-classification/run_glue_no_trainer.py --model_name_or_path distilbert-base-uncased --output_dir {tmp_dir} --train_file ./tests/fixtures/tests_samples/MRPC/train.csv --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --learning_rate=1e-4 --seed=42 --checkpointing_steps epoch --with_tracking """.split() if is_cuda_and_apex_available(): testargs.append('''--fp16''') run_command(self._launch_args + testargs) __UpperCamelCase :Optional[Any] = get_results(__lowercase) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.75) self.assertTrue(os.path.exists(os.path.join(__lowercase , '''epoch_0'''))) self.assertTrue(os.path.exists(os.path.join(__lowercase , '''glue_no_trainer'''))) @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''}) def UpperCamelCase__ ( self) -> int: __UpperCamelCase :Any = self.get_auto_remove_tmp_dir() __UpperCamelCase :List[str] = f""" {self.examples_dir}/pytorch/language-modeling/run_clm_no_trainer.py --model_name_or_path distilgpt2 --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --block_size 128 --per_device_train_batch_size 5 --per_device_eval_batch_size 5 --num_train_epochs 2 --output_dir {tmp_dir} --checkpointing_steps epoch --with_tracking """.split() if torch.cuda.device_count() > 1: # Skipping because there are not enough batches to train the model + would need a drop_last to work. return run_command(self._launch_args + testargs) __UpperCamelCase :Dict = get_results(__lowercase) self.assertLess(result['''perplexity'''] , 100) self.assertTrue(os.path.exists(os.path.join(__lowercase , '''epoch_0'''))) self.assertTrue(os.path.exists(os.path.join(__lowercase , '''clm_no_trainer'''))) @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''}) def UpperCamelCase__ ( self) -> Any: __UpperCamelCase :List[Any] = self.get_auto_remove_tmp_dir() __UpperCamelCase :List[Any] = f""" {self.examples_dir}/pytorch/language-modeling/run_mlm_no_trainer.py --model_name_or_path distilroberta-base --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --output_dir {tmp_dir} --num_train_epochs=1 --checkpointing_steps epoch --with_tracking """.split() run_command(self._launch_args + testargs) __UpperCamelCase :Union[str, Any] = get_results(__lowercase) self.assertLess(result['''perplexity'''] , 42) self.assertTrue(os.path.exists(os.path.join(__lowercase , '''epoch_0'''))) self.assertTrue(os.path.exists(os.path.join(__lowercase , '''mlm_no_trainer'''))) @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''}) def UpperCamelCase__ ( self) -> Tuple: # with so little data distributed training needs more epochs to get the score on par with 0/1 gpu __UpperCamelCase :Union[str, Any] = 7 if get_gpu_count() > 1 else 2 __UpperCamelCase :List[Any] = self.get_auto_remove_tmp_dir() __UpperCamelCase :List[Any] = f""" {self.examples_dir}/pytorch/token-classification/run_ner_no_trainer.py --model_name_or_path bert-base-uncased --train_file tests/fixtures/tests_samples/conll/sample.json --validation_file tests/fixtures/tests_samples/conll/sample.json --output_dir {tmp_dir} --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=2 --num_train_epochs={epochs} --seed 7 --checkpointing_steps epoch --with_tracking """.split() run_command(self._launch_args + testargs) __UpperCamelCase :Optional[Any] = get_results(__lowercase) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.75) self.assertLess(result['''train_loss'''] , 0.5) self.assertTrue(os.path.exists(os.path.join(__lowercase , '''epoch_0'''))) self.assertTrue(os.path.exists(os.path.join(__lowercase , '''ner_no_trainer'''))) @unittest.skip(reason='''Fix me @muellerzr''') @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''}) def UpperCamelCase__ ( self) -> Union[str, Any]: __UpperCamelCase :Union[str, Any] = self.get_auto_remove_tmp_dir() __UpperCamelCase :int = f""" {self.examples_dir}/pytorch/question-answering/run_qa_no_trainer.py --model_name_or_path bert-base-uncased --version_2_with_negative --train_file tests/fixtures/tests_samples/SQUAD/sample.json --validation_file tests/fixtures/tests_samples/SQUAD/sample.json --output_dir {tmp_dir} --seed=42 --max_train_steps=10 --num_warmup_steps=2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --checkpointing_steps epoch --with_tracking """.split() run_command(self._launch_args + testargs) __UpperCamelCase :Any = get_results(__lowercase) # Because we use --version_2_with_negative the testing script uses SQuAD v2 metrics. self.assertGreaterEqual(result['''eval_f1'''] , 28) self.assertGreaterEqual(result['''eval_exact'''] , 28) self.assertTrue(os.path.exists(os.path.join(__lowercase , '''epoch_0'''))) self.assertTrue(os.path.exists(os.path.join(__lowercase , '''qa_no_trainer'''))) @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''}) def UpperCamelCase__ ( self) -> Union[str, Any]: __UpperCamelCase :int = self.get_auto_remove_tmp_dir() __UpperCamelCase :int = f""" {self.examples_dir}/pytorch/multiple-choice/run_swag_no_trainer.py --model_name_or_path bert-base-uncased --train_file tests/fixtures/tests_samples/swag/sample.json --validation_file tests/fixtures/tests_samples/swag/sample.json --output_dir {tmp_dir} --max_train_steps=20 --num_warmup_steps=2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --with_tracking """.split() run_command(self._launch_args + testargs) __UpperCamelCase :Dict = get_results(__lowercase) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.8) self.assertTrue(os.path.exists(os.path.join(__lowercase , '''swag_no_trainer'''))) @slow @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''}) def UpperCamelCase__ ( self) -> str: __UpperCamelCase :str = self.get_auto_remove_tmp_dir() __UpperCamelCase :Dict = f""" {self.examples_dir}/pytorch/summarization/run_summarization_no_trainer.py --model_name_or_path t5-small --train_file tests/fixtures/tests_samples/xsum/sample.json --validation_file tests/fixtures/tests_samples/xsum/sample.json --output_dir {tmp_dir} --max_train_steps=50 --num_warmup_steps=8 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --checkpointing_steps epoch --with_tracking """.split() run_command(self._launch_args + testargs) __UpperCamelCase :Tuple = get_results(__lowercase) self.assertGreaterEqual(result['''eval_rouge1'''] , 10) self.assertGreaterEqual(result['''eval_rouge2'''] , 2) self.assertGreaterEqual(result['''eval_rougeL'''] , 7) self.assertGreaterEqual(result['''eval_rougeLsum'''] , 7) self.assertTrue(os.path.exists(os.path.join(__lowercase , '''epoch_0'''))) self.assertTrue(os.path.exists(os.path.join(__lowercase , '''summarization_no_trainer'''))) @slow @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''}) def UpperCamelCase__ ( self) -> str: __UpperCamelCase :Optional[int] = self.get_auto_remove_tmp_dir() __UpperCamelCase :Dict = f""" {self.examples_dir}/pytorch/translation/run_translation_no_trainer.py --model_name_or_path sshleifer/student_marian_en_ro_6_1 --source_lang en --target_lang ro --train_file tests/fixtures/tests_samples/wmt16/sample.json --validation_file tests/fixtures/tests_samples/wmt16/sample.json --output_dir {tmp_dir} --max_train_steps=50 --num_warmup_steps=8 --num_beams=6 --learning_rate=3e-3 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --source_lang en_XX --target_lang ro_RO --checkpointing_steps epoch --with_tracking """.split() run_command(self._launch_args + testargs) __UpperCamelCase :Optional[int] = get_results(__lowercase) self.assertGreaterEqual(result['''eval_bleu'''] , 30) self.assertTrue(os.path.exists(os.path.join(__lowercase , '''epoch_0'''))) self.assertTrue(os.path.exists(os.path.join(__lowercase , '''translation_no_trainer'''))) @slow def UpperCamelCase__ ( self) -> Tuple: __UpperCamelCase :Tuple = logging.StreamHandler(sys.stdout) logger.addHandler(__lowercase) __UpperCamelCase :int = self.get_auto_remove_tmp_dir() __UpperCamelCase :Any = f""" {self.examples_dir}/pytorch/semantic-segmentation/run_semantic_segmentation_no_trainer.py --dataset_name huggingface/semantic-segmentation-test-sample --output_dir {tmp_dir} --max_train_steps=10 --num_warmup_steps=2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --checkpointing_steps epoch """.split() run_command(self._launch_args + testargs) __UpperCamelCase :List[str] = get_results(__lowercase) self.assertGreaterEqual(result['''eval_overall_accuracy'''] , 0.10) @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''}) def UpperCamelCase__ ( self) -> Optional[int]: __UpperCamelCase :Union[str, Any] = self.get_auto_remove_tmp_dir() __UpperCamelCase :Optional[Any] = f""" {self.examples_dir}/pytorch/image-classification/run_image_classification_no_trainer.py --model_name_or_path google/vit-base-patch16-224-in21k --dataset_name hf-internal-testing/cats_vs_dogs_sample --learning_rate 1e-4 --per_device_train_batch_size 2 --per_device_eval_batch_size 1 --max_train_steps 2 --train_val_split 0.1 --seed 42 --output_dir {tmp_dir} --with_tracking --checkpointing_steps 1 """.split() if is_cuda_and_apex_available(): testargs.append('''--fp16''') run_command(self._launch_args + testargs) __UpperCamelCase :Optional[Any] = get_results(__lowercase) # The base model scores a 25% self.assertGreaterEqual(result['''eval_accuracy'''] , 0.6) self.assertTrue(os.path.exists(os.path.join(__lowercase , '''step_1'''))) self.assertTrue(os.path.exists(os.path.join(__lowercase , '''image_classification_no_trainer''')))
43
"""simple docstring""" import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DetrImageProcessor class A__ ( unittest.TestCase): def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=7 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=30 , _SCREAMING_SNAKE_CASE=4_00 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=1 / 2_55 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=[0.5, 0.5, 0.5] , _SCREAMING_SNAKE_CASE=[0.5, 0.5, 0.5] , _SCREAMING_SNAKE_CASE=True , ): # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p __lowerCAmelCase : Any = size if size is not None else {'shortest_edge': 18, 'longest_edge': 13_33} __lowerCAmelCase : Optional[int] = parent __lowerCAmelCase : int = batch_size __lowerCAmelCase : str = num_channels __lowerCAmelCase : Optional[int] = min_resolution __lowerCAmelCase : List[Any] = max_resolution __lowerCAmelCase : Union[str, Any] = do_resize __lowerCAmelCase : Optional[Any] = size __lowerCAmelCase : Dict = do_rescale __lowerCAmelCase : Optional[Any] = rescale_factor __lowerCAmelCase : Any = do_normalize __lowerCAmelCase : List[str] = image_mean __lowerCAmelCase : Union[str, Any] = image_std __lowerCAmelCase : Optional[int] = do_pad def __lowerCamelCase ( self ): return { "do_resize": self.do_resize, "size": self.size, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_pad": self.do_pad, } def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False ): if not batched: __lowerCAmelCase : str = image_inputs[0] if isinstance(_SCREAMING_SNAKE_CASE , Image.Image ): __lowerCAmelCase , __lowerCAmelCase : Optional[int] = image.size else: __lowerCAmelCase , __lowerCAmelCase : Union[str, Any] = image.shape[1], image.shape[2] if w < h: __lowerCAmelCase : str = int(self.size['shortest_edge'] * h / w ) __lowerCAmelCase : Optional[int] = self.size['shortest_edge'] elif w > h: __lowerCAmelCase : str = self.size['shortest_edge'] __lowerCAmelCase : Union[str, Any] = int(self.size['shortest_edge'] * w / h ) else: __lowerCAmelCase : str = self.size['shortest_edge'] __lowerCAmelCase : Optional[Any] = self.size['shortest_edge'] else: __lowerCAmelCase : str = [] for image in image_inputs: __lowerCAmelCase , __lowerCAmelCase : List[Any] = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) __lowerCAmelCase : Any = max(_SCREAMING_SNAKE_CASE , key=lambda _SCREAMING_SNAKE_CASE : item[0] )[0] __lowerCAmelCase : Dict = max(_SCREAMING_SNAKE_CASE , key=lambda _SCREAMING_SNAKE_CASE : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class A__ ( _lowerCamelCase , unittest.TestCase): A_ : List[str] = DetrImageProcessor if is_vision_available() else None def __lowerCamelCase ( self ): __lowerCAmelCase : List[Any] = DetrImageProcessingTester(self ) @property def __lowerCamelCase ( self ): return self.image_processor_tester.prepare_image_processor_dict() def __lowerCamelCase ( self ): __lowerCAmelCase : Dict = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'image_mean' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'image_std' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'do_normalize' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'do_rescale' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'rescale_factor' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'do_resize' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'size' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'do_pad' ) ) def __lowerCamelCase ( self ): __lowerCAmelCase : Optional[Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'shortest_edge': 18, 'longest_edge': 13_33} ) self.assertEqual(image_processor.do_pad , _SCREAMING_SNAKE_CASE ) __lowerCAmelCase : List[Any] = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=_SCREAMING_SNAKE_CASE ) self.assertEqual(image_processor.size , {'shortest_edge': 42, 'longest_edge': 84} ) self.assertEqual(image_processor.do_pad , _SCREAMING_SNAKE_CASE ) def __lowerCamelCase ( self ): pass def __lowerCamelCase ( self ): # Initialize image_processing __lowerCAmelCase : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __lowerCAmelCase : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=_SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(_SCREAMING_SNAKE_CASE , Image.Image ) # Test not batched input __lowerCAmelCase : int = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values __lowerCAmelCase , __lowerCAmelCase : List[Any] = self.image_processor_tester.get_expected_values(_SCREAMING_SNAKE_CASE ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __lowerCAmelCase , __lowerCAmelCase : int = self.image_processor_tester.get_expected_values(_SCREAMING_SNAKE_CASE , batched=_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Union[str, Any] = image_processing(_SCREAMING_SNAKE_CASE , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def __lowerCamelCase ( self ): # Initialize image_processing __lowerCAmelCase : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __lowerCAmelCase : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=_SCREAMING_SNAKE_CASE , numpify=_SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(_SCREAMING_SNAKE_CASE , np.ndarray ) # Test not batched input __lowerCAmelCase : Tuple = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values __lowerCAmelCase , __lowerCAmelCase : Tuple = self.image_processor_tester.get_expected_values(_SCREAMING_SNAKE_CASE ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __lowerCAmelCase : Union[str, Any] = image_processing(_SCREAMING_SNAKE_CASE , return_tensors='pt' ).pixel_values __lowerCAmelCase , __lowerCAmelCase : List[Any] = self.image_processor_tester.get_expected_values(_SCREAMING_SNAKE_CASE , batched=_SCREAMING_SNAKE_CASE ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def __lowerCamelCase ( self ): # Initialize image_processing __lowerCAmelCase : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __lowerCAmelCase : int = prepare_image_inputs(self.image_processor_tester , equal_resolution=_SCREAMING_SNAKE_CASE , torchify=_SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(_SCREAMING_SNAKE_CASE , torch.Tensor ) # Test not batched input __lowerCAmelCase : Any = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values __lowerCAmelCase , __lowerCAmelCase : Dict = self.image_processor_tester.get_expected_values(_SCREAMING_SNAKE_CASE ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __lowerCAmelCase : Tuple = image_processing(_SCREAMING_SNAKE_CASE , return_tensors='pt' ).pixel_values __lowerCAmelCase , __lowerCAmelCase : Any = self.image_processor_tester.get_expected_values(_SCREAMING_SNAKE_CASE , batched=_SCREAMING_SNAKE_CASE ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def __lowerCamelCase ( self ): # prepare image and target __lowerCAmelCase : Union[str, Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) with open('./tests/fixtures/tests_samples/COCO/coco_annotations.txt' , 'r' ) as f: __lowerCAmelCase : Any = json.loads(f.read() ) __lowerCAmelCase : Tuple = {'image_id': 3_97_69, 'annotations': target} # encode them __lowerCAmelCase : Dict = DetrImageProcessor.from_pretrained('facebook/detr-resnet-50' ) __lowerCAmelCase : int = image_processing(images=_SCREAMING_SNAKE_CASE , annotations=_SCREAMING_SNAKE_CASE , return_tensors='pt' ) # verify pixel values __lowerCAmelCase : str = torch.Size([1, 3, 8_00, 10_66] ) self.assertEqual(encoding['pixel_values'].shape , _SCREAMING_SNAKE_CASE ) __lowerCAmelCase : int = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , _SCREAMING_SNAKE_CASE , atol=1E-4 ) ) # verify area __lowerCAmelCase : List[str] = torch.tensor([5887.9600, 1_1250.2061, 48_9353.8438, 83_7122.7500, 14_7967.5156, 16_5732.3438] ) self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , _SCREAMING_SNAKE_CASE ) ) # verify boxes __lowerCAmelCase : Tuple = torch.Size([6, 4] ) self.assertEqual(encoding['labels'][0]['boxes'].shape , _SCREAMING_SNAKE_CASE ) __lowerCAmelCase : str = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215] ) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , _SCREAMING_SNAKE_CASE , atol=1E-3 ) ) # verify image_id __lowerCAmelCase : Dict = torch.tensor([3_97_69] ) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , _SCREAMING_SNAKE_CASE ) ) # verify is_crowd __lowerCAmelCase : Optional[int] = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , _SCREAMING_SNAKE_CASE ) ) # verify class_labels __lowerCAmelCase : Union[str, Any] = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , _SCREAMING_SNAKE_CASE ) ) # verify orig_size __lowerCAmelCase : int = torch.tensor([4_80, 6_40] ) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , _SCREAMING_SNAKE_CASE ) ) # verify size __lowerCAmelCase : List[Any] = torch.tensor([8_00, 10_66] ) self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , _SCREAMING_SNAKE_CASE ) ) @slow def __lowerCamelCase ( self ): # prepare image, target and masks_path __lowerCAmelCase : Optional[int] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) with open('./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt' , 'r' ) as f: __lowerCAmelCase : Optional[int] = json.loads(f.read() ) __lowerCAmelCase : Optional[int] = {'file_name': '000000039769.png', 'image_id': 3_97_69, 'segments_info': target} __lowerCAmelCase : Union[str, Any] = pathlib.Path('./tests/fixtures/tests_samples/COCO/coco_panoptic' ) # encode them __lowerCAmelCase : Optional[int] = DetrImageProcessor.from_pretrained('facebook/detr-resnet-50-panoptic' ) __lowerCAmelCase : Optional[Any] = image_processing(images=_SCREAMING_SNAKE_CASE , annotations=_SCREAMING_SNAKE_CASE , masks_path=_SCREAMING_SNAKE_CASE , return_tensors='pt' ) # verify pixel values __lowerCAmelCase : str = torch.Size([1, 3, 8_00, 10_66] ) self.assertEqual(encoding['pixel_values'].shape , _SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Dict = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , _SCREAMING_SNAKE_CASE , atol=1E-4 ) ) # verify area __lowerCAmelCase : int = torch.tensor([14_7979.6875, 16_5527.0469, 48_4638.5938, 1_1292.9375, 5879.6562, 7634.1147] ) self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , _SCREAMING_SNAKE_CASE ) ) # verify boxes __lowerCAmelCase : Optional[int] = torch.Size([6, 4] ) self.assertEqual(encoding['labels'][0]['boxes'].shape , _SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Dict = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625] ) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , _SCREAMING_SNAKE_CASE , atol=1E-3 ) ) # verify image_id __lowerCAmelCase : str = torch.tensor([3_97_69] ) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , _SCREAMING_SNAKE_CASE ) ) # verify is_crowd __lowerCAmelCase : Optional[int] = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , _SCREAMING_SNAKE_CASE ) ) # verify class_labels __lowerCAmelCase : str = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , _SCREAMING_SNAKE_CASE ) ) # verify masks __lowerCAmelCase : Dict = 82_28_73 self.assertEqual(encoding['labels'][0]['masks'].sum().item() , _SCREAMING_SNAKE_CASE ) # verify orig_size __lowerCAmelCase : str = torch.tensor([4_80, 6_40] ) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , _SCREAMING_SNAKE_CASE ) ) # verify size __lowerCAmelCase : List[Any] = torch.tensor([8_00, 10_66] ) self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , _SCREAMING_SNAKE_CASE ) )
86
0
"""simple docstring""" import unittest from transformers import AlbertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForPreTraining, AlbertForQuestionAnswering, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertModel, ) from transformers.models.albert.modeling_albert import ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST class __UpperCamelCase : def __init__(self : Optional[int] , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Tuple=1_3 , __SCREAMING_SNAKE_CASE : str=7 , __SCREAMING_SNAKE_CASE : List[Any]=True , __SCREAMING_SNAKE_CASE : str=True , __SCREAMING_SNAKE_CASE : Optional[int]=True , __SCREAMING_SNAKE_CASE : Dict=True , __SCREAMING_SNAKE_CASE : Union[str, Any]=9_9 , __SCREAMING_SNAKE_CASE : Dict=1_6 , __SCREAMING_SNAKE_CASE : Any=3_6 , __SCREAMING_SNAKE_CASE : int=6 , __SCREAMING_SNAKE_CASE : Optional[Any]=6 , __SCREAMING_SNAKE_CASE : List[Any]=6 , __SCREAMING_SNAKE_CASE : Tuple=3_7 , __SCREAMING_SNAKE_CASE : Any="gelu" , __SCREAMING_SNAKE_CASE : str=0.1 , __SCREAMING_SNAKE_CASE : List[str]=0.1 , __SCREAMING_SNAKE_CASE : Tuple=5_1_2 , __SCREAMING_SNAKE_CASE : Any=1_6 , __SCREAMING_SNAKE_CASE : Any=2 , __SCREAMING_SNAKE_CASE : Tuple=0.0_2 , __SCREAMING_SNAKE_CASE : Dict=3 , __SCREAMING_SNAKE_CASE : str=4 , __SCREAMING_SNAKE_CASE : Tuple=None , ): A = parent A = batch_size A = seq_length A = is_training A = use_input_mask A = use_token_type_ids A = use_labels A = vocab_size A = embedding_size A = hidden_size A = num_hidden_layers A = num_hidden_groups A = num_attention_heads A = intermediate_size A = hidden_act A = hidden_dropout_prob A = attention_probs_dropout_prob A = max_position_embeddings A = type_vocab_size A = type_sequence_label_size A = initializer_range A = num_labels A = num_choices A = scope def SCREAMING_SNAKE_CASE__ (self : Tuple): A = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) A = None if self.use_input_mask: A = random_attention_mask([self.batch_size, self.seq_length]) A = None if self.use_token_type_ids: A = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) A = None A = None A = None if self.use_labels: A = ids_tensor([self.batch_size] , self.type_sequence_label_size) A = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) A = ids_tensor([self.batch_size] , self.num_choices) A = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def SCREAMING_SNAKE_CASE__ (self : Any): return AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , num_hidden_groups=self.num_hidden_groups , ) def SCREAMING_SNAKE_CASE__ (self : int , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : str): A = AlbertModel(config=__SCREAMING_SNAKE_CASE) model.to(__SCREAMING_SNAKE_CASE) model.eval() A = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , token_type_ids=__SCREAMING_SNAKE_CASE) A = model(__SCREAMING_SNAKE_CASE , token_type_ids=__SCREAMING_SNAKE_CASE) A = model(__SCREAMING_SNAKE_CASE) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size)) def SCREAMING_SNAKE_CASE__ (self : Tuple , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : List[str]): A = AlbertForPreTraining(config=__SCREAMING_SNAKE_CASE) model.to(__SCREAMING_SNAKE_CASE) model.eval() A = model( __SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , token_type_ids=__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE , sentence_order_label=__SCREAMING_SNAKE_CASE , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) self.parent.assertEqual(result.sop_logits.shape , (self.batch_size, config.num_labels)) def SCREAMING_SNAKE_CASE__ (self : Tuple , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : str): A = AlbertForMaskedLM(config=__SCREAMING_SNAKE_CASE) model.to(__SCREAMING_SNAKE_CASE) model.eval() A = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , token_type_ids=__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def SCREAMING_SNAKE_CASE__ (self : Dict , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Optional[Any]): A = AlbertForQuestionAnswering(config=__SCREAMING_SNAKE_CASE) model.to(__SCREAMING_SNAKE_CASE) model.eval() A = model( __SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , token_type_ids=__SCREAMING_SNAKE_CASE , start_positions=__SCREAMING_SNAKE_CASE , end_positions=__SCREAMING_SNAKE_CASE , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def SCREAMING_SNAKE_CASE__ (self : Any , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : str): A = self.num_labels A = AlbertForSequenceClassification(__SCREAMING_SNAKE_CASE) model.to(__SCREAMING_SNAKE_CASE) model.eval() A = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , token_type_ids=__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def SCREAMING_SNAKE_CASE__ (self : List[Any] , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : str): A = self.num_labels A = AlbertForTokenClassification(config=__SCREAMING_SNAKE_CASE) model.to(__SCREAMING_SNAKE_CASE) model.eval() A = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , token_type_ids=__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def SCREAMING_SNAKE_CASE__ (self : str , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Optional[Any]): A = self.num_choices A = AlbertForMultipleChoice(config=__SCREAMING_SNAKE_CASE) model.to(__SCREAMING_SNAKE_CASE) model.eval() A = input_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() A = token_type_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() A = input_mask.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() A = model( __SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , token_type_ids=__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices)) def SCREAMING_SNAKE_CASE__ (self : List[str]): A = self.prepare_config_and_inputs() ( ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ) = config_and_inputs A = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class __UpperCamelCase ( _A , _A , unittest.TestCase ): SCREAMING_SNAKE_CASE = ( ( AlbertModel, AlbertForPreTraining, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertForQuestionAnswering, ) if is_torch_available() else () ) SCREAMING_SNAKE_CASE = ( { "feature-extraction": AlbertModel, "fill-mask": AlbertForMaskedLM, "question-answering": AlbertForQuestionAnswering, "text-classification": AlbertForSequenceClassification, "token-classification": AlbertForTokenClassification, "zero-shot": AlbertForSequenceClassification, } if is_torch_available() else {} ) SCREAMING_SNAKE_CASE = True def SCREAMING_SNAKE_CASE__ (self : Dict , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : List[Any]=False): A = super()._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , return_labels=__SCREAMING_SNAKE_CASE) if return_labels: if model_class in get_values(__SCREAMING_SNAKE_CASE): A = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=__SCREAMING_SNAKE_CASE) A = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__SCREAMING_SNAKE_CASE) return inputs_dict def SCREAMING_SNAKE_CASE__ (self : Union[str, Any]): A = AlbertModelTester(self) A = ConfigTester(self , config_class=__SCREAMING_SNAKE_CASE , hidden_size=3_7) def SCREAMING_SNAKE_CASE__ (self : str): self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE__ (self : Dict): A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__SCREAMING_SNAKE_CASE) def SCREAMING_SNAKE_CASE__ (self : Tuple): A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*__SCREAMING_SNAKE_CASE) def SCREAMING_SNAKE_CASE__ (self : Tuple): A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__SCREAMING_SNAKE_CASE) def SCREAMING_SNAKE_CASE__ (self : str): A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*__SCREAMING_SNAKE_CASE) def SCREAMING_SNAKE_CASE__ (self : List[Any]): A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__SCREAMING_SNAKE_CASE) def SCREAMING_SNAKE_CASE__ (self : Tuple): A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__SCREAMING_SNAKE_CASE) def SCREAMING_SNAKE_CASE__ (self : List[str]): A = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: A = type self.model_tester.create_and_check_model(*__SCREAMING_SNAKE_CASE) @slow def SCREAMING_SNAKE_CASE__ (self : Union[str, Any]): for model_name in ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A = AlbertModel.from_pretrained(__SCREAMING_SNAKE_CASE) self.assertIsNotNone(__SCREAMING_SNAKE_CASE) @require_torch class __UpperCamelCase ( unittest.TestCase ): @slow def SCREAMING_SNAKE_CASE__ (self : Any): A = AlbertModel.from_pretrained("albert-base-v2") A = torch.tensor([[0, 3_4_5, 2_3_2, 3_2_8, 7_4_0, 1_4_0, 1_6_9_5, 6_9, 6_0_7_8, 1_5_8_8, 2]]) A = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]) with torch.no_grad(): A = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE)[0] A = torch.Size((1, 1_1, 7_6_8)) self.assertEqual(output.shape , __SCREAMING_SNAKE_CASE) A = torch.tensor( [[[-0.6_5_1_3, 1.5_0_3_5, -0.2_7_6_6], [-0.6_5_1_5, 1.5_0_4_6, -0.2_7_8_0], [-0.6_5_1_2, 1.5_0_4_9, -0.2_7_8_4]]]) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , __SCREAMING_SNAKE_CASE , atol=1E-4))
57
"""simple docstring""" # Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import platform import numpy as np import psutil import torch from accelerate import __version__ as version from accelerate.commands.config import default_config_file, load_config_from_file from ..utils import is_npu_available, is_xpu_available def __SCREAMING_SNAKE_CASE ( lowercase__=None ): """simple docstring""" if subparsers is not None: A = subparsers.add_parser("env" ) else: A = argparse.ArgumentParser("Accelerate env command" ) parser.add_argument( "--config_file" , default=lowercase__ , help="The config file to use for the default values in the launching script." ) if subparsers is not None: parser.set_defaults(func=lowercase__ ) return parser def __SCREAMING_SNAKE_CASE ( lowercase__ ): """simple docstring""" A = torch.__version__ A = torch.cuda.is_available() A = is_xpu_available() A = is_npu_available() A = "Not found" # Get the default from the config file. if args.config_file is not None or os.path.isfile(lowercase__ ): A = load_config_from_file(args.config_file ).to_dict() A = { "`Accelerate` version": version, "Platform": platform.platform(), "Python version": platform.python_version(), "Numpy version": np.__version__, "PyTorch version (GPU?)": F"""{pt_version} ({pt_cuda_available})""", "PyTorch XPU available": str(lowercase__ ), "PyTorch NPU available": str(lowercase__ ), "System RAM": F"""{psutil.virtual_memory().total / 1_024 ** 3:.2f} GB""", } if pt_cuda_available: A = torch.cuda.get_device_name() print("\nCopy-and-paste the text below in your GitHub issue\n" ) print("\n".join([F"""- {prop}: {val}""" for prop, val in info.items()] ) ) print("- `Accelerate` default config:" if args.config_file is None else "- `Accelerate` config passed:" ) A = ( "\n".join([F"""\t- {prop}: {val}""" for prop, val in accelerate_config.items()] ) if isinstance(lowercase__ , lowercase__ ) else F"""\t{accelerate_config}""" ) print(lowercase__ ) A = accelerate_config return info def __SCREAMING_SNAKE_CASE ( ): """simple docstring""" A = env_command_parser() A = parser.parse_args() env_command(lowercase__ ) return 0 if __name__ == "__main__": raise SystemExit(main())
57
1
"""simple docstring""" from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available SCREAMING_SNAKE_CASE_ = { '''configuration_informer''': [ '''INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''InformerConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ = [ '''INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''InformerForPrediction''', '''InformerModel''', '''InformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_informer import INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, InformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_informer import ( INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, InformerForPrediction, InformerModel, InformerPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
301
"""simple docstring""" from __future__ import annotations def lowercase (_lowerCAmelCase , _lowerCAmelCase ): __lowerCAmelCase = [] create_all_state(1 , _lowerCAmelCase , _lowerCAmelCase , [] , _lowerCAmelCase ) return result def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , ): if level == 0: total_list.append(current_list[:] ) return for i in range(_lowerCAmelCase , total_number - level + 2 ): current_list.append(_lowerCAmelCase ) create_all_state(i + 1 , _lowerCAmelCase , level - 1 , _lowerCAmelCase , _lowerCAmelCase ) current_list.pop() def lowercase (_lowerCAmelCase ): for i in total_list: print(*_lowerCAmelCase ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_ = 4 SCREAMING_SNAKE_CASE_ = 2 SCREAMING_SNAKE_CASE_ = generate_all_combinations(n, k) print_all_state(total_list)
301
1
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import PoolFormerImageProcessor class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self : Optional[int] ,A : List[str] ,A : List[Any]=7 ,A : Any=3 ,A : int=30 ,A : List[Any]=4_00 ,A : str=True ,A : int=None ,A : List[str]=0.9 ,A : Dict=None ,A : int=True ,A : Any=[0.5, 0.5, 0.5] ,A : Optional[int]=[0.5, 0.5, 0.5] ,): __A = size if size is not None else {"shortest_edge": 30} __A = crop_size if crop_size is not None else {"height": 30, "width": 30} __A = parent __A = batch_size __A = num_channels __A = min_resolution __A = max_resolution __A = do_resize_and_center_crop __A = size __A = crop_pct __A = crop_size __A = do_normalize __A = image_mean __A = image_std def UpperCamelCase_ ( self : int ): return { "size": self.size, "do_resize_and_center_crop": self.do_resize_and_center_crop, "crop_pct": self.crop_pct, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' snake_case_ = PoolFormerImageProcessor if is_vision_available() else None def UpperCamelCase_ ( self : Optional[Any] ): __A = PoolFormerImageProcessingTester(self ) @property def UpperCamelCase_ ( self : List[Any] ): return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase_ ( self : Tuple ): __A = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(A ,"do_resize_and_center_crop" ) ) self.assertTrue(hasattr(A ,"size" ) ) self.assertTrue(hasattr(A ,"crop_pct" ) ) self.assertTrue(hasattr(A ,"do_normalize" ) ) self.assertTrue(hasattr(A ,"image_mean" ) ) self.assertTrue(hasattr(A ,"image_std" ) ) def UpperCamelCase_ ( self : Union[str, Any] ): __A = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size ,{"shortest_edge": 30} ) self.assertEqual(image_processor.crop_size ,{"height": 30, "width": 30} ) __A = self.image_processing_class.from_dict(self.image_processor_dict ,size=42 ,crop_size=84 ) self.assertEqual(image_processor.size ,{"shortest_edge": 42} ) self.assertEqual(image_processor.crop_size ,{"height": 84, "width": 84} ) def UpperCamelCase_ ( self : List[str] ): pass def UpperCamelCase_ ( self : Optional[int] ): # Initialize image_processing __A = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __A = prepare_image_inputs(self.image_processor_tester ,equal_resolution=A ) for image in image_inputs: self.assertIsInstance(A ,Image.Image ) # Test not batched input __A = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) # Test batched __A = image_processing(A ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) def UpperCamelCase_ ( self : List[Any] ): # Initialize image_processing __A = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __A = prepare_image_inputs(self.image_processor_tester ,equal_resolution=A ,numpify=A ) for image in image_inputs: self.assertIsInstance(A ,np.ndarray ) # Test not batched input __A = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) # Test batched __A = image_processing(A ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) def UpperCamelCase_ ( self : List[Any] ): # Initialize image_processing __A = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __A = prepare_image_inputs(self.image_processor_tester ,equal_resolution=A ,torchify=A ) for image in image_inputs: self.assertIsInstance(A ,torch.Tensor ) # Test not batched input __A = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) # Test batched __A = image_processing(A ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,)
124
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import PoolFormerImageProcessor class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self : Optional[int] ,A : List[str] ,A : List[Any]=7 ,A : Any=3 ,A : int=30 ,A : List[Any]=4_00 ,A : str=True ,A : int=None ,A : List[str]=0.9 ,A : Dict=None ,A : int=True ,A : Any=[0.5, 0.5, 0.5] ,A : Optional[int]=[0.5, 0.5, 0.5] ,): __A = size if size is not None else {"shortest_edge": 30} __A = crop_size if crop_size is not None else {"height": 30, "width": 30} __A = parent __A = batch_size __A = num_channels __A = min_resolution __A = max_resolution __A = do_resize_and_center_crop __A = size __A = crop_pct __A = crop_size __A = do_normalize __A = image_mean __A = image_std def UpperCamelCase_ ( self : int ): return { "size": self.size, "do_resize_and_center_crop": self.do_resize_and_center_crop, "crop_pct": self.crop_pct, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' snake_case_ = PoolFormerImageProcessor if is_vision_available() else None def UpperCamelCase_ ( self : Optional[Any] ): __A = PoolFormerImageProcessingTester(self ) @property def UpperCamelCase_ ( self : List[Any] ): return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase_ ( self : Tuple ): __A = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(A ,"do_resize_and_center_crop" ) ) self.assertTrue(hasattr(A ,"size" ) ) self.assertTrue(hasattr(A ,"crop_pct" ) ) self.assertTrue(hasattr(A ,"do_normalize" ) ) self.assertTrue(hasattr(A ,"image_mean" ) ) self.assertTrue(hasattr(A ,"image_std" ) ) def UpperCamelCase_ ( self : Union[str, Any] ): __A = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size ,{"shortest_edge": 30} ) self.assertEqual(image_processor.crop_size ,{"height": 30, "width": 30} ) __A = self.image_processing_class.from_dict(self.image_processor_dict ,size=42 ,crop_size=84 ) self.assertEqual(image_processor.size ,{"shortest_edge": 42} ) self.assertEqual(image_processor.crop_size ,{"height": 84, "width": 84} ) def UpperCamelCase_ ( self : List[str] ): pass def UpperCamelCase_ ( self : Optional[int] ): # Initialize image_processing __A = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __A = prepare_image_inputs(self.image_processor_tester ,equal_resolution=A ) for image in image_inputs: self.assertIsInstance(A ,Image.Image ) # Test not batched input __A = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) # Test batched __A = image_processing(A ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) def UpperCamelCase_ ( self : List[Any] ): # Initialize image_processing __A = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __A = prepare_image_inputs(self.image_processor_tester ,equal_resolution=A ,numpify=A ) for image in image_inputs: self.assertIsInstance(A ,np.ndarray ) # Test not batched input __A = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) # Test batched __A = image_processing(A ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) def UpperCamelCase_ ( self : List[Any] ): # Initialize image_processing __A = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __A = prepare_image_inputs(self.image_processor_tester ,equal_resolution=A ,torchify=A ) for image in image_inputs: self.assertIsInstance(A ,torch.Tensor ) # Test not batched input __A = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) # Test batched __A = image_processing(A ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,)
124
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) lowerCamelCase__ = { """configuration_encodec""": [ """ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP""", """EncodecConfig""", ], """feature_extraction_encodec""": ["""EncodecFeatureExtractor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ """ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST""", """EncodecModel""", """EncodecPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_encodec import ( ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP, EncodecConfig, ) from .feature_extraction_encodec import EncodecFeatureExtractor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encodec import ( ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST, EncodecModel, EncodecPreTrainedModel, ) else: import sys lowerCamelCase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
212
from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { """EleutherAI/gpt-j-6B""": """https://huggingface.co/EleutherAI/gpt-j-6B/resolve/main/config.json""", # See all GPT-J models at https://huggingface.co/models?filter=gpt_j } class A__ ( __magic_name__ ): lowercase = 'gptj' lowercase = { 'max_position_embeddings': 'n_positions', 'hidden_size': 'n_embd', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self : Optional[Any] , a : Dict=50_400 , a : Union[str, Any]=2_048 , a : List[str]=4_096 , a : Any=28 , a : Optional[Any]=16 , a : Optional[Any]=64 , a : int=None , a : Any="gelu_new" , a : Union[str, Any]=0.0 , a : List[Any]=0.0 , a : List[Any]=0.0 , a : Optional[Any]=1E-5 , a : Optional[int]=0.0_2 , a : int=True , a : str=50_256 , a : str=50_256 , a : Any=False , **a : Dict , ): '''simple docstring''' lowerCAmelCase__ : List[Any] = vocab_size lowerCAmelCase__ : List[Any] = n_positions lowerCAmelCase__ : str = n_embd lowerCAmelCase__ : str = n_layer lowerCAmelCase__ : str = n_head lowerCAmelCase__ : Dict = n_inner lowerCAmelCase__ : Union[str, Any] = rotary_dim lowerCAmelCase__ : Optional[int] = activation_function lowerCAmelCase__ : Any = resid_pdrop lowerCAmelCase__ : int = embd_pdrop lowerCAmelCase__ : int = attn_pdrop lowerCAmelCase__ : List[Any] = layer_norm_epsilon lowerCAmelCase__ : str = initializer_range lowerCAmelCase__ : Dict = use_cache lowerCAmelCase__ : str = bos_token_id lowerCAmelCase__ : int = eos_token_id super().__init__( bos_token_id=a , eos_token_id=a , tie_word_embeddings=a , **a ) class A__ ( __magic_name__ ): def __init__( self : str , a : PretrainedConfig , a : str = "default" , a : List[PatchingSpec] = None , a : bool = False , ): '''simple docstring''' super().__init__(a , task=a , patching_specs=a , use_past=a ) if not getattr(self._config , 'pad_token_id' , a ): # TODO: how to do that better? lowerCAmelCase__ : int = 0 @property def _lowerCamelCase ( self : Tuple ): '''simple docstring''' lowerCAmelCase__ : Dict = OrderedDict({'input_ids': {0: 'batch', 1: 'sequence'}} ) if self.use_past: self.fill_with_past_key_values_(a , direction='inputs' ) lowerCAmelCase__ : Optional[Any] = {0: 'batch', 1: 'past_sequence + sequence'} else: lowerCAmelCase__ : Tuple = {0: 'batch', 1: 'sequence'} return common_inputs @property def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' return self._config.n_layer @property def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' return self._config.n_head def _lowerCamelCase ( self : Tuple , a : PreTrainedTokenizer , a : int = -1 , a : int = -1 , a : bool = False , a : Optional[TensorType] = None , ): '''simple docstring''' lowerCAmelCase__ : Tuple = super(a , self ).generate_dummy_inputs( a , batch_size=a , seq_length=a , is_pair=a , framework=a ) # We need to order the input in the way they appears in the forward() lowerCAmelCase__ : Optional[int] = OrderedDict({'input_ids': common_inputs['input_ids']} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' ) else: import torch lowerCAmelCase__ , lowerCAmelCase__ : int = common_inputs['input_ids'].shape # Not using the same length for past_key_values lowerCAmelCase__ : Optional[int] = seqlen + 2 lowerCAmelCase__ : Tuple = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) lowerCAmelCase__ : Tuple = [ (torch.zeros(a ), torch.zeros(a )) for _ in range(self.num_layers ) ] lowerCAmelCase__ : Any = common_inputs['attention_mask'] if self.use_past: lowerCAmelCase__ : List[str] = ordered_inputs['attention_mask'].dtype lowerCAmelCase__ : Optional[Any] = torch.cat( [ordered_inputs['attention_mask'], torch.ones(a , a , dtype=a )] , dim=1 ) return ordered_inputs @property def _lowerCamelCase ( self : int ): '''simple docstring''' return 13
212
1
import random import unittest import torch from diffusers import IFInpaintingSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class lowerCAmelCase__ ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): lowerCAmelCase : str = IFInpaintingSuperResolutionPipeline lowerCAmelCase : List[str] = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'width', 'height'} lowerCAmelCase : int = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS.union({"original_image"} ) lowerCAmelCase : Dict = PipelineTesterMixin.required_optional_params - {'latents'} def lowerCAmelCase__ ( self : Union[str, Any] ) ->List[Any]: '''simple docstring''' return self._get_superresolution_dummy_components() def lowerCAmelCase__ ( self : List[Any] , lowerCamelCase__ : List[str] , lowerCamelCase__ : Dict=0 ) ->str: '''simple docstring''' if str(lowercase__ ).startswith("mps" ): _UpperCAmelCase : List[str] = torch.manual_seed(lowercase__ ) else: _UpperCAmelCase : int = torch.Generator(device=lowercase__ ).manual_seed(lowercase__ ) _UpperCAmelCase : List[Any] = floats_tensor((1, 3, 16, 16) , rng=random.Random(lowercase__ ) ).to(lowercase__ ) _UpperCAmelCase : Tuple = floats_tensor((1, 3, 32, 32) , rng=random.Random(lowercase__ ) ).to(lowercase__ ) _UpperCAmelCase : List[Any] = floats_tensor((1, 3, 32, 32) , rng=random.Random(lowercase__ ) ).to(lowercase__ ) _UpperCAmelCase : Dict = { "prompt": "A painting of a squirrel eating a burger", "image": image, "original_image": original_image, "mask_image": mask_image, "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def lowerCAmelCase__ ( self : List[str] ) ->Dict: '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) def lowerCAmelCase__ ( self : Tuple ) ->List[str]: '''simple docstring''' self._test_save_load_optional_components() @unittest.skipIf(torch_device != "cuda" , reason="float16 requires CUDA" ) def lowerCAmelCase__ ( self : Optional[int] ) ->Any: '''simple docstring''' super().test_save_load_floataa(expected_max_diff=1E-1 ) def lowerCAmelCase__ ( self : int ) ->Any: '''simple docstring''' self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def lowerCAmelCase__ ( self : str ) ->Optional[int]: '''simple docstring''' self._test_save_load_local() def lowerCAmelCase__ ( self : List[Any] ) ->int: '''simple docstring''' self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
358
'''simple docstring''' from typing import Optional, Tuple, Union import tensorflow as tf from ...activations_tf import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_tf_outputs import ( TFBaseModelOutputWithNoAttention, TFBaseModelOutputWithPoolingAndNoAttention, TFSequenceClassifierOutput, ) from ...modeling_tf_utils import TFPreTrainedModel, TFSequenceClassificationLoss, keras_serializable, unpack_inputs from ...tf_utils import shape_list from ...utils import logging from .configuration_regnet import RegNetConfig lowerCamelCase__ = logging.get_logger(__name__) # General docstring lowerCamelCase__ = 'RegNetConfig' # Base docstring lowerCamelCase__ = 'facebook/regnet-y-040' lowerCamelCase__ = [1, 1_088, 7, 7] # Image classification docstring lowerCamelCase__ = 'facebook/regnet-y-040' lowerCamelCase__ = 'tabby, tabby cat' lowerCamelCase__ = [ 'facebook/regnet-y-040', # See all regnet models at https://huggingface.co/models?filter=regnet ] class lowerCAmelCase__ ( tf.keras.layers.Layer ): def __init__( self : int , lowerCamelCase__ : int , lowerCamelCase__ : int = 3 , lowerCamelCase__ : int = 1 , lowerCamelCase__ : int = 1 , lowerCamelCase__ : Optional[str] = "relu" , **lowerCamelCase__ : Tuple , ) ->Optional[Any]: '''simple docstring''' super().__init__(**lowerCamelCase__ ) # The padding and conv has been verified in # https://colab.research.google.com/gist/sayakpaul/854bc10eeaf21c9ee2119e0b9f3841a7/scratchpad.ipynb _UpperCAmelCase : Optional[Any] = tf.keras.layers.ZeroPaddingaD(padding=kernel_size // 2 ) _UpperCAmelCase : Dict = tf.keras.layers.ConvaD( filters=lowerCamelCase__ , kernel_size=lowerCamelCase__ , strides=lowerCamelCase__ , padding="VALID" , groups=lowerCamelCase__ , use_bias=lowerCamelCase__ , name="convolution" , ) _UpperCAmelCase : List[Any] = tf.keras.layers.BatchNormalization(epsilon=1E-5 , momentum=0.9 , name="normalization" ) _UpperCAmelCase : int = ACTaFN[activation] if activation is not None else tf.identity def lowerCAmelCase__ ( self : int , lowerCamelCase__ : Tuple ) ->Any: '''simple docstring''' _UpperCAmelCase : List[str] = self.convolution(self.padding(lowerCamelCase__ ) ) _UpperCAmelCase : Optional[Any] = self.normalization(lowerCamelCase__ ) _UpperCAmelCase : List[Any] = self.activation(lowerCamelCase__ ) return hidden_state class lowerCAmelCase__ ( tf.keras.layers.Layer ): def __init__( self : str , lowerCamelCase__ : RegNetConfig , **lowerCamelCase__ : Optional[Any] ) ->Optional[Any]: '''simple docstring''' super().__init__(**lowerCamelCase__ ) _UpperCAmelCase : List[str] = config.num_channels _UpperCAmelCase : Any = TFRegNetConvLayer( out_channels=config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act , name="embedder" , ) def lowerCAmelCase__ ( self : Any , lowerCamelCase__ : Optional[Any] ) ->Dict: '''simple docstring''' _UpperCAmelCase : List[str] = shape_list(lowerCamelCase__ )[1] if tf.executing_eagerly() and num_channels != self.num_channels: raise ValueError( "Make sure that the channel dimension of the pixel values match with the one set in the configuration." ) # When running on CPU, `tf.keras.layers.Conv2D` doesn't support `NCHW` format. # So change the input format from `NCHW` to `NHWC`. # shape = (batch_size, in_height, in_width, in_channels=num_channels) _UpperCAmelCase : Optional[Any] = tf.transpose(lowerCamelCase__ , perm=(0, 2, 3, 1) ) _UpperCAmelCase : List[Any] = self.embedder(lowerCamelCase__ ) return hidden_state class lowerCAmelCase__ ( tf.keras.layers.Layer ): def __init__( self : int , lowerCamelCase__ : int , lowerCamelCase__ : int = 2 , **lowerCamelCase__ : int ) ->Union[str, Any]: '''simple docstring''' super().__init__(**lowerCamelCase__ ) _UpperCAmelCase : int = tf.keras.layers.ConvaD( filters=lowerCamelCase__ , kernel_size=1 , strides=lowerCamelCase__ , use_bias=lowerCamelCase__ , name="convolution" ) _UpperCAmelCase : Any = tf.keras.layers.BatchNormalization(epsilon=1E-5 , momentum=0.9 , name="normalization" ) def lowerCAmelCase__ ( self : Tuple , lowerCamelCase__ : tf.Tensor , lowerCamelCase__ : bool = False ) ->tf.Tensor: '''simple docstring''' return self.normalization(self.convolution(lowerCamelCase__ ) , training=lowerCamelCase__ ) class lowerCAmelCase__ ( tf.keras.layers.Layer ): def __init__( self : Any , lowerCamelCase__ : int , lowerCamelCase__ : int , **lowerCamelCase__ : Optional[int] ) ->Dict: '''simple docstring''' super().__init__(**lowerCamelCase__ ) _UpperCAmelCase : List[str] = tf.keras.layers.GlobalAveragePoolingaD(keepdims=lowerCamelCase__ , name="pooler" ) _UpperCAmelCase : int = [ tf.keras.layers.ConvaD(filters=lowerCamelCase__ , kernel_size=1 , activation="relu" , name="attention.0" ), tf.keras.layers.ConvaD(filters=lowerCamelCase__ , kernel_size=1 , activation="sigmoid" , name="attention.2" ), ] def lowerCAmelCase__ ( self : Optional[int] , lowerCamelCase__ : Optional[int] ) ->List[str]: '''simple docstring''' _UpperCAmelCase : Optional[Any] = self.pooler(lowerCamelCase__ ) for layer_module in self.attention: _UpperCAmelCase : str = layer_module(lowerCamelCase__ ) _UpperCAmelCase : Optional[Any] = hidden_state * pooled return hidden_state class lowerCAmelCase__ ( tf.keras.layers.Layer ): def __init__( self : Dict , lowerCamelCase__ : RegNetConfig , lowerCamelCase__ : int , lowerCamelCase__ : int , lowerCamelCase__ : int = 1 , **lowerCamelCase__ : Any ) ->List[str]: '''simple docstring''' super().__init__(**lowerCamelCase__ ) _UpperCAmelCase : List[str] = in_channels != out_channels or stride != 1 _UpperCAmelCase : List[str] = max(1 , out_channels // config.groups_width ) _UpperCAmelCase : List[str] = ( TFRegNetShortCut(lowerCamelCase__ , stride=lowerCamelCase__ , name="shortcut" ) if should_apply_shortcut else tf.keras.layers.Activation("linear" , name="shortcut" ) ) # `self.layers` instead of `self.layer` because that is a reserved argument. _UpperCAmelCase : Optional[int] = [ TFRegNetConvLayer(lowerCamelCase__ , kernel_size=1 , activation=config.hidden_act , name="layer.0" ), TFRegNetConvLayer( lowerCamelCase__ , stride=lowerCamelCase__ , groups=lowerCamelCase__ , activation=config.hidden_act , name="layer.1" ), TFRegNetConvLayer(lowerCamelCase__ , kernel_size=1 , activation=lowerCamelCase__ , name="layer.2" ), ] _UpperCAmelCase : Union[str, Any] = ACTaFN[config.hidden_act] def lowerCAmelCase__ ( self : Tuple , lowerCamelCase__ : Union[str, Any] ) ->Optional[int]: '''simple docstring''' _UpperCAmelCase : Any = hidden_state for layer_module in self.layers: _UpperCAmelCase : List[Any] = layer_module(lowerCamelCase__ ) _UpperCAmelCase : Optional[Any] = self.shortcut(lowerCamelCase__ ) hidden_state += residual _UpperCAmelCase : List[Any] = self.activation(lowerCamelCase__ ) return hidden_state class lowerCAmelCase__ ( tf.keras.layers.Layer ): def __init__( self : List[Any] , lowerCamelCase__ : RegNetConfig , lowerCamelCase__ : int , lowerCamelCase__ : int , lowerCamelCase__ : int = 1 , **lowerCamelCase__ : str ) ->Optional[int]: '''simple docstring''' super().__init__(**lowerCamelCase__ ) _UpperCAmelCase : Union[str, Any] = in_channels != out_channels or stride != 1 _UpperCAmelCase : Optional[int] = max(1 , out_channels // config.groups_width ) _UpperCAmelCase : Union[str, Any] = ( TFRegNetShortCut(lowerCamelCase__ , stride=lowerCamelCase__ , name="shortcut" ) if should_apply_shortcut else tf.keras.layers.Activation("linear" , name="shortcut" ) ) _UpperCAmelCase : List[Any] = [ TFRegNetConvLayer(lowerCamelCase__ , kernel_size=1 , activation=config.hidden_act , name="layer.0" ), TFRegNetConvLayer( lowerCamelCase__ , stride=lowerCamelCase__ , groups=lowerCamelCase__ , activation=config.hidden_act , name="layer.1" ), TFRegNetSELayer(lowerCamelCase__ , reduced_channels=int(round(in_channels / 4 ) ) , name="layer.2" ), TFRegNetConvLayer(lowerCamelCase__ , kernel_size=1 , activation=lowerCamelCase__ , name="layer.3" ), ] _UpperCAmelCase : int = ACTaFN[config.hidden_act] def lowerCAmelCase__ ( self : Any , lowerCamelCase__ : str ) ->Any: '''simple docstring''' _UpperCAmelCase : int = hidden_state for layer_module in self.layers: _UpperCAmelCase : Tuple = layer_module(lowerCamelCase__ ) _UpperCAmelCase : List[Any] = self.shortcut(lowerCamelCase__ ) hidden_state += residual _UpperCAmelCase : Tuple = self.activation(lowerCamelCase__ ) return hidden_state class lowerCAmelCase__ ( tf.keras.layers.Layer ): def __init__( self : str , lowerCamelCase__ : RegNetConfig , lowerCamelCase__ : int , lowerCamelCase__ : int , lowerCamelCase__ : int = 2 , lowerCamelCase__ : int = 2 , **lowerCamelCase__ : Union[str, Any] ) ->Optional[int]: '''simple docstring''' super().__init__(**lowerCamelCase__ ) _UpperCAmelCase : str = TFRegNetXLayer if config.layer_type == "x" else TFRegNetYLayer _UpperCAmelCase : List[str] = [ # downsampling is done in the first layer with stride of 2 layer(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , stride=lowerCamelCase__ , name="layers.0" ), *[layer(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , name=F"""layers.{i+1}""" ) for i in range(depth - 1 )], ] def lowerCAmelCase__ ( self : Optional[int] , lowerCamelCase__ : List[str] ) ->List[str]: '''simple docstring''' for layer_module in self.layers: _UpperCAmelCase : Optional[int] = layer_module(lowerCamelCase__ ) return hidden_state class lowerCAmelCase__ ( tf.keras.layers.Layer ): def __init__( self : Dict , lowerCamelCase__ : RegNetConfig , **lowerCamelCase__ : int ) ->Dict: '''simple docstring''' super().__init__(**lowerCamelCase__ ) _UpperCAmelCase : Union[str, Any] = [] # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( TFRegNetStage( lowerCamelCase__ , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , name="stages.0" , ) ) _UpperCAmelCase : Dict = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for i, ((in_channels, out_channels), depth) in enumerate(zip(lowerCamelCase__ , config.depths[1:] ) ): self.stages.append(TFRegNetStage(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , depth=lowerCamelCase__ , name=F"""stages.{i+1}""" ) ) def lowerCAmelCase__ ( self : str , lowerCamelCase__ : tf.Tensor , lowerCamelCase__ : bool = False , lowerCamelCase__ : bool = True ) ->TFBaseModelOutputWithNoAttention: '''simple docstring''' _UpperCAmelCase : Optional[Any] = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: _UpperCAmelCase : Optional[Any] = hidden_states + (hidden_state,) _UpperCAmelCase : Dict = stage_module(lowerCamelCase__ ) if output_hidden_states: _UpperCAmelCase : Tuple = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return TFBaseModelOutputWithNoAttention(last_hidden_state=lowerCamelCase__ , hidden_states=lowerCamelCase__ ) @keras_serializable class lowerCAmelCase__ ( tf.keras.layers.Layer ): lowerCAmelCase : Optional[Any] = RegNetConfig def __init__( self : Union[str, Any] , lowerCamelCase__ : Any , **lowerCamelCase__ : str ) ->int: '''simple docstring''' super().__init__(**lowerCamelCase__ ) _UpperCAmelCase : Union[str, Any] = config _UpperCAmelCase : Union[str, Any] = TFRegNetEmbeddings(lowerCamelCase__ , name="embedder" ) _UpperCAmelCase : Union[str, Any] = TFRegNetEncoder(lowerCamelCase__ , name="encoder" ) _UpperCAmelCase : Union[str, Any] = tf.keras.layers.GlobalAveragePoolingaD(keepdims=lowerCamelCase__ , name="pooler" ) @unpack_inputs def lowerCAmelCase__ ( self : Any , lowerCamelCase__ : tf.Tensor , lowerCamelCase__ : Optional[bool] = None , lowerCamelCase__ : Optional[bool] = None , lowerCamelCase__ : bool = False , ) ->TFBaseModelOutputWithPoolingAndNoAttention: '''simple docstring''' _UpperCAmelCase : Tuple = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _UpperCAmelCase : List[str] = return_dict if return_dict is not None else self.config.use_return_dict _UpperCAmelCase : Union[str, Any] = self.embedder(lowerCamelCase__ , training=lowerCamelCase__ ) _UpperCAmelCase : str = self.encoder( lowerCamelCase__ , output_hidden_states=lowerCamelCase__ , return_dict=lowerCamelCase__ , training=lowerCamelCase__ ) _UpperCAmelCase : Dict = encoder_outputs[0] _UpperCAmelCase : Dict = self.pooler(lowerCamelCase__ ) # Change to NCHW output format have uniformity in the modules _UpperCAmelCase : Union[str, Any] = tf.transpose(lowerCamelCase__ , perm=(0, 3, 1, 2) ) _UpperCAmelCase : Tuple = tf.transpose(lowerCamelCase__ , perm=(0, 3, 1, 2) ) # Change the other hidden state outputs to NCHW as well if output_hidden_states: _UpperCAmelCase : List[str] = tuple([tf.transpose(lowerCamelCase__ , perm=(0, 3, 1, 2) ) for h in encoder_outputs[1]] ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=lowerCamelCase__ , pooler_output=lowerCamelCase__ , hidden_states=hidden_states if output_hidden_states else encoder_outputs.hidden_states , ) class lowerCAmelCase__ ( UpperCAmelCase__ ): lowerCAmelCase : Tuple = RegNetConfig lowerCAmelCase : Tuple = "regnet" lowerCAmelCase : Union[str, Any] = "pixel_values" @property def lowerCAmelCase__ ( self : Optional[Any] ) ->Optional[int]: '''simple docstring''' return {"pixel_values": tf.TensorSpec(shape=(None, self.config.num_channels, 2_24, 2_24) , dtype=tf.floataa )} lowerCamelCase__ = r'\n Parameters:\n This model is a Tensorflow\n [tf.keras.layers.Layer](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Layer) sub-class. Use it as a\n regular Tensorflow Module and refer to the Tensorflow documentation for all matter related to general usage and\n behavior.\n config ([`RegNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights.\n' lowerCamelCase__ = r'\n Args:\n pixel_values (`tf.Tensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConveNextImageProcessor.__call__`] for details.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n' @add_start_docstrings( "The bare RegNet model outputting raw features without any specific head on top." , UpperCAmelCase__ , ) class lowerCAmelCase__ ( UpperCAmelCase__ ): def __init__( self : Any , lowerCamelCase__ : RegNetConfig , *lowerCamelCase__ : Any , **lowerCamelCase__ : List[str] ) ->Optional[int]: '''simple docstring''' super().__init__(lowerCamelCase__ , *lowerCamelCase__ , **lowerCamelCase__ ) _UpperCAmelCase : Optional[Any] = TFRegNetMainLayer(lowerCamelCase__ , name="regnet" ) @unpack_inputs @add_start_docstrings_to_model_forward(lowerCamelCase__ ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=lowerCamelCase__ , config_class=_CONFIG_FOR_DOC , modality="vision" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def lowerCAmelCase__ ( self : str , lowerCamelCase__ : tf.Tensor , lowerCamelCase__ : Optional[bool] = None , lowerCamelCase__ : Optional[bool] = None , lowerCamelCase__ : Any=False , ) ->Union[TFBaseModelOutputWithPoolingAndNoAttention, Tuple[tf.Tensor]]: '''simple docstring''' _UpperCAmelCase : Optional[int] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _UpperCAmelCase : Optional[Any] = return_dict if return_dict is not None else self.config.use_return_dict _UpperCAmelCase : Union[str, Any] = self.regnet( pixel_values=lowerCamelCase__ , output_hidden_states=lowerCamelCase__ , return_dict=lowerCamelCase__ , training=lowerCamelCase__ , ) if not return_dict: return (outputs[0],) + outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=outputs.last_hidden_state , pooler_output=outputs.pooler_output , hidden_states=outputs.hidden_states , ) @add_start_docstrings( "\n RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n " , UpperCAmelCase__ , ) class lowerCAmelCase__ ( UpperCAmelCase__ , UpperCAmelCase__ ): def __init__( self : str , lowerCamelCase__ : RegNetConfig , *lowerCamelCase__ : List[Any] , **lowerCamelCase__ : Union[str, Any] ) ->Any: '''simple docstring''' super().__init__(lowerCamelCase__ , *lowerCamelCase__ , **lowerCamelCase__ ) _UpperCAmelCase : Optional[int] = config.num_labels _UpperCAmelCase : Dict = TFRegNetMainLayer(lowerCamelCase__ , name="regnet" ) # classification head _UpperCAmelCase : str = [ tf.keras.layers.Flatten(), tf.keras.layers.Dense(config.num_labels , name="classifier.1" ) if config.num_labels > 0 else tf.identity, ] @unpack_inputs @add_start_docstrings_to_model_forward(lowerCamelCase__ ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=lowerCamelCase__ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def lowerCAmelCase__ ( self : str , lowerCamelCase__ : tf.Tensor = None , lowerCamelCase__ : tf.Tensor = None , lowerCamelCase__ : bool = None , lowerCamelCase__ : bool = None , lowerCamelCase__ : Dict=False , ) ->Union[TFSequenceClassifierOutput, Tuple[tf.Tensor]]: '''simple docstring''' _UpperCAmelCase : str = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _UpperCAmelCase : str = return_dict if return_dict is not None else self.config.use_return_dict _UpperCAmelCase : Union[str, Any] = self.regnet( lowerCamelCase__ , output_hidden_states=lowerCamelCase__ , return_dict=lowerCamelCase__ , training=lowerCamelCase__ ) _UpperCAmelCase : int = outputs.pooler_output if return_dict else outputs[1] _UpperCAmelCase : Dict = self.classifier[0](lowerCamelCase__ ) _UpperCAmelCase : str = self.classifier[1](lowerCamelCase__ ) _UpperCAmelCase : Tuple = None if labels is None else self.hf_compute_loss(labels=lowerCamelCase__ , logits=lowerCamelCase__ ) if not return_dict: _UpperCAmelCase : int = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFSequenceClassifierOutput(loss=lowerCamelCase__ , logits=lowerCamelCase__ , hidden_states=outputs.hidden_states )
322
0
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __A ='''▁''' __A ={'''vocab_file''': '''spiece.model'''} __A ={ '''vocab_file''': {'''google/pegasus-xsum''': '''https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model'''} } __A ={ '''google/pegasus-xsum''': 5_1_2, } __A =logging.get_logger(__name__) class _SCREAMING_SNAKE_CASE ( snake_case_ ): lowerCAmelCase__ = VOCAB_FILES_NAMES lowerCAmelCase__ = VOCAB_FILES_NAMES lowerCAmelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase__ = ['input_ids', 'attention_mask'] def __init__( self , lowercase , lowercase="<pad>" , lowercase="</s>" , lowercase="<unk>" , lowercase="<mask_2>" , lowercase="<mask_1>" , lowercase=None , lowercase=103 , lowercase = None , **lowercase , ) -> None: lowerCamelCase_ = offset if additional_special_tokens is not None: if not isinstance(lowercase , lowercase ): raise TypeError( f'additional_special_tokens should be of type {type(lowercase )}, but is' f' {type(lowercase )}' ) lowerCamelCase_ = ( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ f'<unk_{i}>' for i in range(len(lowercase ) , self.offset - 1 ) ] if len(set(lowercase ) ) != len(lowercase ): raise ValueError( "Please make sure that the provided additional_special_tokens do not contain an incorrectly" f' shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}.' ) lowerCamelCase_ = additional_special_tokens_extended else: lowerCamelCase_ = [mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [f'<unk_{i}>' for i in range(2 , self.offset )] lowerCamelCase_ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=lowercase , unk_token=lowercase , mask_token=lowercase , pad_token=lowercase , mask_token_sent=lowercase , offset=lowercase , additional_special_tokens=lowercase , sp_model_kwargs=self.sp_model_kwargs , **lowercase , ) lowerCamelCase_ = mask_token_sent lowerCamelCase_ = vocab_file lowerCamelCase_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(lowercase ) # add special tokens to encoder dict lowerCamelCase_ = { 0: self.pad_token, 1: self.eos_token, } if self.mask_token_sent is not None: self.encoder.update( { 2: self.mask_token_sent, 3: self.mask_token, } ) if self.offset > 0: # entries 2-104 are only used for pretraining and called <mask_1>, <mask_2>, unk_2, ...unk_102 # mask_token_sent is already added to list -> so start at 1 self.encoder.update({i + 3: additional_special_tokens[i] for i in range(1 , self.offset - 1 )} ) lowerCamelCase_ = {v: k for k, v in self.encoder.items()} @property def SCREAMING_SNAKE_CASE_( self ) -> int: return len(self.sp_model ) + self.offset def SCREAMING_SNAKE_CASE_( self ) -> Dict[str, int]: lowerCamelCase_ = {self.convert_ids_to_tokens(lowercase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> str: lowerCamelCase_ = self.__dict__.copy() lowerCamelCase_ = None return state def __setstate__( self , lowercase ) -> str: lowerCamelCase_ = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): lowerCamelCase_ = {} lowerCamelCase_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def SCREAMING_SNAKE_CASE_( self , lowercase ) -> List[str]: return self.sp_model.encode(lowercase , out_type=lowercase ) def SCREAMING_SNAKE_CASE_( self , lowercase ) -> int: if token in self.decoder: return self.decoder[token] elif token in self.added_tokens_decoder: return self.added_tokens_decoder[token] lowerCamelCase_ = self.sp_model.piece_to_id(lowercase ) return sp_id + self.offset def SCREAMING_SNAKE_CASE_( self , lowercase ) -> str: if index in self.encoder: return self.encoder[index] elif index in self.added_tokens_encoder: return self.added_tokens_encoder[index] else: lowerCamelCase_ = self.sp_model.IdToPiece(index - self.offset ) return token def SCREAMING_SNAKE_CASE_( self , lowercase ) -> List[str]: lowerCamelCase_ = [] lowerCamelCase_ = "" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(lowercase ) + token lowerCamelCase_ = [] else: current_sub_tokens.append(lowercase ) out_string += self.sp_model.decode(lowercase ) return out_string.strip() def SCREAMING_SNAKE_CASE_( self , lowercase=False ) -> Optional[Any]: return 1 def SCREAMING_SNAKE_CASE_( self , lowercase ) -> Dict: lowerCamelCase_ = set(self.all_special_ids ) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special return [1 if x in all_special_ids else 0 for x in seq] def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase = None , lowercase = False ) -> List[int]: if already_has_special_tokens: return self._special_token_mask(lowercase ) elif token_ids_a is None: return self._special_token_mask(lowercase ) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a ) + [1] def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase=None ) -> List[int]: if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase = None ) -> Tuple[str]: if not os.path.isdir(lowercase ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return lowerCamelCase_ = os.path.join( lowercase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowercase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowercase ) elif not os.path.isfile(self.vocab_file ): with open(lowercase , "wb" ) as fi: lowerCamelCase_ = self.sp_model.serialized_model_proto() fi.write(lowercase ) return (out_vocab_file,)
19
import os import time from dataclasses import dataclass, field from enum import Enum from typing import Dict, List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging from ..processors.squad import SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features __A =logging.get_logger(__name__) __A =list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys()) __A =tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class _SCREAMING_SNAKE_CASE : lowerCAmelCase__ = field( default=snake_case_ , metadata={'help': 'Model type selected in the list: ' + ', '.join(snake_case_ )} ) lowerCAmelCase__ = field( default=snake_case_ , metadata={'help': 'The input data dir. Should contain the .json files for the SQuAD task.'} ) lowerCAmelCase__ = field( default=1_28 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) lowerCAmelCase__ = field( default=1_28 , metadata={'help': 'When splitting up a long document into chunks, how much stride to take between chunks.'} , ) lowerCAmelCase__ = field( default=64 , metadata={ 'help': ( 'The maximum number of tokens for the question. Questions longer than this will ' 'be truncated to this length.' ) } , ) lowerCAmelCase__ = field( default=30 , metadata={ 'help': ( 'The maximum length of an answer that can be generated. This is needed because the start ' 'and end predictions are not conditioned on one another.' ) } , ) lowerCAmelCase__ = field( default=snake_case_ , metadata={'help': 'Overwrite the cached training and evaluation sets'} ) lowerCAmelCase__ = field( default=snake_case_ , metadata={'help': 'If true, the SQuAD examples contain some that do not have an answer.'} ) lowerCAmelCase__ = field( default=0.0 , metadata={'help': 'If null_score - best_non_null is greater than the threshold predict null.'} ) lowerCAmelCase__ = field( default=20 , metadata={'help': 'If null_score - best_non_null is greater than the threshold predict null.'} ) lowerCAmelCase__ = field( default=0 , metadata={ 'help': ( 'language id of input for language-specific xlm models (see' ' tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)' ) } , ) lowerCAmelCase__ = field(default=1 , metadata={'help': 'multiple threads for converting example to features'} ) class _SCREAMING_SNAKE_CASE ( snake_case_ ): lowerCAmelCase__ = 'train' lowerCAmelCase__ = 'dev' class _SCREAMING_SNAKE_CASE ( snake_case_ ): lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 def __init__( self , lowercase , lowercase , lowercase = None , lowercase = Split.train , lowercase = False , lowercase = None , lowercase = "pt" , ) -> List[str]: lowerCamelCase_ = args lowerCamelCase_ = is_language_sensitive lowerCamelCase_ = SquadVaProcessor() if args.version_2_with_negative else SquadVaProcessor() if isinstance(lowercase , lowercase ): try: lowerCamelCase_ = Split[mode] except KeyError: raise KeyError("mode is not a valid split name" ) lowerCamelCase_ = mode # Load data features from cache or dataset file lowerCamelCase_ = "v2" if args.version_2_with_negative else "v1" lowerCamelCase_ = os.path.join( cache_dir if cache_dir is not None else args.data_dir , f'cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{version_tag}' , ) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. lowerCamelCase_ = cached_features_file + ".lock" with FileLock(lowercase ): if os.path.exists(lowercase ) and not args.overwrite_cache: lowerCamelCase_ = time.time() lowerCamelCase_ = torch.load(lowercase ) # Legacy cache files have only features, while new cache files # will have dataset and examples also. lowerCamelCase_ = self.old_features["features"] lowerCamelCase_ = self.old_features.get("dataset" , lowercase ) lowerCamelCase_ = self.old_features.get("examples" , lowercase ) logger.info( f'Loading features from cached file {cached_features_file} [took %.3f s]' , time.time() - start ) if self.dataset is None or self.examples is None: logger.warning( f'Deleting cached file {cached_features_file} will allow dataset and examples to be cached in' " future run" ) else: if mode == Split.dev: lowerCamelCase_ = self.processor.get_dev_examples(args.data_dir ) else: lowerCamelCase_ = self.processor.get_train_examples(args.data_dir ) lowerCamelCase_ , lowerCamelCase_ = squad_convert_examples_to_features( examples=self.examples , tokenizer=lowercase , max_seq_length=args.max_seq_length , doc_stride=args.doc_stride , max_query_length=args.max_query_length , is_training=mode == Split.train , threads=args.threads , return_dataset=lowercase , ) lowerCamelCase_ = time.time() torch.save( {"features": self.features, "dataset": self.dataset, "examples": self.examples} , lowercase , ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( f'Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]' ) def __len__( self ) -> Tuple: return len(self.features ) def __getitem__( self , lowercase ) -> Dict[str, torch.Tensor]: # Convert to Tensors and build dataset lowerCamelCase_ = self.features[i] lowerCamelCase_ = torch.tensor(feature.input_ids , dtype=torch.long ) lowerCamelCase_ = torch.tensor(feature.attention_mask , dtype=torch.long ) lowerCamelCase_ = torch.tensor(feature.token_type_ids , dtype=torch.long ) lowerCamelCase_ = torch.tensor(feature.cls_index , dtype=torch.long ) lowerCamelCase_ = torch.tensor(feature.p_mask , dtype=torch.float ) lowerCamelCase_ = torch.tensor(feature.is_impossible , dtype=torch.float ) lowerCamelCase_ = { "input_ids": input_ids, "attention_mask": attention_mask, "token_type_ids": token_type_ids, } if self.args.model_type in ["xlm", "roberta", "distilbert", "camembert"]: del inputs["token_type_ids"] if self.args.model_type in ["xlnet", "xlm"]: inputs.update({"cls_index": cls_index, "p_mask": p_mask} ) if self.args.version_2_with_negative: inputs.update({"is_impossible": is_impossible} ) if self.is_language_sensitive: inputs.update({"langs": (torch.ones(input_ids.shape , dtype=torch.intaa ) * self.args.lang_id)} ) if self.mode == Split.train: lowerCamelCase_ = torch.tensor(feature.start_position , dtype=torch.long ) lowerCamelCase_ = torch.tensor(feature.end_position , dtype=torch.long ) inputs.update({"start_positions": start_positions, "end_positions": end_positions} ) return inputs
19
1
"""simple docstring""" import math def __UpperCAmelCase ( lowercase ,lowercase = 0 ,lowercase = 0 ): """simple docstring""" _UpperCAmelCase = end or len(_lowerCAmelCase ) for i in range(_lowerCAmelCase ,_lowerCAmelCase ): _UpperCAmelCase = i _UpperCAmelCase = array[i] while temp_index != start and temp_index_value < array[temp_index - 1]: _UpperCAmelCase = array[temp_index - 1] temp_index -= 1 _UpperCAmelCase = temp_index_value return array def __UpperCAmelCase ( lowercase ,lowercase ,lowercase ): # Max Heap """simple docstring""" _UpperCAmelCase = index _UpperCAmelCase = 2 * index + 1 # Left Node _UpperCAmelCase = 2 * index + 2 # Right Node if left_index < heap_size and array[largest] < array[left_index]: _UpperCAmelCase = left_index if right_index < heap_size and array[largest] < array[right_index]: _UpperCAmelCase = right_index if largest != index: _UpperCAmelCase = array[largest], array[index] heapify(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ) def __UpperCAmelCase ( lowercase ): """simple docstring""" _UpperCAmelCase = len(_lowerCAmelCase ) for i in range(n // 2 ,-1 ,-1 ): heapify(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ) for i in range(n - 1 ,0 ,-1 ): _UpperCAmelCase = array[0], array[i] heapify(_lowerCAmelCase ,0 ,_lowerCAmelCase ) return array def __UpperCAmelCase ( lowercase ,lowercase ,lowercase ,lowercase ): """simple docstring""" if (array[first_index] > array[middle_index]) != ( array[first_index] > array[last_index] ): return array[first_index] elif (array[middle_index] > array[first_index]) != ( array[middle_index] > array[last_index] ): return array[middle_index] else: return array[last_index] def __UpperCAmelCase ( lowercase ,lowercase ,lowercase ,lowercase ): """simple docstring""" _UpperCAmelCase = low _UpperCAmelCase = high while True: while array[i] < pivot: i += 1 j -= 1 while pivot < array[j]: j -= 1 if i >= j: return i _UpperCAmelCase = array[j], array[i] i += 1 def __UpperCAmelCase ( lowercase ): """simple docstring""" if len(_lowerCAmelCase ) == 0: return array _UpperCAmelCase = 2 * math.ceil(math.loga(len(_lowerCAmelCase ) ) ) _UpperCAmelCase = 16 return intro_sort(_lowerCAmelCase ,0 ,len(_lowerCAmelCase ) ,_lowerCAmelCase ,_lowerCAmelCase ) def __UpperCAmelCase ( lowercase ,lowercase ,lowercase ,lowercase ,lowercase ): """simple docstring""" while end - start > size_threshold: if max_depth == 0: return heap_sort(_lowerCAmelCase ) max_depth -= 1 _UpperCAmelCase = median_of_a(_lowerCAmelCase ,_lowerCAmelCase ,start + ((end - start) // 2) + 1 ,end - 1 ) _UpperCAmelCase = partition(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ) intro_sort(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ) _UpperCAmelCase = p return insertion_sort(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase__ = input("""Enter numbers separated by a comma : """).strip() UpperCAmelCase__ = [float(item) for item in user_input.split(""",""")] print(sort(unsorted))
353
"""simple docstring""" # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from argparse import ArgumentParser from accelerate.commands.config import get_config_parser from accelerate.commands.env import env_command_parser from accelerate.commands.launch import launch_command_parser from accelerate.commands.test import test_command_parser from accelerate.commands.tpu import tpu_command_parser def __UpperCAmelCase ( ): """simple docstring""" _UpperCAmelCase = ArgumentParser("""Accelerate CLI tool""" ,usage="""accelerate <command> [<args>]""" ,allow_abbrev=lowercase ) _UpperCAmelCase = parser.add_subparsers(help="""accelerate command helpers""" ) # Register commands get_config_parser(subparsers=lowercase ) env_command_parser(subparsers=lowercase ) launch_command_parser(subparsers=lowercase ) tpu_command_parser(subparsers=lowercase ) test_command_parser(subparsers=lowercase ) # Let's go _UpperCAmelCase = parser.parse_args() if not hasattr(lowercase ,"""func""" ): parser.print_help() exit(1 ) # Run args.func(lowercase ) if __name__ == "__main__": main()
30
0
"""simple docstring""" def _snake_case ( _snake_case : int = 50 ): lowerCAmelCase : Optional[Any] = [[0] * 3 for _ in range(length + 1 )] for row_length in range(length + 1 ): for tile_length in range(2 , 5 ): for tile_start in range(row_length - tile_length + 1 ): different_colour_ways_number[row_length][tile_length - 2] += ( different_colour_ways_number[row_length - tile_start - tile_length][ tile_length - 2 ] + 1 ) return sum(different_colour_ways_number[length] ) if __name__ == "__main__": print(f"""{solution() = }""")
60
'''simple docstring''' import itertools from dataclasses import dataclass from typing import Optional import pandas as pd import pyarrow as pa import datasets from datasets.table import table_cast @dataclass class SCREAMING_SNAKE_CASE (datasets.BuilderConfig ): lowerCAmelCase = None class SCREAMING_SNAKE_CASE (datasets.ArrowBasedBuilder ): lowerCAmelCase = PandasConfig def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' return datasets.DatasetInfo(features=self.config.features) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' if not self.config.data_files: raise ValueError(F'At least one data file must be specified, but got data_files={self.config.data_files}') __A : Dict = dl_manager.download_and_extract(self.config.data_files) if isinstance(_UpperCAmelCase , (str, list, tuple)): __A : Union[str, Any] = data_files if isinstance(_UpperCAmelCase , _UpperCAmelCase): __A : Optional[int] = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive __A : Optional[Any] = [dl_manager.iter_files(_UpperCAmelCase) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'files': files})] __A : Tuple = [] for split_name, files in data_files.items(): if isinstance(_UpperCAmelCase , _UpperCAmelCase): __A : Dict = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive __A : Optional[Any] = [dl_manager.iter_files(_UpperCAmelCase) for file in files] splits.append(datasets.SplitGenerator(name=_UpperCAmelCase , gen_kwargs={'files': files})) return splits def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' if self.config.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example __A : List[str] = table_cast(_UpperCAmelCase , self.config.features.arrow_schema) return pa_table def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' for i, file in enumerate(itertools.chain.from_iterable(_UpperCAmelCase)): with open(_UpperCAmelCase , 'rb') as f: __A : Optional[int] = pa.Table.from_pandas(pd.read_pickle(_UpperCAmelCase)) yield i, self._cast_table(_UpperCAmelCase)
190
0
"""simple docstring""" import json import os import unittest from transformers import BatchEncoding, LEDTokenizer, LEDTokenizerFast from transformers.models.led.tokenization_led import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, require_torch from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCamelCase ( snake_case , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = LEDTokenizer SCREAMING_SNAKE_CASE_ : List[str] = LEDTokenizerFast SCREAMING_SNAKE_CASE_ : List[str] = True def lowerCamelCase__ ( self ): super().setUp() _lowercase : Union[str, Any] = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """<unk>""", ] _lowercase : List[Any] = dict(zip(UpperCAmelCase_ ,range(len(UpperCAmelCase_ ) ) ) ) _lowercase : Optional[int] = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] _lowercase : Dict = {"""unk_token""": """<unk>"""} _lowercase : Optional[Any] = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["""vocab_file"""] ) _lowercase : List[str] = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file ,"""w""" ,encoding="""utf-8""" ) as fp: fp.write(json.dumps(UpperCAmelCase_ ) + """\n""" ) with open(self.merges_file ,"""w""" ,encoding="""utf-8""" ) as fp: fp.write("""\n""".join(UpperCAmelCase_ ) ) def lowerCamelCase__ ( self ,**UpperCAmelCase_ ): kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname ,**UpperCAmelCase_ ) def lowerCamelCase__ ( self ,**UpperCAmelCase_ ): kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname ,**UpperCAmelCase_ ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ): return "lower newer", "lower newer" @cached_property def lowerCamelCase__ ( self ): return LEDTokenizer.from_pretrained("""allenai/led-base-16384""" ) @cached_property def lowerCamelCase__ ( self ): return LEDTokenizerFast.from_pretrained("""allenai/led-base-16384""" ) @require_torch def lowerCamelCase__ ( self ): _lowercase : Tuple = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] _lowercase : Any = [0, 2_50, 2_51, 1_78_18, 13, 3_91_86, 19_38, 4, 2] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _lowercase : Tuple = tokenizer(UpperCAmelCase_ ,max_length=len(UpperCAmelCase_ ) ,padding=UpperCAmelCase_ ,return_tensors="""pt""" ) self.assertIsInstance(UpperCAmelCase_ ,UpperCAmelCase_ ) self.assertEqual((2, 9) ,batch.input_ids.shape ) self.assertEqual((2, 9) ,batch.attention_mask.shape ) _lowercase : Optional[Any] = batch.input_ids.tolist()[0] self.assertListEqual(UpperCAmelCase_ ,UpperCAmelCase_ ) @require_torch def lowerCamelCase__ ( self ): _lowercase : Tuple = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _lowercase : Dict = tokenizer(UpperCAmelCase_ ,padding=UpperCAmelCase_ ,return_tensors="""pt""" ) self.assertIn("""input_ids""" ,UpperCAmelCase_ ) self.assertIn("""attention_mask""" ,UpperCAmelCase_ ) self.assertNotIn("""labels""" ,UpperCAmelCase_ ) self.assertNotIn("""decoder_attention_mask""" ,UpperCAmelCase_ ) @require_torch def lowerCamelCase__ ( self ): _lowercase : Dict = [ """Summary of the text.""", """Another summary.""", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _lowercase : Tuple = tokenizer(text_target=UpperCAmelCase_ ,max_length=32 ,padding="""max_length""" ,return_tensors="""pt""" ) self.assertEqual(32 ,targets["""input_ids"""].shape[1] ) @require_torch def lowerCamelCase__ ( self ): for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _lowercase : List[Any] = tokenizer( ["""I am a small frog""" * 10_24, """I am a small frog"""] ,padding=UpperCAmelCase_ ,truncation=UpperCAmelCase_ ,return_tensors="""pt""" ) self.assertIsInstance(UpperCAmelCase_ ,UpperCAmelCase_ ) self.assertEqual(batch.input_ids.shape ,(2, 51_22) ) @require_torch def lowerCamelCase__ ( self ): _lowercase : List[Any] = ["""A long paragraph for summarization."""] _lowercase : Dict = [ """Summary of the text.""", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _lowercase : Dict = tokenizer(UpperCAmelCase_ ,return_tensors="""pt""" ) _lowercase : List[str] = tokenizer(text_target=UpperCAmelCase_ ,return_tensors="""pt""" ) _lowercase : Union[str, Any] = inputs["""input_ids"""] _lowercase : List[str] = targets["""input_ids"""] self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() ) self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() ) @require_torch def lowerCamelCase__ ( self ): for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _lowercase : str = ["""Summary of the text.""", """Another summary."""] _lowercase : Optional[int] = [[0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, -1, -1]] _lowercase : Any = tokenizer(UpperCAmelCase_ ,padding=UpperCAmelCase_ ) _lowercase : str = [[0] * len(UpperCAmelCase_ ) for x in encoded_output["""input_ids"""]] _lowercase : Optional[int] = tokenizer.pad(UpperCAmelCase_ ) self.assertSequenceEqual(outputs["""global_attention_mask"""] ,UpperCAmelCase_ ) def lowerCamelCase__ ( self ): pass def lowerCamelCase__ ( self ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): _lowercase : int = self.rust_tokenizer_class.from_pretrained(UpperCAmelCase_ ,**UpperCAmelCase_ ) _lowercase : Optional[int] = self.tokenizer_class.from_pretrained(UpperCAmelCase_ ,**UpperCAmelCase_ ) _lowercase : Dict = """A, <mask> AllenNLP sentence.""" _lowercase : List[Any] = tokenizer_r.encode_plus(UpperCAmelCase_ ,add_special_tokens=UpperCAmelCase_ ,return_token_type_ids=UpperCAmelCase_ ) _lowercase : Any = tokenizer_p.encode_plus(UpperCAmelCase_ ,add_special_tokens=UpperCAmelCase_ ,return_token_type_ids=UpperCAmelCase_ ) self.assertEqual(sum(tokens_r["""token_type_ids"""] ) ,sum(tokens_p["""token_type_ids"""] ) ) self.assertEqual( sum(tokens_r["""attention_mask"""] ) / len(tokens_r["""attention_mask"""] ) ,sum(tokens_p["""attention_mask"""] ) / len(tokens_p["""attention_mask"""] ) ,) _lowercase : str = tokenizer_r.convert_ids_to_tokens(tokens_r["""input_ids"""] ) _lowercase : str = tokenizer_p.convert_ids_to_tokens(tokens_p["""input_ids"""] ) self.assertSequenceEqual(tokens_p["""input_ids"""] ,[0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2] ) self.assertSequenceEqual(tokens_r["""input_ids"""] ,[0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2] ) self.assertSequenceEqual( UpperCAmelCase_ ,["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] ) self.assertSequenceEqual( UpperCAmelCase_ ,["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] )
336
"""simple docstring""" import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPImageProcessor, CLIPProcessor @require_vision class UpperCamelCase ( unittest.TestCase ): """simple docstring""" def lowerCamelCase__ ( self ): _lowercase : str = tempfile.mkdtemp() # fmt: off _lowercase : List[Any] = ["""l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """lo""", """l</w>""", """w</w>""", """r</w>""", """t</w>""", """low</w>""", """er</w>""", """lowest</w>""", """newer</w>""", """wider""", """<unk>""", """<|startoftext|>""", """<|endoftext|>"""] # fmt: on _lowercase : Optional[int] = dict(zip(UpperCAmelCase_ ,range(len(UpperCAmelCase_ ) ) ) ) _lowercase : Optional[int] = ["""#version: 0.2""", """l o""", """lo w</w>""", """e r</w>""", """"""] _lowercase : Optional[int] = {"""unk_token""": """<unk>"""} _lowercase : List[str] = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["""vocab_file"""] ) _lowercase : str = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file ,"""w""" ,encoding="""utf-8""" ) as fp: fp.write(json.dumps(UpperCAmelCase_ ) + """\n""" ) with open(self.merges_file ,"""w""" ,encoding="""utf-8""" ) as fp: fp.write("""\n""".join(UpperCAmelCase_ ) ) _lowercase : Dict = { """do_resize""": True, """size""": 20, """do_center_crop""": True, """crop_size""": 18, """do_normalize""": True, """image_mean""": [0.48145466, 0.4578275, 0.40821073], """image_std""": [0.26862954, 0.26130258, 0.27577711], } _lowercase : List[Any] = os.path.join(self.tmpdirname ,UpperCAmelCase_ ) with open(self.image_processor_file ,"""w""" ,encoding="""utf-8""" ) as fp: json.dump(UpperCAmelCase_ ,UpperCAmelCase_ ) def lowerCamelCase__ ( self ,**UpperCAmelCase_ ): return CLIPTokenizer.from_pretrained(self.tmpdirname ,**UpperCAmelCase_ ) def lowerCamelCase__ ( self ,**UpperCAmelCase_ ): return CLIPTokenizerFast.from_pretrained(self.tmpdirname ,**UpperCAmelCase_ ) def lowerCamelCase__ ( self ,**UpperCAmelCase_ ): return CLIPImageProcessor.from_pretrained(self.tmpdirname ,**UpperCAmelCase_ ) def lowerCamelCase__ ( self ): shutil.rmtree(self.tmpdirname ) def lowerCamelCase__ ( self ): _lowercase : Optional[Any] = [np.random.randint(2_55 ,size=(3, 30, 4_00) ,dtype=np.uinta )] _lowercase : Tuple = [Image.fromarray(np.moveaxis(UpperCAmelCase_ ,0 ,-1 ) ) for x in image_inputs] return image_inputs def lowerCamelCase__ ( self ): _lowercase : Union[str, Any] = self.get_tokenizer() _lowercase : List[Any] = self.get_rust_tokenizer() _lowercase : List[Any] = self.get_image_processor() _lowercase : List[str] = CLIPProcessor(tokenizer=UpperCAmelCase_ ,image_processor=UpperCAmelCase_ ) processor_slow.save_pretrained(self.tmpdirname ) _lowercase : Optional[int] = CLIPProcessor.from_pretrained(self.tmpdirname ,use_fast=UpperCAmelCase_ ) _lowercase : Union[str, Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ ,image_processor=UpperCAmelCase_ ) processor_fast.save_pretrained(self.tmpdirname ) _lowercase : List[str] = CLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() ,tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() ,tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() ,tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer ,UpperCAmelCase_ ) self.assertIsInstance(processor_fast.tokenizer ,UpperCAmelCase_ ) self.assertEqual(processor_slow.image_processor.to_json_string() ,image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() ,image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor ,UpperCAmelCase_ ) self.assertIsInstance(processor_fast.image_processor ,UpperCAmelCase_ ) def lowerCamelCase__ ( self ): _lowercase : str = CLIPProcessor(tokenizer=self.get_tokenizer() ,image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) _lowercase : Union[str, Any] = self.get_tokenizer(bos_token="""(BOS)""" ,eos_token="""(EOS)""" ) _lowercase : Optional[int] = self.get_image_processor(do_normalize=UpperCAmelCase_ ,padding_value=1.0 ) _lowercase : int = CLIPProcessor.from_pretrained( self.tmpdirname ,bos_token="""(BOS)""" ,eos_token="""(EOS)""" ,do_normalize=UpperCAmelCase_ ,padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() ,tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer ,UpperCAmelCase_ ) self.assertEqual(processor.image_processor.to_json_string() ,image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor ,UpperCAmelCase_ ) def lowerCamelCase__ ( self ): _lowercase : Optional[Any] = self.get_image_processor() _lowercase : Optional[int] = self.get_tokenizer() _lowercase : Union[str, Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ ,image_processor=UpperCAmelCase_ ) _lowercase : int = self.prepare_image_inputs() _lowercase : str = image_processor(UpperCAmelCase_ ,return_tensors="""np""" ) _lowercase : int = processor(images=UpperCAmelCase_ ,return_tensors="""np""" ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() ,input_processor[key].sum() ,delta=1E-2 ) def lowerCamelCase__ ( self ): _lowercase : Optional[Any] = self.get_image_processor() _lowercase : Optional[Any] = self.get_tokenizer() _lowercase : Union[str, Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ ,image_processor=UpperCAmelCase_ ) _lowercase : List[Any] = """lower newer""" _lowercase : Any = processor(text=UpperCAmelCase_ ) _lowercase : Union[str, Any] = tokenizer(UpperCAmelCase_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] ,encoded_processor[key] ) def lowerCamelCase__ ( self ): _lowercase : Union[str, Any] = self.get_image_processor() _lowercase : List[Any] = self.get_tokenizer() _lowercase : List[Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ ,image_processor=UpperCAmelCase_ ) _lowercase : str = """lower newer""" _lowercase : List[Any] = self.prepare_image_inputs() _lowercase : Optional[int] = processor(text=UpperCAmelCase_ ,images=UpperCAmelCase_ ) self.assertListEqual(list(inputs.keys() ) ,["""input_ids""", """attention_mask""", """pixel_values"""] ) # test if it raises when no input is passed with pytest.raises(UpperCAmelCase_ ): processor() def lowerCamelCase__ ( self ): _lowercase : Dict = self.get_image_processor() _lowercase : List[Any] = self.get_tokenizer() _lowercase : Union[str, Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ ,image_processor=UpperCAmelCase_ ) _lowercase : Dict = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] _lowercase : int = processor.batch_decode(UpperCAmelCase_ ) _lowercase : Tuple = tokenizer.batch_decode(UpperCAmelCase_ ) self.assertListEqual(UpperCAmelCase_ ,UpperCAmelCase_ ) def lowerCamelCase__ ( self ): _lowercase : Optional[Any] = self.get_image_processor() _lowercase : List[Any] = self.get_tokenizer() _lowercase : List[Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ ,image_processor=UpperCAmelCase_ ) _lowercase : Optional[Any] = """lower newer""" _lowercase : Any = self.prepare_image_inputs() _lowercase : Optional[int] = processor(text=UpperCAmelCase_ ,images=UpperCAmelCase_ ) self.assertListEqual(list(inputs.keys() ) ,processor.model_input_names )
336
1
from math import factorial def __A ( __lowerCamelCase = 100 ) -> int: return sum(map(__lowerCamelCase , str(factorial(__lowerCamelCase ) ) ) ) if __name__ == "__main__": print(solution(int(input("Enter the Number: ").strip())))
228
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __UpperCamelCase : Optional[Any] = { "configuration_jukebox": [ "JUKEBOX_PRETRAINED_CONFIG_ARCHIVE_MAP", "JukeboxConfig", "JukeboxPriorConfig", "JukeboxVQVAEConfig", ], "tokenization_jukebox": ["JukeboxTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Tuple = [ "JUKEBOX_PRETRAINED_MODEL_ARCHIVE_LIST", "JukeboxModel", "JukeboxPreTrainedModel", "JukeboxVQVAE", "JukeboxPrior", ] if TYPE_CHECKING: from .configuration_jukebox import ( JUKEBOX_PRETRAINED_CONFIG_ARCHIVE_MAP, JukeboxConfig, JukeboxPriorConfig, JukeboxVQVAEConfig, ) from .tokenization_jukebox import JukeboxTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_jukebox import ( JUKEBOX_PRETRAINED_MODEL_ARCHIVE_LIST, JukeboxModel, JukeboxPreTrainedModel, JukeboxPrior, JukeboxVQVAE, ) else: import sys __UpperCamelCase : List[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
228
1
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = { "sail/poolformer_s12": "https://huggingface.co/sail/poolformer_s12/resolve/main/config.json", # See all PoolFormer models at https://huggingface.co/models?filter=poolformer } class lowercase_ ( lowercase ): '''simple docstring''' __snake_case = '''poolformer''' def __init__( self : Any , __UpperCAmelCase : Tuple=3 , __UpperCAmelCase : Optional[int]=16 , __UpperCAmelCase : Optional[int]=16 , __UpperCAmelCase : Tuple=3 , __UpperCAmelCase : Tuple=4.0 , __UpperCAmelCase : str=[2, 2, 6, 2] , __UpperCAmelCase : Optional[int]=[64, 128, 320, 512] , __UpperCAmelCase : Union[str, Any]=[7, 3, 3, 3] , __UpperCAmelCase : Optional[int]=[4, 2, 2, 2] , __UpperCAmelCase : int=[2, 1, 1, 1] , __UpperCAmelCase : Optional[Any]=4 , __UpperCAmelCase : List[str]=0.0 , __UpperCAmelCase : List[str]="gelu" , __UpperCAmelCase : Tuple=True , __UpperCAmelCase : Dict=1e-5 , __UpperCAmelCase : Tuple=0.02 , **__UpperCAmelCase : Any , ) ->Dict: """simple docstring""" a = num_channels a = patch_size a = stride a = padding a = pool_size a = hidden_sizes a = mlp_ratio a = depths a = patch_sizes a = strides a = num_encoder_blocks a = drop_path_rate a = hidden_act a = use_layer_scale a = layer_scale_init_value a = initializer_range super().__init__(**__UpperCAmelCase ) class lowercase_ ( lowercase ): '''simple docstring''' __snake_case = version.parse('''1.11''' ) @property def __lowerCAmelCase ( self : str ) ->Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def __lowerCAmelCase ( self : List[str] ) ->float: """simple docstring""" return 2e-3
26
UpperCAmelCase__ = "0.21.0" from .accelerator import Accelerator from .big_modeling import ( cpu_offload, cpu_offload_with_hook, disk_offload, dispatch_model, init_empty_weights, init_on_device, load_checkpoint_and_dispatch, ) from .data_loader import skip_first_batches from .launchers import debug_launcher, notebook_launcher from .state import PartialState from .utils import ( DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, FullyShardedDataParallelPlugin, GradScalerKwargs, InitProcessGroupKwargs, find_executable_batch_size, infer_auto_device_map, is_rich_available, load_checkpoint_in_model, synchronize_rng_states, ) if is_rich_available(): from .utils import rich
26
1
"""simple docstring""" from ...utils import is_note_seq_available, is_transformers_available, is_torch_available from ...utils import OptionalDependencyNotAvailable try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .notes_encoder import SpectrogramNotesEncoder from .continous_encoder import SpectrogramContEncoder from .pipeline_spectrogram_diffusion import ( SpectrogramContEncoder, SpectrogramDiffusionPipeline, TaFilmDecoder, ) try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .midi_utils import MidiProcessor
213
"""simple docstring""" import argparse import collections import json from pathlib import Path import requests import torch import yaml from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileViTImageProcessor, MobileViTVaConfig, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, ) from transformers.utils import logging logging.set_verbosity_info() __SCREAMING_SNAKE_CASE =logging.get_logger(__name__) def lowercase__( __SCREAMING_SNAKE_CASE : Union[str, Any] ): print('Loading config file...' ) def flatten_yaml_as_dict(__SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Any="" , __SCREAMING_SNAKE_CASE : List[Any]="." ): lowercase_ : List[str] = [] for k, v in d.items(): lowercase_ : Dict = parent_key + sep + k if parent_key else k if isinstance(__SCREAMING_SNAKE_CASE , collections.abc.MutableMapping ): items.extend(flatten_yaml_as_dict(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , sep=__SCREAMING_SNAKE_CASE ).items() ) else: items.append((new_key, v) ) return dict(__SCREAMING_SNAKE_CASE ) lowercase_ : Optional[Any] = argparse.Namespace() with open(__SCREAMING_SNAKE_CASE , 'r' ) as yaml_file: try: lowercase_ : str = yaml.load(__SCREAMING_SNAKE_CASE , Loader=yaml.FullLoader ) lowercase_ : List[Any] = flatten_yaml_as_dict(__SCREAMING_SNAKE_CASE ) for k, v in flat_cfg.items(): setattr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) except yaml.YAMLError as exc: logger.error('Error while loading config file: {}. Error message: {}'.format(__SCREAMING_SNAKE_CASE , str(__SCREAMING_SNAKE_CASE ) ) ) return config def lowercase__( __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : List[str] ): lowercase_ : int = MobileViTVaConfig() lowercase_ : List[str] = False # dataset if task_name.startswith('imagenet1k_' ): lowercase_ : List[Any] = 10_00 if int(task_name.strip().split('_' )[-1] ) == 3_84: lowercase_ : str = 3_84 else: lowercase_ : Dict = 2_56 lowercase_ : int = 'imagenet-1k-id2label.json' elif task_name.startswith('imagenet21k_to_1k_' ): lowercase_ : int = 2_10_00 if int(task_name.strip().split('_' )[-1] ) == 3_84: lowercase_ : Optional[Any] = 3_84 else: lowercase_ : Tuple = 2_56 lowercase_ : List[str] = 'imagenet-22k-id2label.json' elif task_name.startswith('ade20k_' ): lowercase_ : int = 1_51 lowercase_ : Optional[Any] = 5_12 lowercase_ : str = 'ade20k-id2label.json' lowercase_ : List[Any] = True elif task_name.startswith('voc_' ): lowercase_ : Union[str, Any] = 21 lowercase_ : Tuple = 5_12 lowercase_ : List[str] = 'pascal-voc-id2label.json' lowercase_ : str = True # orig_config lowercase_ : Optional[int] = load_orig_config_file(__SCREAMING_SNAKE_CASE ) assert getattr(__SCREAMING_SNAKE_CASE , 'model.classification.name' , -1 ) == "mobilevit_v2", "Invalid model" lowercase_ : Optional[Any] = getattr(__SCREAMING_SNAKE_CASE , 'model.classification.mitv2.width_multiplier' , 1.0 ) assert ( getattr(__SCREAMING_SNAKE_CASE , 'model.classification.mitv2.attn_norm_layer' , -1 ) == "layer_norm_2d" ), "Norm layers other than layer_norm_2d is not supported" lowercase_ : Any = getattr(__SCREAMING_SNAKE_CASE , 'model.classification.activation.name' , 'swish' ) # config.image_size == getattr(orig_config, 'sampler.bs.crop_size_width', 256) if is_segmentation_model: lowercase_ : Any = getattr(__SCREAMING_SNAKE_CASE , 'model.segmentation.output_stride' , 16 ) if "_deeplabv3" in task_name: lowercase_ : Any = getattr(__SCREAMING_SNAKE_CASE , 'model.segmentation.deeplabv3.aspp_rates' , [12, 24, 36] ) lowercase_ : Union[str, Any] = getattr(__SCREAMING_SNAKE_CASE , 'model.segmentation.deeplabv3.aspp_out_channels' , 5_12 ) lowercase_ : Any = getattr(__SCREAMING_SNAKE_CASE , 'model.segmentation.deeplabv3.aspp_dropout' , 0.1 ) # id2label lowercase_ : Optional[Any] = 'huggingface/label-files' lowercase_ : List[Any] = json.load(open(hf_hub_download(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , repo_type='dataset' ) , 'r' ) ) lowercase_ : List[str] = {int(__SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} lowercase_ : int = idalabel lowercase_ : List[Any] = {v: k for k, v in idalabel.items()} return config def lowercase__( __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : str ): lowercase_ : List[Any] = dct.pop(__SCREAMING_SNAKE_CASE ) lowercase_ : Optional[Any] = val def lowercase__( __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Optional[Any]=False ): if base_model: lowercase_ : int = '' else: lowercase_ : str = 'mobilevitv2.' lowercase_ : Dict = [] for k in state_dict.keys(): if k[:8] == "encoder.": lowercase_ : Dict = k[8:] else: lowercase_ : Union[str, Any] = k if ".block." in k: lowercase_ : List[str] = k_new.replace('.block.' , '.' ) if ".conv." in k: lowercase_ : List[Any] = k_new.replace('.conv.' , '.convolution.' ) if ".norm." in k: lowercase_ : str = k_new.replace('.norm.' , '.normalization.' ) if "conv_1." in k: lowercase_ : Dict = k_new.replace('conv_1.' , F'''{model_prefix}conv_stem.''' ) for i in [1, 2]: if F'''layer_{i}.''' in k: lowercase_ : Tuple = k_new.replace(F'''layer_{i}.''' , F'''{model_prefix}encoder.layer.{i-1}.layer.''' ) if ".exp_1x1." in k: lowercase_ : Any = k_new.replace('.exp_1x1.' , '.expand_1x1.' ) if ".red_1x1." in k: lowercase_ : str = k_new.replace('.red_1x1.' , '.reduce_1x1.' ) for i in [3, 4, 5]: if F'''layer_{i}.0.''' in k: lowercase_ : Tuple = k_new.replace(F'''layer_{i}.0.''' , F'''{model_prefix}encoder.layer.{i-1}.downsampling_layer.''' ) if F'''layer_{i}.1.local_rep.0.''' in k: lowercase_ : Any = k_new.replace(F'''layer_{i}.1.local_rep.0.''' , F'''{model_prefix}encoder.layer.{i-1}.conv_kxk.''' ) if F'''layer_{i}.1.local_rep.1.''' in k: lowercase_ : List[Any] = k_new.replace(F'''layer_{i}.1.local_rep.1.''' , F'''{model_prefix}encoder.layer.{i-1}.conv_1x1.''' ) for i in [3, 4, 5]: if i == 3: lowercase_ : Dict = [0, 1] elif i == 4: lowercase_ : int = [0, 1, 2, 3] elif i == 5: lowercase_ : List[str] = [0, 1, 2] for j in j_in: if F'''layer_{i}.1.global_rep.{j}.''' in k: lowercase_ : List[str] = k_new.replace( F'''layer_{i}.1.global_rep.{j}.''' , F'''{model_prefix}encoder.layer.{i-1}.transformer.layer.{j}.''' ) if F'''layer_{i}.1.global_rep.{j+1}.''' in k: lowercase_ : int = k_new.replace( F'''layer_{i}.1.global_rep.{j+1}.''' , F'''{model_prefix}encoder.layer.{i-1}.layernorm.''' ) if F'''layer_{i}.1.conv_proj.''' in k: lowercase_ : str = k_new.replace(F'''layer_{i}.1.conv_proj.''' , F'''{model_prefix}encoder.layer.{i-1}.conv_projection.''' ) if "pre_norm_attn.0." in k: lowercase_ : Optional[Any] = k_new.replace('pre_norm_attn.0.' , 'layernorm_before.' ) if "pre_norm_attn.1." in k: lowercase_ : Any = k_new.replace('pre_norm_attn.1.' , 'attention.' ) if "pre_norm_ffn.0." in k: lowercase_ : List[str] = k_new.replace('pre_norm_ffn.0.' , 'layernorm_after.' ) if "pre_norm_ffn.1." in k: lowercase_ : int = k_new.replace('pre_norm_ffn.1.' , 'ffn.conv1.' ) if "pre_norm_ffn.3." in k: lowercase_ : str = k_new.replace('pre_norm_ffn.3.' , 'ffn.conv2.' ) if "classifier.1." in k: lowercase_ : Union[str, Any] = k_new.replace('classifier.1.' , 'classifier.' ) if "seg_head." in k: lowercase_ : Optional[int] = k_new.replace('seg_head.' , 'segmentation_head.' ) if ".aspp_layer." in k: lowercase_ : Dict = k_new.replace('.aspp_layer.' , '.' ) if ".aspp_pool." in k: lowercase_ : Dict = k_new.replace('.aspp_pool.' , '.' ) rename_keys.append((k, k_new) ) return rename_keys def lowercase__( __SCREAMING_SNAKE_CASE : Any ): lowercase_ : str = [] for k in state_dict.keys(): if k.startswith('seg_head.aux_head.' ): keys_to_ignore.append(__SCREAMING_SNAKE_CASE ) for k in keys_to_ignore: state_dict.pop(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def lowercase__( ): lowercase_ : Union[str, Any] = 'http://images.cocodataset.org/val2017/000000039769.jpg' # url = "https://cdn.britannica.com/86/141086-050-9D7C75EE/Gulfstream-G450-business-jet-passengers.jpg" lowercase_ : Any = Image.open(requests.get(__SCREAMING_SNAKE_CASE , stream=__SCREAMING_SNAKE_CASE ).raw ) return im @torch.no_grad() def lowercase__( __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Optional[int] ): lowercase_ : Tuple = get_mobilevitva_config(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # load original state_dict lowercase_ : Tuple = torch.load(__SCREAMING_SNAKE_CASE , map_location='cpu' ) # load huggingface model if task_name.startswith('ade20k_' ) or task_name.startswith('voc_' ): lowercase_ : Tuple = MobileViTVaForSemanticSegmentation(__SCREAMING_SNAKE_CASE ).eval() lowercase_ : Optional[int] = False else: lowercase_ : Any = MobileViTVaForImageClassification(__SCREAMING_SNAKE_CASE ).eval() lowercase_ : int = False # remove and rename some keys of load the original model lowercase_ : Any = checkpoint remove_unused_keys(__SCREAMING_SNAKE_CASE ) lowercase_ : Union[str, Any] = create_rename_keys(__SCREAMING_SNAKE_CASE , base_model=__SCREAMING_SNAKE_CASE ) for rename_key_src, rename_key_dest in rename_keys: rename_key(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # load modified state_dict model.load_state_dict(__SCREAMING_SNAKE_CASE ) # Check outputs on an image, prepared by MobileViTImageProcessor lowercase_ : Union[str, Any] = MobileViTImageProcessor(crop_size=config.image_size , size=config.image_size + 32 ) lowercase_ : Any = image_processor(images=prepare_img() , return_tensors='pt' ) lowercase_ : Optional[int] = model(**__SCREAMING_SNAKE_CASE ) # verify classification model if task_name.startswith('imagenet' ): lowercase_ : List[str] = outputs.logits lowercase_ : int = logits.argmax(-1 ).item() print('Predicted class:' , model.config.idalabel[predicted_class_idx] ) if task_name.startswith('imagenet1k_256' ) and config.width_multiplier == 1.0: # expected_logits for base variant lowercase_ : Optional[int] = torch.tensor([-1.6_336E00, -7.3_204E-02, -5.1_883E-01] ) assert torch.allclose(logits[0, :3] , __SCREAMING_SNAKE_CASE , atol=1E-4 ) Path(__SCREAMING_SNAKE_CASE ).mkdir(exist_ok=__SCREAMING_SNAKE_CASE ) print(F'''Saving model {task_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(__SCREAMING_SNAKE_CASE ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(__SCREAMING_SNAKE_CASE ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE =argparse.ArgumentParser() # Required parameters parser.add_argument( "--task", default="imagenet1k_256", type=str, help=( "Name of the task for which the MobileViTV2 model you'd like to convert is trained on . " "\n Classification (ImageNet-1k)\n - MobileViTV2 (256x256) : imagenet1k_256\n - MobileViTV2 (Trained on 256x256 and Finetuned on 384x384) : imagenet1k_384\n - MobileViTV2 (Trained on ImageNet-21k and Finetuned on ImageNet-1k 256x256) :\n imagenet21k_to_1k_256\n - MobileViTV2 (Trained on ImageNet-21k, Finetuned on ImageNet-1k 256x256, and Finetuned on\n ImageNet-1k 384x384) : imagenet21k_to_1k_384\n Segmentation\n - ADE20K Dataset : ade20k_deeplabv3\n - Pascal VOC 2012 Dataset: voc_deeplabv3\n " ), choices=[ "imagenet1k_256", "imagenet1k_384", "imagenet21k_to_1k_256", "imagenet21k_to_1k_384", "ade20k_deeplabv3", "voc_deeplabv3", ], ) parser.add_argument( "--orig_checkpoint_path", required=True, type=str, help="Path to the original state dict (.pt file)." ) parser.add_argument("--orig_config_path", required=True, type=str, help="Path to the original config file.") parser.add_argument( "--pytorch_dump_folder_path", required=True, type=str, help="Path to the output PyTorch model directory." ) __SCREAMING_SNAKE_CASE =parser.parse_args() convert_mobilevitva_checkpoint( args.task, args.orig_checkpoint_path, args.orig_config_path, args.pytorch_dump_folder_path )
213
1
from collections.abc import Callable import numpy as np def a( A : Callable , A : float , A : float , A : float , A : float ) -> np.array: """simple docstring""" a = int(np.ceil((x_end - xa) / step_size ) ) a = np.zeros((n + 1,) ) a = ya a = xa for k in range(A ): a = y[k] + step_size * ode_func(A , y[k] ) a = y[k] + ( (step_size / 2) * (ode_func(A , y[k] ) + ode_func(x + step_size , A )) ) x += step_size return y if __name__ == "__main__": import doctest doctest.testmod()
71
import json import os import shutil import tempfile from unittest import TestCase from transformers import BartTokenizer, BartTokenizerFast, DPRQuestionEncoderTokenizer, DPRQuestionEncoderTokenizerFast from transformers.models.bart.configuration_bart import BartConfig from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES as DPR_VOCAB_FILES_NAMES from transformers.models.dpr.configuration_dpr import DPRConfig from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES as BART_VOCAB_FILES_NAMES from transformers.testing_utils import require_faiss, require_tokenizers, require_torch, slow from transformers.utils import is_datasets_available, is_faiss_available, is_torch_available if is_torch_available() and is_datasets_available() and is_faiss_available(): from transformers.models.rag.configuration_rag import RagConfig from transformers.models.rag.tokenization_rag import RagTokenizer @require_faiss @require_torch class _lowercase ( lowerCAmelCase ): """simple docstring""" def UpperCamelCase_ (self ): """simple docstring""" a = tempfile.mkdtemp() a = 8 # DPR tok a = [ "[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] a = os.path.join(self.tmpdirname , "dpr_tokenizer" ) os.makedirs(lowerCamelCase_ , exist_ok=lowerCamelCase_ ) a = os.path.join(lowerCamelCase_ , DPR_VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) # BART tok a = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "<unk>", ] a = dict(zip(lowerCamelCase_ , range(len(lowerCamelCase_ ) ) ) ) a = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] a = {"unk_token": "<unk>"} a = os.path.join(self.tmpdirname , "bart_tokenizer" ) os.makedirs(lowerCamelCase_ , exist_ok=lowerCamelCase_ ) a = os.path.join(lowerCamelCase_ , BART_VOCAB_FILES_NAMES["vocab_file"] ) a = os.path.join(lowerCamelCase_ , BART_VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(lowerCamelCase_ ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(lowerCamelCase_ ) ) def UpperCamelCase_ (self ): """simple docstring""" return DPRQuestionEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , "dpr_tokenizer" ) ) def UpperCamelCase_ (self ): """simple docstring""" return BartTokenizer.from_pretrained(os.path.join(self.tmpdirname , "bart_tokenizer" ) ) def UpperCamelCase_ (self ): """simple docstring""" shutil.rmtree(self.tmpdirname ) @require_tokenizers def UpperCamelCase_ (self ): """simple docstring""" a = os.path.join(self.tmpdirname , "rag_tokenizer" ) a = RagConfig(question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() ) a = RagTokenizer(question_encoder=self.get_dpr_tokenizer() , generator=self.get_bart_tokenizer() ) rag_config.save_pretrained(lowerCamelCase_ ) rag_tokenizer.save_pretrained(lowerCamelCase_ ) a = RagTokenizer.from_pretrained(lowerCamelCase_ , config=lowerCamelCase_ ) self.assertIsInstance(new_rag_tokenizer.question_encoder , lowerCamelCase_ ) self.assertEqual(new_rag_tokenizer.question_encoder.get_vocab() , rag_tokenizer.question_encoder.get_vocab() ) self.assertIsInstance(new_rag_tokenizer.generator , lowerCamelCase_ ) self.assertEqual(new_rag_tokenizer.generator.get_vocab() , rag_tokenizer.generator.get_vocab() ) @slow def UpperCamelCase_ (self ): """simple docstring""" a = RagTokenizer.from_pretrained("facebook/rag-token-nq" ) a = [ "who got the first nobel prize in physics", "when is the next deadpool movie being released", "which mode is used for short wave broadcast service", "who is the owner of reading football club", "when is the next scandal episode coming out", "when is the last time the philadelphia won the superbowl", "what is the most current adobe flash player version", "how many episodes are there in dragon ball z", "what is the first step in the evolution of the eye", "where is gall bladder situated in human body", "what is the main mineral in lithium batteries", "who is the president of usa right now", "where do the greasers live in the outsiders", "panda is a national animal of which country", "what is the name of manchester united stadium", ] a = tokenizer(lowerCamelCase_ ) self.assertIsNotNone(lowerCamelCase_ ) @slow def UpperCamelCase_ (self ): """simple docstring""" a = RagTokenizer.from_pretrained("facebook/rag-sequence-nq" ) a = [ "who got the first nobel prize in physics", "when is the next deadpool movie being released", "which mode is used for short wave broadcast service", "who is the owner of reading football club", "when is the next scandal episode coming out", "when is the last time the philadelphia won the superbowl", "what is the most current adobe flash player version", "how many episodes are there in dragon ball z", "what is the first step in the evolution of the eye", "where is gall bladder situated in human body", "what is the main mineral in lithium batteries", "who is the president of usa right now", "where do the greasers live in the outsiders", "panda is a national animal of which country", "what is the name of manchester united stadium", ] a = tokenizer(lowerCamelCase_ ) self.assertIsNotNone(lowerCamelCase_ )
71
1
"""simple docstring""" from __future__ import annotations def __A (_SCREAMING_SNAKE_CASE ) ->bool: """simple docstring""" if len(_SCREAMING_SNAKE_CASE ) < 2: raise ValueError('Monogons and Digons are not polygons in the Euclidean space' ) if any(i <= 0 for i in nums ): raise ValueError('All values must be greater than 0' ) lowerCAmelCase__ :List[Any] = nums.copy() copy_nums.sort() return copy_nums[-1] < sum(copy_nums[:-1] ) if __name__ == "__main__": import doctest doctest.testmod()
293
"""simple docstring""" import unittest from transformers import MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING, AutoTokenizer, is_vision_available from transformers.pipelines import pipeline from transformers.pipelines.document_question_answering import apply_tesseract from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_detectrona, require_pytesseract, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image from transformers.image_utils import load_image else: class _lowerCAmelCase : """simple docstring""" @staticmethod def snake_case ( *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' pass def __A (_SCREAMING_SNAKE_CASE ) ->int: """simple docstring""" return None # This is a pinned image from a specific revision of a document question answering space, hosted by HuggingFace, # so we can expect it to be available. __A = ( """https://huggingface.co/spaces/impira/docquery/resolve/2f6c96314dc84dfda62d40de9da55f2f5165d403/invoice.png""" ) @is_pipeline_test @require_torch @require_vision class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" __magic_name__ :str = MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING @require_pytesseract @require_vision def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' lowerCAmelCase__ :Dict = pipeline( 'document-question-answering' , model=__UpperCAmelCase , tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) lowerCAmelCase__ :Dict = INVOICE_URL lowerCAmelCase__ :Dict = list(zip(*apply_tesseract(load_image(__UpperCAmelCase ) , __UpperCAmelCase , '' ) ) ) lowerCAmelCase__ :List[Any] = 'What is the placebo?' lowerCAmelCase__ :Dict = [ { 'image': load_image(__UpperCAmelCase ), 'question': question, }, { 'image': image, 'question': question, }, { 'image': image, 'question': question, 'word_boxes': word_boxes, }, ] return dqa_pipeline, examples def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' lowerCAmelCase__ :int = dqa_pipeline(__UpperCAmelCase , top_k=2 ) self.assertEqual( __UpperCAmelCase , [ [ {'score': ANY(__UpperCAmelCase ), 'answer': ANY(__UpperCAmelCase ), 'start': ANY(__UpperCAmelCase ), 'end': ANY(__UpperCAmelCase )}, {'score': ANY(__UpperCAmelCase ), 'answer': ANY(__UpperCAmelCase ), 'start': ANY(__UpperCAmelCase ), 'end': ANY(__UpperCAmelCase )}, ] ] * 3 , ) @require_torch @require_detectrona @require_pytesseract def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :int = pipeline('document-question-answering' , model='hf-internal-testing/tiny-random-layoutlmv2' ) lowerCAmelCase__ :Union[str, Any] = INVOICE_URL lowerCAmelCase__ :Tuple = 'How many cats are there?' lowerCAmelCase__ :List[str] = [ {'score': 0.00_01, 'answer': 'oy 2312/2019', 'start': 3_8, 'end': 3_9}, {'score': 0.00_01, 'answer': 'oy 2312/2019 DUE', 'start': 3_8, 'end': 4_0}, ] lowerCAmelCase__ :Any = dqa_pipeline(image=__UpperCAmelCase , question=__UpperCAmelCase , top_k=2 ) self.assertEqual(nested_simplify(__UpperCAmelCase , decimals=4 ) , __UpperCAmelCase ) lowerCAmelCase__ :Any = dqa_pipeline({'image': image, 'question': question} , top_k=2 ) self.assertEqual(nested_simplify(__UpperCAmelCase , decimals=4 ) , __UpperCAmelCase ) # This image does not detect ANY text in it, meaning layoutlmv2 should fail. # Empty answer probably lowerCAmelCase__ :List[Any] = './tests/fixtures/tests_samples/COCO/000000039769.png' lowerCAmelCase__ :List[Any] = dqa_pipeline(image=__UpperCAmelCase , question=__UpperCAmelCase , top_k=2 ) self.assertEqual(__UpperCAmelCase , [] ) # We can optionnally pass directly the words and bounding boxes lowerCAmelCase__ :Dict = './tests/fixtures/tests_samples/COCO/000000039769.png' lowerCAmelCase__ :List[str] = [] lowerCAmelCase__ :int = [] lowerCAmelCase__ :List[str] = dqa_pipeline(image=__UpperCAmelCase , question=__UpperCAmelCase , words=__UpperCAmelCase , boxes=__UpperCAmelCase , top_k=2 ) self.assertEqual(__UpperCAmelCase , [] ) @slow @require_torch @require_detectrona @require_pytesseract def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Union[str, Any] = pipeline( 'document-question-answering' , model='tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa' , revision='9977165' , ) lowerCAmelCase__ :str = INVOICE_URL lowerCAmelCase__ :List[Any] = 'What is the invoice number?' lowerCAmelCase__ :Tuple = dqa_pipeline(image=__UpperCAmelCase , question=__UpperCAmelCase , top_k=2 ) self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=4 ) , [ {'score': 0.99_44, 'answer': 'us-001', 'start': 1_6, 'end': 1_6}, {'score': 0.00_09, 'answer': 'us-001', 'start': 1_6, 'end': 1_6}, ] , ) lowerCAmelCase__ :Union[str, Any] = dqa_pipeline({'image': image, 'question': question} , top_k=2 ) self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=4 ) , [ {'score': 0.99_44, 'answer': 'us-001', 'start': 1_6, 'end': 1_6}, {'score': 0.00_09, 'answer': 'us-001', 'start': 1_6, 'end': 1_6}, ] , ) lowerCAmelCase__ :Dict = dqa_pipeline( [{'image': image, 'question': question}, {'image': image, 'question': question}] , top_k=2 ) self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=4 ) , [ [ {'score': 0.99_44, 'answer': 'us-001', 'start': 1_6, 'end': 1_6}, {'score': 0.00_09, 'answer': 'us-001', 'start': 1_6, 'end': 1_6}, ], ] * 2 , ) @slow @require_torch @require_detectrona @require_pytesseract def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Tuple = pipeline( 'document-question-answering' , model='tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa' , revision='9977165' , max_seq_len=5_0 , ) lowerCAmelCase__ :List[Any] = INVOICE_URL lowerCAmelCase__ :List[Any] = 'What is the invoice number?' lowerCAmelCase__ :Optional[Any] = dqa_pipeline(image=__UpperCAmelCase , question=__UpperCAmelCase , top_k=2 ) self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=4 ) , [ {'score': 0.99_74, 'answer': '1110212019', 'start': 2_3, 'end': 2_3}, {'score': 0.99_48, 'answer': 'us-001', 'start': 1_6, 'end': 1_6}, ] , ) lowerCAmelCase__ :List[str] = dqa_pipeline({'image': image, 'question': question} , top_k=2 ) self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=4 ) , [ {'score': 0.99_74, 'answer': '1110212019', 'start': 2_3, 'end': 2_3}, {'score': 0.99_48, 'answer': 'us-001', 'start': 1_6, 'end': 1_6}, ] , ) lowerCAmelCase__ :int = dqa_pipeline( [{'image': image, 'question': question}, {'image': image, 'question': question}] , top_k=2 ) self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=4 ) , [ [ {'score': 0.99_74, 'answer': '1110212019', 'start': 2_3, 'end': 2_3}, {'score': 0.99_48, 'answer': 'us-001', 'start': 1_6, 'end': 1_6}, ] ] * 2 , ) @slow @require_torch @require_pytesseract @require_vision def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :List[Any] = AutoTokenizer.from_pretrained( 'impira/layoutlm-document-qa' , revision='3dc6de3' , add_prefix_space=__UpperCAmelCase ) lowerCAmelCase__ :Optional[Any] = pipeline( 'document-question-answering' , model='impira/layoutlm-document-qa' , tokenizer=__UpperCAmelCase , revision='3dc6de3' , ) lowerCAmelCase__ :List[str] = INVOICE_URL lowerCAmelCase__ :Any = 'What is the invoice number?' lowerCAmelCase__ :List[Any] = dqa_pipeline(image=__UpperCAmelCase , question=__UpperCAmelCase , top_k=2 ) self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=4 ) , [ {'score': 0.42_51, 'answer': 'us-001', 'start': 1_6, 'end': 1_6}, {'score': 0.08_19, 'answer': '1110212019', 'start': 2_3, 'end': 2_3}, ] , ) lowerCAmelCase__ :Optional[int] = dqa_pipeline({'image': image, 'question': question} , top_k=2 ) self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=4 ) , [ {'score': 0.42_51, 'answer': 'us-001', 'start': 1_6, 'end': 1_6}, {'score': 0.08_19, 'answer': '1110212019', 'start': 2_3, 'end': 2_3}, ] , ) lowerCAmelCase__ :List[str] = dqa_pipeline( [{'image': image, 'question': question}, {'image': image, 'question': question}] , top_k=2 ) self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=4 ) , [ [ {'score': 0.42_51, 'answer': 'us-001', 'start': 1_6, 'end': 1_6}, {'score': 0.08_19, 'answer': '1110212019', 'start': 2_3, 'end': 2_3}, ] ] * 2 , ) lowerCAmelCase__ :Dict = list(zip(*apply_tesseract(load_image(__UpperCAmelCase ) , __UpperCAmelCase , '' ) ) ) # This model should also work if `image` is set to None lowerCAmelCase__ :Tuple = dqa_pipeline({'image': None, 'word_boxes': word_boxes, 'question': question} , top_k=2 ) self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=4 ) , [ {'score': 0.42_51, 'answer': 'us-001', 'start': 1_6, 'end': 1_6}, {'score': 0.08_19, 'answer': '1110212019', 'start': 2_3, 'end': 2_3}, ] , ) @slow @require_torch @require_pytesseract @require_vision def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Optional[Any] = AutoTokenizer.from_pretrained( 'impira/layoutlm-document-qa' , revision='3dc6de3' , add_prefix_space=__UpperCAmelCase ) lowerCAmelCase__ :Tuple = pipeline( 'document-question-answering' , model='impira/layoutlm-document-qa' , tokenizer=__UpperCAmelCase , revision='3dc6de3' , max_seq_len=5_0 , ) lowerCAmelCase__ :Dict = INVOICE_URL lowerCAmelCase__ :List[Any] = 'What is the invoice number?' lowerCAmelCase__ :List[str] = dqa_pipeline(image=__UpperCAmelCase , question=__UpperCAmelCase , top_k=2 ) self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=4 ) , [ {'score': 0.99_99, 'answer': 'us-001', 'start': 1_6, 'end': 1_6}, {'score': 0.99_98, 'answer': 'us-001', 'start': 1_6, 'end': 1_6}, ] , ) lowerCAmelCase__ :List[str] = dqa_pipeline( [{'image': image, 'question': question}, {'image': image, 'question': question}] , top_k=2 ) self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=4 ) , [ [ {'score': 0.99_99, 'answer': 'us-001', 'start': 1_6, 'end': 1_6}, {'score': 0.99_98, 'answer': 'us-001', 'start': 1_6, 'end': 1_6}, ] ] * 2 , ) lowerCAmelCase__ :Optional[Any] = list(zip(*apply_tesseract(load_image(__UpperCAmelCase ) , __UpperCAmelCase , '' ) ) ) # This model should also work if `image` is set to None lowerCAmelCase__ :List[str] = dqa_pipeline({'image': None, 'word_boxes': word_boxes, 'question': question} , top_k=2 ) self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=4 ) , [ {'score': 0.99_99, 'answer': 'us-001', 'start': 1_6, 'end': 1_6}, {'score': 0.99_98, 'answer': 'us-001', 'start': 1_6, 'end': 1_6}, ] , ) @slow @require_torch def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :List[str] = pipeline( 'document-question-answering' , model='naver-clova-ix/donut-base-finetuned-docvqa' , tokenizer=AutoTokenizer.from_pretrained('naver-clova-ix/donut-base-finetuned-docvqa' ) , feature_extractor='naver-clova-ix/donut-base-finetuned-docvqa' , ) lowerCAmelCase__ :Dict = INVOICE_URL lowerCAmelCase__ :str = 'What is the invoice number?' lowerCAmelCase__ :Tuple = dqa_pipeline(image=__UpperCAmelCase , question=__UpperCAmelCase , top_k=2 ) self.assertEqual(nested_simplify(__UpperCAmelCase , decimals=4 ) , [{'answer': 'us-001'}] ) @require_tf @unittest.skip('Document question answering not implemented in TF' ) def snake_case ( self ): '''simple docstring''' pass
293
1
'''simple docstring''' from __future__ import annotations import math import random from collections.abc import Collection from typing import overload class __lowerCAmelCase : """simple docstring""" def __init__( self : List[str] , lowerCAmelCase__ : Collection[float] | None = None ) -> None: '''simple docstring''' if components is None: _UpperCamelCase = [] _UpperCamelCase = list(lowerCAmelCase__ ) def __len__( self : Optional[Any] ) -> int: '''simple docstring''' return len(self.__components ) def __str__( self : str ) -> str: '''simple docstring''' return "(" + ",".join(map(lowerCAmelCase__ , self.__components ) ) + ")" def __add__( self : Optional[int] , lowerCAmelCase__ : Vector ) -> Vector: '''simple docstring''' _UpperCamelCase = len(self ) if size == len(lowerCAmelCase__ ): _UpperCamelCase = [self.__components[i] + other.component(lowerCAmelCase__ ) for i in range(lowerCAmelCase__ )] return Vector(lowerCAmelCase__ ) else: raise Exception('''must have the same size''' ) def __sub__( self : int , lowerCAmelCase__ : Vector ) -> Vector: '''simple docstring''' _UpperCamelCase = len(self ) if size == len(lowerCAmelCase__ ): _UpperCamelCase = [self.__components[i] - other.component(lowerCAmelCase__ ) for i in range(lowerCAmelCase__ )] return Vector(lowerCAmelCase__ ) else: # error case raise Exception('''must have the same size''' ) @overload def __mul__( self : Tuple , lowerCAmelCase__ : float ) -> Vector: '''simple docstring''' ... @overload def __mul__( self : str , lowerCAmelCase__ : Vector ) -> float: '''simple docstring''' ... def __mul__( self : List[Any] , lowerCAmelCase__ : float | Vector ) -> float | Vector: '''simple docstring''' if isinstance(lowerCAmelCase__ , (float, int) ): _UpperCamelCase = [c * other for c in self.__components] return Vector(lowerCAmelCase__ ) elif isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and len(self ) == len(lowerCAmelCase__ ): _UpperCamelCase = len(self ) _UpperCamelCase = [self.__components[i] * other.component(lowerCAmelCase__ ) for i in range(lowerCAmelCase__ )] return sum(lowerCAmelCase__ ) else: # error case raise Exception('''invalid operand!''' ) def snake_case__ ( self : str ) -> Vector: '''simple docstring''' return Vector(self.__components ) def snake_case__ ( self : int , lowerCAmelCase__ : int ) -> float: '''simple docstring''' if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and -len(self.__components ) <= i < len(self.__components ): return self.__components[i] else: raise Exception('''index out of range''' ) def snake_case__ ( self : Tuple , lowerCAmelCase__ : int , lowerCAmelCase__ : float ) -> None: '''simple docstring''' assert -len(self.__components ) <= pos < len(self.__components ) _UpperCamelCase = value def snake_case__ ( self : Any ) -> float: '''simple docstring''' if len(self.__components ) == 0: raise Exception('''Vector is empty''' ) _UpperCamelCase = [c**2 for c in self.__components] return math.sqrt(sum(lowerCAmelCase__ ) ) def snake_case__ ( self : Any , lowerCAmelCase__ : Vector , lowerCAmelCase__ : bool = False ) -> float: '''simple docstring''' _UpperCamelCase = self * other _UpperCamelCase = self.euclidean_length() * other.euclidean_length() if deg: return math.degrees(math.acos(num / den ) ) else: return math.acos(num / den ) def a__ ( lowercase : int ) -> Vector: """simple docstring""" assert isinstance(lowercase, lowercase ) return Vector([0] * dimension ) def a__ ( lowercase : int, lowercase : int ) -> Vector: """simple docstring""" assert isinstance(lowercase, lowercase ) and (isinstance(lowercase, lowercase )) _UpperCamelCase = [0] * dimension _UpperCamelCase = 1 return Vector(lowercase ) def a__ ( lowercase : float, lowercase : Vector, lowercase : Vector ) -> Vector: """simple docstring""" assert ( isinstance(lowercase, lowercase ) and isinstance(lowercase, lowercase ) and (isinstance(lowercase, (int, float) )) ) return x * scalar + y def a__ ( lowercase : int, lowercase : int, lowercase : int ) -> Vector: """simple docstring""" random.seed(lowercase ) _UpperCamelCase = [random.randint(lowercase, lowercase ) for _ in range(lowercase )] return Vector(lowercase ) class __lowerCAmelCase : """simple docstring""" def __init__( self : Dict , lowerCAmelCase__ : list[list[float]] , lowerCAmelCase__ : int , lowerCAmelCase__ : int ) -> None: '''simple docstring''' _UpperCamelCase = matrix _UpperCamelCase = w _UpperCamelCase = h def __str__( self : int ) -> str: '''simple docstring''' _UpperCamelCase = '''''' for i in range(self.__height ): ans += "|" for j in range(self.__width ): if j < self.__width - 1: ans += str(self.__matrix[i][j] ) + "," else: ans += str(self.__matrix[i][j] ) + "|\n" return ans def __add__( self : Any , lowerCAmelCase__ : Matrix ) -> Matrix: '''simple docstring''' if self.__width == other.width() and self.__height == other.height(): _UpperCamelCase = [] for i in range(self.__height ): _UpperCamelCase = [ self.__matrix[i][j] + other.component(lowerCAmelCase__ , lowerCAmelCase__ ) for j in range(self.__width ) ] matrix.append(lowerCAmelCase__ ) return Matrix(lowerCAmelCase__ , self.__width , self.__height ) else: raise Exception('''matrix must have the same dimension!''' ) def __sub__( self : Tuple , lowerCAmelCase__ : Matrix ) -> Matrix: '''simple docstring''' if self.__width == other.width() and self.__height == other.height(): _UpperCamelCase = [] for i in range(self.__height ): _UpperCamelCase = [ self.__matrix[i][j] - other.component(lowerCAmelCase__ , lowerCAmelCase__ ) for j in range(self.__width ) ] matrix.append(lowerCAmelCase__ ) return Matrix(lowerCAmelCase__ , self.__width , self.__height ) else: raise Exception('''matrices must have the same dimension!''' ) @overload def __mul__( self : List[str] , lowerCAmelCase__ : float ) -> Matrix: '''simple docstring''' ... @overload def __mul__( self : Optional[int] , lowerCAmelCase__ : Vector ) -> Vector: '''simple docstring''' ... def __mul__( self : Dict , lowerCAmelCase__ : float | Vector ) -> Vector | Matrix: '''simple docstring''' if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): # matrix-vector if len(lowerCAmelCase__ ) == self.__width: _UpperCamelCase = zero_vector(self.__height ) for i in range(self.__height ): _UpperCamelCase = [ self.__matrix[i][j] * other.component(lowerCAmelCase__ ) for j in range(self.__width ) ] ans.change_component(lowerCAmelCase__ , sum(lowerCAmelCase__ ) ) return ans else: raise Exception( '''vector must have the same size as the ''' '''number of columns of the matrix!''' ) elif isinstance(lowerCAmelCase__ , (int, float) ): # matrix-scalar _UpperCamelCase = [ [self.__matrix[i][j] * other for j in range(self.__width )] for i in range(self.__height ) ] return Matrix(lowerCAmelCase__ , self.__width , self.__height ) return None def snake_case__ ( self : Optional[int] ) -> int: '''simple docstring''' return self.__height def snake_case__ ( self : str ) -> int: '''simple docstring''' return self.__width def snake_case__ ( self : int , lowerCAmelCase__ : int , lowerCAmelCase__ : int ) -> float: '''simple docstring''' if 0 <= x < self.__height and 0 <= y < self.__width: return self.__matrix[x][y] else: raise Exception('''change_component: indices out of bounds''' ) def snake_case__ ( self : Optional[int] , lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : float ) -> None: '''simple docstring''' if 0 <= x < self.__height and 0 <= y < self.__width: _UpperCamelCase = value else: raise Exception('''change_component: indices out of bounds''' ) def snake_case__ ( self : Optional[int] , lowerCAmelCase__ : int , lowerCAmelCase__ : int ) -> float: '''simple docstring''' if self.__height != self.__width: raise Exception('''Matrix is not square''' ) _UpperCamelCase = self.__matrix[:x] + self.__matrix[x + 1 :] for i in range(len(lowerCAmelCase__ ) ): _UpperCamelCase = minor[i][:y] + minor[i][y + 1 :] return Matrix(lowerCAmelCase__ , self.__width - 1 , self.__height - 1 ).determinant() def snake_case__ ( self : Tuple , lowerCAmelCase__ : int , lowerCAmelCase__ : int ) -> float: '''simple docstring''' if self.__height != self.__width: raise Exception('''Matrix is not square''' ) if 0 <= x < self.__height and 0 <= y < self.__width: return (-1) ** (x + y) * self.minor(lowerCAmelCase__ , lowerCAmelCase__ ) else: raise Exception('''Indices out of bounds''' ) def snake_case__ ( self : Union[str, Any] ) -> float: '''simple docstring''' if self.__height != self.__width: raise Exception('''Matrix is not square''' ) if self.__height < 1: raise Exception('''Matrix has no element''' ) elif self.__height == 1: return self.__matrix[0][0] elif self.__height == 2: return ( self.__matrix[0][0] * self.__matrix[1][1] - self.__matrix[0][1] * self.__matrix[1][0] ) else: _UpperCamelCase = [ self.__matrix[0][y] * self.cofactor(0 , lowerCAmelCase__ ) for y in range(self.__width ) ] return sum(lowerCAmelCase__ ) def a__ ( lowercase : int ) -> Matrix: """simple docstring""" _UpperCamelCase = [[0] * n for _ in range(lowercase )] return Matrix(lowercase, lowercase, lowercase ) def a__ ( lowercase : int, lowercase : int, lowercase : int, lowercase : int ) -> Matrix: """simple docstring""" random.seed(lowercase ) _UpperCamelCase = [ [random.randint(lowercase, lowercase ) for _ in range(lowercase )] for _ in range(lowercase ) ] return Matrix(lowercase, lowercase, lowercase )
361
'''simple docstring''' from math import isclose, sqrt def a__ ( lowercase : float, lowercase : float, lowercase : float ) -> tuple[float, float, float]: """simple docstring""" _UpperCamelCase = point_y / 4 / point_x _UpperCamelCase = 2 * normal_gradient / (1 + normal_gradient * normal_gradient) _UpperCamelCase = (1 - normal_gradient * normal_gradient) / ( 1 + normal_gradient * normal_gradient ) _UpperCamelCase = (sa - ca * incoming_gradient) / (ca + sa * incoming_gradient) # to find the next point, solve the simultaeneous equations: # y^2 + 4x^2 = 100 # y - b = m * (x - a) # ==> A x^2 + B x + C = 0 _UpperCamelCase = outgoing_gradient**2 + 4 _UpperCamelCase = 2 * outgoing_gradient * (point_y - outgoing_gradient * point_x) _UpperCamelCase = (point_y - outgoing_gradient * point_x) ** 2 - 100 _UpperCamelCase = ( -linear_term - sqrt(linear_term**2 - 4 * quadratic_term * constant_term ) ) / (2 * quadratic_term) _UpperCamelCase = ( -linear_term + sqrt(linear_term**2 - 4 * quadratic_term * constant_term ) ) / (2 * quadratic_term) # two solutions, one of which is our input point _UpperCamelCase = x_minus if isclose(lowercase, lowercase ) else x_plus _UpperCamelCase = point_y + outgoing_gradient * (next_x - point_x) return next_x, next_y, outgoing_gradient def a__ ( lowercase : float = 1.4, lowercase : float = -9.6 ) -> int: """simple docstring""" _UpperCamelCase = 0 _UpperCamelCase = first_x_coord _UpperCamelCase = first_y_coord _UpperCamelCase = (1_0.1 - point_y) / (0.0 - point_x) while not (-0.0_1 <= point_x <= 0.0_1 and point_y > 0): _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = next_point(lowercase, lowercase, lowercase ) num_reflections += 1 return num_reflections if __name__ == "__main__": print(F"""{solution() = }""")
287
0
"""simple docstring""" A : List[Any] = { "A": ["B", "C", "E"], "B": ["A", "D", "E"], "C": ["A", "F", "G"], "D": ["B"], "E": ["A", "B", "D"], "F": ["C"], "G": ["C"], } def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = set() # keep track of all the paths to be checked __lowerCAmelCase = [[start]] # return path if start is goal if start == goal: return [start] # keeps looping until all possible paths have been checked while queue: # pop the first path from the queue __lowerCAmelCase = queue.pop(0 ) # get the last node from the path __lowerCAmelCase = path[-1] if node not in explored: __lowerCAmelCase = graph[node] # go through all neighbour nodes, construct a new path and # push it into the queue for neighbour in neighbours: __lowerCAmelCase = list(_UpperCamelCase ) new_path.append(_UpperCamelCase ) queue.append(_UpperCamelCase ) # return path if neighbour is goal if neighbour == goal: return new_path # mark node as explored explored.add(_UpperCamelCase ) # in case there's no path between the 2 nodes return [] def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' if not graph or start not in graph or target not in graph: return -1 if start == target: return 0 __lowerCAmelCase = [start] __lowerCAmelCase = set(_UpperCamelCase ) # Keep tab on distances from `start` node. __lowerCAmelCase = {start: 0, target: -1} while queue: __lowerCAmelCase = queue.pop(0 ) if node == target: __lowerCAmelCase = ( dist[node] if dist[target] == -1 else min(dist[target] , dist[node] ) ) for adjacent in graph[node]: if adjacent not in visited: visited.add(_UpperCamelCase ) queue.append(_UpperCamelCase ) __lowerCAmelCase = dist[node] + 1 return dist[target] if __name__ == "__main__": print(bfs_shortest_path(demo_graph, "G", "D")) # returns ['G', 'C', 'A', 'B', 'D'] print(bfs_shortest_path_distance(demo_graph, "G", "D")) # returns 4
57
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __lowercase : str = logging.get_logger(__name__) __lowercase : Tuple = {'''ctrl''': '''https://huggingface.co/ctrl/resolve/main/config.json'''} class __lowercase ( _lowercase ): lowerCamelCase : int = "ctrl" lowerCamelCase : Optional[int] = ["past_key_values"] lowerCamelCase : Optional[int] = { "max_position_embeddings": "n_positions", "hidden_size": "n_embd", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__(self , A=2_4_6_5_3_4 , A=2_5_6 , A=1_2_8_0 , A=8_1_9_2 , A=4_8 , A=1_6 , A=0.1 , A=0.1 , A=1E-6 , A=0.02 , A=True , **A , ): lowerCamelCase_ : List[str] = vocab_size lowerCamelCase_ : Optional[Any] = n_positions lowerCamelCase_ : List[Any] = n_embd lowerCamelCase_ : Optional[Any] = n_layer lowerCamelCase_ : Any = n_head lowerCamelCase_ : int = dff lowerCamelCase_ : str = resid_pdrop lowerCamelCase_ : List[Any] = embd_pdrop lowerCamelCase_ : List[Any] = layer_norm_epsilon lowerCamelCase_ : Any = initializer_range lowerCamelCase_ : Dict = use_cache super().__init__(**A )
318
0
'''simple docstring''' from __future__ import annotations class _lowerCAmelCase : def __init__(self , lowercase = 0 ): A_ : Dict = key def _a (self , lowercase , lowercase ): assert isinstance(lowercase , lowercase ) and isinstance(lowercase , lowercase ) A_ : Tuple = key or self.__key or 1 # make sure key is an appropriate size key %= 255 return [chr(ord(lowercase ) ^ key ) for ch in content] def _a (self , lowercase , lowercase ): assert isinstance(lowercase , lowercase ) and isinstance(lowercase , lowercase ) A_ : int = key or self.__key or 1 # make sure key is an appropriate size key %= 255 return [chr(ord(lowercase ) ^ key ) for ch in content] def _a (self , lowercase , lowercase = 0 ): assert isinstance(lowercase , lowercase ) and isinstance(lowercase , lowercase ) A_ : str = key or self.__key or 1 # make sure key can be any size while key > 255: key -= 255 # This will be returned A_ : Optional[int] = """""" for ch in content: ans += chr(ord(lowercase ) ^ key ) return ans def _a (self , lowercase , lowercase = 0 ): assert isinstance(lowercase , lowercase ) and isinstance(lowercase , lowercase ) A_ : int = key or self.__key or 1 # make sure key can be any size while key > 255: key -= 255 # This will be returned A_ : Any = """""" for ch in content: ans += chr(ord(lowercase ) ^ key ) return ans def _a (self , lowercase , lowercase = 0 ): assert isinstance(lowercase , lowercase ) and isinstance(lowercase , lowercase ) try: with open(lowercase ) as fin, open("""encrypt.out""" , """w+""" ) as fout: # actual encrypt-process for line in fin: fout.write(self.encrypt_string(lowercase , lowercase ) ) except OSError: return False return True def _a (self , lowercase , lowercase ): assert isinstance(lowercase , lowercase ) and isinstance(lowercase , lowercase ) try: with open(lowercase ) as fin, open("""decrypt.out""" , """w+""" ) as fout: # actual encrypt-process for line in fin: fout.write(self.decrypt_string(lowercase , lowercase ) ) except OSError: return False return True # Tests # crypt = XORCipher() # key = 67 # # test encrypt # print(crypt.encrypt("hallo welt",key)) # # test decrypt # print(crypt.decrypt(crypt.encrypt("hallo welt",key), key)) # # test encrypt_string # print(crypt.encrypt_string("hallo welt",key)) # # test decrypt_string # print(crypt.decrypt_string(crypt.encrypt_string("hallo welt",key),key)) # if (crypt.encrypt_file("test.txt",key)): # print("encrypt successful") # else: # print("encrypt unsuccessful") # if (crypt.decrypt_file("encrypt.out",key)): # print("decrypt successful") # else: # print("decrypt unsuccessful")
135
'''simple docstring''' from __future__ import annotations from functools import lru_cache from math import ceil lowerCamelCase :List[str] = 1_0_0 lowerCamelCase :Dict = set(range(3, NUM_PRIMES, 2)) primes.add(2) lowerCamelCase :int for prime in range(3, ceil(NUM_PRIMES**0.5), 2): if prime not in primes: continue primes.difference_update(set(range(prime * prime, NUM_PRIMES, prime))) @lru_cache(maxsize=1_00 ) def a ( lowerCamelCase__ ): '''simple docstring''' if number_to_partition < 0: return set() elif number_to_partition == 0: return {1} A_ : set[int] = set() A_ : int A_ : int for prime in primes: if prime > number_to_partition: continue for sub in partition(number_to_partition - prime ): ret.add(sub * prime ) return ret def a ( lowerCamelCase__ = 50_00 ): '''simple docstring''' for number_to_partition in range(1 , lowerCamelCase__ ): if len(partition(lowerCamelCase__ ) ) > number_unique_partitions: return number_to_partition return None if __name__ == "__main__": print(F"{solution() = }")
135
1
import unittest from parameterized import parameterized from transformers import LlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaTokenizer class lowercase : def __init__( self , _a , _a=13 , _a=7 , _a=True , _a=True , _a=False , _a=True , _a=99 , _a=32 , _a=5 , _a=4 , _a=37 , _a="gelu" , _a=0.1 , _a=0.1 , _a=512 , _a=16 , _a=2 , _a=0.02 , _a=3 , _a=4 , _a=None , ) -> List[str]: _A : Optional[Any] = parent _A : int = batch_size _A : List[Any] = seq_length _A : List[Any] = is_training _A : str = use_input_mask _A : List[Any] = use_token_type_ids _A : Any = use_labels _A : Dict = vocab_size _A : List[str] = hidden_size _A : Optional[int] = num_hidden_layers _A : List[str] = num_attention_heads _A : Tuple = intermediate_size _A : Optional[int] = hidden_act _A : Optional[int] = hidden_dropout_prob _A : Any = attention_probs_dropout_prob _A : str = max_position_embeddings _A : Any = type_vocab_size _A : Optional[Any] = type_sequence_label_size _A : Optional[Any] = initializer_range _A : Any = num_labels _A : int = num_choices _A : Any = scope def a__ ( self ) -> List[Any]: _A : Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _A : Union[str, Any] = None if self.use_input_mask: _A : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) _A : Tuple = None if self.use_token_type_ids: _A : str = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _A : Dict = None _A : List[Any] = None _A : Dict = None if self.use_labels: _A : Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _A : Dict = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _A : List[str] = ids_tensor([self.batch_size] , self.num_choices ) _A : Any = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def a__ ( self ) -> List[Any]: return LlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_a , initializer_range=self.initializer_range , ) def a__ ( self , _a , _a , _a , _a , _a , _a , _a ) -> Optional[int]: _A : Optional[int] = LlamaModel(config=_a ) model.to(_a ) model.eval() _A : int = model(_a , attention_mask=_a ) _A : str = model(_a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def a__ ( self , _a , _a , _a , _a , _a , _a , _a , _a , _a , ) -> List[str]: _A : Union[str, Any] = True _A : Any = LlamaModel(_a ) model.to(_a ) model.eval() _A : int = model( _a , attention_mask=_a , encoder_hidden_states=_a , encoder_attention_mask=_a , ) _A : Optional[int] = model( _a , attention_mask=_a , encoder_hidden_states=_a , ) _A : Optional[int] = model(_a , attention_mask=_a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def a__ ( self , _a , _a , _a , _a , _a , _a , _a , _a , _a , ) -> int: _A : List[Any] = LlamaForCausalLM(config=_a ) model.to(_a ) model.eval() _A : Optional[Any] = model(_a , attention_mask=_a , labels=_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def a__ ( self , _a , _a , _a , _a , _a , _a , _a , _a , _a , ) -> Any: _A : Optional[Any] = True _A : Tuple = True _A : str = LlamaForCausalLM(config=_a ) model.to(_a ) model.eval() # first forward pass _A : Union[str, Any] = model( _a , attention_mask=_a , encoder_hidden_states=_a , encoder_attention_mask=_a , use_cache=_a , ) _A : str = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids _A : Tuple = ids_tensor((self.batch_size, 3) , config.vocab_size ) _A : Optional[int] = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and _A : Dict = torch.cat([input_ids, next_tokens] , dim=-1 ) _A : List[Any] = torch.cat([input_mask, next_mask] , dim=-1 ) _A : Dict = model( _a , attention_mask=_a , encoder_hidden_states=_a , encoder_attention_mask=_a , output_hidden_states=_a , )["""hidden_states"""][0] _A : Optional[int] = model( _a , attention_mask=_a , encoder_hidden_states=_a , encoder_attention_mask=_a , past_key_values=_a , output_hidden_states=_a , )["""hidden_states"""][0] # select random slice _A : Optional[Any] = ids_tensor((1,) , output_from_past.shape[-1] ).item() _A : Union[str, Any] = output_from_no_past[:, -3:, random_slice_idx].detach() _A : Tuple = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(_a , _a , atol=1e-3 ) ) def a__ ( self ) -> int: _A : List[Any] = self.prepare_config_and_inputs() ( ( _A ) , ( _A ) , ( _A ) , ( _A ) , ( _A ) , ( _A ) , ( _A ) , ) : Any = config_and_inputs _A : List[Any] = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class lowercase ( UpperCamelCase__,UpperCamelCase__,UpperCamelCase__,unittest.TestCase ): _a = (LlamaModel, LlamaForCausalLM, LlamaForSequenceClassification) if is_torch_available() else () _a = (LlamaForCausalLM,) if is_torch_available() else () _a = ( { "feature-extraction": LlamaModel, "text-classification": LlamaForSequenceClassification, "text-generation": LlamaForCausalLM, "zero-shot": LlamaForSequenceClassification, } if is_torch_available() else {} ) _a = False _a = False def a__ ( self ) -> List[str]: _A : Union[str, Any] = LlamaModelTester(self ) _A : Dict = ConfigTester(self , config_class=_a , hidden_size=37 ) def a__ ( self ) -> Optional[Any]: self.config_tester.run_common_tests() def a__ ( self ) -> Union[str, Any]: _A : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_a ) def a__ ( self ) -> List[Any]: _A : Union[str, Any] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _A : Optional[Any] = type self.model_tester.create_and_check_model(*_a ) def a__ ( self ) -> List[Any]: _A , _A : Any = self.model_tester.prepare_config_and_inputs_for_common() _A : List[str] = 3 _A : Optional[Any] = input_dict["""input_ids"""] _A : Tuple = input_ids.ne(1 ).to(_a ) _A : Any = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) _A : Tuple = LlamaForSequenceClassification(_a ) model.to(_a ) model.eval() _A : int = model(_a , attention_mask=_a , labels=_a ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def a__ ( self ) -> Tuple: _A , _A : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() _A : int = 3 _A : Union[str, Any] = """single_label_classification""" _A : Union[str, Any] = input_dict["""input_ids"""] _A : int = input_ids.ne(1 ).to(_a ) _A : str = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) _A : Optional[Any] = LlamaForSequenceClassification(_a ) model.to(_a ) model.eval() _A : Union[str, Any] = model(_a , attention_mask=_a , labels=_a ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def a__ ( self ) -> str: _A , _A : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() _A : List[str] = 3 _A : Tuple = """multi_label_classification""" _A : List[str] = input_dict["""input_ids"""] _A : Union[str, Any] = input_ids.ne(1 ).to(_a ) _A : List[str] = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) _A : Optional[int] = LlamaForSequenceClassification(_a ) model.to(_a ) model.eval() _A : Tuple = model(_a , attention_mask=_a , labels=_a ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip("""LLaMA buffers include complex numbers, which breaks this test""" ) def a__ ( self ) -> Dict: pass @parameterized.expand([("""linear""",), ("""dynamic""",)] ) def a__ ( self , _a ) -> Any: _A , _A : Dict = self.model_tester.prepare_config_and_inputs_for_common() _A : Dict = ids_tensor([1, 10] , config.vocab_size ) _A : Tuple = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights _A : str = LlamaModel(_a ) original_model.to(_a ) original_model.eval() _A : Dict = original_model(_a ).last_hidden_state _A : Union[str, Any] = original_model(_a ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights _A : Optional[int] = {"""type""": scaling_type, """factor""": 10.0} _A : Optional[Any] = LlamaModel(_a ) scaled_model.to(_a ) scaled_model.eval() _A : Tuple = scaled_model(_a ).last_hidden_state _A : Any = scaled_model(_a ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(_a , _a , atol=1e-5 ) ) else: self.assertFalse(torch.allclose(_a , _a , atol=1e-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(_a , _a , atol=1e-5 ) ) @require_torch class lowercase ( unittest.TestCase ): @unittest.skip("""Logits are not exactly the same, once we fix the instabalities somehow, will update!""" ) @slow def a__ ( self ) -> Dict: _A : str = [1, 306, 4658, 278, 6593, 310, 2834, 338] _A : Tuple = LlamaForCausalLM.from_pretrained("""meta-llama/Llama-2-7b-hf""" , device_map="""auto""" ) _A : int = model(torch.tensor([input_ids] ) ) # Expected mean on dim = -1 _A : Optional[int] = torch.tensor([[-6.6550, -4.1227, -4.9859, -3.2406, 0.8262, -3.0033, 1.2964, -3.3699]] ) torch.testing.assert_close(out.mean(-1 ) , _a , atol=1e-2 , rtol=1e-2 ) # slicing logits[0, 0, 0:30] # fmt: off _A : Any = torch.tensor([-12.8281, -7.4453, -0.4639, -8.0625, -7.2500, -8.0000, -6.4883, -7.7695, -7.8438, -7.0312, -6.2188, -7.1328, -1.8496, 1.9961, -8.6250, -6.7227, -12.8281, -6.9492, -7.0742, -7.7852, -7.5820, -7.9062, -6.9375, -7.9805, -8.3438, -8.1562, -8.0469, -7.6250, -7.7422, -7.3398,] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , _a , atol=1e-5 , rtol=1e-5 ) @unittest.skip("""Logits are not exactly the same, once we fix the instabalities somehow, will update!""" ) @slow def a__ ( self ) -> Any: _A : int = [1, 306, 4658, 278, 6593, 310, 2834, 338] _A : str = LlamaForCausalLM.from_pretrained("""meta-llama/Llama-2-13b-hf""" , device_map="""auto""" ) _A : Dict = model(torch.tensor(_a ) ) # Expected mean on dim = -1 _A : Dict = torch.tensor([[-2.0622, -1.2794, -1.1638, -0.9788, -1.4603, -1.0238, -1.7893, -1.4411]] ) torch.testing.assert_close(out.mean(-1 ) , _a , atol=1e-2 , rtol=1e-2 ) # slicing logits[0, 0, 0:30] # fmt: off _A : str = torch.tensor([-8.1406, -8.0547, 2.7461, -1.2344, -0.1448, -1.8262, -1.0020, -1.8154, -1.6895, -1.8516, -2.3574, -0.9277, 3.7598, 6.5742, -1.2998, -0.1177, -8.1406, -2.9688, -2.9199, -3.1699, -3.5254, -2.3555, -2.7988, -3.4141, -2.8262, -4.5195, -3.3379, -3.3164, -2.7832, -3.0273] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , _a , atol=1e-5 , rtol=1e-5 ) @unittest.skip("""Logits are not exactly the same, once we fix the instabalities somehow, will update!""" ) @slow def a__ ( self ) -> Optional[Any]: _A : Tuple = [1, 306, 4658, 278, 6593, 310, 2834, 338] _A : Tuple = LlamaForCausalLM.from_pretrained("""meta-llama/Llama-2-13b-chat-hf""" , device_map="""auto""" ) _A : Optional[int] = model(torch.tensor(_a ) ) # Expected mean on dim = -1 _A : Tuple = torch.tensor([[-0.8562, -1.8520, -0.7551, -0.4162, -1.5161, -1.2038, -2.4823, -2.3254]] ) torch.testing.assert_close(out.mean(-1 ) , _a , atol=1e-2 , rtol=1e-2 ) # slicing logits[0, 0, 0:30] # fmt: off _A : List[Any] = torch.tensor([-2.2227, 4.8828, 0.9023, -0.4578, -0.7871, -0.1033, -0.6221, -0.5786, -0.7803, -1.0674, -1.2920, -0.1570, 0.8008, 2.0723, -0.9497, 0.2771, -2.2227, -0.7612, -1.4346, -1.2061, -1.6426, -0.3000, -0.7139, -1.1934, -1.8691, -1.6973, -1.5947, -1.2705, -0.3523, -0.5513] ) # fmt: on torch.testing.assert_close(out.mean(-1 ) , _a , atol=1e-2 , rtol=1e-2 ) @unittest.skip( """Logits are not exactly the same, once we fix the instabalities somehow, will update! Also it is gonna be a `too_slow` test""" ) @slow def a__ ( self ) -> Optional[Any]: _A : Optional[int] = [1, 306, 4658, 278, 6593, 310, 2834, 338] _A : List[str] = LlamaForCausalLM.from_pretrained("""meta-llama/Llama-2-70b-hf""" , device_map="""auto""" ) _A : int = model(torch.tensor(_a ) ) _A : Tuple = torch.tensor( [[-4.2327, -3.3360, -4.6665, -4.7631, -1.8180, -3.4170, -1.4211, -3.1810]] , dtype=torch.floataa ) torch.testing.assert_close(out.mean(-1 ) , _a , atol=1e-2 , rtol=1e-2 ) # fmt: off _A : Any = torch.tensor([-9.4922, -3.9551, 1.7998, -5.6758, -5.1055, -5.8984, -4.8320, -6.8086, -6.5391, -5.6172, -5.5820, -5.5352, 1.7881, 3.6289, -6.5117, -3.4785, -9.5000, -6.0352, -6.8125, -6.0195, -6.6836, -5.4727, -6.2812, -6.0391, -7.3398, -7.4297, -7.4844, -6.5820, -5.8789, -5.5312] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , _a , atol=1e-5 , rtol=1e-5 ) @unittest.skip("""Model is curently gated""" ) @slow def a__ ( self ) -> Any: _A : Any = """Simply put, the theory of relativity states that 1) the laws of physics are the same everywhere in the universe and 2) the passage of time and the length of objects can vary depending on the observer\'s frame of reference.\n\nThe first part of the theory, that the laws of physics are the same everywhere, is known as the \"princi""" _A : List[Any] = """Simply put, the theory of relativity states that """ _A : Dict = LlamaTokenizer.from_pretrained("""meta-llama/Llama-2-13b-chat-hf""" ) _A : List[str] = tokenizer.encode(_a , return_tensors="""pt""" ) _A : Optional[Any] = LlamaForCausalLM.from_pretrained( """meta-llama/Llama-2-13b-chat-hf""" , device_map="""sequential""" , use_safetensors=_a ) # greedy generation outputs _A : Optional[Any] = model.generate(_a , max_new_tokens=64 , top_p=_a , temperature=1 , do_sample=_a ) _A : Union[str, Any] = tokenizer.decode(generated_ids[0] , skip_special_tokens=_a ) self.assertEqual(_a , _a )
26
import re from typing import Callable, List, Optional, Union import tensorflow as tf try: from tensorflow.keras.optimizers.legacy import Adam except ImportError: from tensorflow.keras.optimizers import Adam class SCREAMING_SNAKE_CASE__ ( tf.keras.optimizers.schedules.LearningRateSchedule ): '''simple docstring''' def __init__( self, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__ = 1.0, lowerCamelCase__ = None, ): super().__init__() A : Union[str, Any] = initial_learning_rate A : List[Any] = warmup_steps A : int = power A : Optional[int] = decay_schedule_fn A : int = name def __call__( self, lowerCamelCase__ ): with tf.name_scope(self.name or """WarmUp""" ) as name: # Implements polynomial warmup. i.e., if global_step < warmup_steps, the # learning rate will be `global_step/num_warmup_steps * init_lr`. A : str = tf.cast(lowerCamelCase__, tf.floataa ) A : List[Any] = tf.cast(self.warmup_steps, tf.floataa ) A : Dict = global_step_float / warmup_steps_float A : Union[str, Any] = self.initial_learning_rate * tf.math.pow(lowerCamelCase__, self.power ) return tf.cond( global_step_float < warmup_steps_float, lambda: warmup_learning_rate, lambda: self.decay_schedule_fn(step - self.warmup_steps ), name=lowerCamelCase__, ) def _lowerCAmelCase ( self ): return { "initial_learning_rate": self.initial_learning_rate, "decay_schedule_fn": self.decay_schedule_fn, "warmup_steps": self.warmup_steps, "power": self.power, "name": self.name, } def __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = 0.0 , _lowerCAmelCase = 0.9 , _lowerCAmelCase = 0.999 , _lowerCAmelCase = 1e-8 , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = 0.0 , _lowerCAmelCase = 1.0 , _lowerCAmelCase = None , ) -> Union[str, Any]: """simple docstring""" A : Optional[int] = tf.keras.optimizers.schedules.PolynomialDecay( initial_learning_rate=_lowerCAmelCase , decay_steps=num_train_steps - num_warmup_steps , end_learning_rate=init_lr * min_lr_ratio , power=_lowerCAmelCase , ) if num_warmup_steps: A : Dict = WarmUp( initial_learning_rate=_lowerCAmelCase , decay_schedule_fn=_lowerCAmelCase , warmup_steps=_lowerCAmelCase , ) if weight_decay_rate > 0.0: A : str = AdamWeightDecay( learning_rate=_lowerCAmelCase , weight_decay_rate=_lowerCAmelCase , beta_a=_lowerCAmelCase , beta_a=_lowerCAmelCase , epsilon=_lowerCAmelCase , clipnorm=_lowerCAmelCase , global_clipnorm=_lowerCAmelCase , exclude_from_weight_decay=["""LayerNorm""", """layer_norm""", """bias"""] , include_in_weight_decay=_lowerCAmelCase , ) else: A : Optional[int] = tf.keras.optimizers.Adam( learning_rate=_lowerCAmelCase , beta_a=_lowerCAmelCase , beta_a=_lowerCAmelCase , epsilon=_lowerCAmelCase , clipnorm=_lowerCAmelCase , global_clipnorm=_lowerCAmelCase , ) # We return the optimizer and the LR scheduler in order to better track the # evolution of the LR independently of the optimizer. return optimizer, lr_schedule class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' def __init__( self, lowerCamelCase__ = 0.001, lowerCamelCase__ = 0.9, lowerCamelCase__ = 0.999, lowerCamelCase__ = 1e-7, lowerCamelCase__ = False, lowerCamelCase__ = 0.0, lowerCamelCase__ = None, lowerCamelCase__ = None, lowerCamelCase__ = "AdamWeightDecay", **lowerCamelCase__, ): super().__init__(lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, **lowerCamelCase__ ) A : int = weight_decay_rate A : Any = include_in_weight_decay A : Dict = exclude_from_weight_decay @classmethod def _lowerCAmelCase ( cls, lowerCamelCase__ ): A : Tuple = {"""WarmUp""": WarmUp} return super(lowerCamelCase__, cls ).from_config(lowerCamelCase__, custom_objects=lowerCamelCase__ ) def _lowerCAmelCase ( self, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__ ): super(lowerCamelCase__, self )._prepare_local(lowerCamelCase__, lowerCamelCase__, lowerCamelCase__ ) A : List[str] = tf.constant( self.weight_decay_rate, name="""adam_weight_decay_rate""" ) def _lowerCAmelCase ( self, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__ ): A : Any = self._do_use_weight_decay(var.name ) if do_decay: return var.assign_sub( learning_rate * var * apply_state[(var.device, var.dtype.base_dtype)]["""weight_decay_rate"""], use_locking=self._use_locking, ) return tf.no_op() def _lowerCAmelCase ( self, lowerCamelCase__, lowerCamelCase__=None, **lowerCamelCase__ ): A , A : Dict = list(zip(*lowerCamelCase__ ) ) return super(lowerCamelCase__, self ).apply_gradients(zip(lowerCamelCase__, lowerCamelCase__ ), name=lowerCamelCase__, **lowerCamelCase__ ) def _lowerCAmelCase ( self, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__ ): if apply_state is None: return self._decayed_lr_t[var_dtype], {} A : Union[str, Any] = apply_state or {} A : Optional[int] = apply_state.get((var_device, var_dtype) ) if coefficients is None: A : Dict = self._fallback_apply_state(lowerCamelCase__, lowerCamelCase__ ) A : List[Any] = coefficients return coefficients["lr_t"], {"apply_state": apply_state} def _lowerCAmelCase ( self, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__=None ): A , A : str = self._get_lr(var.device, var.dtype.base_dtype, lowerCamelCase__ ) A : Any = self._decay_weights_op(lowerCamelCase__, lowerCamelCase__, lowerCamelCase__ ) with tf.control_dependencies([decay] ): return super(lowerCamelCase__, self )._resource_apply_dense(lowerCamelCase__, lowerCamelCase__, **lowerCamelCase__ ) def _lowerCAmelCase ( self, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__=None ): A , A : Tuple = self._get_lr(var.device, var.dtype.base_dtype, lowerCamelCase__ ) A : Optional[Any] = self._decay_weights_op(lowerCamelCase__, lowerCamelCase__, lowerCamelCase__ ) with tf.control_dependencies([decay] ): return super(lowerCamelCase__, self )._resource_apply_sparse(lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, **lowerCamelCase__ ) def _lowerCAmelCase ( self ): A : Dict = super().get_config() config.update({"""weight_decay_rate""": self.weight_decay_rate} ) return config def _lowerCAmelCase ( self, lowerCamelCase__ ): if self.weight_decay_rate == 0: return False if self._include_in_weight_decay: for r in self._include_in_weight_decay: if re.search(lowerCamelCase__, lowerCamelCase__ ) is not None: return True if self._exclude_from_weight_decay: for r in self._exclude_from_weight_decay: if re.search(lowerCamelCase__, lowerCamelCase__ ) is not None: return False return True class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' def __init__( self ): A : List[str] = [] A : List[str] = None @property def _lowerCAmelCase ( self ): if self._accum_steps is None: A : str = tf.Variable( tf.constant(0, dtype=tf.intaa ), trainable=lowerCamelCase__, synchronization=tf.VariableSynchronization.ON_READ, aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA, ) return self._accum_steps.value() @property def _lowerCAmelCase ( self ): if not self._gradients: raise ValueError("""The accumulator should be called first to initialize the gradients""" ) return [gradient.value() if gradient is not None else gradient for gradient in self._gradients] def __call__( self, lowerCamelCase__ ): if not self._gradients: A : int = self.step # Create the step variable. self._gradients.extend( [ tf.Variable( tf.zeros_like(lowerCamelCase__ ), trainable=lowerCamelCase__, synchronization=tf.VariableSynchronization.ON_READ, aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA, ) if gradient is not None else gradient for gradient in gradients ] ) if len(lowerCamelCase__ ) != len(self._gradients ): raise ValueError(f'''Expected {len(self._gradients )} gradients, but got {len(lowerCamelCase__ )}''' ) for accum_gradient, gradient in zip(self._gradients, lowerCamelCase__ ): if accum_gradient is not None and gradient is not None: accum_gradient.assign_add(lowerCamelCase__ ) self._accum_steps.assign_add(1 ) def _lowerCAmelCase ( self ): if not self._gradients: return self._accum_steps.assign(0 ) for gradient in self._gradients: if gradient is not None: gradient.assign(tf.zeros_like(lowerCamelCase__ ) )
116
0
from transformers import DistilBertTokenizer, DistilBertTokenizerFast from transformers.testing_utils import require_tokenizers, slow from ..bert.test_tokenization_bert import BertTokenizationTest @require_tokenizers class __magic_name__ (__lowercase ): lowerCamelCase__ = DistilBertTokenizer lowerCamelCase__ = DistilBertTokenizerFast lowerCamelCase__ = True @slow def __a ( self ) -> Tuple: lowerCAmelCase_ = DistilBertTokenizer.from_pretrained("distilbert-base-uncased" ) lowerCAmelCase_ = tokenizer.encode("sequence builders" , add_special_tokens=_a ) lowerCAmelCase_ = tokenizer.encode("multi-sequence build" , add_special_tokens=_a ) lowerCAmelCase_ = tokenizer.build_inputs_with_special_tokens(_a ) lowerCAmelCase_ = tokenizer.build_inputs_with_special_tokens(_a , _a ) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ]
362
def A(): return [list(range(1000 - i , -1000 - i , -1 ) ) for i in range(1000 )] lowerCamelCase__ = generate_large_matrix() lowerCamelCase__ = ( [[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]], [[3, 2], [1, 0]], [[7, 7, 6]], [[7, 7, 6], [-1, -2, -3]], grid, ) def A(__a: list[list[int]] ): assert all(row == sorted(__a , reverse=__a ) for row in grid ) assert all(list(__a ) == sorted(__a , reverse=__a ) for col in zip(*__a ) ) def A(__a: list[int] ): lowerCAmelCase_ = 0 lowerCAmelCase_ = len(__a ) - 1 # Edge cases such as no values or all numbers are negative. if not array or array[0] < 0: return 0 while right + 1 > left: lowerCAmelCase_ = (left + right) // 2 lowerCAmelCase_ = array[mid] # Num must be negative and the index must be greater than or equal to 0. if num < 0 and array[mid - 1] >= 0: return mid if num >= 0: lowerCAmelCase_ = mid + 1 else: lowerCAmelCase_ = mid - 1 # No negative numbers so return the last index of the array + 1 which is the length. return len(__a ) def A(__a: list[list[int]] ): lowerCAmelCase_ = 0 lowerCAmelCase_ = len(grid[0] ) for i in range(len(__a ) ): lowerCAmelCase_ = find_negative_index(grid[i][:bound] ) total += bound return (len(__a ) * len(grid[0] )) - total def A(__a: list[list[int]] ): return len([number for row in grid for number in row if number < 0] ) def A(__a: list[list[int]] ): lowerCAmelCase_ = 0 for row in grid: for i, number in enumerate(__a ): if number < 0: total += len(__a ) - i break return total def A(): from timeit import timeit print("Running benchmarks" ) lowerCAmelCase_ = ( "from __main__ import count_negatives_binary_search, " "count_negatives_brute_force, count_negatives_brute_force_with_break, grid" ) for func in ( "count_negatives_binary_search", # took 0.7727 seconds "count_negatives_brute_force_with_break", # took 4.6505 seconds "count_negatives_brute_force", # took 12.8160 seconds ): lowerCAmelCase_ = timeit(F"{func}(grid=grid)" , setup=__a , number=500 ) print(F"{func}() took {time:0.4f} seconds" ) if __name__ == "__main__": import doctest doctest.testmod() benchmark()
22
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __UpperCamelCase = { '''configuration_upernet''': ['''UperNetConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = [ '''UperNetForSemanticSegmentation''', '''UperNetPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_upernet import UperNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_upernet import UperNetForSemanticSegmentation, UperNetPreTrainedModel else: import sys __UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
69
from __future__ import annotations from collections.abc import MutableSequence class lowercase__: """simple docstring""" def __init__( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : MutableSequence[float] ) -> None: if len(SCREAMING_SNAKE_CASE_ ) != degree + 1: raise ValueError( '''The number of coefficients should be equal to the degree + 1.''' ) lowercase_ = list(SCREAMING_SNAKE_CASE_ ) lowercase_ = degree def __add__( self : Any , SCREAMING_SNAKE_CASE_ : Polynomial ) -> Polynomial: if self.degree > polynomial_a.degree: lowercase_ = self.coefficients[:] for i in range(polynomial_a.degree + 1 ): coefficients[i] += polynomial_a.coefficients[i] return Polynomial(self.degree , SCREAMING_SNAKE_CASE_ ) else: lowercase_ = polynomial_a.coefficients[:] for i in range(self.degree + 1 ): coefficients[i] += self.coefficients[i] return Polynomial(polynomial_a.degree , SCREAMING_SNAKE_CASE_ ) def __sub__( self : str , SCREAMING_SNAKE_CASE_ : Polynomial ) -> Polynomial: return self + polynomial_a * Polynomial(0 , [-1] ) def __neg__( self : int ) -> Polynomial: return Polynomial(self.degree , [-c for c in self.coefficients] ) def __mul__( self : Any , SCREAMING_SNAKE_CASE_ : Polynomial ) -> Polynomial: lowercase_ = [0] * (self.degree + polynomial_a.degree + 1) for i in range(self.degree + 1 ): for j in range(polynomial_a.degree + 1 ): coefficients[i + j] += ( self.coefficients[i] * polynomial_a.coefficients[j] ) return Polynomial(self.degree + polynomial_a.degree , SCREAMING_SNAKE_CASE_ ) def _lowercase ( self : Dict , SCREAMING_SNAKE_CASE_ : int | float ) -> int | float: lowercase_ = 0 for i in range(self.degree + 1 ): result += self.coefficients[i] * (substitution**i) return result def __str__( self : Tuple ) -> str: lowercase_ = '''''' for i in range(self.degree , -1 , -1 ): if self.coefficients[i] == 0: continue elif self.coefficients[i] > 0: if polynomial: polynomial += " + " else: polynomial += " - " if i == 0: polynomial += str(abs(self.coefficients[i] ) ) elif i == 1: polynomial += str(abs(self.coefficients[i] ) ) + "x" else: polynomial += str(abs(self.coefficients[i] ) ) + "x^" + str(SCREAMING_SNAKE_CASE_ ) return polynomial def __repr__( self : Optional[Any] ) -> str: return self.__str__() def _lowercase ( self : int ) -> Polynomial: lowercase_ = [0] * self.degree for i in range(self.degree ): lowercase_ = self.coefficients[i + 1] * (i + 1) return Polynomial(self.degree - 1 , SCREAMING_SNAKE_CASE_ ) def _lowercase ( self : List[str] , SCREAMING_SNAKE_CASE_ : int | float = 0 ) -> Polynomial: lowercase_ = [0] * (self.degree + 2) lowercase_ = constant for i in range(self.degree + 1 ): lowercase_ = self.coefficients[i] / (i + 1) return Polynomial(self.degree + 1 , SCREAMING_SNAKE_CASE_ ) def __eq__( self : str , SCREAMING_SNAKE_CASE_ : object ) -> bool: if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): return False if self.degree != polynomial_a.degree: return False for i in range(self.degree + 1 ): if self.coefficients[i] != polynomial_a.coefficients[i]: return False return True def __ne__( self : List[str] , SCREAMING_SNAKE_CASE_ : object ) -> bool: return not self.__eq__(SCREAMING_SNAKE_CASE_ )
30
0
def __lowercase ( lowerCamelCase : list[int] ): if not numbers: return 0 if not isinstance(lowerCamelCase , (list, tuple) ) or not all( isinstance(lowerCamelCase , lowerCamelCase ) for number in numbers ): raise ValueError('numbers must be an iterable of integers' ) UpperCamelCase_ : Optional[Any] = numbers[0] for i in range(1 , len(lowerCamelCase ) ): # update the maximum and minimum subarray products UpperCamelCase_ : Tuple = numbers[i] if number < 0: UpperCamelCase_, UpperCamelCase_ : List[str] = min_till_now, max_till_now UpperCamelCase_ : List[str] = max(lowerCamelCase , max_till_now * number ) UpperCamelCase_ : Dict = min(lowerCamelCase , min_till_now * number ) # update the maximum product found till now UpperCamelCase_ : List[str] = max(lowerCamelCase , lowerCamelCase ) return max_prod
50
def __lowercase ( lowerCamelCase : list[int] ): if not numbers: return 0 if not isinstance(lowerCamelCase , (list, tuple) ) or not all( isinstance(lowerCamelCase , lowerCamelCase ) for number in numbers ): raise ValueError('numbers must be an iterable of integers' ) UpperCamelCase_ : Optional[Any] = numbers[0] for i in range(1 , len(lowerCamelCase ) ): # update the maximum and minimum subarray products UpperCamelCase_ : Tuple = numbers[i] if number < 0: UpperCamelCase_, UpperCamelCase_ : List[str] = min_till_now, max_till_now UpperCamelCase_ : List[str] = max(lowerCamelCase , max_till_now * number ) UpperCamelCase_ : Dict = min(lowerCamelCase , min_till_now * number ) # update the maximum product found till now UpperCamelCase_ : List[str] = max(lowerCamelCase , lowerCamelCase ) return max_prod
50
1
"""simple docstring""" import math import os from copy import deepcopy import datasets import evaluate import torch import transformers from datasets import load_dataset from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer from accelerate import Accelerator from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import is_tpu_available, set_seed _A = """true""" def lowercase_ ( __UpperCAmelCase , __UpperCAmelCase=82 , __UpperCAmelCase=16 ) -> Optional[Any]: set_seed(42 ) lowerCAmelCase__ : Optional[int] = RegressionModel() lowerCAmelCase__ : Optional[int] = deepcopy(__UpperCAmelCase ) lowerCAmelCase__ : str = RegressionDataset(length=__UpperCAmelCase ) lowerCAmelCase__ : Union[str, Any] = DataLoader(__UpperCAmelCase , batch_size=__UpperCAmelCase ) model.to(accelerator.device ) lowerCAmelCase__ , lowerCAmelCase__ : Dict = accelerator.prepare(__UpperCAmelCase , __UpperCAmelCase ) return model, ddp_model, dataloader def lowercase_ ( __UpperCAmelCase , __UpperCAmelCase=False ) -> List[Any]: lowerCAmelCase__ : int = AutoTokenizer.from_pretrained("""hf-internal-testing/mrpc-bert-base-cased""" ) lowerCAmelCase__ : Dict = load_dataset("""glue""" , """mrpc""" , split="""validation""" ) def tokenize_function(__UpperCAmelCase ): lowerCAmelCase__ : List[Any] = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=__UpperCAmelCase , max_length=__UpperCAmelCase ) return outputs with accelerator.main_process_first(): lowerCAmelCase__ : Tuple = dataset.map( __UpperCAmelCase , batched=__UpperCAmelCase , remove_columns=["""idx""", """sentence1""", """sentence2"""] , ) lowerCAmelCase__ : Any = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(__UpperCAmelCase ): if use_longest: return tokenizer.pad(__UpperCAmelCase , padding="""longest""" , return_tensors="""pt""" ) return tokenizer.pad(__UpperCAmelCase , padding="""max_length""" , max_length=128 , return_tensors="""pt""" ) return DataLoader(__UpperCAmelCase , shuffle=__UpperCAmelCase , collate_fn=__UpperCAmelCase , batch_size=16 ) def lowercase_ ( __UpperCAmelCase , __UpperCAmelCase ) -> Optional[int]: lowerCAmelCase__ : Optional[int] = Accelerator(dispatch_batches=__UpperCAmelCase , split_batches=__UpperCAmelCase ) lowerCAmelCase__ : Any = get_dataloader(__UpperCAmelCase , not dispatch_batches ) lowerCAmelCase__ : List[Any] = AutoModelForSequenceClassification.from_pretrained( """hf-internal-testing/mrpc-bert-base-cased""" , return_dict=__UpperCAmelCase ) lowerCAmelCase__ , lowerCAmelCase__ : Tuple = accelerator.prepare(__UpperCAmelCase , __UpperCAmelCase ) return {"ddp": [ddp_model, ddp_dataloader, "cuda:0"], "no": [model, dataloader, accelerator.device]}, accelerator def lowercase_ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Any: lowerCAmelCase__ : int = [] for batch in dataloader: lowerCAmelCase__ , lowerCAmelCase__ : List[Any] = batch.values() with torch.no_grad(): lowerCAmelCase__ : List[str] = model(__UpperCAmelCase ) lowerCAmelCase__ , lowerCAmelCase__ : Any = accelerator.gather_for_metrics((logit, target) ) logits_and_targets.append((logit, target) ) lowerCAmelCase__ , lowerCAmelCase__ : List[str] = [], [] for logit, targ in logits_and_targets: logits.append(__UpperCAmelCase ) targs.append(__UpperCAmelCase ) lowerCAmelCase__ , lowerCAmelCase__ : List[str] = torch.cat(__UpperCAmelCase ), torch.cat(__UpperCAmelCase ) return logits, targs def lowercase_ ( __UpperCAmelCase , __UpperCAmelCase=82 , __UpperCAmelCase=False , __UpperCAmelCase=False , __UpperCAmelCase=16 ) -> Any: lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : Tuple = get_basic_setup(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) lowerCAmelCase__ , lowerCAmelCase__ : Optional[Any] = generate_predictions(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) assert ( len(__UpperCAmelCase ) == num_samples ), f"""Unexpected number of inputs:\n Expected: {num_samples}\n Actual: {len(__UpperCAmelCase )}""" def lowercase_ ( __UpperCAmelCase = False , __UpperCAmelCase = False ) -> Union[str, Any]: lowerCAmelCase__ : str = evaluate.load("""glue""" , """mrpc""" ) lowerCAmelCase__ , lowerCAmelCase__ : List[str] = get_mrpc_setup(__UpperCAmelCase , __UpperCAmelCase ) # First do baseline lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : Tuple = setup["""no"""] model.to(__UpperCAmelCase ) model.eval() for batch in dataloader: batch.to(__UpperCAmelCase ) with torch.inference_mode(): lowerCAmelCase__ : Union[str, Any] = model(**__UpperCAmelCase ) lowerCAmelCase__ : Dict = outputs.logits.argmax(dim=-1 ) metric.add_batch(predictions=__UpperCAmelCase , references=batch["""labels"""] ) lowerCAmelCase__ : Tuple = metric.compute() # Then do distributed lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : Any = setup["""ddp"""] model.eval() for batch in dataloader: with torch.inference_mode(): lowerCAmelCase__ : Dict = model(**__UpperCAmelCase ) lowerCAmelCase__ : int = outputs.logits.argmax(dim=-1 ) lowerCAmelCase__ : Optional[int] = batch["""labels"""] lowerCAmelCase__ , lowerCAmelCase__ : Any = accelerator.gather_for_metrics((preds, references) ) metric.add_batch(predictions=__UpperCAmelCase , references=__UpperCAmelCase ) lowerCAmelCase__ : List[str] = metric.compute() for key in "accuracy f1".split(): assert math.isclose( baseline[key] , distributed[key] ), f"""Baseline and Distributed are not the same for key {key}:\n\tBaseline: {baseline[key]}\n\tDistributed: {distributed[key]}\n""" def lowercase_ ( ) -> Tuple: lowerCAmelCase__ : Optional[int] = Accelerator(split_batches=__UpperCAmelCase , dispatch_batches=__UpperCAmelCase ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_warning() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # These are a bit slower so they should only be ran on the GPU or TPU if torch.cuda.is_available() or is_tpu_available(): if accelerator.is_local_main_process: print("""**Testing gather_for_metrics**""" ) for split_batches in [True, False]: for dispatch_batches in [True, False]: if accelerator.is_local_main_process: print(f"""With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`""" ) test_mrpc(__UpperCAmelCase , __UpperCAmelCase ) accelerator.state._reset_state() if accelerator.is_local_main_process: print("""**Test torch metrics**""" ) for split_batches in [True, False]: for dispatch_batches in [True, False]: lowerCAmelCase__ : Dict = Accelerator(split_batches=__UpperCAmelCase , dispatch_batches=__UpperCAmelCase ) if accelerator.is_local_main_process: print(f"""With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`, length=99""" ) test_torch_metrics(__UpperCAmelCase , 99 ) accelerator.state._reset_state() if accelerator.is_local_main_process: print("""**Test last batch is not dropped when perfectly divisible**""" ) lowerCAmelCase__ : Union[str, Any] = Accelerator() test_torch_metrics(__UpperCAmelCase , 512 ) accelerator.state._reset_state() def lowercase_ ( __UpperCAmelCase ) -> Dict: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
242
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ..models.auto import AutoModelForVisionaSeq from ..utils import requires_backends from .base import PipelineTool if TYPE_CHECKING: from PIL import Image class _lowerCamelCase ( a_ ): _lowerCamelCase :Any = "Salesforce/blip-image-captioning-base" _lowerCamelCase :int = ( "This is a tool that generates a description of an image. It takes an input named `image` which should be the " "image to caption, and returns a text that contains the description in English." ) _lowerCamelCase :List[Any] = "image_captioner" _lowerCamelCase :Tuple = AutoModelForVisionaSeq _lowerCamelCase :Dict = ["image"] _lowerCamelCase :str = ["text"] def __init__( self : Dict , *UpperCamelCase : Any , **UpperCamelCase : Any ) -> Any: """simple docstring""" requires_backends(self , ["""vision"""] ) super().__init__(*UpperCamelCase , **UpperCamelCase ) def _lowerCAmelCase ( self : Any , UpperCamelCase : "Image" ) -> Union[str, Any]: """simple docstring""" return self.pre_processor(images=UpperCamelCase , return_tensors="""pt""" ) def _lowerCAmelCase ( self : Optional[Any] , UpperCamelCase : str ) -> Tuple: """simple docstring""" return self.model.generate(**UpperCamelCase ) def _lowerCAmelCase ( self : Tuple , UpperCamelCase : int ) -> Tuple: """simple docstring""" return self.pre_processor.batch_decode(UpperCamelCase , skip_special_tokens=UpperCamelCase )[0].strip()
242
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging A : int = logging.get_logger(__name__) A : List[str] = { "facebook/timesformer": "https://huggingface.co/facebook/timesformer/resolve/main/config.json", } class _UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' __UpperCAmelCase : str ="""timesformer""" def __init__( self , __a=2_24 , __a=16 , __a=3 , __a=8 , __a=7_68 , __a=12 , __a=12 , __a=30_72 , __a="gelu" , __a=0.0 , __a=0.0 , __a=0.0_2 , __a=1e-6 , __a=True , __a="divided_space_time" , __a=0 , **__a , ): super().__init__(**__a ) __lowerCAmelCase = image_size __lowerCAmelCase = patch_size __lowerCAmelCase = num_channels __lowerCAmelCase = num_frames __lowerCAmelCase = hidden_size __lowerCAmelCase = num_hidden_layers __lowerCAmelCase = num_attention_heads __lowerCAmelCase = intermediate_size __lowerCAmelCase = hidden_act __lowerCAmelCase = hidden_dropout_prob __lowerCAmelCase = attention_probs_dropout_prob __lowerCAmelCase = initializer_range __lowerCAmelCase = layer_norm_eps __lowerCAmelCase = qkv_bias __lowerCAmelCase = attention_type __lowerCAmelCase = drop_path_rate
355
"""simple docstring""" import os from pathlib import Path import numpy as np import pytest from pack_dataset import pack_data_dir from parameterized import parameterized from save_len_file import save_len_file from torch.utils.data import DataLoader from transformers import AutoTokenizer from transformers.models.mbart.modeling_mbart import shift_tokens_right from transformers.testing_utils import TestCasePlus, slow from utils import FAIRSEQ_AVAILABLE, DistributedSortishSampler, LegacySeqaSeqDataset, SeqaSeqDataset A : Any = "bert-base-cased" A : Any = "google/pegasus-xsum" A : Union[str, Any] = [" Sam ate lunch today.", "Sams lunch ingredients."] A : Union[str, Any] = ["A very interesting story about what I ate for lunch.", "Avocado, celery, turkey, coffee"] A : Optional[int] = "patrickvonplaten/t5-tiny-random" A : int = "sshleifer/bart-tiny-random" A : Optional[int] = "sshleifer/tiny-mbart" A : Any = "sshleifer/tiny-marian-en-de" def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = "\n".join(_UpperCamelCase ) Path(_UpperCamelCase ).open("w" ).writelines(_UpperCamelCase ) def _lowerCamelCase ( _UpperCamelCase ): '''simple docstring''' for split in ["train", "val", "test"]: _dump_articles(os.path.join(_UpperCamelCase , f"{split}.source" ) , _UpperCamelCase ) _dump_articles(os.path.join(_UpperCamelCase , f"{split}.target" ) , _UpperCamelCase ) return tmp_dir class _UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' @parameterized.expand( [ MBART_TINY, MARIAN_TINY, T5_TINY, BART_TINY, PEGASUS_XSUM, ] , ) @slow def snake_case ( self , __a ): __lowerCAmelCase = AutoTokenizer.from_pretrained(__a ) __lowerCAmelCase = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) __lowerCAmelCase = max(len(tokenizer.encode(__a ) ) for a in ARTICLES ) __lowerCAmelCase = max(len(tokenizer.encode(__a ) ) for a in SUMMARIES ) __lowerCAmelCase = 4 __lowerCAmelCase = 8 assert max_len_target > max_src_len # Will be truncated assert max_len_source > max_src_len # Will be truncated __lowerCAmelCase , __lowerCAmelCase = "ro_RO", "de_DE" # ignored for all but mbart, but never causes error. __lowerCAmelCase = SeqaSeqDataset( __a , data_dir=__a , type_path="train" , max_source_length=__a , max_target_length=__a , src_lang=__a , tgt_lang=__a , ) __lowerCAmelCase = DataLoader(__a , batch_size=2 , collate_fn=train_dataset.collate_fn ) for batch in dataloader: assert isinstance(__a , __a ) assert batch["attention_mask"].shape == batch["input_ids"].shape # show that articles were trimmed. assert batch["input_ids"].shape[1] == max_src_len # show that targets are the same len assert batch["labels"].shape[1] == max_tgt_len if tok_name != MBART_TINY: continue # check language codes in correct place __lowerCAmelCase = shift_tokens_right(batch["labels"] , tokenizer.pad_token_id ) assert batch["decoder_input_ids"][0, 0].item() == tokenizer.lang_code_to_id[tgt_lang] assert batch["decoder_input_ids"][0, -1].item() == tokenizer.eos_token_id assert batch["input_ids"][0, -2].item() == tokenizer.eos_token_id assert batch["input_ids"][0, -1].item() == tokenizer.lang_code_to_id[src_lang] break # No need to test every batch @parameterized.expand([BART_TINY, BERT_BASE_CASED] ) def snake_case ( self , __a ): __lowerCAmelCase = AutoTokenizer.from_pretrained(__a ) __lowerCAmelCase = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) __lowerCAmelCase = max(len(tokenizer.encode(__a ) ) for a in ARTICLES ) __lowerCAmelCase = max(len(tokenizer.encode(__a ) ) for a in SUMMARIES ) __lowerCAmelCase = 4 __lowerCAmelCase = LegacySeqaSeqDataset( __a , data_dir=__a , type_path="train" , max_source_length=20 , max_target_length=__a , ) __lowerCAmelCase = DataLoader(__a , batch_size=2 , collate_fn=train_dataset.collate_fn ) for batch in dataloader: assert batch["attention_mask"].shape == batch["input_ids"].shape # show that articles were trimmed. assert batch["input_ids"].shape[1] == max_len_source assert 20 >= batch["input_ids"].shape[1] # trimmed significantly # show that targets were truncated assert batch["labels"].shape[1] == trunc_target # Truncated assert max_len_target > trunc_target # Truncated break # No need to test every batch def snake_case ( self ): __lowerCAmelCase = AutoTokenizer.from_pretrained("facebook/mbart-large-cc25" ) __lowerCAmelCase = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) ) __lowerCAmelCase = tmp_dir.joinpath("train.source" ).open().readlines() __lowerCAmelCase = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) ) pack_data_dir(__a , __a , 1_28 , __a ) __lowerCAmelCase = {x.name for x in tmp_dir.iterdir()} __lowerCAmelCase = {x.name for x in save_dir.iterdir()} __lowerCAmelCase = save_dir.joinpath("train.source" ).open().readlines() # orig: [' Sam ate lunch today.\n', 'Sams lunch ingredients.'] # desired_packed: [' Sam ate lunch today.\n Sams lunch ingredients.'] assert len(__a ) < len(__a ) assert len(__a ) == 1 assert len(packed_examples[0] ) == sum(len(__a ) for x in orig_examples ) assert orig_paths == new_paths @pytest.mark.skipif(not FAIRSEQ_AVAILABLE , reason="This test requires fairseq" ) def snake_case ( self ): if not FAIRSEQ_AVAILABLE: return __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = self._get_dataset(max_len=64 ) __lowerCAmelCase = 64 __lowerCAmelCase = ds.make_dynamic_sampler(__a , required_batch_size_multiple=__a ) __lowerCAmelCase = [len(__a ) for x in batch_sampler] assert len(set(__a ) ) > 1 # it's not dynamic batch size if every batch is the same length assert sum(__a ) == len(__a ) # no dropped or added examples __lowerCAmelCase = DataLoader(__a , batch_sampler=__a , collate_fn=ds.collate_fn , num_workers=2 ) __lowerCAmelCase = [] __lowerCAmelCase = [] for batch in data_loader: __lowerCAmelCase = batch["input_ids"].shape __lowerCAmelCase = src_shape[0] assert bs % required_batch_size_multiple == 0 or bs < required_batch_size_multiple __lowerCAmelCase = np.product(batch["input_ids"].shape ) num_src_per_batch.append(__a ) if num_src_tokens > (max_tokens * 1.1): failures.append(__a ) assert num_src_per_batch[0] == max(__a ) if failures: raise AssertionError(f"too many tokens in {len(__a )} batches" ) def snake_case ( self ): __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = self._get_dataset(max_len=5_12 ) __lowerCAmelCase = 2 __lowerCAmelCase = ds.make_sortish_sampler(__a , shuffle=__a ) __lowerCAmelCase = DataLoader(__a , batch_size=__a , collate_fn=ds.collate_fn , num_workers=2 ) __lowerCAmelCase = DataLoader(__a , batch_size=__a , collate_fn=ds.collate_fn , num_workers=2 , sampler=__a ) __lowerCAmelCase = tokenizer.pad_token_id def count_pad_tokens(__a , __a="input_ids" ): return [batch[k].eq(__a ).sum().item() for batch in data_loader] assert sum(count_pad_tokens(__a , k="labels" ) ) < sum(count_pad_tokens(__a , k="labels" ) ) assert sum(count_pad_tokens(__a ) ) < sum(count_pad_tokens(__a ) ) assert len(__a ) == len(__a ) def snake_case ( self , __a=10_00 , __a=1_28 ): if os.getenv("USE_REAL_DATA" , __a ): __lowerCAmelCase = "examples/seq2seq/wmt_en_ro" __lowerCAmelCase = max_len * 2 * 64 if not Path(__a ).joinpath("train.len" ).exists(): save_len_file(__a , __a ) else: __lowerCAmelCase = "examples/seq2seq/test_data/wmt_en_ro" __lowerCAmelCase = max_len * 4 save_len_file(__a , __a ) __lowerCAmelCase = AutoTokenizer.from_pretrained(__a ) __lowerCAmelCase = SeqaSeqDataset( __a , data_dir=__a , type_path="train" , max_source_length=__a , max_target_length=__a , n_obs=__a , ) return ds, max_tokens, tokenizer def snake_case ( self ): __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = self._get_dataset() __lowerCAmelCase = set(DistributedSortishSampler(__a , 2_56 , num_replicas=2 , rank=0 , add_extra_examples=__a ) ) __lowerCAmelCase = set(DistributedSortishSampler(__a , 2_56 , num_replicas=2 , rank=1 , add_extra_examples=__a ) ) assert idsa.intersection(__a ) == set() @parameterized.expand( [ MBART_TINY, MARIAN_TINY, T5_TINY, BART_TINY, PEGASUS_XSUM, ] , ) def snake_case ( self , __a ): __lowerCAmelCase = AutoTokenizer.from_pretrained(__a , use_fast=__a ) if tok_name == MBART_TINY: __lowerCAmelCase = SeqaSeqDataset( __a , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) , type_path="train" , max_source_length=4 , max_target_length=8 , src_lang="EN" , tgt_lang="FR" , ) __lowerCAmelCase = train_dataset.dataset_kwargs assert "src_lang" in kwargs and "tgt_lang" in kwargs else: __lowerCAmelCase = SeqaSeqDataset( __a , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) , type_path="train" , max_source_length=4 , max_target_length=8 , ) __lowerCAmelCase = train_dataset.dataset_kwargs assert "add_prefix_space" not in kwargs if tok_name != BART_TINY else "add_prefix_space" in kwargs assert len(__a ) == 1 if tok_name == BART_TINY else len(__a ) == 0
259
0
from dataclasses import dataclass from typing import Dict, Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .attention_processor import AttentionProcessor, AttnProcessor from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, DiagonalGaussianDistribution, Encoder @dataclass class lowercase ( UpperCamelCase__ ): _a = 42 class lowercase ( UpperCamelCase__,UpperCamelCase__ ): _a = True @register_to_config def __init__( self , _a = 3 , _a = 3 , _a = ("DownEncoderBlock2D",) , _a = ("UpDecoderBlock2D",) , _a = (64,) , _a = 1 , _a = "silu" , _a = 4 , _a = 32 , _a = 32 , _a = 0.18215 , ) -> Any: super().__init__() # pass init params to Encoder _A : Tuple = Encoder( in_channels=_a , out_channels=_a , down_block_types=_a , block_out_channels=_a , layers_per_block=_a , act_fn=_a , norm_num_groups=_a , double_z=_a , ) # pass init params to Decoder _A : Union[str, Any] = Decoder( in_channels=_a , out_channels=_a , up_block_types=_a , block_out_channels=_a , layers_per_block=_a , norm_num_groups=_a , act_fn=_a , ) _A : Any = nn.Convad(2 * latent_channels , 2 * latent_channels , 1 ) _A : List[str] = nn.Convad(_a , _a , 1 ) _A : List[Any] = False _A : Any = False # only relevant if vae tiling is enabled _A : Any = self.config.sample_size _A : Union[str, Any] = ( self.config.sample_size[0] if isinstance(self.config.sample_size , (list, tuple) ) else self.config.sample_size ) _A : List[str] = int(sample_size / (2 ** (len(self.config.block_out_channels ) - 1)) ) _A : int = 0.25 def a__ ( self , _a , _a=False ) -> str: if isinstance(_a , (Encoder, Decoder) ): _A : Dict = value def a__ ( self , _a = True ) -> int: _A : int = use_tiling def a__ ( self ) -> Dict: self.enable_tiling(_a ) def a__ ( self ) -> Optional[int]: _A : Tuple = True def a__ ( self ) -> List[str]: _A : List[Any] = False @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def a__ ( self ) -> Dict[str, AttentionProcessor]: _A : Dict = {} def fn_recursive_add_processors(_a , _a , _a ): if hasattr(_a , """set_processor""" ): _A : Optional[int] = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(F'''{name}.{sub_name}''' , _a , _a ) return processors for name, module in self.named_children(): fn_recursive_add_processors(_a , _a , _a ) return processors def a__ ( self , _a ) -> str: _A : int = len(self.attn_processors.keys() ) if isinstance(_a , _a ) and len(_a ) != count: raise ValueError( F'''A dict of processors was passed, but the number of processors {len(_a )} does not match the''' F''' number of attention layers: {count}. Please make sure to pass {count} processor classes.''' ) def fn_recursive_attn_processor(_a , _a , _a ): if hasattr(_a , """set_processor""" ): if not isinstance(_a , _a ): module.set_processor(_a ) else: module.set_processor(processor.pop(F'''{name}.processor''' ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(F'''{name}.{sub_name}''' , _a , _a ) for name, module in self.named_children(): fn_recursive_attn_processor(_a , _a , _a ) def a__ ( self ) -> Dict: self.set_attn_processor(AttnProcessor() ) @apply_forward_hook def a__ ( self , _a , _a = True ) -> AutoencoderKLOutput: if self.use_tiling and (x.shape[-1] > self.tile_sample_min_size or x.shape[-2] > self.tile_sample_min_size): return self.tiled_encode(_a , return_dict=_a ) if self.use_slicing and x.shape[0] > 1: _A : List[Any] = [self.encoder(_a ) for x_slice in x.split(1 )] _A : Dict = torch.cat(_a ) else: _A : Any = self.encoder(_a ) _A : Tuple = self.quant_conv(_a ) _A : Any = DiagonalGaussianDistribution(_a ) if not return_dict: return (posterior,) return AutoencoderKLOutput(latent_dist=_a ) def a__ ( self , _a , _a = True ) -> Union[DecoderOutput, torch.FloatTensor]: if self.use_tiling and (z.shape[-1] > self.tile_latent_min_size or z.shape[-2] > self.tile_latent_min_size): return self.tiled_decode(_a , return_dict=_a ) _A : Union[str, Any] = self.post_quant_conv(_a ) _A : int = self.decoder(_a ) if not return_dict: return (dec,) return DecoderOutput(sample=_a ) @apply_forward_hook def a__ ( self , _a , _a = True ) -> Union[DecoderOutput, torch.FloatTensor]: if self.use_slicing and z.shape[0] > 1: _A : Dict = [self._decode(_a ).sample for z_slice in z.split(1 )] _A : str = torch.cat(_a ) else: _A : Optional[int] = self._decode(_a ).sample if not return_dict: return (decoded,) return DecoderOutput(sample=_a ) def a__ ( self , _a , _a , _a ) -> Any: _A : int = min(a.shape[2] , b.shape[2] , _a ) for y in range(_a ): _A : List[Any] = a[:, :, -blend_extent + y, :] * (1 - y / blend_extent) + b[:, :, y, :] * (y / blend_extent) return b def a__ ( self , _a , _a , _a ) -> Tuple: _A : Union[str, Any] = min(a.shape[3] , b.shape[3] , _a ) for x in range(_a ): _A : int = a[:, :, :, -blend_extent + x] * (1 - x / blend_extent) + b[:, :, :, x] * (x / blend_extent) return b def a__ ( self , _a , _a = True ) -> AutoencoderKLOutput: _A : Tuple = int(self.tile_sample_min_size * (1 - self.tile_overlap_factor) ) _A : List[Any] = int(self.tile_latent_min_size * self.tile_overlap_factor ) _A : Union[str, Any] = self.tile_latent_min_size - blend_extent # Split the image into 512x512 tiles and encode them separately. _A : str = [] for i in range(0 , x.shape[2] , _a ): _A : Dict = [] for j in range(0 , x.shape[3] , _a ): _A : Optional[int] = x[:, :, i : i + self.tile_sample_min_size, j : j + self.tile_sample_min_size] _A : Any = self.encoder(_a ) _A : List[str] = self.quant_conv(_a ) row.append(_a ) rows.append(_a ) _A : List[str] = [] for i, row in enumerate(_a ): _A : Any = [] for j, tile in enumerate(_a ): # blend the above tile and the left tile # to the current tile and add the current tile to the result row if i > 0: _A : str = self.blend_v(rows[i - 1][j] , _a , _a ) if j > 0: _A : Tuple = self.blend_h(row[j - 1] , _a , _a ) result_row.append(tile[:, :, :row_limit, :row_limit] ) result_rows.append(torch.cat(_a , dim=3 ) ) _A : Tuple = torch.cat(_a , dim=2 ) _A : Union[str, Any] = DiagonalGaussianDistribution(_a ) if not return_dict: return (posterior,) return AutoencoderKLOutput(latent_dist=_a ) def a__ ( self , _a , _a = True ) -> Union[DecoderOutput, torch.FloatTensor]: _A : List[str] = int(self.tile_latent_min_size * (1 - self.tile_overlap_factor) ) _A : List[str] = int(self.tile_sample_min_size * self.tile_overlap_factor ) _A : Dict = self.tile_sample_min_size - blend_extent # Split z into overlapping 64x64 tiles and decode them separately. # The tiles have an overlap to avoid seams between tiles. _A : Optional[Any] = [] for i in range(0 , z.shape[2] , _a ): _A : List[str] = [] for j in range(0 , z.shape[3] , _a ): _A : Any = z[:, :, i : i + self.tile_latent_min_size, j : j + self.tile_latent_min_size] _A : List[str] = self.post_quant_conv(_a ) _A : List[Any] = self.decoder(_a ) row.append(_a ) rows.append(_a ) _A : Dict = [] for i, row in enumerate(_a ): _A : str = [] for j, tile in enumerate(_a ): # blend the above tile and the left tile # to the current tile and add the current tile to the result row if i > 0: _A : Optional[Any] = self.blend_v(rows[i - 1][j] , _a , _a ) if j > 0: _A : Tuple = self.blend_h(row[j - 1] , _a , _a ) result_row.append(tile[:, :, :row_limit, :row_limit] ) result_rows.append(torch.cat(_a , dim=3 ) ) _A : Optional[Any] = torch.cat(_a , dim=2 ) if not return_dict: return (dec,) return DecoderOutput(sample=_a ) def a__ ( self , _a , _a = False , _a = True , _a = None , ) -> Union[DecoderOutput, torch.FloatTensor]: _A : Tuple = sample _A : Union[str, Any] = self.encode(_a ).latent_dist if sample_posterior: _A : str = posterior.sample(generator=_a ) else: _A : Any = posterior.mode() _A : str = self.decode(_a ).sample if not return_dict: return (dec,) return DecoderOutput(sample=_a )
26
from __future__ import annotations import numpy as np def lowerCAmelCase_ ( snake_case_ ): return np.maximum(0,snake_case_ ) if __name__ == "__main__": print(np.array(relu([-1, 0, 5]))) # --> [0, 0, 5]
26
1
'''simple docstring''' import unittest from transformers import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING, is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class UpperCamelCase_ : """simple docstring""" @staticmethod def _a ( *_lowerCamelCase : Optional[Any] , **_lowerCamelCase : Optional[int] ): """simple docstring""" pass @is_pipeline_test @require_torch @require_vision class UpperCamelCase_ (unittest.TestCase ): """simple docstring""" _lowerCAmelCase = MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING def _a ( self : List[str] , _lowerCamelCase : Any , _lowerCamelCase : List[str] , _lowerCamelCase : List[Any] ): """simple docstring""" A_ : List[str] = pipeline('''visual-question-answering''' , model='''hf-internal-testing/tiny-vilt-random-vqa''' ) A_ : Optional[Any] = [ { '''image''': Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ), '''question''': '''How many cats are there?''', }, { '''image''': '''./tests/fixtures/tests_samples/COCO/000000039769.png''', '''question''': '''How many cats are there?''', }, ] return vqa_pipeline, examples def _a ( self : List[Any] , _lowerCamelCase : List[str] , _lowerCamelCase : Optional[Any] ): """simple docstring""" A_ : str = vqa_pipeline(lowercase_ , top_k=1 ) self.assertEqual( lowercase_ , [ [{'''score''': ANY(lowercase_ ), '''answer''': ANY(lowercase_ )}], [{'''score''': ANY(lowercase_ ), '''answer''': ANY(lowercase_ )}], ] , ) @require_torch def _a ( self : Dict ): """simple docstring""" A_ : str = pipeline('''visual-question-answering''' , model='''hf-internal-testing/tiny-vilt-random-vqa''' ) A_ : Optional[int] = '''./tests/fixtures/tests_samples/COCO/000000039769.png''' A_ : int = '''How many cats are there?''' A_ : Tuple = vqa_pipeline(image=lowercase_ , question='''How many cats are there?''' , top_k=2 ) self.assertEqual( lowercase_ , [{'''score''': ANY(lowercase_ ), '''answer''': ANY(lowercase_ )}, {'''score''': ANY(lowercase_ ), '''answer''': ANY(lowercase_ )}] ) A_ : List[str] = vqa_pipeline({'''image''': image, '''question''': question} , top_k=2 ) self.assertEqual( lowercase_ , [{'''score''': ANY(lowercase_ ), '''answer''': ANY(lowercase_ )}, {'''score''': ANY(lowercase_ ), '''answer''': ANY(lowercase_ )}] ) @slow @require_torch def _a ( self : Dict ): """simple docstring""" A_ : str = pipeline('''visual-question-answering''' , model='''dandelin/vilt-b32-finetuned-vqa''' ) A_ : List[str] = '''./tests/fixtures/tests_samples/COCO/000000039769.png''' A_ : Dict = '''How many cats are there?''' A_ : int = vqa_pipeline(image=lowercase_ , question=lowercase_ , top_k=2 ) self.assertEqual( nested_simplify(lowercase_ , decimals=4 ) , [{'''score''': 0.87_99, '''answer''': '''2'''}, {'''score''': 0.2_96, '''answer''': '''1'''}] ) A_ : List[Any] = vqa_pipeline({'''image''': image, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(lowercase_ , decimals=4 ) , [{'''score''': 0.87_99, '''answer''': '''2'''}, {'''score''': 0.2_96, '''answer''': '''1'''}] ) A_ : Dict = vqa_pipeline( [{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2 ) self.assertEqual( nested_simplify(lowercase_ , decimals=4 ) , [[{'''score''': 0.87_99, '''answer''': '''2'''}, {'''score''': 0.2_96, '''answer''': '''1'''}]] * 2 , ) @require_tf @unittest.skip('''Visual question answering not implemented in TF''' ) def _a ( self : Optional[Any] ): """simple docstring""" pass
355
'''simple docstring''' def snake_case__ ( lowerCamelCase__ : list[int] , lowerCamelCase__ : list[int] , lowerCamelCase__ : int ) -> bool: return not any( neighbour == 1 and colored_vertices[i] == color for i, neighbour in enumerate(lowerCamelCase__ ) ) def snake_case__ ( lowerCamelCase__ : list[list[int]] , lowerCamelCase__ : int , lowerCamelCase__ : list[int] , lowerCamelCase__ : int ) -> bool: # Base Case if index == len(lowerCamelCase__ ): return True # Recursive Step for i in range(lowerCamelCase__ ): if valid_coloring(graph[index] , lowerCamelCase__ , lowerCamelCase__ ): # Color current vertex A_ : int = i # Validate coloring if util_color(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , index + 1 ): return True # Backtrack A_ : str = -1 return False def snake_case__ ( lowerCamelCase__ : list[list[int]] , lowerCamelCase__ : int ) -> list[int]: A_ : List[str] = [-1] * len(lowerCamelCase__ ) if util_color(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , 0 ): return colored_vertices return []
4
0
'''simple docstring''' from manim import * class _lowercase ( _lowercase ): def lowerCamelCase_ ( self: List[Any] ): lowerCamelCase__ : List[Any] = Rectangle(height=0.5 , width=0.5 ) lowerCamelCase__ : int = Rectangle(height=0.25 , width=0.25 ) lowerCamelCase__ : Optional[int] = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) lowerCamelCase__ : List[str] = [mem.copy() for i in range(6 )] lowerCamelCase__ : List[Any] = [mem.copy() for i in range(6 )] lowerCamelCase__ : int = VGroup(*UpperCamelCase__ ).arrange(UpperCamelCase__ , buff=0 ) lowerCamelCase__ : Dict = VGroup(*UpperCamelCase__ ).arrange(UpperCamelCase__ , buff=0 ) lowerCamelCase__ : str = VGroup(UpperCamelCase__ , UpperCamelCase__ ).arrange(UpperCamelCase__ , buff=0 ) lowerCamelCase__ : List[str] = Text("""CPU""" , font_size=24 ) lowerCamelCase__ : Dict = Group(UpperCamelCase__ , UpperCamelCase__ ).arrange(UpperCamelCase__ , buff=0.5 , aligned_edge=UpperCamelCase__ ) cpu.move_to([-2.5, -0.5, 0] ) self.add(UpperCamelCase__ ) lowerCamelCase__ : str = [mem.copy() for i in range(4 )] lowerCamelCase__ : Dict = VGroup(*UpperCamelCase__ ).arrange(UpperCamelCase__ , buff=0 ) lowerCamelCase__ : Dict = Text("""GPU""" , font_size=24 ) lowerCamelCase__ : Union[str, Any] = Group(UpperCamelCase__ , UpperCamelCase__ ).arrange(UpperCamelCase__ , buff=0.5 , aligned_edge=UpperCamelCase__ ) gpu.move_to([-1, -1, 0] ) self.add(UpperCamelCase__ ) lowerCamelCase__ : Optional[Any] = [mem.copy() for i in range(6 )] lowerCamelCase__ : Tuple = VGroup(*UpperCamelCase__ ).arrange(UpperCamelCase__ , buff=0 ) lowerCamelCase__ : List[Any] = Text("""Model""" , font_size=24 ) lowerCamelCase__ : Any = Group(UpperCamelCase__ , UpperCamelCase__ ).arrange(UpperCamelCase__ , buff=0.5 , aligned_edge=UpperCamelCase__ ) model.move_to([3, -1.0, 0] ) self.add(UpperCamelCase__ ) lowerCamelCase__ : Optional[int] = [] lowerCamelCase__ : Tuple = [] lowerCamelCase__ : Union[str, Any] = [] for i, rect in enumerate(UpperCamelCase__ ): rect.set_stroke(UpperCamelCase__ ) lowerCamelCase__ : Dict = Rectangle(height=0.46 / 4 , width=0.46 / 3 ).set_stroke(width=0.0 ).set_fill(UpperCamelCase__ , opacity=0.7 ) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=UpperCamelCase__ ) cpu_target.set_x(cpu_target.get_x() + 0.1 ) elif i == 3: cpu_target.next_to(model_cpu_arr[0] , direction=UpperCamelCase__ , buff=0.0 ) else: cpu_target.next_to(model_cpu_arr[i - 1] , direction=UpperCamelCase__ , buff=0.0 ) self.add(UpperCamelCase__ ) model_cpu_arr.append(UpperCamelCase__ ) self.add(*UpperCamelCase__ , *UpperCamelCase__ , *UpperCamelCase__ ) lowerCamelCase__ : Optional[Any] = [mem.copy() for i in range(6 )] lowerCamelCase__ : Any = VGroup(*UpperCamelCase__ ).arrange(UpperCamelCase__ , buff=0 ) lowerCamelCase__ : Dict = Text("""Loaded Checkpoint""" , font_size=24 ) lowerCamelCase__ : Tuple = Group(UpperCamelCase__ , UpperCamelCase__ ).arrange(UpperCamelCase__ , buff=0.5 , aligned_edge=UpperCamelCase__ ) checkpoint.move_to([3, 0.5, 0] ) self.add(UpperCamelCase__ ) lowerCamelCase__ : Dict = [] lowerCamelCase__ : Dict = [] for i, rect in enumerate(UpperCamelCase__ ): lowerCamelCase__ : Tuple = fill.copy().set_fill(UpperCamelCase__ , opacity=0.7 ) target.move_to(UpperCamelCase__ ) ckpt_arr.append(UpperCamelCase__ ) lowerCamelCase__ : List[Any] = target.copy() if i < 5: cpu_target.move_to(cpu_left_col_base[i + 1] ) else: cpu_target.move_to(cpu_right_col_base[i - 5] ) ckpt_cpu_arr.append(UpperCamelCase__ ) self.add(*UpperCamelCase__ , *UpperCamelCase__ ) lowerCamelCase__ : str = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) lowerCamelCase__ : int = MarkupText( F'''<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model''' , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(UpperCamelCase__ , UpperCamelCase__ ) lowerCamelCase__ : Optional[int] = MarkupText( F'''<span fgcolor=\'{BLUE}\'>●</span> Checkpoint''' , font_size=18 , ) blue_text.next_to(UpperCamelCase__ , DOWN * 2.4 , aligned_edge=key_text.get_left() ) self.add(UpperCamelCase__ ) lowerCamelCase__ : Tuple = MarkupText( F'''Based on the passed in configuration, weights are stored in\na variety of np.memmaps on disk or to a particular device.''' , font_size=24 , ) step_a.move_to([2, 2, 0] ) lowerCamelCase__ : int = [meta_mem.copy() for i in range(6 )] lowerCamelCase__ : Union[str, Any] = [meta_mem.copy() for i in range(6 )] lowerCamelCase__ : List[str] = VGroup(*UpperCamelCase__ ).arrange(UpperCamelCase__ , buff=0 ) lowerCamelCase__ : Optional[int] = VGroup(*UpperCamelCase__ ).arrange(UpperCamelCase__ , buff=0 ) lowerCamelCase__ : List[str] = VGroup(UpperCamelCase__ , UpperCamelCase__ ).arrange(UpperCamelCase__ , buff=0 ) lowerCamelCase__ : Any = Text("""Disk""" , font_size=24 ) lowerCamelCase__ : List[str] = Group(UpperCamelCase__ , UpperCamelCase__ ).arrange(UpperCamelCase__ , buff=0.5 , aligned_edge=UpperCamelCase__ ) disk.move_to([-4.0, -1.25, 0] ) self.play(Write(UpperCamelCase__ , run_time=3 ) , Write(UpperCamelCase__ , run_time=1 ) , Create(UpperCamelCase__ , run_time=1 ) ) lowerCamelCase__ : Union[str, Any] = [] for i, rect in enumerate(UpperCamelCase__ ): lowerCamelCase__ : List[Any] = rect.copy() target.generate_target() target.target.move_to(disk_left_col_base[i] ).scale(0.5 ) animations.append(MoveToTarget(UpperCamelCase__ , run_time=1.5 ) ) self.play(*UpperCamelCase__ ) self.play(FadeOut(UpperCamelCase__ ) ) lowerCamelCase__ : Any = MarkupText(F'''Then, the checkpoint is removed from memory\nthrough garbage collection.''' , font_size=24 ) step_a.move_to([2, 2, 0] ) self.play(Write(UpperCamelCase__ , run_time=3 ) ) self.play( FadeOut(UpperCamelCase__ , UpperCamelCase__ , *UpperCamelCase__ , *UpperCamelCase__ ) , ) self.wait()
41
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( BertTokenizer, ViltConfig, ViltForImageAndTextRetrieval, ViltForImagesAndTextClassification, ViltForMaskedLM, ViltForQuestionAnswering, ViltImageProcessor, ViltProcessor, ) from transformers.utils import logging logging.set_verbosity_info() _A : List[str] =logging.get_logger(__name__) def SCREAMING_SNAKE_CASE_ (UpperCamelCase , UpperCamelCase=False , UpperCamelCase=False , UpperCamelCase=False ) -> Union[str, Any]: lowerCamelCase__ : str = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f'''transformer.blocks.{i}.norm1.weight''', f'''vilt.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((f'''transformer.blocks.{i}.norm1.bias''', f'''vilt.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append( (f'''transformer.blocks.{i}.attn.proj.weight''', f'''vilt.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append( (f'''transformer.blocks.{i}.attn.proj.bias''', f'''vilt.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append((f'''transformer.blocks.{i}.norm2.weight''', f'''vilt.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((f'''transformer.blocks.{i}.norm2.bias''', f'''vilt.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append( (f'''transformer.blocks.{i}.mlp.fc1.weight''', f'''vilt.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append((f'''transformer.blocks.{i}.mlp.fc1.bias''', f'''vilt.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append((f'''transformer.blocks.{i}.mlp.fc2.weight''', f'''vilt.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((f'''transformer.blocks.{i}.mlp.fc2.bias''', f'''vilt.encoder.layer.{i}.output.dense.bias''') ) # embeddings rename_keys.extend( [ # text embeddings ("""text_embeddings.word_embeddings.weight""", """vilt.embeddings.text_embeddings.word_embeddings.weight"""), ( """text_embeddings.position_embeddings.weight""", """vilt.embeddings.text_embeddings.position_embeddings.weight""", ), ("""text_embeddings.position_ids""", """vilt.embeddings.text_embeddings.position_ids"""), ( """text_embeddings.token_type_embeddings.weight""", """vilt.embeddings.text_embeddings.token_type_embeddings.weight""", ), ("""text_embeddings.LayerNorm.weight""", """vilt.embeddings.text_embeddings.LayerNorm.weight"""), ("""text_embeddings.LayerNorm.bias""", """vilt.embeddings.text_embeddings.LayerNorm.bias"""), # patch embeddings ("""transformer.cls_token""", """vilt.embeddings.cls_token"""), ("""transformer.patch_embed.proj.weight""", """vilt.embeddings.patch_embeddings.projection.weight"""), ("""transformer.patch_embed.proj.bias""", """vilt.embeddings.patch_embeddings.projection.bias"""), ("""transformer.pos_embed""", """vilt.embeddings.position_embeddings"""), # token type embeddings ("""token_type_embeddings.weight""", """vilt.embeddings.token_type_embeddings.weight"""), ] ) # final layernorm + pooler rename_keys.extend( [ ("""transformer.norm.weight""", """vilt.layernorm.weight"""), ("""transformer.norm.bias""", """vilt.layernorm.bias"""), ("""pooler.dense.weight""", """vilt.pooler.dense.weight"""), ("""pooler.dense.bias""", """vilt.pooler.dense.bias"""), ] ) # classifier head(s) if vqa_model: # classification head rename_keys.extend( [ ("""vqa_classifier.0.weight""", """classifier.0.weight"""), ("""vqa_classifier.0.bias""", """classifier.0.bias"""), ("""vqa_classifier.1.weight""", """classifier.1.weight"""), ("""vqa_classifier.1.bias""", """classifier.1.bias"""), ("""vqa_classifier.3.weight""", """classifier.3.weight"""), ("""vqa_classifier.3.bias""", """classifier.3.bias"""), ] ) elif nlvr_model: # classification head rename_keys.extend( [ ("""nlvr2_classifier.0.weight""", """classifier.0.weight"""), ("""nlvr2_classifier.0.bias""", """classifier.0.bias"""), ("""nlvr2_classifier.1.weight""", """classifier.1.weight"""), ("""nlvr2_classifier.1.bias""", """classifier.1.bias"""), ("""nlvr2_classifier.3.weight""", """classifier.3.weight"""), ("""nlvr2_classifier.3.bias""", """classifier.3.bias"""), ] ) else: pass return rename_keys def SCREAMING_SNAKE_CASE_ (UpperCamelCase , UpperCamelCase ) -> Optional[Any]: for i in range(config.num_hidden_layers ): lowerCamelCase__ : str = """vilt.""" # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowerCamelCase__ : List[str] = state_dict.pop(f'''transformer.blocks.{i}.attn.qkv.weight''' ) lowerCamelCase__ : str = state_dict.pop(f'''transformer.blocks.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict lowerCamelCase__ : Union[str, Any] = in_proj_weight[ : config.hidden_size, : ] lowerCamelCase__ : Union[str, Any] = in_proj_bias[: config.hidden_size] lowerCamelCase__ : Optional[int] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowerCamelCase__ : Tuple = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowerCamelCase__ : Optional[int] = in_proj_weight[ -config.hidden_size :, : ] lowerCamelCase__ : List[str] = in_proj_bias[-config.hidden_size :] def SCREAMING_SNAKE_CASE_ (UpperCamelCase ) -> Any: lowerCamelCase__ : Dict = ["""head.weight""", """head.bias"""] for k in ignore_keys: state_dict.pop(UpperCamelCase , UpperCamelCase ) def SCREAMING_SNAKE_CASE_ (UpperCamelCase , UpperCamelCase , UpperCamelCase ) -> Dict: lowerCamelCase__ : int = dct.pop(UpperCamelCase ) lowerCamelCase__ : Optional[Any] = val @torch.no_grad() def SCREAMING_SNAKE_CASE_ (UpperCamelCase , UpperCamelCase ) -> Tuple: lowerCamelCase__ : List[str] = ViltConfig(image_size=384 , patch_size=32 , tie_word_embeddings=UpperCamelCase ) lowerCamelCase__ : Union[str, Any] = False lowerCamelCase__ : List[str] = False lowerCamelCase__ : Any = False lowerCamelCase__ : int = False if "vqa" in checkpoint_url: lowerCamelCase__ : List[Any] = True lowerCamelCase__ : Any = 3129 lowerCamelCase__ : Tuple = """huggingface/label-files""" lowerCamelCase__ : List[str] = """vqa2-id2label.json""" lowerCamelCase__ : str = json.load(open(hf_hub_download(UpperCamelCase , UpperCamelCase , repo_type="""dataset""" ) , """r""" ) ) lowerCamelCase__ : Any = {int(UpperCamelCase ): v for k, v in idalabel.items()} lowerCamelCase__ : Union[str, Any] = idalabel lowerCamelCase__ : int = {v: k for k, v in idalabel.items()} lowerCamelCase__ : Tuple = ViltForQuestionAnswering(UpperCamelCase ) elif "nlvr" in checkpoint_url: lowerCamelCase__ : Optional[Any] = True lowerCamelCase__ : List[Any] = 2 lowerCamelCase__ : Any = {0: """False""", 1: """True"""} lowerCamelCase__ : int = {v: k for k, v in config.idalabel.items()} lowerCamelCase__ : Any = 3 lowerCamelCase__ : List[str] = ViltForImagesAndTextClassification(UpperCamelCase ) elif "irtr" in checkpoint_url: lowerCamelCase__ : List[str] = True lowerCamelCase__ : Optional[int] = ViltForImageAndTextRetrieval(UpperCamelCase ) elif "mlm_itm" in checkpoint_url: lowerCamelCase__ : Optional[Any] = True lowerCamelCase__ : Optional[Any] = ViltForMaskedLM(UpperCamelCase ) else: raise ValueError("""Unknown model type""" ) # load state_dict of original model, remove and rename some keys lowerCamelCase__ : Dict = torch.hub.load_state_dict_from_url(UpperCamelCase , map_location="""cpu""" )["""state_dict"""] lowerCamelCase__ : List[Any] = create_rename_keys(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) for src, dest in rename_keys: rename_key(UpperCamelCase , UpperCamelCase , UpperCamelCase ) read_in_q_k_v(UpperCamelCase , UpperCamelCase ) if mlm_model or irtr_model: lowerCamelCase__ : List[str] = ["""itm_score.fc.weight""", """itm_score.fc.bias"""] for k in ignore_keys: state_dict.pop(UpperCamelCase , UpperCamelCase ) # load state dict into HuggingFace model model.eval() if mlm_model: lowerCamelCase__ , lowerCamelCase__ : List[Any] = model.load_state_dict(UpperCamelCase , strict=UpperCamelCase ) assert missing_keys == ["mlm_score.decoder.bias"] else: model.load_state_dict(UpperCamelCase ) # Define processor lowerCamelCase__ : Optional[int] = ViltImageProcessor(size=384 ) lowerCamelCase__ : List[str] = BertTokenizer.from_pretrained("""bert-base-uncased""" ) lowerCamelCase__ : Union[str, Any] = ViltProcessor(UpperCamelCase , UpperCamelCase ) # Forward pass on example inputs (image + text) if nlvr_model: lowerCamelCase__ : int = Image.open(requests.get("""https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg""" , stream=UpperCamelCase ).raw ) lowerCamelCase__ : int = Image.open(requests.get("""https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg""" , stream=UpperCamelCase ).raw ) lowerCamelCase__ : Dict = ( """The left image contains twice the number of dogs as the right image, and at least two dogs in total are""" """ standing.""" ) lowerCamelCase__ : Optional[int] = processor(UpperCamelCase , UpperCamelCase , return_tensors="""pt""" ) lowerCamelCase__ : Dict = processor(UpperCamelCase , UpperCamelCase , return_tensors="""pt""" ) lowerCamelCase__ : List[str] = model( input_ids=encoding_a.input_ids , pixel_values=encoding_a.pixel_values , pixel_values_a=encoding_a.pixel_values , ) else: lowerCamelCase__ : str = Image.open(requests.get("""http://images.cocodataset.org/val2017/000000039769.jpg""" , stream=UpperCamelCase ).raw ) if mlm_model: lowerCamelCase__ : str = """a bunch of [MASK] laying on a [MASK].""" else: lowerCamelCase__ : Optional[int] = """How many cats are there?""" lowerCamelCase__ : List[str] = processor(UpperCamelCase , UpperCamelCase , return_tensors="""pt""" ) lowerCamelCase__ : Union[str, Any] = model(**UpperCamelCase ) # Verify outputs if mlm_model: lowerCamelCase__ : Tuple = torch.Size([1, 11, 30522] ) lowerCamelCase__ : int = torch.tensor([-12.5061, -12.5123, -12.5174] ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, 0, :3] , UpperCamelCase , atol=1E-4 ) # verify masked token prediction equals "cats" lowerCamelCase__ : int = outputs.logits[0, 4, :].argmax(-1 ).item() assert tokenizer.decode([predicted_id] ) == "cats" elif vqa_model: lowerCamelCase__ : str = torch.Size([1, 3129] ) lowerCamelCase__ : Any = torch.tensor([-15.9495, -18.1472, -10.3041] ) assert torch.allclose(outputs.logits[0, :3] , UpperCamelCase , atol=1E-4 ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, 0, :3] , UpperCamelCase , atol=1E-4 ) # verify vqa prediction equals "2" lowerCamelCase__ : Tuple = outputs.logits.argmax(-1 ).item() assert model.config.idalabel[predicted_idx] == "2" elif nlvr_model: lowerCamelCase__ : str = torch.Size([1, 2] ) lowerCamelCase__ : Optional[Any] = torch.tensor([-2.8721, 2.1291] ) assert torch.allclose(outputs.logits[0, :3] , UpperCamelCase , atol=1E-4 ) assert outputs.logits.shape == expected_shape Path(UpperCamelCase ).mkdir(exist_ok=UpperCamelCase ) print(f'''Saving model and processor to {pytorch_dump_folder_path}''' ) model.save_pretrained(UpperCamelCase ) processor.save_pretrained(UpperCamelCase ) if __name__ == "__main__": _A : str =argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint_url''', default='''https://github.com/dandelin/ViLT/releases/download/200k/vilt_200k_mlm_itm.ckpt''', type=str, help='''URL of the checkpoint you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) _A : Tuple =parser.parse_args() convert_vilt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
41
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __A : List[Any] = { '''configuration_xlm_roberta''': [ '''XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XLMRobertaConfig''', '''XLMRobertaOnnxConfig''', ], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Union[str, Any] = ['''XLMRobertaTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : int = ['''XLMRobertaTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Dict = [ '''XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XLMRobertaForCausalLM''', '''XLMRobertaForMaskedLM''', '''XLMRobertaForMultipleChoice''', '''XLMRobertaForQuestionAnswering''', '''XLMRobertaForSequenceClassification''', '''XLMRobertaForTokenClassification''', '''XLMRobertaModel''', '''XLMRobertaPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : List[Any] = [ '''TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFXLMRobertaForCausalLM''', '''TFXLMRobertaForMaskedLM''', '''TFXLMRobertaForMultipleChoice''', '''TFXLMRobertaForQuestionAnswering''', '''TFXLMRobertaForSequenceClassification''', '''TFXLMRobertaForTokenClassification''', '''TFXLMRobertaModel''', '''TFXLMRobertaPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Union[str, Any] = [ '''FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''FlaxXLMRobertaForMaskedLM''', '''FlaxXLMRobertaForCausalLM''', '''FlaxXLMRobertaForMultipleChoice''', '''FlaxXLMRobertaForQuestionAnswering''', '''FlaxXLMRobertaForSequenceClassification''', '''FlaxXLMRobertaForTokenClassification''', '''FlaxXLMRobertaModel''', '''FlaxXLMRobertaPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xlm_roberta import ( XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMRobertaConfig, XLMRobertaOnnxConfig, ) try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlm_roberta import XLMRobertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlm_roberta_fast import XLMRobertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm_roberta import ( XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, XLMRobertaForCausalLM, XLMRobertaForMaskedLM, XLMRobertaForMultipleChoice, XLMRobertaForQuestionAnswering, XLMRobertaForSequenceClassification, XLMRobertaForTokenClassification, XLMRobertaModel, XLMRobertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm_roberta import ( TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMRobertaForCausalLM, TFXLMRobertaForMaskedLM, TFXLMRobertaForMultipleChoice, TFXLMRobertaForQuestionAnswering, TFXLMRobertaForSequenceClassification, TFXLMRobertaForTokenClassification, TFXLMRobertaModel, TFXLMRobertaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xlm_roberta import ( FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxXLMRobertaForCausalLM, FlaxXLMRobertaForMaskedLM, FlaxXLMRobertaForMultipleChoice, FlaxXLMRobertaForQuestionAnswering, FlaxXLMRobertaForSequenceClassification, FlaxXLMRobertaForTokenClassification, FlaxXLMRobertaModel, FlaxXLMRobertaPreTrainedModel, ) else: import sys __A : List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
352
from math import pi, sqrt, tan def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> float: '''simple docstring''' if side_length < 0: raise ValueError('surface_area_cube() only accepts non-negative values' ) return 6 * side_length**2 def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if length < 0 or breadth < 0 or height < 0: raise ValueError('surface_area_cuboid() only accepts non-negative values' ) return 2 * ((length * breadth) + (breadth * height) + (length * height)) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> float: '''simple docstring''' if radius < 0: raise ValueError('surface_area_sphere() only accepts non-negative values' ) return 4 * pi * radius**2 def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> float: '''simple docstring''' if radius < 0: raise ValueError('surface_area_hemisphere() only accepts non-negative values' ) return 3 * pi * radius**2 def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if radius < 0 or height < 0: raise ValueError('surface_area_cone() only accepts non-negative values' ) return pi * radius * (radius + (height**2 + radius**2) ** 0.5) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if radius_a < 0 or radius_a < 0 or height < 0: raise ValueError( 'surface_area_conical_frustum() only accepts non-negative values' ) lowerCAmelCase : Optional[int] = (height**2 + (radius_a - radius_a) ** 2) ** 0.5 return pi * ((slant_height * (radius_a + radius_a)) + radius_a**2 + radius_a**2) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if radius < 0 or height < 0: raise ValueError('surface_area_cylinder() only accepts non-negative values' ) return 2 * pi * radius * (height + radius) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if torus_radius < 0 or tube_radius < 0: raise ValueError('surface_area_torus() only accepts non-negative values' ) if torus_radius < tube_radius: raise ValueError( 'surface_area_torus() does not support spindle or self intersecting tori' ) return 4 * pow(_UpperCAmelCase, 2 ) * torus_radius * tube_radius def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if length < 0 or width < 0: raise ValueError('area_rectangle() only accepts non-negative values' ) return length * width def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> float: '''simple docstring''' if side_length < 0: raise ValueError('area_square() only accepts non-negative values' ) return side_length**2 def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if base < 0 or height < 0: raise ValueError('area_triangle() only accepts non-negative values' ) return (base * height) / 2 def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if sidea < 0 or sidea < 0 or sidea < 0: raise ValueError('area_triangle_three_sides() only accepts non-negative values' ) elif sidea + sidea < sidea or sidea + sidea < sidea or sidea + sidea < sidea: raise ValueError('Given three sides do not form a triangle' ) lowerCAmelCase : Optional[Any] = (sidea + sidea + sidea) / 2 lowerCAmelCase : Any = sqrt( semi_perimeter * (semi_perimeter - sidea) * (semi_perimeter - sidea) * (semi_perimeter - sidea) ) return area def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if base < 0 or height < 0: raise ValueError('area_parallelogram() only accepts non-negative values' ) return base * height def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if basea < 0 or basea < 0 or height < 0: raise ValueError('area_trapezium() only accepts non-negative values' ) return 1 / 2 * (basea + basea) * height def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> float: '''simple docstring''' if radius < 0: raise ValueError('area_circle() only accepts non-negative values' ) return pi * radius**2 def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if radius_x < 0 or radius_y < 0: raise ValueError('area_ellipse() only accepts non-negative values' ) return pi * radius_x * radius_y def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if diagonal_a < 0 or diagonal_a < 0: raise ValueError('area_rhombus() only accepts non-negative values' ) return 1 / 2 * diagonal_a * diagonal_a def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if not isinstance(_UpperCAmelCase, _UpperCAmelCase ) or sides < 3: raise ValueError( 'area_reg_polygon() only accepts integers greater than or \ equal to three as number of sides' ) elif length < 0: raise ValueError( 'area_reg_polygon() only accepts non-negative values as \ length of a side' ) return (sides * length**2) / (4 * tan(pi / sides )) return (sides * length**2) / (4 * tan(pi / sides )) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) # verbose so we can see methods missing tests print('''[DEMO] Areas of various geometric shapes: \n''') print(F'Rectangle: {area_rectangle(10, 20) = }') print(F'Square: {area_square(10) = }') print(F'Triangle: {area_triangle(10, 10) = }') print(F'Triangle: {area_triangle_three_sides(5, 12, 13) = }') print(F'Parallelogram: {area_parallelogram(10, 20) = }') print(F'Rhombus: {area_rhombus(10, 20) = }') print(F'Trapezium: {area_trapezium(10, 20, 30) = }') print(F'Circle: {area_circle(20) = }') print(F'Ellipse: {area_ellipse(10, 20) = }') print('''\nSurface Areas of various geometric shapes: \n''') print(F'Cube: {surface_area_cube(20) = }') print(F'Cuboid: {surface_area_cuboid(10, 20, 30) = }') print(F'Sphere: {surface_area_sphere(20) = }') print(F'Hemisphere: {surface_area_hemisphere(20) = }') print(F'Cone: {surface_area_cone(10, 20) = }') print(F'Conical Frustum: {surface_area_conical_frustum(10, 20, 30) = }') print(F'Cylinder: {surface_area_cylinder(10, 20) = }') print(F'Torus: {surface_area_torus(20, 10) = }') print(F'Equilateral Triangle: {area_reg_polygon(3, 10) = }') print(F'Square: {area_reg_polygon(4, 10) = }') print(F'Reqular Pentagon: {area_reg_polygon(5, 10) = }')
323
0
"""simple docstring""" __a = {} def A_ ( _lowercase, _lowercase, _lowercase ): '''simple docstring''' if late == 3 or absent == 2: return 0 # if we have no days left, and have not failed any other rules, # we have a prize string if days == 0: return 1 # No easy solution, so now we need to do the recursive calculation # First, check if the combination is already in the cache, and # if yes, return the stored value from there since we already # know the number of possible prize strings from this point on snake_case_ :str = (days, absent, late) if key in cache: return cache[key] # now we calculate the three possible ways that can unfold from # this point on, depending on our attendance today # 1) if we are late (but not absent), the "absent" counter stays as # it is, but the "late" counter increases by one snake_case_ :Any = _calculate(days - 1, _lowercase, late + 1 ) # 2) if we are absent, the "absent" counter increases by 1, and the # "late" counter resets to 0 snake_case_ :Optional[int] = _calculate(days - 1, absent + 1, 0 ) # 3) if we are on time, this resets the "late" counter and keeps the # absent counter snake_case_ :str = _calculate(days - 1, _lowercase, 0 ) snake_case_ :Optional[Any] = state_late + state_absent + state_ontime snake_case_ :Optional[Any] = prizestrings return prizestrings def A_ ( _lowercase = 30 ): '''simple docstring''' return _calculate(_lowercase, absent=0, late=0 ) if __name__ == "__main__": print(solution())
66
"""simple docstring""" from typing import Any def a__ ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ) -> list: _validation( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ) # Creates data structures and fill initial step lowerCamelCase = {} lowerCamelCase = {} for state in states_space: lowerCamelCase = observations_space[0] lowerCamelCase = ( initial_probabilities[state] * emission_probabilities[state][observation] ) lowerCamelCase = None # Fills the data structure with the probabilities of # different transitions and pointers to previous states for o in range(1 , len(snake_case__ ) ): lowerCamelCase = observations_space[o] lowerCamelCase = observations_space[o - 1] for state in states_space: # Calculates the argmax for probability function lowerCamelCase = """""" lowerCamelCase = -1 for k_state in states_space: lowerCamelCase = ( probabilities[(k_state, prior_observation)] * transition_probabilities[k_state][state] * emission_probabilities[state][observation] ) if probability > max_probability: lowerCamelCase = probability lowerCamelCase = k_state # Update probabilities and pointers dicts lowerCamelCase = ( probabilities[(arg_max, prior_observation)] * transition_probabilities[arg_max][state] * emission_probabilities[state][observation] ) lowerCamelCase = arg_max # The final observation lowerCamelCase = observations_space[len(snake_case__ ) - 1] # argmax for given final observation lowerCamelCase = """""" lowerCamelCase = -1 for k_state in states_space: lowerCamelCase = probabilities[(k_state, final_observation)] if probability > max_probability: lowerCamelCase = probability lowerCamelCase = k_state lowerCamelCase = arg_max # Process pointers backwards lowerCamelCase = last_state lowerCamelCase = [] for o in range(len(snake_case__ ) - 1 , -1 , -1 ): result.append(snake_case__ ) lowerCamelCase = pointers[previous, observations_space[o]] result.reverse() return result def a__ ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ) -> None: _validate_not_empty( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ) _validate_lists(snake_case__ , snake_case__ ) _validate_dicts( snake_case__ , snake_case__ , snake_case__ ) def a__ ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ) -> None: if not all( [ observations_space, states_space, initial_probabilities, transition_probabilities, emission_probabilities, ] ): raise ValueError("""There's an empty parameter""" ) def a__ ( snake_case__ , snake_case__ ) -> None: _validate_list(snake_case__ , """observations_space""" ) _validate_list(snake_case__ , """states_space""" ) def a__ ( snake_case__ , snake_case__ ) -> None: if not isinstance(_object , snake_case__ ): lowerCamelCase = F'{var_name} must be a list' raise ValueError(snake_case__ ) else: for x in _object: if not isinstance(snake_case__ , snake_case__ ): lowerCamelCase = F'{var_name} must be a list of strings' raise ValueError(snake_case__ ) def a__ ( snake_case__ , snake_case__ , snake_case__ , ) -> None: _validate_dict(snake_case__ , """initial_probabilities""" , snake_case__ ) _validate_nested_dict(snake_case__ , """transition_probabilities""" ) _validate_nested_dict(snake_case__ , """emission_probabilities""" ) def a__ ( snake_case__ , snake_case__ ) -> None: _validate_dict(_object , snake_case__ , snake_case__ ) for x in _object.values(): _validate_dict(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) def a__ ( snake_case__ , snake_case__ , snake_case__ , snake_case__ = False ) -> None: if not isinstance(_object , snake_case__ ): lowerCamelCase = F'{var_name} must be a dict' raise ValueError(snake_case__ ) if not all(isinstance(snake_case__ , snake_case__ ) for x in _object ): lowerCamelCase = F'{var_name} all keys must be strings' raise ValueError(snake_case__ ) if not all(isinstance(snake_case__ , snake_case__ ) for x in _object.values() ): lowerCamelCase = """nested dictionary """ if nested else """""" lowerCamelCase = F'{var_name} {nested_text}all values must be {value_type.__name__}' raise ValueError(snake_case__ ) if __name__ == "__main__": from doctest import testmod testmod()
291
0
def a_ ( lowerCAmelCase_ : int ): if not isinstance(lowerCAmelCase__, lowerCAmelCase__ ): raise ValueError('Input must be an integer' ) if input_num <= 0: raise ValueError('Input must be positive' ) return sum( divisor for divisor in range(1, input_num // 2 + 1 ) if input_num % divisor == 0 ) if __name__ == "__main__": import doctest doctest.testmod()
366
import mpmath # for roots of unity import numpy as np class _UpperCAmelCase : """simple docstring""" def __init__( self : List[Any] , lowerCAmelCase_ : Dict=None , lowerCAmelCase_ : str=None ) -> List[Any]: # Input as list __lowerCAmelCase = list(poly_a or [0] )[:] __lowerCAmelCase = list(poly_b or [0] )[:] # Remove leading zero coefficients while self.polyA[-1] == 0: self.polyA.pop() __lowerCAmelCase = len(self.polyA ) while self.polyB[-1] == 0: self.polyB.pop() __lowerCAmelCase = len(self.polyB ) # Add 0 to make lengths equal a power of 2 __lowerCAmelCase = int( 2 ** np.ceil(np.loga(len(self.polyA ) + len(self.polyB ) - 1 ) ) ) while len(self.polyA ) < self.c_max_length: self.polyA.append(0 ) while len(self.polyB ) < self.c_max_length: self.polyB.append(0 ) # A complex root used for the fourier transform __lowerCAmelCase = complex(mpmath.root(x=1 , n=self.c_max_length , k=1 ) ) # The product __lowerCAmelCase = self.__multiply() def lowercase ( self : Optional[int] , lowerCAmelCase_ : str ) -> Optional[int]: __lowerCAmelCase = [[x] for x in self.polyA] if which == 'A' else [[x] for x in self.polyB] # Corner case if len(lowerCAmelCase_ ) <= 1: return dft[0] # __lowerCAmelCase = self.c_max_length // 2 while next_ncol > 0: __lowerCAmelCase = [[] for i in range(lowerCAmelCase_ )] __lowerCAmelCase = self.root**next_ncol # First half of next step __lowerCAmelCase = 1 for j in range(self.c_max_length // (next_ncol * 2) ): for i in range(lowerCAmelCase_ ): new_dft[i].append(dft[i][j] + current_root * dft[i + next_ncol][j] ) current_root *= root # Second half of next step __lowerCAmelCase = 1 for j in range(self.c_max_length // (next_ncol * 2) ): for i in range(lowerCAmelCase_ ): new_dft[i].append(dft[i][j] - current_root * dft[i + next_ncol][j] ) current_root *= root # Update __lowerCAmelCase = new_dft __lowerCAmelCase = next_ncol // 2 return dft[0] def lowercase ( self : Optional[int] ) -> Any: __lowerCAmelCase = self.__dft('A' ) __lowerCAmelCase = self.__dft('B' ) __lowerCAmelCase = [[dft_a[i] * dft_b[i] for i in range(self.c_max_length )]] del dft_a del dft_b # Corner Case if len(inverce_c[0] ) <= 1: return inverce_c[0] # Inverse DFT __lowerCAmelCase = 2 while next_ncol <= self.c_max_length: __lowerCAmelCase = [[] for i in range(lowerCAmelCase_ )] __lowerCAmelCase = self.root ** (next_ncol // 2) __lowerCAmelCase = 1 # First half of next step for j in range(self.c_max_length // next_ncol ): for i in range(next_ncol // 2 ): # Even positions new_inverse_c[i].append( ( inverce_c[i][j] + inverce_c[i][j + self.c_max_length // next_ncol] ) / 2 ) # Odd positions new_inverse_c[i + next_ncol // 2].append( ( inverce_c[i][j] - inverce_c[i][j + self.c_max_length // next_ncol] ) / (2 * current_root) ) current_root *= root # Update __lowerCAmelCase = new_inverse_c next_ncol *= 2 # Unpack __lowerCAmelCase = [round(x[0].real , 8 ) + round(x[0].imag , 8 ) * 1J for x in inverce_c] # Remove leading 0's while inverce_c[-1] == 0: inverce_c.pop() return inverce_c def __str__( self : Dict ) -> int: __lowerCAmelCase = 'A = ' + ' + '.join( f"""{coef}*x^{i}""" for coef, i in enumerate(self.polyA[: self.len_A] ) ) __lowerCAmelCase = 'B = ' + ' + '.join( f"""{coef}*x^{i}""" for coef, i in enumerate(self.polyB[: self.len_B] ) ) __lowerCAmelCase = 'A*B = ' + ' + '.join( f"""{coef}*x^{i}""" for coef, i in enumerate(self.product ) ) return f"""{a}\n{b}\n{c}""" # Unit tests if __name__ == "__main__": import doctest doctest.testmod()
207
0
"""simple docstring""" from __future__ import annotations def _snake_case ( UpperCamelCase : float , UpperCamelCase : float , UpperCamelCase : float ): if (voltage, current, resistance).count(0 ) != 1: raise ValueError("""One and only one argument must be 0""" ) if resistance < 0: raise ValueError("""Resistance cannot be negative""" ) if voltage == 0: return {"voltage": float(current * resistance )} elif current == 0: return {"current": voltage / resistance} elif resistance == 0: return {"resistance": voltage / current} else: raise ValueError("""Exactly one argument must be 0""" ) if __name__ == "__main__": import doctest doctest.testmod()
109
'''simple docstring''' import json import os import torch from diffusers import UNetaDModel os.makedirs('hub/hopper-medium-v2/unet/hor32', exist_ok=True) os.makedirs('hub/hopper-medium-v2/unet/hor128', exist_ok=True) os.makedirs('hub/hopper-medium-v2/value_function', exist_ok=True) def _UpperCamelCase ( UpperCamelCase__ ): if hor == 1_2_8: UpperCAmelCase__ : int = ("""DownResnetBlock1D""", """DownResnetBlock1D""", """DownResnetBlock1D""") UpperCAmelCase__ : Tuple = (3_2, 1_2_8, 2_5_6) UpperCAmelCase__ : Union[str, Any] = ("""UpResnetBlock1D""", """UpResnetBlock1D""") elif hor == 3_2: UpperCAmelCase__ : Dict = ("""DownResnetBlock1D""", """DownResnetBlock1D""", """DownResnetBlock1D""", """DownResnetBlock1D""") UpperCAmelCase__ : Union[str, Any] = (3_2, 6_4, 1_2_8, 2_5_6) UpperCAmelCase__ : str = ("""UpResnetBlock1D""", """UpResnetBlock1D""", """UpResnetBlock1D""") UpperCAmelCase__ : Any = torch.load(f'''/Users/bglickenhaus/Documents/diffuser/temporal_unet-hopper-mediumv2-hor{hor}.torch''' ) UpperCAmelCase__ : Tuple = model.state_dict() UpperCAmelCase__ : Union[str, Any] = { """down_block_types""": down_block_types, """block_out_channels""": block_out_channels, """up_block_types""": up_block_types, """layers_per_block""": 1, """use_timestep_embedding""": True, """out_block_type""": """OutConv1DBlock""", """norm_num_groups""": 8, """downsample_each_block""": False, """in_channels""": 1_4, """out_channels""": 1_4, """extra_in_channels""": 0, """time_embedding_type""": """positional""", """flip_sin_to_cos""": False, """freq_shift""": 1, """sample_size""": 6_5_5_3_6, """mid_block_type""": """MidResTemporalBlock1D""", """act_fn""": """mish""", } UpperCAmelCase__ : List[Any] = UNetaDModel(**UpperCamelCase__ ) print(f'''length of state dict: {len(state_dict.keys() )}''' ) print(f'''length of value function dict: {len(hf_value_function.state_dict().keys() )}''' ) UpperCAmelCase__ : Optional[Any] = dict(zip(model.state_dict().keys() , hf_value_function.state_dict().keys() ) ) for k, v in mapping.items(): UpperCAmelCase__ : Union[str, Any] = state_dict.pop(UpperCamelCase__ ) hf_value_function.load_state_dict(UpperCamelCase__ ) torch.save(hf_value_function.state_dict() , f'''hub/hopper-medium-v2/unet/hor{hor}/diffusion_pytorch_model.bin''' ) with open(f'''hub/hopper-medium-v2/unet/hor{hor}/config.json''' , """w""" ) as f: json.dump(UpperCamelCase__ , UpperCamelCase__ ) def _UpperCamelCase ( ): UpperCAmelCase__ : Any = { """in_channels""": 1_4, """down_block_types""": ("""DownResnetBlock1D""", """DownResnetBlock1D""", """DownResnetBlock1D""", """DownResnetBlock1D"""), """up_block_types""": (), """out_block_type""": """ValueFunction""", """mid_block_type""": """ValueFunctionMidBlock1D""", """block_out_channels""": (3_2, 6_4, 1_2_8, 2_5_6), """layers_per_block""": 1, """downsample_each_block""": True, """sample_size""": 6_5_5_3_6, """out_channels""": 1_4, """extra_in_channels""": 0, """time_embedding_type""": """positional""", """use_timestep_embedding""": True, """flip_sin_to_cos""": False, """freq_shift""": 1, """norm_num_groups""": 8, """act_fn""": """mish""", } UpperCAmelCase__ : Tuple = torch.load("""/Users/bglickenhaus/Documents/diffuser/value_function-hopper-mediumv2-hor32.torch""" ) UpperCAmelCase__ : Optional[Any] = model UpperCAmelCase__ : Dict = UNetaDModel(**UpperCamelCase__ ) print(f'''length of state dict: {len(state_dict.keys() )}''' ) print(f'''length of value function dict: {len(hf_value_function.state_dict().keys() )}''' ) UpperCAmelCase__ : Dict = dict(zip(state_dict.keys() , hf_value_function.state_dict().keys() ) ) for k, v in mapping.items(): UpperCAmelCase__ : str = state_dict.pop(UpperCamelCase__ ) hf_value_function.load_state_dict(UpperCamelCase__ ) torch.save(hf_value_function.state_dict() , """hub/hopper-medium-v2/value_function/diffusion_pytorch_model.bin""" ) with open("""hub/hopper-medium-v2/value_function/config.json""" , """w""" ) as f: json.dump(UpperCamelCase__ , UpperCamelCase__ ) if __name__ == "__main__": unet(32) # unet(128) value_function()
163
0
"""simple docstring""" from __future__ import annotations import unittest from transformers import XGLMConfig, XGLMTokenizer, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.xglm.modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, ) @require_tf class UpperCAmelCase_ : '''simple docstring''' A : Any = XGLMConfig A : Dict = {} A : Optional[int] = 'gelu' def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=14 , _SCREAMING_SNAKE_CASE=7 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=99 , _SCREAMING_SNAKE_CASE=32 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=37 , _SCREAMING_SNAKE_CASE="gelu" , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=512 , _SCREAMING_SNAKE_CASE=0.02 , ) -> Any: snake_case_ : List[Any] = parent snake_case_ : str = batch_size snake_case_ : Dict = seq_length snake_case_ : Tuple = is_training snake_case_ : Union[str, Any] = use_input_mask snake_case_ : Optional[int] = use_labels snake_case_ : Optional[Any] = vocab_size snake_case_ : Any = d_model snake_case_ : int = num_hidden_layers snake_case_ : Union[str, Any] = num_attention_heads snake_case_ : Tuple = ffn_dim snake_case_ : List[Any] = activation_function snake_case_ : Optional[int] = activation_dropout snake_case_ : List[Any] = attention_dropout snake_case_ : Optional[int] = max_position_embeddings snake_case_ : Any = initializer_range snake_case_ : Dict = None snake_case_ : List[Any] = 0 snake_case_ : Tuple = 2 snake_case_ : int = 1 def _lowerCAmelCase ( self ) -> Optional[Any]: return XGLMConfig.from_pretrained("facebook/xglm-564M" ) def _lowerCAmelCase ( self ) -> Optional[Any]: snake_case_ : List[Any] = tf.clip_by_value( ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) , clip_value_min=0 , clip_value_max=3 ) snake_case_ : Any = None if self.use_input_mask: snake_case_ : str = random_attention_mask([self.batch_size, self.seq_length] ) snake_case_ : Optional[Any] = self.get_config() snake_case_ : Union[str, Any] = floats_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, input_mask, head_mask, ) def _lowerCAmelCase ( self ) -> Union[str, Any]: return XGLMConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , num_layers=self.num_hidden_layers , attention_heads=self.num_attention_heads , ffn_dim=self.ffn_dim , activation_function=self.activation_function , activation_dropout=self.activation_dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , use_cache=_SCREAMING_SNAKE_CASE , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , return_dict=_SCREAMING_SNAKE_CASE , ) def _lowerCAmelCase ( self ) -> Dict: snake_case_ : int = self.prepare_config_and_inputs() ( snake_case_ ) : str = config_and_inputs snake_case_ : Union[str, Any] = { "input_ids": input_ids, "head_mask": head_mask, } return config, inputs_dict @require_tf class UpperCAmelCase_ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , unittest.TestCase ): '''simple docstring''' A : Optional[int] = (TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else () A : Optional[Any] = (TFXGLMForCausalLM,) if is_tf_available() else () A : Any = ( {'feature-extraction': TFXGLMModel, 'text-generation': TFXGLMForCausalLM} if is_tf_available() else {} ) A : int = False A : str = False A : Union[str, Any] = False def _lowerCAmelCase ( self ) -> Optional[int]: snake_case_ : Dict = TFXGLMModelTester(self ) snake_case_ : List[Any] = ConfigTester(self , config_class=_SCREAMING_SNAKE_CASE , n_embd=37 ) def _lowerCAmelCase ( self ) -> str: self.config_tester.run_common_tests() @slow def _lowerCAmelCase ( self ) -> Any: for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case_ : List[str] = TFXGLMModel.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) @unittest.skip(reason="Currently, model embeddings are going to undergo a major refactor." ) def _lowerCAmelCase ( self ) -> int: super().test_resize_token_embeddings() @require_tf class UpperCAmelCase_ ( unittest.TestCase ): '''simple docstring''' @slow def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE=True ) -> List[Any]: snake_case_ : Union[str, Any] = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M" ) snake_case_ : str = tf.convert_to_tensor([[2, 268, 9865]] , dtype=tf.intaa ) # The dog # </s> The dog is a very friendly dog. He is very affectionate and loves to play with other # fmt: off snake_case_ : Optional[Any] = [2, 268, 9865, 67, 11, 1988, 5_7252, 9865, 5, 984, 67, 1988, 21_3838, 1658, 53, 7_0446, 33, 6657, 278, 1581] # fmt: on snake_case_ : Optional[int] = model.generate(_SCREAMING_SNAKE_CASE , do_sample=_SCREAMING_SNAKE_CASE , num_beams=1 ) if verify_outputs: self.assertListEqual(output_ids[0].numpy().tolist() , _SCREAMING_SNAKE_CASE ) @slow def _lowerCAmelCase ( self ) -> Optional[Any]: snake_case_ : str = XGLMTokenizer.from_pretrained("facebook/xglm-564M" ) snake_case_ : Union[str, Any] = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M" ) tf.random.set_seed(0 ) snake_case_ : str = tokenizer("Today is a nice day and" , return_tensors="tf" ) snake_case_ : List[Any] = tokenized.input_ids # forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices) with tf.device(":/CPU:0" ): snake_case_ : List[str] = model.generate(_SCREAMING_SNAKE_CASE , do_sample=_SCREAMING_SNAKE_CASE , seed=[7, 0] ) snake_case_ : int = tokenizer.decode(output_ids[0] , skip_special_tokens=_SCREAMING_SNAKE_CASE ) snake_case_ : Dict = ( "Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due" ) self.assertEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) @slow def _lowerCAmelCase ( self ) -> Union[str, Any]: snake_case_ : Dict = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M" ) snake_case_ : Tuple = XGLMTokenizer.from_pretrained("facebook/xglm-564M" ) snake_case_ : Any = "left" # use different length sentences to test batching snake_case_ : Dict = [ "This is an extremelly long sentence that only exists to test the ability of the model to cope with " "left-padding, such as in batched generation. The output for the sequence below should be the same " "regardless of whether left padding is applied or not. When", "Hello, my dog is a little", ] snake_case_ : Dict = tokenizer(_SCREAMING_SNAKE_CASE , return_tensors="tf" , padding=_SCREAMING_SNAKE_CASE ) snake_case_ : int = inputs["input_ids"] snake_case_ : Tuple = model.generate(input_ids=_SCREAMING_SNAKE_CASE , attention_mask=inputs["attention_mask"] , max_new_tokens=12 ) snake_case_ : int = tokenizer(sentences[0] , return_tensors="tf" ).input_ids snake_case_ : Dict = model.generate(input_ids=_SCREAMING_SNAKE_CASE , max_new_tokens=12 ) snake_case_ : int = tokenizer(sentences[1] , return_tensors="tf" ).input_ids snake_case_ : Tuple = model.generate(input_ids=_SCREAMING_SNAKE_CASE , max_new_tokens=12 ) snake_case_ : Optional[Any] = tokenizer.batch_decode(_SCREAMING_SNAKE_CASE , skip_special_tokens=_SCREAMING_SNAKE_CASE ) snake_case_ : Dict = tokenizer.decode(output_non_padded[0] , skip_special_tokens=_SCREAMING_SNAKE_CASE ) snake_case_ : Tuple = tokenizer.decode(output_padded[0] , skip_special_tokens=_SCREAMING_SNAKE_CASE ) snake_case_ : int = [ "This is an extremelly long sentence that only exists to test the ability of the model to cope with " "left-padding, such as in batched generation. The output for the sequence below should be the same " "regardless of whether left padding is applied or not. When left padding is applied, the sequence will be " "a single", "Hello, my dog is a little bit of a shy one, but he is very friendly", ] self.assertListEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) self.assertListEqual(_SCREAMING_SNAKE_CASE , [non_padded_sentence, padded_sentence] )
359
import argparse import copy def lowerCAmelCase__ ( _a : List[Any] ): snake_case_ : List[Any] = {} with open(_a ) as f: for line in f: if line.split()[0] not in dict_of_neighbours: snake_case_ : int = [] _list.append([line.split()[1], line.split()[2]] ) snake_case_ : Dict = _list else: dict_of_neighbours[line.split()[0]].append( [line.split()[1], line.split()[2]] ) if line.split()[1] not in dict_of_neighbours: snake_case_ : Dict = [] _list.append([line.split()[0], line.split()[2]] ) snake_case_ : int = _list else: dict_of_neighbours[line.split()[1]].append( [line.split()[0], line.split()[2]] ) return dict_of_neighbours def lowerCAmelCase__ ( _a : Optional[Any] , _a : Optional[int] ): with open(_a ) as f: snake_case_ : List[str] = f.read(1 ) snake_case_ : Optional[Any] = start_node snake_case_ : Optional[Any] = [] snake_case_ : Optional[int] = start_node snake_case_ : int = 0 while visiting not in first_solution: snake_case_ : List[str] = 1_00_00 for k in dict_of_neighbours[visiting]: if int(k[1] ) < int(_a ) and k[0] not in first_solution: snake_case_ : List[str] = k[1] snake_case_ : Dict = k[0] first_solution.append(_a ) snake_case_ : Dict = distance_of_first_solution + int(_a ) snake_case_ : Optional[int] = best_node first_solution.append(_a ) snake_case_ : Optional[Any] = 0 for k in dict_of_neighbours[first_solution[-2]]: if k[0] == start_node: break position += 1 snake_case_ : str = ( distance_of_first_solution + int(dict_of_neighbours[first_solution[-2]][position][1] ) - 1_00_00 ) return first_solution, distance_of_first_solution def lowerCAmelCase__ ( _a : Optional[int] , _a : List[str] ): snake_case_ : Optional[Any] = [] for n in solution[1:-1]: snake_case_ : Any = solution.index(_a ) for kn in solution[1:-1]: snake_case_ : Any = solution.index(_a ) if n == kn: continue snake_case_ : Optional[int] = copy.deepcopy(_a ) snake_case_ : int = kn snake_case_ : Any = n snake_case_ : List[Any] = 0 for k in _tmp[:-1]: snake_case_ : str = _tmp[_tmp.index(_a ) + 1] for i in dict_of_neighbours[k]: if i[0] == next_node: snake_case_ : Any = distance + int(i[1] ) _tmp.append(_a ) if _tmp not in neighborhood_of_solution: neighborhood_of_solution.append(_tmp ) snake_case_ : List[Any] = len(neighborhood_of_solution[0] ) - 1 neighborhood_of_solution.sort(key=lambda _a : x[index_of_last_item_in_the_list] ) return neighborhood_of_solution def lowerCAmelCase__ ( _a : Dict , _a : Optional[int] , _a : Optional[Any] , _a : Union[str, Any] , _a : int ): snake_case_ : str = 1 snake_case_ : List[str] = first_solution snake_case_ : int = [] snake_case_ : Optional[Any] = distance_of_first_solution snake_case_ : int = solution while count <= iters: snake_case_ : Optional[Any] = find_neighborhood(_a , _a ) snake_case_ : Union[str, Any] = 0 snake_case_ : List[Any] = neighborhood[index_of_best_solution] snake_case_ : Dict = len(_a ) - 1 snake_case_ : List[Any] = False while not found: snake_case_ : int = 0 while i < len(_a ): if best_solution[i] != solution[i]: snake_case_ : str = best_solution[i] snake_case_ : Any = solution[i] break snake_case_ : Dict = i + 1 if [first_exchange_node, second_exchange_node] not in tabu_list and [ second_exchange_node, first_exchange_node, ] not in tabu_list: tabu_list.append([first_exchange_node, second_exchange_node] ) snake_case_ : Optional[Any] = True snake_case_ : Optional[int] = best_solution[:-1] snake_case_ : List[Any] = neighborhood[index_of_best_solution][best_cost_index] if cost < best_cost: snake_case_ : Union[str, Any] = cost snake_case_ : Optional[int] = solution else: snake_case_ : Union[str, Any] = index_of_best_solution + 1 snake_case_ : int = neighborhood[index_of_best_solution] if len(_a ) >= size: tabu_list.pop(0 ) snake_case_ : List[str] = count + 1 return best_solution_ever, best_cost def lowerCAmelCase__ ( _a : str=None ): snake_case_ : Optional[Any] = generate_neighbours(args.File ) snake_case_ , snake_case_ : List[Any] = generate_first_solution( args.File , _a ) snake_case_ , snake_case_ : int = tabu_search( _a , _a , _a , args.Iterations , args.Size , ) print(F'''Best solution: {best_sol}, with total distance: {best_cost}.''' ) if __name__ == "__main__": lowercase : List[Any] = argparse.ArgumentParser(description='''Tabu Search''') parser.add_argument( '''-f''', '''--File''', type=str, help='''Path to the file containing the data''', required=True, ) parser.add_argument( '''-i''', '''--Iterations''', type=int, help='''How many iterations the algorithm should perform''', required=True, ) parser.add_argument( '''-s''', '''--Size''', type=int, help='''Size of the tabu list''', required=True ) # Pass the arguments to main method main(parser.parse_args())
36
0
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { 'microsoft/git-base': 'https://huggingface.co/microsoft/git-base/resolve/main/config.json', } class lowerCAmelCase__ ( a): '''simple docstring''' __SCREAMING_SNAKE_CASE = "git_vision_model" def __init__( self , __lowerCamelCase=7_6_8 , __lowerCamelCase=3_0_7_2 , __lowerCamelCase=1_2 , __lowerCamelCase=1_2 , __lowerCamelCase=3 , __lowerCamelCase=2_2_4 , __lowerCamelCase=1_6 , __lowerCamelCase="quick_gelu" , __lowerCamelCase=1e-5 , __lowerCamelCase=0.0 , __lowerCamelCase=0.0_2 , **__lowerCamelCase , ) -> Any: super().__init__(**__lowerCamelCase) _A : int = hidden_size _A : int = intermediate_size _A : int = num_hidden_layers _A : Dict = num_attention_heads _A : Dict = num_channels _A : List[Any] = patch_size _A : str = image_size _A : str = initializer_range _A : int = attention_dropout _A : Tuple = layer_norm_eps _A : Dict = hidden_act @classmethod def _lowerCamelCase ( cls , __lowerCamelCase , **__lowerCamelCase) -> "PretrainedConfig": cls._set_token_in_kwargs(__lowerCamelCase) _A , _A : Union[str, Any] = cls.get_config_dict(__lowerCamelCase , **__lowerCamelCase) # get the vision config dict if we are loading from GITConfig if config_dict.get("model_type") == "git": _A : Optional[int] = config_dict["vision_config"] if "model_type" in config_dict and hasattr(cls , "model_type") and config_dict["model_type"] != cls.model_type: logger.warning( F"You are using a model of type {config_dict['model_type']} to instantiate a model of type " F"{cls.model_type}. This is not supported for all configurations of models and can yield errors.") return cls.from_dict(__lowerCamelCase , **__lowerCamelCase) class lowerCAmelCase__ ( a): '''simple docstring''' __SCREAMING_SNAKE_CASE = "git" def __init__( self , __lowerCamelCase=None , __lowerCamelCase=3_0_5_2_2 , __lowerCamelCase=7_6_8 , __lowerCamelCase=6 , __lowerCamelCase=1_2 , __lowerCamelCase=3_0_7_2 , __lowerCamelCase="gelu" , __lowerCamelCase=0.1 , __lowerCamelCase=0.1 , __lowerCamelCase=1_0_2_4 , __lowerCamelCase=0.0_2 , __lowerCamelCase=1e-12 , __lowerCamelCase=0 , __lowerCamelCase="absolute" , __lowerCamelCase=True , __lowerCamelCase=False , __lowerCamelCase=1_0_1 , __lowerCamelCase=1_0_2 , __lowerCamelCase=None , **__lowerCamelCase , ) -> Optional[Any]: super().__init__(bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , pad_token_id=__lowerCamelCase , **__lowerCamelCase) if vision_config is None: _A : List[str] = {} logger.info("vision_config is None. initializing the GitVisionConfig with default values.") _A : str = GitVisionConfig(**__lowerCamelCase) _A : Tuple = vocab_size _A : str = hidden_size _A : Optional[int] = num_hidden_layers _A : List[str] = num_attention_heads _A : Optional[Any] = hidden_act _A : str = intermediate_size _A : Tuple = hidden_dropout_prob _A : Any = attention_probs_dropout_prob _A : int = max_position_embeddings _A : List[Any] = initializer_range _A : List[Any] = layer_norm_eps _A : Union[str, Any] = position_embedding_type _A : Union[str, Any] = use_cache _A : int = tie_word_embeddings _A : int = num_image_with_embedding _A : Optional[Any] = bos_token_id _A : str = eos_token_id def _lowerCamelCase ( self) -> Dict: _A : str = copy.deepcopy(self.__dict__) _A : Any = self.vision_config.to_dict() _A : Tuple = self.__class__.model_type return output
11
'''simple docstring''' def UpperCAmelCase_ ( __lowercase : int ) -> int: '''simple docstring''' if not isinstance(__lowercase , __lowercase ) or number < 0: raise ValueError("Input must be a non-negative integer" ) _UpperCAmelCase = 0 while number: # This way we arrive at next set bit (next 1) instead of looping # through each bit and checking for 1s hence the # loop won't run 32 times it will only run the number of `1` times number &= number - 1 count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
22
0
import itertools import string from collections.abc import Generator, Iterable def lowerCamelCase__ ( A__ : List[str] , A__ : List[Any] ): '''simple docstring''' __lowerCamelCase = iter(__lowerCAmelCase ) while True: __lowerCamelCase = tuple(itertools.islice(__lowerCAmelCase , __lowerCAmelCase ) ) if not chunk: return yield chunk def lowerCamelCase__ ( A__ : Optional[Any] ): '''simple docstring''' __lowerCamelCase = ''''''.join([c.upper() for c in dirty if c in string.ascii_letters] ) __lowerCamelCase = '''''' if len(__lowerCAmelCase ) < 2: return dirty for i in range(len(__lowerCAmelCase ) - 1 ): clean += dirty[i] if dirty[i] == dirty[i + 1]: clean += "X" clean += dirty[-1] if len(__lowerCAmelCase ) & 1: clean += "X" return clean def lowerCamelCase__ ( A__ : List[str] ): '''simple docstring''' __lowerCamelCase = '''ABCDEFGHIKLMNOPQRSTUVWXYZ''' # we're using a list instead of a '2d' array because it makes the math # for setting up the table and doing the actual encoding/decoding simpler __lowerCamelCase = [] # copy key chars into the table if they are in `alphabet` ignoring duplicates for char in key.upper(): if char not in table and char in alphabet: table.append(__lowerCAmelCase ) # fill the rest of the table in with the remaining alphabet chars for char in alphabet: if char not in table: table.append(__lowerCAmelCase ) return table def lowerCamelCase__ ( A__ : Tuple , A__ : Optional[Any] ): '''simple docstring''' __lowerCamelCase = generate_table(__lowerCAmelCase ) __lowerCamelCase = prepare_input(__lowerCAmelCase ) __lowerCamelCase = '''''' # https://en.wikipedia.org/wiki/Playfair_cipher#Description for chara, chara in chunker(__lowerCAmelCase , 2 ): __lowerCamelCase = divmod(table.index(__lowerCAmelCase ) , 5 ) __lowerCamelCase = divmod(table.index(__lowerCAmelCase ) , 5 ) if rowa == rowa: ciphertext += table[rowa * 5 + (cola + 1) % 5] ciphertext += table[rowa * 5 + (cola + 1) % 5] elif cola == cola: ciphertext += table[((rowa + 1) % 5) * 5 + cola] ciphertext += table[((rowa + 1) % 5) * 5 + cola] else: # rectangle ciphertext += table[rowa * 5 + cola] ciphertext += table[rowa * 5 + cola] return ciphertext def lowerCamelCase__ ( A__ : Any , A__ : Optional[int] ): '''simple docstring''' __lowerCamelCase = generate_table(__lowerCAmelCase ) __lowerCamelCase = '''''' # https://en.wikipedia.org/wiki/Playfair_cipher#Description for chara, chara in chunker(__lowerCAmelCase , 2 ): __lowerCamelCase = divmod(table.index(__lowerCAmelCase ) , 5 ) __lowerCamelCase = divmod(table.index(__lowerCAmelCase ) , 5 ) if rowa == rowa: plaintext += table[rowa * 5 + (cola - 1) % 5] plaintext += table[rowa * 5 + (cola - 1) % 5] elif cola == cola: plaintext += table[((rowa - 1) % 5) * 5 + cola] plaintext += table[((rowa - 1) % 5) * 5 + cola] else: # rectangle plaintext += table[rowa * 5 + cola] plaintext += table[rowa * 5 + cola] return plaintext
371
import qiskit def lowerCamelCase__ ( A__ : int , A__ : int ): '''simple docstring''' __lowerCamelCase = qiskit.Aer.get_backend("""aer_simulator""" ) __lowerCamelCase = qiskit.QuantumCircuit(4 , 2 ) # encode inputs in qubits 0 and 1 if bita == 1: qc_ha.x(0 ) if bita == 1: qc_ha.x(1 ) qc_ha.barrier() # use cnots to write XOR of the inputs on qubit2 qc_ha.cx(0 , 2 ) qc_ha.cx(1 , 2 ) # use ccx / toffoli gate to write AND of the inputs on qubit3 qc_ha.ccx(0 , 1 , 3 ) qc_ha.barrier() # extract outputs qc_ha.measure(2 , 0 ) # extract XOR value qc_ha.measure(3 , 1 ) # extract AND value # Execute the circuit on the qasm simulator __lowerCamelCase = qiskit.execute(A__ , A__ , shots=1000 ) # Return the histogram data of the results of the experiment return job.result().get_counts(A__ ) if __name__ == "__main__": UpperCAmelCase_ = half_adder(1, 1) print(f"""Half Adder Output Qubit Counts: {counts}""")
29
0
"""simple docstring""" def _snake_case ( UpperCamelCase : int , UpperCamelCase : int ): if a < 0 or b < 0: raise ValueError("""the value of both inputs must be positive""" ) UpperCAmelCase : Any = str(bin(UpperCamelCase ) )[2:] # remove the leading "0b" UpperCAmelCase : int = str(bin(UpperCamelCase ) )[2:] # remove the leading "0b" UpperCAmelCase : Union[str, Any] = max(len(UpperCamelCase ) , len(UpperCamelCase ) ) return "0b" + "".join( str(int(char_a == """1""" and char_b == """1""" ) ) for char_a, char_b in zip(a_binary.zfill(UpperCamelCase ) , b_binary.zfill(UpperCamelCase ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
109
"""simple docstring""" import io import itertools import json from dataclasses import dataclass from typing import Optional import pyarrow as pa import pyarrow.json as paj import datasets from datasets.table import table_cast from datasets.utils.file_utils import readline A: Any = datasets.utils.logging.get_logger(__name__) @dataclass class SCREAMING_SNAKE_CASE__ ( datasets.BuilderConfig ): __lowerCAmelCase : Optional[datasets.Features] = None __lowerCAmelCase : str = "utf-8" __lowerCAmelCase : Optional[str] = None __lowerCAmelCase : Optional[str] = None __lowerCAmelCase : bool = True # deprecated __lowerCAmelCase : Optional[int] = None # deprecated __lowerCAmelCase : int = 10 << 20 # 10MB __lowerCAmelCase : Optional[bool] = None class SCREAMING_SNAKE_CASE__ ( datasets.ArrowBasedBuilder ): __lowerCAmelCase : int = JsonConfig def SCREAMING_SNAKE_CASE ( self ) -> Any: '''simple docstring''' if self.config.block_size is not None: logger.warning("""The JSON loader parameter `block_size` is deprecated. Please use `chunksize` instead""" ) UpperCAmelCase : Any = self.config.block_size if self.config.use_threads is not True: logger.warning( """The JSON loader parameter `use_threads` is deprecated and doesn't have any effect anymore.""" ) if self.config.newlines_in_values is not None: raise ValueError("""The JSON loader parameter `newlines_in_values` is no longer supported""" ) return datasets.DatasetInfo(features=self.config.features ) def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE ) -> Tuple: '''simple docstring''' if not self.config.data_files: raise ValueError(F"At least one data file must be specified, but got data_files={self.config.data_files}" ) UpperCAmelCase : List[Any] = dl_manager.download_and_extract(self.config.data_files ) if isinstance(_SCREAMING_SNAKE_CASE , (str, list, tuple) ): UpperCAmelCase : int = data_files if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): UpperCAmelCase : Tuple = [files] UpperCAmelCase : List[str] = [dl_manager.iter_files(_SCREAMING_SNAKE_CASE ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"""files""": files} )] UpperCAmelCase : List[str] = [] for split_name, files in data_files.items(): if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): UpperCAmelCase : Dict = [files] UpperCAmelCase : str = [dl_manager.iter_files(_SCREAMING_SNAKE_CASE ) for file in files] splits.append(datasets.SplitGenerator(name=_SCREAMING_SNAKE_CASE , gen_kwargs={"""files""": files} ) ) return splits def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE ) -> pa.Table: '''simple docstring''' if self.config.features is not None: # adding missing columns for column_name in set(self.config.features ) - set(pa_table.column_names ): UpperCAmelCase : Tuple = self.config.features.arrow_schema.field(_SCREAMING_SNAKE_CASE ).type UpperCAmelCase : int = pa_table.append_column(_SCREAMING_SNAKE_CASE , pa.array([None] * len(_SCREAMING_SNAKE_CASE ) , type=_SCREAMING_SNAKE_CASE ) ) # more expensive cast to support nested structures with keys in a different order # allows str <-> int/float or str to Audio for example UpperCAmelCase : Any = table_cast(_SCREAMING_SNAKE_CASE , self.config.features.arrow_schema ) return pa_table def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE ) -> Optional[Any]: '''simple docstring''' for file_idx, file in enumerate(itertools.chain.from_iterable(_SCREAMING_SNAKE_CASE ) ): # If the file is one json object and if we need to look at the list of items in one specific field if self.config.field is not None: with open(_SCREAMING_SNAKE_CASE , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f: UpperCAmelCase : Union[str, Any] = json.load(_SCREAMING_SNAKE_CASE ) # We keep only the field we are interested in UpperCAmelCase : Dict = dataset[self.config.field] # We accept two format: a list of dicts or a dict of lists if isinstance(_SCREAMING_SNAKE_CASE , (list, tuple) ): UpperCAmelCase : Optional[Any] = set().union(*[row.keys() for row in dataset] ) UpperCAmelCase : Union[str, Any] = {col: [row.get(_SCREAMING_SNAKE_CASE ) for row in dataset] for col in keys} else: UpperCAmelCase : Optional[Any] = dataset UpperCAmelCase : List[str] = pa.Table.from_pydict(_SCREAMING_SNAKE_CASE ) yield file_idx, self._cast_table(_SCREAMING_SNAKE_CASE ) # If the file has one json object per line else: with open(_SCREAMING_SNAKE_CASE , """rb""" ) as f: UpperCAmelCase : Union[str, Any] = 0 # Use block_size equal to the chunk size divided by 32 to leverage multithreading # Set a default minimum value of 16kB if the chunk size is really small UpperCAmelCase : int = max(self.config.chunksize // 32 , 16 << 10 ) UpperCAmelCase : Dict = ( self.config.encoding_errors if self.config.encoding_errors is not None else """strict""" ) while True: UpperCAmelCase : Tuple = f.read(self.config.chunksize ) if not batch: break # Finish current line try: batch += f.readline() except (AttributeError, io.UnsupportedOperation): batch += readline(_SCREAMING_SNAKE_CASE ) # PyArrow only accepts utf-8 encoded bytes if self.config.encoding != "utf-8": UpperCAmelCase : Tuple = batch.decode(self.config.encoding , errors=_SCREAMING_SNAKE_CASE ).encode("""utf-8""" ) try: while True: try: UpperCAmelCase : int = paj.read_json( io.BytesIO(_SCREAMING_SNAKE_CASE ) , read_options=paj.ReadOptions(block_size=_SCREAMING_SNAKE_CASE ) ) break except (pa.ArrowInvalid, pa.ArrowNotImplementedError) as e: if ( isinstance(_SCREAMING_SNAKE_CASE , pa.ArrowInvalid ) and "straddling" not in str(_SCREAMING_SNAKE_CASE ) or block_size > len(_SCREAMING_SNAKE_CASE ) ): raise else: # Increase the block size in case it was too small. # The block size will be reset for the next file. logger.debug( F"Batch of {len(_SCREAMING_SNAKE_CASE )} bytes couldn't be parsed with block_size={block_size}. Retrying with block_size={block_size * 2}." ) block_size *= 2 except pa.ArrowInvalid as e: try: with open( _SCREAMING_SNAKE_CASE , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f: UpperCAmelCase : str = json.load(_SCREAMING_SNAKE_CASE ) except json.JSONDecodeError: logger.error(F"Failed to read file '{file}' with error {type(_SCREAMING_SNAKE_CASE )}: {e}" ) raise e # If possible, parse the file as a list of json objects and exit the loop if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): # list is the only sequence type supported in JSON try: UpperCAmelCase : Dict = set().union(*[row.keys() for row in dataset] ) UpperCAmelCase : Union[str, Any] = {col: [row.get(_SCREAMING_SNAKE_CASE ) for row in dataset] for col in keys} UpperCAmelCase : Dict = pa.Table.from_pydict(_SCREAMING_SNAKE_CASE ) except (pa.ArrowInvalid, AttributeError) as e: logger.error(F"Failed to read file '{file}' with error {type(_SCREAMING_SNAKE_CASE )}: {e}" ) raise ValueError(F"Not able to read records in the JSON file at {file}." ) from None yield file_idx, self._cast_table(_SCREAMING_SNAKE_CASE ) break else: logger.error(F"Failed to read file '{file}' with error {type(_SCREAMING_SNAKE_CASE )}: {e}" ) raise ValueError( F"Not able to read records in the JSON file at {file}. " F"You should probably indicate the field of the JSON file containing your records. " F"This JSON file contain the following fields: {str(list(dataset.keys() ) )}. " F"Select the correct one and provide it as `field='XXX'` to the dataset loading method. " ) from None # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(_SCREAMING_SNAKE_CASE ) batch_idx += 1
109
1
"""simple docstring""" import argparse import torch from datasets import load_dataset from donut import DonutModel from transformers import ( DonutImageProcessor, DonutProcessor, DonutSwinConfig, DonutSwinModel, MBartConfig, MBartForCausalLM, VisionEncoderDecoderModel, XLMRobertaTokenizerFast, ) def _UpperCAmelCase ( __lowerCamelCase : str ) -> List[str]: _snake_case = model.config _snake_case = DonutSwinConfig( image_size=original_config.input_size , patch_size=4 , depths=original_config.encoder_layer , num_heads=[4, 8, 16, 32] , window_size=original_config.window_size , embed_dim=1_28 , ) _snake_case = MBartConfig( is_decoder=__lowerCamelCase , is_encoder_decoder=__lowerCamelCase , add_cross_attention=__lowerCamelCase , decoder_layers=original_config.decoder_layer , max_position_embeddings=original_config.max_position_embeddings , vocab_size=len( model.decoder.tokenizer ) , scale_embedding=__lowerCamelCase , add_final_layer_norm=__lowerCamelCase , ) return encoder_config, decoder_config def _UpperCAmelCase ( __lowerCamelCase : Optional[Any] ) -> Tuple: if "encoder.model" in name: _snake_case = name.replace('''encoder.model''' , '''encoder''' ) if "decoder.model" in name: _snake_case = name.replace('''decoder.model''' , '''decoder''' ) if "patch_embed.proj" in name: _snake_case = name.replace('''patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' ) if "patch_embed.norm" in name: _snake_case = name.replace('''patch_embed.norm''' , '''embeddings.norm''' ) if name.startswith('''encoder''' ): if "layers" in name: _snake_case = '''encoder.''' + name if "attn.proj" in name: _snake_case = name.replace('''attn.proj''' , '''attention.output.dense''' ) if "attn" in name and "mask" not in name: _snake_case = name.replace('''attn''' , '''attention.self''' ) if "norm1" in name: _snake_case = name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name: _snake_case = name.replace('''norm2''' , '''layernorm_after''' ) if "mlp.fc1" in name: _snake_case = name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: _snake_case = name.replace('''mlp.fc2''' , '''output.dense''' ) if name == "encoder.norm.weight": _snake_case = '''encoder.layernorm.weight''' if name == "encoder.norm.bias": _snake_case = '''encoder.layernorm.bias''' return name def _UpperCAmelCase ( __lowerCamelCase : int , __lowerCamelCase : Dict ) -> Dict: for key in orig_state_dict.copy().keys(): _snake_case = orig_state_dict.pop(__lowerCamelCase ) if "qkv" in key: _snake_case = key.split('''.''' ) _snake_case = int(key_split[3] ) _snake_case = int(key_split[5] ) _snake_case = model.encoder.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: _snake_case = val[:dim, :] _snake_case = val[dim : dim * 2, :] _snake_case = val[-dim:, :] else: _snake_case = val[:dim] _snake_case = val[dim : dim * 2] _snake_case = val[-dim:] elif "attn_mask" in key or key in ["encoder.model.norm.weight", "encoder.model.norm.bias"]: # HuggingFace implementation doesn't use attn_mask buffer # and model doesn't use final LayerNorms for the encoder pass else: _snake_case = val return orig_state_dict def _UpperCAmelCase ( __lowerCamelCase : int , __lowerCamelCase : str=None , __lowerCamelCase : Tuple=False ) -> Any: # load original model _snake_case = DonutModel.from_pretrained(__lowerCamelCase ).eval() # load HuggingFace model _snake_case , _snake_case = get_configs(__lowerCamelCase ) _snake_case = DonutSwinModel(__lowerCamelCase ) _snake_case = MBartForCausalLM(__lowerCamelCase ) _snake_case = VisionEncoderDecoderModel(encoder=__lowerCamelCase , decoder=__lowerCamelCase ) model.eval() _snake_case = original_model.state_dict() _snake_case = convert_state_dict(__lowerCamelCase , __lowerCamelCase ) model.load_state_dict(__lowerCamelCase ) # verify results on scanned document _snake_case = load_dataset('''hf-internal-testing/example-documents''' ) _snake_case = dataset['''test'''][0]['''image'''].convert('''RGB''' ) _snake_case = XLMRobertaTokenizerFast.from_pretrained(__lowerCamelCase , from_slow=__lowerCamelCase ) _snake_case = DonutImageProcessor( do_align_long_axis=original_model.config.align_long_axis , size=original_model.config.input_size[::-1] ) _snake_case = DonutProcessor(__lowerCamelCase , __lowerCamelCase ) _snake_case = processor(__lowerCamelCase , return_tensors='''pt''' ).pixel_values if model_name == "naver-clova-ix/donut-base-finetuned-docvqa": _snake_case = '''<s_docvqa><s_question>{user_input}</s_question><s_answer>''' _snake_case = '''When is the coffee break?''' _snake_case = task_prompt.replace('''{user_input}''' , __lowerCamelCase ) elif model_name == "naver-clova-ix/donut-base-finetuned-rvlcdip": _snake_case = '''<s_rvlcdip>''' elif model_name in [ "naver-clova-ix/donut-base-finetuned-cord-v1", "naver-clova-ix/donut-base-finetuned-cord-v1-2560", ]: _snake_case = '''<s_cord>''' elif model_name == "naver-clova-ix/donut-base-finetuned-cord-v2": _snake_case = '''s_cord-v2>''' elif model_name == "naver-clova-ix/donut-base-finetuned-zhtrainticket": _snake_case = '''<s_zhtrainticket>''' elif model_name in ["naver-clova-ix/donut-proto", "naver-clova-ix/donut-base"]: # use a random prompt _snake_case = '''hello world''' else: raise ValueError('''Model name not supported''' ) _snake_case = original_model.decoder.tokenizer(__lowerCamelCase , add_special_tokens=__lowerCamelCase , return_tensors='''pt''' )[ '''input_ids''' ] _snake_case = original_model.encoder.model.patch_embed(__lowerCamelCase ) _snake_case , _snake_case = model.encoder.embeddings(__lowerCamelCase ) assert torch.allclose(__lowerCamelCase , __lowerCamelCase , atol=1E-3 ) # verify encoder hidden states _snake_case = original_model.encoder(__lowerCamelCase ) _snake_case = model.encoder(__lowerCamelCase ).last_hidden_state assert torch.allclose(__lowerCamelCase , __lowerCamelCase , atol=1E-2 ) # verify decoder hidden states _snake_case = original_model(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ).logits _snake_case = model(__lowerCamelCase , decoder_input_ids=__lowerCamelCase ).logits assert torch.allclose(__lowerCamelCase , __lowerCamelCase , atol=1E-3 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(f'''Saving model and processor to {pytorch_dump_folder_path}''' ) model.save_pretrained(__lowerCamelCase ) processor.save_pretrained(__lowerCamelCase ) if push_to_hub: model.push_to_hub('''nielsr/''' + model_name.split('''/''' )[-1] , commit_message='''Update model''' ) processor.push_to_hub('''nielsr/''' + model_name.split('''/''' )[-1] , commit_message='''Update model''' ) if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='naver-clova-ix/donut-base-finetuned-docvqa', required=False, type=str, help='Name of the original model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, required=False, type=str, help='Path to the output PyTorch model directory.', ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model and processor to the 🤗 hub.', ) UpperCAmelCase__ = parser.parse_args() convert_donut_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
358
"""simple docstring""" def _UpperCAmelCase ( __lowerCamelCase : int ) -> bool: return number & 1 == 0 if __name__ == "__main__": import doctest doctest.testmod()
40
0
'''simple docstring''' import json import os from typing import Dict, List, Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowerCamelCase_ = logging.get_logger(__name__) lowerCamelCase_ = { '''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_config_file''': '''tokenizer_config.json''', } lowerCamelCase_ = { '''vocab_file''': { '''facebook/blenderbot_small-90M''': '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json''' }, '''merges_file''': { '''facebook/blenderbot_small-90M''': '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt''' }, '''tokenizer_config_file''': { '''facebook/blenderbot_small-90M''': ( '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json''' ) }, } lowerCamelCase_ = {'''facebook/blenderbot_small-90M''': 5_12} def __lowercase ( __lowercase ) -> List[str]: '''simple docstring''' _A = set() _A = word[0] for char in word[1:]: pairs.add((prev_char, char) ) _A = char _A = set(__lowercase ) return pairs class _UpperCAmelCase ( snake_case_ ): """simple docstring""" snake_case = VOCAB_FILES_NAMES snake_case = PRETRAINED_VOCAB_FILES_MAP snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case = ['''input_ids''', '''attention_mask'''] def __init__( self : List[Any] , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : int , __UpperCAmelCase : str="__start__" , __UpperCAmelCase : Dict="__end__" , __UpperCAmelCase : str="__unk__" , __UpperCAmelCase : List[str]="__null__" , **__UpperCAmelCase : List[str] , ): '''simple docstring''' super().__init__(unk_token=__UpperCAmelCase , bos_token=__UpperCAmelCase , eos_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , **__UpperCAmelCase ) with open(__UpperCAmelCase , encoding="utf-8" ) as vocab_handle: _A = json.load(__UpperCAmelCase ) _A = {v: k for k, v in self.encoder.items()} with open(__UpperCAmelCase , encoding="utf-8" ) as merges_handle: _A = merges_handle.read().split("\n" )[1:-1] _A = [tuple(merge.split() ) for merge in merges] _A = dict(zip(__UpperCAmelCase , range(len(__UpperCAmelCase ) ) ) ) _A = {} @property def lowerCAmelCase ( self : Any ): '''simple docstring''' return len(self.encoder ) def lowerCAmelCase ( self : str ): '''simple docstring''' return dict(self.encoder , **self.added_tokens_encoder ) def lowerCAmelCase ( self : List[Any] , __UpperCAmelCase : str ): '''simple docstring''' if token in self.cache: return self.cache[token] _A = re.sub("([.,!?()])" , R" \1" , __UpperCAmelCase ) _A = re.sub("(')" , R" \1 " , __UpperCAmelCase ) _A = re.sub(R"\s{2,}" , " " , __UpperCAmelCase ) if "\n" in token: _A = token.replace("\n" , " __newln__" ) _A = token.split(" " ) _A = [] for token in tokens: if not len(__UpperCAmelCase ): continue _A = token.lower() _A = tuple(__UpperCAmelCase ) _A = tuple(list(word[:-1] ) + [word[-1] + "</w>"] ) _A = get_pairs(__UpperCAmelCase ) if not pairs: words.append(__UpperCAmelCase ) continue while True: _A = min(__UpperCAmelCase , key=lambda __UpperCAmelCase : self.bpe_ranks.get(__UpperCAmelCase , float("inf" ) ) ) if bigram not in self.bpe_ranks: break _A , _A = bigram _A = [] _A = 0 while i < len(__UpperCAmelCase ): try: _A = word.index(__UpperCAmelCase , __UpperCAmelCase ) new_word.extend(word[i:j] ) _A = j except ValueError: new_word.extend(word[i:] ) break if word[i] == first and i < len(__UpperCAmelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 _A = tuple(__UpperCAmelCase ) _A = new_word if len(__UpperCAmelCase ) == 1: break else: _A = get_pairs(__UpperCAmelCase ) _A = "@@ ".join(__UpperCAmelCase ) _A = word[:-4] _A = word words.append(__UpperCAmelCase ) return " ".join(__UpperCAmelCase ) def lowerCAmelCase ( self : Union[str, Any] , __UpperCAmelCase : str ): '''simple docstring''' _A = [] _A = re.findall(R"\S+\n?" , __UpperCAmelCase ) for token in words: split_tokens.extend(list(self.bpe(__UpperCAmelCase ).split(" " ) ) ) return split_tokens def lowerCAmelCase ( self : Any , __UpperCAmelCase : str ): '''simple docstring''' _A = token.lower() return self.encoder.get(__UpperCAmelCase , self.encoder.get(self.unk_token ) ) def lowerCAmelCase ( self : Optional[int] , __UpperCAmelCase : int ): '''simple docstring''' return self.decoder.get(__UpperCAmelCase , self.unk_token ) def lowerCAmelCase ( self : Tuple , __UpperCAmelCase : List[str] ): '''simple docstring''' _A = " ".join(__UpperCAmelCase ).replace("@@ " , "" ).strip() return out_string def lowerCAmelCase ( self : Optional[Any] , __UpperCAmelCase : str , __UpperCAmelCase : Optional[str] = None ): '''simple docstring''' if not os.path.isdir(__UpperCAmelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return _A = os.path.join( __UpperCAmelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) _A = os.path.join( __UpperCAmelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(__UpperCAmelCase , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=__UpperCAmelCase , ensure_ascii=__UpperCAmelCase ) + "\n" ) _A = 0 with open(__UpperCAmelCase , "w" , encoding="utf-8" ) as writer: writer.write("#version: 0.2\n" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __UpperCAmelCase : kv[1] ): if index != token_index: logger.warning( f'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' " Please check that the tokenizer is not corrupted!" ) _A = token_index writer.write(" ".join(__UpperCAmelCase ) + "\n" ) index += 1 return vocab_file, merge_file
79
'''simple docstring''' import warnings from typing import List, Optional, Tuple, Union import numpy as np import PIL import torch from ...models import UNetaDModel from ...schedulers import RePaintScheduler from ...utils import PIL_INTERPOLATION, logging, randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput lowercase__ = logging.get_logger(__name__) # pylint: disable=invalid-name def UpperCamelCase( UpperCAmelCase_ ): warnings.warn( 'The preprocess method is deprecated and will be removed in a future version. Please' ' use VaeImageProcessor.preprocess instead' , UpperCAmelCase_ , ) if isinstance(UpperCAmelCase_ , torch.Tensor ): return image elif isinstance(UpperCAmelCase_ , PIL.Image.Image ): UpperCAmelCase : List[str] = [image] if isinstance(image[0] , PIL.Image.Image ): UpperCAmelCase , UpperCAmelCase : List[str] = image[0].size UpperCAmelCase , UpperCAmelCase : str = (x - x % 8 for x in (w, h)) # resize to integer multiple of 8 UpperCAmelCase : str = [np.array(i.resize((w, h) , resample=PIL_INTERPOLATION['lanczos'] ) )[None, :] for i in image] UpperCAmelCase : Optional[int] = np.concatenate(UpperCAmelCase_ , axis=0 ) UpperCAmelCase : List[Any] = np.array(UpperCAmelCase_ ).astype(np.floataa ) / 255.0 UpperCAmelCase : Any = image.transpose(0 , 3 , 1 , 2 ) UpperCAmelCase : Any = 2.0 * image - 1.0 UpperCAmelCase : List[str] = torch.from_numpy(UpperCAmelCase_ ) elif isinstance(image[0] , torch.Tensor ): UpperCAmelCase : List[Any] = torch.cat(UpperCAmelCase_ , dim=0 ) return image def UpperCamelCase( UpperCAmelCase_ ): if isinstance(UpperCAmelCase_ , torch.Tensor ): return mask elif isinstance(UpperCAmelCase_ , PIL.Image.Image ): UpperCAmelCase : List[str] = [mask] if isinstance(mask[0] , PIL.Image.Image ): UpperCAmelCase , UpperCAmelCase : List[Any] = mask[0].size UpperCAmelCase , UpperCAmelCase : Dict = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32 UpperCAmelCase : Tuple = [np.array(m.convert('L' ).resize((w, h) , resample=PIL_INTERPOLATION['nearest'] ) )[None, :] for m in mask] UpperCAmelCase : Optional[int] = np.concatenate(UpperCAmelCase_ , axis=0 ) UpperCAmelCase : Any = mask.astype(np.floataa ) / 255.0 UpperCAmelCase : str = 0 UpperCAmelCase : Dict = 1 UpperCAmelCase : Optional[Any] = torch.from_numpy(UpperCAmelCase_ ) elif isinstance(mask[0] , torch.Tensor ): UpperCAmelCase : List[str] = torch.cat(UpperCAmelCase_ , dim=0 ) return mask class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : UNetaDModel UpperCAmelCase_ : RePaintScheduler def __init__( self : List[str] , lowercase_ : List[str] , lowercase_ : Tuple ) -> Tuple: super().__init__() self.register_modules(unet=lowercase_ , scheduler=lowercase_ ) @torch.no_grad() def __call__( self : List[str] , lowercase_ : Union[torch.Tensor, PIL.Image.Image] , lowercase_ : Union[torch.Tensor, PIL.Image.Image] , lowercase_ : int = 250 , lowercase_ : float = 0.0 , lowercase_ : int = 10 , lowercase_ : int = 10 , lowercase_ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , lowercase_ : Optional[str] = "pil" , lowercase_ : bool = True , ) -> Union[ImagePipelineOutput, Tuple]: UpperCAmelCase : Dict = image UpperCAmelCase : Optional[int] = _preprocess_image(lowercase_ ) UpperCAmelCase : Optional[Any] = original_image.to(device=self.device , dtype=self.unet.dtype ) UpperCAmelCase : Optional[Any] = _preprocess_mask(lowercase_ ) UpperCAmelCase : List[str] = mask_image.to(device=self.device , dtype=self.unet.dtype ) UpperCAmelCase : Any = original_image.shape[0] # sample gaussian noise to begin the loop if isinstance(lowercase_ , lowercase_ ) and len(lowercase_ ) != batch_size: raise ValueError( f"""You have passed a list of generators of length {len(lowercase_ )}, but requested an effective batch""" f""" size of {batch_size}. Make sure the batch size matches the length of the generators.""" ) UpperCAmelCase : List[str] = original_image.shape UpperCAmelCase : str = randn_tensor(lowercase_ , generator=lowercase_ , device=self.device , dtype=self.unet.dtype ) # set step values self.scheduler.set_timesteps(lowercase_ , lowercase_ , lowercase_ , self.device ) UpperCAmelCase : Tuple = eta UpperCAmelCase : Optional[int] = self.scheduler.timesteps[0] + 1 UpperCAmelCase : List[Any] = generator[0] if isinstance(lowercase_ , lowercase_ ) else generator for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): if t < t_last: # predict the noise residual UpperCAmelCase : str = self.unet(lowercase_ , lowercase_ ).sample # compute previous image: x_t -> x_t-1 UpperCAmelCase : Dict = self.scheduler.step(lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ).prev_sample else: # compute the reverse: x_t-1 -> x_t UpperCAmelCase : int = self.scheduler.undo_step(lowercase_ , lowercase_ , lowercase_ ) UpperCAmelCase : Union[str, Any] = t UpperCAmelCase : List[Any] = (image / 2 + 0.5).clamp(0 , 1 ) UpperCAmelCase : Union[str, Any] = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": UpperCAmelCase : List[str] = self.numpy_to_pil(lowercase_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=lowercase_ )
151
0
import argparse import os from pathlib import Path import fairseq import torch from packaging import version from torch import nn from transformers import ( BartConfig, BartForConditionalGeneration, BartForSequenceClassification, BartModel, BartTokenizer, ) from transformers.utils import logging lowerCAmelCase__ = ['bart.large', 'bart.large.mnli', 'bart.large.cnn', 'bart_xsum/model.pt'] lowerCAmelCase__ = {'bart.large': BartModel, 'bart.large.mnli': BartForSequenceClassification} if version.parse(fairseq.__version__) < version.parse('0.9.0'): raise Exception('requires fairseq >= 0.9.0') logging.set_verbosity_info() lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = ' Hello world! cécé herlolip' lowerCAmelCase__ = [ ('model.classification_heads.mnli.dense.weight', 'classification_head.dense.weight'), ('model.classification_heads.mnli.dense.bias', 'classification_head.dense.bias'), ('model.classification_heads.mnli.out_proj.weight', 'classification_head.out_proj.weight'), ('model.classification_heads.mnli.out_proj.bias', 'classification_head.out_proj.bias'), ] def __lowerCamelCase ( lowerCAmelCase__ ): lowerCAmelCase__ = [ 'encoder.version', 'decoder.version', 'model.encoder.version', 'model.decoder.version', '_float_tensor', ] for k in ignore_keys: state_dict.pop(lowerCAmelCase__ , lowerCAmelCase__ ) def __lowerCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): lowerCAmelCase__ = dct.pop(lowerCAmelCase__ ) lowerCAmelCase__ = val def __lowerCamelCase ( lowerCAmelCase__ ): lowerCAmelCase__ = torch.load(lowerCAmelCase__ , map_location='cpu' ) lowerCAmelCase__ = torch.hub.load('pytorch/fairseq' , 'bart.large.cnn' ).eval() hub_interface.model.load_state_dict(sd['model'] ) return hub_interface def __lowerCamelCase ( lowerCAmelCase__ ): lowerCAmelCase__ , lowerCAmelCase__ = emb.weight.shape lowerCAmelCase__ = nn.Linear(lowerCAmelCase__ , lowerCAmelCase__ , bias=lowerCAmelCase__ ) lowerCAmelCase__ = emb.weight.data return lin_layer @torch.no_grad() def __lowerCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=None ): if not os.path.exists(lowerCAmelCase__ ): lowerCAmelCase__ = torch.hub.load('pytorch/fairseq' , lowerCAmelCase__ ).eval() else: lowerCAmelCase__ = load_xsum_checkpoint(lowerCAmelCase__ ) bart.model.upgrade_state_dict(bart.model.state_dict() ) if hf_checkpoint_name is None: lowerCAmelCase__ = checkpoint_path.replace('.' , '-' ) lowerCAmelCase__ = BartConfig.from_pretrained(lowerCAmelCase__ ) lowerCAmelCase__ = bart.encode(lowerCAmelCase__ ).unsqueeze(0 ) lowerCAmelCase__ = BartTokenizer.from_pretrained(lowerCAmelCase__ ).encode(lowerCAmelCase__ , return_tensors='pt' ).unsqueeze(0 ) if not torch.eq(lowerCAmelCase__ , lowerCAmelCase__ ).all(): raise ValueError( F"""converted tokenizer and pretrained tokenizer returned different output: {tokens} != {tokensa}""" ) if checkpoint_path == "bart.large.mnli": lowerCAmelCase__ = bart.state_dict() remove_ignore_keys_(lowerCAmelCase__ ) lowerCAmelCase__ = state_dict['model.decoder.embed_tokens.weight'] for src, dest in mnli_rename_keys: rename_key(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) lowerCAmelCase__ = BartForSequenceClassification(lowerCAmelCase__ ).eval() model.load_state_dict(lowerCAmelCase__ ) lowerCAmelCase__ = bart.predict('mnli' , lowerCAmelCase__ , return_logits=lowerCAmelCase__ ) lowerCAmelCase__ = model(lowerCAmelCase__ )[0] # logits else: # no classification heads to worry about lowerCAmelCase__ = bart.model.state_dict() remove_ignore_keys_(lowerCAmelCase__ ) lowerCAmelCase__ = state_dict['decoder.embed_tokens.weight'] lowerCAmelCase__ = bart.extract_features(lowerCAmelCase__ ) if hf_checkpoint_name == "facebook/bart-large": lowerCAmelCase__ = BartModel(lowerCAmelCase__ ).eval() model.load_state_dict(lowerCAmelCase__ ) lowerCAmelCase__ = model(lowerCAmelCase__ ).model[0] else: lowerCAmelCase__ = BartForConditionalGeneration(lowerCAmelCase__ ).eval() # an existing summarization ckpt model.model.load_state_dict(lowerCAmelCase__ ) if hasattr(lowerCAmelCase__ , 'lm_head' ): lowerCAmelCase__ = make_linear_from_emb(model.model.shared ) lowerCAmelCase__ = model.model(lowerCAmelCase__ )[0] # Check results if fairseq_output.shape != new_model_outputs.shape: raise ValueError( F"""`fairseq_output` shape and `new_model_output` shape are different: {fairseq_output.shape=}, {new_model_outputs.shape}""" ) if (fairseq_output != new_model_outputs).any().item(): raise ValueError('Some values in `fairseq_output` are different from `new_model_outputs`' ) Path(lowerCAmelCase__ ).mkdir(exist_ok=lowerCAmelCase__ ) model.save_pretrained(lowerCAmelCase__ ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( 'fairseq_path', type=str, help='bart.large, bart.large.cnn or a path to a model.pt on local filesystem.' ) parser.add_argument('pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument( '--hf_config', default=None, type=str, help='Which huggingface architecture to use: bart-large-xsum' ) lowerCAmelCase__ = parser.parse_args() convert_bart_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, hf_checkpoint_name=args.hf_config)
119
import warnings from typing import Any, Dict, List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, optimal_fft_length, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging lowerCAmelCase__ = logging.get_logger(__name__) class a_ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCAmelCase_ = ['input_values', 'attention_mask'] def __init__( self : Union[str, Any] , lowercase__ : int = 1 , lowercase__ : int = 16_000 , lowercase__ : float = 0.0 , lowercase__ : bool = False , lowercase__ : int = 80 , lowercase__ : int = 16 , lowercase__ : int = 64 , lowercase__ : str = "hann_window" , lowercase__ : float = 1.0 , lowercase__ : float = 80 , lowercase__ : float = 7_600 , lowercase__ : float = 1e-10 , lowercase__ : int = 2 , lowercase__ : bool = True , **lowercase__ : Optional[int] , ): '''simple docstring''' super().__init__(feature_size=lowercase__ , sampling_rate=lowercase__ , padding_value=lowercase__ , **lowercase__) lowerCAmelCase__ = do_normalize lowerCAmelCase__ = return_attention_mask lowerCAmelCase__ = num_mel_bins lowerCAmelCase__ = hop_length lowerCAmelCase__ = win_length lowerCAmelCase__ = win_function lowerCAmelCase__ = frame_signal_scale lowerCAmelCase__ = fmin lowerCAmelCase__ = fmax lowerCAmelCase__ = mel_floor lowerCAmelCase__ = reduction_factor lowerCAmelCase__ = win_length * sampling_rate // 1_000 lowerCAmelCase__ = hop_length * sampling_rate // 1_000 lowerCAmelCase__ = optimal_fft_length(self.sample_size) lowerCAmelCase__ = (self.n_fft // 2) + 1 lowerCAmelCase__ = window_function(window_length=self.sample_size , name=self.win_function , periodic=lowercase__) lowerCAmelCase__ = mel_filter_bank( num_frequency_bins=self.n_freqs , num_mel_filters=self.num_mel_bins , min_frequency=self.fmin , max_frequency=self.fmax , sampling_rate=self.sampling_rate , norm='slaney' , mel_scale='slaney' , ) if frame_signal_scale != 1.0: warnings.warn( 'The argument `frame_signal_scale` is deprecated and will be removed in version 4.30.0 of Transformers' , lowercase__ , ) if reduction_factor != 2.0: warnings.warn( 'The argument `reduction_factor` is deprecated and will be removed in version 4.30.0 of Transformers' , lowercase__ , ) @staticmethod # Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm def __snake_case ( lowercase__ : List[np.ndarray] , lowercase__ : List[np.ndarray] , lowercase__ : float = 0.0): '''simple docstring''' if attention_mask is not None: lowerCAmelCase__ = np.array(lowercase__ , np.intaa) lowerCAmelCase__ = [] for vector, length in zip(lowercase__ , attention_mask.sum(-1)): lowerCAmelCase__ = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1e-7) if length < normed_slice.shape[0]: lowerCAmelCase__ = padding_value normed_input_values.append(lowercase__) else: lowerCAmelCase__ = [(x - x.mean()) / np.sqrt(x.var() + 1e-7) for x in input_values] return normed_input_values def __snake_case ( self : List[Any] , lowercase__ : np.ndarray , ): '''simple docstring''' lowerCAmelCase__ = spectrogram( lowercase__ , window=self.window , frame_length=self.sample_size , hop_length=self.sample_stride , fft_length=self.n_fft , mel_filters=self.mel_filters , mel_floor=self.mel_floor , log_mel='log10' , ) return log_mel_spec.T def __call__( self : str , lowercase__ : Optional[Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]]] = None , lowercase__ : Optional[Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]]] = None , lowercase__ : Union[bool, str, PaddingStrategy] = False , lowercase__ : Optional[int] = None , lowercase__ : bool = False , lowercase__ : Optional[int] = None , lowercase__ : Optional[bool] = None , lowercase__ : Optional[Union[str, TensorType]] = None , lowercase__ : Optional[int] = None , **lowercase__ : Union[str, Any] , ): '''simple docstring''' if audio is None and audio_target is None: raise ValueError('You must provide either `audio` or `audio_target` values.') if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F"""The model corresponding to this feature extractor: {self} was trained using a sampling rate of""" F""" {self.sampling_rate}. Please make sure that the provided audio input was sampled with""" F""" {self.sampling_rate} and not {sampling_rate}.""") else: logger.warning( 'It is strongly recommended to pass the ``sampling_rate`` argument to this function. ' 'Failing to do so can result in silent errors that might be hard to debug.') if audio is not None: lowerCAmelCase__ = self._process_audio( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , **lowercase__ , ) else: lowerCAmelCase__ = None if audio_target is not None: lowerCAmelCase__ = self._process_audio( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , **lowercase__ , ) if inputs is None: return inputs_target else: lowerCAmelCase__ = inputs_target['input_values'] lowerCAmelCase__ = inputs_target.get('attention_mask') if decoder_attention_mask is not None: lowerCAmelCase__ = decoder_attention_mask return inputs def __snake_case ( self : Tuple , lowercase__ : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , lowercase__ : bool = False , lowercase__ : Union[bool, str, PaddingStrategy] = False , lowercase__ : Optional[int] = None , lowercase__ : bool = False , lowercase__ : Optional[int] = None , lowercase__ : Optional[bool] = None , lowercase__ : Optional[Union[str, TensorType]] = None , **lowercase__ : Optional[Any] , ): '''simple docstring''' lowerCAmelCase__ = isinstance(lowercase__ , np.ndarray) and len(speech.shape) > 1 if is_batched_numpy and len(speech.shape) > 2: raise ValueError(F"""Only mono-channel audio is supported for input to {self}""") lowerCAmelCase__ = is_batched_numpy or ( isinstance(lowercase__ , (list, tuple)) and (isinstance(speech[0] , (np.ndarray, tuple, list))) ) if is_batched: lowerCAmelCase__ = [np.asarray(lowercase__ , dtype=np.floataa) for speech in speech] elif not is_batched and not isinstance(lowercase__ , np.ndarray): lowerCAmelCase__ = np.asarray(lowercase__ , dtype=np.floataa) elif isinstance(lowercase__ , np.ndarray) and speech.dtype is np.dtype(np.floataa): lowerCAmelCase__ = speech.astype(np.floataa) # always return batch if not is_batched: lowerCAmelCase__ = [speech] # needed to make pad() work on spectrogram inputs lowerCAmelCase__ = self.feature_size # convert into correct format for padding if is_target: lowerCAmelCase__ = [self._extract_mel_features(lowercase__) for waveform in speech] lowerCAmelCase__ = BatchFeature({'input_values': features}) lowerCAmelCase__ = self.num_mel_bins else: lowerCAmelCase__ = BatchFeature({'input_values': speech}) lowerCAmelCase__ = self.pad( lowercase__ , padding=lowercase__ , max_length=lowercase__ , truncation=lowercase__ , pad_to_multiple_of=lowercase__ , return_attention_mask=lowercase__ , **lowercase__ , ) lowerCAmelCase__ = feature_size_hack # convert input values to correct format lowerCAmelCase__ = padded_inputs['input_values'] if not isinstance(input_values[0] , np.ndarray): lowerCAmelCase__ = [np.asarray(lowercase__ , dtype=np.floataa) for array in input_values] elif ( not isinstance(lowercase__ , np.ndarray) and isinstance(input_values[0] , np.ndarray) and input_values[0].dtype is np.dtype(np.floataa) ): lowerCAmelCase__ = [array.astype(np.floataa) for array in input_values] elif isinstance(lowercase__ , np.ndarray) and input_values.dtype is np.dtype(np.floataa): lowerCAmelCase__ = input_values.astype(np.floataa) # convert attention_mask to correct format lowerCAmelCase__ = padded_inputs.get('attention_mask') if attention_mask is not None: lowerCAmelCase__ = [np.asarray(lowercase__ , dtype=np.intaa) for array in attention_mask] # zero-mean and unit-variance normalization if not is_target and self.do_normalize: lowerCAmelCase__ = ( attention_mask if self._get_padding_strategies(lowercase__ , max_length=lowercase__) is not PaddingStrategy.DO_NOT_PAD else None ) lowerCAmelCase__ = self.zero_mean_unit_var_norm( padded_inputs['input_values'] , attention_mask=lowercase__ , padding_value=self.padding_value) if return_tensors is not None: lowerCAmelCase__ = padded_inputs.convert_to_tensors(lowercase__) return padded_inputs def __snake_case ( self : Any): '''simple docstring''' lowerCAmelCase__ = super().to_dict() # Don't serialize these as they are derived from the other properties. lowerCAmelCase__ = ['window', 'mel_filters', 'sample_size', 'sample_stride', 'n_fft', 'n_freqs'] for name in names: if name in output: del output[name] return output
119
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase__ = { '''configuration_time_series_transformer''': [ '''TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''TimeSeriesTransformerConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ '''TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TimeSeriesTransformerForPrediction''', '''TimeSeriesTransformerModel''', '''TimeSeriesTransformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimeSeriesTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimeSeriesTransformerForPrediction, TimeSeriesTransformerModel, TimeSeriesTransformerPreTrainedModel, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
72
'''simple docstring''' import os __snake_case ={"""I""": 1, """V""": 5, """X""": 10, """L""": 50, """C""": 100, """D""": 500, """M""": 1_000} def a_ ( lowerCamelCase : str ): lowerCAmelCase = 0 lowerCAmelCase = 0 while index < len(lowerCamelCase ) - 1: lowerCAmelCase = SYMBOLS[numerals[index]] lowerCAmelCase = SYMBOLS[numerals[index + 1]] if current_value < next_value: total_value -= current_value else: total_value += current_value index += 1 total_value += SYMBOLS[numerals[index]] return total_value def a_ ( lowerCamelCase : int ): lowerCAmelCase = '' lowerCAmelCase = num // 1000 numerals += m_count * "M" num %= 1000 lowerCAmelCase = num // 100 if c_count == 9: numerals += "CM" c_count -= 9 elif c_count == 4: numerals += "CD" c_count -= 4 if c_count >= 5: numerals += "D" c_count -= 5 numerals += c_count * "C" num %= 100 lowerCAmelCase = num // 10 if x_count == 9: numerals += "XC" x_count -= 9 elif x_count == 4: numerals += "XL" x_count -= 4 if x_count >= 5: numerals += "L" x_count -= 5 numerals += x_count * "X" num %= 10 if num == 9: numerals += "IX" num -= 9 elif num == 4: numerals += "IV" num -= 4 if num >= 5: numerals += "V" num -= 5 numerals += num * "I" return numerals def a_ ( lowerCamelCase : str = "/p089_roman.txt" ): lowerCAmelCase = 0 with open(os.path.dirname(lowerCamelCase ) + roman_numerals_filename ) as filea: lowerCAmelCase = filea.readlines() for line in lines: lowerCAmelCase = line.strip() lowerCAmelCase = parse_roman_numerals(lowerCamelCase ) lowerCAmelCase = generate_roman_numerals(lowerCamelCase ) savings += len(lowerCamelCase ) - len(lowerCamelCase ) return savings if __name__ == "__main__": print(F'''{solution() = }''')
4
0
"""simple docstring""" import unittest from transformers import ( MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, Pipeline, ZeroShotClassificationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow from .test_pipelines_common import ANY # These 2 model types require different inputs than those of the usual text models. a = {'''LayoutLMv2Config''', '''LayoutLMv3Config'''} @is_pipeline_test class lowercase_ ( unittest.TestCase ): '''simple docstring''' UpperCAmelCase : Tuple = MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING UpperCAmelCase : Optional[int] = TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if model_mapping is not None: UpperCAmelCase : str = {config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP} if tf_model_mapping is not None: UpperCAmelCase : Any = { config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP } def lowerCAmelCase_ ( self : List[Any] , _UpperCAmelCase : int , _UpperCAmelCase : Dict , _UpperCAmelCase : str ): _A = ZeroShotClassificationPipeline( model=_UpperCAmelCase , tokenizer=_UpperCAmelCase , candidate_labels=['polics', 'health'] ) return classifier, ["Who are you voting for in 2020?", "My stomach hurts."] def lowerCAmelCase_ ( self : Dict , _UpperCAmelCase : Any , _UpperCAmelCase : Optional[int] ): _A = classifier('Who are you voting for in 2020?' , candidate_labels='politics' ) self.assertEqual(_UpperCAmelCase , {'sequence': ANY(_UpperCAmelCase ), 'labels': [ANY(_UpperCAmelCase )], 'scores': [ANY(_UpperCAmelCase )]} ) # No kwarg _A = classifier('Who are you voting for in 2020?' , ['politics'] ) self.assertEqual(_UpperCAmelCase , {'sequence': ANY(_UpperCAmelCase ), 'labels': [ANY(_UpperCAmelCase )], 'scores': [ANY(_UpperCAmelCase )]} ) _A = classifier('Who are you voting for in 2020?' , candidate_labels=['politics'] ) self.assertEqual(_UpperCAmelCase , {'sequence': ANY(_UpperCAmelCase ), 'labels': [ANY(_UpperCAmelCase )], 'scores': [ANY(_UpperCAmelCase )]} ) _A = classifier('Who are you voting for in 2020?' , candidate_labels='politics, public health' ) self.assertEqual( _UpperCAmelCase , {'sequence': ANY(_UpperCAmelCase ), 'labels': [ANY(_UpperCAmelCase ), ANY(_UpperCAmelCase )], 'scores': [ANY(_UpperCAmelCase ), ANY(_UpperCAmelCase )]} ) self.assertAlmostEqual(sum(nested_simplify(outputs['scores'] ) ) , 1.0 ) _A = classifier('Who are you voting for in 2020?' , candidate_labels=['politics', 'public health'] ) self.assertEqual( _UpperCAmelCase , {'sequence': ANY(_UpperCAmelCase ), 'labels': [ANY(_UpperCAmelCase ), ANY(_UpperCAmelCase )], 'scores': [ANY(_UpperCAmelCase ), ANY(_UpperCAmelCase )]} ) self.assertAlmostEqual(sum(nested_simplify(outputs['scores'] ) ) , 1.0 ) _A = classifier( 'Who are you voting for in 2020?' , candidate_labels='politics' , hypothesis_template='This text is about {}' ) self.assertEqual(_UpperCAmelCase , {'sequence': ANY(_UpperCAmelCase ), 'labels': [ANY(_UpperCAmelCase )], 'scores': [ANY(_UpperCAmelCase )]} ) # https://github.com/huggingface/transformers/issues/13846 _A = classifier(['I am happy'] , ['positive', 'negative'] ) self.assertEqual( _UpperCAmelCase , [ {'sequence': ANY(_UpperCAmelCase ), 'labels': [ANY(_UpperCAmelCase ), ANY(_UpperCAmelCase )], 'scores': [ANY(_UpperCAmelCase ), ANY(_UpperCAmelCase )]} for i in range(1 ) ] , ) _A = classifier(['I am happy', 'I am sad'] , ['positive', 'negative'] ) self.assertEqual( _UpperCAmelCase , [ {'sequence': ANY(_UpperCAmelCase ), 'labels': [ANY(_UpperCAmelCase ), ANY(_UpperCAmelCase )], 'scores': [ANY(_UpperCAmelCase ), ANY(_UpperCAmelCase )]} for i in range(2 ) ] , ) with self.assertRaises(_UpperCAmelCase ): classifier('' , candidate_labels='politics' ) with self.assertRaises(_UpperCAmelCase ): classifier(_UpperCAmelCase , candidate_labels='politics' ) with self.assertRaises(_UpperCAmelCase ): classifier('Who are you voting for in 2020?' , candidate_labels='' ) with self.assertRaises(_UpperCAmelCase ): classifier('Who are you voting for in 2020?' , candidate_labels=_UpperCAmelCase ) with self.assertRaises(_UpperCAmelCase ): classifier( 'Who are you voting for in 2020?' , candidate_labels='politics' , hypothesis_template='Not formatting template' , ) with self.assertRaises(_UpperCAmelCase ): classifier( 'Who are you voting for in 2020?' , candidate_labels='politics' , hypothesis_template=_UpperCAmelCase , ) self.run_entailment_id(_UpperCAmelCase ) def lowerCAmelCase_ ( self : Optional[Any] , _UpperCAmelCase : Pipeline ): _A = zero_shot_classifier.model.config _A = config.labelaid _A = zero_shot_classifier.entailment_id _A = {'LABEL_0': 0, 'LABEL_1': 1, 'LABEL_2': 2} self.assertEqual(zero_shot_classifier.entailment_id , -1 ) _A = {'entailment': 0, 'neutral': 1, 'contradiction': 2} self.assertEqual(zero_shot_classifier.entailment_id , 0 ) _A = {'ENTAIL': 0, 'NON-ENTAIL': 1} self.assertEqual(zero_shot_classifier.entailment_id , 0 ) _A = {'ENTAIL': 2, 'NEUTRAL': 1, 'CONTR': 0} self.assertEqual(zero_shot_classifier.entailment_id , 2 ) _A = original_labelaid self.assertEqual(_UpperCAmelCase , zero_shot_classifier.entailment_id ) @require_torch def lowerCAmelCase_ ( self : Optional[Any] ): _A = pipeline( 'zero-shot-classification' , model='sshleifer/tiny-distilbert-base-cased-distilled-squad' , framework='pt' , ) # There was a regression in 4.10 for this # Adding a test so we don't make the mistake again. # https://github.com/huggingface/transformers/issues/13381#issuecomment-912343499 zero_shot_classifier( 'Who are you voting for in 2020?' * 100 , candidate_labels=['politics', 'public health', 'science'] ) @require_torch def lowerCAmelCase_ ( self : Any ): _A = pipeline( 'zero-shot-classification' , model='sshleifer/tiny-distilbert-base-cased-distilled-squad' , framework='pt' , ) _A = zero_shot_classifier( 'Who are you voting for in 2020?' , candidate_labels=['politics', 'public health', 'science'] ) self.assertEqual( nested_simplify(_UpperCAmelCase ) , { 'sequence': 'Who are you voting for in 2020?', 'labels': ['science', 'public health', 'politics'], 'scores': [0.333, 0.333, 0.333], } , ) @require_tf def lowerCAmelCase_ ( self : Dict ): _A = pipeline( 'zero-shot-classification' , model='sshleifer/tiny-distilbert-base-cased-distilled-squad' , framework='tf' , ) _A = zero_shot_classifier( 'Who are you voting for in 2020?' , candidate_labels=['politics', 'public health', 'science'] ) self.assertEqual( nested_simplify(_UpperCAmelCase ) , { 'sequence': 'Who are you voting for in 2020?', 'labels': ['science', 'public health', 'politics'], 'scores': [0.333, 0.333, 0.333], } , ) @slow @require_torch def lowerCAmelCase_ ( self : List[str] ): _A = pipeline('zero-shot-classification' , model='roberta-large-mnli' , framework='pt' ) _A = zero_shot_classifier( 'Who are you voting for in 2020?' , candidate_labels=['politics', 'public health', 'science'] ) self.assertEqual( nested_simplify(_UpperCAmelCase ) , { 'sequence': 'Who are you voting for in 2020?', 'labels': ['politics', 'public health', 'science'], 'scores': [0.976, 0.015, 0.009], } , ) _A = zero_shot_classifier( 'The dominant sequence transduction models are based on complex recurrent or convolutional neural networks' ' in an encoder-decoder configuration. The best performing models also connect the encoder and decoder' ' through an attention mechanism. We propose a new simple network architecture, the Transformer, based' ' solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two' ' machine translation tasks show these models to be superior in quality while being more parallelizable' ' and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014' ' English-to-German translation task, improving over the existing best results, including ensembles by' ' over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new' ' single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small' ' fraction of the training costs of the best models from the literature. We show that the Transformer' ' generalizes well to other tasks by applying it successfully to English constituency parsing both with' ' large and limited training data.' , candidate_labels=['machine learning', 'statistics', 'translation', 'vision'] , multi_label=_UpperCAmelCase , ) self.assertEqual( nested_simplify(_UpperCAmelCase ) , { 'sequence': ( 'The dominant sequence transduction models are based on complex recurrent or convolutional neural' ' networks in an encoder-decoder configuration. The best performing models also connect the' ' encoder and decoder through an attention mechanism. We propose a new simple network' ' architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence' ' and convolutions entirely. Experiments on two machine translation tasks show these models to be' ' superior in quality while being more parallelizable and requiring significantly less time to' ' train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task,' ' improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014' ' English-to-French translation task, our model establishes a new single-model state-of-the-art' ' BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training' ' costs of the best models from the literature. We show that the Transformer generalizes well to' ' other tasks by applying it successfully to English constituency parsing both with large and' ' limited training data.' ), 'labels': ['translation', 'machine learning', 'vision', 'statistics'], 'scores': [0.817, 0.713, 0.018, 0.018], } , ) @slow @require_tf def lowerCAmelCase_ ( self : List[Any] ): _A = pipeline('zero-shot-classification' , model='roberta-large-mnli' , framework='tf' ) _A = zero_shot_classifier( 'Who are you voting for in 2020?' , candidate_labels=['politics', 'public health', 'science'] ) self.assertEqual( nested_simplify(_UpperCAmelCase ) , { 'sequence': 'Who are you voting for in 2020?', 'labels': ['politics', 'public health', 'science'], 'scores': [0.976, 0.015, 0.009], } , ) _A = zero_shot_classifier( 'The dominant sequence transduction models are based on complex recurrent or convolutional neural networks' ' in an encoder-decoder configuration. The best performing models also connect the encoder and decoder' ' through an attention mechanism. We propose a new simple network architecture, the Transformer, based' ' solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two' ' machine translation tasks show these models to be superior in quality while being more parallelizable' ' and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014' ' English-to-German translation task, improving over the existing best results, including ensembles by' ' over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new' ' single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small' ' fraction of the training costs of the best models from the literature. We show that the Transformer' ' generalizes well to other tasks by applying it successfully to English constituency parsing both with' ' large and limited training data.' , candidate_labels=['machine learning', 'statistics', 'translation', 'vision'] , multi_label=_UpperCAmelCase , ) self.assertEqual( nested_simplify(_UpperCAmelCase ) , { 'sequence': ( 'The dominant sequence transduction models are based on complex recurrent or convolutional neural' ' networks in an encoder-decoder configuration. The best performing models also connect the' ' encoder and decoder through an attention mechanism. We propose a new simple network' ' architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence' ' and convolutions entirely. Experiments on two machine translation tasks show these models to be' ' superior in quality while being more parallelizable and requiring significantly less time to' ' train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task,' ' improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014' ' English-to-French translation task, our model establishes a new single-model state-of-the-art' ' BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training' ' costs of the best models from the literature. We show that the Transformer generalizes well to' ' other tasks by applying it successfully to English constituency parsing both with large and' ' limited training data.' ), 'labels': ['translation', 'machine learning', 'vision', 'statistics'], 'scores': [0.817, 0.713, 0.018, 0.018], } , )
271
"""simple docstring""" import enum import os from hashlib import shaaaa from typing import Optional from .. import config from .logging import get_logger a = get_logger(__name__) class lowercase_ ( enum.Enum ): '''simple docstring''' UpperCAmelCase : Optional[int] = '''all_checks''' UpperCAmelCase : List[Any] = '''basic_checks''' UpperCAmelCase : Any = '''no_checks''' class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' def _snake_case ( _snake_case : Optional[dict] , _snake_case : dict , _snake_case : Dict=None ) -> Dict: '''simple docstring''' if expected_checksums is None: logger.info('Unable to verify checksums.' ) return if len(set(_snake_case ) - set(_snake_case ) ) > 0: raise ExpectedMoreDownloadedFiles(str(set(_snake_case ) - set(_snake_case ) ) ) if len(set(_snake_case ) - set(_snake_case ) ) > 0: raise UnexpectedDownloadedFile(str(set(_snake_case ) - set(_snake_case ) ) ) _A = [url for url in expected_checksums if expected_checksums[url] != recorded_checksums[url]] _A = ' for ' + verification_name if verification_name is not None else '' if len(_snake_case ) > 0: raise NonMatchingChecksumError( F'''Checksums didn\'t match{for_verification_name}:\n''' F'''{bad_urls}\n''' 'Set `verification_mode=\'no_checks\'` to skip checksums verification and ignore this error' ) logger.info('All the checksums matched successfully' + for_verification_name ) class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' def _snake_case ( _snake_case : Optional[dict] , _snake_case : dict ) -> List[str]: '''simple docstring''' if expected_splits is None: logger.info('Unable to verify splits sizes.' ) return if len(set(_snake_case ) - set(_snake_case ) ) > 0: raise ExpectedMoreSplits(str(set(_snake_case ) - set(_snake_case ) ) ) if len(set(_snake_case ) - set(_snake_case ) ) > 0: raise UnexpectedSplits(str(set(_snake_case ) - set(_snake_case ) ) ) _A = [ {'expected': expected_splits[name], 'recorded': recorded_splits[name]} for name in expected_splits if expected_splits[name].num_examples != recorded_splits[name].num_examples ] if len(_snake_case ) > 0: raise NonMatchingSplitsSizesError(str(_snake_case ) ) logger.info('All the splits matched successfully.' ) def _snake_case ( _snake_case : str , _snake_case : bool = True ) -> dict: '''simple docstring''' if record_checksum: _A = shaaaa() with open(_snake_case , 'rb' ) as f: for chunk in iter(lambda: f.read(1 << 20 ) , B'' ): m.update(_snake_case ) _A = m.hexdigest() else: _A = None return {"num_bytes": os.path.getsize(_snake_case ), "checksum": checksum} def _snake_case ( _snake_case : int ) -> int: '''simple docstring''' if dataset_size and config.IN_MEMORY_MAX_SIZE: return dataset_size < config.IN_MEMORY_MAX_SIZE else: return False
271
1
'''simple docstring''' _lowercase : Optional[int] = { "Pillow": "Pillow", "accelerate": "accelerate>=0.11.0", "compel": "compel==0.1.8", "black": "black~=23.1", "datasets": "datasets", "filelock": "filelock", "flax": "flax>=0.4.1", "hf-doc-builder": "hf-doc-builder>=0.3.0", "huggingface-hub": "huggingface-hub>=0.13.2", "requests-mock": "requests-mock==1.10.0", "importlib_metadata": "importlib_metadata", "invisible-watermark": "invisible-watermark", "isort": "isort>=5.5.4", "jax": "jax>=0.2.8,!=0.3.2", "jaxlib": "jaxlib>=0.1.65", "Jinja2": "Jinja2", "k-diffusion": "k-diffusion>=0.0.12", "torchsde": "torchsde", "note_seq": "note_seq", "librosa": "librosa", "numpy": "numpy", "omegaconf": "omegaconf", "parameterized": "parameterized", "protobuf": "protobuf>=3.20.3,<4", "pytest": "pytest", "pytest-timeout": "pytest-timeout", "pytest-xdist": "pytest-xdist", "ruff": "ruff>=0.0.241", "safetensors": "safetensors", "sentencepiece": "sentencepiece>=0.1.91,!=0.1.92", "scipy": "scipy", "onnx": "onnx", "regex": "regex!=2019.12.17", "requests": "requests", "tensorboard": "tensorboard", "torch": "torch>=1.4", "torchvision": "torchvision", "transformers": "transformers>=4.25.1", "urllib3": "urllib3<=2.0.0", }
93
import json import os from pathlib import Path from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import sentencepiece from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _UpperCAmelCase : Dict = logging.get_logger(__name__) _UpperCAmelCase : Optional[int] = "▁" _UpperCAmelCase : int = { "vocab_file": "vocab.json", "spm_file": "sentencepiece.bpe.model", } _UpperCAmelCase : List[Any] = { "vocab_file": { "facebook/s2t-small-librispeech-asr": ( "https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/vocab.json" ), }, "spm_file": { "facebook/s2t-small-librispeech-asr": ( "https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/sentencepiece.bpe.model" ) }, } _UpperCAmelCase : str = { "facebook/s2t-small-librispeech-asr": 1024, } _UpperCAmelCase : List[str] = ["pt", "fr", "ru", "nl", "ro", "it", "es", "de"] _UpperCAmelCase : Tuple = {"mustc": MUSTC_LANGS} class __lowerCAmelCase ( lowerCAmelCase): _a = VOCAB_FILES_NAMES _a = PRETRAINED_VOCAB_FILES_MAP _a = MAX_MODEL_INPUT_SIZES _a = ['''input_ids''', '''attention_mask'''] _a = [] def __init__( self: Dict , _lowerCAmelCase: Optional[Any] , _lowerCAmelCase: Optional[Any] , _lowerCAmelCase: List[Any]="<s>" , _lowerCAmelCase: List[str]="</s>" , _lowerCAmelCase: Optional[int]="<pad>" , _lowerCAmelCase: List[str]="<unk>" , _lowerCAmelCase: Dict=False , _lowerCAmelCase: Optional[Any]=False , _lowerCAmelCase: Dict=None , _lowerCAmelCase: Dict=None , _lowerCAmelCase: Optional[Dict[str, Any]] = None , **_lowerCAmelCase: Tuple , ): lowercase :str = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=_lowerCAmelCase , eos_token=_lowerCAmelCase , unk_token=_lowerCAmelCase , pad_token=_lowerCAmelCase , do_upper_case=_lowerCAmelCase , do_lower_case=_lowerCAmelCase , tgt_lang=_lowerCAmelCase , lang_codes=_lowerCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **_lowerCAmelCase , ) lowercase :List[str] = do_upper_case lowercase :List[str] = do_lower_case lowercase :str = load_json(_lowerCAmelCase ) lowercase :List[Any] = {v: k for k, v in self.encoder.items()} lowercase :str = spm_file lowercase :Any = load_spm(_lowerCAmelCase , self.sp_model_kwargs ) if lang_codes is not None: lowercase :List[str] = lang_codes lowercase :Tuple = LANGUAGES[lang_codes] lowercase :Any = [F"<lang:{lang}>" for lang in self.langs] lowercase :Any = {lang: self.sp_model.PieceToId(F"<lang:{lang}>" ) for lang in self.langs} lowercase :Optional[Any] = self.lang_tokens lowercase :List[str] = tgt_lang if tgt_lang is not None else self.langs[0] self.set_tgt_lang_special_tokens(self._tgt_lang ) else: lowercase :Tuple = {} @property def SCREAMING_SNAKE_CASE ( self: Tuple ): return len(self.encoder ) @property def SCREAMING_SNAKE_CASE ( self: Optional[Any] ): return self._tgt_lang @tgt_lang.setter def SCREAMING_SNAKE_CASE ( self: List[Any] , _lowerCAmelCase: Optional[Any] ): lowercase :Any = new_tgt_lang self.set_tgt_lang_special_tokens(_lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self: Optional[int] , _lowerCAmelCase: str ): lowercase :Any = self.lang_code_to_id[tgt_lang] lowercase :List[Any] = [lang_code_id] def SCREAMING_SNAKE_CASE ( self: Optional[Any] , _lowerCAmelCase: str ): return self.sp_model.encode(_lowerCAmelCase , out_type=_lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self: Dict , _lowerCAmelCase: Tuple ): return self.encoder.get(_lowerCAmelCase , self.encoder[self.unk_token] ) def SCREAMING_SNAKE_CASE ( self: List[str] , _lowerCAmelCase: int ): return self.decoder.get(_lowerCAmelCase , self.unk_token ) def SCREAMING_SNAKE_CASE ( self: List[Any] , _lowerCAmelCase: List[str] ): lowercase :int = [] lowercase :Any = "" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: lowercase :Dict = self.sp_model.decode(_lowerCAmelCase ) out_string += (decoded.upper() if self.do_upper_case else decoded) + token + " " lowercase :Any = [] else: current_sub_tokens.append(_lowerCAmelCase ) lowercase :Dict = self.sp_model.decode(_lowerCAmelCase ) out_string += decoded.upper() if self.do_upper_case else decoded return out_string.strip() def SCREAMING_SNAKE_CASE ( self: Any , _lowerCAmelCase: int , _lowerCAmelCase: str=None ): if token_ids_a is None: return self.prefix_tokens + token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + [self.eos_token_id] def SCREAMING_SNAKE_CASE ( self: int , _lowerCAmelCase: List[int] , _lowerCAmelCase: Optional[List[int]] = None , _lowerCAmelCase: bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_lowerCAmelCase , token_ids_a=_lowerCAmelCase , already_has_special_tokens=_lowerCAmelCase ) lowercase :int = [1] * len(self.prefix_tokens ) lowercase :List[str] = [1] if token_ids_a is None: return prefix_ones + ([0] * len(_lowerCAmelCase )) + suffix_ones return prefix_ones + ([0] * len(_lowerCAmelCase )) + ([0] * len(_lowerCAmelCase )) + suffix_ones def SCREAMING_SNAKE_CASE ( self: Dict ): lowercase :int = self.encoder.copy() vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self: Optional[Any] ): lowercase :Union[str, Any] = self.__dict__.copy() lowercase :Dict = None return state def __setstate__( self: Union[str, Any] , _lowerCAmelCase: Dict ): lowercase :List[Any] = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): lowercase :List[Any] = {} lowercase :Union[str, Any] = load_spm(self.spm_file , self.sp_model_kwargs ) def SCREAMING_SNAKE_CASE ( self: Union[str, Any] , _lowerCAmelCase: str , _lowerCAmelCase: Optional[str] = None ): lowercase :List[str] = Path(_lowerCAmelCase ) assert save_dir.is_dir(), F"{save_directory} should be a directory" lowercase :List[Any] = save_dir / ( (filename_prefix + "-" if filename_prefix else "") + self.vocab_files_names["vocab_file"] ) lowercase :Any = save_dir / ( (filename_prefix + "-" if filename_prefix else "") + self.vocab_files_names["spm_file"] ) save_json(self.encoder , _lowerCAmelCase ) if os.path.abspath(self.spm_file ) != os.path.abspath(_lowerCAmelCase ) and os.path.isfile(self.spm_file ): copyfile(self.spm_file , _lowerCAmelCase ) elif not os.path.isfile(self.spm_file ): with open(_lowerCAmelCase , "wb" ) as fi: lowercase :int = self.sp_model.serialized_model_proto() fi.write(_lowerCAmelCase ) return (str(_lowerCAmelCase ), str(_lowerCAmelCase )) def UpperCAmelCase__ ( lowerCamelCase, lowerCamelCase ): lowercase :Tuple = sentencepiece.SentencePieceProcessor(**lowerCamelCase ) spm.Load(str(lowerCamelCase ) ) return spm def UpperCAmelCase__ ( lowerCamelCase ): with open(lowerCamelCase, "r" ) as f: return json.load(lowerCamelCase ) def UpperCAmelCase__ ( lowerCamelCase, lowerCamelCase ): with open(lowerCamelCase, "w" ) as f: json.dump(lowerCamelCase, lowerCamelCase, indent=2 )
236
0
'''simple docstring''' import argparse import shutil from pathlib import Path from tqdm import tqdm from transformers import AutoTokenizer def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : int=1024 ): '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ = [], [] UpperCAmelCase__ = list(zip(__A , __A ) ) UpperCAmelCase__ , UpperCAmelCase__ = sorted_examples[0] def is_too_big(SCREAMING_SNAKE_CASE__ : Optional[Any] ): return tok(__A , return_tensors="""pt""" ).input_ids.shape[1] > max_tokens for src, tgt in tqdm(sorted_examples[1:] ): UpperCAmelCase__ = new_src + """ """ + src UpperCAmelCase__ = new_tgt + """ """ + tgt if is_too_big(__A ) or is_too_big(__A ): # cant fit, finalize example finished_src.append(__A ) finished_tgt.append(__A ) UpperCAmelCase__ , UpperCAmelCase__ = src, tgt else: # can fit, keep adding UpperCAmelCase__ , UpperCAmelCase__ = cand_src, cand_tgt # cleanup if new_src: assert new_tgt finished_src.append(__A ) finished_tgt.append(__A ) return finished_src, finished_tgt def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Path , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : List[str] ): '''simple docstring''' UpperCAmelCase__ = Path(__A ) save_path.mkdir(exist_ok=__A ) for split in ["train"]: UpperCAmelCase__ , UpperCAmelCase__ = data_dir / F'''{split}.source''', data_dir / F'''{split}.target''' UpperCAmelCase__ = [x.rstrip() for x in Path(__A ).open().readlines()] UpperCAmelCase__ = [x.rstrip() for x in Path(__A ).open().readlines()] UpperCAmelCase__ , UpperCAmelCase__ = pack_examples(__A , __A , __A , __A ) print(F'''packed {split} split from {len(__A )} examples -> {len(__A )}.''' ) Path(save_path / F'''{split}.source''' ).open("""w""" ).write("""\n""".join(__A ) ) Path(save_path / F'''{split}.target''' ).open("""w""" ).write("""\n""".join(__A ) ) for split in ["val", "test"]: UpperCAmelCase__ , UpperCAmelCase__ = data_dir / F'''{split}.source''', data_dir / F'''{split}.target''' shutil.copyfile(__A , save_path / F'''{split}.source''' ) shutil.copyfile(__A , save_path / F'''{split}.target''' ) def _UpperCamelCase ( ): '''simple docstring''' UpperCAmelCase__ = argparse.ArgumentParser() parser.add_argument("""--tok_name""" , type=__A , help="""like facebook/bart-large-cnn,t5-base, etc.""" ) parser.add_argument("""--max_seq_len""" , type=__A , default=128 ) parser.add_argument("""--data_dir""" , type=__A ) parser.add_argument("""--save_path""" , type=__A ) UpperCAmelCase__ = parser.parse_args() UpperCAmelCase__ = AutoTokenizer.from_pretrained(args.tok_name ) return pack_data_dir(__A , Path(args.data_dir ) , args.max_seq_len , args.save_path ) if __name__ == "__main__": packer_cli()
357
'''simple docstring''' import json from typing import Iterator, List, Union from tokenizers import AddedToken, Regex, Tokenizer, decoders, normalizers, pre_tokenizers, trainers from tokenizers.implementations.base_tokenizer import BaseTokenizer from tokenizers.models import Unigram from tokenizers.processors import TemplateProcessing class lowerCAmelCase_ ( lowerCamelCase_ ): '''simple docstring''' def __init__( self : str , _UpperCAmelCase : str = "▁" , _UpperCAmelCase : bool = True , _UpperCAmelCase : Union[str, AddedToken] = "<unk>" , _UpperCAmelCase : Union[str, AddedToken] = "</s>" , _UpperCAmelCase : Union[str, AddedToken] = "<pad>" , ): """simple docstring""" UpperCAmelCase__ = { """pad""": {"""id""": 0, """token""": pad_token}, """eos""": {"""id""": 1, """token""": eos_token}, """unk""": {"""id""": 2, """token""": unk_token}, } UpperCAmelCase__ = [None] * len(self.special_tokens ) for token_dict in self.special_tokens.values(): UpperCAmelCase__ = token_dict["""token"""] UpperCAmelCase__ = Tokenizer(Unigram() ) UpperCAmelCase__ = normalizers.Sequence( [ normalizers.Nmt(), normalizers.NFKC(), normalizers.Replace(Regex(""" {2,}""" ) , """ """ ), normalizers.Lowercase(), ] ) UpperCAmelCase__ = pre_tokenizers.Sequence( [ pre_tokenizers.Metaspace(replacement=_UpperCAmelCase , add_prefix_space=_UpperCAmelCase ), pre_tokenizers.Digits(individual_digits=_UpperCAmelCase ), pre_tokenizers.Punctuation(), ] ) UpperCAmelCase__ = decoders.Metaspace(replacement=_UpperCAmelCase , add_prefix_space=_UpperCAmelCase ) UpperCAmelCase__ = TemplateProcessing( single=f'''$A {self.special_tokens['eos']['token']}''' , special_tokens=[(self.special_tokens["""eos"""]["""token"""], self.special_tokens["""eos"""]["""id"""])] , ) UpperCAmelCase__ = { """model""": """SentencePieceUnigram""", """replacement""": replacement, """add_prefix_space""": add_prefix_space, } super().__init__(_UpperCAmelCase , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , _UpperCAmelCase : Union[str, List[str]] , _UpperCAmelCase : int = 80_00 , _UpperCAmelCase : bool = True , ): """simple docstring""" UpperCAmelCase__ = trainers.UnigramTrainer( vocab_size=_UpperCAmelCase , special_tokens=self.special_tokens_list , show_progress=_UpperCAmelCase , ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ): UpperCAmelCase__ = [files] self._tokenizer.train(_UpperCAmelCase , trainer=_UpperCAmelCase ) self.add_unk_id() def SCREAMING_SNAKE_CASE__ ( self : List[str] , _UpperCAmelCase : Union[Iterator[str], Iterator[Iterator[str]]] , _UpperCAmelCase : int = 80_00 , _UpperCAmelCase : bool = True , ): """simple docstring""" UpperCAmelCase__ = trainers.UnigramTrainer( vocab_size=_UpperCAmelCase , special_tokens=self.special_tokens_list , show_progress=_UpperCAmelCase , ) self._tokenizer.train_from_iterator(_UpperCAmelCase , trainer=_UpperCAmelCase ) self.add_unk_id() def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): """simple docstring""" UpperCAmelCase__ = json.loads(self._tokenizer.to_str() ) UpperCAmelCase__ = self.special_tokens["""unk"""]["""id"""] UpperCAmelCase__ = Tokenizer.from_str(json.dumps(_UpperCAmelCase ) )
61
0
"""simple docstring""" import copy import tempfile import unittest from transformers import MaMaaaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from transformers.utils import cached_property from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaMaaaForConditionalGeneration, MaMaaaModel, MaMaaaTokenizer from transformers.models.mam_aaa.modeling_mam_aaa import MaMaaaDecoder, MaMaaaEncoder def lowerCAmelCase__ ( _UpperCamelCase : List[Any] , _UpperCamelCase : List[str] , _UpperCamelCase : str , _UpperCamelCase : List[str]=None , _UpperCamelCase : Optional[Any]=None , _UpperCamelCase : List[str]=None , _UpperCamelCase : List[str]=None , _UpperCamelCase : Dict=None , ) -> Any: """simple docstring""" if attention_mask is None: snake_case = input_ids.ne(config.pad_token_id ) if decoder_attention_mask is None: snake_case = decoder_input_ids.ne(config.pad_token_id ) if head_mask is None: snake_case = torch.ones(config.encoder_layers , config.encoder_attention_heads , device=SCREAMING_SNAKE_CASE_ ) if decoder_head_mask is None: snake_case = torch.ones(config.decoder_layers , config.decoder_attention_heads , device=SCREAMING_SNAKE_CASE_ ) if cross_attn_head_mask is None: snake_case = torch.ones(config.decoder_layers , config.decoder_attention_heads , device=SCREAMING_SNAKE_CASE_ ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } class lowerCAmelCase_ : """simple docstring""" def __init__( self , lowerCAmelCase , lowerCAmelCase=13 , lowerCAmelCase=7 , lowerCAmelCase=True , lowerCAmelCase=False , lowerCAmelCase=99 , lowerCAmelCase=16 , lowerCAmelCase=2 , lowerCAmelCase=4 , lowerCAmelCase=4 , lowerCAmelCase="relu" , lowerCAmelCase=0.1 , lowerCAmelCase=0.1 , lowerCAmelCase=0.0 , lowerCAmelCase=0.0 , lowerCAmelCase=20 , lowerCAmelCase=2 , lowerCAmelCase=1 , lowerCAmelCase=0 , ): """simple docstring""" snake_case = parent snake_case = batch_size snake_case = seq_length snake_case = is_training snake_case = use_labels snake_case = vocab_size snake_case = hidden_size snake_case = num_hidden_layers snake_case = num_attention_heads snake_case = intermediate_size snake_case = hidden_act snake_case = hidden_dropout_prob snake_case = attention_probs_dropout_prob snake_case = encoder_layerdrop snake_case = decoder_layerdrop snake_case = max_position_embeddings snake_case = eos_token_id snake_case = pad_token_id snake_case = bos_token_id def snake_case ( self ): """simple docstring""" snake_case = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case = self.eos_token_id # Eos Token snake_case = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) # we need to clamp the input ids here to avoid having pad token in between # this is because for M2M100 the position_ids are prepared such that # all pad tokens have pos id = 2 and rest are between 2..seq_length # and the seq_length here is seq_length - num_pad_tokens # but when using past, there is no way of knowing if the past input ids had # pad tokens in them, which results in incorrect seq_lenth and which in turn results in # position_ids being off by num_pad_tokens in past input snake_case = input_ids.clamp(self.pad_token_id + 1 ) snake_case = decoder_input_ids.clamp(self.pad_token_id + 1 ) snake_case = self.get_config() snake_case = prepare_mam_aaa_inputs_dict(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) return config, inputs_dict def snake_case ( self ): """simple docstring""" return MaMaaaConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , encoder_layerdrop=self.encoder_layerdrop , decoder_layerdrop=self.decoder_layerdrop , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , ) def snake_case ( self ): """simple docstring""" snake_case = self.prepare_config_and_inputs() return config, inputs_dict def snake_case ( self , lowerCAmelCase , lowerCAmelCase ): """simple docstring""" snake_case = MaMaaaModel(config=lowerCAmelCase ).get_decoder().to(lowerCAmelCase ).eval() snake_case = inputs_dict['input_ids'] snake_case = inputs_dict['attention_mask'] snake_case = inputs_dict['head_mask'] # first forward pass snake_case = model(lowerCAmelCase , attention_mask=lowerCAmelCase , head_mask=lowerCAmelCase , use_cache=lowerCAmelCase ) snake_case = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids snake_case = ids_tensor((self.batch_size, 3) , config.vocab_size ) snake_case = ids_tensor((self.batch_size, 3) , 2 ) # append to next input_ids and snake_case = torch.cat([input_ids, next_tokens] , dim=-1 ) snake_case = torch.cat([attention_mask, next_attn_mask] , dim=-1 ) snake_case = model(lowerCAmelCase , attention_mask=lowerCAmelCase )['last_hidden_state'] snake_case = model(lowerCAmelCase , attention_mask=lowerCAmelCase , past_key_values=lowerCAmelCase )[ 'last_hidden_state' ] # select random slice snake_case = ids_tensor((1,) , output_from_past.shape[-1] ).item() snake_case = output_from_no_past[:, -3:, random_slice_idx].detach() snake_case = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowerCAmelCase , lowerCAmelCase , atol=1E-2 ) ) def snake_case ( self , lowerCAmelCase , lowerCAmelCase ): """simple docstring""" snake_case = MaMaaaModel(config=lowerCAmelCase ).to(lowerCAmelCase ).eval() snake_case = model(**lowerCAmelCase ) snake_case = outputs.encoder_last_hidden_state snake_case = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: snake_case = model.get_encoder() encoder.save_pretrained(lowerCAmelCase ) snake_case = MaMaaaEncoder.from_pretrained(lowerCAmelCase ).to(lowerCAmelCase ) snake_case = encoder(inputs_dict['input_ids'] , attention_mask=inputs_dict['attention_mask'] )[ 0 ] self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1E-3 ) with tempfile.TemporaryDirectory() as tmpdirname: snake_case = model.get_decoder() decoder.save_pretrained(lowerCAmelCase ) snake_case = MaMaaaDecoder.from_pretrained(lowerCAmelCase ).to(lowerCAmelCase ) snake_case = decoder( input_ids=inputs_dict['decoder_input_ids'] , attention_mask=inputs_dict['decoder_attention_mask'] , encoder_hidden_states=lowerCAmelCase , encoder_attention_mask=inputs_dict['attention_mask'] , )[0] self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1E-3 ) @require_torch class lowerCAmelCase_ ( __snake_case , __snake_case , __snake_case , unittest.TestCase ): """simple docstring""" _lowerCAmelCase : str = ( ( MaMaaaModel, MaMaaaForConditionalGeneration, ) if is_torch_available() else () ) _lowerCAmelCase : Optional[int] = (MaMaaaForConditionalGeneration,) if is_torch_available() else () _lowerCAmelCase : Optional[int] = ( { """conversational""": MaMaaaForConditionalGeneration, """feature-extraction""": MaMaaaModel, """summarization""": MaMaaaForConditionalGeneration, """text2text-generation""": MaMaaaForConditionalGeneration, """translation""": MaMaaaForConditionalGeneration, } if is_torch_available() else {} ) _lowerCAmelCase : List[str] = True _lowerCAmelCase : Union[str, Any] = True _lowerCAmelCase : Union[str, Any] = False _lowerCAmelCase : int = False def snake_case ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): """simple docstring""" if pipeline_test_casse_name == "TranslationPipelineTests": # Get `ValueError: Translation requires a `src_lang` and a `tgt_lang` for this model`. # `M2M100Config` was never used in pipeline tests: cannot create a simple tokenizer. return True return False def snake_case ( self ): """simple docstring""" snake_case = MaMaaaModelTester(self ) snake_case = ConfigTester(self , config_class=lowerCAmelCase ) def snake_case ( self ): """simple docstring""" self.config_tester.run_common_tests() def snake_case ( self ): """simple docstring""" snake_case = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: snake_case = model_class(lowerCAmelCase ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(lowerCAmelCase ) snake_case = model_class.from_pretrained(lowerCAmelCase , output_loading_info=lowerCAmelCase ) self.assertEqual(info['missing_keys'] , [] ) def snake_case ( self ): """simple docstring""" snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(*lowerCAmelCase ) def snake_case ( self ): """simple docstring""" snake_case = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*lowerCAmelCase ) def snake_case ( self ): """simple docstring""" snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in (MaMaaaModel, MaMaaaForConditionalGeneration): snake_case = model_class(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() snake_case = copy.deepcopy(self._prepare_for_class(lowerCAmelCase , lowerCAmelCase ) ) if not self.is_encoder_decoder: snake_case = inputs['input_ids'] del inputs["input_ids"] else: snake_case = inputs['input_ids'] snake_case = inputs.get('decoder_input_ids' , lowerCAmelCase ) del inputs["input_ids"] inputs.pop('decoder_input_ids' , lowerCAmelCase ) snake_case = model.get_input_embeddings() if not self.is_encoder_decoder: snake_case = wte(lowerCAmelCase ) else: snake_case = wte(lowerCAmelCase ) snake_case = wte(lowerCAmelCase ) with torch.no_grad(): model(**lowerCAmelCase )[0] def snake_case ( self ): """simple docstring""" snake_case = self.model_tester.prepare_config_and_inputs() snake_case = input_dict['input_ids'] snake_case = input_ids.ne(1 ).to(lowerCAmelCase ) snake_case = MaMaaaForConditionalGeneration(lowerCAmelCase ).eval().to(lowerCAmelCase ) if torch_device == "cuda": model.half() model.generate(lowerCAmelCase , attention_mask=lowerCAmelCase ) model.generate(num_beams=4 , do_sample=lowerCAmelCase , early_stopping=lowerCAmelCase , num_return_sequences=3 ) def lowerCAmelCase__ ( _UpperCamelCase : str ) -> Dict: """simple docstring""" return torch.tensor(SCREAMING_SNAKE_CASE_ , dtype=torch.long , device=SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE__ = 1E-4 @require_torch @require_sentencepiece @require_tokenizers @slow class lowerCAmelCase_ ( unittest.TestCase ): """simple docstring""" @cached_property def snake_case ( self ): """simple docstring""" return MaMaaaTokenizer.from_pretrained('facebook/m2m100_418M' ) def snake_case ( self ): """simple docstring""" snake_case = MaMaaaModel.from_pretrained('facebook/m2m100_418M' ).to(lowerCAmelCase ) snake_case = _long_tensor([[12_80_28, 98, 12, 3_05_27, 27_32, 1_59, 77_55, 6_19_04, 3_91_44, 38, 2]] ) snake_case = _long_tensor([[2, 12_80_28, 98, 12, 3_05_27, 27_32, 1_59, 77_55, 6_19_04, 3_91_44, 38]] ) snake_case = prepare_mam_aaa_inputs_dict(model.config , lowerCAmelCase , lowerCAmelCase ) with torch.no_grad(): snake_case = model(**lowerCAmelCase )[0] snake_case = torch.Size((1, 11, 10_24) ) self.assertEqual(output.shape , lowerCAmelCase ) # change to expected output here snake_case = torch.tensor( [[-0.77_80, -0.16_76, 0.10_38], [-6.75_56, -1.39_92, 0.05_67], [-7.53_83, -0.59_20, -0.27_79]] , device=lowerCAmelCase ) self.assertTrue(torch.allclose(output[:, :3, :3] , lowerCAmelCase , atol=lowerCAmelCase ) ) def snake_case ( self ): """simple docstring""" snake_case = MaMaaaForConditionalGeneration.from_pretrained('facebook/m2m100_418M' ).to(lowerCAmelCase ) # change to intended input snake_case = _long_tensor([[12_80_28, 98, 12, 3_05_27, 27_32, 1_59, 77_55, 6_19_04, 3_91_44, 38, 2]] ) snake_case = _long_tensor([[2, 12_80_28, 98, 12, 3_05_27, 27_32, 1_59, 77_55, 6_19_04, 3_91_44, 38]] ) snake_case = prepare_mam_aaa_inputs_dict(model.config , lowerCAmelCase , lowerCAmelCase ) with torch.no_grad(): snake_case = model(**lowerCAmelCase )[0] snake_case = torch.Size((1, 11, model.config.vocab_size) ) self.assertEqual(output.shape , lowerCAmelCase ) # change to expected output here snake_case = torch.tensor( [[-1.04_48, -1.04_11, 3.79_92], [-3.21_91, -3.23_86, -1.34_51], [-3.62_10, -3.59_93, 0.49_25]] , device=lowerCAmelCase ) self.assertTrue(torch.allclose(output[:, :3, :3] , lowerCAmelCase , atol=lowerCAmelCase ) ) def snake_case ( self ): """simple docstring""" snake_case = MaMaaaForConditionalGeneration.from_pretrained('facebook/m2m100_418M' ).to(lowerCAmelCase ) snake_case = MaMaaaTokenizer.from_pretrained('facebook/m2m100_418M' , src_lang='fr' , tgt_lang='en' ) snake_case = [ 'L\'affaire NSA souligne l\'absence totale de débat sur le renseignement', 'Selon moi, il y a deux niveaux de réponse de la part du gouvernement français.', 'Lorsque François Hollande téléphone à Barack Obama ou quand le ministre des affaires étrangères Laurent' ' Fabius convoque l\'ambassadeur des Etats-Unis, ils réagissent à une vraie découverte, qui est celle de' ' l\'ampleur de la surveillance américaine sur l\'ensemble des communications en France.', ] # The below article tests that we don't add any hypotheses outside of the top n_beams snake_case = tokenizer(lowerCAmelCase , padding=lowerCAmelCase , return_tensors='pt' ) snake_case = model.generate( input_ids=dct['input_ids'].to(lowerCAmelCase ) , attention_mask=dct['attention_mask'].to(lowerCAmelCase ) , num_beams=5 , forced_bos_token_id=tokenizer.get_lang_id('en' ) , ) snake_case = [ 'The NSA case highlights the total absence of intelligence debate', 'I think there are two levels of response from the French government.', 'When François Hollande calls Barack Obama or when Foreign Minister Laurent Fabius calls the U.S.' ' Ambassador, they respond to a real discovery, which is that of the scale of U.S. surveillance on all' ' communications in France.', ] snake_case = tokenizer.batch_decode( hypotheses_batch.tolist() , clean_up_tokenization_spaces=lowerCAmelCase , skip_special_tokens=lowerCAmelCase ) assert generated == expected_en
150
import warnings from typing import Dict import numpy as np from ..utils import ExplicitEnum, add_end_docstrings, is_tf_available, is_torch_available from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING def snake_case__ ( SCREAMING_SNAKE_CASE_ : Dict ): '''simple docstring''' return 1.0 / (1.0 + np.exp(-_outputs )) def snake_case__ ( SCREAMING_SNAKE_CASE_ : str ): '''simple docstring''' lowercase__ : int = np.max(_outputs , axis=-1 , keepdims=SCREAMING_SNAKE_CASE_ ) lowercase__ : int = np.exp(_outputs - maxes ) return shifted_exp / shifted_exp.sum(axis=-1 , keepdims=SCREAMING_SNAKE_CASE_ ) class SCREAMING_SNAKE_CASE__ (__snake_case ): __lowerCamelCase : Optional[int] = """sigmoid""" __lowerCamelCase : List[Any] = """softmax""" __lowerCamelCase : Optional[Any] = """none""" @add_end_docstrings( __snake_case , r""" return_all_scores (`bool`, *optional*, defaults to `False`): Whether to return all prediction scores or just the one of the predicted class. function_to_apply (`str`, *optional*, defaults to `\"default\"`): The function to apply to the model outputs in order to retrieve the scores. Accepts four different values: - `\"default\"`: if the model has a single label, will apply the sigmoid function on the output. If the model has several labels, will apply the softmax function on the output. - `\"sigmoid\"`: Applies the sigmoid function on the output. - `\"softmax\"`: Applies the softmax function on the output. - `\"none\"`: Does not apply any function on the output. """ , ) class SCREAMING_SNAKE_CASE__ (__snake_case ): __lowerCamelCase : Dict = False __lowerCamelCase : List[str] = ClassificationFunction.NONE def __init__( self , **a): super().__init__(**a) self.check_model_type( TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if self.framework == 'tf' else MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING) def snake_case_ ( self , a=None , a=None , a="" , **a): # Using "" as default argument because we're going to use `top_k=None` in user code to declare # "No top_k" lowercase__ : List[str] = tokenizer_kwargs lowercase__ : Dict = {} if hasattr(self.model.config , 'return_all_scores') and return_all_scores is None: lowercase__ : Union[str, Any] = self.model.config.return_all_scores if isinstance(a , a) or top_k is None: lowercase__ : Tuple = top_k lowercase__ : Any = False elif return_all_scores is not None: warnings.warn( '`return_all_scores` is now deprecated, if want a similar functionality use `top_k=None` instead of' ' `return_all_scores=True` or `top_k=1` instead of `return_all_scores=False`.' , a , ) if return_all_scores: lowercase__ : Union[str, Any] = None else: lowercase__ : Union[str, Any] = 1 if isinstance(a , a): lowercase__ : Tuple = ClassificationFunction[function_to_apply.upper()] if function_to_apply is not None: lowercase__ : List[str] = function_to_apply return preprocess_params, {}, postprocess_params def __call__( self , *a , **a): lowercase__ : int = super().__call__(*a , **a) # TODO try and retrieve it in a nicer way from _sanitize_parameters. lowercase__ : Any = 'top_k' not in kwargs if isinstance(args[0] , a) and _legacy: # This pipeline is odd, and return a list when single item is run return [result] else: return result def snake_case_ ( self , a , **a): lowercase__ : List[str] = self.framework if isinstance(a , a): return self.tokenizer(**a , return_tensors=a , **a) elif isinstance(a , a) and len(a) == 1 and isinstance(inputs[0] , a) and len(inputs[0]) == 2: # It used to be valid to use a list of list of list for text pairs, keeping this path for BC return self.tokenizer( text=inputs[0][0] , text_pair=inputs[0][1] , return_tensors=a , **a) elif isinstance(a , a): # This is likely an invalid usage of the pipeline attempting to pass text pairs. raise ValueError( 'The pipeline received invalid inputs, if you are trying to send text pairs, you can try to send a' ' dictionary `{"text": "My text", "text_pair": "My pair"}` in order to send a text pair.') return self.tokenizer(a , return_tensors=a , **a) def snake_case_ ( self , a): return self.model(**a) def snake_case_ ( self , a , a=None , a=1 , a=True): # `_legacy` is used to determine if we're running the naked pipeline and in backward # compatibility mode, or if running the pipeline with `pipeline(..., top_k=1)` we're running # the more natural result containing the list. # Default value before `set_parameters` if function_to_apply is None: if self.model.config.problem_type == "multi_label_classification" or self.model.config.num_labels == 1: lowercase__ : Union[str, Any] = ClassificationFunction.SIGMOID elif self.model.config.problem_type == "single_label_classification" or self.model.config.num_labels > 1: lowercase__ : Union[str, Any] = ClassificationFunction.SOFTMAX elif hasattr(self.model.config , 'function_to_apply') and function_to_apply is None: lowercase__ : List[str] = self.model.config.function_to_apply else: lowercase__ : Union[str, Any] = ClassificationFunction.NONE lowercase__ : str = model_outputs['logits'][0] lowercase__ : Dict = outputs.numpy() if function_to_apply == ClassificationFunction.SIGMOID: lowercase__ : int = sigmoid(a) elif function_to_apply == ClassificationFunction.SOFTMAX: lowercase__ : List[Any] = softmax(a) elif function_to_apply == ClassificationFunction.NONE: lowercase__ : Any = outputs else: raise ValueError(f"""Unrecognized `function_to_apply` argument: {function_to_apply}""") if top_k == 1 and _legacy: return {"label": self.model.config.idalabel[scores.argmax().item()], "score": scores.max().item()} lowercase__ : Any = [ {'label': self.model.config.idalabel[i], 'score': score.item()} for i, score in enumerate(a) ] if not _legacy: dict_scores.sort(key=lambda a: x["score"] , reverse=a) if top_k is not None: lowercase__ : Optional[Any] = dict_scores[:top_k] return dict_scores
214
0
"""simple docstring""" from numpy import exp, pi, sqrt def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : int , _UpperCAmelCase : float = 0.0 , _UpperCAmelCase : float = 1.0 ): return 1 / sqrt(2 * pi * sigma**2 ) * exp(-((x - mu) ** 2) / (2 * sigma**2) ) if __name__ == "__main__": import doctest doctest.testmod()
309
"""simple docstring""" from __future__ import annotations import random # Maximum size of the population. Bigger could be faster but is more memory expensive. __UpperCamelCase : str = 200 # Number of elements selected in every generation of evolution. The selection takes # place from best to worst of that generation and must be smaller than N_POPULATION. __UpperCamelCase : Optional[Any] = 50 # Probability that an element of a generation can mutate, changing one of its genes. # This will guarantee that all genes will be used during evolution. __UpperCamelCase : Dict = 0.4 # Just a seed to improve randomness required by the algorithm. random.seed(random.randint(0, 1000)) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str , _UpperCAmelCase : str ): lowerCAmelCase = len([g for position, g in enumerate(_UpperCAmelCase ) if g == main_target[position]] ) return (item, float(_UpperCAmelCase )) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str , _UpperCAmelCase : str ): lowerCAmelCase = random.randint(0 , len(_UpperCAmelCase ) - 1 ) lowerCAmelCase = parent_a[:random_slice] + parent_a[random_slice:] lowerCAmelCase = parent_a[:random_slice] + parent_a[random_slice:] return (child_a, child_a) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str , _UpperCAmelCase : list[str] ): lowerCAmelCase = list(_UpperCAmelCase ) if random.uniform(0 , 1 ) < MUTATION_PROBABILITY: lowerCAmelCase = random.choice(_UpperCAmelCase ) return "".join(_UpperCAmelCase ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : tuple[str, float] , _UpperCAmelCase : list[tuple[str, float]] , _UpperCAmelCase : list[str] , ): lowerCAmelCase = [] # Generate more children proportionally to the fitness score. lowerCAmelCase = int(parent_a[1] * 100 ) + 1 lowerCAmelCase = 10 if child_n >= 10 else child_n for _ in range(_UpperCAmelCase ): lowerCAmelCase = population_score[random.randint(0 , _UpperCAmelCase )][0] lowerCAmelCase ,lowerCAmelCase = crossover(parent_a[0] , _UpperCAmelCase ) # Append new string to the population list. pop.append(mutate(_UpperCAmelCase , _UpperCAmelCase ) ) pop.append(mutate(_UpperCAmelCase , _UpperCAmelCase ) ) return pop def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str , _UpperCAmelCase : list[str] , _UpperCAmelCase : bool = True ): # Verify if N_POPULATION is bigger than N_SELECTED if N_POPULATION < N_SELECTED: lowerCAmelCase = F'{N_POPULATION} must be bigger than {N_SELECTED}' raise ValueError(_UpperCAmelCase ) # Verify that the target contains no genes besides the ones inside genes variable. lowerCAmelCase = sorted({c for c in target if c not in genes} ) if not_in_genes_list: lowerCAmelCase = F'{not_in_genes_list} is not in genes list, evolution cannot converge' raise ValueError(_UpperCAmelCase ) # Generate random starting population. lowerCAmelCase = [] for _ in range(_UpperCAmelCase ): population.append(''.join([random.choice(_UpperCAmelCase ) for i in range(len(_UpperCAmelCase ) )] ) ) # Just some logs to know what the algorithms is doing. lowerCAmelCase ,lowerCAmelCase = 0, 0 # This loop will end when we find a perfect match for our target. while True: generation += 1 total_population += len(_UpperCAmelCase ) # Random population created. Now it's time to evaluate. # Adding a bit of concurrency can make everything faster, # # import concurrent.futures # population_score: list[tuple[str, float]] = [] # with concurrent.futures.ThreadPoolExecutor( # max_workers=NUM_WORKERS) as executor: # futures = {executor.submit(evaluate, item) for item in population} # concurrent.futures.wait(futures) # population_score = [item.result() for item in futures] # # but with a simple algorithm like this, it will probably be slower. # We just need to call evaluate for every item inside the population. lowerCAmelCase = [evaluate(_UpperCAmelCase , _UpperCAmelCase ) for item in population] # Check if there is a matching evolution. lowerCAmelCase = sorted(_UpperCAmelCase , key=lambda _UpperCAmelCase : x[1] , reverse=_UpperCAmelCase ) if population_score[0][0] == target: return (generation, total_population, population_score[0][0]) # Print the best result every 10 generation. # Just to know that the algorithm is working. if debug and generation % 10 == 0: print( F'\nGeneration: {generation}' F'\nTotal Population:{total_population}' F'\nBest score: {population_score[0][1]}' F'\nBest string: {population_score[0][0]}' ) # Flush the old population, keeping some of the best evolutions. # Keeping this avoid regression of evolution. lowerCAmelCase = population[: int(N_POPULATION / 3 )] population.clear() population.extend(_UpperCAmelCase ) # Normalize population score to be between 0 and 1. lowerCAmelCase = [ (item, score / len(_UpperCAmelCase )) for item, score in population_score ] # This is selection for i in range(_UpperCAmelCase ): population.extend(select(population_score[int(_UpperCAmelCase )] , _UpperCAmelCase , _UpperCAmelCase ) ) # Check if the population has already reached the maximum value and if so, # break the cycle. If this check is disabled, the algorithm will take # forever to compute large strings, but will also calculate small strings in # a far fewer generations. if len(_UpperCAmelCase ) > N_POPULATION: break if __name__ == "__main__": __UpperCamelCase : Tuple = ( '''This is a genetic algorithm to evaluate, combine, evolve, and mutate a string!''' ) __UpperCamelCase : str = list( ''' ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklm''' '''nopqrstuvwxyz.,;!?+-*#@^\'èéòà€ù=)(&%$£/\\''' ) __UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase : Dict = basic(target_str, genes_list) print( f'''\nGeneration: {generation}\nTotal Population: {population}\nTarget: {target}''' )
309
1
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version('''>=''', '''4.25.0''')): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import UnCLIPImageVariationPipeline, UnCLIPPipeline else: from .pipeline_unclip import UnCLIPPipeline from .pipeline_unclip_image_variation import UnCLIPImageVariationPipeline from .text_proj import UnCLIPTextProjModel
340
import copy from typing import TYPE_CHECKING, Any, Mapping, Optional, OrderedDict from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto.configuration_auto import AutoConfig if TYPE_CHECKING: from ... import PreTrainedTokenizerBase, TensorType _snake_case = logging.get_logger(__name__) class UpperCAmelCase_ ( a): lowerCamelCase__ = 'vision-encoder-decoder' lowerCamelCase__ = True def __init__( self, **__a): '''simple docstring''' super().__init__(**__a) if "encoder" not in kwargs or "decoder" not in kwargs: raise ValueError( f"A configuraton of type {self.model_type} cannot be instantiated because " f"not both `encoder` and `decoder` sub-configurations are passed, but only {kwargs}") _lowerCAmelCase : str = kwargs.pop("encoder") _lowerCAmelCase : Any = encoder_config.pop("model_type") _lowerCAmelCase : str = kwargs.pop("decoder") _lowerCAmelCase : List[str] = decoder_config.pop("model_type") _lowerCAmelCase : Optional[Any] = AutoConfig.for_model(__a, **__a) _lowerCAmelCase : Optional[Any] = AutoConfig.for_model(__a, **__a) _lowerCAmelCase : Optional[int] = True @classmethod def snake_case__ ( cls, __a, __a, **__a): '''simple docstring''' logger.info("Setting `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config") _lowerCAmelCase : Optional[Any] = True _lowerCAmelCase : str = True return cls(encoder=encoder_config.to_dict(), decoder=decoder_config.to_dict(), **__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : int = copy.deepcopy(self.__dict__) _lowerCAmelCase : List[str] = self.encoder.to_dict() _lowerCAmelCase : List[str] = self.decoder.to_dict() _lowerCAmelCase : Any = self.__class__.model_type return output class UpperCAmelCase_ ( a): lowerCamelCase__ = version.parse('1.11') @property def snake_case__ ( self): '''simple docstring''' return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ]) @property def snake_case__ ( self): '''simple docstring''' return 1E-4 @property def snake_case__ ( self): '''simple docstring''' return OrderedDict({"last_hidden_state": {0: "batch", 1: "encoder_sequence"}}) class UpperCAmelCase_ ( a): @property def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = OrderedDict() _lowerCAmelCase : Any = {0: "batch", 1: "past_decoder_sequence + sequence"} _lowerCAmelCase : List[str] = {0: "batch", 1: "past_decoder_sequence + sequence"} _lowerCAmelCase : Optional[Any] = {0: "batch", 1: "encoder_sequence"} return common_inputs def snake_case__ ( self, __a, __a = -1, __a = -1, __a = False, __a = None, ): '''simple docstring''' import torch _lowerCAmelCase : Optional[Any] = OrderedDict() _lowerCAmelCase : List[str] = super().generate_dummy_inputs( __a, batch_size=__a, seq_length=__a, is_pair=__a, framework=__a) _lowerCAmelCase , _lowerCAmelCase : Optional[Any] = dummy_input["input_ids"].shape _lowerCAmelCase : str = (batch, encoder_sequence, self._config.encoder_hidden_size) _lowerCAmelCase : List[str] = dummy_input.pop("input_ids") _lowerCAmelCase : List[str] = dummy_input.pop("attention_mask") _lowerCAmelCase : Optional[int] = torch.zeros(__a) return common_inputs class UpperCAmelCase_ ( a): @property def snake_case__ ( self): '''simple docstring''' pass def snake_case__ ( self, __a): '''simple docstring''' return VisionEncoderDecoderEncoderOnnxConfig(__a) def snake_case__ ( self, __a, __a, __a = "default"): '''simple docstring''' _lowerCAmelCase : Dict = encoder_config.hidden_size return VisionEncoderDecoderDecoderOnnxConfig(__a, __a)
36
0
import gc import unittest import numpy as np import torch from diffusers import AutoencoderKL, DDIMScheduler, DiTPipeline, DPMSolverMultistepScheduler, TransformeraDModel from diffusers.utils import is_xformers_available, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS, CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class a__ ( __snake_case , unittest.TestCase ): A__ : Any = DiTPipeline A__ : List[Any] = CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS A__ : Any = PipelineTesterMixin.required_optional_params - { 'latents', 'num_images_per_prompt', 'callback', 'callback_steps', } A__ : Optional[Any] = CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS A__ : List[str] = False def __SCREAMING_SNAKE_CASE ( self ) -> Dict: torch.manual_seed(0 ) __a = TransformeraDModel( sample_size=1_6 , num_layers=2 , patch_size=4 , attention_head_dim=8 , num_attention_heads=2 , in_channels=4 , out_channels=8 , attention_bias=UpperCAmelCase , activation_fn='gelu-approximate' , num_embeds_ada_norm=1_0_0_0 , norm_type='ada_norm_zero' , norm_elementwise_affine=UpperCAmelCase , ) __a = AutoencoderKL() __a = DDIMScheduler() __a = {'transformer': transformer.eval(), 'vae': vae.eval(), 'scheduler': scheduler} return components def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase , UpperCAmelCase=0 ) -> Tuple: if str(UpperCAmelCase ).startswith('mps' ): __a = torch.manual_seed(UpperCAmelCase ) else: __a = torch.Generator(device=UpperCAmelCase ).manual_seed(UpperCAmelCase ) __a = { 'class_labels': [1], 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: __a = 'cpu' __a = self.get_dummy_components() __a = self.pipeline_class(**UpperCAmelCase ) pipe.to(UpperCAmelCase ) pipe.set_progress_bar_config(disable=UpperCAmelCase ) __a = self.get_dummy_inputs(UpperCAmelCase ) __a = pipe(**UpperCAmelCase ).images __a = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 1_6, 1_6, 3) ) __a = np.array([0.2_946, 0.6_601, 0.4_329, 0.3_296, 0.4_144, 0.5_319, 0.7_273, 0.5_013, 0.4_457] ) __a = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(UpperCAmelCase , 1e-3 ) def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: self._test_inference_batch_single_identical(relax_max_difference=UpperCAmelCase , expected_max_diff=1e-3 ) @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def __SCREAMING_SNAKE_CASE ( self ) -> str: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) @require_torch_gpu @slow class a__ ( unittest.TestCase ): def __SCREAMING_SNAKE_CASE ( self ) -> Any: super().tearDown() gc.collect() torch.cuda.empty_cache() def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: __a = torch.manual_seed(0 ) __a = DiTPipeline.from_pretrained('facebook/DiT-XL-2-256' ) pipe.to('cuda' ) __a = ['vase', 'umbrella', 'white shark', 'white wolf'] __a = pipe.get_label_ids(UpperCAmelCase ) __a = pipe(UpperCAmelCase , generator=UpperCAmelCase , num_inference_steps=4_0 , output_type='np' ).images for word, image in zip(UpperCAmelCase , UpperCAmelCase ): __a = load_numpy( f'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/dit/{word}.npy''' ) assert np.abs((expected_image - image).max() ) < 1e-2 def __SCREAMING_SNAKE_CASE ( self ) -> Any: __a = DiTPipeline.from_pretrained('facebook/DiT-XL-2-512' ) __a = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.to('cuda' ) __a = ['vase', 'umbrella'] __a = pipe.get_label_ids(UpperCAmelCase ) __a = torch.manual_seed(0 ) __a = pipe(UpperCAmelCase , generator=UpperCAmelCase , num_inference_steps=2_5 , output_type='np' ).images for word, image in zip(UpperCAmelCase , UpperCAmelCase ): __a = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' f'''/dit/{word}_512.npy''' ) assert np.abs((expected_image - image).max() ) < 1e-1
197
from datetime import datetime import matplotlib.pyplot as plt import torch def lowerCAmelCase( __lowerCamelCase ): for param in module.parameters(): __a = False def lowerCAmelCase( ): __a = 'cuda' if torch.cuda.is_available() else 'cpu' if torch.backends.mps.is_available() and torch.backends.mps.is_built(): __a = 'mps' if device == "mps": print( 'WARNING: MPS currently doesn\'t seem to work, and messes up backpropagation without any visible torch' ' errors. I recommend using CUDA on a colab notebook or CPU instead if you\'re facing inexplicable issues' ' with generations.' ) return device def lowerCAmelCase( __lowerCamelCase ): __a = plt.imshow(__lowerCamelCase ) fig.axes.get_xaxis().set_visible(__lowerCamelCase ) fig.axes.get_yaxis().set_visible(__lowerCamelCase ) plt.show() def lowerCAmelCase( ): __a = datetime.now() __a = current_time.strftime('%H:%M:%S' ) return timestamp
197
1
import math import os from copy import deepcopy import datasets import evaluate import torch import transformers from datasets import load_dataset from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer from accelerate import Accelerator from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import is_tpu_available, set_seed __lowercase = '''true''' def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=82 , SCREAMING_SNAKE_CASE=16 ): '''simple docstring''' set_seed(42 ) __UpperCamelCase :List[str] = RegressionModel() __UpperCamelCase :List[Any] = deepcopy(SCREAMING_SNAKE_CASE ) __UpperCamelCase :Optional[int] = RegressionDataset(length=SCREAMING_SNAKE_CASE ) __UpperCamelCase :List[Any] = DataLoader(SCREAMING_SNAKE_CASE , batch_size=SCREAMING_SNAKE_CASE ) model.to(accelerator.device ) __UpperCamelCase , __UpperCamelCase :Optional[Any] = accelerator.prepare(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return model, ddp_model, dataloader def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=False ): '''simple docstring''' __UpperCamelCase :List[str] = AutoTokenizer.from_pretrained('''hf-internal-testing/mrpc-bert-base-cased''' ) __UpperCamelCase :Optional[int] = load_dataset('''glue''' , '''mrpc''' , split='''validation''' ) def tokenize_function(SCREAMING_SNAKE_CASE ): __UpperCamelCase :Optional[Any] = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=SCREAMING_SNAKE_CASE , max_length=SCREAMING_SNAKE_CASE ) return outputs with accelerator.main_process_first(): __UpperCamelCase :Any = dataset.map( SCREAMING_SNAKE_CASE , batched=SCREAMING_SNAKE_CASE , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) __UpperCamelCase :Union[str, Any] = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(SCREAMING_SNAKE_CASE ): if use_longest: return tokenizer.pad(SCREAMING_SNAKE_CASE , padding='''longest''' , return_tensors='''pt''' ) return tokenizer.pad(SCREAMING_SNAKE_CASE , padding='''max_length''' , max_length=128 , return_tensors='''pt''' ) return DataLoader(SCREAMING_SNAKE_CASE , shuffle=SCREAMING_SNAKE_CASE , collate_fn=SCREAMING_SNAKE_CASE , batch_size=16 ) def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCamelCase :str = Accelerator(dispatch_batches=SCREAMING_SNAKE_CASE , split_batches=SCREAMING_SNAKE_CASE ) __UpperCamelCase :int = get_dataloader(SCREAMING_SNAKE_CASE , not dispatch_batches ) __UpperCamelCase :List[str] = AutoModelForSequenceClassification.from_pretrained( '''hf-internal-testing/mrpc-bert-base-cased''' , return_dict=SCREAMING_SNAKE_CASE ) __UpperCamelCase , __UpperCamelCase :List[Any] = accelerator.prepare(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return {"ddp": [ddp_model, ddp_dataloader, "cuda:0"], "no": [model, dataloader, accelerator.device]}, accelerator def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCamelCase :List[str] = [] for batch in dataloader: __UpperCamelCase , __UpperCamelCase :Tuple = batch.values() with torch.no_grad(): __UpperCamelCase :Any = model(SCREAMING_SNAKE_CASE ) __UpperCamelCase , __UpperCamelCase :Any = accelerator.gather_for_metrics((logit, target) ) logits_and_targets.append((logit, target) ) __UpperCamelCase , __UpperCamelCase :List[Any] = [], [] for logit, targ in logits_and_targets: logits.append(SCREAMING_SNAKE_CASE ) targs.append(SCREAMING_SNAKE_CASE ) __UpperCamelCase , __UpperCamelCase :str = torch.cat(SCREAMING_SNAKE_CASE ), torch.cat(SCREAMING_SNAKE_CASE ) return logits, targs def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=82 , SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=16 ): '''simple docstring''' __UpperCamelCase , __UpperCamelCase , __UpperCamelCase :Tuple = get_basic_setup(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __UpperCamelCase , __UpperCamelCase :List[Any] = generate_predictions(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) assert ( len(SCREAMING_SNAKE_CASE ) == num_samples ), f"""Unexpected number of inputs:\n Expected: {num_samples}\n Actual: {len(SCREAMING_SNAKE_CASE )}""" def lowerCamelCase ( SCREAMING_SNAKE_CASE = False , SCREAMING_SNAKE_CASE = False ): '''simple docstring''' __UpperCamelCase :Dict = evaluate.load('''glue''' , '''mrpc''' ) __UpperCamelCase , __UpperCamelCase :Dict = get_mrpc_setup(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # First do baseline __UpperCamelCase , __UpperCamelCase , __UpperCamelCase :Optional[int] = setup['''no'''] model.to(SCREAMING_SNAKE_CASE ) model.eval() for batch in dataloader: batch.to(SCREAMING_SNAKE_CASE ) with torch.inference_mode(): __UpperCamelCase :Optional[Any] = model(**SCREAMING_SNAKE_CASE ) __UpperCamelCase :List[str] = outputs.logits.argmax(dim=-1 ) metric.add_batch(predictions=SCREAMING_SNAKE_CASE , references=batch['''labels'''] ) __UpperCamelCase :Tuple = metric.compute() # Then do distributed __UpperCamelCase , __UpperCamelCase , __UpperCamelCase :Any = setup['''ddp'''] model.eval() for batch in dataloader: with torch.inference_mode(): __UpperCamelCase :Optional[Any] = model(**SCREAMING_SNAKE_CASE ) __UpperCamelCase :Union[str, Any] = outputs.logits.argmax(dim=-1 ) __UpperCamelCase :Optional[Any] = batch['''labels'''] __UpperCamelCase , __UpperCamelCase :Optional[int] = accelerator.gather_for_metrics((preds, references) ) metric.add_batch(predictions=SCREAMING_SNAKE_CASE , references=SCREAMING_SNAKE_CASE ) __UpperCamelCase :List[Any] = metric.compute() for key in "accuracy f1".split(): assert math.isclose( baseline[key] , distributed[key] ), f"""Baseline and Distributed are not the same for key {key}:\n\tBaseline: {baseline[key]}\n\tDistributed: {distributed[key]}\n""" def lowerCamelCase ( ): '''simple docstring''' __UpperCamelCase :str = Accelerator(split_batches=SCREAMING_SNAKE_CASE , dispatch_batches=SCREAMING_SNAKE_CASE ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_warning() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # These are a bit slower so they should only be ran on the GPU or TPU if torch.cuda.is_available() or is_tpu_available(): if accelerator.is_local_main_process: print('''**Testing gather_for_metrics**''' ) for split_batches in [True, False]: for dispatch_batches in [True, False]: if accelerator.is_local_main_process: print(f"""With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`""" ) test_mrpc(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) accelerator.state._reset_state() if accelerator.is_local_main_process: print('''**Test torch metrics**''' ) for split_batches in [True, False]: for dispatch_batches in [True, False]: __UpperCamelCase :Union[str, Any] = Accelerator(split_batches=SCREAMING_SNAKE_CASE , dispatch_batches=SCREAMING_SNAKE_CASE ) if accelerator.is_local_main_process: print(f"""With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`, length=99""" ) test_torch_metrics(SCREAMING_SNAKE_CASE , 99 ) accelerator.state._reset_state() if accelerator.is_local_main_process: print('''**Test last batch is not dropped when perfectly divisible**''' ) __UpperCamelCase :Union[str, Any] = Accelerator() test_torch_metrics(SCREAMING_SNAKE_CASE , 512 ) accelerator.state._reset_state() def lowerCamelCase ( SCREAMING_SNAKE_CASE ): '''simple docstring''' main() if __name__ == "__main__": main()
43
import importlib import shutil import threading import warnings from typing import List import fsspec import fsspec.asyn from . import compression from .hffilesystem import HfFileSystem __UpperCAmelCase = importlib.util.find_spec('s3fs') is not None if _has_safs: from .safilesystem import SaFileSystem # noqa: F401 __UpperCAmelCase = [ compression.BzaFileSystem, compression.GzipFileSystem, compression.LzaFileSystem, compression.XzFileSystem, compression.ZstdFileSystem, ] # Register custom filesystems for fs_class in COMPRESSION_FILESYSTEMS + [HfFileSystem]: if fs_class.protocol in fsspec.registry and fsspec.registry[fs_class.protocol] is not fs_class: warnings.warn(F'A filesystem protocol was already set for {fs_class.protocol} and will be overwritten.') fsspec.register_implementation(fs_class.protocol, fs_class, clobber=True) def lowercase__ ( __snake_case : str ): '''simple docstring''' if "://" in dataset_path: UpperCAmelCase_ : int = dataset_path.split('://' )[1] return dataset_path def lowercase__ ( __snake_case : fsspec.AbstractFileSystem ): '''simple docstring''' if fs is not None and fs.protocol != "file": return True else: return False def lowercase__ ( __snake_case : fsspec.AbstractFileSystem , __snake_case : str , __snake_case : str ): '''simple docstring''' UpperCAmelCase_ : List[str] = not is_remote_filesystem(__snake_case ) if is_local: # LocalFileSystem.mv does copy + rm, it is more efficient to simply move a local directory shutil.move(fs._strip_protocol(__snake_case ) , fs._strip_protocol(__snake_case ) ) else: fs.mv(__snake_case , __snake_case , recursive=__snake_case ) def lowercase__ ( ): '''simple docstring''' if hasattr(fsspec.asyn , 'reset_lock' ): # for future fsspec>2022.05.0 fsspec.asyn.reset_lock() else: UpperCAmelCase_ : Optional[Any] = None UpperCAmelCase_ : Union[str, Any] = None UpperCAmelCase_ : int = threading.Lock()
29
0
from collections.abc import Generator def SCREAMING_SNAKE_CASE ( ): snake_case__ : Optional[Any] = 0, 1 while True: snake_case__ : str = b, a + b yield b def SCREAMING_SNAKE_CASE ( snake_case_ : int = 1000 ): snake_case__ : Optional[Any] = 1 snake_case__ : List[Any] = fibonacci_generator() while len(str(next(snake_case_ ) ) ) < n: answer += 1 return answer + 1 if __name__ == "__main__": print(solution(int(str(input()).strip())))
355
# limitations under the License. # NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from .pipelines import DiffusionPipeline, ImagePipelineOutput # noqa: F401 from .utils import deprecate deprecate( """pipelines_utils""", """0.22.0""", """Importing `DiffusionPipeline` or `ImagePipelineOutput` from diffusers.pipeline_utils is deprecated. Please import from diffusers.pipelines.pipeline_utils instead.""", standard_warn=False, stacklevel=3, )
286
0
import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def A ( ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = ArgumentParser( description=( "PyTorch TPU distributed training launch helper utility that will spawn up multiple distributed processes" ) ) # Optional arguments for the launch helper parser.add_argument("--num_cores" , type=_lowerCamelCase , default=1 , help="Number of TPU cores to use (1 or 8)." ) # positional parser.add_argument( "training_script" , type=_lowerCamelCase , help=( "The full path to the single TPU training " "program/script to be launched in parallel, " "followed by all the arguments for the " "training script" ) , ) # rest from the training program parser.add_argument("training_script_args" , nargs=_lowerCamelCase ) return parser.parse_args() def A ( ): '''simple docstring''' _lowerCAmelCase : List[str] = parse_args() # Import training_script as a module. _lowerCAmelCase : str = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) _lowerCAmelCase : List[Any] = script_fpath.stem _lowerCAmelCase : List[str] = importlib.import_module(_lowerCamelCase ) # Patch sys.argv _lowerCAmelCase : List[str] = [args.training_script] + args.training_script_args + ["--tpu_num_cores", str(args.num_cores )] xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores ) if __name__ == "__main__": main()
36
import warnings from ...utils import logging from .image_processing_segformer import SegformerImageProcessor _A : str = logging.get_logger(__name__) class __SCREAMING_SNAKE_CASE ( lowerCAmelCase_ ): def __init__( self : Dict , *A : Any , **A : List[Any] ) ->None: warnings.warn( '''The class SegformerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use SegformerImageProcessor instead.''' , A , ) super().__init__(*A , **A )
142
0
import requests def _lowercase ( _UpperCAmelCase , _UpperCAmelCase ) -> None: lowerCamelCase ={"""Content-Type""": """application/json"""} lowerCamelCase =requests.post(_UpperCAmelCase , json={"""text""": message_body} , headers=_UpperCAmelCase ) if response.status_code != 2_00: lowerCamelCase =( """Request to slack returned an error """ F"""{response.status_code}, the response is:\n{response.text}""" ) raise ValueError(_UpperCAmelCase ) if __name__ == "__main__": # Set the slack url to the one provided by Slack when you create the webhook at # https://my.slack.com/services/new/incoming-webhook/ send_slack_message('''<YOUR MESSAGE BODY>''', '''<SLACK CHANNEL URL>''')
262
import random import unittest import torch from diffusers import IFInpaintingSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class __A ( a , a , unittest.TestCase ): __A = IFInpaintingSuperResolutionPipeline __A = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"""width""", """height"""} __A = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS.union({"""original_image"""} ) __A = PipelineTesterMixin.required_optional_params - {"""latents"""} def _snake_case ( self ): return self._get_superresolution_dummy_components() def _snake_case ( self , UpperCAmelCase_ , UpperCAmelCase_=0 ): if str(UpperCAmelCase_ ).startswith("""mps""" ): lowerCamelCase =torch.manual_seed(UpperCAmelCase_ ) else: lowerCamelCase =torch.Generator(device=UpperCAmelCase_ ).manual_seed(UpperCAmelCase_ ) lowerCamelCase =floats_tensor((1, 3, 16, 16) , rng=random.Random(UpperCAmelCase_ ) ).to(UpperCAmelCase_ ) lowerCamelCase =floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCAmelCase_ ) ).to(UpperCAmelCase_ ) lowerCamelCase =floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCAmelCase_ ) ).to(UpperCAmelCase_ ) lowerCamelCase ={ """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """original_image""": original_image, """mask_image""": mask_image, """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def _snake_case ( self ): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) def _snake_case ( self ): self._test_save_load_optional_components() @unittest.skipIf(torch_device != """cuda""" , reason="""float16 requires CUDA""" ) def _snake_case ( self ): # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1E-1 ) def _snake_case ( self ): self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def _snake_case ( self ): self._test_save_load_local() def _snake_case ( self ): self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
262
1
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging __snake_case = logging.get_logger(__name__) __snake_case = '''▁''' __snake_case = {'''vocab_file''': '''sentencepiece.bpe.model'''} __snake_case = { '''vocab_file''': { '''facebook/mbart-large-en-ro''': ( '''https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model''' ), '''facebook/mbart-large-cc25''': ( '''https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model''' ), } } __snake_case = { '''facebook/mbart-large-en-ro''': 1024, '''facebook/mbart-large-cc25''': 1024, } # fmt: off __snake_case = ['''ar_AR''', '''cs_CZ''', '''de_DE''', '''en_XX''', '''es_XX''', '''et_EE''', '''fi_FI''', '''fr_XX''', '''gu_IN''', '''hi_IN''', '''it_IT''', '''ja_XX''', '''kk_KZ''', '''ko_KR''', '''lt_LT''', '''lv_LV''', '''my_MM''', '''ne_NP''', '''nl_XX''', '''ro_RO''', '''ru_RU''', '''si_LK''', '''tr_TR''', '''vi_VN''', '''zh_CN'''] class lowercase ( A__ ): """simple docstring""" _a = VOCAB_FILES_NAMES _a = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _a = PRETRAINED_VOCAB_FILES_MAP _a = ['input_ids', 'attention_mask'] _a = [] _a = [] def __init__( self , UpperCamelCase_ , UpperCamelCase_="<s>" , UpperCamelCase_="</s>" , UpperCamelCase_="</s>" , UpperCamelCase_="<s>" , UpperCamelCase_="<unk>" , UpperCamelCase_="<pad>" , UpperCamelCase_="<mask>" , UpperCamelCase_=None , UpperCamelCase_=None , UpperCamelCase_=None , UpperCamelCase_ = None , UpperCamelCase_=None , **UpperCamelCase_ , ): '''simple docstring''' UpperCamelCase__ :Dict = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else mask_token UpperCamelCase__ :int = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=UpperCamelCase_ , eos_token=UpperCamelCase_ , unk_token=UpperCamelCase_ , sep_token=UpperCamelCase_ , cls_token=UpperCamelCase_ , pad_token=UpperCamelCase_ , mask_token=UpperCamelCase_ , tokenizer_file=UpperCamelCase_ , src_lang=UpperCamelCase_ , tgt_lang=UpperCamelCase_ , additional_special_tokens=UpperCamelCase_ , sp_model_kwargs=self.sp_model_kwargs , **UpperCamelCase_ , ) UpperCamelCase__ :int = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(UpperCamelCase_ ) ) UpperCamelCase__ :Optional[int] = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token UpperCamelCase__ :Dict = {'''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab UpperCamelCase__ :Tuple = 1 UpperCamelCase__ :int = len(self.sp_model ) UpperCamelCase__ :Dict = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(UpperCamelCase_ ) } UpperCamelCase__ :List[Any] = {v: k for k, v in self.lang_code_to_id.items()} UpperCamelCase__ :Any = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) UpperCamelCase__ :Union[str, Any] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} UpperCamelCase__ :Union[str, Any] = list(self.lang_code_to_id.keys() ) if additional_special_tokens is not None: # Only add those special tokens if they are not already there. self._additional_special_tokens.extend( [t for t in additional_special_tokens if t not in self._additional_special_tokens] ) UpperCamelCase__ :Any = src_lang if src_lang is not None else '''en_XX''' UpperCamelCase__ :Optional[Any] = self.lang_code_to_id[self._src_lang] UpperCamelCase__ :Union[str, Any] = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__( self ): '''simple docstring''' UpperCamelCase__ :Dict = self.__dict__.copy() UpperCamelCase__ :int = None UpperCamelCase__ :Dict = self.sp_model.serialized_model_proto() return state def __setstate__( self , UpperCamelCase_ ): '''simple docstring''' UpperCamelCase__ :Tuple = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): UpperCamelCase__ :Optional[int] = {} UpperCamelCase__ :Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) @property def lowerCAmelCase__ ( self ): '''simple docstring''' return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def lowerCAmelCase__ ( self ): '''simple docstring''' return self._src_lang @src_lang.setter def lowerCAmelCase__ ( self , UpperCamelCase_ ): '''simple docstring''' UpperCamelCase__ :Optional[Any] = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def lowerCAmelCase__ ( self , UpperCamelCase_ , UpperCamelCase_ = None , UpperCamelCase_ = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCamelCase_ , token_ids_a=UpperCamelCase_ , already_has_special_tokens=UpperCamelCase_ ) UpperCamelCase__ :List[str] = [1] * len(self.prefix_tokens ) UpperCamelCase__ :int = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(UpperCamelCase_ )) + suffix_ones return prefix_ones + ([0] * len(UpperCamelCase_ )) + ([0] * len(UpperCamelCase_ )) + suffix_ones def lowerCAmelCase__ ( self , UpperCamelCase_ , UpperCamelCase_ = None ): '''simple docstring''' if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def lowerCAmelCase__ ( self , UpperCamelCase_ , UpperCamelCase_ = None ): '''simple docstring''' UpperCamelCase__ :Optional[int] = [self.sep_token_id] UpperCamelCase__ :List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowerCAmelCase__ ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , **UpperCamelCase_ ): '''simple docstring''' if src_lang is None or tgt_lang is None: raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''' ) UpperCamelCase__ :Tuple = src_lang UpperCamelCase__ :Optional[Any] = self(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ , return_tensors=UpperCamelCase_ , **UpperCamelCase_ ) UpperCamelCase__ :List[str] = self.convert_tokens_to_ids(UpperCamelCase_ ) UpperCamelCase__ :Dict = tgt_lang_id return inputs def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Tuple = {self.convert_ids_to_tokens(UpperCamelCase_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def lowerCAmelCase__ ( self , UpperCamelCase_ ): '''simple docstring''' return self.sp_model.encode(UpperCamelCase_ , out_type=UpperCamelCase_ ) def lowerCAmelCase__ ( self , UpperCamelCase_ ): '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] UpperCamelCase__ :Any = self.sp_model.PieceToId(UpperCamelCase_ ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def lowerCAmelCase__ ( self , UpperCamelCase_ ): '''simple docstring''' if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def lowerCAmelCase__ ( self , UpperCamelCase_ ): '''simple docstring''' UpperCamelCase__ :List[str] = ''''''.join(UpperCamelCase_ ).replace(UpperCamelCase_ , ''' ''' ).strip() return out_string def lowerCAmelCase__ ( self , UpperCamelCase_ , UpperCamelCase_ = None ): '''simple docstring''' if not os.path.isdir(UpperCamelCase_ ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return UpperCamelCase__ :int = os.path.join( UpperCamelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCamelCase_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , UpperCamelCase_ ) elif not os.path.isfile(self.vocab_file ): with open(UpperCamelCase_ , '''wb''' ) as fi: UpperCamelCase__ :Any = self.sp_model.serialized_model_proto() fi.write(UpperCamelCase_ ) return (out_vocab_file,) def lowerCAmelCase__ ( self , UpperCamelCase_ , UpperCamelCase_ = "en_XX" , UpperCamelCase_ = None , UpperCamelCase_ = "ro_RO" , **UpperCamelCase_ , ): '''simple docstring''' UpperCamelCase__ :Optional[Any] = src_lang UpperCamelCase__ :Optional[Any] = tgt_lang return super().prepare_seqaseq_batch(UpperCamelCase_ , UpperCamelCase_ , **UpperCamelCase_ ) def lowerCAmelCase__ ( self ): '''simple docstring''' return self.set_src_lang_special_tokens(self.src_lang ) def lowerCAmelCase__ ( self ): '''simple docstring''' return self.set_tgt_lang_special_tokens(self.tgt_lang ) def lowerCAmelCase__ ( self , UpperCamelCase_ ): '''simple docstring''' UpperCamelCase__ :Any = self.lang_code_to_id[src_lang] UpperCamelCase__ :int = [] UpperCamelCase__ :Union[str, Any] = [self.eos_token_id, self.cur_lang_code] def lowerCAmelCase__ ( self , UpperCamelCase_ ): '''simple docstring''' UpperCamelCase__ :Dict = self.lang_code_to_id[lang] UpperCamelCase__ :Optional[Any] = [] UpperCamelCase__ :Tuple = [self.eos_token_id, self.cur_lang_code]
97
import coval # From: git+https://github.com/ns-moosavi/coval.git # noqa: F401 from coval.conll import reader, util from coval.eval import evaluator import datasets A__ = datasets.logging.get_logger(__name__) A__ = '''\ @InProceedings{moosavi2019minimum, author = { Nafise Sadat Moosavi, Leo Born, Massimo Poesio and Michael Strube}, title = {Using Automatically Extracted Minimum Spans to Disentangle Coreference Evaluation from Boundary Detection}, year = {2019}, booktitle = {Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)}, publisher = {Association for Computational Linguistics}, address = {Florence, Italy}, } @inproceedings{10.3115/1072399.1072405, author = {Vilain, Marc and Burger, John and Aberdeen, John and Connolly, Dennis and Hirschman, Lynette}, title = {A Model-Theoretic Coreference Scoring Scheme}, year = {1995}, isbn = {1558604022}, publisher = {Association for Computational Linguistics}, address = {USA}, url = {https://doi.org/10.3115/1072399.1072405}, doi = {10.3115/1072399.1072405}, booktitle = {Proceedings of the 6th Conference on Message Understanding}, pages = {45–52}, numpages = {8}, location = {Columbia, Maryland}, series = {MUC6 ’95} } @INPROCEEDINGS{Bagga98algorithmsfor, author = {Amit Bagga and Breck Baldwin}, title = {Algorithms for Scoring Coreference Chains}, booktitle = {In The First International Conference on Language Resources and Evaluation Workshop on Linguistics Coreference}, year = {1998}, pages = {563--566} } @INPROCEEDINGS{Luo05oncoreference, author = {Xiaoqiang Luo}, title = {On coreference resolution performance metrics}, booktitle = {In Proc. of HLT/EMNLP}, year = {2005}, pages = {25--32}, publisher = {URL} } @inproceedings{moosavi-strube-2016-coreference, title = "Which Coreference Evaluation Metric Do You Trust? A Proposal for a Link-based Entity Aware Metric", author = "Moosavi, Nafise Sadat and Strube, Michael", booktitle = "Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)", month = aug, year = "2016", address = "Berlin, Germany", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/P16-1060", doi = "10.18653/v1/P16-1060", pages = "632--642", } ''' A__ = '''\ CoVal is a coreference evaluation tool for the CoNLL and ARRAU datasets which implements of the common evaluation metrics including MUC [Vilain et al, 1995], B-cubed [Bagga and Baldwin, 1998], CEAFe [Luo et al., 2005], LEA [Moosavi and Strube, 2016] and the averaged CoNLL score (the average of the F1 values of MUC, B-cubed and CEAFe) [Denis and Baldridge, 2009a; Pradhan et al., 2011]. This wrapper of CoVal currently only work with CoNLL line format: The CoNLL format has one word per line with all the annotation for this word in column separated by spaces: Column Type Description 1 Document ID This is a variation on the document filename 2 Part number Some files are divided into multiple parts numbered as 000, 001, 002, ... etc. 3 Word number 4 Word itself This is the token as segmented/tokenized in the Treebank. Initially the *_skel file contain the placeholder [WORD] which gets replaced by the actual token from the Treebank which is part of the OntoNotes release. 5 Part-of-Speech 6 Parse bit This is the bracketed structure broken before the first open parenthesis in the parse, and the word/part-of-speech leaf replaced with a *. The full parse can be created by substituting the asterix with the "([pos] [word])" string (or leaf) and concatenating the items in the rows of that column. 7 Predicate lemma The predicate lemma is mentioned for the rows for which we have semantic role information. All other rows are marked with a "-" 8 Predicate Frameset ID This is the PropBank frameset ID of the predicate in Column 7. 9 Word sense This is the word sense of the word in Column 3. 10 Speaker/Author This is the speaker or author name where available. Mostly in Broadcast Conversation and Web Log data. 11 Named Entities These columns identifies the spans representing various named entities. 12:N Predicate Arguments There is one column each of predicate argument structure information for the predicate mentioned in Column 7. N Coreference Coreference chain information encoded in a parenthesis structure. More informations on the format can be found here (section "*_conll File Format"): http://www.conll.cemantix.org/2012/data.html Details on the evaluation on CoNLL can be found here: https://github.com/ns-moosavi/coval/blob/master/conll/README.md CoVal code was written by @ns-moosavi. Some parts are borrowed from https://github.com/clarkkev/deep-coref/blob/master/evaluation.py The test suite is taken from https://github.com/conll/reference-coreference-scorers/ Mention evaluation and the test suite are added by @andreasvc. Parsing CoNLL files is developed by Leo Born. ''' A__ = ''' Calculates coreference evaluation metrics. Args: predictions: list of sentences. Each sentence is a list of word predictions to score in the CoNLL format. Each prediction is a word with its annotations as a string made of columns joined with spaces. Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation) See the details on the format in the description of the metric. references: list of sentences. Each sentence is a list of word reference to score in the CoNLL format. Each reference is a word with its annotations as a string made of columns joined with spaces. Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation) See the details on the format in the description of the metric. keep_singletons: After extracting all mentions of key or system files, mentions whose corresponding coreference chain is of size one, are considered as singletons. The default evaluation mode will include singletons in evaluations if they are included in the key or the system files. By setting \'keep_singletons=False\', all singletons in the key and system files will be excluded from the evaluation. NP_only: Most of the recent coreference resolvers only resolve NP mentions and leave out the resolution of VPs. By setting the \'NP_only\' option, the scorer will only evaluate the resolution of NPs. min_span: By setting \'min_span\', the scorer reports the results based on automatically detected minimum spans. Minimum spans are determined using the MINA algorithm. Returns: \'mentions\': mentions \'muc\': MUC metric [Vilain et al, 1995] \'bcub\': B-cubed [Bagga and Baldwin, 1998] \'ceafe\': CEAFe [Luo et al., 2005] \'lea\': LEA [Moosavi and Strube, 2016] \'conll_score\': averaged CoNLL score (the average of the F1 values of MUC, B-cubed and CEAFe) Examples: >>> coval = datasets.load_metric(\'coval\') >>> words = [\'bc/cctv/00/cctv_0005 0 0 Thank VBP (TOP(S(VP* thank 01 1 Xu_li * (V*) * -\', ... \'bc/cctv/00/cctv_0005 0 1 you PRP (NP*) - - - Xu_li * (ARG1*) (ARG0*) (116)\', ... \'bc/cctv/00/cctv_0005 0 2 everyone NN (NP*) - - - Xu_li * (ARGM-DIS*) * (116)\', ... \'bc/cctv/00/cctv_0005 0 3 for IN (PP* - - - Xu_li * (ARG2* * -\', ... \'bc/cctv/00/cctv_0005 0 4 watching VBG (S(VP*)))) watch 01 1 Xu_li * *) (V*) -\', ... \'bc/cctv/00/cctv_0005 0 5 . . *)) - - - Xu_li * * * -\'] >>> references = [words] >>> predictions = [words] >>> results = coval.compute(predictions=predictions, references=references) >>> print(results) # doctest:+ELLIPSIS {\'mentions/recall\': 1.0,[...] \'conll_score\': 100.0} ''' def _lowerCAmelCase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=False , __lowerCAmelCase=False , __lowerCAmelCase=True , __lowerCAmelCase=False , __lowerCAmelCase="dummy_doc" ) -> int: """simple docstring""" snake_case__ : Dict = {doc: key_lines} snake_case__ : Any = {doc: sys_lines} snake_case__ : Dict = {} snake_case__ : List[str] = 0 snake_case__ : Optional[Any] = 0 snake_case__ : Optional[Any] = 0 snake_case__ : Dict = 0 snake_case__ : List[Any] = 0 snake_case__ : List[Any] = 0 snake_case__ , snake_case__ : Tuple = reader.get_doc_mentions(__lowerCAmelCase , key_doc_lines[doc] , __lowerCAmelCase ) key_singletons_num += singletons_num if NP_only or min_span: snake_case__ : str = reader.set_annotated_parse_trees(__lowerCAmelCase , key_doc_lines[doc] , __lowerCAmelCase , __lowerCAmelCase ) snake_case__ , snake_case__ : int = reader.get_doc_mentions(__lowerCAmelCase , sys_doc_lines[doc] , __lowerCAmelCase ) sys_singletons_num += singletons_num if NP_only or min_span: snake_case__ : Union[str, Any] = reader.set_annotated_parse_trees(__lowerCAmelCase , key_doc_lines[doc] , __lowerCAmelCase , __lowerCAmelCase ) if remove_nested: snake_case__ , snake_case__ : Dict = reader.remove_nested_coref_mentions(__lowerCAmelCase , __lowerCAmelCase ) key_nested_coref_num += nested_mentions key_removed_nested_clusters += removed_clusters snake_case__ , snake_case__ : Optional[int] = reader.remove_nested_coref_mentions(__lowerCAmelCase , __lowerCAmelCase ) sys_nested_coref_num += nested_mentions sys_removed_nested_clusters += removed_clusters snake_case__ : Any = reader.get_mention_assignments(__lowerCAmelCase , __lowerCAmelCase ) snake_case__ : Optional[int] = reader.get_mention_assignments(__lowerCAmelCase , __lowerCAmelCase ) snake_case__ : List[Any] = (key_clusters, sys_clusters, key_mention_sys_cluster, sys_mention_key_cluster) if remove_nested: logger.info( '''Number of removed nested coreferring mentions in the key ''' f"""annotation: {key_nested_coref_num}; and system annotation: {sys_nested_coref_num}""" ) logger.info( '''Number of resulting singleton clusters in the key ''' f"""annotation: {key_removed_nested_clusters}; and system annotation: {sys_removed_nested_clusters}""" ) if not keep_singletons: logger.info( f"""{key_singletons_num:d} and {sys_singletons_num:d} singletons are removed from the key and system """ '''files, respectively''' ) return doc_coref_infos def _lowerCAmelCase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> str: """simple docstring""" snake_case__ : Optional[Any] = get_coref_infos(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) snake_case__ : str = {} snake_case__ : Optional[int] = 0 snake_case__ : List[Any] = 0 for name, metric in metrics: snake_case__ , snake_case__ , snake_case__ : Any = evaluator.evaluate_documents(__lowerCAmelCase , __lowerCAmelCase , beta=1 ) if name in ["muc", "bcub", "ceafe"]: conll += fa conll_subparts_num += 1 output_scores.update({f"""{name}/recall""": recall, f"""{name}/precision""": precision, f"""{name}/f1""": fa} ) logger.info( name.ljust(10 ) , f"""Recall: {recall * 100:.2f}""" , f""" Precision: {precision * 100:.2f}""" , f""" F1: {fa * 100:.2f}""" , ) if conll_subparts_num == 3: snake_case__ : int = (conll / 3) * 100 logger.info(f"""CoNLL score: {conll:.2f}""" ) output_scores.update({'''conll_score''': conll} ) return output_scores def _lowerCAmelCase ( __lowerCAmelCase ) -> List[str]: """simple docstring""" snake_case__ : str = False for line in key_lines: if not line.startswith('''#''' ): if len(line.split() ) > 6: snake_case__ : List[Any] = line.split()[5] if not parse_col == "-": snake_case__ : Optional[Any] = True break else: break return has_gold_parse @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class a ( datasets.Metric ): def __lowerCamelCase ( self :Dict ): return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { '''predictions''': datasets.Sequence(datasets.Value('''string''' ) ), '''references''': datasets.Sequence(datasets.Value('''string''' ) ), } ) ,codebase_urls=['''https://github.com/ns-moosavi/coval'''] ,reference_urls=[ '''https://github.com/ns-moosavi/coval''', '''https://www.aclweb.org/anthology/P16-1060''', '''http://www.conll.cemantix.org/2012/data.html''', ] ,) def __lowerCamelCase ( self :Any ,__lowercase :List[Any] ,__lowercase :int ,__lowercase :str=True ,__lowercase :Optional[int]=False ,__lowercase :Optional[Any]=False ,__lowercase :Tuple=False ): snake_case__ : Optional[Any] = [ ('''mentions''', evaluator.mentions), ('''muc''', evaluator.muc), ('''bcub''', evaluator.b_cubed), ('''ceafe''', evaluator.ceafe), ('''lea''', evaluator.lea), ] if min_span: snake_case__ : Optional[int] = util.check_gold_parse_annotation(__lowercase ) if not has_gold_parse: raise NotImplementedError('''References should have gold parse annotation to use \'min_span\'.''' ) # util.parse_key_file(key_file) # key_file = key_file + ".parsed" snake_case__ : Any = evaluate( key_lines=__lowercase ,sys_lines=__lowercase ,metrics=__lowercase ,NP_only=__lowercase ,remove_nested=__lowercase ,keep_singletons=__lowercase ,min_span=__lowercase ,) return score
230
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) __a :Optional[int] = { 'configuration_funnel': ['FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP', 'FunnelConfig'], 'convert_funnel_original_tf_checkpoint_to_pytorch': [], 'tokenization_funnel': ['FunnelTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a :Any = ['FunnelTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a :int = [ 'FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST', 'FunnelBaseModel', 'FunnelForMaskedLM', 'FunnelForMultipleChoice', 'FunnelForPreTraining', 'FunnelForQuestionAnswering', 'FunnelForSequenceClassification', 'FunnelForTokenClassification', 'FunnelModel', 'FunnelPreTrainedModel', 'load_tf_weights_in_funnel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a :str = [ 'TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFFunnelBaseModel', 'TFFunnelForMaskedLM', 'TFFunnelForMultipleChoice', 'TFFunnelForPreTraining', 'TFFunnelForQuestionAnswering', 'TFFunnelForSequenceClassification', 'TFFunnelForTokenClassification', 'TFFunnelModel', 'TFFunnelPreTrainedModel', ] if TYPE_CHECKING: from .configuration_funnel import FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP, FunnelConfig from .tokenization_funnel import FunnelTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_funnel_fast import FunnelTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_funnel import ( FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, FunnelBaseModel, FunnelForMaskedLM, FunnelForMultipleChoice, FunnelForPreTraining, FunnelForQuestionAnswering, FunnelForSequenceClassification, FunnelForTokenClassification, FunnelModel, FunnelPreTrainedModel, load_tf_weights_in_funnel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_funnel import ( TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, TFFunnelBaseModel, TFFunnelForMaskedLM, TFFunnelForMultipleChoice, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForSequenceClassification, TFFunnelForTokenClassification, TFFunnelModel, TFFunnelPreTrainedModel, ) else: import sys __a :Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
371
import argparse import torch from huggingface_hub import hf_hub_download from transformers import AutoTokenizer, RobertaPreLayerNormConfig, RobertaPreLayerNormForMaskedLM from transformers.utils import logging logging.set_verbosity_info() __a :str = logging.get_logger(__name__) def __snake_case ( __UpperCamelCase : str ,__UpperCamelCase : str ): """simple docstring""" A_ = RobertaPreLayerNormConfig.from_pretrained( __UpperCamelCase ,architectures=["RobertaPreLayerNormForMaskedLM"] ) # convert state_dict A_ = torch.load(hf_hub_download(repo_id=__UpperCamelCase ,filename="pytorch_model.bin" ) ) A_ = {} for tensor_key, tensor_value in original_state_dict.items(): # The transformer implementation gives the model a unique name, rather than overwiriting 'roberta' if tensor_key.startswith("roberta." ): A_ = "roberta_prelayernorm." + tensor_key[len("roberta." ) :] # The original implementation contains weights which are not used, remove them from the state_dict if tensor_key.endswith(".self.LayerNorm.weight" ) or tensor_key.endswith(".self.LayerNorm.bias" ): continue A_ = tensor_value A_ = RobertaPreLayerNormForMaskedLM.from_pretrained( pretrained_model_name_or_path=__UpperCamelCase ,config=__UpperCamelCase ,state_dict=__UpperCamelCase ) model.save_pretrained(__UpperCamelCase ) # convert tokenizer A_ = AutoTokenizer.from_pretrained(__UpperCamelCase ) tokenizer.save_pretrained(__UpperCamelCase ) if __name__ == "__main__": __a :Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint-repo', default=None, type=str, required=True, help='Path the official PyTorch dump, e.g. \'andreasmadsen/efficient_mlm_m0.40\'.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) __a :Any = parser.parse_args() convert_roberta_prelayernorm_checkpoint_to_pytorch(args.checkpoint_repo, args.pytorch_dump_folder_path)
329
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available, ) lowerCamelCase__ = { """configuration_perceiver""": ["""PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """PerceiverConfig""", """PerceiverOnnxConfig"""], """tokenization_perceiver""": ["""PerceiverTokenizer"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = ["""PerceiverFeatureExtractor"""] lowerCamelCase__ = ["""PerceiverImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ """PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST""", """PerceiverForImageClassificationConvProcessing""", """PerceiverForImageClassificationFourier""", """PerceiverForImageClassificationLearned""", """PerceiverForMaskedLM""", """PerceiverForMultimodalAutoencoding""", """PerceiverForOpticalFlow""", """PerceiverForSequenceClassification""", """PerceiverLayer""", """PerceiverModel""", """PerceiverPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_perceiver import PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP, PerceiverConfig, PerceiverOnnxConfig from .tokenization_perceiver import PerceiverTokenizer try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_perceiver import PerceiverFeatureExtractor from .image_processing_perceiver import PerceiverImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_perceiver import ( PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST, PerceiverForImageClassificationConvProcessing, PerceiverForImageClassificationFourier, PerceiverForImageClassificationLearned, PerceiverForMaskedLM, PerceiverForMultimodalAutoencoding, PerceiverForOpticalFlow, PerceiverForSequenceClassification, PerceiverLayer, PerceiverModel, PerceiverPreTrainedModel, ) else: import sys lowerCamelCase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
86
import unittest from transformers import GPTNeoXJapaneseConfig, is_torch_available from transformers.models.gpt_neox_japanese.tokenization_gpt_neox_japanese import GPTNeoXJapaneseTokenizer from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import GPTNeoXJapaneseForCausalLM, GPTNeoXJapaneseModel class __lowerCAmelCase : def __init__( self: List[str] , _lowerCAmelCase: Dict , _lowerCAmelCase: List[str]=13 , _lowerCAmelCase: Dict=7 , _lowerCAmelCase: Tuple=True , _lowerCAmelCase: Dict=True , _lowerCAmelCase: Optional[Any]=True , _lowerCAmelCase: Union[str, Any]=True , _lowerCAmelCase: str=99 , _lowerCAmelCase: Dict=32 , _lowerCAmelCase: Dict=5 , _lowerCAmelCase: int=4 , _lowerCAmelCase: Optional[Any]=4 , _lowerCAmelCase: Any="gelu" , _lowerCAmelCase: Any=0.0 , _lowerCAmelCase: List[Any]=0.1 , _lowerCAmelCase: Optional[int]=True , _lowerCAmelCase: Any=5_12 , _lowerCAmelCase: Optional[Any]=16 , _lowerCAmelCase: str=2 , _lowerCAmelCase: Tuple=0.02 , _lowerCAmelCase: str=3 , _lowerCAmelCase: List[str]=4 , _lowerCAmelCase: Optional[Any]=None , ): lowercase :List[str] = parent lowercase :List[str] = batch_size lowercase :List[str] = seq_length lowercase :Dict = is_training lowercase :Union[str, Any] = use_input_mask lowercase :Optional[int] = use_token_type_ids lowercase :Dict = use_labels lowercase :Any = vocab_size lowercase :List[Any] = hidden_size lowercase :Optional[int] = num_hidden_layers lowercase :Union[str, Any] = num_attention_heads lowercase :Any = intermediate_multiple_size lowercase :str = hidden_act lowercase :List[Any] = hidden_dropout lowercase :Optional[Any] = attention_dropout lowercase :int = weight_tying lowercase :Tuple = max_position_embeddings lowercase :str = type_vocab_size lowercase :Union[str, Any] = type_sequence_label_size lowercase :Dict = initializer_range lowercase :Dict = num_labels lowercase :Dict = num_choices lowercase :Any = scope def SCREAMING_SNAKE_CASE ( self: str ): lowercase :List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase :Optional[Any] = None if self.use_input_mask: lowercase :str = random_attention_mask([self.batch_size, self.seq_length] ) lowercase :int = None if self.use_labels: lowercase :Dict = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase :Tuple = self.get_config() return config, input_ids, input_mask, token_labels def SCREAMING_SNAKE_CASE ( self: str ): return GPTNeoXJapaneseConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_multiple_size=self.intermediate_multiple_size , hidden_act=self.hidden_act , hidden_dropout=self.hidden_dropout , attention_dropout=self.attention_dropout , weight_tying=self.weight_tying , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_lowerCAmelCase , initializer_range=self.initializer_range , ) def SCREAMING_SNAKE_CASE ( self: Optional[int] ): lowercase , lowercase , lowercase , lowercase :Any = self.prepare_config_and_inputs() lowercase :Tuple = True return config, input_ids, input_mask, token_labels def SCREAMING_SNAKE_CASE ( self: List[Any] , _lowerCAmelCase: Optional[Any] , _lowerCAmelCase: Dict , _lowerCAmelCase: List[str] ): lowercase :List[str] = GPTNeoXJapaneseModel(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() lowercase :Optional[int] = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase ) lowercase :Dict = model(_lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE ( self: Optional[int] , _lowerCAmelCase: Dict , _lowerCAmelCase: List[Any] , _lowerCAmelCase: int ): lowercase :Dict = True lowercase :Optional[Any] = GPTNeoXJapaneseModel(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() lowercase :List[str] = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE ( self: int , _lowerCAmelCase: str , _lowerCAmelCase: Dict , _lowerCAmelCase: int , _lowerCAmelCase: List[Any] ): lowercase :str = GPTNeoXJapaneseForCausalLM(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() lowercase :Tuple = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE ( self: Dict , _lowerCAmelCase: List[Any] , _lowerCAmelCase: int , _lowerCAmelCase: Any ): lowercase :Optional[Any] = True lowercase :List[str] = GPTNeoXJapaneseForCausalLM(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() # first forward pass lowercase :str = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , use_cache=_lowerCAmelCase ) lowercase :Tuple = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids lowercase :Optional[int] = ids_tensor((self.batch_size, 3) , config.vocab_size ) lowercase :Tuple = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and lowercase :Tuple = torch.cat([input_ids, next_tokens] , dim=-1 ) lowercase :List[Any] = torch.cat([input_mask, next_mask] , dim=-1 ) lowercase :Dict = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , output_hidden_states=_lowerCAmelCase ) lowercase :List[str] = output_from_no_past["hidden_states"][0] lowercase :str = model( _lowerCAmelCase , attention_mask=_lowerCAmelCase , past_key_values=_lowerCAmelCase , output_hidden_states=_lowerCAmelCase , )["hidden_states"][0] # select random slice lowercase :Dict = ids_tensor((1,) , output_from_past.shape[-1] ).item() lowercase :str = output_from_no_past[:, -3:, random_slice_idx].detach() lowercase :List[str] = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1e-3 ) ) def SCREAMING_SNAKE_CASE ( self: Dict ): lowercase :str = self.prepare_config_and_inputs() lowercase , lowercase , lowercase , lowercase :Tuple = config_and_inputs lowercase :Union[str, Any] = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class __lowerCAmelCase ( lowerCAmelCase , lowerCAmelCase , unittest.TestCase): _a = (GPTNeoXJapaneseModel, GPTNeoXJapaneseForCausalLM) if is_torch_available() else () _a = (GPTNeoXJapaneseForCausalLM,) if is_torch_available() else () _a = ( {'''feature-extraction''': GPTNeoXJapaneseModel, '''text-generation''': GPTNeoXJapaneseForCausalLM} if is_torch_available() else {} ) _a = False _a = False _a = False _a = False def SCREAMING_SNAKE_CASE ( self: List[str] ): lowercase :Any = GPTNeoXJapaneseModelTester(self ) lowercase :List[str] = ConfigTester(self , config_class=_lowerCAmelCase , hidden_size=37 ) def SCREAMING_SNAKE_CASE ( self: Tuple ): self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE ( self: Dict ): lowercase , lowercase , lowercase , lowercase :Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self: Tuple ): lowercase , lowercase , lowercase , lowercase :Optional[Any] = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self: Optional[int] ): # This regression test was failing with PyTorch < 1.3 lowercase , lowercase , lowercase , lowercase :Tuple = self.model_tester.prepare_config_and_inputs_for_decoder() lowercase :Union[str, Any] = None self.model_tester.create_and_check_model_as_decoder(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self: Union[str, Any] ): lowercase , lowercase , lowercase , lowercase :List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self: str ): lowercase :Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_causal_lm(*_lowerCAmelCase ) @slow def SCREAMING_SNAKE_CASE ( self: str ): lowercase :int = "abeja/gpt-neox-japanese-2.7b" lowercase :Optional[int] = ["データサイエンティストとは、", "100年後に必要とされる会社は、", "フルリモートの環境で働くために必要なことは、", "国境の長いトンネルを抜けると", "美味しい日本食といえば、"] lowercase :int = [ "データサイエンティストとは、データを分析し、ビジネスに役立つ知見を導き出す専門家のことです。", "100年後に必要とされる会社は、「人」が中心の会社です。", "フルリモートの環境で働くために必要なことは、「自分の時間をコントロールする」ことです。", "国境の長いトンネルを抜けると、そこは雪国だった。", "美味しい日本食といえば、やっぱりお寿司ですよね。", ] lowercase :List[str] = GPTNeoXJapaneseTokenizer.from_pretrained(_lowerCAmelCase ) lowercase :Tuple = GPTNeoXJapaneseForCausalLM.from_pretrained(_lowerCAmelCase ) lowercase :List[str] = [] for prompt in prompts: lowercase :Optional[int] = tokenizer(_lowerCAmelCase , return_tensors="pt" ).input_ids lowercase :Union[str, Any] = model.generate(_lowerCAmelCase , max_length=50 ) lowercase :List[str] = tokenizer.batch_decode(_lowerCAmelCase , skip_special_tokens=_lowerCAmelCase ) predicted_outputs += generated_string self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase )
236
0
import argparse import requests import torch from PIL import Image from transformers import SwinConfig, SwinForMaskedImageModeling, ViTImageProcessor def UpperCAmelCase ( a_ ) -> Tuple: """simple docstring""" __A = SwinConfig(image_size=1_9_2 ) if "base" in model_name: __A = 6 __A = 1_2_8 __A = (2, 2, 1_8, 2) __A = (4, 8, 1_6, 3_2) elif "large" in model_name: __A = 1_2 __A = 1_9_2 __A = (2, 2, 1_8, 2) __A = (6, 1_2, 2_4, 4_8) else: raise ValueError("Model not supported, only supports base and large variants" ) __A = window_size __A = embed_dim __A = depths __A = num_heads return config def UpperCAmelCase ( a_ ) -> int: """simple docstring""" if "encoder.mask_token" in name: __A = name.replace("encoder.mask_token" , "embeddings.mask_token" ) if "encoder.patch_embed.proj" in name: __A = name.replace("encoder.patch_embed.proj" , "embeddings.patch_embeddings.projection" ) if "encoder.patch_embed.norm" in name: __A = name.replace("encoder.patch_embed.norm" , "embeddings.norm" ) if "attn.proj" in name: __A = name.replace("attn.proj" , "attention.output.dense" ) if "attn" in name: __A = name.replace("attn" , "attention.self" ) if "norm1" in name: __A = name.replace("norm1" , "layernorm_before" ) if "norm2" in name: __A = name.replace("norm2" , "layernorm_after" ) if "mlp.fc1" in name: __A = name.replace("mlp.fc1" , "intermediate.dense" ) if "mlp.fc2" in name: __A = name.replace("mlp.fc2" , "output.dense" ) if name == "encoder.norm.weight": __A = "layernorm.weight" if name == "encoder.norm.bias": __A = "layernorm.bias" if "decoder" in name: pass else: __A = "swin." + name return name def UpperCAmelCase ( a_ , a_ ) -> Optional[int]: """simple docstring""" for key in orig_state_dict.copy().keys(): __A = orig_state_dict.pop(_a ) if "attn_mask" in key: pass elif "qkv" in key: __A = key.split("." ) __A = int(key_split[2] ) __A = int(key_split[4] ) __A = model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: __A = val[:dim, :] __A = val[ dim : dim * 2, : ] __A = val[-dim:, :] else: __A = val[ :dim ] __A = val[ dim : dim * 2 ] __A = val[ -dim: ] else: __A = val return orig_state_dict def UpperCAmelCase ( a_ , a_ , a_ , a_ ) -> Tuple: """simple docstring""" __A = torch.load(_a , map_location="cpu" )["model"] __A = get_swin_config(_a ) __A = SwinForMaskedImageModeling(_a ) model.eval() __A = convert_state_dict(_a , _a ) model.load_state_dict(_a ) __A = "http://images.cocodataset.org/val2017/000000039769.jpg" __A = ViTImageProcessor(size={"height": 1_9_2, "width": 1_9_2} ) __A = Image.open(requests.get(_a , stream=_a ).raw ) __A = image_processor(images=_a , return_tensors="pt" ) with torch.no_grad(): __A = model(**_a ).logits print(outputs.keys() ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: print(F'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(_a ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(_a ) if push_to_hub: print(F'''Pushing model and image processor for {model_name} to hub''' ) model.push_to_hub(F'''microsoft/{model_name}''' ) image_processor.push_to_hub(F'''microsoft/{model_name}''' ) if __name__ == "__main__": SCREAMING_SNAKE_CASE :List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='swin-base-simmim-window6-192', type=str, choices=['swin-base-simmim-window6-192', 'swin-large-simmim-window12-192'], help='Name of the Swin SimMIM model you\'d like to convert.', ) parser.add_argument( '--checkpoint_path', default='/Users/nielsrogge/Documents/SwinSimMIM/simmim_pretrain__swin_base__img192_window6__100ep.pth', type=str, help='Path to the original PyTorch checkpoint (.pth file).', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) SCREAMING_SNAKE_CASE :Any = parser.parse_args() convert_swin_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
364
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) SCREAMING_SNAKE_CASE :int = {'configuration_encoder_decoder': ['EncoderDecoderConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE :Dict = ['EncoderDecoderModel'] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE :int = ['TFEncoderDecoderModel'] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE :Optional[int] = ['FlaxEncoderDecoderModel'] if TYPE_CHECKING: from .configuration_encoder_decoder import EncoderDecoderConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encoder_decoder import EncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_encoder_decoder import TFEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_encoder_decoder import FlaxEncoderDecoderModel else: import sys SCREAMING_SNAKE_CASE :int = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
124
0
'''simple docstring''' import argparse import math import os import torch from neural_compressor.utils.pytorch import load from PIL import Image from transformers import CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, StableDiffusionPipeline, UNetaDConditionModel def _UpperCAmelCase ( ) -> Any: _lowerCAmelCase : Tuple = argparse.ArgumentParser() parser.add_argument( """-m""" , """--pretrained_model_name_or_path""" , type=_lowerCamelCase , default=_lowerCamelCase , required=_lowerCamelCase , help="""Path to pretrained model or model identifier from huggingface.co/models.""" , ) parser.add_argument( """-c""" , """--caption""" , type=_lowerCamelCase , default="""robotic cat with wings""" , help="""Text used to generate images.""" , ) parser.add_argument( """-n""" , """--images_num""" , type=_lowerCamelCase , default=4 , help="""How much images to generate.""" , ) parser.add_argument( """-s""" , """--seed""" , type=_lowerCamelCase , default=42 , help="""Seed for random process.""" , ) parser.add_argument( """-ci""" , """--cuda_id""" , type=_lowerCamelCase , default=0 , help="""cuda_id.""" , ) _lowerCAmelCase : str = parser.parse_args() return args def _UpperCAmelCase ( _lowerCamelCase : List[str] , _lowerCamelCase : Dict , _lowerCamelCase : List[str] ) -> List[Any]: if not len(_lowerCamelCase ) == rows * cols: raise ValueError("""The specified number of rows and columns are not correct.""" ) _lowerCAmelCase , _lowerCAmelCase : Union[str, Any] = imgs[0].size _lowerCAmelCase : Tuple = Image.new("""RGB""" , size=(cols * w, rows * h) ) _lowerCAmelCase , _lowerCAmelCase : Any = grid.size for i, img in enumerate(_lowerCamelCase ): grid.paste(_lowerCamelCase , box=(i % cols * w, i // cols * h) ) return grid def _UpperCAmelCase ( _lowerCamelCase : List[str] , _lowerCamelCase : Optional[int]="robotic cat with wings" , _lowerCamelCase : List[Any]=7.5 , _lowerCamelCase : List[Any]=50 , _lowerCamelCase : Optional[Any]=1 , _lowerCamelCase : List[str]=42 , ) -> Optional[int]: _lowerCAmelCase : int = torch.Generator(pipeline.device ).manual_seed(_lowerCamelCase ) _lowerCAmelCase : Union[str, Any] = pipeline( _lowerCamelCase , guidance_scale=_lowerCamelCase , num_inference_steps=_lowerCamelCase , generator=_lowerCamelCase , num_images_per_prompt=_lowerCamelCase , ).images _lowerCAmelCase : int = int(math.sqrt(_lowerCamelCase ) ) _lowerCAmelCase : List[str] = image_grid(_lowerCamelCase , rows=_rows , cols=num_images_per_prompt // _rows ) return grid, images UpperCamelCase_ = parse_args() # Load models and create wrapper for stable diffusion UpperCamelCase_ = CLIPTokenizer.from_pretrained(args.pretrained_model_name_or_path, subfolder="""tokenizer""") UpperCamelCase_ = CLIPTextModel.from_pretrained(args.pretrained_model_name_or_path, subfolder="""text_encoder""") UpperCamelCase_ = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder="""vae""") UpperCamelCase_ = UNetaDConditionModel.from_pretrained(args.pretrained_model_name_or_path, subfolder="""unet""") UpperCamelCase_ = StableDiffusionPipeline.from_pretrained( args.pretrained_model_name_or_path, text_encoder=text_encoder, vae=vae, unet=unet, tokenizer=tokenizer ) UpperCamelCase_ = lambda images, clip_input: (images, False) if os.path.exists(os.path.join(args.pretrained_model_name_or_path, """best_model.pt""")): UpperCamelCase_ = load(args.pretrained_model_name_or_path, model=unet) unet.eval() setattr(pipeline, """unet""", unet) else: UpperCamelCase_ = unet.to(torch.device("""cuda""", args.cuda_id)) UpperCamelCase_ = pipeline.to(unet.device) UpperCamelCase_ , UpperCamelCase_ = generate_images(pipeline, prompt=args.caption, num_images_per_prompt=args.images_num, seed=args.seed) grid.save(os.path.join(args.pretrained_model_name_or_path, """{}.png""".format("""_""".join(args.caption.split())))) UpperCamelCase_ = os.path.join(args.pretrained_model_name_or_path, """_""".join(args.caption.split())) os.makedirs(dirname, exist_ok=True) for idx, image in enumerate(images): image.save(os.path.join(dirname, """{}.png""".format(idx + 1)))
309
'''simple docstring''' import argparse import os import re UpperCamelCase_ = """src/diffusers""" # Pattern that looks at the indentation in a line. UpperCamelCase_ = re.compile(r"""^(\s*)\S""") # Pattern that matches `"key":" and puts `key` in group 0. UpperCamelCase_ = re.compile(r"""^\s*\"([^\"]+)\":""") # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. UpperCamelCase_ = re.compile(r"""^\s*_import_structure\[\"([^\"]+)\"\]""") # Pattern that matches `"key",` and puts `key` in group 0. UpperCamelCase_ = re.compile(r"""^\s*\"([^\"]+)\",\s*$""") # Pattern that matches any `[stuff]` and puts `stuff` in group 0. UpperCamelCase_ = re.compile(r"""\[([^\]]+)\]""") def _UpperCAmelCase ( _lowerCamelCase : List[Any] ) -> str: _lowerCAmelCase : Dict = _re_indent.search(_lowerCamelCase ) return "" if search is None else search.groups()[0] def _UpperCAmelCase ( _lowerCamelCase : Optional[Any] , _lowerCamelCase : List[str]="" , _lowerCamelCase : str=None , _lowerCamelCase : List[Any]=None ) -> str: _lowerCAmelCase : Union[str, Any] = 0 _lowerCAmelCase : Tuple = code.split("""\n""" ) if start_prompt is not None: while not lines[index].startswith(_lowerCamelCase ): index += 1 _lowerCAmelCase : List[Any] = ["""\n""".join(lines[:index] )] else: _lowerCAmelCase : List[str] = [] # We split into blocks until we get to the `end_prompt` (or the end of the block). _lowerCAmelCase : Union[str, Any] = [lines[index]] index += 1 while index < len(_lowerCamelCase ) and (end_prompt is None or not lines[index].startswith(_lowerCamelCase )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(_lowerCamelCase ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + """ """ ): current_block.append(lines[index] ) blocks.append("""\n""".join(_lowerCamelCase ) ) if index < len(_lowerCamelCase ) - 1: _lowerCAmelCase : Union[str, Any] = [lines[index + 1]] index += 1 else: _lowerCAmelCase : Dict = [] else: blocks.append("""\n""".join(_lowerCamelCase ) ) _lowerCAmelCase : Tuple = [lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(_lowerCamelCase ) > 0: blocks.append("""\n""".join(_lowerCamelCase ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(_lowerCamelCase ): blocks.append("""\n""".join(lines[index:] ) ) return blocks def _UpperCAmelCase ( _lowerCamelCase : Optional[Any] ) -> Any: def _inner(_lowerCamelCase : Any ): return key(_lowerCamelCase ).lower().replace("""_""" , """""" ) return _inner def _UpperCAmelCase ( _lowerCamelCase : Union[str, Any] , _lowerCamelCase : Tuple=None ) -> Union[str, Any]: # If no key is provided, we use a noop. def noop(_lowerCamelCase : List[Any] ): return x if key is None: _lowerCAmelCase : Union[str, Any] = noop # Constants are all uppercase, they go first. _lowerCAmelCase : Any = [obj for obj in objects if key(_lowerCamelCase ).isupper()] # Classes are not all uppercase but start with a capital, they go second. _lowerCAmelCase : Union[str, Any] = [obj for obj in objects if key(_lowerCamelCase )[0].isupper() and not key(_lowerCamelCase ).isupper()] # Functions begin with a lowercase, they go last. _lowerCAmelCase : Optional[Any] = [obj for obj in objects if not key(_lowerCamelCase )[0].isupper()] _lowerCAmelCase : List[str] = ignore_underscore(_lowerCamelCase ) return sorted(_lowerCamelCase , key=_lowerCamelCase ) + sorted(_lowerCamelCase , key=_lowerCamelCase ) + sorted(_lowerCamelCase , key=_lowerCamelCase ) def _UpperCAmelCase ( _lowerCamelCase : str ) -> str: # This inner function sort imports between [ ]. def _replace(_lowerCamelCase : Union[str, Any] ): _lowerCAmelCase : Optional[Any] = match.groups()[0] if "," not in imports: return f'[{imports}]' _lowerCAmelCase : List[str] = [part.strip().replace("""\"""" , """""" ) for part in imports.split(""",""" )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: _lowerCAmelCase : int = keys[:-1] return "[" + ", ".join([f'"{k}"' for k in sort_objects(_lowerCamelCase )] ) + "]" _lowerCAmelCase : Optional[int] = import_statement.split("""\n""" ) if len(_lowerCamelCase ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. _lowerCAmelCase : Dict = 2 if lines[1].strip() == """[""" else 1 _lowerCAmelCase : Tuple = [(i, _re_strip_line.search(_lowerCamelCase ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] _lowerCAmelCase : Tuple = sort_objects(_lowerCamelCase , key=lambda _lowerCamelCase : x[1] ) _lowerCAmelCase : Optional[Any] = [lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(_lowerCamelCase ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: _lowerCAmelCase : str = _re_bracket_content.sub(_replace , lines[1] ) else: _lowerCAmelCase : Tuple = [part.strip().replace("""\"""" , """""" ) for part in lines[1].split(""",""" )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: _lowerCAmelCase : Dict = keys[:-1] _lowerCAmelCase : Optional[Any] = get_indent(lines[1] ) + """, """.join([f'"{k}"' for k in sort_objects(_lowerCamelCase )] ) return "\n".join(_lowerCamelCase ) else: # Finally we have to deal with imports fitting on one line _lowerCAmelCase : Dict = _re_bracket_content.sub(_replace , _lowerCamelCase ) return import_statement def _UpperCAmelCase ( _lowerCamelCase : int , _lowerCamelCase : Union[str, Any]=True ) -> List[str]: with open(_lowerCamelCase , """r""" ) as f: _lowerCAmelCase : Optional[Any] = f.read() if "_import_structure" not in code: return # Blocks of indent level 0 _lowerCAmelCase : Optional[Any] = split_code_in_indented_blocks( _lowerCamelCase , start_prompt="""_import_structure = {""" , end_prompt="""if TYPE_CHECKING:""" ) # We ignore block 0 (everything until start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 , len(_lowerCamelCase ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. _lowerCAmelCase : List[str] = main_blocks[block_idx] _lowerCAmelCase : int = block.split("""\n""" ) # Get to the start of the imports. _lowerCAmelCase : Any = 0 while line_idx < len(_lowerCamelCase ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: _lowerCAmelCase : Optional[int] = len(_lowerCamelCase ) else: line_idx += 1 if line_idx >= len(_lowerCamelCase ): continue # Ignore beginning and last line: they don't contain anything. _lowerCAmelCase : Any = """\n""".join(block_lines[line_idx:-1] ) _lowerCAmelCase : Tuple = get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. _lowerCAmelCase : Optional[Any] = split_code_in_indented_blocks(_lowerCamelCase , indent_level=_lowerCamelCase ) # We have two categories of import key: list or _import_structure[key].append/extend _lowerCAmelCase : List[Any] = _re_direct_key if """_import_structure""" in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. _lowerCAmelCase : Tuple = [(pattern.search(_lowerCamelCase ).groups()[0] if pattern.search(_lowerCamelCase ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. _lowerCAmelCase : List[str] = [(i, key) for i, key in enumerate(_lowerCamelCase ) if key is not None] _lowerCAmelCase : List[str] = [x[0] for x in sorted(_lowerCamelCase , key=lambda _lowerCamelCase : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. _lowerCAmelCase : List[Any] = 0 _lowerCAmelCase : List[str] = [] for i in range(len(_lowerCamelCase ) ): if keys[i] is None: reordered_blocks.append(internal_blocks[i] ) else: _lowerCAmelCase : Any = sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reordered_blocks.append(_lowerCamelCase ) count += 1 # And we put our main block back together with its first and last line. _lowerCAmelCase : str = """\n""".join(block_lines[:line_idx] + reordered_blocks + [block_lines[-1]] ) if code != "\n".join(_lowerCamelCase ): if check_only: return True else: print(f'Overwriting {file}.' ) with open(_lowerCamelCase , """w""" ) as f: f.write("""\n""".join(_lowerCamelCase ) ) def _UpperCAmelCase ( _lowerCamelCase : Optional[Any]=True ) -> Any: _lowerCAmelCase : List[Any] = [] for root, _, files in os.walk(_lowerCamelCase ): if "__init__.py" in files: _lowerCAmelCase : List[Any] = sort_imports(os.path.join(_lowerCamelCase , """__init__.py""" ) , check_only=_lowerCamelCase ) if result: _lowerCAmelCase : str = [os.path.join(_lowerCamelCase , """__init__.py""" )] if len(_lowerCamelCase ) > 0: raise ValueError(f'Would overwrite {len(_lowerCamelCase )} files, run `make style`.' ) if __name__ == "__main__": UpperCamelCase_ = argparse.ArgumentParser() parser.add_argument("""--check_only""", action="""store_true""", help="""Whether to only check or fix style.""") UpperCamelCase_ = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
309
1
"""simple docstring""" from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, flip_channel_order, get_resize_output_image_size, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, is_vision_available, logging if is_vision_available(): import PIL if is_torch_available(): import torch a : Tuple = logging.get_logger(__name__) class _a ( _lowerCAmelCase ): A = ['''pixel_values'''] def __init__(self, SCREAMING_SNAKE_CASE_ = True, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = PILImageResampling.BILINEAR, SCREAMING_SNAKE_CASE_ = True, SCREAMING_SNAKE_CASE_ = 1 / 255, SCREAMING_SNAKE_CASE_ = True, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = True, **SCREAMING_SNAKE_CASE_, ) -> None: super().__init__(**SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Optional[Any] = size if size is not None else {"""shortest_edge""": 224} UpperCAmelCase_: List[Any] = get_size_dict(SCREAMING_SNAKE_CASE_, default_to_square=SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Union[str, Any] = crop_size if crop_size is not None else {"""height""": 256, """width""": 256} UpperCAmelCase_: Union[str, Any] = get_size_dict(SCREAMING_SNAKE_CASE_, param_name="""crop_size""" ) UpperCAmelCase_: Tuple = do_resize UpperCAmelCase_: Dict = size UpperCAmelCase_: Dict = resample UpperCAmelCase_: List[str] = do_rescale UpperCAmelCase_: Tuple = rescale_factor UpperCAmelCase_: Tuple = do_center_crop UpperCAmelCase_: List[Any] = crop_size UpperCAmelCase_: Tuple = do_flip_channel_order def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = PIL.Image.BILINEAR, SCREAMING_SNAKE_CASE_ = None, **SCREAMING_SNAKE_CASE_, ) -> np.ndarray: UpperCAmelCase_: Tuple = get_size_dict(SCREAMING_SNAKE_CASE_, default_to_square=SCREAMING_SNAKE_CASE_ ) if "shortest_edge" not in size: raise ValueError(f'The `size` dictionary must contain the key `shortest_edge`. Got {size.keys()}' ) UpperCAmelCase_: Optional[Any] = get_resize_output_image_size(SCREAMING_SNAKE_CASE_, size=size["""shortest_edge"""], default_to_square=SCREAMING_SNAKE_CASE_ ) return resize(SCREAMING_SNAKE_CASE_, size=SCREAMING_SNAKE_CASE_, resample=SCREAMING_SNAKE_CASE_, data_format=SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = None, **SCREAMING_SNAKE_CASE_, ) -> np.ndarray: UpperCAmelCase_: Optional[Any] = get_size_dict(SCREAMING_SNAKE_CASE_ ) if "height" not in size or "width" not in size: raise ValueError(f'The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}' ) return center_crop(SCREAMING_SNAKE_CASE_, size=(size["""height"""], size["""width"""]), data_format=SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = None, **SCREAMING_SNAKE_CASE_, ) -> Any: return rescale(SCREAMING_SNAKE_CASE_, scale=SCREAMING_SNAKE_CASE_, data_format=SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = None ) -> np.ndarray: return flip_channel_order(SCREAMING_SNAKE_CASE_, data_format=SCREAMING_SNAKE_CASE_ ) def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = ChannelDimension.FIRST, **SCREAMING_SNAKE_CASE_, ) -> PIL.Image.Image: UpperCAmelCase_: Union[str, Any] = do_resize if do_resize is not None else self.do_resize UpperCAmelCase_: int = resample if resample is not None else self.resample UpperCAmelCase_: List[Any] = do_rescale if do_rescale is not None else self.do_rescale UpperCAmelCase_: int = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCAmelCase_: Optional[int] = do_center_crop if do_center_crop is not None else self.do_center_crop UpperCAmelCase_: Any = ( do_flip_channel_order if do_flip_channel_order is not None else self.do_flip_channel_order ) UpperCAmelCase_: Tuple = size if size is not None else self.size UpperCAmelCase_: str = get_size_dict(SCREAMING_SNAKE_CASE_, default_to_square=SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: int = crop_size if crop_size is not None else self.crop_size UpperCAmelCase_: Dict = get_size_dict(SCREAMING_SNAKE_CASE_, param_name="""crop_size""" ) UpperCAmelCase_: Dict = make_list_of_images(SCREAMING_SNAKE_CASE_ ) if not valid_images(SCREAMING_SNAKE_CASE_ ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) # All transformations expect numpy arrays. UpperCAmelCase_: Dict = [to_numpy_array(SCREAMING_SNAKE_CASE_ ) for image in images] if do_resize: UpperCAmelCase_: List[Any] = [self.resize(image=SCREAMING_SNAKE_CASE_, size=SCREAMING_SNAKE_CASE_, resample=SCREAMING_SNAKE_CASE_ ) for image in images] if do_center_crop: UpperCAmelCase_: str = [self.center_crop(image=SCREAMING_SNAKE_CASE_, size=SCREAMING_SNAKE_CASE_ ) for image in images] if do_rescale: UpperCAmelCase_: Dict = [self.rescale(image=SCREAMING_SNAKE_CASE_, scale=SCREAMING_SNAKE_CASE_ ) for image in images] # the pretrained checkpoints assume images are BGR, not RGB if do_flip_channel_order: UpperCAmelCase_: str = [self.flip_channel_order(image=SCREAMING_SNAKE_CASE_ ) for image in images] UpperCAmelCase_: Dict = [to_channel_dimension_format(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) for image in images] UpperCAmelCase_: str = {"""pixel_values""": images} return BatchFeature(data=SCREAMING_SNAKE_CASE_, tensor_type=SCREAMING_SNAKE_CASE_ ) def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = None ) -> Tuple: UpperCAmelCase_: Optional[int] = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(SCREAMING_SNAKE_CASE_ ) != len(SCREAMING_SNAKE_CASE_ ): raise ValueError( """Make sure that you pass in as many target sizes as the batch dimension of the logits""" ) if is_torch_tensor(SCREAMING_SNAKE_CASE_ ): UpperCAmelCase_: Optional[int] = target_sizes.numpy() UpperCAmelCase_: Any = [] for idx in range(len(SCREAMING_SNAKE_CASE_ ) ): UpperCAmelCase_: int = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ), size=target_sizes[idx], mode="""bilinear""", align_corners=SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Union[str, Any] = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(SCREAMING_SNAKE_CASE_ ) else: UpperCAmelCase_: List[str] = logits.argmax(dim=1 ) UpperCAmelCase_: List[str] = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
369
import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import MaskaFormerConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskaFormerForUniversalSegmentation, MaskaFormerModel if is_vision_available(): from transformers import MaskaFormerImageProcessor if is_vision_available(): from PIL import Image class _a : def __init__(self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_=2, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=False, SCREAMING_SNAKE_CASE_=10, SCREAMING_SNAKE_CASE_=3, SCREAMING_SNAKE_CASE_=32 * 8, SCREAMING_SNAKE_CASE_=32 * 8, SCREAMING_SNAKE_CASE_=4, SCREAMING_SNAKE_CASE_=64, ) -> Union[str, Any]: UpperCAmelCase_: int = parent UpperCAmelCase_: Tuple = batch_size UpperCAmelCase_: int = is_training UpperCAmelCase_: Any = use_auxiliary_loss UpperCAmelCase_: str = num_queries UpperCAmelCase_: List[Any] = num_channels UpperCAmelCase_: Union[str, Any] = min_size UpperCAmelCase_: Optional[Any] = max_size UpperCAmelCase_: Tuple = num_labels UpperCAmelCase_: Union[str, Any] = hidden_dim UpperCAmelCase_: int = hidden_dim def __snake_case (self ) -> Tuple: UpperCAmelCase_: List[Any] = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: List[str] = torch.ones([self.batch_size, self.min_size, self.max_size], device=SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Tuple = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size], device=SCREAMING_SNAKE_CASE_ ) > 0.5 ).float() UpperCAmelCase_: Optional[int] = (torch.rand((self.batch_size, self.num_labels), device=SCREAMING_SNAKE_CASE_ ) > 0.5).long() UpperCAmelCase_: Union[str, Any] = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def __snake_case (self ) -> Any: UpperCAmelCase_: Any = MaskaFormerConfig( hidden_size=self.hidden_dim, ) UpperCAmelCase_: Any = self.num_queries UpperCAmelCase_: Dict = self.num_labels UpperCAmelCase_: Dict = [1, 1, 1, 1] UpperCAmelCase_: int = self.num_channels UpperCAmelCase_: Union[str, Any] = 64 UpperCAmelCase_: List[Any] = 128 UpperCAmelCase_: Optional[Any] = self.hidden_dim UpperCAmelCase_: str = self.hidden_dim UpperCAmelCase_: List[str] = self.hidden_dim return config def __snake_case (self ) -> Union[str, Any]: UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_: Dict = self.prepare_config_and_inputs() UpperCAmelCase_: Any = {"""pixel_values""": pixel_values, """pixel_mask""": pixel_mask} return config, inputs_dict def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> Optional[int]: UpperCAmelCase_: Union[str, Any] = output.encoder_hidden_states UpperCAmelCase_: int = output.pixel_decoder_hidden_states UpperCAmelCase_: Any = output.transformer_decoder_hidden_states self.parent.assertTrue(len(SCREAMING_SNAKE_CASE_ ), len(config.backbone_config.depths ) ) self.parent.assertTrue(len(SCREAMING_SNAKE_CASE_ ), len(config.backbone_config.depths ) ) self.parent.assertTrue(len(SCREAMING_SNAKE_CASE_ ), config.decoder_layers ) def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_=False ) -> Optional[Any]: with torch.no_grad(): UpperCAmelCase_: Dict = MaskaFormerModel(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCAmelCase_: List[Any] = model(pixel_values=SCREAMING_SNAKE_CASE_, pixel_mask=SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: str = model(SCREAMING_SNAKE_CASE_, output_hidden_states=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape, (self.batch_size, self.num_queries, self.hidden_dim), ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: UpperCAmelCase_: Tuple = MaskaFormerForUniversalSegmentation(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() def comm_check_on_output(SCREAMING_SNAKE_CASE_ ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape, (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4), ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape, (self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): UpperCAmelCase_: Dict = model(pixel_values=SCREAMING_SNAKE_CASE_, pixel_mask=SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: int = model(SCREAMING_SNAKE_CASE_ ) comm_check_on_output(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Dict = model( pixel_values=SCREAMING_SNAKE_CASE_, pixel_mask=SCREAMING_SNAKE_CASE_, mask_labels=SCREAMING_SNAKE_CASE_, class_labels=SCREAMING_SNAKE_CASE_ ) comm_check_on_output(SCREAMING_SNAKE_CASE_ ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape, torch.Size([1] ) ) @require_torch class _a ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): A = (MaskaFormerModel, MaskaFormerForUniversalSegmentation) if is_torch_available() else () A = {'''feature-extraction''': MaskaFormerModel} if is_torch_available() else {} A = False A = False A = False A = False def __snake_case (self ) -> Any: UpperCAmelCase_: List[str] = MaskaFormerModelTester(self ) UpperCAmelCase_: Any = ConfigTester(self, config_class=SCREAMING_SNAKE_CASE_, has_text_modality=SCREAMING_SNAKE_CASE_ ) def __snake_case (self ) -> List[Any]: self.config_tester.run_common_tests() def __snake_case (self ) -> Optional[Any]: UpperCAmelCase_ , UpperCAmelCase_: Any = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_, output_hidden_states=SCREAMING_SNAKE_CASE_ ) def __snake_case (self ) -> Union[str, Any]: UpperCAmelCase_: int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskaformer_instance_segmentation_head_model(*SCREAMING_SNAKE_CASE_ ) @unittest.skip(reason="""Mask2Former does not use inputs_embeds""" ) def __snake_case (self ) -> Dict: pass @unittest.skip(reason="""Mask2Former does not have a get_input_embeddings method""" ) def __snake_case (self ) -> Optional[int]: pass @unittest.skip(reason="""Mask2Former is not a generative model""" ) def __snake_case (self ) -> List[str]: pass @unittest.skip(reason="""Mask2Former does not use token embeddings""" ) def __snake_case (self ) -> Union[str, Any]: pass @require_torch_multi_gpu @unittest.skip( reason="""Mask2Former has some layers using `add_module` which doesn't work well with `nn.DataParallel`""" ) def __snake_case (self ) -> List[str]: pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def __snake_case (self ) -> Dict: pass def __snake_case (self ) -> Any: UpperCAmelCase_ , UpperCAmelCase_: Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_: Union[str, Any] = model_class(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Any = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase_: Tuple = [*signature.parameters.keys()] UpperCAmelCase_: str = ["""pixel_values"""] self.assertListEqual(arg_names[:1], SCREAMING_SNAKE_CASE_ ) @slow def __snake_case (self ) -> List[Any]: for model_name in ["facebook/mask2former-swin-small-coco-instance"]: UpperCAmelCase_: Any = MaskaFormerModel.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) def __snake_case (self ) -> Union[str, Any]: UpperCAmelCase_: str = (self.model_tester.min_size,) * 2 UpperCAmelCase_: str = { """pixel_values""": torch.randn((2, 3, *size), device=SCREAMING_SNAKE_CASE_ ), """mask_labels""": torch.randn((2, 10, *size), device=SCREAMING_SNAKE_CASE_ ), """class_labels""": torch.zeros(2, 10, device=SCREAMING_SNAKE_CASE_ ).long(), } UpperCAmelCase_: Dict = self.model_tester.get_config() UpperCAmelCase_: Optional[Any] = MaskaFormerForUniversalSegmentation(SCREAMING_SNAKE_CASE_ ).to(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: List[Any] = model(**SCREAMING_SNAKE_CASE_ ) self.assertTrue(outputs.loss is not None ) def __snake_case (self ) -> List[Any]: UpperCAmelCase_ , UpperCAmelCase_: Any = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_, output_hidden_states=SCREAMING_SNAKE_CASE_ ) def __snake_case (self ) -> List[Any]: UpperCAmelCase_ , UpperCAmelCase_: Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_: List[Any] = model_class(SCREAMING_SNAKE_CASE_ ).to(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Any = model(**SCREAMING_SNAKE_CASE_, output_attentions=SCREAMING_SNAKE_CASE_ ) self.assertTrue(outputs.attentions is not None ) def __snake_case (self ) -> Optional[int]: if not self.model_tester.is_training: return UpperCAmelCase_: Union[str, Any] = self.all_model_classes[1] UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_: Any = self.model_tester.prepare_config_and_inputs() UpperCAmelCase_: Union[str, Any] = model_class(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.train() UpperCAmelCase_: Optional[int] = model(SCREAMING_SNAKE_CASE_, mask_labels=SCREAMING_SNAKE_CASE_, class_labels=SCREAMING_SNAKE_CASE_ ).loss loss.backward() def __snake_case (self ) -> Optional[Any]: UpperCAmelCase_: Any = self.all_model_classes[1] UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_: List[Any] = self.model_tester.prepare_config_and_inputs() UpperCAmelCase_: Union[str, Any] = True UpperCAmelCase_: str = True UpperCAmelCase_: Optional[int] = model_class(SCREAMING_SNAKE_CASE_ ).to(SCREAMING_SNAKE_CASE_ ) model.train() UpperCAmelCase_: Union[str, Any] = model(SCREAMING_SNAKE_CASE_, mask_labels=SCREAMING_SNAKE_CASE_, class_labels=SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Tuple = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() UpperCAmelCase_: Union[str, Any] = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() UpperCAmelCase_: Optional[int] = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() UpperCAmelCase_: Optional[Any] = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) a : int = 1E-4 def lowerCAmelCase_ (): """simple docstring""" UpperCAmelCase_: str = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_vision @slow class _a ( unittest.TestCase ): @cached_property def __snake_case (self ) -> Optional[int]: return "facebook/mask2former-swin-small-coco-instance" @cached_property def __snake_case (self ) -> Dict: return MaskaFormerImageProcessor.from_pretrained(self.model_checkpoints ) if is_vision_available() else None def __snake_case (self ) -> List[str]: UpperCAmelCase_: int = MaskaFormerModel.from_pretrained(self.model_checkpoints ).to(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Optional[int] = self.default_image_processor UpperCAmelCase_: Optional[Any] = prepare_img() UpperCAmelCase_: str = image_processor(SCREAMING_SNAKE_CASE_, return_tensors="""pt""" ).to(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: List[Any] = inputs["""pixel_values"""].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(SCREAMING_SNAKE_CASE_, (1, 3, 384, 384) ) with torch.no_grad(): UpperCAmelCase_: Optional[int] = model(**SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Union[str, Any] = torch.tensor( [[-0.2_7_9_0, -1.0_7_1_7, -1.1_6_6_8], [-0.5_1_2_8, -0.3_1_2_8, -0.4_9_8_7], [-0.5_8_3_2, 0.1_9_7_1, -0.0_1_9_7]] ).to(SCREAMING_SNAKE_CASE_ ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3], SCREAMING_SNAKE_CASE_, atol=SCREAMING_SNAKE_CASE_ ) ) UpperCAmelCase_: Dict = torch.tensor( [[0.8_9_7_3, 1.1_8_4_7, 1.1_7_7_6], [1.1_9_3_4, 1.5_0_4_0, 1.5_1_2_8], [1.1_1_5_3, 1.4_4_8_6, 1.4_9_5_1]] ).to(SCREAMING_SNAKE_CASE_ ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3], SCREAMING_SNAKE_CASE_, atol=SCREAMING_SNAKE_CASE_ ) ) UpperCAmelCase_: str = torch.tensor( [[2.1_1_5_2, 1.7_0_0_0, -0.8_6_0_3], [1.5_8_0_8, 1.8_0_0_4, -0.9_3_5_3], [1.6_0_4_3, 1.7_4_9_5, -0.5_9_9_9]] ).to(SCREAMING_SNAKE_CASE_ ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3], SCREAMING_SNAKE_CASE_, atol=SCREAMING_SNAKE_CASE_ ) ) def __snake_case (self ) -> Optional[Any]: UpperCAmelCase_: Any = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(SCREAMING_SNAKE_CASE_ ).eval() UpperCAmelCase_: Tuple = self.default_image_processor UpperCAmelCase_: Dict = prepare_img() UpperCAmelCase_: Any = image_processor(SCREAMING_SNAKE_CASE_, return_tensors="""pt""" ).to(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Optional[Any] = inputs["""pixel_values"""].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(SCREAMING_SNAKE_CASE_, (1, 3, 384, 384) ) with torch.no_grad(): UpperCAmelCase_: int = model(**SCREAMING_SNAKE_CASE_ ) # masks_queries_logits UpperCAmelCase_: int = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape, (1, model.config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) ) UpperCAmelCase_: Optional[Any] = [ [-8.7_8_3_9, -9.0_0_5_6, -8.8_1_2_1], [-7.4_1_0_4, -7.0_3_1_3, -6.5_4_0_1], [-6.6_1_0_5, -6.3_4_2_7, -6.4_6_7_5], ] UpperCAmelCase_: int = torch.tensor(SCREAMING_SNAKE_CASE_ ).to(SCREAMING_SNAKE_CASE_ ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3], SCREAMING_SNAKE_CASE_, atol=SCREAMING_SNAKE_CASE_ ) ) # class_queries_logits UpperCAmelCase_: Dict = outputs.class_queries_logits self.assertEqual(class_queries_logits.shape, (1, model.config.num_queries, model.config.num_labels + 1) ) UpperCAmelCase_: Any = torch.tensor( [ [1.8_3_2_4, -8.0_8_3_5, -4.1_9_2_2], [0.8_4_5_0, -9.0_0_5_0, -3.6_0_5_3], [0.3_0_4_5, -7.7_2_9_3, -3.0_2_7_5], ] ).to(SCREAMING_SNAKE_CASE_ ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3], SCREAMING_SNAKE_CASE_, atol=SCREAMING_SNAKE_CASE_ ) ) def __snake_case (self ) -> Tuple: UpperCAmelCase_: List[str] = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(SCREAMING_SNAKE_CASE_ ).eval() UpperCAmelCase_: Dict = self.default_image_processor UpperCAmelCase_: str = image_processor( [np.zeros((3, 800, 1333) ), np.zeros((3, 800, 1333) )], segmentation_maps=[np.zeros((384, 384) ).astype(np.floataa ), np.zeros((384, 384) ).astype(np.floataa )], return_tensors="""pt""", ) UpperCAmelCase_: int = inputs["""pixel_values"""].to(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Optional[int] = [el.to(SCREAMING_SNAKE_CASE_ ) for el in inputs["""mask_labels"""]] UpperCAmelCase_: int = [el.to(SCREAMING_SNAKE_CASE_ ) for el in inputs["""class_labels"""]] with torch.no_grad(): UpperCAmelCase_: Union[str, Any] = model(**SCREAMING_SNAKE_CASE_ ) self.assertTrue(outputs.loss is not None )
82
0
'''simple docstring''' import os import shutil import tempfile import unittest import numpy as np from transformers import AutoTokenizer, BarkProcessor from transformers.testing_utils import require_torch, slow @require_torch class lowerCAmelCase_ ( unittest.TestCase ): def _snake_case ( self ) -> Any: _lowerCAmelCase = "ylacombe/bark-small" _lowerCAmelCase = tempfile.mkdtemp() _lowerCAmelCase = "en_speaker_1" _lowerCAmelCase = "This is a test string" _lowerCAmelCase = "speaker_embeddings_path.json" _lowerCAmelCase = "speaker_embeddings" def _snake_case ( self , **_lowerCAmelCase ) -> str: return AutoTokenizer.from_pretrained(self.checkpoint , **_lowerCAmelCase ) def _snake_case ( self ) -> int: shutil.rmtree(self.tmpdirname ) def _snake_case ( self ) -> str: _lowerCAmelCase = self.get_tokenizer() _lowerCAmelCase = BarkProcessor(tokenizer=_lowerCAmelCase ) processor.save_pretrained(self.tmpdirname ) _lowerCAmelCase = BarkProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) @slow def _snake_case ( self ) -> Any: _lowerCAmelCase = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) processor.save_pretrained( self.tmpdirname , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , speaker_embeddings_directory=self.speaker_embeddings_directory , ) _lowerCAmelCase = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" ) _lowerCAmelCase = BarkProcessor.from_pretrained( self.tmpdirname , self.speaker_embeddings_dict_path , bos_token="(BOS)" , eos_token="(EOS)" , ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) def _snake_case ( self ) -> List[str]: _lowerCAmelCase = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) _lowerCAmelCase = 35 _lowerCAmelCase = 2 _lowerCAmelCase = 8 _lowerCAmelCase = { "semantic_prompt": np.ones(_lowerCAmelCase ), "coarse_prompt": np.ones((nb_codebooks_coarse, seq_len) ), "fine_prompt": np.ones((nb_codebooks_total, seq_len) ), } # test providing already loaded voice_preset _lowerCAmelCase = processor(text=self.input_string , voice_preset=_lowerCAmelCase ) _lowerCAmelCase = inputs["history_prompt"] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(_lowerCAmelCase , np.array([] ) ).tolist() ) # test loading voice preset from npz file _lowerCAmelCase = os.path.join(self.tmpdirname , "file.npz" ) np.savez(_lowerCAmelCase , **_lowerCAmelCase ) _lowerCAmelCase = processor(text=self.input_string , voice_preset=_lowerCAmelCase ) _lowerCAmelCase = inputs["history_prompt"] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(_lowerCAmelCase , np.array([] ) ).tolist() ) # test loading voice preset from the hub _lowerCAmelCase = processor(text=self.input_string , voice_preset=self.voice_preset ) def _snake_case ( self ) -> Optional[Any]: _lowerCAmelCase = self.get_tokenizer() _lowerCAmelCase = BarkProcessor(tokenizer=_lowerCAmelCase ) _lowerCAmelCase = processor(text=self.input_string ) _lowerCAmelCase = tokenizer( self.input_string , padding="max_length" , max_length=256 , add_special_tokens=_lowerCAmelCase , return_attention_mask=_lowerCAmelCase , return_token_type_ids=_lowerCAmelCase , ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key].squeeze().tolist() )
158
'''simple docstring''' from __future__ import annotations from collections import deque class lowerCAmelCase_ : def __init__( self , _lowerCAmelCase ) -> Optional[int]: _lowerCAmelCase = [] self.adlist.append( {"value": "", "next_states": [], "fail_state": 0, "output": []} ) for keyword in keywords: self.add_keyword(_lowerCAmelCase ) self.set_fail_transitions() def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase ) -> int | None: for state in self.adlist[current_state]["next_states"]: if char == self.adlist[state]["value"]: return state return None def _snake_case ( self , _lowerCAmelCase ) -> None: _lowerCAmelCase = 0 for character in keyword: _lowerCAmelCase = self.find_next_state(_lowerCAmelCase , _lowerCAmelCase ) if next_state is None: self.adlist.append( { "value": character, "next_states": [], "fail_state": 0, "output": [], } ) self.adlist[current_state]["next_states"].append(len(self.adlist ) - 1 ) _lowerCAmelCase = len(self.adlist ) - 1 else: _lowerCAmelCase = next_state self.adlist[current_state]["output"].append(_lowerCAmelCase ) def _snake_case ( self ) -> None: _lowerCAmelCase = deque() for node in self.adlist[0]["next_states"]: q.append(_lowerCAmelCase ) _lowerCAmelCase = 0 while q: _lowerCAmelCase = q.popleft() for child in self.adlist[r]["next_states"]: q.append(_lowerCAmelCase ) _lowerCAmelCase = self.adlist[r]["fail_state"] while ( self.find_next_state(_lowerCAmelCase , self.adlist[child]["value"] ) is None and state != 0 ): _lowerCAmelCase = self.adlist[state]["fail_state"] _lowerCAmelCase = self.find_next_state( _lowerCAmelCase , self.adlist[child]["value"] ) if self.adlist[child]["fail_state"] is None: _lowerCAmelCase = 0 _lowerCAmelCase = ( self.adlist[child]["output"] + self.adlist[self.adlist[child]["fail_state"]]["output"] ) def _snake_case ( self , _lowerCAmelCase ) -> dict[str, list[int]]: _lowerCAmelCase = {} # returns a dict with keywords and list of its occurrences _lowerCAmelCase = 0 for i in range(len(_lowerCAmelCase ) ): while ( self.find_next_state(_lowerCAmelCase , string[i] ) is None and current_state != 0 ): _lowerCAmelCase = self.adlist[current_state]["fail_state"] _lowerCAmelCase = self.find_next_state(_lowerCAmelCase , string[i] ) if next_state is None: _lowerCAmelCase = 0 else: _lowerCAmelCase = next_state for key in self.adlist[current_state]["output"]: if key not in result: _lowerCAmelCase = [] result[key].append(i - len(_lowerCAmelCase ) + 1 ) return result if __name__ == "__main__": import doctest doctest.testmod()
158
1
import functools from typing import Any def A ( lowercase , lowercase ) -> bool: '''simple docstring''' if not isinstance(lowercase , lowercase ) or len(lowercase ) == 0: raise ValueError('the string should be not empty string' ) if not isinstance(lowercase , lowercase ) or not all( isinstance(lowercase , lowercase ) and len(lowercase ) > 0 for item in words ): raise ValueError('the words should be a list of non-empty strings' ) # Build trie UpperCamelCase = {} UpperCamelCase = 'WORD_KEEPER' for word in words: UpperCamelCase = trie for c in word: if c not in trie_node: UpperCamelCase = {} UpperCamelCase = trie_node[c] UpperCamelCase = True UpperCamelCase = len(lowercase ) # Dynamic programming method @functools.cache def is_breakable(lowercase ) -> bool: if index == len_string: return True UpperCamelCase = trie for i in range(lowercase , lowercase ): UpperCamelCase = trie_node.get(string[i] , lowercase ) if trie_node is None: return False if trie_node.get(lowercase , lowercase ) and is_breakable(i + 1 ): return True return False return is_breakable(0 ) if __name__ == "__main__": import doctest doctest.testmod()
110
import pprint import requests _UpperCAmelCase : Union[str, Any] = "https://zenquotes.io/api" def A ( ) -> list: '''simple docstring''' return requests.get(API_ENDPOINT_URL + '/today' ).json() def A ( ) -> list: '''simple docstring''' return requests.get(API_ENDPOINT_URL + '/random' ).json() if __name__ == "__main__": _UpperCAmelCase : str = random_quotes() pprint.pprint(response)
110
1
'''simple docstring''' _lowercase : Any = [ (1_0_0_0, "M"), (9_0_0, "CM"), (5_0_0, "D"), (4_0_0, "CD"), (1_0_0, "C"), (9_0, "XC"), (5_0, "L"), (4_0, "XL"), (1_0, "X"), (9, "IX"), (5, "V"), (4, "IV"), (1, "I"), ] def snake_case_ ( __SCREAMING_SNAKE_CASE : str ): """simple docstring""" lowercase_ : Tuple = {'''I''': 1, '''V''': 5, '''X''': 10, '''L''': 50, '''C''': 100, '''D''': 500, '''M''': 1000} lowercase_ : List[Any] = 0 lowercase_ : Union[str, Any] = 0 while place < len(__SCREAMING_SNAKE_CASE ): if (place + 1 < len(__SCREAMING_SNAKE_CASE )) and (vals[roman[place]] < vals[roman[place + 1]]): total += vals[roman[place + 1]] - vals[roman[place]] place += 2 else: total += vals[roman[place]] place += 1 return total def snake_case_ ( __SCREAMING_SNAKE_CASE : int ): """simple docstring""" lowercase_ : str = [] for arabic, roman in ROMAN: ((lowercase_) , (lowercase_)) : Optional[int] = divmod(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) result.append(roman * factor ) if number == 0: break return "".join(__SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod()
93
'''simple docstring''' import unittest from knapsack import greedy_knapsack as kp class lowerCAmelCase__ ( unittest.TestCase ): def _snake_case ( self ): """simple docstring""" lowercase_ : List[str] = [10, 20, 30, 40, 50, 60] lowercase_ : Optional[Any] = [2, 4, 6, 8, 10, 12] lowercase_ : Union[str, Any] = 1_00 self.assertEqual(kp.calc_profit(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , 2_10 ) def _snake_case ( self ): """simple docstring""" self.assertRaisesRegex(__SCREAMING_SNAKE_CASE , '''max_weight must greater than zero.''' ) def _snake_case ( self ): """simple docstring""" self.assertRaisesRegex(__SCREAMING_SNAKE_CASE , '''Weight can not be negative.''' ) def _snake_case ( self ): """simple docstring""" self.assertRaisesRegex(__SCREAMING_SNAKE_CASE , '''Profit can not be negative.''' ) def _snake_case ( self ): """simple docstring""" self.assertRaisesRegex(__SCREAMING_SNAKE_CASE , '''max_weight must greater than zero.''' ) def _snake_case ( self ): """simple docstring""" self.assertRaisesRegex( __SCREAMING_SNAKE_CASE , '''The length of profit and weight must be same.''' ) if __name__ == "__main__": unittest.main()
93
1
import requests SCREAMING_SNAKE_CASE_ = """YOUR API KEY""" def __lowercase ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = giphy_api_key ) -> list: '''simple docstring''' SCREAMING_SNAKE_CASE = """+""".join(query.split() ) SCREAMING_SNAKE_CASE = F"""https://api.giphy.com/v1/gifs/search?q={formatted_query}&api_key={api_key}""" SCREAMING_SNAKE_CASE = requests.get(_SCREAMING_SNAKE_CASE ).json()["""data"""] return [gif["url"] for gif in gifs] if __name__ == "__main__": print("""\n""".join(get_gifs("""space ship""")))
193
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available SCREAMING_SNAKE_CASE_ = { """configuration_mvp""": ["""MVP_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MvpConfig""", """MvpOnnxConfig"""], """tokenization_mvp""": ["""MvpTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ = ["""MvpTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ = [ """MVP_PRETRAINED_MODEL_ARCHIVE_LIST""", """MvpForCausalLM""", """MvpForConditionalGeneration""", """MvpForQuestionAnswering""", """MvpForSequenceClassification""", """MvpModel""", """MvpPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mvp import MVP_PRETRAINED_CONFIG_ARCHIVE_MAP, MvpConfig, MvpOnnxConfig from .tokenization_mvp import MvpTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mvp_fast import MvpTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mvp import ( MVP_PRETRAINED_MODEL_ARCHIVE_LIST, MvpForCausalLM, MvpForConditionalGeneration, MvpForQuestionAnswering, MvpForSequenceClassification, MvpModel, MvpPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
193
1
from transformers import DistilBertTokenizer, DistilBertTokenizerFast from transformers.testing_utils import require_tokenizers, slow from ..bert.test_tokenization_bert import BertTokenizationTest @require_tokenizers class lowerCAmelCase ( __UpperCamelCase ): UpperCAmelCase__ = DistilBertTokenizer UpperCAmelCase__ = DistilBertTokenizerFast UpperCAmelCase__ = True @slow def A_ ( self : str ) -> Any: lowerCamelCase__ : List[str] = DistilBertTokenizer.from_pretrained('distilbert-base-uncased' ) lowerCamelCase__ : Dict = tokenizer.encode('sequence builders' , add_special_tokens=UpperCAmelCase ) lowerCamelCase__ : Union[str, Any] = tokenizer.encode('multi-sequence build' , add_special_tokens=UpperCAmelCase ) lowerCamelCase__ : List[str] = tokenizer.build_inputs_with_special_tokens(UpperCAmelCase ) lowerCamelCase__ : List[Any] = tokenizer.build_inputs_with_special_tokens(UpperCAmelCase , UpperCAmelCase ) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ]
50
from ...configuration_utils import PretrainedConfig from ...utils import logging __a : str = logging.get_logger(__name__) __a : Optional[int] = { """google/vivit-b-16x2-kinetics400""": ( """https://huggingface.co/google/vivit-b-16x2-kinetics400/resolve/main/config.json""" ), # See all Vivit models at https://huggingface.co/models?filter=vivit } class _UpperCamelCase ( _UpperCAmelCase ): """simple docstring""" __a : Tuple = '''vivit''' def __init__( self , lowerCAmelCase__=2_24 , lowerCAmelCase__=32 , lowerCAmelCase__=[2, 16, 16] , lowerCAmelCase__=3 , lowerCAmelCase__=7_68 , lowerCAmelCase__=12 , lowerCAmelCase__=12 , lowerCAmelCase__=30_72 , lowerCAmelCase__="gelu_fast" , lowerCAmelCase__=0.0 , lowerCAmelCase__=0.0 , lowerCAmelCase__=0.02 , lowerCAmelCase__=1E-06 , lowerCAmelCase__=True , **lowerCAmelCase__ , ) -> int: '''simple docstring''' __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = intermediate_size __lowercase = hidden_act __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = initializer_range __lowercase = layer_norm_eps __lowercase = image_size __lowercase = num_frames __lowercase = tubelet_size __lowercase = num_channels __lowercase = qkv_bias super().__init__(**lowerCAmelCase__ )
210
0
import requests from bsa import BeautifulSoup def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = BeautifulSoup(requests.get(SCREAMING_SNAKE_CASE , params=SCREAMING_SNAKE_CASE ).content , '''html.parser''' ) lowercase__ = soup.find('''div''' , attrs={'''class''': '''gs_ri'''} ) lowercase__ = div.find('''div''' , attrs={'''class''': '''gs_fl'''} ).find_all('''a''' ) return anchors[2].get_text() if __name__ == "__main__": lowerCAmelCase = { 'title': ( 'Precisely geometry controlled microsupercapacitors for ultrahigh areal ' 'capacitance, volumetric capacitance, and energy density' ), 'journal': 'Chem. Mater.', 'volume': 30, 'pages': '3979-3990', 'year': 2018, 'hl': 'en', } print(get_citation('https://scholar.google.com/scholar_lookup', params=params))
93
def _a ( SCREAMING_SNAKE_CASE = 10_00 ): """simple docstring""" return sum(e for e in range(3 , SCREAMING_SNAKE_CASE ) if e % 3 == 0 or e % 5 == 0 ) if __name__ == "__main__": print(f"""{solution() = }""")
93
1
'''simple docstring''' import unittest from transformers import BarthezTokenizer, BarthezTokenizerFast, BatchEncoding from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers @require_sentencepiece @slow # see https://github.com/huggingface/transformers/issues/11457 class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ): """simple docstring""" _snake_case : str = BarthezTokenizer _snake_case : str = BarthezTokenizerFast _snake_case : Union[str, Any] = True _snake_case : List[str] = True def snake_case__ ( self : Union[str, Any] ) -> str: '''simple docstring''' super().setUp() _UpperCamelCase = BarthezTokenizerFast.from_pretrained('''moussaKam/mbarthez''' ) tokenizer.save_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname , legacy_format=lowerCAmelCase__ ) _UpperCamelCase = tokenizer def snake_case__ ( self : int ) -> Optional[int]: '''simple docstring''' _UpperCamelCase = '''<pad>''' _UpperCamelCase = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCAmelCase__ ) , lowerCAmelCase__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCAmelCase__ ) , lowerCAmelCase__ ) def snake_case__ ( self : List[Any] ) -> int: '''simple docstring''' _UpperCamelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<s>''' ) self.assertEqual(vocab_keys[1] , '''<pad>''' ) self.assertEqual(vocab_keys[-1] , '''<mask>''' ) self.assertEqual(len(lowerCAmelCase__ ) , 101122 ) def snake_case__ ( self : Tuple ) -> Optional[Any]: '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 101122 ) @require_torch def snake_case__ ( self : List[str] ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] _UpperCamelCase = [0, 57, 3018, 70307, 91, 2] _UpperCamelCase = self.tokenizer( lowerCAmelCase__ , max_length=len(lowerCAmelCase__ ) , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , return_tensors='''pt''' ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) self.assertEqual((2, 6) , batch.input_ids.shape ) self.assertEqual((2, 6) , batch.attention_mask.shape ) _UpperCamelCase = batch.input_ids.tolist()[0] self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) def snake_case__ ( self : int ) -> Optional[Any]: '''simple docstring''' if not self.test_rust_tokenizer: return _UpperCamelCase = self.get_tokenizer() _UpperCamelCase = self.get_rust_tokenizer() _UpperCamelCase = '''I was born in 92000, and this is falsé.''' _UpperCamelCase = tokenizer.tokenize(lowerCAmelCase__ ) _UpperCamelCase = rust_tokenizer.tokenize(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCamelCase = tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) _UpperCamelCase = rust_tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCamelCase = self.get_rust_tokenizer() _UpperCamelCase = tokenizer.encode(lowerCAmelCase__ ) _UpperCamelCase = rust_tokenizer.encode(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) @slow def snake_case__ ( self : List[str] ) -> List[str]: '''simple docstring''' _UpperCamelCase = {'''input_ids''': [[0, 490, 14328, 4507, 354, 47, 43669, 95, 25, 78117, 20215, 19779, 190, 22, 400, 4, 35343, 80310, 603, 86, 24937, 105, 33438, 94762, 196, 39642, 7, 15, 15933, 173, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 10534, 87, 25, 66, 3358, 196, 55289, 8, 82961, 81, 2204, 75203, 7, 15, 763, 12956, 216, 178, 14328, 9595, 1377, 69693, 7, 448, 71021, 196, 18106, 1437, 13974, 108, 9083, 4, 49315, 7, 39, 86, 1326, 2793, 46333, 4, 448, 196, 74588, 7, 49315, 7, 39, 21, 822, 38470, 74, 21, 66723, 62480, 8, 22050, 5, 2]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # moussaKam/mbarthez is a french model. So we also use french texts. _UpperCamelCase = [ '''Le transformeur est un modèle d\'apprentissage profond introduit en 2017, ''' '''utilisé principalement dans le domaine du traitement automatique des langues (TAL).''', '''À l\'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus ''' '''pour gérer des données séquentielles, telles que le langage naturel, pour des tâches ''' '''telles que la traduction et la synthèse de texte.''', ] self.tokenizer_integration_test_util( expected_encoding=lowerCAmelCase__ , model_name='''moussaKam/mbarthez''' , revision='''c2e4ecbca5e3cd2c37fe1ac285ca4fbdf1366fb6''' , sequences=lowerCAmelCase__ , )
324
'''simple docstring''' import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartTokenizer, MBartTokenizerFast, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin lowercase__ : Dict = get_tests_dir('fixtures/test_sentencepiece.model') if is_torch_available(): from transformers.models.mbart.modeling_mbart import shift_tokens_right lowercase__ : List[Any] = 25_00_04 lowercase__ : str = 25_00_20 @require_sentencepiece @require_tokenizers class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ): """simple docstring""" _snake_case : Optional[Any] = MBartTokenizer _snake_case : Tuple = MBartTokenizerFast _snake_case : List[str] = True _snake_case : Optional[Any] = True def snake_case__ ( self : Any ) -> Optional[int]: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing _UpperCamelCase = MBartTokenizer(lowerCAmelCase__ , keep_accents=lowerCAmelCase__ ) tokenizer.save_pretrained(self.tmpdirname ) def snake_case__ ( self : str ) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = MBartTokenizer(lowerCAmelCase__ , keep_accents=lowerCAmelCase__ ) _UpperCamelCase = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(lowerCAmelCase__ , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) _UpperCamelCase = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( lowerCAmelCase__ , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) _UpperCamelCase = tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ) self.assertListEqual( lowerCAmelCase__ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] # ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^ ] , ) _UpperCamelCase = tokenizer.convert_ids_to_tokens(lowerCAmelCase__ ) self.assertListEqual( lowerCAmelCase__ , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) def snake_case__ ( self : Any ) -> Dict: '''simple docstring''' if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return _UpperCamelCase = (self.rust_tokenizer_class, '''hf-internal-testing/tiny-random-mbart''', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): _UpperCamelCase = self.rust_tokenizer_class.from_pretrained(lowerCAmelCase__ , **lowerCAmelCase__ ) _UpperCamelCase = self.tokenizer_class.from_pretrained(lowerCAmelCase__ , **lowerCAmelCase__ ) _UpperCamelCase = tempfile.mkdtemp() _UpperCamelCase = tokenizer_r.save_pretrained(lowerCAmelCase__ ) _UpperCamelCase = tokenizer_p.save_pretrained(lowerCAmelCase__ ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) _UpperCamelCase = tuple(f for f in tokenizer_r_files if '''tokenizer.json''' not in f ) self.assertSequenceEqual(lowerCAmelCase__ , lowerCAmelCase__ ) # Checks everything loads correctly in the same way _UpperCamelCase = tokenizer_r.from_pretrained(lowerCAmelCase__ ) _UpperCamelCase = tokenizer_p.from_pretrained(lowerCAmelCase__ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowerCAmelCase__ , lowerCAmelCase__ ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(lowerCAmelCase__ ) # Save tokenizer rust, legacy_format=True _UpperCamelCase = tempfile.mkdtemp() _UpperCamelCase = tokenizer_r.save_pretrained(lowerCAmelCase__ , legacy_format=lowerCAmelCase__ ) _UpperCamelCase = tokenizer_p.save_pretrained(lowerCAmelCase__ ) # Checks it save with the same files self.assertSequenceEqual(lowerCAmelCase__ , lowerCAmelCase__ ) # Checks everything loads correctly in the same way _UpperCamelCase = tokenizer_r.from_pretrained(lowerCAmelCase__ ) _UpperCamelCase = tokenizer_p.from_pretrained(lowerCAmelCase__ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowerCAmelCase__ , lowerCAmelCase__ ) ) shutil.rmtree(lowerCAmelCase__ ) # Save tokenizer rust, legacy_format=False _UpperCamelCase = tempfile.mkdtemp() _UpperCamelCase = tokenizer_r.save_pretrained(lowerCAmelCase__ , legacy_format=lowerCAmelCase__ ) _UpperCamelCase = tokenizer_p.save_pretrained(lowerCAmelCase__ ) # Checks it saved the tokenizer.json file self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way _UpperCamelCase = tokenizer_r.from_pretrained(lowerCAmelCase__ ) _UpperCamelCase = tokenizer_p.from_pretrained(lowerCAmelCase__ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowerCAmelCase__ , lowerCAmelCase__ ) ) shutil.rmtree(lowerCAmelCase__ ) @require_torch @require_sentencepiece @require_tokenizers class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" _snake_case : Dict = 'facebook/mbart-large-en-ro' _snake_case : Dict = [ ' UN Chief Says There Is No Military Solution in Syria', ' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for Syria is that "there is no military solution" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.', ] _snake_case : List[Any] = [ 'Şeful ONU declară că nu există o soluţie militară în Siria', 'Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei' ' pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi că noi arme nu vor' ' face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.', ] _snake_case : Union[str, Any] = [8_2_7_4, 1_2_7_8_7_3, 2_5_9_1_6, 7, 8_6_2_2, 2_0_7_1, 4_3_8, 6_7_4_8_5, 5_3, 1_8_7_8_9_5, 2_3, 5_1_7_1_2, 2, EN_CODE] @classmethod def snake_case__ ( cls : List[str] ) -> List[str]: '''simple docstring''' _UpperCamelCase = MBartTokenizer.from_pretrained( cls.checkpoint_name , src_lang='''en_XX''' , tgt_lang='''ro_RO''' ) _UpperCamelCase = 1 return cls def snake_case__ ( self : Dict ) -> Union[str, Any]: '''simple docstring''' self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''ar_AR'''] , 250001 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''en_EN'''] , 250004 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''ro_RO'''] , 250020 ) def snake_case__ ( self : Optional[Any] ) -> Optional[int]: '''simple docstring''' _UpperCamelCase = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , lowerCAmelCase__ ) def snake_case__ ( self : str ) -> List[Any]: '''simple docstring''' self.assertIn(lowerCAmelCase__ , self.tokenizer.all_special_ids ) _UpperCamelCase = [RO_CODE, 884, 9019, 96, 9, 916, 86792, 36, 18743, 15596, 5, 2] _UpperCamelCase = self.tokenizer.decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ ) _UpperCamelCase = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=lowerCAmelCase__ ) self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__ ) self.assertNotIn(self.tokenizer.eos_token , lowerCAmelCase__ ) def snake_case__ ( self : Any ) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = ['''this is gunna be a long sentence ''' * 20] assert isinstance(src_text[0] , lowerCAmelCase__ ) _UpperCamelCase = 10 _UpperCamelCase = self.tokenizer(lowerCAmelCase__ , max_length=lowerCAmelCase__ , truncation=lowerCAmelCase__ ).input_ids[0] self.assertEqual(ids[-2] , 2 ) self.assertEqual(ids[-1] , lowerCAmelCase__ ) self.assertEqual(len(lowerCAmelCase__ ) , lowerCAmelCase__ ) def snake_case__ ( self : List[Any] ) -> int: '''simple docstring''' self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['''<mask>''', '''ar_AR'''] ) , [250026, 250001] ) def snake_case__ ( self : int ) -> Optional[int]: '''simple docstring''' _UpperCamelCase = tempfile.mkdtemp() _UpperCamelCase = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(lowerCAmelCase__ ) _UpperCamelCase = MBartTokenizer.from_pretrained(lowerCAmelCase__ ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , lowerCAmelCase__ ) @require_torch def snake_case__ ( self : Any ) -> List[Any]: '''simple docstring''' _UpperCamelCase = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=lowerCAmelCase__ , return_tensors='''pt''' ) _UpperCamelCase = shift_tokens_right(batch['''labels'''] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 assert batch.input_ids[1][-2:].tolist() == [2, EN_CODE] assert batch.decoder_input_ids[1][0].tolist() == RO_CODE assert batch.decoder_input_ids[1][-1] == 2 assert batch.labels[1][-2:].tolist() == [2, RO_CODE] @require_torch def snake_case__ ( self : Optional[Any] ) -> int: '''simple docstring''' _UpperCamelCase = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , max_length=len(self.expected_src_tokens ) , return_tensors='''pt''' , ) _UpperCamelCase = shift_tokens_right(batch['''labels'''] , self.tokenizer.pad_token_id ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) self.assertEqual((2, 14) , batch.input_ids.shape ) self.assertEqual((2, 14) , batch.attention_mask.shape ) _UpperCamelCase = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , lowerCAmelCase__ ) self.assertEqual(2 , batch.decoder_input_ids[0, -1] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id, EN_CODE] ) def snake_case__ ( self : Optional[Any] ) -> List[str]: '''simple docstring''' _UpperCamelCase = self.tokenizer(self.src_text , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , max_length=3 , return_tensors='''pt''' ) _UpperCamelCase = self.tokenizer( text_target=self.tgt_text , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , max_length=10 , return_tensors='''pt''' ) _UpperCamelCase = targets['''input_ids'''] _UpperCamelCase = shift_tokens_right(lowerCAmelCase__ , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def snake_case__ ( self : Tuple ) -> Tuple: '''simple docstring''' _UpperCamelCase = self.tokenizer._build_translation_inputs( '''A test''' , return_tensors='''pt''' , src_lang='''en_XX''' , tgt_lang='''ar_AR''' ) self.assertEqual( nested_simplify(lowerCAmelCase__ ) , { # A, test, EOS, en_XX '''input_ids''': [[62, 3034, 2, 250004]], '''attention_mask''': [[1, 1, 1, 1]], # ar_AR '''forced_bos_token_id''': 250001, } , )
324
1
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, StableDiffusionSAGPipeline, UNetaDConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class __SCREAMING_SNAKE_CASE ( A__ , A__ , unittest.TestCase ): A : str = StableDiffusionSAGPipeline A : Any = TEXT_TO_IMAGE_PARAMS A : str = TEXT_TO_IMAGE_BATCH_PARAMS A : Union[str, Any] = TEXT_TO_IMAGE_IMAGE_PARAMS A : Optional[int] = TEXT_TO_IMAGE_IMAGE_PARAMS A : int = False def __lowerCamelCase ( self ): torch.manual_seed(0 ) lowercase : Tuple = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) lowercase : Tuple = DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , clip_sample=SCREAMING_SNAKE_CASE__ , set_alpha_to_one=SCREAMING_SNAKE_CASE__ , ) torch.manual_seed(0 ) lowercase : Dict = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) torch.manual_seed(0 ) lowercase : Optional[int] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) lowercase : Optional[int] = CLIPTextModel(SCREAMING_SNAKE_CASE__ ) lowercase : Dict = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) lowercase : Union[str, Any] = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=0 ): if str(SCREAMING_SNAKE_CASE__ ).startswith('''mps''' ): lowercase : Optional[int] = torch.manual_seed(SCREAMING_SNAKE_CASE__ ) else: lowercase : Any = torch.Generator(device=SCREAMING_SNAKE_CASE__ ).manual_seed(SCREAMING_SNAKE_CASE__ ) lowercase : str = { '''prompt''': '''.''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 1.0, '''sag_scale''': 1.0, '''output_type''': '''numpy''', } return inputs def __lowerCamelCase ( self ): super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): def __lowerCamelCase ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCamelCase ( self ): lowercase : Optional[int] = StableDiffusionSAGPipeline.from_pretrained('''CompVis/stable-diffusion-v1-4''' ) lowercase : Optional[Any] = sag_pipe.to(SCREAMING_SNAKE_CASE__ ) sag_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) lowercase : Optional[int] = '''.''' lowercase : Tuple = torch.manual_seed(0 ) lowercase : Optional[int] = sag_pipe( [prompt] , generator=SCREAMING_SNAKE_CASE__ , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='''np''' ) lowercase : Optional[Any] = output.images lowercase : Dict = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) lowercase : List[Any] = np.array([0.1568, 0.1738, 0.1695, 0.1693, 0.1507, 0.1705, 0.1547, 0.1751, 0.1949] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-2 def __lowerCamelCase ( self ): lowercase : Any = StableDiffusionSAGPipeline.from_pretrained('''stabilityai/stable-diffusion-2-1-base''' ) lowercase : int = sag_pipe.to(SCREAMING_SNAKE_CASE__ ) sag_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) lowercase : int = '''.''' lowercase : List[str] = torch.manual_seed(0 ) lowercase : List[str] = sag_pipe( [prompt] , generator=SCREAMING_SNAKE_CASE__ , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='''np''' ) lowercase : Any = output.images lowercase : int = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) lowercase : List[Any] = np.array([0.3459, 0.2876, 0.2537, 0.3002, 0.2671, 0.2160, 0.3026, 0.2262, 0.2371] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-2 def __lowerCamelCase ( self ): lowercase : Tuple = StableDiffusionSAGPipeline.from_pretrained('''stabilityai/stable-diffusion-2-1-base''' ) lowercase : str = sag_pipe.to(SCREAMING_SNAKE_CASE__ ) sag_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) lowercase : Tuple = '''.''' lowercase : List[str] = torch.manual_seed(0 ) lowercase : List[str] = sag_pipe( [prompt] , width=768 , height=512 , generator=SCREAMING_SNAKE_CASE__ , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='''np''' , ) lowercase : Union[str, Any] = output.images assert image.shape == (1, 512, 768, 3)
370
from ...utils import is_note_seq_available, is_transformers_available, is_torch_available from ...utils import OptionalDependencyNotAvailable try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .notes_encoder import SpectrogramNotesEncoder from .continous_encoder import SpectrogramContEncoder from .pipeline_spectrogram_diffusion import ( SpectrogramContEncoder, SpectrogramDiffusionPipeline, TaFilmDecoder, ) try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .midi_utils import MidiProcessor
173
0
import unittest from pathlib import Path from tempfile import NamedTemporaryFile, TemporaryDirectory from transformers import BertConfig, BertTokenizerFast, FeatureExtractionPipeline from transformers.convert_graph_to_onnx import ( convert, ensure_valid_input, generate_identified_filename, infer_shapes, quantize, ) from transformers.testing_utils import require_tf, require_tokenizers, require_torch, slow class _snake_case : def SCREAMING_SNAKE_CASE__ ( self , a , a , a) -> List[str]: return None class _snake_case : def SCREAMING_SNAKE_CASE__ ( self , a , a , a , a) -> Tuple: return None class _snake_case ( unittest.TestCase ): _lowercase : Optional[int] = [ # (model_name, model_kwargs) ('''bert-base-cased''', {}), ('''gpt2''', {'''use_cache''': False}), # We don't support exporting GPT2 past keys anymore ] @require_tf @slow def SCREAMING_SNAKE_CASE__ ( self) -> List[Any]: for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(a , 'tf' , 12 , **a) @require_torch @slow def SCREAMING_SNAKE_CASE__ ( self) -> List[Any]: for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(a , 'pt' , 12 , **a) @require_torch @slow def SCREAMING_SNAKE_CASE__ ( self) -> int: from transformers import BertModel SCREAMING_SNAKE_CASE = ['[UNK]', '[SEP]', '[CLS]', '[PAD]', '[MASK]', 'some', 'other', 'words'] with NamedTemporaryFile(mode='w+t') as vocab_file: vocab_file.write('\n'.join(a)) vocab_file.flush() SCREAMING_SNAKE_CASE = BertTokenizerFast(vocab_file.name) with TemporaryDirectory() as bert_save_dir: SCREAMING_SNAKE_CASE = BertModel(BertConfig(vocab_size=len(a))) model.save_pretrained(a) self._test_export(a , 'pt' , 12 , a) @require_tf @slow def SCREAMING_SNAKE_CASE__ ( self) -> Tuple: for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: SCREAMING_SNAKE_CASE = self._test_export(a , 'tf' , 12 , **a) SCREAMING_SNAKE_CASE = quantize(Path(a)) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(a).stat().st_size: self.fail('Quantized model is bigger than initial ONNX model') @require_torch @slow def SCREAMING_SNAKE_CASE__ ( self) -> List[str]: for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: SCREAMING_SNAKE_CASE = self._test_export(a , 'pt' , 12 , **a) SCREAMING_SNAKE_CASE = quantize(a) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(a).stat().st_size: self.fail('Quantized model is bigger than initial ONNX model') def SCREAMING_SNAKE_CASE__ ( self , a , a , a , a=None , **a) -> Union[str, Any]: try: # Compute path with TemporaryDirectory() as tempdir: SCREAMING_SNAKE_CASE = Path(a).joinpath('model.onnx') # Remove folder if exists if path.parent.exists(): path.parent.rmdir() # Export convert(a , a , a , a , a , **a) return path except Exception as e: self.fail(a) @require_torch @require_tokenizers @slow def SCREAMING_SNAKE_CASE__ ( self) -> Union[str, Any]: from transformers import BertModel SCREAMING_SNAKE_CASE = BertModel(BertConfig.from_pretrained('lysandre/tiny-bert-random')) SCREAMING_SNAKE_CASE = BertTokenizerFast.from_pretrained('lysandre/tiny-bert-random') self._test_infer_dynamic_axis(a , a , 'pt') @require_tf @require_tokenizers @slow def SCREAMING_SNAKE_CASE__ ( self) -> Optional[Any]: from transformers import TFBertModel SCREAMING_SNAKE_CASE = TFBertModel(BertConfig.from_pretrained('lysandre/tiny-bert-random')) SCREAMING_SNAKE_CASE = BertTokenizerFast.from_pretrained('lysandre/tiny-bert-random') self._test_infer_dynamic_axis(a , a , 'tf') def SCREAMING_SNAKE_CASE__ ( self , a , a , a) -> Union[str, Any]: SCREAMING_SNAKE_CASE = FeatureExtractionPipeline(a , a) SCREAMING_SNAKE_CASE = ['input_ids', 'token_type_ids', 'attention_mask', 'output_0', 'output_1'] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = infer_shapes(a , a) # Assert all variables are present self.assertEqual(len(a) , len(a)) self.assertTrue(all(var_name in shapes for var_name in variable_names)) self.assertSequenceEqual(variable_names[:3] , a) self.assertSequenceEqual(variable_names[3:] , a) # Assert inputs are {0: batch, 1: sequence} for var_name in ["input_ids", "token_type_ids", "attention_mask"]: self.assertDictEqual(shapes[var_name] , {0: 'batch', 1: 'sequence'}) # Assert outputs are {0: batch, 1: sequence} and {0: batch} self.assertDictEqual(shapes['output_0'] , {0: 'batch', 1: 'sequence'}) self.assertDictEqual(shapes['output_1'] , {0: 'batch'}) def SCREAMING_SNAKE_CASE__ ( self) -> Optional[Any]: SCREAMING_SNAKE_CASE = ['input_ids', 'attention_mask', 'token_type_ids'] SCREAMING_SNAKE_CASE = {'input_ids': [1, 2, 3, 4], 'attention_mask': [0, 0, 0, 0], 'token_type_ids': [1, 1, 1, 1]} SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = ensure_valid_input(FuncContiguousArgs() , a , a) # Should have exactly the same number of args (all are valid) self.assertEqual(len(a) , 3) # Should have exactly the same input names self.assertEqual(set(a) , set(a)) # Parameter should be reordered according to their respective place in the function: # (input_ids, token_type_ids, attention_mask) self.assertEqual(a , (tokens['input_ids'], tokens['token_type_ids'], tokens['attention_mask'])) # Generated args are interleaved with another args (for instance parameter "past" in GPT2) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = ensure_valid_input(FuncNonContiguousArgs() , a , a) # Should have exactly the one arg (all before the one not provided "some_other_args") self.assertEqual(len(a) , 1) self.assertEqual(len(a) , 1) # Should have only "input_ids" self.assertEqual(inputs_args[0] , tokens['input_ids']) self.assertEqual(ordered_input_names[0] , 'input_ids') def SCREAMING_SNAKE_CASE__ ( self) -> Tuple: SCREAMING_SNAKE_CASE = generate_identified_filename(Path('/home/something/my_fake_model.onnx') , '-test') self.assertEqual('/home/something/my_fake_model-test.onnx' , generated.as_posix())
137
import json import os import tempfile import unittest import unittest.mock as mock from pathlib import Path from requests.exceptions import HTTPError from transformers.utils import ( CONFIG_NAME, FLAX_WEIGHTS_NAME, TF2_WEIGHTS_NAME, TRANSFORMERS_CACHE, WEIGHTS_NAME, cached_file, get_file_from_repo, has_file, ) a_ : Dict = 'hf-internal-testing/tiny-random-bert' a_ : Tuple = os.path.join(TRANSFORMERS_CACHE, 'models--hf-internal-testing--tiny-random-bert') a_ : Optional[int] = '9b8c223d42b2188cb49d29af482996f9d0f3e5a6' class _snake_case ( unittest.TestCase ): def SCREAMING_SNAKE_CASE__ ( self) -> List[Any]: SCREAMING_SNAKE_CASE = cached_file(a , a) # Should have downloaded the file in here self.assertTrue(os.path.isdir(a)) # Cache should contain at least those three subfolders: for subfolder in ["blobs", "refs", "snapshots"]: self.assertTrue(os.path.isdir(os.path.join(a , a))) with open(os.path.join(a , 'refs' , 'main')) as f: SCREAMING_SNAKE_CASE = f.read() self.assertEqual(a , os.path.join(a , 'snapshots' , a , a)) self.assertTrue(os.path.isfile(a)) # File is cached at the same place the second time. SCREAMING_SNAKE_CASE = cached_file(a , a) self.assertEqual(a , a) # Using a specific revision to test the full commit hash. SCREAMING_SNAKE_CASE = cached_file(a , a , revision='9b8c223') self.assertEqual(a , os.path.join(a , 'snapshots' , a , a)) def SCREAMING_SNAKE_CASE__ ( self) -> List[str]: with self.assertRaisesRegex(a , 'is not a valid model identifier'): SCREAMING_SNAKE_CASE = cached_file('tiny-random-bert' , a) with self.assertRaisesRegex(a , 'is not a valid git identifier'): SCREAMING_SNAKE_CASE = cached_file(a , a , revision='aaaa') with self.assertRaisesRegex(a , 'does not appear to have a file named'): SCREAMING_SNAKE_CASE = cached_file(a , 'conf') def SCREAMING_SNAKE_CASE__ ( self) -> List[Any]: with self.assertRaisesRegex(a , 'does not appear to have a file named'): SCREAMING_SNAKE_CASE = cached_file(a , 'conf') with open(os.path.join(a , 'refs' , 'main')) as f: SCREAMING_SNAKE_CASE = f.read() self.assertTrue(os.path.isfile(os.path.join(a , '.no_exist' , a , 'conf'))) SCREAMING_SNAKE_CASE = cached_file(a , 'conf' , _raise_exceptions_for_missing_entries=a) self.assertIsNone(a) SCREAMING_SNAKE_CASE = cached_file(a , 'conf' , local_files_only=a , _raise_exceptions_for_missing_entries=a) self.assertIsNone(a) SCREAMING_SNAKE_CASE = mock.Mock() SCREAMING_SNAKE_CASE = 500 SCREAMING_SNAKE_CASE = {} SCREAMING_SNAKE_CASE = HTTPError SCREAMING_SNAKE_CASE = {} # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch('requests.Session.request' , return_value=a) as mock_head: SCREAMING_SNAKE_CASE = cached_file(a , 'conf' , _raise_exceptions_for_connection_errors=a) self.assertIsNone(a) # This check we did call the fake head request mock_head.assert_called() def SCREAMING_SNAKE_CASE__ ( self) -> int: self.assertTrue(has_file('hf-internal-testing/tiny-bert-pt-only' , a)) self.assertFalse(has_file('hf-internal-testing/tiny-bert-pt-only' , a)) self.assertFalse(has_file('hf-internal-testing/tiny-bert-pt-only' , a)) def SCREAMING_SNAKE_CASE__ ( self) -> Any: # `get_file_from_repo` returns None if the file does not exist self.assertIsNone(get_file_from_repo('bert-base-cased' , 'ahah.txt')) # The function raises if the repository does not exist. with self.assertRaisesRegex(a , 'is not a valid model identifier'): get_file_from_repo('bert-base-case' , a) # The function raises if the revision does not exist. with self.assertRaisesRegex(a , 'is not a valid git identifier'): get_file_from_repo('bert-base-cased' , a , revision='ahaha') SCREAMING_SNAKE_CASE = get_file_from_repo('bert-base-cased' , a) # The name is the cached name which is not very easy to test, so instead we load the content. SCREAMING_SNAKE_CASE = json.loads(open(a , 'r').read()) self.assertEqual(config['hidden_size'] , 768) def SCREAMING_SNAKE_CASE__ ( self) -> Optional[int]: with tempfile.TemporaryDirectory() as tmp_dir: SCREAMING_SNAKE_CASE = Path(a) / 'a.txt' filename.touch() self.assertEqual(get_file_from_repo(a , 'a.txt') , str(a)) self.assertIsNone(get_file_from_repo(a , 'b.txt'))
137
1
"""simple docstring""" class __magic_name__ : # Public class to implement a graph def __init__( self : List[Any] , snake_case__ : int , snake_case__ : int , snake_case__ : list[list[bool]] ): '''simple docstring''' lowercase :List[str] = row lowercase :List[Any] = col lowercase :int = graph def __snake_case ( self : List[str] , snake_case__ : int , snake_case__ : int , snake_case__ : list[list[bool]] ): '''simple docstring''' return ( 0 <= i < self.ROW and 0 <= j < self.COL and not visited[i][j] and self.graph[i][j] ) def __snake_case ( self : List[str] , snake_case__ : int , snake_case__ : int , snake_case__ : list[list[bool]] ): '''simple docstring''' lowercase :int = [-1, -1, -1, 0, 0, 1, 1, 1] # Coordinate order lowercase :Optional[Any] = [-1, 0, 1, -1, 1, -1, 0, 1] lowercase :Dict = True # Make those cells visited for k in range(8 ): if self.is_safe(i + row_nbr[k] , j + col_nbr[k] , snake_case__ ): self.diffs(i + row_nbr[k] , j + col_nbr[k] , snake_case__ ) def __snake_case ( self : int ): # And finally, count all islands. '''simple docstring''' lowercase :Any = [[False for j in range(self.COL )] for i in range(self.ROW )] lowercase :Dict = 0 for i in range(self.ROW ): for j in range(self.COL ): if visited[i][j] is False and self.graph[i][j] == 1: self.diffs(snake_case__ , snake_case__ , snake_case__ ) count += 1 return count
172
"""simple docstring""" import io import os import unicodedata from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging UpperCAmelCase = logging.get_logger(__name__) UpperCAmelCase = '''▁''' UpperCAmelCase = {'''vocab_file''': '''vocab.txt''', '''sentencepiece_model_ckpt''': '''sentencepiece.bpe.model'''} UpperCAmelCase = { '''sentencepiece_model_file''': '''sentencepiece.bpe.model''', '''vocab_file''': '''vocab.txt''', } UpperCAmelCase = { '''vocab_file''': { '''ernie-m-base''': '''https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt''', '''ernie-m-large''': '''https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt''', }, '''sentencepiece_model_file''': { '''ernie-m-base''': '''https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model''', '''ernie-m-large''': '''https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model''', }, } UpperCAmelCase = { '''ernie-m-base''': 514, '''ernie-m-large''': 514, } UpperCAmelCase = { '''ernie-m-base''': {'''do_lower_case''': False}, '''ernie-m-large''': {'''do_lower_case''': False}, } class __magic_name__ ( __UpperCAmelCase ): __A : List[str] = ["input_ids"] __A : Optional[Any] = VOCAB_FILES_NAMES __A : str = PRETRAINED_INIT_CONFIGURATION __A : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __A : List[str] = PRETRAINED_VOCAB_FILES_MAP __A : List[str] = RESOURCE_FILES_NAMES def __init__( self : Dict , snake_case__ : List[Any] , snake_case__ : List[Any]=None , snake_case__ : int=False , snake_case__ : Optional[int]="utf8" , snake_case__ : List[str]="[UNK]" , snake_case__ : Tuple="[SEP]" , snake_case__ : List[Any]="[PAD]" , snake_case__ : Dict="[CLS]" , snake_case__ : Dict="[MASK]" , snake_case__ : Optional[Dict[str, Any]] = None , **snake_case__ : str , ): '''simple docstring''' lowercase :Any = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=snake_case__ , unk_token=snake_case__ , sep_token=snake_case__ , pad_token=snake_case__ , cls_token=snake_case__ , mask_token=snake_case__ , vocab_file=snake_case__ , encoding=snake_case__ , sp_model_kwargs=self.sp_model_kwargs , **snake_case__ , ) lowercase :Dict = do_lower_case lowercase :str = sentencepiece_model_ckpt lowercase :Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(snake_case__ ) # to mimic paddlenlp.transformers.ernie_m.tokenizer.ErnieMTokenizer functioning if vocab_file is not None: lowercase :Tuple = self.load_vocab(filepath=snake_case__ ) else: lowercase :str = {self.sp_model.id_to_piece(snake_case__ ): id for id in range(self.sp_model.get_piece_size() )} lowercase :Any = {v: k for k, v in self.vocab.items()} def __snake_case ( self : List[str] , snake_case__ : str ): '''simple docstring''' if text is None: return None lowercase :List[Any] = self.tokenize(snake_case__ ) lowercase , lowercase :List[str] = '''''', [] for i, ch in enumerate(snake_case__ ): if ch in self.SP_CHAR_MAPPING: lowercase :Optional[int] = self.SP_CHAR_MAPPING.get(snake_case__ ) else: lowercase :Optional[int] = unicodedata.normalize('''NFKC''' , snake_case__ ) if self.is_whitespace(snake_case__ ): continue normalized_text += ch char_mapping.extend([i] * len(snake_case__ ) ) lowercase , lowercase , lowercase :int = normalized_text, [], 0 if self.do_lower_case: lowercase :Any = text.lower() for token in split_tokens: if token[:1] == "▁": lowercase :Tuple = token[1:] lowercase :List[str] = text[offset:].index(snake_case__ ) + offset lowercase :Tuple = start + len(snake_case__ ) token_mapping.append((char_mapping[start], char_mapping[end - 1] + 1) ) lowercase :int = end return token_mapping @property def __snake_case ( self : List[Any] ): '''simple docstring''' return len(self.vocab ) def __snake_case ( self : Optional[Any] ): '''simple docstring''' return dict(self.vocab , **self.added_tokens_encoder ) def __getstate__( self : Optional[int] ): '''simple docstring''' lowercase :Any = self.__dict__.copy() lowercase :Optional[int] = None return state def __setstate__( self : Tuple , snake_case__ : Dict ): '''simple docstring''' lowercase :Optional[int] = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): lowercase :Dict = {} lowercase :List[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.sentencepiece_model_ckpt ) def __snake_case ( self : int , snake_case__ : List[Any] ): '''simple docstring''' return "".join((self.SP_CHAR_MAPPING.get(snake_case__ , snake_case__ ) for c in text) ) def __snake_case ( self : List[str] , snake_case__ : Optional[int] , snake_case__ : int=False , snake_case__ : Dict=6_4 , snake_case__ : Any=0.1 ): '''simple docstring''' if self.sp_model_kwargs.get('''enable_sampling''' ) is True: lowercase :Any = True if self.sp_model_kwargs.get('''alpha''' ) is not None: lowercase :Any = self.sp_model_kwargs.get('''alpha''' ) if self.sp_model_kwargs.get('''nbest_size''' ) is not None: lowercase :Optional[Any] = self.sp_model_kwargs.get('''nbest_size''' ) if not enable_sampling: lowercase :Any = self.sp_model.EncodeAsPieces(snake_case__ ) else: lowercase :List[Any] = self.sp_model.SampleEncodeAsPieces(snake_case__ , snake_case__ , snake_case__ ) lowercase :str = [] for pi, piece in enumerate(snake_case__ ): if piece == SPIECE_UNDERLINE: if not pieces[pi + 1].startswith(snake_case__ ) and pi != 0: new_pieces.append(snake_case__ ) continue else: continue lowercase :int = 0 for i, chunk in enumerate(snake_case__ ): if chunk == SPIECE_UNDERLINE: continue if self.is_ch_char(snake_case__ ) or self.is_punct(snake_case__ ): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) new_pieces.append(snake_case__ ) lowercase :Optional[int] = i + 1 elif chunk.isdigit() and i > 0 and not piece[i - 1].isdigit(): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) lowercase :str = i elif not chunk.isdigit() and i > 0 and piece[i - 1].isdigit(): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) lowercase :Dict = i if len(snake_case__ ) > lst_i: new_pieces.append(piece[lst_i:] ) return new_pieces def __snake_case ( self : Dict , snake_case__ : str ): '''simple docstring''' lowercase :int = ''''''.join(snake_case__ ).replace(snake_case__ , ''' ''' ).strip() return out_string def __snake_case ( self : int , snake_case__ : str ): '''simple docstring''' lowercase :Tuple = self.convert_ids_to_tokens(snake_case__ ) lowercase :Any = ''''''.join(snake_case__ ).replace(snake_case__ , ''' ''' ).strip() return out_string def __snake_case ( self : int , snake_case__ : Union[str, Any] ): '''simple docstring''' return self.vocab.get(snake_case__ , self.vocab.get(self.unk_token ) ) def __snake_case ( self : List[Any] , snake_case__ : List[str] ): '''simple docstring''' return self.reverse_vocab.get(snake_case__ , self.unk_token ) def __snake_case ( self : Union[str, Any] , snake_case__ : List[Any] , snake_case__ : Any=None ): '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowercase :int = [self.cls_token_id] lowercase :str = [self.sep_token_id] return _cls + token_ids_a + _sep + _sep + token_ids_a + _sep def __snake_case ( self : Any , snake_case__ : Dict , snake_case__ : str=None ): '''simple docstring''' if offset_mapping_a is None: return [(0, 0)] + offset_mapping_a + [(0, 0)] return [(0, 0)] + offset_mapping_a + [(0, 0), (0, 0)] + offset_mapping_a + [(0, 0)] def __snake_case ( self : List[Any] , snake_case__ : Optional[int] , snake_case__ : Any=None , snake_case__ : Optional[int]=False ): '''simple docstring''' if already_has_special_tokens: if token_ids_a is not None: raise ValueError( '''You should not supply a second sequence if the provided sequence of ''' '''ids is already formatted with special tokens for the model.''' ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(snake_case__ )) + [1, 1] + ([0] * len(snake_case__ )) + [1] return [1] + ([0] * len(snake_case__ )) + [1] def __snake_case ( self : List[Any] , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None ): '''simple docstring''' if token_ids_a is None: # [CLS] X [SEP] return (len(snake_case__ ) + 2) * [0] # [CLS] A [SEP] [SEP] B [SEP] return [0] * (len(snake_case__ ) + 1) + [1] * (len(snake_case__ ) + 3) def __snake_case ( self : List[Any] , snake_case__ : Any ): '''simple docstring''' if "\u4e00" <= char <= "\u9fff": return True return False def __snake_case ( self : List[str] , snake_case__ : Any ): '''simple docstring''' if ("a" <= char <= "z") or ("A" <= char <= "Z"): return True return False def __snake_case ( self : List[str] , snake_case__ : Union[str, Any] ): '''simple docstring''' if char in ",;:.?!~,;:。?!《》【】": return True return False def __snake_case ( self : Optional[int] , snake_case__ : List[str] ): '''simple docstring''' if char == " " or char == "\t" or char == "\n" or char == "\r": return True if len(snake_case__ ) == 1: lowercase :str = unicodedata.category(snake_case__ ) if cat == "Zs": return True return False def __snake_case ( self : str , snake_case__ : Any ): '''simple docstring''' lowercase :Dict = {} with io.open(snake_case__ , '''r''' , encoding='''utf-8''' ) as f: for index, line in enumerate(snake_case__ ): lowercase :Dict = line.rstrip('''\n''' ) lowercase :str = int(snake_case__ ) return token_to_idx def __snake_case ( self : Dict , snake_case__ : str , snake_case__ : Optional[str] = None ): '''simple docstring''' lowercase :Optional[int] = 0 if os.path.isdir(snake_case__ ): lowercase :str = os.path.join( snake_case__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) else: lowercase :Any = (filename_prefix + '''-''' if filename_prefix else '''''') + save_directory with open(snake_case__ , '''w''' , encoding='''utf-8''' ) as writer: for token, token_index in sorted(self.vocab.items() , key=lambda snake_case__ : kv[1] ): if index != token_index: logger.warning( f"""Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.""" ''' Please check that the vocabulary is not corrupted!''' ) lowercase :Optional[int] = token_index writer.write(token + '''\n''' ) index += 1 lowercase :int = os.path.join(snake_case__ , '''sentencepiece.bpe.model''' ) with open(snake_case__ , '''wb''' ) as fi: lowercase :Tuple = self.sp_model.serialized_model_proto() fi.write(snake_case__ ) return (vocab_file,)
172
1
import math import os import unittest from transformers import MegatronBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MegatronBertForCausalLM, MegatronBertForMaskedLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, MegatronBertModel, ) class _snake_case : '''simple docstring''' def __init__( self: int ,lowerCamelCase_: Tuple ,lowerCamelCase_: List[Any]=13 ,lowerCamelCase_: Optional[Any]=7 ,lowerCamelCase_: int=True ,lowerCamelCase_: Dict=True ,lowerCamelCase_: Union[str, Any]=True ,lowerCamelCase_: List[str]=True ,lowerCamelCase_: Dict=99 ,lowerCamelCase_: Optional[Any]=64 ,lowerCamelCase_: Dict=32 ,lowerCamelCase_: str=5 ,lowerCamelCase_: Any=4 ,lowerCamelCase_: List[str]=37 ,lowerCamelCase_: str="gelu" ,lowerCamelCase_: Dict=0.1 ,lowerCamelCase_: List[Any]=0.1 ,lowerCamelCase_: Tuple=512 ,lowerCamelCase_: Optional[int]=16 ,lowerCamelCase_: Tuple=2 ,lowerCamelCase_: Tuple=0.0_2 ,lowerCamelCase_: Optional[int]=3 ,lowerCamelCase_: Any=4 ,lowerCamelCase_: Dict=None ,) -> Optional[Any]: UpperCAmelCase_ : Any = parent UpperCAmelCase_ : str = batch_size UpperCAmelCase_ : List[Any] = seq_length UpperCAmelCase_ : Optional[Any] = is_training UpperCAmelCase_ : str = use_input_mask UpperCAmelCase_ : int = use_token_type_ids UpperCAmelCase_ : Union[str, Any] = use_labels UpperCAmelCase_ : List[str] = vocab_size UpperCAmelCase_ : Dict = hidden_size UpperCAmelCase_ : str = embedding_size UpperCAmelCase_ : str = num_hidden_layers UpperCAmelCase_ : Union[str, Any] = num_attention_heads UpperCAmelCase_ : Optional[int] = intermediate_size UpperCAmelCase_ : Tuple = hidden_act UpperCAmelCase_ : Tuple = hidden_dropout_prob UpperCAmelCase_ : int = attention_probs_dropout_prob UpperCAmelCase_ : Dict = max_position_embeddings UpperCAmelCase_ : Union[str, Any] = type_vocab_size UpperCAmelCase_ : Dict = type_sequence_label_size UpperCAmelCase_ : Tuple = initializer_range UpperCAmelCase_ : Tuple = num_labels UpperCAmelCase_ : str = num_choices UpperCAmelCase_ : Optional[int] = scope def A__ ( self: str ) -> Optional[int]: UpperCAmelCase_ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) UpperCAmelCase_ : List[Any] = None if self.use_input_mask: UpperCAmelCase_ : Dict = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase_ : int = None if self.use_token_type_ids: UpperCAmelCase_ : Dict = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size ) UpperCAmelCase_ : List[str] = None UpperCAmelCase_ : Dict = None UpperCAmelCase_ : Tuple = None if self.use_labels: UpperCAmelCase_ : Union[str, Any] = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) UpperCAmelCase_ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) UpperCAmelCase_ : int = ids_tensor([self.batch_size] ,self.num_choices ) UpperCAmelCase_ : Optional[Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def A__ ( self: Dict ) -> Tuple: return MegatronBertConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,embedding_size=self.embedding_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,is_decoder=lowerCamelCase_ ,initializer_range=self.initializer_range ,) def A__ ( self: int ,lowerCamelCase_: Union[str, Any] ,lowerCamelCase_: List[Any] ,lowerCamelCase_: Tuple ,lowerCamelCase_: Optional[int] ,lowerCamelCase_: Dict ,lowerCamelCase_: Any ,lowerCamelCase_: Tuple ) -> int: UpperCAmelCase_ : int = MegatronBertModel(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCAmelCase_ : Optional[int] = model(lowerCamelCase_ ,attention_mask=lowerCamelCase_ ,token_type_ids=lowerCamelCase_ ) UpperCAmelCase_ : str = model(lowerCamelCase_ ,token_type_ids=lowerCamelCase_ ) UpperCAmelCase_ : int = model(lowerCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape ,(self.batch_size, self.hidden_size) ) def A__ ( self: Optional[Any] ,lowerCamelCase_: List[Any] ,lowerCamelCase_: int ,lowerCamelCase_: str ,lowerCamelCase_: Any ,lowerCamelCase_: Optional[int] ,lowerCamelCase_: List[Any] ,lowerCamelCase_: Tuple ) -> Tuple: UpperCAmelCase_ : Dict = MegatronBertForMaskedLM(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCAmelCase_ : Optional[Any] = model(lowerCamelCase_ ,attention_mask=lowerCamelCase_ ,token_type_ids=lowerCamelCase_ ,labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def A__ ( self: Union[str, Any] ,lowerCamelCase_: List[Any] ,lowerCamelCase_: Union[str, Any] ,lowerCamelCase_: Optional[int] ,lowerCamelCase_: str ,lowerCamelCase_: Tuple ,lowerCamelCase_: Any ,lowerCamelCase_: Any ) -> Any: UpperCAmelCase_ : Union[str, Any] = MegatronBertForCausalLM(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCAmelCase_ : str = model(lowerCamelCase_ ,attention_mask=lowerCamelCase_ ,token_type_ids=lowerCamelCase_ ,labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def A__ ( self: Dict ,lowerCamelCase_: Any ,lowerCamelCase_: Any ,lowerCamelCase_: Dict ,lowerCamelCase_: Tuple ,lowerCamelCase_: List[Any] ,lowerCamelCase_: Dict ,lowerCamelCase_: str ) -> Union[str, Any]: UpperCAmelCase_ : Dict = MegatronBertForNextSentencePrediction(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCAmelCase_ : int = model( lowerCamelCase_ ,attention_mask=lowerCamelCase_ ,token_type_ids=lowerCamelCase_ ,labels=lowerCamelCase_ ,) self.parent.assertEqual(result.logits.shape ,(self.batch_size, 2) ) def A__ ( self: int ,lowerCamelCase_: int ,lowerCamelCase_: List[Any] ,lowerCamelCase_: Tuple ,lowerCamelCase_: Dict ,lowerCamelCase_: Optional[Any] ,lowerCamelCase_: Tuple ,lowerCamelCase_: Optional[Any] ) -> Union[str, Any]: UpperCAmelCase_ : Optional[int] = MegatronBertForPreTraining(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCAmelCase_ : Dict = model( lowerCamelCase_ ,attention_mask=lowerCamelCase_ ,token_type_ids=lowerCamelCase_ ,labels=lowerCamelCase_ ,next_sentence_label=lowerCamelCase_ ,) self.parent.assertEqual(result.prediction_logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape ,(self.batch_size, 2) ) def A__ ( self: List[str] ,lowerCamelCase_: List[Any] ,lowerCamelCase_: Tuple ,lowerCamelCase_: List[str] ,lowerCamelCase_: Optional[int] ,lowerCamelCase_: List[str] ,lowerCamelCase_: Optional[Any] ,lowerCamelCase_: str ) -> int: UpperCAmelCase_ : List[str] = MegatronBertForQuestionAnswering(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCAmelCase_ : Dict = model( lowerCamelCase_ ,attention_mask=lowerCamelCase_ ,token_type_ids=lowerCamelCase_ ,start_positions=lowerCamelCase_ ,end_positions=lowerCamelCase_ ,) self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) ) def A__ ( self: List[Any] ,lowerCamelCase_: Union[str, Any] ,lowerCamelCase_: Optional[int] ,lowerCamelCase_: List[Any] ,lowerCamelCase_: List[str] ,lowerCamelCase_: Union[str, Any] ,lowerCamelCase_: Dict ,lowerCamelCase_: Tuple ) -> Optional[int]: UpperCAmelCase_ : int = self.num_labels UpperCAmelCase_ : Union[str, Any] = MegatronBertForSequenceClassification(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCAmelCase_ : Tuple = model(lowerCamelCase_ ,attention_mask=lowerCamelCase_ ,token_type_ids=lowerCamelCase_ ,labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def A__ ( self: Dict ,lowerCamelCase_: Union[str, Any] ,lowerCamelCase_: Dict ,lowerCamelCase_: List[Any] ,lowerCamelCase_: List[str] ,lowerCamelCase_: Optional[Any] ,lowerCamelCase_: Dict ,lowerCamelCase_: Dict ) -> List[str]: UpperCAmelCase_ : Dict = self.num_labels UpperCAmelCase_ : List[str] = MegatronBertForTokenClassification(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCAmelCase_ : List[str] = model(lowerCamelCase_ ,attention_mask=lowerCamelCase_ ,token_type_ids=lowerCamelCase_ ,labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) ) def A__ ( self: Optional[int] ,lowerCamelCase_: List[Any] ,lowerCamelCase_: Tuple ,lowerCamelCase_: Dict ,lowerCamelCase_: Optional[int] ,lowerCamelCase_: Optional[int] ,lowerCamelCase_: Tuple ,lowerCamelCase_: str ) -> Optional[int]: UpperCAmelCase_ : Dict = self.num_choices UpperCAmelCase_ : Union[str, Any] = MegatronBertForMultipleChoice(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCAmelCase_ : List[str] = input_ids.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() UpperCAmelCase_ : List[Any] = token_type_ids.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() UpperCAmelCase_ : List[str] = input_mask.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() UpperCAmelCase_ : Dict = model( lowerCamelCase_ ,attention_mask=lowerCamelCase_ ,token_type_ids=lowerCamelCase_ ,labels=lowerCamelCase_ ,) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_choices) ) def A__ ( self: Optional[Any] ) -> Optional[int]: UpperCAmelCase_ : Optional[Any] = self.prepare_config_and_inputs() ( ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ) : Optional[Any] = config_and_inputs UpperCAmelCase_ : List[str] = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class _snake_case ( __snake_case , __snake_case , unittest.TestCase ): '''simple docstring''' A__ : Optional[Any] = ( ( MegatronBertModel, MegatronBertForMaskedLM, MegatronBertForCausalLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, ) if is_torch_available() else () ) A__ : Optional[int] = ( { "feature-extraction": MegatronBertModel, "fill-mask": MegatronBertForMaskedLM, "question-answering": MegatronBertForQuestionAnswering, "text-classification": MegatronBertForSequenceClassification, "text-generation": MegatronBertForCausalLM, "token-classification": MegatronBertForTokenClassification, "zero-shot": MegatronBertForSequenceClassification, } if is_torch_available() else {} ) A__ : List[str] = True # test_resize_embeddings = False A__ : int = False def A__ ( self: List[str] ,lowerCamelCase_: Dict ,lowerCamelCase_: Optional[int] ,lowerCamelCase_: Union[str, Any]=False ) -> Any: UpperCAmelCase_ : Any = super()._prepare_for_class(lowerCamelCase_ ,lowerCamelCase_ ,return_labels=lowerCamelCase_ ) if return_labels: if model_class in get_values(lowerCamelCase_ ): UpperCAmelCase_ : List[Any] = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) ,dtype=torch.long ,device=lowerCamelCase_ ) UpperCAmelCase_ : Optional[Any] = torch.zeros( self.model_tester.batch_size ,dtype=torch.long ,device=lowerCamelCase_ ) return inputs_dict def A__ ( self: List[str] ) -> Any: UpperCAmelCase_ : Optional[Any] = MegatronBertModelTester(self ) UpperCAmelCase_ : Tuple = ConfigTester(self ,config_class=lowerCamelCase_ ,hidden_size=37 ) def A__ ( self: Optional[int] ) -> int: self.config_tester.run_common_tests() def A__ ( self: List[str] ) -> Union[str, Any]: UpperCAmelCase_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_model(*lowerCamelCase_ ) def A__ ( self: str ) -> List[str]: UpperCAmelCase_ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_masked_lm(*lowerCamelCase_ ) def A__ ( self: str ) -> Dict: UpperCAmelCase_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_multiple_choice(*lowerCamelCase_ ) def A__ ( self: Union[str, Any] ) -> List[Any]: UpperCAmelCase_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_next_sequence_prediction(*lowerCamelCase_ ) def A__ ( self: Any ) -> List[str]: UpperCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_pretraining(*lowerCamelCase_ ) def A__ ( self: Union[str, Any] ) -> List[Any]: UpperCAmelCase_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_question_answering(*lowerCamelCase_ ) def A__ ( self: Union[str, Any] ) -> Optional[Any]: UpperCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_sequence_classification(*lowerCamelCase_ ) def A__ ( self: List[Any] ) -> int: UpperCAmelCase_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_token_classification(*lowerCamelCase_ ) def lowerCamelCase_ ( _a : Union[str, Any] ): '''simple docstring''' return torch.tensor( _a , dtype=torch.long , device=_a , ) UpperCamelCase_ = 1E-4 @require_torch @require_sentencepiece @require_tokenizers class _snake_case ( unittest.TestCase ): '''simple docstring''' @slow @unittest.skip("""Model is not available.""" ) def A__ ( self: Dict ) -> Any: UpperCAmelCase_ : Any = """nvidia/megatron-bert-uncased-345m""" if "MYDIR" in os.environ: UpperCAmelCase_ : Union[str, Any] = os.path.join(os.environ["""MYDIR"""] ,lowerCamelCase_ ) UpperCAmelCase_ : List[Any] = MegatronBertModel.from_pretrained(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.half() UpperCAmelCase_ : Tuple = _long_tensor([[101, 7110, 1005, 1056, 2023, 11333, 17413, 1029, 102]] ) with torch.no_grad(): UpperCAmelCase_ : int = model(lowerCamelCase_ )[0] UpperCAmelCase_ : str = torch.Size((1, 9, 1024) ) self.assertEqual(output.shape ,lowerCamelCase_ ) UpperCAmelCase_ : List[Any] = [-0.6_0_4_0, -0.2_5_1_7, -0.1_0_2_5, 0.3_4_2_0, -0.6_7_5_8, -0.0_0_1_7, -0.1_0_8_9, -0.1_9_9_0, 0.5_7_2_8] for ii in range(3 ): for jj in range(3 ): UpperCAmelCase_ : Optional[Any] = output[0, ii, jj] UpperCAmelCase_ : List[str] = expected[3 * ii + jj] UpperCAmelCase_ : Optional[int] = """ii={} jj={} a={} b={}""".format(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ) self.assertTrue(math.isclose(lowerCamelCase_ ,lowerCamelCase_ ,rel_tol=lowerCamelCase_ ,abs_tol=lowerCamelCase_ ) ,msg=lowerCamelCase_ )
345
import os import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from huggingface_hub.file_download import http_get from requests.exceptions import HTTPError from transformers import ( AlbertTokenizer, AutoTokenizer, BertTokenizer, BertTokenizerFast, GPTaTokenizerFast, is_tokenizers_available, ) from transformers.testing_utils import TOKEN, USER, is_staging_test, require_tokenizers from transformers.tokenization_utils import Trie sys.path.append(str(Path(__file__).parent.parent / '''utils''')) from test_module.custom_tokenization import CustomTokenizer # noqa E402 if is_tokenizers_available(): from test_module.custom_tokenization_fast import CustomTokenizerFast class _snake_case ( unittest.TestCase ): '''simple docstring''' def A__ ( self: int ) -> str: # A mock response for an HTTP head request to emulate server down UpperCAmelCase_ : List[str] = mock.Mock() UpperCAmelCase_ : List[Any] = 500 UpperCAmelCase_ : Union[str, Any] = {} UpperCAmelCase_ : Union[str, Any] = HTTPError UpperCAmelCase_ : Any = {} # Download this model to make sure it's in the cache. UpperCAmelCase_ : Union[str, Any] = BertTokenizer.from_pretrained("""hf-internal-testing/tiny-random-bert""" ) # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch("""requests.Session.request""" ,return_value=lowerCamelCase_ ) as mock_head: UpperCAmelCase_ : Any = BertTokenizer.from_pretrained("""hf-internal-testing/tiny-random-bert""" ) # This check we did call the fake head request mock_head.assert_called() @require_tokenizers def A__ ( self: str ) -> int: # A mock response for an HTTP head request to emulate server down UpperCAmelCase_ : str = mock.Mock() UpperCAmelCase_ : Optional[int] = 500 UpperCAmelCase_ : int = {} UpperCAmelCase_ : Union[str, Any] = HTTPError UpperCAmelCase_ : List[Any] = {} # Download this model to make sure it's in the cache. UpperCAmelCase_ : Optional[int] = GPTaTokenizerFast.from_pretrained("""gpt2""" ) # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch("""requests.Session.request""" ,return_value=lowerCamelCase_ ) as mock_head: UpperCAmelCase_ : Any = GPTaTokenizerFast.from_pretrained("""gpt2""" ) # This check we did call the fake head request mock_head.assert_called() def A__ ( self: str ) -> Dict: # This test is for deprecated behavior and can be removed in v5 try: UpperCAmelCase_ : Any = tempfile.mktemp() with open(lowerCamelCase_ ,"""wb""" ) as f: http_get("""https://huggingface.co/albert-base-v1/resolve/main/spiece.model""" ,lowerCamelCase_ ) UpperCAmelCase_ : Tuple = AlbertTokenizer.from_pretrained(lowerCamelCase_ ) finally: os.remove(lowerCamelCase_ ) # Supporting this legacy load introduced a weird bug where the tokenizer would load local files if they are in # the current folder and have the right name. if os.path.isfile("""tokenizer.json""" ): # We skip the test if the user has a `tokenizer.json` in this folder to avoid deleting it. return try: with open("""tokenizer.json""" ,"""wb""" ) as f: http_get("""https://huggingface.co/hf-internal-testing/tiny-random-bert/blob/main/tokenizer.json""" ,lowerCamelCase_ ) UpperCAmelCase_ : str = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) # The tiny random BERT has a vocab size of 1024, tiny gpt2 as a vocab size of 1000 self.assertEqual(tokenizer.vocab_size ,1000 ) # Tokenizer should depend on the remote checkpoint, not the local tokenizer.json file. finally: os.remove("""tokenizer.json""" ) def A__ ( self: List[str] ) -> Tuple: # This test is for deprecated behavior and can be removed in v5 UpperCAmelCase_ : str = AlbertTokenizer.from_pretrained("""https://huggingface.co/albert-base-v1/resolve/main/spiece.model""" ) @is_staging_test class _snake_case ( unittest.TestCase ): '''simple docstring''' A__ : str = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "bla", "blou"] @classmethod def A__ ( cls: Dict ) -> Optional[int]: UpperCAmelCase_ : List[str] = TOKEN HfFolder.save_token(lowerCamelCase_ ) @classmethod def A__ ( cls: Optional[Any] ) -> List[str]: try: delete_repo(token=cls._token ,repo_id="""test-tokenizer""" ) except HTTPError: pass try: delete_repo(token=cls._token ,repo_id="""valid_org/test-tokenizer-org""" ) except HTTPError: pass try: delete_repo(token=cls._token ,repo_id="""test-dynamic-tokenizer""" ) except HTTPError: pass def A__ ( self: Any ) -> Optional[int]: with tempfile.TemporaryDirectory() as tmp_dir: UpperCAmelCase_ : Tuple = os.path.join(lowerCamelCase_ ,"""vocab.txt""" ) with open(lowerCamelCase_ ,"""w""" ,encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in self.vocab_tokens] ) ) UpperCAmelCase_ : List[Any] = BertTokenizer(lowerCamelCase_ ) tokenizer.push_to_hub("""test-tokenizer""" ,use_auth_token=self._token ) UpperCAmelCase_ : List[Any] = BertTokenizer.from_pretrained(F'''{USER}/test-tokenizer''' ) self.assertDictEqual(new_tokenizer.vocab ,tokenizer.vocab ) # Reset repo delete_repo(token=self._token ,repo_id="""test-tokenizer""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(lowerCamelCase_ ,repo_id="""test-tokenizer""" ,push_to_hub=lowerCamelCase_ ,use_auth_token=self._token ) UpperCAmelCase_ : List[Any] = BertTokenizer.from_pretrained(F'''{USER}/test-tokenizer''' ) self.assertDictEqual(new_tokenizer.vocab ,tokenizer.vocab ) def A__ ( self: Optional[int] ) -> Any: with tempfile.TemporaryDirectory() as tmp_dir: UpperCAmelCase_ : List[Any] = os.path.join(lowerCamelCase_ ,"""vocab.txt""" ) with open(lowerCamelCase_ ,"""w""" ,encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in self.vocab_tokens] ) ) UpperCAmelCase_ : Dict = BertTokenizer(lowerCamelCase_ ) tokenizer.push_to_hub("""valid_org/test-tokenizer-org""" ,use_auth_token=self._token ) UpperCAmelCase_ : Dict = BertTokenizer.from_pretrained("""valid_org/test-tokenizer-org""" ) self.assertDictEqual(new_tokenizer.vocab ,tokenizer.vocab ) # Reset repo delete_repo(token=self._token ,repo_id="""valid_org/test-tokenizer-org""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained( lowerCamelCase_ ,repo_id="""valid_org/test-tokenizer-org""" ,push_to_hub=lowerCamelCase_ ,use_auth_token=self._token ) UpperCAmelCase_ : List[Any] = BertTokenizer.from_pretrained("""valid_org/test-tokenizer-org""" ) self.assertDictEqual(new_tokenizer.vocab ,tokenizer.vocab ) @require_tokenizers def A__ ( self: Optional[int] ) -> Optional[Any]: CustomTokenizer.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: UpperCAmelCase_ : Any = os.path.join(lowerCamelCase_ ,"""vocab.txt""" ) with open(lowerCamelCase_ ,"""w""" ,encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in self.vocab_tokens] ) ) UpperCAmelCase_ : Optional[Any] = CustomTokenizer(lowerCamelCase_ ) # No fast custom tokenizer tokenizer.push_to_hub("""test-dynamic-tokenizer""" ,use_auth_token=self._token ) UpperCAmelCase_ : Optional[Any] = AutoTokenizer.from_pretrained(F'''{USER}/test-dynamic-tokenizer''' ,trust_remote_code=lowerCamelCase_ ) # Can't make an isinstance check because the new_model.config is from the CustomTokenizer class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ ,"""CustomTokenizer""" ) # Fast and slow custom tokenizer CustomTokenizerFast.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: UpperCAmelCase_ : List[str] = os.path.join(lowerCamelCase_ ,"""vocab.txt""" ) with open(lowerCamelCase_ ,"""w""" ,encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in self.vocab_tokens] ) ) UpperCAmelCase_ : str = BertTokenizerFast.from_pretrained(lowerCamelCase_ ) bert_tokenizer.save_pretrained(lowerCamelCase_ ) UpperCAmelCase_ : List[str] = CustomTokenizerFast.from_pretrained(lowerCamelCase_ ) tokenizer.push_to_hub("""test-dynamic-tokenizer""" ,use_auth_token=self._token ) UpperCAmelCase_ : List[str] = AutoTokenizer.from_pretrained(F'''{USER}/test-dynamic-tokenizer''' ,trust_remote_code=lowerCamelCase_ ) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ ,"""CustomTokenizerFast""" ) UpperCAmelCase_ : List[str] = AutoTokenizer.from_pretrained( F'''{USER}/test-dynamic-tokenizer''' ,use_fast=lowerCamelCase_ ,trust_remote_code=lowerCamelCase_ ) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ ,"""CustomTokenizer""" ) class _snake_case ( unittest.TestCase ): '''simple docstring''' def A__ ( self: Optional[Any] ) -> Any: UpperCAmelCase_ : Any = Trie() trie.add("""Hello 友達""" ) self.assertEqual(trie.data ,{"""H""": {"""e""": {"""l""": {"""l""": {"""o""": {""" """: {"""友""": {"""達""": {"""""": 1}}}}}}}}} ) trie.add("""Hello""" ) trie.data self.assertEqual(trie.data ,{"""H""": {"""e""": {"""l""": {"""l""": {"""o""": {"""""": 1, """ """: {"""友""": {"""達""": {"""""": 1}}}}}}}}} ) def A__ ( self: Tuple ) -> Optional[int]: UpperCAmelCase_ : str = Trie() self.assertEqual(trie.split("""[CLS] This is a extra_id_100""" ) ,["""[CLS] This is a extra_id_100"""] ) trie.add("""[CLS]""" ) trie.add("""extra_id_1""" ) trie.add("""extra_id_100""" ) self.assertEqual(trie.split("""[CLS] This is a extra_id_100""" ) ,["""[CLS]""", """ This is a """, """extra_id_100"""] ) def A__ ( self: Optional[Any] ) -> Optional[int]: UpperCAmelCase_ : Dict = Trie() trie.add("""A""" ) self.assertEqual(trie.split("""ABC""" ) ,["""A""", """BC"""] ) self.assertEqual(trie.split("""BCA""" ) ,["""BC""", """A"""] ) def A__ ( self: Union[str, Any] ) -> int: UpperCAmelCase_ : List[str] = Trie() trie.add("""TOKEN]""" ) trie.add("""[SPECIAL_TOKEN]""" ) self.assertEqual(trie.split("""This is something [SPECIAL_TOKEN]""" ) ,["""This is something """, """[SPECIAL_TOKEN]"""] ) def A__ ( self: int ) -> Union[str, Any]: UpperCAmelCase_ : List[str] = Trie() trie.add("""A""" ) trie.add("""P""" ) trie.add("""[SPECIAL_TOKEN]""" ) self.assertEqual(trie.split("""This is something [SPECIAL_TOKEN]""" ) ,["""This is something """, """[SPECIAL_TOKEN]"""] ) def A__ ( self: int ) -> List[str]: UpperCAmelCase_ : int = Trie() trie.add("""AB""" ) trie.add("""B""" ) trie.add("""C""" ) self.assertEqual(trie.split("""ABC""" ) ,["""AB""", """C"""] ) def A__ ( self: str ) -> Optional[int]: UpperCAmelCase_ : Optional[Any] = Trie() trie.add("""ABC""" ) trie.add("""B""" ) trie.add("""CD""" ) self.assertEqual(trie.split("""ABCD""" ) ,["""ABC""", """D"""] ) def A__ ( self: List[Any] ) -> Any: # Even if the offsets are wrong, we necessarily output correct string # parts. UpperCAmelCase_ : Tuple = Trie() UpperCAmelCase_ : Optional[Any] = trie.cut_text("""ABC""" ,[0, 0, 2, 1, 2, 3] ) self.assertEqual(lowerCamelCase_ ,["""AB""", """C"""] )
345
1
import sys _snake_case = ( '73167176531330624919225119674426574742355349194934' '96983520312774506326239578318016984801869478851843' '85861560789112949495459501737958331952853208805511' '12540698747158523863050715693290963295227443043557' '66896648950445244523161731856403098711121722383113' '62229893423380308135336276614282806444486645238749' '30358907296290491560440772390713810515859307960866' '70172427121883998797908792274921901699720888093776' '65727333001053367881220235421809751254540594752243' '52584907711670556013604839586446706324415722155397' '53697817977846174064955149290862569321978468622482' '83972241375657056057490261407972968652414535100474' '82166370484403199890008895243450658541227588666881' '16427171479924442928230863465674813919123162824586' '17866458359124566529476545682848912883142607690042' '24219022671055626321111109370544217506941658960408' '07198403850962455444362981230987879927244284909188' '84580156166097919133875499200524063689912560717606' '05886116467109405077541002256983155200055935729725' '71636269561882670428252483600823257530420752963450' ) def lowerCAmelCase_ ( snake_case_ ): _A : Dict = 1 for digit in s: product *= int(UpperCAmelCase_ ) return product def lowerCAmelCase_ ( snake_case_ = N ): _A : Tuple = -sys.maxsize - 1 _A : Optional[int] = n[:13] _A : Optional[int] = 13 while cur_index < len(UpperCAmelCase_ ) - 13: if int(n[cur_index] ) >= int(substr[0] ): _A : int = substr[1:] + n[cur_index] cur_index += 1 else: _A : List[str] = max(UpperCAmelCase_,str_eval(UpperCAmelCase_ ) ) _A : int = n[cur_index : cur_index + 13] cur_index += 13 return largest_product if __name__ == "__main__": print(f"""{solution() = }""")
353
from random import randint from tempfile import TemporaryFile import numpy as np def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_ ): _A : Tuple = 0 if start < end: _A : Tuple = randint(snake_case_,snake_case_ ) _A : Any = a[end] _A : int = a[pivot] _A : int = temp _A , _A : List[Any] = _in_place_partition(snake_case_,snake_case_,snake_case_ ) count += _in_place_quick_sort(snake_case_,snake_case_,p - 1 ) count += _in_place_quick_sort(snake_case_,p + 1,snake_case_ ) return count def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_ ): _A : str = 0 _A : List[str] = randint(snake_case_,snake_case_ ) _A : Union[str, Any] = a[end] _A : List[str] = a[pivot] _A : List[Any] = temp _A : List[str] = start - 1 for index in range(snake_case_,snake_case_ ): count += 1 if a[index] < a[end]: # check if current val is less than pivot value _A : Union[str, Any] = new_pivot_index + 1 _A : List[Any] = a[new_pivot_index] _A : Optional[int] = a[index] _A : List[Any] = temp _A : Optional[Any] = a[new_pivot_index + 1] _A : Any = a[end] _A : Dict = temp return new_pivot_index + 1, count _snake_case = TemporaryFile() _snake_case = 100 # 1000 elements are to be sorted _snake_case , _snake_case = 0, 1 # mean and standard deviation _snake_case = np.random.normal(mu, sigma, p) np.save(outfile, X) print("The array is") print(X) outfile.seek(0) # using the same array _snake_case = np.load(outfile) _snake_case = len(M) - 1 _snake_case = _in_place_quick_sort(M, 0, r) print( "No of Comparisons for 100 elements selected from a standard normal distribution" "is :" ) print(z)
343
0
'''simple docstring''' import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import numpy as np from utils_multiple_choice import MultipleChoiceDataset, Split, processors import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process __snake_case =logging.getLogger(__name__) def a_ ( lowerCamelCase : List[Any] , lowerCamelCase : Dict ): return (preds == labels).mean() @dataclass class UpperCAmelCase_ : lowerCamelCase : str = field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) lowerCamelCase : Optional[str] = field( default=__lowercase , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) lowerCamelCase : Optional[str] = field( default=__lowercase , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) lowerCamelCase : Optional[str] = field( default=__lowercase , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) @dataclass class UpperCAmelCase_ : lowerCamelCase : str = field(metadata={'''help''': '''The name of the task to train on: ''' + ''', '''.join(processors.keys() )} ) lowerCamelCase : str = field(metadata={'''help''': '''Should contain the data files for the task.'''} ) lowerCamelCase : int = field( default=128 , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) lowerCamelCase : bool = field( default=__lowercase , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) def a_ ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. lowerCAmelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f'''Output directory ({training_args.output_dir}) already exists and is not empty. Use''' ' --overwrite_output_dir to overcome.' ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( 'Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('Training/evaluation parameters %s' , lowerCamelCase ) # Set seed set_seed(training_args.seed ) try: lowerCAmelCase = processors[data_args.task_name]() lowerCAmelCase = processor.get_labels() lowerCAmelCase = len(lowerCamelCase ) except KeyError: raise ValueError('Task not found: %s' % (data_args.task_name) ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowerCAmelCase = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=lowerCamelCase , finetuning_task=data_args.task_name , cache_dir=model_args.cache_dir , ) lowerCAmelCase = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) lowerCAmelCase = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=lowerCamelCase , cache_dir=model_args.cache_dir , ) # Get datasets lowerCAmelCase = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=lowerCamelCase , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) lowerCAmelCase = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=lowerCamelCase , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def compute_metrics(lowerCamelCase : EvalPrediction ) -> Dict: lowerCAmelCase = np.argmax(p.predictions , axis=1 ) return {"acc": simple_accuracy(lowerCamelCase , p.label_ids )} # Data collator lowerCAmelCase = DataCollatorWithPadding(lowerCamelCase , pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer lowerCAmelCase = Trainer( model=lowerCamelCase , args=lowerCamelCase , train_dataset=lowerCamelCase , eval_dataset=lowerCamelCase , compute_metrics=lowerCamelCase , data_collator=lowerCamelCase , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation lowerCAmelCase = {} if training_args.do_eval: logger.info('*** Evaluate ***' ) lowerCAmelCase = trainer.evaluate() lowerCAmelCase = os.path.join(training_args.output_dir , 'eval_results.txt' ) if trainer.is_world_master(): with open(lowerCamelCase , 'w' ) as writer: logger.info('***** Eval results *****' ) for key, value in result.items(): logger.info(' %s = %s' , lowerCamelCase , lowerCamelCase ) writer.write('%s = %s\n' % (key, value) ) results.update(lowerCamelCase ) return results def a_ ( lowerCamelCase : Dict ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
4
import argparse import os import pickle import sys import torch from transformers import TransfoXLConfig, TransfoXLLMHeadModel, load_tf_weights_in_transfo_xl from transformers.models.transfo_xl import tokenization_transfo_xl as data_utils from transformers.models.transfo_xl.tokenization_transfo_xl import CORPUS_NAME, VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() # We do this to be able to load python 2 datasets pickles # See e.g. https://stackoverflow.com/questions/2121874/python-pickling-after-changing-a-modules-directory/2121918#2121918 snake_case_ : List[Any] = data_utils.TransfoXLTokenizer snake_case_ : int = data_utils.TransfoXLCorpus snake_case_ : List[Any] = data_utils snake_case_ : int = data_utils def A (__A : Dict , __A : List[Any] , __A : Union[str, Any] , __A : Tuple ) -> Union[str, Any]: """simple docstring""" if transfo_xl_dataset_file: # Convert a pre-processed corpus (see original TensorFlow repo) with open(__A , '''rb''' ) as fp: UpperCAmelCase_ = pickle.load(__A , encoding='''latin1''' ) # Save vocabulary and dataset cache as Dictionaries (should be better than pickles for the long-term) UpperCAmelCase_ = pytorch_dump_folder_path + '''/''' + VOCAB_FILES_NAMES['''pretrained_vocab_file'''] print(F"""Save vocabulary to {pytorch_vocab_dump_path}""" ) UpperCAmelCase_ = corpus.vocab.__dict__ torch.save(__A , __A ) UpperCAmelCase_ = corpus.__dict__ corpus_dict_no_vocab.pop('''vocab''' , __A ) UpperCAmelCase_ = pytorch_dump_folder_path + '''/''' + CORPUS_NAME print(F"""Save dataset to {pytorch_dataset_dump_path}""" ) torch.save(__A , __A ) if tf_checkpoint_path: # Convert a pre-trained TensorFlow model UpperCAmelCase_ = os.path.abspath(__A ) UpperCAmelCase_ = os.path.abspath(__A ) print(F"""Converting Transformer XL checkpoint from {tf_path} with config at {config_path}.""" ) # Initialise PyTorch model if transfo_xl_config_file == "": UpperCAmelCase_ = TransfoXLConfig() else: UpperCAmelCase_ = TransfoXLConfig.from_json_file(__A ) print(F"""Building PyTorch model from configuration: {config}""" ) UpperCAmelCase_ = TransfoXLLMHeadModel(__A ) UpperCAmelCase_ = load_tf_weights_in_transfo_xl(__A , __A , __A ) # Save pytorch-model UpperCAmelCase_ = os.path.join(__A , __A ) UpperCAmelCase_ = os.path.join(__A , __A ) print(F"""Save PyTorch model to {os.path.abspath(__A )}""" ) torch.save(model.state_dict() , __A ) print(F"""Save configuration file to {os.path.abspath(__A )}""" ) with open(__A , '''w''' , encoding='''utf-8''' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": snake_case_ : List[str] = argparse.ArgumentParser() parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the folder to store the PyTorch model or dataset/vocab.", ) parser.add_argument( "--tf_checkpoint_path", default="", type=str, help="An optional path to a TensorFlow checkpoint path to be converted.", ) parser.add_argument( "--transfo_xl_config_file", default="", type=str, help=( "An optional config json file corresponding to the pre-trained BERT model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--transfo_xl_dataset_file", default="", type=str, help="An optional dataset file to be converted in a vocabulary.", ) snake_case_ : int = parser.parse_args() convert_transfo_xl_checkpoint_to_pytorch( args.tf_checkpoint_path, args.transfo_xl_config_file, args.pytorch_dump_folder_path, args.transfo_xl_dataset_file, )
51
0
"""simple docstring""" from __future__ import annotations import math from collections import Counter from string import ascii_lowercase def lowercase__ ( lowercase_ ) -> None: """simple docstring""" _UpperCamelCase, _UpperCamelCase : Dict = analyze_text(lowercase_ ) _UpperCamelCase : int = list(" " + ascii_lowercase ) # what is our total sum of probabilities. _UpperCamelCase : Tuple = sum(single_char_strings.values() ) # one length string _UpperCamelCase : Tuple = 0 # for each alpha we go in our dict and if it is in it we calculate entropy for ch in my_alphas: if ch in single_char_strings: _UpperCamelCase : Tuple = single_char_strings[ch] _UpperCamelCase : int = my_str / all_sum my_fir_sum += prob * math.loga(lowercase_ ) # entropy formula. # print entropy print(F'''{round(-1 * my_fir_sum ):.1f}''' ) # two len string _UpperCamelCase : List[str] = sum(two_char_strings.values() ) _UpperCamelCase : List[Any] = 0 # for each alpha (two in size) calculate entropy. for cha in my_alphas: for cha in my_alphas: _UpperCamelCase : Optional[Any] = cha + cha if sequence in two_char_strings: _UpperCamelCase : Any = two_char_strings[sequence] _UpperCamelCase : Tuple = int(lowercase_ ) / all_sum my_sec_sum += prob * math.loga(lowercase_ ) # print second entropy print(F'''{round(-1 * my_sec_sum ):.1f}''' ) # print the difference between them print(F'''{round((-1 * my_sec_sum) - (-1 * my_fir_sum) ):.1f}''' ) def lowercase__ ( lowercase_ ) -> tuple[dict, dict]: """simple docstring""" _UpperCamelCase : List[str] = Counter() # type: ignore _UpperCamelCase : str = Counter() # type: ignore single_char_strings[text[-1]] += 1 # first case when we have space at start. two_char_strings[" " + text[0]] += 1 for i in range(0 ,len(lowercase_ ) - 1 ): single_char_strings[text[i]] += 1 two_char_strings[text[i : i + 2]] += 1 return single_char_strings, two_char_strings def lowercase__ ( ) -> Tuple: """simple docstring""" import doctest doctest.testmod() # text = ( # "Had repulsive dashwoods suspicion sincerity but advantage now him. Remark " # "easily garret nor nay. Civil those mrs enjoy shy fat merry. You greatest " # "jointure saw horrible. He private he on be imagine suppose. Fertile " # "beloved evident through no service elderly is. Blind there if every no so " # "at. Own neglected you preferred way sincerity delivered his attempted. To " # "of message cottage windows do besides against uncivil. Delightful " # "unreserved impossible few estimating men favourable see entreaties. She " # "propriety immediate was improving. He or entrance humoured likewise " # "moderate. Much nor game son say feel. Fat make met can must form into " # "gate. Me we offending prevailed discovery. " # ) # calculate_prob(text) if __name__ == "__main__": main()
310
"""simple docstring""" from math import cos, sin, sqrt, tau from audio_filters.iir_filter import IIRFilter def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ = 1 / sqrt(2 ) ) -> IIRFilter: """simple docstring""" _UpperCamelCase : Optional[Any] = tau * frequency / samplerate _UpperCamelCase : Optional[int] = sin(lowercase_ ) _UpperCamelCase : Dict = cos(lowercase_ ) _UpperCamelCase : Any = _sin / (2 * q_factor) _UpperCamelCase : str = (1 - _cos) / 2 _UpperCamelCase : Any = 1 - _cos _UpperCamelCase : List[str] = 1 + alpha _UpperCamelCase : List[str] = -2 * _cos _UpperCamelCase : Tuple = 1 - alpha _UpperCamelCase : Optional[Any] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] ,[ba, ba, ba] ) return filt def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ = 1 / sqrt(2 ) ) -> IIRFilter: """simple docstring""" _UpperCamelCase : List[str] = tau * frequency / samplerate _UpperCamelCase : str = sin(lowercase_ ) _UpperCamelCase : Optional[Any] = cos(lowercase_ ) _UpperCamelCase : Dict = _sin / (2 * q_factor) _UpperCamelCase : List[Any] = (1 + _cos) / 2 _UpperCamelCase : Optional[int] = -1 - _cos _UpperCamelCase : List[str] = 1 + alpha _UpperCamelCase : int = -2 * _cos _UpperCamelCase : str = 1 - alpha _UpperCamelCase : List[Any] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] ,[ba, ba, ba] ) return filt def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ = 1 / sqrt(2 ) ) -> IIRFilter: """simple docstring""" _UpperCamelCase : Tuple = tau * frequency / samplerate _UpperCamelCase : Optional[int] = sin(lowercase_ ) _UpperCamelCase : Dict = cos(lowercase_ ) _UpperCamelCase : str = _sin / (2 * q_factor) _UpperCamelCase : Dict = _sin / 2 _UpperCamelCase : int = 0 _UpperCamelCase : str = -ba _UpperCamelCase : List[str] = 1 + alpha _UpperCamelCase : Optional[int] = -2 * _cos _UpperCamelCase : Optional[Any] = 1 - alpha _UpperCamelCase : List[Any] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] ,[ba, ba, ba] ) return filt def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ = 1 / sqrt(2 ) ) -> IIRFilter: """simple docstring""" _UpperCamelCase : str = tau * frequency / samplerate _UpperCamelCase : Optional[Any] = sin(lowercase_ ) _UpperCamelCase : Optional[int] = cos(lowercase_ ) _UpperCamelCase : int = _sin / (2 * q_factor) _UpperCamelCase : List[str] = 1 - alpha _UpperCamelCase : int = -2 * _cos _UpperCamelCase : Union[str, Any] = 1 + alpha _UpperCamelCase : Dict = IIRFilter(2 ) filt.set_coefficients([ba, ba, ba] ,[ba, ba, ba] ) return filt def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ = 1 / sqrt(2 ) ,) -> IIRFilter: """simple docstring""" _UpperCamelCase : int = tau * frequency / samplerate _UpperCamelCase : int = sin(lowercase_ ) _UpperCamelCase : List[Any] = cos(lowercase_ ) _UpperCamelCase : str = _sin / (2 * q_factor) _UpperCamelCase : Optional[int] = 10 ** (gain_db / 40) _UpperCamelCase : str = 1 + alpha * big_a _UpperCamelCase : Union[str, Any] = -2 * _cos _UpperCamelCase : Optional[int] = 1 - alpha * big_a _UpperCamelCase : int = 1 + alpha / big_a _UpperCamelCase : Optional[Any] = -2 * _cos _UpperCamelCase : Any = 1 - alpha / big_a _UpperCamelCase : Union[str, Any] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] ,[ba, ba, ba] ) return filt def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ = 1 / sqrt(2 ) ,) -> IIRFilter: """simple docstring""" _UpperCamelCase : Union[str, Any] = tau * frequency / samplerate _UpperCamelCase : Any = sin(lowercase_ ) _UpperCamelCase : Union[str, Any] = cos(lowercase_ ) _UpperCamelCase : str = _sin / (2 * q_factor) _UpperCamelCase : Union[str, Any] = 10 ** (gain_db / 40) _UpperCamelCase : Dict = (big_a + 1) - (big_a - 1) * _cos _UpperCamelCase : int = (big_a + 1) + (big_a - 1) * _cos _UpperCamelCase : Dict = (big_a - 1) - (big_a + 1) * _cos _UpperCamelCase : int = (big_a - 1) + (big_a + 1) * _cos _UpperCamelCase : List[str] = 2 * sqrt(lowercase_ ) * alpha _UpperCamelCase : Any = big_a * (pmc + aaa) _UpperCamelCase : Dict = 2 * big_a * mpc _UpperCamelCase : str = big_a * (pmc - aaa) _UpperCamelCase : Dict = ppmc + aaa _UpperCamelCase : List[Any] = -2 * pmpc _UpperCamelCase : Dict = ppmc - aaa _UpperCamelCase : Tuple = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] ,[ba, ba, ba] ) return filt def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ = 1 / sqrt(2 ) ,) -> IIRFilter: """simple docstring""" _UpperCamelCase : Optional[int] = tau * frequency / samplerate _UpperCamelCase : int = sin(lowercase_ ) _UpperCamelCase : Any = cos(lowercase_ ) _UpperCamelCase : str = _sin / (2 * q_factor) _UpperCamelCase : str = 10 ** (gain_db / 40) _UpperCamelCase : Union[str, Any] = (big_a + 1) - (big_a - 1) * _cos _UpperCamelCase : Dict = (big_a + 1) + (big_a - 1) * _cos _UpperCamelCase : List[str] = (big_a - 1) - (big_a + 1) * _cos _UpperCamelCase : Dict = (big_a - 1) + (big_a + 1) * _cos _UpperCamelCase : Optional[Any] = 2 * sqrt(lowercase_ ) * alpha _UpperCamelCase : List[Any] = big_a * (ppmc + aaa) _UpperCamelCase : Dict = -2 * big_a * pmpc _UpperCamelCase : Dict = big_a * (ppmc - aaa) _UpperCamelCase : Optional[Any] = pmc + aaa _UpperCamelCase : Any = 2 * mpc _UpperCamelCase : Any = pmc - aaa _UpperCamelCase : str = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] ,[ba, ba, ba] ) return filt
310
1
import warnings from ...utils import logging from .image_processing_owlvit import OwlViTImageProcessor lowerCAmelCase__ : List[Any] =logging.get_logger(__name__) class UpperCAmelCase_ ( UpperCamelCase_ ): '''simple docstring''' def __init__( self , *_A , **_A ): '''simple docstring''' warnings.warn( 'The class OwlViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use OwlViTImageProcessor instead.' , _A , ) super().__init__(*_A , **_A )
257
from heapq import heappop, heappush import numpy as np def __lowercase ( a__ , a__ , a__ , a__ , ) -> tuple[float | int, list[tuple[int, int]]]: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = grid.shape __SCREAMING_SNAKE_CASE = [-1, 1, 0, 0] __SCREAMING_SNAKE_CASE = [0, 0, -1, 1] if allow_diagonal: dx += [-1, -1, 1, 1] dy += [-1, 1, -1, 1] __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = [(0, source)], set() __SCREAMING_SNAKE_CASE = np.full((rows, cols) , np.inf ) __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = np.empty((rows, cols) , dtype=a__ ) __SCREAMING_SNAKE_CASE = None while queue: ((__SCREAMING_SNAKE_CASE) , (__SCREAMING_SNAKE_CASE)) = heappop(a__ ) if (x, y) in visited: continue visited.add((x, y) ) if (x, y) == destination: __SCREAMING_SNAKE_CASE = [] while (x, y) != source: path.append((x, y) ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = predecessors[x, y] path.append(a__ ) # add the source manually path.reverse() return matrix[destination], path for i in range(len(a__ ) ): __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = x + dx[i], y + dy[i] if 0 <= nx < rows and 0 <= ny < cols: __SCREAMING_SNAKE_CASE = grid[nx][ny] if next_node == 1 and matrix[nx, ny] > dist + 1: heappush(a__ , (dist + 1, (nx, ny)) ) __SCREAMING_SNAKE_CASE = dist + 1 __SCREAMING_SNAKE_CASE = (x, y) return np.inf, [] if __name__ == "__main__": import doctest doctest.testmod()
257
1
import numpy as np import qiskit def UpperCAmelCase_ ( __UpperCAmelCase : int = 8 , __UpperCAmelCase : int | None = None ) -> str: SCREAMING_SNAKE_CASE_ : Tuple = np.random.default_rng(seed=UpperCAmelCase__ ) # Roughly 25% of the qubits will contribute to the key. # So we take more than we need. SCREAMING_SNAKE_CASE_ : Dict = 6 * key_len # Measurement basis for Alice's qubits. SCREAMING_SNAKE_CASE_ : int = rng.integers(2 , size=UpperCAmelCase__ ) # The set of states Alice will prepare. SCREAMING_SNAKE_CASE_ : Dict = rng.integers(2 , size=UpperCAmelCase__ ) # Measurement basis for Bob's qubits. SCREAMING_SNAKE_CASE_ : Tuple = rng.integers(2 , size=UpperCAmelCase__ ) # Quantum Circuit to simulate BB84 SCREAMING_SNAKE_CASE_ : int = qiskit.QuantumCircuit(UpperCAmelCase__ , name='BB84' ) # Alice prepares her qubits according to rules above. for index, _ in enumerate(UpperCAmelCase__ ): if alice_state[index] == 1: bbaa_circ.x(UpperCAmelCase__ ) if alice_basis[index] == 1: bbaa_circ.h(UpperCAmelCase__ ) bbaa_circ.barrier() # Bob measures the received qubits according to rules above. for index, _ in enumerate(UpperCAmelCase__ ): if bob_basis[index] == 1: bbaa_circ.h(UpperCAmelCase__ ) bbaa_circ.barrier() bbaa_circ.measure_all() # Simulate the quantum circuit. SCREAMING_SNAKE_CASE_ : int = qiskit.Aer.get_backend('aer_simulator' ) # We only need to run one shot because the key is unique. # Multiple shots will produce the same key. SCREAMING_SNAKE_CASE_ : List[str] = qiskit.execute(UpperCAmelCase__ , UpperCAmelCase__ , shots=1 , seed_simulator=UpperCAmelCase__ ) # Returns the result of measurement. SCREAMING_SNAKE_CASE_ : Any = job.result().get_counts(UpperCAmelCase__ ).most_frequent() # Extracting the generated key from the simulation results. # Only keep measurement results where Alice and Bob chose the same basis. SCREAMING_SNAKE_CASE_ : Union[str, Any] = """""".join( [ result_bit for alice_basis_bit, bob_basis_bit, result_bit in zip( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) if alice_basis_bit == bob_basis_bit ] ) # Get final key. Pad with 0 if too short, otherwise truncate. SCREAMING_SNAKE_CASE_ : Union[str, Any] = gen_key[:key_len] if len(UpperCAmelCase__ ) >= key_len else gen_key.ljust(UpperCAmelCase__ , '0' ) return key if __name__ == "__main__": print(f'''The generated key is : {bbaa(8, seed=0)}''') from doctest import testmod testmod()
371
import gc import threading import time import psutil import torch class lowerCamelCase_ : '''simple docstring''' def __init__( self : Optional[Any] ): SCREAMING_SNAKE_CASE_ = psutil.Process() SCREAMING_SNAKE_CASE_ = False def lowerCAmelCase_ ( self : Dict ): SCREAMING_SNAKE_CASE_ = -1 while True: SCREAMING_SNAKE_CASE_ = max(self.process.memory_info().rss , self.cpu_memory_peak ) # can't sleep or will not catch the peak right (this comment is here on purpose) if not self.peak_monitoring: break def lowerCAmelCase_ ( self : List[str] ): SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = threading.Thread(target=self.peak_monitor ) SCREAMING_SNAKE_CASE_ = True self.thread.start() def lowerCAmelCase_ ( self : List[str] ): SCREAMING_SNAKE_CASE_ = False self.thread.join() return self.cpu_memory_peak lowerCamelCase__ : List[str] = PeakCPUMemory() def UpperCAmelCase_ ( ) -> Tuple: # Time SCREAMING_SNAKE_CASE_ = {'time': time.time()} gc.collect() torch.cuda.empty_cache() # CPU mem SCREAMING_SNAKE_CASE_ = psutil.Process().memory_info().rss cpu_peak_tracker.start() # GPU mem for i in range(torch.cuda.device_count() ): SCREAMING_SNAKE_CASE_ = torch.cuda.memory_allocated(__UpperCAmelCase ) torch.cuda.reset_peak_memory_stats() return measures def UpperCAmelCase_ ( __UpperCAmelCase : Optional[int] ) -> Optional[Any]: # Time SCREAMING_SNAKE_CASE_ = {'time': time.time() - start_measures['time']} gc.collect() torch.cuda.empty_cache() # CPU mem SCREAMING_SNAKE_CASE_ = (psutil.Process().memory_info().rss - start_measures['cpu']) / 2**20 SCREAMING_SNAKE_CASE_ = (cpu_peak_tracker.stop() - start_measures['cpu']) / 2**20 # GPU mem for i in range(torch.cuda.device_count() ): SCREAMING_SNAKE_CASE_ = (torch.cuda.memory_allocated(__UpperCAmelCase ) - start_measures[str(__UpperCAmelCase )]) / 2**20 SCREAMING_SNAKE_CASE_ = (torch.cuda.max_memory_allocated(__UpperCAmelCase ) - start_measures[str(__UpperCAmelCase )]) / 2**20 return measures def UpperCAmelCase_ ( __UpperCAmelCase : Optional[int] , __UpperCAmelCase : Any ) -> Optional[Any]: print(f"{description}:" ) print(f"- Time: {measures['time']:.2f}s" ) for i in range(torch.cuda.device_count() ): print(f"- GPU {i} allocated: {measures[str(__UpperCAmelCase )]:.2f}MiB" ) SCREAMING_SNAKE_CASE_ = measures[f"{i}-peak"] print(f"- GPU {i} peak: {peak:.2f}MiB" ) print(f"- CPU RAM allocated: {measures['cpu']:.2f}MiB" ) print(f"- CPU RAM peak: {measures['cpu-peak']:.2f}MiB" )
210
0
from ..utils import DummyObject, requires_backends class __A( metaclass=a ): snake_case_ = ['''speech'''] def __init__( self , *_snake_case , **_snake_case ) -> Any: '''simple docstring''' requires_backends(self , ['''speech'''] ) class __A( metaclass=a ): snake_case_ = ['''speech'''] def __init__( self , *_snake_case , **_snake_case ) -> Dict: '''simple docstring''' requires_backends(self , ['''speech'''] )
6
import json from typing import List, Optional, Tuple from tokenizers import normalizers from tokenizers.pre_tokenizers import BertPreTokenizer, PreTokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roformer import RoFormerTokenizer from .tokenization_utils import JiebaPreTokenizer _SCREAMING_SNAKE_CASE : int = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : int = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} _SCREAMING_SNAKE_CASE : Dict = { '''vocab_file''': { '''junnyu/roformer_chinese_small''': '''https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/vocab.txt''', '''junnyu/roformer_chinese_base''': '''https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/vocab.txt''', '''junnyu/roformer_chinese_char_small''': ( '''https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/vocab.txt''' ), '''junnyu/roformer_chinese_char_base''': ( '''https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/vocab.txt''' ), '''junnyu/roformer_small_discriminator''': ( '''https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/vocab.txt''' ), '''junnyu/roformer_small_generator''': ( '''https://huggingface.co/junnyu/roformer_small_generator/resolve/main/vocab.txt''' ), } } _SCREAMING_SNAKE_CASE : List[str] = { '''junnyu/roformer_chinese_small''': 1536, '''junnyu/roformer_chinese_base''': 1536, '''junnyu/roformer_chinese_char_small''': 512, '''junnyu/roformer_chinese_char_base''': 512, '''junnyu/roformer_small_discriminator''': 128, '''junnyu/roformer_small_generator''': 128, } _SCREAMING_SNAKE_CASE : List[str] = { '''junnyu/roformer_chinese_small''': {'''do_lower_case''': True}, '''junnyu/roformer_chinese_base''': {'''do_lower_case''': True}, '''junnyu/roformer_chinese_char_small''': {'''do_lower_case''': True}, '''junnyu/roformer_chinese_char_base''': {'''do_lower_case''': True}, '''junnyu/roformer_small_discriminator''': {'''do_lower_case''': True}, '''junnyu/roformer_small_generator''': {'''do_lower_case''': True}, } class UpperCAmelCase__ ( A__ ): """simple docstring""" a = VOCAB_FILES_NAMES a = PRETRAINED_VOCAB_FILES_MAP a = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a = PRETRAINED_INIT_CONFIGURATION a = RoFormerTokenizer def __init__( self : Tuple , __lowerCamelCase : List[Any]=None , __lowerCamelCase : Any=None , __lowerCamelCase : str=True , __lowerCamelCase : Tuple="[UNK]" , __lowerCamelCase : int="[SEP]" , __lowerCamelCase : Union[str, Any]="[PAD]" , __lowerCamelCase : Optional[int]="[CLS]" , __lowerCamelCase : int="[MASK]" , __lowerCamelCase : int=True , __lowerCamelCase : Optional[int]=None , **__lowerCamelCase : Dict , ) -> Dict: super().__init__( __lowerCamelCase , tokenizer_file=__lowerCamelCase , do_lower_case=__lowerCamelCase , unk_token=__lowerCamelCase , sep_token=__lowerCamelCase , pad_token=__lowerCamelCase , cls_token=__lowerCamelCase , mask_token=__lowerCamelCase , tokenize_chinese_chars=__lowerCamelCase , strip_accents=__lowerCamelCase , **__lowerCamelCase , ) SCREAMING_SNAKE_CASE__ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( pre_tok_state.get('''lowercase''' , __lowerCamelCase ) != do_lower_case or pre_tok_state.get('''strip_accents''' , __lowerCamelCase ) != strip_accents ): SCREAMING_SNAKE_CASE__ = getattr(__lowerCamelCase , pre_tok_state.pop('''type''' ) ) SCREAMING_SNAKE_CASE__ = do_lower_case SCREAMING_SNAKE_CASE__ = strip_accents SCREAMING_SNAKE_CASE__ = pre_tok_class(**__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = do_lower_case def __getstate__( self : Optional[Any] ) -> Any: SCREAMING_SNAKE_CASE__ = self.__dict__.copy() SCREAMING_SNAKE_CASE__ = BertPreTokenizer() return state def __setstate__( self : int , __lowerCamelCase : Any ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ = d SCREAMING_SNAKE_CASE__ = self.__dict__['''_tokenizer'''].get_vocab() SCREAMING_SNAKE_CASE__ = PreTokenizer.custom(JiebaPreTokenizer(__lowerCamelCase ) ) def lowercase_ ( self : int , __lowerCamelCase : Any , __lowerCamelCase : List[Any]=None ) -> List[Any]: SCREAMING_SNAKE_CASE__ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowercase_ ( self : List[str] , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None ) -> List[int]: SCREAMING_SNAKE_CASE__ = [self.sep_token_id] SCREAMING_SNAKE_CASE__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowercase_ ( self : List[str] , __lowerCamelCase : str , __lowerCamelCase : Optional[str] = None ) -> Tuple[str]: SCREAMING_SNAKE_CASE__ = self._tokenizer.model.save(__lowerCamelCase , name=__lowerCamelCase ) return tuple(__lowerCamelCase ) def lowercase_ ( self : str , __lowerCamelCase : int , __lowerCamelCase : Any=None , __lowerCamelCase : Optional[int]=None , __lowerCamelCase : int=False , **__lowerCamelCase : Tuple , ) -> int: SCREAMING_SNAKE_CASE__ = BertPreTokenizer() return super().save_pretrained(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , **__lowerCamelCase )
314
0
'''simple docstring''' import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import numpy as np from utils_multiple_choice import MultipleChoiceDataset, Split, processors import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process __lowerCAmelCase : Optional[Any] =logging.getLogger(__name__) def UpperCamelCase ( _lowerCamelCase : int , _lowerCamelCase : List[Any] ): return (preds == labels).mean() @dataclass class UpperCAmelCase : __lowercase = field( metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) __lowercase = field( default=UpperCamelCase__ , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) __lowercase = field( default=UpperCamelCase__ , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) __lowercase = field( default=UpperCamelCase__ , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) @dataclass class UpperCAmelCase : __lowercase = field(metadata={"""help""": """The name of the task to train on: """ + """, """.join(processors.keys() )} ) __lowercase = field(metadata={"""help""": """Should contain the data files for the task."""} ) __lowercase = field( default=128 , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) __lowercase = field( default=UpperCamelCase__ , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) def UpperCamelCase ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. A__ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) A__, A__, A__ = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F"Output directory ({training_args.output_dir}) already exists and is not empty. Use" " --overwrite_output_dir to overcome." ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info("Training/evaluation parameters %s" , _lowerCamelCase ) # Set seed set_seed(training_args.seed ) try: A__ = processors[data_args.task_name]() A__ = processor.get_labels() A__ = len(_lowerCamelCase ) except KeyError: raise ValueError("Task not found: %s" % (data_args.task_name) ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. A__ = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=_lowerCamelCase , finetuning_task=data_args.task_name , cache_dir=model_args.cache_dir , ) A__ = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) A__ = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool(".ckpt" in model_args.model_name_or_path ) , config=_lowerCamelCase , cache_dir=model_args.cache_dir , ) # Get datasets A__ = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=_lowerCamelCase , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) A__ = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=_lowerCamelCase , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def compute_metrics(_lowerCamelCase : EvalPrediction ) -> Dict: A__ = np.argmax(p.predictions , axis=1 ) return {"acc": simple_accuracy(_lowerCamelCase , p.label_ids )} # Data collator A__ = DataCollatorWithPadding(_lowerCamelCase , pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer A__ = Trainer( model=_lowerCamelCase , args=_lowerCamelCase , train_dataset=_lowerCamelCase , eval_dataset=_lowerCamelCase , compute_metrics=_lowerCamelCase , data_collator=_lowerCamelCase , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation A__ = {} if training_args.do_eval: logger.info("*** Evaluate ***" ) A__ = trainer.evaluate() A__ = os.path.join(training_args.output_dir , "eval_results.txt" ) if trainer.is_world_master(): with open(_lowerCamelCase , "w" ) as writer: logger.info("***** Eval results *****" ) for key, value in result.items(): logger.info(" %s = %s" , _lowerCamelCase , _lowerCamelCase ) writer.write("%s = %s\n" % (key, value) ) results.update(_lowerCamelCase ) return results def UpperCamelCase ( _lowerCamelCase : Optional[Any] ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
123
'''simple docstring''' import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform from transformers import ( BitConfig, ViTHybridConfig, ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel, ) from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() __lowerCAmelCase : Any =logging.get_logger(__name__) def UpperCamelCase ( _lowerCamelCase : List[str] , _lowerCamelCase : Tuple=False ): A__ = [] # fmt: off # stem: rename_keys.append(("cls_token", "vit.embeddings.cls_token") ) rename_keys.append(("pos_embed", "vit.embeddings.position_embeddings") ) rename_keys.append(("patch_embed.proj.weight", "vit.embeddings.patch_embeddings.projection.weight") ) rename_keys.append(("patch_embed.proj.bias", "vit.embeddings.patch_embeddings.projection.bias") ) # backbone rename_keys.append(("patch_embed.backbone.stem.conv.weight", "vit.embeddings.patch_embeddings.backbone.bit.embedder.convolution.weight") ) rename_keys.append(("patch_embed.backbone.stem.norm.weight", "vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.weight") ) rename_keys.append(("patch_embed.backbone.stem.norm.bias", "vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.bias") ) for stage_idx in range(len(config.backbone_config.depths ) ): for layer_idx in range(config.backbone_config.depths[stage_idx] ): rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv1.weight", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv1.weight") ) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.weight", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.weight") ) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.bias", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.bias") ) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv2.weight", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv2.weight") ) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.weight", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.weight") ) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.bias", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.bias") ) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv3.weight", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv3.weight") ) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.weight", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.weight") ) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.bias", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.bias") ) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.conv.weight", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.conv.weight") ) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.weight", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.weight") ) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.bias", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.bias") ) # transformer encoder for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"blocks.{i}.norm1.weight", F"vit.encoder.layer.{i}.layernorm_before.weight") ) rename_keys.append((F"blocks.{i}.norm1.bias", F"vit.encoder.layer.{i}.layernorm_before.bias") ) rename_keys.append((F"blocks.{i}.attn.proj.weight", F"vit.encoder.layer.{i}.attention.output.dense.weight") ) rename_keys.append((F"blocks.{i}.attn.proj.bias", F"vit.encoder.layer.{i}.attention.output.dense.bias") ) rename_keys.append((F"blocks.{i}.norm2.weight", F"vit.encoder.layer.{i}.layernorm_after.weight") ) rename_keys.append((F"blocks.{i}.norm2.bias", F"vit.encoder.layer.{i}.layernorm_after.bias") ) rename_keys.append((F"blocks.{i}.mlp.fc1.weight", F"vit.encoder.layer.{i}.intermediate.dense.weight") ) rename_keys.append((F"blocks.{i}.mlp.fc1.bias", F"vit.encoder.layer.{i}.intermediate.dense.bias") ) rename_keys.append((F"blocks.{i}.mlp.fc2.weight", F"vit.encoder.layer.{i}.output.dense.weight") ) rename_keys.append((F"blocks.{i}.mlp.fc2.bias", F"vit.encoder.layer.{i}.output.dense.bias") ) if base_model: # layernorm + pooler rename_keys.extend( [ ("norm.weight", "layernorm.weight"), ("norm.bias", "layernorm.bias"), ("pre_logits.fc.weight", "pooler.dense.weight"), ("pre_logits.fc.bias", "pooler.dense.bias"), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" A__ = [(pair[0], pair[1][4:]) if pair[1].startswith("vit" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("norm.weight", "vit.layernorm.weight"), ("norm.bias", "vit.layernorm.bias"), ("head.weight", "classifier.weight"), ("head.bias", "classifier.bias"), ] ) # fmt: on return rename_keys def UpperCamelCase ( _lowerCamelCase : List[str] , _lowerCamelCase : List[str] , _lowerCamelCase : Union[str, Any]=False ): for i in range(config.num_hidden_layers ): if base_model: A__ = "" else: A__ = "vit." # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) A__ = state_dict.pop(F"blocks.{i}.attn.qkv.weight" ) A__ = state_dict.pop(F"blocks.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict A__ = in_proj_weight[ : config.hidden_size, : ] A__ = in_proj_bias[: config.hidden_size] A__ = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] A__ = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] A__ = in_proj_weight[ -config.hidden_size :, : ] A__ = in_proj_bias[-config.hidden_size :] def UpperCamelCase ( _lowerCamelCase : Any ): A__ = ["head.weight", "head.bias"] for k in ignore_keys: state_dict.pop(_lowerCamelCase , _lowerCamelCase ) def UpperCamelCase ( _lowerCamelCase : str , _lowerCamelCase : Optional[int] , _lowerCamelCase : Union[str, Any] ): A__ = dct.pop(_lowerCamelCase ) A__ = val def UpperCamelCase ( ): A__ = "http://images.cocodataset.org/val2017/000000039769.jpg" A__ = Image.open(requests.get(_lowerCamelCase , stream=_lowerCamelCase ).raw ) return im @torch.no_grad() def UpperCamelCase ( _lowerCamelCase : Dict , _lowerCamelCase : int , _lowerCamelCase : int=False ): A__ = BitConfig( global_padding="same" , layer_type="bottleneck" , depths=(3, 4, 9) , out_features=["stage3"] , embedding_dynamic_padding=_lowerCamelCase , ) A__ = ViTHybridConfig(backbone_config=_lowerCamelCase , image_size=3_84 , num_labels=10_00 ) A__ = False # load original model from timm A__ = timm.create_model(_lowerCamelCase , pretrained=_lowerCamelCase ) timm_model.eval() # load state_dict of original model, remove and rename some keys A__ = timm_model.state_dict() if base_model: remove_classification_head_(_lowerCamelCase ) A__ = create_rename_keys(_lowerCamelCase , _lowerCamelCase ) for src, dest in rename_keys: rename_key(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) read_in_q_k_v(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) A__ = "huggingface/label-files" A__ = "imagenet-1k-id2label.json" A__ = json.load(open(hf_hub_download(_lowerCamelCase , _lowerCamelCase , repo_type="dataset" ) , "r" ) ) A__ = {int(_lowerCamelCase ): v for k, v in idalabel.items()} A__ = idalabel A__ = {v: k for k, v in idalabel.items()} # load HuggingFace model if vit_name[-5:] == "in21k": A__ = ViTHybridModel(_lowerCamelCase ).eval() else: A__ = ViTHybridForImageClassification(_lowerCamelCase ).eval() model.load_state_dict(_lowerCamelCase ) # create image processor A__ = create_transform(**resolve_data_config({} , model=_lowerCamelCase ) ) A__ = transform.transforms A__ = { "bilinear": PILImageResampling.BILINEAR, "bicubic": PILImageResampling.BICUBIC, "nearest": PILImageResampling.NEAREST, } A__ = ViTHybridImageProcessor( do_resize=_lowerCamelCase , size={"shortest_edge": timm_transforms[0].size} , resample=pillow_resamplings[timm_transforms[0].interpolation.value] , do_center_crop=_lowerCamelCase , crop_size={"height": timm_transforms[1].size[0], "width": timm_transforms[1].size[1]} , do_normalize=_lowerCamelCase , image_mean=timm_transforms[-1].mean.tolist() , image_std=timm_transforms[-1].std.tolist() , ) A__ = prepare_img() A__ = transform(_lowerCamelCase ).unsqueeze(0 ) A__ = processor(_lowerCamelCase , return_tensors="pt" ).pixel_values # verify pixel values assert torch.allclose(_lowerCamelCase , _lowerCamelCase ) # verify logits with torch.no_grad(): A__ = model(_lowerCamelCase ) A__ = outputs.logits print("Predicted class:" , logits.argmax(-1 ).item() ) if base_model: A__ = timm_model.forward_features(_lowerCamelCase ) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(_lowerCamelCase , outputs.pooler_output , atol=1e-3 ) else: A__ = timm_model(_lowerCamelCase ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(_lowerCamelCase , outputs.logits , atol=1e-3 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: Path(_lowerCamelCase ).mkdir(exist_ok=_lowerCamelCase ) print(F"Saving model {vit_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(_lowerCamelCase ) print(F"Saving processor to {pytorch_dump_folder_path}" ) processor.save_pretrained(_lowerCamelCase ) if push_to_hub: print(F"Pushing model and processor to the hub {vit_name}" ) model.push_to_hub(F"ybelkada/{vit_name}" ) processor.push_to_hub(F"ybelkada/{vit_name}" ) if __name__ == "__main__": __lowerCAmelCase : Dict =argparse.ArgumentParser() # Required parameters parser.add_argument( "--vit_name", default="vit_base_r50_s16_384", type=str, help="Name of the hybrid ViT timm model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether to upload the model to the HuggingFace hub." ) __lowerCAmelCase : Optional[Any] =parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path, args.push_to_hub)
123
1
from ...utils import logging from ..ta.modeling_tf_ta import TFTaEncoderModel, TFTaForConditionalGeneration, TFTaModel from .configuration_mta import MTaConfig a : Optional[int] = logging.get_logger(__name__) a : Dict = "T5Config" class a ( lowercase__ ): """simple docstring""" a : Dict = 'mt5' a : Dict = MTaConfig class a ( lowercase__ ): """simple docstring""" a : Dict = 'mt5' a : int = MTaConfig class a ( lowercase__ ): """simple docstring""" a : List[str] = 'mt5' a : str = MTaConfig
114
import argparse import glob import importlib.util import os import re import black from doc_builder.style_doc import style_docstrings_in_code # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py a : List[str] = "src/diffusers" a : str = "." # This is to make sure the diffusers module imported is the one in the repo. a : Tuple = importlib.util.spec_from_file_location( "diffusers", os.path.join(DIFFUSERS_PATH, "__init__.py"), submodule_search_locations=[DIFFUSERS_PATH], ) a : List[str] = spec.loader.load_module() def lowerCamelCase__ ( __lowerCamelCase : Dict , __lowerCamelCase : Tuple ): return line.startswith(__lowerCamelCase ) or len(__lowerCamelCase ) <= 1 or re.search(R"""^\s*\)(\s*->.*:|:)\s*$""" , __lowerCamelCase ) is not None def lowerCamelCase__ ( __lowerCamelCase : Any ): __UpperCAmelCase : Optional[int] = object_name.split(""".""" ) __UpperCAmelCase : List[Any] = 0 # First let's find the module where our object lives. __UpperCAmelCase : Optional[Any] = parts[i] while i < len(__lowerCamelCase ) and not os.path.isfile(os.path.join(__lowerCamelCase , f"""{module}.py""" ) ): i += 1 if i < len(__lowerCamelCase ): __UpperCAmelCase : List[str] = os.path.join(__lowerCamelCase , parts[i] ) if i >= len(__lowerCamelCase ): raise ValueError(f"""`object_name` should begin with the name of a module of diffusers but got {object_name}.""" ) with open(os.path.join(__lowerCamelCase , f"""{module}.py""" ) , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: __UpperCAmelCase : Optional[Any] = f.readlines() # Now let's find the class / func in the code! __UpperCAmelCase : List[str] = """""" __UpperCAmelCase : int = 0 for name in parts[i + 1 :]: while ( line_index < len(__lowerCamelCase ) and re.search(Rf"""^{indent}(class|def)\s+{name}(\(|\:)""" , lines[line_index] ) is None ): line_index += 1 indent += " " line_index += 1 if line_index >= len(__lowerCamelCase ): raise ValueError(f""" {object_name} does not match any function or class in {module}.""" ) # We found the beginning of the class / func, now let's find the end (when the indent diminishes). __UpperCAmelCase : List[str] = line_index while line_index < len(__lowerCamelCase ) and _should_continue(lines[line_index] , __lowerCamelCase ): line_index += 1 # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 __UpperCAmelCase : Dict = lines[start_index:line_index] return "".join(__lowerCamelCase ) a : Any = re.compile(r"^(\s*)#\s*Copied from\s+diffusers\.(\S+\.\S+)\s*($|\S.*$)") a : Optional[int] = re.compile(r"^\s*(\S+)->(\S+)(\s+.*|$)") a : Dict = re.compile(r"<FILL\s+[^>]*>") def lowerCamelCase__ ( __lowerCamelCase : List[Any] ): __UpperCAmelCase : Optional[Any] = code.split("""\n""" ) __UpperCAmelCase : str = 0 while idx < len(__lowerCamelCase ) and len(lines[idx] ) == 0: idx += 1 if idx < len(__lowerCamelCase ): return re.search(R"""^(\s*)\S""" , lines[idx] ).groups()[0] return "" def lowerCamelCase__ ( __lowerCamelCase : List[str] ): __UpperCAmelCase : Tuple = len(get_indent(__lowerCamelCase ) ) > 0 if has_indent: __UpperCAmelCase : Optional[Any] = f"""class Bla:\n{code}""" __UpperCAmelCase : Dict = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 , preview=__lowerCamelCase ) __UpperCAmelCase : Dict = black.format_str(__lowerCamelCase , mode=__lowerCamelCase ) __UpperCAmelCase , __UpperCAmelCase : Any = style_docstrings_in_code(__lowerCamelCase ) return result[len("""class Bla:\n""" ) :] if has_indent else result def lowerCamelCase__ ( __lowerCamelCase : Dict , __lowerCamelCase : Optional[Any]=False ): with open(__lowerCamelCase , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: __UpperCAmelCase : Optional[Any] = f.readlines() __UpperCAmelCase : Optional[int] = [] __UpperCAmelCase : str = 0 # Not a for loop cause `lines` is going to change (if `overwrite=True`). while line_index < len(__lowerCamelCase ): __UpperCAmelCase : Dict = _re_copy_warning.search(lines[line_index] ) if search is None: line_index += 1 continue # There is some copied code here, let's retrieve the original. __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = search.groups() __UpperCAmelCase : Any = find_code_in_diffusers(__lowerCamelCase ) __UpperCAmelCase : Optional[int] = get_indent(__lowerCamelCase ) __UpperCAmelCase : Tuple = line_index + 1 if indent == theoretical_indent else line_index + 2 __UpperCAmelCase : Any = theoretical_indent __UpperCAmelCase : Any = start_index # Loop to check the observed code, stop when indentation diminishes or if we see a End copy comment. __UpperCAmelCase : int = True while line_index < len(__lowerCamelCase ) and should_continue: line_index += 1 if line_index >= len(__lowerCamelCase ): break __UpperCAmelCase : List[Any] = lines[line_index] __UpperCAmelCase : str = _should_continue(__lowerCamelCase , __lowerCamelCase ) and re.search(f"""^{indent}# End copy""" , __lowerCamelCase ) is None # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 __UpperCAmelCase : Optional[int] = lines[start_index:line_index] __UpperCAmelCase : int = """""".join(__lowerCamelCase ) # Remove any nested `Copied from` comments to avoid circular copies __UpperCAmelCase : Tuple = [line for line in theoretical_code.split("""\n""" ) if _re_copy_warning.search(__lowerCamelCase ) is None] __UpperCAmelCase : List[Any] = """\n""".join(__lowerCamelCase ) # Before comparing, use the `replace_pattern` on the original code. if len(__lowerCamelCase ) > 0: __UpperCAmelCase : List[str] = replace_pattern.replace("""with""" , """""" ).split(""",""" ) __UpperCAmelCase : Any = [_re_replace_pattern.search(__lowerCamelCase ) for p in patterns] for pattern in patterns: if pattern is None: continue __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = pattern.groups() __UpperCAmelCase : List[str] = re.sub(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) if option.strip() == "all-casing": __UpperCAmelCase : List[Any] = re.sub(obja.lower() , obja.lower() , __lowerCamelCase ) __UpperCAmelCase : int = re.sub(obja.upper() , obja.upper() , __lowerCamelCase ) # Blackify after replacement. To be able to do that, we need the header (class or function definition) # from the previous line __UpperCAmelCase : Union[str, Any] = blackify(lines[start_index - 1] + theoretical_code ) __UpperCAmelCase : Optional[Any] = theoretical_code[len(lines[start_index - 1] ) :] # Test for a diff and act accordingly. if observed_code != theoretical_code: diffs.append([object_name, start_index] ) if overwrite: __UpperCAmelCase : int = lines[:start_index] + [theoretical_code] + lines[line_index:] __UpperCAmelCase : Union[str, Any] = start_index + 1 if overwrite and len(__lowerCamelCase ) > 0: # Warn the user a file has been modified. print(f"""Detected changes, rewriting {filename}.""" ) with open(__lowerCamelCase , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.writelines(__lowerCamelCase ) return diffs def lowerCamelCase__ ( __lowerCamelCase : bool = False ): __UpperCAmelCase : Tuple = glob.glob(os.path.join(__lowerCamelCase , """**/*.py""" ) , recursive=__lowerCamelCase ) __UpperCAmelCase : Optional[int] = [] for filename in all_files: __UpperCAmelCase : str = is_copy_consistent(__lowerCamelCase , __lowerCamelCase ) diffs += [f"""- {filename}: copy does not match {d[0]} at line {d[1]}""" for d in new_diffs] if not overwrite and len(__lowerCamelCase ) > 0: __UpperCAmelCase : Union[str, Any] = """\n""".join(__lowerCamelCase ) raise Exception( """Found the following copy inconsistencies:\n""" + diff + """\nRun `make fix-copies` or `python utils/check_copies.py --fix_and_overwrite` to fix them.""" ) if __name__ == "__main__": a : Dict = argparse.ArgumentParser() parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.") a : Optional[int] = parser.parse_args() check_copies(args.fix_and_overwrite)
114
1
import os import tempfile import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from torch import nn from transformers import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_inverse_sqrt_schedule, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) def lowerCamelCase ( a_ , a_=10 ) -> Optional[int]: lowerCAmelCase_ = [] for _ in range(a_ ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() return lrs def lowerCamelCase ( a_ , a_=10 ) -> Optional[Any]: lowerCAmelCase_ = [] for step in range(a_ ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() if step == num_steps // 2: with tempfile.TemporaryDirectory() as tmpdirname: lowerCAmelCase_ = os.path.join(a_ , 'schedule.bin' ) torch.save(scheduler.state_dict() , a_ ) lowerCAmelCase_ = torch.load(a_ ) scheduler.load_state_dict(a_ ) return lrs @require_torch class a_ ( unittest.TestCase ): '''simple docstring''' def _lowercase ( self , lowercase_ , lowercase_ , lowercase_ ) -> str: '''simple docstring''' self.assertEqual(len(lowercase_ ) , len(lowercase_ ) ) for a, b in zip(lowercase_ , lowercase_ ): self.assertAlmostEqual(lowercase_ , lowercase_ , delta=lowercase_ ) def _lowercase ( self ) -> List[str]: '''simple docstring''' lowerCAmelCase_ = torch.tensor([0.1, -0.2, -0.1] , requires_grad=lowercase_ ) lowerCAmelCase_ = torch.tensor([0.4, 0.2, -0.5] ) lowerCAmelCase_ = nn.MSELoss() # No warmup, constant schedule, no gradient clipping lowerCAmelCase_ = AdamW(params=[w] , lr=2e-1 , weight_decay=0.0 ) for _ in range(1_0_0 ): lowerCAmelCase_ = criterion(lowercase_ , lowercase_ ) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1e-2 ) def _lowercase ( self ) -> List[Any]: '''simple docstring''' lowerCAmelCase_ = torch.tensor([0.1, -0.2, -0.1] , requires_grad=lowercase_ ) lowerCAmelCase_ = torch.tensor([0.4, 0.2, -0.5] ) lowerCAmelCase_ = nn.MSELoss() # No warmup, constant schedule, no gradient clipping lowerCAmelCase_ = Adafactor( params=[w] , lr=1e-2 , eps=(1e-30, 1e-3) , clip_threshold=1.0 , decay_rate=-0.8 , betaa=lowercase_ , weight_decay=0.0 , relative_step=lowercase_ , scale_parameter=lowercase_ , warmup_init=lowercase_ , ) for _ in range(1_0_0_0 ): lowerCAmelCase_ = criterion(lowercase_ , lowercase_ ) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1e-2 ) @require_torch class a_ ( unittest.TestCase ): '''simple docstring''' __a: Tuple = nn.Linear(5_0 , 5_0 ) if is_torch_available() else None __a: Any = AdamW(m.parameters() , lr=1_0.0 ) if is_torch_available() else None __a: str = 1_0 def _lowercase ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_=None ) -> Union[str, Any]: '''simple docstring''' self.assertEqual(len(lowercase_ ) , len(lowercase_ ) ) for a, b in zip(lowercase_ , lowercase_ ): self.assertAlmostEqual(lowercase_ , lowercase_ , delta=lowercase_ , msg=lowercase_ ) def _lowercase ( self ) -> Dict: '''simple docstring''' lowerCAmelCase_ = {'num_warmup_steps': 2, 'num_training_steps': 1_0} # schedulers doct format # function: (sched_args_dict, expected_learning_rates) lowerCAmelCase_ = { get_constant_schedule: ({}, [10.0] * self.num_steps), get_constant_schedule_with_warmup: ( {'num_warmup_steps': 4}, [0.0, 2.5, 5.0, 7.5, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0], ), get_linear_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 10.0, 8.75, 7.5, 6.25, 5.0, 3.75, 2.5, 1.25], ), get_cosine_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 10.0, 9.61, 8.53, 6.91, 5.0, 3.08, 1.46, 0.38], ), get_cosine_with_hard_restarts_schedule_with_warmup: ( {**common_kwargs, 'num_cycles': 2}, [0.0, 5.0, 10.0, 8.53, 5.0, 1.46, 10.0, 8.53, 5.0, 1.46], ), get_polynomial_decay_schedule_with_warmup: ( {**common_kwargs, 'power': 2.0, 'lr_end': 1e-7}, [0.0, 5.0, 10.0, 7.6_56, 5.6_25, 3.9_06, 2.5, 1.4_06, 0.6_25, 0.1_56], ), get_inverse_sqrt_schedule: ( {'num_warmup_steps': 2}, [0.0, 5.0, 10.0, 8.1_65, 7.0_71, 6.3_25, 5.7_74, 5.3_45, 5.0, 4.7_14], ), } for scheduler_func, data in scheds.items(): lowerCAmelCase_ , lowerCAmelCase_ = data lowerCAmelCase_ = scheduler_func(self.optimizer , **lowercase_ ) self.assertEqual(len([scheduler.get_lr()[0]] ) , 1 ) lowerCAmelCase_ = unwrap_schedule(lowercase_ , self.num_steps ) self.assertListAlmostEqual( lowercase_ , lowercase_ , tol=1e-2 , msg=f'''failed for {scheduler_func} in normal scheduler''' , ) lowerCAmelCase_ = scheduler_func(self.optimizer , **lowercase_ ) if scheduler_func.__name__ != "get_constant_schedule": LambdaScheduleWrapper.wrap_scheduler(lowercase_ ) # wrap to test picklability of the schedule lowerCAmelCase_ = unwrap_and_save_reload_schedule(lowercase_ , self.num_steps ) self.assertListEqual(lowercase_ , lowercase_ , msg=f'''failed for {scheduler_func} in save and reload''' ) class a_ : '''simple docstring''' def __init__( self , lowercase_ ) -> Tuple: '''simple docstring''' lowerCAmelCase_ = fn def __call__( self , *lowercase_ , **lowercase_ ) -> List[str]: '''simple docstring''' return self.fn(*lowercase_ , **lowercase_ ) @classmethod def _lowercase ( self , lowercase_ ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase_ = list(map(self , scheduler.lr_lambdas ) )
353
from __future__ import annotations import queue class a_ : '''simple docstring''' def __init__( self , lowercase_ ) -> List[Any]: '''simple docstring''' lowerCAmelCase_ = data lowerCAmelCase_ = None lowerCAmelCase_ = None def lowerCamelCase ( ) -> TreeNode: print('\n********Press N to stop entering at any point of time********\n' ) lowerCAmelCase_ = input('Enter the value of the root node: ' ).strip().lower() lowerCAmelCase_ = queue.Queue() lowerCAmelCase_ = TreeNode(int(a_ ) ) q.put(a_ ) while not q.empty(): lowerCAmelCase_ = q.get() lowerCAmelCase_ = F'''Enter the left node of {node_found.data}: ''' lowerCAmelCase_ = input(a_ ).strip().lower() or 'n' if check == "n": return tree_node lowerCAmelCase_ = TreeNode(int(a_ ) ) lowerCAmelCase_ = left_node q.put(a_ ) lowerCAmelCase_ = F'''Enter the right node of {node_found.data}: ''' lowerCAmelCase_ = input(a_ ).strip().lower() or 'n' if check == "n": return tree_node lowerCAmelCase_ = TreeNode(int(a_ ) ) lowerCAmelCase_ = right_node q.put(a_ ) raise def lowerCamelCase ( a_ ) -> None: if not isinstance(a_ , a_ ) or not node: return print(node.data , end=',' ) pre_order(node.left ) pre_order(node.right ) def lowerCamelCase ( a_ ) -> None: if not isinstance(a_ , a_ ) or not node: return in_order(node.left ) print(node.data , end=',' ) in_order(node.right ) def lowerCamelCase ( a_ ) -> None: if not isinstance(a_ , a_ ) or not node: return post_order(node.left ) post_order(node.right ) print(node.data , end=',' ) def lowerCamelCase ( a_ ) -> None: if not isinstance(a_ , a_ ) or not node: return lowerCAmelCase_ = queue.Queue() q.put(a_ ) while not q.empty(): lowerCAmelCase_ = q.get() print(node_dequeued.data , end=',' ) if node_dequeued.left: q.put(node_dequeued.left ) if node_dequeued.right: q.put(node_dequeued.right ) def lowerCamelCase ( a_ ) -> None: if not isinstance(a_ , a_ ) or not node: return lowerCAmelCase_ = queue.Queue() q.put(a_ ) while not q.empty(): lowerCAmelCase_ = [] while not q.empty(): lowerCAmelCase_ = q.get() print(node_dequeued.data , end=',' ) if node_dequeued.left: list_.append(node_dequeued.left ) if node_dequeued.right: list_.append(node_dequeued.right ) print() for node in list_: q.put(a_ ) def lowerCamelCase ( a_ ) -> None: if not isinstance(a_ , a_ ) or not node: return lowerCAmelCase_ = [] lowerCAmelCase_ = node while n or stack: while n: # start from root node, find its left child print(n.data , end=',' ) stack.append(a_ ) lowerCAmelCase_ = n.left # end of while means current node doesn't have left child lowerCAmelCase_ = stack.pop() # start to traverse its right child lowerCAmelCase_ = n.right def lowerCamelCase ( a_ ) -> None: if not isinstance(a_ , a_ ) or not node: return lowerCAmelCase_ = [] lowerCAmelCase_ = node while n or stack: while n: stack.append(a_ ) lowerCAmelCase_ = n.left lowerCAmelCase_ = stack.pop() print(n.data , end=',' ) lowerCAmelCase_ = n.right def lowerCamelCase ( a_ ) -> None: if not isinstance(a_ , a_ ) or not node: return lowerCAmelCase_ , lowerCAmelCase_ = [], [] lowerCAmelCase_ = node stacka.append(a_ ) while stacka: # to find the reversed order of post order, store it in stack2 lowerCAmelCase_ = stacka.pop() if n.left: stacka.append(n.left ) if n.right: stacka.append(n.right ) stacka.append(a_ ) while stacka: # pop up from stack2 will be the post order print(stacka.pop().data , end=',' ) def lowerCamelCase ( a_ = "" , a_=50 , a_="*" ) -> str: if not s: return "\n" + width * char lowerCAmelCase_ , lowerCAmelCase_ = divmod(width - len(a_ ) - 2 , 2 ) return F'''{left * char} {s} {(left + extra) * char}''' if __name__ == "__main__": import doctest doctest.testmod() print(prompt("""Binary Tree Traversals""")) lowerCamelCase_ = build_tree() print(prompt("""Pre Order Traversal""")) pre_order(node) print(prompt() + """\n""") print(prompt("""In Order Traversal""")) in_order(node) print(prompt() + """\n""") print(prompt("""Post Order Traversal""")) post_order(node) print(prompt() + """\n""") print(prompt("""Level Order Traversal""")) level_order(node) print(prompt() + """\n""") print(prompt("""Actual Level Order Traversal""")) level_order_actual(node) print("""*""" * 5_0 + """\n""") print(prompt("""Pre Order Traversal - Iteration Version""")) pre_order_iter(node) print(prompt() + """\n""") print(prompt("""In Order Traversal - Iteration Version""")) in_order_iter(node) print(prompt() + """\n""") print(prompt("""Post Order Traversal - Iteration Version""")) post_order_iter(node) print(prompt())
14
0
import json import os from typing import Dict, List, Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging UpperCAmelCase : Any = logging.get_logger(__name__) UpperCAmelCase : Tuple = { 'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_config_file': 'tokenizer_config.json', } UpperCAmelCase : Union[str, Any] = { 'vocab_file': { 'facebook/blenderbot_small-90M': 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json' }, 'merges_file': { 'facebook/blenderbot_small-90M': 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt' }, 'tokenizer_config_file': { 'facebook/blenderbot_small-90M': ( 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json' ) }, } UpperCAmelCase : int = {'facebook/blenderbot_small-90M': 5_12} def __lowerCamelCase ( lowerCamelCase__ : str ): '''simple docstring''' lowerCamelCase = set() lowerCamelCase = word[0] for char in word[1:]: pairs.add((prev_char, char) ) lowerCamelCase = char lowerCamelCase = set(lowerCamelCase__ ) return pairs class __lowercase ( _a ): """simple docstring""" UpperCamelCase : str = VOCAB_FILES_NAMES UpperCamelCase : Optional[int] = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase : List[str] = ["input_ids", "attention_mask"] def __init__( self , A , A , A="__start__" , A="__end__" , A="__unk__" , A="__null__" , **A , ) -> int: '''simple docstring''' super().__init__(unk_token=lowercase__ , bos_token=lowercase__ , eos_token=lowercase__ , pad_token=lowercase__ , **lowercase__ ) with open(lowercase__ , encoding="""utf-8""" ) as vocab_handle: lowerCamelCase = json.load(lowercase__ ) lowerCamelCase = {v: k for k, v in self.encoder.items()} with open(lowercase__ , encoding="""utf-8""" ) as merges_handle: lowerCamelCase = merges_handle.read().split("""\n""" )[1:-1] lowerCamelCase = [tuple(merge.split() ) for merge in merges] lowerCamelCase = dict(zip(lowercase__ , range(len(lowercase__ ) ) ) ) lowerCamelCase = {} @property def __A ( self ) -> int: '''simple docstring''' return len(self.encoder ) def __A ( self ) -> Dict: '''simple docstring''' return dict(self.encoder , **self.added_tokens_encoder ) def __A ( self , A ) -> str: '''simple docstring''' if token in self.cache: return self.cache[token] lowerCamelCase = re.sub("""([.,!?()])""" , r""" \1""" , lowercase__ ) lowerCamelCase = re.sub("""(\')""" , r""" \1 """ , lowercase__ ) lowerCamelCase = re.sub(r"""\s{2,}""" , """ """ , lowercase__ ) if "\n" in token: lowerCamelCase = token.replace("""\n""" , """ __newln__""" ) lowerCamelCase = token.split(""" """ ) lowerCamelCase = [] for token in tokens: if not len(lowercase__ ): continue lowerCamelCase = token.lower() lowerCamelCase = tuple(lowercase__ ) lowerCamelCase = tuple(list(word[:-1] ) + [word[-1] + """</w>"""] ) lowerCamelCase = get_pairs(lowercase__ ) if not pairs: words.append(lowercase__ ) continue while True: lowerCamelCase = min(lowercase__ , key=lambda A : self.bpe_ranks.get(lowercase__ , float("""inf""" ) ) ) if bigram not in self.bpe_ranks: break lowerCamelCase , lowerCamelCase = bigram lowerCamelCase = [] lowerCamelCase = 0 while i < len(lowercase__ ): try: lowerCamelCase = word.index(lowercase__ , lowercase__ ) new_word.extend(word[i:j] ) lowerCamelCase = j except ValueError: new_word.extend(word[i:] ) break if word[i] == first and i < len(lowercase__ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 lowerCamelCase = tuple(lowercase__ ) lowerCamelCase = new_word if len(lowercase__ ) == 1: break else: lowerCamelCase = get_pairs(lowercase__ ) lowerCamelCase = """@@ """.join(lowercase__ ) lowerCamelCase = word[:-4] lowerCamelCase = word words.append(lowercase__ ) return " ".join(lowercase__ ) def __A ( self , A ) -> List[str]: '''simple docstring''' lowerCamelCase = [] lowerCamelCase = re.findall(r"""\S+\n?""" , lowercase__ ) for token in words: split_tokens.extend(list(self.bpe(lowercase__ ).split(""" """ ) ) ) return split_tokens def __A ( self , A ) -> int: '''simple docstring''' lowerCamelCase = token.lower() return self.encoder.get(lowercase__ , self.encoder.get(self.unk_token ) ) def __A ( self , A ) -> str: '''simple docstring''' return self.decoder.get(lowercase__ , self.unk_token ) def __A ( self , A ) -> str: '''simple docstring''' lowerCamelCase = """ """.join(lowercase__ ).replace("""@@ """ , """""" ).strip() return out_string def __A ( self , A , A = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(lowercase__ ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return lowerCamelCase = os.path.join( lowercase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) lowerCamelCase = os.path.join( lowercase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""] ) with open(lowercase__ , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowercase__ , ensure_ascii=lowercase__ ) + """\n""" ) lowerCamelCase = 0 with open(lowercase__ , """w""" , encoding="""utf-8""" ) as writer: writer.write("""#version: 0.2\n""" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda A : kv[1] ): if index != token_index: logger.warning( F'Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.' """ Please check that the tokenizer is not corrupted!""" ) lowerCamelCase = token_index writer.write(""" """.join(lowercase__ ) + """\n""" ) index += 1 return vocab_file, merge_file
252
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available A_ : Optional[int] = { 'configuration_poolformer': [ 'POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PoolFormerConfig', 'PoolFormerOnnxConfig', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : List[str] = ['PoolFormerFeatureExtractor'] A_ : Dict = ['PoolFormerImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : List[Any] = [ 'POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'PoolFormerForImageClassification', 'PoolFormerModel', 'PoolFormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_poolformer import ( POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, PoolFormerConfig, PoolFormerOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_poolformer import PoolFormerFeatureExtractor from .image_processing_poolformer import PoolFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_poolformer import ( POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, PoolFormerForImageClassification, PoolFormerModel, PoolFormerPreTrainedModel, ) else: import sys A_ : str = _LazyModule(__name__, globals()['__file__'], _import_structure)
333
0
"""simple docstring""" def _snake_case ( _snake_case : int = 4000000 ): lowerCAmelCase : Union[str, Any] = [] lowerCAmelCase, lowerCAmelCase : Union[str, Any] = 0, 1 while b <= n: if b % 2 == 0: even_fibs.append(_snake_case ) lowerCAmelCase, lowerCAmelCase : List[Any] = b, a + b return sum(_snake_case ) if __name__ == "__main__": print(f"""{solution() = }""")
314
"""simple docstring""" import argparse import json from typing import List from ltp import LTP from transformers import BertTokenizer def _snake_case ( _snake_case : Dict ): # This defines a "chinese character" as anything in the CJK Unicode block: # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) # # Note that the CJK Unicode block is NOT all Japanese and Korean characters, # despite its name. The modern Korean Hangul alphabet is a different block, # as is Japanese Hiragana and Katakana. Those alphabets are used to write # space-separated words, so they are not treated specially and handled # like the all of the other languages. if ( (cp >= 0X4e00 and cp <= 0X9fff) or (cp >= 0X3400 and cp <= 0X4dbf) # or (cp >= 0X2_0000 and cp <= 0X2_a6df) # or (cp >= 0X2_a700 and cp <= 0X2_b73f) # or (cp >= 0X2_b740 and cp <= 0X2_b81f) # or (cp >= 0X2_b820 and cp <= 0X2_ceaf) # or (cp >= 0Xf900 and cp <= 0Xfaff) or (cp >= 0X2_f800 and cp <= 0X2_fa1f) # ): # return True return False def _snake_case ( _snake_case : str ): # word like '180' or '身高' or '神' for char in word: lowerCAmelCase : str = ord(_snake_case ) if not _is_chinese_char(_snake_case ): return 0 return 1 def _snake_case ( _snake_case : List[str] ): lowerCAmelCase : List[Any] = set() for token in tokens: lowerCAmelCase : Union[str, Any] = len(_snake_case ) > 1 and is_chinese(_snake_case ) if chinese_word: word_set.add(_snake_case ) lowerCAmelCase : List[str] = list(_snake_case ) return word_list def _snake_case ( _snake_case : List[str] , _snake_case : set() ): if not chinese_word_set: return bert_tokens lowerCAmelCase : List[Any] = max([len(_snake_case ) for w in chinese_word_set] ) lowerCAmelCase : Optional[Any] = bert_tokens lowerCAmelCase, lowerCAmelCase : Any = 0, len(_snake_case ) while start < end: lowerCAmelCase : str = True if is_chinese(bert_word[start] ): lowerCAmelCase : List[Any] = min(end - start , _snake_case ) for i in range(_snake_case , 1 , -1 ): lowerCAmelCase : str = ''''''.join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1 , start + i ): lowerCAmelCase : Optional[Any] = '''##''' + bert_word[j] lowerCAmelCase : Union[str, Any] = start + i lowerCAmelCase : Optional[Any] = False break if single_word: start += 1 return bert_word def _snake_case ( _snake_case : List[str] , _snake_case : LTP , _snake_case : BertTokenizer ): lowerCAmelCase : Optional[int] = [] for i in range(0 , len(_snake_case ) , 100 ): lowerCAmelCase : Optional[int] = ltp_tokenizer.seg(lines[i : i + 100] )[0] lowerCAmelCase : Union[str, Any] = [get_chinese_word(_snake_case ) for r in res] ltp_res.extend(_snake_case ) assert len(_snake_case ) == len(_snake_case ) lowerCAmelCase : int = [] for i in range(0 , len(_snake_case ) , 100 ): lowerCAmelCase : Optional[Any] = bert_tokenizer(lines[i : i + 100] , add_special_tokens=_snake_case , truncation=_snake_case , max_length=512 ) bert_res.extend(res['''input_ids'''] ) assert len(_snake_case ) == len(_snake_case ) lowerCAmelCase : Union[str, Any] = [] for input_ids, chinese_word in zip(_snake_case , _snake_case ): lowerCAmelCase : Optional[int] = [] for id in input_ids: lowerCAmelCase : Union[str, Any] = bert_tokenizer._convert_id_to_token(_snake_case ) input_tokens.append(_snake_case ) lowerCAmelCase : Any = add_sub_symbol(_snake_case , _snake_case ) lowerCAmelCase : Union[str, Any] = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(_snake_case ): if token[:2] == "##": lowerCAmelCase : Any = token[2:] # save chinese tokens' pos if len(_snake_case ) == 1 and _is_chinese_char(ord(_snake_case ) ): ref_id.append(_snake_case ) ref_ids.append(_snake_case ) assert len(_snake_case ) == len(_snake_case ) return ref_ids def _snake_case ( _snake_case : Dict ): # For Chinese (Ro)Bert, the best result is from : RoBERTa-wwm-ext (https://github.com/ymcui/Chinese-BERT-wwm) # If we want to fine-tune these model, we have to use same tokenizer : LTP (https://github.com/HIT-SCIR/ltp) with open(args.file_name , '''r''' , encoding='''utf-8''' ) as f: lowerCAmelCase : List[str] = f.readlines() lowerCAmelCase : Union[str, Any] = [line.strip() for line in data if len(_snake_case ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' lowerCAmelCase : List[str] = LTP(args.ltp ) # faster in GPU device lowerCAmelCase : Any = BertTokenizer.from_pretrained(args.bert ) lowerCAmelCase : int = prepare_ref(_snake_case , _snake_case , _snake_case ) with open(args.save_path , '''w''' , encoding='''utf-8''' ) as f: lowerCAmelCase : List[Any] = [json.dumps(_snake_case ) + '''\n''' for ref in ref_ids] f.writelines(_snake_case ) if __name__ == "__main__": snake_case__ : Optional[int] = argparse.ArgumentParser(description='''prepare_chinese_ref''') parser.add_argument( '''--file_name''', type=str, default='''./resources/chinese-demo.txt''', help='''file need process, same as training data in lm''', ) parser.add_argument( '''--ltp''', type=str, default='''./resources/ltp''', help='''resources for LTP tokenizer, usually a path''' ) parser.add_argument('''--bert''', type=str, default='''./resources/robert''', help='''resources for Bert tokenizer''') parser.add_argument('''--save_path''', type=str, default='''./resources/ref.txt''', help='''path to save res''') snake_case__ : int = parser.parse_args() main(args)
314
1
"""simple docstring""" import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.generation import DisjunctiveConstraint @require_torch class UpperCAmelCase_ ( unittest.TestCase ): def __magic_name__ ( self : Any ) -> List[str]: '''simple docstring''' A__ = [[1, 2, 4], [1, 2, 3, 4]] A__ = DisjunctiveConstraint(snake_case_ ) self.assertTrue(isinstance(dc.token_ids , snake_case_ ) ) with self.assertRaises(snake_case_ ): DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]] ) ) with self.assertRaises(snake_case_ ): DisjunctiveConstraint([torch.LongTensor([1, 2, 4] ), torch.LongTensor([1, 2, 3, 4, 5] )] ) def __magic_name__ ( self : Any ) -> Tuple: '''simple docstring''' A__ = [[1, 2], [1, 2, 3, 4]] with self.assertRaises(snake_case_ ): DisjunctiveConstraint(snake_case_ ) # fails here def __magic_name__ ( self : int ) -> Optional[Any]: '''simple docstring''' A__ = [[1, 2, 3], [1, 2, 4]] A__ = DisjunctiveConstraint(snake_case_ ) A__, A__, A__ = dc.update(1 ) A__ = stepped is True and completed is False and reset is False self.assertTrue(snake_case_ ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) A__, A__, A__ = dc.update(2 ) A__ = stepped is True and completed is False and reset is False self.assertTrue(snake_case_ ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) A__, A__, A__ = dc.update(3 ) A__ = stepped is True and completed is True and reset is False self.assertTrue(snake_case_ ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 3] ) def __magic_name__ ( self : Optional[int] ) -> Any: '''simple docstring''' A__ = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]] A__ = DisjunctiveConstraint(snake_case_ ) A__, A__, A__ = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) A__, A__, A__ = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) A__, A__, A__ = dc.update(4 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2, 4] ) A__, A__, A__ = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 4, 5] ) dc.reset() A__, A__, A__ = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 3 ) self.assertTrue(dc.current_seq == [1] ) A__, A__, A__ = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 2 ) self.assertTrue(dc.current_seq == [1, 2] ) A__, A__, A__ = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.remaining() == 0 ) self.assertTrue(dc.current_seq == [1, 2, 5] )
247
"""simple docstring""" import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ConvNextConfig, UperNetConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import UperNetForSemanticSegmentation from transformers.models.upernet.modeling_upernet import UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCAmelCase_ : def __init__( self : Optional[Any] , snake_case_ : Tuple , snake_case_ : Dict=13 , snake_case_ : Optional[Any]=32 , snake_case_ : List[Any]=3 , snake_case_ : Dict=4 , snake_case_ : Tuple=[10, 20, 30, 40] , snake_case_ : int=[2, 2, 3, 2] , snake_case_ : Union[str, Any]=True , snake_case_ : Optional[int]=True , snake_case_ : Union[str, Any]=37 , snake_case_ : Any="gelu" , snake_case_ : Union[str, Any]=10 , snake_case_ : str=0.02 , snake_case_ : str=["stage2", "stage3", "stage4"] , snake_case_ : str=3 , snake_case_ : List[Any]=None , ) -> Optional[Any]: '''simple docstring''' A__ = parent A__ = batch_size A__ = image_size A__ = num_channels A__ = num_stages A__ = hidden_sizes A__ = depths A__ = is_training A__ = use_labels A__ = intermediate_size A__ = hidden_act A__ = type_sequence_label_size A__ = initializer_range A__ = out_features A__ = num_labels A__ = scope A__ = num_stages def __magic_name__ ( self : str ) -> Tuple: '''simple docstring''' A__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) A__ = None if self.use_labels: A__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A__ = self.get_config() return config, pixel_values, labels def __magic_name__ ( self : Optional[int] ) -> int: '''simple docstring''' return ConvNextConfig( num_channels=self.num_channels , num_stages=self.num_stages , hidden_sizes=self.hidden_sizes , depths=self.depths , is_training=self.is_training , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , out_features=self.out_features , ) def __magic_name__ ( self : Optional[Any] ) -> str: '''simple docstring''' return UperNetConfig( backbone_config=self.get_backbone_config() , hidden_size=512 , pool_scales=[1, 2, 3, 6] , use_auxiliary_head=snake_case_ , auxiliary_loss_weight=0.4 , auxiliary_in_channels=40 , auxiliary_channels=256 , auxiliary_num_convs=1 , auxiliary_concat_input=snake_case_ , loss_ignore_index=255 , num_labels=self.num_labels , ) def __magic_name__ ( self : Tuple , snake_case_ : Tuple , snake_case_ : Optional[Any] , snake_case_ : Union[str, Any] ) -> Optional[int]: '''simple docstring''' A__ = UperNetForSemanticSegmentation(config=snake_case_ ) model.to(snake_case_ ) model.eval() A__ = model(snake_case_ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def __magic_name__ ( self : Any ) -> Optional[Any]: '''simple docstring''' A__ = self.prepare_config_and_inputs() ( ( A__ ), ( A__ ), ( A__ ), ) = config_and_inputs A__ = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase_ ( A_, A_, unittest.TestCase ): lowercase__ = (UperNetForSemanticSegmentation,) if is_torch_available() else () lowercase__ = {'''image-segmentation''': UperNetForSemanticSegmentation} if is_torch_available() else {} lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = False def __magic_name__ ( self : int ) -> int: '''simple docstring''' A__ = UperNetModelTester(self ) A__ = ConfigTester(self , config_class=snake_case_ , has_text_modality=snake_case_ , hidden_size=37 ) def __magic_name__ ( self : str ) -> Optional[Any]: '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __magic_name__ ( self : Union[str, Any] ) -> List[Any]: '''simple docstring''' return def __magic_name__ ( self : Optional[Any] ) -> Optional[Any]: '''simple docstring''' A__, A__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ = model_class(snake_case_ ) A__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A__ = [*signature.parameters.keys()] A__ = ["pixel_values"] self.assertListEqual(arg_names[:1] , snake_case_ ) def __magic_name__ ( self : Optional[int] ) -> Optional[int]: '''simple docstring''' A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*snake_case_ ) @unittest.skip(reason="UperNet does not use inputs_embeds" ) def __magic_name__ ( self : Any ) -> int: '''simple docstring''' pass @unittest.skip(reason="UperNet does not support input and output embeddings" ) def __magic_name__ ( self : Dict ) -> Dict: '''simple docstring''' pass @unittest.skip(reason="UperNet does not have a base model" ) def __magic_name__ ( self : Tuple ) -> Tuple: '''simple docstring''' pass @unittest.skip(reason="UperNet does not have a base model" ) def __magic_name__ ( self : Tuple ) -> Dict: '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip(reason="UperNet has some layers using `add_module` which doesn't work well with `nn.DataParallel`" ) def __magic_name__ ( self : Optional[int] ) -> List[str]: '''simple docstring''' pass @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def __magic_name__ ( self : List[Any] ) -> Dict: '''simple docstring''' pass def __magic_name__ ( self : List[Any] ) -> str: '''simple docstring''' def check_hidden_states_output(snake_case_ : str , snake_case_ : Union[str, Any] , snake_case_ : List[Any] ): A__ = model_class(snake_case_ ) model.to(snake_case_ ) model.eval() with torch.no_grad(): A__ = model(**self._prepare_for_class(snake_case_ , snake_case_ ) ) A__ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states A__ = self.model_tester.num_stages self.assertEqual(len(snake_case_ ) , expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) A__, A__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ = True check_hidden_states_output(snake_case_ , snake_case_ , snake_case_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] A__ = True check_hidden_states_output(snake_case_ , snake_case_ , snake_case_ ) def __magic_name__ ( self : List[Any] ) -> int: '''simple docstring''' A__, A__ = self.model_tester.prepare_config_and_inputs_for_common() A__ = _config_zero_init(snake_case_ ) A__ = _config_zero_init(configs_no_init.backbone_config ) for model_class in self.all_model_classes: A__ = model_class(config=snake_case_ ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @unittest.skip(reason="UperNet does not have tied weights" ) def __magic_name__ ( self : Tuple ) -> Optional[Any]: '''simple docstring''' pass @slow def __magic_name__ ( self : Any ) -> str: '''simple docstring''' for model_name in UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A__ = UperNetForSemanticSegmentation.from_pretrained(snake_case_ ) self.assertIsNotNone(snake_case_ ) def _SCREAMING_SNAKE_CASE ( ) -> int: A__ = hf_hub_download( repo_id="hf-internal-testing/fixtures_ade20k" , repo_type="dataset" , filename="ADE_val_00000001.jpg" ) A__ = Image.open(lowercase_ ).convert("RGB" ) return image @require_torch @require_vision @slow class UpperCAmelCase_ ( unittest.TestCase ): def __magic_name__ ( self : int ) -> List[Any]: '''simple docstring''' A__ = AutoImageProcessor.from_pretrained("openmmlab/upernet-swin-tiny" ) A__ = UperNetForSemanticSegmentation.from_pretrained("openmmlab/upernet-swin-tiny" ).to(snake_case_ ) A__ = prepare_img() A__ = processor(images=snake_case_ , return_tensors="pt" ).to(snake_case_ ) with torch.no_grad(): A__ = model(**snake_case_ ) A__ = torch.Size((1, model.config.num_labels, 512, 512) ) self.assertEqual(outputs.logits.shape , snake_case_ ) A__ = torch.tensor( [[-7.5958, -7.5958, -7.4302], [-7.5958, -7.5958, -7.4302], [-7.4797, -7.4797, -7.3068]] ).to(snake_case_ ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , snake_case_ , atol=1e-4 ) ) def __magic_name__ ( self : List[Any] ) -> Optional[int]: '''simple docstring''' A__ = AutoImageProcessor.from_pretrained("openmmlab/upernet-convnext-tiny" ) A__ = UperNetForSemanticSegmentation.from_pretrained("openmmlab/upernet-convnext-tiny" ).to(snake_case_ ) A__ = prepare_img() A__ = processor(images=snake_case_ , return_tensors="pt" ).to(snake_case_ ) with torch.no_grad(): A__ = model(**snake_case_ ) A__ = torch.Size((1, model.config.num_labels, 512, 512) ) self.assertEqual(outputs.logits.shape , snake_case_ ) A__ = torch.tensor( [[-8.8110, -8.8110, -8.6521], [-8.8110, -8.8110, -8.6521], [-8.7746, -8.7746, -8.6130]] ).to(snake_case_ ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , snake_case_ , atol=1e-4 ) )
247
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) __UpperCAmelCase :Union[str, Any] = { "configuration_deberta": ["DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP", "DebertaConfig", "DebertaOnnxConfig"], "tokenization_deberta": ["DebertaTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase :Tuple = ["DebertaTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase :Any = [ "DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST", "DebertaForMaskedLM", "DebertaForQuestionAnswering", "DebertaForSequenceClassification", "DebertaForTokenClassification", "DebertaModel", "DebertaPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase :Tuple = [ "TF_DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST", "TFDebertaForMaskedLM", "TFDebertaForQuestionAnswering", "TFDebertaForSequenceClassification", "TFDebertaForTokenClassification", "TFDebertaModel", "TFDebertaPreTrainedModel", ] if TYPE_CHECKING: from .configuration_deberta import DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, DebertaConfig, DebertaOnnxConfig from .tokenization_deberta import DebertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_deberta_fast import DebertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deberta import ( DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, DebertaForMaskedLM, DebertaForQuestionAnswering, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaModel, DebertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deberta import ( TF_DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFDebertaForMaskedLM, TFDebertaForQuestionAnswering, TFDebertaForSequenceClassification, TFDebertaForTokenClassification, TFDebertaModel, TFDebertaPreTrainedModel, ) else: import sys __UpperCAmelCase :Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
240
'''simple docstring''' import io import itertools import json from dataclasses import dataclass from typing import Optional import pyarrow as pa import pyarrow.json as paj import datasets from datasets.table import table_cast from datasets.utils.file_utils import readline __UpperCAmelCase :int = datasets.utils.logging.get_logger(__name__) @dataclass class a ( datasets.BuilderConfig ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[datasets.Features] = None SCREAMING_SNAKE_CASE : str = "utf-8" SCREAMING_SNAKE_CASE : Optional[str] = None SCREAMING_SNAKE_CASE : Optional[str] = None SCREAMING_SNAKE_CASE : bool = True # deprecated SCREAMING_SNAKE_CASE : Optional[int] = None # deprecated SCREAMING_SNAKE_CASE : int = 1_0 << 2_0 # 10MB SCREAMING_SNAKE_CASE : Optional[bool] = None class a ( datasets.ArrowBasedBuilder ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = JsonConfig def lowerCamelCase__ ( self : Union[str, Any] ) -> Dict: if self.config.block_size is not None: logger.warning('''The JSON loader parameter `block_size` is deprecated. Please use `chunksize` instead''' ) __UpperCAmelCase : Tuple = self.config.block_size if self.config.use_threads is not True: logger.warning( '''The JSON loader parameter `use_threads` is deprecated and doesn\'t have any effect anymore.''' ) if self.config.newlines_in_values is not None: raise ValueError('''The JSON loader parameter `newlines_in_values` is no longer supported''' ) return datasets.DatasetInfo(features=self.config.features ) def lowerCamelCase__ ( self : Dict , snake_case : Tuple ) -> str: if not self.config.data_files: raise ValueError(f'At least one data file must be specified, but got data_files={self.config.data_files}' ) __UpperCAmelCase : Optional[int] = dl_manager.download_and_extract(self.config.data_files ) if isinstance(snake_case , (str, list, tuple) ): __UpperCAmelCase : Dict = data_files if isinstance(snake_case , snake_case ): __UpperCAmelCase : List[Any] = [files] __UpperCAmelCase : Tuple = [dl_manager.iter_files(snake_case ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''files''': files} )] __UpperCAmelCase : Tuple = [] for split_name, files in data_files.items(): if isinstance(snake_case , snake_case ): __UpperCAmelCase : Any = [files] __UpperCAmelCase : Optional[int] = [dl_manager.iter_files(snake_case ) for file in files] splits.append(datasets.SplitGenerator(name=snake_case , gen_kwargs={'''files''': files} ) ) return splits def lowerCamelCase__ ( self : List[str] , snake_case : pa.Table ) -> pa.Table: if self.config.features is not None: # adding missing columns for column_name in set(self.config.features ) - set(pa_table.column_names ): __UpperCAmelCase : Any = self.config.features.arrow_schema.field(snake_case ).type __UpperCAmelCase : Dict = pa_table.append_column(snake_case , pa.array([None] * len(snake_case ) , type=snake_case ) ) # more expensive cast to support nested structures with keys in a different order # allows str <-> int/float or str to Audio for example __UpperCAmelCase : Tuple = table_cast(snake_case , self.config.features.arrow_schema ) return pa_table def lowerCamelCase__ ( self : Tuple , snake_case : Any ) -> Optional[int]: for file_idx, file in enumerate(itertools.chain.from_iterable(snake_case ) ): # If the file is one json object and if we need to look at the list of items in one specific field if self.config.field is not None: with open(snake_case , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f: __UpperCAmelCase : Optional[int] = json.load(snake_case ) # We keep only the field we are interested in __UpperCAmelCase : int = dataset[self.config.field] # We accept two format: a list of dicts or a dict of lists if isinstance(snake_case , (list, tuple) ): __UpperCAmelCase : Optional[Any] = set().union(*[row.keys() for row in dataset] ) __UpperCAmelCase : Union[str, Any] = {col: [row.get(snake_case ) for row in dataset] for col in keys} else: __UpperCAmelCase : Optional[int] = dataset __UpperCAmelCase : Tuple = pa.Table.from_pydict(snake_case ) yield file_idx, self._cast_table(snake_case ) # If the file has one json object per line else: with open(snake_case , '''rb''' ) as f: __UpperCAmelCase : Optional[Any] = 0 # Use block_size equal to the chunk size divided by 32 to leverage multithreading # Set a default minimum value of 16kB if the chunk size is really small __UpperCAmelCase : int = max(self.config.chunksize // 32 , 16 << 10 ) __UpperCAmelCase : Any = ( self.config.encoding_errors if self.config.encoding_errors is not None else '''strict''' ) while True: __UpperCAmelCase : List[Any] = f.read(self.config.chunksize ) if not batch: break # Finish current line try: batch += f.readline() except (AttributeError, io.UnsupportedOperation): batch += readline(snake_case ) # PyArrow only accepts utf-8 encoded bytes if self.config.encoding != "utf-8": __UpperCAmelCase : Union[str, Any] = batch.decode(self.config.encoding , errors=snake_case ).encode('''utf-8''' ) try: while True: try: __UpperCAmelCase : List[str] = paj.read_json( io.BytesIO(snake_case ) , read_options=paj.ReadOptions(block_size=snake_case ) ) break except (pa.ArrowInvalid, pa.ArrowNotImplementedError) as e: if ( isinstance(snake_case , pa.ArrowInvalid ) and "straddling" not in str(snake_case ) or block_size > len(snake_case ) ): raise else: # Increase the block size in case it was too small. # The block size will be reset for the next file. logger.debug( f'Batch of {len(snake_case )} bytes couldn\'t be parsed with block_size={block_size}. Retrying with block_size={block_size * 2}.' ) block_size *= 2 except pa.ArrowInvalid as e: try: with open( snake_case , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f: __UpperCAmelCase : Optional[Any] = json.load(snake_case ) except json.JSONDecodeError: logger.error(f'Failed to read file \'{file}\' with error {type(snake_case )}: {e}' ) raise e # If possible, parse the file as a list of json objects and exit the loop if isinstance(snake_case , snake_case ): # list is the only sequence type supported in JSON try: __UpperCAmelCase : Dict = set().union(*[row.keys() for row in dataset] ) __UpperCAmelCase : Optional[Any] = {col: [row.get(snake_case ) for row in dataset] for col in keys} __UpperCAmelCase : Union[str, Any] = pa.Table.from_pydict(snake_case ) except (pa.ArrowInvalid, AttributeError) as e: logger.error(f'Failed to read file \'{file}\' with error {type(snake_case )}: {e}' ) raise ValueError(f'Not able to read records in the JSON file at {file}.' ) from None yield file_idx, self._cast_table(snake_case ) break else: logger.error(f'Failed to read file \'{file}\' with error {type(snake_case )}: {e}' ) raise ValueError( f'Not able to read records in the JSON file at {file}. ' f'You should probably indicate the field of the JSON file containing your records. ' f'This JSON file contain the following fields: {str(list(dataset.keys() ) )}. ' f'Select the correct one and provide it as `field=\'XXX\'` to the dataset loading method. ' ) from None # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(snake_case ) batch_idx += 1
240
1
"""simple docstring""" import itertools import os import random import tempfile import unittest import numpy as np from transformers import TvltFeatureExtractor, is_datasets_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_torch_available(): import torch if is_datasets_available(): from datasets import load_dataset __A = random.Random() def __A (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=1.0 , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None ) ->Optional[int]: """simple docstring""" if rng is None: lowerCAmelCase__ :List[Any] = global_rng lowerCAmelCase__ :List[str] = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self , __UpperCAmelCase , __UpperCAmelCase=7 , __UpperCAmelCase=4_0_0 , __UpperCAmelCase=2_0_0_0 , __UpperCAmelCase=2_0_4_8 , __UpperCAmelCase=1_2_8 , __UpperCAmelCase=1 , __UpperCAmelCase=5_1_2 , __UpperCAmelCase=3_0 , __UpperCAmelCase=4_4_1_0_0 , ): '''simple docstring''' lowerCAmelCase__ :Dict = parent lowerCAmelCase__ :Dict = batch_size lowerCAmelCase__ :Union[str, Any] = min_seq_length lowerCAmelCase__ :Optional[Any] = max_seq_length lowerCAmelCase__ :Tuple = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) lowerCAmelCase__ :Dict = spectrogram_length lowerCAmelCase__ :int = feature_size lowerCAmelCase__ :int = num_audio_channels lowerCAmelCase__ :int = hop_length lowerCAmelCase__ :Optional[Any] = chunk_length lowerCAmelCase__ :int = sampling_rate def snake_case ( self ): '''simple docstring''' return { "spectrogram_length": self.spectrogram_length, "feature_size": self.feature_size, "num_audio_channels": self.num_audio_channels, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "sampling_rate": self.sampling_rate, } def snake_case ( self , __UpperCAmelCase=False , __UpperCAmelCase=False ): '''simple docstring''' def _flatten(__UpperCAmelCase ): return list(itertools.chain(*__UpperCAmelCase ) ) if equal_length: lowerCAmelCase__ :Any = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size lowerCAmelCase__ :List[str] = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: lowerCAmelCase__ :List[Any] = [np.asarray(__UpperCAmelCase ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class _lowerCAmelCase ( a , unittest.TestCase ): """simple docstring""" __magic_name__ :Tuple = TvltFeatureExtractor def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :str = TvltFeatureExtractionTester(self ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Tuple = self.feature_extraction_class(**self.feat_extract_dict ) self.assertTrue(hasattr(__UpperCAmelCase , 'spectrogram_length' ) ) self.assertTrue(hasattr(__UpperCAmelCase , 'feature_size' ) ) self.assertTrue(hasattr(__UpperCAmelCase , 'num_audio_channels' ) ) self.assertTrue(hasattr(__UpperCAmelCase , 'hop_length' ) ) self.assertTrue(hasattr(__UpperCAmelCase , 'chunk_length' ) ) self.assertTrue(hasattr(__UpperCAmelCase , 'sampling_rate' ) ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :int = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: lowerCAmelCase__ :int = feat_extract_first.save_pretrained(__UpperCAmelCase )[0] check_json_file_has_correct_format(__UpperCAmelCase ) lowerCAmelCase__ :str = self.feature_extraction_class.from_pretrained(__UpperCAmelCase ) lowerCAmelCase__ :List[str] = feat_extract_first.to_dict() lowerCAmelCase__ :List[str] = feat_extract_second.to_dict() lowerCAmelCase__ :int = dict_first.pop('mel_filters' ) lowerCAmelCase__ :Optional[Any] = dict_second.pop('mel_filters' ) self.assertTrue(np.allclose(__UpperCAmelCase , __UpperCAmelCase ) ) self.assertEqual(__UpperCAmelCase , __UpperCAmelCase ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Dict = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: lowerCAmelCase__ :List[Any] = os.path.join(__UpperCAmelCase , 'feat_extract.json' ) feat_extract_first.to_json_file(__UpperCAmelCase ) lowerCAmelCase__ :Tuple = self.feature_extraction_class.from_json_file(__UpperCAmelCase ) lowerCAmelCase__ :Union[str, Any] = feat_extract_first.to_dict() lowerCAmelCase__ :Union[str, Any] = feat_extract_second.to_dict() lowerCAmelCase__ :Any = dict_first.pop('mel_filters' ) lowerCAmelCase__ :Optional[Any] = dict_second.pop('mel_filters' ) self.assertTrue(np.allclose(__UpperCAmelCase , __UpperCAmelCase ) ) self.assertEqual(__UpperCAmelCase , __UpperCAmelCase ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :List[Any] = self.feature_extraction_class(**self.feat_extract_dict ) # create three inputs of length 800, 1000, and 1200 lowerCAmelCase__ :List[Any] = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] lowerCAmelCase__ :Union[str, Any] = [np.asarray(__UpperCAmelCase ) for speech_input in speech_inputs] # Test not batched input lowerCAmelCase__ :List[str] = feature_extractor(np_speech_inputs[0] , return_tensors='np' , sampling_rate=4_4_1_0_0 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test batched lowerCAmelCase__ :List[Any] = feature_extractor(__UpperCAmelCase , return_tensors='np' , sampling_rate=4_4_1_0_0 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test audio masking lowerCAmelCase__ :str = feature_extractor( __UpperCAmelCase , return_tensors='np' , sampling_rate=4_4_1_0_0 , mask_audio=__UpperCAmelCase ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test 2-D numpy arrays are batched. lowerCAmelCase__ :int = [floats_list((1, x) )[0] for x in (8_0_0, 8_0_0, 8_0_0)] lowerCAmelCase__ :str = np.asarray(__UpperCAmelCase ) lowerCAmelCase__ :int = feature_extractor(__UpperCAmelCase , return_tensors='np' , sampling_rate=4_4_1_0_0 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) def snake_case ( self , __UpperCAmelCase ): '''simple docstring''' lowerCAmelCase__ :Optional[int] = load_dataset('hf-internal-testing/librispeech_asr_dummy' , 'clean' , split='validation' ) # automatic decoding with librispeech lowerCAmelCase__ :List[Any] = ds.sort('id' ).select(range(__UpperCAmelCase ) )[:num_samples]['audio'] return [x["array"] for x in speech_samples] def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :str = self._load_datasamples(1 ) lowerCAmelCase__ :Union[str, Any] = TvltFeatureExtractor() lowerCAmelCase__ :str = feature_extractor(__UpperCAmelCase , return_tensors='pt' ).audio_values self.assertEquals(audio_values.shape , (1, 1, 1_9_2, 1_2_8) ) lowerCAmelCase__ :Tuple = torch.tensor([[-0.30_32, -0.27_08], [-0.44_34, -0.40_07]] ) self.assertTrue(torch.allclose(audio_values[0, 0, :2, :2] , __UpperCAmelCase , atol=1E-4 ) )
293
"""simple docstring""" import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DiffusionPipeline, EulerDiscreteScheduler, StableDiffusionXLImgaImgPipeline, UNetaDConditionModel, ) from diffusers.utils import floats_tensor, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class _lowerCAmelCase ( a , a , unittest.TestCase ): """simple docstring""" __magic_name__ :Tuple = StableDiffusionXLImgaImgPipeline __magic_name__ :List[Any] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"""height""", """width"""} __magic_name__ :Optional[Any] = PipelineTesterMixin.required_optional_params - {"""latents"""} __magic_name__ :Optional[Any] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS __magic_name__ :str = IMAGE_TO_IMAGE_IMAGE_PARAMS __magic_name__ :Any = IMAGE_TO_IMAGE_IMAGE_PARAMS def snake_case ( self ): '''simple docstring''' torch.manual_seed(0 ) lowerCAmelCase__ :Optional[Any] = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , attention_head_dim=(2, 4) , use_linear_projection=__UpperCAmelCase , addition_embed_type='text_time' , addition_time_embed_dim=8 , transformer_layers_per_block=(1, 2) , projection_class_embeddings_input_dim=8_0 , cross_attention_dim=6_4 , ) lowerCAmelCase__ :str = EulerDiscreteScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , steps_offset=1 , beta_schedule='scaled_linear' , timestep_spacing='leading' , ) torch.manual_seed(0 ) lowerCAmelCase__ :str = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , sample_size=1_2_8 , ) torch.manual_seed(0 ) lowerCAmelCase__ :str = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , hidden_act='gelu' , projection_dim=3_2 , ) lowerCAmelCase__ :int = CLIPTextModel(__UpperCAmelCase ) lowerCAmelCase__ :Tuple = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' , local_files_only=__UpperCAmelCase ) lowerCAmelCase__ :Any = CLIPTextModelWithProjection(__UpperCAmelCase ) lowerCAmelCase__ :Optional[Any] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' , local_files_only=__UpperCAmelCase ) lowerCAmelCase__ :str = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'text_encoder_2': text_encoder_a, 'tokenizer_2': tokenizer_a, # "safety_checker": None, # "feature_extractor": None, } return components def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase=0 ): '''simple docstring''' lowerCAmelCase__ :Dict = floats_tensor((1, 3, 3_2, 3_2) , rng=random.Random(__UpperCAmelCase ) ).to(__UpperCAmelCase ) lowerCAmelCase__ :Optional[int] = image / 2 + 0.5 if str(__UpperCAmelCase ).startswith('mps' ): lowerCAmelCase__ :Optional[int] = torch.manual_seed(__UpperCAmelCase ) else: lowerCAmelCase__ :Optional[Any] = torch.Generator(device=__UpperCAmelCase ).manual_seed(__UpperCAmelCase ) lowerCAmelCase__ :Dict = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 5.0, 'output_type': 'numpy', 'strength': 0.75, } return inputs def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :List[Any] = 'cpu' # ensure determinism for the device-dependent torch.Generator lowerCAmelCase__ :int = self.get_dummy_components() lowerCAmelCase__ :List[str] = StableDiffusionXLImgaImgPipeline(**__UpperCAmelCase ) lowerCAmelCase__ :str = sd_pipe.to(__UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=__UpperCAmelCase ) lowerCAmelCase__ :str = self.get_dummy_inputs(__UpperCAmelCase ) lowerCAmelCase__ :int = sd_pipe(**__UpperCAmelCase ).images lowerCAmelCase__ :int = image[0, -3:, -3:, -1] assert image.shape == (1, 3_2, 3_2, 3) lowerCAmelCase__ :List[str] = np.array([0.46_56, 0.48_40, 0.44_39, 0.66_98, 0.55_74, 0.45_24, 0.57_99, 0.59_43, 0.51_65] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def snake_case ( self ): '''simple docstring''' super().test_attention_slicing_forward_pass(expected_max_diff=3E-3 ) def snake_case ( self ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) def snake_case ( self ): '''simple docstring''' pass def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Tuple = self.get_dummy_components() lowerCAmelCase__ :str = StableDiffusionXLImgaImgPipeline(**__UpperCAmelCase ) lowerCAmelCase__ :str = sd_pipe.to(__UpperCAmelCase ) lowerCAmelCase__ :List[str] = sd_pipe.to(__UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=__UpperCAmelCase ) # forward without prompt embeds lowerCAmelCase__ :int = self.get_dummy_inputs(__UpperCAmelCase ) lowerCAmelCase__ :Optional[int] = 3 * ['this is a negative prompt'] lowerCAmelCase__ :Tuple = negative_prompt lowerCAmelCase__ :str = 3 * [inputs['prompt']] lowerCAmelCase__ :Optional[Any] = sd_pipe(**__UpperCAmelCase ) lowerCAmelCase__ :List[Any] = output.images[0, -3:, -3:, -1] # forward with prompt embeds lowerCAmelCase__ :Optional[Any] = self.get_dummy_inputs(__UpperCAmelCase ) lowerCAmelCase__ :Tuple = 3 * ['this is a negative prompt'] lowerCAmelCase__ :str = 3 * [inputs.pop('prompt' )] ( ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ) :List[str] = sd_pipe.encode_prompt(__UpperCAmelCase , negative_prompt=__UpperCAmelCase ) lowerCAmelCase__ :str = sd_pipe( **__UpperCAmelCase , prompt_embeds=__UpperCAmelCase , negative_prompt_embeds=__UpperCAmelCase , pooled_prompt_embeds=__UpperCAmelCase , negative_pooled_prompt_embeds=__UpperCAmelCase , ) lowerCAmelCase__ :Optional[Any] = output.images[0, -3:, -3:, -1] # make sure that it's equal assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1E-4 @slow @require_torch_gpu class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def snake_case ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase="cpu" , __UpperCAmelCase=torch.floataa , __UpperCAmelCase=0 ): '''simple docstring''' lowerCAmelCase__ :Any = torch.Generator(device=__UpperCAmelCase ).manual_seed(__UpperCAmelCase ) lowerCAmelCase__ :Dict = np.random.RandomState(__UpperCAmelCase ).standard_normal((1, 4, 6_4, 6_4) ) lowerCAmelCase__ :Optional[int] = torch.from_numpy(__UpperCAmelCase ).to(device=__UpperCAmelCase , dtype=__UpperCAmelCase ) lowerCAmelCase__ :int = { 'prompt': 'a photograph of an astronaut riding a horse', 'latents': latents, 'generator': generator, 'num_inference_steps': 3, 'guidance_scale': 7.5, 'output_type': 'numpy', } return inputs def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :List[Any] = DiffusionPipeline.from_pretrained('stabilityai/stable-diffusion-2-base' ) pipe.to(__UpperCAmelCase ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) lowerCAmelCase__ :Tuple = self.get_inputs(__UpperCAmelCase ) lowerCAmelCase__ :int = pipe(**__UpperCAmelCase ).images lowerCAmelCase__ :Union[str, Any] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 5_1_2, 5_1_2, 3) lowerCAmelCase__ :List[str] = np.array([0.4_94_93, 0.4_78_96, 0.4_07_98, 0.5_42_14, 0.5_32_12, 0.4_82_02, 0.4_76_56, 0.4_63_29, 0.4_85_06] ) assert np.abs(image_slice - expected_slice ).max() < 7E-3
293
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowerCAmelCase : Dict = { '''configuration_time_series_transformer''': [ '''TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''TimeSeriesTransformerConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Tuple = [ '''TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TimeSeriesTransformerForPrediction''', '''TimeSeriesTransformerModel''', '''TimeSeriesTransformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimeSeriesTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimeSeriesTransformerForPrediction, TimeSeriesTransformerModel, TimeSeriesTransformerPreTrainedModel, ) else: import sys _lowerCAmelCase : Optional[int] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
357
"""simple docstring""" # DISCLAIMER: This file is strongly influenced by https://github.com/ermongroup/ddim from dataclasses import dataclass from typing import Optional, Tuple, Union import flax import jax import jax.numpy as jnp from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils_flax import ( CommonSchedulerState, FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, add_noise_common, get_velocity_common, ) @flax.struct.dataclass class lowerCAmelCase__ : SCREAMING_SNAKE_CASE_ =42 # setable values SCREAMING_SNAKE_CASE_ =42 SCREAMING_SNAKE_CASE_ =42 SCREAMING_SNAKE_CASE_ =None @classmethod def __a ( cls : Optional[int] , snake_case__ : CommonSchedulerState , snake_case__ : jnp.ndarray , snake_case__ : jnp.ndarray ): '''simple docstring''' return cls(common=snake_case__ , init_noise_sigma=snake_case__ , timesteps=snake_case__ ) @dataclass class lowerCAmelCase__ ( __magic_name__ ): SCREAMING_SNAKE_CASE_ =42 class lowerCAmelCase__ ( __magic_name__ , __magic_name__ ): SCREAMING_SNAKE_CASE_ =[e.name for e in FlaxKarrasDiffusionSchedulers] SCREAMING_SNAKE_CASE_ =42 @property def __a ( self : Union[str, Any] ): '''simple docstring''' return True @register_to_config def __init__( self : Tuple , snake_case__ : int = 1_0_0_0 , snake_case__ : float = 0.0001 , snake_case__ : float = 0.02 , snake_case__ : str = "linear" , snake_case__ : Optional[jnp.ndarray] = None , snake_case__ : str = "fixed_small" , snake_case__ : bool = True , snake_case__ : str = "epsilon" , snake_case__ : jnp.dtype = jnp.floataa , ): '''simple docstring''' UpperCAmelCase__ : Tuple = dtype def __a ( self : Any , snake_case__ : Optional[CommonSchedulerState] = None ): '''simple docstring''' if common is None: UpperCAmelCase__ : Any = CommonSchedulerState.create(self ) # standard deviation of the initial noise distribution UpperCAmelCase__ : Tuple = jnp.array(1.0 , dtype=self.dtype ) UpperCAmelCase__ : Optional[Any] = jnp.arange(0 , self.config.num_train_timesteps ).round()[::-1] return DDPMSchedulerState.create( common=snake_case__ , init_noise_sigma=snake_case__ , timesteps=snake_case__ , ) def __a ( self : int , snake_case__ : DDPMSchedulerState , snake_case__ : jnp.ndarray , snake_case__ : Optional[int] = None ): '''simple docstring''' return sample def __a ( self : Dict , snake_case__ : DDPMSchedulerState , snake_case__ : int , snake_case__ : Tuple = () ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = self.config.num_train_timesteps // num_inference_steps # creates integer timesteps by multiplying by ratio # rounding to avoid issues when num_inference_step is power of 3 UpperCAmelCase__ : Tuple = (jnp.arange(0 , snake_case__ ) * step_ratio).round()[::-1] return state.replace( num_inference_steps=snake_case__ , timesteps=snake_case__ , ) def __a ( self : List[str] , snake_case__ : DDPMSchedulerState , snake_case__ : int , snake_case__ : Any=None , snake_case__ : Union[str, Any]=None ): '''simple docstring''' UpperCAmelCase__ : int = state.common.alphas_cumprod[t] UpperCAmelCase__ : Optional[int] = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) ) # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample UpperCAmelCase__ : int = (1 - alpha_prod_t_prev) / (1 - alpha_prod_t) * state.common.betas[t] if variance_type is None: UpperCAmelCase__ : Union[str, Any] = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small": UpperCAmelCase__ : int = jnp.clip(snake_case__ , a_min=1e-20 ) # for rl-diffuser https://arxiv.org/abs/2205.09991 elif variance_type == "fixed_small_log": UpperCAmelCase__ : Union[str, Any] = jnp.log(jnp.clip(snake_case__ , a_min=1e-20 ) ) elif variance_type == "fixed_large": UpperCAmelCase__ : List[Any] = state.common.betas[t] elif variance_type == "fixed_large_log": # Glide max_log UpperCAmelCase__ : Optional[int] = jnp.log(state.common.betas[t] ) elif variance_type == "learned": return predicted_variance elif variance_type == "learned_range": UpperCAmelCase__ : List[str] = variance UpperCAmelCase__ : Optional[Any] = state.common.betas[t] UpperCAmelCase__ : Any = (predicted_variance + 1) / 2 UpperCAmelCase__ : Dict = frac * max_log + (1 - frac) * min_log return variance def __a ( self : Dict , snake_case__ : DDPMSchedulerState , snake_case__ : jnp.ndarray , snake_case__ : int , snake_case__ : jnp.ndarray , snake_case__ : Optional[jax.random.KeyArray] = None , snake_case__ : bool = True , ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = timestep if key is None: UpperCAmelCase__ : Optional[int] = jax.random.PRNGKey(0 ) if model_output.shape[1] == sample.shape[1] * 2 and self.config.variance_type in ["learned", "learned_range"]: UpperCAmelCase__ , UpperCAmelCase__ : Union[str, Any] = jnp.split(snake_case__ , sample.shape[1] , axis=1 ) else: UpperCAmelCase__ : int = None # 1. compute alphas, betas UpperCAmelCase__ : Union[str, Any] = state.common.alphas_cumprod[t] UpperCAmelCase__ : Optional[int] = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) ) UpperCAmelCase__ : List[str] = 1 - alpha_prod_t UpperCAmelCase__ : List[str] = 1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": UpperCAmelCase__ : Optional[int] = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": UpperCAmelCase__ : List[Any] = model_output elif self.config.prediction_type == "v_prediction": UpperCAmelCase__ : int = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output else: raise ValueError( f'prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample` ' " for the FlaxDDPMScheduler." ) # 3. Clip "predicted x_0" if self.config.clip_sample: UpperCAmelCase__ : Optional[Any] = jnp.clip(snake_case__ , -1 , 1 ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf UpperCAmelCase__ : Union[str, Any] = (alpha_prod_t_prev ** 0.5 * state.common.betas[t]) / beta_prod_t UpperCAmelCase__ : Tuple = state.common.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf UpperCAmelCase__ : Union[str, Any] = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise def random_variance(): UpperCAmelCase__ : List[str] = jax.random.split(snake_case__ , num=1 ) UpperCAmelCase__ : List[str] = jax.random.normal(snake_case__ , shape=model_output.shape , dtype=self.dtype ) return (self._get_variance(snake_case__ , snake_case__ , predicted_variance=snake_case__ ) ** 0.5) * noise UpperCAmelCase__ : Optional[int] = jnp.where(t > 0 , random_variance() , jnp.zeros(model_output.shape , dtype=self.dtype ) ) UpperCAmelCase__ : Optional[Any] = pred_prev_sample + variance if not return_dict: return (pred_prev_sample, state) return FlaxDDPMSchedulerOutput(prev_sample=snake_case__ , state=snake_case__ ) def __a ( self : List[Any] , snake_case__ : DDPMSchedulerState , snake_case__ : jnp.ndarray , snake_case__ : jnp.ndarray , snake_case__ : jnp.ndarray , ): '''simple docstring''' return add_noise_common(state.common , snake_case__ , snake_case__ , snake_case__ ) def __a ( self : Optional[int] , snake_case__ : DDPMSchedulerState , snake_case__ : jnp.ndarray , snake_case__ : jnp.ndarray , snake_case__ : jnp.ndarray , ): '''simple docstring''' return get_velocity_common(state.common , snake_case__ , snake_case__ , snake_case__ ) def __len__( self : Union[str, Any] ): '''simple docstring''' return self.config.num_train_timesteps
298
0
from __future__ import annotations import math from collections import Counter from string import ascii_lowercase def _A ( _lowercase ) -> None: """simple docstring""" __UpperCamelCase, __UpperCamelCase = analyze_text(_lowercase ) __UpperCamelCase = list(' ' + ascii_lowercase ) # what is our total sum of probabilities. __UpperCamelCase = sum(single_char_strings.values() ) # one length string __UpperCamelCase = 0 # for each alpha we go in our dict and if it is in it we calculate entropy for ch in my_alphas: if ch in single_char_strings: __UpperCamelCase = single_char_strings[ch] __UpperCamelCase = my_str / all_sum my_fir_sum += prob * math.loga(_lowercase ) # entropy formula. # print entropy print(f'''{round(-1 * my_fir_sum ):.1f}''' ) # two len string __UpperCamelCase = sum(two_char_strings.values() ) __UpperCamelCase = 0 # for each alpha (two in size) calculate entropy. for cha in my_alphas: for cha in my_alphas: __UpperCamelCase = cha + cha if sequence in two_char_strings: __UpperCamelCase = two_char_strings[sequence] __UpperCamelCase = int(_lowercase ) / all_sum my_sec_sum += prob * math.loga(_lowercase ) # print second entropy print(f'''{round(-1 * my_sec_sum ):.1f}''' ) # print the difference between them print(f'''{round((-1 * my_sec_sum) - (-1 * my_fir_sum) ):.1f}''' ) def _A ( _lowercase ) -> tuple[dict, dict]: """simple docstring""" __UpperCamelCase = Counter() # type: ignore __UpperCamelCase = Counter() # type: ignore single_char_strings[text[-1]] += 1 # first case when we have space at start. two_char_strings[" " + text[0]] += 1 for i in range(0 , len(_lowercase ) - 1 ): single_char_strings[text[i]] += 1 two_char_strings[text[i : i + 2]] += 1 return single_char_strings, two_char_strings def _A ( ) -> Optional[Any]: """simple docstring""" import doctest doctest.testmod() # text = ( # "Had repulsive dashwoods suspicion sincerity but advantage now him. Remark " # "easily garret nor nay. Civil those mrs enjoy shy fat merry. You greatest " # "jointure saw horrible. He private he on be imagine suppose. Fertile " # "beloved evident through no service elderly is. Blind there if every no so " # "at. Own neglected you preferred way sincerity delivered his attempted. To " # "of message cottage windows do besides against uncivil. Delightful " # "unreserved impossible few estimating men favourable see entreaties. She " # "propriety immediate was improving. He or entrance humoured likewise " # "moderate. Much nor game son say feel. Fat make met can must form into " # "gate. Me we offending prevailed discovery. " # ) # calculate_prob(text) if __name__ == "__main__": main()
310
from __future__ import annotations import unittest from transformers import XGLMConfig, XGLMTokenizer, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.xglm.modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, ) @require_tf class __lowerCamelCase : _lowercase = XGLMConfig _lowercase = {} _lowercase = """gelu""" def __init__( self: Optional[int],A_: Dict,A_: Any=14,A_: Optional[int]=7,A_: str=True,A_: Any=True,A_: Optional[int]=True,A_: Optional[int]=99,A_: List[str]=32,A_: Any=2,A_: Tuple=4,A_: List[str]=37,A_: Dict="gelu",A_: int=0.1,A_: List[str]=0.1,A_: int=512,A_: List[Any]=0.0_2,): '''simple docstring''' __UpperCamelCase = parent __UpperCamelCase = batch_size __UpperCamelCase = seq_length __UpperCamelCase = is_training __UpperCamelCase = use_input_mask __UpperCamelCase = use_labels __UpperCamelCase = vocab_size __UpperCamelCase = d_model __UpperCamelCase = num_hidden_layers __UpperCamelCase = num_attention_heads __UpperCamelCase = ffn_dim __UpperCamelCase = activation_function __UpperCamelCase = activation_dropout __UpperCamelCase = attention_dropout __UpperCamelCase = max_position_embeddings __UpperCamelCase = initializer_range __UpperCamelCase = None __UpperCamelCase = 0 __UpperCamelCase = 2 __UpperCamelCase = 1 def snake_case_ ( self: Dict ): '''simple docstring''' return XGLMConfig.from_pretrained('facebook/xglm-564M' ) def snake_case_ ( self: Optional[Any] ): '''simple docstring''' __UpperCamelCase = tf.clip_by_value( ids_tensor([self.batch_size, self.seq_length],self.vocab_size ),clip_value_min=0,clip_value_max=3 ) __UpperCamelCase = None if self.use_input_mask: __UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) __UpperCamelCase = self.get_config() __UpperCamelCase = floats_tensor([self.num_hidden_layers, self.num_attention_heads],2 ) return ( config, input_ids, input_mask, head_mask, ) def snake_case_ ( self: Union[str, Any] ): '''simple docstring''' return XGLMConfig( vocab_size=self.vocab_size,d_model=self.hidden_size,num_layers=self.num_hidden_layers,attention_heads=self.num_attention_heads,ffn_dim=self.ffn_dim,activation_function=self.activation_function,activation_dropout=self.activation_dropout,attention_dropout=self.attention_dropout,max_position_embeddings=self.max_position_embeddings,initializer_range=self.initializer_range,use_cache=A_,bos_token_id=self.bos_token_id,eos_token_id=self.eos_token_id,pad_token_id=self.pad_token_id,return_dict=A_,) def snake_case_ ( self: int ): '''simple docstring''' __UpperCamelCase = self.prepare_config_and_inputs() ( ( __UpperCamelCase ), ( __UpperCamelCase ), ( __UpperCamelCase ), ( __UpperCamelCase ), ) = config_and_inputs __UpperCamelCase = { 'input_ids': input_ids, 'head_mask': head_mask, } return config, inputs_dict @require_tf class __lowerCamelCase (_a , _a , unittest.TestCase ): _lowercase = (TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else () _lowercase = (TFXGLMForCausalLM,) if is_tf_available() else () _lowercase = ( {"""feature-extraction""": TFXGLMModel, """text-generation""": TFXGLMForCausalLM} if is_tf_available() else {} ) _lowercase = False _lowercase = False _lowercase = False def snake_case_ ( self: List[Any] ): '''simple docstring''' __UpperCamelCase = TFXGLMModelTester(self ) __UpperCamelCase = ConfigTester(self,config_class=A_,n_embd=37 ) def snake_case_ ( self: Any ): '''simple docstring''' self.config_tester.run_common_tests() @slow def snake_case_ ( self: Any ): '''simple docstring''' for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCamelCase = TFXGLMModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) @unittest.skip(reason='Currently, model embeddings are going to undergo a major refactor.' ) def snake_case_ ( self: Tuple ): '''simple docstring''' super().test_resize_token_embeddings() @require_tf class __lowerCamelCase (unittest.TestCase ): @slow def snake_case_ ( self: Optional[Any],A_: int=True ): '''simple docstring''' __UpperCamelCase = TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' ) __UpperCamelCase = tf.convert_to_tensor([[2, 268, 9865]],dtype=tf.intaa ) # The dog # </s> The dog is a very friendly dog. He is very affectionate and loves to play with other # fmt: off __UpperCamelCase = [2, 268, 9865, 67, 11, 1988, 5_7252, 9865, 5, 984, 67, 1988, 21_3838, 1658, 53, 7_0446, 33, 6657, 278, 1581] # fmt: on __UpperCamelCase = model.generate(A_,do_sample=A_,num_beams=1 ) if verify_outputs: self.assertListEqual(output_ids[0].numpy().tolist(),A_ ) @slow def snake_case_ ( self: Optional[Any] ): '''simple docstring''' __UpperCamelCase = XGLMTokenizer.from_pretrained('facebook/xglm-564M' ) __UpperCamelCase = TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' ) tf.random.set_seed(0 ) __UpperCamelCase = tokenizer('Today is a nice day and',return_tensors='tf' ) __UpperCamelCase = tokenized.input_ids # forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices) with tf.device(':/CPU:0' ): __UpperCamelCase = model.generate(A_,do_sample=A_,seed=[7, 0] ) __UpperCamelCase = tokenizer.decode(output_ids[0],skip_special_tokens=A_ ) __UpperCamelCase = ( 'Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due' ) self.assertEqual(A_,A_ ) @slow def snake_case_ ( self: Optional[int] ): '''simple docstring''' __UpperCamelCase = TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' ) __UpperCamelCase = XGLMTokenizer.from_pretrained('facebook/xglm-564M' ) __UpperCamelCase = 'left' # use different length sentences to test batching __UpperCamelCase = [ 'This is an extremelly long sentence that only exists to test the ability of the model to cope with ' 'left-padding, such as in batched generation. The output for the sequence below should be the same ' 'regardless of whether left padding is applied or not. When', 'Hello, my dog is a little', ] __UpperCamelCase = tokenizer(A_,return_tensors='tf',padding=A_ ) __UpperCamelCase = inputs['input_ids'] __UpperCamelCase = model.generate(input_ids=A_,attention_mask=inputs['attention_mask'],max_new_tokens=12 ) __UpperCamelCase = tokenizer(sentences[0],return_tensors='tf' ).input_ids __UpperCamelCase = model.generate(input_ids=A_,max_new_tokens=12 ) __UpperCamelCase = tokenizer(sentences[1],return_tensors='tf' ).input_ids __UpperCamelCase = model.generate(input_ids=A_,max_new_tokens=12 ) __UpperCamelCase = tokenizer.batch_decode(A_,skip_special_tokens=A_ ) __UpperCamelCase = tokenizer.decode(output_non_padded[0],skip_special_tokens=A_ ) __UpperCamelCase = tokenizer.decode(output_padded[0],skip_special_tokens=A_ ) __UpperCamelCase = [ 'This is an extremelly long sentence that only exists to test the ability of the model to cope with ' 'left-padding, such as in batched generation. The output for the sequence below should be the same ' 'regardless of whether left padding is applied or not. When left padding is applied, the sequence will be ' 'a single', 'Hello, my dog is a little bit of a shy one, but he is very friendly', ] self.assertListEqual(A_,A_ ) self.assertListEqual(A_,[non_padded_sentence, padded_sentence] )
310
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available _lowercase : Optional[Any] = { """configuration_data2vec_audio""": ["""DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Data2VecAudioConfig"""], """configuration_data2vec_text""": [ """DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Data2VecTextConfig""", """Data2VecTextOnnxConfig""", ], """configuration_data2vec_vision""": [ """DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Data2VecVisionConfig""", """Data2VecVisionOnnxConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Dict = [ """DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST""", """Data2VecAudioForAudioFrameClassification""", """Data2VecAudioForCTC""", """Data2VecAudioForSequenceClassification""", """Data2VecAudioForXVector""", """Data2VecAudioModel""", """Data2VecAudioPreTrainedModel""", ] _lowercase : List[Any] = [ """DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST""", """Data2VecTextForCausalLM""", """Data2VecTextForMaskedLM""", """Data2VecTextForMultipleChoice""", """Data2VecTextForQuestionAnswering""", """Data2VecTextForSequenceClassification""", """Data2VecTextForTokenClassification""", """Data2VecTextModel""", """Data2VecTextPreTrainedModel""", ] _lowercase : Dict = [ """DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST""", """Data2VecVisionForImageClassification""", """Data2VecVisionForMaskedImageModeling""", """Data2VecVisionForSemanticSegmentation""", """Data2VecVisionModel""", """Data2VecVisionPreTrainedModel""", ] if is_tf_available(): _lowercase : Optional[Any] = [ """TFData2VecVisionForImageClassification""", """TFData2VecVisionForSemanticSegmentation""", """TFData2VecVisionModel""", """TFData2VecVisionPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_dataavec_audio import DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecAudioConfig from .configuration_dataavec_text import ( DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecTextConfig, DataaVecTextOnnxConfig, ) from .configuration_dataavec_vision import ( DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecVisionConfig, DataaVecVisionOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dataavec_audio import ( DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecAudioForAudioFrameClassification, DataaVecAudioForCTC, DataaVecAudioForSequenceClassification, DataaVecAudioForXVector, DataaVecAudioModel, DataaVecAudioPreTrainedModel, ) from .modeling_dataavec_text import ( DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecTextForCausalLM, DataaVecTextForMaskedLM, DataaVecTextForMultipleChoice, DataaVecTextForQuestionAnswering, DataaVecTextForSequenceClassification, DataaVecTextForTokenClassification, DataaVecTextModel, DataaVecTextPreTrainedModel, ) from .modeling_dataavec_vision import ( DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecVisionForImageClassification, DataaVecVisionForMaskedImageModeling, DataaVecVisionForSemanticSegmentation, DataaVecVisionModel, DataaVecVisionPreTrainedModel, ) if is_tf_available(): from .modeling_tf_dataavec_vision import ( TFDataaVecVisionForImageClassification, TFDataaVecVisionForSemanticSegmentation, TFDataaVecVisionModel, TFDataaVecVisionPreTrainedModel, ) else: import sys _lowercase : str = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
91
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _lowercase : Union[str, Any] = { """configuration_poolformer""": [ """POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """PoolFormerConfig""", """PoolFormerOnnxConfig""", ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : List[Any] = ["""PoolFormerFeatureExtractor"""] _lowercase : Any = ["""PoolFormerImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Tuple = [ """POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """PoolFormerForImageClassification""", """PoolFormerModel""", """PoolFormerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_poolformer import ( POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, PoolFormerConfig, PoolFormerOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_poolformer import PoolFormerFeatureExtractor from .image_processing_poolformer import PoolFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_poolformer import ( POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, PoolFormerForImageClassification, PoolFormerModel, PoolFormerPreTrainedModel, ) else: import sys _lowercase : Dict = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
91
1
import argparse from transformers import TaConfig, TaForConditionalGeneration, load_tf_weights_in_ta from transformers.utils import logging logging.set_verbosity_info() def A ( a_ ,a_ ,a_ ) -> Tuple: __UpperCamelCase : List[Any] =TaConfig.from_json_file(a_ ) print(F'Building PyTorch model from configuration: {config}' ) __UpperCamelCase : List[str] =TaForConditionalGeneration(a_ ) # Load weights from tf checkpoint load_tf_weights_in_ta(a_ ,a_ ,a_ ) # Save pytorch-model print(F'Save PyTorch model to {pytorch_dump_path}' ) model.save_pretrained(a_ ) if __name__ == "__main__": A_ :Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained T5 model. \nThis specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) A_ :int = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path)
71
from __future__ import annotations import unittest import numpy as np from transformers import OPTConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import GPTaTokenizer, TFOPTForCausalLM, TFOPTModel def UpperCAmelCase ( lowercase , lowercase , lowercase=None , lowercase=None ): """simple docstring""" if attention_mask is None: __lowercase = tf.cast(tf.math.not_equal(lowercase , config.pad_token_id ) , tf.inta ) return {"input_ids": input_ids, "attention_mask": attention_mask} @require_tf class _UpperCamelCase : """simple docstring""" __a : Tuple = OPTConfig __a : int = {} __a : Dict = '''gelu''' def __init__( self , lowerCAmelCase__ , lowerCAmelCase__=13 , lowerCAmelCase__=7 , lowerCAmelCase__=True , lowerCAmelCase__=False , lowerCAmelCase__=99 , lowerCAmelCase__=16 , lowerCAmelCase__=2 , lowerCAmelCase__=4 , lowerCAmelCase__=4 , lowerCAmelCase__="gelu" , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.1 , lowerCAmelCase__=20 , lowerCAmelCase__=2 , lowerCAmelCase__=1 , lowerCAmelCase__=0 , lowerCAmelCase__=16 , lowerCAmelCase__=16 , ) -> Tuple: '''simple docstring''' __lowercase = parent __lowercase = batch_size __lowercase = seq_length __lowercase = is_training __lowercase = use_labels __lowercase = vocab_size __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = intermediate_size __lowercase = hidden_act __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = max_position_embeddings __lowercase = eos_token_id __lowercase = pad_token_id __lowercase = bos_token_id __lowercase = embed_dim __lowercase = word_embed_proj_dim __lowercase = False def _SCREAMING_SNAKE_CASE ( self ) -> Dict: '''simple docstring''' __lowercase = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) __lowercase = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) __lowercase = tf.concat([input_ids, eos_tensor] , axis=1 ) __lowercase = self.config_cls( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , embed_dim=self.embed_dim , word_embed_proj_dim=self.word_embed_proj_dim , is_encoder_decoder=lowerCAmelCase__ , **self.config_updates , ) __lowercase = prepare_opt_inputs_dict(lowerCAmelCase__ , lowerCAmelCase__ ) return config, inputs_dict def _SCREAMING_SNAKE_CASE ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> int: '''simple docstring''' __lowercase = TFOPTModel(config=lowerCAmelCase__ ) __lowercase = inputs_dict['''input_ids'''] __lowercase = input_ids[:1, :] __lowercase = inputs_dict['''attention_mask'''][:1, :] __lowercase = 1 # first forward pass __lowercase = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , use_cache=lowerCAmelCase__ ) __lowercase , __lowercase = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids __lowercase = ids_tensor((self.batch_size, 3) , config.vocab_size ) __lowercase = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and __lowercase = tf.concat([input_ids, next_tokens] , axis=-1 ) __lowercase = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) __lowercase = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ )[0] __lowercase = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , past_key_values=lowerCAmelCase__ )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice __lowercase = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) __lowercase = output_from_no_past[:, -3:, random_slice_idx] __lowercase = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(lowerCAmelCase__ , lowerCAmelCase__ , rtol=1E-3 ) @require_tf class _UpperCamelCase ( _UpperCAmelCase ,_UpperCAmelCase ,unittest.TestCase ): """simple docstring""" __a : int = (TFOPTModel, TFOPTForCausalLM) if is_tf_available() else () __a : Optional[Any] = (TFOPTForCausalLM,) if is_tf_available() else () __a : Dict = ( {'''feature-extraction''': TFOPTModel, '''text-generation''': TFOPTForCausalLM} if is_tf_available() else {} ) __a : List[str] = False __a : Optional[Any] = False __a : Union[str, Any] = False __a : List[Any] = 10 def _SCREAMING_SNAKE_CASE ( self ) -> Tuple: '''simple docstring''' __lowercase = TFOPTModelTester(self ) __lowercase = ConfigTester(self , config_class=lowerCAmelCase__ ) def _SCREAMING_SNAKE_CASE ( self ) -> Dict: '''simple docstring''' self.config_tester.run_common_tests() def _SCREAMING_SNAKE_CASE ( self ) -> Any: '''simple docstring''' __lowercase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*lowerCAmelCase__ ) def _SCREAMING_SNAKE_CASE ( self ) -> Tuple: '''simple docstring''' __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() def _get_word_embedding_weight(lowerCAmelCase__ , lowerCAmelCase__ ): if hasattr(lowerCAmelCase__ , '''weight''' ): return embedding_layer.weight else: # Here we build the word embeddings weights if not exists. # And then we retry to get the attribute once built. model.build() if hasattr(lowerCAmelCase__ , '''weight''' ): return embedding_layer.weight else: return None for model_class in self.all_model_classes: for size in [config.vocab_size - 10, config.vocab_size + 10]: # build the embeddings __lowercase = model_class(config=lowerCAmelCase__ ) __lowercase = _get_word_embedding_weight(lowerCAmelCase__ , model.get_input_embeddings() ) __lowercase = _get_word_embedding_weight(lowerCAmelCase__ , model.get_output_embeddings() ) # reshape the embeddings model.resize_token_embeddings(lowerCAmelCase__ ) __lowercase = _get_word_embedding_weight(lowerCAmelCase__ , model.get_input_embeddings() ) __lowercase = _get_word_embedding_weight(lowerCAmelCase__ , model.get_output_embeddings() ) # check that the resized embeddings size matches the desired size. __lowercase = size if size is not None else config.vocab_size self.assertEqual(new_input_embeddings.shape[0] , lowerCAmelCase__ ) # check that weights remain the same after resizing __lowercase = True for pa, pa in zip(old_input_embeddings.value() , new_input_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: __lowercase = False self.assertTrue(lowerCAmelCase__ ) if old_output_embeddings is not None and new_output_embeddings is not None: self.assertEqual(new_output_embeddings.shape[0] , lowerCAmelCase__ ) __lowercase = True for pa, pa in zip(old_output_embeddings.value() , new_output_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: __lowercase = False self.assertTrue(lowerCAmelCase__ ) def UpperCAmelCase ( lowercase ): """simple docstring""" return tf.constant(lowercase , dtype=tf.intaa ) @require_tf class _UpperCamelCase ( unittest.TestCase ): """simple docstring""" __a : List[str] = 99 def _SCREAMING_SNAKE_CASE ( self ) -> Dict: '''simple docstring''' __lowercase = tf.ones((4, 1) , dtype=tf.intaa ) * 2 __lowercase = tf.concat([ids_tensor((4, 6) , self.vocab_size - 3 ) + 3, eos_column_vector] , axis=1 ) __lowercase = input_ids.shape[0] __lowercase = OPTConfig( vocab_size=self.vocab_size , hidden_size=24 , num_hidden_layers=2 , num_attention_heads=2 , ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size @require_sentencepiece @require_tf class _UpperCamelCase ( unittest.TestCase ): """simple docstring""" @slow def _SCREAMING_SNAKE_CASE ( self ) -> Dict: '''simple docstring''' __lowercase = TFOPTModel.from_pretrained('''facebook/opt-350m''' ) __lowercase = _long_tensor([[0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69, 4_60_78, 15_88, 2]] ) __lowercase = tf.not_equal(lowerCAmelCase__ , model.config.pad_token_id ) with tf.GradientTape(): __lowercase = model(input_ids=lowerCAmelCase__ , attention_mask=lowerCAmelCase__ ).last_hidden_state __lowercase = (1, 11, 5_12) self.assertEqual(output.shape , lowerCAmelCase__ ) __lowercase = tf.constant( [[-0.2873, -1.9218, -0.3033], [-1.2710, -0.1338, -0.1902], [0.4095, 0.1214, -1.3121]] ) self.assertTrue(np.allclose(output[:, :3, :3] , lowerCAmelCase__ , atol=4E-3 ) ) __lowercase = tf.function(lowerCAmelCase__ , jit_compile=lowerCAmelCase__ ) __lowercase = xla_generate(lowerCAmelCase__ , lowerCAmelCase__ )[0] self.assertTrue(np.allclose(output[:, :3, :3] , lowerCAmelCase__ , atol=4E-2 ) ) @require_tf @slow class _UpperCamelCase ( unittest.TestCase ): """simple docstring""" def _SCREAMING_SNAKE_CASE ( self ) -> str: '''simple docstring''' super().setUp() __lowercase = '''facebook/opt-350m''' def _SCREAMING_SNAKE_CASE ( self ) -> Any: '''simple docstring''' __lowercase = TFOPTForCausalLM.from_pretrained(self.path_model ) __lowercase = GPTaTokenizer.from_pretrained(self.path_model ) __lowercase = [ '''Today is a beautiful day and I want to''', '''In the city of''', '''Paris is the capital of France and''', '''Computers and mobile phones have taken''', ] # verify that prompt without BOS token is identical to Metaseq -> add_special_tokens=False __lowercase = tokenizer(lowerCAmelCase__ , return_tensors='''tf''' , padding=lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) __lowercase = tf.math.reduce_mean(model(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 ) __lowercase = tf.constant( [ [1.3851, -13.8923, -10.5229, -10.7533, -0.2309, -10.2384, -0.5365, -9.0947, -5.1670], [-4.7073, -10.6276, -3.9415, -21.5242, -0.2822, -0.2822, -0.2822, -0.2822, -0.2822], [0.6247, -3.4229, -8.9179, -1.4297, -14.1650, 1.4146, -9.0218, -0.2703, -0.2703], [6.4783, -1.9913, -10.7926, -2.3336, 1.5092, -0.9974, -6.8213, 1.3477, 1.3477], ] ) self.assertTrue(np.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1E-4 ) ) __lowercase = tf.function(lowerCAmelCase__ , jit_compile=lowerCAmelCase__ ) __lowercase = tf.math.reduce_mean(xla_generate(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 ) self.assertTrue(np.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1E-4 ) ) @require_tf @slow class _UpperCamelCase ( unittest.TestCase ): """simple docstring""" @property def _SCREAMING_SNAKE_CASE ( self ) -> Dict: '''simple docstring''' return [ "Today is a beautiful day and I want", "In the city of", "Paris is the capital of France and", "Computers and mobile phones have taken", ] def _SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: '''simple docstring''' __lowercase = '''facebook/opt-125m''' __lowercase = [ '''Today is a beautiful day and I want to''', '''In the city of New York, the city''', '''Paris is the capital of France and the capital''', '''Computers and mobile phones have taken over the''', ] __lowercase = [] __lowercase = GPTaTokenizer.from_pretrained(lowerCAmelCase__ ) __lowercase = TFOPTForCausalLM.from_pretrained(lowerCAmelCase__ ) for prompt in self.prompts: __lowercase = tokenizer(lowerCAmelCase__ , return_tensors='''tf''' ).input_ids __lowercase = model.generate(lowerCAmelCase__ , max_length=10 ) __lowercase = tokenizer.batch_decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ ) predicted_outputs += generated_string self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) def _SCREAMING_SNAKE_CASE ( self ) -> int: '''simple docstring''' __lowercase = '''facebook/opt-350m''' __lowercase = GPTaTokenizer.from_pretrained(lowerCAmelCase__ ) __lowercase = TFOPTForCausalLM.from_pretrained(lowerCAmelCase__ ) __lowercase = '''left''' # use different length sentences to test batching __lowercase = [ '''Hello, my dog is a little''', '''Today, I''', ] __lowercase = tokenizer(lowerCAmelCase__ , return_tensors='''tf''' , padding=lowerCAmelCase__ ) __lowercase = inputs['''input_ids'''] __lowercase = model.generate(input_ids=lowerCAmelCase__ , attention_mask=inputs['''attention_mask'''] ) __lowercase = tokenizer(sentences[0] , return_tensors='''tf''' ).input_ids __lowercase = model.generate(input_ids=lowerCAmelCase__ ) __lowercase = inputs_non_padded.shape[-1] - tf.math.reduce_sum( tf.cast(inputs['''attention_mask'''][-1] , tf.intaa ) ) __lowercase = tokenizer(sentences[1] , return_tensors='''tf''' ).input_ids __lowercase = model.generate(input_ids=lowerCAmelCase__ , max_length=model.config.max_length - num_paddings ) __lowercase = tokenizer.batch_decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ ) __lowercase = tokenizer.decode(output_non_padded[0] , skip_special_tokens=lowerCAmelCase__ ) __lowercase = tokenizer.decode(output_padded[0] , skip_special_tokens=lowerCAmelCase__ ) __lowercase = [ '''Hello, my dog is a little bit of a dork.\nI\'m a little bit''', '''Today, I was in the middle of a conversation with a friend about the''', ] self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , [non_padded_sentence, padded_sentence] ) def _SCREAMING_SNAKE_CASE ( self ) -> List[str]: '''simple docstring''' __lowercase = '''facebook/opt-350m''' __lowercase = [ '''Today is a beautiful day and I want to''', '''In the city of San Francisco, the city''', '''Paris is the capital of France and the capital''', '''Computers and mobile phones have taken over the''', ] __lowercase = [] __lowercase = GPTaTokenizer.from_pretrained(lowerCAmelCase__ ) __lowercase = TFOPTForCausalLM.from_pretrained(lowerCAmelCase__ ) for prompt in self.prompts: __lowercase = tokenizer(lowerCAmelCase__ , return_tensors='''tf''' ).input_ids __lowercase = model.generate(lowerCAmelCase__ , max_length=10 ) __lowercase = tokenizer.batch_decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ ) predicted_outputs += generated_string self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ )
210
0
'''simple docstring''' from __future__ import annotations _SCREAMING_SNAKE_CASE = 1_0 def _lowerCAmelCase ( lowerCamelCase_ : list[int] ): __lowercase = 1 __lowercase = max(lowerCAmelCase__ ) while placement <= max_digit: # declare and initialize empty buckets __lowercase = [[] for _ in range(lowerCAmelCase__ )] # split list_of_ints between the buckets for i in list_of_ints: __lowercase = int((i / placement) % RADIX ) buckets[tmp].append(lowerCAmelCase__ ) # put each buckets' contents into list_of_ints __lowercase = 0 for b in range(lowerCAmelCase__ ): for i in buckets[b]: __lowercase = i a += 1 # move to next placement *= RADIX return list_of_ints if __name__ == "__main__": import doctest doctest.testmod()
361
'''simple docstring''' from math import sqrt def _lowerCAmelCase ( lowerCamelCase_ : int ): __lowercase = 0 for i in range(1 , int(sqrt(lowerCamelCase_ ) + 1 ) ): if n % i == 0 and i != sqrt(lowerCamelCase_ ): total += i + n // i elif i == sqrt(lowerCamelCase_ ): total += i return total - n def _lowerCAmelCase ( lowerCamelCase_ : int = 1_0_0_0_0 ): __lowercase = sum( i for i in range(1 , lowerCamelCase_ ) if sum_of_divisors(sum_of_divisors(lowerCamelCase_ ) ) == i and sum_of_divisors(lowerCamelCase_ ) != i ) return total if __name__ == "__main__": print(solution(int(str(input()).strip())))
217
0
"""simple docstring""" from collections import defaultdict def _snake_case ( lowercase__ : int ) -> int: '''simple docstring''' lowerCAmelCase_ :List[Any] = 1 lowerCAmelCase_ :str = True for v in tree[start]: if v not in visited: ret += dfs(lowercase__ ) if ret % 2 == 0: cuts.append(lowercase__ ) return ret def _snake_case ( ) -> int: '''simple docstring''' dfs(1 ) if __name__ == "__main__": __UpperCAmelCase , __UpperCAmelCase = 10, 9 __UpperCAmelCase = defaultdict(list) __UpperCAmelCase = {} __UpperCAmelCase = [] __UpperCAmelCase = 0 __UpperCAmelCase = [(2, 1), (3, 1), (4, 3), (5, 2), (6, 1), (7, 2), (8, 6), (9, 8), (10, 8)] for u, v in edges: tree[u].append(v) tree[v].append(u) even_tree() print(len(cuts) - 1)
84
import warnings from ..trainer import Trainer from ..utils import logging __lowerCamelCase : List[Any] = logging.get_logger(__name__) class __snake_case ( lowerCamelCase_ ): def __init__( self : Tuple , _lowercase : Optional[int]=None , **_lowercase : List[Any] ): """simple docstring""" warnings.warn( """`SageMakerTrainer` is deprecated and will be removed in v5 of Transformers. You can use `Trainer` """ """instead.""" , _lowercase , ) super().__init__(args=_lowercase , **_lowercase )
219
0
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import LevitImageProcessor class UpperCamelCase ( unittest.TestCase ): def __init__( self : List[str] , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Optional[int]=7 , UpperCAmelCase__ : Any=3 , UpperCAmelCase__ : Dict=18 , UpperCAmelCase__ : str=30 , UpperCAmelCase__ : str=400 , UpperCAmelCase__ : Optional[int]=True , UpperCAmelCase__ : Optional[Any]=None , UpperCAmelCase__ : List[Any]=True , UpperCAmelCase__ : Optional[Any]=None , UpperCAmelCase__ : List[str]=True , UpperCAmelCase__ : List[str]=[0.5, 0.5, 0.5] , UpperCAmelCase__ : Any=[0.5, 0.5, 0.5] , ) -> Any: _a : Optional[Any] = size if size is not None else {"""shortest_edge""": 18} _a : Optional[int] = crop_size if crop_size is not None else {"""height""": 18, """width""": 18} _a : int = parent _a : Union[str, Any] = batch_size _a : Union[str, Any] = num_channels _a : Any = image_size _a : Optional[int] = min_resolution _a : str = max_resolution _a : List[Any] = do_resize _a : Union[str, Any] = size _a : List[str] = do_center_crop _a : List[Any] = crop_size _a : Tuple = do_normalize _a : Any = image_mean _a : Tuple = image_std def _lowercase ( self : List[str] ) -> List[Any]: return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "do_center_crop": self.do_center_crop, "size": self.size, "crop_size": self.crop_size, } @require_torch @require_vision class UpperCamelCase ( snake_case_ , unittest.TestCase ): UpperCamelCase : Dict = LevitImageProcessor if is_vision_available() else None def _lowercase ( self : Any ) -> int: _a : Any = LevitImageProcessingTester(self ) @property def _lowercase ( self : Dict ) -> int: return self.image_processor_tester.prepare_image_processor_dict() def _lowercase ( self : Optional[Any] ) -> List[str]: _a : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCAmelCase__ , """image_mean""" ) ) self.assertTrue(hasattr(UpperCAmelCase__ , """image_std""" ) ) self.assertTrue(hasattr(UpperCAmelCase__ , """do_normalize""" ) ) self.assertTrue(hasattr(UpperCAmelCase__ , """do_resize""" ) ) self.assertTrue(hasattr(UpperCAmelCase__ , """do_center_crop""" ) ) self.assertTrue(hasattr(UpperCAmelCase__ , """size""" ) ) def _lowercase ( self : str ) -> Optional[Any]: _a : Any = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""shortest_edge""": 18} ) self.assertEqual(image_processor.crop_size , {"""height""": 18, """width""": 18} ) _a : List[str] = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {"""shortest_edge""": 42} ) self.assertEqual(image_processor.crop_size , {"""height""": 84, """width""": 84} ) def _lowercase ( self : Any ) -> Any: pass def _lowercase ( self : Optional[Any] ) -> Optional[int]: # Initialize image_processing _a : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _a : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase__ , Image.Image ) # Test not batched input _a : List[Any] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched _a : List[str] = image_processing(UpperCAmelCase__ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def _lowercase ( self : Optional[Any] ) -> List[Any]: # Initialize image_processing _a : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _a : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase__ , numpify=UpperCAmelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase__ , np.ndarray ) # Test not batched input _a : int = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched _a : List[Any] = image_processing(UpperCAmelCase__ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def _lowercase ( self : str ) -> List[Any]: # Initialize image_processing _a : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _a : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase__ , torchify=UpperCAmelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase__ , torch.Tensor ) # Test not batched input _a : List[str] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched _a : Optional[int] = image_processing(UpperCAmelCase__ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , )
324
"""simple docstring""" import os import pytest import yaml from datasets.features.features import Features, Value from datasets.info import DatasetInfo, DatasetInfosDict @pytest.mark.parametrize( """files""" , [ ["""full:README.md""", """dataset_infos.json"""], ["""empty:README.md""", """dataset_infos.json"""], ["""dataset_infos.json"""], ["""full:README.md"""], ] , ) def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' _a : Dict = tmp_path_factory.mktemp("""dset_infos_dir""" ) if "full:README.md" in files: with open(dataset_infos_dir / """README.md""" , """w""" ) as f: f.write("""---\ndataset_info:\n dataset_size: 42\n---""" ) if "empty:README.md" in files: with open(dataset_infos_dir / """README.md""" , """w""" ) as f: f.write("""""" ) # we want to support dataset_infos.json for backward compatibility if "dataset_infos.json" in files: with open(dataset_infos_dir / """dataset_infos.json""" , """w""" ) as f: f.write("""{\"default\": {\"dataset_size\": 42}}""" ) _a : Dict = DatasetInfosDict.from_directory(UpperCamelCase__ ) assert dataset_infos assert dataset_infos["default"].dataset_size == 4_2 @pytest.mark.parametrize( """dataset_info""" , [ DatasetInfo(), DatasetInfo( description="""foo""" , features=Features({"""a""": Value("""int32""" )} ) , builder_name="""builder""" , config_name="""config""" , version="""1.0.0""" , splits=[{"""name""": """train"""}] , download_size=4_2 , ), ] , ) def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' _a : Optional[int] = str(UpperCamelCase__ ) dataset_info.write_to_directory(UpperCamelCase__ ) _a : Any = DatasetInfo.from_directory(UpperCamelCase__ ) assert dataset_info == reloaded assert os.path.exists(os.path.join(UpperCamelCase__ , """dataset_info.json""" ) ) def lowerCAmelCase__ ( ): '''simple docstring''' _a : Dict = DatasetInfo( description="""foo""" , citation="""bar""" , homepage="""https://foo.bar""" , license="""CC0""" , features=Features({"""a""": Value("""int32""" )} ) , post_processed={} , supervised_keys=() , task_templates=[] , builder_name="""builder""" , config_name="""config""" , version="""1.0.0""" , splits=[{"""name""": """train""", """num_examples""": 4_2}] , download_checksums={} , download_size=1_3_3_7 , post_processing_size=4_4_2 , dataset_size=1_2_3_4 , size_in_bytes=1_3_3_7 + 4_4_2 + 1_2_3_4 , ) _a : int = dataset_info._to_yaml_dict() assert sorted(UpperCamelCase__ ) == sorted(DatasetInfo._INCLUDED_INFO_IN_YAML ) for key in DatasetInfo._INCLUDED_INFO_IN_YAML: assert key in dataset_info_yaml_dict assert isinstance(dataset_info_yaml_dict[key] , (list, dict, int, str) ) _a : List[str] = yaml.safe_dump(UpperCamelCase__ ) _a : Optional[int] = yaml.safe_load(UpperCamelCase__ ) assert dataset_info_yaml_dict == reloaded def lowerCAmelCase__ ( ): '''simple docstring''' _a : List[Any] = DatasetInfo() _a : Any = dataset_info._to_yaml_dict() assert dataset_info_yaml_dict == {} @pytest.mark.parametrize( """dataset_infos_dict""" , [ DatasetInfosDict(), DatasetInfosDict({"""default""": DatasetInfo()} ), DatasetInfosDict({"""my_config_name""": DatasetInfo()} ), DatasetInfosDict( { """default""": DatasetInfo( description="""foo""" , features=Features({"""a""": Value("""int32""" )} ) , builder_name="""builder""" , config_name="""config""" , version="""1.0.0""" , splits=[{"""name""": """train"""}] , download_size=4_2 , ) } ), DatasetInfosDict( { """v1""": DatasetInfo(dataset_size=4_2 ), """v2""": DatasetInfo(dataset_size=1_3_3_7 ), } ), ] , ) def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' _a : List[Any] = str(UpperCamelCase__ ) dataset_infos_dict.write_to_directory(UpperCamelCase__ ) _a : List[Any] = DatasetInfosDict.from_directory(UpperCamelCase__ ) # the config_name of the dataset_infos_dict take over the attribute for config_name, dataset_info in dataset_infos_dict.items(): _a : str = config_name # the yaml representation doesn't include fields like description or citation # so we just test that we can recover what we can from the yaml _a : Dict = DatasetInfo._from_yaml_dict(dataset_info._to_yaml_dict() ) assert dataset_infos_dict == reloaded if dataset_infos_dict: assert os.path.exists(os.path.join(UpperCamelCase__ , """README.md""" ) )
324
1
import torch from diffusers import DDPMScheduler from .test_schedulers import SchedulerCommonTest class a ( UpperCAmelCase__ ): __lowerCAmelCase : List[str] = (DDPMScheduler,) def __lowerCamelCase ( self :Optional[int] ,**__lowercase :Any ): snake_case__ : Optional[int] = { '''num_train_timesteps''': 1_0_0_0, '''beta_start''': 0.0001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', '''variance_type''': '''fixed_small''', '''clip_sample''': True, } config.update(**UpperCAmelCase__ ) return config def __lowerCamelCase ( self :Optional[int] ): for timesteps in [1, 5, 1_0_0, 1_0_0_0]: self.check_over_configs(num_train_timesteps=UpperCAmelCase__ ) def __lowerCamelCase ( self :Dict ): for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] ,[0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=UpperCAmelCase__ ,beta_end=UpperCAmelCase__ ) def __lowerCamelCase ( self :List[Any] ): for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=UpperCAmelCase__ ) def __lowerCamelCase ( self :str ): for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=UpperCAmelCase__ ) def __lowerCamelCase ( self :List[str] ): for clip_sample in [True, False]: self.check_over_configs(clip_sample=UpperCAmelCase__ ) def __lowerCamelCase ( self :List[str] ): self.check_over_configs(thresholding=UpperCAmelCase__ ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=UpperCAmelCase__ ,prediction_type=UpperCAmelCase__ ,sample_max_value=UpperCAmelCase__ ,) def __lowerCamelCase ( self :Dict ): for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=UpperCAmelCase__ ) def __lowerCamelCase ( self :List[Any] ): for t in [0, 5_0_0, 9_9_9]: self.check_over_forward(time_step=UpperCAmelCase__ ) def __lowerCamelCase ( self :List[str] ): snake_case__ : str = self.scheduler_classes[0] snake_case__ : Union[str, Any] = self.get_scheduler_config() snake_case__ : int = scheduler_class(**UpperCAmelCase__ ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(4_8_7 ) - 0.0_0979 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(9_9_9 ) - 0.02 ) ) < 1e-5 def __lowerCamelCase ( self :Union[str, Any] ): snake_case__ : List[Any] = self.scheduler_classes[0] snake_case__ : Tuple = self.get_scheduler_config() snake_case__ : str = scheduler_class(**UpperCAmelCase__ ) snake_case__ : int = len(UpperCAmelCase__ ) snake_case__ : List[str] = self.dummy_model() snake_case__ : int = self.dummy_sample_deter snake_case__ : List[str] = torch.manual_seed(0 ) for t in reversed(range(UpperCAmelCase__ ) ): # 1. predict noise residual snake_case__ : Union[str, Any] = model(UpperCAmelCase__ ,UpperCAmelCase__ ) # 2. predict previous mean of sample x_t-1 snake_case__ : List[Any] = scheduler.step(UpperCAmelCase__ ,UpperCAmelCase__ ,UpperCAmelCase__ ,generator=UpperCAmelCase__ ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance snake_case__ : List[Any] = pred_prev_sample snake_case__ : Dict = torch.sum(torch.abs(UpperCAmelCase__ ) ) snake_case__ : Dict = torch.mean(torch.abs(UpperCAmelCase__ ) ) assert abs(result_sum.item() - 258.9606 ) < 1e-2 assert abs(result_mean.item() - 0.3372 ) < 1e-3 def __lowerCamelCase ( self :List[Any] ): snake_case__ : List[str] = self.scheduler_classes[0] snake_case__ : Optional[Any] = self.get_scheduler_config(prediction_type='''v_prediction''' ) snake_case__ : int = scheduler_class(**UpperCAmelCase__ ) snake_case__ : Any = len(UpperCAmelCase__ ) snake_case__ : int = self.dummy_model() snake_case__ : Optional[Any] = self.dummy_sample_deter snake_case__ : Tuple = torch.manual_seed(0 ) for t in reversed(range(UpperCAmelCase__ ) ): # 1. predict noise residual snake_case__ : Optional[Any] = model(UpperCAmelCase__ ,UpperCAmelCase__ ) # 2. predict previous mean of sample x_t-1 snake_case__ : List[str] = scheduler.step(UpperCAmelCase__ ,UpperCAmelCase__ ,UpperCAmelCase__ ,generator=UpperCAmelCase__ ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance snake_case__ : Tuple = pred_prev_sample snake_case__ : Tuple = torch.sum(torch.abs(UpperCAmelCase__ ) ) snake_case__ : str = torch.mean(torch.abs(UpperCAmelCase__ ) ) assert abs(result_sum.item() - 202.0296 ) < 1e-2 assert abs(result_mean.item() - 0.2631 ) < 1e-3 def __lowerCamelCase ( self :List[Any] ): snake_case__ : Any = self.scheduler_classes[0] snake_case__ : str = self.get_scheduler_config() snake_case__ : str = scheduler_class(**UpperCAmelCase__ ) snake_case__ : List[str] = [1_0_0, 8_7, 5_0, 1, 0] scheduler.set_timesteps(timesteps=UpperCAmelCase__ ) snake_case__ : List[Any] = scheduler.timesteps for i, timestep in enumerate(UpperCAmelCase__ ): if i == len(UpperCAmelCase__ ) - 1: snake_case__ : Dict = -1 else: snake_case__ : int = timesteps[i + 1] snake_case__ : Any = scheduler.previous_timestep(UpperCAmelCase__ ) snake_case__ : List[Any] = prev_t.item() self.assertEqual(UpperCAmelCase__ ,UpperCAmelCase__ ) def __lowerCamelCase ( self :str ): snake_case__ : List[Any] = self.scheduler_classes[0] snake_case__ : Dict = self.get_scheduler_config() snake_case__ : Union[str, Any] = scheduler_class(**UpperCAmelCase__ ) snake_case__ : Optional[Any] = [1_0_0, 8_7, 5_0, 5_1, 0] with self.assertRaises(UpperCAmelCase__ ,msg='''`custom_timesteps` must be in descending order.''' ): scheduler.set_timesteps(timesteps=UpperCAmelCase__ ) def __lowerCamelCase ( self :List[str] ): snake_case__ : int = self.scheduler_classes[0] snake_case__ : Optional[Any] = self.get_scheduler_config() snake_case__ : Optional[int] = scheduler_class(**UpperCAmelCase__ ) snake_case__ : str = [1_0_0, 8_7, 5_0, 1, 0] snake_case__ : Union[str, Any] = len(UpperCAmelCase__ ) with self.assertRaises(UpperCAmelCase__ ,msg='''Can only pass one of `num_inference_steps` or `custom_timesteps`.''' ): scheduler.set_timesteps(num_inference_steps=UpperCAmelCase__ ,timesteps=UpperCAmelCase__ ) def __lowerCamelCase ( self :Union[str, Any] ): snake_case__ : Optional[int] = self.scheduler_classes[0] snake_case__ : Union[str, Any] = self.get_scheduler_config() snake_case__ : Dict = scheduler_class(**UpperCAmelCase__ ) snake_case__ : Tuple = [scheduler.config.num_train_timesteps] with self.assertRaises( UpperCAmelCase__ ,msg='''`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}''' ,): scheduler.set_timesteps(timesteps=UpperCAmelCase__ )
230
import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert_fast import BertTokenizerFast from .tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer, DPRReaderTokenizer _lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) _lowerCamelCase : Tuple = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} _lowerCamelCase : Union[str, Any] = { """vocab_file""": { """facebook/dpr-ctx_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt""" ), """facebook/dpr-ctx_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """facebook/dpr-ctx_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json""" ), """facebook/dpr-ctx_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json""" ), }, } _lowerCamelCase : str = { """vocab_file""": { """facebook/dpr-question_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt""" ), """facebook/dpr-question_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """facebook/dpr-question_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json""" ), """facebook/dpr-question_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json""" ), }, } _lowerCamelCase : str = { """vocab_file""": { """facebook/dpr-reader-single-nq-base""": ( """https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt""" ), """facebook/dpr-reader-multiset-base""": ( """https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """facebook/dpr-reader-single-nq-base""": ( """https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json""" ), """facebook/dpr-reader-multiset-base""": ( """https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json""" ), }, } _lowerCamelCase : Any = { """facebook/dpr-ctx_encoder-single-nq-base""": 512, """facebook/dpr-ctx_encoder-multiset-base""": 512, } _lowerCamelCase : List[str] = { """facebook/dpr-question_encoder-single-nq-base""": 512, """facebook/dpr-question_encoder-multiset-base""": 512, } _lowerCamelCase : Tuple = { """facebook/dpr-reader-single-nq-base""": 512, """facebook/dpr-reader-multiset-base""": 512, } _lowerCamelCase : Optional[Any] = { """facebook/dpr-ctx_encoder-single-nq-base""": {"""do_lower_case""": True}, """facebook/dpr-ctx_encoder-multiset-base""": {"""do_lower_case""": True}, } _lowerCamelCase : Optional[int] = { """facebook/dpr-question_encoder-single-nq-base""": {"""do_lower_case""": True}, """facebook/dpr-question_encoder-multiset-base""": {"""do_lower_case""": True}, } _lowerCamelCase : Optional[Any] = { """facebook/dpr-reader-single-nq-base""": {"""do_lower_case""": True}, """facebook/dpr-reader-multiset-base""": {"""do_lower_case""": True}, } class UpperCamelCase_ ( UpperCAmelCase__ ): '''simple docstring''' UpperCAmelCase__ = VOCAB_FILES_NAMES UpperCAmelCase__ = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__ = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION UpperCAmelCase__ = DPRContextEncoderTokenizer class UpperCamelCase_ ( UpperCAmelCase__ ): '''simple docstring''' UpperCAmelCase__ = VOCAB_FILES_NAMES UpperCAmelCase__ = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__ = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION UpperCAmelCase__ = DPRQuestionEncoderTokenizer _lowerCamelCase : int = collections.namedtuple( """DPRSpanPrediction""", ["""span_score""", """relevance_score""", """doc_id""", """start_index""", """end_index""", """text"""] ) _lowerCamelCase : Any = collections.namedtuple("""DPRReaderOutput""", ["""start_logits""", """end_logits""", """relevance_logits"""]) _lowerCamelCase : Dict = r""" Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`. It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers), using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)` with the format: [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids> Args: questions (`str` or `List[str]`): The questions to be encoded. You can specify one question for many passages. In this case, the question will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in `titles` or `texts`. titles (`str` or `List[str]`): The passages titles to be encoded. This can be a string or a list of strings if there are several passages. texts (`str` or `List[str]`): The passages texts to be encoded. This can be a string or a list of strings if there are several passages. padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`): Activates and controls padding. Accepts the following values: - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence if provided). - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different lengths). truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`): Activates and controls truncation. Accepts the following values: - `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will truncate token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch of pairs) is provided. - `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths greater than the model maximum admissible input size). max_length (`int`, *optional*): Controls the maximum length to use by one of the truncation/padding parameters. If left unset or set to `None`, this will use the predefined model maximum length if a maximum length is required by one of the truncation/padding parameters. If the model has no specific maximum input length (like XLNet) truncation/padding to a maximum length will be deactivated. return_tensors (`str` or [`~utils.TensorType`], *optional*): If set, will return tensors instead of list of python integers. Acceptable values are: - `'tf'`: Return TensorFlow `tf.constant` objects. - `'pt'`: Return PyTorch `torch.Tensor` objects. - `'np'`: Return Numpy `np.ndarray` objects. return_attention_mask (`bool`, *optional*): Whether or not to return the attention mask. If not set, will return the attention mask according to the specific tokenizer's default, defined by the `return_outputs` attribute. [What are attention masks?](../glossary#attention-mask) Return: `Dict[str, List[List[int]]]`: A dictionary with the following keys: - `input_ids`: List of token ids to be fed to a model. - `attention_mask`: List of indices specifying which tokens should be attended to by the model. """ @add_start_docstrings(UpperCAmelCase__ ) class UpperCamelCase_ : '''simple docstring''' def __call__( self : Optional[int] , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Optional[str] = None , UpperCAmelCase__ : Optional[str] = None , UpperCAmelCase__ : Union[bool, str] = False , UpperCAmelCase__ : Union[bool, str] = False , UpperCAmelCase__ : Optional[int] = None , UpperCAmelCase__ : Optional[Union[str, TensorType]] = None , UpperCAmelCase__ : Optional[bool] = None , **UpperCAmelCase__ : Optional[int] , ) ->BatchEncoding: '''simple docstring''' if titles is None and texts is None: return super().__call__( UpperCAmelCase__ , padding=UpperCAmelCase__ , truncation=UpperCAmelCase__ , max_length=UpperCAmelCase__ , return_tensors=UpperCAmelCase__ , return_attention_mask=UpperCAmelCase__ , **UpperCAmelCase__ , ) elif titles is None or texts is None: A__ = titles if texts is None else texts return super().__call__( UpperCAmelCase__ , UpperCAmelCase__ , padding=UpperCAmelCase__ , truncation=UpperCAmelCase__ , max_length=UpperCAmelCase__ , return_tensors=UpperCAmelCase__ , return_attention_mask=UpperCAmelCase__ , **UpperCAmelCase__ , ) A__ = titles if not isinstance(UpperCAmelCase__ , UpperCAmelCase__) else [titles] A__ = texts if not isinstance(UpperCAmelCase__ , UpperCAmelCase__) else [texts] A__ = len(UpperCAmelCase__) A__ = questions if not isinstance(UpperCAmelCase__ , UpperCAmelCase__) else [questions] * n_passages assert len(UpperCAmelCase__) == len( UpperCAmelCase__), f"""There should be as many titles than texts but got {len(UpperCAmelCase__)} titles and {len(UpperCAmelCase__)} texts.""" A__ = super().__call__(UpperCAmelCase__ , UpperCAmelCase__ , padding=UpperCAmelCase__ , truncation=UpperCAmelCase__)['''input_ids'''] A__ = super().__call__(UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ , padding=UpperCAmelCase__ , truncation=UpperCAmelCase__)['''input_ids'''] A__ = { '''input_ids''': [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(UpperCAmelCase__ , UpperCAmelCase__) ] } if return_attention_mask is not False: A__ = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id) for input_id in input_ids]) A__ = attention_mask return self.pad(UpperCAmelCase__ , padding=UpperCAmelCase__ , max_length=UpperCAmelCase__ , return_tensors=UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : List[str] , UpperCAmelCase__ : BatchEncoding , UpperCAmelCase__ : DPRReaderOutput , UpperCAmelCase__ : int = 16 , UpperCAmelCase__ : int = 64 , UpperCAmelCase__ : int = 4 , ) ->List[DPRSpanPrediction]: '''simple docstring''' A__ = reader_input['''input_ids'''] A__ , A__ , A__ = reader_output[:3] A__ = len(UpperCAmelCase__) A__ = sorted(range(UpperCAmelCase__) , reverse=UpperCAmelCase__ , key=relevance_logits.__getitem__) A__ = [] for doc_id in sorted_docs: A__ = list(input_ids[doc_id]) # assuming question & title information is at the beginning of the sequence A__ = sequence_ids.index(self.sep_token_id , 2) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: A__ = sequence_ids.index(self.pad_token_id) else: A__ = len(UpperCAmelCase__) A__ = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=UpperCAmelCase__ , top_spans=UpperCAmelCase__ , ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=UpperCAmelCase__ , start_index=UpperCAmelCase__ , end_index=UpperCAmelCase__ , text=self.decode(sequence_ids[start_index : end_index + 1]) , )) if len(UpperCAmelCase__) >= num_spans: break return nbest_spans_predictions[:num_spans] def SCREAMING_SNAKE_CASE ( self : Any , UpperCAmelCase__ : List[int] , UpperCAmelCase__ : List[int] , UpperCAmelCase__ : int , UpperCAmelCase__ : int , ) ->List[DPRSpanPrediction]: '''simple docstring''' A__ = [] for start_index, start_score in enumerate(UpperCAmelCase__): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length]): scores.append(((start_index, start_index + answer_length), start_score + end_score)) A__ = sorted(UpperCAmelCase__ , key=lambda UpperCAmelCase__: x[1] , reverse=UpperCAmelCase__) A__ = [] for (start_index, end_index), score in scores: assert start_index <= end_index, f"""Wrong span indices: [{start_index}:{end_index}]""" A__ = end_index - start_index + 1 assert length <= max_answer_length, f"""Span is too long: {length} > {max_answer_length}""" if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals): continue chosen_span_intervals.append((start_index, end_index)) if len(UpperCAmelCase__) == top_spans: break return chosen_span_intervals @add_end_docstrings(UpperCAmelCase__ ) class UpperCamelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ ): '''simple docstring''' UpperCAmelCase__ = VOCAB_FILES_NAMES UpperCAmelCase__ = READER_PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__ = READER_PRETRAINED_INIT_CONFIGURATION UpperCAmelCase__ = ['''input_ids''', '''attention_mask'''] UpperCAmelCase__ = DPRReaderTokenizer
14
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) lowerCamelCase_ = { '''configuration_mega''': ['''MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MegaConfig''', '''MegaOnnxConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ = [ '''MEGA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MegaForCausalLM''', '''MegaForMaskedLM''', '''MegaForMultipleChoice''', '''MegaForQuestionAnswering''', '''MegaForSequenceClassification''', '''MegaForTokenClassification''', '''MegaModel''', '''MegaPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mega import MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP, MegaConfig, MegaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mega import ( MEGA_PRETRAINED_MODEL_ARCHIVE_LIST, MegaForCausalLM, MegaForMaskedLM, MegaForMultipleChoice, MegaForQuestionAnswering, MegaForSequenceClassification, MegaForTokenClassification, MegaModel, MegaPreTrainedModel, ) else: import sys lowerCamelCase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
174
'''simple docstring''' from argparse import ArgumentParser from datasets.commands.convert import ConvertCommand from datasets.commands.dummy_data import DummyDataCommand from datasets.commands.env import EnvironmentCommand from datasets.commands.run_beam import RunBeamCommand from datasets.commands.test import TestCommand from datasets.utils.logging import set_verbosity_info def __lowercase ( __lowercase ) -> str: '''simple docstring''' return {key.lstrip("-" ): value for key, value in zip(unknown_args[::2] , unknown_args[1::2] )} def __lowercase ( ) -> Tuple: '''simple docstring''' _A = ArgumentParser( "HuggingFace Datasets CLI tool" , usage="datasets-cli <command> [<args>]" , allow_abbrev=__lowercase ) _A = parser.add_subparsers(help="datasets-cli command helpers" ) set_verbosity_info() # Register commands ConvertCommand.register_subcommand(__lowercase ) EnvironmentCommand.register_subcommand(__lowercase ) TestCommand.register_subcommand(__lowercase ) RunBeamCommand.register_subcommand(__lowercase ) DummyDataCommand.register_subcommand(__lowercase ) # Parse args _A , _A = parser.parse_known_args() if not hasattr(__lowercase , "func" ): parser.print_help() exit(1 ) _A = parse_unknown_args(__lowercase ) # Run _A = args.func(__lowercase , **__lowercase ) service.run() if __name__ == "__main__": main()
174
1
def UpperCAmelCase_ ( _A = 4_00_00_00 ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = [] SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = 0, 1 while b <= n: if b % 2 == 0: even_fibs.append(_A ) SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = b, a + b return sum(_A ) if __name__ == "__main__": print(F"{solution() = }")
314
import unittest import torch from torch import nn from accelerate.test_utils import require_cuda from accelerate.utils.memory import find_executable_batch_size, release_memory def UpperCAmelCase_ ( ): '''simple docstring''' raise RuntimeError('''CUDA out of memory.''' ) class UpperCAmelCase__ ( nn.Module ): """simple docstring""" def __init__( self : Any ) -> int: super().__init__() SCREAMING_SNAKE_CASE__ = nn.Linear(3 , 4 ) SCREAMING_SNAKE_CASE__ = nn.BatchNormad(4 ) SCREAMING_SNAKE_CASE__ = nn.Linear(4 , 5 ) def lowercase_ ( self : int , __lowerCamelCase : Optional[int] ) -> Tuple: return self.lineara(self.batchnorm(self.lineara(__lowerCamelCase ) ) ) class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" def lowercase_ ( self : List[Any] ) -> Dict: SCREAMING_SNAKE_CASE__ = [] @find_executable_batch_size(starting_batch_size=128 ) def mock_training_loop_function(__lowerCamelCase : Optional[int] ): nonlocal batch_sizes batch_sizes.append(__lowerCamelCase ) if batch_size != 8: raise_fake_out_of_memory() mock_training_loop_function() self.assertListEqual(__lowerCamelCase , [128, 64, 32, 16, 8] ) def lowercase_ ( self : Optional[Any] ) -> List[Any]: SCREAMING_SNAKE_CASE__ = [] @find_executable_batch_size(starting_batch_size=128 ) def mock_training_loop_function(__lowerCamelCase : List[Any] , __lowerCamelCase : Union[str, Any] ): nonlocal batch_sizes batch_sizes.append(__lowerCamelCase ) if batch_size != 8: raise_fake_out_of_memory() return batch_size, arga SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = mock_training_loop_function('''hello''' ) self.assertListEqual(__lowerCamelCase , [128, 64, 32, 16, 8] ) self.assertListEqual([bs, arga] , [8, '''hello'''] ) def lowercase_ ( self : str ) -> List[Any]: @find_executable_batch_size(starting_batch_size=0 ) def mock_training_loop_function(__lowerCamelCase : Optional[Any] ): pass with self.assertRaises(__lowerCamelCase ) as cm: mock_training_loop_function() self.assertIn('''No executable batch size found, reached zero.''' , cm.exception.args[0] ) def lowercase_ ( self : Union[str, Any] ) -> List[str]: @find_executable_batch_size(starting_batch_size=16 ) def mock_training_loop_function(__lowerCamelCase : Dict ): if batch_size > 0: raise_fake_out_of_memory() pass with self.assertRaises(__lowerCamelCase ) as cm: mock_training_loop_function() self.assertIn('''No executable batch size found, reached zero.''' , cm.exception.args[0] ) def lowercase_ ( self : List[Any] ) -> List[str]: @find_executable_batch_size(starting_batch_size=128 ) def mock_training_loop_function(__lowerCamelCase : int , __lowerCamelCase : Optional[int] , __lowerCamelCase : Any ): if batch_size != 8: raise raise_fake_out_of_memory() with self.assertRaises(__lowerCamelCase ) as cm: mock_training_loop_function(128 , '''hello''' , '''world''' ) self.assertIn('''Batch size was passed into `f`''' , cm.exception.args[0] ) self.assertIn('''`f(arg1=\'hello\', arg2=\'world\')''' , cm.exception.args[0] ) def lowercase_ ( self : Union[str, Any] ) -> int: @find_executable_batch_size(starting_batch_size=16 ) def mock_training_loop_function(__lowerCamelCase : Tuple ): raise ValueError('''Oops, we had an error!''' ) with self.assertRaises(__lowerCamelCase ) as cm: mock_training_loop_function() self.assertIn('''Oops, we had an error!''' , cm.exception.args[0] ) @require_cuda def lowercase_ ( self : Optional[int] ) -> str: SCREAMING_SNAKE_CASE__ = torch.cuda.memory_allocated() SCREAMING_SNAKE_CASE__ = ModelForTest() model.cuda() self.assertGreater(torch.cuda.memory_allocated() , __lowerCamelCase ) SCREAMING_SNAKE_CASE__ = release_memory(__lowerCamelCase ) self.assertEqual(torch.cuda.memory_allocated() , __lowerCamelCase )
314
1
def A__ ( lowerCamelCase = 10_00 ) -> int: UpperCamelCase_, UpperCamelCase_: List[str] = 1, 1 UpperCamelCase_: int = 2 while True: UpperCamelCase_: Optional[int] = 0 UpperCamelCase_: Dict = fa + fa UpperCamelCase_, UpperCamelCase_: Optional[Any] = fa, f index += 1 for _ in str(lowerCamelCase ): i += 1 if i == n: break return index if __name__ == "__main__": print(solution(int(str(input()).strip())))
223
def A__ ( lowerCamelCase , lowerCamelCase ) -> float: if mass < 0: raise ValueError("""The mass of a body cannot be negative""" ) return 0.5 * mass * abs(lowerCamelCase ) * abs(lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
223
1
import argparse import gdown import numpy as np import torch from huggingface_hub import hf_hub_download from transformers import ( CLIPTokenizer, CLIPTokenizerFast, VideoMAEImageProcessor, XCLIPConfig, XCLIPModel, XCLIPProcessor, XCLIPTextConfig, XCLIPVisionConfig, ) def __lowercase ( __lowerCAmelCase : str , __lowerCAmelCase : List[str] ): a__ = XCLIPTextConfig() # derive patch size from model name a__ = model_name.find('patch' ) a__ = int(model_name[start_idx + len('patch' ) : start_idx + len('patch' ) + 2] ) a__ = XCLIPVisionConfig(patch_size=__lowerCAmelCase , num_frames=__lowerCAmelCase ) if "large" in model_name: a__ = 7_6_8 a__ = 3_0_7_2 a__ = 1_2 a__ = 1_0_2_4 a__ = 4_0_9_6 a__ = 1_6 a__ = 2_4 a__ = 7_6_8 a__ = 3_0_7_2 if model_name == "xclip-large-patch14-16-frames": a__ = 3_3_6 a__ = XCLIPConfig.from_text_vision_configs(__lowerCAmelCase , __lowerCAmelCase ) if "large" in model_name: a__ = 7_6_8 return config def __lowercase ( __lowerCAmelCase : Union[str, Any] ): # text encoder if name == "token_embedding.weight": a__ = name.replace('token_embedding.weight' , 'text_model.embeddings.token_embedding.weight' ) if name == "positional_embedding": a__ = name.replace('positional_embedding' , 'text_model.embeddings.position_embedding.weight' ) if "ln_1" in name: a__ = name.replace('ln_1' , 'layer_norm1' ) if "ln_2" in name: a__ = name.replace('ln_2' , 'layer_norm2' ) if "c_fc" in name: a__ = name.replace('c_fc' , 'fc1' ) if "c_proj" in name: a__ = name.replace('c_proj' , 'fc2' ) if name.startswith('transformer.resblocks' ): a__ = name.replace('transformer.resblocks' , 'text_model.encoder.layers' ) if "attn.out_proj" in name and "message" not in name: a__ = name.replace('attn.out_proj' , 'self_attn.out_proj' ) if "ln_final" in name: a__ = name.replace('ln_final' , 'text_model.final_layer_norm' ) # visual encoder if name == "visual.class_embedding": a__ = name.replace('visual.class_embedding' , 'vision_model.embeddings.class_embedding' ) if name == "visual.positional_embedding": a__ = name.replace('visual.positional_embedding' , 'vision_model.embeddings.position_embedding.weight' ) if name.startswith('visual.transformer.resblocks' ): a__ = name.replace('visual.transformer.resblocks' , 'vision_model.encoder.layers' ) if "visual.conv1" in name: a__ = name.replace('visual.conv1' , 'vision_model.embeddings.patch_embedding' ) if "visual.ln_pre" in name: a__ = name.replace('visual.ln_pre' , 'vision_model.pre_layernorm' ) if "visual.ln_post" in name: a__ = name.replace('visual.ln_post' , 'vision_model.post_layernorm' ) if "visual.proj" in name: a__ = name.replace('visual.proj' , 'visual_projection.weight' ) if "text_projection" in name: a__ = name.replace('text_projection' , 'text_projection.weight' ) # things on top if "prompts_visual_proj" in name: a__ = name.replace('prompts_visual_proj' , 'prompts_visual_projection' ) if "prompts_visual_ln" in name: a__ = name.replace('prompts_visual_ln' , 'prompts_visual_layernorm' ) # mit if name == "mit.positional_embedding": a__ = name.replace('positional' , 'position' ) if name.startswith('mit.resblocks' ): a__ = name.replace('mit.resblocks' , 'mit.encoder.layers' ) # prompts generator if name.startswith('prompts_generator.norm' ): a__ = name.replace('prompts_generator.norm' , 'prompts_generator.layernorm' ) return name def __lowercase ( __lowerCAmelCase : str , __lowerCAmelCase : List[str] ): for key in orig_state_dict.copy().keys(): a__ = orig_state_dict.pop(__lowerCAmelCase ) if "attn.in_proj" in key: a__ = key.split('.' ) if key.startswith('visual' ): a__ = key_split[3] a__ = config.vision_config.hidden_size if "message_attn" in key: if "weight" in key: a__ = val[ :dim, : ] a__ = val[ dim : dim * 2, : ] a__ = val[ -dim:, : ] else: a__ = val[ :dim ] a__ = val[ dim : dim * 2 ] a__ = val[ -dim: ] else: if "weight" in key: a__ = val[ :dim, : ] a__ = val[ dim : dim * 2, : ] a__ = val[ -dim:, : ] else: a__ = val[:dim] a__ = val[ dim : dim * 2 ] a__ = val[-dim:] elif key.startswith('mit' ): a__ = key_split[2] a__ = config.vision_config.mit_hidden_size if "weight" in key: a__ = val[:dim, :] a__ = val[dim : dim * 2, :] a__ = val[-dim:, :] else: a__ = val[:dim] a__ = val[dim : dim * 2] a__ = val[-dim:] else: a__ = key_split[2] a__ = config.text_config.hidden_size if "weight" in key: a__ = val[:dim, :] a__ = val[ dim : dim * 2, : ] a__ = val[-dim:, :] else: a__ = val[:dim] a__ = val[ dim : dim * 2 ] a__ = val[-dim:] else: a__ = rename_key(__lowerCAmelCase ) if new_key_name in ["visual_projection.weight", "text_projection.weight"]: a__ = val.T a__ = val return orig_state_dict def __lowercase ( __lowerCAmelCase : List[str] ): if num_frames == 8: a__ = 'eating_spaghetti_8_frames.npy' elif num_frames == 1_6: a__ = 'eating_spaghetti.npy' elif num_frames == 3_2: a__ = 'eating_spaghetti_32_frames.npy' a__ = hf_hub_download( repo_id='hf-internal-testing/spaghetti-video' , filename=__lowerCAmelCase , repo_type='dataset' , ) a__ = np.load(__lowerCAmelCase ) return list(__lowerCAmelCase ) def __lowercase ( __lowerCAmelCase : int , __lowerCAmelCase : str=None , __lowerCAmelCase : Optional[Any]=False ): a__ = { # fully supervised kinetics-400 checkpoints 'xclip-base-patch32': 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_8.pth', 'xclip-base-patch32-16-frames': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_16.pth' ), 'xclip-base-patch16': 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_8.pth', 'xclip-base-patch16-16-frames': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_16.pth' ), 'xclip-large-patch14': 'https://drive.google.com/u/0/uc?id=1NUOImq0o5DlQTST17iIP3vG7DgmHQuCx&amp;export=download&amp;confirm=t&amp;uuid=b26caedc-88e2-473e-830a-9d158b653cdb', 'xclip-large-patch14-16-frames': 'https://drive.google.com/u/0/uc?id=1FOYgnJc097OJ4lGwtRCCydQyVPJEOH7d&amp;export=download&amp;confirm=t&amp;uuid=538fa810-e671-4050-b385-9a623f89804f', # fully supervised kinetics-600 checkpoints 'xclip-base-patch16-kinetics-600': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_8.pth' ), 'xclip-base-patch16-kinetics-600-16-frames': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_16.pth' ), 'xclip-large-patch14-kinetics-600': 'https://drive.google.com/u/0/uc?id=1FV8C1INuM91sLAN4ImjzePLIlpMSihwV&amp;export=download&amp;confirm=t&amp;uuid=141d4977-4a65-44ae-864f-4b0c19f838be', # few shot 'xclip-base-patch16-hmdb-2-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_2.pth' ), 'xclip-base-patch16-hmdb-4-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_4.pth' ), 'xclip-base-patch16-hmdb-8-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_8.pth' ), 'xclip-base-patch16-hmdb-16-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_16.pth' ), 'xclip-base-patch16-ucf-2-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_2.pth' ), 'xclip-base-patch16-ucf-4-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_4.pth' ), 'xclip-base-patch16-ucf-8-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_8.pth' ), 'xclip-base-patch16-ucf-16-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_16.pth' ), # zero shot 'xclip-base-patch16-zero-shot': 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/zero.pth', } a__ = model_to_url[model_name] a__ = 8 if "16-frames" in model_name: a__ = 1_6 elif "shot" in model_name: a__ = 3_2 a__ = get_xclip_config(__lowerCAmelCase , __lowerCAmelCase ) a__ = XCLIPModel(__lowerCAmelCase ) model.eval() if "drive" in checkpoint_url: a__ = 'pytorch_model.bin' gdown.cached_download(__lowerCAmelCase , __lowerCAmelCase , quiet=__lowerCAmelCase ) a__ = torch.load(__lowerCAmelCase , map_location='cpu' )['model'] else: a__ = torch.hub.load_state_dict_from_url(__lowerCAmelCase )['model'] a__ = convert_state_dict(__lowerCAmelCase , __lowerCAmelCase ) a__ = XCLIPModel(__lowerCAmelCase ) a__ , a__ = model.load_state_dict(__lowerCAmelCase , strict=__lowerCAmelCase ) assert missing_keys == ["text_model.embeddings.position_ids", "vision_model.embeddings.position_ids"] model.eval() a__ = 3_3_6 if model_name == 'xclip-large-patch14-16-frames' else 2_2_4 a__ = VideoMAEImageProcessor(size=__lowerCAmelCase ) a__ = CLIPTokenizer.from_pretrained('openai/clip-vit-base-patch32' ) a__ = CLIPTokenizerFast.from_pretrained('openai/clip-vit-base-patch32' ) a__ = XCLIPProcessor(image_processor=__lowerCAmelCase , tokenizer=__lowerCAmelCase ) a__ = prepare_video(__lowerCAmelCase ) a__ = processor( text=['playing sports', 'eating spaghetti', 'go shopping'] , videos=__lowerCAmelCase , return_tensors='pt' , padding=__lowerCAmelCase ) print('Shape of pixel values:' , inputs.pixel_values.shape ) with torch.no_grad(): a__ = model(**__lowerCAmelCase ) # Verify outputs a__ = outputs.logits_per_video a__ = logits_per_video.softmax(dim=1 ) print('Probs:' , __lowerCAmelCase ) # kinetics-400 if model_name == "xclip-base-patch32": a__ = torch.tensor([[0.0_019, 0.9_951, 0.0_030]] ) elif model_name == "xclip-base-patch32-16-frames": a__ = torch.tensor([[7.0_9_9_9E-0_4, 9.9_8_8_3E-0_1, 4.5_5_8_0E-0_4]] ) elif model_name == "xclip-base-patch16": a__ = torch.tensor([[0.0_083, 0.9_681, 0.0_236]] ) elif model_name == "xclip-base-patch16-16-frames": a__ = torch.tensor([[7.6_9_3_7E-0_4, 9.9_7_2_8E-0_1, 1.9_4_7_3E-0_3]] ) elif model_name == "xclip-large-patch14": a__ = torch.tensor([[0.0_062, 0.9_864, 0.0_075]] ) elif model_name == "xclip-large-patch14-16-frames": a__ = torch.tensor([[3.3_8_7_7E-0_4, 9.9_9_3_7E-0_1, 2.8_8_8_8E-0_4]] ) # kinetics-600 elif model_name == "xclip-base-patch16-kinetics-600": a__ = torch.tensor([[0.0_555, 0.8_914, 0.0_531]] ) elif model_name == "xclip-base-patch16-kinetics-600-16-frames": a__ = torch.tensor([[3.8_5_5_4E-0_4, 9.9_9_2_9E-0_1, 3.2_7_5_4E-0_4]] ) elif model_name == "xclip-large-patch14-kinetics-600": a__ = torch.tensor([[0.0_036, 0.9_920, 0.0_045]] ) # few shot elif model_name == "xclip-base-patch16-hmdb-2-shot": a__ = torch.tensor([[7.1_8_9_0E-0_6, 9.9_9_9_4E-0_1, 5.6_5_5_9E-0_5]] ) elif model_name == "xclip-base-patch16-hmdb-4-shot": a__ = torch.tensor([[1.0_3_2_0E-0_5, 9.9_9_9_3E-0_1, 6.2_4_3_5E-0_5]] ) elif model_name == "xclip-base-patch16-hmdb-8-shot": a__ = torch.tensor([[4.1_3_7_7E-0_6, 9.9_9_9_0E-0_1, 9.8_3_8_6E-0_5]] ) elif model_name == "xclip-base-patch16-hmdb-16-shot": a__ = torch.tensor([[4.1_3_4_7E-0_5, 9.9_9_6_2E-0_1, 3.3_4_1_1E-0_4]] ) elif model_name == "xclip-base-patch16-ucf-2-shot": a__ = torch.tensor([[8.5_8_5_7E-0_5, 9.9_9_2_8E-0_1, 6.3_2_9_1E-0_4]] ) elif model_name == "xclip-base-patch16-ucf-4-shot": a__ = torch.tensor([[8.5_8_5_7E-0_5, 9.9_9_2_8E-0_1, 6.3_2_9_1E-0_4]] ) elif model_name == "xclip-base-patch16-ucf-8-shot": a__ = torch.tensor([[0.0_027, 0.9_904, 0.0_070]] ) elif model_name == "xclip-base-patch16-ucf-16-shot": a__ = torch.tensor([[9.8_2_1_9E-0_4, 9.9_5_9_3E-0_1, 3.0_8_6_3E-0_3]] ) # zero shot elif model_name == "xclip-base-patch16-zero-shot": a__ = torch.tensor([[3.5_0_8_2E-0_4, 9.9_7_8_5E-0_1, 1.7_9_6_6E-0_3]] ) else: raise ValueError(F'Model name {model_name} not supported' ) assert torch.allclose(__lowerCAmelCase , __lowerCAmelCase , atol=1E-3 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: print(F'Saving model {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(__lowerCAmelCase ) if push_to_hub: print('Pushing model, processor and slow tokenizer files to the hub...' ) model.push_to_hub(__lowerCAmelCase , organization='nielsr' ) processor.push_to_hub(__lowerCAmelCase , organization='nielsr' ) slow_tokenizer.push_to_hub(__lowerCAmelCase , organization='nielsr' ) if __name__ == "__main__": snake_case : str = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''xclip-base-patch32''', type=str, help='''Name of the model.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) snake_case : int = parser.parse_args() convert_xclip_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
240
def __lowercase ( __lowerCAmelCase : list[int] ): a__ = [] if len(__lowerCAmelCase ) == 1: return [nums.copy()] for _ in range(len(__lowerCAmelCase ) ): a__ = nums.pop(0 ) a__ = permute(__lowerCAmelCase ) for perm in permutations: perm.append(__lowerCAmelCase ) result.extend(__lowerCAmelCase ) nums.append(__lowerCAmelCase ) return result def __lowercase ( __lowerCAmelCase : Optional[int] ): def backtrack(__lowerCAmelCase : Any ): if start == len(__lowerCAmelCase ) - 1: output.append(nums[:] ) else: for i in range(__lowerCAmelCase , len(__lowerCAmelCase ) ): a__ , a__ = nums[i], nums[start] backtrack(start + 1 ) a__ , a__ = nums[i], nums[start] # backtrack a__ = [] backtrack(0 ) return output if __name__ == "__main__": import doctest # use res to print the data in permute2 function snake_case : Optional[Any] = permutea([1, 2, 3]) print(res) doctest.testmod()
240
1
"""simple docstring""" import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoFeatureExtractor, WavaVecaFeatureExtractor from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test sys.path.append(str(Path(__file__).parent.parent / """utils""")) from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 UpperCAmelCase_ : str = get_tests_dir("""fixtures""") class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self : Tuple): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[Any] = mock.Mock() SCREAMING_SNAKE_CASE_ : List[str] = 500 SCREAMING_SNAKE_CASE_ : str = {} SCREAMING_SNAKE_CASE_ : Any = HTTPError SCREAMING_SNAKE_CASE_ : Optional[int] = {} # Download this model to make sure it's in the cache. SCREAMING_SNAKE_CASE_ : Optional[Any] = WavaVecaFeatureExtractor.from_pretrained('''hf-internal-testing/tiny-random-wav2vec2''') # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('''requests.Session.request''' , return_value=lowercase_) as mock_head: SCREAMING_SNAKE_CASE_ : int = WavaVecaFeatureExtractor.from_pretrained('''hf-internal-testing/tiny-random-wav2vec2''') # This check we did call the fake head request mock_head.assert_called() def _SCREAMING_SNAKE_CASE ( self : Tuple): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[int] = WavaVecaFeatureExtractor.from_pretrained( '''https://huggingface.co/hf-internal-testing/tiny-random-wav2vec2/resolve/main/preprocessor_config.json''') @is_staging_test class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' @classmethod def _SCREAMING_SNAKE_CASE ( cls : Tuple): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[int] = TOKEN HfFolder.save_token(lowercase_) @classmethod def _SCREAMING_SNAKE_CASE ( cls : Any): '''simple docstring''' try: delete_repo(token=cls._token , repo_id='''test-feature-extractor''') except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-feature-extractor-org''') except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''test-dynamic-feature-extractor''') except HTTPError: pass def _SCREAMING_SNAKE_CASE ( self : List[Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[int] = WavaVecaFeatureExtractor.from_pretrained(lowercase_) feature_extractor.push_to_hub('''test-feature-extractor''' , use_auth_token=self._token) SCREAMING_SNAKE_CASE_ : Dict = WavaVecaFeatureExtractor.from_pretrained(F'{USER}/test-feature-extractor') for k, v in feature_extractor.__dict__.items(): self.assertEqual(lowercase_ , getattr(lowercase_ , lowercase_)) # Reset repo delete_repo(token=self._token , repo_id='''test-feature-extractor''') # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained( lowercase_ , repo_id='''test-feature-extractor''' , push_to_hub=lowercase_ , use_auth_token=self._token) SCREAMING_SNAKE_CASE_ : Any = WavaVecaFeatureExtractor.from_pretrained(F'{USER}/test-feature-extractor') for k, v in feature_extractor.__dict__.items(): self.assertEqual(lowercase_ , getattr(lowercase_ , lowercase_)) def _SCREAMING_SNAKE_CASE ( self : str): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Union[str, Any] = WavaVecaFeatureExtractor.from_pretrained(lowercase_) feature_extractor.push_to_hub('''valid_org/test-feature-extractor''' , use_auth_token=self._token) SCREAMING_SNAKE_CASE_ : int = WavaVecaFeatureExtractor.from_pretrained('''valid_org/test-feature-extractor''') for k, v in feature_extractor.__dict__.items(): self.assertEqual(lowercase_ , getattr(lowercase_ , lowercase_)) # Reset repo delete_repo(token=self._token , repo_id='''valid_org/test-feature-extractor''') # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained( lowercase_ , repo_id='''valid_org/test-feature-extractor-org''' , push_to_hub=lowercase_ , use_auth_token=self._token) SCREAMING_SNAKE_CASE_ : Tuple = WavaVecaFeatureExtractor.from_pretrained('''valid_org/test-feature-extractor-org''') for k, v in feature_extractor.__dict__.items(): self.assertEqual(lowercase_ , getattr(lowercase_ , lowercase_)) def _SCREAMING_SNAKE_CASE ( self : List[Any]): '''simple docstring''' CustomFeatureExtractor.register_for_auto_class() SCREAMING_SNAKE_CASE_ : List[str] = CustomFeatureExtractor.from_pretrained(lowercase_) feature_extractor.push_to_hub('''test-dynamic-feature-extractor''' , use_auth_token=self._token) # This has added the proper auto_map field to the config self.assertDictEqual( feature_extractor.auto_map , {'''AutoFeatureExtractor''': '''custom_feature_extraction.CustomFeatureExtractor'''} , ) SCREAMING_SNAKE_CASE_ : Tuple = AutoFeatureExtractor.from_pretrained( F'{USER}/test-dynamic-feature-extractor' , trust_remote_code=lowercase_) # Can't make an isinstance check because the new_feature_extractor is from the CustomFeatureExtractor class of a dynamic module self.assertEqual(new_feature_extractor.__class__.__name__ , '''CustomFeatureExtractor''')
362
"""simple docstring""" import argparse from collections import defaultdict import yaml UpperCAmelCase_ : Optional[Any] = """docs/source/en/_toctree.yml""" def _A (__a ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE_ : str = defaultdict(__a ) for doc in model_doc: counts[doc["local"]] += 1 SCREAMING_SNAKE_CASE_ : List[Any] = [key for key, value in counts.items() if value > 1] SCREAMING_SNAKE_CASE_ : int = [] for duplicate_key in duplicates: SCREAMING_SNAKE_CASE_ : List[str] = list({doc['''title'''] for doc in model_doc if doc['''local'''] == duplicate_key} ) if len(__a ) > 1: raise ValueError( f'{duplicate_key} is present several times in the documentation table of content at ' '''`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the ''' '''others.''' ) # Only add this once new_doc.append({'''local''': duplicate_key, '''title''': titles[0]} ) # Add none duplicate-keys new_doc.extend([doc for doc in model_doc if counts[doc['''local''']] == 1] ) # Sort return sorted(__a , key=lambda __a : s["title"].lower() ) def _A (__a=False ) -> Tuple: """simple docstring""" with open(__a , encoding='''utf-8''' ) as f: SCREAMING_SNAKE_CASE_ : Dict = yaml.safe_load(f.read() ) # Get to the API doc SCREAMING_SNAKE_CASE_ : Any = 0 while content[api_idx]["title"] != "API": api_idx += 1 SCREAMING_SNAKE_CASE_ : str = content[api_idx]['''sections'''] # Then to the model doc SCREAMING_SNAKE_CASE_ : List[Any] = 0 while api_doc[model_idx]["title"] != "Models": model_idx += 1 SCREAMING_SNAKE_CASE_ : Optional[int] = api_doc[model_idx]['''sections'''] SCREAMING_SNAKE_CASE_ : str = [(idx, section) for idx, section in enumerate(__a ) if '''sections''' in section] SCREAMING_SNAKE_CASE_ : Optional[Any] = False for idx, modality_doc in modalities_docs: SCREAMING_SNAKE_CASE_ : List[str] = modality_doc['''sections'''] SCREAMING_SNAKE_CASE_ : Union[str, Any] = clean_model_doc_toc(__a ) if old_modality_doc != new_modality_doc: SCREAMING_SNAKE_CASE_ : str = True if overwrite: SCREAMING_SNAKE_CASE_ : Optional[int] = new_modality_doc if diff: if overwrite: SCREAMING_SNAKE_CASE_ : List[Any] = model_doc SCREAMING_SNAKE_CASE_ : int = api_doc with open(__a , '''w''' , encoding='''utf-8''' ) as f: f.write(yaml.dump(__a , allow_unicode=__a ) ) else: raise ValueError( '''The model doc part of the table of content is not properly sorted, run `make style` to fix this.''' ) if __name__ == "__main__": UpperCAmelCase_ : List[str] = argparse.ArgumentParser() parser.add_argument("""--fix_and_overwrite""", action="""store_true""", help="""Whether to fix inconsistencies.""") UpperCAmelCase_ : Tuple = parser.parse_args() check_model_doc(args.fix_and_overwrite)
318
0
'''simple docstring''' # Function to print upper half of diamond (pyramid) def __snake_case( _lowerCAmelCase ) -> Any: for i in range(0 , _lowerCAmelCase ): for _ in range(0 , n - i - 1 ): # printing spaces print(""" """ , end="""""" ) for _ in range(0 , i + 1 ): # printing stars print("""* """ , end="""""" ) print() def __snake_case( _lowerCAmelCase ) -> List[str]: for i in range(_lowerCAmelCase , 0 , -1 ): for _ in range(_lowerCAmelCase , 0 , -1 ): # printing stars print("""* """ , end="""""" ) print() for _ in range(n - i + 1 , 0 , -1 ): # printing spaces print(""" """ , end="""""" ) def __snake_case( _lowerCAmelCase ) -> List[Any]: if n <= 0: print(""" ... .... nothing printing :(""" ) return floyd(_lowerCAmelCase ) # upper half reverse_floyd(_lowerCAmelCase ) # lower half if __name__ == "__main__": print(R"| /\ | |- | |- |--| |\ /| |-") print(R"|/ \| |- |_ |_ |__| | \/ | |_") __a = 1 while K: __a = int(input("enter the number and , and see the magic : ")) print() pretty_print(user_number) __a = int(input("press 0 to exit... and 1 to continue...")) print("Good Bye...")
35
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available SCREAMING_SNAKE_CASE_ : Optional[int] = { 'configuration_pegasus_x': ['PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PegasusXConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ : Any = [ 'PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST', 'PegasusXForConditionalGeneration', 'PegasusXModel', 'PegasusXPreTrainedModel', ] if TYPE_CHECKING: from .configuration_pegasus_x import PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP, PegasusXConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pegasus_x import ( PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST, PegasusXForConditionalGeneration, PegasusXModel, PegasusXPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE_ : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
335
0
import gc import random import tempfile import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.stable_diffusion_safe import StableDiffusionPipelineSafe as StableDiffusionPipeline from diffusers.utils import floats_tensor, nightly, torch_device from diffusers.utils.testing_utils import require_torch_gpu class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): def __lowerCamelCase ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def __lowerCamelCase ( self ): lowercase : Union[str, Any] = 1 lowercase : Union[str, Any] = 3 lowercase : str = (32, 32) lowercase : Optional[Any] = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(SCREAMING_SNAKE_CASE__ ) return image @property def __lowerCamelCase ( self ): torch.manual_seed(0 ) lowercase : str = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) return model @property def __lowerCamelCase ( self ): torch.manual_seed(0 ) lowercase : List[Any] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) return model @property def __lowerCamelCase ( self ): torch.manual_seed(0 ) lowercase : List[str] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModel(SCREAMING_SNAKE_CASE__ ) @property def __lowerCamelCase ( self ): def extract(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ): class __SCREAMING_SNAKE_CASE : def __init__( self ): lowercase : Any = torch.ones([0] ) def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ ): self.pixel_values.to(SCREAMING_SNAKE_CASE__ ) return self return Out() return extract def __lowerCamelCase ( self ): lowercase : Any = '''cpu''' # ensure determinism for the device-dependent torch.Generator lowercase : Dict = self.dummy_cond_unet lowercase : Optional[int] = DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , clip_sample=SCREAMING_SNAKE_CASE__ , set_alpha_to_one=SCREAMING_SNAKE_CASE__ , ) lowercase : Optional[Any] = self.dummy_vae lowercase : Dict = self.dummy_text_encoder lowercase : Tuple = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) # make sure here that pndm scheduler skips prk lowercase : Dict = StableDiffusionPipeline( unet=SCREAMING_SNAKE_CASE__ , scheduler=SCREAMING_SNAKE_CASE__ , vae=SCREAMING_SNAKE_CASE__ , text_encoder=SCREAMING_SNAKE_CASE__ , tokenizer=SCREAMING_SNAKE_CASE__ , safety_checker=SCREAMING_SNAKE_CASE__ , feature_extractor=self.dummy_extractor , ) lowercase : Any = sd_pipe.to(SCREAMING_SNAKE_CASE__ ) sd_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) lowercase : Optional[Any] = '''A painting of a squirrel eating a burger''' lowercase : Tuple = torch.Generator(device=SCREAMING_SNAKE_CASE__ ).manual_seed(0 ) lowercase : Optional[Any] = sd_pipe([prompt] , generator=SCREAMING_SNAKE_CASE__ , guidance_scale=6.0 , num_inference_steps=2 , output_type='''np''' ) lowercase : str = output.images lowercase : str = torch.Generator(device=SCREAMING_SNAKE_CASE__ ).manual_seed(0 ) lowercase : Tuple = sd_pipe( [prompt] , generator=SCREAMING_SNAKE_CASE__ , guidance_scale=6.0 , num_inference_steps=2 , output_type='''np''' , return_dict=SCREAMING_SNAKE_CASE__ , )[0] lowercase : Union[str, Any] = image[0, -3:, -3:, -1] lowercase : List[Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowercase : Any = np.array([0.5756, 0.6118, 0.5005, 0.5041, 0.5471, 0.4726, 0.4976, 0.4865, 0.4864] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def __lowerCamelCase ( self ): lowercase : Optional[int] = '''cpu''' # ensure determinism for the device-dependent torch.Generator lowercase : Optional[Any] = self.dummy_cond_unet lowercase : Dict = PNDMScheduler(skip_prk_steps=SCREAMING_SNAKE_CASE__ ) lowercase : Union[str, Any] = self.dummy_vae lowercase : Any = self.dummy_text_encoder lowercase : Dict = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) # make sure here that pndm scheduler skips prk lowercase : List[Any] = StableDiffusionPipeline( unet=SCREAMING_SNAKE_CASE__ , scheduler=SCREAMING_SNAKE_CASE__ , vae=SCREAMING_SNAKE_CASE__ , text_encoder=SCREAMING_SNAKE_CASE__ , tokenizer=SCREAMING_SNAKE_CASE__ , safety_checker=SCREAMING_SNAKE_CASE__ , feature_extractor=self.dummy_extractor , ) lowercase : Dict = sd_pipe.to(SCREAMING_SNAKE_CASE__ ) sd_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) lowercase : List[str] = '''A painting of a squirrel eating a burger''' lowercase : Any = torch.Generator(device=SCREAMING_SNAKE_CASE__ ).manual_seed(0 ) lowercase : List[Any] = sd_pipe([prompt] , generator=SCREAMING_SNAKE_CASE__ , guidance_scale=6.0 , num_inference_steps=2 , output_type='''np''' ) lowercase : Any = output.images lowercase : Tuple = torch.Generator(device=SCREAMING_SNAKE_CASE__ ).manual_seed(0 ) lowercase : Dict = sd_pipe( [prompt] , generator=SCREAMING_SNAKE_CASE__ , guidance_scale=6.0 , num_inference_steps=2 , output_type='''np''' , return_dict=SCREAMING_SNAKE_CASE__ , )[0] lowercase : List[Any] = image[0, -3:, -3:, -1] lowercase : Optional[int] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowercase : str = np.array([0.5125, 0.5716, 0.4828, 0.5060, 0.5650, 0.4768, 0.5185, 0.4895, 0.4993] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def __lowerCamelCase ( self ): lowercase : List[str] = StableDiffusionPipeline.from_pretrained( '''hf-internal-testing/tiny-stable-diffusion-lms-pipe''' , safety_checker=SCREAMING_SNAKE_CASE__ ) assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) assert isinstance(pipe.scheduler , SCREAMING_SNAKE_CASE__ ) assert pipe.safety_checker is None lowercase : List[Any] = pipe('''example prompt''' , num_inference_steps=2 ).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(SCREAMING_SNAKE_CASE__ ) lowercase : List[str] = StableDiffusionPipeline.from_pretrained(SCREAMING_SNAKE_CASE__ ) # sanity check that the pipeline still works assert pipe.safety_checker is None lowercase : Tuple = pipe('''example prompt''' , num_inference_steps=2 ).images[0] assert image is not None @unittest.skipIf(torch_device != '''cuda''' , '''This test requires a GPU''' ) def __lowerCamelCase ( self ): lowercase : Any = self.dummy_cond_unet lowercase : Union[str, Any] = PNDMScheduler(skip_prk_steps=SCREAMING_SNAKE_CASE__ ) lowercase : Tuple = self.dummy_vae lowercase : str = self.dummy_text_encoder lowercase : Any = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) # put models in fp16 lowercase : List[Any] = unet.half() lowercase : Optional[Any] = vae.half() lowercase : Any = bert.half() # make sure here that pndm scheduler skips prk lowercase : Optional[Any] = StableDiffusionPipeline( unet=SCREAMING_SNAKE_CASE__ , scheduler=SCREAMING_SNAKE_CASE__ , vae=SCREAMING_SNAKE_CASE__ , text_encoder=SCREAMING_SNAKE_CASE__ , tokenizer=SCREAMING_SNAKE_CASE__ , safety_checker=SCREAMING_SNAKE_CASE__ , feature_extractor=self.dummy_extractor , ) lowercase : str = sd_pipe.to(SCREAMING_SNAKE_CASE__ ) sd_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) lowercase : Union[str, Any] = '''A painting of a squirrel eating a burger''' lowercase : str = sd_pipe([prompt] , num_inference_steps=2 , output_type='''np''' ).images assert image.shape == (1, 64, 64, 3) @nightly @require_torch_gpu class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): def __lowerCamelCase ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCamelCase ( self ): lowercase : Tuple = StableDiffusionPipeline.from_pretrained('''runwayml/stable-diffusion-v1-5''' , safety_checker=SCREAMING_SNAKE_CASE__ ) lowercase : List[str] = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) lowercase : Union[str, Any] = sd_pipe.to(SCREAMING_SNAKE_CASE__ ) sd_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) lowercase : List[str] = ( '''portrait of girl with smokey eyes makeup in abandoned hotel, grange clothes, redshift, wide high angle''' ''' coloured polaroid photograph with flash, kodak film, hyper real, stunning moody cinematography, with''' ''' anamorphic lenses, by maripol, fallen angels by wong kar - wai, style of suspiria and neon demon and''' ''' children from bahnhof zoo, detailed ''' ) lowercase : Tuple = 4003660346 lowercase : str = 7 # without safety guidance (sld_guidance_scale = 0) lowercase : List[Any] = torch.manual_seed(SCREAMING_SNAKE_CASE__ ) lowercase : List[Any] = sd_pipe( [prompt] , generator=SCREAMING_SNAKE_CASE__ , guidance_scale=SCREAMING_SNAKE_CASE__ , num_inference_steps=50 , output_type='''np''' , width=512 , height=512 , sld_guidance_scale=0 , ) lowercase : Dict = output.images lowercase : Tuple = image[0, -3:, -3:, -1] lowercase : Tuple = [0.2278, 0.2231, 0.2249, 0.2333, 0.2303, 0.1885, 0.2273, 0.2144, 0.2176] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 # without safety guidance (strong configuration) lowercase : Tuple = torch.manual_seed(SCREAMING_SNAKE_CASE__ ) lowercase : int = sd_pipe( [prompt] , generator=SCREAMING_SNAKE_CASE__ , guidance_scale=SCREAMING_SNAKE_CASE__ , num_inference_steps=50 , output_type='''np''' , width=512 , height=512 , sld_guidance_scale=2000 , sld_warmup_steps=7 , sld_threshold=0.025 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) lowercase : Optional[int] = output.images lowercase : Union[str, Any] = image[0, -3:, -3:, -1] lowercase : Optional[Any] = [0.2383, 0.2276, 0.236, 0.2192, 0.2186, 0.2053, 0.1971, 0.1901, 0.1719] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def __lowerCamelCase ( self ): lowercase : List[str] = StableDiffusionPipeline.from_pretrained('''runwayml/stable-diffusion-v1-5''' , safety_checker=SCREAMING_SNAKE_CASE__ ) lowercase : Union[str, Any] = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) lowercase : Any = sd_pipe.to(SCREAMING_SNAKE_CASE__ ) sd_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) lowercase : List[Any] = '''padme amidala taking a bath artwork, safe for work, no nudity''' lowercase : int = 2734971755 lowercase : Union[str, Any] = 7 lowercase : Optional[int] = torch.manual_seed(SCREAMING_SNAKE_CASE__ ) lowercase : str = sd_pipe( [prompt] , generator=SCREAMING_SNAKE_CASE__ , guidance_scale=SCREAMING_SNAKE_CASE__ , num_inference_steps=50 , output_type='''np''' , width=512 , height=512 , sld_guidance_scale=0 , ) lowercase : Tuple = output.images lowercase : str = image[0, -3:, -3:, -1] lowercase : Dict = [0.3502, 0.3622, 0.3396, 0.3642, 0.3478, 0.3318, 0.35, 0.3348, 0.3297] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 lowercase : List[str] = torch.manual_seed(SCREAMING_SNAKE_CASE__ ) lowercase : Union[str, Any] = sd_pipe( [prompt] , generator=SCREAMING_SNAKE_CASE__ , guidance_scale=SCREAMING_SNAKE_CASE__ , num_inference_steps=50 , output_type='''np''' , width=512 , height=512 , sld_guidance_scale=2000 , sld_warmup_steps=7 , sld_threshold=0.025 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) lowercase : Dict = output.images lowercase : Optional[Any] = image[0, -3:, -3:, -1] lowercase : int = [0.5531, 0.5206, 0.4895, 0.5156, 0.5182, 0.4751, 0.4802, 0.4803, 0.4443] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def __lowerCamelCase ( self ): lowercase : List[str] = StableDiffusionPipeline.from_pretrained('''runwayml/stable-diffusion-v1-5''' ) lowercase : List[Any] = sd_pipe.to(SCREAMING_SNAKE_CASE__ ) sd_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) lowercase : Dict = ( '''the four horsewomen of the apocalypse, painting by tom of finland, gaston bussiere, craig mullins, j. c.''' ''' leyendecker''' ) lowercase : Tuple = 1044355234 lowercase : Any = 12 lowercase : Any = torch.manual_seed(SCREAMING_SNAKE_CASE__ ) lowercase : Dict = sd_pipe( [prompt] , generator=SCREAMING_SNAKE_CASE__ , guidance_scale=SCREAMING_SNAKE_CASE__ , num_inference_steps=50 , output_type='''np''' , width=512 , height=512 , sld_guidance_scale=0 , ) lowercase : int = output.images lowercase : Tuple = image[0, -3:, -3:, -1] lowercase : Any = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] ) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-7 lowercase : str = torch.manual_seed(SCREAMING_SNAKE_CASE__ ) lowercase : Tuple = sd_pipe( [prompt] , generator=SCREAMING_SNAKE_CASE__ , guidance_scale=SCREAMING_SNAKE_CASE__ , num_inference_steps=50 , output_type='''np''' , width=512 , height=512 , sld_guidance_scale=2000 , sld_warmup_steps=7 , sld_threshold=0.025 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) lowercase : List[Any] = output.images lowercase : int = image[0, -3:, -3:, -1] lowercase : Optional[int] = np.array([0.5818, 0.6285, 0.6835, 0.6019, 0.625, 0.6754, 0.6096, 0.6334, 0.6561] ) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
173
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.local_sgd import LocalSGD ######################################################################## # This is a fully working simple example to use Accelerate # with LocalSGD, which is a method to synchronize model # parameters every K batches. It is different, but complementary # to gradient accumulation. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## __a = 16 __a = 32 def __lowercase ( _UpperCamelCase, _UpperCamelCase = 16 ) ->List[Any]: """simple docstring""" lowercase : Optional[Any] = AutoTokenizer.from_pretrained('''bert-base-cased''' ) lowercase : List[Any] = load_dataset('''glue''', '''mrpc''' ) def tokenize_function(_UpperCamelCase ): # max_length=None => use the model max length (it's actually the default) lowercase : List[Any] = tokenizer(examples['''sentence1'''], examples['''sentence2'''], truncation=_UpperCamelCase, max_length=_UpperCamelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): lowercase : Union[str, Any] = datasets.map( _UpperCamelCase, batched=_UpperCamelCase, remove_columns=['''idx''', '''sentence1''', '''sentence2'''], ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowercase : Union[str, Any] = tokenized_datasets.rename_column('''label''', '''labels''' ) def collate_fn(_UpperCamelCase ): # On TPU it's best to pad everything to the same length or training will be very slow. lowercase : Optional[Any] = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": lowercase : Tuple = 16 elif accelerator.mixed_precision != "no": lowercase : str = 8 else: lowercase : List[str] = None return tokenizer.pad( _UpperCamelCase, padding='''longest''', max_length=_UpperCamelCase, pad_to_multiple_of=_UpperCamelCase, return_tensors='''pt''', ) # Instantiate dataloaders. lowercase : int = DataLoader( tokenized_datasets['''train'''], shuffle=_UpperCamelCase, collate_fn=_UpperCamelCase, batch_size=_UpperCamelCase ) lowercase : str = DataLoader( tokenized_datasets['''validation'''], shuffle=_UpperCamelCase, collate_fn=_UpperCamelCase, batch_size=_UpperCamelCase ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('''TESTING_MOCKED_DATALOADERS''', None) == "1": from accelerate.test_utils.training import mocked_dataloaders __a = mocked_dataloaders # noqa: F811 def __lowercase ( _UpperCamelCase, _UpperCamelCase ) ->str: """simple docstring""" if os.environ.get('''TESTING_MOCKED_DATALOADERS''', _UpperCamelCase ) == "1": lowercase : Tuple = 2 # New Code # lowercase : Optional[int] = int(args.gradient_accumulation_steps ) lowercase : Optional[int] = int(args.local_sgd_steps ) # Initialize accelerator lowercase : Tuple = Accelerator( cpu=args.cpu, mixed_precision=args.mixed_precision, gradient_accumulation_steps=_UpperCamelCase ) if accelerator.distributed_type not in [DistributedType.NO, DistributedType.MULTI_CPU, DistributedType.MULTI_GPU]: raise NotImplementedError('''LocalSGD is supported only for CPUs and GPUs (no DeepSpeed or MegatronLM)''' ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowercase : Dict = config['''lr'''] lowercase : List[str] = int(config['''num_epochs'''] ) lowercase : str = int(config['''seed'''] ) lowercase : str = int(config['''batch_size'''] ) lowercase : Any = evaluate.load('''glue''', '''mrpc''' ) set_seed(_UpperCamelCase ) lowercase , lowercase : Dict = get_dataloaders(_UpperCamelCase, _UpperCamelCase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowercase : Optional[int] = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''', return_dict=_UpperCamelCase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). lowercase : int = model.to(accelerator.device ) # Instantiate optimizer lowercase : Any = AdamW(params=model.parameters(), lr=_UpperCamelCase ) # Instantiate scheduler lowercase : Union[str, Any] = get_linear_schedule_with_warmup( optimizer=_UpperCamelCase, num_warmup_steps=100, num_training_steps=(len(_UpperCamelCase ) * num_epochs), ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowercase , lowercase , lowercase , lowercase , lowercase : Optional[Any] = accelerator.prepare( _UpperCamelCase, _UpperCamelCase, _UpperCamelCase, _UpperCamelCase, _UpperCamelCase ) # Now we train the model for epoch in range(_UpperCamelCase ): model.train() with LocalSGD( accelerator=_UpperCamelCase, model=_UpperCamelCase, local_sgd_steps=_UpperCamelCase, enabled=local_sgd_steps is not None ) as local_sgd: for step, batch in enumerate(_UpperCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) # New code # # We use the new `accumulate` context manager to perform gradient accumulation # We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests. with accelerator.accumulate(_UpperCamelCase ): lowercase : int = model(**_UpperCamelCase ) lowercase : Optional[int] = output.loss accelerator.backward(_UpperCamelCase ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() # LocalSGD-specific line local_sgd.step() model.eval() for step, batch in enumerate(_UpperCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): lowercase : Optional[int] = model(**_UpperCamelCase ) lowercase : Optional[Any] = outputs.logits.argmax(dim=-1 ) lowercase , lowercase : Dict = accelerator.gather_for_metrics((predictions, batch['''labels''']) ) metric.add_batch( predictions=_UpperCamelCase, references=_UpperCamelCase, ) lowercase : int = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"""epoch {epoch}:""", _UpperCamelCase ) def __lowercase ( ) ->int: """simple docstring""" lowercase : int = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''', type=_UpperCamelCase, default=_UpperCamelCase, choices=['''no''', '''fp16''', '''bf16''', '''fp8'''], help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''', ) # New Code # parser.add_argument( '''--gradient_accumulation_steps''', type=_UpperCamelCase, default=1, help='''The number of minibatches to be ran before gradients are accumulated.''', ) parser.add_argument( '''--local_sgd_steps''', type=_UpperCamelCase, default=8, help='''Number of local SGD steps or None to disable local SGD''' ) parser.add_argument('''--cpu''', action='''store_true''', help='''If passed, will train on the CPU.''' ) lowercase : List[Any] = parser.parse_args() lowercase : List[Any] = {'''lr''': 2e-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16} training_function(_UpperCamelCase, _UpperCamelCase ) if __name__ == "__main__": main()
173
1
import inspect import unittest from transformers import ViTHybridConfig from transformers.testing_utils import require_accelerate, require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel from transformers.models.vit_hybrid.modeling_vit_hybrid import VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class A__ : """simple docstring""" def __init__( self , lowercase , lowercase=13 , lowercase=64 , lowercase=2 , lowercase=3 , lowercase=True , lowercase=True , lowercase=32 , lowercase=5 , lowercase=4 , lowercase=37 , lowercase="gelu" , lowercase=0.1 , lowercase=0.1 , lowercase=10 , lowercase=0.02 , lowercase=[1, 16, 4, 4] , lowercase=None , ) -> List[Any]: '''simple docstring''' a__ : Optional[int] = parent a__ : Optional[int] = batch_size a__ : Any = image_size a__ : Optional[Any] = patch_size a__ : Optional[Any] = num_channels a__ : int = is_training a__ : List[str] = use_labels a__ : List[str] = hidden_size a__ : Tuple = num_hidden_layers a__ : Optional[Any] = num_attention_heads a__ : Union[str, Any] = intermediate_size a__ : Optional[int] = hidden_act a__ : Optional[Any] = hidden_dropout_prob a__ : Any = attention_probs_dropout_prob a__ : Any = type_sequence_label_size a__ : Tuple = initializer_range a__ : Tuple = scope a__ : int = backbone_featmap_shape # in ViT hybrid, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) # the number of patches is based on the feature map of the backbone, which by default uses an output stride # of 32, which means that the feature map has a spatial resolution of 1/32 of the input image size a__ : Any = (self.image_size // 32) ** 2 a__ : List[Any] = num_patches + 1 def __lowercase ( self) -> Any: '''simple docstring''' a__ : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) a__ : int = None if self.use_labels: a__ : int = ids_tensor([self.batch_size] , self.type_sequence_label_size) a__ : List[str] = self.get_config() return config, pixel_values, labels def __lowercase ( self) -> Dict: '''simple docstring''' a__ : List[str] = { 'global_padding': 'same', 'layer_type': 'bottleneck', 'depths': [3, 4, 9], 'out_features': ['stage1', 'stage2', 'stage3'], 'embedding_dynamic_padding': True, 'hidden_sizes': [4, 8, 16, 32], 'num_groups': 2, } return ViTHybridConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowercase , initializer_range=self.initializer_range , backbone_featmap_shape=self.backbone_featmap_shape , backbone_config=lowercase , ) def __lowercase ( self , lowercase , lowercase , lowercase) -> List[str]: '''simple docstring''' a__ : List[str] = ViTHybridModel(config=lowercase) model.to(lowercase) model.eval() a__ : Union[str, Any] = model(lowercase) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def __lowercase ( self , lowercase , lowercase , lowercase) -> Union[str, Any]: '''simple docstring''' a__ : Dict = self.type_sequence_label_size a__ : Union[str, Any] = ViTHybridForImageClassification(lowercase) model.to(lowercase) model.eval() a__ : Tuple = model(lowercase , labels=lowercase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) def __lowercase ( self) -> Any: '''simple docstring''' a__ : List[str] = self.prepare_config_and_inputs() a__ , a__ , a__ : Union[str, Any] = config_and_inputs a__ : str = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class A__ ( __UpperCAmelCase , __UpperCAmelCase , unittest.TestCase ): """simple docstring""" __A : Optional[Any] = (ViTHybridModel, ViTHybridForImageClassification) if is_torch_available() else () __A : List[str] = ( {'''feature-extraction''': ViTHybridModel, '''image-classification''': ViTHybridForImageClassification} if is_torch_available() else {} ) __A : Any = False __A : Optional[int] = False __A : Optional[Any] = False def __lowercase ( self) -> Optional[Any]: '''simple docstring''' a__ : Any = ViTHybridModelTester(self) a__ : Any = ConfigTester(self , config_class=lowercase , has_text_modality=lowercase , hidden_size=37) def __lowercase ( self) -> List[Any]: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='ViT does not use inputs_embeds') def __lowercase ( self) -> Dict: '''simple docstring''' pass def __lowercase ( self) -> Optional[Any]: '''simple docstring''' a__ , a__ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a__ : str = model_class(lowercase) self.assertIsInstance(model.get_input_embeddings() , (nn.Module)) a__ : str = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowercase , nn.Linear)) def __lowercase ( self) -> int: '''simple docstring''' a__ , a__ : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a__ : Union[str, Any] = model_class(lowercase) a__ : Union[str, Any] = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic a__ : Optional[Any] = [*signature.parameters.keys()] a__ : Dict = ['pixel_values'] self.assertListEqual(arg_names[:1] , lowercase) def __lowercase ( self) -> Any: '''simple docstring''' a__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase) def __lowercase ( self) -> Optional[Any]: '''simple docstring''' a__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowercase) def __lowercase ( self) -> Dict: '''simple docstring''' a__ , a__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() a__ : Tuple = _config_zero_init(lowercase) for model_class in self.all_model_classes: a__ : List[Any] = model_class(config=lowercase) # Skip the check for the backbone for name, module in model.named_modules(): if module.__class__.__name__ == "ViTHybridPatchEmbeddings": a__ : Dict = [F'{name}.{key}' for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F'Parameter {name} of model {model_class} seems not properly initialized' , ) @slow def __lowercase ( self) -> Any: '''simple docstring''' for model_name in VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a__ : Optional[Any] = ViTHybridModel.from_pretrained(lowercase) self.assertIsNotNone(lowercase) def A_ ( ) -> int: a__ : Dict = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class A__ ( unittest.TestCase ): """simple docstring""" @cached_property def __lowercase ( self) -> Optional[Any]: '''simple docstring''' return ( ViTHybridImageProcessor.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0]) if is_vision_available() else None ) @slow def __lowercase ( self) -> Any: '''simple docstring''' a__ : List[str] = ViTHybridForImageClassification.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0]).to( lowercase) a__ : List[str] = self.default_image_processor a__ : List[Any] = prepare_img() a__ : Any = image_processor(images=lowercase , return_tensors='pt').to(lowercase) # forward pass with torch.no_grad(): a__ : Optional[Any] = model(**lowercase) # verify the logits a__ : Optional[Any] = torch.Size((1, 1000)) self.assertEqual(outputs.logits.shape , lowercase) a__ : Any = torch.tensor([-1.90_90, -0.49_93, -0.23_89]).to(lowercase) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowercase , atol=1e-4)) @slow @require_accelerate def __lowercase ( self) -> Optional[int]: '''simple docstring''' a__ : List[str] = ViTHybridImageProcessor.from_pretrained('google/vit-hybrid-base-bit-384') a__ : Union[str, Any] = ViTHybridForImageClassification.from_pretrained('google/vit-hybrid-base-bit-384' , device_map='auto') a__ : Any = prepare_img() a__ : str = image_processor(images=lowercase , return_tensors='pt') a__ : List[Any] = model(**lowercase) a__ : int = outputs.logits # model predicts one of the 1000 ImageNet classes a__ : List[str] = logits.argmax(-1).item() self.assertTrue(model.config.idalabel[predicted_class_idx] , 'tabby, tabby cat')
99
"""simple docstring""" import os _a = {'I': 1, 'V': 5, 'X': 10, 'L': 50, 'C': 100, 'D': 500, 'M': 1_000} def __a ( __lowerCamelCase ): UpperCAmelCase_ : Union[str, Any] = 0 UpperCAmelCase_ : List[str] = 0 while index < len(__lowerCamelCase ) - 1: UpperCAmelCase_ : Tuple = SYMBOLS[numerals[index]] UpperCAmelCase_ : List[str] = SYMBOLS[numerals[index + 1]] if current_value < next_value: total_value -= current_value else: total_value += current_value index += 1 total_value += SYMBOLS[numerals[index]] return total_value def __a ( __lowerCamelCase ): UpperCAmelCase_ : List[str] = "" UpperCAmelCase_ : Any = num // 1000 numerals += m_count * "M" num %= 1000 UpperCAmelCase_ : Any = num // 100 if c_count == 9: numerals += "CM" c_count -= 9 elif c_count == 4: numerals += "CD" c_count -= 4 if c_count >= 5: numerals += "D" c_count -= 5 numerals += c_count * "C" num %= 100 UpperCAmelCase_ : str = num // 10 if x_count == 9: numerals += "XC" x_count -= 9 elif x_count == 4: numerals += "XL" x_count -= 4 if x_count >= 5: numerals += "L" x_count -= 5 numerals += x_count * "X" num %= 10 if num == 9: numerals += "IX" num -= 9 elif num == 4: numerals += "IV" num -= 4 if num >= 5: numerals += "V" num -= 5 numerals += num * "I" return numerals def __a ( __lowerCamelCase = "/p089_roman.txt" ): UpperCAmelCase_ : int = 0 with open(os.path.dirname(__lowerCamelCase ) + roman_numerals_filename ) as filea: UpperCAmelCase_ : Optional[Any] = filea.readlines() for line in lines: UpperCAmelCase_ : Tuple = line.strip() UpperCAmelCase_ : Optional[Any] = parse_roman_numerals(__lowerCamelCase ) UpperCAmelCase_ : Tuple = generate_roman_numerals(__lowerCamelCase ) savings += len(__lowerCamelCase ) - len(__lowerCamelCase ) return savings if __name__ == "__main__": print(f"""{solution() = }""")
61
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase: List[str] = { 'configuration_table_transformer': [ 'TABLE_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TableTransformerConfig', 'TableTransformerOnnxConfig', ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase: Optional[Any] = [ 'TABLE_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TableTransformerForObjectDetection', 'TableTransformerModel', 'TableTransformerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_table_transformer import ( TABLE_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TableTransformerConfig, TableTransformerOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_table_transformer import ( TABLE_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TableTransformerForObjectDetection, TableTransformerModel, TableTransformerPreTrainedModel, ) else: import sys lowerCAmelCase: Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
360
'''simple docstring''' import json import os import unittest from transformers.models.ctrl.tokenization_ctrl import VOCAB_FILES_NAMES, CTRLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class a__( lowerCamelCase__ , unittest.TestCase ): lowercase__ = CTRLTokenizer lowercase__ = False lowercase__ = False def lowercase_ ( self : Dict ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt a : Tuple = ['adapt', 're@@', 'a@@', 'apt', 'c@@', 't', '<unk>'] a : Union[str, Any] = dict(zip(__snake_case , range(len(__snake_case ) ) ) ) a : Union[str, Any] = ['#version: 0.2', 'a p', 'ap t</w>', 'r e', 'a d', 'ad apt</w>', ''] a : Optional[Any] = {'unk_token': '<unk>'} a : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) a : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(__snake_case ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(__snake_case ) ) def lowercase_ ( self : int , **__snake_case : str ): kwargs.update(self.special_tokens_map ) return CTRLTokenizer.from_pretrained(self.tmpdirname , **__snake_case ) def lowercase_ ( self : Optional[int] , __snake_case : Any ): a : int = 'adapt react readapt apt' a : Any = 'adapt react readapt apt' return input_text, output_text def lowercase_ ( self : Dict ): a : Dict = CTRLTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) a : List[str] = 'adapt react readapt apt' a : Dict = 'adapt re@@ a@@ c@@ t re@@ adapt apt'.split() a : Any = tokenizer.tokenize(__snake_case ) self.assertListEqual(__snake_case , __snake_case ) a : Dict = tokens + [tokenizer.unk_token] a : Optional[Any] = [0, 1, 2, 4, 5, 1, 0, 3, 6] self.assertListEqual(tokenizer.convert_tokens_to_ids(__snake_case ) , __snake_case )
96
0
import logging import os import sys from dataclasses import dataclass, field from itertools import chain from typing import Optional, Union import datasets import numpy as np import torch from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.tokenization_utils_base import PreTrainedTokenizerBase from transformers.trainer_utils import get_last_checkpoint from transformers.utils import PaddingStrategy, check_min_version, send_example_telemetry # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('4.31.0') UpperCAmelCase_ : Dict = logging.getLogger(__name__) @dataclass class SCREAMING_SNAKE_CASE__ : snake_case__ : str = field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) snake_case__ : Optional[str] = field( default=lowercase__ , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) snake_case__ : Optional[str] = field( default=lowercase__ , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) snake_case__ : Optional[str] = field( default=lowercase__ , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) snake_case__ : bool = field( default=lowercase__ , metadata={'''help''': '''Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'''} , ) snake_case__ : str = field( default='''main''' , metadata={'''help''': '''The specific model version to use (can be a branch name, tag name or commit id).'''} , ) snake_case__ : bool = field( default=lowercase__ , metadata={ '''help''': ( '''Will use the token generated when running `huggingface-cli login` (necessary to use this script ''' '''with private models).''' ) } , ) @dataclass class SCREAMING_SNAKE_CASE__ : snake_case__ : Optional[str] = field(default=lowercase__ , metadata={'''help''': '''The input training data file (a text file).'''} ) snake_case__ : Optional[str] = field( default=lowercase__ , metadata={'''help''': '''An optional input evaluation data file to evaluate the perplexity on (a text file).'''} , ) snake_case__ : bool = field( default=lowercase__ , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) snake_case__ : Optional[int] = field( default=lowercase__ , metadata={'''help''': '''The number of processes to use for the preprocessing.'''} , ) snake_case__ : Optional[int] = field( default=lowercase__ , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. If passed, sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) snake_case__ : bool = field( default=lowercase__ , metadata={ '''help''': ( '''Whether to pad all samples to the maximum sentence length. ''' '''If False, will pad the samples dynamically when batching to the maximum length in the batch. More ''' '''efficient on GPU but very bad for TPU.''' ) } , ) snake_case__ : Optional[int] = field( default=lowercase__ , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of training examples to this ''' '''value if set.''' ) } , ) snake_case__ : Optional[int] = field( default=lowercase__ , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of evaluation examples to this ''' '''value if set.''' ) } , ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Union[str, Any]: if self.train_file is not None: a_ : str = self.train_file.split('.' )[-1] assert extension in ["csv", "json"], "`train_file` should be a csv or a json file." if self.validation_file is not None: a_ : Dict = self.validation_file.split('.' )[-1] assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file." @dataclass class SCREAMING_SNAKE_CASE__ : snake_case__ : PreTrainedTokenizerBase snake_case__ : Union[bool, str, PaddingStrategy] = True snake_case__ : Optional[int] = None snake_case__ : Optional[int] = None def __call__( self : int , SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> str: a_ : str = 'label' if 'label' in features[0].keys() else 'labels' a_ : Union[str, Any] = [feature.pop(SCREAMING_SNAKE_CASE__ ) for feature in features] a_ : Any = len(SCREAMING_SNAKE_CASE__ ) a_ : int = len(features[0]['input_ids'] ) a_ : int = [ [{k: v[i] for k, v in feature.items()} for i in range(SCREAMING_SNAKE_CASE__ )] for feature in features ] a_ : Optional[Any] = list(chain(*SCREAMING_SNAKE_CASE__ ) ) a_ : Tuple = self.tokenizer.pad( SCREAMING_SNAKE_CASE__ , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='pt' , ) # Un-flatten a_ : Union[str, Any] = {k: v.view(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , -1 ) for k, v in batch.items()} # Add back labels a_ : Dict = torch.tensor(SCREAMING_SNAKE_CASE__ , dtype=torch.intaa ) return batch def SCREAMING_SNAKE_CASE_ ( ) -> str: """simple docstring""" a_ : int = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. a_ , a_ , a_ : List[str] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: a_ , a_ , a_ : Optional[int] = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('run_swag' , __A , __A ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() a_ : Dict = training_args.get_process_log_level() logger.setLevel(__A ) datasets.utils.logging.set_verbosity(__A ) transformers.utils.logging.set_verbosity(__A ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(F"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. a_ : str = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: a_ : int = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. """ 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.train_file is not None or data_args.validation_file is not None: a_ : List[str] = {} if data_args.train_file is not None: a_ : int = data_args.train_file if data_args.validation_file is not None: a_ : Dict = data_args.validation_file a_ : Tuple = data_args.train_file.split('.' )[-1] a_ : List[str] = load_dataset( __A , data_files=__A , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) else: # Downloading and loading the swag dataset from the hub. a_ : Tuple = load_dataset( 'swag' , 'regular' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. a_ : List[Any] = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) a_ : List[Any] = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) a_ : Optional[int] = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=__A , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # When using your own dataset or a different dataset from swag, you will probably need to change this. a_ : int = [F"""ending{i}""" for i in range(4 )] a_ : Dict = 'sent1' a_ : Dict = 'sent2' if data_args.max_seq_length is None: a_ : int = tokenizer.model_max_length if max_seq_length > 10_24: logger.warning( 'The chosen tokenizer supports a `model_max_length` that is longer than the default `block_size` value' ' of 1024. If you would like to use a longer `block_size` up to `tokenizer.model_max_length` you can' ' override this default with `--block_size xxx`.' ) a_ : List[Any] = 10_24 else: if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( F"""The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the""" F"""model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.""" ) a_ : Union[str, Any] = min(data_args.max_seq_length , tokenizer.model_max_length ) # Preprocessing the datasets. def preprocess_function(__A : Tuple ): a_ : Optional[int] = [[context] * 4 for context in examples[context_name]] a_ : Union[str, Any] = examples[question_header_name] a_ : Optional[Any] = [ [F"""{header} {examples[end][i]}""" for end in ending_names] for i, header in enumerate(__A ) ] # Flatten out a_ : Optional[int] = list(chain(*__A ) ) a_ : Any = list(chain(*__A ) ) # Tokenize a_ : Any = tokenizer( __A , __A , truncation=__A , max_length=__A , padding='max_length' if data_args.pad_to_max_length else False , ) # Un-flatten return {k: [v[i : i + 4] for i in range(0 , len(__A ) , 4 )] for k, v in tokenized_examples.items()} if training_args.do_train: if "train" not in raw_datasets: raise ValueError('--do_train requires a train dataset' ) a_ : Optional[int] = raw_datasets['train'] if data_args.max_train_samples is not None: a_ : str = min(len(__A ) , data_args.max_train_samples ) a_ : List[str] = train_dataset.select(range(__A ) ) with training_args.main_process_first(desc='train dataset map pre-processing' ): a_ : int = train_dataset.map( __A , batched=__A , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) if training_args.do_eval: if "validation" not in raw_datasets: raise ValueError('--do_eval requires a validation dataset' ) a_ : Union[str, Any] = raw_datasets['validation'] if data_args.max_eval_samples is not None: a_ : List[str] = min(len(__A ) , data_args.max_eval_samples ) a_ : int = eval_dataset.select(range(__A ) ) with training_args.main_process_first(desc='validation dataset map pre-processing' ): a_ : int = eval_dataset.map( __A , batched=__A , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) # Data collator a_ : List[Any] = ( default_data_collator if data_args.pad_to_max_length else DataCollatorForMultipleChoice(tokenizer=__A , pad_to_multiple_of=8 if training_args.fpaa else None ) ) # Metric def compute_metrics(__A : Optional[Any] ): a_ , a_ : List[Any] = eval_predictions a_ : Tuple = np.argmax(__A , axis=1 ) return {"accuracy": (preds == label_ids).astype(np.floataa ).mean().item()} # Initialize our Trainer a_ : str = Trainer( model=__A , args=__A , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=__A , data_collator=__A , compute_metrics=__A , ) # Training if training_args.do_train: a_ : Any = None if training_args.resume_from_checkpoint is not None: a_ : Optional[Any] = training_args.resume_from_checkpoint elif last_checkpoint is not None: a_ : Optional[int] = last_checkpoint a_ : Dict = trainer.train(resume_from_checkpoint=__A ) trainer.save_model() # Saves the tokenizer too for easy upload a_ : Union[str, Any] = train_result.metrics a_ : Optional[int] = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(__A ) ) a_ : Any = min(__A , len(__A ) ) trainer.log_metrics('train' , __A ) trainer.save_metrics('train' , __A ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info('*** Evaluate ***' ) a_ : Dict = trainer.evaluate() a_ : List[str] = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(__A ) a_ : List[Any] = min(__A , len(__A ) ) trainer.log_metrics('eval' , __A ) trainer.save_metrics('eval' , __A ) a_ : Optional[Any] = { 'finetuned_from': model_args.model_name_or_path, 'tasks': 'multiple-choice', 'dataset_tags': 'swag', 'dataset_args': 'regular', 'dataset': 'SWAG', 'language': 'en', } if training_args.push_to_hub: trainer.push_to_hub(**__A ) else: trainer.create_model_card(**__A ) def SCREAMING_SNAKE_CASE_ ( __A : List[Any] ) -> Any: """simple docstring""" main() if __name__ == "__main__": main()
32
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) A__: str = { '''configuration_blip''': [ '''BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BlipConfig''', '''BlipTextConfig''', '''BlipVisionConfig''', ], '''processing_blip''': ['''BlipProcessor'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__: List[str] = ['''BlipImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__: Tuple = [ '''BLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BlipModel''', '''BlipPreTrainedModel''', '''BlipForConditionalGeneration''', '''BlipForQuestionAnswering''', '''BlipVisionModel''', '''BlipTextModel''', '''BlipForImageTextRetrieval''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__: str = [ '''TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFBlipModel''', '''TFBlipPreTrainedModel''', '''TFBlipForConditionalGeneration''', '''TFBlipForQuestionAnswering''', '''TFBlipVisionModel''', '''TFBlipTextModel''', '''TFBlipForImageTextRetrieval''', ] if TYPE_CHECKING: from .configuration_blip import BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipConfig, BlipTextConfig, BlipVisionConfig from .processing_blip import BlipProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_blip import BlipImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip import ( BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, BlipModel, BlipPreTrainedModel, BlipTextModel, BlipVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blip import ( TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFBlipForConditionalGeneration, TFBlipForImageTextRetrieval, TFBlipForQuestionAnswering, TFBlipModel, TFBlipPreTrainedModel, TFBlipTextModel, TFBlipVisionModel, ) else: import sys A__: Any = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
149
0
"""simple docstring""" import copy import tempfile import unittest from transformers import MaMaaaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from transformers.utils import cached_property from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaMaaaForConditionalGeneration, MaMaaaModel, MaMaaaTokenizer from transformers.models.mam_aaa.modeling_mam_aaa import MaMaaaDecoder, MaMaaaEncoder def a__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase=None , __UpperCamelCase=None , __UpperCamelCase=None , __UpperCamelCase=None , __UpperCamelCase=None , ): if attention_mask is None: SCREAMING_SNAKE_CASE_ = input_ids.ne(config.pad_token_id ) if decoder_attention_mask is None: SCREAMING_SNAKE_CASE_ = decoder_input_ids.ne(config.pad_token_id ) if head_mask is None: SCREAMING_SNAKE_CASE_ = torch.ones(config.encoder_layers , config.encoder_attention_heads , device=__lowerCAmelCase ) if decoder_head_mask is None: SCREAMING_SNAKE_CASE_ = torch.ones(config.decoder_layers , config.decoder_attention_heads , device=__lowerCAmelCase ) if cross_attn_head_mask is None: SCREAMING_SNAKE_CASE_ = torch.ones(config.decoder_layers , config.decoder_attention_heads , device=__lowerCAmelCase ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } class lowerCamelCase : """simple docstring""" def __init__( self : str , __magic_name__ : Any , __magic_name__ : Optional[int]=13 , __magic_name__ : Any=7 , __magic_name__ : List[Any]=True , __magic_name__ : int=False , __magic_name__ : Optional[int]=99 , __magic_name__ : Optional[int]=16 , __magic_name__ : Optional[Any]=2 , __magic_name__ : List[str]=4 , __magic_name__ : Any=4 , __magic_name__ : List[str]="relu" , __magic_name__ : List[Any]=0.1 , __magic_name__ : Dict=0.1 , __magic_name__ : Optional[int]=0.0 , __magic_name__ : Tuple=0.0 , __magic_name__ : Union[str, Any]=20 , __magic_name__ : Optional[Any]=2 , __magic_name__ : Dict=1 , __magic_name__ : Dict=0 , ) -> Tuple: SCREAMING_SNAKE_CASE_ = parent SCREAMING_SNAKE_CASE_ = batch_size SCREAMING_SNAKE_CASE_ = seq_length SCREAMING_SNAKE_CASE_ = is_training SCREAMING_SNAKE_CASE_ = use_labels SCREAMING_SNAKE_CASE_ = vocab_size SCREAMING_SNAKE_CASE_ = hidden_size SCREAMING_SNAKE_CASE_ = num_hidden_layers SCREAMING_SNAKE_CASE_ = num_attention_heads SCREAMING_SNAKE_CASE_ = intermediate_size SCREAMING_SNAKE_CASE_ = hidden_act SCREAMING_SNAKE_CASE_ = hidden_dropout_prob SCREAMING_SNAKE_CASE_ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ = encoder_layerdrop SCREAMING_SNAKE_CASE_ = decoder_layerdrop SCREAMING_SNAKE_CASE_ = max_position_embeddings SCREAMING_SNAKE_CASE_ = eos_token_id SCREAMING_SNAKE_CASE_ = pad_token_id SCREAMING_SNAKE_CASE_ = bos_token_id def __A ( self : Tuple ) -> Tuple: SCREAMING_SNAKE_CASE_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE_ = self.eos_token_id # Eos Token SCREAMING_SNAKE_CASE_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) # we need to clamp the input ids here to avoid having pad token in between # this is because for M2M100 the position_ids are prepared such that # all pad tokens have pos id = 2 and rest are between 2..seq_length # and the seq_length here is seq_length - num_pad_tokens # but when using past, there is no way of knowing if the past input ids had # pad tokens in them, which results in incorrect seq_lenth and which in turn results in # position_ids being off by num_pad_tokens in past input SCREAMING_SNAKE_CASE_ = input_ids.clamp(self.pad_token_id + 1 ) SCREAMING_SNAKE_CASE_ = decoder_input_ids.clamp(self.pad_token_id + 1 ) SCREAMING_SNAKE_CASE_ = self.get_config() SCREAMING_SNAKE_CASE_ = prepare_mam_aaa_inputs_dict(__lowercase , __lowercase , __lowercase ) return config, inputs_dict def __A ( self : Any ) -> List[str]: return MaMaaaConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , encoder_layerdrop=self.encoder_layerdrop , decoder_layerdrop=self.decoder_layerdrop , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , ) def __A ( self : str ) -> int: SCREAMING_SNAKE_CASE_ = self.prepare_config_and_inputs() return config, inputs_dict def __A ( self : int , __magic_name__ : List[Any] , __magic_name__ : Tuple ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = MaMaaaModel(config=__lowercase ).get_decoder().to(__lowercase ).eval() SCREAMING_SNAKE_CASE_ = inputs_dict['''input_ids'''] SCREAMING_SNAKE_CASE_ = inputs_dict['''attention_mask'''] SCREAMING_SNAKE_CASE_ = inputs_dict['''head_mask'''] # first forward pass SCREAMING_SNAKE_CASE_ = model(__lowercase , attention_mask=__lowercase , head_mask=__lowercase , use_cache=__lowercase ) SCREAMING_SNAKE_CASE_ = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids SCREAMING_SNAKE_CASE_ = ids_tensor((self.batch_size, 3) , config.vocab_size ) SCREAMING_SNAKE_CASE_ = ids_tensor((self.batch_size, 3) , 2 ) # append to next input_ids and SCREAMING_SNAKE_CASE_ = torch.cat([input_ids, next_tokens] , dim=-1 ) SCREAMING_SNAKE_CASE_ = torch.cat([attention_mask, next_attn_mask] , dim=-1 ) SCREAMING_SNAKE_CASE_ = model(__lowercase , attention_mask=__lowercase )['''last_hidden_state'''] SCREAMING_SNAKE_CASE_ = model(__lowercase , attention_mask=__lowercase , past_key_values=__lowercase )[ '''last_hidden_state''' ] # select random slice SCREAMING_SNAKE_CASE_ = ids_tensor((1,) , output_from_past.shape[-1] ).item() SCREAMING_SNAKE_CASE_ = output_from_no_past[:, -3:, random_slice_idx].detach() SCREAMING_SNAKE_CASE_ = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__lowercase , __lowercase , atol=1e-2 ) ) def __A ( self : Dict , __magic_name__ : List[Any] , __magic_name__ : Dict ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ = MaMaaaModel(config=__lowercase ).to(__lowercase ).eval() SCREAMING_SNAKE_CASE_ = model(**__lowercase ) SCREAMING_SNAKE_CASE_ = outputs.encoder_last_hidden_state SCREAMING_SNAKE_CASE_ = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: SCREAMING_SNAKE_CASE_ = model.get_encoder() encoder.save_pretrained(__lowercase ) SCREAMING_SNAKE_CASE_ = MaMaaaEncoder.from_pretrained(__lowercase ).to(__lowercase ) SCREAMING_SNAKE_CASE_ = encoder(inputs_dict["input_ids"] , attention_mask=inputs_dict["attention_mask"] )[ 0 ] self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1e-3 ) with tempfile.TemporaryDirectory() as tmpdirname: SCREAMING_SNAKE_CASE_ = model.get_decoder() decoder.save_pretrained(__lowercase ) SCREAMING_SNAKE_CASE_ = MaMaaaDecoder.from_pretrained(__lowercase ).to(__lowercase ) SCREAMING_SNAKE_CASE_ = decoder( input_ids=inputs_dict["decoder_input_ids"] , attention_mask=inputs_dict["decoder_attention_mask"] , encoder_hidden_states=__lowercase , encoder_attention_mask=inputs_dict["attention_mask"] , )[0] self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1e-3 ) @require_torch class lowerCamelCase (__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , unittest.TestCase ): """simple docstring""" lowerCamelCase__ = ( ( MaMaaaModel, MaMaaaForConditionalGeneration, ) if is_torch_available() else () ) lowerCamelCase__ = (MaMaaaForConditionalGeneration,) if is_torch_available() else () lowerCamelCase__ = ( { """conversational""": MaMaaaForConditionalGeneration, """feature-extraction""": MaMaaaModel, """summarization""": MaMaaaForConditionalGeneration, """text2text-generation""": MaMaaaForConditionalGeneration, """translation""": MaMaaaForConditionalGeneration, } if is_torch_available() else {} ) lowerCamelCase__ = True lowerCamelCase__ = True lowerCamelCase__ = False lowerCamelCase__ = False def __A ( self : List[str] , __magic_name__ : Tuple , __magic_name__ : Optional[Any] , __magic_name__ : List[str] , __magic_name__ : Any , __magic_name__ : Optional[Any] ) -> int: if pipeline_test_casse_name == "TranslationPipelineTests": # Get `ValueError: Translation requires a `src_lang` and a `tgt_lang` for this model`. # `M2M100Config` was never used in pipeline tests: cannot create a simple tokenizer. return True return False def __A ( self : List[Any] ) -> Tuple: SCREAMING_SNAKE_CASE_ = MaMaaaModelTester(self ) SCREAMING_SNAKE_CASE_ = ConfigTester(self , config_class=__lowercase ) def __A ( self : Any ) -> Any: self.config_tester.run_common_tests() def __A ( self : Optional[int] ) -> Tuple: SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_ = model_class(__lowercase ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__lowercase ) SCREAMING_SNAKE_CASE_ = model_class.from_pretrained(__lowercase , output_loading_info=__lowercase ) self.assertEqual(info["missing_keys"] , [] ) def __A ( self : str ) -> Any: SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(*__lowercase ) def __A ( self : List[str] ) -> Tuple: SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*__lowercase ) def __A ( self : List[Any] ) -> int: SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in (MaMaaaModel, MaMaaaForConditionalGeneration): SCREAMING_SNAKE_CASE_ = model_class(__lowercase ) model.to(__lowercase ) model.eval() SCREAMING_SNAKE_CASE_ = copy.deepcopy(self._prepare_for_class(__lowercase , __lowercase ) ) if not self.is_encoder_decoder: SCREAMING_SNAKE_CASE_ = inputs['''input_ids'''] del inputs["input_ids"] else: SCREAMING_SNAKE_CASE_ = inputs['''input_ids'''] SCREAMING_SNAKE_CASE_ = inputs.get("decoder_input_ids" , __lowercase ) del inputs["input_ids"] inputs.pop("decoder_input_ids" , __lowercase ) SCREAMING_SNAKE_CASE_ = model.get_input_embeddings() if not self.is_encoder_decoder: SCREAMING_SNAKE_CASE_ = wte(__lowercase ) else: SCREAMING_SNAKE_CASE_ = wte(__lowercase ) SCREAMING_SNAKE_CASE_ = wte(__lowercase ) with torch.no_grad(): model(**__lowercase )[0] def __A ( self : Dict ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs() SCREAMING_SNAKE_CASE_ = input_dict['''input_ids'''] SCREAMING_SNAKE_CASE_ = input_ids.ne(1 ).to(__lowercase ) SCREAMING_SNAKE_CASE_ = MaMaaaForConditionalGeneration(__lowercase ).eval().to(__lowercase ) if torch_device == "cuda": model.half() model.generate(__lowercase , attention_mask=__lowercase ) model.generate(num_beams=4 , do_sample=__lowercase , early_stopping=__lowercase , num_return_sequences=3 ) def a__ ( __UpperCamelCase ): return torch.tensor(__lowerCAmelCase , dtype=torch.long , device=__lowerCAmelCase ) A : List[str] = 1E-4 @require_torch @require_sentencepiece @require_tokenizers @slow class lowerCamelCase (unittest.TestCase ): """simple docstring""" @cached_property def __A ( self : Any ) -> Any: return MaMaaaTokenizer.from_pretrained("facebook/m2m100_418M" ) def __A ( self : Dict ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = MaMaaaModel.from_pretrained("facebook/m2m100_418M" ).to(__lowercase ) SCREAMING_SNAKE_CASE_ = _long_tensor([[128_028, 98, 12, 30_527, 2_732, 159, 7_755, 61_904, 39_144, 38, 2]] ) SCREAMING_SNAKE_CASE_ = _long_tensor([[2, 128_028, 98, 12, 30_527, 2_732, 159, 7_755, 61_904, 39_144, 38]] ) SCREAMING_SNAKE_CASE_ = prepare_mam_aaa_inputs_dict(model.config , __lowercase , __lowercase ) with torch.no_grad(): SCREAMING_SNAKE_CASE_ = model(**__lowercase )[0] SCREAMING_SNAKE_CASE_ = torch.Size((1, 11, 1_024) ) self.assertEqual(output.shape , __lowercase ) # change to expected output here SCREAMING_SNAKE_CASE_ = torch.tensor( [[-0.7780, -0.1676, 0.1038], [-6.7556, -1.3992, 0.0567], [-7.5383, -0.5920, -0.2779]] , device=__lowercase ) self.assertTrue(torch.allclose(output[:, :3, :3] , __lowercase , atol=__lowercase ) ) def __A ( self : List[Any] ) -> int: SCREAMING_SNAKE_CASE_ = MaMaaaForConditionalGeneration.from_pretrained("facebook/m2m100_418M" ).to(__lowercase ) # change to intended input SCREAMING_SNAKE_CASE_ = _long_tensor([[128_028, 98, 12, 30_527, 2_732, 159, 7_755, 61_904, 39_144, 38, 2]] ) SCREAMING_SNAKE_CASE_ = _long_tensor([[2, 128_028, 98, 12, 30_527, 2_732, 159, 7_755, 61_904, 39_144, 38]] ) SCREAMING_SNAKE_CASE_ = prepare_mam_aaa_inputs_dict(model.config , __lowercase , __lowercase ) with torch.no_grad(): SCREAMING_SNAKE_CASE_ = model(**__lowercase )[0] SCREAMING_SNAKE_CASE_ = torch.Size((1, 11, model.config.vocab_size) ) self.assertEqual(output.shape , __lowercase ) # change to expected output here SCREAMING_SNAKE_CASE_ = torch.tensor( [[-1.0448, -1.0411, 3.7992], [-3.2191, -3.2386, -1.3451], [-3.6210, -3.5993, 0.4925]] , device=__lowercase ) self.assertTrue(torch.allclose(output[:, :3, :3] , __lowercase , atol=__lowercase ) ) def __A ( self : List[Any] ) -> Any: SCREAMING_SNAKE_CASE_ = MaMaaaForConditionalGeneration.from_pretrained("facebook/m2m100_418M" ).to(__lowercase ) SCREAMING_SNAKE_CASE_ = MaMaaaTokenizer.from_pretrained("facebook/m2m100_418M" , src_lang="fr" , tgt_lang="en" ) SCREAMING_SNAKE_CASE_ = [ '''L\'affaire NSA souligne l\'absence totale de débat sur le renseignement''', '''Selon moi, il y a deux niveaux de réponse de la part du gouvernement français.''', '''Lorsque François Hollande téléphone à Barack Obama ou quand le ministre des affaires étrangères Laurent''' ''' Fabius convoque l\'ambassadeur des Etats-Unis, ils réagissent à une vraie découverte, qui est celle de''' ''' l\'ampleur de la surveillance américaine sur l\'ensemble des communications en France.''', ] # The below article tests that we don't add any hypotheses outside of the top n_beams SCREAMING_SNAKE_CASE_ = tokenizer(__lowercase , padding=__lowercase , return_tensors="pt" ) SCREAMING_SNAKE_CASE_ = model.generate( input_ids=dct["input_ids"].to(__lowercase ) , attention_mask=dct["attention_mask"].to(__lowercase ) , num_beams=5 , forced_bos_token_id=tokenizer.get_lang_id("en" ) , ) SCREAMING_SNAKE_CASE_ = [ '''The NSA case highlights the total absence of intelligence debate''', '''I think there are two levels of response from the French government.''', '''When François Hollande calls Barack Obama or when Foreign Minister Laurent Fabius calls the U.S.''' ''' Ambassador, they respond to a real discovery, which is that of the scale of U.S. surveillance on all''' ''' communications in France.''', ] SCREAMING_SNAKE_CASE_ = tokenizer.batch_decode( hypotheses_batch.tolist() , clean_up_tokenization_spaces=__lowercase , skip_special_tokens=__lowercase ) assert generated == expected_en
350
from __future__ import annotations import numpy as np def a__ ( __UpperCamelCase ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = np.shape(__UpperCamelCase ) if rows != columns: SCREAMING_SNAKE_CASE_ = ( "'table' has to be of square shaped array but got a " F'''{rows}x{columns} array:\n{table}''' ) raise ValueError(__UpperCamelCase ) SCREAMING_SNAKE_CASE_ = np.zeros((rows, columns) ) SCREAMING_SNAKE_CASE_ = np.zeros((rows, columns) ) for i in range(__UpperCamelCase ): for j in range(__UpperCamelCase ): SCREAMING_SNAKE_CASE_ = sum(lower[i][k] * upper[k][j] for k in range(__UpperCamelCase ) ) if upper[j][j] == 0: raise ArithmeticError("No LU decomposition exists" ) SCREAMING_SNAKE_CASE_ = (table[i][j] - total) / upper[j][j] SCREAMING_SNAKE_CASE_ = 1 for j in range(__UpperCamelCase , __UpperCamelCase ): SCREAMING_SNAKE_CASE_ = sum(lower[i][k] * upper[k][j] for k in range(__UpperCamelCase ) ) SCREAMING_SNAKE_CASE_ = table[i][j] - total return lower, upper if __name__ == "__main__": import doctest doctest.testmod()
305
0